drm/i915: Removed duplicate members from submit_request
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
5a125c3c
EA
156int
157i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 158 struct drm_file *file)
5a125c3c 159{
73aa808f 160 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 161 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
162 struct drm_i915_gem_object *obj;
163 size_t pinned;
5a125c3c 164
6299f992 165 pinned = 0;
73aa808f 166 mutex_lock(&dev->struct_mutex);
35c20a60 167 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 168 if (i915_gem_obj_is_pinned(obj))
f343c5f6 169 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 170 mutex_unlock(&dev->struct_mutex);
5a125c3c 171
853ba5d2 172 args->aper_size = dev_priv->gtt.base.total;
0206e353 173 args->aper_available_size = args->aper_size - pinned;
6299f992 174
5a125c3c
EA
175 return 0;
176}
177
6a2c4232
CW
178static int
179i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 180{
6a2c4232
CW
181 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
182 char *vaddr = obj->phys_handle->vaddr;
183 struct sg_table *st;
184 struct scatterlist *sg;
185 int i;
00731155 186
6a2c4232
CW
187 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
188 return -EINVAL;
189
190 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 struct page *page;
192 char *src;
193
194 page = shmem_read_mapping_page(mapping, i);
195 if (IS_ERR(page))
196 return PTR_ERR(page);
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 page_cache_release(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(obj->base.dev);
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (st == NULL)
211 return -ENOMEM;
212
213 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
214 kfree(st);
215 return -ENOMEM;
216 }
217
218 sg = st->sgl;
219 sg->offset = 0;
220 sg->length = obj->base.size;
00731155 221
6a2c4232
CW
222 sg_dma_address(sg) = obj->phys_handle->busaddr;
223 sg_dma_len(sg) = obj->base.size;
224
225 obj->pages = st;
226 obj->has_dma_mapping = true;
227 return 0;
228}
229
230static void
231i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
232{
233 int ret;
234
235 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 236
6a2c4232
CW
237 ret = i915_gem_object_set_to_cpu_domain(obj, true);
238 if (ret) {
239 /* In the event of a disaster, abandon all caches and
240 * hope for the best.
241 */
242 WARN_ON(ret != -EIO);
243 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
244 }
245
246 if (obj->madv == I915_MADV_DONTNEED)
247 obj->dirty = 0;
248
249 if (obj->dirty) {
00731155 250 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 251 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
252 int i;
253
254 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
255 struct page *page;
256 char *dst;
257
258 page = shmem_read_mapping_page(mapping, i);
259 if (IS_ERR(page))
260 continue;
261
262 dst = kmap_atomic(page);
263 drm_clflush_virt_range(vaddr, PAGE_SIZE);
264 memcpy(dst, vaddr, PAGE_SIZE);
265 kunmap_atomic(dst);
266
267 set_page_dirty(page);
268 if (obj->madv == I915_MADV_WILLNEED)
00731155 269 mark_page_accessed(page);
6a2c4232 270 page_cache_release(page);
00731155
CW
271 vaddr += PAGE_SIZE;
272 }
6a2c4232 273 obj->dirty = 0;
00731155
CW
274 }
275
6a2c4232
CW
276 sg_free_table(obj->pages);
277 kfree(obj->pages);
278
279 obj->has_dma_mapping = false;
280}
281
282static void
283i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
284{
285 drm_pci_free(obj->base.dev, obj->phys_handle);
286}
287
288static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
289 .get_pages = i915_gem_object_get_pages_phys,
290 .put_pages = i915_gem_object_put_pages_phys,
291 .release = i915_gem_object_release_phys,
292};
293
294static int
295drop_pages(struct drm_i915_gem_object *obj)
296{
297 struct i915_vma *vma, *next;
298 int ret;
299
300 drm_gem_object_reference(&obj->base);
301 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
302 if (i915_vma_unbind(vma))
303 break;
304
305 ret = i915_gem_object_put_pages(obj);
306 drm_gem_object_unreference(&obj->base);
307
308 return ret;
00731155
CW
309}
310
311int
312i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
313 int align)
314{
315 drm_dma_handle_t *phys;
6a2c4232 316 int ret;
00731155
CW
317
318 if (obj->phys_handle) {
319 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320 return -EBUSY;
321
322 return 0;
323 }
324
325 if (obj->madv != I915_MADV_WILLNEED)
326 return -EFAULT;
327
328 if (obj->base.filp == NULL)
329 return -EINVAL;
330
6a2c4232
CW
331 ret = drop_pages(obj);
332 if (ret)
333 return ret;
334
00731155
CW
335 /* create a new object */
336 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337 if (!phys)
338 return -ENOMEM;
339
00731155 340 obj->phys_handle = phys;
6a2c4232
CW
341 obj->ops = &i915_gem_phys_ops;
342
343 return i915_gem_object_get_pages(obj);
00731155
CW
344}
345
346static int
347i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
348 struct drm_i915_gem_pwrite *args,
349 struct drm_file *file_priv)
350{
351 struct drm_device *dev = obj->base.dev;
352 void *vaddr = obj->phys_handle->vaddr + args->offset;
353 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
354 int ret;
355
356 /* We manually control the domain here and pretend that it
357 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
358 */
359 ret = i915_gem_object_wait_rendering(obj, false);
360 if (ret)
361 return ret;
00731155
CW
362
363 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
364 unsigned long unwritten;
365
366 /* The physical object once assigned is fixed for the lifetime
367 * of the obj, so we can safely drop the lock and continue
368 * to access vaddr.
369 */
370 mutex_unlock(&dev->struct_mutex);
371 unwritten = copy_from_user(vaddr, user_data, args->size);
372 mutex_lock(&dev->struct_mutex);
373 if (unwritten)
374 return -EFAULT;
375 }
376
6a2c4232 377 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
378 i915_gem_chipset_flush(dev);
379 return 0;
380}
381
42dcedd4
CW
382void *i915_gem_object_alloc(struct drm_device *dev)
383{
384 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 385 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
386}
387
388void i915_gem_object_free(struct drm_i915_gem_object *obj)
389{
390 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
391 kmem_cache_free(dev_priv->slab, obj);
392}
393
ff72145b
DA
394static int
395i915_gem_create(struct drm_file *file,
396 struct drm_device *dev,
397 uint64_t size,
398 uint32_t *handle_p)
673a394b 399{
05394f39 400 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
401 int ret;
402 u32 handle;
673a394b 403
ff72145b 404 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
405 if (size == 0)
406 return -EINVAL;
673a394b
EA
407
408 /* Allocate the new object */
ff72145b 409 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
410 if (obj == NULL)
411 return -ENOMEM;
412
05394f39 413 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 414 /* drop reference from allocate - handle holds it now */
d861e338
DV
415 drm_gem_object_unreference_unlocked(&obj->base);
416 if (ret)
417 return ret;
202f2fef 418
ff72145b 419 *handle_p = handle;
673a394b
EA
420 return 0;
421}
422
ff72145b
DA
423int
424i915_gem_dumb_create(struct drm_file *file,
425 struct drm_device *dev,
426 struct drm_mode_create_dumb *args)
427{
428 /* have to work out size/pitch and return them */
de45eaf7 429 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
430 args->size = args->pitch * args->height;
431 return i915_gem_create(file, dev,
da6b51d0 432 args->size, &args->handle);
ff72145b
DA
433}
434
ff72145b
DA
435/**
436 * Creates a new mm object and returns a handle to it.
437 */
438int
439i915_gem_create_ioctl(struct drm_device *dev, void *data,
440 struct drm_file *file)
441{
442 struct drm_i915_gem_create *args = data;
63ed2cb2 443
ff72145b 444 return i915_gem_create(file, dev,
da6b51d0 445 args->size, &args->handle);
ff72145b
DA
446}
447
8461d226
DV
448static inline int
449__copy_to_user_swizzled(char __user *cpu_vaddr,
450 const char *gpu_vaddr, int gpu_offset,
451 int length)
452{
453 int ret, cpu_offset = 0;
454
455 while (length > 0) {
456 int cacheline_end = ALIGN(gpu_offset + 1, 64);
457 int this_length = min(cacheline_end - gpu_offset, length);
458 int swizzled_gpu_offset = gpu_offset ^ 64;
459
460 ret = __copy_to_user(cpu_vaddr + cpu_offset,
461 gpu_vaddr + swizzled_gpu_offset,
462 this_length);
463 if (ret)
464 return ret + length;
465
466 cpu_offset += this_length;
467 gpu_offset += this_length;
468 length -= this_length;
469 }
470
471 return 0;
472}
473
8c59967c 474static inline int
4f0c7cfb
BW
475__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
476 const char __user *cpu_vaddr,
8c59967c
DV
477 int length)
478{
479 int ret, cpu_offset = 0;
480
481 while (length > 0) {
482 int cacheline_end = ALIGN(gpu_offset + 1, 64);
483 int this_length = min(cacheline_end - gpu_offset, length);
484 int swizzled_gpu_offset = gpu_offset ^ 64;
485
486 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
487 cpu_vaddr + cpu_offset,
488 this_length);
489 if (ret)
490 return ret + length;
491
492 cpu_offset += this_length;
493 gpu_offset += this_length;
494 length -= this_length;
495 }
496
497 return 0;
498}
499
4c914c0c
BV
500/*
501 * Pins the specified object's pages and synchronizes the object with
502 * GPU accesses. Sets needs_clflush to non-zero if the caller should
503 * flush the object from the CPU cache.
504 */
505int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
506 int *needs_clflush)
507{
508 int ret;
509
510 *needs_clflush = 0;
511
512 if (!obj->base.filp)
513 return -EINVAL;
514
515 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
516 /* If we're not in the cpu read domain, set ourself into the gtt
517 * read domain and manually flush cachelines (if required). This
518 * optimizes for the case when the gpu will dirty the data
519 * anyway again before the next pread happens. */
520 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
521 obj->cache_level);
522 ret = i915_gem_object_wait_rendering(obj, true);
523 if (ret)
524 return ret;
c8725f3d
CW
525
526 i915_gem_object_retire(obj);
4c914c0c
BV
527 }
528
529 ret = i915_gem_object_get_pages(obj);
530 if (ret)
531 return ret;
532
533 i915_gem_object_pin_pages(obj);
534
535 return ret;
536}
537
d174bd64
DV
538/* Per-page copy function for the shmem pread fastpath.
539 * Flushes invalid cachelines before reading the target if
540 * needs_clflush is set. */
eb01459f 541static int
d174bd64
DV
542shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
543 char __user *user_data,
544 bool page_do_bit17_swizzling, bool needs_clflush)
545{
546 char *vaddr;
547 int ret;
548
e7e58eb5 549 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
550 return -EINVAL;
551
552 vaddr = kmap_atomic(page);
553 if (needs_clflush)
554 drm_clflush_virt_range(vaddr + shmem_page_offset,
555 page_length);
556 ret = __copy_to_user_inatomic(user_data,
557 vaddr + shmem_page_offset,
558 page_length);
559 kunmap_atomic(vaddr);
560
f60d7f0c 561 return ret ? -EFAULT : 0;
d174bd64
DV
562}
563
23c18c71
DV
564static void
565shmem_clflush_swizzled_range(char *addr, unsigned long length,
566 bool swizzled)
567{
e7e58eb5 568 if (unlikely(swizzled)) {
23c18c71
DV
569 unsigned long start = (unsigned long) addr;
570 unsigned long end = (unsigned long) addr + length;
571
572 /* For swizzling simply ensure that we always flush both
573 * channels. Lame, but simple and it works. Swizzled
574 * pwrite/pread is far from a hotpath - current userspace
575 * doesn't use it at all. */
576 start = round_down(start, 128);
577 end = round_up(end, 128);
578
579 drm_clflush_virt_range((void *)start, end - start);
580 } else {
581 drm_clflush_virt_range(addr, length);
582 }
583
584}
585
d174bd64
DV
586/* Only difference to the fast-path function is that this can handle bit17
587 * and uses non-atomic copy and kmap functions. */
588static int
589shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
590 char __user *user_data,
591 bool page_do_bit17_swizzling, bool needs_clflush)
592{
593 char *vaddr;
594 int ret;
595
596 vaddr = kmap(page);
597 if (needs_clflush)
23c18c71
DV
598 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
599 page_length,
600 page_do_bit17_swizzling);
d174bd64
DV
601
602 if (page_do_bit17_swizzling)
603 ret = __copy_to_user_swizzled(user_data,
604 vaddr, shmem_page_offset,
605 page_length);
606 else
607 ret = __copy_to_user(user_data,
608 vaddr + shmem_page_offset,
609 page_length);
610 kunmap(page);
611
f60d7f0c 612 return ret ? - EFAULT : 0;
d174bd64
DV
613}
614
eb01459f 615static int
dbf7bff0
DV
616i915_gem_shmem_pread(struct drm_device *dev,
617 struct drm_i915_gem_object *obj,
618 struct drm_i915_gem_pread *args,
619 struct drm_file *file)
eb01459f 620{
8461d226 621 char __user *user_data;
eb01459f 622 ssize_t remain;
8461d226 623 loff_t offset;
eb2c0c81 624 int shmem_page_offset, page_length, ret = 0;
8461d226 625 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 626 int prefaulted = 0;
8489731c 627 int needs_clflush = 0;
67d5a50c 628 struct sg_page_iter sg_iter;
eb01459f 629
2bb4629a 630 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
631 remain = args->size;
632
8461d226 633 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 634
4c914c0c 635 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
636 if (ret)
637 return ret;
638
8461d226 639 offset = args->offset;
eb01459f 640
67d5a50c
ID
641 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
642 offset >> PAGE_SHIFT) {
2db76d7c 643 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
644
645 if (remain <= 0)
646 break;
647
eb01459f
EA
648 /* Operation in this page
649 *
eb01459f 650 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
651 * page_length = bytes to copy for this page
652 */
c8cbbb8b 653 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
654 page_length = remain;
655 if ((shmem_page_offset + page_length) > PAGE_SIZE)
656 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 657
8461d226
DV
658 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
659 (page_to_phys(page) & (1 << 17)) != 0;
660
d174bd64
DV
661 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
662 user_data, page_do_bit17_swizzling,
663 needs_clflush);
664 if (ret == 0)
665 goto next_page;
dbf7bff0 666
dbf7bff0
DV
667 mutex_unlock(&dev->struct_mutex);
668
d330a953 669 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 670 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
671 /* Userspace is tricking us, but we've already clobbered
672 * its pages with the prefault and promised to write the
673 * data up to the first fault. Hence ignore any errors
674 * and just continue. */
675 (void)ret;
676 prefaulted = 1;
677 }
eb01459f 678
d174bd64
DV
679 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
680 user_data, page_do_bit17_swizzling,
681 needs_clflush);
eb01459f 682
dbf7bff0 683 mutex_lock(&dev->struct_mutex);
f60d7f0c 684
f60d7f0c 685 if (ret)
8461d226 686 goto out;
8461d226 687
17793c9a 688next_page:
eb01459f 689 remain -= page_length;
8461d226 690 user_data += page_length;
eb01459f
EA
691 offset += page_length;
692 }
693
4f27b75d 694out:
f60d7f0c
CW
695 i915_gem_object_unpin_pages(obj);
696
eb01459f
EA
697 return ret;
698}
699
673a394b
EA
700/**
701 * Reads data from the object referenced by handle.
702 *
703 * On error, the contents of *data are undefined.
704 */
705int
706i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 707 struct drm_file *file)
673a394b
EA
708{
709 struct drm_i915_gem_pread *args = data;
05394f39 710 struct drm_i915_gem_object *obj;
35b62a89 711 int ret = 0;
673a394b 712
51311d0a
CW
713 if (args->size == 0)
714 return 0;
715
716 if (!access_ok(VERIFY_WRITE,
2bb4629a 717 to_user_ptr(args->data_ptr),
51311d0a
CW
718 args->size))
719 return -EFAULT;
720
4f27b75d 721 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 722 if (ret)
4f27b75d 723 return ret;
673a394b 724
05394f39 725 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 726 if (&obj->base == NULL) {
1d7cfea1
CW
727 ret = -ENOENT;
728 goto unlock;
4f27b75d 729 }
673a394b 730
7dcd2499 731 /* Bounds check source. */
05394f39
CW
732 if (args->offset > obj->base.size ||
733 args->size > obj->base.size - args->offset) {
ce9d419d 734 ret = -EINVAL;
35b62a89 735 goto out;
ce9d419d
CW
736 }
737
1286ff73
DV
738 /* prime objects have no backing filp to GEM pread/pwrite
739 * pages from.
740 */
741 if (!obj->base.filp) {
742 ret = -EINVAL;
743 goto out;
744 }
745
db53a302
CW
746 trace_i915_gem_object_pread(obj, args->offset, args->size);
747
dbf7bff0 748 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 749
35b62a89 750out:
05394f39 751 drm_gem_object_unreference(&obj->base);
1d7cfea1 752unlock:
4f27b75d 753 mutex_unlock(&dev->struct_mutex);
eb01459f 754 return ret;
673a394b
EA
755}
756
0839ccb8
KP
757/* This is the fast write path which cannot handle
758 * page faults in the source data
9b7530cc 759 */
0839ccb8
KP
760
761static inline int
762fast_user_write(struct io_mapping *mapping,
763 loff_t page_base, int page_offset,
764 char __user *user_data,
765 int length)
9b7530cc 766{
4f0c7cfb
BW
767 void __iomem *vaddr_atomic;
768 void *vaddr;
0839ccb8 769 unsigned long unwritten;
9b7530cc 770
3e4d3af5 771 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
772 /* We can use the cpu mem copy function because this is X86. */
773 vaddr = (void __force*)vaddr_atomic + page_offset;
774 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 775 user_data, length);
3e4d3af5 776 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 777 return unwritten;
0839ccb8
KP
778}
779
3de09aa3
EA
780/**
781 * This is the fast pwrite path, where we copy the data directly from the
782 * user into the GTT, uncached.
783 */
673a394b 784static int
05394f39
CW
785i915_gem_gtt_pwrite_fast(struct drm_device *dev,
786 struct drm_i915_gem_object *obj,
3de09aa3 787 struct drm_i915_gem_pwrite *args,
05394f39 788 struct drm_file *file)
673a394b 789{
3e31c6c0 790 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 791 ssize_t remain;
0839ccb8 792 loff_t offset, page_base;
673a394b 793 char __user *user_data;
935aaa69
DV
794 int page_offset, page_length, ret;
795
1ec9e26d 796 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
797 if (ret)
798 goto out;
799
800 ret = i915_gem_object_set_to_gtt_domain(obj, true);
801 if (ret)
802 goto out_unpin;
803
804 ret = i915_gem_object_put_fence(obj);
805 if (ret)
806 goto out_unpin;
673a394b 807
2bb4629a 808 user_data = to_user_ptr(args->data_ptr);
673a394b 809 remain = args->size;
673a394b 810
f343c5f6 811 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
812
813 while (remain > 0) {
814 /* Operation in this page
815 *
0839ccb8
KP
816 * page_base = page offset within aperture
817 * page_offset = offset within page
818 * page_length = bytes to copy for this page
673a394b 819 */
c8cbbb8b
CW
820 page_base = offset & PAGE_MASK;
821 page_offset = offset_in_page(offset);
0839ccb8
KP
822 page_length = remain;
823 if ((page_offset + remain) > PAGE_SIZE)
824 page_length = PAGE_SIZE - page_offset;
825
0839ccb8 826 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
827 * source page isn't available. Return the error and we'll
828 * retry in the slow path.
