drm/i915: Simplify most HAS_BSD() checks
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6
JB
53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
54 unsigned alignment);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
5cdf5881
CW
61static int
62i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65static void
66i915_gem_object_put_pages(struct drm_gem_object *obj);
67
31169714
CW
68static LIST_HEAD(shrink_list);
69static DEFINE_SPINLOCK(shrink_list_lock);
70
73aa808f
CW
71/* some bookkeeping */
72static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74{
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77}
78
79static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81{
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84}
85
86static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
88{
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
91}
92
93static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
95{
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
98}
99
100static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
102{
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
105}
106
107static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
109{
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
112}
113
30dbf0c0
CW
114int
115i915_gem_check_is_wedged(struct drm_device *dev)
116{
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
121
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
124
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
128
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
132
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
137 */
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
142}
143
76c1dec1
CW
144static int i915_mutex_lock_interruptible(struct drm_device *dev)
145{
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
148
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
152
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
156
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
160 }
161
23bc5982 162 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
163 return 0;
164}
30dbf0c0 165
7d1c4804
CW
166static inline bool
167i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168{
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
172}
173
73aa808f
CW
174int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
79e53945 176 unsigned long end)
673a394b
EA
177{
178 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 179
79e53945
JB
180 if (start >= end ||
181 (start & (PAGE_SIZE - 1)) != 0 ||
182 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
183 return -EINVAL;
184 }
185
79e53945
JB
186 drm_mm_init(&dev_priv->mm.gtt_space, start,
187 end - start);
673a394b 188
73aa808f 189 dev_priv->mm.gtt_total = end - start;
79e53945
JB
190
191 return 0;
192}
673a394b 193
79e53945
JB
194int
195i915_gem_init_ioctl(struct drm_device *dev, void *data,
196 struct drm_file *file_priv)
197{
198 struct drm_i915_gem_init *args = data;
199 int ret;
200
201 mutex_lock(&dev->struct_mutex);
202 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
203 mutex_unlock(&dev->struct_mutex);
204
79e53945 205 return ret;
673a394b
EA
206}
207
5a125c3c
EA
208int
209i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
210 struct drm_file *file_priv)
211{
73aa808f 212 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 213 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
214
215 if (!(dev->driver->driver_features & DRIVER_GEM))
216 return -ENODEV;
217
73aa808f
CW
218 mutex_lock(&dev->struct_mutex);
219 args->aper_size = dev_priv->mm.gtt_total;
220 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
221 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
222
223 return 0;
224}
225
673a394b
EA
226
227/**
228 * Creates a new mm object and returns a handle to it.
229 */
230int
231i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file_priv)
233{
234 struct drm_i915_gem_create *args = data;
235 struct drm_gem_object *obj;
a1a2d1d3
PP
236 int ret;
237 u32 handle;
673a394b
EA
238
239 args->size = roundup(args->size, PAGE_SIZE);
240
241 /* Allocate the new object */
ac52bc56 242 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
243 if (obj == NULL)
244 return -ENOMEM;
245
246 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 247 if (ret) {
202f2fef
CW
248 drm_gem_object_release(obj);
249 i915_gem_info_remove_obj(dev->dev_private, obj->size);
250 kfree(obj);
673a394b 251 return ret;
1dfd9754 252 }
673a394b 253
202f2fef
CW
254 /* drop reference from allocate - handle holds it now */
255 drm_gem_object_unreference(obj);
256 trace_i915_gem_object_create(obj);
257
1dfd9754 258 args->handle = handle;
673a394b
EA
259 return 0;
260}
261
eb01459f
EA
262static inline int
263fast_shmem_read(struct page **pages,
264 loff_t page_base, int page_offset,
265 char __user *data,
266 int length)
267{
b5e4feb6 268 char *vaddr;
4f27b75d 269 int ret;
eb01459f
EA
270
271 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
4f27b75d 272 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
273 kunmap_atomic(vaddr, KM_USER0);
274
4f27b75d 275 return ret;
eb01459f
EA
276}
277
280b713b
EA
278static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
279{
280 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 281 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
282
283 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
284 obj_priv->tiling_mode != I915_TILING_NONE;
285}
286
99a03df5 287static inline void
40123c1f
EA
288slow_shmem_copy(struct page *dst_page,
289 int dst_offset,
290 struct page *src_page,
291 int src_offset,
292 int length)
293{
294 char *dst_vaddr, *src_vaddr;
295
99a03df5
CW
296 dst_vaddr = kmap(dst_page);
297 src_vaddr = kmap(src_page);
40123c1f
EA
298
299 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
300
99a03df5
CW
301 kunmap(src_page);
302 kunmap(dst_page);
40123c1f
EA
303}
304
99a03df5 305static inline void
280b713b
EA
306slow_shmem_bit17_copy(struct page *gpu_page,
307 int gpu_offset,
308 struct page *cpu_page,
309 int cpu_offset,
310 int length,
311 int is_read)
312{
313 char *gpu_vaddr, *cpu_vaddr;
314
315 /* Use the unswizzled path if this page isn't affected. */
316 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
317 if (is_read)
318 return slow_shmem_copy(cpu_page, cpu_offset,
319 gpu_page, gpu_offset, length);
320 else
321 return slow_shmem_copy(gpu_page, gpu_offset,
322 cpu_page, cpu_offset, length);
323 }
324
99a03df5
CW
325 gpu_vaddr = kmap(gpu_page);
326 cpu_vaddr = kmap(cpu_page);
280b713b
EA
327
328 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
329 * XORing with the other bits (A9 for Y, A9 and A10 for X)
330 */
331 while (length > 0) {
332 int cacheline_end = ALIGN(gpu_offset + 1, 64);
333 int this_length = min(cacheline_end - gpu_offset, length);
334 int swizzled_gpu_offset = gpu_offset ^ 64;
335
336 if (is_read) {
337 memcpy(cpu_vaddr + cpu_offset,
338 gpu_vaddr + swizzled_gpu_offset,
339 this_length);
340 } else {
341 memcpy(gpu_vaddr + swizzled_gpu_offset,
342 cpu_vaddr + cpu_offset,
343 this_length);
344 }
345 cpu_offset += this_length;
346 gpu_offset += this_length;
347 length -= this_length;
348 }
349
99a03df5
CW
350 kunmap(cpu_page);
351 kunmap(gpu_page);
280b713b
EA
352}
353
eb01459f
EA
354/**
355 * This is the fast shmem pread path, which attempts to copy_from_user directly
356 * from the backing pages of the object to the user's address space. On a
357 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
358 */
359static int
360i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
361 struct drm_i915_gem_pread *args,
362 struct drm_file *file_priv)
363{
23010e43 364 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
365 ssize_t remain;
366 loff_t offset, page_base;
367 char __user *user_data;
368 int page_offset, page_length;
eb01459f
EA
369
370 user_data = (char __user *) (uintptr_t) args->data_ptr;
371 remain = args->size;
372
23010e43 373 obj_priv = to_intel_bo(obj);
eb01459f
EA
374 offset = args->offset;
375
376 while (remain > 0) {
377 /* Operation in this page
378 *
379 * page_base = page offset within aperture
380 * page_offset = offset within page
381 * page_length = bytes to copy for this page
382 */
383 page_base = (offset & ~(PAGE_SIZE-1));
384 page_offset = offset & (PAGE_SIZE-1);
385 page_length = remain;
386 if ((page_offset + remain) > PAGE_SIZE)
387 page_length = PAGE_SIZE - page_offset;
388
4f27b75d
CW
389 if (fast_shmem_read(obj_priv->pages,
390 page_base, page_offset,
391 user_data, page_length))
392 return -EFAULT;
eb01459f
EA
393
394 remain -= page_length;
395 user_data += page_length;
396 offset += page_length;
397 }
398
4f27b75d 399 return 0;
eb01459f
EA
400}
401
07f73f69
CW
402static int
403i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
404{
405 int ret;
406
4bdadb97 407 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
408
409 /* If we've insufficient memory to map in the pages, attempt
410 * to make some space by throwing out some old buffers.
411 */
412 if (ret == -ENOMEM) {
413 struct drm_device *dev = obj->dev;
07f73f69 414
0108a3ed
DV
415 ret = i915_gem_evict_something(dev, obj->size,
416 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
417 if (ret)
418 return ret;
419
4bdadb97 420 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
421 }
422
423 return ret;
424}
425
eb01459f
EA
426/**
427 * This is the fallback shmem pread path, which allocates temporary storage
428 * in kernel space to copy_to_user into outside of the struct_mutex, so we
429 * can copy out of the object's backing pages while holding the struct mutex
430 * and not take page faults.
431 */
432static int
433i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
434 struct drm_i915_gem_pread *args,
435 struct drm_file *file_priv)
436{
23010e43 437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
438 struct mm_struct *mm = current->mm;
439 struct page **user_pages;
440 ssize_t remain;
441 loff_t offset, pinned_pages, i;
442 loff_t first_data_page, last_data_page, num_pages;
443 int shmem_page_index, shmem_page_offset;
444 int data_page_index, data_page_offset;
445 int page_length;
446 int ret;
447 uint64_t data_ptr = args->data_ptr;
280b713b 448 int do_bit17_swizzling;
eb01459f
EA
449
450 remain = args->size;
451
452 /* Pin the user pages containing the data. We can't fault while
453 * holding the struct mutex, yet we want to hold it while
454 * dereferencing the user data.
455 */
456 first_data_page = data_ptr / PAGE_SIZE;
457 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
458 num_pages = last_data_page - first_data_page + 1;
459
4f27b75d 460 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
461 if (user_pages == NULL)
462 return -ENOMEM;
463
4f27b75d 464 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
465 down_read(&mm->mmap_sem);
466 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 467 num_pages, 1, 0, user_pages, NULL);
eb01459f 468 up_read(&mm->mmap_sem);
4f27b75d 469 mutex_lock(&dev->struct_mutex);
eb01459f
EA
470 if (pinned_pages < num_pages) {
471 ret = -EFAULT;
4f27b75d 472 goto out;
eb01459f
EA
473 }
474
4f27b75d
CW
475 ret = i915_gem_object_set_cpu_read_domain_range(obj,
476 args->offset,
477 args->size);
07f73f69 478 if (ret)
4f27b75d 479 goto out;
eb01459f 480
4f27b75d 481 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 482
23010e43 483 obj_priv = to_intel_bo(obj);
eb01459f
EA
484 offset = args->offset;
485
486 while (remain > 0) {
487 /* Operation in this page
488 *
489 * shmem_page_index = page number within shmem file
490 * shmem_page_offset = offset within page in shmem file
491 * data_page_index = page number in get_user_pages return
492 * data_page_offset = offset with data_page_index page.
493 * page_length = bytes to copy for this page
494 */
495 shmem_page_index = offset / PAGE_SIZE;
496 shmem_page_offset = offset & ~PAGE_MASK;
497 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
498 data_page_offset = data_ptr & ~PAGE_MASK;
499
500 page_length = remain;
501 if ((shmem_page_offset + page_length) > PAGE_SIZE)
502 page_length = PAGE_SIZE - shmem_page_offset;
503 if ((data_page_offset + page_length) > PAGE_SIZE)
504 page_length = PAGE_SIZE - data_page_offset;
505
280b713b 506 if (do_bit17_swizzling) {
99a03df5 507 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 508 shmem_page_offset,
99a03df5
CW
509 user_pages[data_page_index],
510 data_page_offset,
511 page_length,
512 1);
513 } else {
514 slow_shmem_copy(user_pages[data_page_index],
515 data_page_offset,
516 obj_priv->pages[shmem_page_index],
517 shmem_page_offset,
518 page_length);
280b713b 519 }
eb01459f
EA
520
521 remain -= page_length;
522 data_ptr += page_length;
523 offset += page_length;
524 }
525
4f27b75d 526out:
eb01459f
EA
527 for (i = 0; i < pinned_pages; i++) {
528 SetPageDirty(user_pages[i]);
529 page_cache_release(user_pages[i]);
530 }
8e7d2b2c 531 drm_free_large(user_pages);
eb01459f
EA
532
533 return ret;
534}
535
673a394b
EA
536/**
537 * Reads data from the object referenced by handle.
538 *
539 * On error, the contents of *data are undefined.
540 */
541int
542i915_gem_pread_ioctl(struct drm_device *dev, void *data,
543 struct drm_file *file_priv)
544{
545 struct drm_i915_gem_pread *args = data;
546 struct drm_gem_object *obj;
547 struct drm_i915_gem_object *obj_priv;
35b62a89 548 int ret = 0;
673a394b 549
4f27b75d 550 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 551 if (ret)
4f27b75d 552 return ret;
1d7cfea1
CW
553
554 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
555 if (obj == NULL) {
556 ret = -ENOENT;
557 goto unlock;
4f27b75d 558 }
1d7cfea1 559 obj_priv = to_intel_bo(obj);
4f27b75d 560
7dcd2499
CW
561 /* Bounds check source. */
562 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 563 ret = -EINVAL;
35b62a89 564 goto out;
ce9d419d
CW
565 }
566
35b62a89
CW
567 if (args->size == 0)
568 goto out;
569
ce9d419d
CW
570 if (!access_ok(VERIFY_WRITE,
571 (char __user *)(uintptr_t)args->data_ptr,
572 args->size)) {
573 ret = -EFAULT;
35b62a89 574 goto out;
673a394b
EA
575 }
576
b5e4feb6
CW
577 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
578 args->size);
579 if (ret) {
580 ret = -EFAULT;
581 goto out;
582 }
583
4f27b75d
CW
584 ret = i915_gem_object_get_pages_or_evict(obj);
585 if (ret)
586 goto out;
587
588 ret = i915_gem_object_set_cpu_read_domain_range(obj,
589 args->offset,
590 args->size);
591 if (ret)
592 goto out_put;
593
594 ret = -EFAULT;
595 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 596 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
597 if (ret == -EFAULT)
598 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 599
4f27b75d
CW
600out_put:
601 i915_gem_object_put_pages(obj);
35b62a89 602out:
4f27b75d 603 drm_gem_object_unreference(obj);
1d7cfea1 604unlock:
4f27b75d 605 mutex_unlock(&dev->struct_mutex);
eb01459f 606 return ret;
673a394b
EA
607}
608
0839ccb8
KP
609/* This is the fast write path which cannot handle
610 * page faults in the source data
9b7530cc 611 */
0839ccb8
KP
612
613static inline int
614fast_user_write(struct io_mapping *mapping,
615 loff_t page_base, int page_offset,
616 char __user *user_data,
617 int length)
9b7530cc 618{
9b7530cc 619 char *vaddr_atomic;
0839ccb8 620 unsigned long unwritten;
9b7530cc 621
fca3ec01 622 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
623 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
624 user_data, length);
fca3ec01 625 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
fbd5a26d 626 return unwritten;
0839ccb8
KP
627}
628
629/* Here's the write path which can sleep for
630 * page faults
631 */
632
ab34c226 633static inline void
3de09aa3
EA
634slow_kernel_write(struct io_mapping *mapping,
635 loff_t gtt_base, int gtt_offset,
636 struct page *user_page, int user_offset,
637 int length)
0839ccb8 638{
ab34c226
CW
639 char __iomem *dst_vaddr;
640 char *src_vaddr;
0839ccb8 641
ab34c226
CW
642 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
643 src_vaddr = kmap(user_page);
644
645 memcpy_toio(dst_vaddr + gtt_offset,
646 src_vaddr + user_offset,
647 length);
648
649 kunmap(user_page);
650 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
651}
652
40123c1f
EA
653static inline int
654fast_shmem_write(struct page **pages,
655 loff_t page_base, int page_offset,
656 char __user *data,
657 int length)
658{
b5e4feb6 659 char *vaddr;
fbd5a26d 660 int ret;
40123c1f
EA
661
662 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
fbd5a26d 663 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
664 kunmap_atomic(vaddr, KM_USER0);
665
fbd5a26d 666 return ret;
40123c1f
EA
667}
668
3de09aa3
EA
669/**
670 * This is the fast pwrite path, where we copy the data directly from the
671 * user into the GTT, uncached.
672 */
673a394b 673static int
3de09aa3
EA
674i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
675 struct drm_i915_gem_pwrite *args,
676 struct drm_file *file_priv)
673a394b 677{
23010e43 678 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 679 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 680 ssize_t remain;
0839ccb8 681 loff_t offset, page_base;
673a394b 682 char __user *user_data;
0839ccb8 683 int page_offset, page_length;
673a394b
EA
684
685 user_data = (char __user *) (uintptr_t) args->data_ptr;
686 remain = args->size;
673a394b 687
23010e43 688 obj_priv = to_intel_bo(obj);
673a394b 689 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
690
691 while (remain > 0) {
692 /* Operation in this page
693 *
0839ccb8
KP
694 * page_base = page offset within aperture
695 * page_offset = offset within page
696 * page_length = bytes to copy for this page
673a394b 697 */
0839ccb8
KP
698 page_base = (offset & ~(PAGE_SIZE-1));
699 page_offset = offset & (PAGE_SIZE-1);
700 page_length = remain;
701 if ((page_offset + remain) > PAGE_SIZE)
702 page_length = PAGE_SIZE - page_offset;
703
0839ccb8 704 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
705 * source page isn't available. Return the error and we'll
706 * retry in the slow path.
0839ccb8 707 */
fbd5a26d
CW
708 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
709 page_offset, user_data, page_length))
710
711 return -EFAULT;
673a394b 712
0839ccb8
KP
713 remain -= page_length;
714 user_data += page_length;
715 offset += page_length;
673a394b 716 }
673a394b 717
fbd5a26d 718 return 0;
673a394b
EA
719}
720
3de09aa3
EA
721/**
722 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
723 * the memory and maps it using kmap_atomic for copying.
724 *
725 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
726 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
727 */
3043c60c 728static int
3de09aa3
EA
729i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file_priv)
673a394b 732{
23010e43 733 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
734 drm_i915_private_t *dev_priv = dev->dev_private;
735 ssize_t remain;
736 loff_t gtt_page_base, offset;
737 loff_t first_data_page, last_data_page, num_pages;
738 loff_t pinned_pages, i;
739 struct page **user_pages;
740 struct mm_struct *mm = current->mm;
741 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 742 int ret;
3de09aa3
EA
743 uint64_t data_ptr = args->data_ptr;
744
745 remain = args->size;
746
747 /* Pin the user pages containing the data. We can't fault while
748 * holding the struct mutex, and all of the pwrite implementations
749 * want to hold it while dereferencing the user data.
750 */
751 first_data_page = data_ptr / PAGE_SIZE;
752 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
753 num_pages = last_data_page - first_data_page + 1;
754
fbd5a26d 755 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
756 if (user_pages == NULL)
757 return -ENOMEM;
758
fbd5a26d 759 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
760 down_read(&mm->mmap_sem);
761 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
762 num_pages, 0, 0, user_pages, NULL);
763 up_read(&mm->mmap_sem);
fbd5a26d 764 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
765 if (pinned_pages < num_pages) {
766 ret = -EFAULT;
767 goto out_unpin_pages;
768 }
673a394b 769
3de09aa3
EA
770 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
771 if (ret)
fbd5a26d 772 goto out_unpin_pages;
3de09aa3 773
23010e43 774 obj_priv = to_intel_bo(obj);
3de09aa3
EA
775 offset = obj_priv->gtt_offset + args->offset;
776
777 while (remain > 0) {
778 /* Operation in this page
779 *
780 * gtt_page_base = page offset within aperture
781 * gtt_page_offset = offset within page in aperture
782 * data_page_index = page number in get_user_pages return
783 * data_page_offset = offset with data_page_index page.
