drm/i915: Break busywaiting for requests on pending signals
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 49
c76ce038
CW
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
2c22569b
CW
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
73aa808f
CW
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
c20e8355 68 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
c20e8355 71 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
c20e8355 77 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
c20e8355 80 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
81}
82
21dd3734 83static int
33196ded 84i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 85{
30dbf0c0
CW
86 int ret;
87
7abb690a
DV
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
1f83fee0 90 if (EXIT_COND)
30dbf0c0
CW
91 return 0;
92
0a6759c6
DV
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
1f83fee0
DV
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
0a6759c6
DV
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
30dbf0c0 105 return ret;
0a6759c6 106 }
1f83fee0 107#undef EXIT_COND
30dbf0c0 108
21dd3734 109 return 0;
30dbf0c0
CW
110}
111
54cf91dc 112int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 113{
33196ded 114 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
115 int ret;
116
33196ded 117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
23bc5982 125 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
126 return 0;
127}
30dbf0c0 128
5a125c3c
EA
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 131 struct drm_file *file)
5a125c3c 132{
73aa808f 133 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 134 struct drm_i915_gem_get_aperture *args = data;
ca1543be
TU
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
6299f992 137 size_t pinned;
5a125c3c 138
6299f992 139 pinned = 0;
73aa808f 140 mutex_lock(&dev->struct_mutex);
ca1543be
TU
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
73aa808f 147 mutex_unlock(&dev->struct_mutex);
5a125c3c 148
853ba5d2 149 args->aper_size = dev_priv->gtt.base.total;
0206e353 150 args->aper_available_size = args->aper_size - pinned;
6299f992 151
5a125c3c
EA
152 return 0;
153}
154
6a2c4232
CW
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 157{
6a2c4232
CW
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
00731155 163
6a2c4232
CW
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
00731155 198
6a2c4232
CW
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
6a2c4232
CW
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 212
6a2c4232
CW
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
00731155 226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 227 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
00731155 245 mark_page_accessed(page);
6a2c4232 246 page_cache_release(page);
00731155
CW
247 vaddr += PAGE_SIZE;
248 }
6a2c4232 249 obj->dirty = 0;
00731155
CW
250 }
251
6a2c4232
CW
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
6a2c4232
CW
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
00731155
CW
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
6a2c4232 290 int ret;
00731155
CW
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
6a2c4232
CW
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
00731155
CW
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
00731155 314 obj->phys_handle = phys;
6a2c4232
CW
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
00731155
CW
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 328 int ret = 0;
6a2c4232
CW
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
00731155 336
77a0d1ca 337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
00731155
CW
352 }
353
6a2c4232 354 drm_clflush_virt_range(vaddr, args->size);
00731155 355 i915_gem_chipset_flush(dev);
063e4e6b
PZ
356
357out:
de152b62 358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 359 return ret;
00731155
CW
360}
361
42dcedd4
CW
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 371 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
372}
373
ff72145b
DA
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
673a394b 379{
05394f39 380 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
381 int ret;
382 u32 handle;
673a394b 383
ff72145b 384 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
385 if (size == 0)
386 return -EINVAL;
673a394b
EA
387
388 /* Allocate the new object */
ff72145b 389 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
390 if (obj == NULL)
391 return -ENOMEM;
392
05394f39 393 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 394 /* drop reference from allocate - handle holds it now */
d861e338
DV
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
202f2fef 398
ff72145b 399 *handle_p = handle;
673a394b
EA
400 return 0;
401}
402
ff72145b
DA
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
de45eaf7 409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
da6b51d0 412 args->size, &args->handle);
ff72145b
DA
413}
414
ff72145b
DA
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
63ed2cb2 423
ff72145b 424 return i915_gem_create(file, dev,
da6b51d0 425 args->size, &args->handle);
ff72145b
DA
426}
427
8461d226
DV
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
8c59967c 454static inline int
4f0c7cfb
BW
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
8c59967c
DV
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
4c914c0c
BV
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
d174bd64
DV
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
eb01459f 519static int
d174bd64
DV
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
e7e58eb5 527 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
f60d7f0c 539 return ret ? -EFAULT : 0;
d174bd64
DV
540}
541
23c18c71
DV
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
e7e58eb5 546 if (unlikely(swizzled)) {
23c18c71
DV
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
d174bd64
DV
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
23c18c71
DV
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
d174bd64
DV
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
f60d7f0c 590 return ret ? - EFAULT : 0;
d174bd64
DV
591}
592
eb01459f 593static int
dbf7bff0
DV
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
eb01459f 598{
8461d226 599 char __user *user_data;
eb01459f 600 ssize_t remain;
8461d226 601 loff_t offset;
eb2c0c81 602 int shmem_page_offset, page_length, ret = 0;