0839ccb8 829 */
5d4545ae 830 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
831 page_offset, user_data, page_length)) {
832 ret = -EFAULT;
833 goto out_unpin;
834 }
673a394b 835
0839ccb8
KP
836 remain -= page_length;
837 user_data += page_length;
838 offset += page_length;
673a394b 839 }
673a394b 840
935aaa69 841out_unpin:
d7f46fc4 842 i915_gem_object_ggtt_unpin(obj);
935aaa69 843out:
3de09aa3 844 return ret;
673a394b
EA
845}
846
d174bd64
DV
847/* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
3043c60c 851static int
d174bd64
DV
852shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
673a394b 857{
d174bd64 858 char *vaddr;
673a394b 859 int ret;
3de09aa3 860
e7e58eb5 861 if (unlikely(page_do_bit17_swizzling))
d174bd64 862 return -EINVAL;
3de09aa3 863
d174bd64
DV
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
c2831a94
CW
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
d174bd64
DV
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
3de09aa3 874
755d2218 875 return ret ? -EFAULT : 0;
3de09aa3
EA
876}
877
d174bd64
DV
878/* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
3043c60c 880static int
d174bd64
DV
881shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
673a394b 886{
d174bd64
DV
887 char *vaddr;
888 int ret;
e5281ccd 889
d174bd64 890 vaddr = kmap(page);
e7e58eb5 891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
d174bd64
DV
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
897 user_data,
898 page_length);
d174bd64
DV
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
23c18c71
DV
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
d174bd64 907 kunmap(page);
40123c1f 908
755d2218 909 return ret ? -EFAULT : 0;
40123c1f
EA
910}
911
40123c1f 912static int
e244a443
DV
913i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
40123c1f 917{
40123c1f 918 ssize_t remain;
8c59967c
DV
919 loff_t offset;
920 char __user *user_data;
eb2c0c81 921 int shmem_page_offset, page_length, ret = 0;
8c59967c 922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 923 int hit_slowpath = 0;
58642885
DV
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
67d5a50c 926 struct sg_page_iter sg_iter;
40123c1f 927
2bb4629a 928 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
929 remain = args->size;
930
8c59967c 931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 932
58642885
DV
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
2c22569b 938 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
c8725f3d
CW
942
943 i915_gem_object_retire(obj);
58642885 944 }
c76ce038
CW
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 950
755d2218
CW
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 i915_gem_object_pin_pages(obj);
956
673a394b 957 offset = args->offset;
05394f39 958 obj->dirty = 1;
673a394b 959
67d5a50c
ID
960 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
961 offset >> PAGE_SHIFT) {
2db76d7c 962 struct page *page = sg_page_iter_page(&sg_iter);
58642885 963 int partial_cacheline_write;
e5281ccd 964
9da3da66
CW
965 if (remain <= 0)
966 break;
967
40123c1f
EA
968 /* Operation in this page
969 *
40123c1f 970 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
971 * page_length = bytes to copy for this page
972 */
c8cbbb8b 973 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
974
975 page_length = remain;
976 if ((shmem_page_offset + page_length) > PAGE_SIZE)
977 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 978
58642885
DV
979 /* If we don't overwrite a cacheline completely we need to be
980 * careful to have up-to-date data by first clflushing. Don't
981 * overcomplicate things and flush the entire patch. */
982 partial_cacheline_write = needs_clflush_before &&
983 ((shmem_page_offset | page_length)
984 & (boot_cpu_data.x86_clflush_size - 1));
985
8c59967c
DV
986 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
987 (page_to_phys(page) & (1 << 17)) != 0;
988
d174bd64
DV
989 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
990 user_data, page_do_bit17_swizzling,
991 partial_cacheline_write,
992 needs_clflush_after);
993 if (ret == 0)
994 goto next_page;
e244a443
DV
995
996 hit_slowpath = 1;
e244a443 997 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
998 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
999 user_data, page_do_bit17_swizzling,
1000 partial_cacheline_write,
1001 needs_clflush_after);
40123c1f 1002
e244a443 1003 mutex_lock(&dev->struct_mutex);
755d2218 1004
755d2218 1005 if (ret)
8c59967c 1006 goto out;
8c59967c 1007
17793c9a 1008next_page:
40123c1f 1009 remain -= page_length;
8c59967c 1010 user_data += page_length;
40123c1f 1011 offset += page_length;
673a394b
EA
1012 }
1013
fbd5a26d 1014out:
755d2218
CW
1015 i915_gem_object_unpin_pages(obj);
1016
e244a443 1017 if (hit_slowpath) {
8dcf015e
DV
1018 /*
1019 * Fixup: Flush cpu caches in case we didn't flush the dirty
1020 * cachelines in-line while writing and the object moved
1021 * out of the cpu write domain while we've dropped the lock.
1022 */
1023 if (!needs_clflush_after &&
1024 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1025 if (i915_gem_clflush_object(obj, obj->pin_display))
1026 i915_gem_chipset_flush(dev);
e244a443 1027 }
8c59967c 1028 }
673a394b 1029
58642885 1030 if (needs_clflush_after)
e76e9aeb 1031 i915_gem_chipset_flush(dev);
58642885 1032
40123c1f 1033 return ret;
673a394b
EA
1034}
1035
1036/**
1037 * Writes data to the object referenced by handle.
1038 *
1039 * On error, the contents of the buffer that were to be modified are undefined.
1040 */
1041int
1042i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1043 struct drm_file *file)
673a394b 1044{
5d77d9c5 1045 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1046 struct drm_i915_gem_pwrite *args = data;
05394f39 1047 struct drm_i915_gem_object *obj;
51311d0a
CW
1048 int ret;
1049
1050 if (args->size == 0)
1051 return 0;
1052
1053 if (!access_ok(VERIFY_READ,
2bb4629a 1054 to_user_ptr(args->data_ptr),
51311d0a
CW
1055 args->size))
1056 return -EFAULT;
1057
d330a953 1058 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1059 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1060 args->size);
1061 if (ret)
1062 return -EFAULT;
1063 }
673a394b 1064
5d77d9c5
ID
1065 intel_runtime_pm_get(dev_priv);
1066
fbd5a26d 1067 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1068 if (ret)
5d77d9c5 1069 goto put_rpm;
1d7cfea1 1070
05394f39 1071 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1072 if (&obj->base == NULL) {
1d7cfea1
CW
1073 ret = -ENOENT;
1074 goto unlock;
fbd5a26d 1075 }
673a394b 1076
7dcd2499 1077 /* Bounds check destination. */
05394f39
CW
1078 if (args->offset > obj->base.size ||
1079 args->size > obj->base.size - args->offset) {
ce9d419d 1080 ret = -EINVAL;
35b62a89 1081 goto out;
ce9d419d
CW
1082 }
1083
1286ff73
DV
1084 /* prime objects have no backing filp to GEM pread/pwrite
1085 * pages from.
1086 */
1087 if (!obj->base.filp) {
1088 ret = -EINVAL;
1089 goto out;
1090 }
1091
db53a302
CW
1092 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1093
935aaa69 1094 ret = -EFAULT;
673a394b
EA
1095 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1096 * it would end up going through the fenced access, and we'll get
1097 * different detiling behavior between reading and writing.
1098 * pread/pwrite currently are reading and writing from the CPU
1099 * perspective, requiring manual detiling by the client.
1100 */
2c22569b
CW
1101 if (obj->tiling_mode == I915_TILING_NONE &&
1102 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1103 cpu_write_needs_clflush(obj)) {
fbd5a26d 1104 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1105 /* Note that the gtt paths might fail with non-page-backed user
1106 * pointers (e.g. gtt mappings when moving data between
1107 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1108 }
673a394b 1109
6a2c4232
CW
1110 if (ret == -EFAULT || ret == -ENOSPC) {
1111 if (obj->phys_handle)
1112 ret = i915_gem_phys_pwrite(obj, args, file);
1113 else
1114 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1115 }
5c0480f2 1116
35b62a89 1117out:
05394f39 1118 drm_gem_object_unreference(&obj->base);
1d7cfea1 1119unlock:
fbd5a26d 1120 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1121put_rpm:
1122 intel_runtime_pm_put(dev_priv);
1123
673a394b
EA
1124 return ret;
1125}
1126
b361237b 1127int
33196ded 1128i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1129 bool interruptible)
1130{
1f83fee0 1131 if (i915_reset_in_progress(error)) {
b361237b
CW
1132 /* Non-interruptible callers can't handle -EAGAIN, hence return
1133 * -EIO unconditionally for these. */
1134 if (!interruptible)
1135 return -EIO;
1136
1f83fee0
DV
1137 /* Recovery complete, but the reset failed ... */
1138 if (i915_terminally_wedged(error))
b361237b
CW
1139 return -EIO;
1140
6689c167
MA
1141 /*
1142 * Check if GPU Reset is in progress - we need intel_ring_begin
1143 * to work properly to reinit the hw state while the gpu is
1144 * still marked as reset-in-progress. Handle this with a flag.
1145 */
1146 if (!error->reload_in_reset)
1147 return -EAGAIN;
b361237b
CW
1148 }
1149
1150 return 0;
1151}
1152
1153/*
b6660d59 1154 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1155 */
84c33a64 1156int
b6660d59 1157i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b
CW
1158{
1159 int ret;
1160
b6660d59 1161 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b
CW
1162
1163 ret = 0;
b6660d59 1164 if (req == req->ring->outstanding_lazy_request)
9400ae5c 1165 ret = i915_add_request(req->ring);
b361237b
CW
1166
1167 return ret;
1168}
1169
094f9a54
CW
1170static void fake_irq(unsigned long data)
1171{
1172 wake_up_process((struct task_struct *)data);
1173}
1174
1175static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1176 struct intel_engine_cs *ring)
094f9a54
CW
1177{
1178 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1179}
1180
b29c19b6
CW
1181static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1182{
1183 if (file_priv == NULL)
1184 return true;
1185
1186 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1187}
1188
b361237b 1189/**
9c654818
JH
1190 * __i915_wait_request - wait until execution of request has finished
1191 * @req: duh!
1192 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1193 * @interruptible: do an interruptible wait (normally yes)
1194 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1195 *
f69061be
DV
1196 * Note: It is of utmost importance that the passed in seqno and reset_counter
1197 * values have been read by the caller in an smp safe manner. Where read-side
1198 * locks are involved, it is sufficient to read the reset_counter before
1199 * unlocking the lock that protects the seqno. For lockless tricks, the
1200 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1201 * inserted.
1202 *
9c654818 1203 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1204 * errno with remaining time filled in timeout argument.
1205 */
9c654818 1206int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1207 unsigned reset_counter,
b29c19b6 1208 bool interruptible,
5ed0bdf2 1209 s64 *timeout,
b29c19b6 1210 struct drm_i915_file_private *file_priv)
b361237b 1211{
9c654818 1212 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1213 struct drm_device *dev = ring->dev;
3e31c6c0 1214 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1215 const bool irq_test_in_progress =
1216 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1217 DEFINE_WAIT(wait);
47e9766d 1218 unsigned long timeout_expire;
5ed0bdf2 1219 s64 before, now;
b361237b
CW
1220 int ret;
1221
9df7575f 1222 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1223
1b5a433a 1224 if (i915_gem_request_completed(req, true))
b361237b
CW
1225 return 0;
1226
7bd0e226
DV
1227 timeout_expire = timeout ?
1228 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1229
ec5cc0f9 1230 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1231 gen6_rps_boost(dev_priv);
1232 if (file_priv)
1233 mod_delayed_work(dev_priv->wq,
1234 &file_priv->mm.idle_work,
1235 msecs_to_jiffies(100));
1236 }
1237
168c3f21 1238 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1239 return -ENODEV;
1240
094f9a54 1241 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1242 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1243 before = ktime_get_raw_ns();
094f9a54
CW
1244 for (;;) {
1245 struct timer_list timer;
b361237b 1246
094f9a54
CW
1247 prepare_to_wait(&ring->irq_queue, &wait,
1248 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1249
f69061be
DV
1250 /* We need to check whether any gpu reset happened in between
1251 * the caller grabbing the seqno and now ... */
094f9a54
CW
1252 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1253 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1254 * is truely gone. */
1255 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1256 if (ret == 0)
1257 ret = -EAGAIN;
1258 break;
1259 }
f69061be 1260
1b5a433a 1261 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1262 ret = 0;
1263 break;
1264 }
b361237b 1265
094f9a54
CW
1266 if (interruptible && signal_pending(current)) {
1267 ret = -ERESTARTSYS;
1268 break;
1269 }
1270
47e9766d 1271 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1272 ret = -ETIME;
1273 break;
1274 }
1275
1276 timer.function = NULL;
1277 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1278 unsigned long expire;
1279
094f9a54 1280 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1281 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1282 mod_timer(&timer, expire);
1283 }
1284
5035c275 1285 io_schedule();
094f9a54 1286
094f9a54
CW
1287 if (timer.function) {
1288 del_singleshot_timer_sync(&timer);
1289 destroy_timer_on_stack(&timer);
1290 }
1291 }
5ed0bdf2 1292 now = ktime_get_raw_ns();
74328ee5 1293 trace_i915_gem_request_wait_end(req);
b361237b 1294
168c3f21
MK
1295 if (!irq_test_in_progress)
1296 ring->irq_put(ring);
094f9a54
CW
1297
1298 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1299
1300 if (timeout) {
5ed0bdf2
TG
1301 s64 tres = *timeout - (now - before);
1302
1303 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1304
1305 /*
1306 * Apparently ktime isn't accurate enough and occasionally has a
1307 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1308 * things up to make the test happy. We allow up to 1 jiffy.
1309 *
1310 * This is a regrssion from the timespec->ktime conversion.
1311 */
1312 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1313 *timeout = 0;
b361237b
CW
1314 }
1315
094f9a54 1316 return ret;
b361237b
CW
1317}
1318
1319/**
a4b3a571 1320 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1321 * request and object lists appropriately for that event.
1322 */
1323int
a4b3a571 1324i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1325{
a4b3a571
DV
1326 struct drm_device *dev;
1327 struct drm_i915_private *dev_priv;
1328 bool interruptible;
16e9a21f 1329 unsigned reset_counter;
b361237b
CW
1330 int ret;
1331
a4b3a571
DV
1332 BUG_ON(req == NULL);
1333
1334 dev = req->ring->dev;
1335 dev_priv = dev->dev_private;
1336 interruptible = dev_priv->mm.interruptible;
1337
b361237b 1338 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1339
33196ded 1340 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1341 if (ret)
1342 return ret;
1343
a4b3a571 1344 ret = i915_gem_check_olr(req);
b361237b
CW
1345 if (ret)
1346 return ret;
1347
16e9a21f 1348 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
a4b3a571 1349 i915_gem_request_reference(req);
9c654818
JH
1350 ret = __i915_wait_request(req, reset_counter,
1351 interruptible, NULL, NULL);
a4b3a571
DV
1352 i915_gem_request_unreference(req);
1353 return ret;
b361237b
CW
1354}
1355
d26e3af8 1356static int
8e639549 1357i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1358{
c8725f3d
CW
1359 if (!obj->active)
1360 return 0;
d26e3af8
CW
1361
1362 /* Manually manage the write flush as we may have not yet
1363 * retired the buffer.
1364 *
97b2a6a1
JH
1365 * Note that the last_write_req is always the earlier of
1366 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1367 * we know we have passed the last write.
1368 */
97b2a6a1 1369 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1370
1371 return 0;
1372}
1373
b361237b
CW
1374/**
1375 * Ensures that all rendering to the object has completed and the object is
1376 * safe to unbind from the GTT or access from the CPU.
1377 */
1378static __must_check int
1379i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1380 bool readonly)
1381{
97b2a6a1 1382 struct drm_i915_gem_request *req;
b361237b
CW
1383 int ret;
1384
97b2a6a1
JH
1385 req = readonly ? obj->last_write_req : obj->last_read_req;
1386 if (!req)
b361237b
CW
1387 return 0;
1388
a4b3a571 1389 ret = i915_wait_request(req);
b361237b
CW
1390 if (ret)
1391 return ret;
1392
8e639549 1393 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1394}
1395
3236f57a
CW
1396/* A nonblocking variant of the above wait. This is a highly dangerous routine
1397 * as the object state may change during this call.
1398 */
1399static __must_check int
1400i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1401 struct drm_i915_file_private *file_priv,
3236f57a
CW
1402 bool readonly)
1403{
97b2a6a1 1404 struct drm_i915_gem_request *req;
3236f57a
CW
1405 struct drm_device *dev = obj->base.dev;
1406 struct drm_i915_private *dev_priv = dev->dev_private;
f69061be 1407 unsigned reset_counter;
3236f57a
CW
1408 int ret;
1409
1410 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411 BUG_ON(!dev_priv->mm.interruptible);
1412
97b2a6a1
JH
1413 req = readonly ? obj->last_write_req : obj->last_read_req;
1414 if (!req)
3236f57a
CW
1415 return 0;
1416
33196ded 1417 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1418 if (ret)
1419 return ret;
1420
b6660d59 1421 ret = i915_gem_check_olr(req);
3236f57a
CW
1422 if (ret)
1423 return ret;
1424
f69061be 1425 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1426 i915_gem_request_reference(req);
3236f57a 1427 mutex_unlock(&dev->struct_mutex);
9c654818 1428 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
3236f57a 1429 mutex_lock(&dev->struct_mutex);
ff865885 1430 i915_gem_request_unreference(req);
d26e3af8
CW
1431 if (ret)
1432 return ret;
3236f57a 1433
8e639549 1434 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1435}
1436
673a394b 1437/**
2ef7eeaa
EA
1438 * Called when user space prepares to use an object with the CPU, either
1439 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1440 */
1441int
1442i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1443 struct drm_file *file)
673a394b
EA
1444{
1445 struct drm_i915_gem_set_domain *args = data;
05394f39 1446 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1447 uint32_t read_domains = args->read_domains;
1448 uint32_t write_domain = args->write_domain;
673a394b
EA
1449 int ret;
1450
2ef7eeaa 1451 /* Only handle setting domains to types used by the CPU. */
21d509e3 1452 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1453 return -EINVAL;
1454
21d509e3 1455 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1456 return -EINVAL;
1457
1458 /* Having something in the write domain implies it's in the read
1459 * domain, and only that read domain. Enforce that in the request.
1460 */
1461 if (write_domain != 0 && read_domains != write_domain)
1462 return -EINVAL;
1463
76c1dec1 1464 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1465 if (ret)
76c1dec1 1466 return ret;
1d7cfea1 1467
05394f39 1468 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1469 if (&obj->base == NULL) {
1d7cfea1
CW
1470 ret = -ENOENT;
1471 goto unlock;
76c1dec1 1472 }
673a394b 1473
3236f57a
CW
1474 /* Try to flush the object off the GPU without holding the lock.
1475 * We will repeat the flush holding the lock in the normal manner
1476 * to catch cases where we are gazumped.
1477 */
6e4930f6
CW
1478 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1479 file->driver_priv,
1480 !write_domain);
3236f57a
CW
1481 if (ret)
1482 goto unref;
1483
43566ded 1484 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1485 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1486 else
e47c68e9 1487 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1488
3236f57a 1489unref:
05394f39 1490 drm_gem_object_unreference(&obj->base);
1d7cfea1 1491unlock:
673a394b
EA
1492 mutex_unlock(&dev->struct_mutex);
1493 return ret;
1494}
1495
1496/**
1497 * Called when user space has done writes to this buffer
1498 */
1499int
1500i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1501 struct drm_file *file)
673a394b
EA
1502{
1503 struct drm_i915_gem_sw_finish *args = data;
05394f39 1504 struct drm_i915_gem_object *obj;
673a394b
EA
1505 int ret = 0;
1506
76c1dec1 1507 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1508 if (ret)
76c1dec1 1509 return ret;
1d7cfea1 1510
05394f39 1511 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1512 if (&obj->base == NULL) {
1d7cfea1
CW
1513 ret = -ENOENT;
1514 goto unlock;
673a394b
EA
1515 }
1516
673a394b 1517 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1518 if (obj->pin_display)
1519 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1520
05394f39 1521 drm_gem_object_unreference(&obj->base);
1d7cfea1 1522unlock:
673a394b
EA
1523 mutex_unlock(&dev->struct_mutex);
1524 return ret;
1525}
1526
1527/**
1528 * Maps the contents of an object, returning the address it is mapped
1529 * into.
1530 *
1531 * While the mapping holds a reference on the contents of the object, it doesn't
1532 * imply a ref on the object itself.
34367381
DV
1533 *
1534 * IMPORTANT:
1535 *
1536 * DRM driver writers who look a this function as an example for how to do GEM
1537 * mmap support, please don't implement mmap support like here. The modern way
1538 * to implement DRM mmap support is with an mmap offset ioctl (like
1539 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1540 * That way debug tooling like valgrind will understand what's going on, hiding
1541 * the mmap call in a driver private ioctl will break that. The i915 driver only
1542 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1543 */
1544int
1545i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1546 struct drm_file *file)
673a394b
EA
1547{
1548 struct drm_i915_gem_mmap *args = data;
1549 struct drm_gem_object *obj;
673a394b
EA
1550 unsigned long addr;
1551
1816f923
AG
1552 if (args->flags & ~(I915_MMAP_WC))
1553 return -EINVAL;
1554
1555 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1556 return -ENODEV;
1557
05394f39 1558 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1559 if (obj == NULL)
bf79cb91 1560 return -ENOENT;
673a394b 1561
1286ff73
DV
1562 /* prime objects have no backing filp to GEM mmap
1563 * pages from.
