drm/i915: Set the map-and-fenceable flag for preallocated objects
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
ca1543be
TU
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
853ba5d2 149 args->aper_size = dev_priv->gtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
5d4545ae 810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1007 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1008 needs_clflush_after = true;
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
ed75a55b
VS
1014 else
1015 obj->cache_dirty = true;
58642885 1016
de152b62 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1018 return ret;
673a394b
EA
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1028 struct drm_file *file)
673a394b 1029{
5d77d9c5 1030 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1031 struct drm_i915_gem_pwrite *args = data;
05394f39 1032 struct drm_i915_gem_object *obj;
51311d0a
CW
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
2bb4629a 1039 to_user_ptr(args->data_ptr),
51311d0a
CW
1040 args->size))
1041 return -EFAULT;
1042
d330a953 1043 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
673a394b 1049
5d77d9c5
ID
1050 intel_runtime_pm_get(dev_priv);
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
5d77d9c5 1054 goto put_rpm;
1d7cfea1 1055
05394f39 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1057 if (&obj->base == NULL) {
1d7cfea1
CW
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
673a394b 1061
7dcd2499 1062 /* Bounds check destination. */
05394f39
CW
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
ce9d419d 1065 ret = -EINVAL;
35b62a89 1066 goto out;
ce9d419d
CW
1067 }
1068
1286ff73
DV
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
db53a302
CW
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
935aaa69 1079 ret = -EFAULT;
673a394b
EA
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
2c22569b
CW
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
fbd5a26d 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1093 }
673a394b 1094
6a2c4232
CW
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
5c0480f2 1101
35b62a89 1102out:
05394f39 1103 drm_gem_object_unreference(&obj->base);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
673a394b
EA
1109 return ret;
1110}
1111
b361237b 1112int
33196ded 1113i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1114 bool interruptible)
1115{
1f83fee0 1116 if (i915_reset_in_progress(error)) {
b361237b
CW
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1f83fee0
DV
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
b361237b
CW
1124 return -EIO;
1125
6689c167
MA
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
b361237b
CW
1133 }
1134
1135 return 0;
1136}
1137
094f9a54
CW
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1144 struct intel_engine_cs *ring)
094f9a54
CW
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
eed29a5b 1149static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1150{
2def4ad9 1151 unsigned long timeout;
b29c19b6 1152
eed29a5b 1153 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1154 return -EBUSY;
1155
1156 timeout = jiffies + 1;
1157 while (!need_resched()) {
eed29a5b 1158 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1159 return 0;
1160
1161 if (time_after_eq(jiffies, timeout))
1162 break;
b29c19b6 1163
2def4ad9
CW
1164 cpu_relax_lowlatency();
1165 }
eed29a5b 1166 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1167 return 0;
1168
1169 return -EAGAIN;
b29c19b6
CW
1170}
1171
b361237b 1172/**
9c654818
JH
1173 * __i915_wait_request - wait until execution of request has finished
1174 * @req: duh!
1175 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1176 * @interruptible: do an interruptible wait (normally yes)
1177 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178 *
f69061be
DV
1179 * Note: It is of utmost importance that the passed in seqno and reset_counter
1180 * values have been read by the caller in an smp safe manner. Where read-side
1181 * locks are involved, it is sufficient to read the reset_counter before
1182 * unlocking the lock that protects the seqno. For lockless tricks, the
1183 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184 * inserted.
1185 *
9c654818 1186 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1187 * errno with remaining time filled in timeout argument.
1188 */
9c654818 1189int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1190 unsigned reset_counter,
b29c19b6 1191 bool interruptible,
5ed0bdf2 1192 s64 *timeout,
2e1b8730 1193 struct intel_rps_client *rps)
b361237b 1194{
9c654818 1195 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1196 struct drm_device *dev = ring->dev;
3e31c6c0 1197 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1198 const bool irq_test_in_progress =
1199 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1200 DEFINE_WAIT(wait);
47e9766d 1201 unsigned long timeout_expire;
5ed0bdf2 1202 s64 before, now;
b361237b
CW
1203 int ret;
1204
9df7575f 1205 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1206
b4716185
CW
1207 if (list_empty(&req->list))
1208 return 0;
1209
1b5a433a 1210 if (i915_gem_request_completed(req, true))
b361237b
CW
1211 return 0;
1212
bb6d1984
CW
1213 timeout_expire = 0;
1214 if (timeout) {
1215 if (WARN_ON(*timeout < 0))
1216 return -EINVAL;
1217
1218 if (*timeout == 0)
1219 return -ETIME;
1220
1221 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1222 }
b361237b 1223
2e1b8730 1224 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1225 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1226
094f9a54 1227 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1228 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1229 before = ktime_get_raw_ns();
2def4ad9
CW
1230
1231 /* Optimistic spin for the next jiffie before touching IRQs */
1232 ret = __i915_spin_request(req);
1233 if (ret == 0)
1234 goto out;
1235
1236 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1237 ret = -ENODEV;
1238 goto out;
1239 }
1240
094f9a54
CW
1241 for (;;) {
1242 struct timer_list timer;
b361237b 1243
094f9a54
CW
1244 prepare_to_wait(&ring->irq_queue, &wait,
1245 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1246
f69061be
DV
1247 /* We need to check whether any gpu reset happened in between
1248 * the caller grabbing the seqno and now ... */
094f9a54
CW
1249 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1250 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1251 * is truely gone. */
1252 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1253 if (ret == 0)
1254 ret = -EAGAIN;
1255 break;
1256 }
f69061be 1257
1b5a433a 1258 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1259 ret = 0;
1260 break;
1261 }
b361237b 1262
094f9a54
CW
1263 if (interruptible && signal_pending(current)) {
1264 ret = -ERESTARTSYS;
1265 break;
1266 }
1267
47e9766d 1268 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1269 ret = -ETIME;
1270 break;
1271 }
1272
1273 timer.function = NULL;
1274 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1275 unsigned long expire;
1276
094f9a54 1277 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1278 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1279 mod_timer(&timer, expire);
1280 }
1281
5035c275 1282 io_schedule();
094f9a54 1283
094f9a54
CW
1284 if (timer.function) {
1285 del_singleshot_timer_sync(&timer);
1286 destroy_timer_on_stack(&timer);
1287 }
1288 }
168c3f21
MK
1289 if (!irq_test_in_progress)
1290 ring->irq_put(ring);
094f9a54
CW
1291
1292 finish_wait(&ring->irq_queue, &wait);
b361237b 1293
2def4ad9
CW
1294out:
1295 now = ktime_get_raw_ns();
1296 trace_i915_gem_request_wait_end(req);
1297
b361237b 1298 if (timeout) {
5ed0bdf2
TG
1299 s64 tres = *timeout - (now - before);
1300
1301 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1302
1303 /*
1304 * Apparently ktime isn't accurate enough and occasionally has a
1305 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1306 * things up to make the test happy. We allow up to 1 jiffy.
1307 *
1308 * This is a regrssion from the timespec->ktime conversion.
1309 */
1310 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1311 *timeout = 0;
b361237b
CW
1312 }
1313
094f9a54 1314 return ret;
b361237b
CW
1315}
1316
fcfa423c
JH
1317int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1318 struct drm_file *file)
1319{
1320 struct drm_i915_private *dev_private;
1321 struct drm_i915_file_private *file_priv;
1322
1323 WARN_ON(!req || !file || req->file_priv);
1324
1325 if (!req || !file)
1326 return -EINVAL;
1327
1328 if (req->file_priv)
1329 return -EINVAL;
1330
1331 dev_private = req->ring->dev->dev_private;
1332 file_priv = file->driver_priv;
1333
1334 spin_lock(&file_priv->mm.lock);
1335 req->file_priv = file_priv;
1336 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1337 spin_unlock(&file_priv->mm.lock);
1338
1339 req->pid = get_pid(task_pid(current));
1340
1341 return 0;
1342}
1343
b4716185
CW
1344static inline void
1345i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1346{
1347 struct drm_i915_file_private *file_priv = request->file_priv;
1348
1349 if (!file_priv)
1350 return;
1351
1352 spin_lock(&file_priv->mm.lock);
1353 list_del(&request->client_list);
1354 request->file_priv = NULL;
1355 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1356
1357 put_pid(request->pid);
1358 request->pid = NULL;
b4716185
CW
1359}
1360
1361static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1362{
1363 trace_i915_gem_request_retire(request);
1364
1365 /* We know the GPU must have read the request to have
1366 * sent us the seqno + interrupt, so use the position
1367 * of tail of the request to update the last known position
1368 * of the GPU head.
1369 *
1370 * Note this requires that we are always called in request
1371 * completion order.
1372 */
1373 request->ringbuf->last_retired_head = request->postfix;
1374
1375 list_del_init(&request->list);
1376 i915_gem_request_remove_from_client(request);
1377
b4716185
CW
1378 i915_gem_request_unreference(request);
1379}
1380
1381static void
1382__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1383{
1384 struct intel_engine_cs *engine = req->ring;
1385 struct drm_i915_gem_request *tmp;
1386
1387 lockdep_assert_held(&engine->dev->struct_mutex);
1388
1389 if (list_empty(&req->list))
1390 return;
1391
1392 do {
1393 tmp = list_first_entry(&engine->request_list,
1394 typeof(*tmp), list);
1395
1396 i915_gem_request_retire(tmp);
1397 } while (tmp != req);
1398
1399 WARN_ON(i915_verify_lists(engine->dev));
1400}
1401
b361237b 1402/**
a4b3a571 1403 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1404 * request and object lists appropriately for that event.
1405 */
1406int
a4b3a571 1407i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1408{
a4b3a571
DV
1409 struct drm_device *dev;
1410 struct drm_i915_private *dev_priv;
1411 bool interruptible;
b361237b
CW
1412 int ret;
1413
a4b3a571
DV
1414 BUG_ON(req == NULL);
1415
1416 dev = req->ring->dev;
1417 dev_priv = dev->dev_private;
1418 interruptible = dev_priv->mm.interruptible;
1419
b361237b 1420 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1421
33196ded 1422 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1423 if (ret)
1424 return ret;
1425
b4716185
CW
1426 ret = __i915_wait_request(req,
1427 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1428 interruptible, NULL, NULL);
b4716185
CW
1429 if (ret)
1430 return ret;
d26e3af8 1431
b4716185 1432 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1433 return 0;
1434}
1435
b361237b
CW
1436/**
1437 * Ensures that all rendering to the object has completed and the object is
1438 * safe to unbind from the GTT or access from the CPU.
1439 */
2e2f351d 1440int
b361237b
CW
1441i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1442 bool readonly)
1443{
b4716185 1444 int ret, i;
b361237b 1445
b4716185 1446 if (!obj->active)
b361237b
CW
1447 return 0;
1448
b4716185
CW
1449 if (readonly) {
1450 if (obj->last_write_req != NULL) {
1451 ret = i915_wait_request(obj->last_write_req);
1452 if (ret)
1453 return ret;
b361237b 1454
b4716185
CW
1455 i = obj->last_write_req->ring->id;
1456 if (obj->last_read_req[i] == obj->last_write_req)
1457 i915_gem_object_retire__read(obj, i);
1458 else
1459 i915_gem_object_retire__write(obj);
1460 }
1461 } else {
1462 for (i = 0; i < I915_NUM_RINGS; i++) {
1463 if (obj->last_read_req[i] == NULL)
1464 continue;
1465
1466 ret = i915_wait_request(obj->last_read_req[i]);
1467 if (ret)
1468 return ret;
1469
1470 i915_gem_object_retire__read(obj, i);
1471 }
1472 RQ_BUG_ON(obj->active);
1473 }
1474
1475 return 0;
1476}
1477
1478static void
1479i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1480 struct drm_i915_gem_request *req)
1481{
1482 int ring = req->ring->id;
1483
1484 if (obj->last_read_req[ring] == req)
1485 i915_gem_object_retire__read(obj, ring);
1486 else if (obj->last_write_req == req)
1487 i915_gem_object_retire__write(obj);
b361237b 1488
b4716185 1489 __i915_gem_request_retire__upto(req);
b361237b
CW
1490}
1491
3236f57a
CW
1492/* A nonblocking variant of the above wait. This is a highly dangerous routine
1493 * as the object state may change during this call.
1494 */
1495static __must_check int
1496i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1497 struct intel_rps_client *rps,
3236f57a
CW
1498 bool readonly)
1499{
1500 struct drm_device *dev = obj->base.dev;
1501 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1502 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1503 unsigned reset_counter;
b4716185 1504 int ret, i, n = 0;
3236f57a
CW
1505
1506 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1507 BUG_ON(!dev_priv->mm.interruptible);
1508
b4716185 1509 if (!obj->active)
3236f57a
CW
1510 return 0;
1511
33196ded 1512 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1513 if (ret)
1514 return ret;
1515
f69061be 1516 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1517
1518 if (readonly) {
1519 struct drm_i915_gem_request *req;
1520
1521 req = obj->last_write_req;
1522 if (req == NULL)
1523 return 0;
1524
b4716185
CW
1525 requests[n++] = i915_gem_request_reference(req);
1526 } else {
1527 for (i = 0; i < I915_NUM_RINGS; i++) {
1528 struct drm_i915_gem_request *req;
1529
1530 req = obj->last_read_req[i];
1531 if (req == NULL)
1532 continue;
1533
b4716185
CW
1534 requests[n++] = i915_gem_request_reference(req);
1535 }
1536 }
1537
3236f57a 1538 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1539 for (i = 0; ret == 0 && i < n; i++)
1540 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1541 NULL, rps);
3236f57a
CW
1542 mutex_lock(&dev->struct_mutex);
1543
b4716185
CW
1544 for (i = 0; i < n; i++) {
1545 if (ret == 0)
1546 i915_gem_object_retire_request(obj, requests[i]);
1547 i915_gem_request_unreference(requests[i]);
1548 }
1549
1550 return ret;
3236f57a
CW
1551}
1552
2e1b8730
CW
1553static struct intel_rps_client *to_rps_client(struct drm_file *file)
1554{
1555 struct drm_i915_file_private *fpriv = file->driver_priv;
1556 return &fpriv->rps;
3236f57a
CW
1557}
1558
673a394b 1559/**
2ef7eeaa
EA
1560 * Called when user space prepares to use an object with the CPU, either
1561 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1562 */
1563int
1564i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1565 struct drm_file *file)
673a394b
EA
1566{
1567 struct drm_i915_gem_set_domain *args = data;
05394f39 1568 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1569 uint32_t read_domains = args->read_domains;
1570 uint32_t write_domain = args->write_domain;
673a394b
EA
1571 int ret;
1572
2ef7eeaa 1573 /* Only handle setting domains to types used by the CPU. */
21d509e3 1574 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1575 return -EINVAL;
1576
21d509e3 1577 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1578 return -EINVAL;
1579
1580 /* Having something in the write domain implies it's in the read
1581 * domain, and only that read domain. Enforce that in the request.
1582 */
1583 if (write_domain != 0 && read_domains != write_domain)
1584 return -EINVAL;
1585
76c1dec1 1586 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1587 if (ret)
76c1dec1 1588 return ret;
1d7cfea1 1589
05394f39 1590 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1591 if (&obj->base == NULL) {
1d7cfea1
CW
1592 ret = -ENOENT;
1593 goto unlock;
76c1dec1 1594 }
673a394b 1595
3236f57a
CW
1596 /* Try to flush the object off the GPU without holding the lock.
1597 * We will repeat the flush holding the lock in the normal manner
1598 * to catch cases where we are gazumped.
1599 */
6e4930f6 1600 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1601 to_rps_client(file),
6e4930f6 1602 !write_domain);
3236f57a
CW
1603 if (ret)
1604 goto unref;
1605
43566ded 1606 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1607 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1608 else
e47c68e9 1609 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1610
031b698a
DV
1611 if (write_domain != 0)
1612 intel_fb_obj_invalidate(obj,
1613 write_domain == I915_GEM_DOMAIN_GTT ?
