Merge branch 'for_3.8-rc1' into v4l_for_linus
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734
CW
89static int
90i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
91{
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
0a6759c6
DV
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
30dbf0c0 110 return ret;
0a6759c6 111 }
30dbf0c0 112
21dd3734
CW
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
30dbf0c0
CW
124}
125
54cf91dc 126int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 127{
76c1dec1
CW
128 int ret;
129
21dd3734 130 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
23bc5982 138 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
139 return 0;
140}
30dbf0c0 141
7d1c4804 142static inline bool
05394f39 143i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 144{
6c085a72 145 return obj->gtt_space && !obj->active;
7d1c4804
CW
146}
147
79e53945
JB
148int
149i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
79e53945
JB
151{
152 struct drm_i915_gem_init *args = data;
2021746e 153
7bb6fb8d
DV
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
2021746e
CW
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945 160
f534bc0b
DV
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
79e53945 165 mutex_lock(&dev->struct_mutex);
644ec02b
DV
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
673a394b
EA
168 mutex_unlock(&dev->struct_mutex);
169
2021746e 170 return 0;
673a394b
EA
171}
172
5a125c3c
EA
173int
174i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 175 struct drm_file *file)
5a125c3c 176{
73aa808f 177 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 178 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
5a125c3c 181
6299f992 182 pinned = 0;
73aa808f 183 mutex_lock(&dev->struct_mutex);
6c085a72 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
73aa808f 187 mutex_unlock(&dev->struct_mutex);
5a125c3c 188
6299f992 189 args->aper_size = dev_priv->mm.gtt_total;
0206e353 190 args->aper_available_size = args->aper_size - pinned;
6299f992 191
5a125c3c
EA
192 return 0;
193}
194
ff72145b
DA
195static int
196i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
673a394b 200{
05394f39 201 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
202 int ret;
203 u32 handle;
673a394b 204
ff72145b 205 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
206 if (size == 0)
207 return -EINVAL;
673a394b
EA
208
209 /* Allocate the new object */
ff72145b 210 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
211 if (obj == NULL)
212 return -ENOMEM;
213
05394f39 214 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 215 if (ret) {
05394f39
CW
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 218 kfree(obj);
673a394b 219 return ret;
1dfd9754 220 }
673a394b 221
202f2fef 222 /* drop reference from allocate - handle holds it now */
05394f39 223 drm_gem_object_unreference(&obj->base);
202f2fef
CW
224 trace_i915_gem_object_create(obj);
225
ff72145b 226 *handle_p = handle;
673a394b
EA
227 return 0;
228}
229
ff72145b
DA
230int
231i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234{
235 /* have to work out size/pitch and return them */
ed0291fd 236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240}
241
242int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245{
246 return drm_gem_handle_delete(file, handle);
247}
248
249/**
250 * Creates a new mm object and returns a handle to it.
251 */
252int
253i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255{
256 struct drm_i915_gem_create *args = data;
63ed2cb2 257
ff72145b
DA
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260}
261
05394f39 262static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 263{
05394f39 264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 267 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
268}
269
8461d226
DV
270static inline int
271__copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274{
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294}
295
8c59967c 296static inline int
4f0c7cfb
BW
297__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
8c59967c
DV
299 int length)
300{
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320}
321
d174bd64
DV
322/* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
eb01459f 325static int
d174bd64
DV
326shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329{
330 char *vaddr;
331 int ret;
332
e7e58eb5 333 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
f60d7f0c 345 return ret ? -EFAULT : 0;
d174bd64
DV
346}
347
23c18c71
DV
348static void
349shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351{
e7e58eb5 352 if (unlikely(swizzled)) {
23c18c71
DV
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368}
369
d174bd64
DV
370/* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372static int
373shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376{
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
23c18c71
DV
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
d174bd64
DV
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
f60d7f0c 396 return ret ? - EFAULT : 0;
d174bd64
DV
397}
398
eb01459f 399static int
dbf7bff0
DV
400i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
eb01459f 404{
8461d226 405 char __user *user_data;
eb01459f 406 ssize_t remain;
8461d226 407 loff_t offset;
eb2c0c81 408 int shmem_page_offset, page_length, ret = 0;
8461d226 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 410 int hit_slowpath = 0;
96d79b52 411 int prefaulted = 0;
8489731c 412 int needs_clflush = 0;
9da3da66
CW
413 struct scatterlist *sg;
414 int i;
eb01459f 415
8461d226 416 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
417 remain = args->size;
418
8461d226 419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 420
8489731c
DV
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
6c085a72
CW
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
8489731c 433 }
eb01459f 434
f60d7f0c
CW
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
8461d226 441 offset = args->offset;
eb01459f 442
9da3da66 443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
444 struct page *page;
445
9da3da66
CW
446 if (i < offset >> PAGE_SHIFT)
447 continue;
448
449 if (remain <= 0)
450 break;
451
eb01459f
EA
452 /* Operation in this page
453 *
eb01459f 454 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
455 * page_length = bytes to copy for this page
456 */
c8cbbb8b 457 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 461
9da3da66 462 page = sg_page(sg);
8461d226
DV
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
d174bd64
DV
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
dbf7bff0
DV
471
472 hit_slowpath = 1;
dbf7bff0
DV
473 mutex_unlock(&dev->struct_mutex);
474
96d79b52 475 if (!prefaulted) {
f56f821f 476 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
eb01459f 484
d174bd64
DV
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
eb01459f 488
dbf7bff0 489 mutex_lock(&dev->struct_mutex);
f60d7f0c 490
dbf7bff0 491next_page:
e5281ccd 492 mark_page_accessed(page);
e5281ccd 493
f60d7f0c 494 if (ret)
8461d226 495 goto out;
8461d226 496
eb01459f 497 remain -= page_length;
8461d226 498 user_data += page_length;
eb01459f
EA
499 offset += page_length;
500 }
501
4f27b75d 502out:
f60d7f0c
CW
503 i915_gem_object_unpin_pages(obj);
504
dbf7bff0
DV
505 if (hit_slowpath) {
506 /* Fixup: Kill any reinstated backing storage pages */
507 if (obj->madv == __I915_MADV_PURGED)
508 i915_gem_object_truncate(obj);
509 }
eb01459f
EA
510
511 return ret;
512}
513
673a394b
EA
514/**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519int
520i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 521 struct drm_file *file)
673a394b
EA
522{
523 struct drm_i915_gem_pread *args = data;
05394f39 524 struct drm_i915_gem_object *obj;
35b62a89 525 int ret = 0;
673a394b 526
51311d0a
CW
527 if (args->size == 0)
528 return 0;
529
530 if (!access_ok(VERIFY_WRITE,
531 (char __user *)(uintptr_t)args->data_ptr,
532 args->size))
533 return -EFAULT;
534
4f27b75d 535 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 536 if (ret)
4f27b75d 537 return ret;
673a394b 538
05394f39 539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 540 if (&obj->base == NULL) {
1d7cfea1
CW
541 ret = -ENOENT;
542 goto unlock;
4f27b75d 543 }
673a394b 544
7dcd2499 545 /* Bounds check source. */
05394f39
CW
546 if (args->offset > obj->base.size ||
547 args->size > obj->base.size - args->offset) {
ce9d419d 548 ret = -EINVAL;
35b62a89 549 goto out;
ce9d419d
CW
550 }
551
1286ff73
DV
552 /* prime objects have no backing filp to GEM pread/pwrite
553 * pages from.
554 */
555 if (!obj->base.filp) {
556 ret = -EINVAL;
557 goto out;
558 }
559
db53a302
CW
560 trace_i915_gem_object_pread(obj, args->offset, args->size);
561
dbf7bff0 562 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 563
35b62a89 564out:
05394f39 565 drm_gem_object_unreference(&obj->base);
1d7cfea1 566unlock:
4f27b75d 567 mutex_unlock(&dev->struct_mutex);
eb01459f 568 return ret;
673a394b
EA
569}
570
0839ccb8
KP
571/* This is the fast write path which cannot handle
572 * page faults in the source data
9b7530cc 573 */
0839ccb8
KP
574
575static inline int
576fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
9b7530cc 580{
4f0c7cfb
BW
581 void __iomem *vaddr_atomic;
582 void *vaddr;
0839ccb8 583 unsigned long unwritten;
9b7530cc 584
3e4d3af5 585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
586 /* We can use the cpu mem copy function because this is X86. */
587 vaddr = (void __force*)vaddr_atomic + page_offset;
588 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 589 user_data, length);
3e4d3af5 590 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 591 return unwritten;
0839ccb8
KP
592}
593
3de09aa3
EA
594/**
595 * This is the fast pwrite path, where we copy the data directly from the
596 * user into the GTT, uncached.
597 */
673a394b 598static int
05394f39
CW
599i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
3de09aa3 601 struct drm_i915_gem_pwrite *args,
05394f39 602 struct drm_file *file)
673a394b 603{
0839ccb8 604 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 605 ssize_t remain;
0839ccb8 606 loff_t offset, page_base;
673a394b 607 char __user *user_data;
935aaa69
DV
608 int page_offset, page_length, ret;
609
86a1ee26 610 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
611 if (ret)
612 goto out;
613
614 ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 if (ret)
616 goto out_unpin;
617
618 ret = i915_gem_object_put_fence(obj);
619 if (ret)
620 goto out_unpin;
673a394b
EA
621
622 user_data = (char __user *) (uintptr_t) args->data_ptr;
623 remain = args->size;
673a394b 624
05394f39 625 offset = obj->gtt_offset + args->offset;
673a394b
EA
626
627 while (remain > 0) {
628 /* Operation in this page
629 *
0839ccb8
KP
630 * page_base = page offset within aperture
631 * page_offset = offset within page
632 * page_length = bytes to copy for this page
673a394b 633 */
c8cbbb8b
CW
634 page_base = offset & PAGE_MASK;
635 page_offset = offset_in_page(offset);
0839ccb8
KP
636 page_length = remain;
637 if ((page_offset + remain) > PAGE_SIZE)
638 page_length = PAGE_SIZE - page_offset;
639
0839ccb8 640 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
641 * source page isn't available. Return the error and we'll
642 * retry in the slow path.
0839ccb8 643 */
fbd5a26d 644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
645 page_offset, user_data, page_length)) {
646 ret = -EFAULT;
647 goto out_unpin;
648 }
673a394b 649
0839ccb8
KP
650 remain -= page_length;
651 user_data += page_length;
652 offset += page_length;
673a394b 653 }
673a394b 654
935aaa69
DV
655out_unpin:
656 i915_gem_object_unpin(obj);
657out:
3de09aa3 658 return ret;
673a394b
EA
659}
660
d174bd64
DV
661/* Per-page copy function for the shmem pwrite fastpath.
662 * Flushes invalid cachelines before writing to the target if
663 * needs_clflush_before is set and flushes out any written cachelines after
664 * writing if needs_clflush is set. */
3043c60c 665static int
d174bd64
DV
666shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 char __user *user_data,
668 bool page_do_bit17_swizzling,
669 bool needs_clflush_before,
670 bool needs_clflush_after)
673a394b 671{
d174bd64 672 char *vaddr;
673a394b 673 int ret;
3de09aa3 674
e7e58eb5 675 if (unlikely(page_do_bit17_swizzling))
d174bd64 676 return -EINVAL;
3de09aa3 677
d174bd64
DV
678 vaddr = kmap_atomic(page);
679 if (needs_clflush_before)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 user_data,
684 page_length);
685 if (needs_clflush_after)
686 drm_clflush_virt_range(vaddr + shmem_page_offset,
687 page_length);
688 kunmap_atomic(vaddr);
3de09aa3 689
755d2218 690 return ret ? -EFAULT : 0;
3de09aa3
EA
691}
692
d174bd64
DV
693/* Only difference to the fast-path function is that this can handle bit17
694 * and uses non-atomic copy and kmap functions. */
3043c60c 695static int
d174bd64
DV
696shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 char __user *user_data,
698 bool page_do_bit17_swizzling,
699 bool needs_clflush_before,
700 bool needs_clflush_after)
673a394b 701{
d174bd64
DV
702 char *vaddr;
703 int ret;
e5281ccd 704
d174bd64 705 vaddr = kmap(page);
e7e58eb5 706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
d174bd64
DV
710 if (page_do_bit17_swizzling)
711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
712 user_data,
713 page_length);
d174bd64
DV
714 else
715 ret = __copy_from_user(vaddr + shmem_page_offset,
716 user_data,
717 page_length);
718 if (needs_clflush_after)
23c18c71
DV
719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 page_length,
721 page_do_bit17_swizzling);
d174bd64 722 kunmap(page);
40123c1f 723
755d2218 724 return ret ? -EFAULT : 0;
40123c1f
EA
725}
726
40123c1f 727static int
e244a443
DV
728i915_gem_shmem_pwrite(struct drm_device *dev,
729 struct drm_i915_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file)
40123c1f 732{
40123c1f 733 ssize_t remain;
8c59967c
DV
734 loff_t offset;
735 char __user *user_data;
eb2c0c81 736 int shmem_page_offset, page_length, ret = 0;
8c59967c 737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 738 int hit_slowpath = 0;
58642885
DV
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
9da3da66
CW
741 int i;
742 struct scatterlist *sg;
40123c1f 743
8c59967c 744 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
745 remain = args->size;
746
8c59967c 747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 748
58642885
DV
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 if (obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_after = 1;
6c085a72
CW
756 if (obj->gtt_space) {
757 ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 if (ret)
759 return ret;
760 }
58642885
DV
761 }
762 /* Same trick applies for invalidate partially written cachelines before
763 * writing. */
764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 && obj->cache_level == I915_CACHE_NONE)
766 needs_clflush_before = 1;
767
755d2218
CW
768 ret = i915_gem_object_get_pages(obj);
769 if (ret)
770 return ret;
771
772 i915_gem_object_pin_pages(obj);
773
673a394b 774 offset = args->offset;
05394f39 775 obj->dirty = 1;
673a394b 776
9da3da66 777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 778 struct page *page;
58642885 779 int partial_cacheline_write;
e5281ccd 780
9da3da66
CW
781 if (i < offset >> PAGE_SHIFT)
782 continue;
783
784 if (remain <= 0)
785 break;
786
40123c1f
EA
787 /* Operation in this page
788 *
40123c1f 789 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
790 * page_length = bytes to copy for this page
791 */
c8cbbb8b 792 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
793
794 page_length = remain;
795 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 797
58642885
DV
798 /* If we don't overwrite a cacheline completely we need to be
799 * careful to have up-to-date data by first clflushing. Don't
800 * overcomplicate things and flush the entire patch. */
801 partial_cacheline_write = needs_clflush_before &&
802 ((shmem_page_offset | page_length)
803 & (boot_cpu_data.x86_clflush_size - 1));
804
9da3da66 805 page = sg_page(sg);
8c59967c
DV
806 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 (page_to_phys(page) & (1 << 17)) != 0;
808
d174bd64
DV
809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813 if (ret == 0)
814 goto next_page;
e244a443
DV
815
816 hit_slowpath = 1;
e244a443 817 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 partial_cacheline_write,
821 needs_clflush_after);
40123c1f 822
e244a443 823 mutex_lock(&dev->struct_mutex);
755d2218 824
e244a443 825next_page:
e5281ccd
CW
826 set_page_dirty(page);
827 mark_page_accessed(page);
e5281ccd 828
755d2218 829 if (ret)
8c59967c 830 goto out;
8c59967c 831
40123c1f 832 remain -= page_length;
8c59967c 833 user_data += page_length;
40123c1f 834 offset += page_length;
673a394b
EA
835 }
836
fbd5a26d 837out:
755d2218
CW
838 i915_gem_object_unpin_pages(obj);
839
e244a443
DV
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 intel_gtt_chipset_flush();
849 }
8c59967c 850 }
673a394b 851
58642885
DV
852 if (needs_clflush_after)
853 intel_gtt_chipset_flush();
854
40123c1f 855 return ret;
673a394b
EA
856}
857
858/**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863int
864i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 865 struct drm_file *file)
673a394b
EA
866{
867 struct drm_i915_gem_pwrite *args = data;
05394f39 868 struct drm_i915_gem_object *obj;
51311d0a
CW
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
f56f821f
DV
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
51311d0a
CW
881 if (ret)
882 return -EFAULT;
673a394b 883
fbd5a26d 884 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 885 if (ret)
fbd5a26d 886 return ret;
1d7cfea1 887
05394f39 888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 889 if (&obj->base == NULL) {
1d7cfea1
CW
890 ret = -ENOENT;
891 goto unlock;
fbd5a26d 892 }
673a394b 893
7dcd2499 894 /* Bounds check destination. */
05394f39
CW
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
ce9d419d 897 ret = -EINVAL;
35b62a89 898 goto out;
ce9d419d
CW
899 }
900
1286ff73
DV
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
db53a302
CW
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
935aaa69 911 ret = -EFAULT;
673a394b
EA
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
5c0480f2 918 if (obj->phys_obj) {
fbd5a26d 919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
920 goto out;
921 }
922
86a1ee26 923 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 924 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
927 /* Note that the gtt paths might fail with non-page-backed user
928 * pointers (e.g. gtt mappings when moving data between
929 * textures). Fallback to the shmem path in that case. */
fbd5a26d 930 }
673a394b 931
86a1ee26 932 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 933 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 934
35b62a89 935out:
05394f39 936 drm_gem_object_unreference(&obj->base);
1d7cfea1 937unlock:
fbd5a26d 938 mutex_unlock(&dev->struct_mutex);
673a394b
EA
939 return ret;
940}
941
b361237b
CW
942int
943i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 bool interruptible)
945{
946 if (atomic_read(&dev_priv->mm.wedged)) {
947 struct completion *x = &dev_priv->error_completion;
948 bool recovery_complete;
949 unsigned long flags;
950
951 /* Give the error handler a chance to run. */
952 spin_lock_irqsave(&x->wait.lock, flags);
953 recovery_complete = x->done > 0;
954 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956 /* Non-interruptible callers can't handle -EAGAIN, hence return
957 * -EIO unconditionally for these. */
958 if (!interruptible)
959 return -EIO;
960
961 /* Recovery complete, but still wedged means reset failure. */
962 if (recovery_complete)
963 return -EIO;
964
965 return -EAGAIN;
966 }
967
968 return 0;
969}
970
971/*
972 * Compare seqno against outstanding lazy request. Emit a request if they are
973 * equal.