8461d226 603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 604 int prefaulted = 0;
8489731c 605 int needs_clflush = 0;
67d5a50c 606 struct sg_page_iter sg_iter;
eb01459f 607
2bb4629a 608 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
609 remain = args->size;
610
8461d226 611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 612
4c914c0c 613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
614 if (ret)
615 return ret;
616
8461d226 617 offset = args->offset;
eb01459f 618
67d5a50c
ID
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
2db76d7c 621 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
622
623 if (remain <= 0)
624 break;
625
eb01459f
EA
626 /* Operation in this page
627 *
eb01459f 628 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
629 * page_length = bytes to copy for this page
630 */
c8cbbb8b 631 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 635
8461d226
DV
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
d174bd64
DV
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
dbf7bff0 644
dbf7bff0
DV
645 mutex_unlock(&dev->struct_mutex);
646
d330a953 647 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 648 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
eb01459f 656
d174bd64
DV
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
eb01459f 660
dbf7bff0 661 mutex_lock(&dev->struct_mutex);
f60d7f0c 662
f60d7f0c 663 if (ret)
8461d226 664 goto out;
8461d226 665
17793c9a 666next_page:
eb01459f 667 remain -= page_length;
8461d226 668 user_data += page_length;
eb01459f
EA
669 offset += page_length;
670 }
671
4f27b75d 672out:
f60d7f0c
CW
673 i915_gem_object_unpin_pages(obj);
674
eb01459f
EA
675 return ret;
676}
677
673a394b
EA
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 685 struct drm_file *file)
673a394b
EA
686{
687 struct drm_i915_gem_pread *args = data;
05394f39 688 struct drm_i915_gem_object *obj;
35b62a89 689 int ret = 0;
673a394b 690
51311d0a
CW
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
2bb4629a 695 to_user_ptr(args->data_ptr),
51311d0a
CW
696 args->size))
697 return -EFAULT;
698
4f27b75d 699 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 700 if (ret)
4f27b75d 701 return ret;
673a394b 702
05394f39 703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 704 if (&obj->base == NULL) {
1d7cfea1
CW
705 ret = -ENOENT;
706 goto unlock;
4f27b75d 707 }
673a394b 708
7dcd2499 709 /* Bounds check source. */
05394f39
CW
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
ce9d419d 712 ret = -EINVAL;
35b62a89 713 goto out;
ce9d419d
CW
714 }
715
1286ff73
DV
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
db53a302
CW
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
dbf7bff0 726 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 727
35b62a89 728out:
05394f39 729 drm_gem_object_unreference(&obj->base);
1d7cfea1 730unlock:
4f27b75d 731 mutex_unlock(&dev->struct_mutex);
eb01459f 732 return ret;
673a394b
EA
733}
734
0839ccb8
KP
735/* This is the fast write path which cannot handle
736 * page faults in the source data
9b7530cc 737 */
0839ccb8
KP
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
9b7530cc 744{
4f0c7cfb
BW
745 void __iomem *vaddr_atomic;
746 void *vaddr;
0839ccb8 747 unsigned long unwritten;
9b7530cc 748
3e4d3af5 749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 753 user_data, length);
3e4d3af5 754 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 755 return unwritten;
0839ccb8
KP
756}
757
3de09aa3
EA
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
673a394b 762static int
05394f39
CW
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
3de09aa3 765 struct drm_i915_gem_pwrite *args,
05394f39 766 struct drm_file *file)
673a394b 767{
3e31c6c0 768 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 769 ssize_t remain;
0839ccb8 770 loff_t offset, page_base;
673a394b 771 char __user *user_data;
935aaa69
DV
772 int page_offset, page_length, ret;
773
1ec9e26d 774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
673a394b 785
2bb4629a 786 user_data = to_user_ptr(args->data_ptr);
673a394b 787 remain = args->size;
673a394b 788
f343c5f6 789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 790
77a0d1ca 791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 792
673a394b
EA
793 while (remain > 0) {
794 /* Operation in this page
795 *
0839ccb8
KP
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
673a394b 799 */
c8cbbb8b
CW
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
0839ccb8
KP
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
0839ccb8 806 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
0839ccb8 809 */
5d4545ae 810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
063e4e6b 813 goto out_flush;
935aaa69 814 }
673a394b 815
0839ccb8
KP
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
673a394b 819 }
673a394b 820
063e4e6b 821out_flush:
de152b62 822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 823out_unpin:
d7f46fc4 824 i915_gem_object_ggtt_unpin(obj);
935aaa69 825out:
3de09aa3 826 return ret;
673a394b
EA
827}
828
d174bd64
DV
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
3043c60c 833static int
d174bd64
DV
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
673a394b 839{
d174bd64 840 char *vaddr;
673a394b 841 int ret;
3de09aa3 842
e7e58eb5 843 if (unlikely(page_do_bit17_swizzling))
d174bd64 844 return -EINVAL;
3de09aa3 845
d174bd64
DV
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
c2831a94
CW
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
d174bd64
DV
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
3de09aa3 856
755d2218 857 return ret ? -EFAULT : 0;
3de09aa3
EA
858}
859
d174bd64
DV
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
3043c60c 862static int
d174bd64
DV
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
673a394b 868{
d174bd64
DV
869 char *vaddr;
870 int ret;
e5281ccd 871
d174bd64 872 vaddr = kmap(page);
e7e58eb5 873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
d174bd64
DV
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
879 user_data,
880 page_length);
d174bd64
DV
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
23c18c71
DV
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
d174bd64 889 kunmap(page);
40123c1f 890
755d2218 891 return ret ? -EFAULT : 0;
40123c1f
EA
892}
893
40123c1f 894static int
e244a443
DV
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
40123c1f 899{
40123c1f 900 ssize_t remain;
8c59967c
DV
