drm/i915: ppgtt binding/unbinding support
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
673a394b 38
88241785 39static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
42static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
05394f39 47static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
48static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
d9e86c0e
CW
51static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
05394f39
CW
53static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
71acb5eb 55 struct drm_i915_gem_pwrite *args,
05394f39
CW
56 struct drm_file *file);
57static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 58
17250b71 59static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 60 struct shrink_control *sc);
8c59967c 61static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69}
70
71static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73{
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76}
77
21dd3734
CW
78static int
79i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
80{
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
21dd3734
CW
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
30dbf0c0
CW
104}
105
54cf91dc 106int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 107{
76c1dec1
CW
108 int ret;
109
21dd3734 110 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
23bc5982 118 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
119 return 0;
120}
30dbf0c0 121
7d1c4804 122static inline bool
05394f39 123i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 124{
05394f39 125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
126}
127
2021746e
CW
128void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
673a394b
EA
132{
133 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 134
bee4a186 135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 136
bee4a186
CW
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
73aa808f 140 dev_priv->mm.gtt_total = end - start;
fb7d516a 141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
142
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 145}
673a394b 146
79e53945
JB
147int
148i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
79e53945
JB
150{
151 struct drm_i915_gem_init *args = data;
2021746e
CW
152
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
79e53945
JB
156
157 mutex_lock(&dev->struct_mutex);
2021746e 158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
159 mutex_unlock(&dev->struct_mutex);
160
2021746e 161 return 0;
673a394b
EA
162}
163
5a125c3c
EA
164int
165i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 166 struct drm_file *file)
5a125c3c 167{
73aa808f 168 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 169 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
5a125c3c
EA
172
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
175
6299f992 176 pinned = 0;
73aa808f 177 mutex_lock(&dev->struct_mutex);
6299f992
CW
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
73aa808f 180 mutex_unlock(&dev->struct_mutex);
5a125c3c 181
6299f992 182 args->aper_size = dev_priv->mm.gtt_total;
0206e353 183 args->aper_available_size = args->aper_size - pinned;
6299f992 184
5a125c3c
EA
185 return 0;
186}
187
ff72145b
DA
188static int
189i915_gem_create(struct drm_file *file,
190 struct drm_device *dev,
191 uint64_t size,
192 uint32_t *handle_p)
673a394b 193{
05394f39 194 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
195 int ret;
196 u32 handle;
673a394b 197
ff72145b 198 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
199 if (size == 0)
200 return -EINVAL;
673a394b
EA
201
202 /* Allocate the new object */
ff72145b 203 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
204 if (obj == NULL)
205 return -ENOMEM;
206
05394f39 207 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 208 if (ret) {
05394f39
CW
209 drm_gem_object_release(&obj->base);
210 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 211 kfree(obj);
673a394b 212 return ret;
1dfd9754 213 }
673a394b 214
202f2fef 215 /* drop reference from allocate - handle holds it now */
05394f39 216 drm_gem_object_unreference(&obj->base);
202f2fef
CW
217 trace_i915_gem_object_create(obj);
218
ff72145b 219 *handle_p = handle;
673a394b
EA
220 return 0;
221}
222
ff72145b
DA
223int
224i915_gem_dumb_create(struct drm_file *file,
225 struct drm_device *dev,
226 struct drm_mode_create_dumb *args)
227{
228 /* have to work out size/pitch and return them */
ed0291fd 229 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
230 args->size = args->pitch * args->height;
231 return i915_gem_create(file, dev,
232 args->size, &args->handle);
233}
234
235int i915_gem_dumb_destroy(struct drm_file *file,
236 struct drm_device *dev,
237 uint32_t handle)
238{
239 return drm_gem_handle_delete(file, handle);
240}
241
242/**
243 * Creates a new mm object and returns a handle to it.
244 */
245int
246i915_gem_create_ioctl(struct drm_device *dev, void *data,
247 struct drm_file *file)
248{
249 struct drm_i915_gem_create *args = data;
250 return i915_gem_create(file, dev,
251 args->size, &args->handle);
252}
253
05394f39 254static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 255{
05394f39 256 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
257
258 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 259 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
260}
261
eb01459f
EA
262/**
263 * This is the fast shmem pread path, which attempts to copy_from_user directly
264 * from the backing pages of the object to the user's address space. On a
265 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
266 */
267static int
05394f39
CW
268i915_gem_shmem_pread_fast(struct drm_device *dev,
269 struct drm_i915_gem_object *obj,
eb01459f 270 struct drm_i915_gem_pread *args,
05394f39 271 struct drm_file *file)
eb01459f 272{
05394f39 273 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 274 ssize_t remain;
e5281ccd 275 loff_t offset;
eb01459f
EA
276 char __user *user_data;
277 int page_offset, page_length;
eb01459f
EA
278
279 user_data = (char __user *) (uintptr_t) args->data_ptr;
280 remain = args->size;
281
eb01459f
EA
282 offset = args->offset;
283
284 while (remain > 0) {
e5281ccd
CW
285 struct page *page;
286 char *vaddr;
287 int ret;
288
eb01459f
EA
289 /* Operation in this page
290 *
eb01459f
EA
291 * page_offset = offset within page
292 * page_length = bytes to copy for this page
293 */
c8cbbb8b 294 page_offset = offset_in_page(offset);
eb01459f
EA
295 page_length = remain;
296 if ((page_offset + remain) > PAGE_SIZE)
297 page_length = PAGE_SIZE - page_offset;
298
5949eac4 299 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
300 if (IS_ERR(page))
301 return PTR_ERR(page);
302
303 vaddr = kmap_atomic(page);
304 ret = __copy_to_user_inatomic(user_data,
305 vaddr + page_offset,
306 page_length);
307 kunmap_atomic(vaddr);
308
309 mark_page_accessed(page);
310 page_cache_release(page);
311 if (ret)
4f27b75d 312 return -EFAULT;
eb01459f
EA
313
314 remain -= page_length;
315 user_data += page_length;
316 offset += page_length;
317 }
318
4f27b75d 319 return 0;
eb01459f
EA
320}
321
8461d226
DV
322static inline int
323__copy_to_user_swizzled(char __user *cpu_vaddr,
324 const char *gpu_vaddr, int gpu_offset,
325 int length)
326{
327 int ret, cpu_offset = 0;
328
329 while (length > 0) {
330 int cacheline_end = ALIGN(gpu_offset + 1, 64);
331 int this_length = min(cacheline_end - gpu_offset, length);
332 int swizzled_gpu_offset = gpu_offset ^ 64;
333
334 ret = __copy_to_user(cpu_vaddr + cpu_offset,
335 gpu_vaddr + swizzled_gpu_offset,
336 this_length);
337 if (ret)
338 return ret + length;
339
340 cpu_offset += this_length;
341 gpu_offset += this_length;
342 length -= this_length;
343 }
344
345 return 0;
346}
347
8c59967c
DV
348static inline int
349__copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
350 const char *cpu_vaddr,
351 int length)
352{
353 int ret, cpu_offset = 0;
354
355 while (length > 0) {
356 int cacheline_end = ALIGN(gpu_offset + 1, 64);
357 int this_length = min(cacheline_end - gpu_offset, length);
358 int swizzled_gpu_offset = gpu_offset ^ 64;
359
360 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
361 cpu_vaddr + cpu_offset,
362 this_length);
363 if (ret)
364 return ret + length;
365
366 cpu_offset += this_length;
367 gpu_offset += this_length;
368 length -= this_length;
369 }
370
371 return 0;
372}
373
eb01459f
EA
374/**
375 * This is the fallback shmem pread path, which allocates temporary storage
376 * in kernel space to copy_to_user into outside of the struct_mutex, so we
377 * can copy out of the object's backing pages while holding the struct mutex
378 * and not take page faults.
379 */
380static int
05394f39
CW
381i915_gem_shmem_pread_slow(struct drm_device *dev,
382 struct drm_i915_gem_object *obj,
eb01459f 383 struct drm_i915_gem_pread *args,
05394f39 384 struct drm_file *file)
eb01459f 385{
05394f39 386 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
8461d226 387 char __user *user_data;
eb01459f 388 ssize_t remain;
8461d226
DV
389 loff_t offset;
390 int shmem_page_offset, page_length, ret;
391 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
eb01459f 392
8461d226 393 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
394 remain = args->size;
395
8461d226 396 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 397
8461d226 398 offset = args->offset;
eb01459f 399
4f27b75d 400 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
401
402 while (remain > 0) {
e5281ccd 403 struct page *page;
8461d226 404 char *vaddr;
e5281ccd 405
eb01459f
EA
406 /* Operation in this page
407 *
eb01459f 408 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
409 * page_length = bytes to copy for this page
410 */
c8cbbb8b 411 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
412 page_length = remain;
413 if ((shmem_page_offset + page_length) > PAGE_SIZE)
414 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 415
5949eac4 416 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
b65552f0
JJ
417 if (IS_ERR(page)) {
418 ret = PTR_ERR(page);
419 goto out;
420 }
e5281ccd 421
8461d226
DV
422 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
423 (page_to_phys(page) & (1 << 17)) != 0;
424
425 vaddr = kmap(page);
426 if (page_do_bit17_swizzling)
427 ret = __copy_to_user_swizzled(user_data,
428 vaddr, shmem_page_offset,
429 page_length);
430 else
431 ret = __copy_to_user(user_data,
432 vaddr + shmem_page_offset,
433 page_length);
434 kunmap(page);
eb01459f 435
e5281ccd
CW
436 mark_page_accessed(page);
437 page_cache_release(page);
438
8461d226
DV
439 if (ret) {
440 ret = -EFAULT;
441 goto out;
442 }
443
eb01459f 444 remain -= page_length;
8461d226 445 user_data += page_length;
eb01459f
EA
446 offset += page_length;
447 }
448
4f27b75d 449out:
8461d226
DV
450 mutex_lock(&dev->struct_mutex);
451 /* Fixup: Kill any reinstated backing storage pages */
452 if (obj->madv == __I915_MADV_PURGED)
453 i915_gem_object_truncate(obj);
eb01459f
EA
454
455 return ret;
456}
457
673a394b
EA
458/**
459 * Reads data from the object referenced by handle.
460 *
461 * On error, the contents of *data are undefined.
462 */
463int
464i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 465 struct drm_file *file)
673a394b
EA
466{
467 struct drm_i915_gem_pread *args = data;
05394f39 468 struct drm_i915_gem_object *obj;
35b62a89 469 int ret = 0;
673a394b 470
51311d0a
CW
471 if (args->size == 0)
472 return 0;
473
474 if (!access_ok(VERIFY_WRITE,
475 (char __user *)(uintptr_t)args->data_ptr,
476 args->size))
477 return -EFAULT;
478
479 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
480 args->size);
481 if (ret)
482 return -EFAULT;
483
4f27b75d 484 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 485 if (ret)
4f27b75d 486 return ret;
673a394b 487
05394f39 488 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 489 if (&obj->base == NULL) {
1d7cfea1
CW
490 ret = -ENOENT;
491 goto unlock;
4f27b75d 492 }
673a394b 493
7dcd2499 494 /* Bounds check source. */
05394f39
CW
495 if (args->offset > obj->base.size ||
496 args->size > obj->base.size - args->offset) {
ce9d419d 497 ret = -EINVAL;
35b62a89 498 goto out;
ce9d419d
CW
499 }
500
db53a302
CW
501 trace_i915_gem_object_pread(obj, args->offset, args->size);
502
4f27b75d
CW
503 ret = i915_gem_object_set_cpu_read_domain_range(obj,
504 args->offset,
505 args->size);
506 if (ret)
e5281ccd 507 goto out;
4f27b75d
CW
508
509 ret = -EFAULT;
510 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 511 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 512 if (ret == -EFAULT)
05394f39 513 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 514
35b62a89 515out:
05394f39 516 drm_gem_object_unreference(&obj->base);
1d7cfea1 517unlock:
4f27b75d 518 mutex_unlock(&dev->struct_mutex);
eb01459f 519 return ret;
673a394b
EA
520}
521
0839ccb8
KP
522/* This is the fast write path which cannot handle
523 * page faults in the source data
9b7530cc 524 */
0839ccb8
KP
525
526static inline int
527fast_user_write(struct io_mapping *mapping,
528 loff_t page_base, int page_offset,
529 char __user *user_data,
530 int length)
9b7530cc 531{
9b7530cc 532 char *vaddr_atomic;
0839ccb8 533 unsigned long unwritten;
9b7530cc 534
3e4d3af5 535 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
536 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
537 user_data, length);
3e4d3af5 538 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 539 return unwritten;
0839ccb8
KP
540}
541
542/* Here's the write path which can sleep for
543 * page faults
544 */
545
ab34c226 546static inline void
3de09aa3
EA
547slow_kernel_write(struct io_mapping *mapping,
548 loff_t gtt_base, int gtt_offset,
549 struct page *user_page, int user_offset,
550 int length)
0839ccb8 551{
ab34c226
CW
552 char __iomem *dst_vaddr;
553 char *src_vaddr;
0839ccb8 554
ab34c226
CW
555 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
556 src_vaddr = kmap(user_page);
557
558 memcpy_toio(dst_vaddr + gtt_offset,
559 src_vaddr + user_offset,
560 length);
561
562 kunmap(user_page);
563 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
564}
565
3de09aa3
EA
566/**
567 * This is the fast pwrite path, where we copy the data directly from the
568 * user into the GTT, uncached.
569 */
673a394b 570static int
05394f39
CW
571i915_gem_gtt_pwrite_fast(struct drm_device *dev,
572 struct drm_i915_gem_object *obj,
3de09aa3 573 struct drm_i915_gem_pwrite *args,
05394f39 574 struct drm_file *file)
673a394b 575{
0839ccb8 576 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 577 ssize_t remain;
0839ccb8 578 loff_t offset, page_base;
673a394b 579 char __user *user_data;
0839ccb8 580 int page_offset, page_length;
673a394b
EA
581
582 user_data = (char __user *) (uintptr_t) args->data_ptr;
583 remain = args->size;
673a394b 584
05394f39 585 offset = obj->gtt_offset + args->offset;
673a394b
EA
586
587 while (remain > 0) {
588 /* Operation in this page
589 *
0839ccb8
KP
590 * page_base = page offset within aperture
591 * page_offset = offset within page
592 * page_length = bytes to copy for this page
673a394b 593 */
c8cbbb8b
CW
594 page_base = offset & PAGE_MASK;
595 page_offset = offset_in_page(offset);
0839ccb8
KP
596 page_length = remain;
597 if ((page_offset + remain) > PAGE_SIZE)
598 page_length = PAGE_SIZE - page_offset;
599
0839ccb8 600 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
601 * source page isn't available. Return the error and we'll
602 * retry in the slow path.
0839ccb8 603 */
fbd5a26d
CW
604 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
605 page_offset, user_data, page_length))
fbd5a26d 606 return -EFAULT;
673a394b 607
0839ccb8
KP
608 remain -= page_length;
609 user_data += page_length;
610 offset += page_length;
673a394b 611 }
673a394b 612
fbd5a26d 613 return 0;
673a394b
EA
614}
615
3de09aa3
EA
616/**
617 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
618 * the memory and maps it using kmap_atomic for copying.
619 *
620 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
621 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
622 */
3043c60c 623static int
05394f39
CW
624i915_gem_gtt_pwrite_slow(struct drm_device *dev,
625 struct drm_i915_gem_object *obj,
3de09aa3 626 struct drm_i915_gem_pwrite *args,
05394f39 627 struct drm_file *file)
673a394b 628{
3de09aa3
EA
629 drm_i915_private_t *dev_priv = dev->dev_private;
630 ssize_t remain;
631 loff_t gtt_page_base, offset;
632 loff_t first_data_page, last_data_page, num_pages;
633 loff_t pinned_pages, i;
634 struct page **user_pages;
635 struct mm_struct *mm = current->mm;
636 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 637 int ret;
3de09aa3
EA
638 uint64_t data_ptr = args->data_ptr;
639
640 remain = args->size;
641
642 /* Pin the user pages containing the data. We can't fault while
643 * holding the struct mutex, and all of the pwrite implementations
644 * want to hold it while dereferencing the user data.
