drm/i915: Initialize obj->pages before use by i915_gem_object_do_bit17_swizzle()
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
86a1ee26
CW
44 bool map_and_fenceable,
45 bool nonblocking);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
17250b71 57static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 58 struct shrink_control *sc);
6c085a72
CW
59static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 61static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 62
61050808
CW
63static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64{
65 if (obj->tiling_mode)
66 i915_gem_release_mmap(obj);
67
68 /* As we do not have an associated fence register, we will force
69 * a tiling change if we ever need to acquire one.
70 */
5d82e3e6 71 obj->fence_dirty = false;
61050808
CW
72 obj->fence_reg = I915_FENCE_REG_NONE;
73}
74
73aa808f
CW
75/* some bookkeeping */
76static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78{
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81}
82
83static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85{
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88}
89
21dd3734
CW
90static int
91i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
92{
93 struct drm_i915_private *dev_priv = dev->dev_private;
94 struct completion *x = &dev_priv->error_completion;
95 unsigned long flags;
96 int ret;
97
98 if (!atomic_read(&dev_priv->mm.wedged))
99 return 0;
100
0a6759c6
DV
101 /*
102 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
103 * userspace. If it takes that long something really bad is going on and
104 * we should simply try to bail out and fail as gracefully as possible.
105 */
106 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
107 if (ret == 0) {
108 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109 return -EIO;
110 } else if (ret < 0) {
30dbf0c0 111 return ret;
0a6759c6 112 }
30dbf0c0 113
21dd3734
CW
114 if (atomic_read(&dev_priv->mm.wedged)) {
115 /* GPU is hung, bump the completion count to account for
116 * the token we just consumed so that we never hit zero and
117 * end up waiting upon a subsequent completion event that
118 * will never happen.
119 */
120 spin_lock_irqsave(&x->wait.lock, flags);
121 x->done++;
122 spin_unlock_irqrestore(&x->wait.lock, flags);
123 }
124 return 0;
30dbf0c0
CW
125}
126
54cf91dc 127int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 128{
76c1dec1
CW
129 int ret;
130
21dd3734 131 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
132 if (ret)
133 return ret;
134
135 ret = mutex_lock_interruptible(&dev->struct_mutex);
136 if (ret)
137 return ret;
138
23bc5982 139 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
140 return 0;
141}
30dbf0c0 142
7d1c4804 143static inline bool
05394f39 144i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 145{
6c085a72 146 return obj->gtt_space && !obj->active;
7d1c4804
CW
147}
148
79e53945
JB
149int
150i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 151 struct drm_file *file)
79e53945
JB
152{
153 struct drm_i915_gem_init *args = data;
2021746e 154
7bb6fb8d
DV
155 if (drm_core_check_feature(dev, DRIVER_MODESET))
156 return -ENODEV;
157
2021746e
CW
158 if (args->gtt_start >= args->gtt_end ||
159 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160 return -EINVAL;
79e53945 161
f534bc0b
DV
162 /* GEM with user mode setting was never supported on ilk and later. */
163 if (INTEL_INFO(dev)->gen >= 5)
164 return -ENODEV;
165
79e53945 166 mutex_lock(&dev->struct_mutex);
644ec02b
DV
167 i915_gem_init_global_gtt(dev, args->gtt_start,
168 args->gtt_end, args->gtt_end);
673a394b
EA
169 mutex_unlock(&dev->struct_mutex);
170
2021746e 171 return 0;
673a394b
EA
172}
173
5a125c3c
EA
174int
175i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 176 struct drm_file *file)
5a125c3c 177{
73aa808f 178 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 179 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
180 struct drm_i915_gem_object *obj;
181 size_t pinned;
5a125c3c 182
6299f992 183 pinned = 0;
73aa808f 184 mutex_lock(&dev->struct_mutex);
6c085a72 185 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
186 if (obj->pin_count)
187 pinned += obj->gtt_space->size;
73aa808f 188 mutex_unlock(&dev->struct_mutex);
5a125c3c 189
6299f992 190 args->aper_size = dev_priv->mm.gtt_total;
0206e353 191 args->aper_available_size = args->aper_size - pinned;
6299f992 192
5a125c3c
EA
193 return 0;
194}
195
ff72145b
DA
196static int
197i915_gem_create(struct drm_file *file,
198 struct drm_device *dev,
199 uint64_t size,
200 uint32_t *handle_p)
673a394b 201{
05394f39 202 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
203 int ret;
204 u32 handle;
673a394b 205
ff72145b 206 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
207 if (size == 0)
208 return -EINVAL;
673a394b
EA
209
210 /* Allocate the new object */
ff72145b 211 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
212 if (obj == NULL)
213 return -ENOMEM;
214
05394f39 215 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 216 if (ret) {
05394f39
CW
217 drm_gem_object_release(&obj->base);
218 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 219 kfree(obj);
673a394b 220 return ret;
1dfd9754 221 }
673a394b 222
202f2fef 223 /* drop reference from allocate - handle holds it now */
05394f39 224 drm_gem_object_unreference(&obj->base);
202f2fef
CW
225 trace_i915_gem_object_create(obj);
226
ff72145b 227 *handle_p = handle;
673a394b
EA
228 return 0;
229}
230
ff72145b
DA
231int
232i915_gem_dumb_create(struct drm_file *file,
233 struct drm_device *dev,
234 struct drm_mode_create_dumb *args)
235{
236 /* have to work out size/pitch and return them */
ed0291fd 237 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
238 args->size = args->pitch * args->height;
239 return i915_gem_create(file, dev,
240 args->size, &args->handle);
241}
242
243int i915_gem_dumb_destroy(struct drm_file *file,
244 struct drm_device *dev,
245 uint32_t handle)
246{
247 return drm_gem_handle_delete(file, handle);
248}
249
250/**
251 * Creates a new mm object and returns a handle to it.
252 */
253int
254i915_gem_create_ioctl(struct drm_device *dev, void *data,
255 struct drm_file *file)
256{
257 struct drm_i915_gem_create *args = data;
63ed2cb2 258
ff72145b
DA
259 return i915_gem_create(file, dev,
260 args->size, &args->handle);
261}
262
05394f39 263static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 264{
05394f39 265 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
266
267 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 268 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
269}
270
8461d226
DV
271static inline int
272__copy_to_user_swizzled(char __user *cpu_vaddr,
273 const char *gpu_vaddr, int gpu_offset,
274 int length)
275{
276 int ret, cpu_offset = 0;
277
278 while (length > 0) {
279 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280 int this_length = min(cacheline_end - gpu_offset, length);
281 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283 ret = __copy_to_user(cpu_vaddr + cpu_offset,
284 gpu_vaddr + swizzled_gpu_offset,
285 this_length);
286 if (ret)
287 return ret + length;
288
289 cpu_offset += this_length;
290 gpu_offset += this_length;
291 length -= this_length;
292 }
293
294 return 0;
295}
296
8c59967c 297static inline int
4f0c7cfb
BW
298__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
299 const char __user *cpu_vaddr,
8c59967c
DV
300 int length)
301{
302 int ret, cpu_offset = 0;
303
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
310 cpu_vaddr + cpu_offset,
311 this_length);
312 if (ret)
313 return ret + length;
314
315 cpu_offset += this_length;
316 gpu_offset += this_length;
317 length -= this_length;
318 }
319
320 return 0;
321}
322
d174bd64
DV
323/* Per-page copy function for the shmem pread fastpath.
324 * Flushes invalid cachelines before reading the target if
325 * needs_clflush is set. */
eb01459f 326static int
d174bd64
DV
327shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
328 char __user *user_data,
329 bool page_do_bit17_swizzling, bool needs_clflush)
330{
331 char *vaddr;
332 int ret;
333
e7e58eb5 334 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
335 return -EINVAL;
336
337 vaddr = kmap_atomic(page);
338 if (needs_clflush)
339 drm_clflush_virt_range(vaddr + shmem_page_offset,
340 page_length);
341 ret = __copy_to_user_inatomic(user_data,
342 vaddr + shmem_page_offset,
343 page_length);
344 kunmap_atomic(vaddr);
345
f60d7f0c 346 return ret ? -EFAULT : 0;
d174bd64
DV
347}
348
23c18c71
DV
349static void
350shmem_clflush_swizzled_range(char *addr, unsigned long length,
351 bool swizzled)
352{
e7e58eb5 353 if (unlikely(swizzled)) {
23c18c71
DV
354 unsigned long start = (unsigned long) addr;
355 unsigned long end = (unsigned long) addr + length;
356
357 /* For swizzling simply ensure that we always flush both
358 * channels. Lame, but simple and it works. Swizzled
359 * pwrite/pread is far from a hotpath - current userspace
360 * doesn't use it at all. */
361 start = round_down(start, 128);
362 end = round_up(end, 128);
363
364 drm_clflush_virt_range((void *)start, end - start);
365 } else {
366 drm_clflush_virt_range(addr, length);
367 }
368
369}
370
d174bd64
DV
371/* Only difference to the fast-path function is that this can handle bit17
372 * and uses non-atomic copy and kmap functions. */
373static int
374shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
375 char __user *user_data,
376 bool page_do_bit17_swizzling, bool needs_clflush)
377{
378 char *vaddr;
379 int ret;
380
381 vaddr = kmap(page);
382 if (needs_clflush)
23c18c71
DV
383 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
384 page_length,
385 page_do_bit17_swizzling);
d174bd64
DV
386
387 if (page_do_bit17_swizzling)
388 ret = __copy_to_user_swizzled(user_data,
389 vaddr, shmem_page_offset,
390 page_length);
391 else
392 ret = __copy_to_user(user_data,
393 vaddr + shmem_page_offset,
394 page_length);
395 kunmap(page);
396
f60d7f0c 397 return ret ? - EFAULT : 0;
d174bd64
DV
398}
399
eb01459f 400static int
dbf7bff0
DV
401i915_gem_shmem_pread(struct drm_device *dev,
402 struct drm_i915_gem_object *obj,
403 struct drm_i915_gem_pread *args,
404 struct drm_file *file)
eb01459f 405{
8461d226 406 char __user *user_data;
eb01459f 407 ssize_t remain;
8461d226 408 loff_t offset;
eb2c0c81 409 int shmem_page_offset, page_length, ret = 0;
8461d226 410 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 411 int hit_slowpath = 0;
96d79b52 412 int prefaulted = 0;
8489731c 413 int needs_clflush = 0;
9da3da66
CW
414 struct scatterlist *sg;
415 int i;
eb01459f 416
8461d226 417 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
418 remain = args->size;
419
8461d226 420 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 421
8489731c
DV
422 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423 /* If we're not in the cpu read domain, set ourself into the gtt
424 * read domain and manually flush cachelines (if required). This
425 * optimizes for the case when the gpu will dirty the data
426 * anyway again before the next pread happens. */
427 if (obj->cache_level == I915_CACHE_NONE)
428 needs_clflush = 1;
6c085a72
CW
429 if (obj->gtt_space) {
430 ret = i915_gem_object_set_to_gtt_domain(obj, false);
431 if (ret)
432 return ret;
433 }
8489731c 434 }
eb01459f 435
f60d7f0c
CW
436 ret = i915_gem_object_get_pages(obj);
437 if (ret)
438 return ret;
439
440 i915_gem_object_pin_pages(obj);
441
8461d226 442 offset = args->offset;
eb01459f 443
9da3da66 444 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
445 struct page *page;
446
9da3da66
CW
447 if (i < offset >> PAGE_SHIFT)
448 continue;
449
450 if (remain <= 0)
451 break;
452
eb01459f
EA
453 /* Operation in this page
454 *
eb01459f 455 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
456 * page_length = bytes to copy for this page
457 */
c8cbbb8b 458 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
459 page_length = remain;
460 if ((shmem_page_offset + page_length) > PAGE_SIZE)
461 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 462
9da3da66 463 page = sg_page(sg);
8461d226
DV
464 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465 (page_to_phys(page) & (1 << 17)) != 0;
466
d174bd64
DV
467 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468 user_data, page_do_bit17_swizzling,
469 needs_clflush);
470 if (ret == 0)
471 goto next_page;
dbf7bff0
DV
472
473 hit_slowpath = 1;
dbf7bff0
DV
474 mutex_unlock(&dev->struct_mutex);
475
96d79b52 476 if (!prefaulted) {
f56f821f 477 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
478 /* Userspace is tricking us, but we've already clobbered
479 * its pages with the prefault and promised to write the
480 * data up to the first fault. Hence ignore any errors
481 * and just continue. */
482 (void)ret;
483 prefaulted = 1;
484 }
eb01459f 485
d174bd64
DV
486 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487 user_data, page_do_bit17_swizzling,
488 needs_clflush);
eb01459f 489
dbf7bff0 490 mutex_lock(&dev->struct_mutex);
f60d7f0c 491
dbf7bff0 492next_page:
e5281ccd 493 mark_page_accessed(page);
e5281ccd 494
f60d7f0c 495 if (ret)
8461d226 496 goto out;
8461d226 497
eb01459f 498 remain -= page_length;
8461d226 499 user_data += page_length;
eb01459f
EA
500 offset += page_length;
501 }
502
4f27b75d 503out:
f60d7f0c
CW
504 i915_gem_object_unpin_pages(obj);
505
dbf7bff0
DV
506 if (hit_slowpath) {
507 /* Fixup: Kill any reinstated backing storage pages */
508 if (obj->madv == __I915_MADV_PURGED)
509 i915_gem_object_truncate(obj);
510 }
eb01459f
EA
511
512 return ret;
513}
514
673a394b
EA
515/**
516 * Reads data from the object referenced by handle.
517 *
518 * On error, the contents of *data are undefined.
519 */
520int
521i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 522 struct drm_file *file)
673a394b
EA
523{
524 struct drm_i915_gem_pread *args = data;
05394f39 525 struct drm_i915_gem_object *obj;
35b62a89 526 int ret = 0;
673a394b 527
51311d0a
CW
528 if (args->size == 0)
529 return 0;
530
531 if (!access_ok(VERIFY_WRITE,
532 (char __user *)(uintptr_t)args->data_ptr,
533 args->size))
534 return -EFAULT;
535
4f27b75d 536 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 537 if (ret)
4f27b75d 538 return ret;
673a394b 539
05394f39 540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 541 if (&obj->base == NULL) {
1d7cfea1
CW
542 ret = -ENOENT;
543 goto unlock;
4f27b75d 544 }
673a394b 545
7dcd2499 546 /* Bounds check source. */
05394f39
CW
547 if (args->offset > obj->base.size ||
548 args->size > obj->base.size - args->offset) {
ce9d419d 549 ret = -EINVAL;
35b62a89 550 goto out;
ce9d419d
CW
551 }
552
1286ff73
DV
553 /* prime objects have no backing filp to GEM pread/pwrite
554 * pages from.
555 */
556 if (!obj->base.filp) {
557 ret = -EINVAL;
558 goto out;
559 }
560
db53a302
CW
561 trace_i915_gem_object_pread(obj, args->offset, args->size);
562
dbf7bff0 563 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 564
35b62a89 565out:
05394f39 566 drm_gem_object_unreference(&obj->base);
1d7cfea1 567unlock:
4f27b75d 568 mutex_unlock(&dev->struct_mutex);
eb01459f 569 return ret;
673a394b
EA
570}
571
0839ccb8
KP
572/* This is the fast write path which cannot handle
573 * page faults in the source data
9b7530cc 574 */
0839ccb8
KP
575
576static inline int
577fast_user_write(struct io_mapping *mapping,
578 loff_t page_base, int page_offset,
579 char __user *user_data,
580 int length)
9b7530cc 581{
4f0c7cfb
BW
582 void __iomem *vaddr_atomic;
583 void *vaddr;
0839ccb8 584 unsigned long unwritten;
9b7530cc 585
3e4d3af5 586 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
587 /* We can use the cpu mem copy function because this is X86. */
588 vaddr = (void __force*)vaddr_atomic + page_offset;
589 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 590 user_data, length);
3e4d3af5 591 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 592 return unwritten;
0839ccb8
KP
593}
594
3de09aa3
EA
595/**
596 * This is the fast pwrite path, where we copy the data directly from the
597 * user into the GTT, uncached.
598 */
673a394b 599static int
05394f39
CW
600i915_gem_gtt_pwrite_fast(struct drm_device *dev,
601 struct drm_i915_gem_object *obj,
3de09aa3 602 struct drm_i915_gem_pwrite *args,
05394f39 603 struct drm_file *file)
673a394b 604{
0839ccb8 605 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 606 ssize_t remain;
0839ccb8 607 loff_t offset, page_base;
673a394b 608 char __user *user_data;
935aaa69
DV
609 int page_offset, page_length, ret;
610
86a1ee26 611 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
612 if (ret)
613 goto out;
614
615 ret = i915_gem_object_set_to_gtt_domain(obj, true);
616 if (ret)
617 goto out_unpin;
618
619 ret = i915_gem_object_put_fence(obj);
620 if (ret)
621 goto out_unpin;
673a394b
EA
622
623 user_data = (char __user *) (uintptr_t) args->data_ptr;
624 remain = args->size;
673a394b 625
05394f39 626 offset = obj->gtt_offset + args->offset;
673a394b
EA
627
628 while (remain > 0) {
629 /* Operation in this page
630 *
0839ccb8
KP
631 * page_base = page offset within aperture
632 * page_offset = offset within page
633 * page_length = bytes to copy for this page
673a394b 634 */
c8cbbb8b
CW
635 page_base = offset & PAGE_MASK;
636 page_offset = offset_in_page(offset);
0839ccb8
KP
637 page_length = remain;
638 if ((page_offset + remain) > PAGE_SIZE)
639 page_length = PAGE_SIZE - page_offset;
640
0839ccb8 641 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
642 * source page isn't available. Return the error and we'll
643 * retry in the slow path.