1564 */
1565 if (!obj->filp) {
1566 drm_gem_object_unreference_unlocked(obj);
1567 return -EINVAL;
1568 }
1569
6be5ceb0 1570 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1571 PROT_READ | PROT_WRITE, MAP_SHARED,
1572 args->offset);
1816f923
AG
1573 if (args->flags & I915_MMAP_WC) {
1574 struct mm_struct *mm = current->mm;
1575 struct vm_area_struct *vma;
1576
1577 down_write(&mm->mmap_sem);
1578 vma = find_vma(mm, addr);
1579 if (vma)
1580 vma->vm_page_prot =
1581 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1582 else
1583 addr = -ENOMEM;
1584 up_write(&mm->mmap_sem);
1585 }
bc9025bd 1586 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1587 if (IS_ERR((void *)addr))
1588 return addr;
1589
1590 args->addr_ptr = (uint64_t) addr;
1591
1592 return 0;
1593}
1594
de151cf6
JB
1595/**
1596 * i915_gem_fault - fault a page into the GTT
1597 * vma: VMA in question
1598 * vmf: fault info
1599 *
1600 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1601 * from userspace. The fault handler takes care of binding the object to
1602 * the GTT (if needed), allocating and programming a fence register (again,
1603 * only if needed based on whether the old reg is still valid or the object
1604 * is tiled) and inserting a new PTE into the faulting process.
1605 *
1606 * Note that the faulting process may involve evicting existing objects
1607 * from the GTT and/or fence registers to make room. So performance may
1608 * suffer if the GTT working set is large or there are few fence registers
1609 * left.
1610 */
1611int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1612{
05394f39
CW
1613 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1614 struct drm_device *dev = obj->base.dev;
3e31c6c0 1615 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1616 pgoff_t page_offset;
1617 unsigned long pfn;
1618 int ret = 0;
0f973f27 1619 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1620
f65c9168
PZ
1621 intel_runtime_pm_get(dev_priv);
1622
de151cf6
JB
1623 /* We don't use vmf->pgoff since that has the fake offset */
1624 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1625 PAGE_SHIFT;
1626
d9bc7e9f
CW
1627 ret = i915_mutex_lock_interruptible(dev);
1628 if (ret)
1629 goto out;
a00b10c3 1630
db53a302
CW
1631 trace_i915_gem_object_fault(obj, page_offset, true, write);
1632
6e4930f6
CW
1633 /* Try to flush the object off the GPU first without holding the lock.
1634 * Upon reacquiring the lock, we will perform our sanity checks and then
1635 * repeat the flush holding the lock in the normal manner to catch cases
1636 * where we are gazumped.
1637 */
1638 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1639 if (ret)
1640 goto unlock;
1641
eb119bd6
CW
1642 /* Access to snoopable pages through the GTT is incoherent. */
1643 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1644 ret = -EFAULT;
eb119bd6
CW
1645 goto unlock;
1646 }
1647
d9bc7e9f 1648 /* Now bind it into the GTT if needed */
1ec9e26d 1649 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1650 if (ret)
1651 goto unlock;
4a684a41 1652
c9839303
CW
1653 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1654 if (ret)
1655 goto unpin;
74898d7e 1656
06d98131 1657 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1658 if (ret)
c9839303 1659 goto unpin;
7d1c4804 1660
b90b91d8 1661 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1662 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1663 pfn >>= PAGE_SHIFT;
de151cf6 1664
b90b91d8 1665 if (!obj->fault_mappable) {
beff0d0f
VS
1666 unsigned long size = min_t(unsigned long,
1667 vma->vm_end - vma->vm_start,
1668 obj->base.size);
b90b91d8
CW
1669 int i;
1670
beff0d0f 1671 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1672 ret = vm_insert_pfn(vma,
1673 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1674 pfn + i);
1675 if (ret)
1676 break;
1677 }
1678
1679 obj->fault_mappable = true;
1680 } else
1681 ret = vm_insert_pfn(vma,
1682 (unsigned long)vmf->virtual_address,
1683 pfn + page_offset);
c9839303 1684unpin:
d7f46fc4 1685 i915_gem_object_ggtt_unpin(obj);
c715089f 1686unlock:
de151cf6 1687 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1688out:
de151cf6 1689 switch (ret) {
d9bc7e9f 1690 case -EIO:
2232f031
DV
1691 /*
1692 * We eat errors when the gpu is terminally wedged to avoid
1693 * userspace unduly crashing (gl has no provisions for mmaps to
1694 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1695 * and so needs to be reported.
1696 */
1697 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1698 ret = VM_FAULT_SIGBUS;
1699 break;
1700 }
045e769a 1701 case -EAGAIN:
571c608d
DV
1702 /*
1703 * EAGAIN means the gpu is hung and we'll wait for the error
1704 * handler to reset everything when re-faulting in
1705 * i915_mutex_lock_interruptible.
d9bc7e9f 1706 */
c715089f
CW
1707 case 0:
1708 case -ERESTARTSYS:
bed636ab 1709 case -EINTR:
e79e0fe3
DR
1710 case -EBUSY:
1711 /*
1712 * EBUSY is ok: this just means that another thread
1713 * already did the job.
1714 */
f65c9168
PZ
1715 ret = VM_FAULT_NOPAGE;
1716 break;
de151cf6 1717 case -ENOMEM:
f65c9168
PZ
1718 ret = VM_FAULT_OOM;
1719 break;
a7c2e1aa 1720 case -ENOSPC:
45d67817 1721 case -EFAULT:
f65c9168
PZ
1722 ret = VM_FAULT_SIGBUS;
1723 break;
de151cf6 1724 default:
a7c2e1aa 1725 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1726 ret = VM_FAULT_SIGBUS;
1727 break;
de151cf6 1728 }
f65c9168
PZ
1729
1730 intel_runtime_pm_put(dev_priv);
1731 return ret;
de151cf6
JB
1732}
1733
901782b2
CW
1734/**
1735 * i915_gem_release_mmap - remove physical page mappings
1736 * @obj: obj in question
1737 *
af901ca1 1738 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1739 * relinquish ownership of the pages back to the system.
1740 *
1741 * It is vital that we remove the page mapping if we have mapped a tiled
1742 * object through the GTT and then lose the fence register due to
1743 * resource pressure. Similarly if the object has been moved out of the
1744 * aperture, than pages mapped into userspace must be revoked. Removing the
1745 * mapping will then trigger a page fault on the next user access, allowing
1746 * fixup by i915_gem_fault().
1747 */
d05ca301 1748void
05394f39 1749i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1750{
6299f992
CW
1751 if (!obj->fault_mappable)
1752 return;
901782b2 1753
6796cb16
DH
1754 drm_vma_node_unmap(&obj->base.vma_node,
1755 obj->base.dev->anon_inode->i_mapping);
6299f992 1756 obj->fault_mappable = false;
901782b2
CW
1757}
1758
eedd10f4
CW
1759void
1760i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1761{
1762 struct drm_i915_gem_object *obj;
1763
1764 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1765 i915_gem_release_mmap(obj);
1766}
1767
0fa87796 1768uint32_t
e28f8711 1769i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1770{
e28f8711 1771 uint32_t gtt_size;
92b88aeb
CW
1772
1773 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1774 tiling_mode == I915_TILING_NONE)
1775 return size;
92b88aeb
CW
1776
1777 /* Previous chips need a power-of-two fence region when tiling */
1778 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1779 gtt_size = 1024*1024;
92b88aeb 1780 else
e28f8711 1781 gtt_size = 512*1024;
92b88aeb 1782
e28f8711
CW
1783 while (gtt_size < size)
1784 gtt_size <<= 1;
92b88aeb 1785
e28f8711 1786 return gtt_size;
92b88aeb
CW
1787}
1788
de151cf6
JB
1789/**
1790 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1791 * @obj: object to check
1792 *
1793 * Return the required GTT alignment for an object, taking into account
5e783301 1794 * potential fence register mapping.
de151cf6 1795 */
d865110c
ID
1796uint32_t
1797i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1798 int tiling_mode, bool fenced)
de151cf6 1799{
de151cf6
JB
1800 /*
1801 * Minimum alignment is 4k (GTT page size), but might be greater
1802 * if a fence register is needed for the object.
1803 */
d865110c 1804 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1805 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1806 return 4096;
1807
a00b10c3
CW
1808 /*
1809 * Previous chips need to be aligned to the size of the smallest
1810 * fence register that can contain the object.
1811 */
e28f8711 1812 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1813}
1814
d8cb5086
CW
1815static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1816{
1817 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1818 int ret;
1819
0de23977 1820 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1821 return 0;
1822
da494d7c
DV
1823 dev_priv->mm.shrinker_no_lock_stealing = true;
1824
d8cb5086
CW
1825 ret = drm_gem_create_mmap_offset(&obj->base);
1826 if (ret != -ENOSPC)
da494d7c 1827 goto out;
d8cb5086
CW
1828
1829 /* Badly fragmented mmap space? The only way we can recover
1830 * space is by destroying unwanted objects. We can't randomly release
1831 * mmap_offsets as userspace expects them to be persistent for the
1832 * lifetime of the objects. The closest we can is to release the
1833 * offsets on purgeable objects by truncating it and marking it purged,
1834 * which prevents userspace from ever using that object again.
1835 */
21ab4e74
CW
1836 i915_gem_shrink(dev_priv,
1837 obj->base.size >> PAGE_SHIFT,
1838 I915_SHRINK_BOUND |
1839 I915_SHRINK_UNBOUND |
1840 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1841 ret = drm_gem_create_mmap_offset(&obj->base);
1842 if (ret != -ENOSPC)
da494d7c 1843 goto out;
d8cb5086
CW
1844
1845 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1846 ret = drm_gem_create_mmap_offset(&obj->base);
1847out:
1848 dev_priv->mm.shrinker_no_lock_stealing = false;
1849
1850 return ret;
d8cb5086
CW
1851}
1852
1853static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1854{
d8cb5086
CW
1855 drm_gem_free_mmap_offset(&obj->base);
1856}
1857
da6b51d0 1858int
ff72145b
DA
1859i915_gem_mmap_gtt(struct drm_file *file,
1860 struct drm_device *dev,
da6b51d0 1861 uint32_t handle,
ff72145b 1862 uint64_t *offset)
de151cf6 1863{
da761a6e 1864 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1865 struct drm_i915_gem_object *obj;
de151cf6
JB
1866 int ret;
1867
76c1dec1 1868 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1869 if (ret)
76c1dec1 1870 return ret;
de151cf6 1871
ff72145b 1872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1873 if (&obj->base == NULL) {
1d7cfea1
CW
1874 ret = -ENOENT;
1875 goto unlock;
1876 }
de151cf6 1877
5d4545ae 1878 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1879 ret = -E2BIG;
ff56b0bc 1880 goto out;
da761a6e
CW
1881 }
1882
05394f39 1883 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1884 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1885 ret = -EFAULT;
1d7cfea1 1886 goto out;
ab18282d
CW
1887 }
1888
d8cb5086
CW
1889 ret = i915_gem_object_create_mmap_offset(obj);
1890 if (ret)
1891 goto out;
de151cf6 1892
0de23977 1893 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1894
1d7cfea1 1895out:
05394f39 1896 drm_gem_object_unreference(&obj->base);
1d7cfea1 1897unlock:
de151cf6 1898 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1899 return ret;
de151cf6
JB
1900}
1901
ff72145b
DA
1902/**
1903 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1904 * @dev: DRM device
1905 * @data: GTT mapping ioctl data
1906 * @file: GEM object info
1907 *
1908 * Simply returns the fake offset to userspace so it can mmap it.
1909 * The mmap call will end up in drm_gem_mmap(), which will set things
1910 * up so we can get faults in the handler above.
1911 *
1912 * The fault handler will take care of binding the object into the GTT
1913 * (since it may have been evicted to make room for something), allocating
1914 * a fence register, and mapping the appropriate aperture address into
1915 * userspace.
1916 */
1917int
1918i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1919 struct drm_file *file)
1920{
1921 struct drm_i915_gem_mmap_gtt *args = data;
1922
da6b51d0 1923 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
1924}
1925
5537252b
CW
1926static inline int
1927i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1928{
1929 return obj->madv == I915_MADV_DONTNEED;
1930}
1931
225067ee
DV
1932/* Immediately discard the backing storage */
1933static void
1934i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1935{
4d6294bf 1936 i915_gem_object_free_mmap_offset(obj);
1286ff73 1937
4d6294bf
CW
1938 if (obj->base.filp == NULL)
1939 return;
e5281ccd 1940
225067ee
DV
1941 /* Our goal here is to return as much of the memory as
1942 * is possible back to the system as we are called from OOM.
1943 * To do this we must instruct the shmfs to drop all of its
1944 * backing pages, *now*.
1945 */
5537252b 1946 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1947 obj->madv = __I915_MADV_PURGED;
1948}
e5281ccd 1949
5537252b
CW
1950/* Try to discard unwanted pages */
1951static void
1952i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1953{
5537252b
CW
1954 struct address_space *mapping;
1955
1956 switch (obj->madv) {
1957 case I915_MADV_DONTNEED:
1958 i915_gem_object_truncate(obj);
1959 case __I915_MADV_PURGED:
1960 return;
1961 }
1962
1963 if (obj->base.filp == NULL)
1964 return;
1965
1966 mapping = file_inode(obj->base.filp)->i_mapping,
1967 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1968}
1969
5cdf5881 1970static void
05394f39 1971i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1972{
90797e6d
ID
1973 struct sg_page_iter sg_iter;
1974 int ret;
1286ff73 1975
05394f39 1976 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1977
6c085a72
CW
1978 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1979 if (ret) {
1980 /* In the event of a disaster, abandon all caches and
1981 * hope for the best.
1982 */
1983 WARN_ON(ret != -EIO);
2c22569b 1984 i915_gem_clflush_object(obj, true);
6c085a72
CW
1985 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1986 }
1987
6dacfd2f 1988 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1989 i915_gem_object_save_bit_17_swizzle(obj);
1990
05394f39
CW
1991 if (obj->madv == I915_MADV_DONTNEED)
1992 obj->dirty = 0;
3ef94daa 1993
90797e6d 1994 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1995 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1996
05394f39 1997 if (obj->dirty)
9da3da66 1998 set_page_dirty(page);
3ef94daa 1999
05394f39 2000 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2001 mark_page_accessed(page);
3ef94daa 2002
9da3da66 2003 page_cache_release(page);
3ef94daa 2004 }
05394f39 2005 obj->dirty = 0;
673a394b 2006
9da3da66
CW
2007 sg_free_table(obj->pages);
2008 kfree(obj->pages);
37e680a1 2009}
6c085a72 2010
dd624afd 2011int
37e680a1
CW
2012i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2013{
2014 const struct drm_i915_gem_object_ops *ops = obj->ops;
2015
2f745ad3 2016 if (obj->pages == NULL)
37e680a1
CW
2017 return 0;
2018
a5570178
CW
2019 if (obj->pages_pin_count)
2020 return -EBUSY;
2021
9843877d 2022 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2023
a2165e31
CW
2024 /* ->put_pages might need to allocate memory for the bit17 swizzle
2025 * array, hence protect them from being reaped by removing them from gtt
2026 * lists early. */
35c20a60 2027 list_del(&obj->global_list);
a2165e31 2028
37e680a1 2029 ops->put_pages(obj);
05394f39 2030 obj->pages = NULL;
37e680a1 2031
5537252b 2032 i915_gem_object_invalidate(obj);
6c085a72
CW
2033
2034 return 0;
2035}
2036
21ab4e74
CW
2037unsigned long
2038i915_gem_shrink(struct drm_i915_private *dev_priv,
2039 long target, unsigned flags)
6c085a72 2040{
60a53727
CW
2041 const struct {
2042 struct list_head *list;
2043 unsigned int bit;
2044 } phases[] = {
2045 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2046 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2047 { NULL, 0 },
2048 }, *phase;
d9973b43 2049 unsigned long count = 0;
6c085a72 2050
57094f82 2051 /*
c8725f3d 2052 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2053 * (due to retiring requests) we have to strictly process only
2054 * one element of the list at the time, and recheck the list
2055 * on every iteration.
c8725f3d
CW
2056 *
2057 * In particular, we must hold a reference whilst removing the
2058 * object as we may end up waiting for and/or retiring the objects.
2059 * This might release the final reference (held by the active list)
2060 * and result in the object being freed from under us. This is
2061 * similar to the precautions the eviction code must take whilst
2062 * removing objects.
2063 *
2064 * Also note that although these lists do not hold a reference to
2065 * the object we can safely grab one here: The final object
2066 * unreferencing and the bound_list are both protected by the
2067 * dev->struct_mutex and so we won't ever be able to observe an
2068 * object on the bound_list with a reference count equals 0.
57094f82 2069 */
60a53727 2070 for (phase = phases; phase->list; phase++) {
21ab4e74 2071 struct list_head still_in_list;
c8725f3d 2072
60a53727
CW
2073 if ((flags & phase->bit) == 0)
2074 continue;
80dcfdbd 2075
21ab4e74 2076 INIT_LIST_HEAD(&still_in_list);
60a53727 2077 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2078 struct drm_i915_gem_object *obj;
2079 struct i915_vma *vma, *v;
57094f82 2080
60a53727 2081 obj = list_first_entry(phase->list,
21ab4e74
CW
2082 typeof(*obj), global_list);
2083 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2084
60a53727
CW
2085 if (flags & I915_SHRINK_PURGEABLE &&
2086 !i915_gem_object_is_purgeable(obj))
21ab4e74 2087 continue;
57094f82 2088
21ab4e74 2089 drm_gem_object_reference(&obj->base);
80dcfdbd 2090
60a53727
CW
2091 /* For the unbound phase, this should be a no-op! */
2092 list_for_each_entry_safe(vma, v,
2093 &obj->vma_list, vma_link)
21ab4e74
CW
2094 if (i915_vma_unbind(vma))
2095 break;
57094f82 2096
21ab4e74
CW
2097 if (i915_gem_object_put_pages(obj) == 0)
2098 count += obj->base.size >> PAGE_SHIFT;
2099
2100 drm_gem_object_unreference(&obj->base);
2101 }
60a53727 2102 list_splice(&still_in_list, phase->list);
6c085a72
CW
2103 }
2104
2105 return count;
2106}
2107
d9973b43 2108static unsigned long
6c085a72
CW
2109i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2110{
6c085a72 2111 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2112 return i915_gem_shrink(dev_priv, LONG_MAX,
2113 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2114}
2115
37e680a1 2116static int
6c085a72 2117i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2118{
6c085a72 2119 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2120 int page_count, i;
2121 struct address_space *mapping;
9da3da66
CW
2122 struct sg_table *st;
2123 struct scatterlist *sg;
90797e6d 2124 struct sg_page_iter sg_iter;
e5281ccd 2125 struct page *page;
90797e6d 2126 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2127 gfp_t gfp;
e5281ccd 2128
6c085a72
CW
2129 /* Assert that the object is not currently in any GPU domain. As it
2130 * wasn't in the GTT, there shouldn't be any way it could have been in
2131 * a GPU cache
2132 */
2133 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2134 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2135
9da3da66
CW
2136 st = kmalloc(sizeof(*st), GFP_KERNEL);
2137 if (st == NULL)
2138 return -ENOMEM;
2139
05394f39 2140 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2141 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2142 kfree(st);
e5281ccd 2143 return -ENOMEM;
9da3da66 2144 }
e5281ccd 2145
9da3da66
CW
2146 /* Get the list of pages out of our struct file. They'll be pinned
2147 * at this point until we release them.
2148 *
2149 * Fail silently without starting the shrinker
2150 */
496ad9aa 2151 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2152 gfp = mapping_gfp_mask(mapping);
caf49191 2153 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2154 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2155 sg = st->sgl;
2156 st->nents = 0;
2157 for (i = 0; i < page_count; i++) {
6c085a72
CW
2158 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2159 if (IS_ERR(page)) {
21ab4e74
CW
2160 i915_gem_shrink(dev_priv,
2161 page_count,
2162 I915_SHRINK_BOUND |
2163 I915_SHRINK_UNBOUND |
2164 I915_SHRINK_PURGEABLE);
6c085a72
CW
2165 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2166 }
2167 if (IS_ERR(page)) {
2168 /* We've tried hard to allocate the memory by reaping
2169 * our own buffer, now let the real VM do its job and
2170 * go down in flames if truly OOM.