645 */
646 first_data_page = data_ptr / PAGE_SIZE;
647 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
648 num_pages = last_data_page - first_data_page + 1;
649
fbd5a26d 650 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
651 if (user_pages == NULL)
652 return -ENOMEM;
653
fbd5a26d 654 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
655 down_read(&mm->mmap_sem);
656 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657 num_pages, 0, 0, user_pages, NULL);
658 up_read(&mm->mmap_sem);
fbd5a26d 659 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
660 if (pinned_pages < num_pages) {
661 ret = -EFAULT;
662 goto out_unpin_pages;
663 }
673a394b 664
d9e86c0e
CW
665 ret = i915_gem_object_set_to_gtt_domain(obj, true);
666 if (ret)
667 goto out_unpin_pages;
668
669 ret = i915_gem_object_put_fence(obj);
3de09aa3 670 if (ret)
fbd5a26d 671 goto out_unpin_pages;
3de09aa3 672
05394f39 673 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
674
675 while (remain > 0) {
676 /* Operation in this page
677 *
678 * gtt_page_base = page offset within aperture
679 * gtt_page_offset = offset within page in aperture
680 * data_page_index = page number in get_user_pages return
681 * data_page_offset = offset with data_page_index page.
682 * page_length = bytes to copy for this page
683 */
684 gtt_page_base = offset & PAGE_MASK;
c8cbbb8b 685 gtt_page_offset = offset_in_page(offset);
3de09aa3 686 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
c8cbbb8b 687 data_page_offset = offset_in_page(data_ptr);
3de09aa3
EA
688
689 page_length = remain;
690 if ((gtt_page_offset + page_length) > PAGE_SIZE)
691 page_length = PAGE_SIZE - gtt_page_offset;
692 if ((data_page_offset + page_length) > PAGE_SIZE)
693 page_length = PAGE_SIZE - data_page_offset;
694
ab34c226
CW
695 slow_kernel_write(dev_priv->mm.gtt_mapping,
696 gtt_page_base, gtt_page_offset,
697 user_pages[data_page_index],
698 data_page_offset,
699 page_length);
3de09aa3
EA
700
701 remain -= page_length;
702 offset += page_length;
703 data_ptr += page_length;
704 }
705
3de09aa3
EA
706out_unpin_pages:
707 for (i = 0; i < pinned_pages; i++)
708 page_cache_release(user_pages[i]);
8e7d2b2c 709 drm_free_large(user_pages);
3de09aa3
EA
710
711 return ret;
712}
713
40123c1f
EA
714/**
715 * This is the fast shmem pwrite path, which attempts to directly
716 * copy_from_user into the kmapped pages backing the object.
717 */
3043c60c 718static int
05394f39
CW
719i915_gem_shmem_pwrite_fast(struct drm_device *dev,
720 struct drm_i915_gem_object *obj,
40123c1f 721 struct drm_i915_gem_pwrite *args,
05394f39 722 struct drm_file *file)
673a394b 723{
05394f39 724 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 725 ssize_t remain;
e5281ccd 726 loff_t offset;
40123c1f
EA
727 char __user *user_data;
728 int page_offset, page_length;
40123c1f
EA
729
730 user_data = (char __user *) (uintptr_t) args->data_ptr;
731 remain = args->size;
673a394b 732
40123c1f 733 offset = args->offset;
05394f39 734 obj->dirty = 1;
40123c1f
EA
735
736 while (remain > 0) {
e5281ccd
CW
737 struct page *page;
738 char *vaddr;
739 int ret;
740
40123c1f
EA
741 /* Operation in this page
742 *
40123c1f
EA
743 * page_offset = offset within page
744 * page_length = bytes to copy for this page
745 */
c8cbbb8b 746 page_offset = offset_in_page(offset);
40123c1f
EA
747 page_length = remain;
748 if ((page_offset + remain) > PAGE_SIZE)
749 page_length = PAGE_SIZE - page_offset;
750
5949eac4 751 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
752 if (IS_ERR(page))
753 return PTR_ERR(page);
754
130c2561 755 vaddr = kmap_atomic(page);
e5281ccd
CW
756 ret = __copy_from_user_inatomic(vaddr + page_offset,
757 user_data,
758 page_length);
130c2561 759 kunmap_atomic(vaddr);
e5281ccd
CW
760
761 set_page_dirty(page);
762 mark_page_accessed(page);
763 page_cache_release(page);
764
765 /* If we get a fault while copying data, then (presumably) our
766 * source page isn't available. Return the error and we'll
767 * retry in the slow path.
768 */
769 if (ret)
fbd5a26d 770 return -EFAULT;
40123c1f
EA
771
772 remain -= page_length;
773 user_data += page_length;
774 offset += page_length;
775 }
776
fbd5a26d 777 return 0;
40123c1f
EA
778}
779
780/**
781 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
782 * the memory and maps it using kmap_atomic for copying.
783 *
784 * This avoids taking mmap_sem for faulting on the user's address while the
785 * struct_mutex is held.
786 */
787static int
05394f39
CW
788i915_gem_shmem_pwrite_slow(struct drm_device *dev,
789 struct drm_i915_gem_object *obj,
40123c1f 790 struct drm_i915_gem_pwrite *args,
05394f39 791 struct drm_file *file)
40123c1f 792{
05394f39 793 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 794 ssize_t remain;
8c59967c
DV
795 loff_t offset;
796 char __user *user_data;
797 int shmem_page_offset, page_length, ret;
798 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
40123c1f 799
8c59967c 800 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
801 remain = args->size;
802
8c59967c 803 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 804
673a394b 805 offset = args->offset;
05394f39 806 obj->dirty = 1;
673a394b 807
8c59967c
DV
808 mutex_unlock(&dev->struct_mutex);
809
40123c1f 810 while (remain > 0) {
e5281ccd 811 struct page *page;
8c59967c 812 char *vaddr;
e5281ccd 813
40123c1f
EA
814 /* Operation in this page
815 *
40123c1f 816 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
817 * page_length = bytes to copy for this page
818 */
c8cbbb8b 819 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
820
821 page_length = remain;
822 if ((shmem_page_offset + page_length) > PAGE_SIZE)
823 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 824
5949eac4 825 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
e5281ccd
CW
826 if (IS_ERR(page)) {
827 ret = PTR_ERR(page);
828 goto out;
829 }
830
8c59967c
DV
831 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
832 (page_to_phys(page) & (1 << 17)) != 0;
833
834 vaddr = kmap(page);
835 if (page_do_bit17_swizzling)
836 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
837 user_data,
838 page_length);
839 else
840 ret = __copy_from_user(vaddr + shmem_page_offset,
841 user_data,
842 page_length);
843 kunmap(page);
40123c1f 844
e5281ccd
CW
845 set_page_dirty(page);
846 mark_page_accessed(page);
847 page_cache_release(page);
848
8c59967c
DV
849 if (ret) {
850 ret = -EFAULT;
851 goto out;
852 }
853
40123c1f 854 remain -= page_length;
8c59967c 855 user_data += page_length;
40123c1f 856 offset += page_length;
673a394b
EA
857 }
858
fbd5a26d 859out:
8c59967c
DV
860 mutex_lock(&dev->struct_mutex);
861 /* Fixup: Kill any reinstated backing storage pages */
862 if (obj->madv == __I915_MADV_PURGED)
863 i915_gem_object_truncate(obj);
864 /* and flush dirty cachelines in case the object isn't in the cpu write
865 * domain anymore. */
866 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
867 i915_gem_clflush_object(obj);
868 intel_gtt_chipset_flush();
869 }
673a394b 870
40123c1f 871 return ret;
673a394b
EA
872}
873
874/**
875 * Writes data to the object referenced by handle.
876 *
877 * On error, the contents of the buffer that were to be modified are undefined.
878 */
879int
880i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 881 struct drm_file *file)
673a394b
EA
882{
883 struct drm_i915_gem_pwrite *args = data;
05394f39 884 struct drm_i915_gem_object *obj;
51311d0a
CW
885 int ret;
886
887 if (args->size == 0)
888 return 0;
889
890 if (!access_ok(VERIFY_READ,
891 (char __user *)(uintptr_t)args->data_ptr,
892 args->size))
893 return -EFAULT;
894
895 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
896 args->size);
897 if (ret)
898 return -EFAULT;
673a394b 899
fbd5a26d 900 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 901 if (ret)
fbd5a26d 902 return ret;
1d7cfea1 903
05394f39 904 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 905 if (&obj->base == NULL) {
1d7cfea1
CW
906 ret = -ENOENT;
907 goto unlock;
fbd5a26d 908 }
673a394b 909
7dcd2499 910 /* Bounds check destination. */
05394f39
CW
911 if (args->offset > obj->base.size ||
912 args->size > obj->base.size - args->offset) {
ce9d419d 913 ret = -EINVAL;
35b62a89 914 goto out;
ce9d419d
CW
915 }
916
db53a302
CW
917 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
918
673a394b
EA
919 /* We can only do the GTT pwrite on untiled buffers, as otherwise
920 * it would end up going through the fenced access, and we'll get
921 * different detiling behavior between reading and writing.
922 * pread/pwrite currently are reading and writing from the CPU
923 * perspective, requiring manual detiling by the client.
924 */
5c0480f2 925 if (obj->phys_obj) {
fbd5a26d 926 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
927 goto out;
928 }
929
930 if (obj->gtt_space &&
931 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 932 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
933 if (ret)
934 goto out;
935
d9e86c0e
CW
936 ret = i915_gem_object_set_to_gtt_domain(obj, true);
937 if (ret)
938 goto out_unpin;
939
940 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
941 if (ret)
942 goto out_unpin;
943
944 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
945 if (ret == -EFAULT)
946 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
947
948out_unpin:
949 i915_gem_object_unpin(obj);
673a394b 950
5c0480f2
DV
951 if (ret != -EFAULT)
952 goto out;
953 /* Fall through to the shmfs paths because the gtt paths might
954 * fail with non-page-backed user pointers (e.g. gtt mappings
955 * when moving data between textures). */
fbd5a26d 956 }
673a394b 957
5c0480f2
DV
958 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
959 if (ret)
960 goto out;
961
962 ret = -EFAULT;
963 if (!i915_gem_object_needs_bit17_swizzle(obj))
964 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
965 if (ret == -EFAULT)
966 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
967
35b62a89 968out:
05394f39 969 drm_gem_object_unreference(&obj->base);
1d7cfea1 970unlock:
fbd5a26d 971 mutex_unlock(&dev->struct_mutex);
673a394b
EA
972 return ret;
973}
974
975/**
2ef7eeaa
EA
976 * Called when user space prepares to use an object with the CPU, either
977 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
978 */
979int
980i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 981 struct drm_file *file)
673a394b
EA
982{
983 struct drm_i915_gem_set_domain *args = data;
05394f39 984 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
985 uint32_t read_domains = args->read_domains;
986 uint32_t write_domain = args->write_domain;
673a394b
EA
987 int ret;
988
989 if (!(dev->driver->driver_features & DRIVER_GEM))
990 return -ENODEV;
991
2ef7eeaa 992 /* Only handle setting domains to types used by the CPU. */
21d509e3 993 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
994 return -EINVAL;
995
21d509e3 996 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
997 return -EINVAL;
998
999 /* Having something in the write domain implies it's in the read
1000 * domain, and only that read domain. Enforce that in the request.
1001 */
1002 if (write_domain != 0 && read_domains != write_domain)
1003 return -EINVAL;
1004
76c1dec1 1005 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1006 if (ret)
76c1dec1 1007 return ret;
1d7cfea1 1008
05394f39 1009 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1010 if (&obj->base == NULL) {
1d7cfea1
CW
1011 ret = -ENOENT;
1012 goto unlock;
76c1dec1 1013 }
673a394b 1014
2ef7eeaa
EA
1015 if (read_domains & I915_GEM_DOMAIN_GTT) {
1016 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1017
1018 /* Silently promote "you're not bound, there was nothing to do"
1019 * to success, since the client was just asking us to
1020 * make sure everything was done.
1021 */
1022 if (ret == -EINVAL)
1023 ret = 0;
2ef7eeaa 1024 } else {
e47c68e9 1025 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1026 }
1027
05394f39 1028 drm_gem_object_unreference(&obj->base);
1d7cfea1 1029unlock:
673a394b
EA
1030 mutex_unlock(&dev->struct_mutex);
1031 return ret;
1032}
1033
1034/**
1035 * Called when user space has done writes to this buffer
1036 */
1037int
1038i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1039 struct drm_file *file)
673a394b
EA
1040{
1041 struct drm_i915_gem_sw_finish *args = data;
05394f39 1042 struct drm_i915_gem_object *obj;
673a394b
EA
1043 int ret = 0;
1044
1045 if (!(dev->driver->driver_features & DRIVER_GEM))
1046 return -ENODEV;
1047
76c1dec1 1048 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1049 if (ret)
76c1dec1 1050 return ret;
1d7cfea1 1051
05394f39 1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1053 if (&obj->base == NULL) {
1d7cfea1
CW
1054 ret = -ENOENT;
1055 goto unlock;
673a394b
EA
1056 }
1057
673a394b 1058 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1059 if (obj->pin_count)
e47c68e9
EA
1060 i915_gem_object_flush_cpu_write_domain(obj);
1061
05394f39 1062 drm_gem_object_unreference(&obj->base);
1d7cfea1 1063unlock:
673a394b
EA
1064 mutex_unlock(&dev->struct_mutex);
1065 return ret;
1066}
1067
1068/**
1069 * Maps the contents of an object, returning the address it is mapped
1070 * into.
1071 *
1072 * While the mapping holds a reference on the contents of the object, it doesn't
1073 * imply a ref on the object itself.
1074 */
1075int
1076i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1077 struct drm_file *file)
673a394b
EA
1078{
1079 struct drm_i915_gem_mmap *args = data;
1080 struct drm_gem_object *obj;
673a394b
EA
1081 unsigned long addr;
1082
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1084 return -ENODEV;
1085
05394f39 1086 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1087 if (obj == NULL)
bf79cb91 1088 return -ENOENT;
673a394b 1089
673a394b
EA
1090 down_write(&current->mm->mmap_sem);
1091 addr = do_mmap(obj->filp, 0, args->size,
1092 PROT_READ | PROT_WRITE, MAP_SHARED,
1093 args->offset);
1094 up_write(&current->mm->mmap_sem);
bc9025bd 1095 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1096 if (IS_ERR((void *)addr))
1097 return addr;
1098
1099 args->addr_ptr = (uint64_t) addr;
1100
1101 return 0;
1102}
1103
de151cf6
JB
1104/**
1105 * i915_gem_fault - fault a page into the GTT
1106 * vma: VMA in question
1107 * vmf: fault info
1108 *
1109 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1110 * from userspace. The fault handler takes care of binding the object to
1111 * the GTT (if needed), allocating and programming a fence register (again,
1112 * only if needed based on whether the old reg is still valid or the object
1113 * is tiled) and inserting a new PTE into the faulting process.
1114 *
1115 * Note that the faulting process may involve evicting existing objects
1116 * from the GTT and/or fence registers to make room. So performance may
1117 * suffer if the GTT working set is large or there are few fence registers
1118 * left.
1119 */
1120int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1121{
05394f39
CW
1122 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1123 struct drm_device *dev = obj->base.dev;
7d1c4804 1124 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1125 pgoff_t page_offset;
1126 unsigned long pfn;
1127 int ret = 0;
0f973f27 1128 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1129
1130 /* We don't use vmf->pgoff since that has the fake offset */
1131 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1132 PAGE_SHIFT;
1133
d9bc7e9f
CW
1134 ret = i915_mutex_lock_interruptible(dev);
1135 if (ret)
1136 goto out;
a00b10c3 1137
db53a302
CW
1138 trace_i915_gem_object_fault(obj, page_offset, true, write);
1139
d9bc7e9f 1140 /* Now bind it into the GTT if needed */
919926ae
CW
1141 if (!obj->map_and_fenceable) {
1142 ret = i915_gem_object_unbind(obj);
1143 if (ret)
1144 goto unlock;
a00b10c3 1145 }
05394f39 1146 if (!obj->gtt_space) {
75e9e915 1147 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1148 if (ret)
1149 goto unlock;
de151cf6 1150
e92d03bf
EA
1151 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1152 if (ret)
1153 goto unlock;
1154 }
4a684a41 1155
d9e86c0e
CW
1156 if (obj->tiling_mode == I915_TILING_NONE)
1157 ret = i915_gem_object_put_fence(obj);
1158 else
ce453d81 1159 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1160 if (ret)
1161 goto unlock;
de151cf6 1162
05394f39
CW
1163 if (i915_gem_object_is_inactive(obj))
1164 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1165
6299f992
CW
1166 obj->fault_mappable = true;
1167
05394f39 1168 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1169 page_offset;
1170
1171 /* Finally, remap it using the new GTT offset */
1172 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1173unlock:
de151cf6 1174 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1175out:
de151cf6 1176 switch (ret) {
d9bc7e9f 1177 case -EIO:
045e769a 1178 case -EAGAIN:
d9bc7e9f
CW
1179 /* Give the error handler a chance to run and move the
1180 * objects off the GPU active list. Next time we service the
1181 * fault, we should be able to transition the page into the
1182 * GTT without touching the GPU (and so avoid further
1183 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1184 * with coherency, just lost writes.
