drm/i915: move flushing list processing to i915_gem_flush
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
2dafb1e0 40static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
41static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
42static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
43static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
44 int write);
45static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
46 uint64_t offset,
47 uint64_t size);
48static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
e35a41de
DV
49static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
50 bool interruptible);
de151cf6
JB
51static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
52 unsigned alignment);
de151cf6 53static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
54static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
be72615b 57static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 58
31169714
CW
59static LIST_HEAD(shrink_list);
60static DEFINE_SPINLOCK(shrink_list_lock);
61
7d1c4804
CW
62static inline bool
63i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
64{
65 return obj_priv->gtt_space &&
66 !obj_priv->active &&
67 obj_priv->pin_count == 0;
68}
69
79e53945
JB
70int i915_gem_do_init(struct drm_device *dev, unsigned long start,
71 unsigned long end)
673a394b
EA
72{
73 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 74
79e53945
JB
75 if (start >= end ||
76 (start & (PAGE_SIZE - 1)) != 0 ||
77 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
78 return -EINVAL;
79 }
80
79e53945
JB
81 drm_mm_init(&dev_priv->mm.gtt_space, start,
82 end - start);
673a394b 83
79e53945
JB
84 dev->gtt_total = (uint32_t) (end - start);
85
86 return 0;
87}
673a394b 88
79e53945
JB
89int
90i915_gem_init_ioctl(struct drm_device *dev, void *data,
91 struct drm_file *file_priv)
92{
93 struct drm_i915_gem_init *args = data;
94 int ret;
95
96 mutex_lock(&dev->struct_mutex);
97 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
98 mutex_unlock(&dev->struct_mutex);
99
79e53945 100 return ret;
673a394b
EA
101}
102
5a125c3c
EA
103int
104i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
105 struct drm_file *file_priv)
106{
5a125c3c 107 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
108
109 if (!(dev->driver->driver_features & DRIVER_GEM))
110 return -ENODEV;
111
112 args->aper_size = dev->gtt_total;
2678d9d6
KP
113 args->aper_available_size = (args->aper_size -
114 atomic_read(&dev->pin_memory));
5a125c3c
EA
115
116 return 0;
117}
118
673a394b
EA
119
120/**
121 * Creates a new mm object and returns a handle to it.
122 */
123int
124i915_gem_create_ioctl(struct drm_device *dev, void *data,
125 struct drm_file *file_priv)
126{
127 struct drm_i915_gem_create *args = data;
128 struct drm_gem_object *obj;
a1a2d1d3
PP
129 int ret;
130 u32 handle;
673a394b
EA
131
132 args->size = roundup(args->size, PAGE_SIZE);
133
134 /* Allocate the new object */
ac52bc56 135 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
136 if (obj == NULL)
137 return -ENOMEM;
138
139 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
140 if (ret) {
141 drm_gem_object_unreference_unlocked(obj);
673a394b 142 return ret;
1dfd9754 143 }
673a394b 144
1dfd9754
CW
145 /* Sink the floating reference from kref_init(handlecount) */
146 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 147
1dfd9754 148 args->handle = handle;
673a394b
EA
149 return 0;
150}
151
eb01459f
EA
152static inline int
153fast_shmem_read(struct page **pages,
154 loff_t page_base, int page_offset,
155 char __user *data,
156 int length)
157{
158 char __iomem *vaddr;
2bc43b5c 159 int unwritten;
eb01459f
EA
160
161 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
162 if (vaddr == NULL)
163 return -ENOMEM;
2bc43b5c 164 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
165 kunmap_atomic(vaddr, KM_USER0);
166
2bc43b5c
FM
167 if (unwritten)
168 return -EFAULT;
169
170 return 0;
eb01459f
EA
171}
172
280b713b
EA
173static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
174{
175 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 176 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
177
178 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
179 obj_priv->tiling_mode != I915_TILING_NONE;
180}
181
99a03df5 182static inline void
40123c1f
EA
183slow_shmem_copy(struct page *dst_page,
184 int dst_offset,
185 struct page *src_page,
186 int src_offset,
187 int length)
188{
189 char *dst_vaddr, *src_vaddr;
190
99a03df5
CW
191 dst_vaddr = kmap(dst_page);
192 src_vaddr = kmap(src_page);
40123c1f
EA
193
194 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
195
99a03df5
CW
196 kunmap(src_page);
197 kunmap(dst_page);
40123c1f
EA
198}
199
99a03df5 200static inline void
280b713b
EA
201slow_shmem_bit17_copy(struct page *gpu_page,
202 int gpu_offset,
203 struct page *cpu_page,
204 int cpu_offset,
205 int length,
206 int is_read)
207{
208 char *gpu_vaddr, *cpu_vaddr;
209
210 /* Use the unswizzled path if this page isn't affected. */
211 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212 if (is_read)
213 return slow_shmem_copy(cpu_page, cpu_offset,
214 gpu_page, gpu_offset, length);
215 else
216 return slow_shmem_copy(gpu_page, gpu_offset,
217 cpu_page, cpu_offset, length);
218 }
219
99a03df5
CW
220 gpu_vaddr = kmap(gpu_page);
221 cpu_vaddr = kmap(cpu_page);
280b713b
EA
222
223 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
224 * XORing with the other bits (A9 for Y, A9 and A10 for X)
225 */
226 while (length > 0) {
227 int cacheline_end = ALIGN(gpu_offset + 1, 64);
228 int this_length = min(cacheline_end - gpu_offset, length);
229 int swizzled_gpu_offset = gpu_offset ^ 64;
230
231 if (is_read) {
232 memcpy(cpu_vaddr + cpu_offset,
233 gpu_vaddr + swizzled_gpu_offset,
234 this_length);
235 } else {
236 memcpy(gpu_vaddr + swizzled_gpu_offset,
237 cpu_vaddr + cpu_offset,
238 this_length);
239 }
240 cpu_offset += this_length;
241 gpu_offset += this_length;
242 length -= this_length;
243 }
244
99a03df5
CW
245 kunmap(cpu_page);
246 kunmap(gpu_page);
280b713b
EA
247}
248
eb01459f
EA
249/**
250 * This is the fast shmem pread path, which attempts to copy_from_user directly
251 * from the backing pages of the object to the user's address space. On a
252 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
253 */
254static int
255i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
256 struct drm_i915_gem_pread *args,
257 struct drm_file *file_priv)
258{
23010e43 259 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
260 ssize_t remain;
261 loff_t offset, page_base;
262 char __user *user_data;
263 int page_offset, page_length;
264 int ret;
265
266 user_data = (char __user *) (uintptr_t) args->data_ptr;
267 remain = args->size;
268
269 mutex_lock(&dev->struct_mutex);
270
4bdadb97 271 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
272 if (ret != 0)
273 goto fail_unlock;
274
275 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
276 args->size);
277 if (ret != 0)
278 goto fail_put_pages;
279
23010e43 280 obj_priv = to_intel_bo(obj);
eb01459f
EA
281 offset = args->offset;
282
283 while (remain > 0) {
284 /* Operation in this page
285 *
286 * page_base = page offset within aperture
287 * page_offset = offset within page
288 * page_length = bytes to copy for this page
289 */
290 page_base = (offset & ~(PAGE_SIZE-1));
291 page_offset = offset & (PAGE_SIZE-1);
292 page_length = remain;
293 if ((page_offset + remain) > PAGE_SIZE)
294 page_length = PAGE_SIZE - page_offset;
295
296 ret = fast_shmem_read(obj_priv->pages,
297 page_base, page_offset,
298 user_data, page_length);
299 if (ret)
300 goto fail_put_pages;
301
302 remain -= page_length;
303 user_data += page_length;
304 offset += page_length;
305 }
306
307fail_put_pages:
308 i915_gem_object_put_pages(obj);
309fail_unlock:
310 mutex_unlock(&dev->struct_mutex);
311
312 return ret;
313}
314
07f73f69
CW
315static int
316i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
317{
318 int ret;
319
4bdadb97 320 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
321
322 /* If we've insufficient memory to map in the pages, attempt
323 * to make some space by throwing out some old buffers.
324 */
325 if (ret == -ENOMEM) {
326 struct drm_device *dev = obj->dev;
07f73f69 327
0108a3ed
DV
328 ret = i915_gem_evict_something(dev, obj->size,
329 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
330 if (ret)
331 return ret;
332
4bdadb97 333 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
334 }
335
336 return ret;
337}
338
eb01459f
EA
339/**
340 * This is the fallback shmem pread path, which allocates temporary storage
341 * in kernel space to copy_to_user into outside of the struct_mutex, so we
342 * can copy out of the object's backing pages while holding the struct mutex
343 * and not take page faults.
344 */
345static int
346i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
347 struct drm_i915_gem_pread *args,
348 struct drm_file *file_priv)
349{
23010e43 350 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
351 struct mm_struct *mm = current->mm;
352 struct page **user_pages;
353 ssize_t remain;
354 loff_t offset, pinned_pages, i;
355 loff_t first_data_page, last_data_page, num_pages;
356 int shmem_page_index, shmem_page_offset;
357 int data_page_index, data_page_offset;
358 int page_length;
359 int ret;
360 uint64_t data_ptr = args->data_ptr;
280b713b 361 int do_bit17_swizzling;
eb01459f
EA
362
363 remain = args->size;
364
365 /* Pin the user pages containing the data. We can't fault while
366 * holding the struct mutex, yet we want to hold it while
367 * dereferencing the user data.
368 */
369 first_data_page = data_ptr / PAGE_SIZE;
370 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
371 num_pages = last_data_page - first_data_page + 1;
372
8e7d2b2c 373 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
374 if (user_pages == NULL)
375 return -ENOMEM;
376
377 down_read(&mm->mmap_sem);
378 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 379 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
380 up_read(&mm->mmap_sem);
381 if (pinned_pages < num_pages) {
382 ret = -EFAULT;
383 goto fail_put_user_pages;
384 }
385
280b713b
EA
386 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
387
eb01459f
EA
388 mutex_lock(&dev->struct_mutex);
389
07f73f69
CW
390 ret = i915_gem_object_get_pages_or_evict(obj);
391 if (ret)
eb01459f
EA
392 goto fail_unlock;
393
394 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
395 args->size);
396 if (ret != 0)
397 goto fail_put_pages;
398
23010e43 399 obj_priv = to_intel_bo(obj);
eb01459f
EA
400 offset = args->offset;
401
402 while (remain > 0) {
403 /* Operation in this page
404 *
405 * shmem_page_index = page number within shmem file
406 * shmem_page_offset = offset within page in shmem file
407 * data_page_index = page number in get_user_pages return
408 * data_page_offset = offset with data_page_index page.
409 * page_length = bytes to copy for this page
410 */
411 shmem_page_index = offset / PAGE_SIZE;
412 shmem_page_offset = offset & ~PAGE_MASK;
413 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
414 data_page_offset = data_ptr & ~PAGE_MASK;
415
416 page_length = remain;
417 if ((shmem_page_offset + page_length) > PAGE_SIZE)
418 page_length = PAGE_SIZE - shmem_page_offset;
419 if ((data_page_offset + page_length) > PAGE_SIZE)
420 page_length = PAGE_SIZE - data_page_offset;
421
280b713b 422 if (do_bit17_swizzling) {
99a03df5 423 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 424 shmem_page_offset,
99a03df5
CW
425 user_pages[data_page_index],
426 data_page_offset,
427 page_length,
428 1);
429 } else {
430 slow_shmem_copy(user_pages[data_page_index],
431 data_page_offset,
432 obj_priv->pages[shmem_page_index],
433 shmem_page_offset,
434 page_length);
280b713b 435 }
eb01459f
EA
436
437 remain -= page_length;
438 data_ptr += page_length;
439 offset += page_length;
440 }
441
442fail_put_pages:
443 i915_gem_object_put_pages(obj);
444fail_unlock:
445 mutex_unlock(&dev->struct_mutex);
446fail_put_user_pages:
447 for (i = 0; i < pinned_pages; i++) {
448 SetPageDirty(user_pages[i]);
449 page_cache_release(user_pages[i]);
450 }
8e7d2b2c 451 drm_free_large(user_pages);
eb01459f
EA
452
453 return ret;
454}
455
673a394b
EA
456/**
457 * Reads data from the object referenced by handle.
458 *
459 * On error, the contents of *data are undefined.
460 */
461int
462i915_gem_pread_ioctl(struct drm_device *dev, void *data,
463 struct drm_file *file_priv)
464{
465 struct drm_i915_gem_pread *args = data;
466 struct drm_gem_object *obj;
467 struct drm_i915_gem_object *obj_priv;
673a394b
EA
468 int ret;
469
470 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
471 if (obj == NULL)
bf79cb91 472 return -ENOENT;
23010e43 473 obj_priv = to_intel_bo(obj);
673a394b
EA
474
475 /* Bounds check source.
476 *
477 * XXX: This could use review for overflow issues...
478 */
479 if (args->offset > obj->size || args->size > obj->size ||
480 args->offset + args->size > obj->size) {
bc9025bd 481 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
482 return -EINVAL;
483 }
484
280b713b 485 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 486 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
487 } else {
488 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
489 if (ret != 0)
490 ret = i915_gem_shmem_pread_slow(dev, obj, args,
491 file_priv);
492 }
673a394b 493
bc9025bd 494 drm_gem_object_unreference_unlocked(obj);
673a394b 495
eb01459f 496 return ret;
673a394b
EA
497}
498
0839ccb8
KP
499/* This is the fast write path which cannot handle
500 * page faults in the source data
9b7530cc 501 */
0839ccb8
KP
502
503static inline int
504fast_user_write(struct io_mapping *mapping,
505 loff_t page_base, int page_offset,
506 char __user *user_data,
507 int length)
9b7530cc 508{
9b7530cc 509 char *vaddr_atomic;
0839ccb8 510 unsigned long unwritten;
9b7530cc 511
fca3ec01 512 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
513 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
514 user_data, length);
fca3ec01 515 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
516 if (unwritten)
517 return -EFAULT;
518 return 0;
519}
520
521/* Here's the write path which can sleep for
522 * page faults
523 */
524
ab34c226 525static inline void
3de09aa3
EA
526slow_kernel_write(struct io_mapping *mapping,
527 loff_t gtt_base, int gtt_offset,
528 struct page *user_page, int user_offset,
529 int length)
0839ccb8 530{
ab34c226
CW
531 char __iomem *dst_vaddr;
532 char *src_vaddr;
0839ccb8 533
ab34c226
CW
534 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
535 src_vaddr = kmap(user_page);
536
537 memcpy_toio(dst_vaddr + gtt_offset,
538 src_vaddr + user_offset,
539 length);
540
541 kunmap(user_page);
542 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
543}
544
40123c1f
EA
545static inline int
546fast_shmem_write(struct page **pages,
547 loff_t page_base, int page_offset,
548 char __user *data,
549 int length)
550{
551 char __iomem *vaddr;
d0088775 552 unsigned long unwritten;
40123c1f
EA
553
554 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
555 if (vaddr == NULL)
556 return -ENOMEM;
d0088775 557 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
558 kunmap_atomic(vaddr, KM_USER0);
559
d0088775
DA
560 if (unwritten)
561 return -EFAULT;
40123c1f
EA
562 return 0;
563}
564
3de09aa3
EA
565/**
566 * This is the fast pwrite path, where we copy the data directly from the
567 * user into the GTT, uncached.
568 */
673a394b 569static int
3de09aa3
EA
570i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
571 struct drm_i915_gem_pwrite *args,
572 struct drm_file *file_priv)
673a394b 573{
23010e43 574 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 575 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 576 ssize_t remain;
0839ccb8 577 loff_t offset, page_base;
673a394b 578 char __user *user_data;
0839ccb8
KP
579 int page_offset, page_length;
580 int ret;
673a394b
EA
581
582 user_data = (char __user *) (uintptr_t) args->data_ptr;
583 remain = args->size;
584 if (!access_ok(VERIFY_READ, user_data, remain))
585 return -EFAULT;
586
587
588 mutex_lock(&dev->struct_mutex);
589 ret = i915_gem_object_pin(obj, 0);
590 if (ret) {
591 mutex_unlock(&dev->struct_mutex);
592 return ret;
593 }
2ef7eeaa 594 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
595 if (ret)
596 goto fail;
597
23010e43 598 obj_priv = to_intel_bo(obj);
673a394b 599 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
600
601 while (remain > 0) {
602 /* Operation in this page
603 *
0839ccb8
KP
604 * page_base = page offset within aperture
605 * page_offset = offset within page
606 * page_length = bytes to copy for this page
673a394b 607 */
0839ccb8
KP
608 page_base = (offset & ~(PAGE_SIZE-1));
609 page_offset = offset & (PAGE_SIZE-1);
610 page_length = remain;
611 if ((page_offset + remain) > PAGE_SIZE)
612 page_length = PAGE_SIZE - page_offset;
613
614 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
615 page_offset, user_data, page_length);
616
617 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
618 * source page isn't available. Return the error and we'll
619 * retry in the slow path.
0839ccb8 620 */
3de09aa3
EA
621 if (ret)
622 goto fail;
673a394b 623
0839ccb8
KP
624 remain -= page_length;
625 user_data += page_length;
626 offset += page_length;
673a394b 627 }
673a394b
EA
628
629fail:
630 i915_gem_object_unpin(obj);
631 mutex_unlock(&dev->struct_mutex);
632
633 return ret;
634}
635
3de09aa3
EA
636/**
637 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
638 * the memory and maps it using kmap_atomic for copying.
639 *
640 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
641 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
642 */
3043c60c 643static int
3de09aa3
EA
644i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
645 struct drm_i915_gem_pwrite *args,
646 struct drm_file *file_priv)
673a394b 647{
23010e43 648 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
649 drm_i915_private_t *dev_priv = dev->dev_private;
650 ssize_t remain;
651 loff_t gtt_page_base, offset;
652 loff_t first_data_page, last_data_page, num_pages;
653 loff_t pinned_pages, i;
654 struct page **user_pages;
655 struct mm_struct *mm = current->mm;
656 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 657 int ret;
3de09aa3
EA
658 uint64_t data_ptr = args->data_ptr;
659
660 remain = args->size;
661
662 /* Pin the user pages containing the data. We can't fault while
663 * holding the struct mutex, and all of the pwrite implementations
664 * want to hold it while dereferencing the user data.
665 */
666 first_data_page = data_ptr / PAGE_SIZE;
667 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
668 num_pages = last_data_page - first_data_page + 1;
669
8e7d2b2c 670 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
671 if (user_pages == NULL)
672 return -ENOMEM;
673
674 down_read(&mm->mmap_sem);
675 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
676 num_pages, 0, 0, user_pages, NULL);
677 up_read(&mm->mmap_sem);
678 if (pinned_pages < num_pages) {
679 ret = -EFAULT;
680 goto out_unpin_pages;
681 }
673a394b
EA
682
683 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
684 ret = i915_gem_object_pin(obj, 0);
685 if (ret)
686 goto out_unlock;
687
688 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
689 if (ret)
690 goto out_unpin_object;
691
23010e43 692 obj_priv = to_intel_bo(obj);
3de09aa3
EA
693 offset = obj_priv->gtt_offset + args->offset;
694
695 while (remain > 0) {
696 /* Operation in this page
697 *
698 * gtt_page_base = page offset within aperture
699 * gtt_page_offset = offset within page in aperture
700 * data_page_index = page number in get_user_pages return
701 * data_page_offset = offset with data_page_index page.