974 */
975static int
976i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977{
978 int ret;
979
980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982 ret = 0;
983 if (seqno == ring->outstanding_lazy_request)
984 ret = i915_add_request(ring, NULL, NULL);
985
986 return ret;
987}
988
989/**
990 * __wait_seqno - wait until execution of seqno has finished
991 * @ring: the ring expected to report seqno
992 * @seqno: duh!
993 * @interruptible: do an interruptible wait (normally yes)
994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995 *
996 * Returns 0 if the seqno was found within the alloted time. Else returns the
997 * errno with remaining time filled in timeout argument.
998 */
999static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 bool interruptible, struct timespec *timeout)
1001{
1002 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 struct timespec before, now, wait_time={1,0};
1004 unsigned long timeout_jiffies;
1005 long end;
1006 bool wait_forever = true;
1007 int ret;
1008
1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 return 0;
1011
1012 trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014 if (timeout != NULL) {
1015 wait_time = *timeout;
1016 wait_forever = false;
1017 }
1018
1019 timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021 if (WARN_ON(!ring->irq_get(ring)))
1022 return -ENODEV;
1023
1024 /* Record current time in case interrupted by signal, or wedged * */
1025 getrawmonotonic(&before);
1026
1027#define EXIT_COND \
1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 atomic_read(&dev_priv->mm.wedged))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 if (ret)
1041 end = ret;
1042 } while (end == 0 && wait_forever);
1043
1044 getrawmonotonic(&now);
1045
1046 ring->irq_put(ring);
1047 trace_i915_gem_request_wait_end(ring, seqno);
1048#undef EXIT_COND
1049
1050 if (timeout) {
1051 struct timespec sleep_time = timespec_sub(now, before);
1052 *timeout = timespec_sub(*timeout, sleep_time);
1053 }
1054
1055 switch (end) {
1056 case -EIO:
1057 case -EAGAIN: /* Wedged */
1058 case -ERESTARTSYS: /* Signal */
1059 return (int)end;
1060 case 0: /* Timeout */
1061 if (timeout)
1062 set_normalized_timespec(timeout, 0, 0);
1063 return -ETIME;
1064 default: /* Completed */
1065 WARN_ON(end < 0); /* We're not aware of other errors */
1066 return 0;
1067 }
1068}
1069
1070/**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
1074int
1075i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076{
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 bool interruptible = dev_priv->mm.interruptible;
1080 int ret;
1081
1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 BUG_ON(seqno == 0);
1084
1085 ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 if (ret)
1087 return ret;
1088
1089 ret = i915_gem_check_olr(ring, seqno);
1090 if (ret)
1091 return ret;
1092
1093 return __wait_seqno(ring, seqno, interruptible, NULL);
1094}
1095
1096/**
1097 * Ensures that all rendering to the object has completed and the object is
1098 * safe to unbind from the GTT or access from the CPU.
1099 */
1100static __must_check int
1101i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 bool readonly)
1103{
1104 struct intel_ring_buffer *ring = obj->ring;
1105 u32 seqno;
1106 int ret;
1107
1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 if (seqno == 0)
1110 return 0;
1111
1112 ret = i915_wait_seqno(ring, seqno);
1113 if (ret)
1114 return ret;
1115
1116 i915_gem_retire_requests_ring(ring);
1117
1118 /* Manually manage the write flush as we may have not yet
1119 * retired the buffer.
1120 */
1121 if (obj->last_write_seqno &&
1122 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 obj->last_write_seqno = 0;
1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 }
1126
1127 return 0;
1128}
1129
3236f57a
CW
1130/* A nonblocking variant of the above wait. This is a highly dangerous routine
1131 * as the object state may change during this call.
1132 */
1133static __must_check int
1134i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 bool readonly)
1136{
1137 struct drm_device *dev = obj->base.dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct intel_ring_buffer *ring = obj->ring;
1140 u32 seqno;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(!dev_priv->mm.interruptible);
1145
1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 if (seqno == 0)
1148 return 0;
1149
1150 ret = i915_gem_check_wedge(dev_priv, true);
1151 if (ret)
1152 return ret;
1153
1154 ret = i915_gem_check_olr(ring, seqno);
1155 if (ret)
1156 return ret;
1157
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = __wait_seqno(ring, seqno, true, NULL);
1160 mutex_lock(&dev->struct_mutex);
1161
1162 i915_gem_retire_requests_ring(ring);
1163
1164 /* Manually manage the write flush as we may have not yet
1165 * retired the buffer.
1166 */
1167 if (obj->last_write_seqno &&
1168 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 obj->last_write_seqno = 0;
1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 }
1172
1173 return ret;
1174}
1175
673a394b 1176/**
2ef7eeaa
EA
1177 * Called when user space prepares to use an object with the CPU, either
1178 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1179 */
1180int
1181i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1182 struct drm_file *file)
673a394b
EA
1183{
1184 struct drm_i915_gem_set_domain *args = data;
05394f39 1185 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1186 uint32_t read_domains = args->read_domains;
1187 uint32_t write_domain = args->write_domain;
673a394b
EA
1188 int ret;
1189
2ef7eeaa 1190 /* Only handle setting domains to types used by the CPU. */
21d509e3 1191 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1192 return -EINVAL;
1193
21d509e3 1194 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1195 return -EINVAL;
1196
1197 /* Having something in the write domain implies it's in the read
1198 * domain, and only that read domain. Enforce that in the request.
1199 */
1200 if (write_domain != 0 && read_domains != write_domain)
1201 return -EINVAL;
1202
76c1dec1 1203 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1204 if (ret)
76c1dec1 1205 return ret;
1d7cfea1 1206
05394f39 1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1208 if (&obj->base == NULL) {
1d7cfea1
CW
1209 ret = -ENOENT;
1210 goto unlock;
76c1dec1 1211 }
673a394b 1212
3236f57a
CW
1213 /* Try to flush the object off the GPU without holding the lock.
1214 * We will repeat the flush holding the lock in the normal manner
1215 * to catch cases where we are gazumped.
1216 */
1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 if (ret)
1219 goto unref;
1220
2ef7eeaa
EA
1221 if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1223
1224 /* Silently promote "you're not bound, there was nothing to do"
1225 * to success, since the client was just asking us to
1226 * make sure everything was done.
1227 */
1228 if (ret == -EINVAL)
1229 ret = 0;
2ef7eeaa 1230 } else {
e47c68e9 1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1232 }
1233
3236f57a 1234unref:
05394f39 1235 drm_gem_object_unreference(&obj->base);
1d7cfea1 1236unlock:
673a394b
EA
1237 mutex_unlock(&dev->struct_mutex);
1238 return ret;
1239}
1240
1241/**
1242 * Called when user space has done writes to this buffer
1243 */
1244int
1245i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1246 struct drm_file *file)
673a394b
EA
1247{
1248 struct drm_i915_gem_sw_finish *args = data;
05394f39 1249 struct drm_i915_gem_object *obj;
673a394b
EA
1250 int ret = 0;
1251
76c1dec1 1252 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1253 if (ret)
76c1dec1 1254 return ret;
1d7cfea1 1255
05394f39 1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1257 if (&obj->base == NULL) {
1d7cfea1
CW
1258 ret = -ENOENT;
1259 goto unlock;
673a394b
EA
1260 }
1261
673a394b 1262 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1263 if (obj->pin_count)
e47c68e9
EA
1264 i915_gem_object_flush_cpu_write_domain(obj);
1265
05394f39 1266 drm_gem_object_unreference(&obj->base);
1d7cfea1 1267unlock:
673a394b
EA
1268 mutex_unlock(&dev->struct_mutex);
1269 return ret;
1270}
1271
1272/**
1273 * Maps the contents of an object, returning the address it is mapped
1274 * into.
1275 *
1276 * While the mapping holds a reference on the contents of the object, it doesn't
1277 * imply a ref on the object itself.
1278 */
1279int
1280i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1281 struct drm_file *file)
673a394b
EA
1282{
1283 struct drm_i915_gem_mmap *args = data;
1284 struct drm_gem_object *obj;
673a394b
EA
1285 unsigned long addr;
1286
05394f39 1287 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1288 if (obj == NULL)
bf79cb91 1289 return -ENOENT;
673a394b 1290
1286ff73
DV
1291 /* prime objects have no backing filp to GEM mmap
1292 * pages from.
1293 */
1294 if (!obj->filp) {
1295 drm_gem_object_unreference_unlocked(obj);
1296 return -EINVAL;
1297 }
1298
6be5ceb0 1299 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1300 PROT_READ | PROT_WRITE, MAP_SHARED,
1301 args->offset);
bc9025bd 1302 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1303 if (IS_ERR((void *)addr))
1304 return addr;
1305
1306 args->addr_ptr = (uint64_t) addr;
1307
1308 return 0;
1309}
1310
de151cf6
JB
1311/**
1312 * i915_gem_fault - fault a page into the GTT
1313 * vma: VMA in question
1314 * vmf: fault info
1315 *
1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317 * from userspace. The fault handler takes care of binding the object to
1318 * the GTT (if needed), allocating and programming a fence register (again,
1319 * only if needed based on whether the old reg is still valid or the object
1320 * is tiled) and inserting a new PTE into the faulting process.
1321 *
1322 * Note that the faulting process may involve evicting existing objects
1323 * from the GTT and/or fence registers to make room. So performance may
1324 * suffer if the GTT working set is large or there are few fence registers
1325 * left.
1326 */
1327int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328{
05394f39
CW
1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 struct drm_device *dev = obj->base.dev;
7d1c4804 1331 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1332 pgoff_t page_offset;
1333 unsigned long pfn;
1334 int ret = 0;
0f973f27 1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1336
1337 /* We don't use vmf->pgoff since that has the fake offset */
1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 PAGE_SHIFT;
1340
d9bc7e9f
CW
1341 ret = i915_mutex_lock_interruptible(dev);
1342 if (ret)
1343 goto out;
a00b10c3 1344
db53a302
CW
1345 trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
d9bc7e9f 1347 /* Now bind it into the GTT if needed */
919926ae
CW
1348 if (!obj->map_and_fenceable) {
1349 ret = i915_gem_object_unbind(obj);
1350 if (ret)
1351 goto unlock;
a00b10c3 1352 }
05394f39 1353 if (!obj->gtt_space) {
86a1ee26 1354 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
c715089f
CW
1355 if (ret)
1356 goto unlock;
de151cf6 1357
e92d03bf
EA
1358 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1359 if (ret)
1360 goto unlock;
1361 }
4a684a41 1362
74898d7e
DV
1363 if (!obj->has_global_gtt_mapping)
1364 i915_gem_gtt_bind_object(obj, obj->cache_level);
1365
06d98131 1366 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1367 if (ret)
1368 goto unlock;
de151cf6 1369
05394f39
CW
1370 if (i915_gem_object_is_inactive(obj))
1371 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1372
6299f992
CW
1373 obj->fault_mappable = true;
1374
dd2757f8 1375 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1376 page_offset;
1377
1378 /* Finally, remap it using the new GTT offset */
1379 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1380unlock:
de151cf6 1381 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1382out:
de151cf6 1383 switch (ret) {
d9bc7e9f 1384 case -EIO:
a9340cca
DV
1385 /* If this -EIO is due to a gpu hang, give the reset code a
1386 * chance to clean up the mess. Otherwise return the proper
1387 * SIGBUS. */
1388 if (!atomic_read(&dev_priv->mm.wedged))
1389 return VM_FAULT_SIGBUS;
045e769a 1390 case -EAGAIN:
d9bc7e9f
CW
1391 /* Give the error handler a chance to run and move the
1392 * objects off the GPU active list. Next time we service the
1393 * fault, we should be able to transition the page into the
1394 * GTT without touching the GPU (and so avoid further
1395 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1396 * with coherency, just lost writes.
1397 */
045e769a 1398 set_need_resched();
c715089f
CW
1399 case 0:
1400 case -ERESTARTSYS:
bed636ab 1401 case -EINTR:
e79e0fe3
DR
1402 case -EBUSY:
1403 /*
1404 * EBUSY is ok: this just means that another thread
1405 * already did the job.
1406 */
c715089f 1407 return VM_FAULT_NOPAGE;
de151cf6 1408 case -ENOMEM:
de151cf6 1409 return VM_FAULT_OOM;
a7c2e1aa
DV
1410 case -ENOSPC:
1411 return VM_FAULT_SIGBUS;
de151cf6 1412 default:
a7c2e1aa 1413 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1414 return VM_FAULT_SIGBUS;
de151cf6
JB
1415 }
1416}
1417
901782b2
CW
1418/**
1419 * i915_gem_release_mmap - remove physical page mappings
1420 * @obj: obj in question
1421 *
af901ca1 1422 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1423 * relinquish ownership of the pages back to the system.
1424 *
1425 * It is vital that we remove the page mapping if we have mapped a tiled
1426 * object through the GTT and then lose the fence register due to
1427 * resource pressure. Similarly if the object has been moved out of the
1428 * aperture, than pages mapped into userspace must be revoked. Removing the
1429 * mapping will then trigger a page fault on the next user access, allowing
1430 * fixup by i915_gem_fault().