1185 */
045e769a 1186 set_need_resched();
c715089f
CW
1187 case 0:
1188 case -ERESTARTSYS:
bed636ab 1189 case -EINTR:
c715089f 1190 return VM_FAULT_NOPAGE;
de151cf6 1191 case -ENOMEM:
de151cf6 1192 return VM_FAULT_OOM;
de151cf6 1193 default:
c715089f 1194 return VM_FAULT_SIGBUS;
de151cf6
JB
1195 }
1196}
1197
901782b2
CW
1198/**
1199 * i915_gem_release_mmap - remove physical page mappings
1200 * @obj: obj in question
1201 *
af901ca1 1202 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1203 * relinquish ownership of the pages back to the system.
1204 *
1205 * It is vital that we remove the page mapping if we have mapped a tiled
1206 * object through the GTT and then lose the fence register due to
1207 * resource pressure. Similarly if the object has been moved out of the
1208 * aperture, than pages mapped into userspace must be revoked. Removing the
1209 * mapping will then trigger a page fault on the next user access, allowing
1210 * fixup by i915_gem_fault().
1211 */
d05ca301 1212void
05394f39 1213i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1214{
6299f992
CW
1215 if (!obj->fault_mappable)
1216 return;
901782b2 1217
f6e47884
CW
1218 if (obj->base.dev->dev_mapping)
1219 unmap_mapping_range(obj->base.dev->dev_mapping,
1220 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1221 obj->base.size, 1);
fb7d516a 1222
6299f992 1223 obj->fault_mappable = false;
901782b2
CW
1224}
1225
92b88aeb 1226static uint32_t
e28f8711 1227i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1228{
e28f8711 1229 uint32_t gtt_size;
92b88aeb
CW
1230
1231 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1232 tiling_mode == I915_TILING_NONE)
1233 return size;
92b88aeb
CW
1234
1235 /* Previous chips need a power-of-two fence region when tiling */
1236 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1237 gtt_size = 1024*1024;
92b88aeb 1238 else
e28f8711 1239 gtt_size = 512*1024;
92b88aeb 1240
e28f8711
CW
1241 while (gtt_size < size)
1242 gtt_size <<= 1;
92b88aeb 1243
e28f8711 1244 return gtt_size;
92b88aeb
CW
1245}
1246
de151cf6
JB
1247/**
1248 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1249 * @obj: object to check
1250 *
1251 * Return the required GTT alignment for an object, taking into account
5e783301 1252 * potential fence register mapping.
de151cf6
JB
1253 */
1254static uint32_t
e28f8711
CW
1255i915_gem_get_gtt_alignment(struct drm_device *dev,
1256 uint32_t size,
1257 int tiling_mode)
de151cf6 1258{
de151cf6
JB
1259 /*
1260 * Minimum alignment is 4k (GTT page size), but might be greater
1261 * if a fence register is needed for the object.
1262 */
a00b10c3 1263 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1264 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1265 return 4096;
1266
a00b10c3
CW
1267 /*
1268 * Previous chips need to be aligned to the size of the smallest
1269 * fence register that can contain the object.
1270 */
e28f8711 1271 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1272}
1273
5e783301
DV
1274/**
1275 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1276 * unfenced object
e28f8711
CW
1277 * @dev: the device
1278 * @size: size of the object
1279 * @tiling_mode: tiling mode of the object
5e783301
DV
1280 *
1281 * Return the required GTT alignment for an object, only taking into account
1282 * unfenced tiled surface requirements.
1283 */
467cffba 1284uint32_t
e28f8711
CW
1285i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1286 uint32_t size,
1287 int tiling_mode)
5e783301 1288{
5e783301
DV
1289 /*
1290 * Minimum alignment is 4k (GTT page size) for sane hw.
1291 */
1292 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1293 tiling_mode == I915_TILING_NONE)
5e783301
DV
1294 return 4096;
1295
e28f8711
CW
1296 /* Previous hardware however needs to be aligned to a power-of-two
1297 * tile height. The simplest method for determining this is to reuse
1298 * the power-of-tile object size.
5e783301 1299 */
e28f8711 1300 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1301}
1302
de151cf6 1303int
ff72145b
DA
1304i915_gem_mmap_gtt(struct drm_file *file,
1305 struct drm_device *dev,
1306 uint32_t handle,
1307 uint64_t *offset)
de151cf6 1308{
da761a6e 1309 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1310 struct drm_i915_gem_object *obj;
de151cf6
JB
1311 int ret;
1312
1313 if (!(dev->driver->driver_features & DRIVER_GEM))
1314 return -ENODEV;
1315
76c1dec1 1316 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1317 if (ret)
76c1dec1 1318 return ret;
de151cf6 1319
ff72145b 1320 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1321 if (&obj->base == NULL) {
1d7cfea1
CW
1322 ret = -ENOENT;
1323 goto unlock;
1324 }
de151cf6 1325
05394f39 1326 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1327 ret = -E2BIG;
ff56b0bc 1328 goto out;
da761a6e
CW
1329 }
1330
05394f39 1331 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1332 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1333 ret = -EINVAL;
1334 goto out;
ab18282d
CW
1335 }
1336
05394f39 1337 if (!obj->base.map_list.map) {
b464e9a2 1338 ret = drm_gem_create_mmap_offset(&obj->base);
1d7cfea1
CW
1339 if (ret)
1340 goto out;
de151cf6
JB
1341 }
1342
ff72145b 1343 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1344
1d7cfea1 1345out:
05394f39 1346 drm_gem_object_unreference(&obj->base);
1d7cfea1 1347unlock:
de151cf6 1348 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1349 return ret;
de151cf6
JB
1350}
1351
ff72145b
DA
1352/**
1353 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1354 * @dev: DRM device
1355 * @data: GTT mapping ioctl data
1356 * @file: GEM object info
1357 *
1358 * Simply returns the fake offset to userspace so it can mmap it.
1359 * The mmap call will end up in drm_gem_mmap(), which will set things
1360 * up so we can get faults in the handler above.
1361 *
1362 * The fault handler will take care of binding the object into the GTT
1363 * (since it may have been evicted to make room for something), allocating
1364 * a fence register, and mapping the appropriate aperture address into
1365 * userspace.
1366 */
1367int
1368i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1369 struct drm_file *file)
1370{
1371 struct drm_i915_gem_mmap_gtt *args = data;
1372
1373 if (!(dev->driver->driver_features & DRIVER_GEM))
1374 return -ENODEV;
1375
1376 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1377}
1378
1379
e5281ccd 1380static int
05394f39 1381i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1382 gfp_t gfpmask)
1383{
e5281ccd
CW
1384 int page_count, i;
1385 struct address_space *mapping;
1386 struct inode *inode;
1387 struct page *page;
1388
1389 /* Get the list of pages out of our struct file. They'll be pinned
1390 * at this point until we release them.
1391 */
05394f39
CW
1392 page_count = obj->base.size / PAGE_SIZE;
1393 BUG_ON(obj->pages != NULL);
1394 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1395 if (obj->pages == NULL)
e5281ccd
CW
1396 return -ENOMEM;
1397
05394f39 1398 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd 1399 mapping = inode->i_mapping;
5949eac4
HD
1400 gfpmask |= mapping_gfp_mask(mapping);
1401
e5281ccd 1402 for (i = 0; i < page_count; i++) {
5949eac4 1403 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
e5281ccd
CW
1404 if (IS_ERR(page))
1405 goto err_pages;
1406
05394f39 1407 obj->pages[i] = page;
e5281ccd
CW
1408 }
1409
6dacfd2f 1410 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1411 i915_gem_object_do_bit_17_swizzle(obj);
1412
1413 return 0;
1414
1415err_pages:
1416 while (i--)
05394f39 1417 page_cache_release(obj->pages[i]);
e5281ccd 1418
05394f39
CW
1419 drm_free_large(obj->pages);
1420 obj->pages = NULL;
e5281ccd
CW
1421 return PTR_ERR(page);
1422}
1423
5cdf5881 1424static void
05394f39 1425i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1426{
05394f39 1427 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1428 int i;
1429
05394f39 1430 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1431
6dacfd2f 1432 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1433 i915_gem_object_save_bit_17_swizzle(obj);
1434
05394f39
CW
1435 if (obj->madv == I915_MADV_DONTNEED)
1436 obj->dirty = 0;
3ef94daa
CW
1437
1438 for (i = 0; i < page_count; i++) {
05394f39
CW
1439 if (obj->dirty)
1440 set_page_dirty(obj->pages[i]);
3ef94daa 1441
05394f39
CW
1442 if (obj->madv == I915_MADV_WILLNEED)
1443 mark_page_accessed(obj->pages[i]);
3ef94daa 1444
05394f39 1445 page_cache_release(obj->pages[i]);
3ef94daa 1446 }
05394f39 1447 obj->dirty = 0;
673a394b 1448
05394f39
CW
1449 drm_free_large(obj->pages);
1450 obj->pages = NULL;
673a394b
EA
1451}
1452
54cf91dc 1453void
05394f39 1454i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1455 struct intel_ring_buffer *ring,
1456 u32 seqno)
673a394b 1457{
05394f39 1458 struct drm_device *dev = obj->base.dev;
69dc4987 1459 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1460
852835f3 1461 BUG_ON(ring == NULL);
05394f39 1462 obj->ring = ring;
673a394b
EA
1463
1464 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1465 if (!obj->active) {
1466 drm_gem_object_reference(&obj->base);
1467 obj->active = 1;
673a394b 1468 }
e35a41de 1469
673a394b 1470 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1471 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1472 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1473
05394f39 1474 obj->last_rendering_seqno = seqno;
caea7476
CW
1475 if (obj->fenced_gpu_access) {
1476 struct drm_i915_fence_reg *reg;
1477
1478 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1479
1480 obj->last_fenced_seqno = seqno;
1481 obj->last_fenced_ring = ring;
1482
1483 reg = &dev_priv->fence_regs[obj->fence_reg];
1484 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1485 }
1486}
1487
1488static void
1489i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1490{
1491 list_del_init(&obj->ring_list);
1492 obj->last_rendering_seqno = 0;
673a394b
EA
1493}
1494
ce44b0ea 1495static void
05394f39 1496i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1497{
05394f39 1498 struct drm_device *dev = obj->base.dev;
ce44b0ea 1499 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1500
05394f39
CW
1501 BUG_ON(!obj->active);
1502 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1503
1504 i915_gem_object_move_off_active(obj);
1505}
1506
1507static void
1508i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1509{
1510 struct drm_device *dev = obj->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 if (obj->pin_count != 0)
1514 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1515 else
1516 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1517
1518 BUG_ON(!list_empty(&obj->gpu_write_list));
1519 BUG_ON(!obj->active);
1520 obj->ring = NULL;
1521
1522 i915_gem_object_move_off_active(obj);
1523 obj->fenced_gpu_access = false;
caea7476
CW
1524
1525 obj->active = 0;
87ca9c8a 1526 obj->pending_gpu_write = false;
caea7476
CW
1527 drm_gem_object_unreference(&obj->base);
1528
1529 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1530}
673a394b 1531
963b4836
CW
1532/* Immediately discard the backing storage */
1533static void
05394f39 1534i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1535{
bb6baf76 1536 struct inode *inode;
963b4836 1537
ae9fed6b
CW
1538 /* Our goal here is to return as much of the memory as
1539 * is possible back to the system as we are called from OOM.
1540 * To do this we must instruct the shmfs to drop all of its
e2377fe0 1541 * backing pages, *now*.
ae9fed6b 1542 */
05394f39 1543 inode = obj->base.filp->f_path.dentry->d_inode;
e2377fe0 1544 shmem_truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1545
05394f39 1546 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1547}
1548
1549static inline int
05394f39 1550i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1551{
05394f39 1552 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1553}
1554
63560396 1555static void
db53a302
CW
1556i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1557 uint32_t flush_domains)
63560396 1558{
05394f39 1559 struct drm_i915_gem_object *obj, *next;
63560396 1560
05394f39 1561 list_for_each_entry_safe(obj, next,
64193406 1562 &ring->gpu_write_list,
63560396 1563 gpu_write_list) {
05394f39
CW
1564 if (obj->base.write_domain & flush_domains) {
1565 uint32_t old_write_domain = obj->base.write_domain;
63560396 1566
05394f39
CW
1567 obj->base.write_domain = 0;
1568 list_del_init(&obj->gpu_write_list);
1ec14ad3 1569 i915_gem_object_move_to_active(obj, ring,
db53a302 1570 i915_gem_next_request_seqno(ring));
63560396 1571
63560396 1572 trace_i915_gem_object_change_domain(obj,
05394f39 1573 obj->base.read_domains,
63560396
DV
1574 old_write_domain);
1575 }
1576 }
1577}
8187a2b7 1578
3cce469c 1579int
db53a302 1580i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1581 struct drm_file *file,
db53a302 1582 struct drm_i915_gem_request *request)
673a394b 1583{
db53a302 1584 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1585 uint32_t seqno;
1586 int was_empty;
3cce469c
CW
1587 int ret;
1588
1589 BUG_ON(request == NULL);
673a394b 1590
3cce469c
CW
1591 ret = ring->add_request(ring, &seqno);
1592 if (ret)
1593 return ret;
673a394b 1594
db53a302 1595 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1596
1597 request->seqno = seqno;
852835f3 1598 request->ring = ring;
673a394b 1599 request->emitted_jiffies = jiffies;
852835f3
ZN
1600 was_empty = list_empty(&ring->request_list);
1601 list_add_tail(&request->list, &ring->request_list);
1602
db53a302
CW
1603 if (file) {
1604 struct drm_i915_file_private *file_priv = file->driver_priv;
1605
1c25595f 1606 spin_lock(&file_priv->mm.lock);
f787a5f5 1607 request->file_priv = file_priv;
b962442e 1608 list_add_tail(&request->client_list,
f787a5f5 1609 &file_priv->mm.request_list);
1c25595f 1610 spin_unlock(&file_priv->mm.lock);
b962442e 1611 }
673a394b 1612
db53a302
CW
1613 ring->outstanding_lazy_request = false;
1614
f65d9421 1615 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
1616 if (i915_enable_hangcheck) {
1617 mod_timer(&dev_priv->hangcheck_timer,
1618 jiffies +
1619 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1620 }
f65d9421 1621 if (was_empty)
b3b079db
CW
1622 queue_delayed_work(dev_priv->wq,
1623 &dev_priv->mm.retire_work, HZ);
f65d9421 1624 }
3cce469c 1625 return 0;
673a394b
EA
1626}
1627
f787a5f5
CW
1628static inline void
1629i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1630{
1c25595f 1631 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1632
1c25595f
CW
1633 if (!file_priv)
1634 return;
1c5d22f7 1635
1c25595f 1636 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1637 if (request->file_priv) {
1638 list_del(&request->client_list);
1639 request->file_priv = NULL;
1640 }
1c25595f 1641 spin_unlock(&file_priv->mm.lock);
673a394b 1642}
673a394b 1643
dfaae392
CW
1644static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1645 struct intel_ring_buffer *ring)
9375e446 1646{
dfaae392
CW
1647 while (!list_empty(&ring->request_list)) {
1648 struct drm_i915_gem_request *request;
673a394b 1649
dfaae392
CW
1650 request = list_first_entry(&ring->request_list,
1651 struct drm_i915_gem_request,
1652 list);
de151cf6 1653
dfaae392 1654 list_del(&request->list);
f787a5f5 1655 i915_gem_request_remove_from_client(request);
dfaae392
CW
1656 kfree(request);
1657 }
673a394b 1658
dfaae392 1659 while (!list_empty(&ring->active_list)) {
05394f39 1660 struct drm_i915_gem_object *obj;
9375e446 1661
05394f39
CW
1662 obj = list_first_entry(&ring->active_list,
1663 struct drm_i915_gem_object,
1664 ring_list);
9375e446 1665
05394f39
CW
1666 obj->base.write_domain = 0;
1667 list_del_init(&obj->gpu_write_list);
1668 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1669 }
1670}
1671
312817a3
CW
1672static void i915_gem_reset_fences(struct drm_device *dev)
1673{
1674 struct drm_i915_private *dev_priv = dev->dev_private;
1675 int i;
1676
4b9de737 1677 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 1678 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1679 struct drm_i915_gem_object *obj = reg->obj;
1680
1681 if (!obj)
1682 continue;
1683
1684 if (obj->tiling_mode)
1685 i915_gem_release_mmap(obj);
1686
d9e86c0e
CW
1687 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1688 reg->obj->fenced_gpu_access = false;
1689 reg->obj->last_fenced_seqno = 0;
1690 reg->obj->last_fenced_ring = NULL;
1691 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1692 }
1693}
1694
069efc1d 1695void i915_gem_reset(struct drm_device *dev)
673a394b 1696{
77f01230 1697 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1698 struct drm_i915_gem_object *obj;
1ec14ad3 1699 int i;
673a394b 1700
1ec14ad3
CW
1701 for (i = 0; i < I915_NUM_RINGS; i++)
1702 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1703
1704 /* Remove anything from the flushing lists. The GPU cache is likely
1705 * to be lost on reset along with the data, so simply move the
1706 * lost bo to the inactive list.