702 * page_length = bytes to copy for this page
703 */
704 gtt_page_base = offset & PAGE_MASK;
705 gtt_page_offset = offset & ~PAGE_MASK;
706 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
707 data_page_offset = data_ptr & ~PAGE_MASK;
708
709 page_length = remain;
710 if ((gtt_page_offset + page_length) > PAGE_SIZE)
711 page_length = PAGE_SIZE - gtt_page_offset;
712 if ((data_page_offset + page_length) > PAGE_SIZE)
713 page_length = PAGE_SIZE - data_page_offset;
714
ab34c226
CW
715 slow_kernel_write(dev_priv->mm.gtt_mapping,
716 gtt_page_base, gtt_page_offset,
717 user_pages[data_page_index],
718 data_page_offset,
719 page_length);
3de09aa3
EA
720
721 remain -= page_length;
722 offset += page_length;
723 data_ptr += page_length;
724 }
725
726out_unpin_object:
727 i915_gem_object_unpin(obj);
728out_unlock:
729 mutex_unlock(&dev->struct_mutex);
730out_unpin_pages:
731 for (i = 0; i < pinned_pages; i++)
732 page_cache_release(user_pages[i]);
8e7d2b2c 733 drm_free_large(user_pages);
3de09aa3
EA
734
735 return ret;
736}
737
40123c1f
EA
738/**
739 * This is the fast shmem pwrite path, which attempts to directly
740 * copy_from_user into the kmapped pages backing the object.
741 */
3043c60c 742static int
40123c1f
EA
743i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
744 struct drm_i915_gem_pwrite *args,
745 struct drm_file *file_priv)
673a394b 746{
23010e43 747 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
748 ssize_t remain;
749 loff_t offset, page_base;
750 char __user *user_data;
751 int page_offset, page_length;
673a394b 752 int ret;
40123c1f
EA
753
754 user_data = (char __user *) (uintptr_t) args->data_ptr;
755 remain = args->size;
673a394b
EA
756
757 mutex_lock(&dev->struct_mutex);
758
4bdadb97 759 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
760 if (ret != 0)
761 goto fail_unlock;
673a394b 762
e47c68e9 763 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
764 if (ret != 0)
765 goto fail_put_pages;
766
23010e43 767 obj_priv = to_intel_bo(obj);
40123c1f
EA
768 offset = args->offset;
769 obj_priv->dirty = 1;
770
771 while (remain > 0) {
772 /* Operation in this page
773 *
774 * page_base = page offset within aperture
775 * page_offset = offset within page
776 * page_length = bytes to copy for this page
777 */
778 page_base = (offset & ~(PAGE_SIZE-1));
779 page_offset = offset & (PAGE_SIZE-1);
780 page_length = remain;
781 if ((page_offset + remain) > PAGE_SIZE)
782 page_length = PAGE_SIZE - page_offset;
783
784 ret = fast_shmem_write(obj_priv->pages,
785 page_base, page_offset,
786 user_data, page_length);
787 if (ret)
788 goto fail_put_pages;
789
790 remain -= page_length;
791 user_data += page_length;
792 offset += page_length;
793 }
794
795fail_put_pages:
796 i915_gem_object_put_pages(obj);
797fail_unlock:
798 mutex_unlock(&dev->struct_mutex);
799
800 return ret;
801}
802
803/**
804 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
805 * the memory and maps it using kmap_atomic for copying.
806 *
807 * This avoids taking mmap_sem for faulting on the user's address while the
808 * struct_mutex is held.
809 */
810static int
811i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
812 struct drm_i915_gem_pwrite *args,
813 struct drm_file *file_priv)
814{
23010e43 815 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
816 struct mm_struct *mm = current->mm;
817 struct page **user_pages;
818 ssize_t remain;
819 loff_t offset, pinned_pages, i;
820 loff_t first_data_page, last_data_page, num_pages;
821 int shmem_page_index, shmem_page_offset;
822 int data_page_index, data_page_offset;
823 int page_length;
824 int ret;
825 uint64_t data_ptr = args->data_ptr;
280b713b 826 int do_bit17_swizzling;
40123c1f
EA
827
828 remain = args->size;
829
830 /* Pin the user pages containing the data. We can't fault while
831 * holding the struct mutex, and all of the pwrite implementations
832 * want to hold it while dereferencing the user data.
833 */
834 first_data_page = data_ptr / PAGE_SIZE;
835 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
836 num_pages = last_data_page - first_data_page + 1;
837
8e7d2b2c 838 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
839 if (user_pages == NULL)
840 return -ENOMEM;
841
842 down_read(&mm->mmap_sem);
843 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
844 num_pages, 0, 0, user_pages, NULL);
845 up_read(&mm->mmap_sem);
846 if (pinned_pages < num_pages) {
847 ret = -EFAULT;
848 goto fail_put_user_pages;
673a394b
EA
849 }
850
280b713b
EA
851 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
852
40123c1f
EA
853 mutex_lock(&dev->struct_mutex);
854
07f73f69
CW
855 ret = i915_gem_object_get_pages_or_evict(obj);
856 if (ret)
40123c1f
EA
857 goto fail_unlock;
858
859 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
860 if (ret != 0)
861 goto fail_put_pages;
862
23010e43 863 obj_priv = to_intel_bo(obj);
673a394b 864 offset = args->offset;
40123c1f 865 obj_priv->dirty = 1;
673a394b 866
40123c1f
EA
867 while (remain > 0) {
868 /* Operation in this page
869 *
870 * shmem_page_index = page number within shmem file
871 * shmem_page_offset = offset within page in shmem file
872 * data_page_index = page number in get_user_pages return
873 * data_page_offset = offset with data_page_index page.
874 * page_length = bytes to copy for this page
875 */
876 shmem_page_index = offset / PAGE_SIZE;
877 shmem_page_offset = offset & ~PAGE_MASK;
878 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
879 data_page_offset = data_ptr & ~PAGE_MASK;
880
881 page_length = remain;
882 if ((shmem_page_offset + page_length) > PAGE_SIZE)
883 page_length = PAGE_SIZE - shmem_page_offset;
884 if ((data_page_offset + page_length) > PAGE_SIZE)
885 page_length = PAGE_SIZE - data_page_offset;
886
280b713b 887 if (do_bit17_swizzling) {
99a03df5 888 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
889 shmem_page_offset,
890 user_pages[data_page_index],
891 data_page_offset,
99a03df5
CW
892 page_length,
893 0);
894 } else {
895 slow_shmem_copy(obj_priv->pages[shmem_page_index],
896 shmem_page_offset,
897 user_pages[data_page_index],
898 data_page_offset,
899 page_length);
280b713b 900 }
40123c1f
EA
901
902 remain -= page_length;
903 data_ptr += page_length;
904 offset += page_length;
673a394b
EA
905 }
906
40123c1f
EA
907fail_put_pages:
908 i915_gem_object_put_pages(obj);
909fail_unlock:
673a394b 910 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
911fail_put_user_pages:
912 for (i = 0; i < pinned_pages; i++)
913 page_cache_release(user_pages[i]);
8e7d2b2c 914 drm_free_large(user_pages);
673a394b 915
40123c1f 916 return ret;
673a394b
EA
917}
918
919/**
920 * Writes data to the object referenced by handle.
921 *
922 * On error, the contents of the buffer that were to be modified are undefined.
923 */
924int
925i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
926 struct drm_file *file_priv)
927{
928 struct drm_i915_gem_pwrite *args = data;
929 struct drm_gem_object *obj;
930 struct drm_i915_gem_object *obj_priv;
931 int ret = 0;
932
933 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
934 if (obj == NULL)
bf79cb91 935 return -ENOENT;
23010e43 936 obj_priv = to_intel_bo(obj);
673a394b
EA
937
938 /* Bounds check destination.
939 *
940 * XXX: This could use review for overflow issues...
941 */
942 if (args->offset > obj->size || args->size > obj->size ||
943 args->offset + args->size > obj->size) {
bc9025bd 944 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
945 return -EINVAL;
946 }
947
948 /* We can only do the GTT pwrite on untiled buffers, as otherwise
949 * it would end up going through the fenced access, and we'll get
950 * different detiling behavior between reading and writing.
951 * pread/pwrite currently are reading and writing from the CPU
952 * perspective, requiring manual detiling by the client.
953 */
71acb5eb
DA
954 if (obj_priv->phys_obj)
955 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
956 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
957 dev->gtt_total != 0 &&
958 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
959 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
960 if (ret == -EFAULT) {
961 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
962 file_priv);
963 }
280b713b
EA
964 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
965 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
966 } else {
967 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
968 if (ret == -EFAULT) {
969 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
970 file_priv);
971 }
972 }
673a394b
EA
973
974#if WATCH_PWRITE
975 if (ret)
976 DRM_INFO("pwrite failed %d\n", ret);
977#endif
978
bc9025bd 979 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
980
981 return ret;
982}
983
984/**
2ef7eeaa
EA
985 * Called when user space prepares to use an object with the CPU, either
986 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
987 */
988int
989i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
990 struct drm_file *file_priv)
991{
a09ba7fa 992 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
993 struct drm_i915_gem_set_domain *args = data;
994 struct drm_gem_object *obj;
652c393a 995 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
996 uint32_t read_domains = args->read_domains;
997 uint32_t write_domain = args->write_domain;
673a394b
EA
998 int ret;
999
1000 if (!(dev->driver->driver_features & DRIVER_GEM))
1001 return -ENODEV;
1002
2ef7eeaa 1003 /* Only handle setting domains to types used by the CPU. */
21d509e3 1004 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1005 return -EINVAL;
1006
21d509e3 1007 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1008 return -EINVAL;
1009
1010 /* Having something in the write domain implies it's in the read
1011 * domain, and only that read domain. Enforce that in the request.
1012 */
1013 if (write_domain != 0 && read_domains != write_domain)
1014 return -EINVAL;
1015
673a394b
EA
1016 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1017 if (obj == NULL)
bf79cb91 1018 return -ENOENT;
23010e43 1019 obj_priv = to_intel_bo(obj);
673a394b
EA
1020
1021 mutex_lock(&dev->struct_mutex);
652c393a
JB
1022
1023 intel_mark_busy(dev, obj);
1024
673a394b 1025#if WATCH_BUF
cfd43c02 1026 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1027 obj, obj->size, read_domains, write_domain);
673a394b 1028#endif
2ef7eeaa
EA
1029 if (read_domains & I915_GEM_DOMAIN_GTT) {
1030 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1031
a09ba7fa
EA
1032 /* Update the LRU on the fence for the CPU access that's
1033 * about to occur.
1034 */
1035 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1036 struct drm_i915_fence_reg *reg =
1037 &dev_priv->fence_regs[obj_priv->fence_reg];
1038 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1039 &dev_priv->mm.fence_list);
1040 }
1041
02354392
EA
1042 /* Silently promote "you're not bound, there was nothing to do"
1043 * to success, since the client was just asking us to
1044 * make sure everything was done.
1045 */
1046 if (ret == -EINVAL)
1047 ret = 0;
2ef7eeaa 1048 } else {
e47c68e9 1049 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1050 }
1051
7d1c4804
CW
1052
1053 /* Maintain LRU order of "inactive" objects */
1054 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1055 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1056
673a394b
EA
1057 drm_gem_object_unreference(obj);
1058 mutex_unlock(&dev->struct_mutex);
1059 return ret;
1060}
1061
1062/**
1063 * Called when user space has done writes to this buffer
1064 */
1065int
1066i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1067 struct drm_file *file_priv)
1068{
1069 struct drm_i915_gem_sw_finish *args = data;
1070 struct drm_gem_object *obj;
1071 struct drm_i915_gem_object *obj_priv;
1072 int ret = 0;
1073
1074 if (!(dev->driver->driver_features & DRIVER_GEM))
1075 return -ENODEV;
1076
1077 mutex_lock(&dev->struct_mutex);
1078 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1079 if (obj == NULL) {
1080 mutex_unlock(&dev->struct_mutex);
bf79cb91 1081 return -ENOENT;
673a394b
EA
1082 }
1083
1084#if WATCH_BUF
cfd43c02 1085 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1086 __func__, args->handle, obj, obj->size);
1087#endif
23010e43 1088 obj_priv = to_intel_bo(obj);
673a394b
EA
1089
1090 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1091 if (obj_priv->pin_count)
1092 i915_gem_object_flush_cpu_write_domain(obj);
1093
673a394b
EA
1094 drm_gem_object_unreference(obj);
1095 mutex_unlock(&dev->struct_mutex);
1096 return ret;
1097}
1098
1099/**
1100 * Maps the contents of an object, returning the address it is mapped
1101 * into.
1102 *
1103 * While the mapping holds a reference on the contents of the object, it doesn't
1104 * imply a ref on the object itself.
1105 */
1106int
1107i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1108 struct drm_file *file_priv)
1109{
1110 struct drm_i915_gem_mmap *args = data;
1111 struct drm_gem_object *obj;
1112 loff_t offset;
1113 unsigned long addr;
1114
1115 if (!(dev->driver->driver_features & DRIVER_GEM))
1116 return -ENODEV;
1117
1118 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1119 if (obj == NULL)
bf79cb91 1120 return -ENOENT;
673a394b
EA
1121
1122 offset = args->offset;
1123
1124 down_write(&current->mm->mmap_sem);
1125 addr = do_mmap(obj->filp, 0, args->size,
1126 PROT_READ | PROT_WRITE, MAP_SHARED,
1127 args->offset);
1128 up_write(&current->mm->mmap_sem);
bc9025bd 1129 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1130 if (IS_ERR((void *)addr))
1131 return addr;
1132
1133 args->addr_ptr = (uint64_t) addr;
1134
1135 return 0;
1136}
1137
de151cf6
JB
1138/**
1139 * i915_gem_fault - fault a page into the GTT
1140 * vma: VMA in question
1141 * vmf: fault info
1142 *
1143 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1144 * from userspace. The fault handler takes care of binding the object to
1145 * the GTT (if needed), allocating and programming a fence register (again,
1146 * only if needed based on whether the old reg is still valid or the object
1147 * is tiled) and inserting a new PTE into the faulting process.
1148 *
1149 * Note that the faulting process may involve evicting existing objects
1150 * from the GTT and/or fence registers to make room. So performance may
1151 * suffer if the GTT working set is large or there are few fence registers
1152 * left.
1153 */
1154int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1155{
1156 struct drm_gem_object *obj = vma->vm_private_data;
1157 struct drm_device *dev = obj->dev;
7d1c4804 1158 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1159 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1160 pgoff_t page_offset;
1161 unsigned long pfn;
1162 int ret = 0;
0f973f27 1163 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1164
1165 /* We don't use vmf->pgoff since that has the fake offset */
1166 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1167 PAGE_SHIFT;
1168
1169 /* Now bind it into the GTT if needed */
1170 mutex_lock(&dev->struct_mutex);
1171 if (!obj_priv->gtt_space) {
e67b8ce1 1172 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1173 if (ret)
1174 goto unlock;
07f4f3e8 1175
07f4f3e8 1176 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1177 if (ret)
1178 goto unlock;
de151cf6
JB
1179 }
1180
1181 /* Need a new fence register? */
a09ba7fa 1182 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1183 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1184 if (ret)
1185 goto unlock;
d9ddcb96 1186 }
de151cf6 1187
7d1c4804
CW
1188 if (i915_gem_object_is_inactive(obj_priv))
1189 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1190
de151cf6
JB
1191 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1192 page_offset;
1193
1194 /* Finally, remap it using the new GTT offset */
1195 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1196unlock:
de151cf6
JB
1197 mutex_unlock(&dev->struct_mutex);
1198
1199 switch (ret) {
c715089f
CW
1200 case 0:
1201 case -ERESTARTSYS:
1202 return VM_FAULT_NOPAGE;
de151cf6
JB
1203 case -ENOMEM:
1204 case -EAGAIN:
1205 return VM_FAULT_OOM;
de151cf6 1206 default:
c715089f 1207 return VM_FAULT_SIGBUS;
de151cf6
JB
1208 }
1209}
1210
1211/**
1212 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1213 * @obj: obj in question
1214 *
1215 * GEM memory mapping works by handing back to userspace a fake mmap offset
1216 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1217 * up the object based on the offset and sets up the various memory mapping
1218 * structures.
1219 *
1220 * This routine allocates and attaches a fake offset for @obj.
1221 */
1222static int
1223i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1224{
1225 struct drm_device *dev = obj->dev;
1226 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1227 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1228 struct drm_map_list *list;
f77d390c 1229 struct drm_local_map *map;
de151cf6
JB
1230 int ret = 0;
1231
1232 /* Set the object up for mmap'ing */
1233 list = &obj->map_list;
9a298b2a 1234 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1235 if (!list->map)
1236 return -ENOMEM;
1237
1238 map = list->map;
1239 map->type = _DRM_GEM;
1240 map->size = obj->size;
1241 map->handle = obj;
1242
1243 /* Get a DRM GEM mmap offset allocated... */
1244 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1245 obj->size / PAGE_SIZE, 0, 0);
1246 if (!list->file_offset_node) {
1247 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1248 ret = -ENOMEM;
1249 goto out_free_list;
1250 }
1251
1252 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1253 obj->size / PAGE_SIZE, 0);
1254 if (!list->file_offset_node) {
1255 ret = -ENOMEM;
1256 goto out_free_list;
1257 }
1258
1259 list->hash.key = list->file_offset_node->start;
1260 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1261 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1262 ret = -ENOMEM;
de151cf6
JB
1263 goto out_free_mm;
1264 }
1265
1266 /* By now we should be all set, any drm_mmap request on the offset
1267 * below will get to our mmap & fault handler */
1268 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1269
1270 return 0;
1271
1272out_free_mm:
1273 drm_mm_put_block(list->file_offset_node);
1274out_free_list:
9a298b2a 1275 kfree(list->map);
de151cf6
JB
1276
1277 return ret;
1278}
1279
901782b2
CW
1280/**
1281 * i915_gem_release_mmap - remove physical page mappings
1282 * @obj: obj in question
1283 *
af901ca1 1284 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1285 * relinquish ownership of the pages back to the system.
1286 *
1287 * It is vital that we remove the page mapping if we have mapped a tiled
1288 * object through the GTT and then lose the fence register due to
1289 * resource pressure. Similarly if the object has been moved out of the
1290 * aperture, than pages mapped into userspace must be revoked. Removing the
1291 * mapping will then trigger a page fault on the next user access, allowing
1292 * fixup by i915_gem_fault().
1293 */
d05ca301 1294void
901782b2
CW
1295i915_gem_release_mmap(struct drm_gem_object *obj)
1296{
1297 struct drm_device *dev = obj->dev;
23010e43 1298 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1299
1300 if (dev->dev_mapping)
1301 unmap_mapping_range(dev->dev_mapping,
1302 obj_priv->mmap_offset, obj->size, 1);
1303}
1304
ab00b3e5
JB
1305static void
1306i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1307{
1308 struct drm_device *dev = obj->dev;
23010e43 1309 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1310 struct drm_gem_mm *mm = dev->mm_private;
1311 struct drm_map_list *list;
1312
1313 list = &obj->map_list;
1314 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1315
1316 if (list->file_offset_node) {
1317 drm_mm_put_block(list->file_offset_node);
1318 list->file_offset_node = NULL;
1319 }
1320
1321 if (list->map) {
9a298b2a 1322 kfree(list->map);
ab00b3e5
JB
1323 list->map = NULL;
1324 }
1325
1326 obj_priv->mmap_offset = 0;
1327}
1328
de151cf6
JB
1329/**
1330 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1331 * @obj: object to check
1332 *
1333 * Return the required GTT alignment for an object, taking into account
1334 * potential fence register mapping if needed.
1335 */
1336static uint32_t
1337i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1338{
1339 struct drm_device *dev = obj->dev;
23010e43 1340 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1341 int start, i;
1342
1343 /*
1344 * Minimum alignment is 4k (GTT page size), but might be greater
1345 * if a fence register is needed for the object.
1346 */
1347 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1348 return 4096;
1349
1350 /*
1351 * Previous chips need to be aligned to the size of the smallest
1352 * fence register that can contain the object.
1353 */
1354 if (IS_I9XX(dev))
1355 start = 1024*1024;
1356 else
1357 start = 512*1024;
1358
1359 for (i = start; i < obj->size; i <<= 1)
1360 ;
1361
1362 return i;
1363}
1364
1365/**
1366 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1367 * @dev: DRM device
1368 * @data: GTT mapping ioctl data
1369 * @file_priv: GEM object info
1370 *
1371 * Simply returns the fake offset to userspace so it can mmap it.
