drm/i915: check for oom when allocating private_default_ctx
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46static __must_check int
07fe0b12
BW
47i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39 55 struct drm_file *file);
673a394b 56
61050808
CW
57static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
7dc19d5a
DC
63static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
d9973b43
CW
67static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 69static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 70
c76ce038
CW
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
2c22569b
CW
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
61050808
CW
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
5d82e3e6 93 obj->fence_dirty = false;
61050808
CW
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
73aa808f
CW
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
c20e8355 101 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
c20e8355 104 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
c20e8355 110 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
c20e8355 113 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
114}
115
21dd3734 116static int
33196ded 117i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 118{
30dbf0c0
CW
119 int ret;
120
7abb690a
DV
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
1f83fee0 123 if (EXIT_COND)
30dbf0c0
CW
124 return 0;
125
0a6759c6
DV
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
1f83fee0
DV
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
0a6759c6
DV
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
30dbf0c0 138 return ret;
0a6759c6 139 }
1f83fee0 140#undef EXIT_COND
30dbf0c0 141
21dd3734 142 return 0;
30dbf0c0
CW
143}
144
54cf91dc 145int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 146{
33196ded 147 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
148 int ret;
149
33196ded 150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
23bc5982 158 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
159 return 0;
160}
30dbf0c0 161
7d1c4804 162static inline bool
05394f39 163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 164{
9843877d 165 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
166}
167
79e53945
JB
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 170 struct drm_file *file)
79e53945 171{
93d18799 172 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 173 struct drm_i915_gem_init *args = data;
2021746e 174
7bb6fb8d
DV
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
2021746e
CW
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
79e53945 181
f534bc0b
DV
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
79e53945 186 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
93d18799 189 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
190 mutex_unlock(&dev->struct_mutex);
191
2021746e 192 return 0;
673a394b
EA
193}
194
5a125c3c
EA
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 197 struct drm_file *file)
5a125c3c 198{
73aa808f 199 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 200 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
5a125c3c 203
6299f992 204 pinned = 0;
73aa808f 205 mutex_lock(&dev->struct_mutex);
35c20a60 206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 207 if (i915_gem_obj_is_pinned(obj))
f343c5f6 208 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 209 mutex_unlock(&dev->struct_mutex);
5a125c3c 210
853ba5d2 211 args->aper_size = dev_priv->gtt.base.total;
0206e353 212 args->aper_available_size = args->aper_size - pinned;
6299f992 213
5a125c3c
EA
214 return 0;
215}
216
42dcedd4
CW
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
ff72145b
DA
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
673a394b 234{
05394f39 235 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b 238
ff72145b 239 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
240 if (size == 0)
241 return -EINVAL;
673a394b
EA
242
243 /* Allocate the new object */
ff72145b 244 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
245 if (obj == NULL)
246 return -ENOMEM;
247
05394f39 248 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 249 /* drop reference from allocate - handle holds it now */
d861e338
DV
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
202f2fef 253
ff72145b 254 *handle_p = handle;
673a394b
EA
255 return 0;
256}
257
ff72145b
DA
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
de45eaf7 264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
ff72145b
DA
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
63ed2cb2 278
ff72145b
DA
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
8461d226
DV
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
8c59967c 309static inline int
4f0c7cfb
BW
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
8c59967c
DV
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
d174bd64
DV
335/* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
eb01459f 338static int
d174bd64
DV
339shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342{
343 char *vaddr;
344 int ret;
345
e7e58eb5 346 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
f60d7f0c 358 return ret ? -EFAULT : 0;
d174bd64
DV
359}
360
23c18c71
DV
361static void
362shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364{
e7e58eb5 365 if (unlikely(swizzled)) {
23c18c71
DV
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381}
382
d174bd64
DV
383/* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385static int
386shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389{
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
23c18c71
DV
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
d174bd64
DV
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
f60d7f0c 409 return ret ? - EFAULT : 0;
d174bd64
DV
410}
411
eb01459f 412static int
dbf7bff0
DV
413i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
eb01459f 417{
8461d226 418 char __user *user_data;
eb01459f 419 ssize_t remain;
8461d226 420 loff_t offset;
eb2c0c81 421 int shmem_page_offset, page_length, ret = 0;
8461d226 422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 423 int prefaulted = 0;
8489731c 424 int needs_clflush = 0;
67d5a50c 425 struct sg_page_iter sg_iter;
eb01459f 426
2bb4629a 427 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
428 remain = args->size;
429
8461d226 430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 431
8489731c
DV
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
c76ce038 437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
23f54483
BW
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
8489731c 441 }
eb01459f 442
f60d7f0c
CW
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
8461d226 449 offset = args->offset;
eb01459f 450
67d5a50c
ID
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
2db76d7c 453 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
454
455 if (remain <= 0)
456 break;
457
eb01459f
EA
458 /* Operation in this page
459 *
eb01459f 460 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
461 * page_length = bytes to copy for this page
462 */
c8cbbb8b 463 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 467
8461d226
DV
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
d174bd64
DV
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
dbf7bff0 476
dbf7bff0
DV
477 mutex_unlock(&dev->struct_mutex);
478
d330a953 479 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 480 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
eb01459f 488
d174bd64
DV
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
eb01459f 492
dbf7bff0 493 mutex_lock(&dev->struct_mutex);
f60d7f0c 494
dbf7bff0 495next_page:
e5281ccd 496 mark_page_accessed(page);
e5281ccd 497
f60d7f0c 498 if (ret)
8461d226 499 goto out;
8461d226 500
eb01459f 501 remain -= page_length;
8461d226 502 user_data += page_length;
eb01459f
EA
503 offset += page_length;
504 }
505
4f27b75d 506out:
f60d7f0c
CW
507 i915_gem_object_unpin_pages(obj);
508
eb01459f
EA
509 return ret;
510}
511
673a394b
EA
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 519 struct drm_file *file)
673a394b
EA
520{
521 struct drm_i915_gem_pread *args = data;
05394f39 522 struct drm_i915_gem_object *obj;
35b62a89 523 int ret = 0;
673a394b 524
51311d0a
CW
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
2bb4629a 529 to_user_ptr(args->data_ptr),
51311d0a
CW
530 args->size))
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
1286ff73
DV
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
db53a302
CW
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
dbf7bff0 560 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 561
35b62a89 562out:
05394f39 563 drm_gem_object_unreference(&obj->base);
1d7cfea1 564unlock:
4f27b75d 565 mutex_unlock(&dev->struct_mutex);
eb01459f 566 return ret;
673a394b
EA
567}
568
0839ccb8
KP
569/* This is the fast write path which cannot handle
570 * page faults in the source data
9b7530cc 571 */
0839ccb8
KP
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
9b7530cc 578{
4f0c7cfb
BW
579 void __iomem *vaddr_atomic;
580 void *vaddr;
0839ccb8 581 unsigned long unwritten;
9b7530cc 582
3e4d3af5 583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 587 user_data, length);
3e4d3af5 588 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 589 return unwritten;
0839ccb8
KP
590}
591
3de09aa3
EA
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
673a394b 596static int
05394f39
CW
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
3de09aa3 599 struct drm_i915_gem_pwrite *args,
05394f39 600 struct drm_file *file)
673a394b 601{
0839ccb8 602 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 603 ssize_t remain;
0839ccb8 604 loff_t offset, page_base;
673a394b 605 char __user *user_data;
935aaa69
DV
606 int page_offset, page_length, ret;
607
c37e2204 608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
673a394b 619
2bb4629a 620 user_data = to_user_ptr(args->data_ptr);
673a394b 621 remain = args->size;
673a394b 622
f343c5f6 623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
0839ccb8
KP
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
673a394b 631 */
c8cbbb8b
CW
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
0839ccb8
KP
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
0839ccb8 638 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
0839ccb8 641 */
5d4545ae 642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
673a394b 647
0839ccb8
KP
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
673a394b 651 }
673a394b 652
935aaa69 653out_unpin:
d7f46fc4 654 i915_gem_object_ggtt_unpin(obj);
935aaa69 655out:
3de09aa3 656 return ret;
673a394b
EA
657}
658
d174bd64
DV
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
3043c60c 663static int
d174bd64
DV
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
673a394b 669{
d174bd64 670 char *vaddr;
673a394b 671 int ret;
3de09aa3 672
e7e58eb5 673 if (unlikely(page_do_bit17_swizzling))
d174bd64 674 return -EINVAL;
3de09aa3 675
d174bd64
DV
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
3de09aa3 687
755d2218 688 return ret ? -EFAULT : 0;
3de09aa3
EA
689}
690
d174bd64
DV
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
3043c60c 693static int
d174bd64
DV
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
673a394b 699{
d174bd64
DV
700 char *vaddr;
701 int ret;
e5281ccd 702
d174bd64 703 vaddr = kmap(page);
e7e58eb5 704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
d174bd64
DV
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
710 user_data,
711 page_length);
d174bd64
DV
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
23c18c71
DV
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
d174bd64 720 kunmap(page);
40123c1f 721
755d2218 722 return ret ? -EFAULT : 0;
40123c1f
EA
723}
724
40123c1f 725static int
e244a443
DV
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
40123c1f 730{
40123c1f 731 ssize_t remain;
8c59967c
DV
732 loff_t offset;
733 char __user *user_data;
eb2c0c81 734 int shmem_page_offset, page_length, ret = 0;
8c59967c 735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 736 int hit_slowpath = 0;
58642885
DV
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
67d5a50c 739 struct sg_page_iter sg_iter;
40123c1f 740
2bb4629a 741 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
742 remain = args->size;
743
8c59967c 744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 745
58642885
DV
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
2c22569b 751 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
58642885 755 }
c76ce038
CW
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 761
755d2218
CW
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
673a394b 768 offset = args->offset;
05394f39 769 obj->dirty = 1;
673a394b 770
67d5a50c
ID
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
2db76d7c 773 struct page *page = sg_page_iter_page(&sg_iter);
58642885 774 int partial_cacheline_write;
e5281ccd 775
9da3da66
CW
776 if (remain <= 0)
777 break;
778
40123c1f
EA
779 /* Operation in this page
780 *
40123c1f 781 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
782 * page_length = bytes to copy for this page
783 */
c8cbbb8b 784 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 789
58642885
DV
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
8c59967c
DV
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
d174bd64
DV
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
e244a443
DV
806
807 hit_slowpath = 1;
e244a443 808 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
40123c1f 813
e244a443 814 mutex_lock(&dev->struct_mutex);
755d2218 815
e244a443 816next_page:
e5281ccd
CW
817 set_page_dirty(page);
818 mark_page_accessed(page);
e5281ccd 819
755d2218 820 if (ret)
8c59967c 821 goto out;
8c59967c 822
40123c1f 823 remain -= page_length;
8c59967c 824 user_data += page_length;
40123c1f 825 offset += page_length;
673a394b
EA
826 }
827
fbd5a26d 828out:
755d2218
CW
829 i915_gem_object_unpin_pages(obj);
830
e244a443 831 if (hit_slowpath) {
8dcf015e
DV
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
e244a443 841 }
8c59967c 842 }
673a394b 843
58642885 844 if (needs_clflush_after)
e76e9aeb 845 i915_gem_chipset_flush(dev);
58642885 846
40123c1f 847 return ret;
673a394b
EA
848}
849
850/**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855int
856i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 857 struct drm_file *file)
673a394b
EA
858{
859 struct drm_i915_gem_pwrite *args = data;
05394f39 860 struct drm_i915_gem_object *obj;
51311d0a
CW
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
2bb4629a 867 to_user_ptr(args->data_ptr),
51311d0a
CW
868 args->size))
869 return -EFAULT;
870
d330a953 871 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
673a394b 877
fbd5a26d 878 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 879 if (ret)
fbd5a26d 880 return ret;
1d7cfea1 881
05394f39 882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 883 if (&obj->base == NULL) {
1d7cfea1
CW
884 ret = -ENOENT;
885 goto unlock;
fbd5a26d 886 }
673a394b 887
7dcd2499 888 /* Bounds check destination. */
05394f39
CW
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
ce9d419d 891 ret = -EINVAL;
35b62a89 892 goto out;
ce9d419d
CW
893 }
894
1286ff73
DV
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
db53a302
CW
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
935aaa69 905 ret = -EFAULT;
673a394b
EA
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
5c0480f2 912 if (obj->phys_obj) {
fbd5a26d 913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
914 goto out;
915 }
916
2c22569b
CW
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
fbd5a26d 920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
fbd5a26d 924 }
673a394b 925
86a1ee26 926 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 928
35b62a89 929out:
05394f39 930 drm_gem_object_unreference(&obj->base);
1d7cfea1 931unlock:
fbd5a26d 932 mutex_unlock(&dev->struct_mutex);
673a394b
EA
933 return ret;
934}
935
b361237b 936int
33196ded 937i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
938 bool interruptible)
939{
1f83fee0 940 if (i915_reset_in_progress(error)) {
b361237b
CW
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
1f83fee0
DV
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
b361237b
CW
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954}
955
956/*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960static int
961i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962{
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
1823521d 968 if (seqno == ring->outstanding_lazy_seqno)
0025c077 969 ret = i915_add_request(ring, NULL);
b361237b
CW
970
971 return ret;
972}
973
094f9a54
CW
974static void fake_irq(unsigned long data)
975{
976 wake_up_process((struct task_struct *)data);
977}
978
979static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981{
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983}
984
b29c19b6
CW
985static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986{
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991}
992
b361237b
CW
993/**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
f69061be 997 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
f69061be
DV
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
b361237b
CW
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1012 unsigned reset_counter,
b29c19b6
CW
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
b361237b
CW
1016{
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
168c3f21
MK
1018 const bool irq_test_in_progress =
1019 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1020 struct timespec before, now;
1021 DEFINE_WAIT(wait);
47e9766d 1022 unsigned long timeout_expire;
b361237b
CW
1023 int ret;
1024
c67a470b
PZ
1025 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
b361237b
CW
1027 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028 return 0;
1029
47e9766d 1030 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1031
b29c19b6
CW
1032 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033 gen6_rps_boost(dev_priv);
1034 if (file_priv)
1035 mod_delayed_work(dev_priv->wq,
1036 &file_priv->mm.idle_work,
1037 msecs_to_jiffies(100));
1038 }
1039
168c3f21 1040 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1041 return -ENODEV;
1042
094f9a54
CW
1043 /* Record current time in case interrupted by signal, or wedged */
1044 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1045 getrawmonotonic(&before);
094f9a54
CW
1046 for (;;) {
1047 struct timer_list timer;
b361237b 1048
094f9a54
CW
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1051
f69061be
DV
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
094f9a54
CW
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
f69061be 1062
094f9a54
CW
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
b361237b 1067
094f9a54
CW
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
47e9766d 1073 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1080 unsigned long expire;
1081
094f9a54 1082 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1083 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1084 mod_timer(&timer, expire);
1085 }
1086
5035c275 1087 io_schedule();
094f9a54 1088
094f9a54
CW
1089 if (timer.function) {
1090 del_singleshot_timer_sync(&timer);
1091 destroy_timer_on_stack(&timer);
1092 }
1093 }
b361237b 1094 getrawmonotonic(&now);
094f9a54 1095 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1096
168c3f21
MK
1097 if (!irq_test_in_progress)
1098 ring->irq_put(ring);
094f9a54
CW
1099
1100 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1107 }
1108
094f9a54 1109 return ret;
b361237b
CW
1110}
1111
1112/**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116int
1117i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118{
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
33196ded 1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
f69061be
DV
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1137 interruptible, NULL, NULL);
b361237b
CW
1138}
1139
d26e3af8
CW
1140static int
1141i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143{
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157}
1158
b361237b
CW
1159/**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163static __must_check int
1164i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166{
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
d26e3af8 1179 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1180}
1181
3236f57a
CW
1182/* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185static __must_check int
1186i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
b29c19b6 1187 struct drm_file *file,
3236f57a
CW
1188 bool readonly)
1189{
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
f69061be 1193 unsigned reset_counter;
3236f57a
CW
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
33196ded 1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
f69061be 1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1213 mutex_unlock(&dev->struct_mutex);
b29c19b6 1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
3236f57a 1215 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1216 if (ret)
1217 return ret;
3236f57a 1218
d26e3af8 1219 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1220}
1221
673a394b 1222/**
2ef7eeaa
EA
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1225 */
1226int
1227i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1228 struct drm_file *file)
673a394b
EA
1229{
1230 struct drm_i915_gem_set_domain *args = data;
05394f39 1231 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
673a394b
EA
1234 int ret;
1235
2ef7eeaa 1236 /* Only handle setting domains to types used by the CPU. */
21d509e3 1237 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1238 return -EINVAL;
1239
21d509e3 1240 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
76c1dec1 1249 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1250 if (ret)
76c1dec1 1251 return ret;
1d7cfea1 1252
05394f39 1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1254 if (&obj->base == NULL) {
1d7cfea1
CW
1255 ret = -ENOENT;
1256 goto unlock;
76c1dec1 1257 }
673a394b 1258
3236f57a
CW
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
b29c19b6 1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
3236f57a
CW
1264 if (ret)
1265 goto unref;
1266
2ef7eeaa
EA
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
2ef7eeaa 1276 } else {
e47c68e9 1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1278 }
1279
3236f57a 1280unref:
05394f39 1281 drm_gem_object_unreference(&obj->base);
1d7cfea1 1282unlock:
673a394b
EA
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285}
1286
1287/**
1288 * Called when user space has done writes to this buffer
1289 */
1290int
1291i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1292 struct drm_file *file)
673a394b
EA
1293{
1294 struct drm_i915_gem_sw_finish *args = data;
05394f39 1295 struct drm_i915_gem_object *obj;
673a394b
EA
1296 int ret = 0;
1297
76c1dec1 1298 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1299 if (ret)
76c1dec1 1300 return ret;
1d7cfea1 1301
05394f39 1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1303 if (&obj->base == NULL) {
1d7cfea1
CW
1304 ret = -ENOENT;
1305 goto unlock;
673a394b
EA
1306 }
1307
673a394b 1308 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1311
05394f39 1312 drm_gem_object_unreference(&obj->base);
1d7cfea1 1313unlock:
673a394b
EA
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316}
1317
1318/**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325int
1326i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1327 struct drm_file *file)
673a394b
EA
1328{
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
673a394b
EA
1331 unsigned long addr;
1332
05394f39 1333 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1334 if (obj == NULL)
bf79cb91 1335 return -ENOENT;
673a394b 1336
1286ff73
DV
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
6be5ceb0 1345 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
bc9025bd 1348 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355}
1356
de151cf6
JB
1357/**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374{
05394f39
CW
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
7d1c4804 1377 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
0f973f27 1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1382
f65c9168
PZ
1383 intel_runtime_pm_get(dev_priv);
1384
de151cf6
JB
1385 /* We don't use vmf->pgoff since that has the fake offset */
1386 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387 PAGE_SHIFT;
1388
d9bc7e9f
CW
1389 ret = i915_mutex_lock_interruptible(dev);
1390 if (ret)
1391 goto out;
a00b10c3 1392
db53a302
CW
1393 trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
eb119bd6
CW
1395 /* Access to snoopable pages through the GTT is incoherent. */
1396 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397 ret = -EINVAL;
1398 goto unlock;
1399 }
1400
d9bc7e9f 1401 /* Now bind it into the GTT if needed */
c37e2204 1402 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1403 if (ret)
1404 goto unlock;
4a684a41 1405
c9839303
CW
1406 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407 if (ret)
1408 goto unpin;
74898d7e 1409
06d98131 1410 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1411 if (ret)
c9839303 1412 goto unpin;
7d1c4804 1413
6299f992
CW
1414 obj->fault_mappable = true;
1415
f343c5f6
BW
1416 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417 pfn >>= PAGE_SHIFT;
1418 pfn += page_offset;
de151cf6
JB
1419
1420 /* Finally, remap it using the new GTT offset */
1421 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1422unpin:
d7f46fc4 1423 i915_gem_object_ggtt_unpin(obj);
c715089f 1424unlock:
de151cf6 1425 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1426out:
de151cf6 1427 switch (ret) {
d9bc7e9f 1428 case -EIO:
a9340cca
DV
1429 /* If this -EIO is due to a gpu hang, give the reset code a
1430 * chance to clean up the mess. Otherwise return the proper
1431 * SIGBUS. */
f65c9168
PZ
1432 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433 ret = VM_FAULT_SIGBUS;
1434 break;
1435 }
045e769a 1436 case -EAGAIN:
571c608d
DV
1437 /*
1438 * EAGAIN means the gpu is hung and we'll wait for the error
1439 * handler to reset everything when re-faulting in
1440 * i915_mutex_lock_interruptible.