2171 */
6c085a72 2172 i915_gem_shrink_all(dev_priv);
f461d1be 2173 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2174 if (IS_ERR(page))
2175 goto err_pages;
6c085a72 2176 }
426729dc
KRW
2177#ifdef CONFIG_SWIOTLB
2178 if (swiotlb_nr_tbl()) {
2179 st->nents++;
2180 sg_set_page(sg, page, PAGE_SIZE, 0);
2181 sg = sg_next(sg);
2182 continue;
2183 }
2184#endif
90797e6d
ID
2185 if (!i || page_to_pfn(page) != last_pfn + 1) {
2186 if (i)
2187 sg = sg_next(sg);
2188 st->nents++;
2189 sg_set_page(sg, page, PAGE_SIZE, 0);
2190 } else {
2191 sg->length += PAGE_SIZE;
2192 }
2193 last_pfn = page_to_pfn(page);
3bbbe706
DV
2194
2195 /* Check that the i965g/gm workaround works. */
2196 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2197 }
426729dc
KRW
2198#ifdef CONFIG_SWIOTLB
2199 if (!swiotlb_nr_tbl())
2200#endif
2201 sg_mark_end(sg);
74ce6b6c
CW
2202 obj->pages = st;
2203
6dacfd2f 2204 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2205 i915_gem_object_do_bit_17_swizzle(obj);
2206
656bfa3a
DV
2207 if (obj->tiling_mode != I915_TILING_NONE &&
2208 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2209 i915_gem_object_pin_pages(obj);
2210
e5281ccd
CW
2211 return 0;
2212
2213err_pages:
90797e6d
ID
2214 sg_mark_end(sg);
2215 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2216 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2217 sg_free_table(st);
2218 kfree(st);
0820baf3
CW
2219
2220 /* shmemfs first checks if there is enough memory to allocate the page
2221 * and reports ENOSPC should there be insufficient, along with the usual
2222 * ENOMEM for a genuine allocation failure.
2223 *
2224 * We use ENOSPC in our driver to mean that we have run out of aperture
2225 * space and so want to translate the error from shmemfs back to our
2226 * usual understanding of ENOMEM.
2227 */
2228 if (PTR_ERR(page) == -ENOSPC)
2229 return -ENOMEM;
2230 else
2231 return PTR_ERR(page);
673a394b
EA
2232}
2233
37e680a1
CW
2234/* Ensure that the associated pages are gathered from the backing storage
2235 * and pinned into our object. i915_gem_object_get_pages() may be called
2236 * multiple times before they are released by a single call to
2237 * i915_gem_object_put_pages() - once the pages are no longer referenced
2238 * either as a result of memory pressure (reaping pages under the shrinker)
2239 * or as the object is itself released.
2240 */
2241int
2242i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2243{
2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 const struct drm_i915_gem_object_ops *ops = obj->ops;
2246 int ret;
2247
2f745ad3 2248 if (obj->pages)
37e680a1
CW
2249 return 0;
2250
43e28f09 2251 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2252 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2253 return -EFAULT;
43e28f09
CW
2254 }
2255
a5570178
CW
2256 BUG_ON(obj->pages_pin_count);
2257
37e680a1
CW
2258 ret = ops->get_pages(obj);
2259 if (ret)
2260 return ret;
2261
35c20a60 2262 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2263 return 0;
673a394b
EA
2264}
2265
e2d05a8b 2266static void
05394f39 2267i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2268 struct intel_engine_cs *ring)
673a394b 2269{
41c52415
JH
2270 struct drm_i915_gem_request *req;
2271 struct intel_engine_cs *old_ring;
617dbe27 2272
852835f3 2273 BUG_ON(ring == NULL);
41c52415
JH
2274
2275 req = intel_ring_get_request(ring);
2276 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2277
2278 if (old_ring != ring && obj->last_write_req) {
97b2a6a1
JH
2279 /* Keep the request relative to the current ring */
2280 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2281 }
673a394b
EA
2282
2283 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2284 if (!obj->active) {
2285 drm_gem_object_reference(&obj->base);
2286 obj->active = 1;
673a394b 2287 }
e35a41de 2288
05394f39 2289 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2290
97b2a6a1 2291 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2292}
2293
e2d05a8b 2294void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2295 struct intel_engine_cs *ring)
e2d05a8b
BW
2296{
2297 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2298 return i915_gem_object_move_to_active(vma->obj, ring);
2299}
2300
caea7476 2301static void
caea7476 2302i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2303{
feb822cf 2304 struct i915_vma *vma;
ce44b0ea 2305
65ce3027 2306 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2307 BUG_ON(!obj->active);
caea7476 2308
fe14d5f4
TU
2309 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2310 if (!list_empty(&vma->mm_list))
2311 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2312 }
caea7476 2313
f99d7069
DV
2314 intel_fb_obj_flush(obj, true);
2315
65ce3027 2316 list_del_init(&obj->ring_list);
caea7476 2317
97b2a6a1
JH
2318 i915_gem_request_assign(&obj->last_read_req, NULL);
2319 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2320 obj->base.write_domain = 0;
2321
97b2a6a1 2322 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2323
2324 obj->active = 0;
2325 drm_gem_object_unreference(&obj->base);
2326
2327 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2328}
673a394b 2329
c8725f3d
CW
2330static void
2331i915_gem_object_retire(struct drm_i915_gem_object *obj)
2332{
41c52415 2333 if (obj->last_read_req == NULL)
c8725f3d
CW
2334 return;
2335
1b5a433a 2336 if (i915_gem_request_completed(obj->last_read_req, true))
c8725f3d
CW
2337 i915_gem_object_move_to_inactive(obj);
2338}
2339
9d773091 2340static int
fca26bb4 2341i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2342{
9d773091 2343 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2344 struct intel_engine_cs *ring;
9d773091 2345 int ret, i, j;
53d227f2 2346
107f27a5 2347 /* Carefully retire all requests without writing to the rings */
9d773091 2348 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2349 ret = intel_ring_idle(ring);
2350 if (ret)
2351 return ret;
9d773091 2352 }
9d773091 2353 i915_gem_retire_requests(dev);
107f27a5
CW
2354
2355 /* Finally reset hw state */
9d773091 2356 for_each_ring(ring, dev_priv, i) {
fca26bb4 2357 intel_ring_init_seqno(ring, seqno);
498d2ac1 2358
ebc348b2
BW
2359 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2360 ring->semaphore.sync_seqno[j] = 0;
9d773091 2361 }
53d227f2 2362
9d773091 2363 return 0;
53d227f2
DV
2364}
2365
fca26bb4
MK
2366int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2367{
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 int ret;
2370
2371 if (seqno == 0)
2372 return -EINVAL;
2373
2374 /* HWS page needs to be set less than what we
2375 * will inject to ring
2376 */
2377 ret = i915_gem_init_seqno(dev, seqno - 1);
2378 if (ret)
2379 return ret;
2380
2381 /* Carefully set the last_seqno value so that wrap
2382 * detection still works
2383 */
2384 dev_priv->next_seqno = seqno;
2385 dev_priv->last_seqno = seqno - 1;
2386 if (dev_priv->last_seqno == 0)
2387 dev_priv->last_seqno--;
2388
2389 return 0;
2390}
2391
9d773091
CW
2392int
2393i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2394{
9d773091
CW
2395 struct drm_i915_private *dev_priv = dev->dev_private;
2396
2397 /* reserve 0 for non-seqno */
2398 if (dev_priv->next_seqno == 0) {
fca26bb4 2399 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2400 if (ret)
2401 return ret;
53d227f2 2402
9d773091
CW
2403 dev_priv->next_seqno = 1;
2404 }
53d227f2 2405
f72b3435 2406 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2407 return 0;
53d227f2
DV
2408}
2409
a4872ba6 2410int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2411 struct drm_file *file,
9400ae5c 2412 struct drm_i915_gem_object *obj)
673a394b 2413{
3e31c6c0 2414 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2415 struct drm_i915_gem_request *request;
48e29f55 2416 struct intel_ringbuffer *ringbuf;
7d736f4f 2417 u32 request_ring_position, request_start;
3cce469c
CW
2418 int ret;
2419
6259cead 2420 request = ring->outstanding_lazy_request;
48e29f55
OM
2421 if (WARN_ON(request == NULL))
2422 return -ENOMEM;
2423
2424 if (i915.enable_execlists) {
2425 struct intel_context *ctx = request->ctx;
2426 ringbuf = ctx->engine[ring->id].ringbuf;
2427 } else
2428 ringbuf = ring->buffer;
2429
2430 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2431 /*
2432 * Emit any outstanding flushes - execbuf can fail to emit the flush
2433 * after having emitted the batchbuffer command. Hence we need to fix
2434 * things up similar to emitting the lazy request. The difference here
2435 * is that the flush _must_ happen before the next request, no matter
2436 * what.
2437 */
48e29f55
OM
2438 if (i915.enable_execlists) {
2439 ret = logical_ring_flush_all_caches(ringbuf);
2440 if (ret)
2441 return ret;
2442 } else {
2443 ret = intel_ring_flush_all_caches(ring);
2444 if (ret)
2445 return ret;
2446 }
cc889e0f 2447
a71d8d94
CW
2448 /* Record the position of the start of the request so that
2449 * should we detect the updated seqno part-way through the
2450 * GPU processing the request, we never over-estimate the
2451 * position of the head.
2452 */
48e29f55 2453 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2454
48e29f55 2455 if (i915.enable_execlists) {
72f95afa 2456 ret = ring->emit_request(ringbuf, request);
48e29f55
OM
2457 if (ret)
2458 return ret;
2459 } else {
2460 ret = ring->add_request(ring);
2461 if (ret)
2462 return ret;
2463 }
673a394b 2464
7d736f4f 2465 request->head = request_start;
72f95afa 2466 request->postfix = request_ring_position;
7d736f4f
MK
2467
2468 /* Whilst this request exists, batch_obj will be on the
2469 * active_list, and so will hold the active reference. Only when this
2470 * request is retired will the the batch_obj be moved onto the
2471 * inactive_list and lose its active reference. Hence we do not need
2472 * to explicitly hold another reference here.
2473 */
9a7e0c2a 2474 request->batch_obj = obj;
0e50e96b 2475
48e29f55
OM
2476 if (!i915.enable_execlists) {
2477 /* Hold a reference to the current context so that we can inspect
2478 * it later in case a hangcheck error event fires.
2479 */
2480 request->ctx = ring->last_context;
2481 if (request->ctx)
2482 i915_gem_context_reference(request->ctx);
2483 }
0e50e96b 2484
673a394b 2485 request->emitted_jiffies = jiffies;
852835f3 2486 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2487 request->file_priv = NULL;
852835f3 2488
db53a302
CW
2489 if (file) {
2490 struct drm_i915_file_private *file_priv = file->driver_priv;
2491
1c25595f 2492 spin_lock(&file_priv->mm.lock);
f787a5f5 2493 request->file_priv = file_priv;
b962442e 2494 list_add_tail(&request->client_list,
f787a5f5 2495 &file_priv->mm.request_list);
1c25595f 2496 spin_unlock(&file_priv->mm.lock);
b962442e 2497 }
673a394b 2498
74328ee5 2499 trace_i915_gem_request_add(request);
6259cead 2500 ring->outstanding_lazy_request = NULL;
db53a302 2501
87255483 2502 i915_queue_hangcheck(ring->dev);
10cd45b6 2503
87255483
DV
2504 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2505 queue_delayed_work(dev_priv->wq,
2506 &dev_priv->mm.retire_work,
2507 round_jiffies_up_relative(HZ));
2508 intel_mark_busy(dev_priv->dev);
cc889e0f 2509
3cce469c 2510 return 0;
673a394b
EA
2511}
2512
f787a5f5
CW
2513static inline void
2514i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2515{
1c25595f 2516 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2517
1c25595f
CW
2518 if (!file_priv)
2519 return;
1c5d22f7 2520
1c25595f 2521 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2522 list_del(&request->client_list);
2523 request->file_priv = NULL;
1c25595f 2524 spin_unlock(&file_priv->mm.lock);
673a394b 2525}
673a394b 2526
939fd762 2527static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2528 const struct intel_context *ctx)
be62acb4 2529{
44e2c070 2530 unsigned long elapsed;
be62acb4 2531
44e2c070
MK
2532 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2533
2534 if (ctx->hang_stats.banned)
be62acb4
MK
2535 return true;
2536
676fa572
CW
2537 if (ctx->hang_stats.ban_period_seconds &&
2538 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2539 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2540 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2541 return true;
88b4aa87
MK
2542 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2543 if (i915_stop_ring_allow_warn(dev_priv))
2544 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2545 return true;
3fac8978 2546 }
be62acb4
MK
2547 }
2548
2549 return false;
2550}
2551
939fd762 2552static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2553 struct intel_context *ctx,
b6b0fac0 2554 const bool guilty)
aa60c664 2555{
44e2c070
MK
2556 struct i915_ctx_hang_stats *hs;
2557
2558 if (WARN_ON(!ctx))
2559 return;
aa60c664 2560
44e2c070
MK
2561 hs = &ctx->hang_stats;
2562
2563 if (guilty) {
939fd762 2564 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2565 hs->batch_active++;
2566 hs->guilty_ts = get_seconds();
2567 } else {
2568 hs->batch_pending++;
aa60c664
MK
2569 }
2570}
2571
0e50e96b
MK
2572static void i915_gem_free_request(struct drm_i915_gem_request *request)
2573{
2574 list_del(&request->list);
2575 i915_gem_request_remove_from_client(request);
2576
abfe262a
JH
2577 i915_gem_request_unreference(request);
2578}
2579
2580void i915_gem_request_free(struct kref *req_ref)
2581{
2582 struct drm_i915_gem_request *req = container_of(req_ref,
2583 typeof(*req), ref);
2584 struct intel_context *ctx = req->ctx;
2585
0794aed3
TD
2586 if (ctx) {
2587 if (i915.enable_execlists) {
abfe262a 2588 struct intel_engine_cs *ring = req->ring;
0e50e96b 2589
0794aed3
TD
2590 if (ctx != ring->default_context)
2591 intel_lr_context_unpin(ring, ctx);
2592 }
abfe262a 2593
dcb4c12a
OM
2594 i915_gem_context_unreference(ctx);
2595 }
abfe262a
JH
2596
2597 kfree(req);
0e50e96b
MK
2598}
2599
8d9fc7fd 2600struct drm_i915_gem_request *
a4872ba6 2601i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2602{
4db080f9
CW
2603 struct drm_i915_gem_request *request;
2604
2605 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2606 if (i915_gem_request_completed(request, false))
4db080f9 2607 continue;
aa60c664 2608
b6b0fac0 2609 return request;
4db080f9 2610 }
b6b0fac0
MK
2611
2612 return NULL;
2613}
2614
2615static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2616 struct intel_engine_cs *ring)
b6b0fac0
MK
2617{
2618 struct drm_i915_gem_request *request;
2619 bool ring_hung;
2620
8d9fc7fd 2621 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2622
2623 if (request == NULL)
2624 return;
2625
2626 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2627
939fd762 2628 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2629
2630 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2631 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2632}
aa60c664 2633
4db080f9 2634static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2635 struct intel_engine_cs *ring)
4db080f9 2636{
dfaae392 2637 while (!list_empty(&ring->active_list)) {
05394f39 2638 struct drm_i915_gem_object *obj;
9375e446 2639
05394f39
CW
2640 obj = list_first_entry(&ring->active_list,
2641 struct drm_i915_gem_object,
2642 ring_list);
9375e446 2643
05394f39 2644 i915_gem_object_move_to_inactive(obj);
673a394b 2645 }
1d62beea 2646
dcb4c12a
OM
2647 /*
2648 * Clear the execlists queue up before freeing the requests, as those
2649 * are the ones that keep the context and ringbuffer backing objects
2650 * pinned in place.
2651 */
2652 while (!list_empty(&ring->execlist_queue)) {
2653 struct intel_ctx_submit_request *submit_req;
2654
2655 submit_req = list_first_entry(&ring->execlist_queue,
2656 struct intel_ctx_submit_request,
2657 execlist_link);
2658 list_del(&submit_req->execlist_link);
2659 intel_runtime_pm_put(dev_priv);
72f95afa 2660 i915_gem_context_unreference(submit_req->request->ctx);
dcb4c12a
OM
2661 kfree(submit_req);
2662 }
2663
1d62beea
BW
2664 /*
2665 * We must free the requests after all the corresponding objects have
2666 * been moved off active lists. Which is the same order as the normal
2667 * retire_requests function does. This is important if object hold
2668 * implicit references on things like e.g. ppgtt address spaces through
2669 * the request.
2670 */
2671 while (!list_empty(&ring->request_list)) {
2672 struct drm_i915_gem_request *request;
2673
2674 request = list_first_entry(&ring->request_list,
2675 struct drm_i915_gem_request,
2676 list);
2677
2678 i915_gem_free_request(request);
2679 }
e3efda49 2680
6259cead
JH
2681 /* This may not have been flushed before the reset, so clean it now */
2682 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2683}
2684
19b2dbde 2685void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2686{
2687 struct drm_i915_private *dev_priv = dev->dev_private;
2688 int i;
2689
4b9de737 2690 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2691 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2692
94a335db
DV
2693 /*
2694 * Commit delayed tiling changes if we have an object still
2695 * attached to the fence, otherwise just clear the fence.
2696 */
2697 if (reg->obj) {
2698 i915_gem_object_update_fence(reg->obj, reg,
2699 reg->obj->tiling_mode);
2700 } else {
2701 i915_gem_write_fence(dev, i, NULL);
2702 }
312817a3
CW
2703 }
2704}
2705
069efc1d 2706void i915_gem_reset(struct drm_device *dev)
673a394b 2707{
77f01230 2708 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2709 struct intel_engine_cs *ring;
1ec14ad3 2710 int i;
673a394b 2711
4db080f9
CW
2712 /*
2713 * Before we free the objects from the requests, we need to inspect
2714 * them for finding the guilty party. As the requests only borrow
2715 * their reference to the objects, the inspection must be done first.
2716 */
2717 for_each_ring(ring, dev_priv, i)
2718 i915_gem_reset_ring_status(dev_priv, ring);
2719
b4519513 2720 for_each_ring(ring, dev_priv, i)
4db080f9 2721 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2722
acce9ffa
BW
2723 i915_gem_context_reset(dev);
2724
19b2dbde 2725 i915_gem_restore_fences(dev);
673a394b
EA
2726}
2727
2728/**
2729 * This function clears the request list as sequence numbers are passed.
2730 */
1cf0ba14 2731void
a4872ba6 2732i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2733{
db53a302 2734 if (list_empty(&ring->request_list))
6c0594a3
KW
2735 return;
2736
db53a302 2737 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2738
e9103038
CW
2739 /* Move any buffers on the active list that are no longer referenced
2740 * by the ringbuffer to the flushing/inactive lists as appropriate,
2741 * before we free the context associated with the requests.
2742 */
2743 while (!list_empty(&ring->active_list)) {
2744 struct drm_i915_gem_object *obj;
2745
2746 obj = list_first_entry(&ring->active_list,
2747 struct drm_i915_gem_object,
2748 ring_list);
2749
1b5a433a 2750 if (!i915_gem_request_completed(obj->last_read_req, true))
e9103038
CW
2751 break;
2752
2753 i915_gem_object_move_to_inactive(obj);
2754 }
2755
2756
852835f3 2757 while (!list_empty(&ring->request_list)) {
673a394b 2758 struct drm_i915_gem_request *request;
48e29f55 2759 struct intel_ringbuffer *ringbuf;
673a394b 2760
852835f3 2761 request = list_first_entry(&ring->request_list,
673a394b
EA
2762 struct drm_i915_gem_request,
2763 list);
673a394b 2764
1b5a433a 2765 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2766 break;
2767
74328ee5 2768 trace_i915_gem_request_retire(request);
48e29f55
OM
2769
2770 /* This is one of the few common intersection points
2771 * between legacy ringbuffer submission and execlists:
2772 * we need to tell them apart in order to find the correct
2773 * ringbuffer to which the request belongs to.
2774 */
2775 if (i915.enable_execlists) {
2776 struct intel_context *ctx = request->ctx;
2777 ringbuf = ctx->engine[ring->id].ringbuf;
2778 } else
2779 ringbuf = ring->buffer;
2780
a71d8d94
CW
2781 /* We know the GPU must have read the request to have
2782 * sent us the seqno + interrupt, so use the position
2783 * of tail of the request to update the last known position
2784 * of the GPU head.