1372 * The mmap call will end up in drm_gem_mmap(), which will set things
1373 * up so we can get faults in the handler above.
1374 *
1375 * The fault handler will take care of binding the object into the GTT
1376 * (since it may have been evicted to make room for something), allocating
1377 * a fence register, and mapping the appropriate aperture address into
1378 * userspace.
1379 */
1380int
1381i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1382 struct drm_file *file_priv)
1383{
1384 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1385 struct drm_gem_object *obj;
1386 struct drm_i915_gem_object *obj_priv;
1387 int ret;
1388
1389 if (!(dev->driver->driver_features & DRIVER_GEM))
1390 return -ENODEV;
1391
1392 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1393 if (obj == NULL)
bf79cb91 1394 return -ENOENT;
de151cf6
JB
1395
1396 mutex_lock(&dev->struct_mutex);
1397
23010e43 1398 obj_priv = to_intel_bo(obj);
de151cf6 1399
ab18282d
CW
1400 if (obj_priv->madv != I915_MADV_WILLNEED) {
1401 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1402 drm_gem_object_unreference(obj);
1403 mutex_unlock(&dev->struct_mutex);
1404 return -EINVAL;
1405 }
1406
1407
de151cf6
JB
1408 if (!obj_priv->mmap_offset) {
1409 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1410 if (ret) {
1411 drm_gem_object_unreference(obj);
1412 mutex_unlock(&dev->struct_mutex);
de151cf6 1413 return ret;
13af1062 1414 }
de151cf6
JB
1415 }
1416
1417 args->offset = obj_priv->mmap_offset;
1418
de151cf6
JB
1419 /*
1420 * Pull it into the GTT so that we have a page list (makes the
1421 * initial fault faster and any subsequent flushing possible).
1422 */
1423 if (!obj_priv->agp_mem) {
e67b8ce1 1424 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1425 if (ret) {
1426 drm_gem_object_unreference(obj);
1427 mutex_unlock(&dev->struct_mutex);
1428 return ret;
1429 }
de151cf6
JB
1430 }
1431
1432 drm_gem_object_unreference(obj);
1433 mutex_unlock(&dev->struct_mutex);
1434
1435 return 0;
1436}
1437
6911a9b8 1438void
856fa198 1439i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1440{
23010e43 1441 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1442 int page_count = obj->size / PAGE_SIZE;
1443 int i;
1444
856fa198 1445 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1446 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1447
856fa198
EA
1448 if (--obj_priv->pages_refcount != 0)
1449 return;
673a394b 1450
280b713b
EA
1451 if (obj_priv->tiling_mode != I915_TILING_NONE)
1452 i915_gem_object_save_bit_17_swizzle(obj);
1453
3ef94daa 1454 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1455 obj_priv->dirty = 0;
3ef94daa
CW
1456
1457 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1458 if (obj_priv->dirty)
1459 set_page_dirty(obj_priv->pages[i]);
1460
1461 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1462 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1463
1464 page_cache_release(obj_priv->pages[i]);
1465 }
673a394b
EA
1466 obj_priv->dirty = 0;
1467
8e7d2b2c 1468 drm_free_large(obj_priv->pages);
856fa198 1469 obj_priv->pages = NULL;
673a394b
EA
1470}
1471
e35a41de
DV
1472static uint32_t
1473i915_gem_next_request_seqno(struct drm_device *dev)
1474{
1475 drm_i915_private_t *dev_priv = dev->dev_private;
1476
1477 return dev_priv->next_seqno;
1478}
1479
673a394b 1480static void
852835f3
ZN
1481i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1482 struct intel_ring_buffer *ring)
673a394b
EA
1483{
1484 struct drm_device *dev = obj->dev;
1485 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1486 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
852835f3
ZN
1487 BUG_ON(ring == NULL);
1488 obj_priv->ring = ring;
673a394b
EA
1489
1490 /* Add a reference if we're newly entering the active list. */
1491 if (!obj_priv->active) {
1492 drm_gem_object_reference(obj);
1493 obj_priv->active = 1;
1494 }
e35a41de
DV
1495
1496 /* Take the seqno of the next request if none is given */
1497 if (seqno == 0)
1498 seqno = i915_gem_next_request_seqno(dev);
1499
673a394b 1500 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1501 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1502 list_move_tail(&obj_priv->list, &ring->active_list);
5e118f41 1503 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1504 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1505}
1506
ce44b0ea
EA
1507static void
1508i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1509{
1510 struct drm_device *dev = obj->dev;
1511 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1512 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1513
1514 BUG_ON(!obj_priv->active);
1515 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1516 obj_priv->last_rendering_seqno = 0;
1517}
673a394b 1518
963b4836
CW
1519/* Immediately discard the backing storage */
1520static void
1521i915_gem_object_truncate(struct drm_gem_object *obj)
1522{
23010e43 1523 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1524 struct inode *inode;
963b4836 1525
ae9fed6b
CW
1526 /* Our goal here is to return as much of the memory as
1527 * is possible back to the system as we are called from OOM.
1528 * To do this we must instruct the shmfs to drop all of its
1529 * backing pages, *now*. Here we mirror the actions taken
1530 * when by shmem_delete_inode() to release the backing store.
1531 */
bb6baf76 1532 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1533 truncate_inode_pages(inode->i_mapping, 0);
1534 if (inode->i_op->truncate_range)
1535 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1536
1537 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1538}
1539
1540static inline int
1541i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1542{
1543 return obj_priv->madv == I915_MADV_DONTNEED;
1544}
1545
673a394b
EA
1546static void
1547i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1548{
1549 struct drm_device *dev = obj->dev;
1550 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1551 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1552
1553 i915_verify_inactive(dev, __FILE__, __LINE__);
1554 if (obj_priv->pin_count != 0)
1555 list_del_init(&obj_priv->list);
1556 else
1557 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1558
99fcb766
DV
1559 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1560
ce44b0ea 1561 obj_priv->last_rendering_seqno = 0;
852835f3 1562 obj_priv->ring = NULL;
673a394b
EA
1563 if (obj_priv->active) {
1564 obj_priv->active = 0;
1565 drm_gem_object_unreference(obj);
1566 }
1567 i915_verify_inactive(dev, __FILE__, __LINE__);
1568}
1569
63560396
DV
1570static void
1571i915_gem_process_flushing_list(struct drm_device *dev,
852835f3
ZN
1572 uint32_t flush_domains, uint32_t seqno,
1573 struct intel_ring_buffer *ring)
63560396
DV
1574{
1575 drm_i915_private_t *dev_priv = dev->dev_private;
1576 struct drm_i915_gem_object *obj_priv, *next;
1577
1578 list_for_each_entry_safe(obj_priv, next,
1579 &dev_priv->mm.gpu_write_list,
1580 gpu_write_list) {
a8089e84 1581 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1582
1583 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1584 obj->write_domain &&
1585 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1586 uint32_t old_write_domain = obj->write_domain;
1587
1588 obj->write_domain = 0;
1589 list_del_init(&obj_priv->gpu_write_list);
852835f3 1590 i915_gem_object_move_to_active(obj, seqno, ring);
63560396
DV
1591
1592 /* update the fence lru list */
007cc8ac
DV
1593 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1594 struct drm_i915_fence_reg *reg =
1595 &dev_priv->fence_regs[obj_priv->fence_reg];
1596 list_move_tail(&reg->lru_list,
63560396 1597 &dev_priv->mm.fence_list);
007cc8ac 1598 }
63560396
DV
1599
1600 trace_i915_gem_object_change_domain(obj,
1601 obj->read_domains,
1602 old_write_domain);
1603 }
1604 }
1605}
8187a2b7 1606
5a5a0c64 1607uint32_t
b962442e 1608i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
852835f3 1609 uint32_t flush_domains, struct intel_ring_buffer *ring)
673a394b
EA
1610{
1611 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1612 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1613 struct drm_i915_gem_request *request;
1614 uint32_t seqno;
1615 int was_empty;
673a394b 1616
b962442e
EA
1617 if (file_priv != NULL)
1618 i915_file_priv = file_priv->driver_priv;
1619
9a298b2a 1620 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1621 if (request == NULL)
1622 return 0;
1623
852835f3 1624 seqno = ring->add_request(dev, ring, file_priv, flush_domains);
673a394b
EA
1625
1626 request->seqno = seqno;
852835f3 1627 request->ring = ring;
673a394b 1628 request->emitted_jiffies = jiffies;
852835f3
ZN
1629 was_empty = list_empty(&ring->request_list);
1630 list_add_tail(&request->list, &ring->request_list);
1631
b962442e
EA
1632 if (i915_file_priv) {
1633 list_add_tail(&request->client_list,
1634 &i915_file_priv->mm.request_list);
1635 } else {
1636 INIT_LIST_HEAD(&request->client_list);
1637 }
673a394b 1638
ce44b0ea 1639 /* Associate any objects on the flushing list matching the write
8bff917c 1640 * domain we're flushing with our request.
ce44b0ea 1641 */
63560396 1642 if (flush_domains != 0)
852835f3 1643 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
ce44b0ea 1644
f65d9421
BG
1645 if (!dev_priv->mm.suspended) {
1646 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1647 if (was_empty)
1648 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1649 }
673a394b
EA
1650 return seqno;
1651}
1652
1653/**
1654 * Command execution barrier
1655 *
1656 * Ensures that all commands in the ring are finished
1657 * before signalling the CPU
1658 */
3043c60c 1659static uint32_t
852835f3 1660i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1661{
673a394b 1662 uint32_t flush_domains = 0;
673a394b
EA
1663
1664 /* The sampler always gets flushed on i965 (sigh) */
1665 if (IS_I965G(dev))
1666 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1667
1668 ring->flush(dev, ring,
1669 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1670 return flush_domains;
1671}
1672
1673/**
1674 * Moves buffers associated only with the given active seqno from the active
1675 * to inactive list, potentially freeing them.
1676 */
1677static void
1678i915_gem_retire_request(struct drm_device *dev,
1679 struct drm_i915_gem_request *request)
1680{
1681 drm_i915_private_t *dev_priv = dev->dev_private;
1682
1c5d22f7
CW
1683 trace_i915_gem_request_retire(dev, request->seqno);
1684
673a394b
EA
1685 /* Move any buffers on the active list that are no longer referenced
1686 * by the ringbuffer to the flushing/inactive lists as appropriate.
1687 */
5e118f41 1688 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1689 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1690 struct drm_gem_object *obj;
1691 struct drm_i915_gem_object *obj_priv;
1692
852835f3 1693 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1694 struct drm_i915_gem_object,
1695 list);
a8089e84 1696 obj = &obj_priv->base;
673a394b
EA
1697
1698 /* If the seqno being retired doesn't match the oldest in the
1699 * list, then the oldest in the list must still be newer than
1700 * this seqno.
1701 */
1702 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1703 goto out;
de151cf6 1704
673a394b
EA
1705#if WATCH_LRU
1706 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1707 __func__, request->seqno, obj);
1708#endif
1709
ce44b0ea
EA
1710 if (obj->write_domain != 0)
1711 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1712 else {
1713 /* Take a reference on the object so it won't be
1714 * freed while the spinlock is held. The list
1715 * protection for this spinlock is safe when breaking
1716 * the lock like this since the next thing we do
1717 * is just get the head of the list again.
1718 */
1719 drm_gem_object_reference(obj);
673a394b 1720 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1721 spin_unlock(&dev_priv->mm.active_list_lock);
1722 drm_gem_object_unreference(obj);
1723 spin_lock(&dev_priv->mm.active_list_lock);
1724 }
673a394b 1725 }
5e118f41
CW
1726out:
1727 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1728}
1729
1730/**
1731 * Returns true if seq1 is later than seq2.
1732 */
22be1724 1733bool
673a394b
EA
1734i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1735{
1736 return (int32_t)(seq1 - seq2) >= 0;
1737}
1738
1739uint32_t
852835f3 1740i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1741 struct intel_ring_buffer *ring)
673a394b 1742{
852835f3 1743 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1744}
1745
1746/**
1747 * This function clears the request list as sequence numbers are passed.
1748 */
b09a1fec
CW
1749static void
1750i915_gem_retire_requests_ring(struct drm_device *dev,
1751 struct intel_ring_buffer *ring)
673a394b
EA
1752{
1753 drm_i915_private_t *dev_priv = dev->dev_private;
1754 uint32_t seqno;
1755
8187a2b7 1756 if (!ring->status_page.page_addr
852835f3 1757 || list_empty(&ring->request_list))
6c0594a3
KW
1758 return;
1759
852835f3 1760 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1761
852835f3 1762 while (!list_empty(&ring->request_list)) {
673a394b
EA
1763 struct drm_i915_gem_request *request;
1764 uint32_t retiring_seqno;
1765
852835f3 1766 request = list_first_entry(&ring->request_list,
673a394b
EA
1767 struct drm_i915_gem_request,
1768 list);
1769 retiring_seqno = request->seqno;
1770
1771 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1772 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1773 i915_gem_retire_request(dev, request);
1774
1775 list_del(&request->list);
b962442e 1776 list_del(&request->client_list);
9a298b2a 1777 kfree(request);
673a394b
EA
1778 } else
1779 break;
1780 }
9d34e5db
CW
1781
1782 if (unlikely (dev_priv->trace_irq_seqno &&
1783 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1784
1785 ring->user_irq_put(dev, ring);
9d34e5db
CW
1786 dev_priv->trace_irq_seqno = 0;
1787 }
673a394b
EA
1788}
1789
b09a1fec
CW
1790void
1791i915_gem_retire_requests(struct drm_device *dev)
1792{
1793 drm_i915_private_t *dev_priv = dev->dev_private;
1794
be72615b
CW
1795 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1796 struct drm_i915_gem_object *obj_priv, *tmp;
1797
1798 /* We must be careful that during unbind() we do not
1799 * accidentally infinitely recurse into retire requests.
1800 * Currently:
1801 * retire -> free -> unbind -> wait -> retire_ring
1802 */
1803 list_for_each_entry_safe(obj_priv, tmp,
1804 &dev_priv->mm.deferred_free_list,
1805 list)
1806 i915_gem_free_object_tail(&obj_priv->base);
1807 }
1808
b09a1fec
CW
1809 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1810 if (HAS_BSD(dev))
1811 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1812}
1813
75ef9da2 1814static void
673a394b
EA
1815i915_gem_retire_work_handler(struct work_struct *work)
1816{
1817 drm_i915_private_t *dev_priv;
1818 struct drm_device *dev;
1819
1820 dev_priv = container_of(work, drm_i915_private_t,
1821 mm.retire_work.work);
1822 dev = dev_priv->dev;
1823
1824 mutex_lock(&dev->struct_mutex);
b09a1fec 1825 i915_gem_retire_requests(dev);
d1b851fc 1826
6dbe2772 1827 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1828 (!list_empty(&dev_priv->render_ring.request_list) ||
1829 (HAS_BSD(dev) &&
1830 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1831 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1832 mutex_unlock(&dev->struct_mutex);
1833}
1834
5a5a0c64 1835int
852835f3
ZN
1836i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1837 int interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1838{
1839 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1840 u32 ier;
673a394b
EA
1841 int ret = 0;
1842
1843 BUG_ON(seqno == 0);
1844
e35a41de
DV
1845 if (seqno == dev_priv->next_seqno) {
1846 seqno = i915_add_request(dev, NULL, 0, ring);
1847 if (seqno == 0)
1848 return -ENOMEM;
1849 }
1850
ba1234d1 1851 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1852 return -EIO;
1853
852835f3 1854 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1855 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1856 ier = I915_READ(DEIER) | I915_READ(GTIER);
1857 else
1858 ier = I915_READ(IER);
802c7eb6
JB
1859 if (!ier) {
1860 DRM_ERROR("something (likely vbetool) disabled "
1861 "interrupts, re-enabling\n");
1862 i915_driver_irq_preinstall(dev);
1863 i915_driver_irq_postinstall(dev);
1864 }
1865
1c5d22f7
CW
1866 trace_i915_gem_request_wait_begin(dev, seqno);
1867
852835f3 1868 ring->waiting_gem_seqno = seqno;
8187a2b7 1869 ring->user_irq_get(dev, ring);
48764bf4 1870 if (interruptible)
852835f3
ZN
1871 ret = wait_event_interruptible(ring->irq_queue,
1872 i915_seqno_passed(
1873 ring->get_gem_seqno(dev, ring), seqno)
1874 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1875 else
852835f3
ZN
1876 wait_event(ring->irq_queue,
1877 i915_seqno_passed(
1878 ring->get_gem_seqno(dev, ring), seqno)
1879 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1880
8187a2b7 1881 ring->user_irq_put(dev, ring);
852835f3 1882 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1883
1884 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1885 }
ba1234d1 1886 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1887 ret = -EIO;
1888
1889 if (ret && ret != -ERESTARTSYS)
8bff917c
DV
1890 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1891 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1892 dev_priv->next_seqno);
673a394b
EA
1893
1894 /* Directly dispatch request retiring. While we have the work queue
1895 * to handle this, the waiter on a request often wants an associated
1896 * buffer to have made it to the inactive list, and we would need
1897 * a separate wait queue to handle that.
1898 */
1899 if (ret == 0)
b09a1fec 1900 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1901
1902 return ret;
1903}
1904
48764bf4
DV
1905/**
1906 * Waits for a sequence number to be signaled, and cleans up the
1907 * request and object lists appropriately for that event.
1908 */
1909static int
852835f3
ZN
1910i915_wait_request(struct drm_device *dev, uint32_t seqno,
1911 struct intel_ring_buffer *ring)
48764bf4 1912{
852835f3 1913 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1914}
1915
8187a2b7
ZN
1916static void
1917i915_gem_flush(struct drm_device *dev,
1918 uint32_t invalidate_domains,
1919 uint32_t flush_domains)
1920{
1921 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 1922
8187a2b7
ZN
1923 if (flush_domains & I915_GEM_DOMAIN_CPU)
1924 drm_agp_chipset_flush(dev);
8bff917c 1925
8187a2b7
ZN
1926 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1927 invalidate_domains,
1928 flush_domains);
d1b851fc
ZN
1929
1930 if (HAS_BSD(dev))
1931 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1932 invalidate_domains,
1933 flush_domains);
8bff917c
DV
1934
1935 /* Associate any objects on the flushing list matching the write
1936 * domain we're flushing with the next request.
1937 */
1938 if (flush_domains != 0) {
1939 i915_gem_process_flushing_list(dev, flush_domains, 0,
1940 &dev_priv->render_ring);
1941 if (HAS_BSD(dev))
1942 i915_gem_process_flushing_list(dev, flush_domains, 0,
1943 &dev_priv->bsd_ring);
1944 }
8187a2b7
ZN
1945}
1946
673a394b
EA
1947/**
1948 * Ensures that all rendering to the object has completed and the object is
1949 * safe to unbind from the GTT or access from the CPU.
1950 */
1951static int
e35a41de
DV
1952i915_gem_object_wait_rendering(struct drm_gem_object *obj,
1953 bool interruptible)
673a394b
EA
1954{
1955 struct drm_device *dev = obj->dev;
23010e43 1956 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1957 int ret;
1958
e47c68e9
EA
1959 /* This function only exists to support waiting for existing rendering,
1960 * not for emitting required flushes.
673a394b 1961 */
e47c68e9 1962 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1963
1964 /* If there is rendering queued on the buffer being evicted, wait for
1965 * it.
1966 */
1967 if (obj_priv->active) {
1968#if WATCH_BUF
1969 DRM_INFO("%s: object %p wait for seqno %08x\n",
1970 __func__, obj, obj_priv->last_rendering_seqno);
1971#endif
e35a41de
DV
1972 ret = i915_do_wait_request(dev,
1973 obj_priv->last_rendering_seqno,
1974 interruptible,
1975 obj_priv->ring);
673a394b
EA
1976 if (ret != 0)
1977 return ret;
1978 }
1979
1980 return 0;
1981}
1982
1983/**
1984 * Unbinds an object from the GTT aperture.