1431 */
d05ca301 1432void
05394f39 1433i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1434{
6299f992
CW
1435 if (!obj->fault_mappable)
1436 return;
901782b2 1437
f6e47884
CW
1438 if (obj->base.dev->dev_mapping)
1439 unmap_mapping_range(obj->base.dev->dev_mapping,
1440 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1441 obj->base.size, 1);
fb7d516a 1442
6299f992 1443 obj->fault_mappable = false;
901782b2
CW
1444}
1445
92b88aeb 1446static uint32_t
e28f8711 1447i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1448{
e28f8711 1449 uint32_t gtt_size;
92b88aeb
CW
1450
1451 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1452 tiling_mode == I915_TILING_NONE)
1453 return size;
92b88aeb
CW
1454
1455 /* Previous chips need a power-of-two fence region when tiling */
1456 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1457 gtt_size = 1024*1024;
92b88aeb 1458 else
e28f8711 1459 gtt_size = 512*1024;
92b88aeb 1460
e28f8711
CW
1461 while (gtt_size < size)
1462 gtt_size <<= 1;
92b88aeb 1463
e28f8711 1464 return gtt_size;
92b88aeb
CW
1465}
1466
de151cf6
JB
1467/**
1468 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1469 * @obj: object to check
1470 *
1471 * Return the required GTT alignment for an object, taking into account
5e783301 1472 * potential fence register mapping.
de151cf6
JB
1473 */
1474static uint32_t
e28f8711
CW
1475i915_gem_get_gtt_alignment(struct drm_device *dev,
1476 uint32_t size,
1477 int tiling_mode)
de151cf6 1478{
de151cf6
JB
1479 /*
1480 * Minimum alignment is 4k (GTT page size), but might be greater
1481 * if a fence register is needed for the object.
1482 */
a00b10c3 1483 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1484 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1485 return 4096;
1486
a00b10c3
CW
1487 /*
1488 * Previous chips need to be aligned to the size of the smallest
1489 * fence register that can contain the object.
1490 */
e28f8711 1491 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1492}
1493
5e783301
DV
1494/**
1495 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1496 * unfenced object
e28f8711
CW
1497 * @dev: the device
1498 * @size: size of the object
1499 * @tiling_mode: tiling mode of the object
5e783301
DV
1500 *
1501 * Return the required GTT alignment for an object, only taking into account
1502 * unfenced tiled surface requirements.
1503 */
467cffba 1504uint32_t
e28f8711
CW
1505i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1506 uint32_t size,
1507 int tiling_mode)
5e783301 1508{
5e783301
DV
1509 /*
1510 * Minimum alignment is 4k (GTT page size) for sane hw.
1511 */
1512 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1513 tiling_mode == I915_TILING_NONE)
5e783301
DV
1514 return 4096;
1515
e28f8711
CW
1516 /* Previous hardware however needs to be aligned to a power-of-two
1517 * tile height. The simplest method for determining this is to reuse
1518 * the power-of-tile object size.
5e783301 1519 */
e28f8711 1520 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1521}
1522
d8cb5086
CW
1523static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1524{
1525 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1526 int ret;
1527
1528 if (obj->base.map_list.map)
1529 return 0;
1530
1531 ret = drm_gem_create_mmap_offset(&obj->base);
1532 if (ret != -ENOSPC)
1533 return ret;
1534
1535 /* Badly fragmented mmap space? The only way we can recover
1536 * space is by destroying unwanted objects. We can't randomly release
1537 * mmap_offsets as userspace expects them to be persistent for the
1538 * lifetime of the objects. The closest we can is to release the
1539 * offsets on purgeable objects by truncating it and marking it purged,
1540 * which prevents userspace from ever using that object again.
1541 */
1542 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1543 ret = drm_gem_create_mmap_offset(&obj->base);
1544 if (ret != -ENOSPC)
1545 return ret;
1546
1547 i915_gem_shrink_all(dev_priv);
1548 return drm_gem_create_mmap_offset(&obj->base);
1549}
1550
1551static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1552{
1553 if (!obj->base.map_list.map)
1554 return;
1555
1556 drm_gem_free_mmap_offset(&obj->base);
1557}
1558
de151cf6 1559int
ff72145b
DA
1560i915_gem_mmap_gtt(struct drm_file *file,
1561 struct drm_device *dev,
1562 uint32_t handle,
1563 uint64_t *offset)
de151cf6 1564{
da761a6e 1565 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1566 struct drm_i915_gem_object *obj;
de151cf6
JB
1567 int ret;
1568
76c1dec1 1569 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1570 if (ret)
76c1dec1 1571 return ret;
de151cf6 1572
ff72145b 1573 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1574 if (&obj->base == NULL) {
1d7cfea1
CW
1575 ret = -ENOENT;
1576 goto unlock;
1577 }
de151cf6 1578
05394f39 1579 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1580 ret = -E2BIG;
ff56b0bc 1581 goto out;
da761a6e
CW
1582 }
1583
05394f39 1584 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1585 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1586 ret = -EINVAL;
1587 goto out;
ab18282d
CW
1588 }
1589
d8cb5086
CW
1590 ret = i915_gem_object_create_mmap_offset(obj);
1591 if (ret)
1592 goto out;
de151cf6 1593
ff72145b 1594 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1595
1d7cfea1 1596out:
05394f39 1597 drm_gem_object_unreference(&obj->base);
1d7cfea1 1598unlock:
de151cf6 1599 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1600 return ret;
de151cf6
JB
1601}
1602
ff72145b
DA
1603/**
1604 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1605 * @dev: DRM device
1606 * @data: GTT mapping ioctl data
1607 * @file: GEM object info
1608 *
1609 * Simply returns the fake offset to userspace so it can mmap it.
1610 * The mmap call will end up in drm_gem_mmap(), which will set things
1611 * up so we can get faults in the handler above.
1612 *
1613 * The fault handler will take care of binding the object into the GTT
1614 * (since it may have been evicted to make room for something), allocating
1615 * a fence register, and mapping the appropriate aperture address into
1616 * userspace.
1617 */
1618int
1619i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1620 struct drm_file *file)
1621{
1622 struct drm_i915_gem_mmap_gtt *args = data;
1623
ff72145b
DA
1624 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1625}
1626
225067ee
DV
1627/* Immediately discard the backing storage */
1628static void
1629i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1630{
e5281ccd 1631 struct inode *inode;
e5281ccd 1632
4d6294bf 1633 i915_gem_object_free_mmap_offset(obj);
1286ff73 1634
4d6294bf
CW
1635 if (obj->base.filp == NULL)
1636 return;
e5281ccd 1637
225067ee
DV
1638 /* Our goal here is to return as much of the memory as
1639 * is possible back to the system as we are called from OOM.
1640 * To do this we must instruct the shmfs to drop all of its
1641 * backing pages, *now*.
1642 */
05394f39 1643 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1644 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1645
225067ee
DV
1646 obj->madv = __I915_MADV_PURGED;
1647}
e5281ccd 1648
225067ee
DV
1649static inline int
1650i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1651{
1652 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1653}
1654
5cdf5881 1655static void
05394f39 1656i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1657{
05394f39 1658 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1659 struct scatterlist *sg;
6c085a72 1660 int ret, i;
1286ff73 1661
05394f39 1662 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1663
6c085a72
CW
1664 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1665 if (ret) {
1666 /* In the event of a disaster, abandon all caches and
1667 * hope for the best.
1668 */
1669 WARN_ON(ret != -EIO);
1670 i915_gem_clflush_object(obj);
1671 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1672 }
1673
6dacfd2f 1674 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1675 i915_gem_object_save_bit_17_swizzle(obj);
1676
05394f39
CW
1677 if (obj->madv == I915_MADV_DONTNEED)
1678 obj->dirty = 0;
3ef94daa 1679
9da3da66
CW
1680 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1681 struct page *page = sg_page(sg);
1682
05394f39 1683 if (obj->dirty)
9da3da66 1684 set_page_dirty(page);
3ef94daa 1685
05394f39 1686 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1687 mark_page_accessed(page);
3ef94daa 1688
9da3da66 1689 page_cache_release(page);
3ef94daa 1690 }
05394f39 1691 obj->dirty = 0;
673a394b 1692
9da3da66
CW
1693 sg_free_table(obj->pages);
1694 kfree(obj->pages);
37e680a1 1695}
6c085a72 1696
37e680a1
CW
1697static int
1698i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1699{
1700 const struct drm_i915_gem_object_ops *ops = obj->ops;
1701
2f745ad3 1702 if (obj->pages == NULL)
37e680a1
CW
1703 return 0;
1704
1705 BUG_ON(obj->gtt_space);
6c085a72 1706
a5570178
CW
1707 if (obj->pages_pin_count)
1708 return -EBUSY;
1709
37e680a1 1710 ops->put_pages(obj);
05394f39 1711 obj->pages = NULL;
37e680a1
CW
1712
1713 list_del(&obj->gtt_list);
6c085a72
CW
1714 if (i915_gem_object_is_purgeable(obj))
1715 i915_gem_object_truncate(obj);
1716
1717 return 0;
1718}
1719
1720static long
1721i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1722{
1723 struct drm_i915_gem_object *obj, *next;
1724 long count = 0;
1725
1726 list_for_each_entry_safe(obj, next,
1727 &dev_priv->mm.unbound_list,
1728 gtt_list) {
1729 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1730 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1731 count += obj->base.size >> PAGE_SHIFT;
1732 if (count >= target)
1733 return count;
1734 }
1735 }
1736
1737 list_for_each_entry_safe(obj, next,
1738 &dev_priv->mm.inactive_list,
1739 mm_list) {
1740 if (i915_gem_object_is_purgeable(obj) &&
1741 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1742 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1743 count += obj->base.size >> PAGE_SHIFT;
1744 if (count >= target)
1745 return count;
1746 }
1747 }
1748
1749 return count;
1750}
1751
1752static void
1753i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1754{
1755 struct drm_i915_gem_object *obj, *next;
1756
1757 i915_gem_evict_everything(dev_priv->dev);
1758
1759 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1760 i915_gem_object_put_pages(obj);
225067ee
DV
1761}
1762
37e680a1 1763static int
6c085a72 1764i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1765{
6c085a72 1766 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1767 int page_count, i;
1768 struct address_space *mapping;
9da3da66
CW
1769 struct sg_table *st;
1770 struct scatterlist *sg;
e5281ccd 1771 struct page *page;
6c085a72 1772 gfp_t gfp;
e5281ccd 1773
6c085a72
CW
1774 /* Assert that the object is not currently in any GPU domain. As it
1775 * wasn't in the GTT, there shouldn't be any way it could have been in
1776 * a GPU cache
1777 */
1778 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1779 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1780
9da3da66
CW
1781 st = kmalloc(sizeof(*st), GFP_KERNEL);
1782 if (st == NULL)
1783 return -ENOMEM;
1784
05394f39 1785 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1786 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1787 sg_free_table(st);
1788 kfree(st);
e5281ccd 1789 return -ENOMEM;
9da3da66 1790 }
e5281ccd 1791
9da3da66
CW
1792 /* Get the list of pages out of our struct file. They'll be pinned
1793 * at this point until we release them.
1794 *
1795 * Fail silently without starting the shrinker
1796 */
6c085a72
CW
1797 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1798 gfp = mapping_gfp_mask(mapping);
caf49191 1799 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1800 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1801 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1802 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1803 if (IS_ERR(page)) {
1804 i915_gem_purge(dev_priv, page_count);
1805 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806 }
1807 if (IS_ERR(page)) {
1808 /* We've tried hard to allocate the memory by reaping
1809 * our own buffer, now let the real VM do its job and
1810 * go down in flames if truly OOM.
1811 */
caf49191 1812 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1813 gfp |= __GFP_IO | __GFP_WAIT;
1814
1815 i915_gem_shrink_all(dev_priv);
1816 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1817 if (IS_ERR(page))
1818 goto err_pages;
1819
caf49191 1820 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1821 gfp &= ~(__GFP_IO | __GFP_WAIT);
1822 }
e5281ccd 1823
9da3da66 1824 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1825 }
1826
74ce6b6c
CW
1827 obj->pages = st;
1828
6dacfd2f 1829 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1830 i915_gem_object_do_bit_17_swizzle(obj);
1831
1832 return 0;
1833
1834err_pages:
9da3da66
CW
1835 for_each_sg(st->sgl, sg, i, page_count)
1836 page_cache_release(sg_page(sg));
1837 sg_free_table(st);
1838 kfree(st);
e5281ccd 1839 return PTR_ERR(page);
673a394b
EA
1840}
1841
37e680a1
CW
1842/* Ensure that the associated pages are gathered from the backing storage
1843 * and pinned into our object. i915_gem_object_get_pages() may be called
1844 * multiple times before they are released by a single call to
1845 * i915_gem_object_put_pages() - once the pages are no longer referenced
1846 * either as a result of memory pressure (reaping pages under the shrinker)
1847 * or as the object is itself released.
1848 */
1849int
1850i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851{
1852 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853 const struct drm_i915_gem_object_ops *ops = obj->ops;
1854 int ret;
1855
2f745ad3 1856 if (obj->pages)
37e680a1
CW
1857 return 0;
1858
a5570178
CW
1859 BUG_ON(obj->pages_pin_count);
1860
37e680a1
CW
1861 ret = ops->get_pages(obj);
1862 if (ret)
1863 return ret;
1864
1865 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1866 return 0;
673a394b
EA
1867}
1868
54cf91dc 1869void
05394f39 1870i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1871 struct intel_ring_buffer *ring,
1872 u32 seqno)
673a394b 1873{
05394f39 1874 struct drm_device *dev = obj->base.dev;
69dc4987 1875 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1876
852835f3 1877 BUG_ON(ring == NULL);
05394f39 1878 obj->ring = ring;
673a394b
EA
1879
1880 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1881 if (!obj->active) {
1882 drm_gem_object_reference(&obj->base);
1883 obj->active = 1;
673a394b 1884 }
e35a41de 1885
673a394b 1886 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1887 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1888 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1889
0201f1ec 1890 obj->last_read_seqno = seqno;
caea7476 1891
7dd49065 1892 if (obj->fenced_gpu_access) {
caea7476 1893 obj->last_fenced_seqno = seqno;
caea7476 1894
7dd49065
CW
1895 /* Bump MRU to take account of the delayed flush */
1896 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1897 struct drm_i915_fence_reg *reg;
1898
1899 reg = &dev_priv->fence_regs[obj->fence_reg];
1900 list_move_tail(&reg->lru_list,
1901 &dev_priv->mm.fence_list);
1902 }
caea7476
CW
1903 }
1904}
1905
1906static void
caea7476 1907i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1908{
05394f39 1909 struct drm_device *dev = obj->base.dev;
caea7476 1910 struct drm_i915_private *dev_priv = dev->dev_private;
ce44b0ea 1911
65ce3027 1912 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1913 BUG_ON(!obj->active);
caea7476 1914
f047e395
CW
1915 if (obj->pin_count) /* are we a framebuffer? */
1916 intel_mark_fb_idle(obj);
caea7476 1917
1b50247a 1918 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
caea7476 1919
65ce3027 1920 list_del_init(&obj->ring_list);
caea7476
CW
1921 obj->ring = NULL;
1922
65ce3027
CW
1923 obj->last_read_seqno = 0;
1924 obj->last_write_seqno = 0;
1925 obj->base.write_domain = 0;
1926
1927 obj->last_fenced_seqno = 0;
caea7476 1928 obj->fenced_gpu_access = false;
caea7476
CW
1929
1930 obj->active = 0;
1931 drm_gem_object_unreference(&obj->base);
1932
1933 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1934}
673a394b 1935
53d227f2
DV
1936static u32
1937i915_gem_get_seqno(struct drm_device *dev)
1938{
1939 drm_i915_private_t *dev_priv = dev->dev_private;
1940 u32 seqno = dev_priv->next_seqno;
1941
1942 /* reserve 0 for non-seqno */
1943 if (++dev_priv->next_seqno == 0)
1944 dev_priv->next_seqno = 1;
1945
1946 return seqno;
1947}
1948
1949u32
1950i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1951{
1952 if (ring->outstanding_lazy_request == 0)
1953 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1954
1955 return ring->outstanding_lazy_request;
1956}
1957
3cce469c 1958int
db53a302 1959i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1960 struct drm_file *file,
acb868d3 1961 u32 *out_seqno)
673a394b 1962{
db53a302 1963 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 1964 struct drm_i915_gem_request *request;
a71d8d94 1965 u32 request_ring_position;
acb868d3 1966 u32 seqno;
673a394b 1967 int was_empty;
3cce469c
CW
1968 int ret;
1969
cc889e0f
DV
1970 /*
1971 * Emit any outstanding flushes - execbuf can fail to emit the flush
1972 * after having emitted the batchbuffer command. Hence we need to fix
1973 * things up similar to emitting the lazy request. The difference here
1974 * is that the flush _must_ happen before the next request, no matter
1975 * what.