2785 */
72f95afa 2786 ringbuf->last_retired_head = request->postfix;
b84d5f0c 2787
0e50e96b 2788 i915_gem_free_request(request);
b84d5f0c 2789 }
673a394b 2790
581c26e8
JH
2791 if (unlikely(ring->trace_irq_req &&
2792 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2793 ring->irq_put(ring);
581c26e8 2794 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2795 }
23bc5982 2796
db53a302 2797 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2798}
2799
b29c19b6 2800bool
b09a1fec
CW
2801i915_gem_retire_requests(struct drm_device *dev)
2802{
3e31c6c0 2803 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2804 struct intel_engine_cs *ring;
b29c19b6 2805 bool idle = true;
1ec14ad3 2806 int i;
b09a1fec 2807
b29c19b6 2808 for_each_ring(ring, dev_priv, i) {
b4519513 2809 i915_gem_retire_requests_ring(ring);
b29c19b6 2810 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2811 if (i915.enable_execlists) {
2812 unsigned long flags;
2813
2814 spin_lock_irqsave(&ring->execlist_lock, flags);
2815 idle &= list_empty(&ring->execlist_queue);
2816 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2817
2818 intel_execlists_retire_requests(ring);
2819 }
b29c19b6
CW
2820 }
2821
2822 if (idle)
2823 mod_delayed_work(dev_priv->wq,
2824 &dev_priv->mm.idle_work,
2825 msecs_to_jiffies(100));
2826
2827 return idle;
b09a1fec
CW
2828}
2829
75ef9da2 2830static void
673a394b
EA
2831i915_gem_retire_work_handler(struct work_struct *work)
2832{
b29c19b6
CW
2833 struct drm_i915_private *dev_priv =
2834 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2835 struct drm_device *dev = dev_priv->dev;
0a58705b 2836 bool idle;
673a394b 2837
891b48cf 2838 /* Come back later if the device is busy... */
b29c19b6
CW
2839 idle = false;
2840 if (mutex_trylock(&dev->struct_mutex)) {
2841 idle = i915_gem_retire_requests(dev);
2842 mutex_unlock(&dev->struct_mutex);
673a394b 2843 }
b29c19b6 2844 if (!idle)
bcb45086
CW
2845 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2846 round_jiffies_up_relative(HZ));
b29c19b6 2847}
0a58705b 2848
b29c19b6
CW
2849static void
2850i915_gem_idle_work_handler(struct work_struct *work)
2851{
2852 struct drm_i915_private *dev_priv =
2853 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2854
2855 intel_mark_idle(dev_priv->dev);
673a394b
EA
2856}
2857
30dfebf3
DV
2858/**
2859 * Ensures that an object will eventually get non-busy by flushing any required
2860 * write domains, emitting any outstanding lazy request and retiring and
2861 * completed requests.
2862 */
2863static int
2864i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2865{
41c52415 2866 struct intel_engine_cs *ring;
30dfebf3
DV
2867 int ret;
2868
2869 if (obj->active) {
41c52415
JH
2870 ring = i915_gem_request_get_ring(obj->last_read_req);
2871
b6660d59 2872 ret = i915_gem_check_olr(obj->last_read_req);
30dfebf3
DV
2873 if (ret)
2874 return ret;
2875
41c52415 2876 i915_gem_retire_requests_ring(ring);
30dfebf3
DV
2877 }
2878
2879 return 0;
2880}
2881
23ba4fd0
BW
2882/**
2883 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2884 * @DRM_IOCTL_ARGS: standard ioctl arguments
2885 *
2886 * Returns 0 if successful, else an error is returned with the remaining time in
2887 * the timeout parameter.
2888 * -ETIME: object is still busy after timeout
2889 * -ERESTARTSYS: signal interrupted the wait
2890 * -ENONENT: object doesn't exist
2891 * Also possible, but rare:
2892 * -EAGAIN: GPU wedged
2893 * -ENOMEM: damn
2894 * -ENODEV: Internal IRQ fail
2895 * -E?: The add request failed
2896 *
2897 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2898 * non-zero timeout parameter the wait ioctl will wait for the given number of
2899 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2900 * without holding struct_mutex the object may become re-busied before this
2901 * function completes. A similar but shorter * race condition exists in the busy
2902 * ioctl
2903 */
2904int
2905i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2906{
3e31c6c0 2907 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2908 struct drm_i915_gem_wait *args = data;
2909 struct drm_i915_gem_object *obj;
ff865885 2910 struct drm_i915_gem_request *req;
f69061be 2911 unsigned reset_counter;
23ba4fd0
BW
2912 int ret = 0;
2913
11b5d511
DV
2914 if (args->flags != 0)
2915 return -EINVAL;
2916
23ba4fd0
BW
2917 ret = i915_mutex_lock_interruptible(dev);
2918 if (ret)
2919 return ret;
2920
2921 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2922 if (&obj->base == NULL) {
2923 mutex_unlock(&dev->struct_mutex);
2924 return -ENOENT;
2925 }
2926
30dfebf3
DV
2927 /* Need to make sure the object gets inactive eventually. */
2928 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2929 if (ret)
2930 goto out;
2931
97b2a6a1
JH
2932 if (!obj->active || !obj->last_read_req)
2933 goto out;
23ba4fd0 2934
ff865885 2935 req = obj->last_read_req;
23ba4fd0 2936
23ba4fd0 2937 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2938 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2939 */
5ed0bdf2 2940 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2941 ret = -ETIME;
2942 goto out;
2943 }
2944
2945 drm_gem_object_unreference(&obj->base);
f69061be 2946 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2947 i915_gem_request_reference(req);
23ba4fd0
BW
2948 mutex_unlock(&dev->struct_mutex);
2949
9c654818
JH
2950 ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2951 file->driver_priv);
ff865885
JH
2952 mutex_lock(&dev->struct_mutex);
2953 i915_gem_request_unreference(req);
2954 mutex_unlock(&dev->struct_mutex);
2955 return ret;
23ba4fd0
BW
2956
2957out:
2958 drm_gem_object_unreference(&obj->base);
2959 mutex_unlock(&dev->struct_mutex);
2960 return ret;
2961}
2962
5816d648
BW
2963/**
2964 * i915_gem_object_sync - sync an object to a ring.
2965 *
2966 * @obj: object which may be in use on another ring.
2967 * @to: ring we wish to use the object on. May be NULL.
2968 *
2969 * This code is meant to abstract object synchronization with the GPU.
2970 * Calling with NULL implies synchronizing the object with the CPU
2971 * rather than a particular GPU ring.
2972 *
2973 * Returns 0 if successful, else propagates up the lower layer error.
2974 */
2911a35b
BW
2975int
2976i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2977 struct intel_engine_cs *to)
2911a35b 2978{
41c52415 2979 struct intel_engine_cs *from;
2911a35b
BW
2980 u32 seqno;
2981 int ret, idx;
2982
41c52415
JH
2983 from = i915_gem_request_get_ring(obj->last_read_req);
2984
2911a35b
BW
2985 if (from == NULL || to == from)
2986 return 0;
2987
5816d648 2988 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2989 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2990
2991 idx = intel_ring_sync_index(from, to);
2992
97b2a6a1 2993 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
2994 /* Optimization: Avoid semaphore sync when we are sure we already
2995 * waited for an object with higher seqno */
ebc348b2 2996 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2997 return 0;
2998
b6660d59 2999 ret = i915_gem_check_olr(obj->last_read_req);
b4aca010
BW
3000 if (ret)
3001 return ret;
2911a35b 3002
74328ee5 3003 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
ebc348b2 3004 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 3005 if (!ret)
97b2a6a1 3006 /* We use last_read_req because sync_to()
7b01e260
MK
3007 * might have just caused seqno wrap under
3008 * the radar.
3009 */
97b2a6a1
JH
3010 from->semaphore.sync_seqno[idx] =
3011 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 3012
e3a5a225 3013 return ret;
2911a35b
BW
3014}
3015
b5ffc9bc
CW
3016static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3017{
3018 u32 old_write_domain, old_read_domains;
3019
b5ffc9bc
CW
3020 /* Force a pagefault for domain tracking on next user access */
3021 i915_gem_release_mmap(obj);
3022
b97c3d9c
KP
3023 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3024 return;
3025
97c809fd
CW
3026 /* Wait for any direct GTT access to complete */
3027 mb();
3028
b5ffc9bc
CW
3029 old_read_domains = obj->base.read_domains;
3030 old_write_domain = obj->base.write_domain;
3031
3032 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3033 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3034
3035 trace_i915_gem_object_change_domain(obj,
3036 old_read_domains,
3037 old_write_domain);
3038}
3039
07fe0b12 3040int i915_vma_unbind(struct i915_vma *vma)
673a394b 3041{
07fe0b12 3042 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3043 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3044 int ret;
673a394b 3045
07fe0b12 3046 if (list_empty(&vma->vma_link))
673a394b
EA
3047 return 0;
3048
0ff501cb
DV
3049 if (!drm_mm_node_allocated(&vma->node)) {
3050 i915_gem_vma_destroy(vma);
0ff501cb
DV
3051 return 0;
3052 }
433544bd 3053
d7f46fc4 3054 if (vma->pin_count)
31d8d651 3055 return -EBUSY;
673a394b 3056
c4670ad0
CW
3057 BUG_ON(obj->pages == NULL);
3058
a8198eea 3059 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3060 if (ret)
a8198eea
CW
3061 return ret;
3062 /* Continue on if we fail due to EIO, the GPU is hung so we
3063 * should be safe and we need to cleanup or else we might
3064 * cause memory corruption through use-after-free.
3065 */
3066
fe14d5f4
TU
3067 if (i915_is_ggtt(vma->vm) &&
3068 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3069 i915_gem_object_finish_gtt(obj);
5323fd04 3070
8b1bc9b4
DV
3071 /* release the fence reg _after_ flushing */
3072 ret = i915_gem_object_put_fence(obj);
3073 if (ret)
3074 return ret;
3075 }
96b47b65 3076
07fe0b12 3077 trace_i915_vma_unbind(vma);
db53a302 3078
6f65e29a
BW
3079 vma->unbind_vma(vma);
3080
64bf9303 3081 list_del_init(&vma->mm_list);
fe14d5f4
TU
3082 if (i915_is_ggtt(vma->vm)) {
3083 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3084 obj->map_and_fenceable = false;
3085 } else if (vma->ggtt_view.pages) {
3086 sg_free_table(vma->ggtt_view.pages);
3087 kfree(vma->ggtt_view.pages);
3088 vma->ggtt_view.pages = NULL;
3089 }
3090 }
673a394b 3091
2f633156
BW
3092 drm_mm_remove_node(&vma->node);
3093 i915_gem_vma_destroy(vma);
3094
3095 /* Since the unbound list is global, only move to that list if
b93dab6e 3096 * no more VMAs exist. */
9490edb5 3097 if (list_empty(&obj->vma_list)) {
fe14d5f4
TU
3098 /* Throw away the active reference before
3099 * moving to the unbound list. */
3100 i915_gem_object_retire(obj);
3101
9490edb5 3102 i915_gem_gtt_finish_object(obj);
2f633156 3103 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3104 }
673a394b 3105
70903c3b
CW
3106 /* And finally now the object is completely decoupled from this vma,
3107 * we can drop its hold on the backing storage and allow it to be
3108 * reaped by the shrinker.
3109 */
3110 i915_gem_object_unpin_pages(obj);
3111
88241785 3112 return 0;
54cf91dc
CW
3113}
3114
b2da9fe5 3115int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3116{
3e31c6c0 3117 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3118 struct intel_engine_cs *ring;
1ec14ad3 3119 int ret, i;
4df2faf4 3120
4df2faf4 3121 /* Flush everything onto the inactive list. */
b4519513 3122 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3123 if (!i915.enable_execlists) {
3124 ret = i915_switch_context(ring, ring->default_context);
3125 if (ret)
3126 return ret;
3127 }
b6c7488d 3128
3e960501 3129 ret = intel_ring_idle(ring);
1ec14ad3
CW
3130 if (ret)
3131 return ret;
3132 }
4df2faf4 3133
8a1a49f9 3134 return 0;
4df2faf4
DV
3135}
3136
9ce079e4
CW
3137static void i965_write_fence_reg(struct drm_device *dev, int reg,
3138 struct drm_i915_gem_object *obj)
de151cf6 3139{
3e31c6c0 3140 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3141 int fence_reg;
3142 int fence_pitch_shift;
de151cf6 3143
56c844e5
ID
3144 if (INTEL_INFO(dev)->gen >= 6) {
3145 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3146 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3147 } else {
3148 fence_reg = FENCE_REG_965_0;
3149 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3150 }
3151
d18b9619
CW
3152 fence_reg += reg * 8;
3153
3154 /* To w/a incoherency with non-atomic 64-bit register updates,
3155 * we split the 64-bit update into two 32-bit writes. In order
3156 * for a partial fence not to be evaluated between writes, we
3157 * precede the update with write to turn off the fence register,
3158 * and only enable the fence as the last step.
3159 *
3160 * For extra levels of paranoia, we make sure each step lands
3161 * before applying the next step.
3162 */
3163 I915_WRITE(fence_reg, 0);
3164 POSTING_READ(fence_reg);
3165
9ce079e4 3166 if (obj) {
f343c5f6 3167 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3168 uint64_t val;
de151cf6 3169
f343c5f6 3170 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3171 0xfffff000) << 32;
f343c5f6 3172 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3173 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3174 if (obj->tiling_mode == I915_TILING_Y)
3175 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3176 val |= I965_FENCE_REG_VALID;
c6642782 3177
d18b9619
CW
3178 I915_WRITE(fence_reg + 4, val >> 32);
3179 POSTING_READ(fence_reg + 4);
3180
3181 I915_WRITE(fence_reg + 0, val);
3182 POSTING_READ(fence_reg);
3183 } else {
3184 I915_WRITE(fence_reg + 4, 0);
3185 POSTING_READ(fence_reg + 4);
3186 }
de151cf6
JB
3187}
3188
9ce079e4
CW
3189static void i915_write_fence_reg(struct drm_device *dev, int reg,
3190 struct drm_i915_gem_object *obj)
de151cf6 3191{
3e31c6c0 3192 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3193 u32 val;
de151cf6 3194
9ce079e4 3195 if (obj) {
f343c5f6 3196 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3197 int pitch_val;
3198 int tile_width;
c6642782 3199
f343c5f6 3200 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3201 (size & -size) != size ||
f343c5f6
BW
3202 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3203 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3204 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3205
9ce079e4
CW
3206 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3207 tile_width = 128;
3208 else
3209 tile_width = 512;
3210
3211 /* Note: pitch better be a power of two tile widths */
3212 pitch_val = obj->stride / tile_width;
3213 pitch_val = ffs(pitch_val) - 1;
3214
f343c5f6 3215 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3216 if (obj->tiling_mode == I915_TILING_Y)
3217 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3218 val |= I915_FENCE_SIZE_BITS(size);
3219 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3220 val |= I830_FENCE_REG_VALID;
3221 } else
3222 val = 0;
3223
3224 if (reg < 8)
3225 reg = FENCE_REG_830_0 + reg * 4;
3226 else
3227 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3228
3229 I915_WRITE(reg, val);
3230 POSTING_READ(reg);
de151cf6
JB
3231}
3232
9ce079e4
CW
3233static void i830_write_fence_reg(struct drm_device *dev, int reg,
3234 struct drm_i915_gem_object *obj)
de151cf6 3235{
3e31c6c0 3236 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3237 uint32_t val;
de151cf6 3238
9ce079e4 3239 if (obj) {
f343c5f6 3240 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3241 uint32_t pitch_val;
de151cf6 3242
f343c5f6 3243 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3244 (size & -size) != size ||
f343c5f6
BW
3245 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3246 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3247 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3248
9ce079e4
CW
3249 pitch_val = obj->stride / 128;
3250 pitch_val = ffs(pitch_val) - 1;
de151cf6 3251
f343c5f6 3252 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3253 if (obj->tiling_mode == I915_TILING_Y)
3254 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3255 val |= I830_FENCE_SIZE_BITS(size);
3256 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3257 val |= I830_FENCE_REG_VALID;
3258 } else
3259 val = 0;
c6642782 3260
9ce079e4
CW
3261 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3262 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3263}
3264
d0a57789
CW
3265inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3266{
3267 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3268}
3269
9ce079e4
CW
3270static void i915_gem_write_fence(struct drm_device *dev, int reg,
3271 struct drm_i915_gem_object *obj)
3272{
d0a57789
CW
3273 struct drm_i915_private *dev_priv = dev->dev_private;
3274
3275 /* Ensure that all CPU reads are completed before installing a fence
3276 * and all writes before removing the fence.
3277 */
3278 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3279 mb();
3280
94a335db
DV
3281 WARN(obj && (!obj->stride || !obj->tiling_mode),
3282 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3283 obj->stride, obj->tiling_mode);
3284
ce38ab05
RV
3285 if (IS_GEN2(dev))
3286 i830_write_fence_reg(dev, reg, obj);
3287 else if (IS_GEN3(dev))
3288 i915_write_fence_reg(dev, reg, obj);
3289 else if (INTEL_INFO(dev)->gen >= 4)
3290 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3291
3292 /* And similarly be paranoid that no direct access to this region
3293 * is reordered to before the fence is installed.
3294 */
3295 if (i915_gem_object_needs_mb(obj))
3296 mb();
de151cf6
JB
3297}
3298
61050808
CW
3299static inline int fence_number(struct drm_i915_private *dev_priv,
3300 struct drm_i915_fence_reg *fence)
3301{
3302 return fence - dev_priv->fence_regs;
3303}
3304
3305static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3306 struct drm_i915_fence_reg *fence,
3307 bool enable)
3308{
2dc8aae0 3309 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3310 int reg = fence_number(dev_priv, fence);
3311
3312 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3313
3314 if (enable) {
46a0b638 3315 obj->fence_reg = reg;
61050808
CW
3316 fence->obj = obj;
3317 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3318 } else {
3319 obj->fence_reg = I915_FENCE_REG_NONE;
3320 fence->obj = NULL;
3321 list_del_init(&fence->lru_list);
3322 }
94a335db 3323 obj->fence_dirty = false;
61050808
CW
3324}
3325
d9e86c0e 3326static int
d0a57789 3327i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3328{
97b2a6a1 3329 if (obj->last_fenced_req) {
a4b3a571 3330 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3331 if (ret)
3332 return ret;
d9e86c0e 3333
97b2a6a1 3334 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3335 }
3336
3337 return 0;
3338}
3339
3340int
3341i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3342{
61050808 3343 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3344 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3345 int ret;
3346
d0a57789 3347 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3348 if (ret)
3349 return ret;
3350
61050808
CW
3351 if (obj->fence_reg == I915_FENCE_REG_NONE)
3352 return 0;
d9e86c0e 3353
f9c513e9
CW
3354 fence = &dev_priv->fence_regs[obj->fence_reg];
3355
aff10b30
DV
3356 if (WARN_ON(fence->pin_count))
3357 return -EBUSY;
3358
61050808 3359 i915_gem_object_fence_lost(obj);
f9c513e9 3360 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3361
3362 return 0;
3363}
3364
3365static struct drm_i915_fence_reg *
a360bb1a 3366i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3367{
ae3db24a 3368 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3369 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3370 int i;
ae3db24a
DV
3371
3372 /* First try to find a free reg */
d9e86c0e 3373 avail = NULL;
ae3db24a
DV
3374 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3375 reg = &dev_priv->fence_regs[i];
3376 if (!reg->obj)
d9e86c0e 3377 return reg;
ae3db24a 3378
1690e1eb 3379 if (!reg->pin_count)
d9e86c0e 3380 avail = reg;
ae3db24a
DV
3381 }
3382
d9e86c0e 3383 if (avail == NULL)
5dce5b93 3384 goto deadlock;
ae3db24a
DV
3385
3386 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3387 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3388 if (reg->pin_count)
ae3db24a
DV
3389 continue;
3390
8fe301ad 3391 return reg;
ae3db24a
DV
3392 }
3393
5dce5b93
CW
3394deadlock:
3395 /* Wait for completion of pending flips which consume fences */
3396 if (intel_has_pending_fb_unpin(dev))
3397 return ERR_PTR(-EAGAIN);
3398
3399 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3400}
3401
de151cf6 3402/**
9a5a53b3 3403 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3404 * @obj: object to map through a fence reg
3405 *
3406 * When mapping objects through the GTT, userspace wants to be able to write
3407 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3408 * This function walks the fence regs looking for a free one for @obj,
3409 * stealing one if it can't find any.