0839ccb8 644 */
fbd5a26d 645 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
646 page_offset, user_data, page_length)) {
647 ret = -EFAULT;
648 goto out_unpin;
649 }
673a394b 650
0839ccb8
KP
651 remain -= page_length;
652 user_data += page_length;
653 offset += page_length;
673a394b 654 }
673a394b 655
935aaa69
DV
656out_unpin:
657 i915_gem_object_unpin(obj);
658out:
3de09aa3 659 return ret;
673a394b
EA
660}
661
d174bd64
DV
662/* Per-page copy function for the shmem pwrite fastpath.
663 * Flushes invalid cachelines before writing to the target if
664 * needs_clflush_before is set and flushes out any written cachelines after
665 * writing if needs_clflush is set. */
3043c60c 666static int
d174bd64
DV
667shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
668 char __user *user_data,
669 bool page_do_bit17_swizzling,
670 bool needs_clflush_before,
671 bool needs_clflush_after)
673a394b 672{
d174bd64 673 char *vaddr;
673a394b 674 int ret;
3de09aa3 675
e7e58eb5 676 if (unlikely(page_do_bit17_swizzling))
d174bd64 677 return -EINVAL;
3de09aa3 678
d174bd64
DV
679 vaddr = kmap_atomic(page);
680 if (needs_clflush_before)
681 drm_clflush_virt_range(vaddr + shmem_page_offset,
682 page_length);
683 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
684 user_data,
685 page_length);
686 if (needs_clflush_after)
687 drm_clflush_virt_range(vaddr + shmem_page_offset,
688 page_length);
689 kunmap_atomic(vaddr);
3de09aa3 690
755d2218 691 return ret ? -EFAULT : 0;
3de09aa3
EA
692}
693
d174bd64
DV
694/* Only difference to the fast-path function is that this can handle bit17
695 * and uses non-atomic copy and kmap functions. */
3043c60c 696static int
d174bd64
DV
697shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
698 char __user *user_data,
699 bool page_do_bit17_swizzling,
700 bool needs_clflush_before,
701 bool needs_clflush_after)
673a394b 702{
d174bd64
DV
703 char *vaddr;
704 int ret;
e5281ccd 705
d174bd64 706 vaddr = kmap(page);
e7e58eb5 707 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
708 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
709 page_length,
710 page_do_bit17_swizzling);
d174bd64
DV
711 if (page_do_bit17_swizzling)
712 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
713 user_data,
714 page_length);
d174bd64
DV
715 else
716 ret = __copy_from_user(vaddr + shmem_page_offset,
717 user_data,
718 page_length);
719 if (needs_clflush_after)
23c18c71
DV
720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721 page_length,
722 page_do_bit17_swizzling);
d174bd64 723 kunmap(page);
40123c1f 724
755d2218 725 return ret ? -EFAULT : 0;
40123c1f
EA
726}
727
40123c1f 728static int
e244a443
DV
729i915_gem_shmem_pwrite(struct drm_device *dev,
730 struct drm_i915_gem_object *obj,
731 struct drm_i915_gem_pwrite *args,
732 struct drm_file *file)
40123c1f 733{
40123c1f 734 ssize_t remain;
8c59967c
DV
735 loff_t offset;
736 char __user *user_data;
eb2c0c81 737 int shmem_page_offset, page_length, ret = 0;
8c59967c 738 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 739 int hit_slowpath = 0;
58642885
DV
740 int needs_clflush_after = 0;
741 int needs_clflush_before = 0;
9da3da66
CW
742 int i;
743 struct scatterlist *sg;
40123c1f 744
8c59967c 745 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
746 remain = args->size;
747
8c59967c 748 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 749
58642885
DV
750 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
751 /* If we're not in the cpu write domain, set ourself into the gtt
752 * write domain and manually flush cachelines (if required). This
753 * optimizes for the case when the gpu will use the data
754 * right away and we therefore have to clflush anyway. */
755 if (obj->cache_level == I915_CACHE_NONE)
756 needs_clflush_after = 1;
6c085a72
CW
757 if (obj->gtt_space) {
758 ret = i915_gem_object_set_to_gtt_domain(obj, true);
759 if (ret)
760 return ret;
761 }
58642885
DV
762 }
763 /* Same trick applies for invalidate partially written cachelines before
764 * writing. */
765 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
766 && obj->cache_level == I915_CACHE_NONE)
767 needs_clflush_before = 1;
768
755d2218
CW
769 ret = i915_gem_object_get_pages(obj);
770 if (ret)
771 return ret;
772
773 i915_gem_object_pin_pages(obj);
774
673a394b 775 offset = args->offset;
05394f39 776 obj->dirty = 1;
673a394b 777
9da3da66 778 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 779 struct page *page;
58642885 780 int partial_cacheline_write;
e5281ccd 781
9da3da66
CW
782 if (i < offset >> PAGE_SHIFT)
783 continue;
784
785 if (remain <= 0)
786 break;
787
40123c1f
EA
788 /* Operation in this page
789 *
40123c1f 790 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
791 * page_length = bytes to copy for this page
792 */
c8cbbb8b 793 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
794
795 page_length = remain;
796 if ((shmem_page_offset + page_length) > PAGE_SIZE)
797 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 798
58642885
DV
799 /* If we don't overwrite a cacheline completely we need to be
800 * careful to have up-to-date data by first clflushing. Don't
801 * overcomplicate things and flush the entire patch. */
802 partial_cacheline_write = needs_clflush_before &&
803 ((shmem_page_offset | page_length)
804 & (boot_cpu_data.x86_clflush_size - 1));
805
9da3da66 806 page = sg_page(sg);
8c59967c
DV
807 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
808 (page_to_phys(page) & (1 << 17)) != 0;
809
d174bd64
DV
810 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
811 user_data, page_do_bit17_swizzling,
812 partial_cacheline_write,
813 needs_clflush_after);
814 if (ret == 0)
815 goto next_page;
e244a443
DV
816
817 hit_slowpath = 1;
e244a443 818 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
819 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
820 user_data, page_do_bit17_swizzling,
821 partial_cacheline_write,
822 needs_clflush_after);
40123c1f 823
e244a443 824 mutex_lock(&dev->struct_mutex);
755d2218 825
e244a443 826next_page:
e5281ccd
CW
827 set_page_dirty(page);
828 mark_page_accessed(page);
e5281ccd 829
755d2218 830 if (ret)
8c59967c 831 goto out;
8c59967c 832
40123c1f 833 remain -= page_length;
8c59967c 834 user_data += page_length;
40123c1f 835 offset += page_length;
673a394b
EA
836 }
837
fbd5a26d 838out:
755d2218
CW
839 i915_gem_object_unpin_pages(obj);
840
e244a443
DV
841 if (hit_slowpath) {
842 /* Fixup: Kill any reinstated backing storage pages */
843 if (obj->madv == __I915_MADV_PURGED)
844 i915_gem_object_truncate(obj);
845 /* and flush dirty cachelines in case the object isn't in the cpu write
846 * domain anymore. */
847 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
848 i915_gem_clflush_object(obj);
849 intel_gtt_chipset_flush();
850 }
8c59967c 851 }
673a394b 852
58642885
DV
853 if (needs_clflush_after)
854 intel_gtt_chipset_flush();
855
40123c1f 856 return ret;
673a394b
EA
857}
858
859/**
860 * Writes data to the object referenced by handle.
861 *
862 * On error, the contents of the buffer that were to be modified are undefined.
863 */
864int
865i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 866 struct drm_file *file)
673a394b
EA
867{
868 struct drm_i915_gem_pwrite *args = data;
05394f39 869 struct drm_i915_gem_object *obj;
51311d0a
CW
870 int ret;
871
872 if (args->size == 0)
873 return 0;
874
875 if (!access_ok(VERIFY_READ,
876 (char __user *)(uintptr_t)args->data_ptr,
877 args->size))
878 return -EFAULT;
879
f56f821f
DV
880 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
881 args->size);
51311d0a
CW
882 if (ret)
883 return -EFAULT;
673a394b 884
fbd5a26d 885 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 886 if (ret)
fbd5a26d 887 return ret;
1d7cfea1 888
05394f39 889 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 890 if (&obj->base == NULL) {
1d7cfea1
CW
891 ret = -ENOENT;
892 goto unlock;
fbd5a26d 893 }
673a394b 894
7dcd2499 895 /* Bounds check destination. */
05394f39
CW
896 if (args->offset > obj->base.size ||
897 args->size > obj->base.size - args->offset) {
ce9d419d 898 ret = -EINVAL;
35b62a89 899 goto out;
ce9d419d
CW
900 }
901
1286ff73
DV
902 /* prime objects have no backing filp to GEM pread/pwrite
903 * pages from.
904 */
905 if (!obj->base.filp) {
906 ret = -EINVAL;
907 goto out;
908 }
909
db53a302
CW
910 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
911
935aaa69 912 ret = -EFAULT;
673a394b
EA
913 /* We can only do the GTT pwrite on untiled buffers, as otherwise
914 * it would end up going through the fenced access, and we'll get
915 * different detiling behavior between reading and writing.
916 * pread/pwrite currently are reading and writing from the CPU
917 * perspective, requiring manual detiling by the client.
918 */
5c0480f2 919 if (obj->phys_obj) {
fbd5a26d 920 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
921 goto out;
922 }
923
86a1ee26 924 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 925 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 926 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 927 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
928 /* Note that the gtt paths might fail with non-page-backed user
929 * pointers (e.g. gtt mappings when moving data between
930 * textures). Fallback to the shmem path in that case. */
fbd5a26d 931 }
673a394b 932
86a1ee26 933 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 934 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 935
35b62a89 936out:
05394f39 937 drm_gem_object_unreference(&obj->base);
1d7cfea1 938unlock:
fbd5a26d 939 mutex_unlock(&dev->struct_mutex);
673a394b
EA
940 return ret;
941}
942
b361237b
CW
943int
944i915_gem_check_wedge(struct drm_i915_private *dev_priv,
945 bool interruptible)
946{
947 if (atomic_read(&dev_priv->mm.wedged)) {
948 struct completion *x = &dev_priv->error_completion;
949 bool recovery_complete;
950 unsigned long flags;
951
952 /* Give the error handler a chance to run. */
953 spin_lock_irqsave(&x->wait.lock, flags);
954 recovery_complete = x->done > 0;
955 spin_unlock_irqrestore(&x->wait.lock, flags);
956
957 /* Non-interruptible callers can't handle -EAGAIN, hence return
958 * -EIO unconditionally for these. */
959 if (!interruptible)
960 return -EIO;
961
962 /* Recovery complete, but still wedged means reset failure. */
963 if (recovery_complete)
964 return -EIO;
965
966 return -EAGAIN;
967 }
968
969 return 0;
970}
971
972/*
973 * Compare seqno against outstanding lazy request. Emit a request if they are
974 * equal.
975 */
976static int
977i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
978{
979 int ret;
980
981 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
982
983 ret = 0;
984 if (seqno == ring->outstanding_lazy_request)
985 ret = i915_add_request(ring, NULL, NULL);
986
987 return ret;
988}
989
990/**
991 * __wait_seqno - wait until execution of seqno has finished
992 * @ring: the ring expected to report seqno
993 * @seqno: duh!
994 * @interruptible: do an interruptible wait (normally yes)
995 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
996 *
997 * Returns 0 if the seqno was found within the alloted time. Else returns the
998 * errno with remaining time filled in timeout argument.
999 */
1000static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1001 bool interruptible, struct timespec *timeout)
1002{
1003 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1004 struct timespec before, now, wait_time={1,0};
1005 unsigned long timeout_jiffies;
1006 long end;
1007 bool wait_forever = true;
1008 int ret;
1009
1010 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1011 return 0;
1012
1013 trace_i915_gem_request_wait_begin(ring, seqno);
1014
1015 if (timeout != NULL) {
1016 wait_time = *timeout;
1017 wait_forever = false;
1018 }
1019
1020 timeout_jiffies = timespec_to_jiffies(&wait_time);
1021
1022 if (WARN_ON(!ring->irq_get(ring)))
1023 return -ENODEV;
1024
1025 /* Record current time in case interrupted by signal, or wedged * */
1026 getrawmonotonic(&before);
1027
1028#define EXIT_COND \
1029 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1030 atomic_read(&dev_priv->mm.wedged))
1031 do {
1032 if (interruptible)
1033 end = wait_event_interruptible_timeout(ring->irq_queue,
1034 EXIT_COND,
1035 timeout_jiffies);
1036 else
1037 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1038 timeout_jiffies);
1039
1040 ret = i915_gem_check_wedge(dev_priv, interruptible);
1041 if (ret)
1042 end = ret;
1043 } while (end == 0 && wait_forever);
1044
1045 getrawmonotonic(&now);
1046
1047 ring->irq_put(ring);
1048 trace_i915_gem_request_wait_end(ring, seqno);
1049#undef EXIT_COND
1050
1051 if (timeout) {
1052 struct timespec sleep_time = timespec_sub(now, before);
1053 *timeout = timespec_sub(*timeout, sleep_time);
1054 }
1055
1056 switch (end) {
1057 case -EIO:
1058 case -EAGAIN: /* Wedged */
1059 case -ERESTARTSYS: /* Signal */
1060 return (int)end;
1061 case 0: /* Timeout */
1062 if (timeout)
1063 set_normalized_timespec(timeout, 0, 0);
1064 return -ETIME;
1065 default: /* Completed */
1066 WARN_ON(end < 0); /* We're not aware of other errors */
1067 return 0;
1068 }
1069}
1070
1071/**
1072 * Waits for a sequence number to be signaled, and cleans up the
1073 * request and object lists appropriately for that event.
1074 */
1075int
1076i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1077{
1078 struct drm_device *dev = ring->dev;
1079 struct drm_i915_private *dev_priv = dev->dev_private;
1080 bool interruptible = dev_priv->mm.interruptible;
1081 int ret;
1082
1083 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1084 BUG_ON(seqno == 0);
1085
1086 ret = i915_gem_check_wedge(dev_priv, interruptible);
1087 if (ret)
1088 return ret;
1089
1090 ret = i915_gem_check_olr(ring, seqno);
1091 if (ret)
1092 return ret;
1093
1094 return __wait_seqno(ring, seqno, interruptible, NULL);
1095}
1096
1097/**
1098 * Ensures that all rendering to the object has completed and the object is
1099 * safe to unbind from the GTT or access from the CPU.
1100 */
1101static __must_check int
1102i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1103 bool readonly)
1104{
1105 struct intel_ring_buffer *ring = obj->ring;
1106 u32 seqno;
1107 int ret;
1108
1109 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1110 if (seqno == 0)
1111 return 0;
1112
1113 ret = i915_wait_seqno(ring, seqno);
1114 if (ret)
1115 return ret;
1116
1117 i915_gem_retire_requests_ring(ring);
1118
1119 /* Manually manage the write flush as we may have not yet
1120 * retired the buffer.
1121 */
1122 if (obj->last_write_seqno &&
1123 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1124 obj->last_write_seqno = 0;
1125 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1126 }
1127
1128 return 0;
1129}
1130
3236f57a
CW
1131/* A nonblocking variant of the above wait. This is a highly dangerous routine
1132 * as the object state may change during this call.
1133 */
1134static __must_check int
1135i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1136 bool readonly)
1137{
1138 struct drm_device *dev = obj->base.dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 struct intel_ring_buffer *ring = obj->ring;
1141 u32 seqno;
1142 int ret;
1143
1144 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1145 BUG_ON(!dev_priv->mm.interruptible);
1146
1147 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1148 if (seqno == 0)
1149 return 0;
1150
1151 ret = i915_gem_check_wedge(dev_priv, true);
1152 if (ret)
1153 return ret;
1154
1155 ret = i915_gem_check_olr(ring, seqno);
1156 if (ret)
1157 return ret;
1158
1159 mutex_unlock(&dev->struct_mutex);
1160 ret = __wait_seqno(ring, seqno, true, NULL);
1161 mutex_lock(&dev->struct_mutex);
1162
1163 i915_gem_retire_requests_ring(ring);
1164
1165 /* Manually manage the write flush as we may have not yet
1166 * retired the buffer.
1167 */
1168 if (obj->last_write_seqno &&
1169 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1170 obj->last_write_seqno = 0;
1171 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1172 }
1173
1174 return ret;
1175}
1176
673a394b 1177/**
2ef7eeaa
EA
1178 * Called when user space prepares to use an object with the CPU, either
1179 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1180 */
1181int
1182i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1183 struct drm_file *file)
673a394b
EA
1184{
1185 struct drm_i915_gem_set_domain *args = data;
05394f39 1186 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1187 uint32_t read_domains = args->read_domains;
1188 uint32_t write_domain = args->write_domain;
673a394b
EA
1189 int ret;
1190
2ef7eeaa 1191 /* Only handle setting domains to types used by the CPU. */
21d509e3 1192 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1193 return -EINVAL;
1194
21d509e3 1195 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1196 return -EINVAL;
1197
1198 /* Having something in the write domain implies it's in the read
1199 * domain, and only that read domain. Enforce that in the request.