1976 */
a7b9761d
CW
1977 ret = intel_ring_flush_all_caches(ring);
1978 if (ret)
1979 return ret;
cc889e0f 1980
acb868d3
CW
1981 request = kmalloc(sizeof(*request), GFP_KERNEL);
1982 if (request == NULL)
1983 return -ENOMEM;
cc889e0f 1984
53d227f2 1985 seqno = i915_gem_next_request_seqno(ring);
673a394b 1986
a71d8d94
CW
1987 /* Record the position of the start of the request so that
1988 * should we detect the updated seqno part-way through the
1989 * GPU processing the request, we never over-estimate the
1990 * position of the head.
1991 */
1992 request_ring_position = intel_ring_get_tail(ring);
1993
3cce469c 1994 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1995 if (ret) {
1996 kfree(request);
1997 return ret;
1998 }
673a394b 1999
db53a302 2000 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
2001
2002 request->seqno = seqno;
852835f3 2003 request->ring = ring;
a71d8d94 2004 request->tail = request_ring_position;
673a394b 2005 request->emitted_jiffies = jiffies;
852835f3
ZN
2006 was_empty = list_empty(&ring->request_list);
2007 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2008 request->file_priv = NULL;
852835f3 2009
db53a302
CW
2010 if (file) {
2011 struct drm_i915_file_private *file_priv = file->driver_priv;
2012
1c25595f 2013 spin_lock(&file_priv->mm.lock);
f787a5f5 2014 request->file_priv = file_priv;
b962442e 2015 list_add_tail(&request->client_list,
f787a5f5 2016 &file_priv->mm.request_list);
1c25595f 2017 spin_unlock(&file_priv->mm.lock);
b962442e 2018 }
673a394b 2019
5391d0cf 2020 ring->outstanding_lazy_request = 0;
db53a302 2021
f65d9421 2022 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
2023 if (i915_enable_hangcheck) {
2024 mod_timer(&dev_priv->hangcheck_timer,
2025 jiffies +
2026 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
2027 }
f047e395 2028 if (was_empty) {
b3b079db
CW
2029 queue_delayed_work(dev_priv->wq,
2030 &dev_priv->mm.retire_work, HZ);
f047e395
CW
2031 intel_mark_busy(dev_priv->dev);
2032 }
f65d9421 2033 }
cc889e0f 2034
acb868d3
CW
2035 if (out_seqno)
2036 *out_seqno = seqno;
3cce469c 2037 return 0;
673a394b
EA
2038}
2039
f787a5f5
CW
2040static inline void
2041i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2042{
1c25595f 2043 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2044
1c25595f
CW
2045 if (!file_priv)
2046 return;
1c5d22f7 2047
1c25595f 2048 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2049 if (request->file_priv) {
2050 list_del(&request->client_list);
2051 request->file_priv = NULL;
2052 }
1c25595f 2053 spin_unlock(&file_priv->mm.lock);
673a394b 2054}
673a394b 2055
dfaae392
CW
2056static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2057 struct intel_ring_buffer *ring)
9375e446 2058{
dfaae392
CW
2059 while (!list_empty(&ring->request_list)) {
2060 struct drm_i915_gem_request *request;
673a394b 2061
dfaae392
CW
2062 request = list_first_entry(&ring->request_list,
2063 struct drm_i915_gem_request,
2064 list);
de151cf6 2065
dfaae392 2066 list_del(&request->list);
f787a5f5 2067 i915_gem_request_remove_from_client(request);
dfaae392
CW
2068 kfree(request);
2069 }
673a394b 2070
dfaae392 2071 while (!list_empty(&ring->active_list)) {
05394f39 2072 struct drm_i915_gem_object *obj;
9375e446 2073
05394f39
CW
2074 obj = list_first_entry(&ring->active_list,
2075 struct drm_i915_gem_object,
2076 ring_list);
9375e446 2077
05394f39 2078 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2079 }
2080}
2081
312817a3
CW
2082static void i915_gem_reset_fences(struct drm_device *dev)
2083{
2084 struct drm_i915_private *dev_priv = dev->dev_private;
2085 int i;
2086
4b9de737 2087 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2088 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2089
ada726c7 2090 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2091
ada726c7
CW
2092 if (reg->obj)
2093 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2094
ada726c7
CW
2095 reg->pin_count = 0;
2096 reg->obj = NULL;
2097 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2098 }
ada726c7
CW
2099
2100 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2101}
2102
069efc1d 2103void i915_gem_reset(struct drm_device *dev)
673a394b 2104{
77f01230 2105 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2106 struct drm_i915_gem_object *obj;
b4519513 2107 struct intel_ring_buffer *ring;
1ec14ad3 2108 int i;
673a394b 2109
b4519513
CW
2110 for_each_ring(ring, dev_priv, i)
2111 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2112
dfaae392
CW
2113 /* Move everything out of the GPU domains to ensure we do any
2114 * necessary invalidation upon reuse.
2115 */
05394f39 2116 list_for_each_entry(obj,
77f01230 2117 &dev_priv->mm.inactive_list,
69dc4987 2118 mm_list)
77f01230 2119 {
05394f39 2120 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2121 }
069efc1d
CW
2122
2123 /* The fence registers are invalidated so clear them out */
312817a3 2124 i915_gem_reset_fences(dev);
673a394b
EA
2125}
2126
2127/**
2128 * This function clears the request list as sequence numbers are passed.
2129 */
a71d8d94 2130void
db53a302 2131i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2132{
673a394b 2133 uint32_t seqno;
1ec14ad3 2134 int i;
673a394b 2135
db53a302 2136 if (list_empty(&ring->request_list))
6c0594a3
KW
2137 return;
2138
db53a302 2139 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2140
b2eadbc8 2141 seqno = ring->get_seqno(ring, true);
1ec14ad3 2142
076e2c0e 2143 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
2144 if (seqno >= ring->sync_seqno[i])
2145 ring->sync_seqno[i] = 0;
2146
852835f3 2147 while (!list_empty(&ring->request_list)) {
673a394b 2148 struct drm_i915_gem_request *request;
673a394b 2149
852835f3 2150 request = list_first_entry(&ring->request_list,
673a394b
EA
2151 struct drm_i915_gem_request,
2152 list);
673a394b 2153
dfaae392 2154 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2155 break;
2156
db53a302 2157 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2158 /* We know the GPU must have read the request to have
2159 * sent us the seqno + interrupt, so use the position
2160 * of tail of the request to update the last known position
2161 * of the GPU head.
2162 */
2163 ring->last_retired_head = request->tail;
b84d5f0c
CW
2164
2165 list_del(&request->list);
f787a5f5 2166 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
2167 kfree(request);
2168 }
673a394b 2169
b84d5f0c
CW
2170 /* Move any buffers on the active list that are no longer referenced
2171 * by the ringbuffer to the flushing/inactive lists as appropriate.
2172 */
2173 while (!list_empty(&ring->active_list)) {
05394f39 2174 struct drm_i915_gem_object *obj;
b84d5f0c 2175
0206e353 2176 obj = list_first_entry(&ring->active_list,
05394f39
CW
2177 struct drm_i915_gem_object,
2178 ring_list);
673a394b 2179
0201f1ec 2180 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2181 break;
b84d5f0c 2182
65ce3027 2183 i915_gem_object_move_to_inactive(obj);
673a394b 2184 }
9d34e5db 2185
db53a302
CW
2186 if (unlikely(ring->trace_irq_seqno &&
2187 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2188 ring->irq_put(ring);
db53a302 2189 ring->trace_irq_seqno = 0;
9d34e5db 2190 }
23bc5982 2191
db53a302 2192 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2193}
2194
b09a1fec
CW
2195void
2196i915_gem_retire_requests(struct drm_device *dev)
2197{
2198 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2199 struct intel_ring_buffer *ring;
1ec14ad3 2200 int i;
b09a1fec 2201
b4519513
CW
2202 for_each_ring(ring, dev_priv, i)
2203 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2204}
2205
75ef9da2 2206static void
673a394b
EA
2207i915_gem_retire_work_handler(struct work_struct *work)
2208{
2209 drm_i915_private_t *dev_priv;
2210 struct drm_device *dev;
b4519513 2211 struct intel_ring_buffer *ring;
0a58705b
CW
2212 bool idle;
2213 int i;
673a394b
EA
2214
2215 dev_priv = container_of(work, drm_i915_private_t,
2216 mm.retire_work.work);
2217 dev = dev_priv->dev;
2218
891b48cf
CW
2219 /* Come back later if the device is busy... */
2220 if (!mutex_trylock(&dev->struct_mutex)) {
2221 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2222 return;
2223 }
673a394b 2224
b09a1fec 2225 i915_gem_retire_requests(dev);
673a394b 2226
0a58705b
CW
2227 /* Send a periodic flush down the ring so we don't hold onto GEM
2228 * objects indefinitely.
673a394b 2229 */
0a58705b 2230 idle = true;
b4519513 2231 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2232 if (ring->gpu_caches_dirty)
2233 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2234
2235 idle &= list_empty(&ring->request_list);
673a394b
EA
2236 }
2237
0a58705b 2238 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 2239 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
f047e395
CW
2240 if (idle)
2241 intel_mark_idle(dev);
0a58705b 2242
673a394b 2243 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2244}
2245
30dfebf3
DV
2246/**
2247 * Ensures that an object will eventually get non-busy by flushing any required
2248 * write domains, emitting any outstanding lazy request and retiring and
2249 * completed requests.
2250 */
2251static int
2252i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2253{
2254 int ret;
2255
2256 if (obj->active) {
0201f1ec 2257 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2258 if (ret)
2259 return ret;
2260
30dfebf3
DV
2261 i915_gem_retire_requests_ring(obj->ring);
2262 }
2263
2264 return 0;
2265}
2266
23ba4fd0
BW
2267/**
2268 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2269 * @DRM_IOCTL_ARGS: standard ioctl arguments
2270 *
2271 * Returns 0 if successful, else an error is returned with the remaining time in
2272 * the timeout parameter.
2273 * -ETIME: object is still busy after timeout
2274 * -ERESTARTSYS: signal interrupted the wait
2275 * -ENONENT: object doesn't exist
2276 * Also possible, but rare:
2277 * -EAGAIN: GPU wedged
2278 * -ENOMEM: damn
2279 * -ENODEV: Internal IRQ fail
2280 * -E?: The add request failed
2281 *
2282 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2283 * non-zero timeout parameter the wait ioctl will wait for the given number of
2284 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2285 * without holding struct_mutex the object may become re-busied before this
2286 * function completes. A similar but shorter * race condition exists in the busy
2287 * ioctl
2288 */
2289int
2290i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2291{
2292 struct drm_i915_gem_wait *args = data;
2293 struct drm_i915_gem_object *obj;
2294 struct intel_ring_buffer *ring = NULL;
eac1f14f 2295 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2296 u32 seqno = 0;
2297 int ret = 0;
2298
eac1f14f
BW
2299 if (args->timeout_ns >= 0) {
2300 timeout_stack = ns_to_timespec(args->timeout_ns);
2301 timeout = &timeout_stack;
2302 }
23ba4fd0
BW
2303
2304 ret = i915_mutex_lock_interruptible(dev);
2305 if (ret)
2306 return ret;
2307
2308 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2309 if (&obj->base == NULL) {
2310 mutex_unlock(&dev->struct_mutex);
2311 return -ENOENT;
2312 }
2313
30dfebf3
DV
2314 /* Need to make sure the object gets inactive eventually. */
2315 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2316 if (ret)
2317 goto out;
2318
2319 if (obj->active) {
0201f1ec 2320 seqno = obj->last_read_seqno;
23ba4fd0
BW
2321 ring = obj->ring;
2322 }
2323
2324 if (seqno == 0)
2325 goto out;
2326
23ba4fd0
BW
2327 /* Do this after OLR check to make sure we make forward progress polling
2328 * on this IOCTL with a 0 timeout (like busy ioctl)
2329 */
2330 if (!args->timeout_ns) {
2331 ret = -ETIME;
2332 goto out;
2333 }
2334
2335 drm_gem_object_unreference(&obj->base);
2336 mutex_unlock(&dev->struct_mutex);
2337
eac1f14f
BW
2338 ret = __wait_seqno(ring, seqno, true, timeout);
2339 if (timeout) {
2340 WARN_ON(!timespec_valid(timeout));
2341 args->timeout_ns = timespec_to_ns(timeout);
2342 }
23ba4fd0
BW
2343 return ret;
2344
2345out:
2346 drm_gem_object_unreference(&obj->base);
2347 mutex_unlock(&dev->struct_mutex);
2348 return ret;
2349}
2350
5816d648
BW
2351/**
2352 * i915_gem_object_sync - sync an object to a ring.
2353 *
2354 * @obj: object which may be in use on another ring.
2355 * @to: ring we wish to use the object on. May be NULL.
2356 *
2357 * This code is meant to abstract object synchronization with the GPU.
2358 * Calling with NULL implies synchronizing the object with the CPU
2359 * rather than a particular GPU ring.
2360 *
2361 * Returns 0 if successful, else propagates up the lower layer error.
2362 */
2911a35b
BW
2363int
2364i915_gem_object_sync(struct drm_i915_gem_object *obj,
2365 struct intel_ring_buffer *to)
2366{
2367 struct intel_ring_buffer *from = obj->ring;
2368 u32 seqno;
2369 int ret, idx;
2370
2371 if (from == NULL || to == from)
2372 return 0;
2373
5816d648 2374 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2375 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2376
2377 idx = intel_ring_sync_index(from, to);
2378
0201f1ec 2379 seqno = obj->last_read_seqno;
2911a35b
BW
2380 if (seqno <= from->sync_seqno[idx])
2381 return 0;
2382
b4aca010
BW
2383 ret = i915_gem_check_olr(obj->ring, seqno);
2384 if (ret)
2385 return ret;
2911a35b 2386
1500f7ea 2387 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2388 if (!ret)
2389 from->sync_seqno[idx] = seqno;
2911a35b 2390
e3a5a225 2391 return ret;
2911a35b
BW
2392}
2393
b5ffc9bc
CW
2394static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2395{
2396 u32 old_write_domain, old_read_domains;
2397
b5ffc9bc
CW
2398 /* Act a barrier for all accesses through the GTT */
2399 mb();
2400
2401 /* Force a pagefault for domain tracking on next user access */
2402 i915_gem_release_mmap(obj);
2403
b97c3d9c
KP
2404 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2405 return;
2406
b5ffc9bc
CW
2407 old_read_domains = obj->base.read_domains;
2408 old_write_domain = obj->base.write_domain;
2409
2410 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2411 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2412
2413 trace_i915_gem_object_change_domain(obj,
2414 old_read_domains,
2415 old_write_domain);
2416}
2417
673a394b
EA
2418/**
2419 * Unbinds an object from the GTT aperture.