1707 */
1708 while (!list_empty(&dev_priv->mm.flushing_list)) {
0206e353 1709 obj = list_first_entry(&dev_priv->mm.flushing_list,
05394f39
CW
1710 struct drm_i915_gem_object,
1711 mm_list);
dfaae392 1712
05394f39
CW
1713 obj->base.write_domain = 0;
1714 list_del_init(&obj->gpu_write_list);
1715 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1716 }
1717
1718 /* Move everything out of the GPU domains to ensure we do any
1719 * necessary invalidation upon reuse.
1720 */
05394f39 1721 list_for_each_entry(obj,
77f01230 1722 &dev_priv->mm.inactive_list,
69dc4987 1723 mm_list)
77f01230 1724 {
05394f39 1725 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1726 }
069efc1d
CW
1727
1728 /* The fence registers are invalidated so clear them out */
312817a3 1729 i915_gem_reset_fences(dev);
673a394b
EA
1730}
1731
1732/**
1733 * This function clears the request list as sequence numbers are passed.
1734 */
b09a1fec 1735static void
db53a302 1736i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1737{
673a394b 1738 uint32_t seqno;
1ec14ad3 1739 int i;
673a394b 1740
db53a302 1741 if (list_empty(&ring->request_list))
6c0594a3
KW
1742 return;
1743
db53a302 1744 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1745
78501eac 1746 seqno = ring->get_seqno(ring);
1ec14ad3 1747
076e2c0e 1748 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1749 if (seqno >= ring->sync_seqno[i])
1750 ring->sync_seqno[i] = 0;
1751
852835f3 1752 while (!list_empty(&ring->request_list)) {
673a394b 1753 struct drm_i915_gem_request *request;
673a394b 1754
852835f3 1755 request = list_first_entry(&ring->request_list,
673a394b
EA
1756 struct drm_i915_gem_request,
1757 list);
673a394b 1758
dfaae392 1759 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1760 break;
1761
db53a302 1762 trace_i915_gem_request_retire(ring, request->seqno);
b84d5f0c
CW
1763
1764 list_del(&request->list);
f787a5f5 1765 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1766 kfree(request);
1767 }
673a394b 1768
b84d5f0c
CW
1769 /* Move any buffers on the active list that are no longer referenced
1770 * by the ringbuffer to the flushing/inactive lists as appropriate.
1771 */
1772 while (!list_empty(&ring->active_list)) {
05394f39 1773 struct drm_i915_gem_object *obj;
b84d5f0c 1774
0206e353 1775 obj = list_first_entry(&ring->active_list,
05394f39
CW
1776 struct drm_i915_gem_object,
1777 ring_list);
673a394b 1778
05394f39 1779 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1780 break;
b84d5f0c 1781
05394f39 1782 if (obj->base.write_domain != 0)
b84d5f0c
CW
1783 i915_gem_object_move_to_flushing(obj);
1784 else
1785 i915_gem_object_move_to_inactive(obj);
673a394b 1786 }
9d34e5db 1787
db53a302
CW
1788 if (unlikely(ring->trace_irq_seqno &&
1789 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1790 ring->irq_put(ring);
db53a302 1791 ring->trace_irq_seqno = 0;
9d34e5db 1792 }
23bc5982 1793
db53a302 1794 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1795}
1796
b09a1fec
CW
1797void
1798i915_gem_retire_requests(struct drm_device *dev)
1799{
1800 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1801 int i;
b09a1fec 1802
be72615b 1803 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1804 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1805
1806 /* We must be careful that during unbind() we do not
1807 * accidentally infinitely recurse into retire requests.
1808 * Currently:
1809 * retire -> free -> unbind -> wait -> retire_ring
1810 */
05394f39 1811 list_for_each_entry_safe(obj, next,
be72615b 1812 &dev_priv->mm.deferred_free_list,
69dc4987 1813 mm_list)
05394f39 1814 i915_gem_free_object_tail(obj);
be72615b
CW
1815 }
1816
1ec14ad3 1817 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1818 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1819}
1820
75ef9da2 1821static void
673a394b
EA
1822i915_gem_retire_work_handler(struct work_struct *work)
1823{
1824 drm_i915_private_t *dev_priv;
1825 struct drm_device *dev;
0a58705b
CW
1826 bool idle;
1827 int i;
673a394b
EA
1828
1829 dev_priv = container_of(work, drm_i915_private_t,
1830 mm.retire_work.work);
1831 dev = dev_priv->dev;
1832
891b48cf
CW
1833 /* Come back later if the device is busy... */
1834 if (!mutex_trylock(&dev->struct_mutex)) {
1835 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1836 return;
1837 }
1838
b09a1fec 1839 i915_gem_retire_requests(dev);
d1b851fc 1840
0a58705b
CW
1841 /* Send a periodic flush down the ring so we don't hold onto GEM
1842 * objects indefinitely.
1843 */
1844 idle = true;
1845 for (i = 0; i < I915_NUM_RINGS; i++) {
1846 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1847
1848 if (!list_empty(&ring->gpu_write_list)) {
1849 struct drm_i915_gem_request *request;
1850 int ret;
1851
db53a302
CW
1852 ret = i915_gem_flush_ring(ring,
1853 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
1854 request = kzalloc(sizeof(*request), GFP_KERNEL);
1855 if (ret || request == NULL ||
db53a302 1856 i915_add_request(ring, NULL, request))
0a58705b
CW
1857 kfree(request);
1858 }
1859
1860 idle &= list_empty(&ring->request_list);
1861 }
1862
1863 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 1864 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 1865
673a394b
EA
1866 mutex_unlock(&dev->struct_mutex);
1867}
1868
db53a302
CW
1869/**
1870 * Waits for a sequence number to be signaled, and cleans up the
1871 * request and object lists appropriately for that event.
1872 */
5a5a0c64 1873int
db53a302 1874i915_wait_request(struct intel_ring_buffer *ring,
b93f9cf1
BW
1875 uint32_t seqno,
1876 bool do_retire)
673a394b 1877{
db53a302 1878 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 1879 u32 ier;
673a394b
EA
1880 int ret = 0;
1881
1882 BUG_ON(seqno == 0);
1883
d9bc7e9f
CW
1884 if (atomic_read(&dev_priv->mm.wedged)) {
1885 struct completion *x = &dev_priv->error_completion;
1886 bool recovery_complete;
1887 unsigned long flags;
1888
1889 /* Give the error handler a chance to run. */
1890 spin_lock_irqsave(&x->wait.lock, flags);
1891 recovery_complete = x->done > 0;
1892 spin_unlock_irqrestore(&x->wait.lock, flags);
1893
1894 return recovery_complete ? -EIO : -EAGAIN;
1895 }
30dbf0c0 1896
5d97eb69 1897 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
1898 struct drm_i915_gem_request *request;
1899
1900 request = kzalloc(sizeof(*request), GFP_KERNEL);
1901 if (request == NULL)
e35a41de 1902 return -ENOMEM;
3cce469c 1903
db53a302 1904 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
1905 if (ret) {
1906 kfree(request);
1907 return ret;
1908 }
1909
1910 seqno = request->seqno;
e35a41de 1911 }
ffed1d09 1912
78501eac 1913 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 1914 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
1915 ier = I915_READ(DEIER) | I915_READ(GTIER);
1916 else
1917 ier = I915_READ(IER);
802c7eb6
JB
1918 if (!ier) {
1919 DRM_ERROR("something (likely vbetool) disabled "
1920 "interrupts, re-enabling\n");
f01c22fd
CW
1921 ring->dev->driver->irq_preinstall(ring->dev);
1922 ring->dev->driver->irq_postinstall(ring->dev);
802c7eb6
JB
1923 }
1924
db53a302 1925 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 1926
b2223497 1927 ring->waiting_seqno = seqno;
b13c2b96 1928 if (ring->irq_get(ring)) {
ce453d81 1929 if (dev_priv->mm.interruptible)
b13c2b96
CW
1930 ret = wait_event_interruptible(ring->irq_queue,
1931 i915_seqno_passed(ring->get_seqno(ring), seqno)
1932 || atomic_read(&dev_priv->mm.wedged));
1933 else
1934 wait_event(ring->irq_queue,
1935 i915_seqno_passed(ring->get_seqno(ring), seqno)
1936 || atomic_read(&dev_priv->mm.wedged));
1937
1938 ring->irq_put(ring);
e959b5db
EA
1939 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1940 seqno) ||
1941 atomic_read(&dev_priv->mm.wedged), 3000))
b5ba177d 1942 ret = -EBUSY;
b2223497 1943 ring->waiting_seqno = 0;
1c5d22f7 1944
db53a302 1945 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 1946 }
ba1234d1 1947 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 1948 ret = -EAGAIN;
673a394b
EA
1949
1950 if (ret && ret != -ERESTARTSYS)
8bff917c 1951 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 1952 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 1953 dev_priv->next_seqno);
673a394b
EA
1954
1955 /* Directly dispatch request retiring. While we have the work queue
1956 * to handle this, the waiter on a request often wants an associated
1957 * buffer to have made it to the inactive list, and we would need
1958 * a separate wait queue to handle that.
1959 */
b93f9cf1 1960 if (ret == 0 && do_retire)
db53a302 1961 i915_gem_retire_requests_ring(ring);
673a394b
EA
1962
1963 return ret;
1964}
1965
673a394b
EA
1966/**
1967 * Ensures that all rendering to the object has completed and the object is
1968 * safe to unbind from the GTT or access from the CPU.
1969 */
54cf91dc 1970int
ce453d81 1971i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 1972{
673a394b
EA
1973 int ret;
1974
e47c68e9
EA
1975 /* This function only exists to support waiting for existing rendering,
1976 * not for emitting required flushes.
673a394b 1977 */
05394f39 1978 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1979
1980 /* If there is rendering queued on the buffer being evicted, wait for
1981 * it.
1982 */
05394f39 1983 if (obj->active) {
b93f9cf1
BW
1984 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1985 true);
2cf34d7b 1986 if (ret)
673a394b
EA
1987 return ret;
1988 }
1989
1990 return 0;
1991}
1992
b5ffc9bc
CW
1993static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
1994{
1995 u32 old_write_domain, old_read_domains;
1996
b5ffc9bc
CW
1997 /* Act a barrier for all accesses through the GTT */
1998 mb();
1999
2000 /* Force a pagefault for domain tracking on next user access */
2001 i915_gem_release_mmap(obj);
2002
b97c3d9c
KP
2003 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2004 return;
2005
b5ffc9bc
CW
2006 old_read_domains = obj->base.read_domains;
2007 old_write_domain = obj->base.write_domain;
2008
2009 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2010 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2011
2012 trace_i915_gem_object_change_domain(obj,
2013 old_read_domains,
2014 old_write_domain);
2015}
2016
673a394b
EA
2017/**
2018 * Unbinds an object from the GTT aperture.
2019 */
0f973f27 2020int
05394f39 2021i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2022{
7bddb01f 2023 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2024 int ret = 0;
2025
05394f39 2026 if (obj->gtt_space == NULL)
673a394b
EA
2027 return 0;
2028
05394f39 2029 if (obj->pin_count != 0) {
673a394b
EA
2030 DRM_ERROR("Attempting to unbind pinned buffer\n");
2031 return -EINVAL;
2032 }
2033
a8198eea
CW
2034 ret = i915_gem_object_finish_gpu(obj);
2035 if (ret == -ERESTARTSYS)
2036 return ret;
2037 /* Continue on if we fail due to EIO, the GPU is hung so we
2038 * should be safe and we need to cleanup or else we might
2039 * cause memory corruption through use-after-free.
2040 */
2041
b5ffc9bc 2042 i915_gem_object_finish_gtt(obj);
5323fd04 2043
673a394b
EA
2044 /* Move the object to the CPU domain to ensure that
2045 * any possible CPU writes while it's not in the GTT
a8198eea 2046 * are flushed when we go to remap it.
673a394b 2047 */
a8198eea
CW
2048 if (ret == 0)
2049 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2050 if (ret == -ERESTARTSYS)
673a394b 2051 return ret;
812ed492 2052 if (ret) {
a8198eea
CW
2053 /* In the event of a disaster, abandon all caches and
2054 * hope for the best.