3410 *
3411 * It then sets up the reg based on the object's properties: address, pitch
3412 * and tiling format.
9a5a53b3
CW
3413 *
3414 * For an untiled surface, this removes any existing fence.
de151cf6 3415 */
8c4b8c3f 3416int
06d98131 3417i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3418{
05394f39 3419 struct drm_device *dev = obj->base.dev;
79e53945 3420 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3421 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3422 struct drm_i915_fence_reg *reg;
ae3db24a 3423 int ret;
de151cf6 3424
14415745
CW
3425 /* Have we updated the tiling parameters upon the object and so
3426 * will need to serialise the write to the associated fence register?
3427 */
5d82e3e6 3428 if (obj->fence_dirty) {
d0a57789 3429 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3430 if (ret)
3431 return ret;
3432 }
9a5a53b3 3433
d9e86c0e 3434 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3435 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3436 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3437 if (!obj->fence_dirty) {
14415745
CW
3438 list_move_tail(&reg->lru_list,
3439 &dev_priv->mm.fence_list);
3440 return 0;
3441 }
3442 } else if (enable) {
e6a84468
CW
3443 if (WARN_ON(!obj->map_and_fenceable))
3444 return -EINVAL;
3445
14415745 3446 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3447 if (IS_ERR(reg))
3448 return PTR_ERR(reg);
d9e86c0e 3449
14415745
CW
3450 if (reg->obj) {
3451 struct drm_i915_gem_object *old = reg->obj;
3452
d0a57789 3453 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3454 if (ret)
3455 return ret;
3456
14415745 3457 i915_gem_object_fence_lost(old);
29c5a587 3458 }
14415745 3459 } else
a09ba7fa 3460 return 0;
a09ba7fa 3461
14415745 3462 i915_gem_object_update_fence(obj, reg, enable);
14415745 3463
9ce079e4 3464 return 0;
de151cf6
JB
3465}
3466
4144f9b5 3467static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3468 unsigned long cache_level)
3469{
4144f9b5 3470 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3471 struct drm_mm_node *other;
3472
4144f9b5
CW
3473 /*
3474 * On some machines we have to be careful when putting differing types
3475 * of snoopable memory together to avoid the prefetcher crossing memory
3476 * domains and dying. During vm initialisation, we decide whether or not
3477 * these constraints apply and set the drm_mm.color_adjust
3478 * appropriately.
42d6ab48 3479 */
4144f9b5 3480 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3481 return true;
3482
c6cfb325 3483 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3484 return true;
3485
3486 if (list_empty(&gtt_space->node_list))
3487 return true;
3488
3489 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3490 if (other->allocated && !other->hole_follows && other->color != cache_level)
3491 return false;
3492
3493 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3494 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3495 return false;
3496
3497 return true;
3498}
3499
673a394b
EA
3500/**
3501 * Finds free space in the GTT aperture and binds the object there.
3502 */
262de145 3503static struct i915_vma *
07fe0b12
BW
3504i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3505 struct i915_address_space *vm,
3506 unsigned alignment,
fe14d5f4
TU
3507 uint64_t flags,
3508 const struct i915_ggtt_view *view)
673a394b 3509{
05394f39 3510 struct drm_device *dev = obj->base.dev;
3e31c6c0 3511 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3512 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3513 unsigned long start =
3514 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3515 unsigned long end =
1ec9e26d 3516 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3517 struct i915_vma *vma;
07f73f69 3518 int ret;
673a394b 3519
e28f8711
CW
3520 fence_size = i915_gem_get_gtt_size(dev,
3521 obj->base.size,
3522 obj->tiling_mode);
3523 fence_alignment = i915_gem_get_gtt_alignment(dev,
3524 obj->base.size,
d865110c 3525 obj->tiling_mode, true);
e28f8711 3526 unfenced_alignment =
d865110c 3527 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3528 obj->base.size,
3529 obj->tiling_mode, false);
a00b10c3 3530
673a394b 3531 if (alignment == 0)
1ec9e26d 3532 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3533 unfenced_alignment;
1ec9e26d 3534 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3535 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3536 return ERR_PTR(-EINVAL);
673a394b
EA
3537 }
3538
1ec9e26d 3539 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3540
654fc607
CW
3541 /* If the object is bigger than the entire aperture, reject it early
3542 * before evicting everything in a vain attempt to find space.
3543 */
d23db88c
CW
3544 if (obj->base.size > end) {
3545 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3546 obj->base.size,
1ec9e26d 3547 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3548 end);
262de145 3549 return ERR_PTR(-E2BIG);
654fc607
CW
3550 }
3551
37e680a1 3552 ret = i915_gem_object_get_pages(obj);
6c085a72 3553 if (ret)
262de145 3554 return ERR_PTR(ret);
6c085a72 3555
fbdda6fb
CW
3556 i915_gem_object_pin_pages(obj);
3557
fe14d5f4 3558 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
262de145 3559 if (IS_ERR(vma))
bc6bc15b 3560 goto err_unpin;
2f633156 3561
0a9ae0d7 3562search_free:
07fe0b12 3563 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3564 size, alignment,
d23db88c
CW
3565 obj->cache_level,
3566 start, end,
62347f9e
LK
3567 DRM_MM_SEARCH_DEFAULT,
3568 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3569 if (ret) {
f6cd1f15 3570 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3571 obj->cache_level,
3572 start, end,
3573 flags);
dc9dd7a2
CW
3574 if (ret == 0)
3575 goto search_free;
9731129c 3576
bc6bc15b 3577 goto err_free_vma;
673a394b 3578 }
4144f9b5 3579 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3580 ret = -EINVAL;
bc6bc15b 3581 goto err_remove_node;
673a394b
EA
3582 }
3583
74163907 3584 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3585 if (ret)
bc6bc15b 3586 goto err_remove_node;
673a394b 3587
fe14d5f4
TU
3588 trace_i915_vma_bind(vma, flags);
3589 ret = i915_vma_bind(vma, obj->cache_level,
3590 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3591 if (ret)
3592 goto err_finish_gtt;
3593
35c20a60 3594 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3595 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3596
262de145 3597 return vma;
2f633156 3598
fe14d5f4
TU
3599err_finish_gtt:
3600 i915_gem_gtt_finish_object(obj);
bc6bc15b 3601err_remove_node:
6286ef9b 3602 drm_mm_remove_node(&vma->node);
bc6bc15b 3603err_free_vma:
2f633156 3604 i915_gem_vma_destroy(vma);
262de145 3605 vma = ERR_PTR(ret);
bc6bc15b 3606err_unpin:
2f633156 3607 i915_gem_object_unpin_pages(obj);
262de145 3608 return vma;
673a394b
EA
3609}
3610
000433b6 3611bool
2c22569b
CW
3612i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3613 bool force)
673a394b 3614{
673a394b
EA
3615 /* If we don't have a page list set up, then we're not pinned
3616 * to GPU, and we can ignore the cache flush because it'll happen
3617 * again at bind time.
3618 */
05394f39 3619 if (obj->pages == NULL)
000433b6 3620 return false;
673a394b 3621
769ce464
ID
3622 /*
3623 * Stolen memory is always coherent with the GPU as it is explicitly
3624 * marked as wc by the system, or the system is cache-coherent.
3625 */
6a2c4232 3626 if (obj->stolen || obj->phys_handle)
000433b6 3627 return false;
769ce464 3628
9c23f7fc
CW
3629 /* If the GPU is snooping the contents of the CPU cache,
3630 * we do not need to manually clear the CPU cache lines. However,
3631 * the caches are only snooped when the render cache is
3632 * flushed/invalidated. As we always have to emit invalidations
3633 * and flushes when moving into and out of the RENDER domain, correct
3634 * snooping behaviour occurs naturally as the result of our domain
3635 * tracking.
3636 */
2c22569b 3637 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3638 return false;
9c23f7fc 3639
1c5d22f7 3640 trace_i915_gem_object_clflush(obj);
9da3da66 3641 drm_clflush_sg(obj->pages);
000433b6
CW
3642
3643 return true;
e47c68e9
EA
3644}
3645
3646/** Flushes the GTT write domain for the object if it's dirty. */
3647static void
05394f39 3648i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3649{
1c5d22f7
CW
3650 uint32_t old_write_domain;
3651
05394f39 3652 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3653 return;
3654
63256ec5 3655 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3656 * to it immediately go to main memory as far as we know, so there's
3657 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3658 *
3659 * However, we do have to enforce the order so that all writes through
3660 * the GTT land before any writes to the device, such as updates to
3661 * the GATT itself.
e47c68e9 3662 */
63256ec5
CW
3663 wmb();
3664
05394f39
CW
3665 old_write_domain = obj->base.write_domain;
3666 obj->base.write_domain = 0;
1c5d22f7 3667
f99d7069
DV
3668 intel_fb_obj_flush(obj, false);
3669
1c5d22f7 3670 trace_i915_gem_object_change_domain(obj,
05394f39 3671 obj->base.read_domains,
1c5d22f7 3672 old_write_domain);
e47c68e9
EA
3673}
3674
3675/** Flushes the CPU write domain for the object if it's dirty. */
3676static void
2c22569b
CW
3677i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3678 bool force)
e47c68e9 3679{
1c5d22f7 3680 uint32_t old_write_domain;
e47c68e9 3681
05394f39 3682 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3683 return;
3684
000433b6
CW
3685 if (i915_gem_clflush_object(obj, force))
3686 i915_gem_chipset_flush(obj->base.dev);
3687
05394f39
CW
3688 old_write_domain = obj->base.write_domain;
3689 obj->base.write_domain = 0;
1c5d22f7 3690
f99d7069
DV
3691 intel_fb_obj_flush(obj, false);
3692
1c5d22f7 3693 trace_i915_gem_object_change_domain(obj,
05394f39 3694 obj->base.read_domains,
1c5d22f7 3695 old_write_domain);
e47c68e9
EA
3696}
3697
2ef7eeaa
EA
3698/**
3699 * Moves a single object to the GTT read, and possibly write domain.
3700 *
3701 * This function returns when the move is complete, including waiting on
3702 * flushes to occur.
3703 */
79e53945 3704int
2021746e 3705i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3706{
1c5d22f7 3707 uint32_t old_write_domain, old_read_domains;
43566ded 3708 struct i915_vma *vma;
e47c68e9 3709 int ret;
2ef7eeaa 3710
8d7e3de1
CW
3711 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3712 return 0;
3713
0201f1ec 3714 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3715 if (ret)
3716 return ret;
3717
c8725f3d 3718 i915_gem_object_retire(obj);
43566ded
CW
3719
3720 /* Flush and acquire obj->pages so that we are coherent through
3721 * direct access in memory with previous cached writes through
3722 * shmemfs and that our cache domain tracking remains valid.
3723 * For example, if the obj->filp was moved to swap without us
3724 * being notified and releasing the pages, we would mistakenly
3725 * continue to assume that the obj remained out of the CPU cached
3726 * domain.
3727 */
3728 ret = i915_gem_object_get_pages(obj);
3729 if (ret)
3730 return ret;
3731
2c22569b 3732 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3733
d0a57789
CW
3734 /* Serialise direct access to this object with the barriers for
3735 * coherent writes from the GPU, by effectively invalidating the
3736 * GTT domain upon first access.
3737 */
3738 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3739 mb();
3740
05394f39
CW
3741 old_write_domain = obj->base.write_domain;
3742 old_read_domains = obj->base.read_domains;
1c5d22f7 3743
e47c68e9
EA
3744 /* It should now be out of any other write domains, and we can update
3745 * the domain values for our changes.
3746 */
05394f39
CW
3747 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3748 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3749 if (write) {
05394f39
CW
3750 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3751 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3752 obj->dirty = 1;
2ef7eeaa
EA
3753 }
3754
f99d7069
DV
3755 if (write)
3756 intel_fb_obj_invalidate(obj, NULL);
3757
1c5d22f7
CW
3758 trace_i915_gem_object_change_domain(obj,
3759 old_read_domains,
3760 old_write_domain);
3761
8325a09d 3762 /* And bump the LRU for this access */
43566ded
CW
3763 vma = i915_gem_obj_to_ggtt(obj);
3764 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3765 list_move_tail(&vma->mm_list,
43566ded 3766 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3767
e47c68e9
EA
3768 return 0;
3769}
3770
e4ffd173
CW
3771int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3772 enum i915_cache_level cache_level)
3773{
7bddb01f 3774 struct drm_device *dev = obj->base.dev;
df6f783a 3775 struct i915_vma *vma, *next;
e4ffd173
CW
3776 int ret;
3777
3778 if (obj->cache_level == cache_level)
3779 return 0;
3780
d7f46fc4 3781 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3782 DRM_DEBUG("can not change the cache level of pinned objects\n");
3783 return -EBUSY;
3784 }
3785
df6f783a 3786 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3787 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3788 ret = i915_vma_unbind(vma);
3089c6f2
BW
3789 if (ret)
3790 return ret;
3089c6f2 3791 }
42d6ab48
CW
3792 }
3793
3089c6f2 3794 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3795 ret = i915_gem_object_finish_gpu(obj);
3796 if (ret)
3797 return ret;
3798
3799 i915_gem_object_finish_gtt(obj);
3800
3801 /* Before SandyBridge, you could not use tiling or fence
3802 * registers with snooped memory, so relinquish any fences
3803 * currently pointing to our region in the aperture.
3804 */
42d6ab48 3805 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3806 ret = i915_gem_object_put_fence(obj);
3807 if (ret)
3808 return ret;
3809 }
3810
6f65e29a 3811 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
3812 if (drm_mm_node_allocated(&vma->node)) {
3813 ret = i915_vma_bind(vma, cache_level,
3814 vma->bound & GLOBAL_BIND);
3815 if (ret)
3816 return ret;
3817 }
e4ffd173
CW
3818 }
3819
2c22569b
CW
3820 list_for_each_entry(vma, &obj->vma_list, vma_link)
3821 vma->node.color = cache_level;
3822 obj->cache_level = cache_level;
3823
3824 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3825 u32 old_read_domains, old_write_domain;
3826
3827 /* If we're coming from LLC cached, then we haven't
3828 * actually been tracking whether the data is in the
3829 * CPU cache or not, since we only allow one bit set
3830 * in obj->write_domain and have been skipping the clflushes.
3831 * Just set it to the CPU cache for now.
3832 */
c8725f3d 3833 i915_gem_object_retire(obj);
e4ffd173 3834 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3835
3836 old_read_domains = obj->base.read_domains;
3837 old_write_domain = obj->base.write_domain;
3838
3839 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3840 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3841
3842 trace_i915_gem_object_change_domain(obj,
3843 old_read_domains,
3844 old_write_domain);
3845 }
3846
e4ffd173
CW
3847 return 0;
3848}
3849
199adf40
BW
3850int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3851 struct drm_file *file)
e6994aee 3852{
199adf40 3853 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3854 struct drm_i915_gem_object *obj;
3855 int ret;
3856
3857 ret = i915_mutex_lock_interruptible(dev);
3858 if (ret)
3859 return ret;
3860
3861 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3862 if (&obj->base == NULL) {
3863 ret = -ENOENT;
3864 goto unlock;
3865 }
3866
651d794f
CW
3867 switch (obj->cache_level) {
3868 case I915_CACHE_LLC:
3869 case I915_CACHE_L3_LLC:
3870 args->caching = I915_CACHING_CACHED;
3871 break;
3872
4257d3ba
CW
3873 case I915_CACHE_WT:
3874 args->caching = I915_CACHING_DISPLAY;
3875 break;
3876
651d794f
CW
3877 default:
3878 args->caching = I915_CACHING_NONE;
3879 break;
3880 }
e6994aee
CW
3881
3882 drm_gem_object_unreference(&obj->base);
3883unlock:
3884 mutex_unlock(&dev->struct_mutex);
3885 return ret;
3886}
3887
199adf40
BW
3888int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3889 struct drm_file *file)
e6994aee 3890{
199adf40 3891 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3892 struct drm_i915_gem_object *obj;
3893 enum i915_cache_level level;
3894 int ret;
3895
199adf40
BW
3896 switch (args->caching) {
3897 case I915_CACHING_NONE:
e6994aee
CW
3898 level = I915_CACHE_NONE;
3899 break;
199adf40 3900 case I915_CACHING_CACHED:
e6994aee
CW
3901 level = I915_CACHE_LLC;
3902 break;
4257d3ba
CW
3903 case I915_CACHING_DISPLAY:
3904 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3905 break;
e6994aee
CW
3906 default:
3907 return -EINVAL;
3908 }
3909
3bc2913e
BW
3910 ret = i915_mutex_lock_interruptible(dev);
3911 if (ret)
3912 return ret;
3913
e6994aee
CW
3914 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3915 if (&obj->base == NULL) {
3916 ret = -ENOENT;
3917 goto unlock;
3918 }
3919
3920 ret = i915_gem_object_set_cache_level(obj, level);
3921
3922 drm_gem_object_unreference(&obj->base);
3923unlock:
3924 mutex_unlock(&dev->struct_mutex);
3925 return ret;
3926}
3927
cc98b413
CW
3928static bool is_pin_display(struct drm_i915_gem_object *obj)
3929{
19656430
OM
3930 struct i915_vma *vma;
3931
19656430
OM
3932 vma = i915_gem_obj_to_ggtt(obj);
3933 if (!vma)
3934 return false;
3935
4feb7659 3936 /* There are 2 sources that pin objects:
cc98b413
CW
3937 * 1. The display engine (scanouts, sprites, cursors);
3938 * 2. Reservations for execbuffer;
cc98b413
CW
3939 *
3940 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3941 * are only called outside of the reservation path.
cc98b413 3942 */
4feb7659 3943 return vma->pin_count;
cc98b413
CW
3944}
3945
b9241ea3 3946/*
2da3b9b9
CW
3947 * Prepare buffer for display plane (scanout, cursors, etc).
3948 * Can be called from an uninterruptible phase (modesetting) and allows
3949 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3950 */
3951int
2da3b9b9
CW
3952i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3953 u32 alignment,
a4872ba6 3954 struct intel_engine_cs *pipelined)
b9241ea3 3955{
2da3b9b9 3956 u32 old_read_domains, old_write_domain;
19656430 3957 bool was_pin_display;
b9241ea3
ZW
3958 int ret;
3959
41c52415 3960 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
2911a35b
BW
3961 ret = i915_gem_object_sync(obj, pipelined);
3962 if (ret)
b9241ea3
ZW
3963 return ret;
3964 }
3965
cc98b413
CW
3966 /* Mark the pin_display early so that we account for the
3967 * display coherency whilst setting up the cache domains.
3968 */
19656430 3969 was_pin_display = obj->pin_display;
cc98b413
CW
3970 obj->pin_display = true;
3971
a7ef0640
EA
3972 /* The display engine is not coherent with the LLC cache on gen6. As
3973 * a result, we make sure that the pinning that is about to occur is
3974 * done with uncached PTEs. This is lowest common denominator for all
3975 * chipsets.
3976 *
3977 * However for gen6+, we could do better by using the GFDT bit instead
3978 * of uncaching, which would allow us to flush all the LLC-cached data
3979 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3980 */
651d794f
CW
3981 ret = i915_gem_object_set_cache_level(obj,
3982 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3983 if (ret)
cc98b413 3984 goto err_unpin_display;
a7ef0640 3985
2da3b9b9
CW
3986 /* As the user may map the buffer once pinned in the display plane
3987 * (e.g. libkms for the bootup splash), we have to ensure that we
3988 * always use map_and_fenceable for all scanout buffers.
3989 */
1ec9e26d 3990 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3991 if (ret)
cc98b413 3992 goto err_unpin_display;
2da3b9b9 3993
2c22569b 3994 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3995
2da3b9b9 3996 old_write_domain = obj->base.write_domain;
05394f39 3997 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3998
3999 /* It should now be out of any other write domains, and we can update
4000 * the domain values for our changes.
4001 */
e5f1d962 4002 obj->base.write_domain = 0;
05394f39 4003 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4004
4005 trace_i915_gem_object_change_domain(obj,
4006 old_read_domains,
2da3b9b9 4007 old_write_domain);
b9241ea3
ZW
4008
4009 return 0;
cc98b413
CW
4010
4011err_unpin_display:
19656430
OM
4012 WARN_ON(was_pin_display != is_pin_display(obj));
4013 obj->pin_display = was_pin_display;
cc98b413
CW
4014 return ret;
4015}
4016
4017void
4018i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4019{
d7f46fc4 4020 i915_gem_object_ggtt_unpin(obj);
cc98b413 4021 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
4022}
4023
85345517 4024int
a8198eea 4025i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 4026{
88241785
CW
4027 int ret;
4028
a8198eea 4029 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4030 return 0;
4031
0201f1ec 4032 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4033 if (ret)
4034 return ret;
4035
a8198eea
CW
4036 /* Ensure that we invalidate the GPU's caches and TLBs. */
4037 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4038 return 0;
85345517
CW
4039}
4040
e47c68e9
EA
4041/**
4042 * Moves a single object to the CPU read, and possibly write domain.
