drm/i915: Allow ggtt lookups to not WARN
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46static __must_check int
07fe0b12
BW
47i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39 55 struct drm_file *file);
673a394b 56
61050808
CW
57static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
7dc19d5a
DC
63static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
d9973b43
CW
67static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 69static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 70
c76ce038
CW
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
2c22569b
CW
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
61050808
CW
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
5d82e3e6 93 obj->fence_dirty = false;
61050808
CW
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
73aa808f
CW
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
c20e8355 101 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
c20e8355 104 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
c20e8355 110 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
c20e8355 113 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
114}
115
21dd3734 116static int
33196ded 117i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 118{
30dbf0c0
CW
119 int ret;
120
7abb690a
DV
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
1f83fee0 123 if (EXIT_COND)
30dbf0c0
CW
124 return 0;
125
0a6759c6
DV
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
1f83fee0
DV
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
0a6759c6
DV
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
30dbf0c0 138 return ret;
0a6759c6 139 }
1f83fee0 140#undef EXIT_COND
30dbf0c0 141
21dd3734 142 return 0;
30dbf0c0
CW
143}
144
54cf91dc 145int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 146{
33196ded 147 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
148 int ret;
149
33196ded 150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
23bc5982 158 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
159 return 0;
160}
30dbf0c0 161
7d1c4804 162static inline bool
05394f39 163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 164{
9843877d 165 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
166}
167
79e53945
JB
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
79e53945 171{
93d18799 172 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 173 struct drm_i915_gem_init *args = data;
2021746e 174
7bb6fb8d
DV
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
2021746e
CW
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
79e53945 181
f534bc0b
DV
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
79e53945 186 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
93d18799 189 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
190 mutex_unlock(&dev->struct_mutex);
191
2021746e 192 return 0;
673a394b
EA
193}
194
5a125c3c
EA
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 197 struct drm_file *file)
5a125c3c 198{
73aa808f 199 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 200 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
5a125c3c 203
6299f992 204 pinned = 0;
73aa808f 205 mutex_lock(&dev->struct_mutex);
35c20a60 206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 207 if (obj->pin_count)
f343c5f6 208 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 209 mutex_unlock(&dev->struct_mutex);
5a125c3c 210
853ba5d2 211 args->aper_size = dev_priv->gtt.base.total;
0206e353 212 args->aper_available_size = args->aper_size - pinned;
6299f992 213
5a125c3c
EA
214 return 0;
215}
216
42dcedd4
CW
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
ff72145b
DA
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
673a394b 234{
05394f39 235 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b 238
ff72145b 239 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
240 if (size == 0)
241 return -EINVAL;
673a394b
EA
242
243 /* Allocate the new object */
ff72145b 244 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
245 if (obj == NULL)
246 return -ENOMEM;
247
05394f39 248 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 249 /* drop reference from allocate - handle holds it now */
d861e338
DV
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
202f2fef 253
ff72145b 254 *handle_p = handle;
673a394b
EA
255 return 0;
256}
257
ff72145b
DA
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
de45eaf7 264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
ff72145b
DA
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
63ed2cb2 278
ff72145b
DA
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
8461d226
DV
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
8c59967c 309static inline int
4f0c7cfb
BW
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
8c59967c
DV
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
d174bd64
DV
335/* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
eb01459f 338static int
d174bd64
DV
339shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342{
343 char *vaddr;
344 int ret;
345
e7e58eb5 346 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
f60d7f0c 358 return ret ? -EFAULT : 0;
d174bd64
DV
359}
360
23c18c71
DV
361static void
362shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364{
e7e58eb5 365 if (unlikely(swizzled)) {
23c18c71
DV
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381}
382
d174bd64
DV
383/* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385static int
386shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389{
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
23c18c71
DV
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
d174bd64
DV
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
f60d7f0c 409 return ret ? - EFAULT : 0;
d174bd64
DV
410}
411
eb01459f 412static int
dbf7bff0
DV
413i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
eb01459f 417{
8461d226 418 char __user *user_data;
eb01459f 419 ssize_t remain;
8461d226 420 loff_t offset;
eb2c0c81 421 int shmem_page_offset, page_length, ret = 0;
8461d226 422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 423 int prefaulted = 0;
8489731c 424 int needs_clflush = 0;
67d5a50c 425 struct sg_page_iter sg_iter;
eb01459f 426
2bb4629a 427 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
428 remain = args->size;
429
8461d226 430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 431
8489731c
DV
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
c76ce038 437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
23f54483
BW
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
8489731c 441 }
eb01459f 442
f60d7f0c
CW
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
8461d226 449 offset = args->offset;
eb01459f 450
67d5a50c
ID
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
2db76d7c 453 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
454
455 if (remain <= 0)
456 break;
457
eb01459f
EA
458 /* Operation in this page
459 *
eb01459f 460 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
461 * page_length = bytes to copy for this page
462 */
c8cbbb8b 463 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 467
8461d226
DV
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
d174bd64
DV
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
dbf7bff0 476
dbf7bff0
DV
477 mutex_unlock(&dev->struct_mutex);
478
0b74b508 479 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 480 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
eb01459f 488
d174bd64
DV
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
eb01459f 492
dbf7bff0 493 mutex_lock(&dev->struct_mutex);
f60d7f0c 494
dbf7bff0 495next_page:
e5281ccd 496 mark_page_accessed(page);
e5281ccd 497
f60d7f0c 498 if (ret)
8461d226 499 goto out;
8461d226 500
eb01459f 501 remain -= page_length;
8461d226 502 user_data += page_length;
eb01459f
EA
503 offset += page_length;
504 }
505
4f27b75d 506out:
f60d7f0c
CW
507 i915_gem_object_unpin_pages(obj);
508
eb01459f
EA
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
2bb4629a 529 to_user_ptr(args->data_ptr),
51311d0a
CW
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
c37e2204 608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b 619
2bb4629a 620 user_data = to_user_ptr(args->data_ptr);
673a394b 621 remain = args->size;
673a394b 622
f343c5f6 623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
5d4545ae 642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69
DV
653out_unpin:
654 i915_gem_object_unpin(obj);
655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3 687
755d2218 688 return ret ? -EFAULT : 0;
3de09aa3
EA
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
755d2218 722 return ret ? -EFAULT : 0;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
40123c1f 731 ssize_t remain;
8c59967c
DV
732 loff_t offset;
733 char __user *user_data;
eb2c0c81 734 int shmem_page_offset, page_length, ret = 0;
8c59967c 735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 736 int hit_slowpath = 0;
58642885
DV
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
67d5a50c 739 struct sg_page_iter sg_iter;
40123c1f 740
2bb4629a 741 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
742 remain = args->size;
743
8c59967c 744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 745
58642885
DV
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
2c22569b 751 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
58642885 755 }
c76ce038
CW
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 761
755d2218
CW
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
673a394b 768 offset = args->offset;
05394f39 769 obj->dirty = 1;
673a394b 770
67d5a50c
ID
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
2db76d7c 773 struct page *page = sg_page_iter_page(&sg_iter);
58642885 774 int partial_cacheline_write;
e5281ccd 775
9da3da66
CW
776 if (remain <= 0)
777 break;
778
40123c1f
EA
779 /* Operation in this page
780 *
40123c1f 781 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
782 * page_length = bytes to copy for this page
783 */
c8cbbb8b 784 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 789
58642885
DV
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
8c59967c
DV
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
d174bd64
DV
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
e244a443
DV
806
807 hit_slowpath = 1;
e244a443 808 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
40123c1f 813
e244a443 814 mutex_lock(&dev->struct_mutex);
755d2218 815
e244a443 816next_page:
e5281ccd
CW
817 set_page_dirty(page);
818 mark_page_accessed(page);
e5281ccd 819
755d2218 820 if (ret)
8c59967c 821 goto out;
8c59967c 822
40123c1f 823 remain -= page_length;
8c59967c 824 user_data += page_length;
40123c1f 825 offset += page_length;
673a394b
EA
826 }
827
fbd5a26d 828out:
755d2218
CW
829 i915_gem_object_unpin_pages(obj);
830
e244a443 831 if (hit_slowpath) {
8dcf015e
DV
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
e244a443 841 }
8c59967c 842 }
673a394b 843
58642885 844 if (needs_clflush_after)
e76e9aeb 845 i915_gem_chipset_flush(dev);
58642885 846
40123c1f 847 return ret;
673a394b
EA
848}
849
850/**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855int
856i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 857 struct drm_file *file)
673a394b
EA
858{
859 struct drm_i915_gem_pwrite *args = data;
05394f39 860 struct drm_i915_gem_object *obj;
51311d0a
CW
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
2bb4629a 867 to_user_ptr(args->data_ptr),
51311d0a
CW
868 args->size))
869 return -EFAULT;
870
0b74b508
XZ
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
673a394b 877
fbd5a26d 878 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 879 if (ret)
fbd5a26d 880 return ret;
1d7cfea1 881
05394f39 882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 883 if (&obj->base == NULL) {
1d7cfea1
CW
884 ret = -ENOENT;
885 goto unlock;
fbd5a26d 886 }
673a394b 887
7dcd2499 888 /* Bounds check destination. */
05394f39
CW
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
ce9d419d 891 ret = -EINVAL;
35b62a89 892 goto out;
ce9d419d
CW
893 }
894
1286ff73
DV
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
db53a302
CW
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
935aaa69 905 ret = -EFAULT;
673a394b
EA
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
5c0480f2 912 if (obj->phys_obj) {
fbd5a26d 913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
914 goto out;
915 }
916
2c22569b
CW
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
fbd5a26d 920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
fbd5a26d 924 }
673a394b 925
86a1ee26 926 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 928
35b62a89 929out:
05394f39 930 drm_gem_object_unreference(&obj->base);
1d7cfea1 931unlock:
fbd5a26d 932 mutex_unlock(&dev->struct_mutex);
673a394b
EA
933 return ret;
934}
935
b361237b 936int
33196ded 937i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
938 bool interruptible)
939{
1f83fee0 940 if (i915_reset_in_progress(error)) {
b361237b
CW
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
1f83fee0
DV
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
b361237b
CW
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954}
955
956/*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960static int
961i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962{
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
1823521d 968 if (seqno == ring->outstanding_lazy_seqno)
0025c077 969 ret = i915_add_request(ring, NULL);
b361237b
CW
970
971 return ret;
972}
973
094f9a54
CW
974static void fake_irq(unsigned long data)
975{
976 wake_up_process((struct task_struct *)data);
977}
978
979static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981{
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983}
984
b29c19b6
CW
985static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986{
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991}
992
b361237b
CW
993/**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
f69061be 997 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
f69061be
DV
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
b361237b
CW
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1012 unsigned reset_counter,
b29c19b6
CW
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
b361237b
CW
1016{
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
094f9a54
CW
1018 struct timespec before, now;
1019 DEFINE_WAIT(wait);
1020 long timeout_jiffies;
b361237b
CW
1021 int ret;
1022
c67a470b
PZ
1023 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1024
b361237b
CW
1025 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1026 return 0;
1027
094f9a54 1028 timeout_jiffies = timeout ? timespec_to_jiffies_timeout(timeout) : 1;
b361237b 1029
b29c19b6
CW
1030 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1031 gen6_rps_boost(dev_priv);
1032 if (file_priv)
1033 mod_delayed_work(dev_priv->wq,
1034 &file_priv->mm.idle_work,
1035 msecs_to_jiffies(100));
1036 }
1037
094f9a54
CW
1038 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)) &&
1039 WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1040 return -ENODEV;
1041
094f9a54
CW
1042 /* Record current time in case interrupted by signal, or wedged */
1043 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1044 getrawmonotonic(&before);
094f9a54
CW
1045 for (;;) {
1046 struct timer_list timer;
1047 unsigned long expire;
b361237b 1048
094f9a54
CW
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1051
f69061be
DV
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
094f9a54
CW
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
f69061be 1062
094f9a54
CW
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
b361237b 1067
094f9a54
CW
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout_jiffies <= 0) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1081 expire = jiffies + (missed_irq(dev_priv, ring) ? 1: timeout_jiffies);
1082 mod_timer(&timer, expire);
1083 }
1084
5035c275 1085 io_schedule();
094f9a54
CW
1086
1087 if (timeout)
1088 timeout_jiffies = expire - jiffies;
1089
1090 if (timer.function) {
1091 del_singleshot_timer_sync(&timer);
1092 destroy_timer_on_stack(&timer);
1093 }
1094 }
b361237b 1095 getrawmonotonic(&now);
094f9a54 1096 trace_i915_gem_request_wait_end(ring, seqno);
b361237b
CW
1097
1098 ring->irq_put(ring);
094f9a54
CW
1099
1100 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1107 }
1108
094f9a54 1109 return ret;
b361237b
CW
1110}
1111
1112/**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116int
1117i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118{
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
33196ded 1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
f69061be
DV
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1137 interruptible, NULL, NULL);
b361237b
CW
1138}
1139
d26e3af8
CW
1140static int
1141i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143{
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157}
1158
b361237b
CW
1159/**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163static __must_check int
1164i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166{
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
d26e3af8 1179 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1180}
1181
3236f57a
CW
1182/* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185static __must_check int
1186i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
b29c19b6 1187 struct drm_file *file,
3236f57a
CW
1188 bool readonly)
1189{
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
f69061be 1193 unsigned reset_counter;
3236f57a
CW
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
33196ded 1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
f69061be 1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1213 mutex_unlock(&dev->struct_mutex);
b29c19b6 1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
3236f57a 1215 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1216 if (ret)
1217 return ret;
3236f57a 1218
d26e3af8 1219 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1220}
1221
673a394b 1222/**
2ef7eeaa
EA
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1225 */
1226int
1227i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1228 struct drm_file *file)
673a394b
EA
1229{
1230 struct drm_i915_gem_set_domain *args = data;
05394f39 1231 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
673a394b
EA
1234 int ret;
1235
2ef7eeaa 1236 /* Only handle setting domains to types used by the CPU. */
21d509e3 1237 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1238 return -EINVAL;
1239
21d509e3 1240 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
76c1dec1 1249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1250 if (ret)
76c1dec1 1251 return ret;
1d7cfea1 1252
05394f39 1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1254 if (&obj->base == NULL) {
1d7cfea1
CW
1255 ret = -ENOENT;
1256 goto unlock;
76c1dec1 1257 }
673a394b 1258
3236f57a
CW
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
b29c19b6 1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
3236f57a
CW
1264 if (ret)
1265 goto unref;
1266
2ef7eeaa
EA
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
2ef7eeaa 1276 } else {
e47c68e9 1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1278 }
1279
3236f57a 1280unref:
05394f39 1281 drm_gem_object_unreference(&obj->base);
1d7cfea1 1282unlock:
673a394b
EA
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285}
1286
1287/**
1288 * Called when user space has done writes to this buffer
1289 */
1290int
1291i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1292 struct drm_file *file)
673a394b
EA
1293{
1294 struct drm_i915_gem_sw_finish *args = data;
05394f39 1295 struct drm_i915_gem_object *obj;
673a394b
EA
1296 int ret = 0;
1297
76c1dec1 1298 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1299 if (ret)
76c1dec1 1300 return ret;
1d7cfea1 1301
05394f39 1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1303 if (&obj->base == NULL) {
1d7cfea1
CW
1304 ret = -ENOENT;
1305 goto unlock;
673a394b
EA
1306 }
1307
673a394b 1308 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1311
05394f39 1312 drm_gem_object_unreference(&obj->base);
1d7cfea1 1313unlock:
673a394b
EA
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316}
1317
1318/**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325int
1326i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1327 struct drm_file *file)
673a394b
EA
1328{
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
673a394b
EA
1331 unsigned long addr;
1332
05394f39 1333 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1334 if (obj == NULL)
bf79cb91 1335 return -ENOENT;
673a394b 1336
1286ff73
DV
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
6be5ceb0 1345 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
bc9025bd 1348 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355}
1356
de151cf6
JB
1357/**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374{
05394f39
CW
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
7d1c4804 1377 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
0f973f27 1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1382
1383 /* We don't use vmf->pgoff since that has the fake offset */
1384 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1385 PAGE_SHIFT;
1386
d9bc7e9f
CW
1387 ret = i915_mutex_lock_interruptible(dev);
1388 if (ret)
1389 goto out;
a00b10c3 1390
db53a302
CW
1391 trace_i915_gem_object_fault(obj, page_offset, true, write);
1392
eb119bd6
CW
1393 /* Access to snoopable pages through the GTT is incoherent. */
1394 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1395 ret = -EINVAL;
1396 goto unlock;
1397 }
1398
d9bc7e9f 1399 /* Now bind it into the GTT if needed */
c37e2204 1400 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1401 if (ret)
1402 goto unlock;
4a684a41 1403
c9839303
CW
1404 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1405 if (ret)
1406 goto unpin;
74898d7e 1407
06d98131 1408 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1409 if (ret)
c9839303 1410 goto unpin;
7d1c4804 1411
6299f992
CW
1412 obj->fault_mappable = true;
1413
f343c5f6
BW
1414 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1415 pfn >>= PAGE_SHIFT;
1416 pfn += page_offset;
de151cf6
JB
1417
1418 /* Finally, remap it using the new GTT offset */
1419 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1420unpin:
1421 i915_gem_object_unpin(obj);
c715089f 1422unlock:
de151cf6 1423 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1424out:
de151cf6 1425 switch (ret) {
d9bc7e9f 1426 case -EIO:
a9340cca
DV
1427 /* If this -EIO is due to a gpu hang, give the reset code a
1428 * chance to clean up the mess. Otherwise return the proper
1429 * SIGBUS. */
1f83fee0 1430 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1431 return VM_FAULT_SIGBUS;
045e769a 1432 case -EAGAIN:
571c608d
DV
1433 /*
1434 * EAGAIN means the gpu is hung and we'll wait for the error
1435 * handler to reset everything when re-faulting in
1436 * i915_mutex_lock_interruptible.
d9bc7e9f 1437 */
c715089f
CW
1438 case 0:
1439 case -ERESTARTSYS:
bed636ab 1440 case -EINTR:
e79e0fe3
DR
1441 case -EBUSY:
1442 /*
1443 * EBUSY is ok: this just means that another thread
1444 * already did the job.