784 * page_length = bytes to copy for this page
785 */
786 gtt_page_base = offset & PAGE_MASK;
787 gtt_page_offset = offset & ~PAGE_MASK;
788 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
789 data_page_offset = data_ptr & ~PAGE_MASK;
790
791 page_length = remain;
792 if ((gtt_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - gtt_page_offset;
794 if ((data_page_offset + page_length) > PAGE_SIZE)
795 page_length = PAGE_SIZE - data_page_offset;
796
ab34c226
CW
797 slow_kernel_write(dev_priv->mm.gtt_mapping,
798 gtt_page_base, gtt_page_offset,
799 user_pages[data_page_index],
800 data_page_offset,
801 page_length);
3de09aa3
EA
802
803 remain -= page_length;
804 offset += page_length;
805 data_ptr += page_length;
806 }
807
3de09aa3
EA
808out_unpin_pages:
809 for (i = 0; i < pinned_pages; i++)
810 page_cache_release(user_pages[i]);
8e7d2b2c 811 drm_free_large(user_pages);
3de09aa3
EA
812
813 return ret;
814}
815
40123c1f
EA
816/**
817 * This is the fast shmem pwrite path, which attempts to directly
818 * copy_from_user into the kmapped pages backing the object.
819 */
3043c60c 820static int
40123c1f
EA
821i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
822 struct drm_i915_gem_pwrite *args,
823 struct drm_file *file_priv)
673a394b 824{
23010e43 825 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
826 ssize_t remain;
827 loff_t offset, page_base;
828 char __user *user_data;
829 int page_offset, page_length;
40123c1f
EA
830
831 user_data = (char __user *) (uintptr_t) args->data_ptr;
832 remain = args->size;
673a394b 833
23010e43 834 obj_priv = to_intel_bo(obj);
40123c1f
EA
835 offset = args->offset;
836 obj_priv->dirty = 1;
837
838 while (remain > 0) {
839 /* Operation in this page
840 *
841 * page_base = page offset within aperture
842 * page_offset = offset within page
843 * page_length = bytes to copy for this page
844 */
845 page_base = (offset & ~(PAGE_SIZE-1));
846 page_offset = offset & (PAGE_SIZE-1);
847 page_length = remain;
848 if ((page_offset + remain) > PAGE_SIZE)
849 page_length = PAGE_SIZE - page_offset;
850
fbd5a26d 851 if (fast_shmem_write(obj_priv->pages,
40123c1f 852 page_base, page_offset,
fbd5a26d
CW
853 user_data, page_length))
854 return -EFAULT;
40123c1f
EA
855
856 remain -= page_length;
857 user_data += page_length;
858 offset += page_length;
859 }
860
fbd5a26d 861 return 0;
40123c1f
EA
862}
863
864/**
865 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
866 * the memory and maps it using kmap_atomic for copying.
867 *
868 * This avoids taking mmap_sem for faulting on the user's address while the
869 * struct_mutex is held.
870 */
871static int
872i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
873 struct drm_i915_gem_pwrite *args,
874 struct drm_file *file_priv)
875{
23010e43 876 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
877 struct mm_struct *mm = current->mm;
878 struct page **user_pages;
879 ssize_t remain;
880 loff_t offset, pinned_pages, i;
881 loff_t first_data_page, last_data_page, num_pages;
882 int shmem_page_index, shmem_page_offset;
883 int data_page_index, data_page_offset;
884 int page_length;
885 int ret;
886 uint64_t data_ptr = args->data_ptr;
280b713b 887 int do_bit17_swizzling;
40123c1f
EA
888
889 remain = args->size;
890
891 /* Pin the user pages containing the data. We can't fault while
892 * holding the struct mutex, and all of the pwrite implementations
893 * want to hold it while dereferencing the user data.
894 */
895 first_data_page = data_ptr / PAGE_SIZE;
896 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
897 num_pages = last_data_page - first_data_page + 1;
898
4f27b75d 899 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
900 if (user_pages == NULL)
901 return -ENOMEM;
902
fbd5a26d 903 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
904 down_read(&mm->mmap_sem);
905 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
906 num_pages, 0, 0, user_pages, NULL);
907 up_read(&mm->mmap_sem);
fbd5a26d 908 mutex_lock(&dev->struct_mutex);
40123c1f
EA
909 if (pinned_pages < num_pages) {
910 ret = -EFAULT;
fbd5a26d 911 goto out;
673a394b
EA
912 }
913
fbd5a26d 914 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 915 if (ret)
fbd5a26d 916 goto out;
40123c1f 917
fbd5a26d 918 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 919
23010e43 920 obj_priv = to_intel_bo(obj);
673a394b 921 offset = args->offset;
40123c1f 922 obj_priv->dirty = 1;
673a394b 923
40123c1f
EA
924 while (remain > 0) {
925 /* Operation in this page
926 *
927 * shmem_page_index = page number within shmem file
928 * shmem_page_offset = offset within page in shmem file
929 * data_page_index = page number in get_user_pages return
930 * data_page_offset = offset with data_page_index page.
931 * page_length = bytes to copy for this page
932 */
933 shmem_page_index = offset / PAGE_SIZE;
934 shmem_page_offset = offset & ~PAGE_MASK;
935 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
936 data_page_offset = data_ptr & ~PAGE_MASK;
937
938 page_length = remain;
939 if ((shmem_page_offset + page_length) > PAGE_SIZE)
940 page_length = PAGE_SIZE - shmem_page_offset;
941 if ((data_page_offset + page_length) > PAGE_SIZE)
942 page_length = PAGE_SIZE - data_page_offset;
943
280b713b 944 if (do_bit17_swizzling) {
99a03df5 945 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
946 shmem_page_offset,
947 user_pages[data_page_index],
948 data_page_offset,
99a03df5
CW
949 page_length,
950 0);
951 } else {
952 slow_shmem_copy(obj_priv->pages[shmem_page_index],
953 shmem_page_offset,
954 user_pages[data_page_index],
955 data_page_offset,
956 page_length);
280b713b 957 }
40123c1f
EA
958
959 remain -= page_length;
960 data_ptr += page_length;
961 offset += page_length;
673a394b
EA
962 }
963
fbd5a26d 964out:
40123c1f
EA
965 for (i = 0; i < pinned_pages; i++)
966 page_cache_release(user_pages[i]);
8e7d2b2c 967 drm_free_large(user_pages);
673a394b 968
40123c1f 969 return ret;
673a394b
EA
970}
971
972/**
973 * Writes data to the object referenced by handle.
974 *
975 * On error, the contents of the buffer that were to be modified are undefined.
976 */
977int
978i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 979 struct drm_file *file)
673a394b
EA
980{
981 struct drm_i915_gem_pwrite *args = data;
982 struct drm_gem_object *obj;
983 struct drm_i915_gem_object *obj_priv;
984 int ret = 0;
985
fbd5a26d 986 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 987 if (ret)
fbd5a26d 988 return ret;
1d7cfea1
CW
989
990 obj = drm_gem_object_lookup(dev, file, args->handle);
991 if (obj == NULL) {
992 ret = -ENOENT;
993 goto unlock;
fbd5a26d 994 }
1d7cfea1
CW
995 obj_priv = to_intel_bo(obj);
996
fbd5a26d 997
7dcd2499
CW
998 /* Bounds check destination. */
999 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1000 ret = -EINVAL;
35b62a89 1001 goto out;
ce9d419d
CW
1002 }
1003
35b62a89
CW
1004 if (args->size == 0)
1005 goto out;
1006
ce9d419d
CW
1007 if (!access_ok(VERIFY_READ,
1008 (char __user *)(uintptr_t)args->data_ptr,
1009 args->size)) {
1010 ret = -EFAULT;
35b62a89 1011 goto out;
673a394b
EA
1012 }
1013
b5e4feb6
CW
1014 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1015 args->size);
1016 if (ret) {
1017 ret = -EFAULT;
1018 goto out;
1019 }
1020
673a394b
EA
1021 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1022 * it would end up going through the fenced access, and we'll get
1023 * different detiling behavior between reading and writing.
1024 * pread/pwrite currently are reading and writing from the CPU
1025 * perspective, requiring manual detiling by the client.
1026 */
71acb5eb 1027 if (obj_priv->phys_obj)
fbd5a26d 1028 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1029 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1030 obj_priv->gtt_space &&
9b8c4a0b 1031 obj->write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d
CW
1032 ret = i915_gem_object_pin(obj, 0);
1033 if (ret)
1034 goto out;
1035
1036 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1037 if (ret)
1038 goto out_unpin;
1039
1040 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1041 if (ret == -EFAULT)
1042 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1043
1044out_unpin:
1045 i915_gem_object_unpin(obj);
40123c1f 1046 } else {
fbd5a26d
CW
1047 ret = i915_gem_object_get_pages_or_evict(obj);
1048 if (ret)
1049 goto out;
673a394b 1050
fbd5a26d
CW
1051 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1052 if (ret)
1053 goto out_put;
1054
1055 ret = -EFAULT;
1056 if (!i915_gem_object_needs_bit17_swizzle(obj))
1057 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1058 if (ret == -EFAULT)
1059 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1060
1061out_put:
1062 i915_gem_object_put_pages(obj);
1063 }
673a394b 1064
35b62a89 1065out:
fbd5a26d 1066 drm_gem_object_unreference(obj);
1d7cfea1 1067unlock:
fbd5a26d 1068 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1069 return ret;
1070}
1071
1072/**
2ef7eeaa
EA
1073 * Called when user space prepares to use an object with the CPU, either
1074 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1075 */
1076int
1077i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1078 struct drm_file *file_priv)
1079{
a09ba7fa 1080 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1081 struct drm_i915_gem_set_domain *args = data;
1082 struct drm_gem_object *obj;
652c393a 1083 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1084 uint32_t read_domains = args->read_domains;
1085 uint32_t write_domain = args->write_domain;
673a394b
EA
1086 int ret;
1087
1088 if (!(dev->driver->driver_features & DRIVER_GEM))
1089 return -ENODEV;
1090
2ef7eeaa 1091 /* Only handle setting domains to types used by the CPU. */
21d509e3 1092 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1093 return -EINVAL;
1094
21d509e3 1095 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1096 return -EINVAL;
1097
1098 /* Having something in the write domain implies it's in the read
1099 * domain, and only that read domain. Enforce that in the request.
1100 */
1101 if (write_domain != 0 && read_domains != write_domain)
1102 return -EINVAL;
1103
76c1dec1 1104 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1105 if (ret)
76c1dec1 1106 return ret;
1d7cfea1
CW
1107
1108 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1109 if (obj == NULL) {
1110 ret = -ENOENT;
1111 goto unlock;
76c1dec1 1112 }
1d7cfea1 1113 obj_priv = to_intel_bo(obj);
652c393a
JB
1114
1115 intel_mark_busy(dev, obj);
1116
2ef7eeaa
EA
1117 if (read_domains & I915_GEM_DOMAIN_GTT) {
1118 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1119
a09ba7fa
EA
1120 /* Update the LRU on the fence for the CPU access that's
1121 * about to occur.
1122 */
1123 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1124 struct drm_i915_fence_reg *reg =
1125 &dev_priv->fence_regs[obj_priv->fence_reg];
1126 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1127 &dev_priv->mm.fence_list);
1128 }
1129
02354392
EA
1130 /* Silently promote "you're not bound, there was nothing to do"
1131 * to success, since the client was just asking us to
1132 * make sure everything was done.
1133 */
1134 if (ret == -EINVAL)
1135 ret = 0;
2ef7eeaa 1136 } else {
e47c68e9 1137 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1138 }
1139
7d1c4804
CW
1140 /* Maintain LRU order of "inactive" objects */
1141 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1142 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1143
673a394b 1144 drm_gem_object_unreference(obj);
1d7cfea1 1145unlock:
673a394b
EA
1146 mutex_unlock(&dev->struct_mutex);
1147 return ret;
1148}
1149
1150/**
1151 * Called when user space has done writes to this buffer
1152 */
1153int
1154i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1155 struct drm_file *file_priv)
1156{
1157 struct drm_i915_gem_sw_finish *args = data;
1158 struct drm_gem_object *obj;
673a394b
EA
1159 int ret = 0;
1160
1161 if (!(dev->driver->driver_features & DRIVER_GEM))
1162 return -ENODEV;
1163
76c1dec1 1164 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1165 if (ret)
76c1dec1 1166 return ret;
1d7cfea1
CW
1167
1168 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1169 if (obj == NULL) {
1170 ret = -ENOENT;
1171 goto unlock;
673a394b
EA
1172 }
1173
673a394b 1174 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1175 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1176 i915_gem_object_flush_cpu_write_domain(obj);
1177
673a394b 1178 drm_gem_object_unreference(obj);
1d7cfea1 1179unlock:
673a394b
EA
1180 mutex_unlock(&dev->struct_mutex);
1181 return ret;
1182}
1183
1184/**
1185 * Maps the contents of an object, returning the address it is mapped
1186 * into.
1187 *
1188 * While the mapping holds a reference on the contents of the object, it doesn't
1189 * imply a ref on the object itself.
1190 */
1191int
1192i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1193 struct drm_file *file_priv)
1194{
1195 struct drm_i915_gem_mmap *args = data;
1196 struct drm_gem_object *obj;
1197 loff_t offset;
1198 unsigned long addr;
1199
1200 if (!(dev->driver->driver_features & DRIVER_GEM))
1201 return -ENODEV;
1202
1203 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1204 if (obj == NULL)
bf79cb91 1205 return -ENOENT;
673a394b
EA
1206
1207 offset = args->offset;
1208
1209 down_write(&current->mm->mmap_sem);
1210 addr = do_mmap(obj->filp, 0, args->size,
1211 PROT_READ | PROT_WRITE, MAP_SHARED,
1212 args->offset);
1213 up_write(&current->mm->mmap_sem);
bc9025bd 1214 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1215 if (IS_ERR((void *)addr))
1216 return addr;
1217
1218 args->addr_ptr = (uint64_t) addr;
1219
1220 return 0;
1221}
1222
de151cf6
JB
1223/**
1224 * i915_gem_fault - fault a page into the GTT
1225 * vma: VMA in question
1226 * vmf: fault info
1227 *
1228 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1229 * from userspace. The fault handler takes care of binding the object to
1230 * the GTT (if needed), allocating and programming a fence register (again,
1231 * only if needed based on whether the old reg is still valid or the object
1232 * is tiled) and inserting a new PTE into the faulting process.
1233 *
1234 * Note that the faulting process may involve evicting existing objects
1235 * from the GTT and/or fence registers to make room. So performance may
1236 * suffer if the GTT working set is large or there are few fence registers
1237 * left.
1238 */
1239int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240{
1241 struct drm_gem_object *obj = vma->vm_private_data;
1242 struct drm_device *dev = obj->dev;
7d1c4804 1243 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1244 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1245 pgoff_t page_offset;
1246 unsigned long pfn;
1247 int ret = 0;
0f973f27 1248 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1249
1250 /* We don't use vmf->pgoff since that has the fake offset */
1251 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1252 PAGE_SHIFT;
1253
1254 /* Now bind it into the GTT if needed */
1255 mutex_lock(&dev->struct_mutex);
1256 if (!obj_priv->gtt_space) {
e67b8ce1 1257 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1258 if (ret)
1259 goto unlock;
07f4f3e8 1260
07f4f3e8 1261 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1262 if (ret)
1263 goto unlock;
de151cf6
JB
1264 }
1265
1266 /* Need a new fence register? */
a09ba7fa 1267 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1268 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1269 if (ret)
1270 goto unlock;
d9ddcb96 1271 }
de151cf6 1272
7d1c4804
CW
1273 if (i915_gem_object_is_inactive(obj_priv))
1274 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1275
de151cf6
JB
1276 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1277 page_offset;
1278
1279 /* Finally, remap it using the new GTT offset */
1280 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1281unlock:
de151cf6
JB
1282 mutex_unlock(&dev->struct_mutex);
1283
1284 switch (ret) {
c715089f
CW
1285 case 0:
1286 case -ERESTARTSYS:
1287 return VM_FAULT_NOPAGE;
de151cf6
JB
1288 case -ENOMEM:
1289 case -EAGAIN:
1290 return VM_FAULT_OOM;
de151cf6 1291 default:
c715089f 1292 return VM_FAULT_SIGBUS;
de151cf6
JB
1293 }
1294}
1295
1296/**
1297 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1298 * @obj: obj in question
1299 *
1300 * GEM memory mapping works by handing back to userspace a fake mmap offset
1301 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1302 * up the object based on the offset and sets up the various memory mapping
1303 * structures.
1304 *
1305 * This routine allocates and attaches a fake offset for @obj.
1306 */
1307static int
1308i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1309{
1310 struct drm_device *dev = obj->dev;
1311 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1312 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1313 struct drm_map_list *list;
f77d390c 1314 struct drm_local_map *map;
de151cf6
JB
1315 int ret = 0;
1316
1317 /* Set the object up for mmap'ing */
1318 list = &obj->map_list;
9a298b2a 1319 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1320 if (!list->map)
1321 return -ENOMEM;
1322
1323 map = list->map;
1324 map->type = _DRM_GEM;
1325 map->size = obj->size;
1326 map->handle = obj;
1327
1328 /* Get a DRM GEM mmap offset allocated... */
1329 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1330 obj->size / PAGE_SIZE, 0, 0);
1331 if (!list->file_offset_node) {
1332 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1333 ret = -ENOSPC;
de151cf6
JB
1334 goto out_free_list;
1335 }
1336
1337 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1338 obj->size / PAGE_SIZE, 0);
1339 if (!list->file_offset_node) {
1340 ret = -ENOMEM;
1341 goto out_free_list;
1342 }
1343
1344 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1345 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1346 if (ret) {
de151cf6
JB
1347 DRM_ERROR("failed to add to map hash\n");
1348 goto out_free_mm;
1349 }
1350
1351 /* By now we should be all set, any drm_mmap request on the offset
1352 * below will get to our mmap & fault handler */
1353 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1354
1355 return 0;
1356
1357out_free_mm:
1358 drm_mm_put_block(list->file_offset_node);
1359out_free_list:
9a298b2a 1360 kfree(list->map);
de151cf6
JB
1361
1362 return ret;
1363}
1364
901782b2
CW
1365/**
1366 * i915_gem_release_mmap - remove physical page mappings
1367 * @obj: obj in question
1368 *
af901ca1 1369 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1370 * relinquish ownership of the pages back to the system.
1371 *
1372 * It is vital that we remove the page mapping if we have mapped a tiled
1373 * object through the GTT and then lose the fence register due to
1374 * resource pressure. Similarly if the object has been moved out of the
1375 * aperture, than pages mapped into userspace must be revoked. Removing the
1376 * mapping will then trigger a page fault on the next user access, allowing
1377 * fixup by i915_gem_fault().
1378 */
d05ca301 1379void
901782b2
CW
1380i915_gem_release_mmap(struct drm_gem_object *obj)
1381{
1382 struct drm_device *dev = obj->dev;
23010e43 1383 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1384
1385 if (dev->dev_mapping)
1386 unmap_mapping_range(dev->dev_mapping,
1387 obj_priv->mmap_offset, obj->size, 1);
1388}
1389
ab00b3e5
JB
1390static void
1391i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1392{
1393 struct drm_device *dev = obj->dev;
23010e43 1394 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1395 struct drm_gem_mm *mm = dev->mm_private;
1396 struct drm_map_list *list;
1397
1398 list = &obj->map_list;
1399 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1400
1401 if (list->file_offset_node) {
1402 drm_mm_put_block(list->file_offset_node);
1403 list->file_offset_node = NULL;
1404 }
1405
1406 if (list->map) {
9a298b2a 1407 kfree(list->map);
ab00b3e5
JB
1408 list->map = NULL;
1409 }
1410
1411 obj_priv->mmap_offset = 0;
1412}
1413
de151cf6
JB
1414/**
1415 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1416 * @obj: object to check
1417 *
1418 * Return the required GTT alignment for an object, taking into account
1419 * potential fence register mapping if needed.