1614 ORIGIN_GTT : ORIGIN_CPU);
1615
3236f57a 1616unref:
05394f39 1617 drm_gem_object_unreference(&obj->base);
1d7cfea1 1618unlock:
673a394b
EA
1619 mutex_unlock(&dev->struct_mutex);
1620 return ret;
1621}
1622
1623/**
1624 * Called when user space has done writes to this buffer
1625 */
1626int
1627i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1628 struct drm_file *file)
673a394b
EA
1629{
1630 struct drm_i915_gem_sw_finish *args = data;
05394f39 1631 struct drm_i915_gem_object *obj;
673a394b
EA
1632 int ret = 0;
1633
76c1dec1 1634 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1635 if (ret)
76c1dec1 1636 return ret;
1d7cfea1 1637
05394f39 1638 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1639 if (&obj->base == NULL) {
1d7cfea1
CW
1640 ret = -ENOENT;
1641 goto unlock;
673a394b
EA
1642 }
1643
673a394b 1644 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1645 if (obj->pin_display)
e62b59e4 1646 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1647
05394f39 1648 drm_gem_object_unreference(&obj->base);
1d7cfea1 1649unlock:
673a394b
EA
1650 mutex_unlock(&dev->struct_mutex);
1651 return ret;
1652}
1653
1654/**
1655 * Maps the contents of an object, returning the address it is mapped
1656 * into.
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
34367381
DV
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1670 */
1671int
1672i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1673 struct drm_file *file)
673a394b
EA
1674{
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_gem_object *obj;
673a394b
EA
1677 unsigned long addr;
1678
1816f923
AG
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
1682 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683 return -ENODEV;
1684
05394f39 1685 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1686 if (obj == NULL)
bf79cb91 1687 return -ENOENT;
673a394b 1688
1286ff73
DV
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
1692 if (!obj->filp) {
1693 drm_gem_object_unreference_unlocked(obj);
1694 return -EINVAL;
1695 }
1696
6be5ceb0 1697 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1816f923
AG
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
1704 down_write(&mm->mmap_sem);
1705 vma = find_vma(mm, addr);
1706 if (vma)
1707 vma->vm_page_prot =
1708 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709 else
1710 addr = -ENOMEM;
1711 up_write(&mm->mmap_sem);
1712 }
bc9025bd 1713 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1714 if (IS_ERR((void *)addr))
1715 return addr;
1716
1717 args->addr_ptr = (uint64_t) addr;
1718
1719 return 0;
1720}
1721
de151cf6
JB
1722/**
1723 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1724 * @vma: VMA in question
1725 * @vmf: fault info
de151cf6
JB
1726 *
1727 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728 * from userspace. The fault handler takes care of binding the object to
1729 * the GTT (if needed), allocating and programming a fence register (again,
1730 * only if needed based on whether the old reg is still valid or the object
1731 * is tiled) and inserting a new PTE into the faulting process.
1732 *
1733 * Note that the faulting process may involve evicting existing objects
1734 * from the GTT and/or fence registers to make room. So performance may
1735 * suffer if the GTT working set is large or there are few fence registers
1736 * left.
1737 */
1738int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739{
05394f39
CW
1740 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741 struct drm_device *dev = obj->base.dev;
3e31c6c0 1742 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1743 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1744 pgoff_t page_offset;
1745 unsigned long pfn;
1746 int ret = 0;
0f973f27 1747 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1748
f65c9168
PZ
1749 intel_runtime_pm_get(dev_priv);
1750
de151cf6
JB
1751 /* We don't use vmf->pgoff since that has the fake offset */
1752 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753 PAGE_SHIFT;
1754
d9bc7e9f
CW
1755 ret = i915_mutex_lock_interruptible(dev);
1756 if (ret)
1757 goto out;
a00b10c3 1758
db53a302
CW
1759 trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
6e4930f6
CW
1761 /* Try to flush the object off the GPU first without holding the lock.
1762 * Upon reacquiring the lock, we will perform our sanity checks and then
1763 * repeat the flush holding the lock in the normal manner to catch cases
1764 * where we are gazumped.
1765 */
1766 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767 if (ret)
1768 goto unlock;
1769
eb119bd6
CW
1770 /* Access to snoopable pages through the GTT is incoherent. */
1771 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1772 ret = -EFAULT;
eb119bd6
CW
1773 goto unlock;
1774 }
1775
c5ad54cf 1776 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1777 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1779 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1780
c5ad54cf
JL
1781 memset(&view, 0, sizeof(view));
1782 view.type = I915_GGTT_VIEW_PARTIAL;
1783 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784 view.params.partial.size =
1785 min_t(unsigned int,
1786 chunk_size,
1787 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788 view.params.partial.offset);
1789 }
1790
1791 /* Now pin it into the GTT if needed */
1792 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1793 if (ret)
1794 goto unlock;
4a684a41 1795
c9839303
CW
1796 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797 if (ret)
1798 goto unpin;
74898d7e 1799
06d98131 1800 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1801 if (ret)
c9839303 1802 goto unpin;
7d1c4804 1803
b90b91d8 1804 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1805 pfn = dev_priv->gtt.mappable_base +
1806 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1807 pfn >>= PAGE_SHIFT;
de151cf6 1808
c5ad54cf
JL
1809 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810 /* Overriding existing pages in partial view does not cause
1811 * us any trouble as TLBs are still valid because the fault
1812 * is due to userspace losing part of the mapping or never
1813 * having accessed it before (at this partials' range).
1814 */
1815 unsigned long base = vma->vm_start +
1816 (view.params.partial.offset << PAGE_SHIFT);
1817 unsigned int i;
b90b91d8 1818
c5ad54cf
JL
1819 for (i = 0; i < view.params.partial.size; i++) {
1820 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1821 if (ret)
1822 break;
1823 }
1824
1825 obj->fault_mappable = true;
c5ad54cf
JL
1826 } else {
1827 if (!obj->fault_mappable) {
1828 unsigned long size = min_t(unsigned long,
1829 vma->vm_end - vma->vm_start,
1830 obj->base.size);
1831 int i;
1832
1833 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834 ret = vm_insert_pfn(vma,
1835 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836 pfn + i);
1837 if (ret)
1838 break;
1839 }
1840
1841 obj->fault_mappable = true;
1842 } else
1843 ret = vm_insert_pfn(vma,
1844 (unsigned long)vmf->virtual_address,
1845 pfn + page_offset);
1846 }
c9839303 1847unpin:
c5ad54cf 1848 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1849unlock:
de151cf6 1850 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1851out:
de151cf6 1852 switch (ret) {
d9bc7e9f 1853 case -EIO:
2232f031
DV
1854 /*
1855 * We eat errors when the gpu is terminally wedged to avoid
1856 * userspace unduly crashing (gl has no provisions for mmaps to
1857 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858 * and so needs to be reported.
1859 */
1860 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1861 ret = VM_FAULT_SIGBUS;
1862 break;
1863 }
045e769a 1864 case -EAGAIN:
571c608d
DV
1865 /*
1866 * EAGAIN means the gpu is hung and we'll wait for the error
1867 * handler to reset everything when re-faulting in
1868 * i915_mutex_lock_interruptible.
d9bc7e9f 1869 */
c715089f
CW
1870 case 0:
1871 case -ERESTARTSYS:
bed636ab 1872 case -EINTR:
e79e0fe3
DR
1873 case -EBUSY:
1874 /*
1875 * EBUSY is ok: this just means that another thread
1876 * already did the job.
1877 */
f65c9168
PZ
1878 ret = VM_FAULT_NOPAGE;
1879 break;
de151cf6 1880 case -ENOMEM:
f65c9168
PZ
1881 ret = VM_FAULT_OOM;
1882 break;
a7c2e1aa 1883 case -ENOSPC:
45d67817 1884 case -EFAULT:
f65c9168
PZ
1885 ret = VM_FAULT_SIGBUS;
1886 break;
de151cf6 1887 default:
a7c2e1aa 1888 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1889 ret = VM_FAULT_SIGBUS;
1890 break;
de151cf6 1891 }
f65c9168
PZ
1892
1893 intel_runtime_pm_put(dev_priv);
1894 return ret;
de151cf6
JB
1895}
1896
901782b2
CW
1897/**
1898 * i915_gem_release_mmap - remove physical page mappings
1899 * @obj: obj in question
1900 *
af901ca1 1901 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1902 * relinquish ownership of the pages back to the system.
1903 *
1904 * It is vital that we remove the page mapping if we have mapped a tiled
1905 * object through the GTT and then lose the fence register due to
1906 * resource pressure. Similarly if the object has been moved out of the
1907 * aperture, than pages mapped into userspace must be revoked. Removing the
1908 * mapping will then trigger a page fault on the next user access, allowing
1909 * fixup by i915_gem_fault().
1910 */
d05ca301 1911void
05394f39 1912i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1913{
6299f992
CW
1914 if (!obj->fault_mappable)
1915 return;
901782b2 1916
6796cb16
DH
1917 drm_vma_node_unmap(&obj->base.vma_node,
1918 obj->base.dev->anon_inode->i_mapping);
6299f992 1919 obj->fault_mappable = false;
901782b2
CW
1920}
1921
eedd10f4
CW
1922void
1923i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924{
1925 struct drm_i915_gem_object *obj;
1926
1927 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928 i915_gem_release_mmap(obj);
1929}
1930
0fa87796 1931uint32_t
e28f8711 1932i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1933{
e28f8711 1934 uint32_t gtt_size;
92b88aeb
CW
1935
1936 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1937 tiling_mode == I915_TILING_NONE)
1938 return size;
92b88aeb
CW
1939
1940 /* Previous chips need a power-of-two fence region when tiling */
1941 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1942 gtt_size = 1024*1024;
92b88aeb 1943 else
e28f8711 1944 gtt_size = 512*1024;
92b88aeb 1945
e28f8711
CW
1946 while (gtt_size < size)
1947 gtt_size <<= 1;
92b88aeb 1948
e28f8711 1949 return gtt_size;
92b88aeb
CW
1950}
1951
de151cf6
JB
1952/**
1953 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954 * @obj: object to check
1955 *
1956 * Return the required GTT alignment for an object, taking into account
5e783301 1957 * potential fence register mapping.
de151cf6 1958 */
d865110c
ID
1959uint32_t
1960i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961 int tiling_mode, bool fenced)
de151cf6 1962{
de151cf6
JB
1963 /*
1964 * Minimum alignment is 4k (GTT page size), but might be greater
1965 * if a fence register is needed for the object.
1966 */
d865110c 1967 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1968 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1969 return 4096;
1970
a00b10c3
CW
1971 /*
1972 * Previous chips need to be aligned to the size of the smallest
1973 * fence register that can contain the object.
1974 */
e28f8711 1975 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1976}
1977
d8cb5086
CW
1978static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979{
1980 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981 int ret;
1982
0de23977 1983 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1984 return 0;
1985
da494d7c
DV
1986 dev_priv->mm.shrinker_no_lock_stealing = true;
1987
d8cb5086
CW
1988 ret = drm_gem_create_mmap_offset(&obj->base);
1989 if (ret != -ENOSPC)
da494d7c 1990 goto out;
d8cb5086
CW
1991
1992 /* Badly fragmented mmap space? The only way we can recover
1993 * space is by destroying unwanted objects. We can't randomly release
1994 * mmap_offsets as userspace expects them to be persistent for the
1995 * lifetime of the objects. The closest we can is to release the
1996 * offsets on purgeable objects by truncating it and marking it purged,
1997 * which prevents userspace from ever using that object again.
1998 */
21ab4e74
CW
1999 i915_gem_shrink(dev_priv,
2000 obj->base.size >> PAGE_SHIFT,
2001 I915_SHRINK_BOUND |
2002 I915_SHRINK_UNBOUND |
2003 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2004 ret = drm_gem_create_mmap_offset(&obj->base);
2005 if (ret != -ENOSPC)
da494d7c 2006 goto out;
d8cb5086
CW
2007
2008 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2009 ret = drm_gem_create_mmap_offset(&obj->base);
2010out:
2011 dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013 return ret;
d8cb5086
CW
2014}
2015
2016static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017{
d8cb5086
CW
2018 drm_gem_free_mmap_offset(&obj->base);
2019}
2020
da6b51d0 2021int
ff72145b
DA
2022i915_gem_mmap_gtt(struct drm_file *file,
2023 struct drm_device *dev,
da6b51d0 2024 uint32_t handle,
ff72145b 2025 uint64_t *offset)
de151cf6 2026{
05394f39 2027 struct drm_i915_gem_object *obj;
de151cf6
JB
2028 int ret;
2029
76c1dec1 2030 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2031 if (ret)
76c1dec1 2032 return ret;
de151cf6 2033
ff72145b 2034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2035 if (&obj->base == NULL) {
1d7cfea1
CW
2036 ret = -ENOENT;
2037 goto unlock;
2038 }
de151cf6 2039
05394f39 2040 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2041 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2042 ret = -EFAULT;
1d7cfea1 2043 goto out;
ab18282d
CW
2044 }
2045
d8cb5086
CW
2046 ret = i915_gem_object_create_mmap_offset(obj);
2047 if (ret)
2048 goto out;
de151cf6 2049
0de23977 2050 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2051
1d7cfea1 2052out:
05394f39 2053 drm_gem_object_unreference(&obj->base);
1d7cfea1 2054unlock:
de151cf6 2055 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2056 return ret;
de151cf6
JB
2057}
2058
ff72145b
DA
2059/**
2060 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061 * @dev: DRM device
2062 * @data: GTT mapping ioctl data
2063 * @file: GEM object info
2064 *
2065 * Simply returns the fake offset to userspace so it can mmap it.
2066 * The mmap call will end up in drm_gem_mmap(), which will set things
2067 * up so we can get faults in the handler above.
2068 *
2069 * The fault handler will take care of binding the object into the GTT
2070 * (since it may have been evicted to make room for something), allocating
2071 * a fence register, and mapping the appropriate aperture address into
2072 * userspace.
2073 */
2074int
2075i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076 struct drm_file *file)
2077{
2078 struct drm_i915_gem_mmap_gtt *args = data;
2079
da6b51d0 2080 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2081}
2082
225067ee
DV
2083/* Immediately discard the backing storage */
2084static void
2085i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2086{
4d6294bf 2087 i915_gem_object_free_mmap_offset(obj);
1286ff73 2088
4d6294bf
CW
2089 if (obj->base.filp == NULL)
2090 return;
e5281ccd 2091
225067ee
DV
2092 /* Our goal here is to return as much of the memory as
2093 * is possible back to the system as we are called from OOM.
2094 * To do this we must instruct the shmfs to drop all of its
2095 * backing pages, *now*.
2096 */
5537252b 2097 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2098 obj->madv = __I915_MADV_PURGED;
2099}
e5281ccd 2100
5537252b
CW
2101/* Try to discard unwanted pages */
2102static void
2103i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2104{
5537252b
CW
2105 struct address_space *mapping;
2106
2107 switch (obj->madv) {
2108 case I915_MADV_DONTNEED:
2109 i915_gem_object_truncate(obj);
2110 case __I915_MADV_PURGED:
2111 return;
2112 }
2113
2114 if (obj->base.filp == NULL)
2115 return;
2116
2117 mapping = file_inode(obj->base.filp)->i_mapping,
2118 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2119}
2120
5cdf5881 2121static void
05394f39 2122i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2123{
90797e6d
ID
2124 struct sg_page_iter sg_iter;
2125 int ret;
1286ff73 2126
05394f39 2127 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2128
6c085a72
CW
2129 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130 if (ret) {
2131 /* In the event of a disaster, abandon all caches and
2132 * hope for the best.
2133 */
2134 WARN_ON(ret != -EIO);
2c22569b 2135 i915_gem_clflush_object(obj, true);
6c085a72
CW
2136 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137 }
2138
e2273302
ID
2139 i915_gem_gtt_finish_object(obj);
2140
6dacfd2f 2141 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2142 i915_gem_object_save_bit_17_swizzle(obj);
2143
05394f39
CW
2144 if (obj->madv == I915_MADV_DONTNEED)
2145 obj->dirty = 0;
3ef94daa 2146
90797e6d 2147 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2148 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2149
05394f39 2150 if (obj->dirty)
9da3da66 2151 set_page_dirty(page);
3ef94daa 2152
05394f39 2153 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2154 mark_page_accessed(page);
3ef94daa 2155
9da3da66 2156 page_cache_release(page);
3ef94daa 2157 }
05394f39 2158 obj->dirty = 0;
673a394b 2159
9da3da66
CW
2160 sg_free_table(obj->pages);
2161 kfree(obj->pages);
37e680a1 2162}
6c085a72 2163
dd624afd 2164int
37e680a1
CW
2165i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2166{
2167 const struct drm_i915_gem_object_ops *ops = obj->ops;
2168
2f745ad3 2169 if (obj->pages == NULL)
37e680a1
CW
2170 return 0;
2171
a5570178
CW
2172 if (obj->pages_pin_count)
2173 return -EBUSY;
2174
9843877d 2175 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2176
a2165e31
CW
2177 /* ->put_pages might need to allocate memory for the bit17 swizzle
2178 * array, hence protect them from being reaped by removing them from gtt
2179 * lists early. */
35c20a60 2180 list_del(&obj->global_list);
a2165e31 2181
37e680a1 2182 ops->put_pages(obj);
05394f39 2183 obj->pages = NULL;
37e680a1 2184
5537252b 2185 i915_gem_object_invalidate(obj);
6c085a72
CW
2186
2187 return 0;
2188}
2189
37e680a1 2190static int
6c085a72 2191i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2192{
6c085a72 2193 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2194 int page_count, i;
2195 struct address_space *mapping;
9da3da66
CW
2196 struct sg_table *st;
2197 struct scatterlist *sg;
90797e6d 2198 struct sg_page_iter sg_iter;
e5281ccd 2199 struct page *page;
90797e6d 2200 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2201 int ret;
6c085a72 2202 gfp_t gfp;
e5281ccd 2203
6c085a72
CW
2204 /* Assert that the object is not currently in any GPU domain. As it
2205 * wasn't in the GTT, there shouldn't be any way it could have been in
2206 * a GPU cache
2207 */
2208 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2209 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2210
9da3da66
CW
2211 st = kmalloc(sizeof(*st), GFP_KERNEL);
2212 if (st == NULL)
2213 return -ENOMEM;
2214
05394f39 2215 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2216 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2217 kfree(st);
e5281ccd 2218 return -ENOMEM;
9da3da66 2219 }
e5281ccd 2220
9da3da66
CW
2221 /* Get the list of pages out of our struct file. They'll be pinned
2222 * at this point until we release them.