1985 */
0f973f27 1986int
673a394b
EA
1987i915_gem_object_unbind(struct drm_gem_object *obj)
1988{
1989 struct drm_device *dev = obj->dev;
4a87b8ca 1990 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1991 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1992 int ret = 0;
1993
1994#if WATCH_BUF
1995 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1996 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1997#endif
1998 if (obj_priv->gtt_space == NULL)
1999 return 0;
2000
2001 if (obj_priv->pin_count != 0) {
2002 DRM_ERROR("Attempting to unbind pinned buffer\n");
2003 return -EINVAL;
2004 }
2005
5323fd04
EA
2006 /* blow away mappings if mapped through GTT */
2007 i915_gem_release_mmap(obj);
2008
673a394b
EA
2009 /* Move the object to the CPU domain to ensure that
2010 * any possible CPU writes while it's not in the GTT
2011 * are flushed when we go to remap it. This will
2012 * also ensure that all pending GPU writes are finished
2013 * before we unbind.
2014 */
e47c68e9 2015 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2016 if (ret == -ERESTARTSYS)
673a394b 2017 return ret;
8dc1775d
CW
2018 /* Continue on if we fail due to EIO, the GPU is hung so we
2019 * should be safe and we need to cleanup or else we might
2020 * cause memory corruption through use-after-free.
2021 */
673a394b 2022
96b47b65
DV
2023 /* release the fence reg _after_ flushing */
2024 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2025 i915_gem_clear_fence_reg(obj);
2026
673a394b
EA
2027 if (obj_priv->agp_mem != NULL) {
2028 drm_unbind_agp(obj_priv->agp_mem);
2029 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2030 obj_priv->agp_mem = NULL;
2031 }
2032
856fa198 2033 i915_gem_object_put_pages(obj);
a32808c0 2034 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2035
2036 if (obj_priv->gtt_space) {
2037 atomic_dec(&dev->gtt_count);
2038 atomic_sub(obj->size, &dev->gtt_memory);
2039
2040 drm_mm_put_block(obj_priv->gtt_space);
2041 obj_priv->gtt_space = NULL;
2042 }
2043
2044 /* Remove ourselves from the LRU list if present. */
4a87b8ca 2045 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2046 if (!list_empty(&obj_priv->list))
2047 list_del_init(&obj_priv->list);
4a87b8ca 2048 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2049
963b4836
CW
2050 if (i915_gem_object_is_purgeable(obj_priv))
2051 i915_gem_object_truncate(obj);
2052
1c5d22f7
CW
2053 trace_i915_gem_object_unbind(obj);
2054
8dc1775d 2055 return ret;
673a394b
EA
2056}
2057
b47eb4a2 2058int
4df2faf4
DV
2059i915_gpu_idle(struct drm_device *dev)
2060{
2061 drm_i915_private_t *dev_priv = dev->dev_private;
2062 bool lists_empty;
d1b851fc 2063 uint32_t seqno1, seqno2;
852835f3 2064 int ret;
4df2faf4
DV
2065
2066 spin_lock(&dev_priv->mm.active_list_lock);
d1b851fc
ZN
2067 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2068 list_empty(&dev_priv->render_ring.active_list) &&
2069 (!HAS_BSD(dev) ||
2070 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2071 spin_unlock(&dev_priv->mm.active_list_lock);
2072
2073 if (lists_empty)
2074 return 0;
2075
2076 /* Flush everything onto the inactive list. */
2077 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
8bff917c 2078 seqno1 = i915_add_request(dev, NULL, 0,
852835f3 2079 &dev_priv->render_ring);
d1b851fc 2080 if (seqno1 == 0)
4df2faf4 2081 return -ENOMEM;
d1b851fc
ZN
2082 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2083
2084 if (HAS_BSD(dev)) {
8bff917c 2085 seqno2 = i915_add_request(dev, NULL, 0,
d1b851fc
ZN
2086 &dev_priv->bsd_ring);
2087 if (seqno2 == 0)
2088 return -ENOMEM;
2089
2090 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2091 if (ret)
2092 return ret;
2093 }
2094
852835f3 2095 return ret;
4df2faf4
DV
2096}
2097
6911a9b8 2098int
4bdadb97
CW
2099i915_gem_object_get_pages(struct drm_gem_object *obj,
2100 gfp_t gfpmask)
673a394b 2101{
23010e43 2102 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2103 int page_count, i;
2104 struct address_space *mapping;
2105 struct inode *inode;
2106 struct page *page;
673a394b 2107
778c3544
DV
2108 BUG_ON(obj_priv->pages_refcount
2109 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2110
856fa198 2111 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2112 return 0;
2113
2114 /* Get the list of pages out of our struct file. They'll be pinned
2115 * at this point until we release them.
2116 */
2117 page_count = obj->size / PAGE_SIZE;
856fa198 2118 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2119 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2120 if (obj_priv->pages == NULL) {
856fa198 2121 obj_priv->pages_refcount--;
673a394b
EA
2122 return -ENOMEM;
2123 }
2124
2125 inode = obj->filp->f_path.dentry->d_inode;
2126 mapping = inode->i_mapping;
2127 for (i = 0; i < page_count; i++) {
4bdadb97 2128 page = read_cache_page_gfp(mapping, i,
985b823b 2129 GFP_HIGHUSER |
4bdadb97 2130 __GFP_COLD |
cd9f040d 2131 __GFP_RECLAIMABLE |
4bdadb97 2132 gfpmask);
1f2b1013
CW
2133 if (IS_ERR(page))
2134 goto err_pages;
2135
856fa198 2136 obj_priv->pages[i] = page;
673a394b 2137 }
280b713b
EA
2138
2139 if (obj_priv->tiling_mode != I915_TILING_NONE)
2140 i915_gem_object_do_bit_17_swizzle(obj);
2141
673a394b 2142 return 0;
1f2b1013
CW
2143
2144err_pages:
2145 while (i--)
2146 page_cache_release(obj_priv->pages[i]);
2147
2148 drm_free_large(obj_priv->pages);
2149 obj_priv->pages = NULL;
2150 obj_priv->pages_refcount--;
2151 return PTR_ERR(page);
673a394b
EA
2152}
2153
4e901fdc
EA
2154static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2155{
2156 struct drm_gem_object *obj = reg->obj;
2157 struct drm_device *dev = obj->dev;
2158 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2159 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2160 int regnum = obj_priv->fence_reg;
2161 uint64_t val;
2162
2163 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2164 0xfffff000) << 32;
2165 val |= obj_priv->gtt_offset & 0xfffff000;
2166 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2167 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2168
2169 if (obj_priv->tiling_mode == I915_TILING_Y)
2170 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2171 val |= I965_FENCE_REG_VALID;
2172
2173 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2174}
2175
de151cf6
JB
2176static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2177{
2178 struct drm_gem_object *obj = reg->obj;
2179 struct drm_device *dev = obj->dev;
2180 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2181 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2182 int regnum = obj_priv->fence_reg;
2183 uint64_t val;
2184
2185 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2186 0xfffff000) << 32;
2187 val |= obj_priv->gtt_offset & 0xfffff000;
2188 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2189 if (obj_priv->tiling_mode == I915_TILING_Y)
2190 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2191 val |= I965_FENCE_REG_VALID;
2192
2193 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2194}
2195
2196static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2197{
2198 struct drm_gem_object *obj = reg->obj;
2199 struct drm_device *dev = obj->dev;
2200 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2201 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2202 int regnum = obj_priv->fence_reg;
0f973f27 2203 int tile_width;
dc529a4f 2204 uint32_t fence_reg, val;
de151cf6
JB
2205 uint32_t pitch_val;
2206
2207 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2208 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2209 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2210 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2211 return;
2212 }
2213
0f973f27
JB
2214 if (obj_priv->tiling_mode == I915_TILING_Y &&
2215 HAS_128_BYTE_Y_TILING(dev))
2216 tile_width = 128;
de151cf6 2217 else
0f973f27
JB
2218 tile_width = 512;
2219
2220 /* Note: pitch better be a power of two tile widths */
2221 pitch_val = obj_priv->stride / tile_width;
2222 pitch_val = ffs(pitch_val) - 1;
de151cf6 2223
c36a2a6d
DV
2224 if (obj_priv->tiling_mode == I915_TILING_Y &&
2225 HAS_128_BYTE_Y_TILING(dev))
2226 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2227 else
2228 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2229
de151cf6
JB
2230 val = obj_priv->gtt_offset;
2231 if (obj_priv->tiling_mode == I915_TILING_Y)
2232 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2233 val |= I915_FENCE_SIZE_BITS(obj->size);
2234 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2235 val |= I830_FENCE_REG_VALID;
2236
dc529a4f
EA
2237 if (regnum < 8)
2238 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2239 else
2240 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2241 I915_WRITE(fence_reg, val);
de151cf6
JB
2242}
2243
2244static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2245{
2246 struct drm_gem_object *obj = reg->obj;
2247 struct drm_device *dev = obj->dev;
2248 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2249 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2250 int regnum = obj_priv->fence_reg;
2251 uint32_t val;
2252 uint32_t pitch_val;
8d7773a3 2253 uint32_t fence_size_bits;
de151cf6 2254
8d7773a3 2255 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2256 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2257 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2258 __func__, obj_priv->gtt_offset);
de151cf6
JB
2259 return;
2260 }
2261
e76a16de
EA
2262 pitch_val = obj_priv->stride / 128;
2263 pitch_val = ffs(pitch_val) - 1;
2264 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2265
de151cf6
JB
2266 val = obj_priv->gtt_offset;
2267 if (obj_priv->tiling_mode == I915_TILING_Y)
2268 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2269 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2270 WARN_ON(fence_size_bits & ~0x00000f00);
2271 val |= fence_size_bits;
de151cf6
JB
2272 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2273 val |= I830_FENCE_REG_VALID;
2274
2275 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2276}
2277
ae3db24a
DV
2278static int i915_find_fence_reg(struct drm_device *dev)
2279{
2280 struct drm_i915_fence_reg *reg = NULL;
2281 struct drm_i915_gem_object *obj_priv = NULL;
2282 struct drm_i915_private *dev_priv = dev->dev_private;
2283 struct drm_gem_object *obj = NULL;
2284 int i, avail, ret;
2285
2286 /* First try to find a free reg */
2287 avail = 0;
2288 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2289 reg = &dev_priv->fence_regs[i];
2290 if (!reg->obj)
2291 return i;
2292
23010e43 2293 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2294 if (!obj_priv->pin_count)
2295 avail++;
2296 }
2297
2298 if (avail == 0)
2299 return -ENOSPC;
2300
2301 /* None available, try to steal one or wait for a user to finish */
2302 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2303 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2304 lru_list) {
2305 obj = reg->obj;
2306 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2307
2308 if (obj_priv->pin_count)
2309 continue;
2310
2311 /* found one! */
2312 i = obj_priv->fence_reg;
2313 break;
2314 }
2315
2316 BUG_ON(i == I915_FENCE_REG_NONE);
2317
2318 /* We only have a reference on obj from the active list. put_fence_reg
2319 * might drop that one, causing a use-after-free in it. So hold a
2320 * private reference to obj like the other callers of put_fence_reg
2321 * (set_tiling ioctl) do. */
2322 drm_gem_object_reference(obj);
2323 ret = i915_gem_object_put_fence_reg(obj);
2324 drm_gem_object_unreference(obj);
2325 if (ret != 0)
2326 return ret;
2327
2328 return i;
2329}
2330
de151cf6
JB
2331/**
2332 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2333 * @obj: object to map through a fence reg
2334 *
2335 * When mapping objects through the GTT, userspace wants to be able to write
2336 * to them without having to worry about swizzling if the object is tiled.
2337 *
2338 * This function walks the fence regs looking for a free one for @obj,
2339 * stealing one if it can't find any.
2340 *
2341 * It then sets up the reg based on the object's properties: address, pitch
2342 * and tiling format.
2343 */
8c4b8c3f
CW
2344int
2345i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2346{
2347 struct drm_device *dev = obj->dev;
79e53945 2348 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2349 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2350 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2351 int ret;
de151cf6 2352
a09ba7fa
EA
2353 /* Just update our place in the LRU if our fence is getting used. */
2354 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2355 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2356 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2357 return 0;
2358 }
2359
de151cf6
JB
2360 switch (obj_priv->tiling_mode) {
2361 case I915_TILING_NONE:
2362 WARN(1, "allocating a fence for non-tiled object?\n");
2363 break;
2364 case I915_TILING_X:
0f973f27
JB
2365 if (!obj_priv->stride)
2366 return -EINVAL;
2367 WARN((obj_priv->stride & (512 - 1)),
2368 "object 0x%08x is X tiled but has non-512B pitch\n",
2369 obj_priv->gtt_offset);
de151cf6
JB
2370 break;
2371 case I915_TILING_Y:
0f973f27
JB
2372 if (!obj_priv->stride)
2373 return -EINVAL;
2374 WARN((obj_priv->stride & (128 - 1)),
2375 "object 0x%08x is Y tiled but has non-128B pitch\n",
2376 obj_priv->gtt_offset);
de151cf6
JB
2377 break;
2378 }
2379
ae3db24a
DV
2380 ret = i915_find_fence_reg(dev);
2381 if (ret < 0)
2382 return ret;
de151cf6 2383
ae3db24a
DV
2384 obj_priv->fence_reg = ret;
2385 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2386 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2387
de151cf6
JB
2388 reg->obj = obj;
2389
4e901fdc
EA
2390 if (IS_GEN6(dev))
2391 sandybridge_write_fence_reg(reg);
2392 else if (IS_I965G(dev))
de151cf6
JB
2393 i965_write_fence_reg(reg);
2394 else if (IS_I9XX(dev))
2395 i915_write_fence_reg(reg);
2396 else
2397 i830_write_fence_reg(reg);
d9ddcb96 2398
ae3db24a
DV
2399 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2400 obj_priv->tiling_mode);
1c5d22f7 2401
d9ddcb96 2402 return 0;
de151cf6
JB
2403}
2404
2405/**
2406 * i915_gem_clear_fence_reg - clear out fence register info
2407 * @obj: object to clear
2408 *
2409 * Zeroes out the fence register itself and clears out the associated
2410 * data structures in dev_priv and obj_priv.
2411 */
2412static void
2413i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2414{
2415 struct drm_device *dev = obj->dev;
79e53945 2416 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2417 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2418 struct drm_i915_fence_reg *reg =
2419 &dev_priv->fence_regs[obj_priv->fence_reg];
de151cf6 2420
4e901fdc
EA
2421 if (IS_GEN6(dev)) {
2422 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2423 (obj_priv->fence_reg * 8), 0);
2424 } else if (IS_I965G(dev)) {
de151cf6 2425 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2426 } else {
dc529a4f
EA
2427 uint32_t fence_reg;
2428
2429 if (obj_priv->fence_reg < 8)
2430 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2431 else
2432 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2433 8) * 4;
2434
2435 I915_WRITE(fence_reg, 0);
2436 }
de151cf6 2437
007cc8ac 2438 reg->obj = NULL;
de151cf6 2439 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2440 list_del_init(&reg->lru_list);
de151cf6
JB
2441}
2442
52dc7d32
CW
2443/**
2444 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2445 * to the buffer to finish, and then resets the fence register.
2446 * @obj: tiled object holding a fence register.
2447 *
2448 * Zeroes out the fence register itself and clears out the associated
2449 * data structures in dev_priv and obj_priv.
2450 */
2451int
2452i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2453{
2454 struct drm_device *dev = obj->dev;
23010e43 2455 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2456
2457 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2458 return 0;
2459
10ae9bd2
DV
2460 /* If we've changed tiling, GTT-mappings of the object
2461 * need to re-fault to ensure that the correct fence register
2462 * setup is in place.
2463 */
2464 i915_gem_release_mmap(obj);
2465
52dc7d32
CW
2466 /* On the i915, GPU access to tiled buffers is via a fence,
2467 * therefore we must wait for any outstanding access to complete
2468 * before clearing the fence.
2469 */
2470 if (!IS_I965G(dev)) {
2471 int ret;
2472
2dafb1e0
CW
2473 ret = i915_gem_object_flush_gpu_write_domain(obj);
2474 if (ret != 0)
2475 return ret;
2476
e35a41de 2477 ret = i915_gem_object_wait_rendering(obj, true);
52dc7d32
CW
2478 if (ret != 0)
2479 return ret;
2480 }
2481
4a726612 2482 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2483 i915_gem_clear_fence_reg (obj);
2484
2485 return 0;
2486}
2487
673a394b
EA
2488/**
2489 * Finds free space in the GTT aperture and binds the object there.
2490 */
2491static int
2492i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2493{
2494 struct drm_device *dev = obj->dev;
2495 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2496 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2497 struct drm_mm_node *free_space;
4bdadb97 2498 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2499 int ret;
673a394b 2500
bb6baf76 2501 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2502 DRM_ERROR("Attempting to bind a purgeable object\n");
2503 return -EINVAL;
2504 }
2505
673a394b 2506 if (alignment == 0)
0f973f27 2507 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2508 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2509 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2510 return -EINVAL;
2511 }
2512
654fc607
CW
2513 /* If the object is bigger than the entire aperture, reject it early
2514 * before evicting everything in a vain attempt to find space.
2515 */
2516 if (obj->size > dev->gtt_total) {
2517 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2518 return -E2BIG;
2519 }
2520
673a394b
EA
2521 search_free:
2522 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2523 obj->size, alignment, 0);
2524 if (free_space != NULL) {
2525 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2526 alignment);
db3307a9 2527 if (obj_priv->gtt_space != NULL)
673a394b 2528 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2529 }
2530 if (obj_priv->gtt_space == NULL) {
2531 /* If the gtt is empty and we're still having trouble
2532 * fitting our object in, we're out of memory.
2533 */
2534#if WATCH_LRU
2535 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2536#endif
0108a3ed 2537 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2538 if (ret)
673a394b 2539 return ret;
9731129c 2540
673a394b
EA
2541 goto search_free;
2542 }
2543
2544#if WATCH_BUF
cfd43c02 2545 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2546 obj->size, obj_priv->gtt_offset);
2547#endif
4bdadb97 2548 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2549 if (ret) {
2550 drm_mm_put_block(obj_priv->gtt_space);
2551 obj_priv->gtt_space = NULL;
07f73f69
CW
2552
2553 if (ret == -ENOMEM) {
2554 /* first try to clear up some space from the GTT */
0108a3ed
DV
2555 ret = i915_gem_evict_something(dev, obj->size,
2556 alignment);
07f73f69 2557 if (ret) {
07f73f69 2558 /* now try to shrink everyone else */
4bdadb97
CW
2559 if (gfpmask) {
2560 gfpmask = 0;
2561 goto search_free;
07f73f69
CW
2562 }
2563
2564 return ret;
2565 }
2566
2567 goto search_free;
2568 }
2569
673a394b
EA
2570 return ret;
2571 }
2572
673a394b
EA
2573 /* Create an AGP memory structure pointing at our pages, and bind it
2574 * into the GTT.
2575 */
2576 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2577 obj_priv->pages,
07f73f69 2578 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2579 obj_priv->gtt_offset,
2580 obj_priv->agp_type);
673a394b 2581 if (obj_priv->agp_mem == NULL) {
856fa198 2582 i915_gem_object_put_pages(obj);
673a394b
EA
2583 drm_mm_put_block(obj_priv->gtt_space);
2584 obj_priv->gtt_space = NULL;
07f73f69 2585
0108a3ed 2586 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2587 if (ret)
07f73f69 2588 return ret;
07f73f69
CW
2589
2590 goto search_free;
673a394b
EA
2591 }
2592 atomic_inc(&dev->gtt_count);
2593 atomic_add(obj->size, &dev->gtt_memory);
2594
bf1a1092
CW
2595 /* keep track of bounds object by adding it to the inactive list */
2596 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2597
673a394b
EA
2598 /* Assert that the object is not currently in any GPU domain. As it
2599 * wasn't in the GTT, there shouldn't be any way it could have been in
2600 * a GPU cache
2601 */
21d509e3
CW
2602 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2603 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2604
1c5d22f7
CW
2605 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2606
673a394b
EA
2607 return 0;
2608}
2609
2610void
2611i915_gem_clflush_object(struct drm_gem_object *obj)
2612{
23010e43 2613 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2614
2615 /* If we don't have a page list set up, then we're not pinned
2616 * to GPU, and we can ignore the cache flush because it'll happen
2617 * again at bind time.