1200 */
1201 if (write_domain != 0 && read_domains != write_domain)
1202 return -EINVAL;
1203
76c1dec1 1204 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1205 if (ret)
76c1dec1 1206 return ret;
1d7cfea1 1207
05394f39 1208 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1209 if (&obj->base == NULL) {
1d7cfea1
CW
1210 ret = -ENOENT;
1211 goto unlock;
76c1dec1 1212 }
673a394b 1213
3236f57a
CW
1214 /* Try to flush the object off the GPU without holding the lock.
1215 * We will repeat the flush holding the lock in the normal manner
1216 * to catch cases where we are gazumped.
1217 */
1218 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1219 if (ret)
1220 goto unref;
1221
2ef7eeaa
EA
1222 if (read_domains & I915_GEM_DOMAIN_GTT) {
1223 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1224
1225 /* Silently promote "you're not bound, there was nothing to do"
1226 * to success, since the client was just asking us to
1227 * make sure everything was done.
1228 */
1229 if (ret == -EINVAL)
1230 ret = 0;
2ef7eeaa 1231 } else {
e47c68e9 1232 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1233 }
1234
3236f57a 1235unref:
05394f39 1236 drm_gem_object_unreference(&obj->base);
1d7cfea1 1237unlock:
673a394b
EA
1238 mutex_unlock(&dev->struct_mutex);
1239 return ret;
1240}
1241
1242/**
1243 * Called when user space has done writes to this buffer
1244 */
1245int
1246i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1247 struct drm_file *file)
673a394b
EA
1248{
1249 struct drm_i915_gem_sw_finish *args = data;
05394f39 1250 struct drm_i915_gem_object *obj;
673a394b
EA
1251 int ret = 0;
1252
76c1dec1 1253 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1254 if (ret)
76c1dec1 1255 return ret;
1d7cfea1 1256
05394f39 1257 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1258 if (&obj->base == NULL) {
1d7cfea1
CW
1259 ret = -ENOENT;
1260 goto unlock;
673a394b
EA
1261 }
1262
673a394b 1263 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1264 if (obj->pin_count)
e47c68e9
EA
1265 i915_gem_object_flush_cpu_write_domain(obj);
1266
05394f39 1267 drm_gem_object_unreference(&obj->base);
1d7cfea1 1268unlock:
673a394b
EA
1269 mutex_unlock(&dev->struct_mutex);
1270 return ret;
1271}
1272
1273/**
1274 * Maps the contents of an object, returning the address it is mapped
1275 * into.
1276 *
1277 * While the mapping holds a reference on the contents of the object, it doesn't
1278 * imply a ref on the object itself.
1279 */
1280int
1281i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1282 struct drm_file *file)
673a394b
EA
1283{
1284 struct drm_i915_gem_mmap *args = data;
1285 struct drm_gem_object *obj;
673a394b
EA
1286 unsigned long addr;
1287
05394f39 1288 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1289 if (obj == NULL)
bf79cb91 1290 return -ENOENT;
673a394b 1291
1286ff73
DV
1292 /* prime objects have no backing filp to GEM mmap
1293 * pages from.
1294 */
1295 if (!obj->filp) {
1296 drm_gem_object_unreference_unlocked(obj);
1297 return -EINVAL;
1298 }
1299
6be5ceb0 1300 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1301 PROT_READ | PROT_WRITE, MAP_SHARED,
1302 args->offset);
bc9025bd 1303 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1304 if (IS_ERR((void *)addr))
1305 return addr;
1306
1307 args->addr_ptr = (uint64_t) addr;
1308
1309 return 0;
1310}
1311
de151cf6
JB
1312/**
1313 * i915_gem_fault - fault a page into the GTT
1314 * vma: VMA in question
1315 * vmf: fault info
1316 *
1317 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1318 * from userspace. The fault handler takes care of binding the object to
1319 * the GTT (if needed), allocating and programming a fence register (again,
1320 * only if needed based on whether the old reg is still valid or the object
1321 * is tiled) and inserting a new PTE into the faulting process.
1322 *
1323 * Note that the faulting process may involve evicting existing objects
1324 * from the GTT and/or fence registers to make room. So performance may
1325 * suffer if the GTT working set is large or there are few fence registers
1326 * left.
1327 */
1328int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1329{
05394f39
CW
1330 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1331 struct drm_device *dev = obj->base.dev;
7d1c4804 1332 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1333 pgoff_t page_offset;
1334 unsigned long pfn;
1335 int ret = 0;
0f973f27 1336 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1337
1338 /* We don't use vmf->pgoff since that has the fake offset */
1339 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1340 PAGE_SHIFT;
1341
d9bc7e9f
CW
1342 ret = i915_mutex_lock_interruptible(dev);
1343 if (ret)
1344 goto out;
a00b10c3 1345
db53a302
CW
1346 trace_i915_gem_object_fault(obj, page_offset, true, write);
1347
d9bc7e9f 1348 /* Now bind it into the GTT if needed */
919926ae
CW
1349 if (!obj->map_and_fenceable) {
1350 ret = i915_gem_object_unbind(obj);
1351 if (ret)
1352 goto unlock;
a00b10c3 1353 }
05394f39 1354 if (!obj->gtt_space) {
86a1ee26 1355 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
c715089f
CW
1356 if (ret)
1357 goto unlock;
de151cf6 1358
e92d03bf
EA
1359 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1360 if (ret)
1361 goto unlock;
1362 }
4a684a41 1363
74898d7e
DV
1364 if (!obj->has_global_gtt_mapping)
1365 i915_gem_gtt_bind_object(obj, obj->cache_level);
1366
06d98131 1367 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1368 if (ret)
1369 goto unlock;
de151cf6 1370
05394f39
CW
1371 if (i915_gem_object_is_inactive(obj))
1372 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1373
6299f992
CW
1374 obj->fault_mappable = true;
1375
dd2757f8 1376 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1377 page_offset;
1378
1379 /* Finally, remap it using the new GTT offset */
1380 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1381unlock:
de151cf6 1382 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1383out:
de151cf6 1384 switch (ret) {
d9bc7e9f 1385 case -EIO:
a9340cca
DV
1386 /* If this -EIO is due to a gpu hang, give the reset code a
1387 * chance to clean up the mess. Otherwise return the proper
1388 * SIGBUS. */
1389 if (!atomic_read(&dev_priv->mm.wedged))
1390 return VM_FAULT_SIGBUS;
045e769a 1391 case -EAGAIN:
d9bc7e9f
CW
1392 /* Give the error handler a chance to run and move the
1393 * objects off the GPU active list. Next time we service the
1394 * fault, we should be able to transition the page into the
1395 * GTT without touching the GPU (and so avoid further
1396 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1397 * with coherency, just lost writes.
1398 */
045e769a 1399 set_need_resched();
c715089f
CW
1400 case 0:
1401 case -ERESTARTSYS:
bed636ab 1402 case -EINTR:
e79e0fe3
DR
1403 case -EBUSY:
1404 /*
1405 * EBUSY is ok: this just means that another thread
1406 * already did the job.
1407 */
c715089f 1408 return VM_FAULT_NOPAGE;
de151cf6 1409 case -ENOMEM:
de151cf6 1410 return VM_FAULT_OOM;
a7c2e1aa
DV
1411 case -ENOSPC:
1412 return VM_FAULT_SIGBUS;
de151cf6 1413 default:
a7c2e1aa 1414 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1415 return VM_FAULT_SIGBUS;
de151cf6
JB
1416 }
1417}
1418
901782b2
CW
1419/**
1420 * i915_gem_release_mmap - remove physical page mappings
1421 * @obj: obj in question
1422 *
af901ca1 1423 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1424 * relinquish ownership of the pages back to the system.
1425 *
1426 * It is vital that we remove the page mapping if we have mapped a tiled
1427 * object through the GTT and then lose the fence register due to
1428 * resource pressure. Similarly if the object has been moved out of the
1429 * aperture, than pages mapped into userspace must be revoked. Removing the
1430 * mapping will then trigger a page fault on the next user access, allowing
1431 * fixup by i915_gem_fault().
1432 */
d05ca301 1433void
05394f39 1434i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1435{
6299f992
CW
1436 if (!obj->fault_mappable)
1437 return;
901782b2 1438
f6e47884
CW
1439 if (obj->base.dev->dev_mapping)
1440 unmap_mapping_range(obj->base.dev->dev_mapping,
1441 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1442 obj->base.size, 1);
fb7d516a 1443
6299f992 1444 obj->fault_mappable = false;
901782b2
CW
1445}
1446
92b88aeb 1447static uint32_t
e28f8711 1448i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1449{
e28f8711 1450 uint32_t gtt_size;
92b88aeb
CW
1451
1452 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1453 tiling_mode == I915_TILING_NONE)
1454 return size;
92b88aeb
CW
1455
1456 /* Previous chips need a power-of-two fence region when tiling */
1457 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1458 gtt_size = 1024*1024;
92b88aeb 1459 else
e28f8711 1460 gtt_size = 512*1024;
92b88aeb 1461
e28f8711
CW
1462 while (gtt_size < size)
1463 gtt_size <<= 1;
92b88aeb 1464
e28f8711 1465 return gtt_size;
92b88aeb
CW
1466}
1467
de151cf6
JB
1468/**
1469 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1470 * @obj: object to check
1471 *
1472 * Return the required GTT alignment for an object, taking into account
5e783301 1473 * potential fence register mapping.
de151cf6
JB
1474 */
1475static uint32_t
e28f8711
CW
1476i915_gem_get_gtt_alignment(struct drm_device *dev,
1477 uint32_t size,
1478 int tiling_mode)
de151cf6 1479{
de151cf6
JB
1480 /*
1481 * Minimum alignment is 4k (GTT page size), but might be greater
1482 * if a fence register is needed for the object.
1483 */
a00b10c3 1484 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1485 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1486 return 4096;
1487
a00b10c3
CW
1488 /*
1489 * Previous chips need to be aligned to the size of the smallest
1490 * fence register that can contain the object.
1491 */
e28f8711 1492 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1493}
1494
5e783301
DV
1495/**
1496 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1497 * unfenced object
e28f8711
CW
1498 * @dev: the device
1499 * @size: size of the object
1500 * @tiling_mode: tiling mode of the object
5e783301
DV
1501 *
1502 * Return the required GTT alignment for an object, only taking into account
1503 * unfenced tiled surface requirements.
1504 */
467cffba 1505uint32_t
e28f8711
CW
1506i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1507 uint32_t size,
1508 int tiling_mode)
5e783301 1509{
5e783301
DV
1510 /*
1511 * Minimum alignment is 4k (GTT page size) for sane hw.
1512 */
1513 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1514 tiling_mode == I915_TILING_NONE)
5e783301
DV
1515 return 4096;
1516
e28f8711
CW
1517 /* Previous hardware however needs to be aligned to a power-of-two
1518 * tile height. The simplest method for determining this is to reuse
1519 * the power-of-tile object size.
5e783301 1520 */
e28f8711 1521 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1522}
1523
d8cb5086
CW
1524static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1525{
1526 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1527 int ret;
1528
1529 if (obj->base.map_list.map)
1530 return 0;
1531
1532 ret = drm_gem_create_mmap_offset(&obj->base);
1533 if (ret != -ENOSPC)
1534 return ret;
1535
1536 /* Badly fragmented mmap space? The only way we can recover
1537 * space is by destroying unwanted objects. We can't randomly release
1538 * mmap_offsets as userspace expects them to be persistent for the
1539 * lifetime of the objects. The closest we can is to release the
1540 * offsets on purgeable objects by truncating it and marking it purged,
1541 * which prevents userspace from ever using that object again.
1542 */
1543 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1544 ret = drm_gem_create_mmap_offset(&obj->base);
1545 if (ret != -ENOSPC)
1546 return ret;
1547
1548 i915_gem_shrink_all(dev_priv);
1549 return drm_gem_create_mmap_offset(&obj->base);
1550}
1551
1552static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1553{
1554 if (!obj->base.map_list.map)
1555 return;
1556
1557 drm_gem_free_mmap_offset(&obj->base);
1558}
1559
de151cf6 1560int
ff72145b
DA
1561i915_gem_mmap_gtt(struct drm_file *file,
1562 struct drm_device *dev,
1563 uint32_t handle,
1564 uint64_t *offset)
de151cf6 1565{
da761a6e 1566 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1567 struct drm_i915_gem_object *obj;
de151cf6
JB
1568 int ret;
1569
76c1dec1 1570 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1571 if (ret)
76c1dec1 1572 return ret;
de151cf6 1573
ff72145b 1574 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1575 if (&obj->base == NULL) {
1d7cfea1
CW
1576 ret = -ENOENT;
1577 goto unlock;
1578 }
de151cf6 1579
05394f39 1580 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1581 ret = -E2BIG;
ff56b0bc 1582 goto out;
da761a6e
CW
1583 }
1584
05394f39 1585 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1586 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1587 ret = -EINVAL;
1588 goto out;
ab18282d
CW
1589 }
1590
d8cb5086
CW
1591 ret = i915_gem_object_create_mmap_offset(obj);
1592 if (ret)
1593 goto out;
de151cf6 1594
ff72145b 1595 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1596
1d7cfea1 1597out:
05394f39 1598 drm_gem_object_unreference(&obj->base);
1d7cfea1 1599unlock:
de151cf6 1600 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1601 return ret;
de151cf6
JB
1602}
1603
ff72145b
DA
1604/**
1605 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1606 * @dev: DRM device
1607 * @data: GTT mapping ioctl data
1608 * @file: GEM object info
1609 *
1610 * Simply returns the fake offset to userspace so it can mmap it.
1611 * The mmap call will end up in drm_gem_mmap(), which will set things
1612 * up so we can get faults in the handler above.
1613 *
1614 * The fault handler will take care of binding the object into the GTT
1615 * (since it may have been evicted to make room for something), allocating
1616 * a fence register, and mapping the appropriate aperture address into
1617 * userspace.
1618 */
1619int
1620i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1621 struct drm_file *file)
1622{
1623 struct drm_i915_gem_mmap_gtt *args = data;
1624
ff72145b
DA
1625 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1626}
1627
225067ee
DV
1628/* Immediately discard the backing storage */
1629static void
1630i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1631{
e5281ccd 1632 struct inode *inode;
e5281ccd 1633
4d6294bf 1634 i915_gem_object_free_mmap_offset(obj);
1286ff73 1635
4d6294bf
CW
1636 if (obj->base.filp == NULL)
1637 return;
e5281ccd 1638
225067ee
DV
1639 /* Our goal here is to return as much of the memory as
1640 * is possible back to the system as we are called from OOM.
1641 * To do this we must instruct the shmfs to drop all of its
1642 * backing pages, *now*.
1643 */
05394f39 1644 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1645 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1646
225067ee
DV
1647 obj->madv = __I915_MADV_PURGED;
1648}
e5281ccd 1649
225067ee
DV
1650static inline int
1651i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1652{
1653 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1654}
1655
37e680a1 1656static void
05394f39 1657i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1658{
05394f39 1659 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1660 struct scatterlist *sg;
6c085a72 1661 int ret, i;
673a394b 1662
05394f39 1663 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1664
6c085a72
CW
1665 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1666 if (ret) {
1667 /* In the event of a disaster, abandon all caches and
1668 * hope for the best.