2223 *
2224 * Fail silently without starting the shrinker
2225 */
496ad9aa 2226 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2227 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2228 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2229 sg = st->sgl;
2230 st->nents = 0;
2231 for (i = 0; i < page_count; i++) {
6c085a72
CW
2232 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2233 if (IS_ERR(page)) {
21ab4e74
CW
2234 i915_gem_shrink(dev_priv,
2235 page_count,
2236 I915_SHRINK_BOUND |
2237 I915_SHRINK_UNBOUND |
2238 I915_SHRINK_PURGEABLE);
6c085a72
CW
2239 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2240 }
2241 if (IS_ERR(page)) {
2242 /* We've tried hard to allocate the memory by reaping
2243 * our own buffer, now let the real VM do its job and
2244 * go down in flames if truly OOM.
2245 */
6c085a72 2246 i915_gem_shrink_all(dev_priv);
f461d1be 2247 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2248 if (IS_ERR(page)) {
2249 ret = PTR_ERR(page);
6c085a72 2250 goto err_pages;
e2273302 2251 }
6c085a72 2252 }
426729dc
KRW
2253#ifdef CONFIG_SWIOTLB
2254 if (swiotlb_nr_tbl()) {
2255 st->nents++;
2256 sg_set_page(sg, page, PAGE_SIZE, 0);
2257 sg = sg_next(sg);
2258 continue;
2259 }
2260#endif
90797e6d
ID
2261 if (!i || page_to_pfn(page) != last_pfn + 1) {
2262 if (i)
2263 sg = sg_next(sg);
2264 st->nents++;
2265 sg_set_page(sg, page, PAGE_SIZE, 0);
2266 } else {
2267 sg->length += PAGE_SIZE;
2268 }
2269 last_pfn = page_to_pfn(page);
3bbbe706
DV
2270
2271 /* Check that the i965g/gm workaround works. */
2272 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2273 }
426729dc
KRW
2274#ifdef CONFIG_SWIOTLB
2275 if (!swiotlb_nr_tbl())
2276#endif
2277 sg_mark_end(sg);
74ce6b6c
CW
2278 obj->pages = st;
2279
e2273302
ID
2280 ret = i915_gem_gtt_prepare_object(obj);
2281 if (ret)
2282 goto err_pages;
2283
6dacfd2f 2284 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2285 i915_gem_object_do_bit_17_swizzle(obj);
2286
656bfa3a
DV
2287 if (obj->tiling_mode != I915_TILING_NONE &&
2288 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2289 i915_gem_object_pin_pages(obj);
2290
e5281ccd
CW
2291 return 0;
2292
2293err_pages:
90797e6d
ID
2294 sg_mark_end(sg);
2295 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2296 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2297 sg_free_table(st);
2298 kfree(st);
0820baf3
CW
2299
2300 /* shmemfs first checks if there is enough memory to allocate the page
2301 * and reports ENOSPC should there be insufficient, along with the usual
2302 * ENOMEM for a genuine allocation failure.
2303 *
2304 * We use ENOSPC in our driver to mean that we have run out of aperture
2305 * space and so want to translate the error from shmemfs back to our
2306 * usual understanding of ENOMEM.
2307 */
e2273302
ID
2308 if (ret == -ENOSPC)
2309 ret = -ENOMEM;
2310
2311 return ret;
673a394b
EA
2312}
2313
37e680a1
CW
2314/* Ensure that the associated pages are gathered from the backing storage
2315 * and pinned into our object. i915_gem_object_get_pages() may be called
2316 * multiple times before they are released by a single call to
2317 * i915_gem_object_put_pages() - once the pages are no longer referenced
2318 * either as a result of memory pressure (reaping pages under the shrinker)
2319 * or as the object is itself released.
2320 */
2321int
2322i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2323{
2324 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2325 const struct drm_i915_gem_object_ops *ops = obj->ops;
2326 int ret;
2327
2f745ad3 2328 if (obj->pages)
37e680a1
CW
2329 return 0;
2330
43e28f09 2331 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2332 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2333 return -EFAULT;
43e28f09
CW
2334 }
2335
a5570178
CW
2336 BUG_ON(obj->pages_pin_count);
2337
37e680a1
CW
2338 ret = ops->get_pages(obj);
2339 if (ret)
2340 return ret;
2341
35c20a60 2342 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2343
2344 obj->get_page.sg = obj->pages->sgl;
2345 obj->get_page.last = 0;
2346
37e680a1 2347 return 0;
673a394b
EA
2348}
2349
b4716185 2350void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2351 struct drm_i915_gem_request *req)
673a394b 2352{
b4716185 2353 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2354 struct intel_engine_cs *ring;
2355
2356 ring = i915_gem_request_get_ring(req);
673a394b
EA
2357
2358 /* Add a reference if we're newly entering the active list. */
b4716185 2359 if (obj->active == 0)
05394f39 2360 drm_gem_object_reference(&obj->base);
b4716185 2361 obj->active |= intel_ring_flag(ring);
e35a41de 2362
b4716185 2363 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2364 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2365
b4716185 2366 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2367}
2368
b4716185
CW
2369static void
2370i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2371{
b4716185
CW
2372 RQ_BUG_ON(obj->last_write_req == NULL);
2373 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2374
2375 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2376 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2377}
2378
caea7476 2379static void
b4716185 2380i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2381{
feb822cf 2382 struct i915_vma *vma;
ce44b0ea 2383
b4716185
CW
2384 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2385 RQ_BUG_ON(!(obj->active & (1 << ring)));
2386
2387 list_del_init(&obj->ring_list[ring]);
2388 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2389
2390 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2391 i915_gem_object_retire__write(obj);
2392
2393 obj->active &= ~(1 << ring);
2394 if (obj->active)
2395 return;
caea7476 2396
6c246959
CW
2397 /* Bump our place on the bound list to keep it roughly in LRU order
2398 * so that we don't steal from recently used but inactive objects
2399 * (unless we are forced to ofc!)
2400 */
2401 list_move_tail(&obj->global_list,
2402 &to_i915(obj->base.dev)->mm.bound_list);
2403
fe14d5f4
TU
2404 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2405 if (!list_empty(&vma->mm_list))
2406 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2407 }
caea7476 2408
97b2a6a1 2409 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2410 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2411}
2412
9d773091 2413static int
fca26bb4 2414i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2415{
9d773091 2416 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2417 struct intel_engine_cs *ring;
9d773091 2418 int ret, i, j;
53d227f2 2419
107f27a5 2420 /* Carefully retire all requests without writing to the rings */
9d773091 2421 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2422 ret = intel_ring_idle(ring);
2423 if (ret)
2424 return ret;
9d773091 2425 }
9d773091 2426 i915_gem_retire_requests(dev);
107f27a5
CW
2427
2428 /* Finally reset hw state */
9d773091 2429 for_each_ring(ring, dev_priv, i) {
fca26bb4 2430 intel_ring_init_seqno(ring, seqno);
498d2ac1 2431
ebc348b2
BW
2432 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2433 ring->semaphore.sync_seqno[j] = 0;
9d773091 2434 }
53d227f2 2435
9d773091 2436 return 0;
53d227f2
DV
2437}
2438
fca26bb4
MK
2439int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2440{
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 int ret;
2443
2444 if (seqno == 0)
2445 return -EINVAL;
2446
2447 /* HWS page needs to be set less than what we
2448 * will inject to ring
2449 */
2450 ret = i915_gem_init_seqno(dev, seqno - 1);
2451 if (ret)
2452 return ret;
2453
2454 /* Carefully set the last_seqno value so that wrap
2455 * detection still works
2456 */
2457 dev_priv->next_seqno = seqno;
2458 dev_priv->last_seqno = seqno - 1;
2459 if (dev_priv->last_seqno == 0)
2460 dev_priv->last_seqno--;
2461
2462 return 0;
2463}
2464
9d773091
CW
2465int
2466i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2467{
9d773091
CW
2468 struct drm_i915_private *dev_priv = dev->dev_private;
2469
2470 /* reserve 0 for non-seqno */
2471 if (dev_priv->next_seqno == 0) {
fca26bb4 2472 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2473 if (ret)
2474 return ret;
53d227f2 2475
9d773091
CW
2476 dev_priv->next_seqno = 1;
2477 }
53d227f2 2478
f72b3435 2479 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2480 return 0;
53d227f2
DV
2481}
2482
bf7dc5b7
JH
2483/*
2484 * NB: This function is not allowed to fail. Doing so would mean the the
2485 * request is not being tracked for completion but the work itself is
2486 * going to happen on the hardware. This would be a Bad Thing(tm).
2487 */
75289874 2488void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2489 struct drm_i915_gem_object *obj,
2490 bool flush_caches)
673a394b 2491{
75289874
JH
2492 struct intel_engine_cs *ring;
2493 struct drm_i915_private *dev_priv;
48e29f55 2494 struct intel_ringbuffer *ringbuf;
6d3d8274 2495 u32 request_start;
3cce469c
CW
2496 int ret;
2497
48e29f55 2498 if (WARN_ON(request == NULL))
bf7dc5b7 2499 return;
48e29f55 2500
75289874
JH
2501 ring = request->ring;
2502 dev_priv = ring->dev->dev_private;
2503 ringbuf = request->ringbuf;
2504
29b1b415
JH
2505 /*
2506 * To ensure that this call will not fail, space for its emissions
2507 * should already have been reserved in the ring buffer. Let the ring
2508 * know that it is time to use that space up.
2509 */
2510 intel_ring_reserved_space_use(ringbuf);
48e29f55
OM
2511
2512 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2513 /*
2514 * Emit any outstanding flushes - execbuf can fail to emit the flush
2515 * after having emitted the batchbuffer command. Hence we need to fix
2516 * things up similar to emitting the lazy request. The difference here
2517 * is that the flush _must_ happen before the next request, no matter
2518 * what.
2519 */
5b4a60c2
JH
2520 if (flush_caches) {
2521 if (i915.enable_execlists)
4866d729 2522 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2523 else
4866d729 2524 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2525 /* Not allowed to fail! */
2526 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
48e29f55 2527 }
cc889e0f 2528
a71d8d94
CW
2529 /* Record the position of the start of the request so that
2530 * should we detect the updated seqno part-way through the
2531 * GPU processing the request, we never over-estimate the
2532 * position of the head.
2533 */
6d3d8274 2534 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2535
bf7dc5b7 2536 if (i915.enable_execlists)
c4e76638 2537 ret = ring->emit_request(request);
bf7dc5b7 2538 else {
ee044a88 2539 ret = ring->add_request(request);
53292cdb
MT
2540
2541 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2542 }
bf7dc5b7
JH
2543 /* Not allowed to fail! */
2544 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2545
7d736f4f 2546 request->head = request_start;
7d736f4f
MK
2547
2548 /* Whilst this request exists, batch_obj will be on the
2549 * active_list, and so will hold the active reference. Only when this
2550 * request is retired will the the batch_obj be moved onto the
2551 * inactive_list and lose its active reference. Hence we do not need
2552 * to explicitly hold another reference here.
2553 */
9a7e0c2a 2554 request->batch_obj = obj;
0e50e96b 2555
673a394b 2556 request->emitted_jiffies = jiffies;
94f7bbe1 2557 ring->last_submitted_seqno = request->seqno;
852835f3 2558 list_add_tail(&request->list, &ring->request_list);
673a394b 2559
74328ee5 2560 trace_i915_gem_request_add(request);
db53a302 2561
87255483 2562 i915_queue_hangcheck(ring->dev);
10cd45b6 2563
87255483
DV
2564 queue_delayed_work(dev_priv->wq,
2565 &dev_priv->mm.retire_work,
2566 round_jiffies_up_relative(HZ));
2567 intel_mark_busy(dev_priv->dev);
cc889e0f 2568
29b1b415
JH
2569 /* Sanity check that the reserved size was large enough. */
2570 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2571}
2572
939fd762 2573static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2574 const struct intel_context *ctx)
be62acb4 2575{
44e2c070 2576 unsigned long elapsed;
be62acb4 2577
44e2c070
MK
2578 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2579
2580 if (ctx->hang_stats.banned)
be62acb4
MK
2581 return true;
2582
676fa572
CW
2583 if (ctx->hang_stats.ban_period_seconds &&
2584 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2585 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2586 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2587 return true;
88b4aa87
MK
2588 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2589 if (i915_stop_ring_allow_warn(dev_priv))
2590 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2591 return true;
3fac8978 2592 }
be62acb4
MK
2593 }
2594
2595 return false;
2596}
2597
939fd762 2598static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2599 struct intel_context *ctx,
b6b0fac0 2600 const bool guilty)
aa60c664 2601{
44e2c070
MK
2602 struct i915_ctx_hang_stats *hs;
2603
2604 if (WARN_ON(!ctx))
2605 return;
aa60c664 2606
44e2c070
MK
2607 hs = &ctx->hang_stats;
2608
2609 if (guilty) {
939fd762 2610 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2611 hs->batch_active++;
2612 hs->guilty_ts = get_seconds();
2613 } else {
2614 hs->batch_pending++;
aa60c664
MK
2615 }
2616}
2617
abfe262a
JH
2618void i915_gem_request_free(struct kref *req_ref)
2619{
2620 struct drm_i915_gem_request *req = container_of(req_ref,
2621 typeof(*req), ref);
2622 struct intel_context *ctx = req->ctx;
2623
fcfa423c
JH
2624 if (req->file_priv)
2625 i915_gem_request_remove_from_client(req);
2626
0794aed3
TD
2627 if (ctx) {
2628 if (i915.enable_execlists) {
8ba319da
MK
2629 if (ctx != req->ring->default_context)
2630 intel_lr_context_unpin(req);
0794aed3 2631 }
abfe262a 2632
dcb4c12a
OM
2633 i915_gem_context_unreference(ctx);
2634 }
abfe262a 2635
efab6d8d 2636 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2637}
2638
6689cb2b 2639int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2640 struct intel_context *ctx,
2641 struct drm_i915_gem_request **req_out)
6689cb2b 2642{
efab6d8d 2643 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2644 struct drm_i915_gem_request *req;
6689cb2b 2645 int ret;
6689cb2b 2646
217e46b5
JH
2647 if (!req_out)
2648 return -EINVAL;
2649
bccca494 2650 *req_out = NULL;
6689cb2b 2651
eed29a5b
DV
2652 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2653 if (req == NULL)
6689cb2b
JH
2654 return -ENOMEM;
2655
eed29a5b 2656 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2657 if (ret)
2658 goto err;
6689cb2b 2659
40e895ce
JH
2660 kref_init(&req->ref);
2661 req->i915 = dev_priv;
eed29a5b 2662 req->ring = ring;
40e895ce
JH
2663 req->ctx = ctx;
2664 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2665
2666 if (i915.enable_execlists)
40e895ce 2667 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2668 else
eed29a5b 2669 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2670 if (ret) {
2671 i915_gem_context_unreference(req->ctx);
9a0c1e27 2672 goto err;
40e895ce 2673 }
6689cb2b 2674
29b1b415
JH
2675 /*
2676 * Reserve space in the ring buffer for all the commands required to
2677 * eventually emit this request. This is to guarantee that the
2678 * i915_add_request() call can't fail. Note that the reserve may need
2679 * to be redone if the request is not actually submitted straight
2680 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2681 */
ccd98fe4
JH
2682 if (i915.enable_execlists)
2683 ret = intel_logical_ring_reserve_space(req);
2684 else
2685 ret = intel_ring_reserve_space(req);
2686 if (ret) {
2687 /*
2688 * At this point, the request is fully allocated even if not
2689 * fully prepared. Thus it can be cleaned up using the proper
2690 * free code.