901 loff_t offset;
902 char __user *user_data;
eb2c0c81 903 int shmem_page_offset, page_length, ret = 0;
8c59967c 904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 905 int hit_slowpath = 0;
58642885
DV
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
67d5a50c 908 struct sg_page_iter sg_iter;
40123c1f 909
2bb4629a 910 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
911 remain = args->size;
912
8c59967c 913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 914
58642885
DV
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
2c22569b 920 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
58642885 924 }
c76ce038
CW
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 930
755d2218
CW
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
77a0d1ca 935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 936
755d2218
CW
937 i915_gem_object_pin_pages(obj);
938
673a394b 939 offset = args->offset;
05394f39 940 obj->dirty = 1;
673a394b 941
67d5a50c
ID
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
2db76d7c 944 struct page *page = sg_page_iter_page(&sg_iter);
58642885 945 int partial_cacheline_write;
e5281ccd 946
9da3da66
CW
947 if (remain <= 0)
948 break;
949
40123c1f
EA
950 /* Operation in this page
951 *
40123c1f 952 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
953 * page_length = bytes to copy for this page
954 */
c8cbbb8b 955 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 960
58642885
DV
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
8c59967c
DV
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
d174bd64
DV
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
e244a443
DV
977
978 hit_slowpath = 1;
e244a443 979 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
40123c1f 984
e244a443 985 mutex_lock(&dev->struct_mutex);
755d2218 986
755d2218 987 if (ret)
8c59967c 988 goto out;
8c59967c 989
17793c9a 990next_page:
40123c1f 991 remain -= page_length;
8c59967c 992 user_data += page_length;
40123c1f 993 offset += page_length;
673a394b
EA
994 }
995
fbd5a26d 996out:
755d2218
CW
997 i915_gem_object_unpin_pages(obj);
998
e244a443 999 if (hit_slowpath) {
8dcf015e
DV
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1007 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1008 needs_clflush_after = true;
e244a443 1009 }
8c59967c 1010 }
673a394b 1011
58642885 1012 if (needs_clflush_after)
e76e9aeb 1013 i915_gem_chipset_flush(dev);
ed75a55b
VS
1014 else
1015 obj->cache_dirty = true;
58642885 1016
de152b62 1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1018 return ret;
673a394b
EA
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1028 struct drm_file *file)
673a394b 1029{
5d77d9c5 1030 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1031 struct drm_i915_gem_pwrite *args = data;
05394f39 1032 struct drm_i915_gem_object *obj;
51311d0a
CW
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
2bb4629a 1039 to_user_ptr(args->data_ptr),
51311d0a
CW
1040 args->size))
1041 return -EFAULT;
1042
d330a953 1043 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
673a394b 1049
5d77d9c5
ID
1050 intel_runtime_pm_get(dev_priv);
1051
fbd5a26d 1052 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1053 if (ret)
5d77d9c5 1054 goto put_rpm;
1d7cfea1 1055
05394f39 1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1057 if (&obj->base == NULL) {
1d7cfea1
CW
1058 ret = -ENOENT;
1059 goto unlock;
fbd5a26d 1060 }
673a394b 1061
7dcd2499 1062 /* Bounds check destination. */
05394f39
CW
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
ce9d419d 1065 ret = -EINVAL;
35b62a89 1066 goto out;
ce9d419d
CW
1067 }
1068
1286ff73
DV
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
db53a302
CW
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
935aaa69 1079 ret = -EFAULT;
673a394b
EA
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
2c22569b
CW
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
fbd5a26d 1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1093 }
673a394b 1094
6a2c4232
CW
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
5c0480f2 1101
35b62a89 1102out:
05394f39 1103 drm_gem_object_unreference(&obj->base);
1d7cfea1 1104unlock:
fbd5a26d 1105 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
673a394b
EA
1109 return ret;
1110}
1111
b361237b 1112int
33196ded 1113i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1114 bool interruptible)
1115{
1f83fee0 1116 if (i915_reset_in_progress(error)) {
b361237b
CW
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1f83fee0
DV
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
b361237b
CW
1124 return -EIO;
1125
6689c167
MA
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
b361237b
CW
1133 }
1134
1135 return 0;
1136}
1137
094f9a54
CW
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1144 struct intel_engine_cs *ring)
094f9a54
CW
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
91b0c352 1149static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1150{
2def4ad9
CW
1151 unsigned long timeout;
1152
eed29a5b 1153 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1154 return -EBUSY;
1155
1156 timeout = jiffies + 1;
1157 while (!need_resched()) {
eed29a5b 1158 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1159 return 0;
1160
91b0c352
CW
1161 if (signal_pending_state(state, current))
1162 break;
1163
2def4ad9
CW
1164 if (time_after_eq(jiffies, timeout))
1165 break;
b29c19b6 1166
2def4ad9
CW
1167 cpu_relax_lowlatency();
1168 }
eed29a5b 1169 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1170 return 0;
1171
1172 return -EAGAIN;
b29c19b6
CW
1173}
1174
b361237b 1175/**
9c654818
JH
1176 * __i915_wait_request - wait until execution of request has finished
1177 * @req: duh!
1178 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1179 * @interruptible: do an interruptible wait (normally yes)
1180 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1181 *
f69061be
DV
1182 * Note: It is of utmost importance that the passed in seqno and reset_counter
1183 * values have been read by the caller in an smp safe manner. Where read-side
1184 * locks are involved, it is sufficient to read the reset_counter before
1185 * unlocking the lock that protects the seqno. For lockless tricks, the
1186 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1187 * inserted.
1188 *
9c654818 1189 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1190 * errno with remaining time filled in timeout argument.