2420 */
0f973f27 2421int
05394f39 2422i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2423{
7bddb01f 2424 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2425 int ret = 0;
2426
05394f39 2427 if (obj->gtt_space == NULL)
673a394b
EA
2428 return 0;
2429
31d8d651
CW
2430 if (obj->pin_count)
2431 return -EBUSY;
673a394b 2432
c4670ad0
CW
2433 BUG_ON(obj->pages == NULL);
2434
a8198eea 2435 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2436 if (ret)
a8198eea
CW
2437 return ret;
2438 /* Continue on if we fail due to EIO, the GPU is hung so we
2439 * should be safe and we need to cleanup or else we might
2440 * cause memory corruption through use-after-free.
2441 */
2442
b5ffc9bc 2443 i915_gem_object_finish_gtt(obj);
5323fd04 2444
96b47b65 2445 /* release the fence reg _after_ flushing */
d9e86c0e 2446 ret = i915_gem_object_put_fence(obj);
1488fc08 2447 if (ret)
d9e86c0e 2448 return ret;
96b47b65 2449
db53a302
CW
2450 trace_i915_gem_object_unbind(obj);
2451
74898d7e
DV
2452 if (obj->has_global_gtt_mapping)
2453 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2454 if (obj->has_aliasing_ppgtt_mapping) {
2455 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2456 obj->has_aliasing_ppgtt_mapping = 0;
2457 }
74163907 2458 i915_gem_gtt_finish_object(obj);
7bddb01f 2459
6c085a72
CW
2460 list_del(&obj->mm_list);
2461 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2462 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2463 obj->map_and_fenceable = true;
673a394b 2464
05394f39
CW
2465 drm_mm_put_block(obj->gtt_space);
2466 obj->gtt_space = NULL;
2467 obj->gtt_offset = 0;
673a394b 2468
88241785 2469 return 0;
54cf91dc
CW
2470}
2471
b2da9fe5 2472static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2473{
69c2fc89 2474 if (list_empty(&ring->active_list))
64193406
CW
2475 return 0;
2476
199b2bc2 2477 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2478}
2479
b2da9fe5 2480int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2481{
2482 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2483 struct intel_ring_buffer *ring;
1ec14ad3 2484 int ret, i;
4df2faf4 2485
4df2faf4 2486 /* Flush everything onto the inactive list. */
b4519513 2487 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2488 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2489 if (ret)
2490 return ret;
2491
b4519513 2492 ret = i915_ring_idle(ring);
1ec14ad3
CW
2493 if (ret)
2494 return ret;
2495 }
4df2faf4 2496
8a1a49f9 2497 return 0;
4df2faf4
DV
2498}
2499
9ce079e4
CW
2500static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2501 struct drm_i915_gem_object *obj)
4e901fdc 2502{
4e901fdc 2503 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2504 uint64_t val;
2505
9ce079e4
CW
2506 if (obj) {
2507 u32 size = obj->gtt_space->size;
4e901fdc 2508
9ce079e4
CW
2509 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2510 0xfffff000) << 32;
2511 val |= obj->gtt_offset & 0xfffff000;
2512 val |= (uint64_t)((obj->stride / 128) - 1) <<
2513 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2514
9ce079e4
CW
2515 if (obj->tiling_mode == I915_TILING_Y)
2516 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2517 val |= I965_FENCE_REG_VALID;
2518 } else
2519 val = 0;
c6642782 2520
9ce079e4
CW
2521 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2522 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2523}
2524
9ce079e4
CW
2525static void i965_write_fence_reg(struct drm_device *dev, int reg,
2526 struct drm_i915_gem_object *obj)
de151cf6 2527{
de151cf6 2528 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2529 uint64_t val;
2530
9ce079e4
CW
2531 if (obj) {
2532 u32 size = obj->gtt_space->size;
de151cf6 2533
9ce079e4
CW
2534 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2535 0xfffff000) << 32;
2536 val |= obj->gtt_offset & 0xfffff000;
2537 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2538 if (obj->tiling_mode == I915_TILING_Y)
2539 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2540 val |= I965_FENCE_REG_VALID;
2541 } else
2542 val = 0;
c6642782 2543
9ce079e4
CW
2544 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2545 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2546}
2547
9ce079e4
CW
2548static void i915_write_fence_reg(struct drm_device *dev, int reg,
2549 struct drm_i915_gem_object *obj)
de151cf6 2550{
de151cf6 2551 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2552 u32 val;
de151cf6 2553
9ce079e4
CW
2554 if (obj) {
2555 u32 size = obj->gtt_space->size;
2556 int pitch_val;
2557 int tile_width;
c6642782 2558
9ce079e4
CW
2559 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2560 (size & -size) != size ||
2561 (obj->gtt_offset & (size - 1)),
2562 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2563 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2564
9ce079e4
CW
2565 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2566 tile_width = 128;
2567 else
2568 tile_width = 512;
2569
2570 /* Note: pitch better be a power of two tile widths */
2571 pitch_val = obj->stride / tile_width;
2572 pitch_val = ffs(pitch_val) - 1;
2573
2574 val = obj->gtt_offset;
2575 if (obj->tiling_mode == I915_TILING_Y)
2576 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2577 val |= I915_FENCE_SIZE_BITS(size);
2578 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2579 val |= I830_FENCE_REG_VALID;
2580 } else
2581 val = 0;
2582
2583 if (reg < 8)
2584 reg = FENCE_REG_830_0 + reg * 4;
2585 else
2586 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2587
2588 I915_WRITE(reg, val);
2589 POSTING_READ(reg);
de151cf6
JB
2590}
2591
9ce079e4
CW
2592static void i830_write_fence_reg(struct drm_device *dev, int reg,
2593 struct drm_i915_gem_object *obj)
de151cf6 2594{
de151cf6 2595 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2596 uint32_t val;
de151cf6 2597
9ce079e4
CW
2598 if (obj) {
2599 u32 size = obj->gtt_space->size;
2600 uint32_t pitch_val;
de151cf6 2601
9ce079e4
CW
2602 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2603 (size & -size) != size ||
2604 (obj->gtt_offset & (size - 1)),
2605 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2606 obj->gtt_offset, size);
e76a16de 2607
9ce079e4
CW
2608 pitch_val = obj->stride / 128;
2609 pitch_val = ffs(pitch_val) - 1;
de151cf6 2610
9ce079e4
CW
2611 val = obj->gtt_offset;
2612 if (obj->tiling_mode == I915_TILING_Y)
2613 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2614 val |= I830_FENCE_SIZE_BITS(size);
2615 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2616 val |= I830_FENCE_REG_VALID;
2617 } else
2618 val = 0;
c6642782 2619
9ce079e4
CW
2620 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2621 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2622}
2623
2624static void i915_gem_write_fence(struct drm_device *dev, int reg,
2625 struct drm_i915_gem_object *obj)
2626{
2627 switch (INTEL_INFO(dev)->gen) {
2628 case 7:
2629 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2630 case 5:
2631 case 4: i965_write_fence_reg(dev, reg, obj); break;
2632 case 3: i915_write_fence_reg(dev, reg, obj); break;
2633 case 2: i830_write_fence_reg(dev, reg, obj); break;
2634 default: break;
2635 }
de151cf6
JB
2636}
2637
61050808
CW
2638static inline int fence_number(struct drm_i915_private *dev_priv,
2639 struct drm_i915_fence_reg *fence)
2640{
2641 return fence - dev_priv->fence_regs;
2642}
2643
2644static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2645 struct drm_i915_fence_reg *fence,
2646 bool enable)
2647{
2648 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2649 int reg = fence_number(dev_priv, fence);
2650
2651 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2652
2653 if (enable) {
2654 obj->fence_reg = reg;
2655 fence->obj = obj;
2656 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2657 } else {
2658 obj->fence_reg = I915_FENCE_REG_NONE;
2659 fence->obj = NULL;
2660 list_del_init(&fence->lru_list);
2661 }
2662}
2663
d9e86c0e 2664static int
a360bb1a 2665i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2666{
1c293ea3 2667 if (obj->last_fenced_seqno) {
86d5bc37 2668 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2669 if (ret)
2670 return ret;
d9e86c0e
CW
2671
2672 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2673 }
2674
63256ec5
CW
2675 /* Ensure that all CPU reads are completed before installing a fence
2676 * and all writes before removing the fence.
2677 */
2678 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2679 mb();
2680
86d5bc37 2681 obj->fenced_gpu_access = false;
d9e86c0e
CW
2682 return 0;
2683}
2684
2685int
2686i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2687{
61050808 2688 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2689 int ret;
2690
a360bb1a 2691 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2692 if (ret)
2693 return ret;
2694
61050808
CW
2695 if (obj->fence_reg == I915_FENCE_REG_NONE)
2696 return 0;
d9e86c0e 2697
61050808
CW
2698 i915_gem_object_update_fence(obj,
2699 &dev_priv->fence_regs[obj->fence_reg],
2700 false);
2701 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2702
2703 return 0;
2704}
2705
2706static struct drm_i915_fence_reg *
a360bb1a 2707i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2708{
ae3db24a 2709 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2710 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2711 int i;
ae3db24a
DV
2712
2713 /* First try to find a free reg */
d9e86c0e 2714 avail = NULL;
ae3db24a
DV
2715 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2716 reg = &dev_priv->fence_regs[i];
2717 if (!reg->obj)
d9e86c0e 2718 return reg;
ae3db24a 2719
1690e1eb 2720 if (!reg->pin_count)
d9e86c0e 2721 avail = reg;
ae3db24a
DV
2722 }
2723
d9e86c0e
CW
2724 if (avail == NULL)
2725 return NULL;
ae3db24a
DV
2726
2727 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2728 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2729 if (reg->pin_count)
ae3db24a
DV
2730 continue;
2731
8fe301ad 2732 return reg;
ae3db24a
DV
2733 }
2734
8fe301ad 2735 return NULL;
ae3db24a
DV
2736}
2737
de151cf6 2738/**
9a5a53b3 2739 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2740 * @obj: object to map through a fence reg
2741 *
2742 * When mapping objects through the GTT, userspace wants to be able to write
2743 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2744 * This function walks the fence regs looking for a free one for @obj,
2745 * stealing one if it can't find any.
2746 *
2747 * It then sets up the reg based on the object's properties: address, pitch
2748 * and tiling format.
9a5a53b3
CW
2749 *
2750 * For an untiled surface, this removes any existing fence.
de151cf6 2751 */
8c4b8c3f 2752int
06d98131 2753i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2754{
05394f39 2755 struct drm_device *dev = obj->base.dev;
79e53945 2756 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2757 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2758 struct drm_i915_fence_reg *reg;
ae3db24a 2759 int ret;
de151cf6 2760
14415745
CW
2761 /* Have we updated the tiling parameters upon the object and so
2762 * will need to serialise the write to the associated fence register?
2763 */
5d82e3e6 2764 if (obj->fence_dirty) {
14415745
CW
2765 ret = i915_gem_object_flush_fence(obj);
2766 if (ret)
2767 return ret;
2768 }
9a5a53b3 2769
d9e86c0e 2770 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2771 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2772 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2773 if (!obj->fence_dirty) {
14415745
CW
2774 list_move_tail(&reg->lru_list,
2775 &dev_priv->mm.fence_list);
2776 return 0;
2777 }
2778 } else if (enable) {
2779 reg = i915_find_fence_reg(dev);
2780 if (reg == NULL)
2781 return -EDEADLK;
d9e86c0e 2782
14415745
CW
2783 if (reg->obj) {
2784 struct drm_i915_gem_object *old = reg->obj;
2785
2786 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2787 if (ret)
2788 return ret;
2789
14415745 2790 i915_gem_object_fence_lost(old);
29c5a587 2791 }
14415745 2792 } else
a09ba7fa 2793 return 0;
a09ba7fa 2794
14415745 2795 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2796 obj->fence_dirty = false;
14415745 2797
9ce079e4 2798 return 0;
de151cf6
JB
2799}
2800
42d6ab48
CW
2801static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2802 struct drm_mm_node *gtt_space,
2803 unsigned long cache_level)
2804{
2805 struct drm_mm_node *other;
2806
2807 /* On non-LLC machines we have to be careful when putting differing
2808 * types of snoopable memory together to avoid the prefetcher
2809 * crossing memory domains and dieing.
2810 */
2811 if (HAS_LLC(dev))
2812 return true;
2813
2814 if (gtt_space == NULL)
2815 return true;
2816
2817 if (list_empty(&gtt_space->node_list))
2818 return true;
2819
2820 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2821 if (other->allocated && !other->hole_follows && other->color != cache_level)
2822 return false;
2823
2824 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2825 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2826 return false;
2827
2828 return true;
2829}
2830
2831static void i915_gem_verify_gtt(struct drm_device *dev)
2832{
2833#if WATCH_GTT
2834 struct drm_i915_private *dev_priv = dev->dev_private;
2835 struct drm_i915_gem_object *obj;
2836 int err = 0;
2837
2838 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2839 if (obj->gtt_space == NULL) {
2840 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2841 err++;
2842 continue;
2843 }
2844
2845 if (obj->cache_level != obj->gtt_space->color) {
2846 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2847 obj->gtt_space->start,
2848 obj->gtt_space->start + obj->gtt_space->size,
2849 obj->cache_level,
2850 obj->gtt_space->color);
2851 err++;
2852 continue;
2853 }
2854
2855 if (!i915_gem_valid_gtt_space(dev,
2856 obj->gtt_space,
2857 obj->cache_level)) {
2858 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2859 obj->gtt_space->start,
2860 obj->gtt_space->start + obj->gtt_space->size,
2861 obj->cache_level);
2862 err++;
2863 continue;
2864 }
2865 }
2866
2867 WARN_ON(err);
2868#endif
2869}
2870
673a394b
EA
2871/**
2872 * Finds free space in the GTT aperture and binds the object there.
2873 */
2874static int
05394f39 2875i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2876 unsigned alignment,
86a1ee26
CW
2877 bool map_and_fenceable,
2878 bool nonblocking)
673a394b 2879{
05394f39 2880 struct drm_device *dev = obj->base.dev;
673a394b 2881 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2882 struct drm_mm_node *free_space;
5e783301 2883 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2884 bool mappable, fenceable;
07f73f69 2885 int ret;
673a394b 2886
05394f39 2887 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2888 DRM_ERROR("Attempting to bind a purgeable object\n");
2889 return -EINVAL;
2890 }
2891
e28f8711
CW
2892 fence_size = i915_gem_get_gtt_size(dev,
2893 obj->base.size,
2894 obj->tiling_mode);
2895 fence_alignment = i915_gem_get_gtt_alignment(dev,
2896 obj->base.size,
2897 obj->tiling_mode);
2898 unfenced_alignment =
2899 i915_gem_get_unfenced_gtt_alignment(dev,
2900 obj->base.size,
2901 obj->tiling_mode);
a00b10c3 2902
673a394b 2903 if (alignment == 0)
5e783301
DV
2904 alignment = map_and_fenceable ? fence_alignment :
2905 unfenced_alignment;
75e9e915 2906 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2907 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2908 return -EINVAL;
2909 }
2910
05394f39 2911 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2912
654fc607
CW
2913 /* If the object is bigger than the entire aperture, reject it early
2914 * before evicting everything in a vain attempt to find space.