2055 */
812ed492 2056 i915_gem_clflush_object(obj);
05394f39 2057 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2058 }
673a394b 2059
96b47b65 2060 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2061 ret = i915_gem_object_put_fence(obj);
2062 if (ret == -ERESTARTSYS)
2063 return ret;
96b47b65 2064
db53a302
CW
2065 trace_i915_gem_object_unbind(obj);
2066
7c2e6fdf 2067 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2068 if (obj->has_aliasing_ppgtt_mapping) {
2069 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2070 obj->has_aliasing_ppgtt_mapping = 0;
2071 }
2072
e5281ccd 2073 i915_gem_object_put_pages_gtt(obj);
673a394b 2074
6299f992 2075 list_del_init(&obj->gtt_list);
05394f39 2076 list_del_init(&obj->mm_list);
75e9e915 2077 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2078 obj->map_and_fenceable = true;
673a394b 2079
05394f39
CW
2080 drm_mm_put_block(obj->gtt_space);
2081 obj->gtt_space = NULL;
2082 obj->gtt_offset = 0;
673a394b 2083
05394f39 2084 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2085 i915_gem_object_truncate(obj);
2086
8dc1775d 2087 return ret;
673a394b
EA
2088}
2089
88241785 2090int
db53a302 2091i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2092 uint32_t invalidate_domains,
2093 uint32_t flush_domains)
2094{
88241785
CW
2095 int ret;
2096
36d527de
CW
2097 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2098 return 0;
2099
db53a302
CW
2100 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2101
88241785
CW
2102 ret = ring->flush(ring, invalidate_domains, flush_domains);
2103 if (ret)
2104 return ret;
2105
36d527de
CW
2106 if (flush_domains & I915_GEM_GPU_DOMAINS)
2107 i915_gem_process_flushing_list(ring, flush_domains);
2108
88241785 2109 return 0;
54cf91dc
CW
2110}
2111
b93f9cf1 2112static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
a56ba56c 2113{
88241785
CW
2114 int ret;
2115
395b70be 2116 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2117 return 0;
2118
88241785 2119 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2120 ret = i915_gem_flush_ring(ring,
0ac74c6b 2121 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2122 if (ret)
2123 return ret;
2124 }
2125
b93f9cf1
BW
2126 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2127 do_retire);
a56ba56c
CW
2128}
2129
b93f9cf1 2130int i915_gpu_idle(struct drm_device *dev, bool do_retire)
4df2faf4
DV
2131{
2132 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 2133 int ret, i;
4df2faf4 2134
4df2faf4 2135 /* Flush everything onto the inactive list. */
1ec14ad3 2136 for (i = 0; i < I915_NUM_RINGS; i++) {
b93f9cf1 2137 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
1ec14ad3
CW
2138 if (ret)
2139 return ret;
2140 }
4df2faf4 2141
8a1a49f9 2142 return 0;
4df2faf4
DV
2143}
2144
c6642782
DV
2145static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2146 struct intel_ring_buffer *pipelined)
4e901fdc 2147{
05394f39 2148 struct drm_device *dev = obj->base.dev;
4e901fdc 2149 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2150 u32 size = obj->gtt_space->size;
2151 int regnum = obj->fence_reg;
4e901fdc
EA
2152 uint64_t val;
2153
05394f39 2154 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2155 0xfffff000) << 32;
05394f39
CW
2156 val |= obj->gtt_offset & 0xfffff000;
2157 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2158 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2159
05394f39 2160 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2161 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2162 val |= I965_FENCE_REG_VALID;
2163
c6642782
DV
2164 if (pipelined) {
2165 int ret = intel_ring_begin(pipelined, 6);
2166 if (ret)
2167 return ret;
2168
2169 intel_ring_emit(pipelined, MI_NOOP);
2170 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2171 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2172 intel_ring_emit(pipelined, (u32)val);
2173 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2174 intel_ring_emit(pipelined, (u32)(val >> 32));
2175 intel_ring_advance(pipelined);
2176 } else
2177 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2178
2179 return 0;
4e901fdc
EA
2180}
2181
c6642782
DV
2182static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2183 struct intel_ring_buffer *pipelined)
de151cf6 2184{
05394f39 2185 struct drm_device *dev = obj->base.dev;
de151cf6 2186 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2187 u32 size = obj->gtt_space->size;
2188 int regnum = obj->fence_reg;
de151cf6
JB
2189 uint64_t val;
2190
05394f39 2191 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2192 0xfffff000) << 32;
05394f39
CW
2193 val |= obj->gtt_offset & 0xfffff000;
2194 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2195 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2196 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2197 val |= I965_FENCE_REG_VALID;
2198
c6642782
DV
2199 if (pipelined) {
2200 int ret = intel_ring_begin(pipelined, 6);
2201 if (ret)
2202 return ret;
2203
2204 intel_ring_emit(pipelined, MI_NOOP);
2205 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2206 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2207 intel_ring_emit(pipelined, (u32)val);
2208 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2209 intel_ring_emit(pipelined, (u32)(val >> 32));
2210 intel_ring_advance(pipelined);
2211 } else
2212 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2213
2214 return 0;
de151cf6
JB
2215}
2216
c6642782
DV
2217static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2218 struct intel_ring_buffer *pipelined)
de151cf6 2219{
05394f39 2220 struct drm_device *dev = obj->base.dev;
de151cf6 2221 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2222 u32 size = obj->gtt_space->size;
c6642782 2223 u32 fence_reg, val, pitch_val;
0f973f27 2224 int tile_width;
de151cf6 2225
c6642782
DV
2226 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2227 (size & -size) != size ||
2228 (obj->gtt_offset & (size - 1)),
2229 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2230 obj->gtt_offset, obj->map_and_fenceable, size))
2231 return -EINVAL;
de151cf6 2232
c6642782 2233 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2234 tile_width = 128;
de151cf6 2235 else
0f973f27
JB
2236 tile_width = 512;
2237
2238 /* Note: pitch better be a power of two tile widths */
05394f39 2239 pitch_val = obj->stride / tile_width;
0f973f27 2240 pitch_val = ffs(pitch_val) - 1;
de151cf6 2241
05394f39
CW
2242 val = obj->gtt_offset;
2243 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2244 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2245 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2246 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2247 val |= I830_FENCE_REG_VALID;
2248
05394f39 2249 fence_reg = obj->fence_reg;
a00b10c3
CW
2250 if (fence_reg < 8)
2251 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2252 else
a00b10c3 2253 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2254
2255 if (pipelined) {
2256 int ret = intel_ring_begin(pipelined, 4);
2257 if (ret)
2258 return ret;
2259
2260 intel_ring_emit(pipelined, MI_NOOP);
2261 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2262 intel_ring_emit(pipelined, fence_reg);
2263 intel_ring_emit(pipelined, val);
2264 intel_ring_advance(pipelined);
2265 } else
2266 I915_WRITE(fence_reg, val);
2267
2268 return 0;
de151cf6
JB
2269}
2270
c6642782
DV
2271static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2272 struct intel_ring_buffer *pipelined)
de151cf6 2273{
05394f39 2274 struct drm_device *dev = obj->base.dev;
de151cf6 2275 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2276 u32 size = obj->gtt_space->size;
2277 int regnum = obj->fence_reg;
de151cf6
JB
2278 uint32_t val;
2279 uint32_t pitch_val;
2280
c6642782
DV
2281 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2282 (size & -size) != size ||
2283 (obj->gtt_offset & (size - 1)),
2284 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2285 obj->gtt_offset, size))
2286 return -EINVAL;
de151cf6 2287
05394f39 2288 pitch_val = obj->stride / 128;
e76a16de 2289 pitch_val = ffs(pitch_val) - 1;
e76a16de 2290
05394f39
CW
2291 val = obj->gtt_offset;
2292 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2293 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2294 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2295 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2296 val |= I830_FENCE_REG_VALID;
2297
c6642782
DV
2298 if (pipelined) {
2299 int ret = intel_ring_begin(pipelined, 4);
2300 if (ret)
2301 return ret;
2302
2303 intel_ring_emit(pipelined, MI_NOOP);
2304 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2305 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2306 intel_ring_emit(pipelined, val);
2307 intel_ring_advance(pipelined);
2308 } else
2309 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2310
2311 return 0;
de151cf6
JB
2312}
2313
d9e86c0e
CW
2314static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2315{
2316 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2317}
2318
2319static int
2320i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2321 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2322{
2323 int ret;
2324
2325 if (obj->fenced_gpu_access) {
88241785 2326 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2327 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2328 0, obj->base.write_domain);
2329 if (ret)
2330 return ret;
2331 }
d9e86c0e
CW
2332
2333 obj->fenced_gpu_access = false;
2334 }
2335
2336 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2337 if (!ring_passed_seqno(obj->last_fenced_ring,
2338 obj->last_fenced_seqno)) {
db53a302 2339 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2340 obj->last_fenced_seqno,
2341 true);
d9e86c0e
CW
2342 if (ret)
2343 return ret;
2344 }
2345
2346 obj->last_fenced_seqno = 0;
2347 obj->last_fenced_ring = NULL;
2348 }
2349
63256ec5
CW
2350 /* Ensure that all CPU reads are completed before installing a fence
2351 * and all writes before removing the fence.
2352 */
2353 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2354 mb();
2355
d9e86c0e
CW
2356 return 0;
2357}
2358
2359int
2360i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2361{
2362 int ret;
2363
2364 if (obj->tiling_mode)
2365 i915_gem_release_mmap(obj);
2366
ce453d81 2367 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2368 if (ret)
2369 return ret;
2370
2371 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2372 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1690e1eb
CW
2373
2374 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
d9e86c0e
CW
2375 i915_gem_clear_fence_reg(obj->base.dev,
2376 &dev_priv->fence_regs[obj->fence_reg]);
2377
2378 obj->fence_reg = I915_FENCE_REG_NONE;
2379 }
2380
2381 return 0;
2382}
2383
2384static struct drm_i915_fence_reg *
2385i915_find_fence_reg(struct drm_device *dev,
2386 struct intel_ring_buffer *pipelined)
ae3db24a 2387{
ae3db24a 2388 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2389 struct drm_i915_fence_reg *reg, *first, *avail;
2390 int i;
ae3db24a
DV
2391
2392 /* First try to find a free reg */
d9e86c0e 2393 avail = NULL;
ae3db24a
DV
2394 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2395 reg = &dev_priv->fence_regs[i];
2396 if (!reg->obj)
d9e86c0e 2397 return reg;
ae3db24a 2398
1690e1eb 2399 if (!reg->pin_count)
d9e86c0e 2400 avail = reg;
ae3db24a
DV
2401 }
2402
d9e86c0e
CW
2403 if (avail == NULL)
2404 return NULL;
ae3db24a
DV
2405
2406 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2407 avail = first = NULL;
2408 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2409 if (reg->pin_count)
ae3db24a
DV
2410 continue;
2411
d9e86c0e
CW
2412 if (first == NULL)
2413 first = reg;
2414
2415 if (!pipelined ||
2416 !reg->obj->last_fenced_ring ||
2417 reg->obj->last_fenced_ring == pipelined) {
2418 avail = reg;
2419 break;
2420 }
ae3db24a
DV
2421 }
2422
d9e86c0e
CW
2423 if (avail == NULL)
2424 avail = first;
ae3db24a 2425
a00b10c3 2426 return avail;
ae3db24a
DV
2427}
2428
de151cf6 2429/**
d9e86c0e 2430 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2431 * @obj: object to map through a fence reg
d9e86c0e
CW
2432 * @pipelined: ring on which to queue the change, or NULL for CPU access
2433 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2434 *
2435 * When mapping objects through the GTT, userspace wants to be able to write
2436 * to them without having to worry about swizzling if the object is tiled.
2437 *
2438 * This function walks the fence regs looking for a free one for @obj,
2439 * stealing one if it can't find any.
2440 *
2441 * It then sets up the reg based on the object's properties: address, pitch
2442 * and tiling format.
2443 */
8c4b8c3f 2444int
d9e86c0e 2445i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2446 struct intel_ring_buffer *pipelined)
de151cf6 2447{
05394f39 2448 struct drm_device *dev = obj->base.dev;
79e53945 2449 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2450 struct drm_i915_fence_reg *reg;
ae3db24a 2451 int ret;
de151cf6 2452
6bda10d1
CW
2453 /* XXX disable pipelining. There are bugs. Shocking. */
2454 pipelined = NULL;
2455
d9e86c0e 2456 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2457 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2458 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2459 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2460
29c5a587
CW
2461 if (obj->tiling_changed) {
2462 ret = i915_gem_object_flush_fence(obj, pipelined);
2463 if (ret)
2464 return ret;
2465
2466 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2467 pipelined = NULL;
2468
2469 if (pipelined) {
2470 reg->setup_seqno =
2471 i915_gem_next_request_seqno(pipelined);
2472 obj->last_fenced_seqno = reg->setup_seqno;
2473 obj->last_fenced_ring = pipelined;
2474 }
2475
2476 goto update;
2477 }
d9e86c0e
CW
2478
2479 if (!pipelined) {
2480 if (reg->setup_seqno) {
2481 if (!ring_passed_seqno(obj->last_fenced_ring,
2482 reg->setup_seqno)) {
db53a302 2483 ret = i915_wait_request(obj->last_fenced_ring,
b93f9cf1
BW
2484 reg->setup_seqno,
2485 true);
d9e86c0e
CW
2486 if (ret)
2487 return ret;
2488 }
2489
2490 reg->setup_seqno = 0;
2491 }
2492 } else if (obj->last_fenced_ring &&
2493 obj->last_fenced_ring != pipelined) {
ce453d81 2494 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2495 if (ret)
2496 return ret;
d9e86c0e
CW
2497 }
2498
a09ba7fa
EA
2499 return 0;
2500 }
2501
d9e86c0e
CW
2502 reg = i915_find_fence_reg(dev, pipelined);
2503 if (reg == NULL)
39965b37 2504 return -EDEADLK;
de151cf6 2505
ce453d81 2506 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2507 if (ret)
ae3db24a 2508 return ret;
de151cf6 2509
d9e86c0e
CW
2510 if (reg->obj) {
2511 struct drm_i915_gem_object *old = reg->obj;
2512
2513 drm_gem_object_reference(&old->base);
2514
2515 if (old->tiling_mode)
2516 i915_gem_release_mmap(old);
2517
ce453d81 2518 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2519 if (ret) {
2520 drm_gem_object_unreference(&old->base);
2521 return ret;
2522 }
2523
2524 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2525 pipelined = NULL;
2526
2527 old->fence_reg = I915_FENCE_REG_NONE;
2528 old->last_fenced_ring = pipelined;
2529 old->last_fenced_seqno =
db53a302 2530 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2531
2532 drm_gem_object_unreference(&old->base);
2533 } else if (obj->last_fenced_seqno == 0)
2534 pipelined = NULL;
a09ba7fa 2535
de151cf6 2536 reg->obj = obj;
d9e86c0e
CW
2537 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2538 obj->fence_reg = reg - dev_priv->fence_regs;
2539 obj->last_fenced_ring = pipelined;
de151cf6 2540
d9e86c0e 2541 reg->setup_seqno =
db53a302 2542 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2543 obj->last_fenced_seqno = reg->setup_seqno;
2544
2545update:
2546 obj->tiling_changed = false;
e259befd 2547 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2548 case 7:
e259befd 2549 case 6:
c6642782 2550 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2551 break;
2552 case 5:
2553 case 4:
c6642782 2554 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2555 break;
2556 case 3:
c6642782 2557 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2558 break;
2559 case 2:
c6642782 2560 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2561 break;
2562 }
d9ddcb96 2563
c6642782 2564 return ret;
de151cf6
JB
2565}
2566
2567/**
2568 * i915_gem_clear_fence_reg - clear out fence register info
2569 * @obj: object to clear
2570 *
2571 * Zeroes out the fence register itself and clears out the associated
05394f39 2572 * data structures in dev_priv and obj.
de151cf6
JB
2573 */
2574static void
d9e86c0e
CW
2575i915_gem_clear_fence_reg(struct drm_device *dev,
2576 struct drm_i915_fence_reg *reg)
de151cf6 2577{
79e53945 2578 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2579 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2580
e259befd 2581 switch (INTEL_INFO(dev)->gen) {
25aebfc3 2582 case 7:
e259befd 2583 case 6:
d9e86c0e 2584 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2585 break;
2586 case 5:
2587 case 4:
d9e86c0e 2588 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2589 break;
2590 case 3:
d9e86c0e
CW
2591 if (fence_reg >= 8)
2592 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2593 else
e259befd 2594 case 2:
d9e86c0e 2595 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2596
2597 I915_WRITE(fence_reg, 0);
e259befd 2598 break;
dc529a4f 2599 }
de151cf6 2600
007cc8ac 2601 list_del_init(&reg->lru_list);
d9e86c0e
CW
2602 reg->obj = NULL;
2603 reg->setup_seqno = 0;
1690e1eb 2604 reg->pin_count = 0;
52dc7d32
CW
2605}
2606
673a394b
EA
2607/**
2608 * Finds free space in the GTT aperture and binds the object there.
2609 */
2610static int
05394f39 2611i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2612 unsigned alignment,
75e9e915 2613 bool map_and_fenceable)
673a394b 2614{
05394f39 2615 struct drm_device *dev = obj->base.dev;
673a394b 2616 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2617 struct drm_mm_node *free_space;
a00b10c3 2618 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2619 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2620 bool mappable, fenceable;
07f73f69 2621 int ret;
673a394b 2622
05394f39 2623 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2624 DRM_ERROR("Attempting to bind a purgeable object\n");
2625 return -EINVAL;
2626 }
2627
e28f8711
CW
2628 fence_size = i915_gem_get_gtt_size(dev,
2629 obj->base.size,
2630 obj->tiling_mode);
2631 fence_alignment = i915_gem_get_gtt_alignment(dev,
2632 obj->base.size,
2633 obj->tiling_mode);
2634 unfenced_alignment =
2635 i915_gem_get_unfenced_gtt_alignment(dev,
2636 obj->base.size,
2637 obj->tiling_mode);
a00b10c3 2638
673a394b 2639 if (alignment == 0)
5e783301
DV
2640 alignment = map_and_fenceable ? fence_alignment :
2641 unfenced_alignment;
75e9e915 2642 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2643 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2644 return -EINVAL;
2645 }
2646
05394f39 2647 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2648
654fc607
CW
2649 /* If the object is bigger than the entire aperture, reject it early
2650 * before evicting everything in a vain attempt to find space.