1191 */
9c654818 1192int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1193 unsigned reset_counter,
b29c19b6 1194 bool interruptible,
5ed0bdf2 1195 s64 *timeout,
2e1b8730 1196 struct intel_rps_client *rps)
b361237b 1197{
9c654818 1198 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1199 struct drm_device *dev = ring->dev;
3e31c6c0 1200 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1201 const bool irq_test_in_progress =
1202 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
91b0c352 1203 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1204 DEFINE_WAIT(wait);
47e9766d 1205 unsigned long timeout_expire;
5ed0bdf2 1206 s64 before, now;
b361237b
CW
1207 int ret;
1208
9df7575f 1209 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1210
b4716185
CW
1211 if (list_empty(&req->list))
1212 return 0;
1213
1b5a433a 1214 if (i915_gem_request_completed(req, true))
b361237b
CW
1215 return 0;
1216
bb6d1984
CW
1217 timeout_expire = 0;
1218 if (timeout) {
1219 if (WARN_ON(*timeout < 0))
1220 return -EINVAL;
1221
1222 if (*timeout == 0)
1223 return -ETIME;
1224
1225 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1226 }
b361237b 1227
2e1b8730 1228 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1229 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1230
094f9a54 1231 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1232 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1233 before = ktime_get_raw_ns();
2def4ad9
CW
1234
1235 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1236 ret = __i915_spin_request(req, state);
2def4ad9
CW
1237 if (ret == 0)
1238 goto out;
1239
1240 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1241 ret = -ENODEV;
1242 goto out;
1243 }
1244
094f9a54
CW
1245 for (;;) {
1246 struct timer_list timer;
b361237b 1247
91b0c352 1248 prepare_to_wait(&ring->irq_queue, &wait, state);
b361237b 1249
f69061be
DV
1250 /* We need to check whether any gpu reset happened in between
1251 * the caller grabbing the seqno and now ... */
094f9a54
CW
1252 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1253 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1254 * is truely gone. */
1255 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1256 if (ret == 0)
1257 ret = -EAGAIN;
1258 break;
1259 }
f69061be 1260
1b5a433a 1261 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1262 ret = 0;
1263 break;
1264 }
b361237b 1265
91b0c352 1266 if (signal_pending_state(state, current)) {
094f9a54
CW
1267 ret = -ERESTARTSYS;
1268 break;
1269 }
1270
47e9766d 1271 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1272 ret = -ETIME;
1273 break;
1274 }
1275
1276 timer.function = NULL;
1277 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1278 unsigned long expire;
1279
094f9a54 1280 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1281 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1282 mod_timer(&timer, expire);
1283 }
1284
5035c275 1285 io_schedule();
094f9a54 1286
094f9a54
CW
1287 if (timer.function) {
1288 del_singleshot_timer_sync(&timer);
1289 destroy_timer_on_stack(&timer);
1290 }
1291 }
168c3f21
MK
1292 if (!irq_test_in_progress)
1293 ring->irq_put(ring);
094f9a54
CW
1294
1295 finish_wait(&ring->irq_queue, &wait);
b361237b 1296
2def4ad9
CW
1297out:
1298 now = ktime_get_raw_ns();
1299 trace_i915_gem_request_wait_end(req);
1300
b361237b 1301 if (timeout) {
5ed0bdf2
TG
1302 s64 tres = *timeout - (now - before);
1303
1304 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1305
1306 /*
1307 * Apparently ktime isn't accurate enough and occasionally has a
1308 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1309 * things up to make the test happy. We allow up to 1 jiffy.
1310 *
1311 * This is a regrssion from the timespec->ktime conversion.
1312 */
1313 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1314 *timeout = 0;
b361237b
CW
1315 }
1316
094f9a54 1317 return ret;
b361237b
CW
1318}
1319
fcfa423c
JH
1320int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1321 struct drm_file *file)
1322{
1323 struct drm_i915_private *dev_private;
1324 struct drm_i915_file_private *file_priv;
1325
1326 WARN_ON(!req || !file || req->file_priv);
1327
1328 if (!req || !file)
1329 return -EINVAL;
1330
1331 if (req->file_priv)
1332 return -EINVAL;
1333
1334 dev_private = req->ring->dev->dev_private;
1335 file_priv = file->driver_priv;
1336
1337 spin_lock(&file_priv->mm.lock);
1338 req->file_priv = file_priv;
1339 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1340 spin_unlock(&file_priv->mm.lock);
1341
1342 req->pid = get_pid(task_pid(current));
1343
1344 return 0;
1345}
1346
b4716185
CW
1347static inline void
1348i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1349{
1350 struct drm_i915_file_private *file_priv = request->file_priv;
1351
1352 if (!file_priv)
1353 return;
1354
1355 spin_lock(&file_priv->mm.lock);
1356 list_del(&request->client_list);
1357 request->file_priv = NULL;
1358 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1359
1360 put_pid(request->pid);
1361 request->pid = NULL;
b4716185
CW
1362}
1363
1364static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1365{
1366 trace_i915_gem_request_retire(request);
1367
1368 /* We know the GPU must have read the request to have
1369 * sent us the seqno + interrupt, so use the position
1370 * of tail of the request to update the last known position
1371 * of the GPU head.
1372 *
1373 * Note this requires that we are always called in request
1374 * completion order.