2915 */
05394f39 2916 if (obj->base.size >
75e9e915 2917 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2918 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2919 return -E2BIG;
2920 }
2921
37e680a1 2922 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2923 if (ret)
2924 return ret;
2925
673a394b 2926 search_free:
75e9e915 2927 if (map_and_fenceable)
920afa77 2928 free_space =
42d6ab48
CW
2929 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2930 size, alignment, obj->cache_level,
2931 0, dev_priv->mm.gtt_mappable_end,
2932 false);
920afa77 2933 else
42d6ab48
CW
2934 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2935 size, alignment, obj->cache_level,
2936 false);
920afa77
DV
2937
2938 if (free_space != NULL) {
75e9e915 2939 if (map_and_fenceable)
05394f39 2940 obj->gtt_space =
920afa77 2941 drm_mm_get_block_range_generic(free_space,
42d6ab48 2942 size, alignment, obj->cache_level,
6b9d89b4 2943 0, dev_priv->mm.gtt_mappable_end,
42d6ab48 2944 false);
920afa77 2945 else
05394f39 2946 obj->gtt_space =
42d6ab48
CW
2947 drm_mm_get_block_generic(free_space,
2948 size, alignment, obj->cache_level,
2949 false);
920afa77 2950 }
05394f39 2951 if (obj->gtt_space == NULL) {
75e9e915 2952 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2953 obj->cache_level,
86a1ee26
CW
2954 map_and_fenceable,
2955 nonblocking);
9731129c 2956 if (ret)
673a394b 2957 return ret;
9731129c 2958
673a394b
EA
2959 goto search_free;
2960 }
42d6ab48
CW
2961 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2962 obj->gtt_space,
2963 obj->cache_level))) {
05394f39
CW
2964 drm_mm_put_block(obj->gtt_space);
2965 obj->gtt_space = NULL;
42d6ab48 2966 return -EINVAL;
673a394b
EA
2967 }
2968
673a394b 2969
74163907 2970 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2971 if (ret) {
05394f39
CW
2972 drm_mm_put_block(obj->gtt_space);
2973 obj->gtt_space = NULL;
6c085a72 2974 return ret;
673a394b 2975 }
673a394b 2976
0ebb9829
DV
2977 if (!dev_priv->mm.aliasing_ppgtt)
2978 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2979
6c085a72 2980 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2981 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2982
6299f992 2983 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2984
75e9e915 2985 fenceable =
05394f39 2986 obj->gtt_space->size == fence_size &&
0206e353 2987 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2988
75e9e915 2989 mappable =
05394f39 2990 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2991
05394f39 2992 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2993
db53a302 2994 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 2995 i915_gem_verify_gtt(dev);
673a394b
EA
2996 return 0;
2997}
2998
2999void
05394f39 3000i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3001{
673a394b
EA
3002 /* If we don't have a page list set up, then we're not pinned
3003 * to GPU, and we can ignore the cache flush because it'll happen
3004 * again at bind time.
3005 */
05394f39 3006 if (obj->pages == NULL)
673a394b
EA
3007 return;
3008
9c23f7fc
CW
3009 /* If the GPU is snooping the contents of the CPU cache,
3010 * we do not need to manually clear the CPU cache lines. However,
3011 * the caches are only snooped when the render cache is
3012 * flushed/invalidated. As we always have to emit invalidations
3013 * and flushes when moving into and out of the RENDER domain, correct
3014 * snooping behaviour occurs naturally as the result of our domain
3015 * tracking.
3016 */
3017 if (obj->cache_level != I915_CACHE_NONE)
3018 return;
3019
1c5d22f7 3020 trace_i915_gem_object_clflush(obj);
cfa16a0d 3021
9da3da66 3022 drm_clflush_sg(obj->pages);
e47c68e9
EA
3023}
3024
3025/** Flushes the GTT write domain for the object if it's dirty. */
3026static void
05394f39 3027i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3028{
1c5d22f7
CW
3029 uint32_t old_write_domain;
3030
05394f39 3031 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3032 return;
3033
63256ec5 3034 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3035 * to it immediately go to main memory as far as we know, so there's
3036 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3037 *
3038 * However, we do have to enforce the order so that all writes through
3039 * the GTT land before any writes to the device, such as updates to
3040 * the GATT itself.
e47c68e9 3041 */
63256ec5
CW
3042 wmb();
3043
05394f39
CW
3044 old_write_domain = obj->base.write_domain;
3045 obj->base.write_domain = 0;
1c5d22f7
CW
3046
3047 trace_i915_gem_object_change_domain(obj,
05394f39 3048 obj->base.read_domains,
1c5d22f7 3049 old_write_domain);
e47c68e9
EA
3050}
3051
3052/** Flushes the CPU write domain for the object if it's dirty. */
3053static void
05394f39 3054i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3055{
1c5d22f7 3056 uint32_t old_write_domain;
e47c68e9 3057
05394f39 3058 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3059 return;
3060
3061 i915_gem_clflush_object(obj);
40ce6575 3062 intel_gtt_chipset_flush();
05394f39
CW
3063 old_write_domain = obj->base.write_domain;
3064 obj->base.write_domain = 0;
1c5d22f7
CW
3065
3066 trace_i915_gem_object_change_domain(obj,
05394f39 3067 obj->base.read_domains,
1c5d22f7 3068 old_write_domain);
e47c68e9
EA
3069}
3070
2ef7eeaa
EA
3071/**
3072 * Moves a single object to the GTT read, and possibly write domain.
3073 *
3074 * This function returns when the move is complete, including waiting on
3075 * flushes to occur.
3076 */
79e53945 3077int
2021746e 3078i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3079{
8325a09d 3080 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3081 uint32_t old_write_domain, old_read_domains;
e47c68e9 3082 int ret;
2ef7eeaa 3083
02354392 3084 /* Not valid to be called on unbound objects. */
05394f39 3085 if (obj->gtt_space == NULL)
02354392
EA
3086 return -EINVAL;
3087
8d7e3de1
CW
3088 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3089 return 0;
3090
0201f1ec 3091 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3092 if (ret)
3093 return ret;
3094
7213342d 3095 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3096
05394f39
CW
3097 old_write_domain = obj->base.write_domain;
3098 old_read_domains = obj->base.read_domains;
1c5d22f7 3099
e47c68e9
EA
3100 /* It should now be out of any other write domains, and we can update
3101 * the domain values for our changes.
3102 */
05394f39
CW
3103 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3104 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3105 if (write) {
05394f39
CW
3106 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3107 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3108 obj->dirty = 1;
2ef7eeaa
EA
3109 }
3110
1c5d22f7
CW
3111 trace_i915_gem_object_change_domain(obj,
3112 old_read_domains,
3113 old_write_domain);
3114
8325a09d
CW
3115 /* And bump the LRU for this access */
3116 if (i915_gem_object_is_inactive(obj))
3117 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3118
e47c68e9
EA
3119 return 0;
3120}
3121
e4ffd173
CW
3122int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3123 enum i915_cache_level cache_level)
3124{
7bddb01f
DV
3125 struct drm_device *dev = obj->base.dev;
3126 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3127 int ret;
3128
3129 if (obj->cache_level == cache_level)
3130 return 0;
3131
3132 if (obj->pin_count) {
3133 DRM_DEBUG("can not change the cache level of pinned objects\n");
3134 return -EBUSY;
3135 }
3136
42d6ab48
CW
3137 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3138 ret = i915_gem_object_unbind(obj);
3139 if (ret)
3140 return ret;
3141 }
3142
e4ffd173
CW
3143 if (obj->gtt_space) {
3144 ret = i915_gem_object_finish_gpu(obj);
3145 if (ret)
3146 return ret;
3147
3148 i915_gem_object_finish_gtt(obj);
3149
3150 /* Before SandyBridge, you could not use tiling or fence
3151 * registers with snooped memory, so relinquish any fences
3152 * currently pointing to our region in the aperture.
3153 */
42d6ab48 3154 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3155 ret = i915_gem_object_put_fence(obj);
3156 if (ret)
3157 return ret;
3158 }
3159
74898d7e
DV
3160 if (obj->has_global_gtt_mapping)
3161 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3162 if (obj->has_aliasing_ppgtt_mapping)
3163 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3164 obj, cache_level);
42d6ab48
CW
3165
3166 obj->gtt_space->color = cache_level;
e4ffd173
CW
3167 }
3168
3169 if (cache_level == I915_CACHE_NONE) {
3170 u32 old_read_domains, old_write_domain;
3171
3172 /* If we're coming from LLC cached, then we haven't
3173 * actually been tracking whether the data is in the
3174 * CPU cache or not, since we only allow one bit set
3175 * in obj->write_domain and have been skipping the clflushes.
3176 * Just set it to the CPU cache for now.
3177 */
3178 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3179 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3180
3181 old_read_domains = obj->base.read_domains;
3182 old_write_domain = obj->base.write_domain;
3183
3184 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3185 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3186
3187 trace_i915_gem_object_change_domain(obj,
3188 old_read_domains,
3189 old_write_domain);
3190 }
3191
3192 obj->cache_level = cache_level;
42d6ab48 3193 i915_gem_verify_gtt(dev);
e4ffd173
CW
3194 return 0;
3195}
3196
199adf40
BW
3197int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3198 struct drm_file *file)
e6994aee 3199{
199adf40 3200 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3201 struct drm_i915_gem_object *obj;
3202 int ret;
3203
3204 ret = i915_mutex_lock_interruptible(dev);
3205 if (ret)
3206 return ret;
3207
3208 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3209 if (&obj->base == NULL) {
3210 ret = -ENOENT;
3211 goto unlock;
3212 }
3213
199adf40 3214 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3215
3216 drm_gem_object_unreference(&obj->base);
3217unlock:
3218 mutex_unlock(&dev->struct_mutex);
3219 return ret;
3220}
3221
199adf40
BW
3222int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3223 struct drm_file *file)
e6994aee 3224{
199adf40 3225 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3226 struct drm_i915_gem_object *obj;
3227 enum i915_cache_level level;
3228 int ret;
3229
199adf40
BW
3230 switch (args->caching) {
3231 case I915_CACHING_NONE:
e6994aee
CW
3232 level = I915_CACHE_NONE;
3233 break;
199adf40 3234 case I915_CACHING_CACHED:
e6994aee
CW
3235 level = I915_CACHE_LLC;
3236 break;
3237 default:
3238 return -EINVAL;
3239 }
3240
3bc2913e
BW
3241 ret = i915_mutex_lock_interruptible(dev);
3242 if (ret)
3243 return ret;
3244
e6994aee
CW
3245 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3246 if (&obj->base == NULL) {
3247 ret = -ENOENT;
3248 goto unlock;
3249 }
3250
3251 ret = i915_gem_object_set_cache_level(obj, level);
3252
3253 drm_gem_object_unreference(&obj->base);
3254unlock:
3255 mutex_unlock(&dev->struct_mutex);
3256 return ret;
3257}
3258
b9241ea3 3259/*
2da3b9b9
CW
3260 * Prepare buffer for display plane (scanout, cursors, etc).
3261 * Can be called from an uninterruptible phase (modesetting) and allows
3262 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3263 */
3264int
2da3b9b9
CW
3265i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3266 u32 alignment,
919926ae 3267 struct intel_ring_buffer *pipelined)
b9241ea3 3268{
2da3b9b9 3269 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3270 int ret;
3271
0be73284 3272 if (pipelined != obj->ring) {
2911a35b
BW
3273 ret = i915_gem_object_sync(obj, pipelined);
3274 if (ret)
b9241ea3
ZW
3275 return ret;
3276 }
3277
a7ef0640
EA
3278 /* The display engine is not coherent with the LLC cache on gen6. As
3279 * a result, we make sure that the pinning that is about to occur is
3280 * done with uncached PTEs. This is lowest common denominator for all
3281 * chipsets.
3282 *
3283 * However for gen6+, we could do better by using the GFDT bit instead
3284 * of uncaching, which would allow us to flush all the LLC-cached data
3285 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3286 */
3287 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3288 if (ret)
3289 return ret;
3290
2da3b9b9
CW
3291 /* As the user may map the buffer once pinned in the display plane
3292 * (e.g. libkms for the bootup splash), we have to ensure that we
3293 * always use map_and_fenceable for all scanout buffers.
3294 */
86a1ee26 3295 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3296 if (ret)
3297 return ret;
3298
b118c1e3
CW
3299 i915_gem_object_flush_cpu_write_domain(obj);
3300
2da3b9b9 3301 old_write_domain = obj->base.write_domain;
05394f39 3302 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3303
3304 /* It should now be out of any other write domains, and we can update
3305 * the domain values for our changes.
3306 */
e5f1d962 3307 obj->base.write_domain = 0;
05394f39 3308 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3309
3310 trace_i915_gem_object_change_domain(obj,
3311 old_read_domains,
2da3b9b9 3312 old_write_domain);
b9241ea3
ZW
3313
3314 return 0;
3315}
3316
85345517 3317int
a8198eea 3318i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3319{
88241785
CW
3320 int ret;
3321
a8198eea 3322 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3323 return 0;
3324
0201f1ec 3325 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3326 if (ret)
3327 return ret;
3328
a8198eea
CW
3329 /* Ensure that we invalidate the GPU's caches and TLBs. */
3330 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3331 return 0;
85345517
CW
3332}
3333
e47c68e9
EA
3334/**
3335 * Moves a single object to the CPU read, and possibly write domain.
3336 *
3337 * This function returns when the move is complete, including waiting on
3338 * flushes to occur.
3339 */
dabdfe02 3340int
919926ae 3341i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3342{
1c5d22f7 3343 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3344 int ret;
3345
8d7e3de1
CW
3346 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3347 return 0;
3348
0201f1ec 3349 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3350 if (ret)
3351 return ret;
3352
e47c68e9 3353 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3354
05394f39
CW
3355 old_write_domain = obj->base.write_domain;
3356 old_read_domains = obj->base.read_domains;
1c5d22f7 3357
e47c68e9 3358 /* Flush the CPU cache if it's still invalid. */
05394f39 3359 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3360 i915_gem_clflush_object(obj);
2ef7eeaa 3361
05394f39 3362 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3363 }
3364
3365 /* It should now be out of any other write domains, and we can update
3366 * the domain values for our changes.
3367 */
05394f39 3368 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3369
3370 /* If we're writing through the CPU, then the GPU read domains will
3371 * need to be invalidated at next use.
3372 */
3373 if (write) {
05394f39
CW
3374 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3375 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3376 }
2ef7eeaa 3377
1c5d22f7
CW
3378 trace_i915_gem_object_change_domain(obj,
3379 old_read_domains,
3380 old_write_domain);
3381
2ef7eeaa
EA
3382 return 0;
3383}
3384
673a394b
EA
3385/* Throttle our rendering by waiting until the ring has completed our requests
3386 * emitted over 20 msec ago.
3387 *
b962442e
EA
3388 * Note that if we were to use the current jiffies each time around the loop,
3389 * we wouldn't escape the function with any frames outstanding if the time to
3390 * render a frame was over 20ms.
3391 *
673a394b
EA
3392 * This should get us reasonable parallelism between CPU and GPU but also
3393 * relatively low latency when blocking on a particular request to finish.