2618 */
856fa198 2619 if (obj_priv->pages == NULL)
673a394b
EA
2620 return;
2621
1c5d22f7 2622 trace_i915_gem_object_clflush(obj);
cfa16a0d 2623
856fa198 2624 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2625}
2626
e47c68e9 2627/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2628static int
e47c68e9
EA
2629i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2630{
2631 struct drm_device *dev = obj->dev;
1c5d22f7 2632 uint32_t old_write_domain;
852835f3 2633 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
e47c68e9
EA
2634
2635 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2636 return 0;
e47c68e9
EA
2637
2638 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2639 old_write_domain = obj->write_domain;
e47c68e9 2640 i915_gem_flush(dev, 0, obj->write_domain);
2dafb1e0
CW
2641 if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2642 return -ENOMEM;
1c5d22f7
CW
2643
2644 trace_i915_gem_object_change_domain(obj,
2645 obj->read_domains,
2646 old_write_domain);
2dafb1e0 2647 return 0;
e47c68e9
EA
2648}
2649
2650/** Flushes the GTT write domain for the object if it's dirty. */
2651static void
2652i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2653{
1c5d22f7
CW
2654 uint32_t old_write_domain;
2655
e47c68e9
EA
2656 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2657 return;
2658
2659 /* No actual flushing is required for the GTT write domain. Writes
2660 * to it immediately go to main memory as far as we know, so there's
2661 * no chipset flush. It also doesn't land in render cache.
2662 */
1c5d22f7 2663 old_write_domain = obj->write_domain;
e47c68e9 2664 obj->write_domain = 0;
1c5d22f7
CW
2665
2666 trace_i915_gem_object_change_domain(obj,
2667 obj->read_domains,
2668 old_write_domain);
e47c68e9
EA
2669}
2670
2671/** Flushes the CPU write domain for the object if it's dirty. */
2672static void
2673i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2674{
2675 struct drm_device *dev = obj->dev;
1c5d22f7 2676 uint32_t old_write_domain;
e47c68e9
EA
2677
2678 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2679 return;
2680
2681 i915_gem_clflush_object(obj);
2682 drm_agp_chipset_flush(dev);
1c5d22f7 2683 old_write_domain = obj->write_domain;
e47c68e9 2684 obj->write_domain = 0;
1c5d22f7
CW
2685
2686 trace_i915_gem_object_change_domain(obj,
2687 obj->read_domains,
2688 old_write_domain);
e47c68e9
EA
2689}
2690
2dafb1e0 2691int
6b95a207
KH
2692i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2693{
2dafb1e0
CW
2694 int ret = 0;
2695
6b95a207
KH
2696 switch (obj->write_domain) {
2697 case I915_GEM_DOMAIN_GTT:
2698 i915_gem_object_flush_gtt_write_domain(obj);
2699 break;
2700 case I915_GEM_DOMAIN_CPU:
2701 i915_gem_object_flush_cpu_write_domain(obj);
2702 break;
2703 default:
2dafb1e0 2704 ret = i915_gem_object_flush_gpu_write_domain(obj);
6b95a207
KH
2705 break;
2706 }
2dafb1e0
CW
2707
2708 return ret;
6b95a207
KH
2709}
2710
2ef7eeaa
EA
2711/**
2712 * Moves a single object to the GTT read, and possibly write domain.
2713 *
2714 * This function returns when the move is complete, including waiting on
2715 * flushes to occur.
2716 */
79e53945 2717int
2ef7eeaa
EA
2718i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2719{
23010e43 2720 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2721 uint32_t old_write_domain, old_read_domains;
e47c68e9 2722 int ret;
2ef7eeaa 2723
02354392
EA
2724 /* Not valid to be called on unbound objects. */
2725 if (obj_priv->gtt_space == NULL)
2726 return -EINVAL;
2727
2dafb1e0
CW
2728 ret = i915_gem_object_flush_gpu_write_domain(obj);
2729 if (ret != 0)
2730 return ret;
2731
e47c68e9 2732 /* Wait on any GPU rendering and flushing to occur. */
e35a41de 2733 ret = i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2734 if (ret != 0)
2735 return ret;
2736
1c5d22f7
CW
2737 old_write_domain = obj->write_domain;
2738 old_read_domains = obj->read_domains;
2739
e47c68e9
EA
2740 /* If we're writing through the GTT domain, then CPU and GPU caches
2741 * will need to be invalidated at next use.
2ef7eeaa 2742 */
e47c68e9
EA
2743 if (write)
2744 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2ef7eeaa 2745
e47c68e9 2746 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2747
e47c68e9
EA
2748 /* It should now be out of any other write domains, and we can update
2749 * the domain values for our changes.
2750 */
2751 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2752 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2753 if (write) {
2754 obj->write_domain = I915_GEM_DOMAIN_GTT;
2755 obj_priv->dirty = 1;
2ef7eeaa
EA
2756 }
2757
1c5d22f7
CW
2758 trace_i915_gem_object_change_domain(obj,
2759 old_read_domains,
2760 old_write_domain);
2761
e47c68e9
EA
2762 return 0;
2763}
2764
b9241ea3
ZW
2765/*
2766 * Prepare buffer for display plane. Use uninterruptible for possible flush
2767 * wait, as in modesetting process we're not supposed to be interrupted.
2768 */
2769int
2770i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2771{
23010e43 2772 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
b9241ea3
ZW
2773 uint32_t old_write_domain, old_read_domains;
2774 int ret;
2775
2776 /* Not valid to be called on unbound objects. */
2777 if (obj_priv->gtt_space == NULL)
2778 return -EINVAL;
2779
2dafb1e0
CW
2780 ret = i915_gem_object_flush_gpu_write_domain(obj);
2781 if (ret)
2782 return ret;
b9241ea3
ZW
2783
2784 /* Wait on any GPU rendering and flushing to occur. */
e35a41de
DV
2785 ret = i915_gem_object_wait_rendering(obj, false);
2786 if (ret != 0)
2787 return ret;
b9241ea3 2788
b118c1e3
CW
2789 i915_gem_object_flush_cpu_write_domain(obj);
2790
b9241ea3
ZW
2791 old_write_domain = obj->write_domain;
2792 old_read_domains = obj->read_domains;
2793
b9241ea3
ZW
2794 /* It should now be out of any other write domains, and we can update
2795 * the domain values for our changes.
2796 */
2797 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
b118c1e3 2798 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2799 obj->write_domain = I915_GEM_DOMAIN_GTT;
2800 obj_priv->dirty = 1;
2801
2802 trace_i915_gem_object_change_domain(obj,
2803 old_read_domains,
2804 old_write_domain);
2805
2806 return 0;
2807}
2808
e47c68e9
EA
2809/**
2810 * Moves a single object to the CPU read, and possibly write domain.
2811 *
2812 * This function returns when the move is complete, including waiting on
2813 * flushes to occur.
2814 */
2815static int
2816i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2817{
1c5d22f7 2818 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2819 int ret;
2820
2dafb1e0
CW
2821 ret = i915_gem_object_flush_gpu_write_domain(obj);
2822 if (ret)
2823 return ret;
2824
2ef7eeaa 2825 /* Wait on any GPU rendering and flushing to occur. */
e35a41de 2826 ret = i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2827 if (ret != 0)
2828 return ret;
2ef7eeaa 2829
e47c68e9 2830 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2831
e47c68e9
EA
2832 /* If we have a partially-valid cache of the object in the CPU,
2833 * finish invalidating it and free the per-page flags.
2ef7eeaa 2834 */
e47c68e9 2835 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2836
1c5d22f7
CW
2837 old_write_domain = obj->write_domain;
2838 old_read_domains = obj->read_domains;
2839
e47c68e9
EA
2840 /* Flush the CPU cache if it's still invalid. */
2841 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2842 i915_gem_clflush_object(obj);
2ef7eeaa 2843
e47c68e9 2844 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2845 }
2846
2847 /* It should now be out of any other write domains, and we can update
2848 * the domain values for our changes.
2849 */
e47c68e9
EA
2850 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2851
2852 /* If we're writing through the CPU, then the GPU read domains will
2853 * need to be invalidated at next use.
2854 */
2855 if (write) {
2856 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2857 obj->write_domain = I915_GEM_DOMAIN_CPU;
2858 }
2ef7eeaa 2859
1c5d22f7
CW
2860 trace_i915_gem_object_change_domain(obj,
2861 old_read_domains,
2862 old_write_domain);
2863
2ef7eeaa
EA
2864 return 0;
2865}
2866
673a394b
EA
2867/*
2868 * Set the next domain for the specified object. This
2869 * may not actually perform the necessary flushing/invaliding though,
2870 * as that may want to be batched with other set_domain operations
2871 *
2872 * This is (we hope) the only really tricky part of gem. The goal
2873 * is fairly simple -- track which caches hold bits of the object
2874 * and make sure they remain coherent. A few concrete examples may
2875 * help to explain how it works. For shorthand, we use the notation
2876 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2877 * a pair of read and write domain masks.
2878 *
2879 * Case 1: the batch buffer
2880 *
2881 * 1. Allocated
2882 * 2. Written by CPU
2883 * 3. Mapped to GTT
2884 * 4. Read by GPU
2885 * 5. Unmapped from GTT
2886 * 6. Freed
2887 *
2888 * Let's take these a step at a time
2889 *
2890 * 1. Allocated
2891 * Pages allocated from the kernel may still have
2892 * cache contents, so we set them to (CPU, CPU) always.
2893 * 2. Written by CPU (using pwrite)
2894 * The pwrite function calls set_domain (CPU, CPU) and
2895 * this function does nothing (as nothing changes)
2896 * 3. Mapped by GTT
2897 * This function asserts that the object is not
2898 * currently in any GPU-based read or write domains
2899 * 4. Read by GPU
2900 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2901 * As write_domain is zero, this function adds in the
2902 * current read domains (CPU+COMMAND, 0).
2903 * flush_domains is set to CPU.
2904 * invalidate_domains is set to COMMAND
2905 * clflush is run to get data out of the CPU caches
2906 * then i915_dev_set_domain calls i915_gem_flush to
2907 * emit an MI_FLUSH and drm_agp_chipset_flush
2908 * 5. Unmapped from GTT
2909 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2910 * flush_domains and invalidate_domains end up both zero
2911 * so no flushing/invalidating happens
2912 * 6. Freed
2913 * yay, done
2914 *
2915 * Case 2: The shared render buffer
2916 *
2917 * 1. Allocated
2918 * 2. Mapped to GTT
2919 * 3. Read/written by GPU
2920 * 4. set_domain to (CPU,CPU)
2921 * 5. Read/written by CPU
2922 * 6. Read/written by GPU
2923 *
2924 * 1. Allocated
2925 * Same as last example, (CPU, CPU)
2926 * 2. Mapped to GTT
2927 * Nothing changes (assertions find that it is not in the GPU)
2928 * 3. Read/written by GPU
2929 * execbuffer calls set_domain (RENDER, RENDER)
2930 * flush_domains gets CPU
2931 * invalidate_domains gets GPU
2932 * clflush (obj)
2933 * MI_FLUSH and drm_agp_chipset_flush
2934 * 4. set_domain (CPU, CPU)
2935 * flush_domains gets GPU
2936 * invalidate_domains gets CPU
2937 * wait_rendering (obj) to make sure all drawing is complete.
2938 * This will include an MI_FLUSH to get the data from GPU
2939 * to memory
2940 * clflush (obj) to invalidate the CPU cache
2941 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2942 * 5. Read/written by CPU
2943 * cache lines are loaded and dirtied
2944 * 6. Read written by GPU
2945 * Same as last GPU access
2946 *
2947 * Case 3: The constant buffer
2948 *
2949 * 1. Allocated
2950 * 2. Written by CPU
2951 * 3. Read by GPU
2952 * 4. Updated (written) by CPU again
2953 * 5. Read by GPU
2954 *
2955 * 1. Allocated
2956 * (CPU, CPU)
2957 * 2. Written by CPU
2958 * (CPU, CPU)
2959 * 3. Read by GPU
2960 * (CPU+RENDER, 0)
2961 * flush_domains = CPU
2962 * invalidate_domains = RENDER
2963 * clflush (obj)
2964 * MI_FLUSH
2965 * drm_agp_chipset_flush
2966 * 4. Updated (written) by CPU again
2967 * (CPU, CPU)
2968 * flush_domains = 0 (no previous write domain)
2969 * invalidate_domains = 0 (no new read domains)
2970 * 5. Read by GPU
2971 * (CPU+RENDER, 0)
2972 * flush_domains = CPU
2973 * invalidate_domains = RENDER
2974 * clflush (obj)
2975 * MI_FLUSH
2976 * drm_agp_chipset_flush
2977 */
c0d90829 2978static void
8b0e378a 2979i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2980{
2981 struct drm_device *dev = obj->dev;
88f356b7 2982 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2983 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2984 uint32_t invalidate_domains = 0;
2985 uint32_t flush_domains = 0;
1c5d22f7 2986 uint32_t old_read_domains;
e47c68e9 2987
8b0e378a
EA
2988 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2989 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2990
652c393a
JB
2991 intel_mark_busy(dev, obj);
2992
673a394b
EA
2993#if WATCH_BUF
2994 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2995 __func__, obj,
8b0e378a
EA
2996 obj->read_domains, obj->pending_read_domains,
2997 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2998#endif
2999 /*
3000 * If the object isn't moving to a new write domain,
3001 * let the object stay in multiple read domains
3002 */
8b0e378a
EA
3003 if (obj->pending_write_domain == 0)
3004 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3005 else
3006 obj_priv->dirty = 1;
3007
3008 /*
3009 * Flush the current write domain if
3010 * the new read domains don't match. Invalidate
3011 * any read domains which differ from the old
3012 * write domain
3013 */
8b0e378a
EA
3014 if (obj->write_domain &&
3015 obj->write_domain != obj->pending_read_domains) {
673a394b 3016 flush_domains |= obj->write_domain;
8b0e378a
EA
3017 invalidate_domains |=
3018 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3019 }
3020 /*
3021 * Invalidate any read caches which may have
3022 * stale data. That is, any new read domains.
3023 */
8b0e378a 3024 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
3025 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3026#if WATCH_BUF
3027 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3028 __func__, flush_domains, invalidate_domains);
3029#endif
673a394b
EA
3030 i915_gem_clflush_object(obj);
3031 }
3032
1c5d22f7
CW
3033 old_read_domains = obj->read_domains;
3034
efbeed96
EA
3035 /* The actual obj->write_domain will be updated with
3036 * pending_write_domain after we emit the accumulated flush for all
3037 * of our domain changes in execbuffers (which clears objects'
3038 * write_domains). So if we have a current write domain that we
3039 * aren't changing, set pending_write_domain to that.
3040 */
3041 if (flush_domains == 0 && obj->pending_write_domain == 0)
3042 obj->pending_write_domain = obj->write_domain;
8b0e378a 3043 obj->read_domains = obj->pending_read_domains;
673a394b 3044
88f356b7
CW
3045 if (flush_domains & I915_GEM_GPU_DOMAINS) {
3046 if (obj_priv->ring == &dev_priv->render_ring)
3047 dev_priv->flush_rings |= FLUSH_RENDER_RING;
3048 else if (obj_priv->ring == &dev_priv->bsd_ring)
3049 dev_priv->flush_rings |= FLUSH_BSD_RING;
3050 }
3051
673a394b
EA
3052 dev->invalidate_domains |= invalidate_domains;
3053 dev->flush_domains |= flush_domains;
3054#if WATCH_BUF
3055 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3056 __func__,
3057 obj->read_domains, obj->write_domain,
3058 dev->invalidate_domains, dev->flush_domains);
3059#endif
1c5d22f7
CW
3060
3061 trace_i915_gem_object_change_domain(obj,
3062 old_read_domains,
3063 obj->write_domain);
673a394b
EA
3064}
3065
3066/**
e47c68e9 3067 * Moves the object from a partially CPU read to a full one.
673a394b 3068 *
e47c68e9
EA
3069 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3070 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3071 */
e47c68e9
EA
3072static void
3073i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3074{
23010e43 3075 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3076
e47c68e9
EA
3077 if (!obj_priv->page_cpu_valid)
3078 return;
3079
3080 /* If we're partially in the CPU read domain, finish moving it in.
3081 */
3082 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3083 int i;
3084
3085 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3086 if (obj_priv->page_cpu_valid[i])
3087 continue;
856fa198 3088 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3089 }
e47c68e9
EA
3090 }
3091
3092 /* Free the page_cpu_valid mappings which are now stale, whether
3093 * or not we've got I915_GEM_DOMAIN_CPU.
3094 */
9a298b2a 3095 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3096 obj_priv->page_cpu_valid = NULL;
3097}
3098
3099/**
3100 * Set the CPU read domain on a range of the object.
3101 *
3102 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3103 * not entirely valid. The page_cpu_valid member of the object flags which
3104 * pages have been flushed, and will be respected by
3105 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3106 * of the whole object.
3107 *
3108 * This function returns when the move is complete, including waiting on
3109 * flushes to occur.
3110 */
3111static int
3112i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3113 uint64_t offset, uint64_t size)
3114{
23010e43 3115 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3116 uint32_t old_read_domains;
e47c68e9 3117 int i, ret;
673a394b 3118
e47c68e9
EA
3119 if (offset == 0 && size == obj->size)
3120 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3121
2dafb1e0
CW
3122 ret = i915_gem_object_flush_gpu_write_domain(obj);
3123 if (ret)
3124 return ret;
3125
e47c68e9 3126 /* Wait on any GPU rendering and flushing to occur. */
e35a41de 3127 ret = i915_gem_object_wait_rendering(obj, true);
e47c68e9 3128 if (ret != 0)
6a47baa6 3129 return ret;
e47c68e9
EA
3130 i915_gem_object_flush_gtt_write_domain(obj);
3131
3132 /* If we're already fully in the CPU read domain, we're done. */
3133 if (obj_priv->page_cpu_valid == NULL &&
3134 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3135 return 0;
673a394b 3136
e47c68e9
EA
3137 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3138 * newly adding I915_GEM_DOMAIN_CPU
3139 */
673a394b 3140 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3141 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3142 GFP_KERNEL);
e47c68e9
EA
3143 if (obj_priv->page_cpu_valid == NULL)
3144 return -ENOMEM;
3145 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3146 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3147
3148 /* Flush the cache on any pages that are still invalid from the CPU's
3149 * perspective.
3150 */
e47c68e9
EA
3151 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3152 i++) {
673a394b
EA
3153 if (obj_priv->page_cpu_valid[i])
3154 continue;
3155
856fa198 3156 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3157
3158 obj_priv->page_cpu_valid[i] = 1;
3159 }
3160
e47c68e9
EA
3161 /* It should now be out of any other write domains, and we can update
3162 * the domain values for our changes.
3163 */
3164 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3165
1c5d22f7 3166 old_read_domains = obj->read_domains;
e47c68e9
EA
3167 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3168
1c5d22f7
CW
3169 trace_i915_gem_object_change_domain(obj,
3170 old_read_domains,
3171 obj->write_domain);
3172
673a394b
EA
3173 return 0;
3174}
3175
673a394b
EA
3176/**
3177 * Pin an object to the GTT and evaluate the relocations landing in it.