1375 */
1376 request->ringbuf->last_retired_head = request->postfix;
1377
1378 list_del_init(&request->list);
1379 i915_gem_request_remove_from_client(request);
1380
b4716185
CW
1381 i915_gem_request_unreference(request);
1382}
1383
1384static void
1385__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1386{
1387 struct intel_engine_cs *engine = req->ring;
1388 struct drm_i915_gem_request *tmp;
1389
1390 lockdep_assert_held(&engine->dev->struct_mutex);
1391
1392 if (list_empty(&req->list))
1393 return;
1394
1395 do {
1396 tmp = list_first_entry(&engine->request_list,
1397 typeof(*tmp), list);
1398
1399 i915_gem_request_retire(tmp);
1400 } while (tmp != req);
1401
1402 WARN_ON(i915_verify_lists(engine->dev));
1403}
1404
b361237b 1405/**
a4b3a571 1406 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1407 * request and object lists appropriately for that event.
1408 */
1409int
a4b3a571 1410i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1411{
a4b3a571
DV
1412 struct drm_device *dev;
1413 struct drm_i915_private *dev_priv;
1414 bool interruptible;
b361237b
CW
1415 int ret;
1416
a4b3a571
DV
1417 BUG_ON(req == NULL);
1418
1419 dev = req->ring->dev;
1420 dev_priv = dev->dev_private;
1421 interruptible = dev_priv->mm.interruptible;
1422
b361237b 1423 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1424
33196ded 1425 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1426 if (ret)
1427 return ret;
1428
b4716185
CW
1429 ret = __i915_wait_request(req,
1430 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1431 interruptible, NULL, NULL);
b4716185
CW
1432 if (ret)
1433 return ret;
d26e3af8 1434
b4716185 1435 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1436 return 0;
1437}
1438
b361237b
CW
1439/**
1440 * Ensures that all rendering to the object has completed and the object is
1441 * safe to unbind from the GTT or access from the CPU.
1442 */
2e2f351d 1443int
b361237b
CW
1444i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1445 bool readonly)
1446{
b4716185 1447 int ret, i;
b361237b 1448
b4716185 1449 if (!obj->active)
b361237b
CW
1450 return 0;
1451
b4716185
CW
1452 if (readonly) {
1453 if (obj->last_write_req != NULL) {
1454 ret = i915_wait_request(obj->last_write_req);
1455 if (ret)
1456 return ret;
b361237b 1457
b4716185
CW
1458 i = obj->last_write_req->ring->id;
1459 if (obj->last_read_req[i] == obj->last_write_req)
1460 i915_gem_object_retire__read(obj, i);
1461 else
1462 i915_gem_object_retire__write(obj);
1463 }
1464 } else {
1465 for (i = 0; i < I915_NUM_RINGS; i++) {
1466 if (obj->last_read_req[i] == NULL)
1467 continue;
1468
1469 ret = i915_wait_request(obj->last_read_req[i]);
1470 if (ret)
1471 return ret;
1472
1473 i915_gem_object_retire__read(obj, i);
1474 }
1475 RQ_BUG_ON(obj->active);
1476 }
1477
1478 return 0;
1479}
1480
1481static void
1482i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1483 struct drm_i915_gem_request *req)
1484{
1485 int ring = req->ring->id;
1486
1487 if (obj->last_read_req[ring] == req)
1488 i915_gem_object_retire__read(obj, ring);
1489 else if (obj->last_write_req == req)
1490 i915_gem_object_retire__write(obj);
1491
1492 __i915_gem_request_retire__upto(req);
b361237b
CW
1493}
1494
3236f57a
CW
1495/* A nonblocking variant of the above wait. This is a highly dangerous routine
1496 * as the object state may change during this call.
1497 */
1498static __must_check int
1499i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1500 struct intel_rps_client *rps,
3236f57a
CW
1501 bool readonly)
1502{
1503 struct drm_device *dev = obj->base.dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1505 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1506 unsigned reset_counter;
b4716185 1507 int ret, i, n = 0;
3236f57a
CW
1508
1509 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1510 BUG_ON(!dev_priv->mm.interruptible);
1511
b4716185 1512 if (!obj->active)
3236f57a
CW
1513 return 0;
1514
33196ded 1515 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1516 if (ret)
1517 return ret;
1518
f69061be 1519 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1520
1521 if (readonly) {
1522 struct drm_i915_gem_request *req;
1523
1524 req = obj->last_write_req;
1525 if (req == NULL)
1526 return 0;
1527
b4716185
CW
1528 requests[n++] = i915_gem_request_reference(req);
1529 } else {
1530 for (i = 0; i < I915_NUM_RINGS; i++) {
1531 struct drm_i915_gem_request *req;
1532
1533 req = obj->last_read_req[i];
1534 if (req == NULL)
1535 continue;
1536
b4716185
CW
1537 requests[n++] = i915_gem_request_reference(req);
1538 }
1539 }
1540
3236f57a 1541 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1542 for (i = 0; ret == 0 && i < n; i++)
1543 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1544 NULL, rps);
3236f57a
CW
1545 mutex_lock(&dev->struct_mutex);
1546
b4716185
CW
1547 for (i = 0; i < n; i++) {
1548 if (ret == 0)
1549 i915_gem_object_retire_request(obj, requests[i]);
1550 i915_gem_request_unreference(requests[i]);
1551 }
1552
1553 return ret;
3236f57a
CW
1554}
1555
2e1b8730
CW
1556static struct intel_rps_client *to_rps_client(struct drm_file *file)
1557{
1558 struct drm_i915_file_private *fpriv = file->driver_priv;
1559 return &fpriv->rps;
1560}
1561
673a394b 1562/**
2ef7eeaa
EA
1563 * Called when user space prepares to use an object with the CPU, either
1564 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1565 */
1566int
1567i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1568 struct drm_file *file)
673a394b
EA
1569{
1570 struct drm_i915_gem_set_domain *args = data;
05394f39 1571 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1572 uint32_t read_domains = args->read_domains;
1573 uint32_t write_domain = args->write_domain;
673a394b
EA
1574 int ret;
1575
2ef7eeaa 1576 /* Only handle setting domains to types used by the CPU. */
21d509e3 1577 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1578 return -EINVAL;
1579
21d509e3 1580 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1581 return -EINVAL;
1582
1583 /* Having something in the write domain implies it's in the read
1584 * domain, and only that read domain. Enforce that in the request.