d9bc7e9f 1441 */
c715089f
CW
1442 case 0:
1443 case -ERESTARTSYS:
bed636ab 1444 case -EINTR:
e79e0fe3
DR
1445 case -EBUSY:
1446 /*
1447 * EBUSY is ok: this just means that another thread
1448 * already did the job.
1449 */
f65c9168
PZ
1450 ret = VM_FAULT_NOPAGE;
1451 break;
de151cf6 1452 case -ENOMEM:
f65c9168
PZ
1453 ret = VM_FAULT_OOM;
1454 break;
a7c2e1aa 1455 case -ENOSPC:
f65c9168
PZ
1456 ret = VM_FAULT_SIGBUS;
1457 break;
de151cf6 1458 default:
a7c2e1aa 1459 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1460 ret = VM_FAULT_SIGBUS;
1461 break;
de151cf6 1462 }
f65c9168
PZ
1463
1464 intel_runtime_pm_put(dev_priv);
1465 return ret;
de151cf6
JB
1466}
1467
48018a57
PZ
1468void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1469{
1470 struct i915_vma *vma;
1471
1472 /*
1473 * Only the global gtt is relevant for gtt memory mappings, so restrict
1474 * list traversal to objects bound into the global address space. Note
1475 * that the active list should be empty, but better safe than sorry.
1476 */
1477 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1478 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1479 i915_gem_release_mmap(vma->obj);
1480 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1481 i915_gem_release_mmap(vma->obj);
1482}
1483
901782b2
CW
1484/**
1485 * i915_gem_release_mmap - remove physical page mappings
1486 * @obj: obj in question
1487 *
af901ca1 1488 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1489 * relinquish ownership of the pages back to the system.
1490 *
1491 * It is vital that we remove the page mapping if we have mapped a tiled
1492 * object through the GTT and then lose the fence register due to
1493 * resource pressure. Similarly if the object has been moved out of the
1494 * aperture, than pages mapped into userspace must be revoked. Removing the
1495 * mapping will then trigger a page fault on the next user access, allowing
1496 * fixup by i915_gem_fault().
1497 */
d05ca301 1498void
05394f39 1499i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1500{
6299f992
CW
1501 if (!obj->fault_mappable)
1502 return;
901782b2 1503
51335df9 1504 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1505 obj->fault_mappable = false;
901782b2
CW
1506}
1507
0fa87796 1508uint32_t
e28f8711 1509i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1510{
e28f8711 1511 uint32_t gtt_size;
92b88aeb
CW
1512
1513 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1514 tiling_mode == I915_TILING_NONE)
1515 return size;
92b88aeb
CW
1516
1517 /* Previous chips need a power-of-two fence region when tiling */
1518 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1519 gtt_size = 1024*1024;
92b88aeb 1520 else
e28f8711 1521 gtt_size = 512*1024;
92b88aeb 1522
e28f8711
CW
1523 while (gtt_size < size)
1524 gtt_size <<= 1;
92b88aeb 1525
e28f8711 1526 return gtt_size;
92b88aeb
CW
1527}
1528
de151cf6
JB
1529/**
1530 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1531 * @obj: object to check
1532 *
1533 * Return the required GTT alignment for an object, taking into account
5e783301 1534 * potential fence register mapping.
de151cf6 1535 */
d865110c
ID
1536uint32_t
1537i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1538 int tiling_mode, bool fenced)
de151cf6 1539{
de151cf6
JB
1540 /*
1541 * Minimum alignment is 4k (GTT page size), but might be greater
1542 * if a fence register is needed for the object.
1543 */
d865110c 1544 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1545 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1546 return 4096;
1547
a00b10c3
CW
1548 /*
1549 * Previous chips need to be aligned to the size of the smallest
1550 * fence register that can contain the object.
1551 */
e28f8711 1552 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1553}
1554
d8cb5086
CW
1555static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1556{
1557 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1558 int ret;
1559
0de23977 1560 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1561 return 0;
1562
da494d7c
DV
1563 dev_priv->mm.shrinker_no_lock_stealing = true;
1564
d8cb5086
CW
1565 ret = drm_gem_create_mmap_offset(&obj->base);
1566 if (ret != -ENOSPC)
da494d7c 1567 goto out;
d8cb5086
CW
1568
1569 /* Badly fragmented mmap space? The only way we can recover
1570 * space is by destroying unwanted objects. We can't randomly release
1571 * mmap_offsets as userspace expects them to be persistent for the
1572 * lifetime of the objects. The closest we can is to release the
1573 * offsets on purgeable objects by truncating it and marking it purged,
1574 * which prevents userspace from ever using that object again.
1575 */
1576 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1577 ret = drm_gem_create_mmap_offset(&obj->base);
1578 if (ret != -ENOSPC)
da494d7c 1579 goto out;
d8cb5086
CW
1580
1581 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1582 ret = drm_gem_create_mmap_offset(&obj->base);
1583out:
1584 dev_priv->mm.shrinker_no_lock_stealing = false;
1585
1586 return ret;
d8cb5086
CW
1587}
1588
1589static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1590{
d8cb5086
CW
1591 drm_gem_free_mmap_offset(&obj->base);
1592}
1593
de151cf6 1594int
ff72145b
DA
1595i915_gem_mmap_gtt(struct drm_file *file,
1596 struct drm_device *dev,
1597 uint32_t handle,
1598 uint64_t *offset)
de151cf6 1599{
da761a6e 1600 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1601 struct drm_i915_gem_object *obj;
de151cf6
JB
1602 int ret;
1603
76c1dec1 1604 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1605 if (ret)
76c1dec1 1606 return ret;
de151cf6 1607
ff72145b 1608 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1609 if (&obj->base == NULL) {
1d7cfea1
CW
1610 ret = -ENOENT;
1611 goto unlock;
1612 }
de151cf6 1613
5d4545ae 1614 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1615 ret = -E2BIG;
ff56b0bc 1616 goto out;
da761a6e
CW
1617 }
1618
05394f39 1619 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1620 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1621 ret = -EINVAL;
1622 goto out;
ab18282d
CW
1623 }
1624
d8cb5086
CW
1625 ret = i915_gem_object_create_mmap_offset(obj);
1626 if (ret)
1627 goto out;
de151cf6 1628
0de23977 1629 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1630
1d7cfea1 1631out:
05394f39 1632 drm_gem_object_unreference(&obj->base);
1d7cfea1 1633unlock:
de151cf6 1634 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1635 return ret;
de151cf6
JB
1636}
1637
ff72145b
DA
1638/**
1639 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1640 * @dev: DRM device
1641 * @data: GTT mapping ioctl data
1642 * @file: GEM object info
1643 *
1644 * Simply returns the fake offset to userspace so it can mmap it.
1645 * The mmap call will end up in drm_gem_mmap(), which will set things
1646 * up so we can get faults in the handler above.
1647 *
1648 * The fault handler will take care of binding the object into the GTT
1649 * (since it may have been evicted to make room for something), allocating
1650 * a fence register, and mapping the appropriate aperture address into
1651 * userspace.
1652 */
1653int
1654i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1655 struct drm_file *file)
1656{
1657 struct drm_i915_gem_mmap_gtt *args = data;
1658
ff72145b
DA
1659 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1660}
1661
225067ee
DV
1662/* Immediately discard the backing storage */
1663static void
1664i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1665{
e5281ccd 1666 struct inode *inode;
e5281ccd 1667
4d6294bf 1668 i915_gem_object_free_mmap_offset(obj);
1286ff73 1669
4d6294bf
CW
1670 if (obj->base.filp == NULL)
1671 return;
e5281ccd 1672
225067ee
DV
1673 /* Our goal here is to return as much of the memory as
1674 * is possible back to the system as we are called from OOM.
1675 * To do this we must instruct the shmfs to drop all of its
1676 * backing pages, *now*.
1677 */
496ad9aa 1678 inode = file_inode(obj->base.filp);
225067ee 1679 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1680
225067ee
DV
1681 obj->madv = __I915_MADV_PURGED;
1682}
e5281ccd 1683
225067ee
DV
1684static inline int
1685i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1686{
1687 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1688}
1689
5cdf5881 1690static void
05394f39 1691i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1692{
90797e6d
ID
1693 struct sg_page_iter sg_iter;
1694 int ret;
1286ff73 1695
05394f39 1696 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1697
6c085a72
CW
1698 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1699 if (ret) {
1700 /* In the event of a disaster, abandon all caches and
1701 * hope for the best.
1702 */
1703 WARN_ON(ret != -EIO);
2c22569b 1704 i915_gem_clflush_object(obj, true);
6c085a72
CW
1705 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1706 }
1707
6dacfd2f 1708 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1709 i915_gem_object_save_bit_17_swizzle(obj);
1710
05394f39
CW
1711 if (obj->madv == I915_MADV_DONTNEED)
1712 obj->dirty = 0;
3ef94daa 1713
90797e6d 1714 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1715 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1716
05394f39 1717 if (obj->dirty)
9da3da66 1718 set_page_dirty(page);
3ef94daa 1719
05394f39 1720 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1721 mark_page_accessed(page);
3ef94daa 1722
9da3da66 1723 page_cache_release(page);
3ef94daa 1724 }
05394f39 1725 obj->dirty = 0;
673a394b 1726
9da3da66
CW
1727 sg_free_table(obj->pages);
1728 kfree(obj->pages);
37e680a1 1729}
6c085a72 1730
dd624afd 1731int
37e680a1
CW
1732i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1733{
1734 const struct drm_i915_gem_object_ops *ops = obj->ops;
1735
2f745ad3 1736 if (obj->pages == NULL)
37e680a1
CW
1737 return 0;
1738
a5570178
CW
1739 if (obj->pages_pin_count)
1740 return -EBUSY;
1741
9843877d 1742 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1743
a2165e31
CW
1744 /* ->put_pages might need to allocate memory for the bit17 swizzle
1745 * array, hence protect them from being reaped by removing them from gtt
1746 * lists early. */
35c20a60 1747 list_del(&obj->global_list);
a2165e31 1748
37e680a1 1749 ops->put_pages(obj);
05394f39 1750 obj->pages = NULL;
37e680a1 1751
6c085a72
CW
1752 if (i915_gem_object_is_purgeable(obj))
1753 i915_gem_object_truncate(obj);
1754
1755 return 0;
1756}
1757
d9973b43 1758static unsigned long
93927ca5
DV
1759__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1760 bool purgeable_only)
6c085a72 1761{
57094f82 1762 struct list_head still_bound_list;
6c085a72 1763 struct drm_i915_gem_object *obj, *next;
d9973b43 1764 unsigned long count = 0;
6c085a72
CW
1765
1766 list_for_each_entry_safe(obj, next,
1767 &dev_priv->mm.unbound_list,
35c20a60 1768 global_list) {
93927ca5 1769 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1770 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1771 count += obj->base.size >> PAGE_SHIFT;
1772 if (count >= target)
1773 return count;
1774 }
1775 }
1776
57094f82
CW
1777 /*
1778 * As we may completely rewrite the bound list whilst unbinding
1779 * (due to retiring requests) we have to strictly process only
1780 * one element of the list at the time, and recheck the list
1781 * on every iteration.
1782 */
1783 INIT_LIST_HEAD(&still_bound_list);
1784 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1785 struct i915_vma *vma, *v;
80dcfdbd 1786
57094f82
CW
1787 obj = list_first_entry(&dev_priv->mm.bound_list,
1788 typeof(*obj), global_list);
1789 list_move_tail(&obj->global_list, &still_bound_list);
1790
80dcfdbd
BW
1791 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1792 continue;
1793
57094f82
CW
1794 /*
1795 * Hold a reference whilst we unbind this object, as we may
1796 * end up waiting for and retiring requests. This might
1797 * release the final reference (held by the active list)
1798 * and result in the object being freed from under us.
1799 * in this object being freed.
1800 *
1801 * Note 1: Shrinking the bound list is special since only active
1802 * (and hence bound objects) can contain such limbo objects, so
1803 * we don't need special tricks for shrinking the unbound list.
1804 * The only other place where we have to be careful with active
1805 * objects suddenly disappearing due to retiring requests is the
1806 * eviction code.
1807 *
1808 * Note 2: Even though the bound list doesn't hold a reference
1809 * to the object we can safely grab one here: The final object
1810 * unreferencing and the bound_list are both protected by the
1811 * dev->struct_mutex and so we won't ever be able to observe an
1812 * object on the bound_list with a reference count equals 0.