1445 */
c715089f 1446 return VM_FAULT_NOPAGE;
de151cf6 1447 case -ENOMEM:
de151cf6 1448 return VM_FAULT_OOM;
a7c2e1aa
DV
1449 case -ENOSPC:
1450 return VM_FAULT_SIGBUS;
de151cf6 1451 default:
a7c2e1aa 1452 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1453 return VM_FAULT_SIGBUS;
de151cf6
JB
1454 }
1455}
1456
901782b2
CW
1457/**
1458 * i915_gem_release_mmap - remove physical page mappings
1459 * @obj: obj in question
1460 *
af901ca1 1461 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1462 * relinquish ownership of the pages back to the system.
1463 *
1464 * It is vital that we remove the page mapping if we have mapped a tiled
1465 * object through the GTT and then lose the fence register due to
1466 * resource pressure. Similarly if the object has been moved out of the
1467 * aperture, than pages mapped into userspace must be revoked. Removing the
1468 * mapping will then trigger a page fault on the next user access, allowing
1469 * fixup by i915_gem_fault().
1470 */
d05ca301 1471void
05394f39 1472i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1473{
6299f992
CW
1474 if (!obj->fault_mappable)
1475 return;
901782b2 1476
51335df9 1477 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1478 obj->fault_mappable = false;
901782b2
CW
1479}
1480
0fa87796 1481uint32_t
e28f8711 1482i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1483{
e28f8711 1484 uint32_t gtt_size;
92b88aeb
CW
1485
1486 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1487 tiling_mode == I915_TILING_NONE)
1488 return size;
92b88aeb
CW
1489
1490 /* Previous chips need a power-of-two fence region when tiling */
1491 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1492 gtt_size = 1024*1024;
92b88aeb 1493 else
e28f8711 1494 gtt_size = 512*1024;
92b88aeb 1495
e28f8711
CW
1496 while (gtt_size < size)
1497 gtt_size <<= 1;
92b88aeb 1498
e28f8711 1499 return gtt_size;
92b88aeb
CW
1500}
1501
de151cf6
JB
1502/**
1503 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1504 * @obj: object to check
1505 *
1506 * Return the required GTT alignment for an object, taking into account
5e783301 1507 * potential fence register mapping.
de151cf6 1508 */
d865110c
ID
1509uint32_t
1510i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1511 int tiling_mode, bool fenced)
de151cf6 1512{
de151cf6
JB
1513 /*
1514 * Minimum alignment is 4k (GTT page size), but might be greater
1515 * if a fence register is needed for the object.
1516 */
d865110c 1517 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1518 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1519 return 4096;
1520
a00b10c3
CW
1521 /*
1522 * Previous chips need to be aligned to the size of the smallest
1523 * fence register that can contain the object.
1524 */
e28f8711 1525 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1526}
1527
d8cb5086
CW
1528static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1529{
1530 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1531 int ret;
1532
0de23977 1533 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1534 return 0;
1535
da494d7c
DV
1536 dev_priv->mm.shrinker_no_lock_stealing = true;
1537
d8cb5086
CW
1538 ret = drm_gem_create_mmap_offset(&obj->base);
1539 if (ret != -ENOSPC)
da494d7c 1540 goto out;
d8cb5086
CW
1541
1542 /* Badly fragmented mmap space? The only way we can recover
1543 * space is by destroying unwanted objects. We can't randomly release
1544 * mmap_offsets as userspace expects them to be persistent for the
1545 * lifetime of the objects. The closest we can is to release the
1546 * offsets on purgeable objects by truncating it and marking it purged,
1547 * which prevents userspace from ever using that object again.
1548 */
1549 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1550 ret = drm_gem_create_mmap_offset(&obj->base);
1551 if (ret != -ENOSPC)
da494d7c 1552 goto out;
d8cb5086
CW
1553
1554 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1555 ret = drm_gem_create_mmap_offset(&obj->base);
1556out:
1557 dev_priv->mm.shrinker_no_lock_stealing = false;
1558
1559 return ret;
d8cb5086
CW
1560}
1561
1562static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1563{
d8cb5086
CW
1564 drm_gem_free_mmap_offset(&obj->base);
1565}
1566
de151cf6 1567int
ff72145b
DA
1568i915_gem_mmap_gtt(struct drm_file *file,
1569 struct drm_device *dev,
1570 uint32_t handle,
1571 uint64_t *offset)
de151cf6 1572{
da761a6e 1573 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1574 struct drm_i915_gem_object *obj;
de151cf6
JB
1575 int ret;
1576
76c1dec1 1577 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1578 if (ret)
76c1dec1 1579 return ret;
de151cf6 1580
ff72145b 1581 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1582 if (&obj->base == NULL) {
1d7cfea1
CW
1583 ret = -ENOENT;
1584 goto unlock;
1585 }
de151cf6 1586
5d4545ae 1587 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1588 ret = -E2BIG;
ff56b0bc 1589 goto out;
da761a6e
CW
1590 }
1591
05394f39 1592 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1593 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1594 ret = -EINVAL;
1595 goto out;
ab18282d
CW
1596 }
1597
d8cb5086
CW
1598 ret = i915_gem_object_create_mmap_offset(obj);
1599 if (ret)
1600 goto out;
de151cf6 1601
0de23977 1602 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1603
1d7cfea1 1604out:
05394f39 1605 drm_gem_object_unreference(&obj->base);
1d7cfea1 1606unlock:
de151cf6 1607 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1608 return ret;
de151cf6
JB
1609}
1610
ff72145b
DA
1611/**
1612 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1613 * @dev: DRM device
1614 * @data: GTT mapping ioctl data
1615 * @file: GEM object info
1616 *
1617 * Simply returns the fake offset to userspace so it can mmap it.
1618 * The mmap call will end up in drm_gem_mmap(), which will set things
1619 * up so we can get faults in the handler above.
1620 *
1621 * The fault handler will take care of binding the object into the GTT
1622 * (since it may have been evicted to make room for something), allocating
1623 * a fence register, and mapping the appropriate aperture address into
1624 * userspace.
1625 */
1626int
1627i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629{
1630 struct drm_i915_gem_mmap_gtt *args = data;
1631
ff72145b
DA
1632 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1633}
1634
225067ee
DV
1635/* Immediately discard the backing storage */
1636static void
1637i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1638{
e5281ccd 1639 struct inode *inode;
e5281ccd 1640
4d6294bf 1641 i915_gem_object_free_mmap_offset(obj);
1286ff73 1642
4d6294bf
CW
1643 if (obj->base.filp == NULL)
1644 return;
e5281ccd 1645
225067ee
DV
1646 /* Our goal here is to return as much of the memory as
1647 * is possible back to the system as we are called from OOM.
1648 * To do this we must instruct the shmfs to drop all of its
1649 * backing pages, *now*.
1650 */
496ad9aa 1651 inode = file_inode(obj->base.filp);
225067ee 1652 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1653
225067ee
DV
1654 obj->madv = __I915_MADV_PURGED;
1655}
e5281ccd 1656
225067ee
DV
1657static inline int
1658i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1659{
1660 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1661}
1662
5cdf5881 1663static void
05394f39 1664i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1665{
90797e6d
ID
1666 struct sg_page_iter sg_iter;
1667 int ret;
1286ff73 1668
05394f39 1669 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1670
6c085a72
CW
1671 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1672 if (ret) {
1673 /* In the event of a disaster, abandon all caches and
1674 * hope for the best.
1675 */
1676 WARN_ON(ret != -EIO);
2c22569b 1677 i915_gem_clflush_object(obj, true);
6c085a72
CW
1678 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1679 }
1680
6dacfd2f 1681 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1682 i915_gem_object_save_bit_17_swizzle(obj);
1683
05394f39
CW
1684 if (obj->madv == I915_MADV_DONTNEED)
1685 obj->dirty = 0;
3ef94daa 1686
90797e6d 1687 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1688 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1689
05394f39 1690 if (obj->dirty)
9da3da66 1691 set_page_dirty(page);
3ef94daa 1692
05394f39 1693 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1694 mark_page_accessed(page);
3ef94daa 1695
9da3da66 1696 page_cache_release(page);
3ef94daa 1697 }
05394f39 1698 obj->dirty = 0;
673a394b 1699
9da3da66
CW
1700 sg_free_table(obj->pages);
1701 kfree(obj->pages);
37e680a1 1702}
6c085a72 1703
dd624afd 1704int
37e680a1
CW
1705i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1706{
1707 const struct drm_i915_gem_object_ops *ops = obj->ops;
1708
2f745ad3 1709 if (obj->pages == NULL)
37e680a1
CW
1710 return 0;
1711
a5570178
CW
1712 if (obj->pages_pin_count)
1713 return -EBUSY;
1714
9843877d 1715 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1716
a2165e31
CW
1717 /* ->put_pages might need to allocate memory for the bit17 swizzle
1718 * array, hence protect them from being reaped by removing them from gtt
1719 * lists early. */
35c20a60 1720 list_del(&obj->global_list);
a2165e31 1721
37e680a1 1722 ops->put_pages(obj);
05394f39 1723 obj->pages = NULL;
37e680a1 1724
6c085a72
CW
1725 if (i915_gem_object_is_purgeable(obj))
1726 i915_gem_object_truncate(obj);
1727
1728 return 0;
1729}
1730
d9973b43 1731static unsigned long
93927ca5
DV
1732__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1733 bool purgeable_only)
6c085a72 1734{
57094f82 1735 struct list_head still_bound_list;
6c085a72 1736 struct drm_i915_gem_object *obj, *next;
d9973b43 1737 unsigned long count = 0;
6c085a72
CW
1738
1739 list_for_each_entry_safe(obj, next,
1740 &dev_priv->mm.unbound_list,
35c20a60 1741 global_list) {
93927ca5 1742 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1743 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1744 count += obj->base.size >> PAGE_SHIFT;
1745 if (count >= target)
1746 return count;
1747 }
1748 }
1749
57094f82
CW
1750 /*
1751 * As we may completely rewrite the bound list whilst unbinding
1752 * (due to retiring requests) we have to strictly process only
1753 * one element of the list at the time, and recheck the list
1754 * on every iteration.
1755 */
1756 INIT_LIST_HEAD(&still_bound_list);
1757 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1758 struct i915_vma *vma, *v;
80dcfdbd 1759
57094f82
CW
1760 obj = list_first_entry(&dev_priv->mm.bound_list,
1761 typeof(*obj), global_list);
1762 list_move_tail(&obj->global_list, &still_bound_list);
1763
80dcfdbd
BW
1764 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1765 continue;
1766
57094f82
CW
1767 /*
1768 * Hold a reference whilst we unbind this object, as we may
1769 * end up waiting for and retiring requests. This might
1770 * release the final reference (held by the active list)
1771 * and result in the object being freed from under us.
1772 * in this object being freed.
1773 *
1774 * Note 1: Shrinking the bound list is special since only active
1775 * (and hence bound objects) can contain such limbo objects, so
1776 * we don't need special tricks for shrinking the unbound list.
1777 * The only other place where we have to be careful with active
1778 * objects suddenly disappearing due to retiring requests is the
1779 * eviction code.
1780 *
1781 * Note 2: Even though the bound list doesn't hold a reference
1782 * to the object we can safely grab one here: The final object
1783 * unreferencing and the bound_list are both protected by the
1784 * dev->struct_mutex and so we won't ever be able to observe an
1785 * object on the bound_list with a reference count equals 0.
1786 */
1787 drm_gem_object_reference(&obj->base);
1788
07fe0b12
BW
1789 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1790 if (i915_vma_unbind(vma))
1791 break;
80dcfdbd 1792
57094f82 1793 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1794 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1795
1796 drm_gem_object_unreference(&obj->base);
6c085a72 1797 }
57094f82 1798 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1799
1800 return count;
1801}
1802
d9973b43 1803static unsigned long
93927ca5
DV
1804i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1805{
1806 return __i915_gem_shrink(dev_priv, target, true);
1807}
1808
d9973b43 1809static unsigned long
6c085a72
CW
1810i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1811{
1812 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1813 long freed = 0;
6c085a72
CW
1814
1815 i915_gem_evict_everything(dev_priv->dev);
1816
35c20a60 1817 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1818 global_list) {
d9973b43 1819 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1820 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1821 }
1822 return freed;
225067ee
DV
1823}
1824
37e680a1 1825static int
6c085a72 1826i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1827{
6c085a72 1828 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1829 int page_count, i;
1830 struct address_space *mapping;
9da3da66
CW
1831 struct sg_table *st;
1832 struct scatterlist *sg;
90797e6d 1833 struct sg_page_iter sg_iter;
e5281ccd 1834 struct page *page;
90797e6d 1835 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1836 gfp_t gfp;
e5281ccd 1837
6c085a72
CW
1838 /* Assert that the object is not currently in any GPU domain. As it
1839 * wasn't in the GTT, there shouldn't be any way it could have been in
1840 * a GPU cache
1841 */
1842 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1843 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1844
9da3da66
CW
1845 st = kmalloc(sizeof(*st), GFP_KERNEL);
1846 if (st == NULL)
1847 return -ENOMEM;
1848
05394f39 1849 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1850 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1851 kfree(st);
e5281ccd 1852 return -ENOMEM;
9da3da66 1853 }
e5281ccd 1854
9da3da66
CW
1855 /* Get the list of pages out of our struct file. They'll be pinned
1856 * at this point until we release them.
1857 *
1858 * Fail silently without starting the shrinker
1859 */
496ad9aa 1860 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1861 gfp = mapping_gfp_mask(mapping);
caf49191 1862 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1863 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1864 sg = st->sgl;
1865 st->nents = 0;
1866 for (i = 0; i < page_count; i++) {
6c085a72
CW
1867 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1868 if (IS_ERR(page)) {
1869 i915_gem_purge(dev_priv, page_count);
1870 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1871 }
1872 if (IS_ERR(page)) {
1873 /* We've tried hard to allocate the memory by reaping
1874 * our own buffer, now let the real VM do its job and
1875 * go down in flames if truly OOM.
1876 */
caf49191 1877 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1878 gfp |= __GFP_IO | __GFP_WAIT;
1879
1880 i915_gem_shrink_all(dev_priv);
1881 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882 if (IS_ERR(page))
1883 goto err_pages;
1884
caf49191 1885 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1886 gfp &= ~(__GFP_IO | __GFP_WAIT);
1887 }
426729dc
KRW
1888#ifdef CONFIG_SWIOTLB
1889 if (swiotlb_nr_tbl()) {
1890 st->nents++;
1891 sg_set_page(sg, page, PAGE_SIZE, 0);
1892 sg = sg_next(sg);
1893 continue;
1894 }
1895#endif
90797e6d
ID
1896 if (!i || page_to_pfn(page) != last_pfn + 1) {
1897 if (i)
1898 sg = sg_next(sg);
1899 st->nents++;
1900 sg_set_page(sg, page, PAGE_SIZE, 0);
1901 } else {
1902 sg->length += PAGE_SIZE;
1903 }
1904 last_pfn = page_to_pfn(page);
3bbbe706
DV
1905
1906 /* Check that the i965g/gm workaround works. */
1907 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1908 }
426729dc
KRW
1909#ifdef CONFIG_SWIOTLB
1910 if (!swiotlb_nr_tbl())
1911#endif
1912 sg_mark_end(sg);
74ce6b6c
CW
1913 obj->pages = st;
1914
6dacfd2f 1915 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1916 i915_gem_object_do_bit_17_swizzle(obj);
1917
1918 return 0;
1919
1920err_pages:
90797e6d
ID
1921 sg_mark_end(sg);
1922 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1923 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1924 sg_free_table(st);
1925 kfree(st);
e5281ccd 1926 return PTR_ERR(page);
673a394b
EA
1927}
1928
37e680a1
CW
1929/* Ensure that the associated pages are gathered from the backing storage
1930 * and pinned into our object. i915_gem_object_get_pages() may be called
1931 * multiple times before they are released by a single call to
1932 * i915_gem_object_put_pages() - once the pages are no longer referenced
1933 * either as a result of memory pressure (reaping pages under the shrinker)
1934 * or as the object is itself released.