1585 */
1586 if (write_domain != 0 && read_domains != write_domain)
1587 return -EINVAL;
1588
76c1dec1 1589 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1590 if (ret)
76c1dec1 1591 return ret;
1d7cfea1 1592
05394f39 1593 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1594 if (&obj->base == NULL) {
1d7cfea1
CW
1595 ret = -ENOENT;
1596 goto unlock;
76c1dec1 1597 }
673a394b 1598
3236f57a
CW
1599 /* Try to flush the object off the GPU without holding the lock.
1600 * We will repeat the flush holding the lock in the normal manner
1601 * to catch cases where we are gazumped.
1602 */
6e4930f6 1603 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1604 to_rps_client(file),
6e4930f6 1605 !write_domain);
3236f57a
CW
1606 if (ret)
1607 goto unref;
1608
43566ded 1609 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1610 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1611 else
e47c68e9 1612 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1613
031b698a
DV
1614 if (write_domain != 0)
1615 intel_fb_obj_invalidate(obj,
1616 write_domain == I915_GEM_DOMAIN_GTT ?
1617 ORIGIN_GTT : ORIGIN_CPU);
1618
3236f57a 1619unref:
05394f39 1620 drm_gem_object_unreference(&obj->base);
1d7cfea1 1621unlock:
673a394b
EA
1622 mutex_unlock(&dev->struct_mutex);
1623 return ret;
1624}
1625
1626/**
1627 * Called when user space has done writes to this buffer
1628 */
1629int
1630i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1631 struct drm_file *file)
673a394b
EA
1632{
1633 struct drm_i915_gem_sw_finish *args = data;
05394f39 1634 struct drm_i915_gem_object *obj;
673a394b
EA
1635 int ret = 0;
1636
76c1dec1 1637 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1638 if (ret)
76c1dec1 1639 return ret;
1d7cfea1 1640
05394f39 1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1642 if (&obj->base == NULL) {
1d7cfea1
CW
1643 ret = -ENOENT;
1644 goto unlock;
673a394b
EA
1645 }
1646
673a394b 1647 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1648 if (obj->pin_display)
e62b59e4 1649 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1650
05394f39 1651 drm_gem_object_unreference(&obj->base);
1d7cfea1 1652unlock:
673a394b
EA
1653 mutex_unlock(&dev->struct_mutex);
1654 return ret;
1655}
1656
1657/**
1658 * Maps the contents of an object, returning the address it is mapped
1659 * into.
1660 *
1661 * While the mapping holds a reference on the contents of the object, it doesn't
1662 * imply a ref on the object itself.
34367381
DV
1663 *
1664 * IMPORTANT:
1665 *
1666 * DRM driver writers who look a this function as an example for how to do GEM
1667 * mmap support, please don't implement mmap support like here. The modern way
1668 * to implement DRM mmap support is with an mmap offset ioctl (like
1669 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1670 * That way debug tooling like valgrind will understand what's going on, hiding
1671 * the mmap call in a driver private ioctl will break that. The i915 driver only
1672 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1673 */
1674int
1675i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1676 struct drm_file *file)
673a394b
EA
1677{
1678 struct drm_i915_gem_mmap *args = data;
1679 struct drm_gem_object *obj;
673a394b
EA
1680 unsigned long addr;
1681
1816f923
AG
1682 if (args->flags & ~(I915_MMAP_WC))
1683 return -EINVAL;
1684
1685 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1686 return -ENODEV;
1687
05394f39 1688 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1689 if (obj == NULL)
bf79cb91 1690 return -ENOENT;
673a394b 1691
1286ff73
DV
1692 /* prime objects have no backing filp to GEM mmap
1693 * pages from.
1694 */
1695 if (!obj->filp) {
1696 drm_gem_object_unreference_unlocked(obj);
1697 return -EINVAL;
1698 }
1699
6be5ceb0 1700 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1701 PROT_READ | PROT_WRITE, MAP_SHARED,
1702 args->offset);
1816f923
AG
1703 if (args->flags & I915_MMAP_WC) {
1704 struct mm_struct *mm = current->mm;
1705 struct vm_area_struct *vma;
1706
1707 down_write(&mm->mmap_sem);
1708 vma = find_vma(mm, addr);
1709 if (vma)
1710 vma->vm_page_prot =
1711 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712 else
1713 addr = -ENOMEM;
1714 up_write(&mm->mmap_sem);
1715 }
bc9025bd 1716 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1717 if (IS_ERR((void *)addr))
1718 return addr;
1719
1720 args->addr_ptr = (uint64_t) addr;
1721
1722 return 0;
1723}
1724
de151cf6
JB
1725/**
1726 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1727 * @vma: VMA in question
1728 * @vmf: fault info
de151cf6
JB
1729 *
1730 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1731 * from userspace. The fault handler takes care of binding the object to
1732 * the GTT (if needed), allocating and programming a fence register (again,
1733 * only if needed based on whether the old reg is still valid or the object
1734 * is tiled) and inserting a new PTE into the faulting process.