1813 */
1814 drm_gem_object_reference(&obj->base);
1815
07fe0b12
BW
1816 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1817 if (i915_vma_unbind(vma))
1818 break;
80dcfdbd 1819
57094f82 1820 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1821 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1822
1823 drm_gem_object_unreference(&obj->base);
6c085a72 1824 }
57094f82 1825 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1826
1827 return count;
1828}
1829
d9973b43 1830static unsigned long
93927ca5
DV
1831i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1832{
1833 return __i915_gem_shrink(dev_priv, target, true);
1834}
1835
d9973b43 1836static unsigned long
6c085a72
CW
1837i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1838{
1839 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1840 long freed = 0;
6c085a72
CW
1841
1842 i915_gem_evict_everything(dev_priv->dev);
1843
35c20a60 1844 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1845 global_list) {
d9973b43 1846 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1847 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1848 }
1849 return freed;
225067ee
DV
1850}
1851
37e680a1 1852static int
6c085a72 1853i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1854{
6c085a72 1855 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1856 int page_count, i;
1857 struct address_space *mapping;
9da3da66
CW
1858 struct sg_table *st;
1859 struct scatterlist *sg;
90797e6d 1860 struct sg_page_iter sg_iter;
e5281ccd 1861 struct page *page;
90797e6d 1862 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1863 gfp_t gfp;
e5281ccd 1864
6c085a72
CW
1865 /* Assert that the object is not currently in any GPU domain. As it
1866 * wasn't in the GTT, there shouldn't be any way it could have been in
1867 * a GPU cache
1868 */
1869 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1870 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1871
9da3da66
CW
1872 st = kmalloc(sizeof(*st), GFP_KERNEL);
1873 if (st == NULL)
1874 return -ENOMEM;
1875
05394f39 1876 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1877 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1878 kfree(st);
e5281ccd 1879 return -ENOMEM;
9da3da66 1880 }
e5281ccd 1881
9da3da66
CW
1882 /* Get the list of pages out of our struct file. They'll be pinned
1883 * at this point until we release them.
1884 *
1885 * Fail silently without starting the shrinker
1886 */
496ad9aa 1887 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1888 gfp = mapping_gfp_mask(mapping);
caf49191 1889 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1890 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1891 sg = st->sgl;
1892 st->nents = 0;
1893 for (i = 0; i < page_count; i++) {
6c085a72
CW
1894 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1895 if (IS_ERR(page)) {
1896 i915_gem_purge(dev_priv, page_count);
1897 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1898 }
1899 if (IS_ERR(page)) {
1900 /* We've tried hard to allocate the memory by reaping
1901 * our own buffer, now let the real VM do its job and
1902 * go down in flames if truly OOM.
1903 */
caf49191 1904 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1905 gfp |= __GFP_IO | __GFP_WAIT;
1906
1907 i915_gem_shrink_all(dev_priv);
1908 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1909 if (IS_ERR(page))
1910 goto err_pages;
1911
caf49191 1912 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1913 gfp &= ~(__GFP_IO | __GFP_WAIT);
1914 }
426729dc
KRW
1915#ifdef CONFIG_SWIOTLB
1916 if (swiotlb_nr_tbl()) {
1917 st->nents++;
1918 sg_set_page(sg, page, PAGE_SIZE, 0);
1919 sg = sg_next(sg);
1920 continue;
1921 }
1922#endif
90797e6d
ID
1923 if (!i || page_to_pfn(page) != last_pfn + 1) {
1924 if (i)
1925 sg = sg_next(sg);
1926 st->nents++;
1927 sg_set_page(sg, page, PAGE_SIZE, 0);
1928 } else {
1929 sg->length += PAGE_SIZE;
1930 }
1931 last_pfn = page_to_pfn(page);
3bbbe706
DV
1932
1933 /* Check that the i965g/gm workaround works. */
1934 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1935 }
426729dc
KRW
1936#ifdef CONFIG_SWIOTLB
1937 if (!swiotlb_nr_tbl())
1938#endif
1939 sg_mark_end(sg);
74ce6b6c
CW
1940 obj->pages = st;
1941
6dacfd2f 1942 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1943 i915_gem_object_do_bit_17_swizzle(obj);
1944
1945 return 0;
1946
1947err_pages:
90797e6d
ID
1948 sg_mark_end(sg);
1949 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1950 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1951 sg_free_table(st);
1952 kfree(st);
e5281ccd 1953 return PTR_ERR(page);
673a394b
EA
1954}
1955
37e680a1
CW
1956/* Ensure that the associated pages are gathered from the backing storage
1957 * and pinned into our object. i915_gem_object_get_pages() may be called
1958 * multiple times before they are released by a single call to
1959 * i915_gem_object_put_pages() - once the pages are no longer referenced
1960 * either as a result of memory pressure (reaping pages under the shrinker)
1961 * or as the object is itself released.
1962 */
1963int
1964i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1965{
1966 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1967 const struct drm_i915_gem_object_ops *ops = obj->ops;
1968 int ret;
1969
2f745ad3 1970 if (obj->pages)
37e680a1
CW
1971 return 0;
1972
43e28f09
CW
1973 if (obj->madv != I915_MADV_WILLNEED) {
1974 DRM_ERROR("Attempting to obtain a purgeable object\n");
1975 return -EINVAL;
1976 }
1977
a5570178
CW
1978 BUG_ON(obj->pages_pin_count);
1979
37e680a1
CW
1980 ret = ops->get_pages(obj);
1981 if (ret)
1982 return ret;
1983
35c20a60 1984 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1985 return 0;
673a394b
EA
1986}
1987
e2d05a8b 1988static void
05394f39 1989i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1990 struct intel_ring_buffer *ring)
673a394b 1991{
05394f39 1992 struct drm_device *dev = obj->base.dev;
69dc4987 1993 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1994 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1995
852835f3 1996 BUG_ON(ring == NULL);
02978ff5
CW
1997 if (obj->ring != ring && obj->last_write_seqno) {
1998 /* Keep the seqno relative to the current ring */
1999 obj->last_write_seqno = seqno;
2000 }
05394f39 2001 obj->ring = ring;
673a394b
EA
2002
2003 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2004 if (!obj->active) {
2005 drm_gem_object_reference(&obj->base);
2006 obj->active = 1;
673a394b 2007 }
e35a41de 2008
05394f39 2009 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2010
0201f1ec 2011 obj->last_read_seqno = seqno;
caea7476 2012
7dd49065 2013 if (obj->fenced_gpu_access) {
caea7476 2014 obj->last_fenced_seqno = seqno;
caea7476 2015
7dd49065
CW
2016 /* Bump MRU to take account of the delayed flush */
2017 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2018 struct drm_i915_fence_reg *reg;
2019
2020 reg = &dev_priv->fence_regs[obj->fence_reg];
2021 list_move_tail(&reg->lru_list,
2022 &dev_priv->mm.fence_list);
2023 }
caea7476
CW
2024 }
2025}
2026
e2d05a8b
BW
2027void i915_vma_move_to_active(struct i915_vma *vma,
2028 struct intel_ring_buffer *ring)
2029{
2030 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2031 return i915_gem_object_move_to_active(vma->obj, ring);
2032}
2033
caea7476 2034static void
caea7476 2035i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2036{
ca191b13 2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2038 struct i915_address_space *vm;
2039 struct i915_vma *vma;
ce44b0ea 2040
65ce3027 2041 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2042 BUG_ON(!obj->active);
caea7476 2043
feb822cf
BW
2044 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2045 vma = i915_gem_obj_to_vma(obj, vm);
2046 if (vma && !list_empty(&vma->mm_list))
2047 list_move_tail(&vma->mm_list, &vm->inactive_list);
2048 }
caea7476 2049
65ce3027 2050 list_del_init(&obj->ring_list);
caea7476
CW
2051 obj->ring = NULL;
2052
65ce3027
CW
2053 obj->last_read_seqno = 0;
2054 obj->last_write_seqno = 0;
2055 obj->base.write_domain = 0;
2056
2057 obj->last_fenced_seqno = 0;
caea7476 2058 obj->fenced_gpu_access = false;
caea7476
CW
2059
2060 obj->active = 0;
2061 drm_gem_object_unreference(&obj->base);
2062
2063 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2064}
673a394b 2065
9d773091 2066static int
fca26bb4 2067i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2068{
9d773091
CW
2069 struct drm_i915_private *dev_priv = dev->dev_private;
2070 struct intel_ring_buffer *ring;
2071 int ret, i, j;
53d227f2 2072
107f27a5 2073 /* Carefully retire all requests without writing to the rings */
9d773091 2074 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2075 ret = intel_ring_idle(ring);
2076 if (ret)
2077 return ret;
9d773091 2078 }
9d773091 2079 i915_gem_retire_requests(dev);
107f27a5
CW
2080
2081 /* Finally reset hw state */
9d773091 2082 for_each_ring(ring, dev_priv, i) {
fca26bb4 2083 intel_ring_init_seqno(ring, seqno);
498d2ac1 2084
9d773091
CW
2085 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2086 ring->sync_seqno[j] = 0;
2087 }
53d227f2 2088
9d773091 2089 return 0;
53d227f2
DV
2090}
2091
fca26bb4
MK
2092int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2093{
2094 struct drm_i915_private *dev_priv = dev->dev_private;
2095 int ret;
2096
2097 if (seqno == 0)
2098 return -EINVAL;
2099
2100 /* HWS page needs to be set less than what we
2101 * will inject to ring
2102 */
2103 ret = i915_gem_init_seqno(dev, seqno - 1);
2104 if (ret)
2105 return ret;
2106
2107 /* Carefully set the last_seqno value so that wrap
2108 * detection still works
2109 */
2110 dev_priv->next_seqno = seqno;
2111 dev_priv->last_seqno = seqno - 1;
2112 if (dev_priv->last_seqno == 0)
2113 dev_priv->last_seqno--;
2114
2115 return 0;
2116}
2117
9d773091
CW
2118int
2119i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2120{
9d773091
CW
2121 struct drm_i915_private *dev_priv = dev->dev_private;
2122
2123 /* reserve 0 for non-seqno */
2124 if (dev_priv->next_seqno == 0) {
fca26bb4 2125 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2126 if (ret)
2127 return ret;
53d227f2 2128
9d773091
CW
2129 dev_priv->next_seqno = 1;
2130 }
53d227f2 2131
f72b3435 2132 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2133 return 0;
53d227f2
DV
2134}
2135
0025c077
MK
2136int __i915_add_request(struct intel_ring_buffer *ring,
2137 struct drm_file *file,
7d736f4f 2138 struct drm_i915_gem_object *obj,
0025c077 2139 u32 *out_seqno)
673a394b 2140{
db53a302 2141 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2142 struct drm_i915_gem_request *request;
7d736f4f 2143 u32 request_ring_position, request_start;
673a394b 2144 int was_empty;
3cce469c
CW
2145 int ret;
2146
7d736f4f 2147 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2148 /*
2149 * Emit any outstanding flushes - execbuf can fail to emit the flush
2150 * after having emitted the batchbuffer command. Hence we need to fix
2151 * things up similar to emitting the lazy request. The difference here
2152 * is that the flush _must_ happen before the next request, no matter
2153 * what.
2154 */
a7b9761d
CW
2155 ret = intel_ring_flush_all_caches(ring);
2156 if (ret)
2157 return ret;
cc889e0f 2158
3c0e234c
CW
2159 request = ring->preallocated_lazy_request;
2160 if (WARN_ON(request == NULL))
acb868d3 2161 return -ENOMEM;
cc889e0f 2162
a71d8d94
CW
2163 /* Record the position of the start of the request so that
2164 * should we detect the updated seqno part-way through the
2165 * GPU processing the request, we never over-estimate the
2166 * position of the head.
2167 */
2168 request_ring_position = intel_ring_get_tail(ring);
2169
9d773091 2170 ret = ring->add_request(ring);
3c0e234c 2171 if (ret)
3bb73aba 2172 return ret;
673a394b 2173
9d773091 2174 request->seqno = intel_ring_get_seqno(ring);
852835f3 2175 request->ring = ring;
7d736f4f 2176 request->head = request_start;
a71d8d94 2177 request->tail = request_ring_position;
7d736f4f
MK
2178
2179 /* Whilst this request exists, batch_obj will be on the
2180 * active_list, and so will hold the active reference. Only when this
2181 * request is retired will the the batch_obj be moved onto the
2182 * inactive_list and lose its active reference. Hence we do not need
2183 * to explicitly hold another reference here.
2184 */
9a7e0c2a 2185 request->batch_obj = obj;
0e50e96b 2186
9a7e0c2a
CW
2187 /* Hold a reference to the current context so that we can inspect
2188 * it later in case a hangcheck error event fires.
2189 */
2190 request->ctx = ring->last_context;
0e50e96b
MK
2191 if (request->ctx)
2192 i915_gem_context_reference(request->ctx);
2193
673a394b 2194 request->emitted_jiffies = jiffies;
852835f3
ZN
2195 was_empty = list_empty(&ring->request_list);
2196 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2197 request->file_priv = NULL;
852835f3 2198
db53a302
CW
2199 if (file) {
2200 struct drm_i915_file_private *file_priv = file->driver_priv;
2201
1c25595f 2202 spin_lock(&file_priv->mm.lock);
f787a5f5 2203 request->file_priv = file_priv;
b962442e 2204 list_add_tail(&request->client_list,
f787a5f5 2205 &file_priv->mm.request_list);
1c25595f 2206 spin_unlock(&file_priv->mm.lock);
b962442e 2207 }
673a394b 2208
9d773091 2209 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2210 ring->outstanding_lazy_seqno = 0;
3c0e234c 2211 ring->preallocated_lazy_request = NULL;
db53a302 2212
db1b76ca 2213 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2214 i915_queue_hangcheck(ring->dev);
2215
f047e395 2216 if (was_empty) {
b29c19b6 2217 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
b3b079db 2218 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2219 &dev_priv->mm.retire_work,
2220 round_jiffies_up_relative(HZ));
f047e395
CW
2221 intel_mark_busy(dev_priv->dev);
2222 }
f65d9421 2223 }
cc889e0f 2224
acb868d3 2225 if (out_seqno)
9d773091 2226 *out_seqno = request->seqno;
3cce469c 2227 return 0;
673a394b
EA
2228}
2229
f787a5f5
CW
2230static inline void
2231i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2232{
1c25595f 2233 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2234
1c25595f
CW
2235 if (!file_priv)
2236 return;
1c5d22f7 2237
1c25595f 2238 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2239 list_del(&request->client_list);
2240 request->file_priv = NULL;
1c25595f 2241 spin_unlock(&file_priv->mm.lock);
673a394b 2242}
673a394b 2243
939fd762 2244static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
44e2c070 2245 const struct i915_hw_context *ctx)
be62acb4 2246{
44e2c070 2247 unsigned long elapsed;
be62acb4 2248
44e2c070
MK
2249 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2250
2251 if (ctx->hang_stats.banned)
be62acb4
MK
2252 return true;
2253
2254 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
3fac8978
MK
2255 if (dev_priv->gpu_error.stop_rings == 0 &&
2256 i915_gem_context_is_default(ctx)) {
2257 DRM_ERROR("gpu hanging too fast, banning!\n");
2258 } else {
2259 DRM_DEBUG("context hanging too fast, banning!\n");
2260 }
2261
be62acb4
MK
2262 return true;
2263 }
2264
2265 return false;
2266}
2267
939fd762
MK
2268static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2269 struct i915_hw_context *ctx,
b6b0fac0 2270 const bool guilty)
aa60c664 2271{
44e2c070
MK
2272 struct i915_ctx_hang_stats *hs;
2273
2274 if (WARN_ON(!ctx))
2275 return;
aa60c664 2276
44e2c070
MK
2277 hs = &ctx->hang_stats;
2278
2279 if (guilty) {
939fd762 2280 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2281 hs->batch_active++;
2282 hs->guilty_ts = get_seconds();
2283 } else {
2284 hs->batch_pending++;
aa60c664
MK
2285 }
2286}
2287
0e50e96b
MK
2288static void i915_gem_free_request(struct drm_i915_gem_request *request)
2289{
2290 list_del(&request->list);
2291 i915_gem_request_remove_from_client(request);
2292
2293 if (request->ctx)
2294 i915_gem_context_unreference(request->ctx);
2295
2296 kfree(request);
2297}
2298
b6b0fac0
MK
2299static struct drm_i915_gem_request *
2300i915_gem_find_first_non_complete(struct intel_ring_buffer *ring)
9375e446 2301{
4db080f9 2302 struct drm_i915_gem_request *request;
b6b0fac0 2303 const u32 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2304
2305 list_for_each_entry(request, &ring->request_list, list) {
2306 if (i915_seqno_passed(completed_seqno, request->seqno))
2307 continue;
aa60c664 2308
b6b0fac0 2309 return request;
4db080f9 2310 }
b6b0fac0
MK
2311
2312 return NULL;
2313}
2314
2315static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2316 struct intel_ring_buffer *ring)
2317{
2318 struct drm_i915_gem_request *request;
2319 bool ring_hung;
2320
2321 request = i915_gem_find_first_non_complete(ring);
2322
2323 if (request == NULL)
2324 return;
2325
2326 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2327
939fd762 2328 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2329
2330 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2331 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2332}
aa60c664 2333
4db080f9
CW
2334static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2335 struct intel_ring_buffer *ring)
2336{
dfaae392 2337 while (!list_empty(&ring->active_list)) {
05394f39 2338 struct drm_i915_gem_object *obj;
9375e446 2339
05394f39
CW
2340 obj = list_first_entry(&ring->active_list,
2341 struct drm_i915_gem_object,
2342 ring_list);
9375e446 2343
05394f39 2344 i915_gem_object_move_to_inactive(obj);
673a394b 2345 }
1d62beea
BW
2346
2347 /*
2348 * We must free the requests after all the corresponding objects have
2349 * been moved off active lists. Which is the same order as the normal
2350 * retire_requests function does. This is important if object hold
2351 * implicit references on things like e.g. ppgtt address spaces through
2352 * the request.