1935 */
1936int
1937i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1938{
1939 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1940 const struct drm_i915_gem_object_ops *ops = obj->ops;
1941 int ret;
1942
2f745ad3 1943 if (obj->pages)
37e680a1
CW
1944 return 0;
1945
43e28f09
CW
1946 if (obj->madv != I915_MADV_WILLNEED) {
1947 DRM_ERROR("Attempting to obtain a purgeable object\n");
1948 return -EINVAL;
1949 }
1950
a5570178
CW
1951 BUG_ON(obj->pages_pin_count);
1952
37e680a1
CW
1953 ret = ops->get_pages(obj);
1954 if (ret)
1955 return ret;
1956
35c20a60 1957 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1958 return 0;
673a394b
EA
1959}
1960
e2d05a8b 1961static void
05394f39 1962i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1963 struct intel_ring_buffer *ring)
673a394b 1964{
05394f39 1965 struct drm_device *dev = obj->base.dev;
69dc4987 1966 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1967 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1968
852835f3 1969 BUG_ON(ring == NULL);
02978ff5
CW
1970 if (obj->ring != ring && obj->last_write_seqno) {
1971 /* Keep the seqno relative to the current ring */
1972 obj->last_write_seqno = seqno;
1973 }
05394f39 1974 obj->ring = ring;
673a394b
EA
1975
1976 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1977 if (!obj->active) {
1978 drm_gem_object_reference(&obj->base);
1979 obj->active = 1;
673a394b 1980 }
e35a41de 1981
05394f39 1982 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1983
0201f1ec 1984 obj->last_read_seqno = seqno;
caea7476 1985
7dd49065 1986 if (obj->fenced_gpu_access) {
caea7476 1987 obj->last_fenced_seqno = seqno;
caea7476 1988
7dd49065
CW
1989 /* Bump MRU to take account of the delayed flush */
1990 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1991 struct drm_i915_fence_reg *reg;
1992
1993 reg = &dev_priv->fence_regs[obj->fence_reg];
1994 list_move_tail(&reg->lru_list,
1995 &dev_priv->mm.fence_list);
1996 }
caea7476
CW
1997 }
1998}
1999
e2d05a8b
BW
2000void i915_vma_move_to_active(struct i915_vma *vma,
2001 struct intel_ring_buffer *ring)
2002{
2003 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2004 return i915_gem_object_move_to_active(vma->obj, ring);
2005}
2006
caea7476 2007static void
caea7476 2008i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2009{
ca191b13
BW
2010 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2011 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2012 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
ce44b0ea 2013
65ce3027 2014 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2015 BUG_ON(!obj->active);
caea7476 2016
ca191b13 2017 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
caea7476 2018
65ce3027 2019 list_del_init(&obj->ring_list);
caea7476
CW
2020 obj->ring = NULL;
2021
65ce3027
CW
2022 obj->last_read_seqno = 0;
2023 obj->last_write_seqno = 0;
2024 obj->base.write_domain = 0;
2025
2026 obj->last_fenced_seqno = 0;
caea7476 2027 obj->fenced_gpu_access = false;
caea7476
CW
2028
2029 obj->active = 0;
2030 drm_gem_object_unreference(&obj->base);
2031
2032 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2033}
673a394b 2034
9d773091 2035static int
fca26bb4 2036i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2037{
9d773091
CW
2038 struct drm_i915_private *dev_priv = dev->dev_private;
2039 struct intel_ring_buffer *ring;
2040 int ret, i, j;
53d227f2 2041
107f27a5 2042 /* Carefully retire all requests without writing to the rings */
9d773091 2043 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2044 ret = intel_ring_idle(ring);
2045 if (ret)
2046 return ret;
9d773091 2047 }
9d773091 2048 i915_gem_retire_requests(dev);
107f27a5
CW
2049
2050 /* Finally reset hw state */
9d773091 2051 for_each_ring(ring, dev_priv, i) {
fca26bb4 2052 intel_ring_init_seqno(ring, seqno);
498d2ac1 2053
9d773091
CW
2054 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2055 ring->sync_seqno[j] = 0;
2056 }
53d227f2 2057
9d773091 2058 return 0;
53d227f2
DV
2059}
2060
fca26bb4
MK
2061int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2062{
2063 struct drm_i915_private *dev_priv = dev->dev_private;
2064 int ret;
2065
2066 if (seqno == 0)
2067 return -EINVAL;
2068
2069 /* HWS page needs to be set less than what we
2070 * will inject to ring
2071 */
2072 ret = i915_gem_init_seqno(dev, seqno - 1);
2073 if (ret)
2074 return ret;
2075
2076 /* Carefully set the last_seqno value so that wrap
2077 * detection still works
2078 */
2079 dev_priv->next_seqno = seqno;
2080 dev_priv->last_seqno = seqno - 1;
2081 if (dev_priv->last_seqno == 0)
2082 dev_priv->last_seqno--;
2083
2084 return 0;
2085}
2086
9d773091
CW
2087int
2088i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2089{
9d773091
CW
2090 struct drm_i915_private *dev_priv = dev->dev_private;
2091
2092 /* reserve 0 for non-seqno */
2093 if (dev_priv->next_seqno == 0) {
fca26bb4 2094 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2095 if (ret)
2096 return ret;
53d227f2 2097
9d773091
CW
2098 dev_priv->next_seqno = 1;
2099 }
53d227f2 2100
f72b3435 2101 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2102 return 0;
53d227f2
DV
2103}
2104
0025c077
MK
2105int __i915_add_request(struct intel_ring_buffer *ring,
2106 struct drm_file *file,
7d736f4f 2107 struct drm_i915_gem_object *obj,
0025c077 2108 u32 *out_seqno)
673a394b 2109{
db53a302 2110 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2111 struct drm_i915_gem_request *request;
7d736f4f 2112 u32 request_ring_position, request_start;
673a394b 2113 int was_empty;
3cce469c
CW
2114 int ret;
2115
7d736f4f 2116 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2117 /*
2118 * Emit any outstanding flushes - execbuf can fail to emit the flush
2119 * after having emitted the batchbuffer command. Hence we need to fix
2120 * things up similar to emitting the lazy request. The difference here
2121 * is that the flush _must_ happen before the next request, no matter
2122 * what.
2123 */
a7b9761d
CW
2124 ret = intel_ring_flush_all_caches(ring);
2125 if (ret)
2126 return ret;
cc889e0f 2127
3c0e234c
CW
2128 request = ring->preallocated_lazy_request;
2129 if (WARN_ON(request == NULL))
acb868d3 2130 return -ENOMEM;
cc889e0f 2131
a71d8d94
CW
2132 /* Record the position of the start of the request so that
2133 * should we detect the updated seqno part-way through the
2134 * GPU processing the request, we never over-estimate the
2135 * position of the head.
2136 */
2137 request_ring_position = intel_ring_get_tail(ring);
2138
9d773091 2139 ret = ring->add_request(ring);
3c0e234c 2140 if (ret)
3bb73aba 2141 return ret;
673a394b 2142
9d773091 2143 request->seqno = intel_ring_get_seqno(ring);
852835f3 2144 request->ring = ring;
7d736f4f 2145 request->head = request_start;
a71d8d94 2146 request->tail = request_ring_position;
7d736f4f
MK
2147
2148 /* Whilst this request exists, batch_obj will be on the
2149 * active_list, and so will hold the active reference. Only when this
2150 * request is retired will the the batch_obj be moved onto the
2151 * inactive_list and lose its active reference. Hence we do not need
2152 * to explicitly hold another reference here.
2153 */
9a7e0c2a 2154 request->batch_obj = obj;
0e50e96b 2155
9a7e0c2a
CW
2156 /* Hold a reference to the current context so that we can inspect
2157 * it later in case a hangcheck error event fires.
2158 */
2159 request->ctx = ring->last_context;
0e50e96b
MK
2160 if (request->ctx)
2161 i915_gem_context_reference(request->ctx);
2162
673a394b 2163 request->emitted_jiffies = jiffies;
852835f3
ZN
2164 was_empty = list_empty(&ring->request_list);
2165 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2166 request->file_priv = NULL;
852835f3 2167
db53a302
CW
2168 if (file) {
2169 struct drm_i915_file_private *file_priv = file->driver_priv;
2170
1c25595f 2171 spin_lock(&file_priv->mm.lock);
f787a5f5 2172 request->file_priv = file_priv;
b962442e 2173 list_add_tail(&request->client_list,
f787a5f5 2174 &file_priv->mm.request_list);
1c25595f 2175 spin_unlock(&file_priv->mm.lock);
b962442e 2176 }
673a394b 2177
9d773091 2178 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2179 ring->outstanding_lazy_seqno = 0;
3c0e234c 2180 ring->preallocated_lazy_request = NULL;
db53a302 2181
db1b76ca 2182 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2183 i915_queue_hangcheck(ring->dev);
2184
f047e395 2185 if (was_empty) {
b29c19b6 2186 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
b3b079db 2187 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2188 &dev_priv->mm.retire_work,
2189 round_jiffies_up_relative(HZ));
f047e395
CW
2190 intel_mark_busy(dev_priv->dev);
2191 }
f65d9421 2192 }
cc889e0f 2193
acb868d3 2194 if (out_seqno)
9d773091 2195 *out_seqno = request->seqno;
3cce469c 2196 return 0;
673a394b
EA
2197}
2198
f787a5f5
CW
2199static inline void
2200i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2201{
1c25595f 2202 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2203
1c25595f
CW
2204 if (!file_priv)
2205 return;
1c5d22f7 2206
1c25595f 2207 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2208 list_del(&request->client_list);
2209 request->file_priv = NULL;
1c25595f 2210 spin_unlock(&file_priv->mm.lock);
673a394b 2211}
673a394b 2212
d1ccbb5d
BW
2213static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2214 struct i915_address_space *vm)
aa60c664 2215{
d1ccbb5d
BW
2216 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2217 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2218 return true;
2219
2220 return false;
2221}
2222
2223static bool i915_head_inside_request(const u32 acthd_unmasked,
2224 const u32 request_start,
2225 const u32 request_end)
2226{
2227 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2228
2229 if (request_start < request_end) {
2230 if (acthd >= request_start && acthd < request_end)
2231 return true;
2232 } else if (request_start > request_end) {
2233 if (acthd >= request_start || acthd < request_end)
2234 return true;
2235 }
2236
2237 return false;
2238}
2239
d1ccbb5d
BW
2240static struct i915_address_space *
2241request_to_vm(struct drm_i915_gem_request *request)
2242{
2243 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2244 struct i915_address_space *vm;
2245
2246 vm = &dev_priv->gtt.base;
2247
2248 return vm;
2249}
2250
aa60c664
MK
2251static bool i915_request_guilty(struct drm_i915_gem_request *request,
2252 const u32 acthd, bool *inside)
2253{
2254 /* There is a possibility that unmasked head address
2255 * pointing inside the ring, matches the batch_obj address range.
2256 * However this is extremely unlikely.
2257 */
aa60c664 2258 if (request->batch_obj) {
d1ccbb5d
BW
2259 if (i915_head_inside_object(acthd, request->batch_obj,
2260 request_to_vm(request))) {
aa60c664
MK
2261 *inside = true;
2262 return true;
2263 }
2264 }
2265
2266 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2267 *inside = false;
2268 return true;
2269 }
2270
2271 return false;
2272}
2273
be62acb4
MK
2274static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2275{
2276 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2277
2278 if (hs->banned)
2279 return true;
2280
2281 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2282 DRM_ERROR("context hanging too fast, declaring banned!\n");
2283 return true;
2284 }
2285
2286 return false;
2287}
2288
aa60c664
MK
2289static void i915_set_reset_status(struct intel_ring_buffer *ring,
2290 struct drm_i915_gem_request *request,
2291 u32 acthd)
2292{
2293 struct i915_ctx_hang_stats *hs = NULL;
2294 bool inside, guilty;
d1ccbb5d 2295 unsigned long offset = 0;
aa60c664
MK
2296
2297 /* Innocent until proven guilty */
2298 guilty = false;
2299
d1ccbb5d
BW
2300 if (request->batch_obj)
2301 offset = i915_gem_obj_offset(request->batch_obj,
2302 request_to_vm(request));
2303
f2f4d82f 2304 if (ring->hangcheck.action != HANGCHECK_WAIT &&
aa60c664 2305 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2306 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2307 ring->name,
2308 inside ? "inside" : "flushing",
d1ccbb5d 2309 offset,
aa60c664
MK
2310 request->ctx ? request->ctx->id : 0,
2311 acthd);
2312
2313 guilty = true;
2314 }
2315
2316 /* If contexts are disabled or this is the default context, use
2317 * file_priv->reset_state
2318 */
2319 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2320 hs = &request->ctx->hang_stats;
2321 else if (request->file_priv)
2322 hs = &request->file_priv->hang_stats;
2323
2324 if (hs) {
be62acb4
MK
2325 if (guilty) {
2326 hs->banned = i915_context_is_banned(hs);
aa60c664 2327 hs->batch_active++;
be62acb4
MK
2328 hs->guilty_ts = get_seconds();
2329 } else {
aa60c664 2330 hs->batch_pending++;
be62acb4 2331 }
aa60c664
MK
2332 }
2333}
2334
0e50e96b
MK
2335static void i915_gem_free_request(struct drm_i915_gem_request *request)
2336{
2337 list_del(&request->list);
2338 i915_gem_request_remove_from_client(request);
2339
2340 if (request->ctx)
2341 i915_gem_context_unreference(request->ctx);
2342
2343 kfree(request);
2344}
2345
dfaae392
CW
2346static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2347 struct intel_ring_buffer *ring)
9375e446 2348{
aa60c664
MK
2349 u32 completed_seqno;
2350 u32 acthd;
2351
2352 acthd = intel_ring_get_active_head(ring);
2353 completed_seqno = ring->get_seqno(ring, false);
2354
dfaae392
CW
2355 while (!list_empty(&ring->request_list)) {
2356 struct drm_i915_gem_request *request;
673a394b 2357
dfaae392
CW
2358 request = list_first_entry(&ring->request_list,
2359 struct drm_i915_gem_request,
2360 list);
de151cf6 2361
aa60c664
MK
2362 if (request->seqno > completed_seqno)
2363 i915_set_reset_status(ring, request, acthd);
2364
0e50e96b 2365 i915_gem_free_request(request);
dfaae392 2366 }
673a394b 2367
dfaae392 2368 while (!list_empty(&ring->active_list)) {
05394f39 2369 struct drm_i915_gem_object *obj;
9375e446 2370
05394f39
CW
2371 obj = list_first_entry(&ring->active_list,
2372 struct drm_i915_gem_object,
2373 ring_list);
9375e446 2374
05394f39 2375 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2376 }
2377}
2378
19b2dbde 2379void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2380{
2381 struct drm_i915_private *dev_priv = dev->dev_private;
2382 int i;
2383
4b9de737 2384 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2385 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2386
94a335db
DV
2387 /*
2388 * Commit delayed tiling changes if we have an object still
2389 * attached to the fence, otherwise just clear the fence.
2390 */
2391 if (reg->obj) {
2392 i915_gem_object_update_fence(reg->obj, reg,
2393 reg->obj->tiling_mode);
2394 } else {
2395 i915_gem_write_fence(dev, i, NULL);
2396 }
312817a3
CW
2397 }
2398}
2399
069efc1d 2400void i915_gem_reset(struct drm_device *dev)
673a394b 2401{
77f01230 2402 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2403 struct intel_ring_buffer *ring;
1ec14ad3 2404 int i;
673a394b 2405
b4519513
CW
2406 for_each_ring(ring, dev_priv, i)
2407 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2408
3d57e5bd
BW
2409 i915_gem_cleanup_ringbuffer(dev);
2410
19b2dbde 2411 i915_gem_restore_fences(dev);
673a394b
EA
2412}
2413
2414/**
2415 * This function clears the request list as sequence numbers are passed.