1420 */
1421static uint32_t
1422i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1423{
1424 struct drm_device *dev = obj->dev;
23010e43 1425 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1426 int start, i;
1427
1428 /*
1429 * Minimum alignment is 4k (GTT page size), but might be greater
1430 * if a fence register is needed for the object.
1431 */
a6c45cf0 1432 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1433 return 4096;
1434
1435 /*
1436 * Previous chips need to be aligned to the size of the smallest
1437 * fence register that can contain the object.
1438 */
a6c45cf0 1439 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1440 start = 1024*1024;
1441 else
1442 start = 512*1024;
1443
1444 for (i = start; i < obj->size; i <<= 1)
1445 ;
1446
1447 return i;
1448}
1449
1450/**
1451 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1452 * @dev: DRM device
1453 * @data: GTT mapping ioctl data
1454 * @file_priv: GEM object info
1455 *
1456 * Simply returns the fake offset to userspace so it can mmap it.
1457 * The mmap call will end up in drm_gem_mmap(), which will set things
1458 * up so we can get faults in the handler above.
1459 *
1460 * The fault handler will take care of binding the object into the GTT
1461 * (since it may have been evicted to make room for something), allocating
1462 * a fence register, and mapping the appropriate aperture address into
1463 * userspace.
1464 */
1465int
1466i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1467 struct drm_file *file_priv)
1468{
1469 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1470 struct drm_gem_object *obj;
1471 struct drm_i915_gem_object *obj_priv;
1472 int ret;
1473
1474 if (!(dev->driver->driver_features & DRIVER_GEM))
1475 return -ENODEV;
1476
76c1dec1 1477 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1478 if (ret)
76c1dec1 1479 return ret;
de151cf6 1480
1d7cfea1
CW
1481 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1482 if (obj == NULL) {
1483 ret = -ENOENT;
1484 goto unlock;
1485 }
23010e43 1486 obj_priv = to_intel_bo(obj);
de151cf6 1487
ab18282d
CW
1488 if (obj_priv->madv != I915_MADV_WILLNEED) {
1489 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1490 ret = -EINVAL;
1491 goto out;
ab18282d
CW
1492 }
1493
de151cf6
JB
1494 if (!obj_priv->mmap_offset) {
1495 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1496 if (ret)
1497 goto out;
de151cf6
JB
1498 }
1499
1500 args->offset = obj_priv->mmap_offset;
1501
de151cf6
JB
1502 /*
1503 * Pull it into the GTT so that we have a page list (makes the
1504 * initial fault faster and any subsequent flushing possible).
1505 */
1506 if (!obj_priv->agp_mem) {
e67b8ce1 1507 ret = i915_gem_object_bind_to_gtt(obj, 0);
1d7cfea1
CW
1508 if (ret)
1509 goto out;
de151cf6
JB
1510 }
1511
1d7cfea1 1512out:
de151cf6 1513 drm_gem_object_unreference(obj);
1d7cfea1 1514unlock:
de151cf6 1515 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1516 return ret;
de151cf6
JB
1517}
1518
5cdf5881 1519static void
856fa198 1520i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1521{
23010e43 1522 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1523 int page_count = obj->size / PAGE_SIZE;
1524 int i;
1525
856fa198 1526 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1527 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1528
856fa198
EA
1529 if (--obj_priv->pages_refcount != 0)
1530 return;
673a394b 1531
280b713b
EA
1532 if (obj_priv->tiling_mode != I915_TILING_NONE)
1533 i915_gem_object_save_bit_17_swizzle(obj);
1534
3ef94daa 1535 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1536 obj_priv->dirty = 0;
3ef94daa
CW
1537
1538 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1539 if (obj_priv->dirty)
1540 set_page_dirty(obj_priv->pages[i]);
1541
1542 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1543 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1544
1545 page_cache_release(obj_priv->pages[i]);
1546 }
673a394b
EA
1547 obj_priv->dirty = 0;
1548
8e7d2b2c 1549 drm_free_large(obj_priv->pages);
856fa198 1550 obj_priv->pages = NULL;
673a394b
EA
1551}
1552
a56ba56c
CW
1553static uint32_t
1554i915_gem_next_request_seqno(struct drm_device *dev,
1555 struct intel_ring_buffer *ring)
1556{
1557 drm_i915_private_t *dev_priv = dev->dev_private;
1558
1559 ring->outstanding_lazy_request = true;
1560 return dev_priv->next_seqno;
1561}
1562
673a394b 1563static void
617dbe27 1564i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1565 struct intel_ring_buffer *ring)
673a394b 1566{
a56ba56c 1567 struct drm_device *dev = obj->dev;
23010e43 1568 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1569 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1570
852835f3
ZN
1571 BUG_ON(ring == NULL);
1572 obj_priv->ring = ring;
673a394b
EA
1573
1574 /* Add a reference if we're newly entering the active list. */
1575 if (!obj_priv->active) {
1576 drm_gem_object_reference(obj);
1577 obj_priv->active = 1;
1578 }
e35a41de 1579
673a394b 1580 /* Move from whatever list we were on to the tail of execution. */
852835f3 1581 list_move_tail(&obj_priv->list, &ring->active_list);
a56ba56c 1582 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1583}
1584
ce44b0ea
EA
1585static void
1586i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1587{
1588 struct drm_device *dev = obj->dev;
1589 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1590 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1591
1592 BUG_ON(!obj_priv->active);
1593 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1594 obj_priv->last_rendering_seqno = 0;
1595}
673a394b 1596
963b4836
CW
1597/* Immediately discard the backing storage */
1598static void
1599i915_gem_object_truncate(struct drm_gem_object *obj)
1600{
23010e43 1601 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1602 struct inode *inode;
963b4836 1603
ae9fed6b
CW
1604 /* Our goal here is to return as much of the memory as
1605 * is possible back to the system as we are called from OOM.
1606 * To do this we must instruct the shmfs to drop all of its
1607 * backing pages, *now*. Here we mirror the actions taken
1608 * when by shmem_delete_inode() to release the backing store.
1609 */
bb6baf76 1610 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1611 truncate_inode_pages(inode->i_mapping, 0);
1612 if (inode->i_op->truncate_range)
1613 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1614
1615 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1616}
1617
1618static inline int
1619i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1620{
1621 return obj_priv->madv == I915_MADV_DONTNEED;
1622}
1623
673a394b
EA
1624static void
1625i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1626{
1627 struct drm_device *dev = obj->dev;
1628 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1629 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1630
673a394b 1631 if (obj_priv->pin_count != 0)
f13d3f73 1632 list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
673a394b
EA
1633 else
1634 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1635
99fcb766
DV
1636 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1637
ce44b0ea 1638 obj_priv->last_rendering_seqno = 0;
852835f3 1639 obj_priv->ring = NULL;
673a394b
EA
1640 if (obj_priv->active) {
1641 obj_priv->active = 0;
1642 drm_gem_object_unreference(obj);
1643 }
23bc5982 1644 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1645}
1646
9220434a 1647static void
63560396 1648i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1649 uint32_t flush_domains,
852835f3 1650 struct intel_ring_buffer *ring)
63560396
DV
1651{
1652 drm_i915_private_t *dev_priv = dev->dev_private;
1653 struct drm_i915_gem_object *obj_priv, *next;
1654
1655 list_for_each_entry_safe(obj_priv, next,
1656 &dev_priv->mm.gpu_write_list,
1657 gpu_write_list) {
a8089e84 1658 struct drm_gem_object *obj = &obj_priv->base;
63560396 1659
2b6efaa4
CW
1660 if (obj->write_domain & flush_domains &&
1661 obj_priv->ring == ring) {
63560396
DV
1662 uint32_t old_write_domain = obj->write_domain;
1663
1664 obj->write_domain = 0;
1665 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1666 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1667
1668 /* update the fence lru list */
007cc8ac
DV
1669 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1670 struct drm_i915_fence_reg *reg =
1671 &dev_priv->fence_regs[obj_priv->fence_reg];
1672 list_move_tail(&reg->lru_list,
63560396 1673 &dev_priv->mm.fence_list);
007cc8ac 1674 }
63560396
DV
1675
1676 trace_i915_gem_object_change_domain(obj,
1677 obj->read_domains,
1678 old_write_domain);
1679 }
1680 }
1681}
8187a2b7 1682
5a5a0c64 1683uint32_t
8a1a49f9 1684i915_add_request(struct drm_device *dev,
f787a5f5 1685 struct drm_file *file,
8dc5d147 1686 struct drm_i915_gem_request *request,
8a1a49f9 1687 struct intel_ring_buffer *ring)
673a394b
EA
1688{
1689 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1690 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1691 uint32_t seqno;
1692 int was_empty;
673a394b 1693
f787a5f5
CW
1694 if (file != NULL)
1695 file_priv = file->driver_priv;
b962442e 1696
8dc5d147
CW
1697 if (request == NULL) {
1698 request = kzalloc(sizeof(*request), GFP_KERNEL);
1699 if (request == NULL)
1700 return 0;
1701 }
673a394b 1702
f787a5f5 1703 seqno = ring->add_request(dev, ring, 0);
a56ba56c 1704 ring->outstanding_lazy_request = false;
673a394b
EA
1705
1706 request->seqno = seqno;
852835f3 1707 request->ring = ring;
673a394b 1708 request->emitted_jiffies = jiffies;
852835f3
ZN
1709 was_empty = list_empty(&ring->request_list);
1710 list_add_tail(&request->list, &ring->request_list);
1711
f787a5f5 1712 if (file_priv) {
1c25595f 1713 spin_lock(&file_priv->mm.lock);
f787a5f5 1714 request->file_priv = file_priv;
b962442e 1715 list_add_tail(&request->client_list,
f787a5f5 1716 &file_priv->mm.request_list);
1c25595f 1717 spin_unlock(&file_priv->mm.lock);
b962442e 1718 }
673a394b 1719
f65d9421 1720 if (!dev_priv->mm.suspended) {
b3b079db
CW
1721 mod_timer(&dev_priv->hangcheck_timer,
1722 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1723 if (was_empty)
b3b079db
CW
1724 queue_delayed_work(dev_priv->wq,
1725 &dev_priv->mm.retire_work, HZ);
f65d9421 1726 }
673a394b
EA
1727 return seqno;
1728}
1729
1730/**
1731 * Command execution barrier
1732 *
1733 * Ensures that all commands in the ring are finished
1734 * before signalling the CPU
1735 */
8a1a49f9 1736static void
852835f3 1737i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1738{
673a394b 1739 uint32_t flush_domains = 0;
673a394b
EA
1740
1741 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1742 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1743 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1744
1745 ring->flush(dev, ring,
1746 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1747}
1748
f787a5f5
CW
1749static inline void
1750i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1751{
1c25595f
CW
1752 struct drm_i915_file_private *file_priv = request->file_priv;
1753
1754 if (!file_priv)
1755 return;
1756
1757 spin_lock(&file_priv->mm.lock);
1758 list_del(&request->client_list);
1759 request->file_priv = NULL;
1760 spin_unlock(&file_priv->mm.lock);
673a394b
EA
1761}
1762
dfaae392
CW
1763static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1764 struct intel_ring_buffer *ring)
9375e446 1765{
dfaae392
CW
1766 while (!list_empty(&ring->request_list)) {
1767 struct drm_i915_gem_request *request;
9375e446 1768
dfaae392
CW
1769 request = list_first_entry(&ring->request_list,
1770 struct drm_i915_gem_request,
1771 list);
1772
1773 list_del(&request->list);
f787a5f5 1774 i915_gem_request_remove_from_client(request);
dfaae392
CW
1775 kfree(request);
1776 }
1777
1778 while (!list_empty(&ring->active_list)) {
9375e446
CW
1779 struct drm_i915_gem_object *obj_priv;
1780
dfaae392 1781 obj_priv = list_first_entry(&ring->active_list,
9375e446
CW
1782 struct drm_i915_gem_object,
1783 list);
1784
1785 obj_priv->base.write_domain = 0;
dfaae392 1786 list_del_init(&obj_priv->gpu_write_list);
9375e446
CW
1787 i915_gem_object_move_to_inactive(&obj_priv->base);
1788 }
1789}
1790
069efc1d 1791void i915_gem_reset(struct drm_device *dev)
77f01230
CW
1792{
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 struct drm_i915_gem_object *obj_priv;
069efc1d 1795 int i;
77f01230 1796
dfaae392 1797 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1798 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
dfaae392
CW
1799
1800 /* Remove anything from the flushing lists. The GPU cache is likely
1801 * to be lost on reset along with the data, so simply move the
1802 * lost bo to the inactive list.
1803 */
1804 while (!list_empty(&dev_priv->mm.flushing_list)) {
1805 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1806 struct drm_i915_gem_object,
1807 list);
1808
1809 obj_priv->base.write_domain = 0;
1810 list_del_init(&obj_priv->gpu_write_list);
1811 i915_gem_object_move_to_inactive(&obj_priv->base);
1812 }
1813
1814 /* Move everything out of the GPU domains to ensure we do any
1815 * necessary invalidation upon reuse.
1816 */
77f01230
CW
1817 list_for_each_entry(obj_priv,
1818 &dev_priv->mm.inactive_list,
1819 list)
1820 {
1821 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1822 }
069efc1d
CW
1823
1824 /* The fence registers are invalidated so clear them out */
1825 for (i = 0; i < 16; i++) {
1826 struct drm_i915_fence_reg *reg;
1827
1828 reg = &dev_priv->fence_regs[i];
1829 if (!reg->obj)
1830 continue;
1831
1832 i915_gem_clear_fence_reg(reg->obj);
1833 }
77f01230
CW
1834}
1835
673a394b
EA
1836/**
1837 * This function clears the request list as sequence numbers are passed.
1838 */
b09a1fec
CW
1839static void
1840i915_gem_retire_requests_ring(struct drm_device *dev,
1841 struct intel_ring_buffer *ring)
673a394b
EA
1842{
1843 drm_i915_private_t *dev_priv = dev->dev_private;
1844 uint32_t seqno;
1845
b84d5f0c
CW
1846 if (!ring->status_page.page_addr ||
1847 list_empty(&ring->request_list))
6c0594a3
KW
1848 return;
1849
23bc5982
CW
1850 WARN_ON(i915_verify_lists(dev));
1851
f787a5f5 1852 seqno = ring->get_seqno(dev, ring);
852835f3 1853 while (!list_empty(&ring->request_list)) {
673a394b 1854 struct drm_i915_gem_request *request;
673a394b 1855
852835f3 1856 request = list_first_entry(&ring->request_list,
673a394b
EA
1857 struct drm_i915_gem_request,
1858 list);
673a394b 1859
dfaae392 1860 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1861 break;
1862
1863 trace_i915_gem_request_retire(dev, request->seqno);
1864
1865 list_del(&request->list);
f787a5f5 1866 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1867 kfree(request);
1868 }
1869
1870 /* Move any buffers on the active list that are no longer referenced
1871 * by the ringbuffer to the flushing/inactive lists as appropriate.
1872 */
1873 while (!list_empty(&ring->active_list)) {
1874 struct drm_gem_object *obj;
1875 struct drm_i915_gem_object *obj_priv;
1876
1877 obj_priv = list_first_entry(&ring->active_list,
1878 struct drm_i915_gem_object,
1879 list);
673a394b 1880
dfaae392 1881 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1882 break;
b84d5f0c
CW
1883
1884 obj = &obj_priv->base;
b84d5f0c
CW
1885 if (obj->write_domain != 0)
1886 i915_gem_object_move_to_flushing(obj);
1887 else
1888 i915_gem_object_move_to_inactive(obj);
673a394b 1889 }
9d34e5db
CW
1890
1891 if (unlikely (dev_priv->trace_irq_seqno &&
1892 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7 1893 ring->user_irq_put(dev, ring);
9d34e5db
CW
1894 dev_priv->trace_irq_seqno = 0;
1895 }
23bc5982
CW
1896
1897 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1898}
1899
b09a1fec
CW
1900void
1901i915_gem_retire_requests(struct drm_device *dev)
1902{
1903 drm_i915_private_t *dev_priv = dev->dev_private;
1904
be72615b
CW
1905 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1906 struct drm_i915_gem_object *obj_priv, *tmp;
1907
1908 /* We must be careful that during unbind() we do not
1909 * accidentally infinitely recurse into retire requests.
1910 * Currently:
1911 * retire -> free -> unbind -> wait -> retire_ring
1912 */
1913 list_for_each_entry_safe(obj_priv, tmp,
1914 &dev_priv->mm.deferred_free_list,
1915 list)
1916 i915_gem_free_object_tail(&obj_priv->base);
1917 }
1918
b09a1fec 1919 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 1920 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
b09a1fec
CW
1921}
1922
75ef9da2 1923static void
673a394b
EA
1924i915_gem_retire_work_handler(struct work_struct *work)
1925{
1926 drm_i915_private_t *dev_priv;
1927 struct drm_device *dev;
1928
1929 dev_priv = container_of(work, drm_i915_private_t,
1930 mm.retire_work.work);
1931 dev = dev_priv->dev;
1932
891b48cf
CW
1933 /* Come back later if the device is busy... */
1934 if (!mutex_trylock(&dev->struct_mutex)) {
1935 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1936 return;
1937 }
1938
b09a1fec 1939 i915_gem_retire_requests(dev);
d1b851fc 1940
6dbe2772 1941 if (!dev_priv->mm.suspended &&
d1b851fc 1942 (!list_empty(&dev_priv->render_ring.request_list) ||
87acb0a5 1943 !list_empty(&dev_priv->bsd_ring.request_list)))
9c9fe1f8 1944 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1945 mutex_unlock(&dev->struct_mutex);
1946}
1947
5a5a0c64 1948int
852835f3 1949i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1950 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1951{
1952 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1953 u32 ier;
673a394b
EA
1954 int ret = 0;
1955
1956 BUG_ON(seqno == 0);
1957
30dbf0c0
CW
1958 if (atomic_read(&dev_priv->mm.wedged))
1959 return -EAGAIN;
1960
a56ba56c 1961 if (ring->outstanding_lazy_request) {
8dc5d147 1962 seqno = i915_add_request(dev, NULL, NULL, ring);
e35a41de
DV
1963 if (seqno == 0)
1964 return -ENOMEM;
1965 }
a56ba56c 1966 BUG_ON(seqno == dev_priv->next_seqno);
e35a41de 1967
f787a5f5 1968 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
bad720ff 1969 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1970 ier = I915_READ(DEIER) | I915_READ(GTIER);
1971 else
1972 ier = I915_READ(IER);
802c7eb6
JB
1973 if (!ier) {
1974 DRM_ERROR("something (likely vbetool) disabled "
1975 "interrupts, re-enabling\n");
1976 i915_driver_irq_preinstall(dev);
1977 i915_driver_irq_postinstall(dev);
1978 }
1979
1c5d22f7
CW
1980 trace_i915_gem_request_wait_begin(dev, seqno);
1981
852835f3 1982 ring->waiting_gem_seqno = seqno;
8187a2b7 1983 ring->user_irq_get(dev, ring);
48764bf4 1984 if (interruptible)
852835f3
ZN
1985 ret = wait_event_interruptible(ring->irq_queue,
1986 i915_seqno_passed(
f787a5f5 1987 ring->get_seqno(dev, ring), seqno)
852835f3 1988 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1989 else
852835f3
ZN
1990 wait_event(ring->irq_queue,
1991 i915_seqno_passed(
f787a5f5 1992 ring->get_seqno(dev, ring), seqno)
852835f3 1993 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1994
8187a2b7 1995 ring->user_irq_put(dev, ring);
852835f3 1996 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1997
1998 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1999 }
ba1234d1 2000 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2001 ret = -EAGAIN;
673a394b
EA
2002
2003 if (ret && ret != -ERESTARTSYS)
8bff917c 2004 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
f787a5f5 2005 __func__, ret, seqno, ring->get_seqno(dev, ring),
8bff917c 2006 dev_priv->next_seqno);
673a394b
EA
2007
2008 /* Directly dispatch request retiring. While we have the work queue
2009 * to handle this, the waiter on a request often wants an associated
2010 * buffer to have made it to the inactive list, and we would need
2011 * a separate wait queue to handle that.