4043 *
4044 * This function returns when the move is complete, including waiting on
4045 * flushes to occur.
4046 */
dabdfe02 4047int
919926ae 4048i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4049{
1c5d22f7 4050 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4051 int ret;
4052
8d7e3de1
CW
4053 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4054 return 0;
4055
0201f1ec 4056 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4057 if (ret)
4058 return ret;
4059
c8725f3d 4060 i915_gem_object_retire(obj);
e47c68e9 4061 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4062
05394f39
CW
4063 old_write_domain = obj->base.write_domain;
4064 old_read_domains = obj->base.read_domains;
1c5d22f7 4065
e47c68e9 4066 /* Flush the CPU cache if it's still invalid. */
05394f39 4067 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4068 i915_gem_clflush_object(obj, false);
2ef7eeaa 4069
05394f39 4070 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4071 }
4072
4073 /* It should now be out of any other write domains, and we can update
4074 * the domain values for our changes.
4075 */
05394f39 4076 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4077
4078 /* If we're writing through the CPU, then the GPU read domains will
4079 * need to be invalidated at next use.
4080 */
4081 if (write) {
05394f39
CW
4082 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4083 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4084 }
2ef7eeaa 4085
f99d7069
DV
4086 if (write)
4087 intel_fb_obj_invalidate(obj, NULL);
4088
1c5d22f7
CW
4089 trace_i915_gem_object_change_domain(obj,
4090 old_read_domains,
4091 old_write_domain);
4092
2ef7eeaa
EA
4093 return 0;
4094}
4095
673a394b
EA
4096/* Throttle our rendering by waiting until the ring has completed our requests
4097 * emitted over 20 msec ago.
4098 *
b962442e
EA
4099 * Note that if we were to use the current jiffies each time around the loop,
4100 * we wouldn't escape the function with any frames outstanding if the time to
4101 * render a frame was over 20ms.
4102 *
673a394b
EA
4103 * This should get us reasonable parallelism between CPU and GPU but also
4104 * relatively low latency when blocking on a particular request to finish.
4105 */
40a5f0de 4106static int
f787a5f5 4107i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4108{
f787a5f5
CW
4109 struct drm_i915_private *dev_priv = dev->dev_private;
4110 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4111 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4112 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4113 unsigned reset_counter;
f787a5f5 4114 int ret;
93533c29 4115
308887aa
DV
4116 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4117 if (ret)
4118 return ret;
4119
4120 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4121 if (ret)
4122 return ret;
e110e8d6 4123
1c25595f 4124 spin_lock(&file_priv->mm.lock);
f787a5f5 4125 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4126 if (time_after_eq(request->emitted_jiffies, recent_enough))
4127 break;
40a5f0de 4128
54fb2411 4129 target = request;
b962442e 4130 }
f69061be 4131 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4132 if (target)
4133 i915_gem_request_reference(target);
1c25595f 4134 spin_unlock(&file_priv->mm.lock);
40a5f0de 4135
54fb2411 4136 if (target == NULL)
f787a5f5 4137 return 0;
2bc43b5c 4138
9c654818 4139 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4140 if (ret == 0)
4141 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4142
ff865885
JH
4143 mutex_lock(&dev->struct_mutex);
4144 i915_gem_request_unreference(target);
4145 mutex_unlock(&dev->struct_mutex);
4146
40a5f0de
EA
4147 return ret;
4148}
4149
d23db88c
CW
4150static bool
4151i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4152{
4153 struct drm_i915_gem_object *obj = vma->obj;
4154
4155 if (alignment &&
4156 vma->node.start & (alignment - 1))
4157 return true;
4158
4159 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4160 return true;
4161
4162 if (flags & PIN_OFFSET_BIAS &&
4163 vma->node.start < (flags & PIN_OFFSET_MASK))
4164 return true;
4165
4166 return false;
4167}
4168
673a394b 4169int
fe14d5f4
TU
4170i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4171 struct i915_address_space *vm,
4172 uint32_t alignment,
4173 uint64_t flags,
4174 const struct i915_ggtt_view *view)
673a394b 4175{
6e7186af 4176 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4177 struct i915_vma *vma;
ef79e17c 4178 unsigned bound;
673a394b
EA
4179 int ret;
4180
6e7186af
BW
4181 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4182 return -ENODEV;
4183
bf3d149b 4184 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4185 return -EINVAL;
07fe0b12 4186
c826c449
CW
4187 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4188 return -EINVAL;
4189
fe14d5f4 4190 vma = i915_gem_obj_to_vma_view(obj, vm, view);
07fe0b12 4191 if (vma) {
d7f46fc4
BW
4192 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4193 return -EBUSY;
4194
d23db88c 4195 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4196 WARN(vma->pin_count,
ae7d49d8 4197 "bo is already pinned with incorrect alignment:"
f343c5f6 4198 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4199 " obj->map_and_fenceable=%d\n",
fe14d5f4
TU
4200 i915_gem_obj_offset_view(obj, vm, view->type),
4201 alignment,
d23db88c 4202 !!(flags & PIN_MAPPABLE),
05394f39 4203 obj->map_and_fenceable);
07fe0b12 4204 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4205 if (ret)
4206 return ret;
8ea99c92
DV
4207
4208 vma = NULL;
ac0c6b5a
CW
4209 }
4210 }
4211
ef79e17c 4212 bound = vma ? vma->bound : 0;
8ea99c92 4213 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
fe14d5f4
TU
4214 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4215 flags, view);
262de145
DV
4216 if (IS_ERR(vma))
4217 return PTR_ERR(vma);
22c344e9 4218 }
76446cac 4219
fe14d5f4
TU
4220 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4221 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4222 if (ret)
4223 return ret;
4224 }
74898d7e 4225
ef79e17c
CW
4226 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4227 bool mappable, fenceable;
4228 u32 fence_size, fence_alignment;
4229
4230 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4231 obj->base.size,
4232 obj->tiling_mode);
4233 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4234 obj->base.size,
4235 obj->tiling_mode,
4236 true);
4237
4238 fenceable = (vma->node.size == fence_size &&
4239 (vma->node.start & (fence_alignment - 1)) == 0);
4240
4241 mappable = (vma->node.start + obj->base.size <=
4242 dev_priv->gtt.mappable_end);
4243
4244 obj->map_and_fenceable = mappable && fenceable;
4245 }
4246
4247 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4248
8ea99c92 4249 vma->pin_count++;
1ec9e26d
DV
4250 if (flags & PIN_MAPPABLE)
4251 obj->pin_mappable |= true;
673a394b
EA
4252
4253 return 0;
4254}
4255
4256void
d7f46fc4 4257i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4258{
d7f46fc4 4259 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4260
d7f46fc4
BW
4261 BUG_ON(!vma);
4262 BUG_ON(vma->pin_count == 0);
4263 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4264
4265 if (--vma->pin_count == 0)
6299f992 4266 obj->pin_mappable = false;
673a394b
EA
4267}
4268
d8ffa60b
DV
4269bool
4270i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4271{
4272 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4273 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4274 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4275
4276 WARN_ON(!ggtt_vma ||
4277 dev_priv->fence_regs[obj->fence_reg].pin_count >
4278 ggtt_vma->pin_count);
4279 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4280 return true;
4281 } else
4282 return false;
4283}
4284
4285void
4286i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4287{
4288 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4289 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4290 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4291 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4292 }
4293}
4294
673a394b
EA
4295int
4296i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4297 struct drm_file *file)
673a394b
EA
4298{
4299 struct drm_i915_gem_busy *args = data;
05394f39 4300 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4301 int ret;
4302
76c1dec1 4303 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4304 if (ret)
76c1dec1 4305 return ret;
673a394b 4306
05394f39 4307 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4308 if (&obj->base == NULL) {
1d7cfea1
CW
4309 ret = -ENOENT;
4310 goto unlock;
673a394b 4311 }
d1b851fc 4312
0be555b6
CW
4313 /* Count all active objects as busy, even if they are currently not used
4314 * by the gpu. Users of this interface expect objects to eventually
4315 * become non-busy without any further actions, therefore emit any
4316 * necessary flushes here.
c4de0a5d 4317 */
30dfebf3 4318 ret = i915_gem_object_flush_active(obj);
0be555b6 4319
30dfebf3 4320 args->busy = obj->active;
41c52415
JH
4321 if (obj->last_read_req) {
4322 struct intel_engine_cs *ring;
e9808edd 4323 BUILD_BUG_ON(I915_NUM_RINGS > 16);
41c52415
JH
4324 ring = i915_gem_request_get_ring(obj->last_read_req);
4325 args->busy |= intel_ring_flag(ring) << 16;
e9808edd 4326 }
673a394b 4327
05394f39 4328 drm_gem_object_unreference(&obj->base);
1d7cfea1 4329unlock:
673a394b 4330 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4331 return ret;
673a394b
EA
4332}
4333
4334int
4335i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4336 struct drm_file *file_priv)
4337{
0206e353 4338 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4339}
4340
3ef94daa
CW
4341int
4342i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4343 struct drm_file *file_priv)
4344{
656bfa3a 4345 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4346 struct drm_i915_gem_madvise *args = data;
05394f39 4347 struct drm_i915_gem_object *obj;
76c1dec1 4348 int ret;
3ef94daa
CW
4349
4350 switch (args->madv) {
4351 case I915_MADV_DONTNEED:
4352 case I915_MADV_WILLNEED:
4353 break;
4354 default:
4355 return -EINVAL;
4356 }
4357
1d7cfea1
CW
4358 ret = i915_mutex_lock_interruptible(dev);
4359 if (ret)
4360 return ret;
4361
05394f39 4362 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4363 if (&obj->base == NULL) {
1d7cfea1
CW
4364 ret = -ENOENT;
4365 goto unlock;
3ef94daa 4366 }
3ef94daa 4367
d7f46fc4 4368 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4369 ret = -EINVAL;
4370 goto out;
3ef94daa
CW
4371 }
4372
656bfa3a
DV
4373 if (obj->pages &&
4374 obj->tiling_mode != I915_TILING_NONE &&
4375 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4376 if (obj->madv == I915_MADV_WILLNEED)
4377 i915_gem_object_unpin_pages(obj);
4378 if (args->madv == I915_MADV_WILLNEED)
4379 i915_gem_object_pin_pages(obj);
4380 }
4381
05394f39
CW
4382 if (obj->madv != __I915_MADV_PURGED)
4383 obj->madv = args->madv;
3ef94daa 4384
6c085a72
CW
4385 /* if the object is no longer attached, discard its backing storage */
4386 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4387 i915_gem_object_truncate(obj);
4388
05394f39 4389 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4390
1d7cfea1 4391out:
05394f39 4392 drm_gem_object_unreference(&obj->base);
1d7cfea1 4393unlock:
3ef94daa 4394 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4395 return ret;
3ef94daa
CW
4396}
4397
37e680a1
CW
4398void i915_gem_object_init(struct drm_i915_gem_object *obj,
4399 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4400{
35c20a60 4401 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4402 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4403 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4404 INIT_LIST_HEAD(&obj->vma_list);
493018dc 4405 INIT_LIST_HEAD(&obj->batch_pool_list);
0327d6ba 4406
37e680a1
CW
4407 obj->ops = ops;
4408
0327d6ba
CW
4409 obj->fence_reg = I915_FENCE_REG_NONE;
4410 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4411
4412 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4413}
4414
37e680a1
CW
4415static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4416 .get_pages = i915_gem_object_get_pages_gtt,
4417 .put_pages = i915_gem_object_put_pages_gtt,
4418};
4419
05394f39
CW
4420struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4421 size_t size)
ac52bc56 4422{
c397b908 4423 struct drm_i915_gem_object *obj;
5949eac4 4424 struct address_space *mapping;
1a240d4d 4425 gfp_t mask;
ac52bc56 4426
42dcedd4 4427 obj = i915_gem_object_alloc(dev);
c397b908
DV
4428 if (obj == NULL)
4429 return NULL;
673a394b 4430
c397b908 4431 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4432 i915_gem_object_free(obj);
c397b908
DV
4433 return NULL;
4434 }
673a394b 4435
bed1ea95
CW
4436 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4437 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4438 /* 965gm cannot relocate objects above 4GiB. */
4439 mask &= ~__GFP_HIGHMEM;
4440 mask |= __GFP_DMA32;
4441 }
4442
496ad9aa 4443 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4444 mapping_set_gfp_mask(mapping, mask);
5949eac4 4445
37e680a1 4446 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4447
c397b908
DV
4448 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4449 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4450
3d29b842
ED
4451 if (HAS_LLC(dev)) {
4452 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4453 * cache) for about a 10% performance improvement
4454 * compared to uncached. Graphics requests other than
4455 * display scanout are coherent with the CPU in
4456 * accessing this cache. This means in this mode we
4457 * don't need to clflush on the CPU side, and on the
4458 * GPU side we only need to flush internal caches to
4459 * get data visible to the CPU.
4460 *
4461 * However, we maintain the display planes as UC, and so
4462 * need to rebind when first used as such.
4463 */
4464 obj->cache_level = I915_CACHE_LLC;
4465 } else
4466 obj->cache_level = I915_CACHE_NONE;
4467
d861e338
DV
4468 trace_i915_gem_object_create(obj);
4469
05394f39 4470 return obj;
c397b908
DV
4471}
4472
340fbd8c
CW
4473static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4474{
4475 /* If we are the last user of the backing storage (be it shmemfs
4476 * pages or stolen etc), we know that the pages are going to be
4477 * immediately released. In this case, we can then skip copying
4478 * back the contents from the GPU.
4479 */
4480
4481 if (obj->madv != I915_MADV_WILLNEED)
4482 return false;
4483
4484 if (obj->base.filp == NULL)
4485 return true;
4486
4487 /* At first glance, this looks racy, but then again so would be
4488 * userspace racing mmap against close. However, the first external
4489 * reference to the filp can only be obtained through the
4490 * i915_gem_mmap_ioctl() which safeguards us against the user
4491 * acquiring such a reference whilst we are in the middle of
4492 * freeing the object.
4493 */
4494 return atomic_long_read(&obj->base.filp->f_count) == 1;
4495}
4496
1488fc08 4497void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4498{
1488fc08 4499 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4500 struct drm_device *dev = obj->base.dev;
3e31c6c0 4501 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4502 struct i915_vma *vma, *next;
673a394b 4503
f65c9168
PZ
4504 intel_runtime_pm_get(dev_priv);
4505
26e12f89
CW
4506 trace_i915_gem_object_destroy(obj);
4507
07fe0b12 4508 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4509 int ret;
4510
4511 vma->pin_count = 0;
4512 ret = i915_vma_unbind(vma);
07fe0b12
BW
4513 if (WARN_ON(ret == -ERESTARTSYS)) {
4514 bool was_interruptible;
1488fc08 4515
07fe0b12
BW
4516 was_interruptible = dev_priv->mm.interruptible;
4517 dev_priv->mm.interruptible = false;
1488fc08 4518
07fe0b12 4519 WARN_ON(i915_vma_unbind(vma));
1488fc08 4520
07fe0b12
BW
4521 dev_priv->mm.interruptible = was_interruptible;
4522 }
1488fc08
CW
4523 }
4524
1d64ae71
BW
4525 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4526 * before progressing. */
4527 if (obj->stolen)
4528 i915_gem_object_unpin_pages(obj);
4529
a071fa00
DV
4530 WARN_ON(obj->frontbuffer_bits);
4531
656bfa3a
DV
4532 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4533 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4534 obj->tiling_mode != I915_TILING_NONE)
4535 i915_gem_object_unpin_pages(obj);
4536
401c29f6
BW
4537 if (WARN_ON(obj->pages_pin_count))
4538 obj->pages_pin_count = 0;
340fbd8c 4539 if (discard_backing_storage(obj))
5537252b 4540 obj->madv = I915_MADV_DONTNEED;
37e680a1 4541 i915_gem_object_put_pages(obj);
d8cb5086 4542 i915_gem_object_free_mmap_offset(obj);
de151cf6 4543
9da3da66
CW
4544 BUG_ON(obj->pages);
4545
2f745ad3
CW
4546 if (obj->base.import_attach)
4547 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4548
5cc9ed4b
CW
4549 if (obj->ops->release)
4550 obj->ops->release(obj);
4551
05394f39
CW
4552 drm_gem_object_release(&obj->base);
4553 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4554
05394f39 4555 kfree(obj->bit_17);
42dcedd4 4556 i915_gem_object_free(obj);
f65c9168
PZ
4557
4558 intel_runtime_pm_put(dev_priv);
673a394b
EA
4559}
4560
fe14d5f4
TU
4561struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4562 struct i915_address_space *vm,
4563 const struct i915_ggtt_view *view)
e656a6cb
DV
4564{
4565 struct i915_vma *vma;
4566 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4 4567 if (vma->vm == vm && vma->ggtt_view.type == view->type)
e656a6cb
DV
4568 return vma;
4569
4570 return NULL;
4571}
4572
2f633156
BW
4573void i915_gem_vma_destroy(struct i915_vma *vma)
4574{
b9d06dd9 4575 struct i915_address_space *vm = NULL;
2f633156 4576 WARN_ON(vma->node.allocated);
aaa05667
CW
4577
4578 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4579 if (!list_empty(&vma->exec_list))
4580 return;
4581
b9d06dd9 4582 vm = vma->vm;
b9d06dd9 4583
841cd773
DV
4584 if (!i915_is_ggtt(vm))
4585 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4586
8b9c2b94 4587 list_del(&vma->vma_link);
b93dab6e 4588
2f633156
BW
4589 kfree(vma);
4590}
4591
e3efda49
CW
4592static void
4593i915_gem_stop_ringbuffers(struct drm_device *dev)
4594{
4595 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4596 struct intel_engine_cs *ring;
e3efda49
CW
4597 int i;
4598
4599 for_each_ring(ring, dev_priv, i)
a83014d3 4600 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4601}
4602
29105ccc 4603int
45c5f202 4604i915_gem_suspend(struct drm_device *dev)
29105ccc 4605{
3e31c6c0 4606 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4607 int ret = 0;
28dfe52a 4608
45c5f202 4609 mutex_lock(&dev->struct_mutex);
b2da9fe5 4610 ret = i915_gpu_idle(dev);
f7403347 4611 if (ret)
45c5f202 4612 goto err;
f7403347 4613
b2da9fe5 4614 i915_gem_retire_requests(dev);
673a394b 4615
29105ccc 4616 /* Under UMS, be paranoid and evict. */
a39d7efc 4617 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4618 i915_gem_evict_everything(dev);
29105ccc 4619
e3efda49 4620 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4621 mutex_unlock(&dev->struct_mutex);
4622
4623 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4624 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4625 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4626
bdcf120b
CW
4627 /* Assert that we sucessfully flushed all the work and
4628 * reset the GPU back to its idle, low power state.
4629 */
4630 WARN_ON(dev_priv->mm.busy);
4631
673a394b 4632 return 0;
45c5f202
CW
4633
4634err:
4635 mutex_unlock(&dev->struct_mutex);
4636 return ret;
673a394b
EA
4637}
4638
a4872ba6 4639int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4640{
c3787e2e 4641 struct drm_device *dev = ring->dev;
3e31c6c0 4642 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4643 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4644 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4645 int i, ret;
b9524a1e 4646
040d2baa 4647 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4648 return 0;
b9524a1e 4649
c3787e2e
BW
4650 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4651 if (ret)
4652 return ret;
b9524a1e 4653
c3787e2e
BW
4654 /*
4655 * Note: We do not worry about the concurrent register cacheline hang
4656 * here because no other code should access these registers other than
4657 * at initialization time.