2353 */
2354 while (!list_empty(&ring->request_list)) {
2355 struct drm_i915_gem_request *request;
2356
2357 request = list_first_entry(&ring->request_list,
2358 struct drm_i915_gem_request,
2359 list);
2360
2361 i915_gem_free_request(request);
2362 }
673a394b
EA
2363}
2364
19b2dbde 2365void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2366{
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 int i;
2369
4b9de737 2370 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2371 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2372
94a335db
DV
2373 /*
2374 * Commit delayed tiling changes if we have an object still
2375 * attached to the fence, otherwise just clear the fence.
2376 */
2377 if (reg->obj) {
2378 i915_gem_object_update_fence(reg->obj, reg,
2379 reg->obj->tiling_mode);
2380 } else {
2381 i915_gem_write_fence(dev, i, NULL);
2382 }
312817a3
CW
2383 }
2384}
2385
069efc1d 2386void i915_gem_reset(struct drm_device *dev)
673a394b 2387{
77f01230 2388 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2389 struct intel_ring_buffer *ring;
1ec14ad3 2390 int i;
673a394b 2391
4db080f9
CW
2392 /*
2393 * Before we free the objects from the requests, we need to inspect
2394 * them for finding the guilty party. As the requests only borrow
2395 * their reference to the objects, the inspection must be done first.
2396 */
2397 for_each_ring(ring, dev_priv, i)
2398 i915_gem_reset_ring_status(dev_priv, ring);
2399
b4519513 2400 for_each_ring(ring, dev_priv, i)
4db080f9 2401 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2402
3d57e5bd
BW
2403 i915_gem_cleanup_ringbuffer(dev);
2404
acce9ffa
BW
2405 i915_gem_context_reset(dev);
2406
19b2dbde 2407 i915_gem_restore_fences(dev);
673a394b
EA
2408}
2409
2410/**
2411 * This function clears the request list as sequence numbers are passed.
2412 */
a71d8d94 2413void
db53a302 2414i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2415{
673a394b
EA
2416 uint32_t seqno;
2417
db53a302 2418 if (list_empty(&ring->request_list))
6c0594a3
KW
2419 return;
2420
db53a302 2421 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2422
b2eadbc8 2423 seqno = ring->get_seqno(ring, true);
1ec14ad3 2424
e9103038
CW
2425 /* Move any buffers on the active list that are no longer referenced
2426 * by the ringbuffer to the flushing/inactive lists as appropriate,
2427 * before we free the context associated with the requests.
2428 */
2429 while (!list_empty(&ring->active_list)) {
2430 struct drm_i915_gem_object *obj;
2431
2432 obj = list_first_entry(&ring->active_list,
2433 struct drm_i915_gem_object,
2434 ring_list);
2435
2436 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2437 break;
2438
2439 i915_gem_object_move_to_inactive(obj);
2440 }
2441
2442
852835f3 2443 while (!list_empty(&ring->request_list)) {
673a394b 2444 struct drm_i915_gem_request *request;
673a394b 2445
852835f3 2446 request = list_first_entry(&ring->request_list,
673a394b
EA
2447 struct drm_i915_gem_request,
2448 list);
673a394b 2449
dfaae392 2450 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2451 break;
2452
db53a302 2453 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2454 /* We know the GPU must have read the request to have
2455 * sent us the seqno + interrupt, so use the position
2456 * of tail of the request to update the last known position
2457 * of the GPU head.
2458 */
2459 ring->last_retired_head = request->tail;
b84d5f0c 2460
0e50e96b 2461 i915_gem_free_request(request);
b84d5f0c 2462 }
673a394b 2463
db53a302
CW
2464 if (unlikely(ring->trace_irq_seqno &&
2465 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2466 ring->irq_put(ring);
db53a302 2467 ring->trace_irq_seqno = 0;
9d34e5db 2468 }
23bc5982 2469
db53a302 2470 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2471}
2472
b29c19b6 2473bool
b09a1fec
CW
2474i915_gem_retire_requests(struct drm_device *dev)
2475{
2476 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2477 struct intel_ring_buffer *ring;
b29c19b6 2478 bool idle = true;
1ec14ad3 2479 int i;
b09a1fec 2480
b29c19b6 2481 for_each_ring(ring, dev_priv, i) {
b4519513 2482 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2483 idle &= list_empty(&ring->request_list);
2484 }
2485
2486 if (idle)
2487 mod_delayed_work(dev_priv->wq,
2488 &dev_priv->mm.idle_work,
2489 msecs_to_jiffies(100));
2490
2491 return idle;
b09a1fec
CW
2492}
2493
75ef9da2 2494static void
673a394b
EA
2495i915_gem_retire_work_handler(struct work_struct *work)
2496{
b29c19b6
CW
2497 struct drm_i915_private *dev_priv =
2498 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2499 struct drm_device *dev = dev_priv->dev;
0a58705b 2500 bool idle;
673a394b 2501
891b48cf 2502 /* Come back later if the device is busy... */
b29c19b6
CW
2503 idle = false;
2504 if (mutex_trylock(&dev->struct_mutex)) {
2505 idle = i915_gem_retire_requests(dev);
2506 mutex_unlock(&dev->struct_mutex);
673a394b 2507 }
b29c19b6 2508 if (!idle)
bcb45086
CW
2509 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2510 round_jiffies_up_relative(HZ));
b29c19b6 2511}
0a58705b 2512
b29c19b6
CW
2513static void
2514i915_gem_idle_work_handler(struct work_struct *work)
2515{
2516 struct drm_i915_private *dev_priv =
2517 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2518
2519 intel_mark_idle(dev_priv->dev);
673a394b
EA
2520}
2521
30dfebf3
DV
2522/**
2523 * Ensures that an object will eventually get non-busy by flushing any required
2524 * write domains, emitting any outstanding lazy request and retiring and
2525 * completed requests.
2526 */
2527static int
2528i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2529{
2530 int ret;
2531
2532 if (obj->active) {
0201f1ec 2533 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2534 if (ret)
2535 return ret;
2536
30dfebf3
DV
2537 i915_gem_retire_requests_ring(obj->ring);
2538 }
2539
2540 return 0;
2541}
2542
23ba4fd0
BW
2543/**
2544 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2545 * @DRM_IOCTL_ARGS: standard ioctl arguments
2546 *
2547 * Returns 0 if successful, else an error is returned with the remaining time in
2548 * the timeout parameter.
2549 * -ETIME: object is still busy after timeout
2550 * -ERESTARTSYS: signal interrupted the wait
2551 * -ENONENT: object doesn't exist
2552 * Also possible, but rare:
2553 * -EAGAIN: GPU wedged
2554 * -ENOMEM: damn
2555 * -ENODEV: Internal IRQ fail
2556 * -E?: The add request failed
2557 *
2558 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2559 * non-zero timeout parameter the wait ioctl will wait for the given number of
2560 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2561 * without holding struct_mutex the object may become re-busied before this
2562 * function completes. A similar but shorter * race condition exists in the busy
2563 * ioctl
2564 */
2565int
2566i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2567{
f69061be 2568 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2569 struct drm_i915_gem_wait *args = data;
2570 struct drm_i915_gem_object *obj;
2571 struct intel_ring_buffer *ring = NULL;
eac1f14f 2572 struct timespec timeout_stack, *timeout = NULL;
f69061be 2573 unsigned reset_counter;
23ba4fd0
BW
2574 u32 seqno = 0;
2575 int ret = 0;
2576
eac1f14f
BW
2577 if (args->timeout_ns >= 0) {
2578 timeout_stack = ns_to_timespec(args->timeout_ns);
2579 timeout = &timeout_stack;
2580 }
23ba4fd0
BW
2581
2582 ret = i915_mutex_lock_interruptible(dev);
2583 if (ret)
2584 return ret;
2585
2586 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2587 if (&obj->base == NULL) {
2588 mutex_unlock(&dev->struct_mutex);
2589 return -ENOENT;
2590 }
2591
30dfebf3
DV
2592 /* Need to make sure the object gets inactive eventually. */
2593 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2594 if (ret)
2595 goto out;
2596
2597 if (obj->active) {
0201f1ec 2598 seqno = obj->last_read_seqno;
23ba4fd0
BW
2599 ring = obj->ring;
2600 }
2601
2602 if (seqno == 0)
2603 goto out;
2604
23ba4fd0
BW
2605 /* Do this after OLR check to make sure we make forward progress polling
2606 * on this IOCTL with a 0 timeout (like busy ioctl)
2607 */
2608 if (!args->timeout_ns) {
2609 ret = -ETIME;
2610 goto out;
2611 }
2612
2613 drm_gem_object_unreference(&obj->base);
f69061be 2614 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2615 mutex_unlock(&dev->struct_mutex);
2616
b29c19b6 2617 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2618 if (timeout)
eac1f14f 2619 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2620 return ret;
2621
2622out:
2623 drm_gem_object_unreference(&obj->base);
2624 mutex_unlock(&dev->struct_mutex);
2625 return ret;
2626}
2627
5816d648
BW
2628/**
2629 * i915_gem_object_sync - sync an object to a ring.
2630 *
2631 * @obj: object which may be in use on another ring.
2632 * @to: ring we wish to use the object on. May be NULL.
2633 *
2634 * This code is meant to abstract object synchronization with the GPU.
2635 * Calling with NULL implies synchronizing the object with the CPU
2636 * rather than a particular GPU ring.
2637 *
2638 * Returns 0 if successful, else propagates up the lower layer error.
2639 */
2911a35b
BW
2640int
2641i915_gem_object_sync(struct drm_i915_gem_object *obj,
2642 struct intel_ring_buffer *to)
2643{
2644 struct intel_ring_buffer *from = obj->ring;
2645 u32 seqno;
2646 int ret, idx;
2647
2648 if (from == NULL || to == from)
2649 return 0;
2650
5816d648 2651 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2652 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2653
2654 idx = intel_ring_sync_index(from, to);
2655
0201f1ec 2656 seqno = obj->last_read_seqno;
2911a35b
BW
2657 if (seqno <= from->sync_seqno[idx])
2658 return 0;
2659
b4aca010
BW
2660 ret = i915_gem_check_olr(obj->ring, seqno);
2661 if (ret)
2662 return ret;
2911a35b 2663
b52b89da 2664 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2665 ret = to->sync_to(to, from, seqno);
e3a5a225 2666 if (!ret)
7b01e260
MK
2667 /* We use last_read_seqno because sync_to()
2668 * might have just caused seqno wrap under
2669 * the radar.
2670 */
2671 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2672
e3a5a225 2673 return ret;
2911a35b
BW
2674}
2675
b5ffc9bc
CW
2676static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2677{
2678 u32 old_write_domain, old_read_domains;
2679
b5ffc9bc
CW
2680 /* Force a pagefault for domain tracking on next user access */
2681 i915_gem_release_mmap(obj);
2682
b97c3d9c
KP
2683 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2684 return;
2685
97c809fd
CW
2686 /* Wait for any direct GTT access to complete */
2687 mb();
2688
b5ffc9bc
CW
2689 old_read_domains = obj->base.read_domains;
2690 old_write_domain = obj->base.write_domain;
2691
2692 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2693 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2694
2695 trace_i915_gem_object_change_domain(obj,
2696 old_read_domains,
2697 old_write_domain);
2698}
2699
07fe0b12 2700int i915_vma_unbind(struct i915_vma *vma)
673a394b 2701{
07fe0b12 2702 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2703 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2704 int ret;
673a394b 2705
07fe0b12 2706 if (list_empty(&vma->vma_link))
673a394b
EA
2707 return 0;
2708
0ff501cb
DV
2709 if (!drm_mm_node_allocated(&vma->node)) {
2710 i915_gem_vma_destroy(vma);
2711
2712 return 0;
2713 }
433544bd 2714
d7f46fc4 2715 if (vma->pin_count)
31d8d651 2716 return -EBUSY;
673a394b 2717
c4670ad0
CW
2718 BUG_ON(obj->pages == NULL);
2719
a8198eea 2720 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2721 if (ret)
a8198eea
CW
2722 return ret;
2723 /* Continue on if we fail due to EIO, the GPU is hung so we
2724 * should be safe and we need to cleanup or else we might
2725 * cause memory corruption through use-after-free.
2726 */
2727
b5ffc9bc 2728 i915_gem_object_finish_gtt(obj);
5323fd04 2729
96b47b65 2730 /* release the fence reg _after_ flushing */
d9e86c0e 2731 ret = i915_gem_object_put_fence(obj);
1488fc08 2732 if (ret)
d9e86c0e 2733 return ret;
96b47b65 2734
07fe0b12 2735 trace_i915_vma_unbind(vma);
db53a302 2736
6f65e29a
BW
2737 vma->unbind_vma(vma);
2738
74163907 2739 i915_gem_gtt_finish_object(obj);
7bddb01f 2740
ca191b13 2741 list_del(&vma->mm_list);
75e9e915 2742 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2743 if (i915_is_ggtt(vma->vm))
2744 obj->map_and_fenceable = true;
673a394b 2745
2f633156
BW
2746 drm_mm_remove_node(&vma->node);
2747 i915_gem_vma_destroy(vma);
2748
2749 /* Since the unbound list is global, only move to that list if
b93dab6e 2750 * no more VMAs exist. */
2f633156
BW
2751 if (list_empty(&obj->vma_list))
2752 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2753
70903c3b
CW
2754 /* And finally now the object is completely decoupled from this vma,
2755 * we can drop its hold on the backing storage and allow it to be
2756 * reaped by the shrinker.
2757 */
2758 i915_gem_object_unpin_pages(obj);
2759
88241785 2760 return 0;
54cf91dc
CW
2761}
2762
07fe0b12
BW
2763/**
2764 * Unbinds an object from the global GTT aperture.
2765 */
2766int
2767i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2768{
2769 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2770 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2771
58e73e15 2772 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2773 return 0;
2774
d7f46fc4 2775 if (i915_gem_obj_to_ggtt(obj)->pin_count)
07fe0b12
BW
2776 return -EBUSY;
2777
2778 BUG_ON(obj->pages == NULL);
2779
2780 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2781}
2782
b2da9fe5 2783int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2784{
2785 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2786 struct intel_ring_buffer *ring;
1ec14ad3 2787 int ret, i;
4df2faf4 2788
4df2faf4 2789 /* Flush everything onto the inactive list. */
b4519513 2790 for_each_ring(ring, dev_priv, i) {
41bde553 2791 ret = i915_switch_context(ring, NULL, ring->default_context);
b6c7488d
BW
2792 if (ret)
2793 return ret;
2794
3e960501 2795 ret = intel_ring_idle(ring);
1ec14ad3
CW
2796 if (ret)
2797 return ret;
2798 }
4df2faf4 2799
8a1a49f9 2800 return 0;
4df2faf4
DV
2801}
2802
9ce079e4
CW
2803static void i965_write_fence_reg(struct drm_device *dev, int reg,
2804 struct drm_i915_gem_object *obj)
de151cf6 2805{
de151cf6 2806 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2807 int fence_reg;
2808 int fence_pitch_shift;
de151cf6 2809
56c844e5
ID
2810 if (INTEL_INFO(dev)->gen >= 6) {
2811 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2812 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2813 } else {
2814 fence_reg = FENCE_REG_965_0;
2815 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2816 }
2817
d18b9619
CW
2818 fence_reg += reg * 8;
2819
2820 /* To w/a incoherency with non-atomic 64-bit register updates,
2821 * we split the 64-bit update into two 32-bit writes. In order
2822 * for a partial fence not to be evaluated between writes, we
2823 * precede the update with write to turn off the fence register,
2824 * and only enable the fence as the last step.
2825 *
2826 * For extra levels of paranoia, we make sure each step lands
2827 * before applying the next step.