1669 */
1670 WARN_ON(ret != -EIO);
1671 i915_gem_clflush_object(obj);
1672 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1673 }
1674
6dacfd2f 1675 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1676 i915_gem_object_save_bit_17_swizzle(obj);
1677
05394f39
CW
1678 if (obj->madv == I915_MADV_DONTNEED)
1679 obj->dirty = 0;
3ef94daa 1680
9da3da66
CW
1681 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1682 struct page *page = sg_page(sg);
1683
05394f39 1684 if (obj->dirty)
9da3da66 1685 set_page_dirty(page);
3ef94daa 1686
05394f39 1687 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1688 mark_page_accessed(page);
3ef94daa 1689
9da3da66 1690 page_cache_release(page);
3ef94daa 1691 }
05394f39 1692 obj->dirty = 0;
673a394b 1693
9da3da66
CW
1694 sg_free_table(obj->pages);
1695 kfree(obj->pages);
37e680a1 1696}
6c085a72 1697
37e680a1
CW
1698static int
1699i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1700{
1701 const struct drm_i915_gem_object_ops *ops = obj->ops;
1702
2f745ad3 1703 if (obj->pages == NULL)
37e680a1
CW
1704 return 0;
1705
1706 BUG_ON(obj->gtt_space);
6c085a72 1707
a5570178
CW
1708 if (obj->pages_pin_count)
1709 return -EBUSY;
1710
37e680a1 1711 ops->put_pages(obj);
9da3da66 1712 obj->pages = NULL;
37e680a1
CW
1713
1714 list_del(&obj->gtt_list);
6c085a72
CW
1715 if (i915_gem_object_is_purgeable(obj))
1716 i915_gem_object_truncate(obj);
1717
1718 return 0;
1719}
1720
1721static long
1722i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1723{
1724 struct drm_i915_gem_object *obj, *next;
1725 long count = 0;
1726
1727 list_for_each_entry_safe(obj, next,
1728 &dev_priv->mm.unbound_list,
1729 gtt_list) {
1730 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1731 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1732 count += obj->base.size >> PAGE_SHIFT;
1733 if (count >= target)
1734 return count;
1735 }
1736 }
1737
1738 list_for_each_entry_safe(obj, next,
1739 &dev_priv->mm.inactive_list,
1740 mm_list) {
1741 if (i915_gem_object_is_purgeable(obj) &&
1742 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1743 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1744 count += obj->base.size >> PAGE_SHIFT;
1745 if (count >= target)
1746 return count;
1747 }
1748 }
1749
1750 return count;
1751}
1752
1753static void
1754i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1755{
1756 struct drm_i915_gem_object *obj, *next;
1757
1758 i915_gem_evict_everything(dev_priv->dev);
1759
1760 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1761 i915_gem_object_put_pages(obj);
225067ee
DV
1762}
1763
37e680a1 1764static int
6c085a72 1765i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1766{
6c085a72 1767 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1768 int page_count, i;
1769 struct address_space *mapping;
9da3da66
CW
1770 struct sg_table *st;
1771 struct scatterlist *sg;
e5281ccd 1772 struct page *page;
6c085a72 1773 gfp_t gfp;
e5281ccd 1774
6c085a72
CW
1775 /* Assert that the object is not currently in any GPU domain. As it
1776 * wasn't in the GTT, there shouldn't be any way it could have been in
1777 * a GPU cache
1778 */
1779 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1780 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1781
9da3da66
CW
1782 st = kmalloc(sizeof(*st), GFP_KERNEL);
1783 if (st == NULL)
1784 return -ENOMEM;
1785
05394f39 1786 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1787 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1788 sg_free_table(st);
1789 kfree(st);
e5281ccd 1790 return -ENOMEM;
9da3da66 1791 }
e5281ccd 1792
9da3da66
CW
1793 /* Get the list of pages out of our struct file. They'll be pinned
1794 * at this point until we release them.
1795 *
1796 * Fail silently without starting the shrinker
1797 */
6c085a72
CW
1798 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1799 gfp = mapping_gfp_mask(mapping);
d7c3b937 1800 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72 1801 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1802 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1803 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1804 if (IS_ERR(page)) {
1805 i915_gem_purge(dev_priv, page_count);
1806 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1807 }
1808 if (IS_ERR(page)) {
1809 /* We've tried hard to allocate the memory by reaping
1810 * our own buffer, now let the real VM do its job and
1811 * go down in flames if truly OOM.
1812 */
d7c3b937 1813 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
6c085a72
CW
1814 gfp |= __GFP_IO | __GFP_WAIT;
1815
1816 i915_gem_shrink_all(dev_priv);
1817 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1818 if (IS_ERR(page))
1819 goto err_pages;
1820
d7c3b937 1821 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72
CW
1822 gfp &= ~(__GFP_IO | __GFP_WAIT);
1823 }
e5281ccd 1824
9da3da66 1825 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1826 }
1827
74ce6b6c
CW
1828 obj->pages = st;
1829
6dacfd2f 1830 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1831 i915_gem_object_do_bit_17_swizzle(obj);
1832
1833 return 0;
1834
1835err_pages:
9da3da66
CW
1836 for_each_sg(st->sgl, sg, i, page_count)
1837 page_cache_release(sg_page(sg));
1838 sg_free_table(st);
1839 kfree(st);
e5281ccd 1840 return PTR_ERR(page);
673a394b
EA
1841}
1842
37e680a1
CW
1843/* Ensure that the associated pages are gathered from the backing storage
1844 * and pinned into our object. i915_gem_object_get_pages() may be called
1845 * multiple times before they are released by a single call to
1846 * i915_gem_object_put_pages() - once the pages are no longer referenced
1847 * either as a result of memory pressure (reaping pages under the shrinker)
1848 * or as the object is itself released.
1849 */
1850int
1851i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1852{
1853 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1854 const struct drm_i915_gem_object_ops *ops = obj->ops;
1855 int ret;
1856
2f745ad3 1857 if (obj->pages)
37e680a1
CW
1858 return 0;
1859
a5570178
CW
1860 BUG_ON(obj->pages_pin_count);
1861
37e680a1
CW
1862 ret = ops->get_pages(obj);
1863 if (ret)
1864 return ret;
1865
1866 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1867 return 0;
1868}
1869
54cf91dc 1870void
05394f39 1871i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1872 struct intel_ring_buffer *ring,
1873 u32 seqno)
673a394b 1874{
05394f39 1875 struct drm_device *dev = obj->base.dev;
69dc4987 1876 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1877
852835f3 1878 BUG_ON(ring == NULL);
05394f39 1879 obj->ring = ring;
673a394b
EA
1880
1881 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1882 if (!obj->active) {
1883 drm_gem_object_reference(&obj->base);
1884 obj->active = 1;
673a394b 1885 }
e35a41de 1886
673a394b 1887 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1888 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1889 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1890
0201f1ec 1891 obj->last_read_seqno = seqno;
caea7476 1892
7dd49065 1893 if (obj->fenced_gpu_access) {
caea7476 1894 obj->last_fenced_seqno = seqno;
caea7476 1895
7dd49065
CW
1896 /* Bump MRU to take account of the delayed flush */
1897 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1898 struct drm_i915_fence_reg *reg;
1899
1900 reg = &dev_priv->fence_regs[obj->fence_reg];
1901 list_move_tail(&reg->lru_list,
1902 &dev_priv->mm.fence_list);
1903 }
caea7476
CW
1904 }
1905}
1906
caea7476
CW
1907static void
1908i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1909{
1910 struct drm_device *dev = obj->base.dev;
1911 struct drm_i915_private *dev_priv = dev->dev_private;
1912
65ce3027 1913 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
caea7476 1914 BUG_ON(!obj->active);
65ce3027 1915
f047e395
CW
1916 if (obj->pin_count) /* are we a framebuffer? */
1917 intel_mark_fb_idle(obj);
1918
1919 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1920
65ce3027 1921 list_del_init(&obj->ring_list);
caea7476
CW
1922 obj->ring = NULL;
1923
65ce3027
CW
1924 obj->last_read_seqno = 0;
1925 obj->last_write_seqno = 0;
1926 obj->base.write_domain = 0;
1927
1928 obj->last_fenced_seqno = 0;
caea7476 1929 obj->fenced_gpu_access = false;
caea7476
CW
1930
1931 obj->active = 0;
1932 drm_gem_object_unreference(&obj->base);
1933
1934 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1935}
673a394b 1936
53d227f2
DV
1937static u32
1938i915_gem_get_seqno(struct drm_device *dev)
1939{
1940 drm_i915_private_t *dev_priv = dev->dev_private;
1941 u32 seqno = dev_priv->next_seqno;
1942
1943 /* reserve 0 for non-seqno */
1944 if (++dev_priv->next_seqno == 0)
1945 dev_priv->next_seqno = 1;
1946
1947 return seqno;
1948}
1949
1950u32
1951i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1952{
1953 if (ring->outstanding_lazy_request == 0)
1954 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1955
1956 return ring->outstanding_lazy_request;
1957}
1958
3cce469c 1959int
db53a302 1960i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1961 struct drm_file *file,
acb868d3 1962 u32 *out_seqno)
673a394b 1963{
db53a302 1964 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 1965 struct drm_i915_gem_request *request;
a71d8d94 1966 u32 request_ring_position;
acb868d3 1967 u32 seqno;
673a394b 1968 int was_empty;
3cce469c
CW
1969 int ret;
1970
cc889e0f
DV
1971 /*
1972 * Emit any outstanding flushes - execbuf can fail to emit the flush
1973 * after having emitted the batchbuffer command. Hence we need to fix
1974 * things up similar to emitting the lazy request. The difference here
1975 * is that the flush _must_ happen before the next request, no matter
1976 * what.
1977 */
a7b9761d
CW
1978 ret = intel_ring_flush_all_caches(ring);
1979 if (ret)
1980 return ret;
cc889e0f 1981
acb868d3
CW
1982 request = kmalloc(sizeof(*request), GFP_KERNEL);
1983 if (request == NULL)
1984 return -ENOMEM;
3bb73aba 1985
53d227f2 1986 seqno = i915_gem_next_request_seqno(ring);
673a394b 1987
a71d8d94
CW
1988 /* Record the position of the start of the request so that
1989 * should we detect the updated seqno part-way through the
1990 * GPU processing the request, we never over-estimate the
1991 * position of the head.
1992 */
1993 request_ring_position = intel_ring_get_tail(ring);
1994
3cce469c 1995 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1996 if (ret) {
1997 kfree(request);
1998 return ret;
1999 }
673a394b 2000
db53a302 2001 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
2002
2003 request->seqno = seqno;
852835f3 2004 request->ring = ring;
a71d8d94 2005 request->tail = request_ring_position;
673a394b 2006 request->emitted_jiffies = jiffies;
852835f3
ZN
2007 was_empty = list_empty(&ring->request_list);
2008 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2009 request->file_priv = NULL;
852835f3 2010
db53a302
CW
2011 if (file) {
2012 struct drm_i915_file_private *file_priv = file->driver_priv;
2013
1c25595f 2014 spin_lock(&file_priv->mm.lock);
f787a5f5 2015 request->file_priv = file_priv;
b962442e 2016 list_add_tail(&request->client_list,
f787a5f5 2017 &file_priv->mm.request_list);
1c25595f 2018 spin_unlock(&file_priv->mm.lock);
b962442e 2019 }
673a394b 2020
5391d0cf 2021 ring->outstanding_lazy_request = 0;
db53a302 2022
f65d9421 2023 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
2024 if (i915_enable_hangcheck) {
2025 mod_timer(&dev_priv->hangcheck_timer,
2026 jiffies +
2027 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2028 }
f047e395 2029 if (was_empty) {
b3b079db
CW
2030 queue_delayed_work(dev_priv->wq,
2031 &dev_priv->mm.retire_work, HZ);
f047e395
CW
2032 intel_mark_busy(dev_priv->dev);
2033 }
f65d9421 2034 }
cc889e0f 2035
acb868d3
CW
2036 if (out_seqno)
2037 *out_seqno = seqno;
3cce469c 2038 return 0;
673a394b
EA
2039}
2040
f787a5f5
CW
2041static inline void
2042i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2043{
1c25595f 2044 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2045
1c25595f
CW
2046 if (!file_priv)
2047 return;
1c5d22f7 2048
1c25595f 2049 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2050 if (request->file_priv) {
2051 list_del(&request->client_list);
2052 request->file_priv = NULL;
2053 }
1c25595f 2054 spin_unlock(&file_priv->mm.lock);
673a394b 2055}
673a394b 2056
dfaae392
CW
2057static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2058 struct intel_ring_buffer *ring)
9375e446 2059{
dfaae392
CW
2060 while (!list_empty(&ring->request_list)) {
2061 struct drm_i915_gem_request *request;
673a394b 2062
dfaae392
CW
2063 request = list_first_entry(&ring->request_list,
2064 struct drm_i915_gem_request,
2065 list);
de151cf6 2066
dfaae392 2067 list_del(&request->list);
f787a5f5 2068 i915_gem_request_remove_from_client(request);
dfaae392
CW
2069 kfree(request);
2070 }
673a394b 2071
dfaae392 2072 while (!list_empty(&ring->active_list)) {
05394f39 2073 struct drm_i915_gem_object *obj;
9375e446 2074
05394f39
CW
2075 obj = list_first_entry(&ring->active_list,
2076 struct drm_i915_gem_object,
2077 ring_list);
9375e446 2078
05394f39 2079 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2080 }
2081}
2082
312817a3
CW
2083static void i915_gem_reset_fences(struct drm_device *dev)
2084{
2085 struct drm_i915_private *dev_priv = dev->dev_private;
2086 int i;
2087
4b9de737 2088 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2089 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2090
ada726c7 2091 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2092
ada726c7
CW
2093 if (reg->obj)
2094 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2095
ada726c7
CW
2096 reg->pin_count = 0;
2097 reg->obj = NULL;
2098 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2099 }
ada726c7
CW
2100
2101 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2102}
2103
069efc1d 2104void i915_gem_reset(struct drm_device *dev)
673a394b 2105{
77f01230 2106 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2107 struct drm_i915_gem_object *obj;
b4519513 2108 struct intel_ring_buffer *ring;
1ec14ad3 2109 int i;
673a394b 2110
b4519513
CW
2111 for_each_ring(ring, dev_priv, i)
2112 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2113
dfaae392
CW
2114 /* Move everything out of the GPU domains to ensure we do any
2115 * necessary invalidation upon reuse.
2116 */
05394f39 2117 list_for_each_entry(obj,
77f01230 2118 &dev_priv->mm.inactive_list,
69dc4987 2119 mm_list)
77f01230 2120 {
05394f39 2121 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2122 }
069efc1d
CW
2123
2124 /* The fence registers are invalidated so clear them out */
312817a3 2125 i915_gem_reset_fences(dev);
673a394b
EA
2126}
2127
2128/**
2129 * This function clears the request list as sequence numbers are passed.
2130 */
a71d8d94 2131void
db53a302 2132i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2133{
673a394b 2134 uint32_t seqno;
1ec14ad3 2135 int i;
673a394b 2136
db53a302 2137 if (list_empty(&ring->request_list))
6c0594a3
KW
2138 return;
2139
db53a302 2140 WARN_ON(i915_verify_lists(ring->dev));
5c81fe85 2141
b2eadbc8 2142 seqno = ring->get_seqno(ring, true);
604dd3ec 2143
076e2c0e 2144 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
2145 if (seqno >= ring->sync_seqno[i])
2146 ring->sync_seqno[i] = 0;
5c81fe85 2147
852835f3 2148 while (!list_empty(&ring->request_list)) {
673a394b 2149 struct drm_i915_gem_request *request;
604dd3ec 2150
852835f3 2151 request = list_first_entry(&ring->request_list,
673a394b
EA
2152 struct drm_i915_gem_request,
2153 list);
5c81fe85 2154
dfaae392 2155 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c 2156 break;
604dd3ec 2157
db53a302 2158 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2159 /* We know the GPU must have read the request to have
2160 * sent us the seqno + interrupt, so use the position
2161 * of tail of the request to update the last known position
2162 * of the GPU head.
2163 */
2164 ring->last_retired_head = request->tail;
604dd3ec 2165
b84d5f0c 2166 list_del(&request->list);
f787a5f5 2167 i915_gem_request_remove_from_client(request);
b84d5f0c 2168 kfree(request);
5c81fe85
BW
2169 }
2170
b84d5f0c
CW
2171 /* Move any buffers on the active list that are no longer referenced
2172 * by the ringbuffer to the flushing/inactive lists as appropriate.
2173 */
2174 while (!list_empty(&ring->active_list)) {
05394f39 2175 struct drm_i915_gem_object *obj;
604dd3ec 2176
0206e353 2177 obj = list_first_entry(&ring->active_list,
05394f39
CW
2178 struct drm_i915_gem_object,
2179 ring_list);
673a394b 2180
0201f1ec 2181 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2182 break;
673a394b 2183
65ce3027 2184 i915_gem_object_move_to_inactive(obj);
673a394b 2185 }
3cce469c 2186
db53a302
CW
2187 if (unlikely(ring->trace_irq_seqno &&
2188 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2189 ring->irq_put(ring);
db53a302 2190 ring->trace_irq_seqno = 0;
9d34e5db 2191 }
23bc5982 2192
db53a302 2193 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2194}
ffed1d09 2195
b09a1fec
CW
2196void
2197i915_gem_retire_requests(struct drm_device *dev)
2198{
2199 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2200 struct intel_ring_buffer *ring;
1ec14ad3 2201 int i;
673a394b 2202
b4519513
CW
2203 for_each_ring(ring, dev_priv, i)
2204 i915_gem_retire_requests_ring(ring);
673a394b
EA
2205}
2206
75ef9da2 2207static void
673a394b 2208i915_gem_retire_work_handler(struct work_struct *work)
673a394b 2209{
673a394b
EA
2210 drm_i915_private_t *dev_priv;
2211 struct drm_device *dev;
b4519513 2212 struct intel_ring_buffer *ring;
0a58705b
CW
2213 bool idle;
2214 int i;
673a394b 2215
673a394b
EA
2216 dev_priv = container_of(work, drm_i915_private_t,
2217 mm.retire_work.work);
2218 dev = dev_priv->dev;
0201f1ec 2219
891b48cf
CW
2220 /* Come back later if the device is busy... */
2221 if (!mutex_trylock(&dev->struct_mutex)) {
2222 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2223 return;
2224 }
2225
b09a1fec 2226 i915_gem_retire_requests(dev);
0201f1ec 2227
0a58705b
CW
2228 /* Send a periodic flush down the ring so we don't hold onto GEM
2229 * objects indefinitely.