2651 */
05394f39 2652 if (obj->base.size >
75e9e915 2653 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2654 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2655 return -E2BIG;
2656 }
2657
673a394b 2658 search_free:
75e9e915 2659 if (map_and_fenceable)
920afa77
DV
2660 free_space =
2661 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2662 size, alignment, 0,
920afa77
DV
2663 dev_priv->mm.gtt_mappable_end,
2664 0);
2665 else
2666 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2667 size, alignment, 0);
920afa77
DV
2668
2669 if (free_space != NULL) {
75e9e915 2670 if (map_and_fenceable)
05394f39 2671 obj->gtt_space =
920afa77 2672 drm_mm_get_block_range_generic(free_space,
a00b10c3 2673 size, alignment, 0,
920afa77
DV
2674 dev_priv->mm.gtt_mappable_end,
2675 0);
2676 else
05394f39 2677 obj->gtt_space =
a00b10c3 2678 drm_mm_get_block(free_space, size, alignment);
920afa77 2679 }
05394f39 2680 if (obj->gtt_space == NULL) {
673a394b
EA
2681 /* If the gtt is empty and we're still having trouble
2682 * fitting our object in, we're out of memory.
2683 */
75e9e915
DV
2684 ret = i915_gem_evict_something(dev, size, alignment,
2685 map_and_fenceable);
9731129c 2686 if (ret)
673a394b 2687 return ret;
9731129c 2688
673a394b
EA
2689 goto search_free;
2690 }
2691
e5281ccd 2692 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2693 if (ret) {
05394f39
CW
2694 drm_mm_put_block(obj->gtt_space);
2695 obj->gtt_space = NULL;
07f73f69
CW
2696
2697 if (ret == -ENOMEM) {
809b6334
CW
2698 /* first try to reclaim some memory by clearing the GTT */
2699 ret = i915_gem_evict_everything(dev, false);
07f73f69 2700 if (ret) {
07f73f69 2701 /* now try to shrink everyone else */
4bdadb97
CW
2702 if (gfpmask) {
2703 gfpmask = 0;
2704 goto search_free;
07f73f69
CW
2705 }
2706
809b6334 2707 return -ENOMEM;
07f73f69
CW
2708 }
2709
2710 goto search_free;
2711 }
2712
673a394b
EA
2713 return ret;
2714 }
2715
7c2e6fdf
DV
2716 ret = i915_gem_gtt_bind_object(obj);
2717 if (ret) {
e5281ccd 2718 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2719 drm_mm_put_block(obj->gtt_space);
2720 obj->gtt_space = NULL;
07f73f69 2721
809b6334 2722 if (i915_gem_evict_everything(dev, false))
07f73f69 2723 return ret;
07f73f69
CW
2724
2725 goto search_free;
673a394b 2726 }
673a394b 2727
6299f992 2728 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2729 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2730
673a394b
EA
2731 /* Assert that the object is not currently in any GPU domain. As it
2732 * wasn't in the GTT, there shouldn't be any way it could have been in
2733 * a GPU cache
2734 */
05394f39
CW
2735 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2736 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2737
6299f992 2738 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2739
75e9e915 2740 fenceable =
05394f39 2741 obj->gtt_space->size == fence_size &&
0206e353 2742 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2743
75e9e915 2744 mappable =
05394f39 2745 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2746
05394f39 2747 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2748
db53a302 2749 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2750 return 0;
2751}
2752
2753void
05394f39 2754i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2755{
673a394b
EA
2756 /* If we don't have a page list set up, then we're not pinned
2757 * to GPU, and we can ignore the cache flush because it'll happen
2758 * again at bind time.
2759 */
05394f39 2760 if (obj->pages == NULL)
673a394b
EA
2761 return;
2762
9c23f7fc
CW
2763 /* If the GPU is snooping the contents of the CPU cache,
2764 * we do not need to manually clear the CPU cache lines. However,
2765 * the caches are only snooped when the render cache is
2766 * flushed/invalidated. As we always have to emit invalidations
2767 * and flushes when moving into and out of the RENDER domain, correct
2768 * snooping behaviour occurs naturally as the result of our domain
2769 * tracking.
2770 */
2771 if (obj->cache_level != I915_CACHE_NONE)
2772 return;
2773
1c5d22f7 2774 trace_i915_gem_object_clflush(obj);
cfa16a0d 2775
05394f39 2776 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2777}
2778
e47c68e9 2779/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2780static int
3619df03 2781i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2782{
05394f39 2783 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2784 return 0;
e47c68e9
EA
2785
2786 /* Queue the GPU write cache flushing we need. */
db53a302 2787 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2788}
2789
2790/** Flushes the GTT write domain for the object if it's dirty. */
2791static void
05394f39 2792i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2793{
1c5d22f7
CW
2794 uint32_t old_write_domain;
2795
05394f39 2796 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2797 return;
2798
63256ec5 2799 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2800 * to it immediately go to main memory as far as we know, so there's
2801 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2802 *
2803 * However, we do have to enforce the order so that all writes through
2804 * the GTT land before any writes to the device, such as updates to
2805 * the GATT itself.
e47c68e9 2806 */
63256ec5
CW
2807 wmb();
2808
05394f39
CW
2809 old_write_domain = obj->base.write_domain;
2810 obj->base.write_domain = 0;
1c5d22f7
CW
2811
2812 trace_i915_gem_object_change_domain(obj,
05394f39 2813 obj->base.read_domains,
1c5d22f7 2814 old_write_domain);
e47c68e9
EA
2815}
2816
2817/** Flushes the CPU write domain for the object if it's dirty. */
2818static void
05394f39 2819i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2820{
1c5d22f7 2821 uint32_t old_write_domain;
e47c68e9 2822
05394f39 2823 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2824 return;
2825
2826 i915_gem_clflush_object(obj);
40ce6575 2827 intel_gtt_chipset_flush();
05394f39
CW
2828 old_write_domain = obj->base.write_domain;
2829 obj->base.write_domain = 0;
1c5d22f7
CW
2830
2831 trace_i915_gem_object_change_domain(obj,
05394f39 2832 obj->base.read_domains,
1c5d22f7 2833 old_write_domain);
e47c68e9
EA
2834}
2835
2ef7eeaa
EA
2836/**
2837 * Moves a single object to the GTT read, and possibly write domain.
2838 *
2839 * This function returns when the move is complete, including waiting on
2840 * flushes to occur.
2841 */
79e53945 2842int
2021746e 2843i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2844{
1c5d22f7 2845 uint32_t old_write_domain, old_read_domains;
e47c68e9 2846 int ret;
2ef7eeaa 2847
02354392 2848 /* Not valid to be called on unbound objects. */
05394f39 2849 if (obj->gtt_space == NULL)
02354392
EA
2850 return -EINVAL;
2851
8d7e3de1
CW
2852 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2853 return 0;
2854
88241785
CW
2855 ret = i915_gem_object_flush_gpu_write_domain(obj);
2856 if (ret)
2857 return ret;
2858
87ca9c8a 2859 if (obj->pending_gpu_write || write) {
ce453d81 2860 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2861 if (ret)
2862 return ret;
2863 }
2dafb1e0 2864
7213342d 2865 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2866
05394f39
CW
2867 old_write_domain = obj->base.write_domain;
2868 old_read_domains = obj->base.read_domains;
1c5d22f7 2869
e47c68e9
EA
2870 /* It should now be out of any other write domains, and we can update
2871 * the domain values for our changes.
2872 */
05394f39
CW
2873 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2874 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2875 if (write) {
05394f39
CW
2876 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2877 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2878 obj->dirty = 1;
2ef7eeaa
EA
2879 }
2880
1c5d22f7
CW
2881 trace_i915_gem_object_change_domain(obj,
2882 old_read_domains,
2883 old_write_domain);
2884
e47c68e9
EA
2885 return 0;
2886}
2887
e4ffd173
CW
2888int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2889 enum i915_cache_level cache_level)
2890{
7bddb01f
DV
2891 struct drm_device *dev = obj->base.dev;
2892 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
2893 int ret;
2894
2895 if (obj->cache_level == cache_level)
2896 return 0;
2897
2898 if (obj->pin_count) {
2899 DRM_DEBUG("can not change the cache level of pinned objects\n");
2900 return -EBUSY;
2901 }
2902
2903 if (obj->gtt_space) {
2904 ret = i915_gem_object_finish_gpu(obj);
2905 if (ret)
2906 return ret;
2907
2908 i915_gem_object_finish_gtt(obj);
2909
2910 /* Before SandyBridge, you could not use tiling or fence
2911 * registers with snooped memory, so relinquish any fences
2912 * currently pointing to our region in the aperture.
2913 */
2914 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2915 ret = i915_gem_object_put_fence(obj);
2916 if (ret)
2917 return ret;
2918 }
2919
2920 i915_gem_gtt_rebind_object(obj, cache_level);
7bddb01f
DV
2921 if (obj->has_aliasing_ppgtt_mapping)
2922 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2923 obj, cache_level);
e4ffd173
CW
2924 }
2925
2926 if (cache_level == I915_CACHE_NONE) {
2927 u32 old_read_domains, old_write_domain;
2928
2929 /* If we're coming from LLC cached, then we haven't
2930 * actually been tracking whether the data is in the
2931 * CPU cache or not, since we only allow one bit set
2932 * in obj->write_domain and have been skipping the clflushes.
2933 * Just set it to the CPU cache for now.
2934 */
2935 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2936 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2937
2938 old_read_domains = obj->base.read_domains;
2939 old_write_domain = obj->base.write_domain;
2940
2941 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2942 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2943
2944 trace_i915_gem_object_change_domain(obj,
2945 old_read_domains,
2946 old_write_domain);
2947 }
2948
2949 obj->cache_level = cache_level;
2950 return 0;
2951}
2952
b9241ea3 2953/*
2da3b9b9
CW
2954 * Prepare buffer for display plane (scanout, cursors, etc).
2955 * Can be called from an uninterruptible phase (modesetting) and allows
2956 * any flushes to be pipelined (for pageflips).
2957 *
2958 * For the display plane, we want to be in the GTT but out of any write
2959 * domains. So in many ways this looks like set_to_gtt_domain() apart from the
2960 * ability to pipeline the waits, pinning and any additional subtleties
2961 * that may differentiate the display plane from ordinary buffers.
b9241ea3
ZW
2962 */
2963int
2da3b9b9
CW
2964i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2965 u32 alignment,
919926ae 2966 struct intel_ring_buffer *pipelined)
b9241ea3 2967{
2da3b9b9 2968 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
2969 int ret;
2970
88241785
CW
2971 ret = i915_gem_object_flush_gpu_write_domain(obj);
2972 if (ret)
2973 return ret;
2974
0be73284 2975 if (pipelined != obj->ring) {
ce453d81 2976 ret = i915_gem_object_wait_rendering(obj);
f0b69efc 2977 if (ret == -ERESTARTSYS)
b9241ea3
ZW
2978 return ret;
2979 }
2980
a7ef0640
EA
2981 /* The display engine is not coherent with the LLC cache on gen6. As
2982 * a result, we make sure that the pinning that is about to occur is
2983 * done with uncached PTEs. This is lowest common denominator for all
2984 * chipsets.
2985 *
2986 * However for gen6+, we could do better by using the GFDT bit instead
2987 * of uncaching, which would allow us to flush all the LLC-cached data
2988 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2989 */
2990 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2991 if (ret)
2992 return ret;
2993
2da3b9b9
CW
2994 /* As the user may map the buffer once pinned in the display plane
2995 * (e.g. libkms for the bootup splash), we have to ensure that we
2996 * always use map_and_fenceable for all scanout buffers.
2997 */
2998 ret = i915_gem_object_pin(obj, alignment, true);
2999 if (ret)
3000 return ret;
3001
b118c1e3
CW
3002 i915_gem_object_flush_cpu_write_domain(obj);
3003
2da3b9b9 3004 old_write_domain = obj->base.write_domain;
05394f39 3005 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3006
3007 /* It should now be out of any other write domains, and we can update
3008 * the domain values for our changes.
3009 */
3010 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
05394f39 3011 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3012
3013 trace_i915_gem_object_change_domain(obj,
3014 old_read_domains,
2da3b9b9 3015 old_write_domain);
b9241ea3
ZW
3016
3017 return 0;
3018}
3019
85345517 3020int
a8198eea 3021i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3022{
88241785
CW
3023 int ret;
3024
a8198eea 3025 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3026 return 0;
3027
88241785 3028 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3029 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3030 if (ret)
3031 return ret;
3032 }
85345517 3033
a8198eea
CW
3034 /* Ensure that we invalidate the GPU's caches and TLBs. */
3035 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3036
ce453d81 3037 return i915_gem_object_wait_rendering(obj);
85345517
CW
3038}
3039
e47c68e9
EA
3040/**
3041 * Moves a single object to the CPU read, and possibly write domain.
3042 *
3043 * This function returns when the move is complete, including waiting on
3044 * flushes to occur.
3045 */
3046static int
919926ae 3047i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3048{
1c5d22f7 3049 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3050 int ret;
3051
8d7e3de1
CW
3052 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3053 return 0;
3054
88241785
CW
3055 ret = i915_gem_object_flush_gpu_write_domain(obj);
3056 if (ret)
3057 return ret;
3058
ce453d81 3059 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3060 if (ret)
e47c68e9 3061 return ret;
2ef7eeaa 3062
e47c68e9 3063 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3064
e47c68e9
EA
3065 /* If we have a partially-valid cache of the object in the CPU,
3066 * finish invalidating it and free the per-page flags.
2ef7eeaa 3067 */
e47c68e9 3068 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3069
05394f39
CW
3070 old_write_domain = obj->base.write_domain;
3071 old_read_domains = obj->base.read_domains;
1c5d22f7 3072
e47c68e9 3073 /* Flush the CPU cache if it's still invalid. */
05394f39 3074 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3075 i915_gem_clflush_object(obj);
2ef7eeaa 3076
05394f39 3077 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3078 }
3079
3080 /* It should now be out of any other write domains, and we can update
3081 * the domain values for our changes.
3082 */
05394f39 3083 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3084
3085 /* If we're writing through the CPU, then the GPU read domains will
3086 * need to be invalidated at next use.
3087 */
3088 if (write) {
05394f39
CW
3089 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3090 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3091 }
2ef7eeaa 3092
1c5d22f7
CW
3093 trace_i915_gem_object_change_domain(obj,
3094 old_read_domains,
3095 old_write_domain);
3096
2ef7eeaa
EA
3097 return 0;
3098}
3099
673a394b 3100/**
e47c68e9 3101 * Moves the object from a partially CPU read to a full one.
673a394b 3102 *
e47c68e9
EA
3103 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3104 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3105 */
e47c68e9 3106static void
05394f39 3107i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3108{
05394f39 3109 if (!obj->page_cpu_valid)
e47c68e9
EA
3110 return;
3111
3112 /* If we're partially in the CPU read domain, finish moving it in.
3113 */
05394f39 3114 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3115 int i;
3116
05394f39
CW
3117 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3118 if (obj->page_cpu_valid[i])
e47c68e9 3119 continue;
05394f39 3120 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3121 }
e47c68e9
EA
3122 }
3123
3124 /* Free the page_cpu_valid mappings which are now stale, whether
3125 * or not we've got I915_GEM_DOMAIN_CPU.
3126 */
05394f39
CW
3127 kfree(obj->page_cpu_valid);
3128 obj->page_cpu_valid = NULL;
e47c68e9
EA
3129}
3130
3131/**
3132 * Set the CPU read domain on a range of the object.
3133 *
3134 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3135 * not entirely valid. The page_cpu_valid member of the object flags which
3136 * pages have been flushed, and will be respected by
3137 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3138 * of the whole object.
3139 *
3140 * This function returns when the move is complete, including waiting on
3141 * flushes to occur.
3142 */
3143static int
05394f39 3144i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3145 uint64_t offset, uint64_t size)
3146{
1c5d22f7 3147 uint32_t old_read_domains;
e47c68e9 3148 int i, ret;
673a394b 3149
05394f39 3150 if (offset == 0 && size == obj->base.size)
e47c68e9 3151 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3152
88241785
CW
3153 ret = i915_gem_object_flush_gpu_write_domain(obj);
3154 if (ret)
3155 return ret;
3156
ce453d81 3157 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3158 if (ret)
6a47baa6 3159 return ret;
de18a29e 3160
e47c68e9
EA
3161 i915_gem_object_flush_gtt_write_domain(obj);
3162
3163 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3164 if (obj->page_cpu_valid == NULL &&
3165 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3166 return 0;
673a394b 3167
e47c68e9
EA
3168 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3169 * newly adding I915_GEM_DOMAIN_CPU
3170 */
05394f39
CW
3171 if (obj->page_cpu_valid == NULL) {
3172 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3173 GFP_KERNEL);
3174 if (obj->page_cpu_valid == NULL)
e47c68e9 3175 return -ENOMEM;
05394f39
CW
3176 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3177 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3178
3179 /* Flush the cache on any pages that are still invalid from the CPU's
3180 * perspective.