2012 */
2013 if (ret == 0)
b09a1fec 2014 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2015
2016 return ret;
2017}
2018
48764bf4
DV
2019/**
2020 * Waits for a sequence number to be signaled, and cleans up the
2021 * request and object lists appropriately for that event.
2022 */
2023static int
852835f3 2024i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2025 struct intel_ring_buffer *ring)
48764bf4 2026{
852835f3 2027 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2028}
2029
20f0cd55 2030static void
9220434a 2031i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2032 struct drm_file *file_priv,
9220434a
CW
2033 struct intel_ring_buffer *ring,
2034 uint32_t invalidate_domains,
2035 uint32_t flush_domains)
2036{
2037 ring->flush(dev, ring, invalidate_domains, flush_domains);
2038 i915_gem_process_flushing_list(dev, flush_domains, ring);
2039}
2040
8187a2b7
ZN
2041static void
2042i915_gem_flush(struct drm_device *dev,
c78ec30b 2043 struct drm_file *file_priv,
8187a2b7 2044 uint32_t invalidate_domains,
9220434a
CW
2045 uint32_t flush_domains,
2046 uint32_t flush_rings)
8187a2b7
ZN
2047{
2048 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2049
8187a2b7
ZN
2050 if (flush_domains & I915_GEM_DOMAIN_CPU)
2051 drm_agp_chipset_flush(dev);
8bff917c 2052
9220434a
CW
2053 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2054 if (flush_rings & RING_RENDER)
c78ec30b 2055 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2056 &dev_priv->render_ring,
2057 invalidate_domains, flush_domains);
2058 if (flush_rings & RING_BSD)
c78ec30b 2059 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2060 &dev_priv->bsd_ring,
2061 invalidate_domains, flush_domains);
2062 }
8187a2b7
ZN
2063}
2064
673a394b
EA
2065/**
2066 * Ensures that all rendering to the object has completed and the object is
2067 * safe to unbind from the GTT or access from the CPU.
2068 */
2069static int
2cf34d7b
CW
2070i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2071 bool interruptible)
673a394b
EA
2072{
2073 struct drm_device *dev = obj->dev;
23010e43 2074 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2075 int ret;
2076
e47c68e9
EA
2077 /* This function only exists to support waiting for existing rendering,
2078 * not for emitting required flushes.
673a394b 2079 */
e47c68e9 2080 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2081
2082 /* If there is rendering queued on the buffer being evicted, wait for
2083 * it.
2084 */
2085 if (obj_priv->active) {
2cf34d7b
CW
2086 ret = i915_do_wait_request(dev,
2087 obj_priv->last_rendering_seqno,
2088 interruptible,
2089 obj_priv->ring);
2090 if (ret)
673a394b
EA
2091 return ret;
2092 }
2093
2094 return 0;
2095}
2096
2097/**
2098 * Unbinds an object from the GTT aperture.
2099 */
0f973f27 2100int
673a394b
EA
2101i915_gem_object_unbind(struct drm_gem_object *obj)
2102{
2103 struct drm_device *dev = obj->dev;
73aa808f 2104 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2105 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2106 int ret = 0;
2107
673a394b
EA
2108 if (obj_priv->gtt_space == NULL)
2109 return 0;
2110
2111 if (obj_priv->pin_count != 0) {
2112 DRM_ERROR("Attempting to unbind pinned buffer\n");
2113 return -EINVAL;
2114 }
2115
5323fd04
EA
2116 /* blow away mappings if mapped through GTT */
2117 i915_gem_release_mmap(obj);
2118
673a394b
EA
2119 /* Move the object to the CPU domain to ensure that
2120 * any possible CPU writes while it's not in the GTT
2121 * are flushed when we go to remap it. This will
2122 * also ensure that all pending GPU writes are finished
2123 * before we unbind.
2124 */
e47c68e9 2125 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2126 if (ret == -ERESTARTSYS)
673a394b 2127 return ret;
8dc1775d
CW
2128 /* Continue on if we fail due to EIO, the GPU is hung so we
2129 * should be safe and we need to cleanup or else we might
2130 * cause memory corruption through use-after-free.
2131 */
812ed492
CW
2132 if (ret) {
2133 i915_gem_clflush_object(obj);
2134 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2135 }
673a394b 2136
96b47b65
DV
2137 /* release the fence reg _after_ flushing */
2138 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2139 i915_gem_clear_fence_reg(obj);
2140
73aa808f
CW
2141 drm_unbind_agp(obj_priv->agp_mem);
2142 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2143
856fa198 2144 i915_gem_object_put_pages(obj);
a32808c0 2145 BUG_ON(obj_priv->pages_refcount);
673a394b 2146
73aa808f 2147 i915_gem_info_remove_gtt(dev_priv, obj->size);
f13d3f73 2148 list_del_init(&obj_priv->list);
673a394b 2149
73aa808f
CW
2150 drm_mm_put_block(obj_priv->gtt_space);
2151 obj_priv->gtt_space = NULL;
9af90d19 2152 obj_priv->gtt_offset = 0;
73aa808f 2153
963b4836
CW
2154 if (i915_gem_object_is_purgeable(obj_priv))
2155 i915_gem_object_truncate(obj);
2156
1c5d22f7
CW
2157 trace_i915_gem_object_unbind(obj);
2158
8dc1775d 2159 return ret;
673a394b
EA
2160}
2161
a56ba56c
CW
2162static int i915_ring_idle(struct drm_device *dev,
2163 struct intel_ring_buffer *ring)
2164{
2165 i915_gem_flush_ring(dev, NULL, ring,
2166 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2167 return i915_wait_request(dev,
2168 i915_gem_next_request_seqno(dev, ring),
2169 ring);
2170}
2171
b47eb4a2 2172int
4df2faf4
DV
2173i915_gpu_idle(struct drm_device *dev)
2174{
2175 drm_i915_private_t *dev_priv = dev->dev_private;
2176 bool lists_empty;
852835f3 2177 int ret;
4df2faf4 2178
d1b851fc
ZN
2179 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2180 list_empty(&dev_priv->render_ring.active_list) &&
87acb0a5 2181 list_empty(&dev_priv->bsd_ring.active_list));
4df2faf4
DV
2182 if (lists_empty)
2183 return 0;
2184
2185 /* Flush everything onto the inactive list. */
a56ba56c 2186 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2187 if (ret)
2188 return ret;
d1b851fc 2189
87acb0a5
CW
2190 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2191 if (ret)
2192 return ret;
d1b851fc 2193
8a1a49f9 2194 return 0;
4df2faf4
DV
2195}
2196
5cdf5881 2197static int
4bdadb97
CW
2198i915_gem_object_get_pages(struct drm_gem_object *obj,
2199 gfp_t gfpmask)
673a394b 2200{
23010e43 2201 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2202 int page_count, i;
2203 struct address_space *mapping;
2204 struct inode *inode;
2205 struct page *page;
673a394b 2206
778c3544
DV
2207 BUG_ON(obj_priv->pages_refcount
2208 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2209
856fa198 2210 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2211 return 0;
2212
2213 /* Get the list of pages out of our struct file. They'll be pinned
2214 * at this point until we release them.
2215 */
2216 page_count = obj->size / PAGE_SIZE;
856fa198 2217 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2218 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2219 if (obj_priv->pages == NULL) {
856fa198 2220 obj_priv->pages_refcount--;
673a394b
EA
2221 return -ENOMEM;
2222 }
2223
2224 inode = obj->filp->f_path.dentry->d_inode;
2225 mapping = inode->i_mapping;
2226 for (i = 0; i < page_count; i++) {
4bdadb97 2227 page = read_cache_page_gfp(mapping, i,
985b823b 2228 GFP_HIGHUSER |
4bdadb97 2229 __GFP_COLD |
cd9f040d 2230 __GFP_RECLAIMABLE |
4bdadb97 2231 gfpmask);
1f2b1013
CW
2232 if (IS_ERR(page))
2233 goto err_pages;
2234
856fa198 2235 obj_priv->pages[i] = page;
673a394b 2236 }
280b713b
EA
2237
2238 if (obj_priv->tiling_mode != I915_TILING_NONE)
2239 i915_gem_object_do_bit_17_swizzle(obj);
2240
673a394b 2241 return 0;
1f2b1013
CW
2242
2243err_pages:
2244 while (i--)
2245 page_cache_release(obj_priv->pages[i]);
2246
2247 drm_free_large(obj_priv->pages);
2248 obj_priv->pages = NULL;
2249 obj_priv->pages_refcount--;
2250 return PTR_ERR(page);
673a394b
EA
2251}
2252
4e901fdc
EA
2253static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2254{
2255 struct drm_gem_object *obj = reg->obj;
2256 struct drm_device *dev = obj->dev;
2257 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2258 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2259 int regnum = obj_priv->fence_reg;
2260 uint64_t val;
2261
2262 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2263 0xfffff000) << 32;
2264 val |= obj_priv->gtt_offset & 0xfffff000;
2265 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2266 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2267
2268 if (obj_priv->tiling_mode == I915_TILING_Y)
2269 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2270 val |= I965_FENCE_REG_VALID;
2271
2272 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2273}
2274
de151cf6
JB
2275static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2276{
2277 struct drm_gem_object *obj = reg->obj;
2278 struct drm_device *dev = obj->dev;
2279 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2280 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2281 int regnum = obj_priv->fence_reg;
2282 uint64_t val;
2283
2284 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2285 0xfffff000) << 32;
2286 val |= obj_priv->gtt_offset & 0xfffff000;
2287 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2288 if (obj_priv->tiling_mode == I915_TILING_Y)
2289 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2290 val |= I965_FENCE_REG_VALID;
2291
2292 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2293}
2294
2295static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2296{
2297 struct drm_gem_object *obj = reg->obj;
2298 struct drm_device *dev = obj->dev;
2299 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2300 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2301 int regnum = obj_priv->fence_reg;
0f973f27 2302 int tile_width;
dc529a4f 2303 uint32_t fence_reg, val;
de151cf6
JB
2304 uint32_t pitch_val;
2305
2306 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2307 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2308 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2309 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2310 return;
2311 }
2312
0f973f27
JB
2313 if (obj_priv->tiling_mode == I915_TILING_Y &&
2314 HAS_128_BYTE_Y_TILING(dev))
2315 tile_width = 128;
de151cf6 2316 else
0f973f27
JB
2317 tile_width = 512;
2318
2319 /* Note: pitch better be a power of two tile widths */
2320 pitch_val = obj_priv->stride / tile_width;
2321 pitch_val = ffs(pitch_val) - 1;
de151cf6 2322
c36a2a6d
DV
2323 if (obj_priv->tiling_mode == I915_TILING_Y &&
2324 HAS_128_BYTE_Y_TILING(dev))
2325 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2326 else
2327 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2328
de151cf6
JB
2329 val = obj_priv->gtt_offset;
2330 if (obj_priv->tiling_mode == I915_TILING_Y)
2331 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2332 val |= I915_FENCE_SIZE_BITS(obj->size);
2333 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2334 val |= I830_FENCE_REG_VALID;
2335
dc529a4f
EA
2336 if (regnum < 8)
2337 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2338 else
2339 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2340 I915_WRITE(fence_reg, val);
de151cf6
JB
2341}
2342
2343static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2344{
2345 struct drm_gem_object *obj = reg->obj;
2346 struct drm_device *dev = obj->dev;
2347 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2348 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2349 int regnum = obj_priv->fence_reg;
2350 uint32_t val;
2351 uint32_t pitch_val;
8d7773a3 2352 uint32_t fence_size_bits;
de151cf6 2353
8d7773a3 2354 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2355 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2356 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2357 __func__, obj_priv->gtt_offset);
de151cf6
JB
2358 return;
2359 }
2360
e76a16de
EA
2361 pitch_val = obj_priv->stride / 128;
2362 pitch_val = ffs(pitch_val) - 1;
2363 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2364
de151cf6
JB
2365 val = obj_priv->gtt_offset;
2366 if (obj_priv->tiling_mode == I915_TILING_Y)
2367 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2368 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2369 WARN_ON(fence_size_bits & ~0x00000f00);
2370 val |= fence_size_bits;
de151cf6
JB
2371 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2372 val |= I830_FENCE_REG_VALID;
2373
2374 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2375}
2376
2cf34d7b
CW
2377static int i915_find_fence_reg(struct drm_device *dev,
2378 bool interruptible)
ae3db24a
DV
2379{
2380 struct drm_i915_fence_reg *reg = NULL;
2381 struct drm_i915_gem_object *obj_priv = NULL;
2382 struct drm_i915_private *dev_priv = dev->dev_private;
2383 struct drm_gem_object *obj = NULL;
2384 int i, avail, ret;
2385
2386 /* First try to find a free reg */
2387 avail = 0;
2388 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2389 reg = &dev_priv->fence_regs[i];
2390 if (!reg->obj)
2391 return i;
2392
23010e43 2393 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2394 if (!obj_priv->pin_count)
2395 avail++;
2396 }
2397
2398 if (avail == 0)
2399 return -ENOSPC;
2400
2401 /* None available, try to steal one or wait for a user to finish */
2402 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2403 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2404 lru_list) {
2405 obj = reg->obj;
2406 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2407
2408 if (obj_priv->pin_count)
2409 continue;
2410
2411 /* found one! */
2412 i = obj_priv->fence_reg;
2413 break;
2414 }
2415
2416 BUG_ON(i == I915_FENCE_REG_NONE);
2417
2418 /* We only have a reference on obj from the active list. put_fence_reg
2419 * might drop that one, causing a use-after-free in it. So hold a
2420 * private reference to obj like the other callers of put_fence_reg
2421 * (set_tiling ioctl) do. */
2422 drm_gem_object_reference(obj);
2cf34d7b 2423 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2424 drm_gem_object_unreference(obj);
2425 if (ret != 0)
2426 return ret;
2427
2428 return i;
2429}
2430
de151cf6
JB
2431/**
2432 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2433 * @obj: object to map through a fence reg
2434 *
2435 * When mapping objects through the GTT, userspace wants to be able to write
2436 * to them without having to worry about swizzling if the object is tiled.
2437 *
2438 * This function walks the fence regs looking for a free one for @obj,
2439 * stealing one if it can't find any.
2440 *
2441 * It then sets up the reg based on the object's properties: address, pitch
2442 * and tiling format.
2443 */
8c4b8c3f 2444int
2cf34d7b
CW
2445i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2446 bool interruptible)
de151cf6
JB
2447{
2448 struct drm_device *dev = obj->dev;
79e53945 2449 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2450 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2451 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2452 int ret;
de151cf6 2453
a09ba7fa
EA
2454 /* Just update our place in the LRU if our fence is getting used. */
2455 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2456 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2457 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2458 return 0;
2459 }
2460
de151cf6
JB
2461 switch (obj_priv->tiling_mode) {
2462 case I915_TILING_NONE:
2463 WARN(1, "allocating a fence for non-tiled object?\n");
2464 break;
2465 case I915_TILING_X:
0f973f27
JB
2466 if (!obj_priv->stride)
2467 return -EINVAL;
2468 WARN((obj_priv->stride & (512 - 1)),
2469 "object 0x%08x is X tiled but has non-512B pitch\n",
2470 obj_priv->gtt_offset);
de151cf6
JB
2471 break;
2472 case I915_TILING_Y:
0f973f27
JB
2473 if (!obj_priv->stride)
2474 return -EINVAL;
2475 WARN((obj_priv->stride & (128 - 1)),
2476 "object 0x%08x is Y tiled but has non-128B pitch\n",
2477 obj_priv->gtt_offset);
de151cf6
JB
2478 break;
2479 }
2480
2cf34d7b 2481 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2482 if (ret < 0)
2483 return ret;
de151cf6 2484
ae3db24a
DV
2485 obj_priv->fence_reg = ret;
2486 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2487 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2488
de151cf6
JB
2489 reg->obj = obj;
2490
e259befd
CW
2491 switch (INTEL_INFO(dev)->gen) {
2492 case 6:
4e901fdc 2493 sandybridge_write_fence_reg(reg);
e259befd
CW
2494 break;
2495 case 5:
2496 case 4:
de151cf6 2497 i965_write_fence_reg(reg);
e259befd
CW
2498 break;
2499 case 3:
de151cf6 2500 i915_write_fence_reg(reg);
e259befd
CW
2501 break;
2502 case 2:
de151cf6 2503 i830_write_fence_reg(reg);
e259befd
CW
2504 break;
2505 }
d9ddcb96 2506
ae3db24a
DV
2507 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2508 obj_priv->tiling_mode);
1c5d22f7 2509
d9ddcb96 2510 return 0;
de151cf6
JB
2511}
2512
2513/**
2514 * i915_gem_clear_fence_reg - clear out fence register info
2515 * @obj: object to clear
2516 *
2517 * Zeroes out the fence register itself and clears out the associated
2518 * data structures in dev_priv and obj_priv.
2519 */
2520static void
2521i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2522{
2523 struct drm_device *dev = obj->dev;
79e53945 2524 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2525 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2526 struct drm_i915_fence_reg *reg =
2527 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2528 uint32_t fence_reg;
de151cf6 2529
e259befd
CW
2530 switch (INTEL_INFO(dev)->gen) {
2531 case 6:
4e901fdc
EA
2532 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2533 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2534 break;
2535 case 5:
2536 case 4:
de151cf6 2537 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2538 break;
2539 case 3:
9b74f734 2540 if (obj_priv->fence_reg >= 8)
e259befd 2541 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2542 else
e259befd
CW
2543 case 2:
2544 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2545
2546 I915_WRITE(fence_reg, 0);
e259befd 2547 break;
dc529a4f 2548 }
de151cf6 2549
007cc8ac 2550 reg->obj = NULL;
de151cf6 2551 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2552 list_del_init(&reg->lru_list);
de151cf6
JB
2553}
2554
52dc7d32
CW
2555/**
2556 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2557 * to the buffer to finish, and then resets the fence register.
2558 * @obj: tiled object holding a fence register.
2cf34d7b 2559 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2560 *
2561 * Zeroes out the fence register itself and clears out the associated
2562 * data structures in dev_priv and obj_priv.
2563 */
2564int
2cf34d7b
CW
2565i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2566 bool interruptible)
52dc7d32
CW
2567{
2568 struct drm_device *dev = obj->dev;
53640e1d 2569 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2570 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2571 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2572
2573 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2574 return 0;
2575
10ae9bd2
DV
2576 /* If we've changed tiling, GTT-mappings of the object
2577 * need to re-fault to ensure that the correct fence register
2578 * setup is in place.