2691 */
2692 i915_gem_request_cancel(req);
2693 return ret;
2694 }
6689cb2b 2695
bccca494 2696 *req_out = req;
6689cb2b 2697 return 0;
9a0c1e27
CW
2698
2699err:
2700 kmem_cache_free(dev_priv->requests, req);
2701 return ret;
0e50e96b
MK
2702}
2703
29b1b415
JH
2704void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2705{
2706 intel_ring_reserved_space_cancel(req->ringbuf);
2707
2708 i915_gem_request_unreference(req);
2709}
2710
8d9fc7fd 2711struct drm_i915_gem_request *
a4872ba6 2712i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2713{
4db080f9
CW
2714 struct drm_i915_gem_request *request;
2715
2716 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2717 if (i915_gem_request_completed(request, false))
4db080f9 2718 continue;
aa60c664 2719
b6b0fac0 2720 return request;
4db080f9 2721 }
b6b0fac0
MK
2722
2723 return NULL;
2724}
2725
2726static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2727 struct intel_engine_cs *ring)
b6b0fac0
MK
2728{
2729 struct drm_i915_gem_request *request;
2730 bool ring_hung;
2731
8d9fc7fd 2732 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2733
2734 if (request == NULL)
2735 return;
2736
2737 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2738
939fd762 2739 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2740
2741 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2742 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2743}
aa60c664 2744
4db080f9 2745static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2746 struct intel_engine_cs *ring)
4db080f9 2747{
dfaae392 2748 while (!list_empty(&ring->active_list)) {
05394f39 2749 struct drm_i915_gem_object *obj;
9375e446 2750
05394f39
CW
2751 obj = list_first_entry(&ring->active_list,
2752 struct drm_i915_gem_object,
b4716185 2753 ring_list[ring->id]);
9375e446 2754
b4716185 2755 i915_gem_object_retire__read(obj, ring->id);
673a394b 2756 }
1d62beea 2757
dcb4c12a
OM
2758 /*
2759 * Clear the execlists queue up before freeing the requests, as those
2760 * are the ones that keep the context and ringbuffer backing objects
2761 * pinned in place.
2762 */
2763 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2764 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2765
2766 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2767 struct drm_i915_gem_request,
dcb4c12a
OM
2768 execlist_link);
2769 list_del(&submit_req->execlist_link);
1197b4f2
MK
2770
2771 if (submit_req->ctx != ring->default_context)
8ba319da 2772 intel_lr_context_unpin(submit_req);
1197b4f2 2773
b3a38998 2774 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2775 }
2776
1d62beea
BW
2777 /*
2778 * We must free the requests after all the corresponding objects have
2779 * been moved off active lists. Which is the same order as the normal
2780 * retire_requests function does. This is important if object hold
2781 * implicit references on things like e.g. ppgtt address spaces through
2782 * the request.
2783 */
2784 while (!list_empty(&ring->request_list)) {
2785 struct drm_i915_gem_request *request;
2786
2787 request = list_first_entry(&ring->request_list,
2788 struct drm_i915_gem_request,
2789 list);
2790
b4716185 2791 i915_gem_request_retire(request);
1d62beea 2792 }
312817a3
CW
2793}
2794
069efc1d 2795void i915_gem_reset(struct drm_device *dev)
673a394b 2796{
77f01230 2797 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2798 struct intel_engine_cs *ring;
1ec14ad3 2799 int i;
673a394b 2800
4db080f9
CW
2801 /*
2802 * Before we free the objects from the requests, we need to inspect
2803 * them for finding the guilty party. As the requests only borrow
2804 * their reference to the objects, the inspection must be done first.
2805 */
2806 for_each_ring(ring, dev_priv, i)
2807 i915_gem_reset_ring_status(dev_priv, ring);
2808
b4519513 2809 for_each_ring(ring, dev_priv, i)
4db080f9 2810 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2811
acce9ffa
BW
2812 i915_gem_context_reset(dev);
2813
19b2dbde 2814 i915_gem_restore_fences(dev);
b4716185
CW
2815
2816 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2817}
2818
2819/**
2820 * This function clears the request list as sequence numbers are passed.
2821 */
1cf0ba14 2822void
a4872ba6 2823i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2824{
db53a302 2825 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2826
832a3aad
CW
2827 /* Retire requests first as we use it above for the early return.
2828 * If we retire requests last, we may use a later seqno and so clear
2829 * the requests lists without clearing the active list, leading to
2830 * confusion.
e9103038 2831 */
852835f3 2832 while (!list_empty(&ring->request_list)) {
673a394b 2833 struct drm_i915_gem_request *request;
673a394b 2834
852835f3 2835 request = list_first_entry(&ring->request_list,
673a394b
EA
2836 struct drm_i915_gem_request,
2837 list);
673a394b 2838
1b5a433a 2839 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2840 break;
2841
b4716185 2842 i915_gem_request_retire(request);
b84d5f0c 2843 }
673a394b 2844
832a3aad
CW
2845 /* Move any buffers on the active list that are no longer referenced
2846 * by the ringbuffer to the flushing/inactive lists as appropriate,
2847 * before we free the context associated with the requests.
2848 */
2849 while (!list_empty(&ring->active_list)) {
2850 struct drm_i915_gem_object *obj;
2851
2852 obj = list_first_entry(&ring->active_list,
2853 struct drm_i915_gem_object,
b4716185 2854 ring_list[ring->id]);
832a3aad 2855
b4716185 2856 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2857 break;
2858
b4716185 2859 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2860 }
2861
581c26e8
JH
2862 if (unlikely(ring->trace_irq_req &&
2863 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2864 ring->irq_put(ring);
581c26e8 2865 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2866 }
23bc5982 2867
db53a302 2868 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2869}
2870
b29c19b6 2871bool
b09a1fec
CW
2872i915_gem_retire_requests(struct drm_device *dev)
2873{
3e31c6c0 2874 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2875 struct intel_engine_cs *ring;
b29c19b6 2876 bool idle = true;
1ec14ad3 2877 int i;
b09a1fec 2878
b29c19b6 2879 for_each_ring(ring, dev_priv, i) {
b4519513 2880 i915_gem_retire_requests_ring(ring);
b29c19b6 2881 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2882 if (i915.enable_execlists) {
2883 unsigned long flags;
2884
2885 spin_lock_irqsave(&ring->execlist_lock, flags);
2886 idle &= list_empty(&ring->execlist_queue);
2887 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2888
2889 intel_execlists_retire_requests(ring);
2890 }
b29c19b6
CW
2891 }
2892
2893 if (idle)
2894 mod_delayed_work(dev_priv->wq,
2895 &dev_priv->mm.idle_work,
2896 msecs_to_jiffies(100));
2897
2898 return idle;
b09a1fec
CW
2899}
2900
75ef9da2 2901static void
673a394b
EA
2902i915_gem_retire_work_handler(struct work_struct *work)
2903{
b29c19b6
CW
2904 struct drm_i915_private *dev_priv =
2905 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2906 struct drm_device *dev = dev_priv->dev;
0a58705b 2907 bool idle;
673a394b 2908
891b48cf 2909 /* Come back later if the device is busy... */
b29c19b6
CW
2910 idle = false;
2911 if (mutex_trylock(&dev->struct_mutex)) {
2912 idle = i915_gem_retire_requests(dev);
2913 mutex_unlock(&dev->struct_mutex);
673a394b 2914 }
b29c19b6 2915 if (!idle)
bcb45086
CW
2916 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2917 round_jiffies_up_relative(HZ));
b29c19b6 2918}
0a58705b 2919
b29c19b6
CW
2920static void
2921i915_gem_idle_work_handler(struct work_struct *work)
2922{
2923 struct drm_i915_private *dev_priv =
2924 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2925 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2926 struct intel_engine_cs *ring;
2927 int i;
b29c19b6 2928
423795cb
CW
2929 for_each_ring(ring, dev_priv, i)
2930 if (!list_empty(&ring->request_list))
2931 return;
35c94185
CW
2932
2933 intel_mark_idle(dev);
2934
2935 if (mutex_trylock(&dev->struct_mutex)) {
2936 struct intel_engine_cs *ring;
2937 int i;
b29c19b6 2938
35c94185
CW
2939 for_each_ring(ring, dev_priv, i)
2940 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2941
35c94185
CW
2942 mutex_unlock(&dev->struct_mutex);
2943 }
673a394b
EA
2944}
2945
30dfebf3
DV
2946/**
2947 * Ensures that an object will eventually get non-busy by flushing any required
2948 * write domains, emitting any outstanding lazy request and retiring and
2949 * completed requests.
2950 */
2951static int
2952i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2953{
a5ac0f90 2954 int i;
b4716185
CW
2955
2956 if (!obj->active)
2957 return 0;
30dfebf3 2958
b4716185
CW
2959 for (i = 0; i < I915_NUM_RINGS; i++) {
2960 struct drm_i915_gem_request *req;
41c52415 2961
b4716185
CW
2962 req = obj->last_read_req[i];
2963 if (req == NULL)
2964 continue;
30dfebf3 2965
b4716185
CW
2966 if (list_empty(&req->list))
2967 goto retire;
41c52415 2968
b4716185
CW
2969 if (i915_gem_request_completed(req, true)) {
2970 __i915_gem_request_retire__upto(req);
2971retire:
2972 i915_gem_object_retire__read(obj, i);
2973 }
30dfebf3
DV
2974 }
2975
2976 return 0;
2977}
2978
23ba4fd0
BW
2979/**
2980 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2981 * @DRM_IOCTL_ARGS: standard ioctl arguments
2982 *
2983 * Returns 0 if successful, else an error is returned with the remaining time in
2984 * the timeout parameter.
2985 * -ETIME: object is still busy after timeout
2986 * -ERESTARTSYS: signal interrupted the wait
2987 * -ENONENT: object doesn't exist
2988 * Also possible, but rare:
2989 * -EAGAIN: GPU wedged
2990 * -ENOMEM: damn
2991 * -ENODEV: Internal IRQ fail
2992 * -E?: The add request failed
2993 *
2994 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2995 * non-zero timeout parameter the wait ioctl will wait for the given number of
2996 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2997 * without holding struct_mutex the object may become re-busied before this
2998 * function completes. A similar but shorter * race condition exists in the busy
2999 * ioctl
3000 */
3001int
3002i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3003{
3e31c6c0 3004 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3005 struct drm_i915_gem_wait *args = data;
3006 struct drm_i915_gem_object *obj;
b4716185 3007 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3008 unsigned reset_counter;
b4716185
CW
3009 int i, n = 0;
3010 int ret;
23ba4fd0 3011
11b5d511
DV
3012 if (args->flags != 0)
3013 return -EINVAL;
3014
23ba4fd0
BW
3015 ret = i915_mutex_lock_interruptible(dev);
3016 if (ret)
3017 return ret;
3018
3019 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3020 if (&obj->base == NULL) {
3021 mutex_unlock(&dev->struct_mutex);
3022 return -ENOENT;
3023 }
3024
30dfebf3
DV
3025 /* Need to make sure the object gets inactive eventually. */
3026 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3027 if (ret)
3028 goto out;
3029
b4716185 3030 if (!obj->active)
97b2a6a1 3031 goto out;
23ba4fd0 3032
23ba4fd0 3033 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3034 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3035 */
762e4583 3036 if (args->timeout_ns == 0) {
23ba4fd0
BW
3037 ret = -ETIME;
3038 goto out;
3039 }
3040
3041 drm_gem_object_unreference(&obj->base);
f69061be 3042 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0 3043
b4716185
CW
3044 for (i = 0; i < I915_NUM_RINGS; i++) {
3045 if (obj->last_read_req[i] == NULL)
3046 continue;
3047
3048 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3049 }
3050
ff865885 3051 mutex_unlock(&dev->struct_mutex);
23ba4fd0 3052
b4716185
CW
3053 for (i = 0; i < n; i++) {
3054 if (ret == 0)
3055 ret = __i915_wait_request(req[i], reset_counter, true,
3056 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3057 file->driver_priv);
3058 i915_gem_request_unreference__unlocked(req[i]);
3059 }
ff865885 3060 return ret;
23ba4fd0
BW
3061
3062out:
3063 drm_gem_object_unreference(&obj->base);
3064 mutex_unlock(&dev->struct_mutex);
3065 return ret;
3066}
3067
b4716185
CW
3068static int
3069__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3070 struct intel_engine_cs *to,
91af127f
JH
3071 struct drm_i915_gem_request *from_req,
3072 struct drm_i915_gem_request **to_req)
b4716185
CW
3073{
3074 struct intel_engine_cs *from;
3075 int ret;
3076
91af127f 3077 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3078 if (to == from)
3079 return 0;
3080
91af127f 3081 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3082 return 0;
3083
b4716185 3084 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3085 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3086 ret = __i915_wait_request(from_req,
a6f766f3
CW
3087 atomic_read(&i915->gpu_error.reset_counter),
3088 i915->mm.interruptible,
3089 NULL,
3090 &i915->rps.semaphores);
b4716185
CW
3091 if (ret)
3092 return ret;
3093
91af127f 3094 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3095 } else {
3096 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3097 u32 seqno = i915_gem_request_get_seqno(from_req);
3098
3099 WARN_ON(!to_req);
b4716185
CW
3100
3101 if (seqno <= from->semaphore.sync_seqno[idx])
3102 return 0;
3103
91af127f
JH
3104 if (*to_req == NULL) {
3105 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3106 if (ret)
3107 return ret;
3108 }
3109
599d924c
JH
3110 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3111 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3112 if (ret)
3113 return ret;
3114
3115 /* We use last_read_req because sync_to()
3116 * might have just caused seqno wrap under
3117 * the radar.
3118 */
3119 from->semaphore.sync_seqno[idx] =
3120 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3121 }
3122
3123 return 0;
3124}
3125
5816d648
BW
3126/**
3127 * i915_gem_object_sync - sync an object to a ring.
3128 *
3129 * @obj: object which may be in use on another ring.
3130 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3131 * @to_req: request we wish to use the object for. See below.
3132 * This will be allocated and returned if a request is
3133 * required but not passed in.
5816d648
BW
3134 *
3135 * This code is meant to abstract object synchronization with the GPU.
3136 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3137 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3138 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3139 * into a buffer at any time, but multiple readers. To ensure each has
3140 * a coherent view of memory, we must:
3141 *
3142 * - If there is an outstanding write request to the object, the new
3143 * request must wait for it to complete (either CPU or in hw, requests
3144 * on the same ring will be naturally ordered).
3145 *
3146 * - If we are a write request (pending_write_domain is set), the new
3147 * request must wait for outstanding read requests to complete.
5816d648 3148 *
91af127f
JH
3149 * For CPU synchronisation (NULL to) no request is required. For syncing with
3150 * rings to_req must be non-NULL. However, a request does not have to be
3151 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3152 * request will be allocated automatically and returned through *to_req. Note
3153 * that it is not guaranteed that commands will be emitted (because the system
3154 * might already be idle). Hence there is no need to create a request that
3155 * might never have any work submitted. Note further that if a request is
3156 * returned in *to_req, it is the responsibility of the caller to submit
3157 * that request (after potentially adding more work to it).
3158 *
5816d648
BW
3159 * Returns 0 if successful, else propagates up the lower layer error.