3394 */
40a5f0de 3395static int
f787a5f5 3396i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3397{
f787a5f5
CW
3398 struct drm_i915_private *dev_priv = dev->dev_private;
3399 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3400 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3401 struct drm_i915_gem_request *request;
3402 struct intel_ring_buffer *ring = NULL;
3403 u32 seqno = 0;
3404 int ret;
93533c29 3405
e110e8d6
CW
3406 if (atomic_read(&dev_priv->mm.wedged))
3407 return -EIO;
3408
1c25595f 3409 spin_lock(&file_priv->mm.lock);
f787a5f5 3410 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3411 if (time_after_eq(request->emitted_jiffies, recent_enough))
3412 break;
40a5f0de 3413
f787a5f5
CW
3414 ring = request->ring;
3415 seqno = request->seqno;
b962442e 3416 }
1c25595f 3417 spin_unlock(&file_priv->mm.lock);
40a5f0de 3418
f787a5f5
CW
3419 if (seqno == 0)
3420 return 0;
2bc43b5c 3421
5c81fe85 3422 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3423 if (ret == 0)
3424 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3425
3426 return ret;
3427}
3428
673a394b 3429int
05394f39
CW
3430i915_gem_object_pin(struct drm_i915_gem_object *obj,
3431 uint32_t alignment,
86a1ee26
CW
3432 bool map_and_fenceable,
3433 bool nonblocking)
673a394b 3434{
673a394b
EA
3435 int ret;
3436
7e81a42e
CW
3437 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3438 return -EBUSY;
ac0c6b5a 3439
05394f39
CW
3440 if (obj->gtt_space != NULL) {
3441 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3442 (map_and_fenceable && !obj->map_and_fenceable)) {
3443 WARN(obj->pin_count,
ae7d49d8 3444 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3445 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3446 " obj->map_and_fenceable=%d\n",
05394f39 3447 obj->gtt_offset, alignment,
75e9e915 3448 map_and_fenceable,
05394f39 3449 obj->map_and_fenceable);
ac0c6b5a
CW
3450 ret = i915_gem_object_unbind(obj);
3451 if (ret)
3452 return ret;
3453 }
3454 }
3455
05394f39 3456 if (obj->gtt_space == NULL) {
a00b10c3 3457 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3458 map_and_fenceable,
3459 nonblocking);
9731129c 3460 if (ret)
673a394b 3461 return ret;
22c344e9 3462 }
76446cac 3463
74898d7e
DV
3464 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3465 i915_gem_gtt_bind_object(obj, obj->cache_level);
3466
1b50247a 3467 obj->pin_count++;
6299f992 3468 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3469
3470 return 0;
3471}
3472
3473void
05394f39 3474i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3475{
05394f39
CW
3476 BUG_ON(obj->pin_count == 0);
3477 BUG_ON(obj->gtt_space == NULL);
673a394b 3478
1b50247a 3479 if (--obj->pin_count == 0)
6299f992 3480 obj->pin_mappable = false;
673a394b
EA
3481}
3482
3483int
3484i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3485 struct drm_file *file)
673a394b
EA
3486{
3487 struct drm_i915_gem_pin *args = data;
05394f39 3488 struct drm_i915_gem_object *obj;
673a394b
EA
3489 int ret;
3490
1d7cfea1
CW
3491 ret = i915_mutex_lock_interruptible(dev);
3492 if (ret)
3493 return ret;
673a394b 3494
05394f39 3495 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3496 if (&obj->base == NULL) {
1d7cfea1
CW
3497 ret = -ENOENT;
3498 goto unlock;
673a394b 3499 }
673a394b 3500
05394f39 3501 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3502 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3503 ret = -EINVAL;
3504 goto out;
3ef94daa
CW
3505 }
3506
05394f39 3507 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3508 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3509 args->handle);
1d7cfea1
CW
3510 ret = -EINVAL;
3511 goto out;
79e53945
JB
3512 }
3513
05394f39
CW
3514 obj->user_pin_count++;
3515 obj->pin_filp = file;
3516 if (obj->user_pin_count == 1) {
86a1ee26 3517 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3518 if (ret)
3519 goto out;
673a394b
EA
3520 }
3521
3522 /* XXX - flush the CPU caches for pinned objects
3523 * as the X server doesn't manage domains yet
3524 */
e47c68e9 3525 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3526 args->offset = obj->gtt_offset;
1d7cfea1 3527out:
05394f39 3528 drm_gem_object_unreference(&obj->base);
1d7cfea1 3529unlock:
673a394b 3530 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3531 return ret;
673a394b
EA
3532}
3533
3534int
3535i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3536 struct drm_file *file)
673a394b
EA
3537{
3538 struct drm_i915_gem_pin *args = data;
05394f39 3539 struct drm_i915_gem_object *obj;
76c1dec1 3540 int ret;
673a394b 3541
1d7cfea1
CW
3542 ret = i915_mutex_lock_interruptible(dev);
3543 if (ret)
3544 return ret;
673a394b 3545
05394f39 3546 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3547 if (&obj->base == NULL) {
1d7cfea1
CW
3548 ret = -ENOENT;
3549 goto unlock;
673a394b 3550 }
76c1dec1 3551
05394f39 3552 if (obj->pin_filp != file) {
79e53945
JB
3553 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3554 args->handle);
1d7cfea1
CW
3555 ret = -EINVAL;
3556 goto out;
79e53945 3557 }
05394f39
CW
3558 obj->user_pin_count--;
3559 if (obj->user_pin_count == 0) {
3560 obj->pin_filp = NULL;
79e53945
JB
3561 i915_gem_object_unpin(obj);
3562 }
673a394b 3563
1d7cfea1 3564out:
05394f39 3565 drm_gem_object_unreference(&obj->base);
1d7cfea1 3566unlock:
673a394b 3567 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3568 return ret;
673a394b
EA
3569}
3570
3571int
3572i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3573 struct drm_file *file)
673a394b
EA
3574{
3575 struct drm_i915_gem_busy *args = data;
05394f39 3576 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3577 int ret;
3578
76c1dec1 3579 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3580 if (ret)
76c1dec1 3581 return ret;
673a394b 3582
05394f39 3583 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3584 if (&obj->base == NULL) {
1d7cfea1
CW
3585 ret = -ENOENT;
3586 goto unlock;
673a394b 3587 }
d1b851fc 3588
0be555b6
CW
3589 /* Count all active objects as busy, even if they are currently not used
3590 * by the gpu. Users of this interface expect objects to eventually
3591 * become non-busy without any further actions, therefore emit any
3592 * necessary flushes here.
c4de0a5d 3593 */
30dfebf3 3594 ret = i915_gem_object_flush_active(obj);
0be555b6 3595
30dfebf3 3596 args->busy = obj->active;
e9808edd
CW
3597 if (obj->ring) {
3598 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3599 args->busy |= intel_ring_flag(obj->ring) << 16;
3600 }
673a394b 3601
05394f39 3602 drm_gem_object_unreference(&obj->base);
1d7cfea1 3603unlock:
673a394b 3604 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3605 return ret;
673a394b
EA
3606}
3607
3608int
3609i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3610 struct drm_file *file_priv)
3611{
0206e353 3612 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3613}
3614
3ef94daa
CW
3615int
3616i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3617 struct drm_file *file_priv)
3618{
3619 struct drm_i915_gem_madvise *args = data;
05394f39 3620 struct drm_i915_gem_object *obj;
76c1dec1 3621 int ret;
3ef94daa
CW
3622
3623 switch (args->madv) {
3624 case I915_MADV_DONTNEED:
3625 case I915_MADV_WILLNEED:
3626 break;
3627 default:
3628 return -EINVAL;
3629 }
3630
1d7cfea1
CW
3631 ret = i915_mutex_lock_interruptible(dev);
3632 if (ret)
3633 return ret;
3634
05394f39 3635 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3636 if (&obj->base == NULL) {
1d7cfea1
CW
3637 ret = -ENOENT;
3638 goto unlock;
3ef94daa 3639 }
3ef94daa 3640
05394f39 3641 if (obj->pin_count) {
1d7cfea1
CW
3642 ret = -EINVAL;
3643 goto out;
3ef94daa
CW
3644 }
3645
05394f39
CW
3646 if (obj->madv != __I915_MADV_PURGED)
3647 obj->madv = args->madv;
3ef94daa 3648
6c085a72
CW
3649 /* if the object is no longer attached, discard its backing storage */
3650 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3651 i915_gem_object_truncate(obj);
3652
05394f39 3653 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3654
1d7cfea1 3655out:
05394f39 3656 drm_gem_object_unreference(&obj->base);
1d7cfea1 3657unlock:
3ef94daa 3658 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3659 return ret;
3ef94daa
CW
3660}
3661
37e680a1
CW
3662void i915_gem_object_init(struct drm_i915_gem_object *obj,
3663 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3664{
0327d6ba
CW
3665 INIT_LIST_HEAD(&obj->mm_list);
3666 INIT_LIST_HEAD(&obj->gtt_list);
3667 INIT_LIST_HEAD(&obj->ring_list);
3668 INIT_LIST_HEAD(&obj->exec_list);
3669
37e680a1
CW
3670 obj->ops = ops;
3671
0327d6ba
CW
3672 obj->fence_reg = I915_FENCE_REG_NONE;
3673 obj->madv = I915_MADV_WILLNEED;
3674 /* Avoid an unnecessary call to unbind on the first bind. */
3675 obj->map_and_fenceable = true;
3676
3677 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3678}
3679
37e680a1
CW
3680static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3681 .get_pages = i915_gem_object_get_pages_gtt,
3682 .put_pages = i915_gem_object_put_pages_gtt,
3683};
3684
05394f39
CW
3685struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3686 size_t size)
ac52bc56 3687{
c397b908 3688 struct drm_i915_gem_object *obj;
5949eac4 3689 struct address_space *mapping;
bed1ea95 3690 u32 mask;
ac52bc56 3691
c397b908
DV
3692 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3693 if (obj == NULL)
3694 return NULL;
673a394b 3695
c397b908
DV
3696 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3697 kfree(obj);
3698 return NULL;
3699 }
673a394b 3700
bed1ea95
CW
3701 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3702 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3703 /* 965gm cannot relocate objects above 4GiB. */
3704 mask &= ~__GFP_HIGHMEM;
3705 mask |= __GFP_DMA32;
3706 }
3707
5949eac4 3708 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3709 mapping_set_gfp_mask(mapping, mask);
5949eac4 3710
37e680a1 3711 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3712
c397b908
DV
3713 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3714 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3715
3d29b842
ED
3716 if (HAS_LLC(dev)) {
3717 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3718 * cache) for about a 10% performance improvement
3719 * compared to uncached. Graphics requests other than
3720 * display scanout are coherent with the CPU in
3721 * accessing this cache. This means in this mode we
3722 * don't need to clflush on the CPU side, and on the
3723 * GPU side we only need to flush internal caches to
3724 * get data visible to the CPU.
3725 *
3726 * However, we maintain the display planes as UC, and so
3727 * need to rebind when first used as such.
3728 */
3729 obj->cache_level = I915_CACHE_LLC;
3730 } else
3731 obj->cache_level = I915_CACHE_NONE;
3732
05394f39 3733 return obj;
c397b908
DV
3734}
3735
3736int i915_gem_init_object(struct drm_gem_object *obj)
3737{
3738 BUG();
de151cf6 3739
673a394b
EA
3740 return 0;
3741}
3742
1488fc08 3743void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3744{
1488fc08 3745 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3746 struct drm_device *dev = obj->base.dev;
be72615b 3747 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3748
26e12f89
CW
3749 trace_i915_gem_object_destroy(obj);
3750
1488fc08
CW
3751 if (obj->phys_obj)
3752 i915_gem_detach_phys_object(dev, obj);
3753
3754 obj->pin_count = 0;
3755 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3756 bool was_interruptible;
3757
3758 was_interruptible = dev_priv->mm.interruptible;
3759 dev_priv->mm.interruptible = false;
3760
3761 WARN_ON(i915_gem_object_unbind(obj));
3762
3763 dev_priv->mm.interruptible = was_interruptible;
3764 }
3765
a5570178 3766 obj->pages_pin_count = 0;
37e680a1 3767 i915_gem_object_put_pages(obj);
d8cb5086 3768 i915_gem_object_free_mmap_offset(obj);
de151cf6 3769
9da3da66
CW
3770 BUG_ON(obj->pages);
3771
2f745ad3
CW
3772 if (obj->base.import_attach)
3773 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 3774
05394f39
CW
3775 drm_gem_object_release(&obj->base);
3776 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3777
05394f39
CW
3778 kfree(obj->bit_17);
3779 kfree(obj);
673a394b
EA
3780}
3781
29105ccc
CW
3782int
3783i915_gem_idle(struct drm_device *dev)
3784{
3785 drm_i915_private_t *dev_priv = dev->dev_private;
3786 int ret;
28dfe52a 3787
29105ccc 3788 mutex_lock(&dev->struct_mutex);
1c5d22f7 3789
87acb0a5 3790 if (dev_priv->mm.suspended) {
29105ccc
CW
3791 mutex_unlock(&dev->struct_mutex);
3792 return 0;
28dfe52a
EA
3793 }
3794
b2da9fe5 3795 ret = i915_gpu_idle(dev);
6dbe2772
KP
3796 if (ret) {
3797 mutex_unlock(&dev->struct_mutex);
673a394b 3798 return ret;
6dbe2772 3799 }
b2da9fe5 3800 i915_gem_retire_requests(dev);
673a394b 3801
29105ccc 3802 /* Under UMS, be paranoid and evict. */
a39d7efc 3803 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3804 i915_gem_evict_everything(dev);
29105ccc 3805
312817a3
CW
3806 i915_gem_reset_fences(dev);
3807
29105ccc
CW
3808 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3809 * We need to replace this with a semaphore, or something.
3810 * And not confound mm.suspended!
3811 */
3812 dev_priv->mm.suspended = 1;
bc0c7f14 3813 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3814
3815 i915_kernel_lost_context(dev);
6dbe2772 3816 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3817
6dbe2772
KP
3818 mutex_unlock(&dev->struct_mutex);
3819
29105ccc
CW
3820 /* Cancel the retire work handler, which should be idle now. */
3821 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3822
673a394b
EA
3823 return 0;
3824}
3825
b9524a1e
BW
3826void i915_gem_l3_remap(struct drm_device *dev)
3827{
3828 drm_i915_private_t *dev_priv = dev->dev_private;
3829 u32 misccpctl;
3830 int i;
3831
3832 if (!IS_IVYBRIDGE(dev))
3833 return;
3834
3835 if (!dev_priv->mm.l3_remap_info)
3836 return;
3837
3838 misccpctl = I915_READ(GEN7_MISCCPCTL);
3839 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3840 POSTING_READ(GEN7_MISCCPCTL);
3841
3842 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3843 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3844 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3845 DRM_DEBUG("0x%x was already programmed to %x\n",
3846 GEN7_L3LOG_BASE + i, remap);
3847 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3848 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3849 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3850 }
3851
3852 /* Make sure all the writes land before disabling dop clock gating */
3853 POSTING_READ(GEN7_L3LOG_BASE);
3854
3855 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3856}
3857
f691e2f4
DV
3858void i915_gem_init_swizzling(struct drm_device *dev)
3859{
3860 drm_i915_private_t *dev_priv = dev->dev_private;
3861
11782b02 3862 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3863 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3864 return;
3865
3866 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3867 DISP_TILE_SURFACE_SWIZZLING);
3868
11782b02
DV
3869 if (IS_GEN5(dev))
3870 return;
3871
f691e2f4
DV
3872 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3873 if (IS_GEN6(dev))
6b26c86d 3874 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3875 else
6b26c86d 3876 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3877}
e21af88d
DV
3878
3879void i915_gem_init_ppgtt(struct drm_device *dev)
3880{
3881 drm_i915_private_t *dev_priv = dev->dev_private;
3882 uint32_t pd_offset;
3883 struct intel_ring_buffer *ring;
55a254ac
DV
3884 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3885 uint32_t __iomem *pd_addr;
3886 uint32_t pd_entry;
e21af88d
DV
3887 int i;
3888
3889 if (!dev_priv->mm.aliasing_ppgtt)
3890 return;
3891
55a254ac
DV
3892
3893 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3894 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3895 dma_addr_t pt_addr;
3896
3897 if (dev_priv->mm.gtt->needs_dmar)
3898 pt_addr = ppgtt->pt_dma_addr[i];
3899 else
3900 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3901
3902 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3903 pd_entry |= GEN6_PDE_VALID;
3904
3905 writel(pd_entry, pd_addr + i);
3906 }
3907 readl(pd_addr);
3908
3909 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3910 pd_offset /= 64; /* in cachelines, */
3911 pd_offset <<= 16;
3912
3913 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3914 uint32_t ecochk, gab_ctl, ecobits;
3915
3916 ecobits = I915_READ(GAC_ECO_BITS);
3917 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3918
3919 gab_ctl = I915_READ(GAB_CTL);
3920 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3921
3922 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3923 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3924 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3925 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3926 } else if (INTEL_INFO(dev)->gen >= 7) {
3927 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3928 /* GFX_MODE is per-ring on gen7+ */
3929 }
3930
b4519513 3931 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3932 if (INTEL_INFO(dev)->gen >= 7)
3933 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3934 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3935
3936 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3937 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3938 }
3939}
3940
67b1b571
CW
3941static bool
3942intel_enable_blt(struct drm_device *dev)
3943{
3944 if (!HAS_BLT(dev))
3945 return false;
3946
3947 /* The blitter was dysfunctional on early prototypes */
3948 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3949 DRM_INFO("BLT not supported on this pre-production hardware;"
3950 " graphics performance will be degraded.\n");
3951 return false;
3952 }
3953
3954 return true;
3955}
3956
8187a2b7 3957int
f691e2f4 3958i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3959{
3960 drm_i915_private_t *dev_priv = dev->dev_private;
3961 int ret;
68f95ba9 3962
8ecd1a66
DV
3963 if (!intel_enable_gtt())
3964 return -EIO;
3965
eda2d7f5
RV
3966 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3967 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3968
b9524a1e
BW
3969 i915_gem_l3_remap(dev);
3970
f691e2f4
DV
3971 i915_gem_init_swizzling(dev);
3972
5c1143bb 3973 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3974 if (ret)
b6913e4b 3975 return ret;
68f95ba9
CW
3976
3977 if (HAS_BSD(dev)) {
5c1143bb 3978 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3979 if (ret)
3980 goto cleanup_render_ring;
d1b851fc 3981 }
68f95ba9 3982
67b1b571 3983 if (intel_enable_blt(dev)) {
549f7365
CW
3984 ret = intel_init_blt_ring_buffer(dev);
3985 if (ret)
3986 goto cleanup_bsd_ring;
3987 }
3988
6f392d54
CW
3989 dev_priv->next_seqno = 1;
3990
254f965c
BW
3991 /*
3992 * XXX: There was some w/a described somewhere suggesting loading
3993 * contexts before PPGTT.