2579 */
2580 i915_gem_release_mmap(obj);
2581
52dc7d32
CW
2582 /* On the i915, GPU access to tiled buffers is via a fence,
2583 * therefore we must wait for any outstanding access to complete
2584 * before clearing the fence.
2585 */
53640e1d
CW
2586 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2587 if (reg->gpu) {
52dc7d32
CW
2588 int ret;
2589
2cf34d7b 2590 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad
CW
2591 if (ret)
2592 return ret;
2593
2cf34d7b 2594 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2595 if (ret)
52dc7d32 2596 return ret;
53640e1d
CW
2597
2598 reg->gpu = false;
52dc7d32
CW
2599 }
2600
4a726612 2601 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2602 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2603
2604 return 0;
2605}
2606
673a394b
EA
2607/**
2608 * Finds free space in the GTT aperture and binds the object there.
2609 */
2610static int
2611i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2612{
2613 struct drm_device *dev = obj->dev;
2614 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2615 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2616 struct drm_mm_node *free_space;
4bdadb97 2617 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2618 int ret;
673a394b 2619
bb6baf76 2620 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2621 DRM_ERROR("Attempting to bind a purgeable object\n");
2622 return -EINVAL;
2623 }
2624
673a394b 2625 if (alignment == 0)
0f973f27 2626 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2627 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2628 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2629 return -EINVAL;
2630 }
2631
654fc607
CW
2632 /* If the object is bigger than the entire aperture, reject it early
2633 * before evicting everything in a vain attempt to find space.
2634 */
73aa808f 2635 if (obj->size > dev_priv->mm.gtt_total) {
654fc607
CW
2636 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2637 return -E2BIG;
2638 }
2639
673a394b
EA
2640 search_free:
2641 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2642 obj->size, alignment, 0);
9af90d19 2643 if (free_space != NULL)
673a394b
EA
2644 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2645 alignment);
673a394b
EA
2646 if (obj_priv->gtt_space == NULL) {
2647 /* If the gtt is empty and we're still having trouble
2648 * fitting our object in, we're out of memory.
2649 */
0108a3ed 2650 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2651 if (ret)
673a394b 2652 return ret;
9731129c 2653
673a394b
EA
2654 goto search_free;
2655 }
2656
4bdadb97 2657 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2658 if (ret) {
2659 drm_mm_put_block(obj_priv->gtt_space);
2660 obj_priv->gtt_space = NULL;
07f73f69
CW
2661
2662 if (ret == -ENOMEM) {
2663 /* first try to clear up some space from the GTT */
0108a3ed
DV
2664 ret = i915_gem_evict_something(dev, obj->size,
2665 alignment);
07f73f69 2666 if (ret) {
07f73f69 2667 /* now try to shrink everyone else */
4bdadb97
CW
2668 if (gfpmask) {
2669 gfpmask = 0;
2670 goto search_free;
07f73f69
CW
2671 }
2672
2673 return ret;
2674 }
2675
2676 goto search_free;
2677 }
2678
673a394b
EA
2679 return ret;
2680 }
2681
673a394b
EA
2682 /* Create an AGP memory structure pointing at our pages, and bind it
2683 * into the GTT.
2684 */
2685 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2686 obj_priv->pages,
07f73f69 2687 obj->size >> PAGE_SHIFT,
9af90d19 2688 obj_priv->gtt_space->start,
ba1eb1d8 2689 obj_priv->agp_type);
673a394b 2690 if (obj_priv->agp_mem == NULL) {
856fa198 2691 i915_gem_object_put_pages(obj);
673a394b
EA
2692 drm_mm_put_block(obj_priv->gtt_space);
2693 obj_priv->gtt_space = NULL;
07f73f69 2694
0108a3ed 2695 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2696 if (ret)
07f73f69 2697 return ret;
07f73f69
CW
2698
2699 goto search_free;
673a394b 2700 }
673a394b 2701
bf1a1092
CW
2702 /* keep track of bounds object by adding it to the inactive list */
2703 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
73aa808f 2704 i915_gem_info_add_gtt(dev_priv, obj->size);
bf1a1092 2705
673a394b
EA
2706 /* Assert that the object is not currently in any GPU domain. As it
2707 * wasn't in the GTT, there shouldn't be any way it could have been in
2708 * a GPU cache
2709 */
21d509e3
CW
2710 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2711 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2712
9af90d19 2713 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1c5d22f7
CW
2714 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2715
673a394b
EA
2716 return 0;
2717}
2718
2719void
2720i915_gem_clflush_object(struct drm_gem_object *obj)
2721{
23010e43 2722 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2723
2724 /* If we don't have a page list set up, then we're not pinned
2725 * to GPU, and we can ignore the cache flush because it'll happen
2726 * again at bind time.
2727 */
856fa198 2728 if (obj_priv->pages == NULL)
673a394b
EA
2729 return;
2730
1c5d22f7 2731 trace_i915_gem_object_clflush(obj);
cfa16a0d 2732
856fa198 2733 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2734}
2735
e47c68e9 2736/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2737static int
ba3d8d74
DV
2738i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2739 bool pipelined)
e47c68e9
EA
2740{
2741 struct drm_device *dev = obj->dev;
1c5d22f7 2742 uint32_t old_write_domain;
e47c68e9
EA
2743
2744 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2745 return 0;
e47c68e9
EA
2746
2747 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2748 old_write_domain = obj->write_domain;
c78ec30b 2749 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2750 to_intel_bo(obj)->ring,
2751 0, obj->write_domain);
48b956c5 2752 BUG_ON(obj->write_domain);
1c5d22f7
CW
2753
2754 trace_i915_gem_object_change_domain(obj,
2755 obj->read_domains,
2756 old_write_domain);
ba3d8d74
DV
2757
2758 if (pipelined)
2759 return 0;
2760
2cf34d7b 2761 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2762}
2763
2764/** Flushes the GTT write domain for the object if it's dirty. */
2765static void
2766i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2767{
1c5d22f7
CW
2768 uint32_t old_write_domain;
2769
e47c68e9
EA
2770 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2771 return;
2772
2773 /* No actual flushing is required for the GTT write domain. Writes
2774 * to it immediately go to main memory as far as we know, so there's
2775 * no chipset flush. It also doesn't land in render cache.
2776 */
1c5d22f7 2777 old_write_domain = obj->write_domain;
e47c68e9 2778 obj->write_domain = 0;
1c5d22f7
CW
2779
2780 trace_i915_gem_object_change_domain(obj,
2781 obj->read_domains,
2782 old_write_domain);
e47c68e9
EA
2783}
2784
2785/** Flushes the CPU write domain for the object if it's dirty. */
2786static void
2787i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2788{
2789 struct drm_device *dev = obj->dev;
1c5d22f7 2790 uint32_t old_write_domain;
e47c68e9
EA
2791
2792 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2793 return;
2794
2795 i915_gem_clflush_object(obj);
2796 drm_agp_chipset_flush(dev);
1c5d22f7 2797 old_write_domain = obj->write_domain;
e47c68e9 2798 obj->write_domain = 0;
1c5d22f7
CW
2799
2800 trace_i915_gem_object_change_domain(obj,
2801 obj->read_domains,
2802 old_write_domain);
e47c68e9
EA
2803}
2804
2ef7eeaa
EA
2805/**
2806 * Moves a single object to the GTT read, and possibly write domain.
2807 *
2808 * This function returns when the move is complete, including waiting on
2809 * flushes to occur.
2810 */
79e53945 2811int
2ef7eeaa
EA
2812i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2813{
23010e43 2814 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2815 uint32_t old_write_domain, old_read_domains;
e47c68e9 2816 int ret;
2ef7eeaa 2817
02354392
EA
2818 /* Not valid to be called on unbound objects. */
2819 if (obj_priv->gtt_space == NULL)
2820 return -EINVAL;
2821
ba3d8d74 2822 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2823 if (ret != 0)
2824 return ret;
2825
7213342d 2826 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2827
ba3d8d74 2828 if (write) {
2cf34d7b 2829 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2830 if (ret)
2831 return ret;
ba3d8d74 2832 }
2ef7eeaa 2833
7213342d
CW
2834 old_write_domain = obj->write_domain;
2835 old_read_domains = obj->read_domains;
2ef7eeaa 2836
e47c68e9
EA
2837 /* It should now be out of any other write domains, and we can update
2838 * the domain values for our changes.
2839 */
2840 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2841 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2842 if (write) {
7213342d 2843 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2844 obj->write_domain = I915_GEM_DOMAIN_GTT;
2845 obj_priv->dirty = 1;
2ef7eeaa
EA
2846 }
2847
1c5d22f7
CW
2848 trace_i915_gem_object_change_domain(obj,
2849 old_read_domains,
2850 old_write_domain);
2851
e47c68e9
EA
2852 return 0;
2853}
2854
b9241ea3
ZW
2855/*
2856 * Prepare buffer for display plane. Use uninterruptible for possible flush
2857 * wait, as in modesetting process we're not supposed to be interrupted.
2858 */
2859int
48b956c5
CW
2860i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2861 bool pipelined)
b9241ea3 2862{
23010e43 2863 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2864 uint32_t old_read_domains;
b9241ea3
ZW
2865 int ret;
2866
2867 /* Not valid to be called on unbound objects. */
2868 if (obj_priv->gtt_space == NULL)
2869 return -EINVAL;
2870
ced270fa 2871 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
48b956c5 2872 if (ret)
e35a41de 2873 return ret;
b9241ea3 2874
ced270fa
CW
2875 /* Currently, we are always called from an non-interruptible context. */
2876 if (!pipelined) {
2877 ret = i915_gem_object_wait_rendering(obj, false);
2878 if (ret)
2879 return ret;
2880 }
2881
b118c1e3
CW
2882 i915_gem_object_flush_cpu_write_domain(obj);
2883
b9241ea3 2884 old_read_domains = obj->read_domains;
c78ec30b 2885 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2886
2887 trace_i915_gem_object_change_domain(obj,
2888 old_read_domains,
ba3d8d74 2889 obj->write_domain);
b9241ea3
ZW
2890
2891 return 0;
2892}
2893
e47c68e9
EA
2894/**
2895 * Moves a single object to the CPU read, and possibly write domain.
2896 *
2897 * This function returns when the move is complete, including waiting on
2898 * flushes to occur.
2899 */
2900static int
2901i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2902{
1c5d22f7 2903 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2904 int ret;
2905
ba3d8d74 2906 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2907 if (ret != 0)
2908 return ret;
2ef7eeaa 2909
e47c68e9 2910 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2911
e47c68e9
EA
2912 /* If we have a partially-valid cache of the object in the CPU,
2913 * finish invalidating it and free the per-page flags.
2ef7eeaa 2914 */
e47c68e9 2915 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2916
7213342d 2917 if (write) {
2cf34d7b 2918 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2919 if (ret)
2920 return ret;
2921 }
2922
1c5d22f7
CW
2923 old_write_domain = obj->write_domain;
2924 old_read_domains = obj->read_domains;
2925
e47c68e9
EA
2926 /* Flush the CPU cache if it's still invalid. */
2927 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2928 i915_gem_clflush_object(obj);
2ef7eeaa 2929
e47c68e9 2930 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2931 }
2932
2933 /* It should now be out of any other write domains, and we can update
2934 * the domain values for our changes.
2935 */
e47c68e9
EA
2936 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2937
2938 /* If we're writing through the CPU, then the GPU read domains will
2939 * need to be invalidated at next use.
2940 */
2941 if (write) {
c78ec30b 2942 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
2943 obj->write_domain = I915_GEM_DOMAIN_CPU;
2944 }
2ef7eeaa 2945
1c5d22f7
CW
2946 trace_i915_gem_object_change_domain(obj,
2947 old_read_domains,
2948 old_write_domain);
2949
2ef7eeaa
EA
2950 return 0;
2951}
2952
673a394b
EA
2953/*
2954 * Set the next domain for the specified object. This
2955 * may not actually perform the necessary flushing/invaliding though,
2956 * as that may want to be batched with other set_domain operations
2957 *
2958 * This is (we hope) the only really tricky part of gem. The goal
2959 * is fairly simple -- track which caches hold bits of the object
2960 * and make sure they remain coherent. A few concrete examples may
2961 * help to explain how it works. For shorthand, we use the notation
2962 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2963 * a pair of read and write domain masks.
2964 *
2965 * Case 1: the batch buffer
2966 *
2967 * 1. Allocated
2968 * 2. Written by CPU
2969 * 3. Mapped to GTT
2970 * 4. Read by GPU
2971 * 5. Unmapped from GTT
2972 * 6. Freed
2973 *
2974 * Let's take these a step at a time
2975 *
2976 * 1. Allocated
2977 * Pages allocated from the kernel may still have
2978 * cache contents, so we set them to (CPU, CPU) always.
2979 * 2. Written by CPU (using pwrite)
2980 * The pwrite function calls set_domain (CPU, CPU) and
2981 * this function does nothing (as nothing changes)
2982 * 3. Mapped by GTT
2983 * This function asserts that the object is not
2984 * currently in any GPU-based read or write domains
2985 * 4. Read by GPU
2986 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2987 * As write_domain is zero, this function adds in the
2988 * current read domains (CPU+COMMAND, 0).
2989 * flush_domains is set to CPU.
2990 * invalidate_domains is set to COMMAND
2991 * clflush is run to get data out of the CPU caches
2992 * then i915_dev_set_domain calls i915_gem_flush to
2993 * emit an MI_FLUSH and drm_agp_chipset_flush
2994 * 5. Unmapped from GTT
2995 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2996 * flush_domains and invalidate_domains end up both zero
2997 * so no flushing/invalidating happens
2998 * 6. Freed
2999 * yay, done
3000 *
3001 * Case 2: The shared render buffer
3002 *
3003 * 1. Allocated
3004 * 2. Mapped to GTT
3005 * 3. Read/written by GPU
3006 * 4. set_domain to (CPU,CPU)
3007 * 5. Read/written by CPU
3008 * 6. Read/written by GPU
3009 *
3010 * 1. Allocated
3011 * Same as last example, (CPU, CPU)
3012 * 2. Mapped to GTT
3013 * Nothing changes (assertions find that it is not in the GPU)
3014 * 3. Read/written by GPU
3015 * execbuffer calls set_domain (RENDER, RENDER)
3016 * flush_domains gets CPU
3017 * invalidate_domains gets GPU
3018 * clflush (obj)
3019 * MI_FLUSH and drm_agp_chipset_flush
3020 * 4. set_domain (CPU, CPU)
3021 * flush_domains gets GPU
3022 * invalidate_domains gets CPU
3023 * wait_rendering (obj) to make sure all drawing is complete.
3024 * This will include an MI_FLUSH to get the data from GPU
3025 * to memory
3026 * clflush (obj) to invalidate the CPU cache
3027 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3028 * 5. Read/written by CPU
3029 * cache lines are loaded and dirtied
3030 * 6. Read written by GPU
3031 * Same as last GPU access
3032 *
3033 * Case 3: The constant buffer
3034 *
3035 * 1. Allocated
3036 * 2. Written by CPU
3037 * 3. Read by GPU
3038 * 4. Updated (written) by CPU again
3039 * 5. Read by GPU
3040 *
3041 * 1. Allocated
3042 * (CPU, CPU)
3043 * 2. Written by CPU
3044 * (CPU, CPU)
3045 * 3. Read by GPU
3046 * (CPU+RENDER, 0)
3047 * flush_domains = CPU
3048 * invalidate_domains = RENDER
3049 * clflush (obj)
3050 * MI_FLUSH
3051 * drm_agp_chipset_flush
3052 * 4. Updated (written) by CPU again
3053 * (CPU, CPU)
3054 * flush_domains = 0 (no previous write domain)
3055 * invalidate_domains = 0 (no new read domains)
3056 * 5. Read by GPU
3057 * (CPU+RENDER, 0)
3058 * flush_domains = CPU
3059 * invalidate_domains = RENDER
3060 * clflush (obj)
3061 * MI_FLUSH
3062 * drm_agp_chipset_flush
3063 */
c0d90829 3064static void
8b0e378a 3065i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
3066{
3067 struct drm_device *dev = obj->dev;
9220434a 3068 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3069 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3070 uint32_t invalidate_domains = 0;
3071 uint32_t flush_domains = 0;
1c5d22f7 3072 uint32_t old_read_domains;
e47c68e9 3073
652c393a
JB
3074 intel_mark_busy(dev, obj);
3075
673a394b
EA
3076 /*
3077 * If the object isn't moving to a new write domain,
3078 * let the object stay in multiple read domains
3079 */
8b0e378a
EA
3080 if (obj->pending_write_domain == 0)
3081 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3082 else
3083 obj_priv->dirty = 1;
3084
3085 /*
3086 * Flush the current write domain if
3087 * the new read domains don't match. Invalidate
3088 * any read domains which differ from the old
3089 * write domain
3090 */
8b0e378a
EA
3091 if (obj->write_domain &&
3092 obj->write_domain != obj->pending_read_domains) {
673a394b 3093 flush_domains |= obj->write_domain;
8b0e378a
EA
3094 invalidate_domains |=
3095 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3096 }
3097 /*
3098 * Invalidate any read caches which may have
3099 * stale data. That is, any new read domains.
3100 */
8b0e378a 3101 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3102 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3103 i915_gem_clflush_object(obj);
673a394b 3104
1c5d22f7
CW
3105 old_read_domains = obj->read_domains;
3106
efbeed96
EA
3107 /* The actual obj->write_domain will be updated with
3108 * pending_write_domain after we emit the accumulated flush for all
3109 * of our domain changes in execbuffers (which clears objects'
3110 * write_domains). So if we have a current write domain that we
3111 * aren't changing, set pending_write_domain to that.
3112 */
3113 if (flush_domains == 0 && obj->pending_write_domain == 0)
3114 obj->pending_write_domain = obj->write_domain;
8b0e378a 3115 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3116
3117 dev->invalidate_domains |= invalidate_domains;
3118 dev->flush_domains |= flush_domains;
9220434a
CW
3119 if (obj_priv->ring)
3120 dev_priv->mm.flush_rings |= obj_priv->ring->id;
1c5d22f7
CW
3121
3122 trace_i915_gem_object_change_domain(obj,
3123 old_read_domains,
3124 obj->write_domain);
673a394b
EA
3125}
3126
3127/**
e47c68e9 3128 * Moves the object from a partially CPU read to a full one.
673a394b 3129 *
e47c68e9
EA
3130 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3131 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3132 */
e47c68e9
EA
3133static void
3134i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3135{
23010e43 3136 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3137
e47c68e9
EA
3138 if (!obj_priv->page_cpu_valid)
3139 return;
3140
3141 /* If we're partially in the CPU read domain, finish moving it in.
3142 */
3143 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3144 int i;
3145
3146 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3147 if (obj_priv->page_cpu_valid[i])
3148 continue;
856fa198 3149 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3150 }
e47c68e9
EA
3151 }
3152
3153 /* Free the page_cpu_valid mappings which are now stale, whether
3154 * or not we've got I915_GEM_DOMAIN_CPU.
3155 */
9a298b2a 3156 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3157 obj_priv->page_cpu_valid = NULL;
3158}
3159
3160/**
3161 * Set the CPU read domain on a range of the object.
3162 *
3163 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3164 * not entirely valid. The page_cpu_valid member of the object flags which
3165 * pages have been flushed, and will be respected by
3166 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3167 * of the whole object.