2828 */
2829 I915_WRITE(fence_reg, 0);
2830 POSTING_READ(fence_reg);
2831
9ce079e4 2832 if (obj) {
f343c5f6 2833 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2834 uint64_t val;
de151cf6 2835
f343c5f6 2836 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2837 0xfffff000) << 32;
f343c5f6 2838 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2839 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2840 if (obj->tiling_mode == I915_TILING_Y)
2841 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2842 val |= I965_FENCE_REG_VALID;
c6642782 2843
d18b9619
CW
2844 I915_WRITE(fence_reg + 4, val >> 32);
2845 POSTING_READ(fence_reg + 4);
2846
2847 I915_WRITE(fence_reg + 0, val);
2848 POSTING_READ(fence_reg);
2849 } else {
2850 I915_WRITE(fence_reg + 4, 0);
2851 POSTING_READ(fence_reg + 4);
2852 }
de151cf6
JB
2853}
2854
9ce079e4
CW
2855static void i915_write_fence_reg(struct drm_device *dev, int reg,
2856 struct drm_i915_gem_object *obj)
de151cf6 2857{
de151cf6 2858 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2859 u32 val;
de151cf6 2860
9ce079e4 2861 if (obj) {
f343c5f6 2862 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2863 int pitch_val;
2864 int tile_width;
c6642782 2865
f343c5f6 2866 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2867 (size & -size) != size ||
f343c5f6
BW
2868 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2869 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2870 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2871
9ce079e4
CW
2872 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2873 tile_width = 128;
2874 else
2875 tile_width = 512;
2876
2877 /* Note: pitch better be a power of two tile widths */
2878 pitch_val = obj->stride / tile_width;
2879 pitch_val = ffs(pitch_val) - 1;
2880
f343c5f6 2881 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2882 if (obj->tiling_mode == I915_TILING_Y)
2883 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2884 val |= I915_FENCE_SIZE_BITS(size);
2885 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2886 val |= I830_FENCE_REG_VALID;
2887 } else
2888 val = 0;
2889
2890 if (reg < 8)
2891 reg = FENCE_REG_830_0 + reg * 4;
2892 else
2893 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2894
2895 I915_WRITE(reg, val);
2896 POSTING_READ(reg);
de151cf6
JB
2897}
2898
9ce079e4
CW
2899static void i830_write_fence_reg(struct drm_device *dev, int reg,
2900 struct drm_i915_gem_object *obj)
de151cf6 2901{
de151cf6 2902 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2903 uint32_t val;
de151cf6 2904
9ce079e4 2905 if (obj) {
f343c5f6 2906 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2907 uint32_t pitch_val;
de151cf6 2908
f343c5f6 2909 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2910 (size & -size) != size ||
f343c5f6
BW
2911 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2912 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2913 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2914
9ce079e4
CW
2915 pitch_val = obj->stride / 128;
2916 pitch_val = ffs(pitch_val) - 1;
de151cf6 2917
f343c5f6 2918 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2919 if (obj->tiling_mode == I915_TILING_Y)
2920 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2921 val |= I830_FENCE_SIZE_BITS(size);
2922 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2923 val |= I830_FENCE_REG_VALID;
2924 } else
2925 val = 0;
c6642782 2926
9ce079e4
CW
2927 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2928 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2929}
2930
d0a57789
CW
2931inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2932{
2933 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2934}
2935
9ce079e4
CW
2936static void i915_gem_write_fence(struct drm_device *dev, int reg,
2937 struct drm_i915_gem_object *obj)
2938{
d0a57789
CW
2939 struct drm_i915_private *dev_priv = dev->dev_private;
2940
2941 /* Ensure that all CPU reads are completed before installing a fence
2942 * and all writes before removing the fence.
2943 */
2944 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2945 mb();
2946
94a335db
DV
2947 WARN(obj && (!obj->stride || !obj->tiling_mode),
2948 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2949 obj->stride, obj->tiling_mode);
2950
9ce079e4 2951 switch (INTEL_INFO(dev)->gen) {
5ab31333 2952 case 8:
9ce079e4 2953 case 7:
56c844e5 2954 case 6:
9ce079e4
CW
2955 case 5:
2956 case 4: i965_write_fence_reg(dev, reg, obj); break;
2957 case 3: i915_write_fence_reg(dev, reg, obj); break;
2958 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2959 default: BUG();
9ce079e4 2960 }
d0a57789
CW
2961
2962 /* And similarly be paranoid that no direct access to this region
2963 * is reordered to before the fence is installed.
2964 */
2965 if (i915_gem_object_needs_mb(obj))
2966 mb();
de151cf6
JB
2967}
2968
61050808
CW
2969static inline int fence_number(struct drm_i915_private *dev_priv,
2970 struct drm_i915_fence_reg *fence)
2971{
2972 return fence - dev_priv->fence_regs;
2973}
2974
2975static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2976 struct drm_i915_fence_reg *fence,
2977 bool enable)
2978{
2dc8aae0 2979 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2980 int reg = fence_number(dev_priv, fence);
2981
2982 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2983
2984 if (enable) {
46a0b638 2985 obj->fence_reg = reg;
61050808
CW
2986 fence->obj = obj;
2987 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2988 } else {
2989 obj->fence_reg = I915_FENCE_REG_NONE;
2990 fence->obj = NULL;
2991 list_del_init(&fence->lru_list);
2992 }
94a335db 2993 obj->fence_dirty = false;
61050808
CW
2994}
2995
d9e86c0e 2996static int
d0a57789 2997i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2998{
1c293ea3 2999 if (obj->last_fenced_seqno) {
86d5bc37 3000 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3001 if (ret)
3002 return ret;
d9e86c0e
CW
3003
3004 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3005 }
3006
86d5bc37 3007 obj->fenced_gpu_access = false;
d9e86c0e
CW
3008 return 0;
3009}
3010
3011int
3012i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3013{
61050808 3014 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3015 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3016 int ret;
3017
d0a57789 3018 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3019 if (ret)
3020 return ret;
3021
61050808
CW
3022 if (obj->fence_reg == I915_FENCE_REG_NONE)
3023 return 0;
d9e86c0e 3024
f9c513e9
CW
3025 fence = &dev_priv->fence_regs[obj->fence_reg];
3026
61050808 3027 i915_gem_object_fence_lost(obj);
f9c513e9 3028 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3029
3030 return 0;
3031}
3032
3033static struct drm_i915_fence_reg *
a360bb1a 3034i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3035{
ae3db24a 3036 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3037 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3038 int i;
ae3db24a
DV
3039
3040 /* First try to find a free reg */
d9e86c0e 3041 avail = NULL;
ae3db24a
DV
3042 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3043 reg = &dev_priv->fence_regs[i];
3044 if (!reg->obj)
d9e86c0e 3045 return reg;
ae3db24a 3046
1690e1eb 3047 if (!reg->pin_count)
d9e86c0e 3048 avail = reg;
ae3db24a
DV
3049 }
3050
d9e86c0e 3051 if (avail == NULL)
5dce5b93 3052 goto deadlock;
ae3db24a
DV
3053
3054 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3055 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3056 if (reg->pin_count)
ae3db24a
DV
3057 continue;
3058
8fe301ad 3059 return reg;
ae3db24a
DV
3060 }
3061
5dce5b93
CW
3062deadlock:
3063 /* Wait for completion of pending flips which consume fences */
3064 if (intel_has_pending_fb_unpin(dev))
3065 return ERR_PTR(-EAGAIN);
3066
3067 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3068}
3069
de151cf6 3070/**
9a5a53b3 3071 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3072 * @obj: object to map through a fence reg
3073 *
3074 * When mapping objects through the GTT, userspace wants to be able to write
3075 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3076 * This function walks the fence regs looking for a free one for @obj,
3077 * stealing one if it can't find any.
3078 *
3079 * It then sets up the reg based on the object's properties: address, pitch
3080 * and tiling format.
9a5a53b3
CW
3081 *
3082 * For an untiled surface, this removes any existing fence.
de151cf6 3083 */
8c4b8c3f 3084int
06d98131 3085i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3086{
05394f39 3087 struct drm_device *dev = obj->base.dev;
79e53945 3088 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3089 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3090 struct drm_i915_fence_reg *reg;
ae3db24a 3091 int ret;
de151cf6 3092
14415745
CW
3093 /* Have we updated the tiling parameters upon the object and so
3094 * will need to serialise the write to the associated fence register?
3095 */
5d82e3e6 3096 if (obj->fence_dirty) {
d0a57789 3097 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3098 if (ret)
3099 return ret;
3100 }
9a5a53b3 3101
d9e86c0e 3102 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3103 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3104 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3105 if (!obj->fence_dirty) {
14415745
CW
3106 list_move_tail(&reg->lru_list,
3107 &dev_priv->mm.fence_list);
3108 return 0;
3109 }
3110 } else if (enable) {
3111 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3112 if (IS_ERR(reg))
3113 return PTR_ERR(reg);
d9e86c0e 3114
14415745
CW
3115 if (reg->obj) {
3116 struct drm_i915_gem_object *old = reg->obj;
3117
d0a57789 3118 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3119 if (ret)
3120 return ret;
3121
14415745 3122 i915_gem_object_fence_lost(old);
29c5a587 3123 }
14415745 3124 } else
a09ba7fa 3125 return 0;
a09ba7fa 3126
14415745 3127 i915_gem_object_update_fence(obj, reg, enable);
14415745 3128
9ce079e4 3129 return 0;
de151cf6
JB
3130}
3131
42d6ab48
CW
3132static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3133 struct drm_mm_node *gtt_space,
3134 unsigned long cache_level)
3135{
3136 struct drm_mm_node *other;
3137
3138 /* On non-LLC machines we have to be careful when putting differing
3139 * types of snoopable memory together to avoid the prefetcher
4239ca77 3140 * crossing memory domains and dying.
42d6ab48
CW
3141 */
3142 if (HAS_LLC(dev))
3143 return true;
3144
c6cfb325 3145 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3146 return true;
3147
3148 if (list_empty(&gtt_space->node_list))
3149 return true;
3150
3151 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3152 if (other->allocated && !other->hole_follows && other->color != cache_level)
3153 return false;
3154
3155 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3156 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3157 return false;
3158
3159 return true;
3160}
3161
3162static void i915_gem_verify_gtt(struct drm_device *dev)
3163{
3164#if WATCH_GTT
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166 struct drm_i915_gem_object *obj;
3167 int err = 0;
3168
35c20a60 3169 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3170 if (obj->gtt_space == NULL) {
3171 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3172 err++;
3173 continue;
3174 }
3175
3176 if (obj->cache_level != obj->gtt_space->color) {
3177 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3178 i915_gem_obj_ggtt_offset(obj),
3179 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3180 obj->cache_level,
3181 obj->gtt_space->color);
3182 err++;
3183 continue;
3184 }
3185
3186 if (!i915_gem_valid_gtt_space(dev,
3187 obj->gtt_space,
3188 obj->cache_level)) {
3189 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3190 i915_gem_obj_ggtt_offset(obj),
3191 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3192 obj->cache_level);
3193 err++;
3194 continue;
3195 }
3196 }
3197
3198 WARN_ON(err);
3199#endif
3200}
3201
673a394b
EA
3202/**
3203 * Finds free space in the GTT aperture and binds the object there.
3204 */
3205static int
07fe0b12
BW
3206i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3207 struct i915_address_space *vm,
3208 unsigned alignment,
3209 bool map_and_fenceable,
3210 bool nonblocking)
673a394b 3211{
05394f39 3212 struct drm_device *dev = obj->base.dev;
673a394b 3213 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3214 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3215 size_t gtt_max =
3216 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3217 struct i915_vma *vma;
07f73f69 3218 int ret;
673a394b 3219
e28f8711
CW
3220 fence_size = i915_gem_get_gtt_size(dev,
3221 obj->base.size,
3222 obj->tiling_mode);
3223 fence_alignment = i915_gem_get_gtt_alignment(dev,
3224 obj->base.size,
d865110c 3225 obj->tiling_mode, true);
e28f8711 3226 unfenced_alignment =
d865110c 3227 i915_gem_get_gtt_alignment(dev,
e28f8711 3228 obj->base.size,
d865110c 3229 obj->tiling_mode, false);
a00b10c3 3230
673a394b 3231 if (alignment == 0)
5e783301
DV
3232 alignment = map_and_fenceable ? fence_alignment :
3233 unfenced_alignment;
75e9e915 3234 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3235 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3236 return -EINVAL;
3237 }
3238
05394f39 3239 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3240
654fc607
CW
3241 /* If the object is bigger than the entire aperture, reject it early
3242 * before evicting everything in a vain attempt to find space.
3243 */
0a9ae0d7 3244 if (obj->base.size > gtt_max) {
3765f304 3245 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3246 obj->base.size,
3247 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3248 gtt_max);
654fc607
CW
3249 return -E2BIG;
3250 }
3251
37e680a1 3252 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3253 if (ret)
3254 return ret;
3255
fbdda6fb
CW
3256 i915_gem_object_pin_pages(obj);
3257
accfef2e 3258 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3259 if (IS_ERR(vma)) {
bc6bc15b
DV
3260 ret = PTR_ERR(vma);
3261 goto err_unpin;
2f633156
BW
3262 }
3263
0a9ae0d7 3264search_free:
07fe0b12 3265 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3266 size, alignment,
31e5d7c6
DH
3267 obj->cache_level, 0, gtt_max,
3268 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3269 if (ret) {
f6cd1f15 3270 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3271 obj->cache_level,
86a1ee26
CW
3272 map_and_fenceable,
3273 nonblocking);
dc9dd7a2
CW
3274 if (ret == 0)
3275 goto search_free;
9731129c 3276
bc6bc15b 3277 goto err_free_vma;
673a394b 3278 }
2f633156 3279 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3280 obj->cache_level))) {
2f633156 3281 ret = -EINVAL;
bc6bc15b 3282 goto err_remove_node;
673a394b
EA
3283 }
3284
74163907 3285 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3286 if (ret)
bc6bc15b 3287 goto err_remove_node;
673a394b 3288
35c20a60 3289 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3290 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3291
4bd561b3
BW
3292 if (i915_is_ggtt(vm)) {
3293 bool mappable, fenceable;
a00b10c3 3294
49987099
DV
3295 fenceable = (vma->node.size == fence_size &&
3296 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3297
49987099
DV
3298 mappable = (vma->node.start + obj->base.size <=
3299 dev_priv->gtt.mappable_end);
a00b10c3 3300
5cacaac7 3301 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3302 }
75e9e915 3303
7ace7ef2 3304 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3305
07fe0b12 3306 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3307 i915_gem_verify_gtt(dev);
673a394b 3308 return 0;
2f633156 3309
bc6bc15b 3310err_remove_node:
6286ef9b 3311 drm_mm_remove_node(&vma->node);
bc6bc15b 3312err_free_vma:
2f633156 3313 i915_gem_vma_destroy(vma);
bc6bc15b 3314err_unpin:
2f633156 3315 i915_gem_object_unpin_pages(obj);
2f633156 3316 return ret;
673a394b
EA
3317}
3318
000433b6 3319bool
2c22569b
CW
3320i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3321 bool force)
673a394b 3322{
673a394b
EA
3323 /* If we don't have a page list set up, then we're not pinned
3324 * to GPU, and we can ignore the cache flush because it'll happen
3325 * again at bind time.
3326 */
05394f39 3327 if (obj->pages == NULL)
000433b6 3328 return false;
673a394b 3329
769ce464
ID
3330 /*
3331 * Stolen memory is always coherent with the GPU as it is explicitly
3332 * marked as wc by the system, or the system is cache-coherent.
3333 */
3334 if (obj->stolen)
000433b6 3335 return false;
769ce464 3336
9c23f7fc
CW
3337 /* If the GPU is snooping the contents of the CPU cache,
3338 * we do not need to manually clear the CPU cache lines. However,
3339 * the caches are only snooped when the render cache is
3340 * flushed/invalidated. As we always have to emit invalidations
3341 * and flushes when moving into and out of the RENDER domain, correct
3342 * snooping behaviour occurs naturally as the result of our domain
3343 * tracking.
3344 */
2c22569b 3345 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3346 return false;
9c23f7fc 3347
1c5d22f7 3348 trace_i915_gem_object_clflush(obj);
9da3da66 3349 drm_clflush_sg(obj->pages);
000433b6
CW
3350
3351 return true;
e47c68e9
EA
3352}
3353
3354/** Flushes the GTT write domain for the object if it's dirty. */
3355static void
05394f39 3356i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3357{
1c5d22f7
CW
3358 uint32_t old_write_domain;
3359
05394f39 3360 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3361 return;
3362
63256ec5 3363 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3364 * to it immediately go to main memory as far as we know, so there's
3365 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3366 *
3367 * However, we do have to enforce the order so that all writes through
3368 * the GTT land before any writes to the device, such as updates to
3369 * the GATT itself.
e47c68e9 3370 */
63256ec5
CW
3371 wmb();
3372
05394f39
CW
3373 old_write_domain = obj->base.write_domain;
3374 obj->base.write_domain = 0;
1c5d22f7
CW
3375
3376 trace_i915_gem_object_change_domain(obj,
05394f39 3377 obj->base.read_domains,
1c5d22f7 3378 old_write_domain);
e47c68e9
EA
3379}
3380
3381/** Flushes the CPU write domain for the object if it's dirty. */
3382static void
2c22569b
CW
3383i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3384 bool force)
e47c68e9 3385{
1c5d22f7 3386 uint32_t old_write_domain;
e47c68e9 3387
05394f39 3388 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3389 return;
3390
000433b6
CW
3391 if (i915_gem_clflush_object(obj, force))
3392 i915_gem_chipset_flush(obj->base.dev);
3393
05394f39
CW
3394 old_write_domain = obj->base.write_domain;
3395 obj->base.write_domain = 0;
1c5d22f7
CW
3396
3397 trace_i915_gem_object_change_domain(obj,
05394f39 3398 obj->base.read_domains,
1c5d22f7 3399 old_write_domain);
e47c68e9
EA
3400}
3401
2ef7eeaa
EA
3402/**
3403 * Moves a single object to the GTT read, and possibly write domain.