1735 *
1736 * Note that the faulting process may involve evicting existing objects
1737 * from the GTT and/or fence registers to make room. So performance may
1738 * suffer if the GTT working set is large or there are few fence registers
1739 * left.
1740 */
1741int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1742{
05394f39
CW
1743 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1744 struct drm_device *dev = obj->base.dev;
3e31c6c0 1745 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1746 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1747 pgoff_t page_offset;
1748 unsigned long pfn;
1749 int ret = 0;
0f973f27 1750 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1751
f65c9168
PZ
1752 intel_runtime_pm_get(dev_priv);
1753
de151cf6
JB
1754 /* We don't use vmf->pgoff since that has the fake offset */
1755 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1756 PAGE_SHIFT;
1757
d9bc7e9f
CW
1758 ret = i915_mutex_lock_interruptible(dev);
1759 if (ret)
1760 goto out;
a00b10c3 1761
db53a302
CW
1762 trace_i915_gem_object_fault(obj, page_offset, true, write);
1763
6e4930f6
CW
1764 /* Try to flush the object off the GPU first without holding the lock.
1765 * Upon reacquiring the lock, we will perform our sanity checks and then
1766 * repeat the flush holding the lock in the normal manner to catch cases
1767 * where we are gazumped.
1768 */
1769 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1770 if (ret)
1771 goto unlock;
1772
eb119bd6
CW
1773 /* Access to snoopable pages through the GTT is incoherent. */
1774 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1775 ret = -EFAULT;
eb119bd6
CW
1776 goto unlock;
1777 }
1778
c5ad54cf 1779 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1780 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1781 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1782 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1783
c5ad54cf
JL
1784 memset(&view, 0, sizeof(view));
1785 view.type = I915_GGTT_VIEW_PARTIAL;
1786 view.params.partial.offset = rounddown(page_offset, chunk_size);
1787 view.params.partial.size =
1788 min_t(unsigned int,
1789 chunk_size,
1790 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1791 view.params.partial.offset);
1792 }
1793
1794 /* Now pin it into the GTT if needed */
1795 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1796 if (ret)
1797 goto unlock;
4a684a41 1798
c9839303
CW
1799 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1800 if (ret)
1801 goto unpin;
74898d7e 1802
06d98131 1803 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1804 if (ret)
c9839303 1805 goto unpin;
7d1c4804 1806
b90b91d8 1807 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1808 pfn = dev_priv->gtt.mappable_base +
1809 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1810 pfn >>= PAGE_SHIFT;
de151cf6 1811
c5ad54cf
JL
1812 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1813 /* Overriding existing pages in partial view does not cause
1814 * us any trouble as TLBs are still valid because the fault
1815 * is due to userspace losing part of the mapping or never
1816 * having accessed it before (at this partials' range).
1817 */
1818 unsigned long base = vma->vm_start +
1819 (view.params.partial.offset << PAGE_SHIFT);
1820 unsigned int i;
b90b91d8 1821
c5ad54cf
JL
1822 for (i = 0; i < view.params.partial.size; i++) {
1823 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1824 if (ret)
1825 break;
1826 }
1827
1828 obj->fault_mappable = true;
c5ad54cf
JL
1829 } else {
1830 if (!obj->fault_mappable) {
1831 unsigned long size = min_t(unsigned long,
1832 vma->vm_end - vma->vm_start,
1833 obj->base.size);
1834 int i;
1835
1836 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1837 ret = vm_insert_pfn(vma,
1838 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1839 pfn + i);
1840 if (ret)
1841 break;
1842 }
1843
1844 obj->fault_mappable = true;
1845 } else
1846 ret = vm_insert_pfn(vma,
1847 (unsigned long)vmf->virtual_address,
1848 pfn + page_offset);
1849 }
c9839303 1850unpin:
c5ad54cf 1851 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1852unlock:
de151cf6 1853 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1854out:
de151cf6 1855 switch (ret) {
d9bc7e9f 1856 case -EIO:
2232f031
DV
1857 /*
1858 * We eat errors when the gpu is terminally wedged to avoid
1859 * userspace unduly crashing (gl has no provisions for mmaps to
1860 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1861 * and so needs to be reported.
1862 */
1863 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1864 ret = VM_FAULT_SIGBUS;
1865 break;
1866 }
045e769a 1867 case -EAGAIN:
571c608d
DV
1868 /*
1869 * EAGAIN means the gpu is hung and we'll wait for the error
1870 * handler to reset everything when re-faulting in
1871 * i915_mutex_lock_interruptible.
d9bc7e9f 1872 */
c715089f
CW
1873 case 0:
1874 case -ERESTARTSYS:
bed636ab 1875 case -EINTR:
e79e0fe3
DR
1876 case -EBUSY:
1877 /*
1878 * EBUSY is ok: this just means that another thread
1879 * already did the job.
1880 */
f65c9168
PZ
1881 ret = VM_FAULT_NOPAGE;
1882 break;
de151cf6 1883 case -ENOMEM:
f65c9168
PZ
1884 ret = VM_FAULT_OOM;
1885 break;
a7c2e1aa 1886 case -ENOSPC:
45d67817 1887 case -EFAULT:
f65c9168
PZ
1888 ret = VM_FAULT_SIGBUS;
1889 break;
de151cf6 1890 default:
a7c2e1aa 1891 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1892 ret = VM_FAULT_SIGBUS;
1893 break;
de151cf6 1894 }
f65c9168
PZ
1895
1896 intel_runtime_pm_put(dev_priv);
1897 return ret;
de151cf6
JB
1898}
1899
901782b2
CW
1900/**
1901 * i915_gem_release_mmap - remove physical page mappings
1902 * @obj: obj in question
1903 *
af901ca1 1904 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1905 * relinquish ownership of the pages back to the system.