0201f1ec 2230 */
0a58705b 2231 idle = true;
b4519513 2232 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2233 if (ring->gpu_caches_dirty)
2234 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2235
2236 idle &= list_empty(&ring->request_list);
673a394b
EA
2237 }
2238
0a58705b 2239 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 2240 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
f047e395
CW
2241 if (idle)
2242 intel_mark_idle(dev);
0a58705b 2243
673a394b 2244 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2245}
2246
30dfebf3
DV
2247/**
2248 * Ensures that an object will eventually get non-busy by flushing any required
2249 * write domains, emitting any outstanding lazy request and retiring and
2250 * completed requests.
2251 */
2252static int
2253i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2254{
2255 int ret;
2256
2257 if (obj->active) {
0201f1ec 2258 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2259 if (ret)
2260 return ret;
0201f1ec 2261
30dfebf3
DV
2262 i915_gem_retire_requests_ring(obj->ring);
2263 }
2264
2265 return 0;
2266}
2267
23ba4fd0
BW
2268/**
2269 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2270 * @DRM_IOCTL_ARGS: standard ioctl arguments
2271 *
2272 * Returns 0 if successful, else an error is returned with the remaining time in
2273 * the timeout parameter.
2274 * -ETIME: object is still busy after timeout
2275 * -ERESTARTSYS: signal interrupted the wait
2276 * -ENONENT: object doesn't exist
2277 * Also possible, but rare:
2278 * -EAGAIN: GPU wedged
2279 * -ENOMEM: damn
2280 * -ENODEV: Internal IRQ fail
2281 * -E?: The add request failed
2282 *
2283 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2284 * non-zero timeout parameter the wait ioctl will wait for the given number of
2285 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2286 * without holding struct_mutex the object may become re-busied before this
2287 * function completes. A similar but shorter * race condition exists in the busy
2288 * ioctl
2289 */
2290int
2291i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2292{
2293 struct drm_i915_gem_wait *args = data;
2294 struct drm_i915_gem_object *obj;
2295 struct intel_ring_buffer *ring = NULL;
eac1f14f 2296 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2297 u32 seqno = 0;
2298 int ret = 0;
2299
eac1f14f
BW
2300 if (args->timeout_ns >= 0) {
2301 timeout_stack = ns_to_timespec(args->timeout_ns);
2302 timeout = &timeout_stack;
2303 }
23ba4fd0
BW
2304
2305 ret = i915_mutex_lock_interruptible(dev);
2306 if (ret)
2307 return ret;
2308
2309 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2310 if (&obj->base == NULL) {
2311 mutex_unlock(&dev->struct_mutex);
2312 return -ENOENT;
2313 }
2314
30dfebf3
DV
2315 /* Need to make sure the object gets inactive eventually. */
2316 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2317 if (ret)
2318 goto out;
2319
2320 if (obj->active) {
0201f1ec 2321 seqno = obj->last_read_seqno;
23ba4fd0
BW
2322 ring = obj->ring;
2323 }
2324
2325 if (seqno == 0)
2326 goto out;
2327
23ba4fd0
BW
2328 /* Do this after OLR check to make sure we make forward progress polling
2329 * on this IOCTL with a 0 timeout (like busy ioctl)
2330 */
2331 if (!args->timeout_ns) {
2332 ret = -ETIME;
2333 goto out;
2334 }
2335
2336 drm_gem_object_unreference(&obj->base);
2337 mutex_unlock(&dev->struct_mutex);
2338
eac1f14f
BW
2339 ret = __wait_seqno(ring, seqno, true, timeout);
2340 if (timeout) {
2341 WARN_ON(!timespec_valid(timeout));
2342 args->timeout_ns = timespec_to_ns(timeout);
2343 }
23ba4fd0
BW
2344 return ret;
2345
2346out:
2347 drm_gem_object_unreference(&obj->base);
2348 mutex_unlock(&dev->struct_mutex);
2349 return ret;
2350}
2351
5816d648
BW
2352/**
2353 * i915_gem_object_sync - sync an object to a ring.
2354 *
2355 * @obj: object which may be in use on another ring.
2356 * @to: ring we wish to use the object on. May be NULL.
2357 *
2358 * This code is meant to abstract object synchronization with the GPU.
2359 * Calling with NULL implies synchronizing the object with the CPU
2360 * rather than a particular GPU ring.
2361 *
2362 * Returns 0 if successful, else propagates up the lower layer error.
2363 */
2911a35b
BW
2364int
2365i915_gem_object_sync(struct drm_i915_gem_object *obj,
2366 struct intel_ring_buffer *to)
2367{
2368 struct intel_ring_buffer *from = obj->ring;
2369 u32 seqno;
2370 int ret, idx;
2371
2372 if (from == NULL || to == from)
2373 return 0;
2374
5816d648 2375 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2376 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2377
2378 idx = intel_ring_sync_index(from, to);
2379
0201f1ec 2380 seqno = obj->last_read_seqno;
2911a35b
BW
2381 if (seqno <= from->sync_seqno[idx])
2382 return 0;
2383
b4aca010
BW
2384 ret = i915_gem_check_olr(obj->ring, seqno);
2385 if (ret)
2386 return ret;
2911a35b 2387
1500f7ea 2388 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2389 if (!ret)
2390 from->sync_seqno[idx] = seqno;
2911a35b 2391
e3a5a225 2392 return ret;
2911a35b
BW
2393}
2394
b5ffc9bc
CW
2395static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2396{
2397 u32 old_write_domain, old_read_domains;
2398
b5ffc9bc
CW
2399 /* Act a barrier for all accesses through the GTT */
2400 mb();
2401
2402 /* Force a pagefault for domain tracking on next user access */
2403 i915_gem_release_mmap(obj);
2404
b97c3d9c
KP
2405 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2406 return;
2407
b5ffc9bc
CW
2408 old_read_domains = obj->base.read_domains;
2409 old_write_domain = obj->base.write_domain;
2410
2411 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2412 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2413
2414 trace_i915_gem_object_change_domain(obj,
2415 old_read_domains,
2416 old_write_domain);
2417}
2418
673a394b
EA
2419/**
2420 * Unbinds an object from the GTT aperture.
2421 */
0f973f27 2422int
05394f39 2423i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2424{
7bddb01f 2425 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2426 int ret = 0;
2427
05394f39 2428 if (obj->gtt_space == NULL)
673a394b
EA
2429 return 0;
2430
31d8d651
CW
2431 if (obj->pin_count)
2432 return -EBUSY;
673a394b 2433
c4670ad0
CW
2434 BUG_ON(obj->pages == NULL);
2435
a8198eea 2436 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2437 if (ret)
a8198eea
CW
2438 return ret;
2439 /* Continue on if we fail due to EIO, the GPU is hung so we
2440 * should be safe and we need to cleanup or else we might
2441 * cause memory corruption through use-after-free.
2442 */
2443
b5ffc9bc 2444 i915_gem_object_finish_gtt(obj);
5323fd04 2445
96b47b65 2446 /* release the fence reg _after_ flushing */
d9e86c0e 2447 ret = i915_gem_object_put_fence(obj);
1488fc08 2448 if (ret)
d9e86c0e 2449 return ret;
96b47b65 2450
db53a302
CW
2451 trace_i915_gem_object_unbind(obj);
2452
74898d7e
DV
2453 if (obj->has_global_gtt_mapping)
2454 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2455 if (obj->has_aliasing_ppgtt_mapping) {
2456 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2457 obj->has_aliasing_ppgtt_mapping = 0;
2458 }
74163907 2459 i915_gem_gtt_finish_object(obj);
7bddb01f 2460
6c085a72
CW
2461 list_del(&obj->mm_list);
2462 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2463 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2464 obj->map_and_fenceable = true;
673a394b 2465
05394f39
CW
2466 drm_mm_put_block(obj->gtt_space);
2467 obj->gtt_space = NULL;
2468 obj->gtt_offset = 0;
673a394b 2469
6c085a72 2470 return 0;
673a394b
EA
2471}
2472
b2da9fe5 2473static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2474{
69c2fc89 2475 if (list_empty(&ring->active_list))
64193406
CW
2476 return 0;
2477
199b2bc2 2478 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2479}
2480
b2da9fe5 2481int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2482{
2483 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2484 struct intel_ring_buffer *ring;
1ec14ad3 2485 int ret, i;
4df2faf4 2486
4df2faf4 2487 /* Flush everything onto the inactive list. */
b4519513 2488 for_each_ring(ring, dev_priv, i) {
b6c7488d 2489 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
1ec14ad3
CW
2490 if (ret)
2491 return ret;
b4519513 2492
b4519513 2493 ret = i915_ring_idle(ring);
f2ef6eb1
BW
2494 if (ret)
2495 return ret;
1ec14ad3 2496 }
4df2faf4 2497
8a1a49f9 2498 return 0;
4df2faf4
DV
2499}
2500
9ce079e4
CW
2501static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2502 struct drm_i915_gem_object *obj)
4e901fdc 2503{
4e901fdc 2504 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2505 uint64_t val;
2506
9ce079e4
CW
2507 if (obj) {
2508 u32 size = obj->gtt_space->size;
4e901fdc 2509
9ce079e4
CW
2510 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2511 0xfffff000) << 32;
2512 val |= obj->gtt_offset & 0xfffff000;
2513 val |= (uint64_t)((obj->stride / 128) - 1) <<
2514 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2515
9ce079e4
CW
2516 if (obj->tiling_mode == I915_TILING_Y)
2517 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2518 val |= I965_FENCE_REG_VALID;
2519 } else
2520 val = 0;
c6642782 2521
9ce079e4
CW
2522 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2523 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2524}
2525
9ce079e4
CW
2526static void i965_write_fence_reg(struct drm_device *dev, int reg,
2527 struct drm_i915_gem_object *obj)
de151cf6 2528{
de151cf6 2529 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2530 uint64_t val;
2531
9ce079e4
CW
2532 if (obj) {
2533 u32 size = obj->gtt_space->size;
de151cf6 2534
9ce079e4
CW
2535 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2536 0xfffff000) << 32;
2537 val |= obj->gtt_offset & 0xfffff000;
2538 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2539 if (obj->tiling_mode == I915_TILING_Y)
2540 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2541 val |= I965_FENCE_REG_VALID;
2542 } else
2543 val = 0;
c6642782 2544
9ce079e4
CW
2545 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2546 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2547}
2548
9ce079e4
CW
2549static void i915_write_fence_reg(struct drm_device *dev, int reg,
2550 struct drm_i915_gem_object *obj)
de151cf6 2551{
de151cf6 2552 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2553 u32 val;
de151cf6 2554
9ce079e4
CW
2555 if (obj) {
2556 u32 size = obj->gtt_space->size;
2557 int pitch_val;
2558 int tile_width;
c6642782 2559
9ce079e4
CW
2560 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2561 (size & -size) != size ||
2562 (obj->gtt_offset & (size - 1)),
2563 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2564 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2565
9ce079e4
CW
2566 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2567 tile_width = 128;
2568 else
2569 tile_width = 512;
2570
2571 /* Note: pitch better be a power of two tile widths */
2572 pitch_val = obj->stride / tile_width;
2573 pitch_val = ffs(pitch_val) - 1;
2574
2575 val = obj->gtt_offset;
2576 if (obj->tiling_mode == I915_TILING_Y)
2577 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2578 val |= I915_FENCE_SIZE_BITS(size);
2579 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2580 val |= I830_FENCE_REG_VALID;
2581 } else
2582 val = 0;
2583
2584 if (reg < 8)
2585 reg = FENCE_REG_830_0 + reg * 4;
2586 else
2587 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2588
2589 I915_WRITE(reg, val);
2590 POSTING_READ(reg);
de151cf6
JB
2591}
2592
9ce079e4
CW
2593static void i830_write_fence_reg(struct drm_device *dev, int reg,
2594 struct drm_i915_gem_object *obj)
de151cf6 2595{
de151cf6 2596 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2597 uint32_t val;
de151cf6 2598
9ce079e4
CW
2599 if (obj) {
2600 u32 size = obj->gtt_space->size;
2601 uint32_t pitch_val;
de151cf6 2602
9ce079e4
CW
2603 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2604 (size & -size) != size ||
2605 (obj->gtt_offset & (size - 1)),
2606 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2607 obj->gtt_offset, size);
e76a16de 2608
9ce079e4
CW
2609 pitch_val = obj->stride / 128;
2610 pitch_val = ffs(pitch_val) - 1;
de151cf6 2611
9ce079e4
CW
2612 val = obj->gtt_offset;
2613 if (obj->tiling_mode == I915_TILING_Y)
2614 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2615 val |= I830_FENCE_SIZE_BITS(size);
2616 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2617 val |= I830_FENCE_REG_VALID;
2618 } else
2619 val = 0;
c6642782 2620
9ce079e4
CW
2621 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2622 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2623}
2624
2625static void i915_gem_write_fence(struct drm_device *dev, int reg,
2626 struct drm_i915_gem_object *obj)
2627{
2628 switch (INTEL_INFO(dev)->gen) {
2629 case 7:
2630 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2631 case 5:
2632 case 4: i965_write_fence_reg(dev, reg, obj); break;
2633 case 3: i915_write_fence_reg(dev, reg, obj); break;
2634 case 2: i830_write_fence_reg(dev, reg, obj); break;
2635 default: break;
2636 }
de151cf6
JB
2637}
2638
61050808
CW
2639static inline int fence_number(struct drm_i915_private *dev_priv,
2640 struct drm_i915_fence_reg *fence)
2641{
2642 return fence - dev_priv->fence_regs;
2643}
2644
2645static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2646 struct drm_i915_fence_reg *fence,
2647 bool enable)
2648{
2649 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2650 int reg = fence_number(dev_priv, fence);
2651
2652 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2653
2654 if (enable) {
2655 obj->fence_reg = reg;
2656 fence->obj = obj;
2657 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2658 } else {
2659 obj->fence_reg = I915_FENCE_REG_NONE;
2660 fence->obj = NULL;
2661 list_del_init(&fence->lru_list);
2662 }
2663}
2664
d9e86c0e 2665static int
a360bb1a 2666i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2667{
1c293ea3 2668 if (obj->last_fenced_seqno) {
86d5bc37 2669 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2670 if (ret)
2671 return ret;
d9e86c0e
CW
2672
2673 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2674 }
2675
63256ec5
CW
2676 /* Ensure that all CPU reads are completed before installing a fence
2677 * and all writes before removing the fence.
2678 */
2679 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2680 mb();
2681
86d5bc37 2682 obj->fenced_gpu_access = false;
d9e86c0e
CW
2683 return 0;
2684}
2685
2686int
2687i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2688{
61050808 2689 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2690 int ret;
2691
a360bb1a 2692 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2693 if (ret)
2694 return ret;
2695
61050808
CW
2696 if (obj->fence_reg == I915_FENCE_REG_NONE)
2697 return 0;
d9e86c0e 2698
61050808
CW
2699 i915_gem_object_update_fence(obj,
2700 &dev_priv->fence_regs[obj->fence_reg],
2701 false);
2702 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2703
2704 return 0;
2705}
2706
2707static struct drm_i915_fence_reg *
a360bb1a 2708i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2709{
ae3db24a 2710 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2711 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2712 int i;
ae3db24a
DV
2713
2714 /* First try to find a free reg */
d9e86c0e 2715 avail = NULL;
ae3db24a
DV
2716 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2717 reg = &dev_priv->fence_regs[i];
2718 if (!reg->obj)
d9e86c0e 2719 return reg;
ae3db24a 2720
1690e1eb 2721 if (!reg->pin_count)
d9e86c0e 2722 avail = reg;
ae3db24a
DV
2723 }
2724
d9e86c0e
CW
2725 if (avail == NULL)
2726 return NULL;
ae3db24a
DV
2727
2728 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2729 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2730 if (reg->pin_count)
ae3db24a
DV
2731 continue;
2732
8fe301ad 2733 return reg;
ae3db24a
DV
2734 }
2735
8fe301ad 2736 return NULL;
ae3db24a
DV
2737}
2738
de151cf6 2739/**
9a5a53b3 2740 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2741 * @obj: object to map through a fence reg
2742 *
2743 * When mapping objects through the GTT, userspace wants to be able to write
2744 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2745 * This function walks the fence regs looking for a free one for @obj,
2746 * stealing one if it can't find any.
2747 *
2748 * It then sets up the reg based on the object's properties: address, pitch
2749 * and tiling format.
9a5a53b3
CW
2750 *
2751 * For an untiled surface, this removes any existing fence.
de151cf6 2752 */
8c4b8c3f 2753int
06d98131 2754i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2755{
05394f39 2756 struct drm_device *dev = obj->base.dev;
79e53945 2757 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2758 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2759 struct drm_i915_fence_reg *reg;
ae3db24a 2760 int ret;
de151cf6 2761
14415745
CW
2762 /* Have we updated the tiling parameters upon the object and so
2763 * will need to serialise the write to the associated fence register?