3404 *
3405 * This function returns when the move is complete, including waiting on
3406 * flushes to occur.
3407 */
79e53945 3408int
2021746e 3409i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3410{
8325a09d 3411 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3412 uint32_t old_write_domain, old_read_domains;
e47c68e9 3413 int ret;
2ef7eeaa 3414
02354392 3415 /* Not valid to be called on unbound objects. */
9843877d 3416 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3417 return -EINVAL;
3418
8d7e3de1
CW
3419 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3420 return 0;
3421
0201f1ec 3422 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3423 if (ret)
3424 return ret;
3425
2c22569b 3426 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3427
d0a57789
CW
3428 /* Serialise direct access to this object with the barriers for
3429 * coherent writes from the GPU, by effectively invalidating the
3430 * GTT domain upon first access.
3431 */
3432 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3433 mb();
3434
05394f39
CW
3435 old_write_domain = obj->base.write_domain;
3436 old_read_domains = obj->base.read_domains;
1c5d22f7 3437
e47c68e9
EA
3438 /* It should now be out of any other write domains, and we can update
3439 * the domain values for our changes.
3440 */
05394f39
CW
3441 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3442 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3443 if (write) {
05394f39
CW
3444 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3445 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3446 obj->dirty = 1;
2ef7eeaa
EA
3447 }
3448
1c5d22f7
CW
3449 trace_i915_gem_object_change_domain(obj,
3450 old_read_domains,
3451 old_write_domain);
3452
8325a09d 3453 /* And bump the LRU for this access */
ca191b13 3454 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3455 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3456 if (vma)
3457 list_move_tail(&vma->mm_list,
3458 &dev_priv->gtt.base.inactive_list);
3459
3460 }
8325a09d 3461
e47c68e9
EA
3462 return 0;
3463}
3464
e4ffd173
CW
3465int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3466 enum i915_cache_level cache_level)
3467{
7bddb01f 3468 struct drm_device *dev = obj->base.dev;
3089c6f2 3469 struct i915_vma *vma;
e4ffd173
CW
3470 int ret;
3471
3472 if (obj->cache_level == cache_level)
3473 return 0;
3474
d7f46fc4 3475 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3476 DRM_DEBUG("can not change the cache level of pinned objects\n");
3477 return -EBUSY;
3478 }
3479
3089c6f2
BW
3480 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3481 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3482 ret = i915_vma_unbind(vma);
3089c6f2
BW
3483 if (ret)
3484 return ret;
3485
3486 break;
3487 }
42d6ab48
CW
3488 }
3489
3089c6f2 3490 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3491 ret = i915_gem_object_finish_gpu(obj);
3492 if (ret)
3493 return ret;
3494
3495 i915_gem_object_finish_gtt(obj);
3496
3497 /* Before SandyBridge, you could not use tiling or fence
3498 * registers with snooped memory, so relinquish any fences
3499 * currently pointing to our region in the aperture.
3500 */
42d6ab48 3501 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3502 ret = i915_gem_object_put_fence(obj);
3503 if (ret)
3504 return ret;
3505 }
3506
6f65e29a
BW
3507 list_for_each_entry(vma, &obj->vma_list, vma_link)
3508 vma->bind_vma(vma, cache_level, 0);
e4ffd173
CW
3509 }
3510
2c22569b
CW
3511 list_for_each_entry(vma, &obj->vma_list, vma_link)
3512 vma->node.color = cache_level;
3513 obj->cache_level = cache_level;
3514
3515 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3516 u32 old_read_domains, old_write_domain;
3517
3518 /* If we're coming from LLC cached, then we haven't
3519 * actually been tracking whether the data is in the
3520 * CPU cache or not, since we only allow one bit set
3521 * in obj->write_domain and have been skipping the clflushes.
3522 * Just set it to the CPU cache for now.
3523 */
3524 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3525
3526 old_read_domains = obj->base.read_domains;
3527 old_write_domain = obj->base.write_domain;
3528
3529 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3530 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3531
3532 trace_i915_gem_object_change_domain(obj,
3533 old_read_domains,
3534 old_write_domain);
3535 }
3536
42d6ab48 3537 i915_gem_verify_gtt(dev);
e4ffd173
CW
3538 return 0;
3539}
3540
199adf40
BW
3541int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3542 struct drm_file *file)
e6994aee 3543{
199adf40 3544 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3545 struct drm_i915_gem_object *obj;
3546 int ret;
3547
3548 ret = i915_mutex_lock_interruptible(dev);
3549 if (ret)
3550 return ret;
3551
3552 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3553 if (&obj->base == NULL) {
3554 ret = -ENOENT;
3555 goto unlock;
3556 }
3557
651d794f
CW
3558 switch (obj->cache_level) {
3559 case I915_CACHE_LLC:
3560 case I915_CACHE_L3_LLC:
3561 args->caching = I915_CACHING_CACHED;
3562 break;
3563
4257d3ba
CW
3564 case I915_CACHE_WT:
3565 args->caching = I915_CACHING_DISPLAY;
3566 break;
3567
651d794f
CW
3568 default:
3569 args->caching = I915_CACHING_NONE;
3570 break;
3571 }
e6994aee
CW
3572
3573 drm_gem_object_unreference(&obj->base);
3574unlock:
3575 mutex_unlock(&dev->struct_mutex);
3576 return ret;
3577}
3578
199adf40
BW
3579int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3580 struct drm_file *file)
e6994aee 3581{
199adf40 3582 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3583 struct drm_i915_gem_object *obj;
3584 enum i915_cache_level level;
3585 int ret;
3586
199adf40
BW
3587 switch (args->caching) {
3588 case I915_CACHING_NONE:
e6994aee
CW
3589 level = I915_CACHE_NONE;
3590 break;
199adf40 3591 case I915_CACHING_CACHED:
e6994aee
CW
3592 level = I915_CACHE_LLC;
3593 break;
4257d3ba
CW
3594 case I915_CACHING_DISPLAY:
3595 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3596 break;
e6994aee
CW
3597 default:
3598 return -EINVAL;
3599 }
3600
3bc2913e
BW
3601 ret = i915_mutex_lock_interruptible(dev);
3602 if (ret)
3603 return ret;
3604
e6994aee
CW
3605 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3606 if (&obj->base == NULL) {
3607 ret = -ENOENT;
3608 goto unlock;
3609 }
3610
3611 ret = i915_gem_object_set_cache_level(obj, level);
3612
3613 drm_gem_object_unreference(&obj->base);
3614unlock:
3615 mutex_unlock(&dev->struct_mutex);
3616 return ret;
3617}
3618
cc98b413
CW
3619static bool is_pin_display(struct drm_i915_gem_object *obj)
3620{
3621 /* There are 3 sources that pin objects:
3622 * 1. The display engine (scanouts, sprites, cursors);
3623 * 2. Reservations for execbuffer;
3624 * 3. The user.
3625 *
3626 * We can ignore reservations as we hold the struct_mutex and
3627 * are only called outside of the reservation path. The user
3628 * can only increment pin_count once, and so if after
3629 * subtracting the potential reference by the user, any pin_count
3630 * remains, it must be due to another use by the display engine.
3631 */
d7f46fc4 3632 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
cc98b413
CW
3633}
3634
b9241ea3 3635/*
2da3b9b9
CW
3636 * Prepare buffer for display plane (scanout, cursors, etc).
3637 * Can be called from an uninterruptible phase (modesetting) and allows
3638 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3639 */
3640int
2da3b9b9
CW
3641i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3642 u32 alignment,
919926ae 3643 struct intel_ring_buffer *pipelined)
b9241ea3 3644{
2da3b9b9 3645 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3646 int ret;
3647
0be73284 3648 if (pipelined != obj->ring) {
2911a35b
BW
3649 ret = i915_gem_object_sync(obj, pipelined);
3650 if (ret)
b9241ea3
ZW
3651 return ret;
3652 }
3653
cc98b413
CW
3654 /* Mark the pin_display early so that we account for the
3655 * display coherency whilst setting up the cache domains.
3656 */
3657 obj->pin_display = true;
3658
a7ef0640
EA
3659 /* The display engine is not coherent with the LLC cache on gen6. As
3660 * a result, we make sure that the pinning that is about to occur is
3661 * done with uncached PTEs. This is lowest common denominator for all
3662 * chipsets.
3663 *
3664 * However for gen6+, we could do better by using the GFDT bit instead
3665 * of uncaching, which would allow us to flush all the LLC-cached data
3666 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3667 */
651d794f
CW
3668 ret = i915_gem_object_set_cache_level(obj,
3669 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3670 if (ret)
cc98b413 3671 goto err_unpin_display;
a7ef0640 3672
2da3b9b9
CW
3673 /* As the user may map the buffer once pinned in the display plane
3674 * (e.g. libkms for the bootup splash), we have to ensure that we
3675 * always use map_and_fenceable for all scanout buffers.
3676 */
c37e2204 3677 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3678 if (ret)
cc98b413 3679 goto err_unpin_display;
2da3b9b9 3680
2c22569b 3681 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3682
2da3b9b9 3683 old_write_domain = obj->base.write_domain;
05394f39 3684 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3685
3686 /* It should now be out of any other write domains, and we can update
3687 * the domain values for our changes.
3688 */
e5f1d962 3689 obj->base.write_domain = 0;
05394f39 3690 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3691
3692 trace_i915_gem_object_change_domain(obj,
3693 old_read_domains,
2da3b9b9 3694 old_write_domain);
b9241ea3
ZW
3695
3696 return 0;
cc98b413
CW
3697
3698err_unpin_display:
3699 obj->pin_display = is_pin_display(obj);
3700 return ret;
3701}
3702
3703void
3704i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3705{
d7f46fc4 3706 i915_gem_object_ggtt_unpin(obj);
cc98b413 3707 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3708}
3709
85345517 3710int
a8198eea 3711i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3712{
88241785
CW
3713 int ret;
3714
a8198eea 3715 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3716 return 0;
3717
0201f1ec 3718 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3719 if (ret)
3720 return ret;
3721
a8198eea
CW
3722 /* Ensure that we invalidate the GPU's caches and TLBs. */
3723 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3724 return 0;
85345517
CW
3725}
3726
e47c68e9
EA
3727/**
3728 * Moves a single object to the CPU read, and possibly write domain.
3729 *
3730 * This function returns when the move is complete, including waiting on
3731 * flushes to occur.
3732 */
dabdfe02 3733int
919926ae 3734i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3735{
1c5d22f7 3736 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3737 int ret;
3738
8d7e3de1
CW
3739 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3740 return 0;
3741
0201f1ec 3742 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3743 if (ret)
3744 return ret;
3745
e47c68e9 3746 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3747
05394f39
CW
3748 old_write_domain = obj->base.write_domain;
3749 old_read_domains = obj->base.read_domains;
1c5d22f7 3750
e47c68e9 3751 /* Flush the CPU cache if it's still invalid. */
05394f39 3752 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3753 i915_gem_clflush_object(obj, false);
2ef7eeaa 3754
05394f39 3755 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3756 }
3757
3758 /* It should now be out of any other write domains, and we can update
3759 * the domain values for our changes.
3760 */
05394f39 3761 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3762
3763 /* If we're writing through the CPU, then the GPU read domains will
3764 * need to be invalidated at next use.
3765 */
3766 if (write) {
05394f39
CW
3767 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3768 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3769 }
2ef7eeaa 3770
1c5d22f7
CW
3771 trace_i915_gem_object_change_domain(obj,
3772 old_read_domains,
3773 old_write_domain);
3774
2ef7eeaa
EA
3775 return 0;
3776}
3777
673a394b
EA
3778/* Throttle our rendering by waiting until the ring has completed our requests
3779 * emitted over 20 msec ago.
3780 *
b962442e
EA
3781 * Note that if we were to use the current jiffies each time around the loop,
3782 * we wouldn't escape the function with any frames outstanding if the time to
3783 * render a frame was over 20ms.
3784 *
673a394b
EA
3785 * This should get us reasonable parallelism between CPU and GPU but also
3786 * relatively low latency when blocking on a particular request to finish.
3787 */
40a5f0de 3788static int
f787a5f5 3789i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3790{
f787a5f5
CW
3791 struct drm_i915_private *dev_priv = dev->dev_private;
3792 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3793 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3794 struct drm_i915_gem_request *request;
3795 struct intel_ring_buffer *ring = NULL;
f69061be 3796 unsigned reset_counter;
f787a5f5
CW
3797 u32 seqno = 0;
3798 int ret;
93533c29 3799
308887aa
DV
3800 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3801 if (ret)
3802 return ret;
3803
3804 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3805 if (ret)
3806 return ret;
e110e8d6 3807
1c25595f 3808 spin_lock(&file_priv->mm.lock);
f787a5f5 3809 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3810 if (time_after_eq(request->emitted_jiffies, recent_enough))
3811 break;
40a5f0de 3812
f787a5f5
CW
3813 ring = request->ring;
3814 seqno = request->seqno;
b962442e 3815 }
f69061be 3816 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3817 spin_unlock(&file_priv->mm.lock);
40a5f0de 3818
f787a5f5
CW
3819 if (seqno == 0)
3820 return 0;
2bc43b5c 3821
b29c19b6 3822 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3823 if (ret == 0)
3824 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3825
3826 return ret;
3827}
3828
673a394b 3829int
05394f39 3830i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3831 struct i915_address_space *vm,
05394f39 3832 uint32_t alignment,
86a1ee26
CW
3833 bool map_and_fenceable,
3834 bool nonblocking)
673a394b 3835{
6f65e29a 3836 const u32 flags = map_and_fenceable ? GLOBAL_BIND : 0;
07fe0b12 3837 struct i915_vma *vma;
673a394b
EA
3838 int ret;
3839
07fe0b12
BW
3840 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3841
3842 vma = i915_gem_obj_to_vma(obj, vm);
3843
3844 if (vma) {
d7f46fc4
BW
3845 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3846 return -EBUSY;
3847
07fe0b12
BW
3848 if ((alignment &&
3849 vma->node.start & (alignment - 1)) ||
05394f39 3850 (map_and_fenceable && !obj->map_and_fenceable)) {
d7f46fc4 3851 WARN(vma->pin_count,
ae7d49d8 3852 "bo is already pinned with incorrect alignment:"
f343c5f6 3853 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3854 " obj->map_and_fenceable=%d\n",
07fe0b12 3855 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3856 map_and_fenceable,
05394f39 3857 obj->map_and_fenceable);
07fe0b12 3858 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3859 if (ret)
3860 return ret;
3861 }
3862 }
3863
07fe0b12 3864 if (!i915_gem_obj_bound(obj, vm)) {
07fe0b12
BW
3865 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3866 map_and_fenceable,
3867 nonblocking);
9731129c 3868 if (ret)
673a394b 3869 return ret;
8742267a 3870
22c344e9 3871 }
76446cac 3872
6f65e29a
BW
3873 vma = i915_gem_obj_to_vma(obj, vm);
3874
3875 vma->bind_vma(vma, obj->cache_level, flags);
74898d7e 3876
d7f46fc4 3877 i915_gem_obj_to_vma(obj, vm)->pin_count++;
6299f992 3878 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3879
3880 return 0;
3881}
3882
3883void
d7f46fc4 3884i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 3885{
d7f46fc4 3886 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 3887
d7f46fc4
BW
3888 BUG_ON(!vma);
3889 BUG_ON(vma->pin_count == 0);
3890 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3891
3892 if (--vma->pin_count == 0)
6299f992 3893 obj->pin_mappable = false;
673a394b
EA
3894}
3895
3896int
3897i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3898 struct drm_file *file)
673a394b
EA
3899{
3900 struct drm_i915_gem_pin *args = data;
05394f39 3901 struct drm_i915_gem_object *obj;
673a394b
EA
3902 int ret;
3903
02f6bccc
DV
3904 if (INTEL_INFO(dev)->gen >= 6)
3905 return -ENODEV;
3906
1d7cfea1
CW
3907 ret = i915_mutex_lock_interruptible(dev);
3908 if (ret)
3909 return ret;
673a394b 3910
05394f39 3911 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3912 if (&obj->base == NULL) {
1d7cfea1
CW
3913 ret = -ENOENT;
3914 goto unlock;
673a394b 3915 }
673a394b 3916
05394f39 3917 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3918 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3919 ret = -EINVAL;
3920 goto out;
3ef94daa
CW
3921 }
3922
05394f39 3923 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3924 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3925 args->handle);
1d7cfea1
CW
3926 ret = -EINVAL;
3927 goto out;
79e53945
JB
3928 }
3929
aa5f8021
DV
3930 if (obj->user_pin_count == ULONG_MAX) {
3931 ret = -EBUSY;
3932 goto out;
3933 }
3934
93be8788 3935 if (obj->user_pin_count == 0) {
c37e2204 3936 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3937 if (ret)
3938 goto out;
673a394b
EA
3939 }
3940
93be8788
CW
3941 obj->user_pin_count++;
3942 obj->pin_filp = file;
3943
f343c5f6 3944 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3945out:
05394f39 3946 drm_gem_object_unreference(&obj->base);
1d7cfea1 3947unlock:
673a394b 3948 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3949 return ret;
673a394b
EA
3950}
3951
3952int
3953i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3954 struct drm_file *file)
673a394b
EA
3955{
3956 struct drm_i915_gem_pin *args = data;
05394f39 3957 struct drm_i915_gem_object *obj;
76c1dec1 3958 int ret;
673a394b 3959
1d7cfea1
CW
3960 ret = i915_mutex_lock_interruptible(dev);
3961 if (ret)
3962 return ret;
673a394b 3963
05394f39 3964 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3965 if (&obj->base == NULL) {
1d7cfea1
CW
3966 ret = -ENOENT;
3967 goto unlock;
673a394b 3968 }
76c1dec1 3969
05394f39 3970 if (obj->pin_filp != file) {
79e53945
JB
3971 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3972 args->handle);
1d7cfea1
CW
3973 ret = -EINVAL;
3974 goto out;
79e53945 3975 }
05394f39
CW
3976 obj->user_pin_count--;
3977 if (obj->user_pin_count == 0) {
3978 obj->pin_filp = NULL;
d7f46fc4 3979 i915_gem_object_ggtt_unpin(obj);
79e53945 3980 }
673a394b 3981
1d7cfea1 3982out:
05394f39 3983 drm_gem_object_unreference(&obj->base);
1d7cfea1 3984unlock:
673a394b 3985 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3986 return ret;
673a394b
EA
3987}
3988
3989int
3990i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3991 struct drm_file *file)
673a394b
EA
3992{
3993 struct drm_i915_gem_busy *args = data;
05394f39 3994 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3995 int ret;
3996
76c1dec1 3997 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3998 if (ret)
76c1dec1 3999 return ret;
673a394b 4000
05394f39 4001 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4002 if (&obj->base == NULL) {
1d7cfea1
CW
4003 ret = -ENOENT;
4004 goto unlock;
673a394b 4005 }
d1b851fc 4006
0be555b6
CW
4007 /* Count all active objects as busy, even if they are currently not used
4008 * by the gpu. Users of this interface expect objects to eventually
4009 * become non-busy without any further actions, therefore emit any
4010 * necessary flushes here.