3168 *
3169 * This function returns when the move is complete, including waiting on
3170 * flushes to occur.
3171 */
3172static int
3173i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3174 uint64_t offset, uint64_t size)
3175{
23010e43 3176 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3177 uint32_t old_read_domains;
e47c68e9 3178 int i, ret;
673a394b 3179
e47c68e9
EA
3180 if (offset == 0 && size == obj->size)
3181 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3182
ba3d8d74 3183 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3184 if (ret != 0)
6a47baa6 3185 return ret;
e47c68e9
EA
3186 i915_gem_object_flush_gtt_write_domain(obj);
3187
3188 /* If we're already fully in the CPU read domain, we're done. */
3189 if (obj_priv->page_cpu_valid == NULL &&
3190 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3191 return 0;
673a394b 3192
e47c68e9
EA
3193 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3194 * newly adding I915_GEM_DOMAIN_CPU
3195 */
673a394b 3196 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3197 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3198 GFP_KERNEL);
e47c68e9
EA
3199 if (obj_priv->page_cpu_valid == NULL)
3200 return -ENOMEM;
3201 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3202 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3203
3204 /* Flush the cache on any pages that are still invalid from the CPU's
3205 * perspective.
3206 */
e47c68e9
EA
3207 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3208 i++) {
673a394b
EA
3209 if (obj_priv->page_cpu_valid[i])
3210 continue;
3211
856fa198 3212 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3213
3214 obj_priv->page_cpu_valid[i] = 1;
3215 }
3216
e47c68e9
EA
3217 /* It should now be out of any other write domains, and we can update
3218 * the domain values for our changes.
3219 */
3220 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3221
1c5d22f7 3222 old_read_domains = obj->read_domains;
e47c68e9
EA
3223 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3224
1c5d22f7
CW
3225 trace_i915_gem_object_change_domain(obj,
3226 old_read_domains,
3227 obj->write_domain);
3228
673a394b
EA
3229 return 0;
3230}
3231
673a394b
EA
3232/**
3233 * Pin an object to the GTT and evaluate the relocations landing in it.
3234 */
3235static int
9af90d19
CW
3236i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3237 struct drm_file *file_priv,
3238 struct drm_i915_gem_exec_object2 *entry)
673a394b 3239{
9af90d19 3240 struct drm_device *dev = obj->base.dev;
0839ccb8 3241 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3242 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3243 struct drm_gem_object *target_obj = NULL;
3244 uint32_t target_handle = 0;
3245 int i, ret = 0;
53640e1d 3246
2549d6c2 3247 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3248 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3249 struct drm_i915_gem_relocation_entry reloc;
9af90d19
CW
3250 uint32_t target_offset;
3251
3252 if (__copy_from_user_inatomic(&reloc,
3253 user_relocs+i,
3254 sizeof(reloc))) {
3255 ret = -EFAULT;
3256 break;
2549d6c2
CW
3257 }
3258
9af90d19
CW
3259 if (reloc.target_handle != target_handle) {
3260 drm_gem_object_unreference(target_obj);
3261
3262 target_obj = drm_gem_object_lookup(dev, file_priv,
3263 reloc.target_handle);
3264 if (target_obj == NULL) {
3265 ret = -ENOENT;
3266 break;
3267 }
3268
3269 target_handle = reloc.target_handle;
673a394b 3270 }
9af90d19 3271 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3272
8542a0bb
CW
3273#if WATCH_RELOC
3274 DRM_INFO("%s: obj %p offset %08x target %d "
3275 "read %08x write %08x gtt %08x "
3276 "presumed %08x delta %08x\n",
3277 __func__,
3278 obj,
2549d6c2
CW
3279 (int) reloc.offset,
3280 (int) reloc.target_handle,
3281 (int) reloc.read_domains,
3282 (int) reloc.write_domain,
9af90d19 3283 (int) target_offset,
2549d6c2
CW
3284 (int) reloc.presumed_offset,
3285 reloc.delta);
8542a0bb
CW
3286#endif
3287
673a394b
EA
3288 /* The target buffer should have appeared before us in the
3289 * exec_object list, so it should have a GTT space bound by now.
3290 */
9af90d19 3291 if (target_offset == 0) {
673a394b 3292 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3293 reloc.target_handle);
9af90d19
CW
3294 ret = -EINVAL;
3295 break;
673a394b
EA
3296 }
3297
8542a0bb 3298 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3299 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3300 DRM_ERROR("reloc with multiple write domains: "
3301 "obj %p target %d offset %d "
3302 "read %08x write %08x",
2549d6c2
CW
3303 obj, reloc.target_handle,
3304 (int) reloc.offset,
3305 reloc.read_domains,
3306 reloc.write_domain);
9af90d19
CW
3307 ret = -EINVAL;
3308 break;
16edd550 3309 }
2549d6c2
CW
3310 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3311 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3312 DRM_ERROR("reloc with read/write CPU domains: "
3313 "obj %p target %d offset %d "
3314 "read %08x write %08x",
2549d6c2
CW
3315 obj, reloc.target_handle,
3316 (int) reloc.offset,
3317 reloc.read_domains,
3318 reloc.write_domain);
9af90d19
CW
3319 ret = -EINVAL;
3320 break;
e47c68e9 3321 }
2549d6c2
CW
3322 if (reloc.write_domain && target_obj->pending_write_domain &&
3323 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3324 DRM_ERROR("Write domain conflict: "
3325 "obj %p target %d offset %d "
3326 "new %08x old %08x\n",
2549d6c2
CW
3327 obj, reloc.target_handle,
3328 (int) reloc.offset,
3329 reloc.write_domain,
673a394b 3330 target_obj->pending_write_domain);
9af90d19
CW
3331 ret = -EINVAL;
3332 break;
673a394b
EA
3333 }
3334
2549d6c2 3335 target_obj->pending_read_domains |= reloc.read_domains;
9af90d19 3336 target_obj->pending_write_domain = reloc.write_domain;
673a394b
EA
3337
3338 /* If the relocation already has the right value in it, no
3339 * more work needs to be done.
3340 */
9af90d19 3341 if (target_offset == reloc.presumed_offset)
673a394b 3342 continue;
673a394b 3343
8542a0bb 3344 /* Check that the relocation address is valid... */
9af90d19 3345 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3346 DRM_ERROR("Relocation beyond object bounds: "
3347 "obj %p target %d offset %d size %d.\n",
2549d6c2 3348 obj, reloc.target_handle,
9af90d19
CW
3349 (int) reloc.offset, (int) obj->base.size);
3350 ret = -EINVAL;
3351 break;
8542a0bb 3352 }
2549d6c2 3353 if (reloc.offset & 3) {
8542a0bb
CW
3354 DRM_ERROR("Relocation not 4-byte aligned: "
3355 "obj %p target %d offset %d.\n",
2549d6c2
CW
3356 obj, reloc.target_handle,
3357 (int) reloc.offset);
9af90d19
CW
3358 ret = -EINVAL;
3359 break;
8542a0bb
CW
3360 }
3361
3362 /* and points to somewhere within the target object. */
2549d6c2 3363 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3364 DRM_ERROR("Relocation beyond target object bounds: "
3365 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3366 obj, reloc.target_handle,
3367 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3368 ret = -EINVAL;
3369 break;
8542a0bb
CW
3370 }
3371
9af90d19
CW
3372 reloc.delta += target_offset;
3373 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3374 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3375 char *vaddr;
673a394b 3376
9af90d19 3377 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
f0c43d9b
CW
3378 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
3379 kunmap_atomic(vaddr, KM_USER0);
3380 } else {
3381 uint32_t __iomem *reloc_entry;
3382 void __iomem *reloc_page;
f0c43d9b 3383
9af90d19
CW
3384 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3385 if (ret)
3386 break;
f0c43d9b
CW
3387
3388 /* Map the page containing the relocation we're going to perform. */
9af90d19 3389 reloc.offset += obj->gtt_offset;
f0c43d9b
CW
3390 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3391 reloc.offset & PAGE_MASK,
3392 KM_USER0);
3393 reloc_entry = (uint32_t __iomem *)
3394 (reloc_page + (reloc.offset & ~PAGE_MASK));
3395 iowrite32(reloc.delta, reloc_entry);
3396 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3397 }
9af90d19
CW
3398 }
3399
3400 drm_gem_object_unreference(target_obj);
3401 return ret;
3402}
3403
3404static int
3405i915_gem_execbuffer_pin(struct drm_device *dev,
3406 struct drm_file *file,
3407 struct drm_gem_object **object_list,
3408 struct drm_i915_gem_exec_object2 *exec_list,
3409 int count)
3410{
3411 struct drm_i915_private *dev_priv = dev->dev_private;
3412 int ret, i, retry;
3413
3414 /* attempt to pin all of the buffers into the GTT */
3415 for (retry = 0; retry < 2; retry++) {
3416 ret = 0;
3417 for (i = 0; i < count; i++) {
3418 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3419 struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
3420 bool need_fence =
3421 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3422 obj->tiling_mode != I915_TILING_NONE;
3423
3424 /* Check fence reg constraints and rebind if necessary */
3425 if (need_fence &&
3426 !i915_gem_object_fence_offset_ok(&obj->base,
3427 obj->tiling_mode)) {
3428 ret = i915_gem_object_unbind(&obj->base);
3429 if (ret)
3430 break;
3431 }
3432
3433 ret = i915_gem_object_pin(&obj->base, entry->alignment);
3434 if (ret)
3435 break;
3436
3437 /*
3438 * Pre-965 chips need a fence register set up in order
3439 * to properly handle blits to/from tiled surfaces.
3440 */
3441 if (need_fence) {
3442 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3443 if (ret) {
3444 i915_gem_object_unpin(&obj->base);
3445 break;
3446 }
3447
3448 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3449 }
3450
3451 entry->offset = obj->gtt_offset;
3452 }
3453
3454 while (i--)
3455 i915_gem_object_unpin(object_list[i]);
3456
3457 if (ret == 0)
3458 break;
673a394b 3459
9af90d19
CW
3460 if (ret != -ENOSPC || retry)
3461 return ret;
3462
3463 ret = i915_gem_evict_everything(dev);
3464 if (ret)
3465 return ret;
673a394b
EA
3466 }
3467
673a394b
EA
3468 return 0;
3469}
3470
673a394b
EA
3471/* Throttle our rendering by waiting until the ring has completed our requests
3472 * emitted over 20 msec ago.
3473 *
b962442e
EA
3474 * Note that if we were to use the current jiffies each time around the loop,
3475 * we wouldn't escape the function with any frames outstanding if the time to
3476 * render a frame was over 20ms.
3477 *
673a394b
EA
3478 * This should get us reasonable parallelism between CPU and GPU but also
3479 * relatively low latency when blocking on a particular request to finish.
3480 */
3481static int
f787a5f5 3482i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
673a394b 3483{
f787a5f5
CW
3484 struct drm_i915_private *dev_priv = dev->dev_private;
3485 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3486 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3487 struct drm_i915_gem_request *request;
3488 struct intel_ring_buffer *ring = NULL;
3489 u32 seqno = 0;
3490 int ret;
673a394b 3491
1c25595f 3492 spin_lock(&file_priv->mm.lock);
f787a5f5 3493 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3494 if (time_after_eq(request->emitted_jiffies, recent_enough))
3495 break;
3496
f787a5f5
CW
3497 ring = request->ring;
3498 seqno = request->seqno;
b962442e 3499 }
1c25595f 3500 spin_unlock(&file_priv->mm.lock);
f787a5f5
CW
3501
3502 if (seqno == 0)
3503 return 0;
3504
3505 ret = 0;
3506 if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
3507 /* And wait for the seqno passing without holding any locks and
3508 * causing extra latency for others. This is safe as the irq
3509 * generation is designed to be run atomically and so is
3510 * lockless.
3511 */
3512 ring->user_irq_get(dev, ring);
3513 ret = wait_event_interruptible(ring->irq_queue,
3514 i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
3515 || atomic_read(&dev_priv->mm.wedged));
3516 ring->user_irq_put(dev, ring);
3517
3518 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3519 ret = -EIO;
3520 }
3521
3522 if (ret == 0)
3523 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
b962442e 3524
673a394b
EA
3525 return ret;
3526}
3527
40a5f0de 3528static int
2549d6c2
CW
3529i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3530 uint64_t exec_offset)
40a5f0de 3531{
2549d6c2 3532 uint32_t exec_start, exec_len;
40a5f0de 3533
2549d6c2
CW
3534 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3535 exec_len = (uint32_t) exec->batch_len;
40a5f0de 3536
2549d6c2
CW
3537 if ((exec_start | exec_len) & 0x7)
3538 return -EINVAL;
40a5f0de 3539
2549d6c2
CW
3540 if (!exec_start)
3541 return -EINVAL;
40a5f0de 3542
2bc43b5c 3543 return 0;
40a5f0de
EA
3544}
3545
3546static int
2549d6c2
CW
3547validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3548 int count)
40a5f0de 3549{
2549d6c2 3550 int i;
40a5f0de 3551
2549d6c2
CW
3552 for (i = 0; i < count; i++) {
3553 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3554 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
2bc43b5c 3555
2549d6c2
CW
3556 if (!access_ok(VERIFY_READ, ptr, length))
3557 return -EFAULT;
40a5f0de 3558
2549d6c2
CW
3559 if (fault_in_pages_readable(ptr, length))
3560 return -EFAULT;
40a5f0de
EA
3561 }
3562
83d60795
CW
3563 return 0;
3564}
3565
8dc5d147 3566static int
76446cac 3567i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3568 struct drm_file *file,
76446cac
JB
3569 struct drm_i915_gem_execbuffer2 *args,
3570 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3571{
3572 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3573 struct drm_gem_object **object_list = NULL;
3574 struct drm_gem_object *batch_obj;
b70d11da 3575 struct drm_i915_gem_object *obj_priv;
201361a5 3576 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3577 struct drm_i915_gem_request *request = NULL;
9af90d19 3578 int ret, i, flips;
673a394b 3579 uint64_t exec_offset;
673a394b 3580
852835f3
ZN
3581 struct intel_ring_buffer *ring = NULL;
3582
30dbf0c0
CW
3583 ret = i915_gem_check_is_wedged(dev);
3584 if (ret)
3585 return ret;
3586
2549d6c2
CW
3587 ret = validate_exec_list(exec_list, args->buffer_count);
3588 if (ret)
3589 return ret;
3590
673a394b
EA
3591#if WATCH_EXEC
3592 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3593 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3594#endif
d1b851fc
ZN
3595 if (args->flags & I915_EXEC_BSD) {
3596 if (!HAS_BSD(dev)) {
3597 DRM_ERROR("execbuf with wrong flag\n");
3598 return -EINVAL;
3599 }
3600 ring = &dev_priv->bsd_ring;
3601 } else {
3602 ring = &dev_priv->render_ring;
3603 }
3604
4f481ed2
EA
3605 if (args->buffer_count < 1) {
3606 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3607 return -EINVAL;
3608 }
c8e0f93a 3609 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3610 if (object_list == NULL) {
3611 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3612 args->buffer_count);
3613 ret = -ENOMEM;
3614 goto pre_mutex_err;
3615 }
673a394b 3616
201361a5 3617 if (args->num_cliprects != 0) {
9a298b2a
EA
3618 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3619 GFP_KERNEL);
a40e8d31
OA
3620 if (cliprects == NULL) {
3621 ret = -ENOMEM;
201361a5 3622 goto pre_mutex_err;
a40e8d31 3623 }
201361a5
EA
3624
3625 ret = copy_from_user(cliprects,
3626 (struct drm_clip_rect __user *)
3627 (uintptr_t) args->cliprects_ptr,
3628 sizeof(*cliprects) * args->num_cliprects);
3629 if (ret != 0) {
3630 DRM_ERROR("copy %d cliprects failed: %d\n",
3631 args->num_cliprects, ret);
c877cdce 3632 ret = -EFAULT;
201361a5
EA
3633 goto pre_mutex_err;
3634 }
3635 }
3636
8dc5d147
CW
3637 request = kzalloc(sizeof(*request), GFP_KERNEL);
3638 if (request == NULL) {
3639 ret = -ENOMEM;
3640 goto pre_mutex_err;
3641 }
3642
76c1dec1
CW
3643 ret = i915_mutex_lock_interruptible(dev);
3644 if (ret)
3645 goto pre_mutex_err;
673a394b 3646
673a394b 3647 if (dev_priv->mm.suspended) {
673a394b 3648 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3649 ret = -EBUSY;
3650 goto pre_mutex_err;
673a394b
EA
3651 }
3652
ac94a962 3653 /* Look up object handles */
673a394b 3654 for (i = 0; i < args->buffer_count; i++) {
9af90d19 3655 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3656 exec_list[i].handle);
3657 if (object_list[i] == NULL) {
3658 DRM_ERROR("Invalid object handle %d at index %d\n",
3659 exec_list[i].handle, i);
0ce907f8
CW
3660 /* prevent error path from reading uninitialized data */
3661 args->buffer_count = i + 1;
bf79cb91 3662 ret = -ENOENT;
673a394b
EA
3663 goto err;
3664 }
b70d11da 3665
23010e43 3666 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3667 if (obj_priv->in_execbuffer) {
3668 DRM_ERROR("Object %p appears more than once in object list\n",
3669 object_list[i]);
0ce907f8
CW
3670 /* prevent error path from reading uninitialized data */
3671 args->buffer_count = i + 1;
bf79cb91 3672 ret = -EINVAL;
b70d11da
KH
3673 goto err;
3674 }
3675 obj_priv->in_execbuffer = true;
ac94a962 3676 }
673a394b 3677
9af90d19
CW
3678 /* Move the objects en-masse into the GTT, evicting if necessary. */
3679 ret = i915_gem_execbuffer_pin(dev, file,
3680 object_list, exec_list,
3681 args->buffer_count);
3682 if (ret)
3683 goto err;
ac94a962 3684
9af90d19
CW
3685 /* The objects are in their final locations, apply the relocations. */
3686 for (i = 0; i < args->buffer_count; i++) {
3687 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3688 obj->base.pending_read_domains = 0;
3689 obj->base.pending_write_domain = 0;
3690 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3691 if (ret)
ac94a962 3692 goto err;
673a394b
EA
3693 }
3694
3695 /* Set the pending read domains for the batch buffer to COMMAND */
3696 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3697 if (batch_obj->pending_write_domain) {
3698 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3699 ret = -EINVAL;
3700 goto err;
3701 }
3702 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3703
9af90d19
CW
3704 /* Sanity check the batch buffer */
3705 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3706 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3707 if (ret != 0) {
3708 DRM_ERROR("execbuf with invalid offset/length\n");
3709 goto err;
3710 }
3711
646f0f6e
KP
3712 /* Zero the global flush/invalidate flags. These
3713 * will be modified as new domains are computed
3714 * for each object
3715 */
3716 dev->invalidate_domains = 0;
3717 dev->flush_domains = 0;
9220434a 3718 dev_priv->mm.flush_rings = 0;
646f0f6e 3719
673a394b
EA
3720 for (i = 0; i < args->buffer_count; i++) {
3721 struct drm_gem_object *obj = object_list[i];
673a394b 3722
646f0f6e 3723 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3724 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3725 }
3726
646f0f6e
KP
3727 if (dev->invalidate_domains | dev->flush_domains) {
3728#if WATCH_EXEC
3729 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3730 __func__,
3731 dev->invalidate_domains,
3732 dev->flush_domains);
3733#endif
9af90d19 3734 i915_gem_flush(dev, file,
646f0f6e 3735 dev->invalidate_domains,
9220434a
CW
3736 dev->flush_domains,
3737 dev_priv->mm.flush_rings);
a6910434
DV
3738 }
3739
efbeed96
EA
3740 for (i = 0; i < args->buffer_count; i++) {
3741 struct drm_gem_object *obj = object_list[i];
23010e43 3742 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3743 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3744
3745 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3746 if (obj->write_domain)
3747 list_move_tail(&obj_priv->gpu_write_list,
3748 &dev_priv->mm.gpu_write_list);
99fcb766 3749
1c5d22f7
CW
3750 trace_i915_gem_object_change_domain(obj,
3751 obj->read_domains,
3752 old_write_domain);
efbeed96
EA
3753 }
3754
673a394b
EA
3755#if WATCH_COHERENCY
3756 for (i = 0; i < args->buffer_count; i++) {
3757 i915_gem_object_check_coherency(object_list[i],
3758 exec_list[i].handle);
3759 }
3760#endif
3761
673a394b 3762#if WATCH_EXEC
6911a9b8 3763 i915_gem_dump_object(batch_obj,
673a394b
EA
3764 args->batch_len,
3765 __func__,
3766 ~0);
3767#endif
3768
e59f2bac
CW
3769 /* Check for any pending flips. As we only maintain a flip queue depth
3770 * of 1, we can simply insert a WAIT for the next display flip prior
3771 * to executing the batch and avoid stalling the CPU.