2764 */
5d82e3e6 2765 if (obj->fence_dirty) {
14415745
CW
2766 ret = i915_gem_object_flush_fence(obj);
2767 if (ret)
2768 return ret;
2769 }
9a5a53b3 2770
d9e86c0e 2771 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2772 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2773 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2774 if (!obj->fence_dirty) {
14415745
CW
2775 list_move_tail(&reg->lru_list,
2776 &dev_priv->mm.fence_list);
2777 return 0;
2778 }
2779 } else if (enable) {
2780 reg = i915_find_fence_reg(dev);
2781 if (reg == NULL)
2782 return -EDEADLK;
d9e86c0e 2783
14415745
CW
2784 if (reg->obj) {
2785 struct drm_i915_gem_object *old = reg->obj;
2786
2787 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2788 if (ret)
2789 return ret;
2790
14415745 2791 i915_gem_object_fence_lost(old);
29c5a587 2792 }
14415745 2793 } else
a09ba7fa 2794 return 0;
a09ba7fa 2795
14415745 2796 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2797 obj->fence_dirty = false;
14415745 2798
9ce079e4 2799 return 0;
de151cf6
JB
2800}
2801
42d6ab48
CW
2802static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2803 struct drm_mm_node *gtt_space,
2804 unsigned long cache_level)
2805{
2806 struct drm_mm_node *other;
2807
2808 /* On non-LLC machines we have to be careful when putting differing
2809 * types of snoopable memory together to avoid the prefetcher
2810 * crossing memory domains and dieing.
2811 */
2812 if (HAS_LLC(dev))
2813 return true;
2814
2815 if (gtt_space == NULL)
2816 return true;
2817
2818 if (list_empty(&gtt_space->node_list))
2819 return true;
2820
2821 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2822 if (other->allocated && !other->hole_follows && other->color != cache_level)
2823 return false;
2824
2825 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2826 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2827 return false;
2828
2829 return true;
2830}
2831
2832static void i915_gem_verify_gtt(struct drm_device *dev)
2833{
2834#if WATCH_GTT
2835 struct drm_i915_private *dev_priv = dev->dev_private;
2836 struct drm_i915_gem_object *obj;
2837 int err = 0;
2838
2839 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2840 if (obj->gtt_space == NULL) {
2841 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2842 err++;
2843 continue;
2844 }
2845
2846 if (obj->cache_level != obj->gtt_space->color) {
2847 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2848 obj->gtt_space->start,
2849 obj->gtt_space->start + obj->gtt_space->size,
2850 obj->cache_level,
2851 obj->gtt_space->color);
2852 err++;
2853 continue;
2854 }
2855
2856 if (!i915_gem_valid_gtt_space(dev,
2857 obj->gtt_space,
2858 obj->cache_level)) {
2859 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2860 obj->gtt_space->start,
2861 obj->gtt_space->start + obj->gtt_space->size,
2862 obj->cache_level);
2863 err++;
2864 continue;
2865 }
2866 }
2867
2868 WARN_ON(err);
2869#endif
2870}
2871
673a394b
EA
2872/**
2873 * Finds free space in the GTT aperture and binds the object there.
2874 */
2875static int
05394f39 2876i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2877 unsigned alignment,
86a1ee26
CW
2878 bool map_and_fenceable,
2879 bool nonblocking)
673a394b 2880{
05394f39 2881 struct drm_device *dev = obj->base.dev;
673a394b 2882 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2883 struct drm_mm_node *free_space;
5e783301 2884 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2885 bool mappable, fenceable;
07f73f69 2886 int ret;
673a394b 2887
05394f39 2888 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2889 DRM_ERROR("Attempting to bind a purgeable object\n");
2890 return -EINVAL;
2891 }
2892
e28f8711
CW
2893 fence_size = i915_gem_get_gtt_size(dev,
2894 obj->base.size,
2895 obj->tiling_mode);
2896 fence_alignment = i915_gem_get_gtt_alignment(dev,
2897 obj->base.size,
2898 obj->tiling_mode);
2899 unfenced_alignment =
2900 i915_gem_get_unfenced_gtt_alignment(dev,
2901 obj->base.size,
2902 obj->tiling_mode);
a00b10c3 2903
673a394b 2904 if (alignment == 0)
5e783301
DV
2905 alignment = map_and_fenceable ? fence_alignment :
2906 unfenced_alignment;
75e9e915 2907 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2908 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2909 return -EINVAL;
2910 }
2911
05394f39 2912 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2913
654fc607
CW
2914 /* If the object is bigger than the entire aperture, reject it early
2915 * before evicting everything in a vain attempt to find space.
2916 */
05394f39 2917 if (obj->base.size >
75e9e915 2918 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2919 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2920 return -E2BIG;
2921 }
2922
37e680a1 2923 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2924 if (ret)
2925 return ret;
2926
673a394b 2927 search_free:
75e9e915 2928 if (map_and_fenceable)
920afa77 2929 free_space =
42d6ab48
CW
2930 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2931 size, alignment, obj->cache_level,
2932 0, dev_priv->mm.gtt_mappable_end,
2933 false);
920afa77 2934 else
42d6ab48
CW
2935 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2936 size, alignment, obj->cache_level,
2937 false);
920afa77
DV
2938
2939 if (free_space != NULL) {
75e9e915 2940 if (map_and_fenceable)
05394f39 2941 obj->gtt_space =
920afa77 2942 drm_mm_get_block_range_generic(free_space,
42d6ab48 2943 size, alignment, obj->cache_level,
6b9d89b4 2944 0, dev_priv->mm.gtt_mappable_end,
42d6ab48 2945 false);
920afa77 2946 else
05394f39 2947 obj->gtt_space =
42d6ab48
CW
2948 drm_mm_get_block_generic(free_space,
2949 size, alignment, obj->cache_level,
2950 false);
920afa77 2951 }
05394f39 2952 if (obj->gtt_space == NULL) {
75e9e915 2953 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2954 obj->cache_level,
86a1ee26
CW
2955 map_and_fenceable,
2956 nonblocking);
9731129c 2957 if (ret)
673a394b 2958 return ret;
9731129c 2959
673a394b
EA
2960 goto search_free;
2961 }
42d6ab48
CW
2962 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2963 obj->gtt_space,
2964 obj->cache_level))) {
2965 drm_mm_put_block(obj->gtt_space);
2966 obj->gtt_space = NULL;
2967 return -EINVAL;
2968 }
673a394b 2969
673a394b 2970
74163907 2971 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2972 if (ret) {
05394f39
CW
2973 drm_mm_put_block(obj->gtt_space);
2974 obj->gtt_space = NULL;
6c085a72 2975 return ret;
673a394b 2976 }
673a394b 2977
0ebb9829
DV
2978 if (!dev_priv->mm.aliasing_ppgtt)
2979 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2980
6c085a72 2981 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2982 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2983
6299f992 2984 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2985
75e9e915 2986 fenceable =
05394f39 2987 obj->gtt_space->size == fence_size &&
0206e353 2988 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2989
75e9e915 2990 mappable =
05394f39 2991 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2992
05394f39 2993 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2994
db53a302 2995 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 2996 i915_gem_verify_gtt(dev);
673a394b
EA
2997 return 0;
2998}
2999
3000void
05394f39 3001i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3002{
673a394b
EA
3003 /* If we don't have a page list set up, then we're not pinned
3004 * to GPU, and we can ignore the cache flush because it'll happen
3005 * again at bind time.
3006 */
05394f39 3007 if (obj->pages == NULL)
673a394b
EA
3008 return;
3009
9c23f7fc
CW
3010 /* If the GPU is snooping the contents of the CPU cache,
3011 * we do not need to manually clear the CPU cache lines. However,
3012 * the caches are only snooped when the render cache is
3013 * flushed/invalidated. As we always have to emit invalidations
3014 * and flushes when moving into and out of the RENDER domain, correct
3015 * snooping behaviour occurs naturally as the result of our domain
3016 * tracking.
3017 */
3018 if (obj->cache_level != I915_CACHE_NONE)
3019 return;
3020
1c5d22f7 3021 trace_i915_gem_object_clflush(obj);
cfa16a0d 3022
9da3da66 3023 drm_clflush_sg(obj->pages);
673a394b
EA
3024}
3025
e47c68e9
EA
3026/** Flushes the GTT write domain for the object if it's dirty. */
3027static void
05394f39 3028i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3029{
1c5d22f7
CW
3030 uint32_t old_write_domain;
3031
05394f39 3032 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3033 return;
3034
63256ec5 3035 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3036 * to it immediately go to main memory as far as we know, so there's
3037 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3038 *
3039 * However, we do have to enforce the order so that all writes through
3040 * the GTT land before any writes to the device, such as updates to
3041 * the GATT itself.
e47c68e9 3042 */
63256ec5
CW
3043 wmb();
3044
05394f39
CW
3045 old_write_domain = obj->base.write_domain;
3046 obj->base.write_domain = 0;
1c5d22f7
CW
3047
3048 trace_i915_gem_object_change_domain(obj,
05394f39 3049 obj->base.read_domains,
1c5d22f7 3050 old_write_domain);
e47c68e9
EA
3051}
3052
3053/** Flushes the CPU write domain for the object if it's dirty. */
3054static void
05394f39 3055i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3056{
1c5d22f7 3057 uint32_t old_write_domain;
e47c68e9 3058
05394f39 3059 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3060 return;
3061
3062 i915_gem_clflush_object(obj);
40ce6575 3063 intel_gtt_chipset_flush();
05394f39
CW
3064 old_write_domain = obj->base.write_domain;
3065 obj->base.write_domain = 0;
1c5d22f7
CW
3066
3067 trace_i915_gem_object_change_domain(obj,
05394f39 3068 obj->base.read_domains,
1c5d22f7 3069 old_write_domain);
e47c68e9
EA
3070}
3071
2ef7eeaa
EA
3072/**
3073 * Moves a single object to the GTT read, and possibly write domain.
3074 *
3075 * This function returns when the move is complete, including waiting on
3076 * flushes to occur.
3077 */
79e53945 3078int
2021746e 3079i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3080{
8325a09d 3081 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3082 uint32_t old_write_domain, old_read_domains;
e47c68e9 3083 int ret;
2ef7eeaa 3084
02354392 3085 /* Not valid to be called on unbound objects. */
05394f39 3086 if (obj->gtt_space == NULL)
02354392
EA
3087 return -EINVAL;
3088
8d7e3de1
CW
3089 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3090 return 0;
3091
0201f1ec
CW
3092 ret = i915_gem_object_wait_rendering(obj, !write);
3093 if (ret)
3094 return ret;
2dafb1e0 3095
7213342d 3096 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3097
05394f39
CW
3098 old_write_domain = obj->base.write_domain;
3099 old_read_domains = obj->base.read_domains;
1c5d22f7 3100
e47c68e9
EA
3101 /* It should now be out of any other write domains, and we can update
3102 * the domain values for our changes.
3103 */
05394f39
CW
3104 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3105 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3106 if (write) {
05394f39
CW
3107 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3108 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3109 obj->dirty = 1;
2ef7eeaa
EA
3110 }
3111
1c5d22f7
CW
3112 trace_i915_gem_object_change_domain(obj,
3113 old_read_domains,
3114 old_write_domain);
3115
8325a09d
CW
3116 /* And bump the LRU for this access */
3117 if (i915_gem_object_is_inactive(obj))
3118 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3119
e47c68e9
EA
3120 return 0;
3121}
3122
e4ffd173
CW
3123int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3124 enum i915_cache_level cache_level)
3125{
7bddb01f
DV
3126 struct drm_device *dev = obj->base.dev;
3127 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3128 int ret;
3129
3130 if (obj->cache_level == cache_level)
3131 return 0;
3132
3133 if (obj->pin_count) {
3134 DRM_DEBUG("can not change the cache level of pinned objects\n");
3135 return -EBUSY;
3136 }
3137
42d6ab48
CW
3138 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3139 ret = i915_gem_object_unbind(obj);
3140 if (ret)
3141 return ret;
3142 }
3143
e4ffd173
CW
3144 if (obj->gtt_space) {
3145 ret = i915_gem_object_finish_gpu(obj);
3146 if (ret)
3147 return ret;
3148
3149 i915_gem_object_finish_gtt(obj);
3150
3151 /* Before SandyBridge, you could not use tiling or fence
3152 * registers with snooped memory, so relinquish any fences
3153 * currently pointing to our region in the aperture.
3154 */
42d6ab48 3155 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3156 ret = i915_gem_object_put_fence(obj);
3157 if (ret)
3158 return ret;
3159 }
3160
74898d7e
DV
3161 if (obj->has_global_gtt_mapping)
3162 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3163 if (obj->has_aliasing_ppgtt_mapping)
3164 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3165 obj, cache_level);
42d6ab48
CW
3166
3167 obj->gtt_space->color = cache_level;
e4ffd173
CW
3168 }
3169
3170 if (cache_level == I915_CACHE_NONE) {
3171 u32 old_read_domains, old_write_domain;
3172
3173 /* If we're coming from LLC cached, then we haven't
3174 * actually been tracking whether the data is in the
3175 * CPU cache or not, since we only allow one bit set
3176 * in obj->write_domain and have been skipping the clflushes.
3177 * Just set it to the CPU cache for now.
3178 */
3179 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3180 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3181
3182 old_read_domains = obj->base.read_domains;
3183 old_write_domain = obj->base.write_domain;
3184
3185 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3186 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3187
3188 trace_i915_gem_object_change_domain(obj,
3189 old_read_domains,
3190 old_write_domain);
3191 }
3192
3193 obj->cache_level = cache_level;
42d6ab48 3194 i915_gem_verify_gtt(dev);
e4ffd173
CW
3195 return 0;
3196}
3197
199adf40
BW
3198int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3199 struct drm_file *file)
e6994aee 3200{
199adf40 3201 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3202 struct drm_i915_gem_object *obj;
3203 int ret;
3204
3205 ret = i915_mutex_lock_interruptible(dev);
3206 if (ret)
3207 return ret;
3208
3209 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3210 if (&obj->base == NULL) {
3211 ret = -ENOENT;
3212 goto unlock;
3213 }
3214
199adf40 3215 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3216
3217 drm_gem_object_unreference(&obj->base);
3218unlock:
3219 mutex_unlock(&dev->struct_mutex);
3220 return ret;
3221}
3222
199adf40
BW
3223int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3224 struct drm_file *file)
e6994aee 3225{
199adf40 3226 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3227 struct drm_i915_gem_object *obj;
3228 enum i915_cache_level level;
3229 int ret;
3230
199adf40
BW
3231 switch (args->caching) {
3232 case I915_CACHING_NONE:
e6994aee
CW
3233 level = I915_CACHE_NONE;
3234 break;
199adf40 3235 case I915_CACHING_CACHED:
e6994aee
CW
3236 level = I915_CACHE_LLC;
3237 break;
3238 default:
3239 return -EINVAL;
3240 }
3241
3bc2913e
BW
3242 ret = i915_mutex_lock_interruptible(dev);
3243 if (ret)
3244 return ret;
3245
e6994aee
CW
3246 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3247 if (&obj->base == NULL) {
3248 ret = -ENOENT;
3249 goto unlock;
3250 }
3251
3252 ret = i915_gem_object_set_cache_level(obj, level);
3253
3254 drm_gem_object_unreference(&obj->base);
3255unlock:
3256 mutex_unlock(&dev->struct_mutex);
3257 return ret;
3258}
3259
b9241ea3 3260/*
2da3b9b9
CW
3261 * Prepare buffer for display plane (scanout, cursors, etc).
3262 * Can be called from an uninterruptible phase (modesetting) and allows
3263 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3264 */
3265int
2da3b9b9
CW
3266i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3267 u32 alignment,
919926ae 3268 struct intel_ring_buffer *pipelined)
b9241ea3 3269{
2da3b9b9 3270 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3271 int ret;
3272
0be73284 3273 if (pipelined != obj->ring) {
2911a35b
BW
3274 ret = i915_gem_object_sync(obj, pipelined);
3275 if (ret)
b9241ea3
ZW
3276 return ret;
3277 }
3278
a7ef0640
EA
3279 /* The display engine is not coherent with the LLC cache on gen6. As
3280 * a result, we make sure that the pinning that is about to occur is
3281 * done with uncached PTEs. This is lowest common denominator for all
3282 * chipsets.
3283 *
3284 * However for gen6+, we could do better by using the GFDT bit instead
3285 * of uncaching, which would allow us to flush all the LLC-cached data
3286 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3287 */
3288 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3289 if (ret)
3290 return ret;
3291
2da3b9b9
CW
3292 /* As the user may map the buffer once pinned in the display plane
3293 * (e.g. libkms for the bootup splash), we have to ensure that we
3294 * always use map_and_fenceable for all scanout buffers.
3295 */
86a1ee26 3296 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3297 if (ret)
3298 return ret;
3299
b118c1e3
CW
3300 i915_gem_object_flush_cpu_write_domain(obj);
3301
2da3b9b9 3302 old_write_domain = obj->base.write_domain;
05394f39 3303 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3304
3305 /* It should now be out of any other write domains, and we can update
3306 * the domain values for our changes.
3307 */
e5f1d962 3308 obj->base.write_domain = 0;
05394f39 3309 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3310
3311 trace_i915_gem_object_change_domain(obj,
3312 old_read_domains,
2da3b9b9 3313 old_write_domain);
b9241ea3
ZW
3314
3315 return 0;
3316}
3317
85345517 3318int
a8198eea 3319i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3320{
88241785
CW
3321 int ret;
3322
a8198eea 3323 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3324 return 0;
3325
0201f1ec 3326 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3327 if (ret)
3328 return ret;
3329
a8198eea
CW
3330 /* Ensure that we invalidate the GPU's caches and TLBs. */
3331 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3332 return 0;
85345517
CW
3333}
3334
e47c68e9
EA
3335/**
3336 * Moves a single object to the CPU read, and possibly write domain.