2416 */
a71d8d94 2417void
db53a302 2418i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2419{
673a394b
EA
2420 uint32_t seqno;
2421
db53a302 2422 if (list_empty(&ring->request_list))
6c0594a3
KW
2423 return;
2424
db53a302 2425 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2426
b2eadbc8 2427 seqno = ring->get_seqno(ring, true);
1ec14ad3 2428
852835f3 2429 while (!list_empty(&ring->request_list)) {
673a394b 2430 struct drm_i915_gem_request *request;
673a394b 2431
852835f3 2432 request = list_first_entry(&ring->request_list,
673a394b
EA
2433 struct drm_i915_gem_request,
2434 list);
673a394b 2435
dfaae392 2436 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2437 break;
2438
db53a302 2439 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2440 /* We know the GPU must have read the request to have
2441 * sent us the seqno + interrupt, so use the position
2442 * of tail of the request to update the last known position
2443 * of the GPU head.
2444 */
2445 ring->last_retired_head = request->tail;
b84d5f0c 2446
0e50e96b 2447 i915_gem_free_request(request);
b84d5f0c 2448 }
673a394b 2449
b84d5f0c
CW
2450 /* Move any buffers on the active list that are no longer referenced
2451 * by the ringbuffer to the flushing/inactive lists as appropriate.
2452 */
2453 while (!list_empty(&ring->active_list)) {
05394f39 2454 struct drm_i915_gem_object *obj;
b84d5f0c 2455
0206e353 2456 obj = list_first_entry(&ring->active_list,
05394f39
CW
2457 struct drm_i915_gem_object,
2458 ring_list);
673a394b 2459
0201f1ec 2460 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2461 break;
b84d5f0c 2462
65ce3027 2463 i915_gem_object_move_to_inactive(obj);
673a394b 2464 }
9d34e5db 2465
db53a302
CW
2466 if (unlikely(ring->trace_irq_seqno &&
2467 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2468 ring->irq_put(ring);
db53a302 2469 ring->trace_irq_seqno = 0;
9d34e5db 2470 }
23bc5982 2471
db53a302 2472 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2473}
2474
b29c19b6 2475bool
b09a1fec
CW
2476i915_gem_retire_requests(struct drm_device *dev)
2477{
2478 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2479 struct intel_ring_buffer *ring;
b29c19b6 2480 bool idle = true;
1ec14ad3 2481 int i;
b09a1fec 2482
b29c19b6 2483 for_each_ring(ring, dev_priv, i) {
b4519513 2484 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2485 idle &= list_empty(&ring->request_list);
2486 }
2487
2488 if (idle)
2489 mod_delayed_work(dev_priv->wq,
2490 &dev_priv->mm.idle_work,
2491 msecs_to_jiffies(100));
2492
2493 return idle;
b09a1fec
CW
2494}
2495
75ef9da2 2496static void
673a394b
EA
2497i915_gem_retire_work_handler(struct work_struct *work)
2498{
b29c19b6
CW
2499 struct drm_i915_private *dev_priv =
2500 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2501 struct drm_device *dev = dev_priv->dev;
0a58705b 2502 bool idle;
673a394b 2503
891b48cf 2504 /* Come back later if the device is busy... */
b29c19b6
CW
2505 idle = false;
2506 if (mutex_trylock(&dev->struct_mutex)) {
2507 idle = i915_gem_retire_requests(dev);
2508 mutex_unlock(&dev->struct_mutex);
673a394b 2509 }
b29c19b6 2510 if (!idle)
bcb45086
CW
2511 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2512 round_jiffies_up_relative(HZ));
b29c19b6 2513}
0a58705b 2514
b29c19b6
CW
2515static void
2516i915_gem_idle_work_handler(struct work_struct *work)
2517{
2518 struct drm_i915_private *dev_priv =
2519 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2520
2521 intel_mark_idle(dev_priv->dev);
673a394b
EA
2522}
2523
30dfebf3
DV
2524/**
2525 * Ensures that an object will eventually get non-busy by flushing any required
2526 * write domains, emitting any outstanding lazy request and retiring and
2527 * completed requests.
2528 */
2529static int
2530i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2531{
2532 int ret;
2533
2534 if (obj->active) {
0201f1ec 2535 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2536 if (ret)
2537 return ret;
2538
30dfebf3
DV
2539 i915_gem_retire_requests_ring(obj->ring);
2540 }
2541
2542 return 0;
2543}
2544
23ba4fd0
BW
2545/**
2546 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2547 * @DRM_IOCTL_ARGS: standard ioctl arguments
2548 *
2549 * Returns 0 if successful, else an error is returned with the remaining time in
2550 * the timeout parameter.
2551 * -ETIME: object is still busy after timeout
2552 * -ERESTARTSYS: signal interrupted the wait
2553 * -ENONENT: object doesn't exist
2554 * Also possible, but rare:
2555 * -EAGAIN: GPU wedged
2556 * -ENOMEM: damn
2557 * -ENODEV: Internal IRQ fail
2558 * -E?: The add request failed
2559 *
2560 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2561 * non-zero timeout parameter the wait ioctl will wait for the given number of
2562 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2563 * without holding struct_mutex the object may become re-busied before this
2564 * function completes. A similar but shorter * race condition exists in the busy
2565 * ioctl
2566 */
2567int
2568i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2569{
f69061be 2570 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2571 struct drm_i915_gem_wait *args = data;
2572 struct drm_i915_gem_object *obj;
2573 struct intel_ring_buffer *ring = NULL;
eac1f14f 2574 struct timespec timeout_stack, *timeout = NULL;
f69061be 2575 unsigned reset_counter;
23ba4fd0
BW
2576 u32 seqno = 0;
2577 int ret = 0;
2578
eac1f14f
BW
2579 if (args->timeout_ns >= 0) {
2580 timeout_stack = ns_to_timespec(args->timeout_ns);
2581 timeout = &timeout_stack;
2582 }
23ba4fd0
BW
2583
2584 ret = i915_mutex_lock_interruptible(dev);
2585 if (ret)
2586 return ret;
2587
2588 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2589 if (&obj->base == NULL) {
2590 mutex_unlock(&dev->struct_mutex);
2591 return -ENOENT;
2592 }
2593
30dfebf3
DV
2594 /* Need to make sure the object gets inactive eventually. */
2595 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2596 if (ret)
2597 goto out;
2598
2599 if (obj->active) {
0201f1ec 2600 seqno = obj->last_read_seqno;
23ba4fd0
BW
2601 ring = obj->ring;
2602 }
2603
2604 if (seqno == 0)
2605 goto out;
2606
23ba4fd0
BW
2607 /* Do this after OLR check to make sure we make forward progress polling
2608 * on this IOCTL with a 0 timeout (like busy ioctl)
2609 */
2610 if (!args->timeout_ns) {
2611 ret = -ETIME;
2612 goto out;
2613 }
2614
2615 drm_gem_object_unreference(&obj->base);
f69061be 2616 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2617 mutex_unlock(&dev->struct_mutex);
2618
b29c19b6 2619 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2620 if (timeout)
eac1f14f 2621 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2622 return ret;
2623
2624out:
2625 drm_gem_object_unreference(&obj->base);
2626 mutex_unlock(&dev->struct_mutex);
2627 return ret;
2628}
2629
5816d648
BW
2630/**
2631 * i915_gem_object_sync - sync an object to a ring.
2632 *
2633 * @obj: object which may be in use on another ring.
2634 * @to: ring we wish to use the object on. May be NULL.
2635 *
2636 * This code is meant to abstract object synchronization with the GPU.
2637 * Calling with NULL implies synchronizing the object with the CPU
2638 * rather than a particular GPU ring.
2639 *
2640 * Returns 0 if successful, else propagates up the lower layer error.
2641 */
2911a35b
BW
2642int
2643i915_gem_object_sync(struct drm_i915_gem_object *obj,
2644 struct intel_ring_buffer *to)
2645{
2646 struct intel_ring_buffer *from = obj->ring;
2647 u32 seqno;
2648 int ret, idx;
2649
2650 if (from == NULL || to == from)
2651 return 0;
2652
5816d648 2653 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2654 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2655
2656 idx = intel_ring_sync_index(from, to);
2657
0201f1ec 2658 seqno = obj->last_read_seqno;
2911a35b
BW
2659 if (seqno <= from->sync_seqno[idx])
2660 return 0;
2661
b4aca010
BW
2662 ret = i915_gem_check_olr(obj->ring, seqno);
2663 if (ret)
2664 return ret;
2911a35b 2665
b52b89da 2666 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2667 ret = to->sync_to(to, from, seqno);
e3a5a225 2668 if (!ret)
7b01e260
MK
2669 /* We use last_read_seqno because sync_to()
2670 * might have just caused seqno wrap under
2671 * the radar.
2672 */
2673 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2674
e3a5a225 2675 return ret;
2911a35b
BW
2676}
2677
b5ffc9bc
CW
2678static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2679{
2680 u32 old_write_domain, old_read_domains;
2681
b5ffc9bc
CW
2682 /* Force a pagefault for domain tracking on next user access */
2683 i915_gem_release_mmap(obj);
2684
b97c3d9c
KP
2685 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2686 return;
2687
97c809fd
CW
2688 /* Wait for any direct GTT access to complete */
2689 mb();
2690
b5ffc9bc
CW
2691 old_read_domains = obj->base.read_domains;
2692 old_write_domain = obj->base.write_domain;
2693
2694 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2695 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2696
2697 trace_i915_gem_object_change_domain(obj,
2698 old_read_domains,
2699 old_write_domain);
2700}
2701
07fe0b12 2702int i915_vma_unbind(struct i915_vma *vma)
673a394b 2703{
07fe0b12 2704 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2705 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2706 int ret;
673a394b 2707
b93dab6e
DV
2708 /* For now we only ever use 1 vma per object */
2709 WARN_ON(!list_is_singular(&obj->vma_list));
2710
07fe0b12 2711 if (list_empty(&vma->vma_link))
673a394b
EA
2712 return 0;
2713
0ff501cb
DV
2714 if (!drm_mm_node_allocated(&vma->node)) {
2715 i915_gem_vma_destroy(vma);
2716
2717 return 0;
2718 }
433544bd 2719
31d8d651
CW
2720 if (obj->pin_count)
2721 return -EBUSY;
673a394b 2722
c4670ad0
CW
2723 BUG_ON(obj->pages == NULL);
2724
a8198eea 2725 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2726 if (ret)
a8198eea
CW
2727 return ret;
2728 /* Continue on if we fail due to EIO, the GPU is hung so we
2729 * should be safe and we need to cleanup or else we might
2730 * cause memory corruption through use-after-free.
2731 */
2732
b5ffc9bc 2733 i915_gem_object_finish_gtt(obj);
5323fd04 2734
96b47b65 2735 /* release the fence reg _after_ flushing */
d9e86c0e 2736 ret = i915_gem_object_put_fence(obj);
1488fc08 2737 if (ret)
d9e86c0e 2738 return ret;
96b47b65 2739
07fe0b12 2740 trace_i915_vma_unbind(vma);
db53a302 2741
74898d7e
DV
2742 if (obj->has_global_gtt_mapping)
2743 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2744 if (obj->has_aliasing_ppgtt_mapping) {
2745 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2746 obj->has_aliasing_ppgtt_mapping = 0;
2747 }
74163907 2748 i915_gem_gtt_finish_object(obj);
7bddb01f 2749
ca191b13 2750 list_del(&vma->mm_list);
75e9e915 2751 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2752 if (i915_is_ggtt(vma->vm))
2753 obj->map_and_fenceable = true;
673a394b 2754
2f633156
BW
2755 drm_mm_remove_node(&vma->node);
2756 i915_gem_vma_destroy(vma);
2757
2758 /* Since the unbound list is global, only move to that list if
b93dab6e 2759 * no more VMAs exist. */
2f633156
BW
2760 if (list_empty(&obj->vma_list))
2761 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2762
70903c3b
CW
2763 /* And finally now the object is completely decoupled from this vma,
2764 * we can drop its hold on the backing storage and allow it to be
2765 * reaped by the shrinker.
2766 */
2767 i915_gem_object_unpin_pages(obj);
2768
88241785 2769 return 0;
54cf91dc
CW
2770}
2771
07fe0b12
BW
2772/**
2773 * Unbinds an object from the global GTT aperture.
2774 */
2775int
2776i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2777{
2778 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2779 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2780
58e73e15 2781 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2782 return 0;
2783
2784 if (obj->pin_count)
2785 return -EBUSY;
2786
2787 BUG_ON(obj->pages == NULL);
2788
2789 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2790}
2791
b2da9fe5 2792int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2793{
2794 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2795 struct intel_ring_buffer *ring;
1ec14ad3 2796 int ret, i;
4df2faf4 2797
4df2faf4 2798 /* Flush everything onto the inactive list. */
b4519513 2799 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2800 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2801 if (ret)
2802 return ret;
2803
3e960501 2804 ret = intel_ring_idle(ring);
1ec14ad3
CW
2805 if (ret)
2806 return ret;
2807 }
4df2faf4 2808
8a1a49f9 2809 return 0;
4df2faf4
DV
2810}
2811
9ce079e4
CW
2812static void i965_write_fence_reg(struct drm_device *dev, int reg,
2813 struct drm_i915_gem_object *obj)
de151cf6 2814{
de151cf6 2815 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2816 int fence_reg;
2817 int fence_pitch_shift;
de151cf6 2818
56c844e5
ID
2819 if (INTEL_INFO(dev)->gen >= 6) {
2820 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2821 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2822 } else {
2823 fence_reg = FENCE_REG_965_0;
2824 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2825 }
2826
d18b9619
CW
2827 fence_reg += reg * 8;
2828
2829 /* To w/a incoherency with non-atomic 64-bit register updates,
2830 * we split the 64-bit update into two 32-bit writes. In order
2831 * for a partial fence not to be evaluated between writes, we
2832 * precede the update with write to turn off the fence register,
2833 * and only enable the fence as the last step.
2834 *
2835 * For extra levels of paranoia, we make sure each step lands
2836 * before applying the next step.
2837 */
2838 I915_WRITE(fence_reg, 0);
2839 POSTING_READ(fence_reg);
2840
9ce079e4 2841 if (obj) {
f343c5f6 2842 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2843 uint64_t val;
de151cf6 2844
f343c5f6 2845 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2846 0xfffff000) << 32;
f343c5f6 2847 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2848 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2849 if (obj->tiling_mode == I915_TILING_Y)
2850 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2851 val |= I965_FENCE_REG_VALID;
c6642782 2852
d18b9619
CW
2853 I915_WRITE(fence_reg + 4, val >> 32);
2854 POSTING_READ(fence_reg + 4);
2855
2856 I915_WRITE(fence_reg + 0, val);
2857 POSTING_READ(fence_reg);
2858 } else {
2859 I915_WRITE(fence_reg + 4, 0);
2860 POSTING_READ(fence_reg + 4);
2861 }
de151cf6
JB
2862}
2863
9ce079e4
CW
2864static void i915_write_fence_reg(struct drm_device *dev, int reg,
2865 struct drm_i915_gem_object *obj)
de151cf6 2866{
de151cf6 2867 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2868 u32 val;
de151cf6 2869
9ce079e4 2870 if (obj) {
f343c5f6 2871 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2872 int pitch_val;
2873 int tile_width;
c6642782 2874
f343c5f6 2875 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2876 (size & -size) != size ||
f343c5f6
BW
2877 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2878 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2879 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2880
9ce079e4
CW
2881 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2882 tile_width = 128;
2883 else
2884 tile_width = 512;
2885
2886 /* Note: pitch better be a power of two tile widths */
2887 pitch_val = obj->stride / tile_width;
2888 pitch_val = ffs(pitch_val) - 1;
2889
f343c5f6 2890 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2891 if (obj->tiling_mode == I915_TILING_Y)
2892 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2893 val |= I915_FENCE_SIZE_BITS(size);
2894 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2895 val |= I830_FENCE_REG_VALID;
2896 } else
2897 val = 0;
2898
2899 if (reg < 8)
2900 reg = FENCE_REG_830_0 + reg * 4;
2901 else
2902 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2903
2904 I915_WRITE(reg, val);
2905 POSTING_READ(reg);
de151cf6
JB
2906}
2907
9ce079e4
CW
2908static void i830_write_fence_reg(struct drm_device *dev, int reg,
2909 struct drm_i915_gem_object *obj)
de151cf6 2910{
de151cf6 2911 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2912 uint32_t val;
de151cf6 2913
9ce079e4 2914 if (obj) {
f343c5f6 2915 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2916 uint32_t pitch_val;
de151cf6 2917
f343c5f6 2918 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2919 (size & -size) != size ||
f343c5f6
BW
2920 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2921 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2922 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2923
9ce079e4
CW
2924 pitch_val = obj->stride / 128;
2925 pitch_val = ffs(pitch_val) - 1;
de151cf6 2926
f343c5f6 2927 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2928 if (obj->tiling_mode == I915_TILING_Y)
2929 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2930 val |= I830_FENCE_SIZE_BITS(size);
2931 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2932 val |= I830_FENCE_REG_VALID;
2933 } else
2934 val = 0;
c6642782 2935
9ce079e4
CW
2936 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2937 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2938}
2939
d0a57789
CW
2940inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2941{
2942 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2943}
2944
9ce079e4
CW
2945static void i915_gem_write_fence(struct drm_device *dev, int reg,
2946 struct drm_i915_gem_object *obj)
2947{
d0a57789
CW
2948 struct drm_i915_private *dev_priv = dev->dev_private;
2949
2950 /* Ensure that all CPU reads are completed before installing a fence
2951 * and all writes before removing the fence.