3772 */
3773 flips = 0;
3774 for (i = 0; i < args->buffer_count; i++) {
3775 if (object_list[i]->write_domain)
3776 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3777 }
3778 if (flips) {
3779 int plane, flip_mask;
3780
3781 for (plane = 0; flips >> plane; plane++) {
3782 if (((flips >> plane) & 1) == 0)
3783 continue;
3784
3785 if (plane)
3786 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3787 else
3788 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3789
3790 intel_ring_begin(dev, ring, 2);
3791 intel_ring_emit(dev, ring,
3792 MI_WAIT_FOR_EVENT | flip_mask);
3793 intel_ring_emit(dev, ring, MI_NOOP);
3794 intel_ring_advance(dev, ring);
3795 }
3796 }
3797
673a394b 3798 /* Exec the batchbuffer */
852835f3 3799 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
e59f2bac 3800 cliprects, exec_offset);
673a394b
EA
3801 if (ret) {
3802 DRM_ERROR("dispatch failed %d\n", ret);
3803 goto err;
3804 }
3805
3806 /*
3807 * Ensure that the commands in the batch buffer are
3808 * finished before the interrupt fires
3809 */
8a1a49f9 3810 i915_retire_commands(dev, ring);
673a394b 3811
617dbe27
DV
3812 for (i = 0; i < args->buffer_count; i++) {
3813 struct drm_gem_object *obj = object_list[i];
3814 obj_priv = to_intel_bo(obj);
3815
3816 i915_gem_object_move_to_active(obj, ring);
617dbe27 3817 }
a56ba56c 3818
9af90d19 3819 i915_add_request(dev, file, request, ring);
8dc5d147 3820 request = NULL;
673a394b 3821
673a394b 3822err:
b70d11da
KH
3823 for (i = 0; i < args->buffer_count; i++) {
3824 if (object_list[i]) {
23010e43 3825 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3826 obj_priv->in_execbuffer = false;
3827 }
aad87dff 3828 drm_gem_object_unreference(object_list[i]);
b70d11da 3829 }
673a394b 3830
673a394b
EA
3831 mutex_unlock(&dev->struct_mutex);
3832
93533c29 3833pre_mutex_err:
8e7d2b2c 3834 drm_free_large(object_list);
9a298b2a 3835 kfree(cliprects);
8dc5d147 3836 kfree(request);
673a394b
EA
3837
3838 return ret;
3839}
3840
76446cac
JB
3841/*
3842 * Legacy execbuffer just creates an exec2 list from the original exec object
3843 * list array and passes it to the real function.
3844 */
3845int
3846i915_gem_execbuffer(struct drm_device *dev, void *data,
3847 struct drm_file *file_priv)
3848{
3849 struct drm_i915_gem_execbuffer *args = data;
3850 struct drm_i915_gem_execbuffer2 exec2;
3851 struct drm_i915_gem_exec_object *exec_list = NULL;
3852 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3853 int ret, i;
3854
3855#if WATCH_EXEC
3856 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3857 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3858#endif
3859
3860 if (args->buffer_count < 1) {
3861 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3862 return -EINVAL;
3863 }
3864
3865 /* Copy in the exec list from userland */
3866 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3867 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3868 if (exec_list == NULL || exec2_list == NULL) {
3869 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3870 args->buffer_count);
3871 drm_free_large(exec_list);
3872 drm_free_large(exec2_list);
3873 return -ENOMEM;
3874 }
3875 ret = copy_from_user(exec_list,
3876 (struct drm_i915_relocation_entry __user *)
3877 (uintptr_t) args->buffers_ptr,
3878 sizeof(*exec_list) * args->buffer_count);
3879 if (ret != 0) {
3880 DRM_ERROR("copy %d exec entries failed %d\n",
3881 args->buffer_count, ret);
3882 drm_free_large(exec_list);
3883 drm_free_large(exec2_list);
3884 return -EFAULT;
3885 }
3886
3887 for (i = 0; i < args->buffer_count; i++) {
3888 exec2_list[i].handle = exec_list[i].handle;
3889 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3890 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3891 exec2_list[i].alignment = exec_list[i].alignment;
3892 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3893 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3894 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3895 else
3896 exec2_list[i].flags = 0;
3897 }
3898
3899 exec2.buffers_ptr = args->buffers_ptr;
3900 exec2.buffer_count = args->buffer_count;
3901 exec2.batch_start_offset = args->batch_start_offset;
3902 exec2.batch_len = args->batch_len;
3903 exec2.DR1 = args->DR1;
3904 exec2.DR4 = args->DR4;
3905 exec2.num_cliprects = args->num_cliprects;
3906 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3907 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3908
3909 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3910 if (!ret) {
3911 /* Copy the new buffer offsets back to the user's exec list. */
3912 for (i = 0; i < args->buffer_count; i++)
3913 exec_list[i].offset = exec2_list[i].offset;
3914 /* ... and back out to userspace */
3915 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3916 (uintptr_t) args->buffers_ptr,
3917 exec_list,
3918 sizeof(*exec_list) * args->buffer_count);
3919 if (ret) {
3920 ret = -EFAULT;
3921 DRM_ERROR("failed to copy %d exec entries "
3922 "back to user (%d)\n",
3923 args->buffer_count, ret);
3924 }
76446cac
JB
3925 }
3926
3927 drm_free_large(exec_list);
3928 drm_free_large(exec2_list);
3929 return ret;
3930}
3931
3932int
3933i915_gem_execbuffer2(struct drm_device *dev, void *data,
3934 struct drm_file *file_priv)
3935{
3936 struct drm_i915_gem_execbuffer2 *args = data;
3937 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3938 int ret;
3939
3940#if WATCH_EXEC
3941 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3942 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3943#endif
3944
3945 if (args->buffer_count < 1) {
3946 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3947 return -EINVAL;
3948 }
3949
3950 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3951 if (exec2_list == NULL) {
3952 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3953 args->buffer_count);
3954 return -ENOMEM;
3955 }
3956 ret = copy_from_user(exec2_list,
3957 (struct drm_i915_relocation_entry __user *)
3958 (uintptr_t) args->buffers_ptr,
3959 sizeof(*exec2_list) * args->buffer_count);
3960 if (ret != 0) {
3961 DRM_ERROR("copy %d exec entries failed %d\n",
3962 args->buffer_count, ret);
3963 drm_free_large(exec2_list);
3964 return -EFAULT;
3965 }
3966
3967 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3968 if (!ret) {
3969 /* Copy the new buffer offsets back to the user's exec list. */
3970 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3971 (uintptr_t) args->buffers_ptr,
3972 exec2_list,
3973 sizeof(*exec2_list) * args->buffer_count);
3974 if (ret) {
3975 ret = -EFAULT;
3976 DRM_ERROR("failed to copy %d exec entries "
3977 "back to user (%d)\n",
3978 args->buffer_count, ret);
3979 }
3980 }
3981
3982 drm_free_large(exec2_list);
3983 return ret;
3984}
3985
673a394b
EA
3986int
3987i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3988{
3989 struct drm_device *dev = obj->dev;
f13d3f73 3990 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3991 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3992 int ret;
3993
778c3544 3994 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3995 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
3996
3997 if (obj_priv->gtt_space != NULL) {
3998 if (alignment == 0)
3999 alignment = i915_gem_get_gtt_alignment(obj);
4000 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4001 WARN(obj_priv->pin_count,
4002 "bo is already pinned with incorrect alignment:"
4003 " offset=%x, req.alignment=%x\n",
4004 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4005 ret = i915_gem_object_unbind(obj);
4006 if (ret)
4007 return ret;
4008 }
4009 }
4010
673a394b
EA
4011 if (obj_priv->gtt_space == NULL) {
4012 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4013 if (ret)
673a394b 4014 return ret;
22c344e9 4015 }
76446cac 4016
673a394b
EA
4017 obj_priv->pin_count++;
4018
4019 /* If the object is not active and not pending a flush,
4020 * remove it from the inactive list
4021 */
4022 if (obj_priv->pin_count == 1) {
73aa808f 4023 i915_gem_info_add_pin(dev_priv, obj->size);
f13d3f73
CW
4024 if (!obj_priv->active)
4025 list_move_tail(&obj_priv->list,
4026 &dev_priv->mm.pinned_list);
673a394b 4027 }
673a394b 4028
23bc5982 4029 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4030 return 0;
4031}
4032
4033void
4034i915_gem_object_unpin(struct drm_gem_object *obj)
4035{
4036 struct drm_device *dev = obj->dev;
4037 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4038 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4039
23bc5982 4040 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4041 obj_priv->pin_count--;
4042 BUG_ON(obj_priv->pin_count < 0);
4043 BUG_ON(obj_priv->gtt_space == NULL);
4044
4045 /* If the object is no longer pinned, and is
4046 * neither active nor being flushed, then stick it on
4047 * the inactive list
4048 */
4049 if (obj_priv->pin_count == 0) {
f13d3f73 4050 if (!obj_priv->active)
673a394b
EA
4051 list_move_tail(&obj_priv->list,
4052 &dev_priv->mm.inactive_list);
73aa808f 4053 i915_gem_info_remove_pin(dev_priv, obj->size);
673a394b 4054 }
23bc5982 4055 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4056}
4057
4058int
4059i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4060 struct drm_file *file_priv)
4061{
4062 struct drm_i915_gem_pin *args = data;
4063 struct drm_gem_object *obj;
4064 struct drm_i915_gem_object *obj_priv;
4065 int ret;
4066
1d7cfea1
CW
4067 ret = i915_mutex_lock_interruptible(dev);
4068 if (ret)
4069 return ret;
4070
673a394b
EA
4071 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4072 if (obj == NULL) {
1d7cfea1
CW
4073 ret = -ENOENT;
4074 goto unlock;
673a394b 4075 }
23010e43 4076 obj_priv = to_intel_bo(obj);
673a394b 4077
bb6baf76
CW
4078 if (obj_priv->madv != I915_MADV_WILLNEED) {
4079 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4080 ret = -EINVAL;
4081 goto out;
3ef94daa
CW
4082 }
4083
79e53945
JB
4084 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4085 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4086 args->handle);
1d7cfea1
CW
4087 ret = -EINVAL;
4088 goto out;
79e53945
JB
4089 }
4090
4091 obj_priv->user_pin_count++;
4092 obj_priv->pin_filp = file_priv;
4093 if (obj_priv->user_pin_count == 1) {
4094 ret = i915_gem_object_pin(obj, args->alignment);
1d7cfea1
CW
4095 if (ret)
4096 goto out;
673a394b
EA
4097 }
4098
4099 /* XXX - flush the CPU caches for pinned objects
4100 * as the X server doesn't manage domains yet
4101 */
e47c68e9 4102 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4103 args->offset = obj_priv->gtt_offset;
1d7cfea1 4104out:
673a394b 4105 drm_gem_object_unreference(obj);
1d7cfea1 4106unlock:
673a394b 4107 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4108 return ret;
673a394b
EA
4109}
4110
4111int
4112i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4113 struct drm_file *file_priv)
4114{
4115 struct drm_i915_gem_pin *args = data;
4116 struct drm_gem_object *obj;
79e53945 4117 struct drm_i915_gem_object *obj_priv;
76c1dec1 4118 int ret;
673a394b 4119
1d7cfea1
CW
4120 ret = i915_mutex_lock_interruptible(dev);
4121 if (ret)
4122 return ret;
4123
673a394b
EA
4124 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4125 if (obj == NULL) {
1d7cfea1
CW
4126 ret = -ENOENT;
4127 goto unlock;
673a394b 4128 }
23010e43 4129 obj_priv = to_intel_bo(obj);
76c1dec1 4130
79e53945
JB
4131 if (obj_priv->pin_filp != file_priv) {
4132 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4133 args->handle);
1d7cfea1
CW
4134 ret = -EINVAL;
4135 goto out;
79e53945
JB
4136 }
4137 obj_priv->user_pin_count--;
4138 if (obj_priv->user_pin_count == 0) {
4139 obj_priv->pin_filp = NULL;
4140 i915_gem_object_unpin(obj);
4141 }
673a394b 4142
1d7cfea1 4143out:
673a394b 4144 drm_gem_object_unreference(obj);
1d7cfea1 4145unlock:
673a394b 4146 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4147 return ret;
673a394b
EA
4148}
4149
4150int
4151i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4152 struct drm_file *file_priv)
4153{
4154 struct drm_i915_gem_busy *args = data;
4155 struct drm_gem_object *obj;
4156 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4157 int ret;
4158
76c1dec1 4159 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4160 if (ret)
76c1dec1 4161 return ret;
1d7cfea1
CW
4162
4163 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4164 if (obj == NULL) {
4165 ret = -ENOENT;
4166 goto unlock;
30dbf0c0 4167 }
1d7cfea1 4168 obj_priv = to_intel_bo(obj);
30dbf0c0 4169
0be555b6
CW
4170 /* Count all active objects as busy, even if they are currently not used
4171 * by the gpu. Users of this interface expect objects to eventually
4172 * become non-busy without any further actions, therefore emit any
4173 * necessary flushes here.
c4de0a5d 4174 */
0be555b6
CW
4175 args->busy = obj_priv->active;
4176 if (args->busy) {
4177 /* Unconditionally flush objects, even when the gpu still uses this
4178 * object. Userspace calling this function indicates that it wants to
4179 * use this buffer rather sooner than later, so issuing the required
4180 * flush earlier is beneficial.
4181 */
c78ec30b
CW
4182 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4183 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4184 obj_priv->ring,
4185 0, obj->write_domain);
0be555b6
CW
4186
4187 /* Update the active list for the hardware's current position.
4188 * Otherwise this only updates on a delayed timer or when irqs
4189 * are actually unmasked, and our working set ends up being
4190 * larger than required.
4191 */
4192 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4193
4194 args->busy = obj_priv->active;
4195 }
673a394b
EA
4196
4197 drm_gem_object_unreference(obj);
1d7cfea1 4198unlock:
673a394b 4199 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4200 return ret;
673a394b
EA
4201}
4202
4203int
4204i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4205 struct drm_file *file_priv)
4206{
4207 return i915_gem_ring_throttle(dev, file_priv);
4208}
4209
3ef94daa
CW
4210int
4211i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4212 struct drm_file *file_priv)
4213{
4214 struct drm_i915_gem_madvise *args = data;
4215 struct drm_gem_object *obj;
4216 struct drm_i915_gem_object *obj_priv;
76c1dec1 4217 int ret;
3ef94daa
CW
4218
4219 switch (args->madv) {
4220 case I915_MADV_DONTNEED:
4221 case I915_MADV_WILLNEED:
4222 break;
4223 default:
4224 return -EINVAL;
4225 }
4226
1d7cfea1
CW
4227 ret = i915_mutex_lock_interruptible(dev);
4228 if (ret)
4229 return ret;
4230
3ef94daa
CW
4231 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4232 if (obj == NULL) {
1d7cfea1
CW
4233 ret = -ENOENT;
4234 goto unlock;
3ef94daa 4235 }
23010e43 4236 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4237
4238 if (obj_priv->pin_count) {
1d7cfea1
CW
4239 ret = -EINVAL;
4240 goto out;
3ef94daa
CW
4241 }
4242
bb6baf76
CW
4243 if (obj_priv->madv != __I915_MADV_PURGED)
4244 obj_priv->madv = args->madv;
3ef94daa 4245
2d7ef395
CW
4246 /* if the object is no longer bound, discard its backing storage */
4247 if (i915_gem_object_is_purgeable(obj_priv) &&
4248 obj_priv->gtt_space == NULL)
4249 i915_gem_object_truncate(obj);
4250
bb6baf76
CW
4251 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4252
1d7cfea1 4253out:
3ef94daa 4254 drm_gem_object_unreference(obj);
1d7cfea1 4255unlock:
3ef94daa 4256 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4257 return ret;
3ef94daa
CW
4258}
4259
ac52bc56
DV
4260struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4261 size_t size)
4262{
73aa808f 4263 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4264 struct drm_i915_gem_object *obj;
ac52bc56 4265
c397b908
DV
4266 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4267 if (obj == NULL)
4268 return NULL;
673a394b 4269
c397b908
DV
4270 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4271 kfree(obj);
4272 return NULL;
4273 }
673a394b 4274
73aa808f
CW
4275 i915_gem_info_add_obj(dev_priv, size);
4276
c397b908
DV
4277 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4278 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4279
c397b908 4280 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4281 obj->base.driver_private = NULL;
c397b908
DV
4282 obj->fence_reg = I915_FENCE_REG_NONE;
4283 INIT_LIST_HEAD(&obj->list);
4284 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4285 obj->madv = I915_MADV_WILLNEED;
de151cf6 4286
c397b908
DV
4287 return &obj->base;
4288}
4289
4290int i915_gem_init_object(struct drm_gem_object *obj)
4291{
4292 BUG();
de151cf6 4293
673a394b
EA
4294 return 0;
4295}
4296
be72615b 4297static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4298{
de151cf6 4299 struct drm_device *dev = obj->dev;
be72615b 4300 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4301 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4302 int ret;
673a394b 4303
be72615b
CW
4304 ret = i915_gem_object_unbind(obj);
4305 if (ret == -ERESTARTSYS) {
4306 list_move(&obj_priv->list,
4307 &dev_priv->mm.deferred_free_list);
4308 return;
4309 }
673a394b 4310
7e616158
CW
4311 if (obj_priv->mmap_offset)
4312 i915_gem_free_mmap_offset(obj);
de151cf6 4313
c397b908 4314 drm_gem_object_release(obj);
73aa808f 4315 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4316
9a298b2a 4317 kfree(obj_priv->page_cpu_valid);
280b713b 4318 kfree(obj_priv->bit_17);
c397b908 4319 kfree(obj_priv);
673a394b
EA
4320}
4321
be72615b
CW
4322void i915_gem_free_object(struct drm_gem_object *obj)
4323{
4324 struct drm_device *dev = obj->dev;
4325 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4326
4327 trace_i915_gem_object_destroy(obj);
4328
4329 while (obj_priv->pin_count > 0)
4330 i915_gem_object_unpin(obj);
4331
4332 if (obj_priv->phys_obj)
4333 i915_gem_detach_phys_object(dev, obj);
4334
4335 i915_gem_free_object_tail(obj);
4336}
4337
29105ccc
CW
4338int
4339i915_gem_idle(struct drm_device *dev)
4340{
4341 drm_i915_private_t *dev_priv = dev->dev_private;
4342 int ret;
28dfe52a 4343
29105ccc 4344 mutex_lock(&dev->struct_mutex);
1c5d22f7 4345
87acb0a5 4346 if (dev_priv->mm.suspended) {
29105ccc
CW
4347 mutex_unlock(&dev->struct_mutex);
4348 return 0;
28dfe52a
EA
4349 }
4350
29105ccc 4351 ret = i915_gpu_idle(dev);
6dbe2772
KP
4352 if (ret) {
4353 mutex_unlock(&dev->struct_mutex);
673a394b 4354 return ret;
6dbe2772 4355 }
673a394b 4356
29105ccc
CW
4357 /* Under UMS, be paranoid and evict. */
4358 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4359 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4360 if (ret) {
4361 mutex_unlock(&dev->struct_mutex);
4362 return ret;
4363 }
4364 }
4365
4366 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4367 * We need to replace this with a semaphore, or something.