3337 *
3338 * This function returns when the move is complete, including waiting on
3339 * flushes to occur.
3340 */
dabdfe02 3341int
919926ae 3342i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3343{
1c5d22f7 3344 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3345 int ret;
3346
8d7e3de1
CW
3347 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3348 return 0;
3349
0201f1ec
CW
3350 ret = i915_gem_object_wait_rendering(obj, !write);
3351 if (ret)
3352 return ret;
2ef7eeaa 3353
e47c68e9 3354 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3355
05394f39
CW
3356 old_write_domain = obj->base.write_domain;
3357 old_read_domains = obj->base.read_domains;
1c5d22f7 3358
e47c68e9 3359 /* Flush the CPU cache if it's still invalid. */
05394f39 3360 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3361 i915_gem_clflush_object(obj);
2ef7eeaa 3362
05394f39 3363 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3364 }
3365
3366 /* It should now be out of any other write domains, and we can update
3367 * the domain values for our changes.
3368 */
05394f39 3369 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3370
3371 /* If we're writing through the CPU, then the GPU read domains will
3372 * need to be invalidated at next use.
3373 */
3374 if (write) {
05394f39
CW
3375 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3376 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3377 }
2ef7eeaa 3378
1c5d22f7
CW
3379 trace_i915_gem_object_change_domain(obj,
3380 old_read_domains,
3381 old_write_domain);
3382
2ef7eeaa
EA
3383 return 0;
3384}
3385
673a394b
EA
3386/* Throttle our rendering by waiting until the ring has completed our requests
3387 * emitted over 20 msec ago.
3388 *
b962442e
EA
3389 * Note that if we were to use the current jiffies each time around the loop,
3390 * we wouldn't escape the function with any frames outstanding if the time to
3391 * render a frame was over 20ms.
3392 *
673a394b
EA
3393 * This should get us reasonable parallelism between CPU and GPU but also
3394 * relatively low latency when blocking on a particular request to finish.
3395 */
40a5f0de 3396static int
f787a5f5 3397i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3398{
f787a5f5
CW
3399 struct drm_i915_private *dev_priv = dev->dev_private;
3400 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3401 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3402 struct drm_i915_gem_request *request;
3403 struct intel_ring_buffer *ring = NULL;
3404 u32 seqno = 0;
3405 int ret;
93533c29 3406
e110e8d6
CW
3407 if (atomic_read(&dev_priv->mm.wedged))
3408 return -EIO;
3409
1c25595f 3410 spin_lock(&file_priv->mm.lock);
f787a5f5 3411 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3412 if (time_after_eq(request->emitted_jiffies, recent_enough))
3413 break;
40a5f0de 3414
f787a5f5
CW
3415 ring = request->ring;
3416 seqno = request->seqno;
b962442e 3417 }
1c25595f 3418 spin_unlock(&file_priv->mm.lock);
40a5f0de 3419
f787a5f5
CW
3420 if (seqno == 0)
3421 return 0;
2bc43b5c 3422
5c81fe85 3423 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3424 if (ret == 0)
3425 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3426
3427 return ret;
3428}
3429
673a394b 3430int
05394f39
CW
3431i915_gem_object_pin(struct drm_i915_gem_object *obj,
3432 uint32_t alignment,
86a1ee26
CW
3433 bool map_and_fenceable,
3434 bool nonblocking)
673a394b 3435{
673a394b
EA
3436 int ret;
3437
7e81a42e
CW
3438 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3439 return -EBUSY;
ac0c6b5a 3440
05394f39
CW
3441 if (obj->gtt_space != NULL) {
3442 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3443 (map_and_fenceable && !obj->map_and_fenceable)) {
3444 WARN(obj->pin_count,
ae7d49d8 3445 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3446 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3447 " obj->map_and_fenceable=%d\n",
05394f39 3448 obj->gtt_offset, alignment,
75e9e915 3449 map_and_fenceable,
05394f39 3450 obj->map_and_fenceable);
ac0c6b5a
CW
3451 ret = i915_gem_object_unbind(obj);
3452 if (ret)
3453 return ret;
3454 }
3455 }
3456
05394f39 3457 if (obj->gtt_space == NULL) {
a00b10c3 3458 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3459 map_and_fenceable,
3460 nonblocking);
9731129c 3461 if (ret)
673a394b 3462 return ret;
22c344e9 3463 }
76446cac 3464
74898d7e
DV
3465 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3466 i915_gem_gtt_bind_object(obj, obj->cache_level);
3467
1b50247a 3468 obj->pin_count++;
6299f992 3469 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3470
3471 return 0;
3472}
3473
3474void
05394f39 3475i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3476{
05394f39
CW
3477 BUG_ON(obj->pin_count == 0);
3478 BUG_ON(obj->gtt_space == NULL);
673a394b 3479
1b50247a 3480 if (--obj->pin_count == 0)
6299f992 3481 obj->pin_mappable = false;
673a394b
EA
3482}
3483
3484int
3485i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3486 struct drm_file *file)
673a394b
EA
3487{
3488 struct drm_i915_gem_pin *args = data;
05394f39 3489 struct drm_i915_gem_object *obj;
673a394b
EA
3490 int ret;
3491
1d7cfea1
CW
3492 ret = i915_mutex_lock_interruptible(dev);
3493 if (ret)
3494 return ret;
673a394b 3495
05394f39 3496 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3497 if (&obj->base == NULL) {
1d7cfea1
CW
3498 ret = -ENOENT;
3499 goto unlock;
673a394b 3500 }
673a394b 3501
05394f39 3502 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3503 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3504 ret = -EINVAL;
3505 goto out;
3ef94daa
CW
3506 }
3507
05394f39 3508 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3509 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3510 args->handle);
1d7cfea1
CW
3511 ret = -EINVAL;
3512 goto out;
79e53945
JB
3513 }
3514
05394f39
CW
3515 obj->user_pin_count++;
3516 obj->pin_filp = file;
3517 if (obj->user_pin_count == 1) {
86a1ee26 3518 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3519 if (ret)
3520 goto out;
673a394b
EA
3521 }
3522
3523 /* XXX - flush the CPU caches for pinned objects
3524 * as the X server doesn't manage domains yet
3525 */
e47c68e9 3526 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3527 args->offset = obj->gtt_offset;
1d7cfea1 3528out:
05394f39 3529 drm_gem_object_unreference(&obj->base);
1d7cfea1 3530unlock:
673a394b 3531 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3532 return ret;
673a394b
EA
3533}
3534
3535int
3536i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3537 struct drm_file *file)
673a394b
EA
3538{
3539 struct drm_i915_gem_pin *args = data;
05394f39 3540 struct drm_i915_gem_object *obj;
76c1dec1 3541 int ret;
673a394b 3542
1d7cfea1
CW
3543 ret = i915_mutex_lock_interruptible(dev);
3544 if (ret)
3545 return ret;
673a394b 3546
05394f39 3547 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3548 if (&obj->base == NULL) {
1d7cfea1
CW
3549 ret = -ENOENT;
3550 goto unlock;
673a394b 3551 }
76c1dec1 3552
05394f39 3553 if (obj->pin_filp != file) {
79e53945
JB
3554 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3555 args->handle);
1d7cfea1
CW
3556 ret = -EINVAL;
3557 goto out;
79e53945 3558 }
05394f39
CW
3559 obj->user_pin_count--;
3560 if (obj->user_pin_count == 0) {
3561 obj->pin_filp = NULL;
79e53945
JB
3562 i915_gem_object_unpin(obj);
3563 }
673a394b 3564
1d7cfea1 3565out:
05394f39 3566 drm_gem_object_unreference(&obj->base);
1d7cfea1 3567unlock:
673a394b 3568 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3569 return ret;
673a394b
EA
3570}
3571
3572int
3573i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3574 struct drm_file *file)
673a394b
EA
3575{
3576 struct drm_i915_gem_busy *args = data;
05394f39 3577 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3578 int ret;
3579
76c1dec1 3580 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3581 if (ret)
76c1dec1 3582 return ret;
673a394b 3583
05394f39 3584 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3585 if (&obj->base == NULL) {
1d7cfea1
CW
3586 ret = -ENOENT;
3587 goto unlock;
673a394b 3588 }
d1b851fc 3589
0be555b6
CW
3590 /* Count all active objects as busy, even if they are currently not used
3591 * by the gpu. Users of this interface expect objects to eventually
3592 * become non-busy without any further actions, therefore emit any
3593 * necessary flushes here.
c4de0a5d 3594 */
30dfebf3 3595 ret = i915_gem_object_flush_active(obj);
0be555b6 3596
30dfebf3 3597 args->busy = obj->active;
e9808edd
CW
3598 if (obj->ring) {
3599 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3600 args->busy |= intel_ring_flag(obj->ring) << 16;
3601 }
673a394b 3602
05394f39 3603 drm_gem_object_unreference(&obj->base);
1d7cfea1 3604unlock:
673a394b 3605 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3606 return ret;
673a394b
EA
3607}
3608
3609int
3610i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3611 struct drm_file *file_priv)
3612{
0206e353 3613 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3614}
3615
3ef94daa
CW
3616int
3617i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3618 struct drm_file *file_priv)
3619{
3620 struct drm_i915_gem_madvise *args = data;
05394f39 3621 struct drm_i915_gem_object *obj;
76c1dec1 3622 int ret;
3ef94daa
CW
3623
3624 switch (args->madv) {
3625 case I915_MADV_DONTNEED:
3626 case I915_MADV_WILLNEED:
3627 break;
3628 default:
3629 return -EINVAL;
3630 }
3631
1d7cfea1
CW
3632 ret = i915_mutex_lock_interruptible(dev);
3633 if (ret)
3634 return ret;
3635
05394f39 3636 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3637 if (&obj->base == NULL) {
1d7cfea1
CW
3638 ret = -ENOENT;
3639 goto unlock;
3ef94daa 3640 }
3ef94daa 3641
05394f39 3642 if (obj->pin_count) {
1d7cfea1
CW
3643 ret = -EINVAL;
3644 goto out;
3ef94daa
CW
3645 }
3646
05394f39
CW
3647 if (obj->madv != __I915_MADV_PURGED)
3648 obj->madv = args->madv;
3ef94daa 3649
6c085a72
CW
3650 /* if the object is no longer attached, discard its backing storage */
3651 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3652 i915_gem_object_truncate(obj);
3653
05394f39 3654 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3655
1d7cfea1 3656out:
05394f39 3657 drm_gem_object_unreference(&obj->base);
1d7cfea1 3658unlock:
3ef94daa 3659 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3660 return ret;
3ef94daa
CW
3661}
3662
37e680a1
CW
3663void i915_gem_object_init(struct drm_i915_gem_object *obj,
3664 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3665{
0327d6ba
CW
3666 INIT_LIST_HEAD(&obj->mm_list);
3667 INIT_LIST_HEAD(&obj->gtt_list);
3668 INIT_LIST_HEAD(&obj->ring_list);
3669 INIT_LIST_HEAD(&obj->exec_list);
3670
37e680a1
CW
3671 obj->ops = ops;
3672
0327d6ba
CW
3673 obj->fence_reg = I915_FENCE_REG_NONE;
3674 obj->madv = I915_MADV_WILLNEED;
3675 /* Avoid an unnecessary call to unbind on the first bind. */
3676 obj->map_and_fenceable = true;
3677
3678 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3679}
3680
37e680a1
CW
3681static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3682 .get_pages = i915_gem_object_get_pages_gtt,
3683 .put_pages = i915_gem_object_put_pages_gtt,
3684};
3685
05394f39
CW
3686struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3687 size_t size)
ac52bc56 3688{
c397b908 3689 struct drm_i915_gem_object *obj;
5949eac4 3690 struct address_space *mapping;
bed1ea95 3691 u32 mask;
ac52bc56 3692
c397b908
DV
3693 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3694 if (obj == NULL)
3695 return NULL;
673a394b 3696
c397b908
DV
3697 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3698 kfree(obj);
3699 return NULL;
3700 }
673a394b 3701
bed1ea95
CW
3702 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3703 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3704 /* 965gm cannot relocate objects above 4GiB. */
3705 mask &= ~__GFP_HIGHMEM;
3706 mask |= __GFP_DMA32;
3707 }
3708
5949eac4 3709 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3710 mapping_set_gfp_mask(mapping, mask);
5949eac4 3711
37e680a1 3712 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3713
c397b908
DV
3714 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3715 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3716
3d29b842
ED
3717 if (HAS_LLC(dev)) {
3718 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3719 * cache) for about a 10% performance improvement
3720 * compared to uncached. Graphics requests other than
3721 * display scanout are coherent with the CPU in
3722 * accessing this cache. This means in this mode we
3723 * don't need to clflush on the CPU side, and on the
3724 * GPU side we only need to flush internal caches to
3725 * get data visible to the CPU.
3726 *
3727 * However, we maintain the display planes as UC, and so
3728 * need to rebind when first used as such.
3729 */
3730 obj->cache_level = I915_CACHE_LLC;
3731 } else
3732 obj->cache_level = I915_CACHE_NONE;
3733
05394f39 3734 return obj;
c397b908
DV
3735}
3736
3737int i915_gem_init_object(struct drm_gem_object *obj)
3738{
3739 BUG();
de151cf6 3740
673a394b
EA
3741 return 0;
3742}
3743
1488fc08 3744void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3745{
1488fc08 3746 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3747 struct drm_device *dev = obj->base.dev;
be72615b 3748 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3749
26e12f89
CW
3750 trace_i915_gem_object_destroy(obj);
3751
1488fc08
CW
3752 if (obj->phys_obj)
3753 i915_gem_detach_phys_object(dev, obj);
3754
3755 obj->pin_count = 0;
3756 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3757 bool was_interruptible;
3758
3759 was_interruptible = dev_priv->mm.interruptible;
3760 dev_priv->mm.interruptible = false;
3761
3762 WARN_ON(i915_gem_object_unbind(obj));
3763
3764 dev_priv->mm.interruptible = was_interruptible;
3765 }
3766
a5570178 3767 obj->pages_pin_count = 0;
37e680a1 3768 i915_gem_object_put_pages(obj);
d8cb5086 3769 i915_gem_object_free_mmap_offset(obj);
de151cf6 3770
9da3da66
CW
3771 BUG_ON(obj->pages);
3772
2f745ad3
CW
3773 if (obj->base.import_attach)
3774 drm_prime_gem_destroy(&obj->base, NULL);
3775
05394f39
CW
3776 drm_gem_object_release(&obj->base);
3777 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3778
05394f39
CW
3779 kfree(obj->bit_17);
3780 kfree(obj);
673a394b
EA
3781}
3782
29105ccc
CW
3783int
3784i915_gem_idle(struct drm_device *dev)
3785{
3786 drm_i915_private_t *dev_priv = dev->dev_private;
3787 int ret;
28dfe52a 3788
29105ccc 3789 mutex_lock(&dev->struct_mutex);
1c5d22f7 3790
87acb0a5 3791 if (dev_priv->mm.suspended) {
29105ccc
CW
3792 mutex_unlock(&dev->struct_mutex);
3793 return 0;
28dfe52a
EA
3794 }
3795
b2da9fe5 3796 ret = i915_gpu_idle(dev);
6dbe2772
KP
3797 if (ret) {
3798 mutex_unlock(&dev->struct_mutex);
673a394b 3799 return ret;
6dbe2772 3800 }
b2da9fe5 3801 i915_gem_retire_requests(dev);
673a394b 3802
29105ccc 3803 /* Under UMS, be paranoid and evict. */
a39d7efc 3804 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3805 i915_gem_evict_everything(dev);
29105ccc 3806
312817a3
CW
3807 i915_gem_reset_fences(dev);
3808
29105ccc
CW
3809 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3810 * We need to replace this with a semaphore, or something.
3811 * And not confound mm.suspended!