3181 */
e47c68e9
EA
3182 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3183 i++) {
05394f39 3184 if (obj->page_cpu_valid[i])
673a394b
EA
3185 continue;
3186
05394f39 3187 drm_clflush_pages(obj->pages + i, 1);
673a394b 3188
05394f39 3189 obj->page_cpu_valid[i] = 1;
673a394b
EA
3190 }
3191
e47c68e9
EA
3192 /* It should now be out of any other write domains, and we can update
3193 * the domain values for our changes.
3194 */
05394f39 3195 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3196
05394f39
CW
3197 old_read_domains = obj->base.read_domains;
3198 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3199
1c5d22f7
CW
3200 trace_i915_gem_object_change_domain(obj,
3201 old_read_domains,
05394f39 3202 obj->base.write_domain);
1c5d22f7 3203
673a394b
EA
3204 return 0;
3205}
3206
673a394b
EA
3207/* Throttle our rendering by waiting until the ring has completed our requests
3208 * emitted over 20 msec ago.
3209 *
b962442e
EA
3210 * Note that if we were to use the current jiffies each time around the loop,
3211 * we wouldn't escape the function with any frames outstanding if the time to
3212 * render a frame was over 20ms.
3213 *
673a394b
EA
3214 * This should get us reasonable parallelism between CPU and GPU but also
3215 * relatively low latency when blocking on a particular request to finish.
3216 */
40a5f0de 3217static int
f787a5f5 3218i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3219{
f787a5f5
CW
3220 struct drm_i915_private *dev_priv = dev->dev_private;
3221 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3222 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3223 struct drm_i915_gem_request *request;
3224 struct intel_ring_buffer *ring = NULL;
3225 u32 seqno = 0;
3226 int ret;
93533c29 3227
e110e8d6
CW
3228 if (atomic_read(&dev_priv->mm.wedged))
3229 return -EIO;
3230
1c25595f 3231 spin_lock(&file_priv->mm.lock);
f787a5f5 3232 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3233 if (time_after_eq(request->emitted_jiffies, recent_enough))
3234 break;
40a5f0de 3235
f787a5f5
CW
3236 ring = request->ring;
3237 seqno = request->seqno;
b962442e 3238 }
1c25595f 3239 spin_unlock(&file_priv->mm.lock);
40a5f0de 3240
f787a5f5
CW
3241 if (seqno == 0)
3242 return 0;
2bc43b5c 3243
f787a5f5 3244 ret = 0;
78501eac 3245 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3246 /* And wait for the seqno passing without holding any locks and
3247 * causing extra latency for others. This is safe as the irq
3248 * generation is designed to be run atomically and so is
3249 * lockless.
3250 */
b13c2b96
CW
3251 if (ring->irq_get(ring)) {
3252 ret = wait_event_interruptible(ring->irq_queue,
3253 i915_seqno_passed(ring->get_seqno(ring), seqno)
3254 || atomic_read(&dev_priv->mm.wedged));
3255 ring->irq_put(ring);
40a5f0de 3256
b13c2b96
CW
3257 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3258 ret = -EIO;
e959b5db
EA
3259 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3260 seqno) ||
7ea29b13
EA
3261 atomic_read(&dev_priv->mm.wedged), 3000)) {
3262 ret = -EBUSY;
b13c2b96 3263 }
40a5f0de
EA
3264 }
3265
f787a5f5
CW
3266 if (ret == 0)
3267 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3268
3269 return ret;
3270}
3271
673a394b 3272int
05394f39
CW
3273i915_gem_object_pin(struct drm_i915_gem_object *obj,
3274 uint32_t alignment,
75e9e915 3275 bool map_and_fenceable)
673a394b 3276{
05394f39 3277 struct drm_device *dev = obj->base.dev;
f13d3f73 3278 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3279 int ret;
3280
05394f39 3281 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3282 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3283
05394f39
CW
3284 if (obj->gtt_space != NULL) {
3285 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3286 (map_and_fenceable && !obj->map_and_fenceable)) {
3287 WARN(obj->pin_count,
ae7d49d8 3288 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3289 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3290 " obj->map_and_fenceable=%d\n",
05394f39 3291 obj->gtt_offset, alignment,
75e9e915 3292 map_and_fenceable,
05394f39 3293 obj->map_and_fenceable);
ac0c6b5a
CW
3294 ret = i915_gem_object_unbind(obj);
3295 if (ret)
3296 return ret;
3297 }
3298 }
3299
05394f39 3300 if (obj->gtt_space == NULL) {
a00b10c3 3301 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3302 map_and_fenceable);
9731129c 3303 if (ret)
673a394b 3304 return ret;
22c344e9 3305 }
76446cac 3306
05394f39 3307 if (obj->pin_count++ == 0) {
05394f39
CW
3308 if (!obj->active)
3309 list_move_tail(&obj->mm_list,
f13d3f73 3310 &dev_priv->mm.pinned_list);
673a394b 3311 }
6299f992 3312 obj->pin_mappable |= map_and_fenceable;
673a394b 3313
23bc5982 3314 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3315 return 0;
3316}
3317
3318void
05394f39 3319i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3320{
05394f39 3321 struct drm_device *dev = obj->base.dev;
673a394b 3322 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3323
23bc5982 3324 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3325 BUG_ON(obj->pin_count == 0);
3326 BUG_ON(obj->gtt_space == NULL);
673a394b 3327
05394f39
CW
3328 if (--obj->pin_count == 0) {
3329 if (!obj->active)
3330 list_move_tail(&obj->mm_list,
673a394b 3331 &dev_priv->mm.inactive_list);
6299f992 3332 obj->pin_mappable = false;
673a394b 3333 }
23bc5982 3334 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3335}
3336
3337int
3338i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3339 struct drm_file *file)
673a394b
EA
3340{
3341 struct drm_i915_gem_pin *args = data;
05394f39 3342 struct drm_i915_gem_object *obj;
673a394b
EA
3343 int ret;
3344
1d7cfea1
CW
3345 ret = i915_mutex_lock_interruptible(dev);
3346 if (ret)
3347 return ret;
673a394b 3348
05394f39 3349 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3350 if (&obj->base == NULL) {
1d7cfea1
CW
3351 ret = -ENOENT;
3352 goto unlock;
673a394b 3353 }
673a394b 3354
05394f39 3355 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3356 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3357 ret = -EINVAL;
3358 goto out;
3ef94daa
CW
3359 }
3360
05394f39 3361 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3362 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3363 args->handle);
1d7cfea1
CW
3364 ret = -EINVAL;
3365 goto out;
79e53945
JB
3366 }
3367
05394f39
CW
3368 obj->user_pin_count++;
3369 obj->pin_filp = file;
3370 if (obj->user_pin_count == 1) {
75e9e915 3371 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3372 if (ret)
3373 goto out;
673a394b
EA
3374 }
3375
3376 /* XXX - flush the CPU caches for pinned objects
3377 * as the X server doesn't manage domains yet
3378 */
e47c68e9 3379 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3380 args->offset = obj->gtt_offset;
1d7cfea1 3381out:
05394f39 3382 drm_gem_object_unreference(&obj->base);
1d7cfea1 3383unlock:
673a394b 3384 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3385 return ret;
673a394b
EA
3386}
3387
3388int
3389i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3390 struct drm_file *file)
673a394b
EA
3391{
3392 struct drm_i915_gem_pin *args = data;
05394f39 3393 struct drm_i915_gem_object *obj;
76c1dec1 3394 int ret;
673a394b 3395
1d7cfea1
CW
3396 ret = i915_mutex_lock_interruptible(dev);
3397 if (ret)
3398 return ret;
673a394b 3399
05394f39 3400 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3401 if (&obj->base == NULL) {
1d7cfea1
CW
3402 ret = -ENOENT;
3403 goto unlock;
673a394b 3404 }
76c1dec1 3405
05394f39 3406 if (obj->pin_filp != file) {
79e53945
JB
3407 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3408 args->handle);
1d7cfea1
CW
3409 ret = -EINVAL;
3410 goto out;
79e53945 3411 }
05394f39
CW
3412 obj->user_pin_count--;
3413 if (obj->user_pin_count == 0) {
3414 obj->pin_filp = NULL;
79e53945
JB
3415 i915_gem_object_unpin(obj);
3416 }
673a394b 3417
1d7cfea1 3418out:
05394f39 3419 drm_gem_object_unreference(&obj->base);
1d7cfea1 3420unlock:
673a394b 3421 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3422 return ret;
673a394b
EA
3423}
3424
3425int
3426i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3427 struct drm_file *file)
673a394b
EA
3428{
3429 struct drm_i915_gem_busy *args = data;
05394f39 3430 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3431 int ret;
3432
76c1dec1 3433 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3434 if (ret)
76c1dec1 3435 return ret;
673a394b 3436
05394f39 3437 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3438 if (&obj->base == NULL) {
1d7cfea1
CW
3439 ret = -ENOENT;
3440 goto unlock;
673a394b 3441 }
d1b851fc 3442
0be555b6
CW
3443 /* Count all active objects as busy, even if they are currently not used
3444 * by the gpu. Users of this interface expect objects to eventually
3445 * become non-busy without any further actions, therefore emit any
3446 * necessary flushes here.
c4de0a5d 3447 */
05394f39 3448 args->busy = obj->active;
0be555b6
CW
3449 if (args->busy) {
3450 /* Unconditionally flush objects, even when the gpu still uses this
3451 * object. Userspace calling this function indicates that it wants to
3452 * use this buffer rather sooner than later, so issuing the required
3453 * flush earlier is beneficial.
3454 */
1a1c6976 3455 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3456 ret = i915_gem_flush_ring(obj->ring,
88241785 3457 0, obj->base.write_domain);
1a1c6976
CW
3458 } else if (obj->ring->outstanding_lazy_request ==
3459 obj->last_rendering_seqno) {
3460 struct drm_i915_gem_request *request;
3461
7a194876
CW
3462 /* This ring is not being cleared by active usage,
3463 * so emit a request to do so.
3464 */
1a1c6976 3465 request = kzalloc(sizeof(*request), GFP_KERNEL);
457eafce 3466 if (request) {
0206e353 3467 ret = i915_add_request(obj->ring, NULL, request);
457eafce
RM
3468 if (ret)
3469 kfree(request);
3470 } else
7a194876
CW
3471 ret = -ENOMEM;
3472 }
0be555b6
CW
3473
3474 /* Update the active list for the hardware's current position.
3475 * Otherwise this only updates on a delayed timer or when irqs
3476 * are actually unmasked, and our working set ends up being
3477 * larger than required.
3478 */
db53a302 3479 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3480
05394f39 3481 args->busy = obj->active;
0be555b6 3482 }
673a394b 3483
05394f39 3484 drm_gem_object_unreference(&obj->base);
1d7cfea1 3485unlock:
673a394b 3486 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3487 return ret;
673a394b
EA
3488}
3489
3490int
3491i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3492 struct drm_file *file_priv)
3493{
0206e353 3494 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3495}
3496
3ef94daa
CW
3497int
3498i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3499 struct drm_file *file_priv)
3500{
3501 struct drm_i915_gem_madvise *args = data;
05394f39 3502 struct drm_i915_gem_object *obj;
76c1dec1 3503 int ret;
3ef94daa
CW
3504
3505 switch (args->madv) {
3506 case I915_MADV_DONTNEED:
3507 case I915_MADV_WILLNEED:
3508 break;
3509 default:
3510 return -EINVAL;
3511 }
3512
1d7cfea1
CW
3513 ret = i915_mutex_lock_interruptible(dev);
3514 if (ret)
3515 return ret;
3516
05394f39 3517 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3518 if (&obj->base == NULL) {
1d7cfea1
CW
3519 ret = -ENOENT;
3520 goto unlock;
3ef94daa 3521 }
3ef94daa 3522
05394f39 3523 if (obj->pin_count) {
1d7cfea1
CW
3524 ret = -EINVAL;
3525 goto out;
3ef94daa
CW
3526 }
3527
05394f39
CW
3528 if (obj->madv != __I915_MADV_PURGED)
3529 obj->madv = args->madv;
3ef94daa 3530
2d7ef395 3531 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3532 if (i915_gem_object_is_purgeable(obj) &&
3533 obj->gtt_space == NULL)
2d7ef395
CW
3534 i915_gem_object_truncate(obj);
3535
05394f39 3536 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3537
1d7cfea1 3538out:
05394f39 3539 drm_gem_object_unreference(&obj->base);
1d7cfea1 3540unlock:
3ef94daa 3541 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3542 return ret;
3ef94daa
CW
3543}
3544
05394f39
CW
3545struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3546 size_t size)
ac52bc56 3547{
73aa808f 3548 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3549 struct drm_i915_gem_object *obj;
5949eac4 3550 struct address_space *mapping;
ac52bc56 3551
c397b908
DV
3552 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3553 if (obj == NULL)
3554 return NULL;
673a394b 3555
c397b908
DV
3556 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3557 kfree(obj);
3558 return NULL;
3559 }
673a394b 3560
5949eac4
HD
3561 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3562 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3563
73aa808f
CW
3564 i915_gem_info_add_obj(dev_priv, size);
3565
c397b908
DV
3566 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3567 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3568
3d29b842
ED
3569 if (HAS_LLC(dev)) {
3570 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3571 * cache) for about a 10% performance improvement
3572 * compared to uncached. Graphics requests other than
3573 * display scanout are coherent with the CPU in
3574 * accessing this cache. This means in this mode we
3575 * don't need to clflush on the CPU side, and on the
3576 * GPU side we only need to flush internal caches to
3577 * get data visible to the CPU.
3578 *
3579 * However, we maintain the display planes as UC, and so
3580 * need to rebind when first used as such.
3581 */
3582 obj->cache_level = I915_CACHE_LLC;
3583 } else
3584 obj->cache_level = I915_CACHE_NONE;
3585
62b8b215 3586 obj->base.driver_private = NULL;
c397b908 3587 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3588 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3589 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3590 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3591 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3592 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3593 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3594 /* Avoid an unnecessary call to unbind on the first bind. */
3595 obj->map_and_fenceable = true;
de151cf6 3596
05394f39 3597 return obj;
c397b908
DV
3598}
3599
3600int i915_gem_init_object(struct drm_gem_object *obj)
3601{
3602 BUG();
de151cf6 3603
673a394b
EA
3604 return 0;
3605}
3606
05394f39 3607static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3608{
05394f39 3609 struct drm_device *dev = obj->base.dev;
be72615b 3610 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3611 int ret;
673a394b 3612
be72615b
CW
3613 ret = i915_gem_object_unbind(obj);
3614 if (ret == -ERESTARTSYS) {
05394f39 3615 list_move(&obj->mm_list,
be72615b
CW
3616 &dev_priv->mm.deferred_free_list);
3617 return;
3618 }
673a394b 3619
26e12f89
CW
3620 trace_i915_gem_object_destroy(obj);
3621
05394f39 3622 if (obj->base.map_list.map)
b464e9a2 3623 drm_gem_free_mmap_offset(&obj->base);
de151cf6 3624
05394f39
CW
3625 drm_gem_object_release(&obj->base);
3626 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3627
05394f39
CW
3628 kfree(obj->page_cpu_valid);
3629 kfree(obj->bit_17);
3630 kfree(obj);
673a394b
EA
3631}
3632
05394f39 3633void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3634{
05394f39
CW
3635 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3636 struct drm_device *dev = obj->base.dev;
be72615b 3637
05394f39 3638 while (obj->pin_count > 0)
be72615b
CW
3639 i915_gem_object_unpin(obj);
3640
05394f39 3641 if (obj->phys_obj)
be72615b
CW
3642 i915_gem_detach_phys_object(dev, obj);
3643
3644 i915_gem_free_object_tail(obj);
3645}
3646
29105ccc
CW
3647int
3648i915_gem_idle(struct drm_device *dev)
3649{
3650 drm_i915_private_t *dev_priv = dev->dev_private;
3651 int ret;
28dfe52a 3652
29105ccc 3653 mutex_lock(&dev->struct_mutex);
1c5d22f7 3654
87acb0a5 3655 if (dev_priv->mm.suspended) {
29105ccc
CW
3656 mutex_unlock(&dev->struct_mutex);
3657 return 0;
28dfe52a
EA
3658 }
3659
b93f9cf1 3660 ret = i915_gpu_idle(dev, true);
6dbe2772
KP
3661 if (ret) {
3662 mutex_unlock(&dev->struct_mutex);
673a394b 3663 return ret;
6dbe2772 3664 }
673a394b 3665
29105ccc
CW
3666 /* Under UMS, be paranoid and evict. */
3667 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3668 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3669 if (ret) {
3670 mutex_unlock(&dev->struct_mutex);
3671 return ret;
3672 }
3673 }
3674
312817a3
CW
3675 i915_gem_reset_fences(dev);
3676
29105ccc
CW
3677 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3678 * We need to replace this with a semaphore, or something.