2952 */
2953 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2954 mb();
2955
94a335db
DV
2956 WARN(obj && (!obj->stride || !obj->tiling_mode),
2957 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2958 obj->stride, obj->tiling_mode);
2959
9ce079e4 2960 switch (INTEL_INFO(dev)->gen) {
5ab31333 2961 case 8:
9ce079e4 2962 case 7:
56c844e5 2963 case 6:
9ce079e4
CW
2964 case 5:
2965 case 4: i965_write_fence_reg(dev, reg, obj); break;
2966 case 3: i915_write_fence_reg(dev, reg, obj); break;
2967 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2968 default: BUG();
9ce079e4 2969 }
d0a57789
CW
2970
2971 /* And similarly be paranoid that no direct access to this region
2972 * is reordered to before the fence is installed.
2973 */
2974 if (i915_gem_object_needs_mb(obj))
2975 mb();
de151cf6
JB
2976}
2977
61050808
CW
2978static inline int fence_number(struct drm_i915_private *dev_priv,
2979 struct drm_i915_fence_reg *fence)
2980{
2981 return fence - dev_priv->fence_regs;
2982}
2983
2984static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2985 struct drm_i915_fence_reg *fence,
2986 bool enable)
2987{
2dc8aae0 2988 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2989 int reg = fence_number(dev_priv, fence);
2990
2991 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2992
2993 if (enable) {
46a0b638 2994 obj->fence_reg = reg;
61050808
CW
2995 fence->obj = obj;
2996 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2997 } else {
2998 obj->fence_reg = I915_FENCE_REG_NONE;
2999 fence->obj = NULL;
3000 list_del_init(&fence->lru_list);
3001 }
94a335db 3002 obj->fence_dirty = false;
61050808
CW
3003}
3004
d9e86c0e 3005static int
d0a57789 3006i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3007{
1c293ea3 3008 if (obj->last_fenced_seqno) {
86d5bc37 3009 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3010 if (ret)
3011 return ret;
d9e86c0e
CW
3012
3013 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3014 }
3015
86d5bc37 3016 obj->fenced_gpu_access = false;
d9e86c0e
CW
3017 return 0;
3018}
3019
3020int
3021i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3022{
61050808 3023 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3024 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3025 int ret;
3026
d0a57789 3027 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3028 if (ret)
3029 return ret;
3030
61050808
CW
3031 if (obj->fence_reg == I915_FENCE_REG_NONE)
3032 return 0;
d9e86c0e 3033
f9c513e9
CW
3034 fence = &dev_priv->fence_regs[obj->fence_reg];
3035
61050808 3036 i915_gem_object_fence_lost(obj);
f9c513e9 3037 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3038
3039 return 0;
3040}
3041
3042static struct drm_i915_fence_reg *
a360bb1a 3043i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3044{
ae3db24a 3045 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3046 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3047 int i;
ae3db24a
DV
3048
3049 /* First try to find a free reg */
d9e86c0e 3050 avail = NULL;
ae3db24a
DV
3051 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3052 reg = &dev_priv->fence_regs[i];
3053 if (!reg->obj)
d9e86c0e 3054 return reg;
ae3db24a 3055
1690e1eb 3056 if (!reg->pin_count)
d9e86c0e 3057 avail = reg;
ae3db24a
DV
3058 }
3059
d9e86c0e
CW
3060 if (avail == NULL)
3061 return NULL;
ae3db24a
DV
3062
3063 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3064 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3065 if (reg->pin_count)
ae3db24a
DV
3066 continue;
3067
8fe301ad 3068 return reg;
ae3db24a
DV
3069 }
3070
8fe301ad 3071 return NULL;
ae3db24a
DV
3072}
3073
de151cf6 3074/**
9a5a53b3 3075 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3076 * @obj: object to map through a fence reg
3077 *
3078 * When mapping objects through the GTT, userspace wants to be able to write
3079 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3080 * This function walks the fence regs looking for a free one for @obj,
3081 * stealing one if it can't find any.
3082 *
3083 * It then sets up the reg based on the object's properties: address, pitch
3084 * and tiling format.
9a5a53b3
CW
3085 *
3086 * For an untiled surface, this removes any existing fence.
de151cf6 3087 */
8c4b8c3f 3088int
06d98131 3089i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3090{
05394f39 3091 struct drm_device *dev = obj->base.dev;
79e53945 3092 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3093 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3094 struct drm_i915_fence_reg *reg;
ae3db24a 3095 int ret;
de151cf6 3096
14415745
CW
3097 /* Have we updated the tiling parameters upon the object and so
3098 * will need to serialise the write to the associated fence register?
3099 */
5d82e3e6 3100 if (obj->fence_dirty) {
d0a57789 3101 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3102 if (ret)
3103 return ret;
3104 }
9a5a53b3 3105
d9e86c0e 3106 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3107 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3108 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3109 if (!obj->fence_dirty) {
14415745
CW
3110 list_move_tail(&reg->lru_list,
3111 &dev_priv->mm.fence_list);
3112 return 0;
3113 }
3114 } else if (enable) {
3115 reg = i915_find_fence_reg(dev);
3116 if (reg == NULL)
3117 return -EDEADLK;
d9e86c0e 3118
14415745
CW
3119 if (reg->obj) {
3120 struct drm_i915_gem_object *old = reg->obj;
3121
d0a57789 3122 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3123 if (ret)
3124 return ret;
3125
14415745 3126 i915_gem_object_fence_lost(old);
29c5a587 3127 }
14415745 3128 } else
a09ba7fa 3129 return 0;
a09ba7fa 3130
14415745 3131 i915_gem_object_update_fence(obj, reg, enable);
14415745 3132
9ce079e4 3133 return 0;
de151cf6
JB
3134}
3135
42d6ab48
CW
3136static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3137 struct drm_mm_node *gtt_space,
3138 unsigned long cache_level)
3139{
3140 struct drm_mm_node *other;
3141
3142 /* On non-LLC machines we have to be careful when putting differing
3143 * types of snoopable memory together to avoid the prefetcher
4239ca77 3144 * crossing memory domains and dying.
42d6ab48
CW
3145 */
3146 if (HAS_LLC(dev))
3147 return true;
3148
c6cfb325 3149 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3150 return true;
3151
3152 if (list_empty(&gtt_space->node_list))
3153 return true;
3154
3155 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3156 if (other->allocated && !other->hole_follows && other->color != cache_level)
3157 return false;
3158
3159 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3160 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3161 return false;
3162
3163 return true;
3164}
3165
3166static void i915_gem_verify_gtt(struct drm_device *dev)
3167{
3168#if WATCH_GTT
3169 struct drm_i915_private *dev_priv = dev->dev_private;
3170 struct drm_i915_gem_object *obj;
3171 int err = 0;
3172
35c20a60 3173 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3174 if (obj->gtt_space == NULL) {
3175 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3176 err++;
3177 continue;
3178 }
3179
3180 if (obj->cache_level != obj->gtt_space->color) {
3181 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3182 i915_gem_obj_ggtt_offset(obj),
3183 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3184 obj->cache_level,
3185 obj->gtt_space->color);
3186 err++;
3187 continue;
3188 }
3189
3190 if (!i915_gem_valid_gtt_space(dev,
3191 obj->gtt_space,
3192 obj->cache_level)) {
3193 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3194 i915_gem_obj_ggtt_offset(obj),
3195 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3196 obj->cache_level);
3197 err++;
3198 continue;
3199 }
3200 }
3201
3202 WARN_ON(err);
3203#endif
3204}
3205
673a394b
EA
3206/**
3207 * Finds free space in the GTT aperture and binds the object there.
3208 */
3209static int
07fe0b12
BW
3210i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3211 struct i915_address_space *vm,
3212 unsigned alignment,
3213 bool map_and_fenceable,
3214 bool nonblocking)
673a394b 3215{
05394f39 3216 struct drm_device *dev = obj->base.dev;
673a394b 3217 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3218 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3219 size_t gtt_max =
3220 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3221 struct i915_vma *vma;
07f73f69 3222 int ret;
673a394b 3223
e28f8711
CW
3224 fence_size = i915_gem_get_gtt_size(dev,
3225 obj->base.size,
3226 obj->tiling_mode);
3227 fence_alignment = i915_gem_get_gtt_alignment(dev,
3228 obj->base.size,
d865110c 3229 obj->tiling_mode, true);
e28f8711 3230 unfenced_alignment =
d865110c 3231 i915_gem_get_gtt_alignment(dev,
e28f8711 3232 obj->base.size,
d865110c 3233 obj->tiling_mode, false);
a00b10c3 3234
673a394b 3235 if (alignment == 0)
5e783301
DV
3236 alignment = map_and_fenceable ? fence_alignment :
3237 unfenced_alignment;
75e9e915 3238 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3239 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3240 return -EINVAL;
3241 }
3242
05394f39 3243 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3244
654fc607
CW
3245 /* If the object is bigger than the entire aperture, reject it early
3246 * before evicting everything in a vain attempt to find space.
3247 */
0a9ae0d7 3248 if (obj->base.size > gtt_max) {
3765f304 3249 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3250 obj->base.size,
3251 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3252 gtt_max);
654fc607
CW
3253 return -E2BIG;
3254 }
3255
37e680a1 3256 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3257 if (ret)
3258 return ret;
3259
fbdda6fb
CW
3260 i915_gem_object_pin_pages(obj);
3261
07fe0b12 3262 BUG_ON(!i915_is_ggtt(vm));
07fe0b12 3263
accfef2e 3264 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3265 if (IS_ERR(vma)) {
bc6bc15b
DV
3266 ret = PTR_ERR(vma);
3267 goto err_unpin;
2f633156
BW
3268 }
3269
accfef2e
BW
3270 /* For now we only ever use 1 vma per object */
3271 WARN_ON(!list_is_singular(&obj->vma_list));
3272
0a9ae0d7 3273search_free:
07fe0b12 3274 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3275 size, alignment,
31e5d7c6
DH
3276 obj->cache_level, 0, gtt_max,
3277 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3278 if (ret) {
f6cd1f15 3279 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3280 obj->cache_level,
86a1ee26
CW
3281 map_and_fenceable,
3282 nonblocking);
dc9dd7a2
CW
3283 if (ret == 0)
3284 goto search_free;
9731129c 3285
bc6bc15b 3286 goto err_free_vma;
673a394b 3287 }
2f633156 3288 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3289 obj->cache_level))) {
2f633156 3290 ret = -EINVAL;
bc6bc15b 3291 goto err_remove_node;
673a394b
EA
3292 }
3293
74163907 3294 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3295 if (ret)
bc6bc15b 3296 goto err_remove_node;
673a394b 3297
35c20a60 3298 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3299 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3300
4bd561b3
BW
3301 if (i915_is_ggtt(vm)) {
3302 bool mappable, fenceable;
a00b10c3 3303
49987099
DV
3304 fenceable = (vma->node.size == fence_size &&
3305 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3306
49987099
DV
3307 mappable = (vma->node.start + obj->base.size <=
3308 dev_priv->gtt.mappable_end);
a00b10c3 3309
5cacaac7 3310 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3311 }
75e9e915 3312
7ace7ef2 3313 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3314
07fe0b12 3315 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3316 i915_gem_verify_gtt(dev);
673a394b 3317 return 0;
2f633156 3318
bc6bc15b 3319err_remove_node:
6286ef9b 3320 drm_mm_remove_node(&vma->node);
bc6bc15b 3321err_free_vma:
2f633156 3322 i915_gem_vma_destroy(vma);
bc6bc15b 3323err_unpin:
2f633156 3324 i915_gem_object_unpin_pages(obj);
2f633156 3325 return ret;
673a394b
EA
3326}
3327
000433b6 3328bool
2c22569b
CW
3329i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3330 bool force)
673a394b 3331{
673a394b
EA
3332 /* If we don't have a page list set up, then we're not pinned
3333 * to GPU, and we can ignore the cache flush because it'll happen
3334 * again at bind time.
3335 */
05394f39 3336 if (obj->pages == NULL)
000433b6 3337 return false;
673a394b 3338
769ce464
ID
3339 /*
3340 * Stolen memory is always coherent with the GPU as it is explicitly
3341 * marked as wc by the system, or the system is cache-coherent.
3342 */
3343 if (obj->stolen)
000433b6 3344 return false;
769ce464 3345
9c23f7fc
CW
3346 /* If the GPU is snooping the contents of the CPU cache,
3347 * we do not need to manually clear the CPU cache lines. However,
3348 * the caches are only snooped when the render cache is
3349 * flushed/invalidated. As we always have to emit invalidations
3350 * and flushes when moving into and out of the RENDER domain, correct
3351 * snooping behaviour occurs naturally as the result of our domain
3352 * tracking.
3353 */
2c22569b 3354 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3355 return false;
9c23f7fc 3356
1c5d22f7 3357 trace_i915_gem_object_clflush(obj);
9da3da66 3358 drm_clflush_sg(obj->pages);
000433b6
CW
3359
3360 return true;
e47c68e9
EA
3361}
3362
3363/** Flushes the GTT write domain for the object if it's dirty. */
3364static void
05394f39 3365i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3366{
1c5d22f7
CW
3367 uint32_t old_write_domain;
3368
05394f39 3369 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3370 return;
3371
63256ec5 3372 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3373 * to it immediately go to main memory as far as we know, so there's
3374 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3375 *
3376 * However, we do have to enforce the order so that all writes through
3377 * the GTT land before any writes to the device, such as updates to
3378 * the GATT itself.
e47c68e9 3379 */
63256ec5
CW
3380 wmb();
3381
05394f39
CW
3382 old_write_domain = obj->base.write_domain;
3383 obj->base.write_domain = 0;
1c5d22f7
CW
3384
3385 trace_i915_gem_object_change_domain(obj,
05394f39 3386 obj->base.read_domains,
1c5d22f7 3387 old_write_domain);
e47c68e9
EA
3388}
3389
3390/** Flushes the CPU write domain for the object if it's dirty. */
3391static void
2c22569b
CW
3392i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3393 bool force)
e47c68e9 3394{
1c5d22f7 3395 uint32_t old_write_domain;
e47c68e9 3396
05394f39 3397 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3398 return;
3399
000433b6
CW
3400 if (i915_gem_clflush_object(obj, force))
3401 i915_gem_chipset_flush(obj->base.dev);
3402
05394f39
CW
3403 old_write_domain = obj->base.write_domain;
3404 obj->base.write_domain = 0;
1c5d22f7
CW
3405
3406 trace_i915_gem_object_change_domain(obj,
05394f39 3407 obj->base.read_domains,
1c5d22f7 3408 old_write_domain);
e47c68e9
EA
3409}
3410
2ef7eeaa
EA
3411/**
3412 * Moves a single object to the GTT read, and possibly write domain.
3413 *
3414 * This function returns when the move is complete, including waiting on
3415 * flushes to occur.
3416 */
79e53945 3417int
2021746e 3418i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3419{
8325a09d 3420 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3421 uint32_t old_write_domain, old_read_domains;
e47c68e9 3422 int ret;
2ef7eeaa 3423
02354392 3424 /* Not valid to be called on unbound objects. */
9843877d 3425 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3426 return -EINVAL;
3427
8d7e3de1
CW
3428 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3429 return 0;
3430
0201f1ec 3431 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3432 if (ret)
3433 return ret;
3434
2c22569b 3435 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3436
d0a57789
CW
3437 /* Serialise direct access to this object with the barriers for
3438 * coherent writes from the GPU, by effectively invalidating the
3439 * GTT domain upon first access.