3812 */
3813 dev_priv->mm.suspended = 1;
bc0c7f14 3814 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3815
3816 i915_kernel_lost_context(dev);
6dbe2772 3817 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3818
6dbe2772
KP
3819 mutex_unlock(&dev->struct_mutex);
3820
29105ccc
CW
3821 /* Cancel the retire work handler, which should be idle now. */
3822 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3823
673a394b
EA
3824 return 0;
3825}
3826
b9524a1e
BW
3827void i915_gem_l3_remap(struct drm_device *dev)
3828{
3829 drm_i915_private_t *dev_priv = dev->dev_private;
3830 u32 misccpctl;
3831 int i;
3832
3833 if (!IS_IVYBRIDGE(dev))
3834 return;
3835
3836 if (!dev_priv->mm.l3_remap_info)
3837 return;
3838
3839 misccpctl = I915_READ(GEN7_MISCCPCTL);
3840 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3841 POSTING_READ(GEN7_MISCCPCTL);
3842
3843 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3844 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3845 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3846 DRM_DEBUG("0x%x was already programmed to %x\n",
3847 GEN7_L3LOG_BASE + i, remap);
3848 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3849 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3850 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3851 }
3852
3853 /* Make sure all the writes land before disabling dop clock gating */
3854 POSTING_READ(GEN7_L3LOG_BASE);
3855
3856 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3857}
3858
f691e2f4
DV
3859void i915_gem_init_swizzling(struct drm_device *dev)
3860{
3861 drm_i915_private_t *dev_priv = dev->dev_private;
3862
11782b02 3863 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3864 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3865 return;
3866
3867 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3868 DISP_TILE_SURFACE_SWIZZLING);
3869
11782b02
DV
3870 if (IS_GEN5(dev))
3871 return;
3872
f691e2f4
DV
3873 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3874 if (IS_GEN6(dev))
6b26c86d 3875 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3876 else
6b26c86d 3877 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3878}
e21af88d
DV
3879
3880void i915_gem_init_ppgtt(struct drm_device *dev)
3881{
3882 drm_i915_private_t *dev_priv = dev->dev_private;
3883 uint32_t pd_offset;
3884 struct intel_ring_buffer *ring;
55a254ac
DV
3885 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3886 uint32_t __iomem *pd_addr;
3887 uint32_t pd_entry;
e21af88d
DV
3888 int i;
3889
3890 if (!dev_priv->mm.aliasing_ppgtt)
3891 return;
3892
55a254ac
DV
3893
3894 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3895 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3896 dma_addr_t pt_addr;
3897
3898 if (dev_priv->mm.gtt->needs_dmar)
3899 pt_addr = ppgtt->pt_dma_addr[i];
3900 else
3901 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3902
3903 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3904 pd_entry |= GEN6_PDE_VALID;
3905
3906 writel(pd_entry, pd_addr + i);
3907 }
3908 readl(pd_addr);
3909
3910 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3911 pd_offset /= 64; /* in cachelines, */
3912 pd_offset <<= 16;
3913
3914 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3915 uint32_t ecochk, gab_ctl, ecobits;
3916
3917 ecobits = I915_READ(GAC_ECO_BITS);
3918 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3919
3920 gab_ctl = I915_READ(GAB_CTL);
3921 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3922
3923 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3924 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3925 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3926 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3927 } else if (INTEL_INFO(dev)->gen >= 7) {
3928 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3929 /* GFX_MODE is per-ring on gen7+ */
3930 }
3931
b4519513 3932 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3933 if (INTEL_INFO(dev)->gen >= 7)
3934 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3935 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3936
3937 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3938 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3939 }
3940}
3941
67b1b571
CW
3942static bool
3943intel_enable_blt(struct drm_device *dev)
3944{
3945 if (!HAS_BLT(dev))
3946 return false;
3947
3948 /* The blitter was dysfunctional on early prototypes */
3949 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3950 DRM_INFO("BLT not supported on this pre-production hardware;"
3951 " graphics performance will be degraded.\n");
3952 return false;
3953 }
3954
3955 return true;
3956}
3957
8187a2b7 3958int
f691e2f4 3959i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3960{
3961 drm_i915_private_t *dev_priv = dev->dev_private;
3962 int ret;
68f95ba9 3963
8ecd1a66
DV
3964 if (!intel_enable_gtt())
3965 return -EIO;
3966
eda2d7f5
RV
3967 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3968 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3969
b9524a1e
BW
3970 i915_gem_l3_remap(dev);
3971
f691e2f4
DV
3972 i915_gem_init_swizzling(dev);
3973
5c1143bb 3974 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3975 if (ret)
b6913e4b 3976 return ret;
68f95ba9
CW
3977
3978 if (HAS_BSD(dev)) {
5c1143bb 3979 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3980 if (ret)
3981 goto cleanup_render_ring;
d1b851fc 3982 }
68f95ba9 3983
67b1b571 3984 if (intel_enable_blt(dev)) {
549f7365
CW
3985 ret = intel_init_blt_ring_buffer(dev);
3986 if (ret)
3987 goto cleanup_bsd_ring;
3988 }
3989
6f392d54
CW
3990 dev_priv->next_seqno = 1;
3991
254f965c
BW
3992 /*
3993 * XXX: There was some w/a described somewhere suggesting loading
3994 * contexts before PPGTT.
3995 */
3996 i915_gem_context_init(dev);
e21af88d
DV
3997 i915_gem_init_ppgtt(dev);
3998
68f95ba9
CW
3999 return 0;
4000
549f7365 4001cleanup_bsd_ring:
1ec14ad3 4002 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 4003cleanup_render_ring:
1ec14ad3 4004 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
4005 return ret;
4006}
4007
1070a42b
CW
4008static bool
4009intel_enable_ppgtt(struct drm_device *dev)
4010{
4011 if (i915_enable_ppgtt >= 0)
4012 return i915_enable_ppgtt;
4013
4014#ifdef CONFIG_INTEL_IOMMU
4015 /* Disable ppgtt on SNB if VT-d is on. */
4016 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4017 return false;
4018#endif
4019
4020 return true;
4021}
4022
4023int i915_gem_init(struct drm_device *dev)
4024{
4025 struct drm_i915_private *dev_priv = dev->dev_private;
4026 unsigned long gtt_size, mappable_size;
4027 int ret;
4028
4029 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4030 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4031
4032 mutex_lock(&dev->struct_mutex);
4033 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4034 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4035 * aperture accordingly when using aliasing ppgtt. */
4036 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4037
4038 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4039
4040 ret = i915_gem_init_aliasing_ppgtt(dev);
4041 if (ret) {
4042 mutex_unlock(&dev->struct_mutex);
4043 return ret;
4044 }
4045 } else {
4046 /* Let GEM Manage all of the aperture.
4047 *
4048 * However, leave one page at the end still bound to the scratch
4049 * page. There are a number of places where the hardware
4050 * apparently prefetches past the end of the object, and we've
4051 * seen multiple hangs with the GPU head pointer stuck in a
4052 * batchbuffer bound at the last page of the aperture. One page
4053 * should be enough to keep any prefetching inside of the
4054 * aperture.
4055 */
4056 i915_gem_init_global_gtt(dev, 0, mappable_size,
4057 gtt_size);
4058 }
4059
4060 ret = i915_gem_init_hw(dev);
4061 mutex_unlock(&dev->struct_mutex);
4062 if (ret) {
4063 i915_gem_cleanup_aliasing_ppgtt(dev);
4064 return ret;
4065 }
4066
53ca26ca
DV
4067 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4068 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4069 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4070 return 0;
4071}
4072
8187a2b7
ZN
4073void
4074i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4075{
4076 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4077 struct intel_ring_buffer *ring;
1ec14ad3 4078 int i;
8187a2b7 4079
b4519513
CW
4080 for_each_ring(ring, dev_priv, i)
4081 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4082}
4083
673a394b
EA
4084int
4085i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4086 struct drm_file *file_priv)
4087{
4088 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4089 int ret;
673a394b 4090
79e53945
JB
4091 if (drm_core_check_feature(dev, DRIVER_MODESET))
4092 return 0;
4093
ba1234d1 4094 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4095 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4096 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4097 }
4098
673a394b 4099 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4100 dev_priv->mm.suspended = 0;
4101
f691e2f4 4102 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4103 if (ret != 0) {
4104 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4105 return ret;
d816f6ac 4106 }
9bb2d6f9 4107
69dc4987 4108 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4109 mutex_unlock(&dev->struct_mutex);
dbb19d30 4110
5f35308b
CW
4111 ret = drm_irq_install(dev);
4112 if (ret)
4113 goto cleanup_ringbuffer;
dbb19d30 4114
673a394b 4115 return 0;
5f35308b
CW
4116
4117cleanup_ringbuffer:
4118 mutex_lock(&dev->struct_mutex);
4119 i915_gem_cleanup_ringbuffer(dev);
4120 dev_priv->mm.suspended = 1;
4121 mutex_unlock(&dev->struct_mutex);
4122
4123 return ret;
673a394b
EA
4124}
4125
4126int
4127i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4128 struct drm_file *file_priv)
4129{
79e53945
JB
4130 if (drm_core_check_feature(dev, DRIVER_MODESET))
4131 return 0;
4132
dbb19d30 4133 drm_irq_uninstall(dev);
e6890f6f 4134 return i915_gem_idle(dev);
673a394b
EA
4135}
4136
4137void
4138i915_gem_lastclose(struct drm_device *dev)
4139{
4140 int ret;
673a394b 4141
e806b495
EA
4142 if (drm_core_check_feature(dev, DRIVER_MODESET))
4143 return;
4144
6dbe2772
KP
4145 ret = i915_gem_idle(dev);
4146 if (ret)
4147 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4148}
4149
64193406
CW
4150static void
4151init_ring_lists(struct intel_ring_buffer *ring)
4152{
4153 INIT_LIST_HEAD(&ring->active_list);
4154 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4155}
4156
673a394b
EA
4157void
4158i915_gem_load(struct drm_device *dev)
4159{
b5aa8a0f 4160 int i;
673a394b
EA
4161 drm_i915_private_t *dev_priv = dev->dev_private;
4162
69dc4987 4163 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4164 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4165 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4166 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4167 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4168 for (i = 0; i < I915_NUM_RINGS; i++)
4169 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4170 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4171 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4172 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4173 i915_gem_retire_work_handler);
30dbf0c0 4174 init_completion(&dev_priv->error_completion);
31169714 4175
94400120
DA
4176 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4177 if (IS_GEN3(dev)) {
50743298
DV
4178 I915_WRITE(MI_ARB_STATE,
4179 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4180 }
4181
72bfa19c
CW
4182 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4183
de151cf6 4184 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4185 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4186 dev_priv->fence_reg_start = 3;
de151cf6 4187
a6c45cf0 4188 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4189 dev_priv->num_fence_regs = 16;
4190 else
4191 dev_priv->num_fence_regs = 8;
4192
b5aa8a0f 4193 /* Initialize fence registers to zero */
ada726c7 4194 i915_gem_reset_fences(dev);
10ed13e4 4195
673a394b 4196 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4197 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4198
ce453d81
CW
4199 dev_priv->mm.interruptible = true;
4200
17250b71
CW
4201 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4202 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4203 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4204}
71acb5eb
DA
4205
4206/*
4207 * Create a physically contiguous memory object for this object
4208 * e.g. for cursor + overlay regs
4209 */
995b6762
CW
4210static int i915_gem_init_phys_object(struct drm_device *dev,
4211 int id, int size, int align)
71acb5eb
DA
4212{
4213 drm_i915_private_t *dev_priv = dev->dev_private;
4214 struct drm_i915_gem_phys_object *phys_obj;
4215 int ret;
4216
4217 if (dev_priv->mm.phys_objs[id - 1] || !size)
4218 return 0;
4219
9a298b2a 4220 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4221 if (!phys_obj)
4222 return -ENOMEM;
4223
4224 phys_obj->id = id;
4225
6eeefaf3 4226 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4227 if (!phys_obj->handle) {
4228 ret = -ENOMEM;
4229 goto kfree_obj;
4230 }
4231#ifdef CONFIG_X86
4232 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4233#endif
4234
4235 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4236
4237 return 0;
4238kfree_obj:
9a298b2a 4239 kfree(phys_obj);
71acb5eb
DA
4240 return ret;
4241}
4242
995b6762 4243static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4244{
4245 drm_i915_private_t *dev_priv = dev->dev_private;
4246 struct drm_i915_gem_phys_object *phys_obj;
4247
4248 if (!dev_priv->mm.phys_objs[id - 1])
4249 return;
4250
4251 phys_obj = dev_priv->mm.phys_objs[id - 1];
4252 if (phys_obj->cur_obj) {
4253 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4254 }
4255
4256#ifdef CONFIG_X86
4257 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4258#endif
4259 drm_pci_free(dev, phys_obj->handle);
4260 kfree(phys_obj);
4261 dev_priv->mm.phys_objs[id - 1] = NULL;
4262}
4263
4264void i915_gem_free_all_phys_object(struct drm_device *dev)
4265{
4266 int i;
4267
260883c8 4268 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4269 i915_gem_free_phys_object(dev, i);
4270}
4271
4272void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4273 struct drm_i915_gem_object *obj)
71acb5eb 4274{
05394f39 4275 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4276 char *vaddr;
71acb5eb 4277 int i;
71acb5eb
DA
4278 int page_count;
4279
05394f39 4280 if (!obj->phys_obj)
71acb5eb 4281 return;
05394f39 4282 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4283
05394f39 4284 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4285 for (i = 0; i < page_count; i++) {
5949eac4 4286 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4287 if (!IS_ERR(page)) {
4288 char *dst = kmap_atomic(page);
4289 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4290 kunmap_atomic(dst);
4291
4292 drm_clflush_pages(&page, 1);
4293
4294 set_page_dirty(page);
4295 mark_page_accessed(page);
4296 page_cache_release(page);
4297 }
71acb5eb 4298 }
40ce6575 4299 intel_gtt_chipset_flush();
d78b47b9 4300
05394f39
CW
4301 obj->phys_obj->cur_obj = NULL;
4302 obj->phys_obj = NULL;
71acb5eb
DA
4303}
4304
4305int
4306i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4307 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4308 int id,
4309 int align)
71acb5eb 4310{
05394f39 4311 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4312 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4313 int ret = 0;
4314 int page_count;
4315 int i;
4316
4317 if (id > I915_MAX_PHYS_OBJECT)
4318 return -EINVAL;
4319
05394f39
CW
4320 if (obj->phys_obj) {
4321 if (obj->phys_obj->id == id)
71acb5eb
DA
4322 return 0;
4323 i915_gem_detach_phys_object(dev, obj);
4324 }
4325
71acb5eb
DA
4326 /* create a new object */
4327 if (!dev_priv->mm.phys_objs[id - 1]) {
4328 ret = i915_gem_init_phys_object(dev, id,
05394f39 4329 obj->base.size, align);
71acb5eb 4330 if (ret) {
05394f39
CW
4331 DRM_ERROR("failed to init phys object %d size: %zu\n",
4332 id, obj->base.size);
e5281ccd 4333 return ret;
71acb5eb
DA
4334 }
4335 }
4336
4337 /* bind to the object */
05394f39
CW
4338 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4339 obj->phys_obj->cur_obj = obj;
71acb5eb 4340
05394f39 4341 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4342
4343 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4344 struct page *page;
4345 char *dst, *src;
4346
5949eac4 4347 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4348 if (IS_ERR(page))
4349 return PTR_ERR(page);
71acb5eb 4350
ff75b9bc 4351 src = kmap_atomic(page);
05394f39 4352 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4353 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4354 kunmap_atomic(src);
71acb5eb 4355
e5281ccd
CW
4356 mark_page_accessed(page);
4357 page_cache_release(page);
4358 }
d78b47b9 4359
71acb5eb 4360 return 0;
71acb5eb
DA
4361}
4362
4363static int
05394f39
CW
4364i915_gem_phys_pwrite(struct drm_device *dev,
4365 struct drm_i915_gem_object *obj,
71acb5eb
DA
4366 struct drm_i915_gem_pwrite *args,
4367 struct drm_file *file_priv)
4368{
05394f39 4369 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4370 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4371
b47b30cc
CW
4372 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4373 unsigned long unwritten;
4374
4375 /* The physical object once assigned is fixed for the lifetime
4376 * of the obj, so we can safely drop the lock and continue
4377 * to access vaddr.
4378 */
4379 mutex_unlock(&dev->struct_mutex);
4380 unwritten = copy_from_user(vaddr, user_data, args->size);
4381 mutex_lock(&dev->struct_mutex);
4382 if (unwritten)
4383 return -EFAULT;
4384 }
71acb5eb 4385
40ce6575 4386 intel_gtt_chipset_flush();
71acb5eb
DA
4387 return 0;
4388}
b962442e 4389
f787a5f5 4390void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4391{
f787a5f5 4392 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4393
4394 /* Clean up our request list when the client is going away, so that
4395 * later retire_requests won't dereference our soon-to-be-gone
4396 * file_priv.
4397 */
1c25595f 4398 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4399 while (!list_empty(&file_priv->mm.request_list)) {
4400 struct drm_i915_gem_request *request;
4401
4402 request = list_first_entry(&file_priv->mm.request_list,
4403 struct drm_i915_gem_request,
4404 client_list);
4405 list_del(&request->client_list);
4406 request->file_priv = NULL;
4407 }
1c25595f 4408 spin_unlock(&file_priv->mm.lock);
b962442e 4409}
31169714 4410
31169714 4411static int
1495f230 4412i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4413{
17250b71
CW
4414 struct drm_i915_private *dev_priv =
4415 container_of(shrinker,
4416 struct drm_i915_private,
4417 mm.inactive_shrinker);
4418 struct drm_device *dev = dev_priv->dev;
6c085a72 4419 struct drm_i915_gem_object *obj;
1495f230 4420 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4421 int cnt;
4422
4423 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4424 return 0;
31169714 4425
6c085a72
CW
4426 if (nr_to_scan) {
4427 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4428 if (nr_to_scan > 0)
4429 i915_gem_shrink_all(dev_priv);
31169714
CW
4430 }
4431
17250b71 4432 cnt = 0;
6c085a72 4433 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4434 if (obj->pages_pin_count == 0)
4435 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4436 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4437 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4438 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4439
17250b71 4440 mutex_unlock(&dev->struct_mutex);
6c085a72 4441 return cnt;
31169714 4442}
This page took 0.799442 seconds and 5 git commands to generate.