4658 */
b9524a1e 4659 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4660 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4661 intel_ring_emit(ring, reg_base + i);
4662 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4663 }
4664
c3787e2e 4665 intel_ring_advance(ring);
b9524a1e 4666
c3787e2e 4667 return ret;
b9524a1e
BW
4668}
4669
f691e2f4
DV
4670void i915_gem_init_swizzling(struct drm_device *dev)
4671{
3e31c6c0 4672 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4673
11782b02 4674 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4675 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4676 return;
4677
4678 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4679 DISP_TILE_SURFACE_SWIZZLING);
4680
11782b02
DV
4681 if (IS_GEN5(dev))
4682 return;
4683
f691e2f4
DV
4684 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4685 if (IS_GEN6(dev))
6b26c86d 4686 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4687 else if (IS_GEN7(dev))
6b26c86d 4688 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4689 else if (IS_GEN8(dev))
4690 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4691 else
4692 BUG();
f691e2f4 4693}
e21af88d 4694
67b1b571
CW
4695static bool
4696intel_enable_blt(struct drm_device *dev)
4697{
4698 if (!HAS_BLT(dev))
4699 return false;
4700
4701 /* The blitter was dysfunctional on early prototypes */
4702 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4703 DRM_INFO("BLT not supported on this pre-production hardware;"
4704 " graphics performance will be degraded.\n");
4705 return false;
4706 }
4707
4708 return true;
4709}
4710
81e7f200
VS
4711static void init_unused_ring(struct drm_device *dev, u32 base)
4712{
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4714
4715 I915_WRITE(RING_CTL(base), 0);
4716 I915_WRITE(RING_HEAD(base), 0);
4717 I915_WRITE(RING_TAIL(base), 0);
4718 I915_WRITE(RING_START(base), 0);
4719}
4720
4721static void init_unused_rings(struct drm_device *dev)
4722{
4723 if (IS_I830(dev)) {
4724 init_unused_ring(dev, PRB1_BASE);
4725 init_unused_ring(dev, SRB0_BASE);
4726 init_unused_ring(dev, SRB1_BASE);
4727 init_unused_ring(dev, SRB2_BASE);
4728 init_unused_ring(dev, SRB3_BASE);
4729 } else if (IS_GEN2(dev)) {
4730 init_unused_ring(dev, SRB0_BASE);
4731 init_unused_ring(dev, SRB1_BASE);
4732 } else if (IS_GEN3(dev)) {
4733 init_unused_ring(dev, PRB1_BASE);
4734 init_unused_ring(dev, PRB2_BASE);
4735 }
4736}
4737
a83014d3 4738int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4739{
4fc7c971 4740 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4741 int ret;
68f95ba9 4742
5c1143bb 4743 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4744 if (ret)
b6913e4b 4745 return ret;
68f95ba9
CW
4746
4747 if (HAS_BSD(dev)) {
5c1143bb 4748 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4749 if (ret)
4750 goto cleanup_render_ring;
d1b851fc 4751 }
68f95ba9 4752
67b1b571 4753 if (intel_enable_blt(dev)) {
549f7365
CW
4754 ret = intel_init_blt_ring_buffer(dev);
4755 if (ret)
4756 goto cleanup_bsd_ring;
4757 }
4758
9a8a2213
BW
4759 if (HAS_VEBOX(dev)) {
4760 ret = intel_init_vebox_ring_buffer(dev);
4761 if (ret)
4762 goto cleanup_blt_ring;
4763 }
4764
845f74a7
ZY
4765 if (HAS_BSD2(dev)) {
4766 ret = intel_init_bsd2_ring_buffer(dev);
4767 if (ret)
4768 goto cleanup_vebox_ring;
4769 }
9a8a2213 4770
99433931 4771 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4772 if (ret)
845f74a7 4773 goto cleanup_bsd2_ring;
4fc7c971
BW
4774
4775 return 0;
4776
845f74a7
ZY
4777cleanup_bsd2_ring:
4778 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4779cleanup_vebox_ring:
4780 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4781cleanup_blt_ring:
4782 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4783cleanup_bsd_ring:
4784 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4785cleanup_render_ring:
4786 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4787
4788 return ret;
4789}
4790
4791int
4792i915_gem_init_hw(struct drm_device *dev)
4793{
3e31c6c0 4794 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4795 struct intel_engine_cs *ring;
35a85ac6 4796 int ret, i;
4fc7c971
BW
4797
4798 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4799 return -EIO;
4800
59124506 4801 if (dev_priv->ellc_size)
05e21cc4 4802 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4803
0bf21347
VS
4804 if (IS_HASWELL(dev))
4805 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4806 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4807
88a2b2a3 4808 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4809 if (IS_IVYBRIDGE(dev)) {
4810 u32 temp = I915_READ(GEN7_MSG_CTL);
4811 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4812 I915_WRITE(GEN7_MSG_CTL, temp);
4813 } else if (INTEL_INFO(dev)->gen >= 7) {
4814 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4815 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4816 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4817 }
88a2b2a3
BW
4818 }
4819
4fc7c971
BW
4820 i915_gem_init_swizzling(dev);
4821
d5abdfda
DV
4822 /*
4823 * At least 830 can leave some of the unused rings
4824 * "active" (ie. head != tail) after resume which
4825 * will prevent c3 entry. Makes sure all unused rings
4826 * are totally idle.
4827 */
4828 init_unused_rings(dev);
4829
35a57ffb
DV
4830 for_each_ring(ring, dev_priv, i) {
4831 ret = ring->init_hw(ring);
4832 if (ret)
4833 return ret;
4834 }
99433931 4835
c3787e2e
BW
4836 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4837 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4838
254f965c 4839 /*
2fa48d8d
BW
4840 * XXX: Contexts should only be initialized once. Doing a switch to the
4841 * default context switch however is something we'd like to do after
4842 * reset or thaw (the latter may not actually be necessary for HW, but
4843 * goes with our code better). Context switching requires rings (for
4844 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4845 */
2fa48d8d 4846 ret = i915_gem_context_enable(dev_priv);
60990320 4847 if (ret && ret != -EIO) {
2fa48d8d 4848 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4849 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4850
4851 return ret;
4852 }
4853
4854 ret = i915_ppgtt_init_hw(dev);
4855 if (ret && ret != -EIO) {
4856 DRM_ERROR("PPGTT enable failed %d\n", ret);
4857 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4858 }
e21af88d 4859
2fa48d8d 4860 return ret;
8187a2b7
ZN
4861}
4862
1070a42b
CW
4863int i915_gem_init(struct drm_device *dev)
4864{
4865 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4866 int ret;
4867
127f1003
OM
4868 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4869 i915.enable_execlists);
4870
1070a42b 4871 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4872
4873 if (IS_VALLEYVIEW(dev)) {
4874 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4875 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4876 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4877 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4878 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4879 }
4880
a83014d3
OM
4881 if (!i915.enable_execlists) {
4882 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4883 dev_priv->gt.init_rings = i915_gem_init_rings;
4884 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4885 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4886 } else {
4887 dev_priv->gt.do_execbuf = intel_execlists_submission;
4888 dev_priv->gt.init_rings = intel_logical_rings_init;
4889 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4890 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4891 }
4892
6c5566a8 4893 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4894 if (ret)
4895 goto out_unlock;
6c5566a8 4896
d7e5008f 4897 i915_gem_init_global_gtt(dev);
d62b4892 4898
2fa48d8d 4899 ret = i915_gem_context_init(dev);
7bcc3777
JN
4900 if (ret)
4901 goto out_unlock;
2fa48d8d 4902
35a57ffb
DV
4903 ret = dev_priv->gt.init_rings(dev);
4904 if (ret)
7bcc3777 4905 goto out_unlock;
2fa48d8d 4906
1070a42b 4907 ret = i915_gem_init_hw(dev);
60990320
CW
4908 if (ret == -EIO) {
4909 /* Allow ring initialisation to fail by marking the GPU as
4910 * wedged. But we only want to do this where the GPU is angry,
4911 * for all other failure, such as an allocation failure, bail.
4912 */
4913 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4914 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4915 ret = 0;
1070a42b 4916 }
7bcc3777
JN
4917
4918out_unlock:
60990320 4919 mutex_unlock(&dev->struct_mutex);
1070a42b 4920
60990320 4921 return ret;
1070a42b
CW
4922}
4923
8187a2b7
ZN
4924void
4925i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4926{
3e31c6c0 4927 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4928 struct intel_engine_cs *ring;
1ec14ad3 4929 int i;
8187a2b7 4930
b4519513 4931 for_each_ring(ring, dev_priv, i)
a83014d3 4932 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4933}
4934
64193406 4935static void
a4872ba6 4936init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4937{
4938 INIT_LIST_HEAD(&ring->active_list);
4939 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4940}
4941
7e0d96bc
BW
4942void i915_init_vm(struct drm_i915_private *dev_priv,
4943 struct i915_address_space *vm)
fc8c067e 4944{
7e0d96bc
BW
4945 if (!i915_is_ggtt(vm))
4946 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4947 vm->dev = dev_priv->dev;
4948 INIT_LIST_HEAD(&vm->active_list);
4949 INIT_LIST_HEAD(&vm->inactive_list);
4950 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4951 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4952}
4953
673a394b
EA
4954void
4955i915_gem_load(struct drm_device *dev)
4956{
3e31c6c0 4957 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4958 int i;
4959
4960 dev_priv->slab =
4961 kmem_cache_create("i915_gem_object",
4962 sizeof(struct drm_i915_gem_object), 0,
4963 SLAB_HWCACHE_ALIGN,
4964 NULL);
673a394b 4965
fc8c067e
BW
4966 INIT_LIST_HEAD(&dev_priv->vm_list);
4967 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4968
a33afea5 4969 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4970 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4971 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4972 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4973 for (i = 0; i < I915_NUM_RINGS; i++)
4974 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4975 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4976 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4977 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4978 i915_gem_retire_work_handler);
b29c19b6
CW
4979 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4980 i915_gem_idle_work_handler);
1f83fee0 4981 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4982
94400120 4983 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4984 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4985 I915_WRITE(MI_ARB_STATE,
4986 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4987 }
4988
72bfa19c
CW
4989 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4990
de151cf6 4991 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4992 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4993 dev_priv->fence_reg_start = 3;
de151cf6 4994
42b5aeab
VS
4995 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4996 dev_priv->num_fence_regs = 32;
4997 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4998 dev_priv->num_fence_regs = 16;
4999 else
5000 dev_priv->num_fence_regs = 8;
5001
b5aa8a0f 5002 /* Initialize fence registers to zero */
19b2dbde
CW
5003 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5004 i915_gem_restore_fences(dev);
10ed13e4 5005
673a394b 5006 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5007 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5008
ce453d81
CW
5009 dev_priv->mm.interruptible = true;
5010
ceabbba5
CW
5011 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5012 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5013 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5014 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
5015
5016 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5017 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069 5018
78a42377
BV
5019 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5020
f99d7069 5021 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5022}
71acb5eb 5023
f787a5f5 5024void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5025{
f787a5f5 5026 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5027
b29c19b6
CW
5028 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5029
b962442e
EA
5030 /* Clean up our request list when the client is going away, so that
5031 * later retire_requests won't dereference our soon-to-be-gone
5032 * file_priv.
5033 */
1c25595f 5034 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5035 while (!list_empty(&file_priv->mm.request_list)) {
5036 struct drm_i915_gem_request *request;
5037
5038 request = list_first_entry(&file_priv->mm.request_list,
5039 struct drm_i915_gem_request,
5040 client_list);
5041 list_del(&request->client_list);
5042 request->file_priv = NULL;
5043 }
1c25595f 5044 spin_unlock(&file_priv->mm.lock);
b962442e 5045}
31169714 5046
b29c19b6
CW
5047static void
5048i915_gem_file_idle_work_handler(struct work_struct *work)
5049{
5050 struct drm_i915_file_private *file_priv =
5051 container_of(work, typeof(*file_priv), mm.idle_work.work);
5052
5053 atomic_set(&file_priv->rps_wait_boost, false);
5054}
5055
5056int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5057{
5058 struct drm_i915_file_private *file_priv;
e422b888 5059 int ret;
b29c19b6
CW
5060
5061 DRM_DEBUG_DRIVER("\n");
5062
5063 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5064 if (!file_priv)
5065 return -ENOMEM;
5066
5067 file->driver_priv = file_priv;
5068 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5069 file_priv->file = file;
b29c19b6
CW
5070
5071 spin_lock_init(&file_priv->mm.lock);
5072 INIT_LIST_HEAD(&file_priv->mm.request_list);
5073 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5074 i915_gem_file_idle_work_handler);
5075
e422b888
BW
5076 ret = i915_gem_context_open(dev, file);
5077 if (ret)
5078 kfree(file_priv);
b29c19b6 5079
e422b888 5080 return ret;
b29c19b6
CW
5081}
5082
b680c37a
DV
5083/**
5084 * i915_gem_track_fb - update frontbuffer tracking
5085 * old: current GEM buffer for the frontbuffer slots
5086 * new: new GEM buffer for the frontbuffer slots
5087 * frontbuffer_bits: bitmask of frontbuffer slots
5088 *
5089 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5090 * from @old and setting them in @new. Both @old and @new can be NULL.
5091 */
a071fa00
DV
5092void i915_gem_track_fb(struct drm_i915_gem_object *old,
5093 struct drm_i915_gem_object *new,
5094 unsigned frontbuffer_bits)
5095{
5096 if (old) {
5097 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5098 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5099 old->frontbuffer_bits &= ~frontbuffer_bits;
5100 }
5101
5102 if (new) {
5103 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5104 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5105 new->frontbuffer_bits |= frontbuffer_bits;
5106 }
5107}
5108
5774506f
CW
5109static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5110{
5111 if (!mutex_is_locked(mutex))
5112 return false;
5113
226e5ae9 5114#if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES)
5774506f
CW
5115 return mutex->owner == task;
5116#else
5117 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5118 return false;
5119#endif
5120}
5121
b453c4db
CW
5122static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5123{
5124 if (!mutex_trylock(&dev->struct_mutex)) {
5125 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5126 return false;
5127
5128 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5129 return false;
5130
5131 *unlock = false;
5132 } else
5133 *unlock = true;
5134
5135 return true;
5136}
5137
ceabbba5
CW
5138static int num_vma_bound(struct drm_i915_gem_object *obj)
5139{
5140 struct i915_vma *vma;
5141 int count = 0;
5142
5143 list_for_each_entry(vma, &obj->vma_list, vma_link)
5144 if (drm_mm_node_allocated(&vma->node))
5145 count++;
5146
5147 return count;
5148}
5149
7dc19d5a 5150static unsigned long
ceabbba5 5151i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5152{
17250b71 5153 struct drm_i915_private *dev_priv =
ceabbba5 5154 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5155 struct drm_device *dev = dev_priv->dev;
6c085a72 5156 struct drm_i915_gem_object *obj;
7dc19d5a 5157 unsigned long count;
b453c4db 5158 bool unlock;
17250b71 5159
b453c4db
CW
5160 if (!i915_gem_shrinker_lock(dev, &unlock))
5161 return 0;
31169714 5162
7dc19d5a 5163 count = 0;
35c20a60 5164 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5165 if (obj->pages_pin_count == 0)
7dc19d5a 5166 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5167
5168 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5169 if (!i915_gem_obj_is_pinned(obj) &&
5170 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5171 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5172 }
17250b71 5173
5774506f
CW
5174 if (unlock)
5175 mutex_unlock(&dev->struct_mutex);
d9973b43 5176
7dc19d5a 5177 return count;
31169714 5178}
a70a3148
BW
5179
5180/* All the new VM stuff */
fe14d5f4
TU
5181unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5182 struct i915_address_space *vm,
5183 enum i915_ggtt_view_type view)
a70a3148
BW
5184{
5185 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5186 struct i915_vma *vma;
5187
896ab1a5 5188 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5189
a70a3148 5190 list_for_each_entry(vma, &o->vma_list, vma_link) {
fe14d5f4 5191 if (vma->vm == vm && vma->ggtt_view.type == view)
a70a3148
BW
5192 return vma->node.start;
5193
5194 }
f25748ea
DV
5195 WARN(1, "%s vma for this object not found.\n",
5196 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5197 return -1;
5198}
5199
fe14d5f4
TU
5200bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5201 struct i915_address_space *vm,
5202 enum i915_ggtt_view_type view)
a70a3148
BW
5203{
5204 struct i915_vma *vma;
5205
5206 list_for_each_entry(vma, &o->vma_list, vma_link)
fe14d5f4
TU
5207 if (vma->vm == vm &&
5208 vma->ggtt_view.type == view &&
5209 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5210 return true;
5211
5212 return false;
5213}
5214
5215bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5216{
5a1d5eb0 5217 struct i915_vma *vma;
a70a3148 5218
5a1d5eb0
CW
5219 list_for_each_entry(vma, &o->vma_list, vma_link)
5220 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5221 return true;
5222
5223 return false;
5224}
5225
5226unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5227 struct i915_address_space *vm)
5228{
5229 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5230 struct i915_vma *vma;
5231
896ab1a5 5232 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5233
5234 BUG_ON(list_empty(&o->vma_list));
5235
5236 list_for_each_entry(vma, &o->vma_list, vma_link)
5237 if (vma->vm == vm)
5238 return vma->node.size;
5239
5240 return 0;
5241}
5242
7dc19d5a 5243static unsigned long
ceabbba5 5244i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5245{
5246 struct drm_i915_private *dev_priv =
ceabbba5 5247 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5248 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5249 unsigned long freed;
b453c4db 5250 bool unlock;
7dc19d5a 5251
b453c4db
CW
5252 if (!i915_gem_shrinker_lock(dev, &unlock))
5253 return SHRINK_STOP;
7dc19d5a 5254
21ab4e74
CW
5255 freed = i915_gem_shrink(dev_priv,
5256 sc->nr_to_scan,
5257 I915_SHRINK_BOUND |
5258 I915_SHRINK_UNBOUND |
5259 I915_SHRINK_PURGEABLE);
d9973b43 5260 if (freed < sc->nr_to_scan)
21ab4e74
CW
5261 freed += i915_gem_shrink(dev_priv,
5262 sc->nr_to_scan - freed,
5263 I915_SHRINK_BOUND |
5264 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5265 if (unlock)
5266 mutex_unlock(&dev->struct_mutex);
d9973b43 5267
7dc19d5a
DC
5268 return freed;
5269}
5c2abbea 5270
2cfcd32a
CW
5271static int
5272i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5273{
5274 struct drm_i915_private *dev_priv =
5275 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5276 struct drm_device *dev = dev_priv->dev;
5277 struct drm_i915_gem_object *obj;
5278 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5279 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5280 bool was_interruptible;
5281 bool unlock;
5282
a1db2fa7 5283 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5284 schedule_timeout_killable(1);
a1db2fa7
CW
5285 if (fatal_signal_pending(current))
5286 return NOTIFY_DONE;
5287 }
2cfcd32a
CW
5288 if (timeout == 0) {
5289 pr_err("Unable to purge GPU memory due lock contention.\n");
5290 return NOTIFY_DONE;
5291 }
5292
5293 was_interruptible = dev_priv->mm.interruptible;
5294 dev_priv->mm.interruptible = false;
5295
005445c5 5296 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5297
5298 dev_priv->mm.interruptible = was_interruptible;
5299
5300 /* Because we may be allocating inside our own driver, we cannot
5301 * assert that there are no objects with pinned pages that are not
5302 * being pointed to by hardware.
5303 */
5304 unbound = bound = pinned = 0;
5305 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5306 if (!obj->base.filp) /* not backed by a freeable object */
5307 continue;
5308
5309 if (obj->pages_pin_count)
5310 pinned += obj->base.size;
5311 else
5312 unbound += obj->base.size;
5313 }
5314 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5315 if (!obj->base.filp)
5316 continue;
5317
5318 if (obj->pages_pin_count)
5319 pinned += obj->base.size;
5320 else
5321 bound += obj->base.size;
5322 }
5323
5324 if (unlock)
5325 mutex_unlock(&dev->struct_mutex);
5326
bb9059d3
CW
5327 if (freed_pages || unbound || bound)
5328 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5329 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5330 if (unbound || bound)
5331 pr_err("%lu and %lu bytes still available in the "
5332 "bound and unbound GPU page lists.\n",
5333 bound, unbound);
5334
005445c5 5335 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5336 return NOTIFY_DONE;
5337}
5338
5c2abbea
BW
5339struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5340{
f7635669 5341 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5c2abbea
BW
5342 struct i915_vma *vma;
5343
fe14d5f4
TU
5344 list_for_each_entry(vma, &obj->vma_list, vma_link)
5345 if (vma->vm == ggtt &&
5346 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
f7635669 5347 return vma;
5c2abbea 5348
f7635669 5349 return NULL;
5c2abbea 5350}
This page took 1.190147 seconds and 5 git commands to generate.