3178 */
3179static int
3180i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3181 struct drm_file *file_priv,
76446cac 3182 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3183 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3184{
3185 struct drm_device *dev = obj->dev;
0839ccb8 3186 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3187 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3188 int i, ret;
0839ccb8 3189 void __iomem *reloc_page;
76446cac
JB
3190 bool need_fence;
3191
3192 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3193 obj_priv->tiling_mode != I915_TILING_NONE;
3194
3195 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3196 if (need_fence &&
3197 !i915_gem_object_fence_offset_ok(obj,
3198 obj_priv->tiling_mode)) {
3199 ret = i915_gem_object_unbind(obj);
3200 if (ret)
3201 return ret;
3202 }
673a394b
EA
3203
3204 /* Choose the GTT offset for our buffer and put it there. */
3205 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3206 if (ret)
3207 return ret;
3208
76446cac
JB
3209 /*
3210 * Pre-965 chips need a fence register set up in order to
3211 * properly handle blits to/from tiled surfaces.
3212 */
3213 if (need_fence) {
3214 ret = i915_gem_object_get_fence_reg(obj);
3215 if (ret != 0) {
76446cac
JB
3216 i915_gem_object_unpin(obj);
3217 return ret;
3218 }
3219 }
3220
673a394b
EA
3221 entry->offset = obj_priv->gtt_offset;
3222
673a394b
EA
3223 /* Apply the relocations, using the GTT aperture to avoid cache
3224 * flushing requirements.
3225 */
3226 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3227 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3228 struct drm_gem_object *target_obj;
3229 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3230 uint32_t reloc_val, reloc_offset;
3231 uint32_t __iomem *reloc_entry;
673a394b 3232
673a394b 3233 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3234 reloc->target_handle);
673a394b
EA
3235 if (target_obj == NULL) {
3236 i915_gem_object_unpin(obj);
bf79cb91 3237 return -ENOENT;
673a394b 3238 }
23010e43 3239 target_obj_priv = to_intel_bo(target_obj);
673a394b 3240
8542a0bb
CW
3241#if WATCH_RELOC
3242 DRM_INFO("%s: obj %p offset %08x target %d "
3243 "read %08x write %08x gtt %08x "
3244 "presumed %08x delta %08x\n",
3245 __func__,
3246 obj,
3247 (int) reloc->offset,
3248 (int) reloc->target_handle,
3249 (int) reloc->read_domains,
3250 (int) reloc->write_domain,
3251 (int) target_obj_priv->gtt_offset,
3252 (int) reloc->presumed_offset,
3253 reloc->delta);
3254#endif
3255
673a394b
EA
3256 /* The target buffer should have appeared before us in the
3257 * exec_object list, so it should have a GTT space bound by now.
3258 */
3259 if (target_obj_priv->gtt_space == NULL) {
3260 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3261 reloc->target_handle);
673a394b
EA
3262 drm_gem_object_unreference(target_obj);
3263 i915_gem_object_unpin(obj);
3264 return -EINVAL;
3265 }
3266
8542a0bb 3267 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3268 if (reloc->write_domain & (reloc->write_domain - 1)) {
3269 DRM_ERROR("reloc with multiple write domains: "
3270 "obj %p target %d offset %d "
3271 "read %08x write %08x",
3272 obj, reloc->target_handle,
3273 (int) reloc->offset,
3274 reloc->read_domains,
3275 reloc->write_domain);
3276 return -EINVAL;
3277 }
40a5f0de
EA
3278 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3279 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3280 DRM_ERROR("reloc with read/write CPU domains: "
3281 "obj %p target %d offset %d "
3282 "read %08x write %08x",
40a5f0de
EA
3283 obj, reloc->target_handle,
3284 (int) reloc->offset,
3285 reloc->read_domains,
3286 reloc->write_domain);
491152b8
CW
3287 drm_gem_object_unreference(target_obj);
3288 i915_gem_object_unpin(obj);
e47c68e9
EA
3289 return -EINVAL;
3290 }
40a5f0de
EA
3291 if (reloc->write_domain && target_obj->pending_write_domain &&
3292 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3293 DRM_ERROR("Write domain conflict: "
3294 "obj %p target %d offset %d "
3295 "new %08x old %08x\n",
40a5f0de
EA
3296 obj, reloc->target_handle,
3297 (int) reloc->offset,
3298 reloc->write_domain,
673a394b
EA
3299 target_obj->pending_write_domain);
3300 drm_gem_object_unreference(target_obj);
3301 i915_gem_object_unpin(obj);
3302 return -EINVAL;
3303 }
3304
40a5f0de
EA
3305 target_obj->pending_read_domains |= reloc->read_domains;
3306 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3307
3308 /* If the relocation already has the right value in it, no
3309 * more work needs to be done.
3310 */
40a5f0de 3311 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3312 drm_gem_object_unreference(target_obj);
3313 continue;
3314 }
3315
8542a0bb
CW
3316 /* Check that the relocation address is valid... */
3317 if (reloc->offset > obj->size - 4) {
3318 DRM_ERROR("Relocation beyond object bounds: "
3319 "obj %p target %d offset %d size %d.\n",
3320 obj, reloc->target_handle,
3321 (int) reloc->offset, (int) obj->size);
3322 drm_gem_object_unreference(target_obj);
3323 i915_gem_object_unpin(obj);
3324 return -EINVAL;
3325 }
3326 if (reloc->offset & 3) {
3327 DRM_ERROR("Relocation not 4-byte aligned: "
3328 "obj %p target %d offset %d.\n",
3329 obj, reloc->target_handle,
3330 (int) reloc->offset);
3331 drm_gem_object_unreference(target_obj);
3332 i915_gem_object_unpin(obj);
3333 return -EINVAL;
3334 }
3335
3336 /* and points to somewhere within the target object. */
3337 if (reloc->delta >= target_obj->size) {
3338 DRM_ERROR("Relocation beyond target object bounds: "
3339 "obj %p target %d delta %d size %d.\n",
3340 obj, reloc->target_handle,
3341 (int) reloc->delta, (int) target_obj->size);
3342 drm_gem_object_unreference(target_obj);
3343 i915_gem_object_unpin(obj);
3344 return -EINVAL;
3345 }
3346
2ef7eeaa
EA
3347 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3348 if (ret != 0) {
3349 drm_gem_object_unreference(target_obj);
3350 i915_gem_object_unpin(obj);
3351 return -EINVAL;
673a394b
EA
3352 }
3353
3354 /* Map the page containing the relocation we're going to
3355 * perform.
3356 */
40a5f0de 3357 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3358 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3359 (reloc_offset &
fca3ec01
CW
3360 ~(PAGE_SIZE - 1)),
3361 KM_USER0);
3043c60c 3362 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3363 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3364 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3365
3366#if WATCH_BUF
3367 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3368 obj, (unsigned int) reloc->offset,
673a394b
EA
3369 readl(reloc_entry), reloc_val);
3370#endif
3371 writel(reloc_val, reloc_entry);
fca3ec01 3372 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3373
40a5f0de
EA
3374 /* The updated presumed offset for this entry will be
3375 * copied back out to the user.
673a394b 3376 */
40a5f0de 3377 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3378
3379 drm_gem_object_unreference(target_obj);
3380 }
3381
673a394b
EA
3382#if WATCH_BUF
3383 if (0)
3384 i915_gem_dump_object(obj, 128, __func__, ~0);
3385#endif
3386 return 0;
3387}
3388
673a394b
EA
3389/* Throttle our rendering by waiting until the ring has completed our requests
3390 * emitted over 20 msec ago.
3391 *
b962442e
EA
3392 * Note that if we were to use the current jiffies each time around the loop,
3393 * we wouldn't escape the function with any frames outstanding if the time to
3394 * render a frame was over 20ms.
3395 *
673a394b
EA
3396 * This should get us reasonable parallelism between CPU and GPU but also
3397 * relatively low latency when blocking on a particular request to finish.
3398 */
3399static int
3400i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3401{
3402 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3403 int ret = 0;
b962442e 3404 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3405
3406 mutex_lock(&dev->struct_mutex);
b962442e
EA
3407 while (!list_empty(&i915_file_priv->mm.request_list)) {
3408 struct drm_i915_gem_request *request;
3409
3410 request = list_first_entry(&i915_file_priv->mm.request_list,
3411 struct drm_i915_gem_request,
3412 client_list);
3413
3414 if (time_after_eq(request->emitted_jiffies, recent_enough))
3415 break;
3416
852835f3 3417 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3418 if (ret != 0)
3419 break;
3420 }
673a394b 3421 mutex_unlock(&dev->struct_mutex);
b962442e 3422
673a394b
EA
3423 return ret;
3424}
3425
40a5f0de 3426static int
76446cac 3427i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3428 uint32_t buffer_count,
3429 struct drm_i915_gem_relocation_entry **relocs)
3430{
3431 uint32_t reloc_count = 0, reloc_index = 0, i;
3432 int ret;
3433
3434 *relocs = NULL;
3435 for (i = 0; i < buffer_count; i++) {
3436 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3437 return -EINVAL;
3438 reloc_count += exec_list[i].relocation_count;
3439 }
3440
8e7d2b2c 3441 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3442 if (*relocs == NULL) {
3443 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3444 return -ENOMEM;
76446cac 3445 }
40a5f0de
EA
3446
3447 for (i = 0; i < buffer_count; i++) {
3448 struct drm_i915_gem_relocation_entry __user *user_relocs;
3449
3450 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3451
3452 ret = copy_from_user(&(*relocs)[reloc_index],
3453 user_relocs,
3454 exec_list[i].relocation_count *
3455 sizeof(**relocs));
3456 if (ret != 0) {
8e7d2b2c 3457 drm_free_large(*relocs);
40a5f0de 3458 *relocs = NULL;
2bc43b5c 3459 return -EFAULT;
40a5f0de
EA
3460 }
3461
3462 reloc_index += exec_list[i].relocation_count;
3463 }
3464
2bc43b5c 3465 return 0;
40a5f0de
EA
3466}
3467
3468static int
76446cac 3469i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3470 uint32_t buffer_count,
3471 struct drm_i915_gem_relocation_entry *relocs)
3472{
3473 uint32_t reloc_count = 0, i;
2bc43b5c 3474 int ret = 0;
40a5f0de 3475
93533c29
CW
3476 if (relocs == NULL)
3477 return 0;
3478
40a5f0de
EA
3479 for (i = 0; i < buffer_count; i++) {
3480 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3481 int unwritten;
40a5f0de
EA
3482
3483 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3484
2bc43b5c
FM
3485 unwritten = copy_to_user(user_relocs,
3486 &relocs[reloc_count],
3487 exec_list[i].relocation_count *
3488 sizeof(*relocs));
3489
3490 if (unwritten) {
3491 ret = -EFAULT;
3492 goto err;
40a5f0de
EA
3493 }
3494
3495 reloc_count += exec_list[i].relocation_count;
3496 }
3497
2bc43b5c 3498err:
8e7d2b2c 3499 drm_free_large(relocs);
40a5f0de
EA
3500
3501 return ret;
3502}
3503
83d60795 3504static int
76446cac 3505i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3506 uint64_t exec_offset)
3507{
3508 uint32_t exec_start, exec_len;
3509
3510 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3511 exec_len = (uint32_t) exec->batch_len;
3512
3513 if ((exec_start | exec_len) & 0x7)
3514 return -EINVAL;
3515
3516 if (!exec_start)
3517 return -EINVAL;
3518
3519 return 0;
3520}
3521
6b95a207
KH
3522static int
3523i915_gem_wait_for_pending_flip(struct drm_device *dev,
3524 struct drm_gem_object **object_list,
3525 int count)
3526{
3527 drm_i915_private_t *dev_priv = dev->dev_private;
3528 struct drm_i915_gem_object *obj_priv;
3529 DEFINE_WAIT(wait);
3530 int i, ret = 0;
3531
3532 for (;;) {
3533 prepare_to_wait(&dev_priv->pending_flip_queue,
3534 &wait, TASK_INTERRUPTIBLE);
3535 for (i = 0; i < count; i++) {
23010e43 3536 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3537 if (atomic_read(&obj_priv->pending_flip) > 0)
3538 break;
3539 }
3540 if (i == count)
3541 break;
3542
3543 if (!signal_pending(current)) {
3544 mutex_unlock(&dev->struct_mutex);
3545 schedule();
3546 mutex_lock(&dev->struct_mutex);
3547 continue;
3548 }
3549 ret = -ERESTARTSYS;
3550 break;
3551 }
3552 finish_wait(&dev_priv->pending_flip_queue, &wait);
3553
3554 return ret;
3555}
3556
43b27f40 3557
673a394b 3558int
76446cac
JB
3559i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3560 struct drm_file *file_priv,
3561 struct drm_i915_gem_execbuffer2 *args,
3562 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3563{
3564 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3565 struct drm_gem_object **object_list = NULL;
3566 struct drm_gem_object *batch_obj;
b70d11da 3567 struct drm_i915_gem_object *obj_priv;
201361a5 3568 struct drm_clip_rect *cliprects = NULL;
93533c29 3569 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3570 int ret = 0, ret2, i, pinned = 0;
673a394b 3571 uint64_t exec_offset;
40a5f0de 3572 uint32_t seqno, flush_domains, reloc_index;
6b95a207 3573 int pin_tries, flips;
673a394b 3574
852835f3
ZN
3575 struct intel_ring_buffer *ring = NULL;
3576
673a394b
EA
3577#if WATCH_EXEC
3578 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3579 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3580#endif
d1b851fc
ZN
3581 if (args->flags & I915_EXEC_BSD) {
3582 if (!HAS_BSD(dev)) {
3583 DRM_ERROR("execbuf with wrong flag\n");
3584 return -EINVAL;
3585 }
3586 ring = &dev_priv->bsd_ring;
3587 } else {
3588 ring = &dev_priv->render_ring;
3589 }
3590
4f481ed2
EA
3591 if (args->buffer_count < 1) {
3592 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3593 return -EINVAL;
3594 }
c8e0f93a 3595 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3596 if (object_list == NULL) {
3597 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3598 args->buffer_count);
3599 ret = -ENOMEM;
3600 goto pre_mutex_err;
3601 }
673a394b 3602
201361a5 3603 if (args->num_cliprects != 0) {
9a298b2a
EA
3604 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3605 GFP_KERNEL);
a40e8d31
OA
3606 if (cliprects == NULL) {
3607 ret = -ENOMEM;
201361a5 3608 goto pre_mutex_err;
a40e8d31 3609 }
201361a5
EA
3610
3611 ret = copy_from_user(cliprects,
3612 (struct drm_clip_rect __user *)
3613 (uintptr_t) args->cliprects_ptr,
3614 sizeof(*cliprects) * args->num_cliprects);
3615 if (ret != 0) {
3616 DRM_ERROR("copy %d cliprects failed: %d\n",
3617 args->num_cliprects, ret);
c877cdce 3618 ret = -EFAULT;
201361a5
EA
3619 goto pre_mutex_err;
3620 }
3621 }
3622
40a5f0de
EA
3623 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3624 &relocs);
3625 if (ret != 0)
3626 goto pre_mutex_err;
3627
673a394b
EA
3628 mutex_lock(&dev->struct_mutex);
3629
3630 i915_verify_inactive(dev, __FILE__, __LINE__);
3631
ba1234d1 3632 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3633 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3634 ret = -EIO;
3635 goto pre_mutex_err;
673a394b
EA
3636 }
3637
3638 if (dev_priv->mm.suspended) {
673a394b 3639 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3640 ret = -EBUSY;
3641 goto pre_mutex_err;
673a394b
EA
3642 }
3643
ac94a962 3644 /* Look up object handles */
6b95a207 3645 flips = 0;
673a394b
EA
3646 for (i = 0; i < args->buffer_count; i++) {
3647 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3648 exec_list[i].handle);
3649 if (object_list[i] == NULL) {
3650 DRM_ERROR("Invalid object handle %d at index %d\n",
3651 exec_list[i].handle, i);
0ce907f8
CW
3652 /* prevent error path from reading uninitialized data */
3653 args->buffer_count = i + 1;
bf79cb91 3654 ret = -ENOENT;
673a394b
EA
3655 goto err;
3656 }
b70d11da 3657
23010e43 3658 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3659 if (obj_priv->in_execbuffer) {
3660 DRM_ERROR("Object %p appears more than once in object list\n",
3661 object_list[i]);
0ce907f8
CW
3662 /* prevent error path from reading uninitialized data */
3663 args->buffer_count = i + 1;
bf79cb91 3664 ret = -EINVAL;
b70d11da
KH
3665 goto err;
3666 }
3667 obj_priv->in_execbuffer = true;
6b95a207
KH
3668 flips += atomic_read(&obj_priv->pending_flip);
3669 }
3670
3671 if (flips > 0) {
3672 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3673 args->buffer_count);
3674 if (ret)
3675 goto err;
ac94a962 3676 }
673a394b 3677
ac94a962
KP
3678 /* Pin and relocate */
3679 for (pin_tries = 0; ; pin_tries++) {
3680 ret = 0;
40a5f0de
EA
3681 reloc_index = 0;
3682
ac94a962
KP
3683 for (i = 0; i < args->buffer_count; i++) {
3684 object_list[i]->pending_read_domains = 0;
3685 object_list[i]->pending_write_domain = 0;
3686 ret = i915_gem_object_pin_and_relocate(object_list[i],
3687 file_priv,
40a5f0de
EA
3688 &exec_list[i],
3689 &relocs[reloc_index]);
ac94a962
KP
3690 if (ret)
3691 break;
3692 pinned = i + 1;
40a5f0de 3693 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3694 }
3695 /* success */
3696 if (ret == 0)
3697 break;
3698
3699 /* error other than GTT full, or we've already tried again */
2939e1f5 3700 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3701 if (ret != -ERESTARTSYS) {
3702 unsigned long long total_size = 0;
3d1cc470
CW
3703 int num_fences = 0;
3704 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3705 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3706
07f73f69 3707 total_size += object_list[i]->size;
3d1cc470
CW
3708 num_fences +=
3709 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3710 obj_priv->tiling_mode != I915_TILING_NONE;
3711 }
3712 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3713 pinned+1, args->buffer_count,
3d1cc470
CW
3714 total_size, num_fences,
3715 ret);
07f73f69
CW
3716 DRM_ERROR("%d objects [%d pinned], "
3717 "%d object bytes [%d pinned], "
3718 "%d/%d gtt bytes\n",
3719 atomic_read(&dev->object_count),
3720 atomic_read(&dev->pin_count),
3721 atomic_read(&dev->object_memory),
3722 atomic_read(&dev->pin_memory),
3723 atomic_read(&dev->gtt_memory),
3724 dev->gtt_total);
3725 }
673a394b
EA
3726 goto err;
3727 }
ac94a962
KP
3728
3729 /* unpin all of our buffers */
3730 for (i = 0; i < pinned; i++)
3731 i915_gem_object_unpin(object_list[i]);
b1177636 3732 pinned = 0;
ac94a962
KP
3733
3734 /* evict everyone we can from the aperture */
3735 ret = i915_gem_evict_everything(dev);
07f73f69 3736 if (ret && ret != -ENOSPC)
ac94a962 3737 goto err;
673a394b
EA
3738 }
3739
3740 /* Set the pending read domains for the batch buffer to COMMAND */
3741 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3742 if (batch_obj->pending_write_domain) {
3743 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3744 ret = -EINVAL;
3745 goto err;
3746 }
3747 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3748
83d60795
CW
3749 /* Sanity check the batch buffer, prior to moving objects */
3750 exec_offset = exec_list[args->buffer_count - 1].offset;
3751 ret = i915_gem_check_execbuffer (args, exec_offset);
3752 if (ret != 0) {
3753 DRM_ERROR("execbuf with invalid offset/length\n");
3754 goto err;
3755 }
3756
673a394b
EA
3757 i915_verify_inactive(dev, __FILE__, __LINE__);
3758
646f0f6e
KP
3759 /* Zero the global flush/invalidate flags. These
3760 * will be modified as new domains are computed
3761 * for each object
3762 */
3763 dev->invalidate_domains = 0;
3764 dev->flush_domains = 0;
88f356b7 3765 dev_priv->flush_rings = 0;
646f0f6e 3766
673a394b
EA
3767 for (i = 0; i < args->buffer_count; i++) {
3768 struct drm_gem_object *obj = object_list[i];
673a394b 3769
646f0f6e 3770 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3771 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3772 }
3773
3774 i915_verify_inactive(dev, __FILE__, __LINE__);
3775
646f0f6e
KP
3776 if (dev->invalidate_domains | dev->flush_domains) {
3777#if WATCH_EXEC
3778 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3779 __func__,
3780 dev->invalidate_domains,
3781 dev->flush_domains);
3782#endif
3783 i915_gem_flush(dev,
3784 dev->invalidate_domains,
3785 dev->flush_domains);
88f356b7 3786 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
8bff917c 3787 (void)i915_add_request(dev, file_priv, 0,
88f356b7
CW
3788 &dev_priv->render_ring);
3789 if (dev_priv->flush_rings & FLUSH_BSD_RING)
8bff917c 3790 (void)i915_add_request(dev, file_priv, 0,
88f356b7 3791 &dev_priv->bsd_ring);
646f0f6e 3792 }
673a394b 3793
efbeed96
EA
3794 for (i = 0; i < args->buffer_count; i++) {
3795 struct drm_gem_object *obj = object_list[i];
23010e43 3796 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3797 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3798
3799 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3800 if (obj->write_domain)
3801 list_move_tail(&obj_priv->gpu_write_list,
3802 &dev_priv->mm.gpu_write_list);
3803 else
3804 list_del_init(&obj_priv->gpu_write_list);
3805
1c5d22f7
CW
3806 trace_i915_gem_object_change_domain(obj,
3807 obj->read_domains,
3808 old_write_domain);
efbeed96
EA
3809 }
3810
673a394b
EA
3811 i915_verify_inactive(dev, __FILE__, __LINE__);
3812
3813#if WATCH_COHERENCY
3814 for (i = 0; i < args->buffer_count; i++) {
3815 i915_gem_object_check_coherency(object_list[i],
3816 exec_list[i].handle);
3817 }
3818#endif
3819
673a394b 3820#if WATCH_EXEC
6911a9b8 3821 i915_gem_dump_object(batch_obj,
673a394b
EA
3822 args->batch_len,
3823 __func__,
3824 ~0);
3825#endif
3826
673a394b 3827 /* Exec the batchbuffer */
852835f3
ZN
3828 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3829 cliprects, exec_offset);
673a394b
EA
3830 if (ret) {
3831 DRM_ERROR("dispatch failed %d\n", ret);
3832 goto err;
3833 }
3834
3835 /*
3836 * Ensure that the commands in the batch buffer are
3837 * finished before the interrupt fires
3838 */
852835f3 3839 flush_domains = i915_retire_commands(dev, ring);
673a394b
EA
3840
3841 i915_verify_inactive(dev, __FILE__, __LINE__);
3842
3843 /*
3844 * Get a seqno representing the execution of the current buffer,
3845 * which we can wait on. We would like to mitigate these interrupts,
3846 * likely by only creating seqnos occasionally (so that we have
3847 * *some* interrupts representing completion of buffers that we can
3848 * wait on when trying to clear up gtt space).