3160 */
2911a35b
BW
3161int
3162i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3163 struct intel_engine_cs *to,
3164 struct drm_i915_gem_request **to_req)
2911a35b 3165{
b4716185
CW
3166 const bool readonly = obj->base.pending_write_domain == 0;
3167 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3168 int ret, i, n;
2911a35b 3169
b4716185 3170 if (!obj->active)
2911a35b
BW
3171 return 0;
3172
b4716185
CW
3173 if (to == NULL)
3174 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3175
b4716185
CW
3176 n = 0;
3177 if (readonly) {
3178 if (obj->last_write_req)
3179 req[n++] = obj->last_write_req;
3180 } else {
3181 for (i = 0; i < I915_NUM_RINGS; i++)
3182 if (obj->last_read_req[i])
3183 req[n++] = obj->last_read_req[i];
3184 }
3185 for (i = 0; i < n; i++) {
91af127f 3186 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3187 if (ret)
3188 return ret;
3189 }
2911a35b 3190
b4716185 3191 return 0;
2911a35b
BW
3192}
3193
b5ffc9bc
CW
3194static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3195{
3196 u32 old_write_domain, old_read_domains;
3197
b5ffc9bc
CW
3198 /* Force a pagefault for domain tracking on next user access */
3199 i915_gem_release_mmap(obj);
3200
b97c3d9c
KP
3201 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3202 return;
3203
97c809fd
CW
3204 /* Wait for any direct GTT access to complete */
3205 mb();
3206
b5ffc9bc
CW
3207 old_read_domains = obj->base.read_domains;
3208 old_write_domain = obj->base.write_domain;
3209
3210 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3211 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3212
3213 trace_i915_gem_object_change_domain(obj,
3214 old_read_domains,
3215 old_write_domain);
3216}
3217
e9f24d5f 3218static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3219{
07fe0b12 3220 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3221 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3222 int ret;
673a394b 3223
07fe0b12 3224 if (list_empty(&vma->vma_link))
673a394b
EA
3225 return 0;
3226
0ff501cb
DV
3227 if (!drm_mm_node_allocated(&vma->node)) {
3228 i915_gem_vma_destroy(vma);
0ff501cb
DV
3229 return 0;
3230 }
433544bd 3231
d7f46fc4 3232 if (vma->pin_count)
31d8d651 3233 return -EBUSY;
673a394b 3234
c4670ad0
CW
3235 BUG_ON(obj->pages == NULL);
3236
e9f24d5f
TU
3237 if (wait) {
3238 ret = i915_gem_object_wait_rendering(obj, false);
3239 if (ret)
3240 return ret;
3241 }
a8198eea 3242
fe14d5f4
TU
3243 if (i915_is_ggtt(vma->vm) &&
3244 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3245 i915_gem_object_finish_gtt(obj);
5323fd04 3246
8b1bc9b4
DV
3247 /* release the fence reg _after_ flushing */
3248 ret = i915_gem_object_put_fence(obj);
3249 if (ret)
3250 return ret;
3251 }
96b47b65 3252
07fe0b12 3253 trace_i915_vma_unbind(vma);
db53a302 3254
777dc5bb 3255 vma->vm->unbind_vma(vma);
5e562f1d 3256 vma->bound = 0;
6f65e29a 3257
64bf9303 3258 list_del_init(&vma->mm_list);
fe14d5f4
TU
3259 if (i915_is_ggtt(vma->vm)) {
3260 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3261 obj->map_and_fenceable = false;
3262 } else if (vma->ggtt_view.pages) {
3263 sg_free_table(vma->ggtt_view.pages);
3264 kfree(vma->ggtt_view.pages);
fe14d5f4 3265 }
016a65a3 3266 vma->ggtt_view.pages = NULL;
fe14d5f4 3267 }
673a394b 3268
2f633156
BW
3269 drm_mm_remove_node(&vma->node);
3270 i915_gem_vma_destroy(vma);
3271
3272 /* Since the unbound list is global, only move to that list if
b93dab6e 3273 * no more VMAs exist. */
e2273302 3274 if (list_empty(&obj->vma_list))
2f633156 3275 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3276
70903c3b
CW
3277 /* And finally now the object is completely decoupled from this vma,
3278 * we can drop its hold on the backing storage and allow it to be
3279 * reaped by the shrinker.
3280 */
3281 i915_gem_object_unpin_pages(obj);
3282
88241785 3283 return 0;
54cf91dc
CW
3284}
3285
e9f24d5f
TU
3286int i915_vma_unbind(struct i915_vma *vma)
3287{
3288 return __i915_vma_unbind(vma, true);
3289}
3290
3291int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3292{
3293 return __i915_vma_unbind(vma, false);
3294}
3295
b2da9fe5 3296int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3297{
3e31c6c0 3298 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3299 struct intel_engine_cs *ring;
1ec14ad3 3300 int ret, i;
4df2faf4 3301
4df2faf4 3302 /* Flush everything onto the inactive list. */
b4519513 3303 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3304 if (!i915.enable_execlists) {
73cfa865
JH
3305 struct drm_i915_gem_request *req;
3306
3307 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3308 if (ret)
3309 return ret;
b6c7488d 3310
ba01cc93 3311 ret = i915_switch_context(req);
73cfa865
JH
3312 if (ret) {
3313 i915_gem_request_cancel(req);
3314 return ret;
3315 }
d18b9619 3316
75289874 3317 i915_add_request_no_flush(req);
af1a7301
BP
3318 }
3319
3e960501 3320 ret = intel_ring_idle(ring);
14415745
CW
3321 if (ret)
3322 return ret;
3323 }
9a5a53b3 3324
b4716185 3325 WARN_ON(i915_verify_lists(dev));
9ce079e4 3326 return 0;
de151cf6
JB
3327}
3328
4144f9b5 3329static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3330 unsigned long cache_level)
3331{
4144f9b5 3332 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3333 struct drm_mm_node *other;
3334
4144f9b5
CW
3335 /*
3336 * On some machines we have to be careful when putting differing types
3337 * of snoopable memory together to avoid the prefetcher crossing memory
3338 * domains and dying. During vm initialisation, we decide whether or not
3339 * these constraints apply and set the drm_mm.color_adjust
3340 * appropriately.
42d6ab48 3341 */
4144f9b5 3342 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3343 return true;
3344
c6cfb325 3345 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3346 return true;
3347
3348 if (list_empty(&gtt_space->node_list))
3349 return true;
3350
3351 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3352 if (other->allocated && !other->hole_follows && other->color != cache_level)
3353 return false;
3354
3355 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3356 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3357 return false;
3358
3359 return true;
3360}
3361
673a394b 3362/**
91e6711e
JL
3363 * Finds free space in the GTT aperture and binds the object or a view of it
3364 * there.
673a394b 3365 */
262de145 3366static struct i915_vma *
07fe0b12
BW
3367i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3368 struct i915_address_space *vm,
ec7adb6e 3369 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3370 unsigned alignment,
ec7adb6e 3371 uint64_t flags)
673a394b 3372{
05394f39 3373 struct drm_device *dev = obj->base.dev;
3e31c6c0 3374 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f 3375 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3376 u32 search_flag, alloc_flag;
3377 u64 start, end;
65bd342f 3378 u64 size, fence_size;
2f633156 3379 struct i915_vma *vma;
07f73f69 3380 int ret;
673a394b 3381
91e6711e
JL
3382 if (i915_is_ggtt(vm)) {
3383 u32 view_size;
3384
3385 if (WARN_ON(!ggtt_view))
3386 return ERR_PTR(-EINVAL);
ec7adb6e 3387
91e6711e
JL
3388 view_size = i915_ggtt_view_size(obj, ggtt_view);
3389
3390 fence_size = i915_gem_get_gtt_size(dev,
3391 view_size,
3392 obj->tiling_mode);
3393 fence_alignment = i915_gem_get_gtt_alignment(dev,
3394 view_size,
3395 obj->tiling_mode,
3396 true);
3397 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3398 view_size,
3399 obj->tiling_mode,
3400 false);
3401 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3402 } else {
3403 fence_size = i915_gem_get_gtt_size(dev,
3404 obj->base.size,
3405 obj->tiling_mode);
3406 fence_alignment = i915_gem_get_gtt_alignment(dev,
3407 obj->base.size,
3408 obj->tiling_mode,
3409 true);
3410 unfenced_alignment =
3411 i915_gem_get_gtt_alignment(dev,
3412 obj->base.size,
3413 obj->tiling_mode,
3414 false);
3415 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3416 }
a00b10c3 3417
101b506a
MT
3418 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3419 end = vm->total;
3420 if (flags & PIN_MAPPABLE)
3421 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3422 if (flags & PIN_ZONE_4G)
3423 end = min_t(u64, end, (1ULL << 32));
3424
673a394b 3425 if (alignment == 0)
1ec9e26d 3426 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3427 unfenced_alignment;
1ec9e26d 3428 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3429 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3430 ggtt_view ? ggtt_view->type : 0,
3431 alignment);
262de145 3432 return ERR_PTR(-EINVAL);
673a394b
EA
3433 }
3434
91e6711e
JL
3435 /* If binding the object/GGTT view requires more space than the entire
3436 * aperture has, reject it early before evicting everything in a vain
3437 * attempt to find space.
654fc607 3438 */
91e6711e 3439 if (size > end) {
65bd342f 3440 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3441 ggtt_view ? ggtt_view->type : 0,
3442 size,
1ec9e26d 3443 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3444 end);
262de145 3445 return ERR_PTR(-E2BIG);
654fc607
CW
3446 }
3447
37e680a1 3448 ret = i915_gem_object_get_pages(obj);
6c085a72 3449 if (ret)
262de145 3450 return ERR_PTR(ret);
6c085a72 3451
fbdda6fb
CW
3452 i915_gem_object_pin_pages(obj);
3453
ec7adb6e
JL
3454 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3455 i915_gem_obj_lookup_or_create_vma(obj, vm);
3456
262de145 3457 if (IS_ERR(vma))
bc6bc15b 3458 goto err_unpin;
2f633156 3459
101b506a
MT
3460 if (flags & PIN_HIGH) {
3461 search_flag = DRM_MM_SEARCH_BELOW;
3462 alloc_flag = DRM_MM_CREATE_TOP;
3463 } else {
3464 search_flag = DRM_MM_SEARCH_DEFAULT;
3465 alloc_flag = DRM_MM_CREATE_DEFAULT;
3466 }
3467
0a9ae0d7 3468search_free:
07fe0b12 3469 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3470 size, alignment,
d23db88c
CW
3471 obj->cache_level,
3472 start, end,
101b506a
MT
3473 search_flag,
3474 alloc_flag);
dc9dd7a2 3475 if (ret) {
f6cd1f15 3476 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3477 obj->cache_level,
3478 start, end,
3479 flags);
dc9dd7a2
CW
3480 if (ret == 0)
3481 goto search_free;
9731129c 3482
bc6bc15b 3483 goto err_free_vma;
673a394b 3484 }
4144f9b5 3485 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3486 ret = -EINVAL;
bc6bc15b 3487 goto err_remove_node;
673a394b
EA
3488 }
3489
fe14d5f4 3490 trace_i915_vma_bind(vma, flags);
0875546c 3491 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3492 if (ret)
e2273302 3493 goto err_remove_node;
fe14d5f4 3494
35c20a60 3495 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3496 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3497
262de145 3498 return vma;
2f633156 3499
bc6bc15b 3500err_remove_node:
6286ef9b 3501 drm_mm_remove_node(&vma->node);
bc6bc15b 3502err_free_vma:
2f633156 3503 i915_gem_vma_destroy(vma);
262de145 3504 vma = ERR_PTR(ret);
bc6bc15b 3505err_unpin:
2f633156 3506 i915_gem_object_unpin_pages(obj);
262de145 3507 return vma;
673a394b
EA
3508}
3509
000433b6 3510bool
2c22569b
CW
3511i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3512 bool force)
673a394b 3513{
673a394b
EA
3514 /* If we don't have a page list set up, then we're not pinned
3515 * to GPU, and we can ignore the cache flush because it'll happen
3516 * again at bind time.
3517 */
05394f39 3518 if (obj->pages == NULL)
000433b6 3519 return false;
673a394b 3520
769ce464
ID
3521 /*
3522 * Stolen memory is always coherent with the GPU as it is explicitly
3523 * marked as wc by the system, or the system is cache-coherent.
3524 */
6a2c4232 3525 if (obj->stolen || obj->phys_handle)
000433b6 3526 return false;
769ce464 3527
9c23f7fc
CW
3528 /* If the GPU is snooping the contents of the CPU cache,
3529 * we do not need to manually clear the CPU cache lines. However,
3530 * the caches are only snooped when the render cache is
3531 * flushed/invalidated. As we always have to emit invalidations
3532 * and flushes when moving into and out of the RENDER domain, correct
3533 * snooping behaviour occurs naturally as the result of our domain
3534 * tracking.
3535 */
0f71979a
CW
3536 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3537 obj->cache_dirty = true;
000433b6 3538 return false;
0f71979a 3539 }
9c23f7fc 3540
1c5d22f7 3541 trace_i915_gem_object_clflush(obj);
9da3da66 3542 drm_clflush_sg(obj->pages);
0f71979a 3543 obj->cache_dirty = false;
000433b6
CW
3544
3545 return true;
e47c68e9
EA
3546}
3547
3548/** Flushes the GTT write domain for the object if it's dirty. */
3549static void
05394f39 3550i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3551{
1c5d22f7
CW
3552 uint32_t old_write_domain;
3553
05394f39 3554 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3555 return;
3556
63256ec5 3557 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3558 * to it immediately go to main memory as far as we know, so there's
3559 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3560 *
3561 * However, we do have to enforce the order so that all writes through
3562 * the GTT land before any writes to the device, such as updates to
3563 * the GATT itself.
e47c68e9 3564 */
63256ec5
CW
3565 wmb();
3566
05394f39
CW
3567 old_write_domain = obj->base.write_domain;
3568 obj->base.write_domain = 0;
1c5d22f7 3569
de152b62 3570 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3571
1c5d22f7 3572 trace_i915_gem_object_change_domain(obj,
05394f39 3573 obj->base.read_domains,
1c5d22f7 3574 old_write_domain);
e47c68e9
EA
3575}
3576
3577/** Flushes the CPU write domain for the object if it's dirty. */
3578static void
e62b59e4 3579i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3580{
1c5d22f7 3581 uint32_t old_write_domain;
e47c68e9 3582
05394f39 3583 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3584 return;
3585
e62b59e4 3586 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3587 i915_gem_chipset_flush(obj->base.dev);
3588
05394f39
CW
3589 old_write_domain = obj->base.write_domain;
3590 obj->base.write_domain = 0;
1c5d22f7 3591
de152b62 3592 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3593
1c5d22f7 3594 trace_i915_gem_object_change_domain(obj,
05394f39 3595 obj->base.read_domains,
1c5d22f7 3596 old_write_domain);
e47c68e9
EA
3597}
3598
2ef7eeaa
EA
3599/**
3600 * Moves a single object to the GTT read, and possibly write domain.
3601 *
3602 * This function returns when the move is complete, including waiting on
3603 * flushes to occur.
3604 */
79e53945 3605int
2021746e 3606i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3607{
1c5d22f7 3608 uint32_t old_write_domain, old_read_domains;
43566ded 3609 struct i915_vma *vma;
e47c68e9 3610 int ret;
2ef7eeaa 3611
8d7e3de1
CW
3612 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3613 return 0;
3614
0201f1ec 3615 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3616 if (ret)
3617 return ret;
3618
43566ded
CW
3619 /* Flush and acquire obj->pages so that we are coherent through
3620 * direct access in memory with previous cached writes through
3621 * shmemfs and that our cache domain tracking remains valid.
3622 * For example, if the obj->filp was moved to swap without us
3623 * being notified and releasing the pages, we would mistakenly
3624 * continue to assume that the obj remained out of the CPU cached
3625 * domain.
3626 */
3627 ret = i915_gem_object_get_pages(obj);
3628 if (ret)
3629 return ret;
3630
e62b59e4 3631 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3632
d0a57789
CW
3633 /* Serialise direct access to this object with the barriers for
3634 * coherent writes from the GPU, by effectively invalidating the
3635 * GTT domain upon first access.
3636 */
3637 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3638 mb();
3639
05394f39
CW
3640 old_write_domain = obj->base.write_domain;
3641 old_read_domains = obj->base.read_domains;
1c5d22f7 3642
e47c68e9
EA
3643 /* It should now be out of any other write domains, and we can update
3644 * the domain values for our changes.
3645 */
05394f39
CW
3646 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3647 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3648 if (write) {
05394f39
CW
3649 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3650 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3651 obj->dirty = 1;
2ef7eeaa
EA
3652 }
3653
1c5d22f7
CW
3654 trace_i915_gem_object_change_domain(obj,
3655 old_read_domains,
3656 old_write_domain);
3657
8325a09d 3658 /* And bump the LRU for this access */
43566ded
CW
3659 vma = i915_gem_obj_to_ggtt(obj);
3660 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3661 list_move_tail(&vma->mm_list,
43566ded 3662 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3663
e47c68e9
EA
3664 return 0;
3665}
3666
ef55f92a
CW
3667/**
3668 * Changes the cache-level of an object across all VMA.