3440 */
3441 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3442 mb();
3443
05394f39
CW
3444 old_write_domain = obj->base.write_domain;
3445 old_read_domains = obj->base.read_domains;
1c5d22f7 3446
e47c68e9
EA
3447 /* It should now be out of any other write domains, and we can update
3448 * the domain values for our changes.
3449 */
05394f39
CW
3450 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3451 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3452 if (write) {
05394f39
CW
3453 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3454 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3455 obj->dirty = 1;
2ef7eeaa
EA
3456 }
3457
1c5d22f7
CW
3458 trace_i915_gem_object_change_domain(obj,
3459 old_read_domains,
3460 old_write_domain);
3461
8325a09d 3462 /* And bump the LRU for this access */
ca191b13 3463 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3464 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3465 if (vma)
3466 list_move_tail(&vma->mm_list,
3467 &dev_priv->gtt.base.inactive_list);
3468
3469 }
8325a09d 3470
e47c68e9
EA
3471 return 0;
3472}
3473
e4ffd173
CW
3474int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3475 enum i915_cache_level cache_level)
3476{
7bddb01f
DV
3477 struct drm_device *dev = obj->base.dev;
3478 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3479 struct i915_vma *vma;
e4ffd173
CW
3480 int ret;
3481
3482 if (obj->cache_level == cache_level)
3483 return 0;
3484
3485 if (obj->pin_count) {
3486 DRM_DEBUG("can not change the cache level of pinned objects\n");
3487 return -EBUSY;
3488 }
3489
3089c6f2
BW
3490 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3491 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3492 ret = i915_vma_unbind(vma);
3089c6f2
BW
3493 if (ret)
3494 return ret;
3495
3496 break;
3497 }
42d6ab48
CW
3498 }
3499
3089c6f2 3500 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3501 ret = i915_gem_object_finish_gpu(obj);
3502 if (ret)
3503 return ret;
3504
3505 i915_gem_object_finish_gtt(obj);
3506
3507 /* Before SandyBridge, you could not use tiling or fence
3508 * registers with snooped memory, so relinquish any fences
3509 * currently pointing to our region in the aperture.
3510 */
42d6ab48 3511 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3512 ret = i915_gem_object_put_fence(obj);
3513 if (ret)
3514 return ret;
3515 }
3516
74898d7e
DV
3517 if (obj->has_global_gtt_mapping)
3518 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3519 if (obj->has_aliasing_ppgtt_mapping)
3520 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3521 obj, cache_level);
e4ffd173
CW
3522 }
3523
2c22569b
CW
3524 list_for_each_entry(vma, &obj->vma_list, vma_link)
3525 vma->node.color = cache_level;
3526 obj->cache_level = cache_level;
3527
3528 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3529 u32 old_read_domains, old_write_domain;
3530
3531 /* If we're coming from LLC cached, then we haven't
3532 * actually been tracking whether the data is in the
3533 * CPU cache or not, since we only allow one bit set
3534 * in obj->write_domain and have been skipping the clflushes.
3535 * Just set it to the CPU cache for now.
3536 */
3537 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3538
3539 old_read_domains = obj->base.read_domains;
3540 old_write_domain = obj->base.write_domain;
3541
3542 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3543 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3544
3545 trace_i915_gem_object_change_domain(obj,
3546 old_read_domains,
3547 old_write_domain);
3548 }
3549
42d6ab48 3550 i915_gem_verify_gtt(dev);
e4ffd173
CW
3551 return 0;
3552}
3553
199adf40
BW
3554int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3555 struct drm_file *file)
e6994aee 3556{
199adf40 3557 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3558 struct drm_i915_gem_object *obj;
3559 int ret;
3560
3561 ret = i915_mutex_lock_interruptible(dev);
3562 if (ret)
3563 return ret;
3564
3565 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3566 if (&obj->base == NULL) {
3567 ret = -ENOENT;
3568 goto unlock;
3569 }
3570
651d794f
CW
3571 switch (obj->cache_level) {
3572 case I915_CACHE_LLC:
3573 case I915_CACHE_L3_LLC:
3574 args->caching = I915_CACHING_CACHED;
3575 break;
3576
4257d3ba
CW
3577 case I915_CACHE_WT:
3578 args->caching = I915_CACHING_DISPLAY;
3579 break;
3580
651d794f
CW
3581 default:
3582 args->caching = I915_CACHING_NONE;
3583 break;
3584 }
e6994aee
CW
3585
3586 drm_gem_object_unreference(&obj->base);
3587unlock:
3588 mutex_unlock(&dev->struct_mutex);
3589 return ret;
3590}
3591
199adf40
BW
3592int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3593 struct drm_file *file)
e6994aee 3594{
199adf40 3595 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3596 struct drm_i915_gem_object *obj;
3597 enum i915_cache_level level;
3598 int ret;
3599
199adf40
BW
3600 switch (args->caching) {
3601 case I915_CACHING_NONE:
e6994aee
CW
3602 level = I915_CACHE_NONE;
3603 break;
199adf40 3604 case I915_CACHING_CACHED:
e6994aee
CW
3605 level = I915_CACHE_LLC;
3606 break;
4257d3ba
CW
3607 case I915_CACHING_DISPLAY:
3608 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3609 break;
e6994aee
CW
3610 default:
3611 return -EINVAL;
3612 }
3613
3bc2913e
BW
3614 ret = i915_mutex_lock_interruptible(dev);
3615 if (ret)
3616 return ret;
3617
e6994aee
CW
3618 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3619 if (&obj->base == NULL) {
3620 ret = -ENOENT;
3621 goto unlock;
3622 }
3623
3624 ret = i915_gem_object_set_cache_level(obj, level);
3625
3626 drm_gem_object_unreference(&obj->base);
3627unlock:
3628 mutex_unlock(&dev->struct_mutex);
3629 return ret;
3630}
3631
cc98b413
CW
3632static bool is_pin_display(struct drm_i915_gem_object *obj)
3633{
3634 /* There are 3 sources that pin objects:
3635 * 1. The display engine (scanouts, sprites, cursors);
3636 * 2. Reservations for execbuffer;
3637 * 3. The user.
3638 *
3639 * We can ignore reservations as we hold the struct_mutex and
3640 * are only called outside of the reservation path. The user
3641 * can only increment pin_count once, and so if after
3642 * subtracting the potential reference by the user, any pin_count
3643 * remains, it must be due to another use by the display engine.
3644 */
3645 return obj->pin_count - !!obj->user_pin_count;
3646}
3647
b9241ea3 3648/*
2da3b9b9
CW
3649 * Prepare buffer for display plane (scanout, cursors, etc).
3650 * Can be called from an uninterruptible phase (modesetting) and allows
3651 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3652 */
3653int
2da3b9b9
CW
3654i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3655 u32 alignment,
919926ae 3656 struct intel_ring_buffer *pipelined)
b9241ea3 3657{
2da3b9b9 3658 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3659 int ret;
3660
0be73284 3661 if (pipelined != obj->ring) {
2911a35b
BW
3662 ret = i915_gem_object_sync(obj, pipelined);
3663 if (ret)
b9241ea3
ZW
3664 return ret;
3665 }
3666
cc98b413
CW
3667 /* Mark the pin_display early so that we account for the
3668 * display coherency whilst setting up the cache domains.
3669 */
3670 obj->pin_display = true;
3671
a7ef0640
EA
3672 /* The display engine is not coherent with the LLC cache on gen6. As
3673 * a result, we make sure that the pinning that is about to occur is
3674 * done with uncached PTEs. This is lowest common denominator for all
3675 * chipsets.
3676 *
3677 * However for gen6+, we could do better by using the GFDT bit instead
3678 * of uncaching, which would allow us to flush all the LLC-cached data
3679 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3680 */
651d794f
CW
3681 ret = i915_gem_object_set_cache_level(obj,
3682 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3683 if (ret)
cc98b413 3684 goto err_unpin_display;
a7ef0640 3685
2da3b9b9
CW
3686 /* As the user may map the buffer once pinned in the display plane
3687 * (e.g. libkms for the bootup splash), we have to ensure that we
3688 * always use map_and_fenceable for all scanout buffers.
3689 */
c37e2204 3690 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3691 if (ret)
cc98b413 3692 goto err_unpin_display;
2da3b9b9 3693
2c22569b 3694 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3695
2da3b9b9 3696 old_write_domain = obj->base.write_domain;
05394f39 3697 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3698
3699 /* It should now be out of any other write domains, and we can update
3700 * the domain values for our changes.
3701 */
e5f1d962 3702 obj->base.write_domain = 0;
05394f39 3703 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3704
3705 trace_i915_gem_object_change_domain(obj,
3706 old_read_domains,
2da3b9b9 3707 old_write_domain);
b9241ea3
ZW
3708
3709 return 0;
cc98b413
CW
3710
3711err_unpin_display:
3712 obj->pin_display = is_pin_display(obj);
3713 return ret;
3714}
3715
3716void
3717i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3718{
3719 i915_gem_object_unpin(obj);
3720 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3721}
3722
85345517 3723int
a8198eea 3724i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3725{
88241785
CW
3726 int ret;
3727
a8198eea 3728 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3729 return 0;
3730
0201f1ec 3731 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3732 if (ret)
3733 return ret;
3734
a8198eea
CW
3735 /* Ensure that we invalidate the GPU's caches and TLBs. */
3736 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3737 return 0;
85345517
CW
3738}
3739
e47c68e9
EA
3740/**
3741 * Moves a single object to the CPU read, and possibly write domain.
3742 *
3743 * This function returns when the move is complete, including waiting on
3744 * flushes to occur.
3745 */
dabdfe02 3746int
919926ae 3747i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3748{
1c5d22f7 3749 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3750 int ret;
3751
8d7e3de1
CW
3752 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3753 return 0;
3754
0201f1ec 3755 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3756 if (ret)
3757 return ret;
3758
e47c68e9 3759 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3760
05394f39
CW
3761 old_write_domain = obj->base.write_domain;
3762 old_read_domains = obj->base.read_domains;
1c5d22f7 3763
e47c68e9 3764 /* Flush the CPU cache if it's still invalid. */
05394f39 3765 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3766 i915_gem_clflush_object(obj, false);
2ef7eeaa 3767
05394f39 3768 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3769 }
3770
3771 /* It should now be out of any other write domains, and we can update
3772 * the domain values for our changes.
3773 */
05394f39 3774 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3775
3776 /* If we're writing through the CPU, then the GPU read domains will
3777 * need to be invalidated at next use.
3778 */
3779 if (write) {
05394f39
CW
3780 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3781 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3782 }
2ef7eeaa 3783
1c5d22f7
CW
3784 trace_i915_gem_object_change_domain(obj,
3785 old_read_domains,
3786 old_write_domain);
3787
2ef7eeaa
EA
3788 return 0;
3789}
3790
673a394b
EA
3791/* Throttle our rendering by waiting until the ring has completed our requests
3792 * emitted over 20 msec ago.
3793 *
b962442e
EA
3794 * Note that if we were to use the current jiffies each time around the loop,
3795 * we wouldn't escape the function with any frames outstanding if the time to
3796 * render a frame was over 20ms.
3797 *
673a394b
EA
3798 * This should get us reasonable parallelism between CPU and GPU but also
3799 * relatively low latency when blocking on a particular request to finish.
3800 */
40a5f0de 3801static int
f787a5f5 3802i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3803{
f787a5f5
CW
3804 struct drm_i915_private *dev_priv = dev->dev_private;
3805 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3806 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3807 struct drm_i915_gem_request *request;
3808 struct intel_ring_buffer *ring = NULL;
f69061be 3809 unsigned reset_counter;
f787a5f5
CW
3810 u32 seqno = 0;
3811 int ret;
93533c29 3812
308887aa
DV
3813 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3814 if (ret)
3815 return ret;
3816
3817 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3818 if (ret)
3819 return ret;
e110e8d6 3820
1c25595f 3821 spin_lock(&file_priv->mm.lock);
f787a5f5 3822 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3823 if (time_after_eq(request->emitted_jiffies, recent_enough))
3824 break;
40a5f0de 3825
f787a5f5
CW
3826 ring = request->ring;
3827 seqno = request->seqno;
b962442e 3828 }
f69061be 3829 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3830 spin_unlock(&file_priv->mm.lock);
40a5f0de 3831
f787a5f5
CW
3832 if (seqno == 0)
3833 return 0;
2bc43b5c 3834
b29c19b6 3835 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3836 if (ret == 0)
3837 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3838
3839 return ret;
3840}
3841
673a394b 3842int
05394f39 3843i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3844 struct i915_address_space *vm,
05394f39 3845 uint32_t alignment,
86a1ee26
CW
3846 bool map_and_fenceable,
3847 bool nonblocking)
673a394b 3848{
07fe0b12 3849 struct i915_vma *vma;
673a394b
EA
3850 int ret;
3851
7e81a42e
CW
3852 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3853 return -EBUSY;
ac0c6b5a 3854
07fe0b12
BW
3855 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3856
3857 vma = i915_gem_obj_to_vma(obj, vm);
3858
3859 if (vma) {
3860 if ((alignment &&
3861 vma->node.start & (alignment - 1)) ||
05394f39
CW
3862 (map_and_fenceable && !obj->map_and_fenceable)) {
3863 WARN(obj->pin_count,
ae7d49d8 3864 "bo is already pinned with incorrect alignment:"
f343c5f6 3865 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3866 " obj->map_and_fenceable=%d\n",
07fe0b12 3867 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3868 map_and_fenceable,
05394f39 3869 obj->map_and_fenceable);
07fe0b12 3870 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3871 if (ret)
3872 return ret;
3873 }
3874 }
3875
07fe0b12 3876 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3877 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3878
07fe0b12
BW
3879 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3880 map_and_fenceable,
3881 nonblocking);
9731129c 3882 if (ret)
673a394b 3883 return ret;
8742267a
CW
3884
3885 if (!dev_priv->mm.aliasing_ppgtt)
3886 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3887 }
76446cac 3888
74898d7e
DV
3889 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3890 i915_gem_gtt_bind_object(obj, obj->cache_level);
3891
1b50247a 3892 obj->pin_count++;
6299f992 3893 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3894
3895 return 0;
3896}
3897
3898void
05394f39 3899i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3900{
05394f39 3901 BUG_ON(obj->pin_count == 0);
9843877d 3902 BUG_ON(!i915_gem_obj_bound_any(obj));
673a394b 3903
1b50247a 3904 if (--obj->pin_count == 0)
6299f992 3905 obj->pin_mappable = false;
673a394b
EA
3906}
3907
3908int
3909i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3910 struct drm_file *file)
673a394b
EA
3911{
3912 struct drm_i915_gem_pin *args = data;
05394f39 3913 struct drm_i915_gem_object *obj;
673a394b
EA
3914 int ret;
3915
1d7cfea1
CW
3916 ret = i915_mutex_lock_interruptible(dev);
3917 if (ret)
3918 return ret;
673a394b 3919
05394f39 3920 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3921 if (&obj->base == NULL) {
1d7cfea1
CW
3922 ret = -ENOENT;
3923 goto unlock;
673a394b 3924 }
673a394b 3925
05394f39 3926 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3927 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3928 ret = -EINVAL;
3929 goto out;
3ef94daa
CW
3930 }
3931
05394f39 3932 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3933 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3934 args->handle);
1d7cfea1
CW
3935 ret = -EINVAL;
3936 goto out;
79e53945
JB
3937 }
3938
aa5f8021
DV
3939 if (obj->user_pin_count == ULONG_MAX) {
3940 ret = -EBUSY;
3941 goto out;
3942 }
3943
93be8788 3944 if (obj->user_pin_count == 0) {
c37e2204 3945 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3946 if (ret)
3947 goto out;
673a394b
EA
3948 }
3949
93be8788
CW
3950 obj->user_pin_count++;
3951 obj->pin_filp = file;
3952
f343c5f6 3953 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3954out:
05394f39 3955 drm_gem_object_unreference(&obj->base);
1d7cfea1 3956unlock:
673a394b 3957 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3958 return ret;
673a394b
EA
3959}
3960
3961int
3962i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3963 struct drm_file *file)
673a394b
EA
3964{
3965 struct drm_i915_gem_pin *args = data;
05394f39 3966 struct drm_i915_gem_object *obj;
76c1dec1 3967 int ret;
673a394b 3968
1d7cfea1
CW
3969 ret = i915_mutex_lock_interruptible(dev);
3970 if (ret)
3971 return ret;
673a394b 3972
05394f39 3973 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3974 if (&obj->base == NULL) {
1d7cfea1
CW
3975 ret = -ENOENT;
3976 goto unlock;
673a394b 3977 }
76c1dec1 3978
05394f39 3979 if (obj->pin_filp != file) {
79e53945
JB
3980 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3981 args->handle);
1d7cfea1
CW
3982 ret = -EINVAL;
3983 goto out;
79e53945 3984 }
05394f39
CW
3985 obj->user_pin_count--;
3986 if (obj->user_pin_count == 0) {
3987 obj->pin_filp = NULL;
79e53945
JB
3988 i915_gem_object_unpin(obj);
3989 }
673a394b 3990
1d7cfea1 3991out:
05394f39 3992 drm_gem_object_unreference(&obj->base);
1d7cfea1 3993unlock:
673a394b 3994 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3995 return ret;
673a394b
EA
3996}
3997
3998int
3999i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4000 struct drm_file *file)
673a394b
EA
4001{
4002 struct drm_i915_gem_busy *args = data;
05394f39 4003 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4004 int ret;
4005
76c1dec1 4006 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4007 if (ret)
76c1dec1 4008 return ret;
673a394b 4009
05394f39 4010 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4011 if (&obj->base == NULL) {
1d7cfea1
CW
4012 ret = -ENOENT;
4013 goto unlock;
673a394b 4014 }
d1b851fc 4015
0be555b6
CW
4016 /* Count all active objects as busy, even if they are currently not used
4017 * by the gpu. Users of this interface expect objects to eventually
4018 * become non-busy without any further actions, therefore emit any
4019 * necessary flushes here.