3849 */
852835f3 3850 seqno = i915_add_request(dev, file_priv, flush_domains, ring);
673a394b 3851 BUG_ON(seqno == 0);
673a394b
EA
3852 for (i = 0; i < args->buffer_count; i++) {
3853 struct drm_gem_object *obj = object_list[i];
852835f3 3854 obj_priv = to_intel_bo(obj);
673a394b 3855
852835f3 3856 i915_gem_object_move_to_active(obj, seqno, ring);
673a394b
EA
3857#if WATCH_LRU
3858 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3859#endif
3860 }
3861#if WATCH_LRU
3862 i915_dump_lru(dev, __func__);
3863#endif
3864
3865 i915_verify_inactive(dev, __FILE__, __LINE__);
3866
673a394b 3867err:
aad87dff
JL
3868 for (i = 0; i < pinned; i++)
3869 i915_gem_object_unpin(object_list[i]);
3870
b70d11da
KH
3871 for (i = 0; i < args->buffer_count; i++) {
3872 if (object_list[i]) {
23010e43 3873 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3874 obj_priv->in_execbuffer = false;
3875 }
aad87dff 3876 drm_gem_object_unreference(object_list[i]);
b70d11da 3877 }
673a394b 3878
673a394b
EA
3879 mutex_unlock(&dev->struct_mutex);
3880
93533c29 3881pre_mutex_err:
40a5f0de
EA
3882 /* Copy the updated relocations out regardless of current error
3883 * state. Failure to update the relocs would mean that the next
3884 * time userland calls execbuf, it would do so with presumed offset
3885 * state that didn't match the actual object state.
3886 */
3887 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3888 relocs);
3889 if (ret2 != 0) {
3890 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3891
3892 if (ret == 0)
3893 ret = ret2;
3894 }
3895
8e7d2b2c 3896 drm_free_large(object_list);
9a298b2a 3897 kfree(cliprects);
673a394b
EA
3898
3899 return ret;
3900}
3901
76446cac
JB
3902/*
3903 * Legacy execbuffer just creates an exec2 list from the original exec object
3904 * list array and passes it to the real function.
3905 */
3906int
3907i915_gem_execbuffer(struct drm_device *dev, void *data,
3908 struct drm_file *file_priv)
3909{
3910 struct drm_i915_gem_execbuffer *args = data;
3911 struct drm_i915_gem_execbuffer2 exec2;
3912 struct drm_i915_gem_exec_object *exec_list = NULL;
3913 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3914 int ret, i;
3915
3916#if WATCH_EXEC
3917 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3918 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3919#endif
3920
3921 if (args->buffer_count < 1) {
3922 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3923 return -EINVAL;
3924 }
3925
3926 /* Copy in the exec list from userland */
3927 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3928 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3929 if (exec_list == NULL || exec2_list == NULL) {
3930 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3931 args->buffer_count);
3932 drm_free_large(exec_list);
3933 drm_free_large(exec2_list);
3934 return -ENOMEM;
3935 }
3936 ret = copy_from_user(exec_list,
3937 (struct drm_i915_relocation_entry __user *)
3938 (uintptr_t) args->buffers_ptr,
3939 sizeof(*exec_list) * args->buffer_count);
3940 if (ret != 0) {
3941 DRM_ERROR("copy %d exec entries failed %d\n",
3942 args->buffer_count, ret);
3943 drm_free_large(exec_list);
3944 drm_free_large(exec2_list);
3945 return -EFAULT;
3946 }
3947
3948 for (i = 0; i < args->buffer_count; i++) {
3949 exec2_list[i].handle = exec_list[i].handle;
3950 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3951 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3952 exec2_list[i].alignment = exec_list[i].alignment;
3953 exec2_list[i].offset = exec_list[i].offset;
3954 if (!IS_I965G(dev))
3955 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3956 else
3957 exec2_list[i].flags = 0;
3958 }
3959
3960 exec2.buffers_ptr = args->buffers_ptr;
3961 exec2.buffer_count = args->buffer_count;
3962 exec2.batch_start_offset = args->batch_start_offset;
3963 exec2.batch_len = args->batch_len;
3964 exec2.DR1 = args->DR1;
3965 exec2.DR4 = args->DR4;
3966 exec2.num_cliprects = args->num_cliprects;
3967 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3968 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3969
3970 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3971 if (!ret) {
3972 /* Copy the new buffer offsets back to the user's exec list. */
3973 for (i = 0; i < args->buffer_count; i++)
3974 exec_list[i].offset = exec2_list[i].offset;
3975 /* ... and back out to userspace */
3976 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3977 (uintptr_t) args->buffers_ptr,
3978 exec_list,
3979 sizeof(*exec_list) * args->buffer_count);
3980 if (ret) {
3981 ret = -EFAULT;
3982 DRM_ERROR("failed to copy %d exec entries "
3983 "back to user (%d)\n",
3984 args->buffer_count, ret);
3985 }
76446cac
JB
3986 }
3987
3988 drm_free_large(exec_list);
3989 drm_free_large(exec2_list);
3990 return ret;
3991}
3992
3993int
3994i915_gem_execbuffer2(struct drm_device *dev, void *data,
3995 struct drm_file *file_priv)
3996{
3997 struct drm_i915_gem_execbuffer2 *args = data;
3998 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3999 int ret;
4000
4001#if WATCH_EXEC
4002 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4003 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4004#endif
4005
4006 if (args->buffer_count < 1) {
4007 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4008 return -EINVAL;
4009 }
4010
4011 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4012 if (exec2_list == NULL) {
4013 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4014 args->buffer_count);
4015 return -ENOMEM;
4016 }
4017 ret = copy_from_user(exec2_list,
4018 (struct drm_i915_relocation_entry __user *)
4019 (uintptr_t) args->buffers_ptr,
4020 sizeof(*exec2_list) * args->buffer_count);
4021 if (ret != 0) {
4022 DRM_ERROR("copy %d exec entries failed %d\n",
4023 args->buffer_count, ret);
4024 drm_free_large(exec2_list);
4025 return -EFAULT;
4026 }
4027
4028 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4029 if (!ret) {
4030 /* Copy the new buffer offsets back to the user's exec list. */
4031 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4032 (uintptr_t) args->buffers_ptr,
4033 exec2_list,
4034 sizeof(*exec2_list) * args->buffer_count);
4035 if (ret) {
4036 ret = -EFAULT;
4037 DRM_ERROR("failed to copy %d exec entries "
4038 "back to user (%d)\n",
4039 args->buffer_count, ret);
4040 }
4041 }
4042
4043 drm_free_large(exec2_list);
4044 return ret;
4045}
4046
673a394b
EA
4047int
4048i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4049{
4050 struct drm_device *dev = obj->dev;
23010e43 4051 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4052 int ret;
4053
778c3544
DV
4054 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4055
673a394b 4056 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4057
4058 if (obj_priv->gtt_space != NULL) {
4059 if (alignment == 0)
4060 alignment = i915_gem_get_gtt_alignment(obj);
4061 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4062 WARN(obj_priv->pin_count,
4063 "bo is already pinned with incorrect alignment:"
4064 " offset=%x, req.alignment=%x\n",
4065 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4066 ret = i915_gem_object_unbind(obj);
4067 if (ret)
4068 return ret;
4069 }
4070 }
4071
673a394b
EA
4072 if (obj_priv->gtt_space == NULL) {
4073 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4074 if (ret)
673a394b 4075 return ret;
22c344e9 4076 }
76446cac 4077
673a394b
EA
4078 obj_priv->pin_count++;
4079
4080 /* If the object is not active and not pending a flush,
4081 * remove it from the inactive list
4082 */
4083 if (obj_priv->pin_count == 1) {
4084 atomic_inc(&dev->pin_count);
4085 atomic_add(obj->size, &dev->pin_memory);
4086 if (!obj_priv->active &&
bf1a1092 4087 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4088 list_del_init(&obj_priv->list);
4089 }
4090 i915_verify_inactive(dev, __FILE__, __LINE__);
4091
4092 return 0;
4093}
4094
4095void
4096i915_gem_object_unpin(struct drm_gem_object *obj)
4097{
4098 struct drm_device *dev = obj->dev;
4099 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4100 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4101
4102 i915_verify_inactive(dev, __FILE__, __LINE__);
4103 obj_priv->pin_count--;
4104 BUG_ON(obj_priv->pin_count < 0);
4105 BUG_ON(obj_priv->gtt_space == NULL);
4106
4107 /* If the object is no longer pinned, and is
4108 * neither active nor being flushed, then stick it on
4109 * the inactive list
4110 */
4111 if (obj_priv->pin_count == 0) {
4112 if (!obj_priv->active &&
21d509e3 4113 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4114 list_move_tail(&obj_priv->list,
4115 &dev_priv->mm.inactive_list);
4116 atomic_dec(&dev->pin_count);
4117 atomic_sub(obj->size, &dev->pin_memory);
4118 }
4119 i915_verify_inactive(dev, __FILE__, __LINE__);
4120}
4121
4122int
4123i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4124 struct drm_file *file_priv)
4125{
4126 struct drm_i915_gem_pin *args = data;
4127 struct drm_gem_object *obj;
4128 struct drm_i915_gem_object *obj_priv;
4129 int ret;
4130
4131 mutex_lock(&dev->struct_mutex);
4132
4133 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4134 if (obj == NULL) {
4135 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4136 args->handle);
4137 mutex_unlock(&dev->struct_mutex);
bf79cb91 4138 return -ENOENT;
673a394b 4139 }
23010e43 4140 obj_priv = to_intel_bo(obj);
673a394b 4141
bb6baf76
CW
4142 if (obj_priv->madv != I915_MADV_WILLNEED) {
4143 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4144 drm_gem_object_unreference(obj);
4145 mutex_unlock(&dev->struct_mutex);
4146 return -EINVAL;
4147 }
4148
79e53945
JB
4149 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4150 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4151 args->handle);
96dec61d 4152 drm_gem_object_unreference(obj);
673a394b 4153 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4154 return -EINVAL;
4155 }
4156
4157 obj_priv->user_pin_count++;
4158 obj_priv->pin_filp = file_priv;
4159 if (obj_priv->user_pin_count == 1) {
4160 ret = i915_gem_object_pin(obj, args->alignment);
4161 if (ret != 0) {
4162 drm_gem_object_unreference(obj);
4163 mutex_unlock(&dev->struct_mutex);
4164 return ret;
4165 }
673a394b
EA
4166 }
4167
4168 /* XXX - flush the CPU caches for pinned objects
4169 * as the X server doesn't manage domains yet
4170 */
e47c68e9 4171 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4172 args->offset = obj_priv->gtt_offset;
4173 drm_gem_object_unreference(obj);
4174 mutex_unlock(&dev->struct_mutex);
4175
4176 return 0;
4177}
4178
4179int
4180i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4181 struct drm_file *file_priv)
4182{
4183 struct drm_i915_gem_pin *args = data;
4184 struct drm_gem_object *obj;
79e53945 4185 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4186
4187 mutex_lock(&dev->struct_mutex);
4188
4189 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4190 if (obj == NULL) {
4191 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4192 args->handle);
4193 mutex_unlock(&dev->struct_mutex);
bf79cb91 4194 return -ENOENT;
673a394b
EA
4195 }
4196
23010e43 4197 obj_priv = to_intel_bo(obj);
79e53945
JB
4198 if (obj_priv->pin_filp != file_priv) {
4199 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4200 args->handle);
4201 drm_gem_object_unreference(obj);
4202 mutex_unlock(&dev->struct_mutex);
4203 return -EINVAL;
4204 }
4205 obj_priv->user_pin_count--;
4206 if (obj_priv->user_pin_count == 0) {
4207 obj_priv->pin_filp = NULL;
4208 i915_gem_object_unpin(obj);
4209 }
673a394b
EA
4210
4211 drm_gem_object_unreference(obj);
4212 mutex_unlock(&dev->struct_mutex);
4213 return 0;
4214}
4215
4216int
4217i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4218 struct drm_file *file_priv)
4219{
4220 struct drm_i915_gem_busy *args = data;
4221 struct drm_gem_object *obj;
4222 struct drm_i915_gem_object *obj_priv;
4223
673a394b
EA
4224 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4225 if (obj == NULL) {
4226 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4227 args->handle);
bf79cb91 4228 return -ENOENT;
673a394b
EA
4229 }
4230
b1ce786c 4231 mutex_lock(&dev->struct_mutex);
d1b851fc 4232
0be555b6
CW
4233 /* Count all active objects as busy, even if they are currently not used
4234 * by the gpu. Users of this interface expect objects to eventually
4235 * become non-busy without any further actions, therefore emit any
4236 * necessary flushes here.
c4de0a5d 4237 */
0be555b6
CW
4238 obj_priv = to_intel_bo(obj);
4239 args->busy = obj_priv->active;
4240 if (args->busy) {
4241 /* Unconditionally flush objects, even when the gpu still uses this
4242 * object. Userspace calling this function indicates that it wants to
4243 * use this buffer rather sooner than later, so issuing the required
4244 * flush earlier is beneficial.
4245 */
4246 if (obj->write_domain) {
4247 i915_gem_flush(dev, 0, obj->write_domain);
4248 (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4249 }
4250
4251 /* Update the active list for the hardware's current position.
4252 * Otherwise this only updates on a delayed timer or when irqs
4253 * are actually unmasked, and our working set ends up being
4254 * larger than required.
4255 */
4256 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4257
4258 args->busy = obj_priv->active;
4259 }
673a394b
EA
4260
4261 drm_gem_object_unreference(obj);
4262 mutex_unlock(&dev->struct_mutex);
4263 return 0;
4264}
4265
4266int
4267i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4268 struct drm_file *file_priv)
4269{
4270 return i915_gem_ring_throttle(dev, file_priv);
4271}
4272
3ef94daa
CW
4273int
4274i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4275 struct drm_file *file_priv)
4276{
4277 struct drm_i915_gem_madvise *args = data;
4278 struct drm_gem_object *obj;
4279 struct drm_i915_gem_object *obj_priv;
4280
4281 switch (args->madv) {
4282 case I915_MADV_DONTNEED:
4283 case I915_MADV_WILLNEED:
4284 break;
4285 default:
4286 return -EINVAL;
4287 }
4288
4289 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4290 if (obj == NULL) {
4291 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4292 args->handle);
bf79cb91 4293 return -ENOENT;
3ef94daa
CW
4294 }
4295
4296 mutex_lock(&dev->struct_mutex);
23010e43 4297 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4298
4299 if (obj_priv->pin_count) {
4300 drm_gem_object_unreference(obj);
4301 mutex_unlock(&dev->struct_mutex);
4302
4303 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4304 return -EINVAL;
4305 }
4306
bb6baf76
CW
4307 if (obj_priv->madv != __I915_MADV_PURGED)
4308 obj_priv->madv = args->madv;
3ef94daa 4309
2d7ef395
CW
4310 /* if the object is no longer bound, discard its backing storage */
4311 if (i915_gem_object_is_purgeable(obj_priv) &&
4312 obj_priv->gtt_space == NULL)
4313 i915_gem_object_truncate(obj);
4314
bb6baf76
CW
4315 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4316
3ef94daa
CW
4317 drm_gem_object_unreference(obj);
4318 mutex_unlock(&dev->struct_mutex);
4319
4320 return 0;
4321}
4322
ac52bc56
DV
4323struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4324 size_t size)
4325{
c397b908 4326 struct drm_i915_gem_object *obj;
ac52bc56 4327
c397b908
DV
4328 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4329 if (obj == NULL)
4330 return NULL;
673a394b 4331
c397b908
DV
4332 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4333 kfree(obj);
4334 return NULL;
4335 }
673a394b 4336
c397b908
DV
4337 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4338 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4339
c397b908 4340 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4341 obj->base.driver_private = NULL;
c397b908
DV
4342 obj->fence_reg = I915_FENCE_REG_NONE;
4343 INIT_LIST_HEAD(&obj->list);
4344 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4345 obj->madv = I915_MADV_WILLNEED;
de151cf6 4346
c397b908
DV
4347 trace_i915_gem_object_create(&obj->base);
4348
4349 return &obj->base;
4350}
4351
4352int i915_gem_init_object(struct drm_gem_object *obj)
4353{
4354 BUG();
de151cf6 4355
673a394b
EA
4356 return 0;
4357}
4358
be72615b 4359static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4360{
de151cf6 4361 struct drm_device *dev = obj->dev;
be72615b 4362 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4363 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4364 int ret;
673a394b 4365
be72615b
CW
4366 ret = i915_gem_object_unbind(obj);
4367 if (ret == -ERESTARTSYS) {
4368 list_move(&obj_priv->list,
4369 &dev_priv->mm.deferred_free_list);
4370 return;
4371 }
673a394b 4372
7e616158
CW
4373 if (obj_priv->mmap_offset)
4374 i915_gem_free_mmap_offset(obj);
de151cf6 4375
c397b908
DV
4376 drm_gem_object_release(obj);
4377
9a298b2a 4378 kfree(obj_priv->page_cpu_valid);
280b713b 4379 kfree(obj_priv->bit_17);
c397b908 4380 kfree(obj_priv);
673a394b
EA
4381}
4382
be72615b
CW
4383void i915_gem_free_object(struct drm_gem_object *obj)
4384{
4385 struct drm_device *dev = obj->dev;
4386 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4387
4388 trace_i915_gem_object_destroy(obj);
4389
4390 while (obj_priv->pin_count > 0)
4391 i915_gem_object_unpin(obj);
4392
4393 if (obj_priv->phys_obj)
4394 i915_gem_detach_phys_object(dev, obj);
4395
4396 i915_gem_free_object_tail(obj);
4397}
4398
29105ccc
CW
4399int
4400i915_gem_idle(struct drm_device *dev)
4401{
4402 drm_i915_private_t *dev_priv = dev->dev_private;
4403 int ret;
28dfe52a 4404
29105ccc 4405 mutex_lock(&dev->struct_mutex);
1c5d22f7 4406
8187a2b7 4407 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4408 (dev_priv->render_ring.gem_object == NULL) ||
4409 (HAS_BSD(dev) &&
4410 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4411 mutex_unlock(&dev->struct_mutex);
4412 return 0;
28dfe52a
EA
4413 }
4414
29105ccc 4415 ret = i915_gpu_idle(dev);
6dbe2772
KP
4416 if (ret) {
4417 mutex_unlock(&dev->struct_mutex);
673a394b 4418 return ret;
6dbe2772 4419 }
673a394b 4420
29105ccc
CW
4421 /* Under UMS, be paranoid and evict. */
4422 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4423 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4424 if (ret) {
4425 mutex_unlock(&dev->struct_mutex);
4426 return ret;
4427 }
4428 }
4429
4430 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4431 * We need to replace this with a semaphore, or something.