3669 *
3670 * After this function returns, the object will be in the new cache-level
3671 * across all GTT and the contents of the backing storage will be coherent,
3672 * with respect to the new cache-level. In order to keep the backing storage
3673 * coherent for all users, we only allow a single cache level to be set
3674 * globally on the object and prevent it from being changed whilst the
3675 * hardware is reading from the object. That is if the object is currently
3676 * on the scanout it will be set to uncached (or equivalent display
3677 * cache coherency) and all non-MOCS GPU access will also be uncached so
3678 * that all direct access to the scanout remains coherent.
3679 */
e4ffd173
CW
3680int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3681 enum i915_cache_level cache_level)
3682{
7bddb01f 3683 struct drm_device *dev = obj->base.dev;
df6f783a 3684 struct i915_vma *vma, *next;
ef55f92a 3685 bool bound = false;
ed75a55b 3686 int ret = 0;
e4ffd173
CW
3687
3688 if (obj->cache_level == cache_level)
ed75a55b 3689 goto out;
e4ffd173 3690
ef55f92a
CW
3691 /* Inspect the list of currently bound VMA and unbind any that would
3692 * be invalid given the new cache-level. This is principally to
3693 * catch the issue of the CS prefetch crossing page boundaries and
3694 * reading an invalid PTE on older architectures.
3695 */
df6f783a 3696 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
ef55f92a
CW
3697 if (!drm_mm_node_allocated(&vma->node))
3698 continue;
3699
3700 if (vma->pin_count) {
3701 DRM_DEBUG("can not change the cache level of pinned objects\n");
3702 return -EBUSY;
3703 }
3704
4144f9b5 3705 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3706 ret = i915_vma_unbind(vma);
3089c6f2
BW
3707 if (ret)
3708 return ret;
ef55f92a
CW
3709 } else
3710 bound = true;
42d6ab48
CW
3711 }
3712
ef55f92a
CW
3713 /* We can reuse the existing drm_mm nodes but need to change the
3714 * cache-level on the PTE. We could simply unbind them all and
3715 * rebind with the correct cache-level on next use. However since
3716 * we already have a valid slot, dma mapping, pages etc, we may as
3717 * rewrite the PTE in the belief that doing so tramples upon less
3718 * state and so involves less work.
3719 */
3720 if (bound) {
3721 /* Before we change the PTE, the GPU must not be accessing it.
3722 * If we wait upon the object, we know that all the bound
3723 * VMA are no longer active.
3724 */
2e2f351d 3725 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3726 if (ret)
3727 return ret;
3728
ef55f92a
CW
3729 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3730 /* Access to snoopable pages through the GTT is
3731 * incoherent and on some machines causes a hard
3732 * lockup. Relinquish the CPU mmaping to force
3733 * userspace to refault in the pages and we can
3734 * then double check if the GTT mapping is still
3735 * valid for that pointer access.
3736 */
3737 i915_gem_release_mmap(obj);
3738
3739 /* As we no longer need a fence for GTT access,
3740 * we can relinquish it now (and so prevent having
3741 * to steal a fence from someone else on the next
3742 * fence request). Note GPU activity would have
3743 * dropped the fence as all snoopable access is
3744 * supposed to be linear.
3745 */
e4ffd173
CW
3746 ret = i915_gem_object_put_fence(obj);
3747 if (ret)
3748 return ret;
ef55f92a
CW
3749 } else {
3750 /* We either have incoherent backing store and
3751 * so no GTT access or the architecture is fully
3752 * coherent. In such cases, existing GTT mmaps
3753 * ignore the cache bit in the PTE and we can
3754 * rewrite it without confusing the GPU or having
3755 * to force userspace to fault back in its mmaps.
3756 */
e4ffd173
CW
3757 }
3758
ef55f92a
CW
3759 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3760 if (!drm_mm_node_allocated(&vma->node))
3761 continue;
3762
3763 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3764 if (ret)
3765 return ret;
3766 }
e4ffd173
CW
3767 }
3768
2c22569b
CW
3769 list_for_each_entry(vma, &obj->vma_list, vma_link)
3770 vma->node.color = cache_level;
3771 obj->cache_level = cache_level;
3772
ed75a55b 3773out:
ef55f92a
CW
3774 /* Flush the dirty CPU caches to the backing storage so that the
3775 * object is now coherent at its new cache level (with respect
3776 * to the access domain).
3777 */
0f71979a
CW
3778 if (obj->cache_dirty &&
3779 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3780 cpu_write_needs_clflush(obj)) {
3781 if (i915_gem_clflush_object(obj, true))
3782 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3783 }
3784
e4ffd173
CW
3785 return 0;
3786}
3787
199adf40
BW
3788int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3789 struct drm_file *file)
e6994aee 3790{
199adf40 3791 struct drm_i915_gem_caching *args = data;
e6994aee 3792 struct drm_i915_gem_object *obj;
e6994aee
CW
3793
3794 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3795 if (&obj->base == NULL)
3796 return -ENOENT;
e6994aee 3797
651d794f
CW
3798 switch (obj->cache_level) {
3799 case I915_CACHE_LLC:
3800 case I915_CACHE_L3_LLC:
3801 args->caching = I915_CACHING_CACHED;
3802 break;
3803
4257d3ba
CW
3804 case I915_CACHE_WT:
3805 args->caching = I915_CACHING_DISPLAY;
3806 break;
3807
651d794f
CW
3808 default:
3809 args->caching = I915_CACHING_NONE;
3810 break;
3811 }
e6994aee 3812
432be69d
CW
3813 drm_gem_object_unreference_unlocked(&obj->base);
3814 return 0;
e6994aee
CW
3815}
3816
199adf40
BW
3817int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3818 struct drm_file *file)
e6994aee 3819{
fd0fe6ac 3820 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3821 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3822 struct drm_i915_gem_object *obj;
3823 enum i915_cache_level level;
3824 int ret;
3825
199adf40
BW
3826 switch (args->caching) {
3827 case I915_CACHING_NONE:
e6994aee
CW
3828 level = I915_CACHE_NONE;
3829 break;
199adf40 3830 case I915_CACHING_CACHED:
e5756c10
ID
3831 /*
3832 * Due to a HW issue on BXT A stepping, GPU stores via a
3833 * snooped mapping may leave stale data in a corresponding CPU
3834 * cacheline, whereas normally such cachelines would get
3835 * invalidated.
3836 */
3837 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3838 return -ENODEV;
3839
e6994aee
CW
3840 level = I915_CACHE_LLC;
3841 break;
4257d3ba
CW
3842 case I915_CACHING_DISPLAY:
3843 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3844 break;
e6994aee
CW
3845 default:
3846 return -EINVAL;
3847 }
3848
fd0fe6ac
ID
3849 intel_runtime_pm_get(dev_priv);
3850
3bc2913e
BW
3851 ret = i915_mutex_lock_interruptible(dev);
3852 if (ret)
fd0fe6ac 3853 goto rpm_put;
3bc2913e 3854
e6994aee
CW
3855 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3856 if (&obj->base == NULL) {
3857 ret = -ENOENT;
3858 goto unlock;
3859 }
3860
3861 ret = i915_gem_object_set_cache_level(obj, level);
3862
3863 drm_gem_object_unreference(&obj->base);
3864unlock:
3865 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3866rpm_put:
3867 intel_runtime_pm_put(dev_priv);
3868
e6994aee
CW
3869 return ret;
3870}
3871
b9241ea3 3872/*
2da3b9b9
CW
3873 * Prepare buffer for display plane (scanout, cursors, etc).
3874 * Can be called from an uninterruptible phase (modesetting) and allows
3875 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3876 */
3877int
2da3b9b9
CW
3878i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3879 u32 alignment,
e6617330 3880 struct intel_engine_cs *pipelined,
91af127f 3881 struct drm_i915_gem_request **pipelined_request,
e6617330 3882 const struct i915_ggtt_view *view)
b9241ea3 3883{
2da3b9b9 3884 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3885 int ret;
3886
91af127f 3887 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
b4716185
CW
3888 if (ret)
3889 return ret;
b9241ea3 3890
cc98b413
CW
3891 /* Mark the pin_display early so that we account for the
3892 * display coherency whilst setting up the cache domains.
3893 */
8a0c39b1 3894 obj->pin_display++;
cc98b413 3895
a7ef0640
EA
3896 /* The display engine is not coherent with the LLC cache on gen6. As
3897 * a result, we make sure that the pinning that is about to occur is
3898 * done with uncached PTEs. This is lowest common denominator for all
3899 * chipsets.
3900 *
3901 * However for gen6+, we could do better by using the GFDT bit instead
3902 * of uncaching, which would allow us to flush all the LLC-cached data
3903 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3904 */
651d794f
CW
3905 ret = i915_gem_object_set_cache_level(obj,
3906 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3907 if (ret)
cc98b413 3908 goto err_unpin_display;
a7ef0640 3909
2da3b9b9
CW
3910 /* As the user may map the buffer once pinned in the display plane
3911 * (e.g. libkms for the bootup splash), we have to ensure that we
3912 * always use map_and_fenceable for all scanout buffers.
3913 */
50470bb0
TU
3914 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3915 view->type == I915_GGTT_VIEW_NORMAL ?
3916 PIN_MAPPABLE : 0);
2da3b9b9 3917 if (ret)
cc98b413 3918 goto err_unpin_display;
2da3b9b9 3919
e62b59e4 3920 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3921
2da3b9b9 3922 old_write_domain = obj->base.write_domain;
05394f39 3923 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3924
3925 /* It should now be out of any other write domains, and we can update
3926 * the domain values for our changes.
3927 */
e5f1d962 3928 obj->base.write_domain = 0;
05394f39 3929 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3930
3931 trace_i915_gem_object_change_domain(obj,
3932 old_read_domains,
2da3b9b9 3933 old_write_domain);
b9241ea3
ZW
3934
3935 return 0;
cc98b413
CW
3936
3937err_unpin_display:
8a0c39b1 3938 obj->pin_display--;
cc98b413
CW
3939 return ret;
3940}
3941
3942void
e6617330
TU
3943i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3944 const struct i915_ggtt_view *view)
cc98b413 3945{
8a0c39b1
TU
3946 if (WARN_ON(obj->pin_display == 0))
3947 return;
85345517 3948
e6617330 3949 i915_gem_object_ggtt_unpin_view(obj, view);
c501ae7f 3950
8a0c39b1 3951 obj->pin_display--;
85345517
CW
3952}
3953
e47c68e9
EA
3954/**
3955 * Moves a single object to the CPU read, and possibly write domain.
3956 *
3957 * This function returns when the move is complete, including waiting on
3958 * flushes to occur.
3959 */
dabdfe02 3960int
919926ae 3961i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3962{
1c5d22f7 3963 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3964 int ret;
3965
8d7e3de1
CW
3966 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3967 return 0;
3968
0201f1ec 3969 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3970 if (ret)
3971 return ret;
3972
e47c68e9 3973 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3974
05394f39
CW
3975 old_write_domain = obj->base.write_domain;
3976 old_read_domains = obj->base.read_domains;
1c5d22f7 3977
e47c68e9 3978 /* Flush the CPU cache if it's still invalid. */
05394f39 3979 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3980 i915_gem_clflush_object(obj, false);
2ef7eeaa 3981
05394f39 3982 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3983 }
3984
3985 /* It should now be out of any other write domains, and we can update
3986 * the domain values for our changes.
3987 */
05394f39 3988 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3989
3990 /* If we're writing through the CPU, then the GPU read domains will
3991 * need to be invalidated at next use.
3992 */
3993 if (write) {
05394f39
CW
3994 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3995 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3996 }
2ef7eeaa 3997
1c5d22f7
CW
3998 trace_i915_gem_object_change_domain(obj,
3999 old_read_domains,
4000 old_write_domain);
4001
2ef7eeaa
EA
4002 return 0;
4003}
4004
673a394b
EA
4005/* Throttle our rendering by waiting until the ring has completed our requests
4006 * emitted over 20 msec ago.
4007 *
b962442e
EA
4008 * Note that if we were to use the current jiffies each time around the loop,
4009 * we wouldn't escape the function with any frames outstanding if the time to
4010 * render a frame was over 20ms.
4011 *
673a394b
EA
4012 * This should get us reasonable parallelism between CPU and GPU but also
4013 * relatively low latency when blocking on a particular request to finish.
4014 */
40a5f0de 4015static int
f787a5f5 4016i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4017{
f787a5f5
CW
4018 struct drm_i915_private *dev_priv = dev->dev_private;
4019 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4020 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4021 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4022 unsigned reset_counter;
f787a5f5 4023 int ret;
93533c29 4024
308887aa
DV
4025 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4026 if (ret)
4027 return ret;
4028
4029 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4030 if (ret)
4031 return ret;
e110e8d6 4032
1c25595f 4033 spin_lock(&file_priv->mm.lock);
f787a5f5 4034 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4035 if (time_after_eq(request->emitted_jiffies, recent_enough))
4036 break;
40a5f0de 4037
fcfa423c
JH
4038 /*
4039 * Note that the request might not have been submitted yet.
4040 * In which case emitted_jiffies will be zero.
4041 */
4042 if (!request->emitted_jiffies)
4043 continue;
4044
54fb2411 4045 target = request;
b962442e 4046 }
f69061be 4047 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4048 if (target)
4049 i915_gem_request_reference(target);
1c25595f 4050 spin_unlock(&file_priv->mm.lock);
40a5f0de 4051
54fb2411 4052 if (target == NULL)
f787a5f5 4053 return 0;
2bc43b5c 4054
9c654818 4055 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4056 if (ret == 0)
4057 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4058
41037f9f 4059 i915_gem_request_unreference__unlocked(target);
ff865885 4060
40a5f0de
EA
4061 return ret;
4062}
4063
d23db88c
CW
4064static bool
4065i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4066{
4067 struct drm_i915_gem_object *obj = vma->obj;
4068
4069 if (alignment &&
4070 vma->node.start & (alignment - 1))
4071 return true;
4072
4073 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4074 return true;
4075
4076 if (flags & PIN_OFFSET_BIAS &&
4077 vma->node.start < (flags & PIN_OFFSET_MASK))
4078 return true;
4079
4080 return false;
4081}
4082
62d622c1
CW
4083void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4084{
4085 struct drm_i915_gem_object *obj = vma->obj;
4086 bool mappable, fenceable;
4087 u32 fence_size, fence_alignment;
4088
4089 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4090 obj->base.size,
4091 obj->tiling_mode);
4092 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4093 obj->base.size,
4094 obj->tiling_mode,
4095 true);
4096
4097 fenceable = (vma->node.size == fence_size &&
4098 (vma->node.start & (fence_alignment - 1)) == 0);
4099
4100 mappable = (vma->node.start + fence_size <=
4101 to_i915(obj->base.dev)->gtt.mappable_end);
4102
4103 obj->map_and_fenceable = mappable && fenceable;
4104}
4105
ec7adb6e
JL
4106static int
4107i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4108 struct i915_address_space *vm,
4109 const struct i915_ggtt_view *ggtt_view,
4110 uint32_t alignment,
4111 uint64_t flags)
673a394b 4112{
6e7186af 4113 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4114 struct i915_vma *vma;
ef79e17c 4115 unsigned bound;
673a394b
EA
4116 int ret;
4117
6e7186af
BW
4118 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4119 return -ENODEV;
4120
bf3d149b 4121 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4122 return -EINVAL;
07fe0b12 4123
c826c449
CW
4124 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4125 return -EINVAL;
4126
ec7adb6e
JL
4127 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4128 return -EINVAL;
4129
4130 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4131 i915_gem_obj_to_vma(obj, vm);
4132
4133 if (IS_ERR(vma))
4134 return PTR_ERR(vma);
4135
07fe0b12 4136 if (vma) {
d7f46fc4
BW
4137 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4138 return -EBUSY;
4139
d23db88c 4140 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4141 WARN(vma->pin_count,
ec7adb6e 4142 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4143 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4144 " obj->map_and_fenceable=%d\n",
ec7adb6e 4145 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4146 upper_32_bits(vma->node.start),
4147 lower_32_bits(vma->node.start),
fe14d5f4 4148 alignment,
d23db88c 4149 !!(flags & PIN_MAPPABLE),
05394f39 4150 obj->map_and_fenceable);
07fe0b12 4151 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4152 if (ret)
4153 return ret;
8ea99c92
DV
4154
4155 vma = NULL;
ac0c6b5a
CW
4156 }
4157 }
4158
ef79e17c 4159 bound = vma ? vma->bound : 0;
8ea99c92 4160 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4161 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4162 flags);
262de145
DV
4163 if (IS_ERR(vma))
4164 return PTR_ERR(vma);
0875546c
DV
4165 } else {
4166 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4167 if (ret)
4168 return ret;
4169 }
74898d7e 4170
91e6711e
JL
4171 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4172 (bound ^ vma->bound) & GLOBAL_BIND) {
62d622c1 4173 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4174 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4175 }
ef79e17c 4176
8ea99c92 4177 vma->pin_count++;
673a394b
EA
4178 return 0;
4179}
4180
ec7adb6e
JL
4181int
4182i915_gem_object_pin(struct drm_i915_gem_object *obj,
4183 struct i915_address_space *vm,
4184 uint32_t alignment,
4185 uint64_t flags)
4186{
4187 return i915_gem_object_do_pin(obj, vm,
4188 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4189 alignment, flags);
4190}
4191
4192int
4193i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4194 const struct i915_ggtt_view *view,
4195 uint32_t alignment,
4196 uint64_t flags)
4197{
4198 if (WARN_ONCE(!view, "no view specified"))
4199 return -EINVAL;
4200
4201 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4202 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4203}
4204
673a394b 4205void
e6617330
TU
4206i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4207 const struct i915_ggtt_view *view)
673a394b 4208{
e6617330 4209 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4210
d7f46fc4 4211 BUG_ON(!vma);
e6617330 4212 WARN_ON(vma->pin_count == 0);
9abc4648 4213 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4214
30154650 4215 --vma->pin_count;
673a394b
EA
4216}
4217
673a394b
EA
4218int
4219i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4220 struct drm_file *file)
673a394b
EA
4221{
4222 struct drm_i915_gem_busy *args = data;
05394f39 4223 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4224 int ret;
4225
76c1dec1 4226 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4227 if (ret)
76c1dec1 4228 return ret;
673a394b 4229
05394f39 4230 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4231 if (&obj->base == NULL) {
1d7cfea1
CW
4232 ret = -ENOENT;
4233 goto unlock;
673a394b 4234 }
d1b851fc 4235
0be555b6
CW
4236 /* Count all active objects as busy, even if they are currently not used
4237 * by the gpu. Users of this interface expect objects to eventually
4238 * become non-busy without any further actions, therefore emit any
4239 * necessary flushes here.