c4de0a5d 4020 */
30dfebf3 4021 ret = i915_gem_object_flush_active(obj);
0be555b6 4022
30dfebf3 4023 args->busy = obj->active;
e9808edd
CW
4024 if (obj->ring) {
4025 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4026 args->busy |= intel_ring_flag(obj->ring) << 16;
4027 }
673a394b 4028
05394f39 4029 drm_gem_object_unreference(&obj->base);
1d7cfea1 4030unlock:
673a394b 4031 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4032 return ret;
673a394b
EA
4033}
4034
4035int
4036i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4037 struct drm_file *file_priv)
4038{
0206e353 4039 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4040}
4041
3ef94daa
CW
4042int
4043i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4044 struct drm_file *file_priv)
4045{
4046 struct drm_i915_gem_madvise *args = data;
05394f39 4047 struct drm_i915_gem_object *obj;
76c1dec1 4048 int ret;
3ef94daa
CW
4049
4050 switch (args->madv) {
4051 case I915_MADV_DONTNEED:
4052 case I915_MADV_WILLNEED:
4053 break;
4054 default:
4055 return -EINVAL;
4056 }
4057
1d7cfea1
CW
4058 ret = i915_mutex_lock_interruptible(dev);
4059 if (ret)
4060 return ret;
4061
05394f39 4062 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4063 if (&obj->base == NULL) {
1d7cfea1
CW
4064 ret = -ENOENT;
4065 goto unlock;
3ef94daa 4066 }
3ef94daa 4067
05394f39 4068 if (obj->pin_count) {
1d7cfea1
CW
4069 ret = -EINVAL;
4070 goto out;
3ef94daa
CW
4071 }
4072
05394f39
CW
4073 if (obj->madv != __I915_MADV_PURGED)
4074 obj->madv = args->madv;
3ef94daa 4075
6c085a72
CW
4076 /* if the object is no longer attached, discard its backing storage */
4077 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4078 i915_gem_object_truncate(obj);
4079
05394f39 4080 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4081
1d7cfea1 4082out:
05394f39 4083 drm_gem_object_unreference(&obj->base);
1d7cfea1 4084unlock:
3ef94daa 4085 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4086 return ret;
3ef94daa
CW
4087}
4088
37e680a1
CW
4089void i915_gem_object_init(struct drm_i915_gem_object *obj,
4090 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4091{
35c20a60 4092 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4093 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4094 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4095 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4096
37e680a1
CW
4097 obj->ops = ops;
4098
0327d6ba
CW
4099 obj->fence_reg = I915_FENCE_REG_NONE;
4100 obj->madv = I915_MADV_WILLNEED;
4101 /* Avoid an unnecessary call to unbind on the first bind. */
4102 obj->map_and_fenceable = true;
4103
4104 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4105}
4106
37e680a1
CW
4107static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4108 .get_pages = i915_gem_object_get_pages_gtt,
4109 .put_pages = i915_gem_object_put_pages_gtt,
4110};
4111
05394f39
CW
4112struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4113 size_t size)
ac52bc56 4114{
c397b908 4115 struct drm_i915_gem_object *obj;
5949eac4 4116 struct address_space *mapping;
1a240d4d 4117 gfp_t mask;
ac52bc56 4118
42dcedd4 4119 obj = i915_gem_object_alloc(dev);
c397b908
DV
4120 if (obj == NULL)
4121 return NULL;
673a394b 4122
c397b908 4123 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4124 i915_gem_object_free(obj);
c397b908
DV
4125 return NULL;
4126 }
673a394b 4127
bed1ea95
CW
4128 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4129 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4130 /* 965gm cannot relocate objects above 4GiB. */
4131 mask &= ~__GFP_HIGHMEM;
4132 mask |= __GFP_DMA32;
4133 }
4134
496ad9aa 4135 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4136 mapping_set_gfp_mask(mapping, mask);
5949eac4 4137
37e680a1 4138 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4139
c397b908
DV
4140 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4141 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4142
3d29b842
ED
4143 if (HAS_LLC(dev)) {
4144 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4145 * cache) for about a 10% performance improvement
4146 * compared to uncached. Graphics requests other than
4147 * display scanout are coherent with the CPU in
4148 * accessing this cache. This means in this mode we
4149 * don't need to clflush on the CPU side, and on the
4150 * GPU side we only need to flush internal caches to
4151 * get data visible to the CPU.
4152 *
4153 * However, we maintain the display planes as UC, and so
4154 * need to rebind when first used as such.
4155 */
4156 obj->cache_level = I915_CACHE_LLC;
4157 } else
4158 obj->cache_level = I915_CACHE_NONE;
4159
d861e338
DV
4160 trace_i915_gem_object_create(obj);
4161
05394f39 4162 return obj;
c397b908
DV
4163}
4164
1488fc08 4165void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4166{
1488fc08 4167 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4168 struct drm_device *dev = obj->base.dev;
be72615b 4169 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4170 struct i915_vma *vma, *next;
673a394b 4171
26e12f89
CW
4172 trace_i915_gem_object_destroy(obj);
4173
1488fc08
CW
4174 if (obj->phys_obj)
4175 i915_gem_detach_phys_object(dev, obj);
4176
4177 obj->pin_count = 0;
07fe0b12
BW
4178 /* NB: 0 or 1 elements */
4179 WARN_ON(!list_empty(&obj->vma_list) &&
4180 !list_is_singular(&obj->vma_list));
4181 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4182 int ret = i915_vma_unbind(vma);
4183 if (WARN_ON(ret == -ERESTARTSYS)) {
4184 bool was_interruptible;
1488fc08 4185
07fe0b12
BW
4186 was_interruptible = dev_priv->mm.interruptible;
4187 dev_priv->mm.interruptible = false;
1488fc08 4188
07fe0b12 4189 WARN_ON(i915_vma_unbind(vma));
1488fc08 4190
07fe0b12
BW
4191 dev_priv->mm.interruptible = was_interruptible;
4192 }
1488fc08
CW
4193 }
4194
1d64ae71
BW
4195 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4196 * before progressing. */
4197 if (obj->stolen)
4198 i915_gem_object_unpin_pages(obj);
4199
401c29f6
BW
4200 if (WARN_ON(obj->pages_pin_count))
4201 obj->pages_pin_count = 0;
37e680a1 4202 i915_gem_object_put_pages(obj);
d8cb5086 4203 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4204 i915_gem_object_release_stolen(obj);
de151cf6 4205
9da3da66
CW
4206 BUG_ON(obj->pages);
4207
2f745ad3
CW
4208 if (obj->base.import_attach)
4209 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4210
05394f39
CW
4211 drm_gem_object_release(&obj->base);
4212 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4213
05394f39 4214 kfree(obj->bit_17);
42dcedd4 4215 i915_gem_object_free(obj);
673a394b
EA
4216}
4217
e656a6cb 4218struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4219 struct i915_address_space *vm)
e656a6cb
DV
4220{
4221 struct i915_vma *vma;
4222 list_for_each_entry(vma, &obj->vma_list, vma_link)
4223 if (vma->vm == vm)
4224 return vma;
4225
4226 return NULL;
4227}
4228
4229static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4230 struct i915_address_space *vm)
2f633156
BW
4231{
4232 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4233 if (vma == NULL)
4234 return ERR_PTR(-ENOMEM);
4235
4236 INIT_LIST_HEAD(&vma->vma_link);
ca191b13 4237 INIT_LIST_HEAD(&vma->mm_list);
82a55ad1 4238 INIT_LIST_HEAD(&vma->exec_list);
2f633156
BW
4239 vma->vm = vm;
4240 vma->obj = obj;
4241
8b9c2b94
BW
4242 /* Keep GGTT vmas first to make debug easier */
4243 if (i915_is_ggtt(vm))
4244 list_add(&vma->vma_link, &obj->vma_list);
4245 else
4246 list_add_tail(&vma->vma_link, &obj->vma_list);
4247
2f633156
BW
4248 return vma;
4249}
4250
e656a6cb
DV
4251struct i915_vma *
4252i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4253 struct i915_address_space *vm)
4254{
4255 struct i915_vma *vma;
4256
4257 vma = i915_gem_obj_to_vma(obj, vm);
4258 if (!vma)
4259 vma = __i915_gem_vma_create(obj, vm);
4260
4261 return vma;
4262}
4263
2f633156
BW
4264void i915_gem_vma_destroy(struct i915_vma *vma)
4265{
4266 WARN_ON(vma->node.allocated);
aaa05667
CW
4267
4268 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4269 if (!list_empty(&vma->exec_list))
4270 return;
4271
8b9c2b94 4272 list_del(&vma->vma_link);
b93dab6e 4273
2f633156
BW
4274 kfree(vma);
4275}
4276
29105ccc 4277int
45c5f202 4278i915_gem_suspend(struct drm_device *dev)
29105ccc
CW
4279{
4280 drm_i915_private_t *dev_priv = dev->dev_private;
45c5f202 4281 int ret = 0;
28dfe52a 4282
45c5f202 4283 mutex_lock(&dev->struct_mutex);
f7403347 4284 if (dev_priv->ums.mm_suspended)
45c5f202 4285 goto err;
28dfe52a 4286
b2da9fe5 4287 ret = i915_gpu_idle(dev);
f7403347 4288 if (ret)
45c5f202 4289 goto err;
f7403347 4290
b2da9fe5 4291 i915_gem_retire_requests(dev);
673a394b 4292
29105ccc 4293 /* Under UMS, be paranoid and evict. */
a39d7efc 4294 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4295 i915_gem_evict_everything(dev);
29105ccc 4296
29105ccc 4297 i915_kernel_lost_context(dev);
6dbe2772 4298 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4299
45c5f202
CW
4300 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4301 * We need to replace this with a semaphore, or something.
4302 * And not confound ums.mm_suspended!
4303 */
4304 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4305 DRIVER_MODESET);
4306 mutex_unlock(&dev->struct_mutex);
4307
4308 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4309 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4310 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4311
673a394b 4312 return 0;
45c5f202
CW
4313
4314err:
4315 mutex_unlock(&dev->struct_mutex);
4316 return ret;
673a394b
EA
4317}
4318
c3787e2e 4319int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4320{
c3787e2e 4321 struct drm_device *dev = ring->dev;
b9524a1e 4322 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4323 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4324 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4325 int i, ret;
b9524a1e 4326
040d2baa 4327 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4328 return 0;
b9524a1e 4329
c3787e2e
BW
4330 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4331 if (ret)
4332 return ret;
b9524a1e 4333
c3787e2e
BW
4334 /*
4335 * Note: We do not worry about the concurrent register cacheline hang
4336 * here because no other code should access these registers other than
4337 * at initialization time.
4338 */
b9524a1e 4339 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4340 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4341 intel_ring_emit(ring, reg_base + i);
4342 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4343 }
4344
c3787e2e 4345 intel_ring_advance(ring);
b9524a1e 4346
c3787e2e 4347 return ret;
b9524a1e
BW
4348}
4349
f691e2f4
DV
4350void i915_gem_init_swizzling(struct drm_device *dev)
4351{
4352 drm_i915_private_t *dev_priv = dev->dev_private;
4353
11782b02 4354 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4355 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4356 return;
4357
4358 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4359 DISP_TILE_SURFACE_SWIZZLING);
4360
11782b02
DV
4361 if (IS_GEN5(dev))
4362 return;
4363
f691e2f4
DV
4364 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4365 if (IS_GEN6(dev))
6b26c86d 4366 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4367 else if (IS_GEN7(dev))
6b26c86d 4368 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4369 else if (IS_GEN8(dev))
4370 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4371 else
4372 BUG();
f691e2f4 4373}
e21af88d 4374
67b1b571
CW
4375static bool
4376intel_enable_blt(struct drm_device *dev)
4377{
4378 if (!HAS_BLT(dev))
4379 return false;
4380
4381 /* The blitter was dysfunctional on early prototypes */
4382 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4383 DRM_INFO("BLT not supported on this pre-production hardware;"
4384 " graphics performance will be degraded.\n");
4385 return false;
4386 }
4387
4388 return true;
4389}
4390
4fc7c971 4391static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4392{
4fc7c971 4393 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4394 int ret;
68f95ba9 4395
5c1143bb 4396 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4397 if (ret)
b6913e4b 4398 return ret;
68f95ba9
CW
4399
4400 if (HAS_BSD(dev)) {
5c1143bb 4401 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4402 if (ret)
4403 goto cleanup_render_ring;
d1b851fc 4404 }
68f95ba9 4405
67b1b571 4406 if (intel_enable_blt(dev)) {
549f7365
CW
4407 ret = intel_init_blt_ring_buffer(dev);
4408 if (ret)
4409 goto cleanup_bsd_ring;
4410 }
4411
9a8a2213
BW
4412 if (HAS_VEBOX(dev)) {
4413 ret = intel_init_vebox_ring_buffer(dev);
4414 if (ret)
4415 goto cleanup_blt_ring;
4416 }
4417
4418
99433931 4419 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4420 if (ret)
9a8a2213 4421 goto cleanup_vebox_ring;
4fc7c971
BW
4422
4423 return 0;
4424
9a8a2213
BW
4425cleanup_vebox_ring:
4426 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4427cleanup_blt_ring:
4428 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4429cleanup_bsd_ring:
4430 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4431cleanup_render_ring:
4432 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4433
4434 return ret;
4435}
4436
4437int
4438i915_gem_init_hw(struct drm_device *dev)
4439{
4440 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4441 int ret, i;
4fc7c971
BW
4442
4443 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4444 return -EIO;
4445
59124506 4446 if (dev_priv->ellc_size)
05e21cc4 4447 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4448
9435373e
RV
4449 if (IS_HSW_GT3(dev))
4450 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4451 else
4452 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4453
88a2b2a3
BW
4454 if (HAS_PCH_NOP(dev)) {
4455 u32 temp = I915_READ(GEN7_MSG_CTL);
4456 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4457 I915_WRITE(GEN7_MSG_CTL, temp);
4458 }
4459
4fc7c971
BW
4460 i915_gem_init_swizzling(dev);
4461
4462 ret = i915_gem_init_rings(dev);
99433931
MK
4463 if (ret)
4464 return ret;
4465
c3787e2e
BW
4466 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4467 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4468
254f965c
BW
4469 /*
4470 * XXX: There was some w/a described somewhere suggesting loading
4471 * contexts before PPGTT.