c4de0a5d 4011 */
30dfebf3 4012 ret = i915_gem_object_flush_active(obj);
0be555b6 4013
30dfebf3 4014 args->busy = obj->active;
e9808edd
CW
4015 if (obj->ring) {
4016 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4017 args->busy |= intel_ring_flag(obj->ring) << 16;
4018 }
673a394b 4019
05394f39 4020 drm_gem_object_unreference(&obj->base);
1d7cfea1 4021unlock:
673a394b 4022 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4023 return ret;
673a394b
EA
4024}
4025
4026int
4027i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4028 struct drm_file *file_priv)
4029{
0206e353 4030 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4031}
4032
3ef94daa
CW
4033int
4034i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4035 struct drm_file *file_priv)
4036{
4037 struct drm_i915_gem_madvise *args = data;
05394f39 4038 struct drm_i915_gem_object *obj;
76c1dec1 4039 int ret;
3ef94daa
CW
4040
4041 switch (args->madv) {
4042 case I915_MADV_DONTNEED:
4043 case I915_MADV_WILLNEED:
4044 break;
4045 default:
4046 return -EINVAL;
4047 }
4048
1d7cfea1
CW
4049 ret = i915_mutex_lock_interruptible(dev);
4050 if (ret)
4051 return ret;
4052
05394f39 4053 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4054 if (&obj->base == NULL) {
1d7cfea1
CW
4055 ret = -ENOENT;
4056 goto unlock;
3ef94daa 4057 }
3ef94daa 4058
d7f46fc4 4059 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4060 ret = -EINVAL;
4061 goto out;
3ef94daa
CW
4062 }
4063
05394f39
CW
4064 if (obj->madv != __I915_MADV_PURGED)
4065 obj->madv = args->madv;
3ef94daa 4066
6c085a72
CW
4067 /* if the object is no longer attached, discard its backing storage */
4068 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4069 i915_gem_object_truncate(obj);
4070
05394f39 4071 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4072
1d7cfea1 4073out:
05394f39 4074 drm_gem_object_unreference(&obj->base);
1d7cfea1 4075unlock:
3ef94daa 4076 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4077 return ret;
3ef94daa
CW
4078}
4079
37e680a1
CW
4080void i915_gem_object_init(struct drm_i915_gem_object *obj,
4081 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4082{
35c20a60 4083 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4084 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4085 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4086 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4087
37e680a1
CW
4088 obj->ops = ops;
4089
0327d6ba
CW
4090 obj->fence_reg = I915_FENCE_REG_NONE;
4091 obj->madv = I915_MADV_WILLNEED;
4092 /* Avoid an unnecessary call to unbind on the first bind. */
4093 obj->map_and_fenceable = true;
4094
4095 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4096}
4097
37e680a1
CW
4098static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4099 .get_pages = i915_gem_object_get_pages_gtt,
4100 .put_pages = i915_gem_object_put_pages_gtt,
4101};
4102
05394f39
CW
4103struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4104 size_t size)
ac52bc56 4105{
c397b908 4106 struct drm_i915_gem_object *obj;
5949eac4 4107 struct address_space *mapping;
1a240d4d 4108 gfp_t mask;
ac52bc56 4109
42dcedd4 4110 obj = i915_gem_object_alloc(dev);
c397b908
DV
4111 if (obj == NULL)
4112 return NULL;
673a394b 4113
c397b908 4114 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4115 i915_gem_object_free(obj);
c397b908
DV
4116 return NULL;
4117 }
673a394b 4118
bed1ea95
CW
4119 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4120 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4121 /* 965gm cannot relocate objects above 4GiB. */
4122 mask &= ~__GFP_HIGHMEM;
4123 mask |= __GFP_DMA32;
4124 }
4125
496ad9aa 4126 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4127 mapping_set_gfp_mask(mapping, mask);
5949eac4 4128
37e680a1 4129 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4130
c397b908
DV
4131 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4132 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4133
3d29b842
ED
4134 if (HAS_LLC(dev)) {
4135 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4136 * cache) for about a 10% performance improvement
4137 * compared to uncached. Graphics requests other than
4138 * display scanout are coherent with the CPU in
4139 * accessing this cache. This means in this mode we
4140 * don't need to clflush on the CPU side, and on the
4141 * GPU side we only need to flush internal caches to
4142 * get data visible to the CPU.
4143 *
4144 * However, we maintain the display planes as UC, and so
4145 * need to rebind when first used as such.
4146 */
4147 obj->cache_level = I915_CACHE_LLC;
4148 } else
4149 obj->cache_level = I915_CACHE_NONE;
4150
d861e338
DV
4151 trace_i915_gem_object_create(obj);
4152
05394f39 4153 return obj;
c397b908
DV
4154}
4155
1488fc08 4156void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4157{
1488fc08 4158 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4159 struct drm_device *dev = obj->base.dev;
be72615b 4160 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4161 struct i915_vma *vma, *next;
673a394b 4162
f65c9168
PZ
4163 intel_runtime_pm_get(dev_priv);
4164
26e12f89
CW
4165 trace_i915_gem_object_destroy(obj);
4166
1488fc08
CW
4167 if (obj->phys_obj)
4168 i915_gem_detach_phys_object(dev, obj);
4169
07fe0b12 4170 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4171 int ret;
4172
4173 vma->pin_count = 0;
4174 ret = i915_vma_unbind(vma);
07fe0b12
BW
4175 if (WARN_ON(ret == -ERESTARTSYS)) {
4176 bool was_interruptible;
1488fc08 4177
07fe0b12
BW
4178 was_interruptible = dev_priv->mm.interruptible;
4179 dev_priv->mm.interruptible = false;
1488fc08 4180
07fe0b12 4181 WARN_ON(i915_vma_unbind(vma));
1488fc08 4182
07fe0b12
BW
4183 dev_priv->mm.interruptible = was_interruptible;
4184 }
1488fc08
CW
4185 }
4186
1d64ae71
BW
4187 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4188 * before progressing. */
4189 if (obj->stolen)
4190 i915_gem_object_unpin_pages(obj);
4191
401c29f6
BW
4192 if (WARN_ON(obj->pages_pin_count))
4193 obj->pages_pin_count = 0;
37e680a1 4194 i915_gem_object_put_pages(obj);
d8cb5086 4195 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4196 i915_gem_object_release_stolen(obj);
de151cf6 4197
9da3da66
CW
4198 BUG_ON(obj->pages);
4199
2f745ad3
CW
4200 if (obj->base.import_attach)
4201 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4202
05394f39
CW
4203 drm_gem_object_release(&obj->base);
4204 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4205
05394f39 4206 kfree(obj->bit_17);
42dcedd4 4207 i915_gem_object_free(obj);
f65c9168
PZ
4208
4209 intel_runtime_pm_put(dev_priv);
673a394b
EA
4210}
4211
e656a6cb 4212struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4213 struct i915_address_space *vm)
e656a6cb
DV
4214{
4215 struct i915_vma *vma;
4216 list_for_each_entry(vma, &obj->vma_list, vma_link)
4217 if (vma->vm == vm)
4218 return vma;
4219
4220 return NULL;
4221}
4222
2f633156
BW
4223void i915_gem_vma_destroy(struct i915_vma *vma)
4224{
4225 WARN_ON(vma->node.allocated);
aaa05667
CW
4226
4227 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4228 if (!list_empty(&vma->exec_list))
4229 return;
4230
8b9c2b94 4231 list_del(&vma->vma_link);
b93dab6e 4232
2f633156
BW
4233 kfree(vma);
4234}
4235
29105ccc 4236int
45c5f202 4237i915_gem_suspend(struct drm_device *dev)
29105ccc
CW
4238{
4239 drm_i915_private_t *dev_priv = dev->dev_private;
45c5f202 4240 int ret = 0;
28dfe52a 4241
45c5f202 4242 mutex_lock(&dev->struct_mutex);
f7403347 4243 if (dev_priv->ums.mm_suspended)
45c5f202 4244 goto err;
28dfe52a 4245
b2da9fe5 4246 ret = i915_gpu_idle(dev);
f7403347 4247 if (ret)
45c5f202 4248 goto err;
f7403347 4249
b2da9fe5 4250 i915_gem_retire_requests(dev);
673a394b 4251
29105ccc 4252 /* Under UMS, be paranoid and evict. */
a39d7efc 4253 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4254 i915_gem_evict_everything(dev);
29105ccc 4255
29105ccc 4256 i915_kernel_lost_context(dev);
6dbe2772 4257 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4258
45c5f202
CW
4259 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4260 * We need to replace this with a semaphore, or something.
4261 * And not confound ums.mm_suspended!
4262 */
4263 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4264 DRIVER_MODESET);
4265 mutex_unlock(&dev->struct_mutex);
4266
4267 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4268 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4269 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4270
673a394b 4271 return 0;
45c5f202
CW
4272
4273err:
4274 mutex_unlock(&dev->struct_mutex);
4275 return ret;
673a394b
EA
4276}
4277
c3787e2e 4278int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4279{
c3787e2e 4280 struct drm_device *dev = ring->dev;
b9524a1e 4281 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6
BW
4282 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4283 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4284 int i, ret;
b9524a1e 4285
040d2baa 4286 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4287 return 0;
b9524a1e 4288
c3787e2e
BW
4289 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4290 if (ret)
4291 return ret;
b9524a1e 4292
c3787e2e
BW
4293 /*
4294 * Note: We do not worry about the concurrent register cacheline hang
4295 * here because no other code should access these registers other than
4296 * at initialization time.
4297 */
b9524a1e 4298 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4299 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4300 intel_ring_emit(ring, reg_base + i);
4301 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4302 }
4303
c3787e2e 4304 intel_ring_advance(ring);
b9524a1e 4305
c3787e2e 4306 return ret;
b9524a1e
BW
4307}
4308
f691e2f4
DV
4309void i915_gem_init_swizzling(struct drm_device *dev)
4310{
4311 drm_i915_private_t *dev_priv = dev->dev_private;
4312
11782b02 4313 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4314 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4315 return;
4316
4317 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4318 DISP_TILE_SURFACE_SWIZZLING);
4319
11782b02
DV
4320 if (IS_GEN5(dev))
4321 return;
4322
f691e2f4
DV
4323 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4324 if (IS_GEN6(dev))
6b26c86d 4325 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4326 else if (IS_GEN7(dev))
6b26c86d 4327 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4328 else if (IS_GEN8(dev))
4329 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4330 else
4331 BUG();
f691e2f4 4332}
e21af88d 4333
67b1b571
CW
4334static bool
4335intel_enable_blt(struct drm_device *dev)
4336{
4337 if (!HAS_BLT(dev))
4338 return false;
4339
4340 /* The blitter was dysfunctional on early prototypes */
4341 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4342 DRM_INFO("BLT not supported on this pre-production hardware;"
4343 " graphics performance will be degraded.\n");
4344 return false;
4345 }
4346
4347 return true;
4348}
4349
4fc7c971 4350static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4351{
4fc7c971 4352 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4353 int ret;
68f95ba9 4354
5c1143bb 4355 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4356 if (ret)
b6913e4b 4357 return ret;
68f95ba9
CW
4358
4359 if (HAS_BSD(dev)) {
5c1143bb 4360 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4361 if (ret)
4362 goto cleanup_render_ring;
d1b851fc 4363 }
68f95ba9 4364
67b1b571 4365 if (intel_enable_blt(dev)) {
549f7365
CW
4366 ret = intel_init_blt_ring_buffer(dev);
4367 if (ret)
4368 goto cleanup_bsd_ring;
4369 }
4370
9a8a2213
BW
4371 if (HAS_VEBOX(dev)) {
4372 ret = intel_init_vebox_ring_buffer(dev);
4373 if (ret)
4374 goto cleanup_blt_ring;
4375 }
4376
4377
99433931 4378 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4379 if (ret)
9a8a2213 4380 goto cleanup_vebox_ring;
4fc7c971
BW
4381
4382 return 0;
4383
9a8a2213
BW
4384cleanup_vebox_ring:
4385 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4386cleanup_blt_ring:
4387 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4388cleanup_bsd_ring:
4389 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4390cleanup_render_ring:
4391 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4392
4393 return ret;
4394}
4395
4396int
4397i915_gem_init_hw(struct drm_device *dev)
4398{
4399 drm_i915_private_t *dev_priv = dev->dev_private;
35a85ac6 4400 int ret, i;
4fc7c971
BW
4401
4402 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4403 return -EIO;
4404
59124506 4405 if (dev_priv->ellc_size)
05e21cc4 4406 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4407
0bf21347
VS
4408 if (IS_HASWELL(dev))
4409 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4410 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4411
88a2b2a3 4412 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4413 if (IS_IVYBRIDGE(dev)) {
4414 u32 temp = I915_READ(GEN7_MSG_CTL);
4415 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4416 I915_WRITE(GEN7_MSG_CTL, temp);
4417 } else if (INTEL_INFO(dev)->gen >= 7) {
4418 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4419 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4420 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4421 }
88a2b2a3
BW
4422 }
4423
4fc7c971
BW
4424 i915_gem_init_swizzling(dev);
4425
4426 ret = i915_gem_init_rings(dev);
99433931
MK
4427 if (ret)
4428 return ret;
4429
c3787e2e
BW
4430 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4431 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4432
254f965c 4433 /*
2fa48d8d
BW
4434 * XXX: Contexts should only be initialized once. Doing a switch to the
4435 * default context switch however is something we'd like to do after
4436 * reset or thaw (the latter may not actually be necessary for HW, but
4437 * goes with our code better). Context switching requires rings (for
4438 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4439 */
2fa48d8d 4440 ret = i915_gem_context_enable(dev_priv);
8245be31 4441 if (ret) {
2fa48d8d
BW
4442 DRM_ERROR("Context enable failed %d\n", ret);
4443 goto err_out;
b7c36d25 4444 }
e21af88d 4445
68f95ba9 4446 return 0;
2fa48d8d
BW
4447
4448err_out:
4449 i915_gem_cleanup_ringbuffer(dev);
4450 return ret;
8187a2b7
ZN
4451}
4452
1070a42b
CW
4453int i915_gem_init(struct drm_device *dev)
4454{
4455 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4456 int ret;
4457
1070a42b 4458 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4459
4460 if (IS_VALLEYVIEW(dev)) {
4461 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4462 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4463 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4464 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4465 }
4466
d7e5008f 4467 i915_gem_init_global_gtt(dev);
d62b4892 4468
2fa48d8d
BW
4469 ret = i915_gem_context_init(dev);
4470 if (ret)
4471 return ret;
4472
1070a42b
CW
4473 ret = i915_gem_init_hw(dev);
4474 mutex_unlock(&dev->struct_mutex);
4475 if (ret) {
bdf4fd7e 4476 WARN_ON(dev_priv->mm.aliasing_ppgtt);
2fa48d8d 4477 i915_gem_context_fini(dev);
c39538a8 4478 drm_mm_takedown(&dev_priv->gtt.base.mm);
1070a42b
CW
4479 return ret;
4480 }
4481
53ca26ca
DV
4482 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4483 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4484 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4485 return 0;
4486}
4487
8187a2b7
ZN
4488void
4489i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4490{
4491 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4492 struct intel_ring_buffer *ring;
1ec14ad3 4493 int i;
8187a2b7 4494
b4519513
CW
4495 for_each_ring(ring, dev_priv, i)
4496 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4497}
4498
673a394b
EA
4499int
4500i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4501 struct drm_file *file_priv)
4502{
db1b76ca 4503 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4504 int ret;
673a394b 4505
79e53945
JB
4506 if (drm_core_check_feature(dev, DRIVER_MODESET))
4507 return 0;
4508
1f83fee0 4509 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4510 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4511 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4512 }
4513
673a394b 4514 mutex_lock(&dev->struct_mutex);
db1b76ca 4515 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4516
f691e2f4 4517 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4518 if (ret != 0) {