c4de0a5d 4240 */
30dfebf3 4241 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4242 if (ret)
4243 goto unref;
0be555b6 4244
b4716185
CW
4245 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4246 args->busy = obj->active << 16;
4247 if (obj->last_write_req)
4248 args->busy |= obj->last_write_req->ring->id;
673a394b 4249
b4716185 4250unref:
05394f39 4251 drm_gem_object_unreference(&obj->base);
1d7cfea1 4252unlock:
673a394b 4253 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4254 return ret;
673a394b
EA
4255}
4256
4257int
4258i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4259 struct drm_file *file_priv)
4260{
0206e353 4261 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4262}
4263
3ef94daa
CW
4264int
4265i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4266 struct drm_file *file_priv)
4267{
656bfa3a 4268 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4269 struct drm_i915_gem_madvise *args = data;
05394f39 4270 struct drm_i915_gem_object *obj;
76c1dec1 4271 int ret;
3ef94daa
CW
4272
4273 switch (args->madv) {
4274 case I915_MADV_DONTNEED:
4275 case I915_MADV_WILLNEED:
4276 break;
4277 default:
4278 return -EINVAL;
4279 }
4280
1d7cfea1
CW
4281 ret = i915_mutex_lock_interruptible(dev);
4282 if (ret)
4283 return ret;
4284
05394f39 4285 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4286 if (&obj->base == NULL) {
1d7cfea1
CW
4287 ret = -ENOENT;
4288 goto unlock;
3ef94daa 4289 }
3ef94daa 4290
d7f46fc4 4291 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4292 ret = -EINVAL;
4293 goto out;
3ef94daa
CW
4294 }
4295
656bfa3a
DV
4296 if (obj->pages &&
4297 obj->tiling_mode != I915_TILING_NONE &&
4298 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4299 if (obj->madv == I915_MADV_WILLNEED)
4300 i915_gem_object_unpin_pages(obj);
4301 if (args->madv == I915_MADV_WILLNEED)
4302 i915_gem_object_pin_pages(obj);
4303 }
4304
05394f39
CW
4305 if (obj->madv != __I915_MADV_PURGED)
4306 obj->madv = args->madv;
3ef94daa 4307
6c085a72 4308 /* if the object is no longer attached, discard its backing storage */
be6a0376 4309 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4310 i915_gem_object_truncate(obj);
4311
05394f39 4312 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4313
1d7cfea1 4314out:
05394f39 4315 drm_gem_object_unreference(&obj->base);
1d7cfea1 4316unlock:
3ef94daa 4317 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4318 return ret;
3ef94daa
CW
4319}
4320
37e680a1
CW
4321void i915_gem_object_init(struct drm_i915_gem_object *obj,
4322 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4323{
b4716185
CW
4324 int i;
4325
35c20a60 4326 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4327 for (i = 0; i < I915_NUM_RINGS; i++)
4328 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4329 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4330 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4331 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4332
37e680a1
CW
4333 obj->ops = ops;
4334
0327d6ba
CW
4335 obj->fence_reg = I915_FENCE_REG_NONE;
4336 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4337
4338 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4339}
4340
37e680a1
CW
4341static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4342 .get_pages = i915_gem_object_get_pages_gtt,
4343 .put_pages = i915_gem_object_put_pages_gtt,
4344};
4345
05394f39
CW
4346struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4347 size_t size)
ac52bc56 4348{
c397b908 4349 struct drm_i915_gem_object *obj;
5949eac4 4350 struct address_space *mapping;
1a240d4d 4351 gfp_t mask;
ac52bc56 4352
42dcedd4 4353 obj = i915_gem_object_alloc(dev);
c397b908
DV
4354 if (obj == NULL)
4355 return NULL;
673a394b 4356
c397b908 4357 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4358 i915_gem_object_free(obj);
c397b908
DV
4359 return NULL;
4360 }
673a394b 4361
bed1ea95
CW
4362 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4363 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4364 /* 965gm cannot relocate objects above 4GiB. */
4365 mask &= ~__GFP_HIGHMEM;
4366 mask |= __GFP_DMA32;
4367 }
4368
496ad9aa 4369 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4370 mapping_set_gfp_mask(mapping, mask);
5949eac4 4371
37e680a1 4372 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4373
c397b908
DV
4374 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4375 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4376
3d29b842
ED
4377 if (HAS_LLC(dev)) {
4378 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4379 * cache) for about a 10% performance improvement
4380 * compared to uncached. Graphics requests other than
4381 * display scanout are coherent with the CPU in
4382 * accessing this cache. This means in this mode we
4383 * don't need to clflush on the CPU side, and on the
4384 * GPU side we only need to flush internal caches to
4385 * get data visible to the CPU.
4386 *
4387 * However, we maintain the display planes as UC, and so
4388 * need to rebind when first used as such.
4389 */
4390 obj->cache_level = I915_CACHE_LLC;
4391 } else
4392 obj->cache_level = I915_CACHE_NONE;
4393
d861e338
DV
4394 trace_i915_gem_object_create(obj);
4395
05394f39 4396 return obj;
c397b908
DV
4397}
4398
340fbd8c
CW
4399static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4400{
4401 /* If we are the last user of the backing storage (be it shmemfs
4402 * pages or stolen etc), we know that the pages are going to be
4403 * immediately released. In this case, we can then skip copying
4404 * back the contents from the GPU.
4405 */
4406
4407 if (obj->madv != I915_MADV_WILLNEED)
4408 return false;
4409
4410 if (obj->base.filp == NULL)
4411 return true;
4412
4413 /* At first glance, this looks racy, but then again so would be
4414 * userspace racing mmap against close. However, the first external
4415 * reference to the filp can only be obtained through the
4416 * i915_gem_mmap_ioctl() which safeguards us against the user
4417 * acquiring such a reference whilst we are in the middle of
4418 * freeing the object.
4419 */
4420 return atomic_long_read(&obj->base.filp->f_count) == 1;
4421}
4422
1488fc08 4423void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4424{
1488fc08 4425 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4426 struct drm_device *dev = obj->base.dev;
3e31c6c0 4427 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4428 struct i915_vma *vma, *next;
673a394b 4429
f65c9168
PZ
4430 intel_runtime_pm_get(dev_priv);
4431
26e12f89
CW
4432 trace_i915_gem_object_destroy(obj);
4433
07fe0b12 4434 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4435 int ret;
4436
4437 vma->pin_count = 0;
4438 ret = i915_vma_unbind(vma);
07fe0b12
BW
4439 if (WARN_ON(ret == -ERESTARTSYS)) {
4440 bool was_interruptible;
1488fc08 4441
07fe0b12
BW
4442 was_interruptible = dev_priv->mm.interruptible;
4443 dev_priv->mm.interruptible = false;
1488fc08 4444
07fe0b12 4445 WARN_ON(i915_vma_unbind(vma));
1488fc08 4446
07fe0b12
BW
4447 dev_priv->mm.interruptible = was_interruptible;
4448 }
1488fc08
CW
4449 }
4450
1d64ae71
BW
4451 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4452 * before progressing. */
4453 if (obj->stolen)
4454 i915_gem_object_unpin_pages(obj);
4455
a071fa00
DV
4456 WARN_ON(obj->frontbuffer_bits);
4457
656bfa3a
DV
4458 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4459 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4460 obj->tiling_mode != I915_TILING_NONE)
4461 i915_gem_object_unpin_pages(obj);
4462
401c29f6
BW
4463 if (WARN_ON(obj->pages_pin_count))
4464 obj->pages_pin_count = 0;
340fbd8c 4465 if (discard_backing_storage(obj))
5537252b 4466 obj->madv = I915_MADV_DONTNEED;
37e680a1 4467 i915_gem_object_put_pages(obj);
d8cb5086 4468 i915_gem_object_free_mmap_offset(obj);
de151cf6 4469
9da3da66
CW
4470 BUG_ON(obj->pages);
4471
2f745ad3
CW
4472 if (obj->base.import_attach)
4473 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4474
5cc9ed4b
CW
4475 if (obj->ops->release)
4476 obj->ops->release(obj);
4477
05394f39
CW
4478 drm_gem_object_release(&obj->base);
4479 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4480
05394f39 4481 kfree(obj->bit_17);
42dcedd4 4482 i915_gem_object_free(obj);
f65c9168
PZ
4483
4484 intel_runtime_pm_put(dev_priv);
673a394b
EA
4485}
4486
ec7adb6e
JL
4487struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4488 struct i915_address_space *vm)
e656a6cb
DV
4489{
4490 struct i915_vma *vma;
ec7adb6e
JL
4491 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4492 if (i915_is_ggtt(vma->vm) &&
4493 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4494 continue;
4495 if (vma->vm == vm)
e656a6cb 4496 return vma;
ec7adb6e
JL
4497 }
4498 return NULL;
4499}
4500
4501struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4502 const struct i915_ggtt_view *view)
4503{
4504 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4505 struct i915_vma *vma;
e656a6cb 4506
ec7adb6e
JL
4507 if (WARN_ONCE(!view, "no view specified"))
4508 return ERR_PTR(-EINVAL);
4509
4510 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4511 if (vma->vm == ggtt &&
4512 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4513 return vma;
e656a6cb
DV
4514 return NULL;
4515}
4516
2f633156
BW
4517void i915_gem_vma_destroy(struct i915_vma *vma)
4518{
b9d06dd9 4519 struct i915_address_space *vm = NULL;
2f633156 4520 WARN_ON(vma->node.allocated);
aaa05667
CW
4521
4522 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4523 if (!list_empty(&vma->exec_list))
4524 return;
4525
b9d06dd9 4526 vm = vma->vm;
b9d06dd9 4527
841cd773
DV
4528 if (!i915_is_ggtt(vm))
4529 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4530
8b9c2b94 4531 list_del(&vma->vma_link);
b93dab6e 4532
e20d2ab7 4533 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4534}
4535
e3efda49
CW
4536static void
4537i915_gem_stop_ringbuffers(struct drm_device *dev)
4538{
4539 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4540 struct intel_engine_cs *ring;
e3efda49
CW
4541 int i;
4542
4543 for_each_ring(ring, dev_priv, i)
a83014d3 4544 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4545}
4546
29105ccc 4547int
45c5f202 4548i915_gem_suspend(struct drm_device *dev)
29105ccc 4549{
3e31c6c0 4550 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4551 int ret = 0;
28dfe52a 4552
45c5f202 4553 mutex_lock(&dev->struct_mutex);
b2da9fe5 4554 ret = i915_gpu_idle(dev);
f7403347 4555 if (ret)
45c5f202 4556 goto err;
f7403347 4557
b2da9fe5 4558 i915_gem_retire_requests(dev);
673a394b 4559
e3efda49 4560 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4561 mutex_unlock(&dev->struct_mutex);
4562
737b1506 4563 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4564 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4565 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4566
bdcf120b
CW
4567 /* Assert that we sucessfully flushed all the work and
4568 * reset the GPU back to its idle, low power state.
4569 */
4570 WARN_ON(dev_priv->mm.busy);
4571
673a394b 4572 return 0;
45c5f202
CW
4573
4574err:
4575 mutex_unlock(&dev->struct_mutex);
4576 return ret;
673a394b
EA
4577}
4578
6909a666 4579int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4580{
6909a666 4581 struct intel_engine_cs *ring = req->ring;
c3787e2e 4582 struct drm_device *dev = ring->dev;
3e31c6c0 4583 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4584 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4585 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4586 int i, ret;
b9524a1e 4587
040d2baa 4588 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4589 return 0;
b9524a1e 4590
5fb9de1a 4591 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4592 if (ret)
4593 return ret;
b9524a1e 4594
c3787e2e
BW
4595 /*
4596 * Note: We do not worry about the concurrent register cacheline hang
4597 * here because no other code should access these registers other than
4598 * at initialization time.
4599 */
b9524a1e 4600 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4601 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4602 intel_ring_emit(ring, reg_base + i);
4603 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4604 }
4605
c3787e2e 4606 intel_ring_advance(ring);
b9524a1e 4607
c3787e2e 4608 return ret;
b9524a1e
BW
4609}
4610
f691e2f4
DV
4611void i915_gem_init_swizzling(struct drm_device *dev)
4612{
3e31c6c0 4613 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4614
11782b02 4615 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4616 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4617 return;
4618
4619 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4620 DISP_TILE_SURFACE_SWIZZLING);
4621
11782b02
DV
4622 if (IS_GEN5(dev))
4623 return;
4624
f691e2f4
DV
4625 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4626 if (IS_GEN6(dev))
6b26c86d 4627 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4628 else if (IS_GEN7(dev))
6b26c86d 4629 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4630 else if (IS_GEN8(dev))
4631 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4632 else
4633 BUG();
f691e2f4 4634}
e21af88d 4635
81e7f200
VS
4636static void init_unused_ring(struct drm_device *dev, u32 base)
4637{
4638 struct drm_i915_private *dev_priv = dev->dev_private;
4639
4640 I915_WRITE(RING_CTL(base), 0);
4641 I915_WRITE(RING_HEAD(base), 0);
4642 I915_WRITE(RING_TAIL(base), 0);
4643 I915_WRITE(RING_START(base), 0);
4644}
4645
4646static void init_unused_rings(struct drm_device *dev)
4647{
4648 if (IS_I830(dev)) {
4649 init_unused_ring(dev, PRB1_BASE);
4650 init_unused_ring(dev, SRB0_BASE);
4651 init_unused_ring(dev, SRB1_BASE);
4652 init_unused_ring(dev, SRB2_BASE);
4653 init_unused_ring(dev, SRB3_BASE);
4654 } else if (IS_GEN2(dev)) {
4655 init_unused_ring(dev, SRB0_BASE);
4656 init_unused_ring(dev, SRB1_BASE);
4657 } else if (IS_GEN3(dev)) {
4658 init_unused_ring(dev, PRB1_BASE);
4659 init_unused_ring(dev, PRB2_BASE);
4660 }
4661}
4662
a83014d3 4663int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4664{
4fc7c971 4665 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4666 int ret;
68f95ba9 4667
5c1143bb 4668 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4669 if (ret)
b6913e4b 4670 return ret;
68f95ba9
CW
4671
4672 if (HAS_BSD(dev)) {
5c1143bb 4673 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4674 if (ret)
4675 goto cleanup_render_ring;
d1b851fc 4676 }
68f95ba9 4677
d39398f5 4678 if (HAS_BLT(dev)) {
549f7365
CW
4679 ret = intel_init_blt_ring_buffer(dev);
4680 if (ret)
4681 goto cleanup_bsd_ring;
4682 }
4683
9a8a2213
BW
4684 if (HAS_VEBOX(dev)) {
4685 ret = intel_init_vebox_ring_buffer(dev);
4686 if (ret)
4687 goto cleanup_blt_ring;
4688 }
4689
845f74a7
ZY
4690 if (HAS_BSD2(dev)) {
4691 ret = intel_init_bsd2_ring_buffer(dev);
4692 if (ret)
4693 goto cleanup_vebox_ring;
4694 }
9a8a2213 4695
4fc7c971
BW
4696 return 0;
4697
9a8a2213
BW
4698cleanup_vebox_ring:
4699 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4700cleanup_blt_ring:
4701 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4702cleanup_bsd_ring:
4703 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4704cleanup_render_ring:
4705 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4706
4707 return ret;
4708}
4709
4710int
4711i915_gem_init_hw(struct drm_device *dev)
4712{
3e31c6c0 4713 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4714 struct intel_engine_cs *ring;
4ad2fd88 4715 int ret, i, j;
4fc7c971
BW
4716
4717 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4718 return -EIO;
4719
5e4f5189
CW
4720 /* Double layer security blanket, see i915_gem_init() */
4721 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4722
59124506 4723 if (dev_priv->ellc_size)
05e21cc4 4724 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4725
0bf21347
VS
4726 if (IS_HASWELL(dev))
4727 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4728 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4729
88a2b2a3 4730 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4731 if (IS_IVYBRIDGE(dev)) {
4732 u32 temp = I915_READ(GEN7_MSG_CTL);
4733 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4734 I915_WRITE(GEN7_MSG_CTL, temp);
4735 } else if (INTEL_INFO(dev)->gen >= 7) {
4736 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4737 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4738 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4739 }
88a2b2a3
BW
4740 }
4741
4fc7c971
BW
4742 i915_gem_init_swizzling(dev);
4743
d5abdfda
DV
4744 /*
4745 * At least 830 can leave some of the unused rings
4746 * "active" (ie. head != tail) after resume which
4747 * will prevent c3 entry. Makes sure all unused rings
4748 * are totally idle.