3679 * And not confound mm.suspended!
3680 */
3681 dev_priv->mm.suspended = 1;
bc0c7f14 3682 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3683
3684 i915_kernel_lost_context(dev);
6dbe2772 3685 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3686
6dbe2772
KP
3687 mutex_unlock(&dev->struct_mutex);
3688
29105ccc
CW
3689 /* Cancel the retire work handler, which should be idle now. */
3690 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3691
673a394b
EA
3692 return 0;
3693}
3694
f691e2f4
DV
3695void i915_gem_init_swizzling(struct drm_device *dev)
3696{
3697 drm_i915_private_t *dev_priv = dev->dev_private;
3698
11782b02 3699 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3700 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3701 return;
3702
3703 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3704 DISP_TILE_SURFACE_SWIZZLING);
3705
11782b02
DV
3706 if (IS_GEN5(dev))
3707 return;
3708
f691e2f4
DV
3709 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3710 if (IS_GEN6(dev))
3711 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3712 else
3713 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3714}
8187a2b7 3715int
f691e2f4 3716i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3717{
3718 drm_i915_private_t *dev_priv = dev->dev_private;
3719 int ret;
68f95ba9 3720
f691e2f4
DV
3721 i915_gem_init_swizzling(dev);
3722
5c1143bb 3723 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3724 if (ret)
b6913e4b 3725 return ret;
68f95ba9
CW
3726
3727 if (HAS_BSD(dev)) {
5c1143bb 3728 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3729 if (ret)
3730 goto cleanup_render_ring;
d1b851fc 3731 }
68f95ba9 3732
549f7365
CW
3733 if (HAS_BLT(dev)) {
3734 ret = intel_init_blt_ring_buffer(dev);
3735 if (ret)
3736 goto cleanup_bsd_ring;
3737 }
3738
6f392d54
CW
3739 dev_priv->next_seqno = 1;
3740
68f95ba9
CW
3741 return 0;
3742
549f7365 3743cleanup_bsd_ring:
1ec14ad3 3744 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3745cleanup_render_ring:
1ec14ad3 3746 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3747 return ret;
3748}
3749
3750void
3751i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3752{
3753 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3754 int i;
8187a2b7 3755
1ec14ad3
CW
3756 for (i = 0; i < I915_NUM_RINGS; i++)
3757 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3758}
3759
673a394b
EA
3760int
3761i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3762 struct drm_file *file_priv)
3763{
3764 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3765 int ret, i;
673a394b 3766
79e53945
JB
3767 if (drm_core_check_feature(dev, DRIVER_MODESET))
3768 return 0;
3769
ba1234d1 3770 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3771 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3772 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3773 }
3774
673a394b 3775 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3776 dev_priv->mm.suspended = 0;
3777
f691e2f4 3778 ret = i915_gem_init_hw(dev);
d816f6ac
WF
3779 if (ret != 0) {
3780 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3781 return ret;
d816f6ac 3782 }
9bb2d6f9 3783
69dc4987 3784 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3785 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3786 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3787 for (i = 0; i < I915_NUM_RINGS; i++) {
3788 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3789 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3790 }
673a394b 3791 mutex_unlock(&dev->struct_mutex);
dbb19d30 3792
5f35308b
CW
3793 ret = drm_irq_install(dev);
3794 if (ret)
3795 goto cleanup_ringbuffer;
dbb19d30 3796
673a394b 3797 return 0;
5f35308b
CW
3798
3799cleanup_ringbuffer:
3800 mutex_lock(&dev->struct_mutex);
3801 i915_gem_cleanup_ringbuffer(dev);
3802 dev_priv->mm.suspended = 1;
3803 mutex_unlock(&dev->struct_mutex);
3804
3805 return ret;
673a394b
EA
3806}
3807
3808int
3809i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3810 struct drm_file *file_priv)
3811{
79e53945
JB
3812 if (drm_core_check_feature(dev, DRIVER_MODESET))
3813 return 0;
3814
dbb19d30 3815 drm_irq_uninstall(dev);
e6890f6f 3816 return i915_gem_idle(dev);
673a394b
EA
3817}
3818
3819void
3820i915_gem_lastclose(struct drm_device *dev)
3821{
3822 int ret;
673a394b 3823
e806b495
EA
3824 if (drm_core_check_feature(dev, DRIVER_MODESET))
3825 return;
3826
6dbe2772
KP
3827 ret = i915_gem_idle(dev);
3828 if (ret)
3829 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3830}
3831
64193406
CW
3832static void
3833init_ring_lists(struct intel_ring_buffer *ring)
3834{
3835 INIT_LIST_HEAD(&ring->active_list);
3836 INIT_LIST_HEAD(&ring->request_list);
3837 INIT_LIST_HEAD(&ring->gpu_write_list);
3838}
3839
673a394b
EA
3840void
3841i915_gem_load(struct drm_device *dev)
3842{
b5aa8a0f 3843 int i;
673a394b
EA
3844 drm_i915_private_t *dev_priv = dev->dev_private;
3845
69dc4987 3846 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3847 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3848 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3849 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3850 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3851 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3852 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3853 for (i = 0; i < I915_NUM_RINGS; i++)
3854 init_ring_lists(&dev_priv->ring[i]);
4b9de737 3855 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 3856 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3857 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3858 i915_gem_retire_work_handler);
30dbf0c0 3859 init_completion(&dev_priv->error_completion);
31169714 3860
94400120
DA
3861 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3862 if (IS_GEN3(dev)) {
3863 u32 tmp = I915_READ(MI_ARB_STATE);
3864 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3865 /* arb state is a masked write, so set bit + bit in mask */
3866 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3867 I915_WRITE(MI_ARB_STATE, tmp);
3868 }
3869 }
3870
72bfa19c
CW
3871 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3872
de151cf6 3873 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3874 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3875 dev_priv->fence_reg_start = 3;
de151cf6 3876
a6c45cf0 3877 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3878 dev_priv->num_fence_regs = 16;
3879 else
3880 dev_priv->num_fence_regs = 8;
3881
b5aa8a0f 3882 /* Initialize fence registers to zero */
10ed13e4
EA
3883 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3884 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
b5aa8a0f 3885 }
10ed13e4 3886
673a394b 3887 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3888 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3889
ce453d81
CW
3890 dev_priv->mm.interruptible = true;
3891
17250b71
CW
3892 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3893 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3894 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3895}
71acb5eb
DA
3896
3897/*
3898 * Create a physically contiguous memory object for this object
3899 * e.g. for cursor + overlay regs
3900 */
995b6762
CW
3901static int i915_gem_init_phys_object(struct drm_device *dev,
3902 int id, int size, int align)
71acb5eb
DA
3903{
3904 drm_i915_private_t *dev_priv = dev->dev_private;
3905 struct drm_i915_gem_phys_object *phys_obj;
3906 int ret;
3907
3908 if (dev_priv->mm.phys_objs[id - 1] || !size)
3909 return 0;
3910
9a298b2a 3911 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3912 if (!phys_obj)
3913 return -ENOMEM;
3914
3915 phys_obj->id = id;
3916
6eeefaf3 3917 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3918 if (!phys_obj->handle) {
3919 ret = -ENOMEM;
3920 goto kfree_obj;
3921 }
3922#ifdef CONFIG_X86
3923 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3924#endif
3925
3926 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3927
3928 return 0;
3929kfree_obj:
9a298b2a 3930 kfree(phys_obj);
71acb5eb
DA
3931 return ret;
3932}
3933
995b6762 3934static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3935{
3936 drm_i915_private_t *dev_priv = dev->dev_private;
3937 struct drm_i915_gem_phys_object *phys_obj;
3938
3939 if (!dev_priv->mm.phys_objs[id - 1])
3940 return;
3941
3942 phys_obj = dev_priv->mm.phys_objs[id - 1];
3943 if (phys_obj->cur_obj) {
3944 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3945 }
3946
3947#ifdef CONFIG_X86
3948 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3949#endif
3950 drm_pci_free(dev, phys_obj->handle);
3951 kfree(phys_obj);
3952 dev_priv->mm.phys_objs[id - 1] = NULL;
3953}
3954
3955void i915_gem_free_all_phys_object(struct drm_device *dev)
3956{
3957 int i;
3958
260883c8 3959 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3960 i915_gem_free_phys_object(dev, i);
3961}
3962
3963void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3964 struct drm_i915_gem_object *obj)
71acb5eb 3965{
05394f39 3966 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3967 char *vaddr;
71acb5eb 3968 int i;
71acb5eb
DA
3969 int page_count;
3970
05394f39 3971 if (!obj->phys_obj)
71acb5eb 3972 return;
05394f39 3973 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3974
05394f39 3975 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3976 for (i = 0; i < page_count; i++) {
5949eac4 3977 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
3978 if (!IS_ERR(page)) {
3979 char *dst = kmap_atomic(page);
3980 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3981 kunmap_atomic(dst);
3982
3983 drm_clflush_pages(&page, 1);
3984
3985 set_page_dirty(page);
3986 mark_page_accessed(page);
3987 page_cache_release(page);
3988 }
71acb5eb 3989 }
40ce6575 3990 intel_gtt_chipset_flush();
d78b47b9 3991
05394f39
CW
3992 obj->phys_obj->cur_obj = NULL;
3993 obj->phys_obj = NULL;
71acb5eb
DA
3994}
3995
3996int
3997i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3998 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3999 int id,
4000 int align)
71acb5eb 4001{
05394f39 4002 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4003 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4004 int ret = 0;
4005 int page_count;
4006 int i;
4007
4008 if (id > I915_MAX_PHYS_OBJECT)
4009 return -EINVAL;
4010
05394f39
CW
4011 if (obj->phys_obj) {
4012 if (obj->phys_obj->id == id)
71acb5eb
DA
4013 return 0;
4014 i915_gem_detach_phys_object(dev, obj);
4015 }
4016
71acb5eb
DA
4017 /* create a new object */
4018 if (!dev_priv->mm.phys_objs[id - 1]) {
4019 ret = i915_gem_init_phys_object(dev, id,
05394f39 4020 obj->base.size, align);
71acb5eb 4021 if (ret) {
05394f39
CW
4022 DRM_ERROR("failed to init phys object %d size: %zu\n",
4023 id, obj->base.size);
e5281ccd 4024 return ret;
71acb5eb
DA
4025 }
4026 }
4027
4028 /* bind to the object */
05394f39
CW
4029 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4030 obj->phys_obj->cur_obj = obj;
71acb5eb 4031
05394f39 4032 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4033
4034 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4035 struct page *page;
4036 char *dst, *src;
4037
5949eac4 4038 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4039 if (IS_ERR(page))
4040 return PTR_ERR(page);
71acb5eb 4041
ff75b9bc 4042 src = kmap_atomic(page);
05394f39 4043 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4044 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4045 kunmap_atomic(src);
71acb5eb 4046
e5281ccd
CW
4047 mark_page_accessed(page);
4048 page_cache_release(page);
4049 }
d78b47b9 4050
71acb5eb 4051 return 0;
71acb5eb
DA
4052}
4053
4054static int
05394f39
CW
4055i915_gem_phys_pwrite(struct drm_device *dev,
4056 struct drm_i915_gem_object *obj,
71acb5eb
DA
4057 struct drm_i915_gem_pwrite *args,
4058 struct drm_file *file_priv)
4059{
05394f39 4060 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4061 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4062
b47b30cc
CW
4063 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4064 unsigned long unwritten;
4065
4066 /* The physical object once assigned is fixed for the lifetime
4067 * of the obj, so we can safely drop the lock and continue
4068 * to access vaddr.
4069 */
4070 mutex_unlock(&dev->struct_mutex);
4071 unwritten = copy_from_user(vaddr, user_data, args->size);
4072 mutex_lock(&dev->struct_mutex);
4073 if (unwritten)
4074 return -EFAULT;
4075 }
71acb5eb 4076
40ce6575 4077 intel_gtt_chipset_flush();
71acb5eb
DA
4078 return 0;
4079}
b962442e 4080
f787a5f5 4081void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4082{
f787a5f5 4083 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4084
4085 /* Clean up our request list when the client is going away, so that
4086 * later retire_requests won't dereference our soon-to-be-gone
4087 * file_priv.
4088 */
1c25595f 4089 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4090 while (!list_empty(&file_priv->mm.request_list)) {
4091 struct drm_i915_gem_request *request;
4092
4093 request = list_first_entry(&file_priv->mm.request_list,
4094 struct drm_i915_gem_request,
4095 client_list);
4096 list_del(&request->client_list);
4097 request->file_priv = NULL;
4098 }
1c25595f 4099 spin_unlock(&file_priv->mm.lock);
b962442e 4100}
31169714 4101
1637ef41
CW
4102static int
4103i915_gpu_is_active(struct drm_device *dev)
4104{
4105 drm_i915_private_t *dev_priv = dev->dev_private;
4106 int lists_empty;
4107
1637ef41 4108 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4109 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4110
4111 return !lists_empty;
4112}
4113
31169714 4114static int
1495f230 4115i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4116{
17250b71
CW
4117 struct drm_i915_private *dev_priv =
4118 container_of(shrinker,
4119 struct drm_i915_private,
4120 mm.inactive_shrinker);
4121 struct drm_device *dev = dev_priv->dev;
4122 struct drm_i915_gem_object *obj, *next;
1495f230 4123 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4124 int cnt;
4125
4126 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4127 return 0;
31169714
CW
4128
4129 /* "fast-path" to count number of available objects */
4130 if (nr_to_scan == 0) {
17250b71
CW
4131 cnt = 0;
4132 list_for_each_entry(obj,
4133 &dev_priv->mm.inactive_list,
4134 mm_list)
4135 cnt++;
4136 mutex_unlock(&dev->struct_mutex);
4137 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4138 }
4139
1637ef41 4140rescan:
31169714 4141 /* first scan for clean buffers */
17250b71 4142 i915_gem_retire_requests(dev);
31169714 4143
17250b71
CW
4144 list_for_each_entry_safe(obj, next,
4145 &dev_priv->mm.inactive_list,
4146 mm_list) {
4147 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4148 if (i915_gem_object_unbind(obj) == 0 &&
4149 --nr_to_scan == 0)
17250b71 4150 break;
31169714 4151 }
31169714
CW
4152 }
4153
4154 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4155 cnt = 0;
4156 list_for_each_entry_safe(obj, next,
4157 &dev_priv->mm.inactive_list,
4158 mm_list) {
2021746e
CW
4159 if (nr_to_scan &&
4160 i915_gem_object_unbind(obj) == 0)
17250b71 4161 nr_to_scan--;
2021746e 4162 else
17250b71
CW
4163 cnt++;
4164 }
4165
4166 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4167 /*
4168 * We are desperate for pages, so as a last resort, wait
4169 * for the GPU to finish and discard whatever we can.
4170 * This has a dramatic impact to reduce the number of
4171 * OOM-killer events whilst running the GPU aggressively.
4172 */
b93f9cf1 4173 if (i915_gpu_idle(dev, true) == 0)
1637ef41
CW
4174 goto rescan;
4175 }
17250b71
CW
4176 mutex_unlock(&dev->struct_mutex);
4177 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4178}
This page took 0.644675 seconds and 5 git commands to generate.