4519 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4520 return ret;
d816f6ac 4521 }
9bb2d6f9 4522
5cef07e1 4523 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4524 mutex_unlock(&dev->struct_mutex);
dbb19d30 4525
5f35308b
CW
4526 ret = drm_irq_install(dev);
4527 if (ret)
4528 goto cleanup_ringbuffer;
dbb19d30 4529
673a394b 4530 return 0;
5f35308b
CW
4531
4532cleanup_ringbuffer:
4533 mutex_lock(&dev->struct_mutex);
4534 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4535 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4536 mutex_unlock(&dev->struct_mutex);
4537
4538 return ret;
673a394b
EA
4539}
4540
4541int
4542i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4543 struct drm_file *file_priv)
4544{
79e53945
JB
4545 if (drm_core_check_feature(dev, DRIVER_MODESET))
4546 return 0;
4547
dbb19d30 4548 drm_irq_uninstall(dev);
db1b76ca 4549
45c5f202 4550 return i915_gem_suspend(dev);
673a394b
EA
4551}
4552
4553void
4554i915_gem_lastclose(struct drm_device *dev)
4555{
4556 int ret;
673a394b 4557
e806b495
EA
4558 if (drm_core_check_feature(dev, DRIVER_MODESET))
4559 return;
4560
45c5f202 4561 ret = i915_gem_suspend(dev);
6dbe2772
KP
4562 if (ret)
4563 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4564}
4565
64193406
CW
4566static void
4567init_ring_lists(struct intel_ring_buffer *ring)
4568{
4569 INIT_LIST_HEAD(&ring->active_list);
4570 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4571}
4572
7e0d96bc
BW
4573void i915_init_vm(struct drm_i915_private *dev_priv,
4574 struct i915_address_space *vm)
fc8c067e 4575{
7e0d96bc
BW
4576 if (!i915_is_ggtt(vm))
4577 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4578 vm->dev = dev_priv->dev;
4579 INIT_LIST_HEAD(&vm->active_list);
4580 INIT_LIST_HEAD(&vm->inactive_list);
4581 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4582 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4583}
4584
673a394b
EA
4585void
4586i915_gem_load(struct drm_device *dev)
4587{
4588 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4589 int i;
4590
4591 dev_priv->slab =
4592 kmem_cache_create("i915_gem_object",
4593 sizeof(struct drm_i915_gem_object), 0,
4594 SLAB_HWCACHE_ALIGN,
4595 NULL);
673a394b 4596
fc8c067e
BW
4597 INIT_LIST_HEAD(&dev_priv->vm_list);
4598 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4599
a33afea5 4600 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4601 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4602 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4603 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4604 for (i = 0; i < I915_NUM_RINGS; i++)
4605 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4606 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4607 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4608 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4609 i915_gem_retire_work_handler);
b29c19b6
CW
4610 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4611 i915_gem_idle_work_handler);
1f83fee0 4612 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4613
94400120
DA
4614 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4615 if (IS_GEN3(dev)) {
50743298
DV
4616 I915_WRITE(MI_ARB_STATE,
4617 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4618 }
4619
72bfa19c
CW
4620 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4621
de151cf6 4622 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4623 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4624 dev_priv->fence_reg_start = 3;
de151cf6 4625
42b5aeab
VS
4626 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4627 dev_priv->num_fence_regs = 32;
4628 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4629 dev_priv->num_fence_regs = 16;
4630 else
4631 dev_priv->num_fence_regs = 8;
4632
b5aa8a0f 4633 /* Initialize fence registers to zero */
19b2dbde
CW
4634 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4635 i915_gem_restore_fences(dev);
10ed13e4 4636
673a394b 4637 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4638 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4639
ce453d81
CW
4640 dev_priv->mm.interruptible = true;
4641
7dc19d5a
DC
4642 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4643 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4644 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4645 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4646}
71acb5eb
DA
4647
4648/*
4649 * Create a physically contiguous memory object for this object
4650 * e.g. for cursor + overlay regs
4651 */
995b6762
CW
4652static int i915_gem_init_phys_object(struct drm_device *dev,
4653 int id, int size, int align)
71acb5eb
DA
4654{
4655 drm_i915_private_t *dev_priv = dev->dev_private;
4656 struct drm_i915_gem_phys_object *phys_obj;
4657 int ret;
4658
4659 if (dev_priv->mm.phys_objs[id - 1] || !size)
4660 return 0;
4661
b14c5679 4662 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4663 if (!phys_obj)
4664 return -ENOMEM;
4665
4666 phys_obj->id = id;
4667
6eeefaf3 4668 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4669 if (!phys_obj->handle) {
4670 ret = -ENOMEM;
4671 goto kfree_obj;
4672 }
4673#ifdef CONFIG_X86
4674 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4675#endif
4676
4677 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4678
4679 return 0;
4680kfree_obj:
9a298b2a 4681 kfree(phys_obj);
71acb5eb
DA
4682 return ret;
4683}
4684
995b6762 4685static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4686{
4687 drm_i915_private_t *dev_priv = dev->dev_private;
4688 struct drm_i915_gem_phys_object *phys_obj;
4689
4690 if (!dev_priv->mm.phys_objs[id - 1])
4691 return;
4692
4693 phys_obj = dev_priv->mm.phys_objs[id - 1];
4694 if (phys_obj->cur_obj) {
4695 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4696 }
4697
4698#ifdef CONFIG_X86
4699 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4700#endif
4701 drm_pci_free(dev, phys_obj->handle);
4702 kfree(phys_obj);
4703 dev_priv->mm.phys_objs[id - 1] = NULL;
4704}
4705
4706void i915_gem_free_all_phys_object(struct drm_device *dev)
4707{
4708 int i;
4709
260883c8 4710 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4711 i915_gem_free_phys_object(dev, i);
4712}
4713
4714void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4715 struct drm_i915_gem_object *obj)
71acb5eb 4716{
496ad9aa 4717 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4718 char *vaddr;
71acb5eb 4719 int i;
71acb5eb
DA
4720 int page_count;
4721
05394f39 4722 if (!obj->phys_obj)
71acb5eb 4723 return;
05394f39 4724 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4725
05394f39 4726 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4727 for (i = 0; i < page_count; i++) {
5949eac4 4728 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4729 if (!IS_ERR(page)) {
4730 char *dst = kmap_atomic(page);
4731 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4732 kunmap_atomic(dst);
4733
4734 drm_clflush_pages(&page, 1);
4735
4736 set_page_dirty(page);
4737 mark_page_accessed(page);
4738 page_cache_release(page);
4739 }
71acb5eb 4740 }
e76e9aeb 4741 i915_gem_chipset_flush(dev);
d78b47b9 4742
05394f39
CW
4743 obj->phys_obj->cur_obj = NULL;
4744 obj->phys_obj = NULL;
71acb5eb
DA
4745}
4746
4747int
4748i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4749 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4750 int id,
4751 int align)
71acb5eb 4752{
496ad9aa 4753 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4754 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4755 int ret = 0;
4756 int page_count;
4757 int i;
4758
4759 if (id > I915_MAX_PHYS_OBJECT)
4760 return -EINVAL;
4761
05394f39
CW
4762 if (obj->phys_obj) {
4763 if (obj->phys_obj->id == id)
71acb5eb
DA
4764 return 0;
4765 i915_gem_detach_phys_object(dev, obj);
4766 }
4767
71acb5eb
DA
4768 /* create a new object */
4769 if (!dev_priv->mm.phys_objs[id - 1]) {
4770 ret = i915_gem_init_phys_object(dev, id,
05394f39 4771 obj->base.size, align);
71acb5eb 4772 if (ret) {
05394f39
CW
4773 DRM_ERROR("failed to init phys object %d size: %zu\n",
4774 id, obj->base.size);
e5281ccd 4775 return ret;
71acb5eb
DA
4776 }
4777 }
4778
4779 /* bind to the object */
05394f39
CW
4780 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4781 obj->phys_obj->cur_obj = obj;
71acb5eb 4782
05394f39 4783 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4784
4785 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4786 struct page *page;
4787 char *dst, *src;
4788
5949eac4 4789 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4790 if (IS_ERR(page))
4791 return PTR_ERR(page);
71acb5eb 4792
ff75b9bc 4793 src = kmap_atomic(page);
05394f39 4794 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4795 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4796 kunmap_atomic(src);
71acb5eb 4797
e5281ccd
CW
4798 mark_page_accessed(page);
4799 page_cache_release(page);
4800 }
d78b47b9 4801
71acb5eb 4802 return 0;
71acb5eb
DA
4803}
4804
4805static int
05394f39
CW
4806i915_gem_phys_pwrite(struct drm_device *dev,
4807 struct drm_i915_gem_object *obj,
71acb5eb
DA
4808 struct drm_i915_gem_pwrite *args,
4809 struct drm_file *file_priv)
4810{
05394f39 4811 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4812 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4813
b47b30cc
CW
4814 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4815 unsigned long unwritten;
4816
4817 /* The physical object once assigned is fixed for the lifetime
4818 * of the obj, so we can safely drop the lock and continue
4819 * to access vaddr.
4820 */
4821 mutex_unlock(&dev->struct_mutex);
4822 unwritten = copy_from_user(vaddr, user_data, args->size);
4823 mutex_lock(&dev->struct_mutex);
4824 if (unwritten)
4825 return -EFAULT;
4826 }
71acb5eb 4827
e76e9aeb 4828 i915_gem_chipset_flush(dev);
71acb5eb
DA
4829 return 0;
4830}
b962442e 4831
f787a5f5 4832void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4833{
f787a5f5 4834 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4835
b29c19b6
CW
4836 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4837
b962442e
EA
4838 /* Clean up our request list when the client is going away, so that
4839 * later retire_requests won't dereference our soon-to-be-gone
4840 * file_priv.
4841 */
1c25595f 4842 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4843 while (!list_empty(&file_priv->mm.request_list)) {
4844 struct drm_i915_gem_request *request;
4845
4846 request = list_first_entry(&file_priv->mm.request_list,
4847 struct drm_i915_gem_request,
4848 client_list);
4849 list_del(&request->client_list);
4850 request->file_priv = NULL;
4851 }
1c25595f 4852 spin_unlock(&file_priv->mm.lock);
b962442e 4853}
31169714 4854
b29c19b6
CW
4855static void
4856i915_gem_file_idle_work_handler(struct work_struct *work)
4857{
4858 struct drm_i915_file_private *file_priv =
4859 container_of(work, typeof(*file_priv), mm.idle_work.work);
4860
4861 atomic_set(&file_priv->rps_wait_boost, false);
4862}
4863
4864int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4865{
4866 struct drm_i915_file_private *file_priv;
e422b888 4867 int ret;
b29c19b6
CW
4868
4869 DRM_DEBUG_DRIVER("\n");
4870
4871 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4872 if (!file_priv)
4873 return -ENOMEM;
4874
4875 file->driver_priv = file_priv;
4876 file_priv->dev_priv = dev->dev_private;
4877
4878 spin_lock_init(&file_priv->mm.lock);
4879 INIT_LIST_HEAD(&file_priv->mm.request_list);
4880 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4881 i915_gem_file_idle_work_handler);
4882
e422b888
BW
4883 ret = i915_gem_context_open(dev, file);
4884 if (ret)
4885 kfree(file_priv);
b29c19b6 4886
e422b888 4887 return ret;
b29c19b6
CW
4888}
4889
5774506f
CW
4890static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4891{
4892 if (!mutex_is_locked(mutex))
4893 return false;
4894
4895#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4896 return mutex->owner == task;
4897#else
4898 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4899 return false;
4900#endif
4901}
4902
7dc19d5a
DC
4903static unsigned long
4904i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4905{
17250b71
CW
4906 struct drm_i915_private *dev_priv =
4907 container_of(shrinker,
4908 struct drm_i915_private,
4909 mm.inactive_shrinker);
4910 struct drm_device *dev = dev_priv->dev;
6c085a72 4911 struct drm_i915_gem_object *obj;
5774506f 4912 bool unlock = true;
7dc19d5a 4913 unsigned long count;
17250b71 4914
5774506f
CW
4915 if (!mutex_trylock(&dev->struct_mutex)) {
4916 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4917 return 0;
5774506f 4918
677feac2 4919 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4920 return 0;
677feac2 4921
5774506f
CW
4922 unlock = false;
4923 }
31169714 4924
7dc19d5a 4925 count = 0;
35c20a60 4926 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4927 if (obj->pages_pin_count == 0)
7dc19d5a 4928 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4929
4930 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4931 if (obj->active)
4932 continue;
4933
d7f46fc4 4934 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
7dc19d5a 4935 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4936 }
17250b71 4937
5774506f
CW
4938 if (unlock)
4939 mutex_unlock(&dev->struct_mutex);
d9973b43 4940
7dc19d5a 4941 return count;
31169714 4942}
a70a3148
BW
4943
4944/* All the new VM stuff */
4945unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4946 struct i915_address_space *vm)
4947{
4948 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4949 struct i915_vma *vma;
4950
6f425321
BW
4951 if (!dev_priv->mm.aliasing_ppgtt ||
4952 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4953 vm = &dev_priv->gtt.base;
4954
4955 BUG_ON(list_empty(&o->vma_list));
4956 list_for_each_entry(vma, &o->vma_list, vma_link) {
4957 if (vma->vm == vm)
4958 return vma->node.start;
4959
4960 }
4961 return -1;
4962}
4963
4964bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4965 struct i915_address_space *vm)
4966{
4967 struct i915_vma *vma;
4968
4969 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4970 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4971 return true;
4972
4973 return false;
4974}
4975
4976bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4977{
5a1d5eb0 4978 struct i915_vma *vma;
a70a3148 4979
5a1d5eb0
CW
4980 list_for_each_entry(vma, &o->vma_list, vma_link)
4981 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
4982 return true;
4983
4984 return false;
4985}
4986
4987unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4988 struct i915_address_space *vm)
4989{
4990 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4991 struct i915_vma *vma;
4992
6f425321
BW
4993 if (!dev_priv->mm.aliasing_ppgtt ||
4994 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4995 vm = &dev_priv->gtt.base;
4996
4997 BUG_ON(list_empty(&o->vma_list));
4998
4999 list_for_each_entry(vma, &o->vma_list, vma_link)
5000 if (vma->vm == vm)
5001 return vma->node.size;
5002
5003 return 0;
5004}
5005
7dc19d5a
DC
5006static unsigned long
5007i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5008{
5009 struct drm_i915_private *dev_priv =
5010 container_of(shrinker,
5011 struct drm_i915_private,
5012 mm.inactive_shrinker);
5013 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5014 unsigned long freed;
5015 bool unlock = true;
5016
5017 if (!mutex_trylock(&dev->struct_mutex)) {
5018 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5019 return SHRINK_STOP;
7dc19d5a
DC
5020
5021 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5022 return SHRINK_STOP;
7dc19d5a
DC
5023
5024 unlock = false;
5025 }
5026
d9973b43
CW
5027 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5028 if (freed < sc->nr_to_scan)
5029 freed += __i915_gem_shrink(dev_priv,
5030 sc->nr_to_scan - freed,
5031 false);
5032 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5033 freed += i915_gem_shrink_all(dev_priv);
5034
5035 if (unlock)
5036 mutex_unlock(&dev->struct_mutex);
d9973b43 5037
7dc19d5a
DC
5038 return freed;
5039}
5c2abbea
BW
5040
5041struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5042{
5043 struct i915_vma *vma;
5044
5045 if (WARN_ON(list_empty(&obj->vma_list)))
5046 return NULL;
5047
5048 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5049 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5050 return NULL;
5051
5052 return vma;
5053}
This page took 1.002418 seconds and 5 git commands to generate.