4749 */
4750 init_unused_rings(dev);
4751
90638cc1
JH
4752 BUG_ON(!dev_priv->ring[RCS].default_context);
4753
4ad2fd88
JH
4754 ret = i915_ppgtt_init_hw(dev);
4755 if (ret) {
4756 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4757 goto out;
4758 }
4759
4760 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
4761 for_each_ring(ring, dev_priv, i) {
4762 ret = ring->init_hw(ring);
4763 if (ret)
5e4f5189 4764 goto out;
35a57ffb 4765 }
99433931 4766
33a732f4 4767 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4768 if (HAS_GUC_UCODE(dev)) {
4769 ret = intel_guc_ucode_load(dev);
4770 if (ret) {
4771 /*
4772 * If we got an error and GuC submission is enabled, map
4773 * the error to -EIO so the GPU will be declared wedged.
4774 * OTOH, if we didn't intend to use the GuC anyway, just
4775 * discard the error and carry on.
4776 */
4777 DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4778 i915.enable_guc_submission ? "" :
4779 " (ignored)");
4780 ret = i915.enable_guc_submission ? -EIO : 0;
4781 if (ret)
4782 goto out;
4783 }
33a732f4
AD
4784 }
4785
e84fe803
NH
4786 /*
4787 * Increment the next seqno by 0x100 so we have a visible break
4788 * on re-initialisation
4789 */
4790 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4791 if (ret)
4792 goto out;
4793
4ad2fd88
JH
4794 /* Now it is safe to go back round and do everything else: */
4795 for_each_ring(ring, dev_priv, i) {
dc4be607 4796 struct drm_i915_gem_request *req;
c3787e2e 4797
90638cc1
JH
4798 WARN_ON(!ring->default_context);
4799
dc4be607
JH
4800 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4801 if (ret) {
4802 i915_gem_cleanup_ringbuffer(dev);
4803 goto out;
4804 }
82460d97 4805
4ad2fd88
JH
4806 if (ring->id == RCS) {
4807 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4808 i915_gem_l3_remap(req, j);
4ad2fd88 4809 }
f48a0165 4810
b3dd6b96 4811 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
4812 if (ret && ret != -EIO) {
4813 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 4814 i915_gem_request_cancel(req);
4ad2fd88
JH
4815 i915_gem_cleanup_ringbuffer(dev);
4816 goto out;
4817 }
82460d97 4818
b3dd6b96 4819 ret = i915_gem_context_enable(req);
90638cc1
JH
4820 if (ret && ret != -EIO) {
4821 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 4822 i915_gem_request_cancel(req);
90638cc1
JH
4823 i915_gem_cleanup_ringbuffer(dev);
4824 goto out;
4825 }
dc4be607 4826
75289874 4827 i915_add_request_no_flush(req);
b7c36d25 4828 }
e21af88d 4829
5e4f5189
CW
4830out:
4831 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4832 return ret;
8187a2b7
ZN
4833}
4834
1070a42b
CW
4835int i915_gem_init(struct drm_device *dev)
4836{
4837 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4838 int ret;
4839
127f1003
OM
4840 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4841 i915.enable_execlists);
4842
1070a42b 4843 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4844
4845 if (IS_VALLEYVIEW(dev)) {
4846 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4847 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4848 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4849 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4850 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4851 }
4852
a83014d3 4853 if (!i915.enable_execlists) {
f3dc74c0 4854 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4855 dev_priv->gt.init_rings = i915_gem_init_rings;
4856 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4857 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4858 } else {
f3dc74c0 4859 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4860 dev_priv->gt.init_rings = intel_logical_rings_init;
4861 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4862 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4863 }
4864
5e4f5189
CW
4865 /* This is just a security blanket to placate dragons.
4866 * On some systems, we very sporadically observe that the first TLBs
4867 * used by the CS may be stale, despite us poking the TLB reset. If
4868 * we hold the forcewake during initialisation these problems
4869 * just magically go away.
4870 */
4871 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4872
6c5566a8 4873 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4874 if (ret)
4875 goto out_unlock;
6c5566a8 4876
d7e5008f 4877 i915_gem_init_global_gtt(dev);
d62b4892 4878
2fa48d8d 4879 ret = i915_gem_context_init(dev);
7bcc3777
JN
4880 if (ret)
4881 goto out_unlock;
2fa48d8d 4882
35a57ffb
DV
4883 ret = dev_priv->gt.init_rings(dev);
4884 if (ret)
7bcc3777 4885 goto out_unlock;
2fa48d8d 4886
1070a42b 4887 ret = i915_gem_init_hw(dev);
60990320
CW
4888 if (ret == -EIO) {
4889 /* Allow ring initialisation to fail by marking the GPU as
4890 * wedged. But we only want to do this where the GPU is angry,
4891 * for all other failure, such as an allocation failure, bail.
4892 */
4893 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4894 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4895 ret = 0;
1070a42b 4896 }
7bcc3777
JN
4897
4898out_unlock:
5e4f5189 4899 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4900 mutex_unlock(&dev->struct_mutex);
1070a42b 4901
60990320 4902 return ret;
1070a42b
CW
4903}
4904
8187a2b7
ZN
4905void
4906i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4907{
3e31c6c0 4908 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4909 struct intel_engine_cs *ring;
1ec14ad3 4910 int i;
8187a2b7 4911
b4519513 4912 for_each_ring(ring, dev_priv, i)
a83014d3 4913 dev_priv->gt.cleanup_ring(ring);
a647828a
NB
4914
4915 if (i915.enable_execlists)
4916 /*
4917 * Neither the BIOS, ourselves or any other kernel
4918 * expects the system to be in execlists mode on startup,
4919 * so we need to reset the GPU back to legacy mode.
4920 */
4921 intel_gpu_reset(dev);
8187a2b7
ZN
4922}
4923
64193406 4924static void
a4872ba6 4925init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4926{
4927 INIT_LIST_HEAD(&ring->active_list);
4928 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4929}
4930
673a394b
EA
4931void
4932i915_gem_load(struct drm_device *dev)
4933{
3e31c6c0 4934 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4935 int i;
4936
efab6d8d 4937 dev_priv->objects =
42dcedd4
CW
4938 kmem_cache_create("i915_gem_object",
4939 sizeof(struct drm_i915_gem_object), 0,
4940 SLAB_HWCACHE_ALIGN,
4941 NULL);
e20d2ab7
CW
4942 dev_priv->vmas =
4943 kmem_cache_create("i915_gem_vma",
4944 sizeof(struct i915_vma), 0,
4945 SLAB_HWCACHE_ALIGN,
4946 NULL);
efab6d8d
CW
4947 dev_priv->requests =
4948 kmem_cache_create("i915_gem_request",
4949 sizeof(struct drm_i915_gem_request), 0,
4950 SLAB_HWCACHE_ALIGN,
4951 NULL);
673a394b 4952
fc8c067e 4953 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 4954 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4955 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4956 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4957 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4958 for (i = 0; i < I915_NUM_RINGS; i++)
4959 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4960 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4961 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4962 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4963 i915_gem_retire_work_handler);
b29c19b6
CW
4964 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4965 i915_gem_idle_work_handler);
1f83fee0 4966 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4967
72bfa19c
CW
4968 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4969
42b5aeab
VS
4970 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4971 dev_priv->num_fence_regs = 32;
4972 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4973 dev_priv->num_fence_regs = 16;
4974 else
4975 dev_priv->num_fence_regs = 8;
4976
eb82289a
YZ
4977 if (intel_vgpu_active(dev))
4978 dev_priv->num_fence_regs =
4979 I915_READ(vgtif_reg(avail_rs.fence_num));
4980
e84fe803
NH
4981 /*
4982 * Set initial sequence number for requests.
4983 * Using this number allows the wraparound to happen early,
4984 * catching any obvious problems.
4985 */
4986 dev_priv->next_seqno = ((u32)~0 - 0x1100);
4987 dev_priv->last_seqno = ((u32)~0 - 0x1101);
4988
b5aa8a0f 4989 /* Initialize fence registers to zero */
19b2dbde
CW
4990 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4991 i915_gem_restore_fences(dev);
10ed13e4 4992
673a394b 4993 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4994 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4995
ce453d81
CW
4996 dev_priv->mm.interruptible = true;
4997
be6a0376 4998 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
4999
5000 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5001}
71acb5eb 5002
f787a5f5 5003void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5004{
f787a5f5 5005 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5006
5007 /* Clean up our request list when the client is going away, so that
5008 * later retire_requests won't dereference our soon-to-be-gone
5009 * file_priv.
5010 */
1c25595f 5011 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5012 while (!list_empty(&file_priv->mm.request_list)) {
5013 struct drm_i915_gem_request *request;
5014
5015 request = list_first_entry(&file_priv->mm.request_list,
5016 struct drm_i915_gem_request,
5017 client_list);
5018 list_del(&request->client_list);
5019 request->file_priv = NULL;
5020 }
1c25595f 5021 spin_unlock(&file_priv->mm.lock);
31169714 5022
2e1b8730 5023 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5024 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5025 list_del(&file_priv->rps.link);
8d3afd7d 5026 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5027 }
b29c19b6
CW
5028}
5029
5030int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5031{
5032 struct drm_i915_file_private *file_priv;
e422b888 5033 int ret;
b29c19b6
CW
5034
5035 DRM_DEBUG_DRIVER("\n");
5036
5037 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5038 if (!file_priv)
5039 return -ENOMEM;
5040
5041 file->driver_priv = file_priv;
5042 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5043 file_priv->file = file;
2e1b8730 5044 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5045
5046 spin_lock_init(&file_priv->mm.lock);
5047 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5048
e422b888
BW
5049 ret = i915_gem_context_open(dev, file);
5050 if (ret)
5051 kfree(file_priv);
b29c19b6 5052
e422b888 5053 return ret;
b29c19b6
CW
5054}
5055
b680c37a
DV
5056/**
5057 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5058 * @old: current GEM buffer for the frontbuffer slots
5059 * @new: new GEM buffer for the frontbuffer slots
5060 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5061 *
5062 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5063 * from @old and setting them in @new. Both @old and @new can be NULL.
5064 */
a071fa00
DV
5065void i915_gem_track_fb(struct drm_i915_gem_object *old,
5066 struct drm_i915_gem_object *new,
5067 unsigned frontbuffer_bits)
5068{
5069 if (old) {
5070 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5071 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5072 old->frontbuffer_bits &= ~frontbuffer_bits;
5073 }
5074
5075 if (new) {
5076 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5077 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5078 new->frontbuffer_bits |= frontbuffer_bits;
5079 }
5080}
5081
a70a3148 5082/* All the new VM stuff */
088e0df4
MT
5083u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5084 struct i915_address_space *vm)
a70a3148
BW
5085{
5086 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5087 struct i915_vma *vma;
5088
896ab1a5 5089 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5090
a70a3148 5091 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5092 if (i915_is_ggtt(vma->vm) &&
5093 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5094 continue;
5095 if (vma->vm == vm)
a70a3148 5096 return vma->node.start;
a70a3148 5097 }
ec7adb6e 5098
f25748ea
DV
5099 WARN(1, "%s vma for this object not found.\n",
5100 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5101 return -1;
5102}
5103
088e0df4
MT
5104u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5105 const struct i915_ggtt_view *view)
a70a3148 5106{
ec7adb6e 5107 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5108 struct i915_vma *vma;
5109
5110 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5111 if (vma->vm == ggtt &&
5112 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5113 return vma->node.start;
5114
5678ad73 5115 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5116 return -1;
5117}
5118
5119bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5120 struct i915_address_space *vm)
5121{
5122 struct i915_vma *vma;
5123
5124 list_for_each_entry(vma, &o->vma_list, vma_link) {
5125 if (i915_is_ggtt(vma->vm) &&
5126 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5127 continue;
5128 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5129 return true;
5130 }
5131
5132 return false;
5133}
5134
5135bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5136 const struct i915_ggtt_view *view)
ec7adb6e
JL
5137{
5138 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5139 struct i915_vma *vma;
5140
5141 list_for_each_entry(vma, &o->vma_list, vma_link)
5142 if (vma->vm == ggtt &&
9abc4648 5143 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5144 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5145 return true;
5146
5147 return false;
5148}
5149
5150bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5151{
5a1d5eb0 5152 struct i915_vma *vma;
a70a3148 5153
5a1d5eb0
CW
5154 list_for_each_entry(vma, &o->vma_list, vma_link)
5155 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5156 return true;
5157
5158 return false;
5159}
5160
5161unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5162 struct i915_address_space *vm)
5163{
5164 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5165 struct i915_vma *vma;
5166
896ab1a5 5167 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5168
5169 BUG_ON(list_empty(&o->vma_list));
5170
ec7adb6e
JL
5171 list_for_each_entry(vma, &o->vma_list, vma_link) {
5172 if (i915_is_ggtt(vma->vm) &&
5173 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5174 continue;
a70a3148
BW
5175 if (vma->vm == vm)
5176 return vma->node.size;
ec7adb6e 5177 }
a70a3148
BW
5178 return 0;
5179}
5180
ec7adb6e 5181bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5182{
5183 struct i915_vma *vma;
a6631ae1 5184 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5185 if (vma->pin_count > 0)
5186 return true;
a6631ae1 5187
ec7adb6e 5188 return false;
5c2abbea 5189}
ec7adb6e 5190
ea70299d
DG
5191/* Allocate a new GEM object and fill it with the supplied data */
5192struct drm_i915_gem_object *
5193i915_gem_object_create_from_data(struct drm_device *dev,
5194 const void *data, size_t size)
5195{
5196 struct drm_i915_gem_object *obj;
5197 struct sg_table *sg;
5198 size_t bytes;
5199 int ret;
5200
5201 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5202 if (IS_ERR_OR_NULL(obj))
5203 return obj;
5204
5205 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5206 if (ret)
5207 goto fail;
5208
5209 ret = i915_gem_object_get_pages(obj);
5210 if (ret)
5211 goto fail;
5212
5213 i915_gem_object_pin_pages(obj);
5214 sg = obj->pages;
5215 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5216 i915_gem_object_unpin_pages(obj);
5217
5218 if (WARN_ON(bytes != size)) {
5219 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5220 ret = -EFAULT;
5221 goto fail;
5222 }
5223
5224 return obj;
5225
5226fail:
5227 drm_gem_object_unreference(&obj->base);
5228 return ERR_PTR(ret);
5229}
This page took 1.594389 seconds and 5 git commands to generate.