4368 * And not confound mm.suspended!
4369 */
4370 dev_priv->mm.suspended = 1;
bc0c7f14 4371 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4372
4373 i915_kernel_lost_context(dev);
6dbe2772 4374 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4375
6dbe2772
KP
4376 mutex_unlock(&dev->struct_mutex);
4377
29105ccc
CW
4378 /* Cancel the retire work handler, which should be idle now. */
4379 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4380
673a394b
EA
4381 return 0;
4382}
4383
e552eb70
JB
4384/*
4385 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4386 * over cache flushing.
4387 */
8187a2b7 4388static int
e552eb70
JB
4389i915_gem_init_pipe_control(struct drm_device *dev)
4390{
4391 drm_i915_private_t *dev_priv = dev->dev_private;
4392 struct drm_gem_object *obj;
4393 struct drm_i915_gem_object *obj_priv;
4394 int ret;
4395
34dc4d44 4396 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4397 if (obj == NULL) {
4398 DRM_ERROR("Failed to allocate seqno page\n");
4399 ret = -ENOMEM;
4400 goto err;
4401 }
4402 obj_priv = to_intel_bo(obj);
4403 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4404
4405 ret = i915_gem_object_pin(obj, 4096);
4406 if (ret)
4407 goto err_unref;
4408
4409 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4410 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4411 if (dev_priv->seqno_page == NULL)
4412 goto err_unpin;
4413
4414 dev_priv->seqno_obj = obj;
4415 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4416
4417 return 0;
4418
4419err_unpin:
4420 i915_gem_object_unpin(obj);
4421err_unref:
4422 drm_gem_object_unreference(obj);
4423err:
4424 return ret;
4425}
4426
8187a2b7
ZN
4427
4428static void
e552eb70
JB
4429i915_gem_cleanup_pipe_control(struct drm_device *dev)
4430{
4431 drm_i915_private_t *dev_priv = dev->dev_private;
4432 struct drm_gem_object *obj;
4433 struct drm_i915_gem_object *obj_priv;
4434
4435 obj = dev_priv->seqno_obj;
4436 obj_priv = to_intel_bo(obj);
4437 kunmap(obj_priv->pages[0]);
4438 i915_gem_object_unpin(obj);
4439 drm_gem_object_unreference(obj);
4440 dev_priv->seqno_obj = NULL;
4441
4442 dev_priv->seqno_page = NULL;
673a394b
EA
4443}
4444
8187a2b7
ZN
4445int
4446i915_gem_init_ringbuffer(struct drm_device *dev)
4447{
4448 drm_i915_private_t *dev_priv = dev->dev_private;
4449 int ret;
68f95ba9 4450
8187a2b7
ZN
4451 if (HAS_PIPE_CONTROL(dev)) {
4452 ret = i915_gem_init_pipe_control(dev);
4453 if (ret)
4454 return ret;
4455 }
68f95ba9 4456
5c1143bb 4457 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4458 if (ret)
4459 goto cleanup_pipe_control;
4460
4461 if (HAS_BSD(dev)) {
5c1143bb 4462 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4463 if (ret)
4464 goto cleanup_render_ring;
d1b851fc 4465 }
68f95ba9 4466
6f392d54
CW
4467 dev_priv->next_seqno = 1;
4468
68f95ba9
CW
4469 return 0;
4470
4471cleanup_render_ring:
4472 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4473cleanup_pipe_control:
4474 if (HAS_PIPE_CONTROL(dev))
4475 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4476 return ret;
4477}
4478
4479void
4480i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4481{
4482 drm_i915_private_t *dev_priv = dev->dev_private;
4483
4484 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
87acb0a5 4485 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4486 if (HAS_PIPE_CONTROL(dev))
4487 i915_gem_cleanup_pipe_control(dev);
4488}
4489
673a394b
EA
4490int
4491i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4492 struct drm_file *file_priv)
4493{
4494 drm_i915_private_t *dev_priv = dev->dev_private;
4495 int ret;
4496
79e53945
JB
4497 if (drm_core_check_feature(dev, DRIVER_MODESET))
4498 return 0;
4499
ba1234d1 4500 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4501 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4502 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4503 }
4504
673a394b 4505 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4506 dev_priv->mm.suspended = 0;
4507
4508 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4509 if (ret != 0) {
4510 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4511 return ret;
d816f6ac 4512 }
9bb2d6f9 4513
852835f3 4514 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4515 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
673a394b
EA
4516 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4517 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4518 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4519 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4520 mutex_unlock(&dev->struct_mutex);
dbb19d30 4521
5f35308b
CW
4522 ret = drm_irq_install(dev);
4523 if (ret)
4524 goto cleanup_ringbuffer;
dbb19d30 4525
673a394b 4526 return 0;
5f35308b
CW
4527
4528cleanup_ringbuffer:
4529 mutex_lock(&dev->struct_mutex);
4530 i915_gem_cleanup_ringbuffer(dev);
4531 dev_priv->mm.suspended = 1;
4532 mutex_unlock(&dev->struct_mutex);
4533
4534 return ret;
673a394b
EA
4535}
4536
4537int
4538i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4539 struct drm_file *file_priv)
4540{
79e53945
JB
4541 if (drm_core_check_feature(dev, DRIVER_MODESET))
4542 return 0;
4543
dbb19d30 4544 drm_irq_uninstall(dev);
e6890f6f 4545 return i915_gem_idle(dev);
673a394b
EA
4546}
4547
4548void
4549i915_gem_lastclose(struct drm_device *dev)
4550{
4551 int ret;
673a394b 4552
e806b495
EA
4553 if (drm_core_check_feature(dev, DRIVER_MODESET))
4554 return;
4555
6dbe2772
KP
4556 ret = i915_gem_idle(dev);
4557 if (ret)
4558 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4559}
4560
4561void
4562i915_gem_load(struct drm_device *dev)
4563{
b5aa8a0f 4564 int i;
673a394b
EA
4565 drm_i915_private_t *dev_priv = dev->dev_private;
4566
673a394b 4567 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4568 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4569 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4570 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4571 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4572 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4573 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4574 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
87acb0a5
CW
4575 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4576 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
007cc8ac
DV
4577 for (i = 0; i < 16; i++)
4578 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4579 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4580 i915_gem_retire_work_handler);
30dbf0c0 4581 init_completion(&dev_priv->error_completion);
31169714
CW
4582 spin_lock(&shrink_list_lock);
4583 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4584 spin_unlock(&shrink_list_lock);
4585
94400120
DA
4586 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4587 if (IS_GEN3(dev)) {
4588 u32 tmp = I915_READ(MI_ARB_STATE);
4589 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4590 /* arb state is a masked write, so set bit + bit in mask */
4591 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4592 I915_WRITE(MI_ARB_STATE, tmp);
4593 }
4594 }
4595
de151cf6 4596 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4597 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4598 dev_priv->fence_reg_start = 3;
de151cf6 4599
a6c45cf0 4600 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4601 dev_priv->num_fence_regs = 16;
4602 else
4603 dev_priv->num_fence_regs = 8;
4604
b5aa8a0f 4605 /* Initialize fence registers to zero */
a6c45cf0
CW
4606 switch (INTEL_INFO(dev)->gen) {
4607 case 6:
4608 for (i = 0; i < 16; i++)
4609 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4610 break;
4611 case 5:
4612 case 4:
b5aa8a0f
GH
4613 for (i = 0; i < 16; i++)
4614 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4615 break;
4616 case 3:
b5aa8a0f
GH
4617 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4618 for (i = 0; i < 8; i++)
4619 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4620 case 2:
4621 for (i = 0; i < 8; i++)
4622 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4623 break;
b5aa8a0f 4624 }
673a394b 4625 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4626 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4627}
71acb5eb
DA
4628
4629/*
4630 * Create a physically contiguous memory object for this object
4631 * e.g. for cursor + overlay regs
4632 */
995b6762
CW
4633static int i915_gem_init_phys_object(struct drm_device *dev,
4634 int id, int size, int align)
71acb5eb
DA
4635{
4636 drm_i915_private_t *dev_priv = dev->dev_private;
4637 struct drm_i915_gem_phys_object *phys_obj;
4638 int ret;
4639
4640 if (dev_priv->mm.phys_objs[id - 1] || !size)
4641 return 0;
4642
9a298b2a 4643 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4644 if (!phys_obj)
4645 return -ENOMEM;
4646
4647 phys_obj->id = id;
4648
6eeefaf3 4649 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4650 if (!phys_obj->handle) {
4651 ret = -ENOMEM;
4652 goto kfree_obj;
4653 }
4654#ifdef CONFIG_X86
4655 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4656#endif
4657
4658 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4659
4660 return 0;
4661kfree_obj:
9a298b2a 4662 kfree(phys_obj);
71acb5eb
DA
4663 return ret;
4664}
4665
995b6762 4666static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4667{
4668 drm_i915_private_t *dev_priv = dev->dev_private;
4669 struct drm_i915_gem_phys_object *phys_obj;
4670
4671 if (!dev_priv->mm.phys_objs[id - 1])
4672 return;
4673
4674 phys_obj = dev_priv->mm.phys_objs[id - 1];
4675 if (phys_obj->cur_obj) {
4676 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4677 }
4678
4679#ifdef CONFIG_X86
4680 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4681#endif
4682 drm_pci_free(dev, phys_obj->handle);
4683 kfree(phys_obj);
4684 dev_priv->mm.phys_objs[id - 1] = NULL;
4685}
4686
4687void i915_gem_free_all_phys_object(struct drm_device *dev)
4688{
4689 int i;
4690
260883c8 4691 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4692 i915_gem_free_phys_object(dev, i);
4693}
4694
4695void i915_gem_detach_phys_object(struct drm_device *dev,
4696 struct drm_gem_object *obj)
4697{
4698 struct drm_i915_gem_object *obj_priv;
4699 int i;
4700 int ret;
4701 int page_count;
4702
23010e43 4703 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4704 if (!obj_priv->phys_obj)
4705 return;
4706
4bdadb97 4707 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4708 if (ret)
4709 goto out;
4710
4711 page_count = obj->size / PAGE_SIZE;
4712
4713 for (i = 0; i < page_count; i++) {
856fa198 4714 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4715 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4716
4717 memcpy(dst, src, PAGE_SIZE);
4718 kunmap_atomic(dst, KM_USER0);
4719 }
856fa198 4720 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4721 drm_agp_chipset_flush(dev);
d78b47b9
CW
4722
4723 i915_gem_object_put_pages(obj);
71acb5eb
DA
4724out:
4725 obj_priv->phys_obj->cur_obj = NULL;
4726 obj_priv->phys_obj = NULL;
4727}
4728
4729int
4730i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4731 struct drm_gem_object *obj,
4732 int id,
4733 int align)
71acb5eb
DA
4734{
4735 drm_i915_private_t *dev_priv = dev->dev_private;
4736 struct drm_i915_gem_object *obj_priv;
4737 int ret = 0;
4738 int page_count;
4739 int i;
4740
4741 if (id > I915_MAX_PHYS_OBJECT)
4742 return -EINVAL;
4743
23010e43 4744 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4745
4746 if (obj_priv->phys_obj) {
4747 if (obj_priv->phys_obj->id == id)
4748 return 0;
4749 i915_gem_detach_phys_object(dev, obj);
4750 }
4751
71acb5eb
DA
4752 /* create a new object */
4753 if (!dev_priv->mm.phys_objs[id - 1]) {
4754 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4755 obj->size, align);
71acb5eb 4756 if (ret) {
aeb565df 4757 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4758 goto out;
4759 }
4760 }
4761
4762 /* bind to the object */
4763 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4764 obj_priv->phys_obj->cur_obj = obj;
4765
4bdadb97 4766 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4767 if (ret) {
4768 DRM_ERROR("failed to get page list\n");
4769 goto out;
4770 }
4771
4772 page_count = obj->size / PAGE_SIZE;
4773
4774 for (i = 0; i < page_count; i++) {
856fa198 4775 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4776 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4777
4778 memcpy(dst, src, PAGE_SIZE);
4779 kunmap_atomic(src, KM_USER0);
4780 }
4781
d78b47b9
CW
4782 i915_gem_object_put_pages(obj);
4783
71acb5eb
DA
4784 return 0;
4785out:
4786 return ret;
4787}
4788
4789static int
4790i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4791 struct drm_i915_gem_pwrite *args,
4792 struct drm_file *file_priv)
4793{
23010e43 4794 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4795 void *obj_addr;
4796 int ret;
4797 char __user *user_data;
4798
4799 user_data = (char __user *) (uintptr_t) args->data_ptr;
4800 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4801
44d98a61 4802 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4803 ret = copy_from_user(obj_addr, user_data, args->size);
4804 if (ret)
4805 return -EFAULT;
4806
4807 drm_agp_chipset_flush(dev);
4808 return 0;
4809}
b962442e 4810
f787a5f5 4811void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4812{
f787a5f5 4813 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4814
4815 /* Clean up our request list when the client is going away, so that
4816 * later retire_requests won't dereference our soon-to-be-gone
4817 * file_priv.
4818 */
1c25595f 4819 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4820 while (!list_empty(&file_priv->mm.request_list)) {
4821 struct drm_i915_gem_request *request;
4822
4823 request = list_first_entry(&file_priv->mm.request_list,
4824 struct drm_i915_gem_request,
4825 client_list);
4826 list_del(&request->client_list);
4827 request->file_priv = NULL;
4828 }
1c25595f 4829 spin_unlock(&file_priv->mm.lock);
b962442e 4830}
31169714 4831
1637ef41
CW
4832static int
4833i915_gpu_is_active(struct drm_device *dev)
4834{
4835 drm_i915_private_t *dev_priv = dev->dev_private;
4836 int lists_empty;
4837
1637ef41 4838 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
87acb0a5
CW
4839 list_empty(&dev_priv->render_ring.active_list) &&
4840 list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4841
4842 return !lists_empty;
4843}
4844
31169714 4845static int
7f8275d0 4846i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4847{
4848 drm_i915_private_t *dev_priv, *next_dev;
4849 struct drm_i915_gem_object *obj_priv, *next_obj;
4850 int cnt = 0;
4851 int would_deadlock = 1;
4852
4853 /* "fast-path" to count number of available objects */
4854 if (nr_to_scan == 0) {
4855 spin_lock(&shrink_list_lock);
4856 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4857 struct drm_device *dev = dev_priv->dev;
4858
4859 if (mutex_trylock(&dev->struct_mutex)) {
4860 list_for_each_entry(obj_priv,
4861 &dev_priv->mm.inactive_list,
4862 list)
4863 cnt++;
4864 mutex_unlock(&dev->struct_mutex);
4865 }
4866 }
4867 spin_unlock(&shrink_list_lock);
4868
4869 return (cnt / 100) * sysctl_vfs_cache_pressure;
4870 }
4871
4872 spin_lock(&shrink_list_lock);
4873
1637ef41 4874rescan:
31169714
CW
4875 /* first scan for clean buffers */
4876 list_for_each_entry_safe(dev_priv, next_dev,
4877 &shrink_list, mm.shrink_list) {
4878 struct drm_device *dev = dev_priv->dev;
4879
4880 if (! mutex_trylock(&dev->struct_mutex))
4881 continue;
4882
4883 spin_unlock(&shrink_list_lock);
b09a1fec 4884 i915_gem_retire_requests(dev);
31169714
CW
4885
4886 list_for_each_entry_safe(obj_priv, next_obj,
4887 &dev_priv->mm.inactive_list,
4888 list) {
4889 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4890 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4891 if (--nr_to_scan <= 0)
4892 break;
4893 }
4894 }
4895
4896 spin_lock(&shrink_list_lock);
4897 mutex_unlock(&dev->struct_mutex);
4898
963b4836
CW
4899 would_deadlock = 0;
4900
31169714
CW
4901 if (nr_to_scan <= 0)
4902 break;
4903 }
4904
4905 /* second pass, evict/count anything still on the inactive list */
4906 list_for_each_entry_safe(dev_priv, next_dev,
4907 &shrink_list, mm.shrink_list) {
4908 struct drm_device *dev = dev_priv->dev;
4909
4910 if (! mutex_trylock(&dev->struct_mutex))
4911 continue;
4912
4913 spin_unlock(&shrink_list_lock);
4914
4915 list_for_each_entry_safe(obj_priv, next_obj,
4916 &dev_priv->mm.inactive_list,
4917 list) {
4918 if (nr_to_scan > 0) {
a8089e84 4919 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4920 nr_to_scan--;
4921 } else
4922 cnt++;
4923 }
4924
4925 spin_lock(&shrink_list_lock);
4926 mutex_unlock(&dev->struct_mutex);
4927
4928 would_deadlock = 0;
4929 }
4930
1637ef41
CW
4931 if (nr_to_scan) {
4932 int active = 0;
4933
4934 /*
4935 * We are desperate for pages, so as a last resort, wait
4936 * for the GPU to finish and discard whatever we can.
4937 * This has a dramatic impact to reduce the number of
4938 * OOM-killer events whilst running the GPU aggressively.
4939 */
4940 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4941 struct drm_device *dev = dev_priv->dev;
4942
4943 if (!mutex_trylock(&dev->struct_mutex))
4944 continue;
4945
4946 spin_unlock(&shrink_list_lock);
4947
4948 if (i915_gpu_is_active(dev)) {
4949 i915_gpu_idle(dev);
4950 active++;
4951 }
4952
4953 spin_lock(&shrink_list_lock);
4954 mutex_unlock(&dev->struct_mutex);
4955 }
4956
4957 if (active)
4958 goto rescan;
4959 }
4960
31169714
CW
4961 spin_unlock(&shrink_list_lock);
4962
4963 if (would_deadlock)
4964 return -1;
4965 else if (cnt > 0)
4966 return (cnt / 100) * sysctl_vfs_cache_pressure;
4967 else
4968 return 0;
4969}
4970
4971static struct shrinker shrinker = {
4972 .shrink = i915_gem_shrink,
4973 .seeks = DEFAULT_SEEKS,
4974};
4975
4976__init void
4977i915_gem_shrinker_init(void)
4978{
4979 register_shrinker(&shrinker);
4980}
4981
4982__exit void
4983i915_gem_shrinker_exit(void)
4984{
4985 unregister_shrinker(&shrinker);
4986}
This page took 0.784925 seconds and 5 git commands to generate.