4432 * And not confound mm.suspended!
4433 */
4434 dev_priv->mm.suspended = 1;
bc0c7f14 4435 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4436
4437 i915_kernel_lost_context(dev);
6dbe2772 4438 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4439
6dbe2772
KP
4440 mutex_unlock(&dev->struct_mutex);
4441
29105ccc
CW
4442 /* Cancel the retire work handler, which should be idle now. */
4443 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4444
673a394b
EA
4445 return 0;
4446}
4447
e552eb70
JB
4448/*
4449 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4450 * over cache flushing.
4451 */
8187a2b7 4452static int
e552eb70
JB
4453i915_gem_init_pipe_control(struct drm_device *dev)
4454{
4455 drm_i915_private_t *dev_priv = dev->dev_private;
4456 struct drm_gem_object *obj;
4457 struct drm_i915_gem_object *obj_priv;
4458 int ret;
4459
34dc4d44 4460 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4461 if (obj == NULL) {
4462 DRM_ERROR("Failed to allocate seqno page\n");
4463 ret = -ENOMEM;
4464 goto err;
4465 }
4466 obj_priv = to_intel_bo(obj);
4467 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4468
4469 ret = i915_gem_object_pin(obj, 4096);
4470 if (ret)
4471 goto err_unref;
4472
4473 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4474 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4475 if (dev_priv->seqno_page == NULL)
4476 goto err_unpin;
4477
4478 dev_priv->seqno_obj = obj;
4479 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4480
4481 return 0;
4482
4483err_unpin:
4484 i915_gem_object_unpin(obj);
4485err_unref:
4486 drm_gem_object_unreference(obj);
4487err:
4488 return ret;
4489}
4490
8187a2b7
ZN
4491
4492static void
e552eb70
JB
4493i915_gem_cleanup_pipe_control(struct drm_device *dev)
4494{
4495 drm_i915_private_t *dev_priv = dev->dev_private;
4496 struct drm_gem_object *obj;
4497 struct drm_i915_gem_object *obj_priv;
4498
4499 obj = dev_priv->seqno_obj;
4500 obj_priv = to_intel_bo(obj);
4501 kunmap(obj_priv->pages[0]);
4502 i915_gem_object_unpin(obj);
4503 drm_gem_object_unreference(obj);
4504 dev_priv->seqno_obj = NULL;
4505
4506 dev_priv->seqno_page = NULL;
673a394b
EA
4507}
4508
8187a2b7
ZN
4509int
4510i915_gem_init_ringbuffer(struct drm_device *dev)
4511{
4512 drm_i915_private_t *dev_priv = dev->dev_private;
4513 int ret;
68f95ba9 4514
8187a2b7 4515 dev_priv->render_ring = render_ring;
68f95ba9 4516
8187a2b7
ZN
4517 if (!I915_NEED_GFX_HWS(dev)) {
4518 dev_priv->render_ring.status_page.page_addr
4519 = dev_priv->status_page_dmah->vaddr;
4520 memset(dev_priv->render_ring.status_page.page_addr,
4521 0, PAGE_SIZE);
4522 }
68f95ba9 4523
8187a2b7
ZN
4524 if (HAS_PIPE_CONTROL(dev)) {
4525 ret = i915_gem_init_pipe_control(dev);
4526 if (ret)
4527 return ret;
4528 }
68f95ba9 4529
8187a2b7 4530 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4531 if (ret)
4532 goto cleanup_pipe_control;
4533
4534 if (HAS_BSD(dev)) {
d1b851fc
ZN
4535 dev_priv->bsd_ring = bsd_ring;
4536 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4537 if (ret)
4538 goto cleanup_render_ring;
d1b851fc 4539 }
68f95ba9 4540
6f392d54
CW
4541 dev_priv->next_seqno = 1;
4542
68f95ba9
CW
4543 return 0;
4544
4545cleanup_render_ring:
4546 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4547cleanup_pipe_control:
4548 if (HAS_PIPE_CONTROL(dev))
4549 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4550 return ret;
4551}
4552
4553void
4554i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4555{
4556 drm_i915_private_t *dev_priv = dev->dev_private;
4557
4558 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4559 if (HAS_BSD(dev))
4560 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4561 if (HAS_PIPE_CONTROL(dev))
4562 i915_gem_cleanup_pipe_control(dev);
4563}
4564
673a394b
EA
4565int
4566i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4567 struct drm_file *file_priv)
4568{
4569 drm_i915_private_t *dev_priv = dev->dev_private;
4570 int ret;
4571
79e53945
JB
4572 if (drm_core_check_feature(dev, DRIVER_MODESET))
4573 return 0;
4574
ba1234d1 4575 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4576 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4577 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4578 }
4579
673a394b 4580 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4581 dev_priv->mm.suspended = 0;
4582
4583 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4584 if (ret != 0) {
4585 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4586 return ret;
d816f6ac 4587 }
9bb2d6f9 4588
5e118f41 4589 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 4590 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4591 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
5e118f41
CW
4592 spin_unlock(&dev_priv->mm.active_list_lock);
4593
673a394b
EA
4594 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4595 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4596 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4597 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4598 mutex_unlock(&dev->struct_mutex);
dbb19d30 4599
5f35308b
CW
4600 ret = drm_irq_install(dev);
4601 if (ret)
4602 goto cleanup_ringbuffer;
dbb19d30 4603
673a394b 4604 return 0;
5f35308b
CW
4605
4606cleanup_ringbuffer:
4607 mutex_lock(&dev->struct_mutex);
4608 i915_gem_cleanup_ringbuffer(dev);
4609 dev_priv->mm.suspended = 1;
4610 mutex_unlock(&dev->struct_mutex);
4611
4612 return ret;
673a394b
EA
4613}
4614
4615int
4616i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4617 struct drm_file *file_priv)
4618{
79e53945
JB
4619 if (drm_core_check_feature(dev, DRIVER_MODESET))
4620 return 0;
4621
dbb19d30 4622 drm_irq_uninstall(dev);
e6890f6f 4623 return i915_gem_idle(dev);
673a394b
EA
4624}
4625
4626void
4627i915_gem_lastclose(struct drm_device *dev)
4628{
4629 int ret;
673a394b 4630
e806b495
EA
4631 if (drm_core_check_feature(dev, DRIVER_MODESET))
4632 return;
4633
6dbe2772
KP
4634 ret = i915_gem_idle(dev);
4635 if (ret)
4636 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4637}
4638
4639void
4640i915_gem_load(struct drm_device *dev)
4641{
b5aa8a0f 4642 int i;
673a394b
EA
4643 drm_i915_private_t *dev_priv = dev->dev_private;
4644
5e118f41 4645 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b 4646 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4647 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4648 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4649 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4650 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4651 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4652 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4653 if (HAS_BSD(dev)) {
4654 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4655 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4656 }
007cc8ac
DV
4657 for (i = 0; i < 16; i++)
4658 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4659 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4660 i915_gem_retire_work_handler);
31169714
CW
4661 spin_lock(&shrink_list_lock);
4662 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4663 spin_unlock(&shrink_list_lock);
4664
94400120
DA
4665 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4666 if (IS_GEN3(dev)) {
4667 u32 tmp = I915_READ(MI_ARB_STATE);
4668 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4669 /* arb state is a masked write, so set bit + bit in mask */
4670 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4671 I915_WRITE(MI_ARB_STATE, tmp);
4672 }
4673 }
4674
de151cf6 4675 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4676 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4677 dev_priv->fence_reg_start = 3;
de151cf6 4678
0f973f27 4679 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4680 dev_priv->num_fence_regs = 16;
4681 else
4682 dev_priv->num_fence_regs = 8;
4683
b5aa8a0f
GH
4684 /* Initialize fence registers to zero */
4685 if (IS_I965G(dev)) {
4686 for (i = 0; i < 16; i++)
4687 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4688 } else {
4689 for (i = 0; i < 8; i++)
4690 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4691 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4692 for (i = 0; i < 8; i++)
4693 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4694 }
673a394b 4695 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4696 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4697}
71acb5eb
DA
4698
4699/*
4700 * Create a physically contiguous memory object for this object
4701 * e.g. for cursor + overlay regs
4702 */
4703int i915_gem_init_phys_object(struct drm_device *dev,
6eeefaf3 4704 int id, int size, int align)
71acb5eb
DA
4705{
4706 drm_i915_private_t *dev_priv = dev->dev_private;
4707 struct drm_i915_gem_phys_object *phys_obj;
4708 int ret;
4709
4710 if (dev_priv->mm.phys_objs[id - 1] || !size)
4711 return 0;
4712
9a298b2a 4713 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4714 if (!phys_obj)
4715 return -ENOMEM;
4716
4717 phys_obj->id = id;
4718
6eeefaf3 4719 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4720 if (!phys_obj->handle) {
4721 ret = -ENOMEM;
4722 goto kfree_obj;
4723 }
4724#ifdef CONFIG_X86
4725 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4726#endif
4727
4728 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4729
4730 return 0;
4731kfree_obj:
9a298b2a 4732 kfree(phys_obj);
71acb5eb
DA
4733 return ret;
4734}
4735
4736void i915_gem_free_phys_object(struct drm_device *dev, int id)
4737{
4738 drm_i915_private_t *dev_priv = dev->dev_private;
4739 struct drm_i915_gem_phys_object *phys_obj;
4740
4741 if (!dev_priv->mm.phys_objs[id - 1])
4742 return;
4743
4744 phys_obj = dev_priv->mm.phys_objs[id - 1];
4745 if (phys_obj->cur_obj) {
4746 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4747 }
4748
4749#ifdef CONFIG_X86
4750 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4751#endif
4752 drm_pci_free(dev, phys_obj->handle);
4753 kfree(phys_obj);
4754 dev_priv->mm.phys_objs[id - 1] = NULL;
4755}
4756
4757void i915_gem_free_all_phys_object(struct drm_device *dev)
4758{
4759 int i;
4760
260883c8 4761 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4762 i915_gem_free_phys_object(dev, i);
4763}
4764
4765void i915_gem_detach_phys_object(struct drm_device *dev,
4766 struct drm_gem_object *obj)
4767{
4768 struct drm_i915_gem_object *obj_priv;
4769 int i;
4770 int ret;
4771 int page_count;
4772
23010e43 4773 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4774 if (!obj_priv->phys_obj)
4775 return;
4776
4bdadb97 4777 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4778 if (ret)
4779 goto out;
4780
4781 page_count = obj->size / PAGE_SIZE;
4782
4783 for (i = 0; i < page_count; i++) {
856fa198 4784 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4785 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4786
4787 memcpy(dst, src, PAGE_SIZE);
4788 kunmap_atomic(dst, KM_USER0);
4789 }
856fa198 4790 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4791 drm_agp_chipset_flush(dev);
d78b47b9
CW
4792
4793 i915_gem_object_put_pages(obj);
71acb5eb
DA
4794out:
4795 obj_priv->phys_obj->cur_obj = NULL;
4796 obj_priv->phys_obj = NULL;
4797}
4798
4799int
4800i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4801 struct drm_gem_object *obj,
4802 int id,
4803 int align)
71acb5eb
DA
4804{
4805 drm_i915_private_t *dev_priv = dev->dev_private;
4806 struct drm_i915_gem_object *obj_priv;
4807 int ret = 0;
4808 int page_count;
4809 int i;
4810
4811 if (id > I915_MAX_PHYS_OBJECT)
4812 return -EINVAL;
4813
23010e43 4814 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4815
4816 if (obj_priv->phys_obj) {
4817 if (obj_priv->phys_obj->id == id)
4818 return 0;
4819 i915_gem_detach_phys_object(dev, obj);
4820 }
4821
71acb5eb
DA
4822 /* create a new object */
4823 if (!dev_priv->mm.phys_objs[id - 1]) {
4824 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4825 obj->size, align);
71acb5eb 4826 if (ret) {
aeb565df 4827 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4828 goto out;
4829 }
4830 }
4831
4832 /* bind to the object */
4833 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4834 obj_priv->phys_obj->cur_obj = obj;
4835
4bdadb97 4836 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4837 if (ret) {
4838 DRM_ERROR("failed to get page list\n");
4839 goto out;
4840 }
4841
4842 page_count = obj->size / PAGE_SIZE;
4843
4844 for (i = 0; i < page_count; i++) {
856fa198 4845 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4846 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4847
4848 memcpy(dst, src, PAGE_SIZE);
4849 kunmap_atomic(src, KM_USER0);
4850 }
4851
d78b47b9
CW
4852 i915_gem_object_put_pages(obj);
4853
71acb5eb
DA
4854 return 0;
4855out:
4856 return ret;
4857}
4858
4859static int
4860i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4861 struct drm_i915_gem_pwrite *args,
4862 struct drm_file *file_priv)
4863{
23010e43 4864 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4865 void *obj_addr;
4866 int ret;
4867 char __user *user_data;
4868
4869 user_data = (char __user *) (uintptr_t) args->data_ptr;
4870 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4871
44d98a61 4872 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4873 ret = copy_from_user(obj_addr, user_data, args->size);
4874 if (ret)
4875 return -EFAULT;
4876
4877 drm_agp_chipset_flush(dev);
4878 return 0;
4879}
b962442e
EA
4880
4881void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4882{
4883 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4884
4885 /* Clean up our request list when the client is going away, so that
4886 * later retire_requests won't dereference our soon-to-be-gone
4887 * file_priv.
4888 */
4889 mutex_lock(&dev->struct_mutex);
4890 while (!list_empty(&i915_file_priv->mm.request_list))
4891 list_del_init(i915_file_priv->mm.request_list.next);
4892 mutex_unlock(&dev->struct_mutex);
4893}
31169714 4894
1637ef41
CW
4895static int
4896i915_gpu_is_active(struct drm_device *dev)
4897{
4898 drm_i915_private_t *dev_priv = dev->dev_private;
4899 int lists_empty;
4900
4901 spin_lock(&dev_priv->mm.active_list_lock);
4902 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4903 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4904 if (HAS_BSD(dev))
4905 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4906 spin_unlock(&dev_priv->mm.active_list_lock);
4907
4908 return !lists_empty;
4909}
4910
31169714 4911static int
7f8275d0 4912i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4913{
4914 drm_i915_private_t *dev_priv, *next_dev;
4915 struct drm_i915_gem_object *obj_priv, *next_obj;
4916 int cnt = 0;
4917 int would_deadlock = 1;
4918
4919 /* "fast-path" to count number of available objects */
4920 if (nr_to_scan == 0) {
4921 spin_lock(&shrink_list_lock);
4922 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4923 struct drm_device *dev = dev_priv->dev;
4924
4925 if (mutex_trylock(&dev->struct_mutex)) {
4926 list_for_each_entry(obj_priv,
4927 &dev_priv->mm.inactive_list,
4928 list)
4929 cnt++;
4930 mutex_unlock(&dev->struct_mutex);
4931 }
4932 }
4933 spin_unlock(&shrink_list_lock);
4934
4935 return (cnt / 100) * sysctl_vfs_cache_pressure;
4936 }
4937
4938 spin_lock(&shrink_list_lock);
4939
1637ef41 4940rescan:
31169714
CW
4941 /* first scan for clean buffers */
4942 list_for_each_entry_safe(dev_priv, next_dev,
4943 &shrink_list, mm.shrink_list) {
4944 struct drm_device *dev = dev_priv->dev;
4945
4946 if (! mutex_trylock(&dev->struct_mutex))
4947 continue;
4948
4949 spin_unlock(&shrink_list_lock);
b09a1fec 4950 i915_gem_retire_requests(dev);
31169714
CW
4951
4952 list_for_each_entry_safe(obj_priv, next_obj,
4953 &dev_priv->mm.inactive_list,
4954 list) {
4955 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4956 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4957 if (--nr_to_scan <= 0)
4958 break;
4959 }
4960 }
4961
4962 spin_lock(&shrink_list_lock);
4963 mutex_unlock(&dev->struct_mutex);
4964
963b4836
CW
4965 would_deadlock = 0;
4966
31169714
CW
4967 if (nr_to_scan <= 0)
4968 break;
4969 }
4970
4971 /* second pass, evict/count anything still on the inactive list */
4972 list_for_each_entry_safe(dev_priv, next_dev,
4973 &shrink_list, mm.shrink_list) {
4974 struct drm_device *dev = dev_priv->dev;
4975
4976 if (! mutex_trylock(&dev->struct_mutex))
4977 continue;
4978
4979 spin_unlock(&shrink_list_lock);
4980
4981 list_for_each_entry_safe(obj_priv, next_obj,
4982 &dev_priv->mm.inactive_list,
4983 list) {
4984 if (nr_to_scan > 0) {
a8089e84 4985 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4986 nr_to_scan--;
4987 } else
4988 cnt++;
4989 }
4990
4991 spin_lock(&shrink_list_lock);
4992 mutex_unlock(&dev->struct_mutex);
4993
4994 would_deadlock = 0;
4995 }
4996
1637ef41
CW
4997 if (nr_to_scan) {
4998 int active = 0;
4999
5000 /*
5001 * We are desperate for pages, so as a last resort, wait
5002 * for the GPU to finish and discard whatever we can.
5003 * This has a dramatic impact to reduce the number of
5004 * OOM-killer events whilst running the GPU aggressively.
5005 */
5006 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5007 struct drm_device *dev = dev_priv->dev;
5008
5009 if (!mutex_trylock(&dev->struct_mutex))
5010 continue;
5011
5012 spin_unlock(&shrink_list_lock);
5013
5014 if (i915_gpu_is_active(dev)) {
5015 i915_gpu_idle(dev);
5016 active++;
5017 }
5018
5019 spin_lock(&shrink_list_lock);
5020 mutex_unlock(&dev->struct_mutex);
5021 }
5022
5023 if (active)
5024 goto rescan;
5025 }
5026
31169714
CW
5027 spin_unlock(&shrink_list_lock);
5028
5029 if (would_deadlock)
5030 return -1;
5031 else if (cnt > 0)
5032 return (cnt / 100) * sysctl_vfs_cache_pressure;
5033 else
5034 return 0;
5035}
5036
5037static struct shrinker shrinker = {
5038 .shrink = i915_gem_shrink,
5039 .seeks = DEFAULT_SEEKS,
5040};
5041
5042__init void
5043i915_gem_shrinker_init(void)
5044{
5045 register_shrinker(&shrinker);
5046}
5047
5048__exit void
5049i915_gem_shrinker_exit(void)
5050{
5051 unregister_shrinker(&shrinker);
5052}
This page took 1.013492 seconds and 5 git commands to generate.