3994 */
3995 i915_gem_context_init(dev);
e21af88d
DV
3996 i915_gem_init_ppgtt(dev);
3997
68f95ba9
CW
3998 return 0;
3999
549f7365 4000cleanup_bsd_ring:
1ec14ad3 4001 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 4002cleanup_render_ring:
1ec14ad3 4003 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
4004 return ret;
4005}
4006
1070a42b
CW
4007static bool
4008intel_enable_ppgtt(struct drm_device *dev)
4009{
4010 if (i915_enable_ppgtt >= 0)
4011 return i915_enable_ppgtt;
4012
4013#ifdef CONFIG_INTEL_IOMMU
4014 /* Disable ppgtt on SNB if VT-d is on. */
4015 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4016 return false;
4017#endif
4018
4019 return true;
4020}
4021
4022int i915_gem_init(struct drm_device *dev)
4023{
4024 struct drm_i915_private *dev_priv = dev->dev_private;
4025 unsigned long gtt_size, mappable_size;
4026 int ret;
4027
4028 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4029 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4030
4031 mutex_lock(&dev->struct_mutex);
4032 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4033 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4034 * aperture accordingly when using aliasing ppgtt. */
4035 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4036
4037 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4038
4039 ret = i915_gem_init_aliasing_ppgtt(dev);
4040 if (ret) {
4041 mutex_unlock(&dev->struct_mutex);
4042 return ret;
4043 }
4044 } else {
4045 /* Let GEM Manage all of the aperture.
4046 *
4047 * However, leave one page at the end still bound to the scratch
4048 * page. There are a number of places where the hardware
4049 * apparently prefetches past the end of the object, and we've
4050 * seen multiple hangs with the GPU head pointer stuck in a
4051 * batchbuffer bound at the last page of the aperture. One page
4052 * should be enough to keep any prefetching inside of the
4053 * aperture.
4054 */
4055 i915_gem_init_global_gtt(dev, 0, mappable_size,
4056 gtt_size);
4057 }
4058
4059 ret = i915_gem_init_hw(dev);
4060 mutex_unlock(&dev->struct_mutex);
4061 if (ret) {
4062 i915_gem_cleanup_aliasing_ppgtt(dev);
4063 return ret;
4064 }
4065
53ca26ca
DV
4066 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4067 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4068 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4069 return 0;
4070}
4071
8187a2b7
ZN
4072void
4073i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4074{
4075 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4076 struct intel_ring_buffer *ring;
1ec14ad3 4077 int i;
8187a2b7 4078
b4519513
CW
4079 for_each_ring(ring, dev_priv, i)
4080 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4081}
4082
673a394b
EA
4083int
4084i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4085 struct drm_file *file_priv)
4086{
4087 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4088 int ret;
673a394b 4089
79e53945
JB
4090 if (drm_core_check_feature(dev, DRIVER_MODESET))
4091 return 0;
4092
ba1234d1 4093 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4094 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4095 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4096 }
4097
673a394b 4098 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4099 dev_priv->mm.suspended = 0;
4100
f691e2f4 4101 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4102 if (ret != 0) {
4103 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4104 return ret;
d816f6ac 4105 }
9bb2d6f9 4106
69dc4987 4107 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4108 mutex_unlock(&dev->struct_mutex);
dbb19d30 4109
5f35308b
CW
4110 ret = drm_irq_install(dev);
4111 if (ret)
4112 goto cleanup_ringbuffer;
dbb19d30 4113
673a394b 4114 return 0;
5f35308b
CW
4115
4116cleanup_ringbuffer:
4117 mutex_lock(&dev->struct_mutex);
4118 i915_gem_cleanup_ringbuffer(dev);
4119 dev_priv->mm.suspended = 1;
4120 mutex_unlock(&dev->struct_mutex);
4121
4122 return ret;
673a394b
EA
4123}
4124
4125int
4126i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4127 struct drm_file *file_priv)
4128{
79e53945
JB
4129 if (drm_core_check_feature(dev, DRIVER_MODESET))
4130 return 0;
4131
dbb19d30 4132 drm_irq_uninstall(dev);
e6890f6f 4133 return i915_gem_idle(dev);
673a394b
EA
4134}
4135
4136void
4137i915_gem_lastclose(struct drm_device *dev)
4138{
4139 int ret;
673a394b 4140
e806b495
EA
4141 if (drm_core_check_feature(dev, DRIVER_MODESET))
4142 return;
4143
6dbe2772
KP
4144 ret = i915_gem_idle(dev);
4145 if (ret)
4146 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4147}
4148
64193406
CW
4149static void
4150init_ring_lists(struct intel_ring_buffer *ring)
4151{
4152 INIT_LIST_HEAD(&ring->active_list);
4153 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4154}
4155
673a394b
EA
4156void
4157i915_gem_load(struct drm_device *dev)
4158{
b5aa8a0f 4159 int i;
673a394b
EA
4160 drm_i915_private_t *dev_priv = dev->dev_private;
4161
69dc4987 4162 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4163 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4164 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4165 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4166 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4167 for (i = 0; i < I915_NUM_RINGS; i++)
4168 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4169 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4170 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4171 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4172 i915_gem_retire_work_handler);
30dbf0c0 4173 init_completion(&dev_priv->error_completion);
31169714 4174
94400120
DA
4175 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4176 if (IS_GEN3(dev)) {
50743298
DV
4177 I915_WRITE(MI_ARB_STATE,
4178 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4179 }
4180
72bfa19c
CW
4181 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4182
de151cf6 4183 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4184 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4185 dev_priv->fence_reg_start = 3;
de151cf6 4186
a6c45cf0 4187 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4188 dev_priv->num_fence_regs = 16;
4189 else
4190 dev_priv->num_fence_regs = 8;
4191
b5aa8a0f 4192 /* Initialize fence registers to zero */
ada726c7 4193 i915_gem_reset_fences(dev);
10ed13e4 4194
673a394b 4195 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4196 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4197
ce453d81
CW
4198 dev_priv->mm.interruptible = true;
4199
17250b71
CW
4200 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4201 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4202 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4203}
71acb5eb
DA
4204
4205/*
4206 * Create a physically contiguous memory object for this object
4207 * e.g. for cursor + overlay regs
4208 */
995b6762
CW
4209static int i915_gem_init_phys_object(struct drm_device *dev,
4210 int id, int size, int align)
71acb5eb
DA
4211{
4212 drm_i915_private_t *dev_priv = dev->dev_private;
4213 struct drm_i915_gem_phys_object *phys_obj;
4214 int ret;
4215
4216 if (dev_priv->mm.phys_objs[id - 1] || !size)
4217 return 0;
4218
9a298b2a 4219 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4220 if (!phys_obj)
4221 return -ENOMEM;
4222
4223 phys_obj->id = id;
4224
6eeefaf3 4225 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4226 if (!phys_obj->handle) {
4227 ret = -ENOMEM;
4228 goto kfree_obj;
4229 }
4230#ifdef CONFIG_X86
4231 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4232#endif
4233
4234 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4235
4236 return 0;
4237kfree_obj:
9a298b2a 4238 kfree(phys_obj);
71acb5eb
DA
4239 return ret;
4240}
4241
995b6762 4242static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4243{
4244 drm_i915_private_t *dev_priv = dev->dev_private;
4245 struct drm_i915_gem_phys_object *phys_obj;
4246
4247 if (!dev_priv->mm.phys_objs[id - 1])
4248 return;
4249
4250 phys_obj = dev_priv->mm.phys_objs[id - 1];
4251 if (phys_obj->cur_obj) {
4252 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4253 }
4254
4255#ifdef CONFIG_X86
4256 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4257#endif
4258 drm_pci_free(dev, phys_obj->handle);
4259 kfree(phys_obj);
4260 dev_priv->mm.phys_objs[id - 1] = NULL;
4261}
4262
4263void i915_gem_free_all_phys_object(struct drm_device *dev)
4264{
4265 int i;
4266
260883c8 4267 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4268 i915_gem_free_phys_object(dev, i);
4269}
4270
4271void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4272 struct drm_i915_gem_object *obj)
71acb5eb 4273{
05394f39 4274 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4275 char *vaddr;
71acb5eb 4276 int i;
71acb5eb
DA
4277 int page_count;
4278
05394f39 4279 if (!obj->phys_obj)
71acb5eb 4280 return;
05394f39 4281 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4282
05394f39 4283 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4284 for (i = 0; i < page_count; i++) {
5949eac4 4285 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4286 if (!IS_ERR(page)) {
4287 char *dst = kmap_atomic(page);
4288 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4289 kunmap_atomic(dst);
4290
4291 drm_clflush_pages(&page, 1);
4292
4293 set_page_dirty(page);
4294 mark_page_accessed(page);
4295 page_cache_release(page);
4296 }
71acb5eb 4297 }
40ce6575 4298 intel_gtt_chipset_flush();
d78b47b9 4299
05394f39
CW
4300 obj->phys_obj->cur_obj = NULL;
4301 obj->phys_obj = NULL;
71acb5eb
DA
4302}
4303
4304int
4305i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4306 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4307 int id,
4308 int align)
71acb5eb 4309{
05394f39 4310 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4311 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4312 int ret = 0;
4313 int page_count;
4314 int i;
4315
4316 if (id > I915_MAX_PHYS_OBJECT)
4317 return -EINVAL;
4318
05394f39
CW
4319 if (obj->phys_obj) {
4320 if (obj->phys_obj->id == id)
71acb5eb
DA
4321 return 0;
4322 i915_gem_detach_phys_object(dev, obj);
4323 }
4324
71acb5eb
DA
4325 /* create a new object */
4326 if (!dev_priv->mm.phys_objs[id - 1]) {
4327 ret = i915_gem_init_phys_object(dev, id,
05394f39 4328 obj->base.size, align);
71acb5eb 4329 if (ret) {
05394f39
CW
4330 DRM_ERROR("failed to init phys object %d size: %zu\n",
4331 id, obj->base.size);
e5281ccd 4332 return ret;
71acb5eb
DA
4333 }
4334 }
4335
4336 /* bind to the object */
05394f39
CW
4337 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4338 obj->phys_obj->cur_obj = obj;
71acb5eb 4339
05394f39 4340 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4341
4342 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4343 struct page *page;
4344 char *dst, *src;
4345
5949eac4 4346 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4347 if (IS_ERR(page))
4348 return PTR_ERR(page);
71acb5eb 4349
ff75b9bc 4350 src = kmap_atomic(page);
05394f39 4351 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4352 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4353 kunmap_atomic(src);
71acb5eb 4354
e5281ccd
CW
4355 mark_page_accessed(page);
4356 page_cache_release(page);
4357 }
d78b47b9 4358
71acb5eb 4359 return 0;
71acb5eb
DA
4360}
4361
4362static int
05394f39
CW
4363i915_gem_phys_pwrite(struct drm_device *dev,
4364 struct drm_i915_gem_object *obj,
71acb5eb
DA
4365 struct drm_i915_gem_pwrite *args,
4366 struct drm_file *file_priv)
4367{
05394f39 4368 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4369 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4370
b47b30cc
CW
4371 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4372 unsigned long unwritten;
4373
4374 /* The physical object once assigned is fixed for the lifetime
4375 * of the obj, so we can safely drop the lock and continue
4376 * to access vaddr.
4377 */
4378 mutex_unlock(&dev->struct_mutex);
4379 unwritten = copy_from_user(vaddr, user_data, args->size);
4380 mutex_lock(&dev->struct_mutex);
4381 if (unwritten)
4382 return -EFAULT;
4383 }
71acb5eb 4384
40ce6575 4385 intel_gtt_chipset_flush();
71acb5eb
DA
4386 return 0;
4387}
b962442e 4388
f787a5f5 4389void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4390{
f787a5f5 4391 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4392
4393 /* Clean up our request list when the client is going away, so that
4394 * later retire_requests won't dereference our soon-to-be-gone
4395 * file_priv.
4396 */
1c25595f 4397 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4398 while (!list_empty(&file_priv->mm.request_list)) {
4399 struct drm_i915_gem_request *request;
4400
4401 request = list_first_entry(&file_priv->mm.request_list,
4402 struct drm_i915_gem_request,
4403 client_list);
4404 list_del(&request->client_list);
4405 request->file_priv = NULL;
4406 }
1c25595f 4407 spin_unlock(&file_priv->mm.lock);
b962442e 4408}
31169714 4409
31169714 4410static int
1495f230 4411i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4412{
17250b71
CW
4413 struct drm_i915_private *dev_priv =
4414 container_of(shrinker,
4415 struct drm_i915_private,
4416 mm.inactive_shrinker);
4417 struct drm_device *dev = dev_priv->dev;
6c085a72 4418 struct drm_i915_gem_object *obj;
1495f230 4419 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4420 int cnt;
4421
4422 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4423 return 0;
31169714 4424
6c085a72
CW
4425 if (nr_to_scan) {
4426 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4427 if (nr_to_scan > 0)
4428 i915_gem_shrink_all(dev_priv);
31169714
CW
4429 }
4430
17250b71 4431 cnt = 0;
6c085a72 4432 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4433 if (obj->pages_pin_count == 0)
4434 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4435 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4436 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4437 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4438
17250b71 4439 mutex_unlock(&dev->struct_mutex);
6c085a72 4440 return cnt;
31169714 4441}
This page took 0.730456 seconds and 5 git commands to generate.