4472 */
8245be31
BW
4473 ret = i915_gem_context_init(dev);
4474 if (ret) {
4475 i915_gem_cleanup_ringbuffer(dev);
4476 DRM_ERROR("Context initialization failed %d\n", ret);
4477 return ret;
4478 }
4479
b7c36d25
BW
4480 if (dev_priv->mm.aliasing_ppgtt) {
4481 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4482 if (ret) {
4483 i915_gem_cleanup_aliasing_ppgtt(dev);
4484 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4485 }
4486 }
e21af88d 4487
68f95ba9 4488 return 0;
8187a2b7
ZN
4489}
4490
1070a42b
CW
4491int i915_gem_init(struct drm_device *dev)
4492{
4493 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4494 int ret;
4495
1070a42b 4496 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4497
4498 if (IS_VALLEYVIEW(dev)) {
4499 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4500 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4501 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4502 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4503 }
4504
d7e5008f 4505 i915_gem_init_global_gtt(dev);
d62b4892 4506
1070a42b
CW
4507 ret = i915_gem_init_hw(dev);
4508 mutex_unlock(&dev->struct_mutex);
4509 if (ret) {
4510 i915_gem_cleanup_aliasing_ppgtt(dev);
4511 return ret;
4512 }
4513
53ca26ca
DV
4514 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4515 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4516 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4517 return 0;
4518}
4519
8187a2b7
ZN
4520void
4521i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4522{
4523 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4524 struct intel_ring_buffer *ring;
1ec14ad3 4525 int i;
8187a2b7 4526
b4519513
CW
4527 for_each_ring(ring, dev_priv, i)
4528 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4529}
4530
673a394b
EA
4531int
4532i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4533 struct drm_file *file_priv)
4534{
db1b76ca 4535 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4536 int ret;
673a394b 4537
79e53945
JB
4538 if (drm_core_check_feature(dev, DRIVER_MODESET))
4539 return 0;
4540
1f83fee0 4541 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4542 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4543 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4544 }
4545
673a394b 4546 mutex_lock(&dev->struct_mutex);
db1b76ca 4547 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4548
f691e2f4 4549 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4550 if (ret != 0) {
4551 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4552 return ret;
d816f6ac 4553 }
9bb2d6f9 4554
5cef07e1 4555 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4556 mutex_unlock(&dev->struct_mutex);
dbb19d30 4557
5f35308b
CW
4558 ret = drm_irq_install(dev);
4559 if (ret)
4560 goto cleanup_ringbuffer;
dbb19d30 4561
673a394b 4562 return 0;
5f35308b
CW
4563
4564cleanup_ringbuffer:
4565 mutex_lock(&dev->struct_mutex);
4566 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4567 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4568 mutex_unlock(&dev->struct_mutex);
4569
4570 return ret;
673a394b
EA
4571}
4572
4573int
4574i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4575 struct drm_file *file_priv)
4576{
79e53945
JB
4577 if (drm_core_check_feature(dev, DRIVER_MODESET))
4578 return 0;
4579
dbb19d30 4580 drm_irq_uninstall(dev);
db1b76ca 4581
45c5f202 4582 return i915_gem_suspend(dev);
673a394b
EA
4583}
4584
4585void
4586i915_gem_lastclose(struct drm_device *dev)
4587{
4588 int ret;
673a394b 4589
e806b495
EA
4590 if (drm_core_check_feature(dev, DRIVER_MODESET))
4591 return;
4592
45c5f202 4593 ret = i915_gem_suspend(dev);
6dbe2772
KP
4594 if (ret)
4595 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4596}
4597
64193406
CW
4598static void
4599init_ring_lists(struct intel_ring_buffer *ring)
4600{
4601 INIT_LIST_HEAD(&ring->active_list);
4602 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4603}
4604
fc8c067e
BW
4605static void i915_init_vm(struct drm_i915_private *dev_priv,
4606 struct i915_address_space *vm)
4607{
4608 vm->dev = dev_priv->dev;
4609 INIT_LIST_HEAD(&vm->active_list);
4610 INIT_LIST_HEAD(&vm->inactive_list);
4611 INIT_LIST_HEAD(&vm->global_link);
4612 list_add(&vm->global_link, &dev_priv->vm_list);
4613}
4614
673a394b
EA
4615void
4616i915_gem_load(struct drm_device *dev)
4617{
4618 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4619 int i;
4620
4621 dev_priv->slab =
4622 kmem_cache_create("i915_gem_object",
4623 sizeof(struct drm_i915_gem_object), 0,
4624 SLAB_HWCACHE_ALIGN,
4625 NULL);
673a394b 4626
fc8c067e
BW
4627 INIT_LIST_HEAD(&dev_priv->vm_list);
4628 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4629
a33afea5 4630 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4631 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4632 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4633 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4634 for (i = 0; i < I915_NUM_RINGS; i++)
4635 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4636 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4637 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4638 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4639 i915_gem_retire_work_handler);
b29c19b6
CW
4640 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4641 i915_gem_idle_work_handler);
1f83fee0 4642 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4643
94400120
DA
4644 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4645 if (IS_GEN3(dev)) {
50743298
DV
4646 I915_WRITE(MI_ARB_STATE,
4647 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4648 }
4649
72bfa19c
CW
4650 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4651
de151cf6 4652 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4653 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4654 dev_priv->fence_reg_start = 3;
de151cf6 4655
42b5aeab
VS
4656 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4657 dev_priv->num_fence_regs = 32;
4658 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4659 dev_priv->num_fence_regs = 16;
4660 else
4661 dev_priv->num_fence_regs = 8;
4662
b5aa8a0f 4663 /* Initialize fence registers to zero */
19b2dbde
CW
4664 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4665 i915_gem_restore_fences(dev);
10ed13e4 4666
673a394b 4667 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4668 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4669
ce453d81
CW
4670 dev_priv->mm.interruptible = true;
4671
7dc19d5a
DC
4672 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4673 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4674 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4675 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4676}
71acb5eb
DA
4677
4678/*
4679 * Create a physically contiguous memory object for this object
4680 * e.g. for cursor + overlay regs
4681 */
995b6762
CW
4682static int i915_gem_init_phys_object(struct drm_device *dev,
4683 int id, int size, int align)
71acb5eb
DA
4684{
4685 drm_i915_private_t *dev_priv = dev->dev_private;
4686 struct drm_i915_gem_phys_object *phys_obj;
4687 int ret;
4688
4689 if (dev_priv->mm.phys_objs[id - 1] || !size)
4690 return 0;
4691
b14c5679 4692 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4693 if (!phys_obj)
4694 return -ENOMEM;
4695
4696 phys_obj->id = id;
4697
6eeefaf3 4698 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4699 if (!phys_obj->handle) {
4700 ret = -ENOMEM;
4701 goto kfree_obj;
4702 }
4703#ifdef CONFIG_X86
4704 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4705#endif
4706
4707 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4708
4709 return 0;
4710kfree_obj:
9a298b2a 4711 kfree(phys_obj);
71acb5eb
DA
4712 return ret;
4713}
4714
995b6762 4715static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4716{
4717 drm_i915_private_t *dev_priv = dev->dev_private;
4718 struct drm_i915_gem_phys_object *phys_obj;
4719
4720 if (!dev_priv->mm.phys_objs[id - 1])
4721 return;
4722
4723 phys_obj = dev_priv->mm.phys_objs[id - 1];
4724 if (phys_obj->cur_obj) {
4725 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4726 }
4727
4728#ifdef CONFIG_X86
4729 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4730#endif
4731 drm_pci_free(dev, phys_obj->handle);
4732 kfree(phys_obj);
4733 dev_priv->mm.phys_objs[id - 1] = NULL;
4734}
4735
4736void i915_gem_free_all_phys_object(struct drm_device *dev)
4737{
4738 int i;
4739
260883c8 4740 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4741 i915_gem_free_phys_object(dev, i);
4742}
4743
4744void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4745 struct drm_i915_gem_object *obj)
71acb5eb 4746{
496ad9aa 4747 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4748 char *vaddr;
71acb5eb 4749 int i;
71acb5eb
DA
4750 int page_count;
4751
05394f39 4752 if (!obj->phys_obj)
71acb5eb 4753 return;
05394f39 4754 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4755
05394f39 4756 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4757 for (i = 0; i < page_count; i++) {
5949eac4 4758 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4759 if (!IS_ERR(page)) {
4760 char *dst = kmap_atomic(page);
4761 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4762 kunmap_atomic(dst);
4763
4764 drm_clflush_pages(&page, 1);
4765
4766 set_page_dirty(page);
4767 mark_page_accessed(page);
4768 page_cache_release(page);
4769 }
71acb5eb 4770 }
e76e9aeb 4771 i915_gem_chipset_flush(dev);
d78b47b9 4772
05394f39
CW
4773 obj->phys_obj->cur_obj = NULL;
4774 obj->phys_obj = NULL;
71acb5eb
DA
4775}
4776
4777int
4778i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4779 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4780 int id,
4781 int align)
71acb5eb 4782{
496ad9aa 4783 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4784 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4785 int ret = 0;
4786 int page_count;
4787 int i;
4788
4789 if (id > I915_MAX_PHYS_OBJECT)
4790 return -EINVAL;
4791
05394f39
CW
4792 if (obj->phys_obj) {
4793 if (obj->phys_obj->id == id)
71acb5eb
DA
4794 return 0;
4795 i915_gem_detach_phys_object(dev, obj);
4796 }
4797
71acb5eb
DA
4798 /* create a new object */
4799 if (!dev_priv->mm.phys_objs[id - 1]) {
4800 ret = i915_gem_init_phys_object(dev, id,
05394f39 4801 obj->base.size, align);
71acb5eb 4802 if (ret) {
05394f39
CW
4803 DRM_ERROR("failed to init phys object %d size: %zu\n",
4804 id, obj->base.size);
e5281ccd 4805 return ret;
71acb5eb
DA
4806 }
4807 }
4808
4809 /* bind to the object */
05394f39
CW
4810 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4811 obj->phys_obj->cur_obj = obj;
71acb5eb 4812
05394f39 4813 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4814
4815 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4816 struct page *page;
4817 char *dst, *src;
4818
5949eac4 4819 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4820 if (IS_ERR(page))
4821 return PTR_ERR(page);
71acb5eb 4822
ff75b9bc 4823 src = kmap_atomic(page);
05394f39 4824 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4825 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4826 kunmap_atomic(src);
71acb5eb 4827
e5281ccd
CW
4828 mark_page_accessed(page);
4829 page_cache_release(page);
4830 }
d78b47b9 4831
71acb5eb 4832 return 0;
71acb5eb
DA
4833}
4834
4835static int
05394f39
CW
4836i915_gem_phys_pwrite(struct drm_device *dev,
4837 struct drm_i915_gem_object *obj,
71acb5eb
DA
4838 struct drm_i915_gem_pwrite *args,
4839 struct drm_file *file_priv)
4840{
05394f39 4841 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4842 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4843
b47b30cc
CW
4844 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4845 unsigned long unwritten;
4846
4847 /* The physical object once assigned is fixed for the lifetime
4848 * of the obj, so we can safely drop the lock and continue
4849 * to access vaddr.
4850 */
4851 mutex_unlock(&dev->struct_mutex);
4852 unwritten = copy_from_user(vaddr, user_data, args->size);
4853 mutex_lock(&dev->struct_mutex);
4854 if (unwritten)
4855 return -EFAULT;
4856 }
71acb5eb 4857
e76e9aeb 4858 i915_gem_chipset_flush(dev);
71acb5eb
DA
4859 return 0;
4860}
b962442e 4861
f787a5f5 4862void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4863{
f787a5f5 4864 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4865
b29c19b6
CW
4866 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4867
b962442e
EA
4868 /* Clean up our request list when the client is going away, so that
4869 * later retire_requests won't dereference our soon-to-be-gone
4870 * file_priv.
4871 */
1c25595f 4872 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4873 while (!list_empty(&file_priv->mm.request_list)) {
4874 struct drm_i915_gem_request *request;
4875
4876 request = list_first_entry(&file_priv->mm.request_list,
4877 struct drm_i915_gem_request,
4878 client_list);
4879 list_del(&request->client_list);
4880 request->file_priv = NULL;
4881 }
1c25595f 4882 spin_unlock(&file_priv->mm.lock);
b962442e 4883}
31169714 4884
b29c19b6
CW
4885static void
4886i915_gem_file_idle_work_handler(struct work_struct *work)
4887{
4888 struct drm_i915_file_private *file_priv =
4889 container_of(work, typeof(*file_priv), mm.idle_work.work);
4890
4891 atomic_set(&file_priv->rps_wait_boost, false);
4892}
4893
4894int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4895{
4896 struct drm_i915_file_private *file_priv;
4897
4898 DRM_DEBUG_DRIVER("\n");
4899
4900 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4901 if (!file_priv)
4902 return -ENOMEM;
4903
4904 file->driver_priv = file_priv;
4905 file_priv->dev_priv = dev->dev_private;
4906
4907 spin_lock_init(&file_priv->mm.lock);
4908 INIT_LIST_HEAD(&file_priv->mm.request_list);
4909 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4910 i915_gem_file_idle_work_handler);
4911
4912 idr_init(&file_priv->context_idr);
4913
4914 return 0;
4915}
4916
5774506f
CW
4917static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4918{
4919 if (!mutex_is_locked(mutex))
4920 return false;
4921
4922#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4923 return mutex->owner == task;
4924#else
4925 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4926 return false;
4927#endif
4928}
4929
7dc19d5a
DC
4930static unsigned long
4931i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4932{
17250b71
CW
4933 struct drm_i915_private *dev_priv =
4934 container_of(shrinker,
4935 struct drm_i915_private,
4936 mm.inactive_shrinker);
4937 struct drm_device *dev = dev_priv->dev;
6c085a72 4938 struct drm_i915_gem_object *obj;
5774506f 4939 bool unlock = true;
7dc19d5a 4940 unsigned long count;
17250b71 4941
5774506f
CW
4942 if (!mutex_trylock(&dev->struct_mutex)) {
4943 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4944 return 0;
5774506f 4945
677feac2 4946 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4947 return 0;
677feac2 4948
5774506f
CW
4949 unlock = false;
4950 }
31169714 4951
7dc19d5a 4952 count = 0;
35c20a60 4953 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4954 if (obj->pages_pin_count == 0)
7dc19d5a 4955 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4956
4957 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4958 if (obj->active)
4959 continue;
4960
a5570178 4961 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
7dc19d5a 4962 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4963 }
17250b71 4964
5774506f
CW
4965 if (unlock)
4966 mutex_unlock(&dev->struct_mutex);
d9973b43 4967
7dc19d5a 4968 return count;
31169714 4969}
a70a3148
BW
4970
4971/* All the new VM stuff */
4972unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4973 struct i915_address_space *vm)
4974{
4975 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4976 struct i915_vma *vma;
4977
6f425321
BW
4978 if (!dev_priv->mm.aliasing_ppgtt ||
4979 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4980 vm = &dev_priv->gtt.base;
4981
4982 BUG_ON(list_empty(&o->vma_list));
4983 list_for_each_entry(vma, &o->vma_list, vma_link) {
4984 if (vma->vm == vm)
4985 return vma->node.start;
4986
4987 }
4988 return -1;
4989}
4990
4991bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4992 struct i915_address_space *vm)
4993{
4994 struct i915_vma *vma;
4995
4996 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4997 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4998 return true;
4999
5000 return false;
5001}
5002
5003bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5004{
5a1d5eb0 5005 struct i915_vma *vma;
a70a3148 5006
5a1d5eb0
CW
5007 list_for_each_entry(vma, &o->vma_list, vma_link)
5008 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5009 return true;
5010
5011 return false;
5012}
5013
5014unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5015 struct i915_address_space *vm)
5016{
5017 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5018 struct i915_vma *vma;
5019
6f425321
BW
5020 if (!dev_priv->mm.aliasing_ppgtt ||
5021 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5022 vm = &dev_priv->gtt.base;
5023
5024 BUG_ON(list_empty(&o->vma_list));
5025
5026 list_for_each_entry(vma, &o->vma_list, vma_link)
5027 if (vma->vm == vm)
5028 return vma->node.size;
5029
5030 return 0;
5031}
5032
7dc19d5a
DC
5033static unsigned long
5034i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5035{
5036 struct drm_i915_private *dev_priv =
5037 container_of(shrinker,
5038 struct drm_i915_private,
5039 mm.inactive_shrinker);
5040 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5041 unsigned long freed;
5042 bool unlock = true;
5043
5044 if (!mutex_trylock(&dev->struct_mutex)) {
5045 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5046 return SHRINK_STOP;
7dc19d5a
DC
5047
5048 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5049 return SHRINK_STOP;
7dc19d5a
DC
5050
5051 unlock = false;
5052 }
5053
d9973b43
CW
5054 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5055 if (freed < sc->nr_to_scan)
5056 freed += __i915_gem_shrink(dev_priv,
5057 sc->nr_to_scan - freed,
5058 false);
5059 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5060 freed += i915_gem_shrink_all(dev_priv);
5061
5062 if (unlock)
5063 mutex_unlock(&dev->struct_mutex);
d9973b43 5064
7dc19d5a
DC
5065 return freed;
5066}
5c2abbea
BW
5067
5068struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5069{
5070 struct i915_vma *vma;
5071
5072 if (WARN_ON(list_empty(&obj->vma_list)))
5073 return NULL;
5074
5075 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5076 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5077 return NULL;
5078
5079 return vma;
5080}
This page took 0.986471 seconds and 5 git commands to generate.