1906 *
1907 * It is vital that we remove the page mapping if we have mapped a tiled
1908 * object through the GTT and then lose the fence register due to
1909 * resource pressure. Similarly if the object has been moved out of the
1910 * aperture, than pages mapped into userspace must be revoked. Removing the
1911 * mapping will then trigger a page fault on the next user access, allowing
1912 * fixup by i915_gem_fault().
1913 */
d05ca301 1914void
05394f39 1915i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1916{
6299f992
CW
1917 if (!obj->fault_mappable)
1918 return;
901782b2 1919
6796cb16
DH
1920 drm_vma_node_unmap(&obj->base.vma_node,
1921 obj->base.dev->anon_inode->i_mapping);
6299f992 1922 obj->fault_mappable = false;
901782b2
CW
1923}
1924
eedd10f4
CW
1925void
1926i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1927{
1928 struct drm_i915_gem_object *obj;
1929
1930 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1931 i915_gem_release_mmap(obj);
1932}
1933
0fa87796 1934uint32_t
e28f8711 1935i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1936{
e28f8711 1937 uint32_t gtt_size;
92b88aeb
CW
1938
1939 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1940 tiling_mode == I915_TILING_NONE)
1941 return size;
92b88aeb
CW
1942
1943 /* Previous chips need a power-of-two fence region when tiling */
1944 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1945 gtt_size = 1024*1024;
92b88aeb 1946 else
e28f8711 1947 gtt_size = 512*1024;
92b88aeb 1948
e28f8711
CW
1949 while (gtt_size < size)
1950 gtt_size <<= 1;
92b88aeb 1951
e28f8711 1952 return gtt_size;
92b88aeb
CW
1953}
1954
de151cf6
JB
1955/**
1956 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1957 * @obj: object to check
1958 *
1959 * Return the required GTT alignment for an object, taking into account
5e783301 1960 * potential fence register mapping.
de151cf6 1961 */
d865110c
ID
1962uint32_t
1963i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1964 int tiling_mode, bool fenced)
de151cf6 1965{
de151cf6
JB
1966 /*
1967 * Minimum alignment is 4k (GTT page size), but might be greater
1968 * if a fence register is needed for the object.
1969 */
d865110c 1970 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1971 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1972 return 4096;
1973
a00b10c3
CW
1974 /*
1975 * Previous chips need to be aligned to the size of the smallest
1976 * fence register that can contain the object.
1977 */
e28f8711 1978 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1979}
1980
d8cb5086
CW
1981static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1982{
1983 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1984 int ret;
1985
0de23977 1986 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1987 return 0;
1988
da494d7c
DV
1989 dev_priv->mm.shrinker_no_lock_stealing = true;
1990
d8cb5086
CW
1991 ret = drm_gem_create_mmap_offset(&obj->base);
1992 if (ret != -ENOSPC)
da494d7c 1993 goto out;
d8cb5086
CW
1994
1995 /* Badly fragmented mmap space? The only way we can recover
1996 * space is by destroying unwanted objects. We can't randomly release
1997 * mmap_offsets as userspace expects them to be persistent for the
1998 * lifetime of the objects. The closest we can is to release the
1999 * offsets on purgeable objects by truncating it and marking it purged,
2000 * which prevents userspace from ever using that object again.
2001 */
21ab4e74
CW
2002 i915_gem_shrink(dev_priv,
2003 obj->base.size >> PAGE_SHIFT,
2004 I915_SHRINK_BOUND |
2005 I915_SHRINK_UNBOUND |
2006 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2007 ret = drm_gem_create_mmap_offset(&obj->base);
2008 if (ret != -ENOSPC)
da494d7c 2009 goto out;
d8cb5086
CW
2010
2011 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2012 ret = drm_gem_create_mmap_offset(&obj->base);
2013out:
2014 dev_priv->mm.shrinker_no_lock_stealing = false;
2015
2016 return ret;
d8cb5086
CW
2017}
2018
2019static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2020{
d8cb5086
CW
2021 drm_gem_free_mmap_offset(&obj->base);
2022}
2023
da6b51d0 2024int
ff72145b
DA
2025i915_gem_mmap_gtt(struct drm_file *file,
2026 struct drm_device *dev,
da6b51d0 2027 uint32_t handle,
ff72145b 2028 uint64_t *offset)
de151cf6 2029{
05394f39 2030 struct drm_i915_gem_object *obj;
de151cf6
JB
2031 int ret;
2032
76c1dec1 2033 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2034 if (ret)
76c1dec1 2035 return ret;
de151cf6 2036
ff72145b 2037 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2038 if (&obj->base == NULL) {
1d7cfea1
CW
2039 ret = -ENOENT;
2040 goto unlock;
2041 }
de151cf6 2042
05394f39 2043 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2044 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2045 ret = -EFAULT;
1d7cfea1 2046 goto out;
ab18282d
CW
2047 }
2048
d8cb5086
CW
2049 ret = i915_gem_object_create_mmap_offset(obj);
2050 if (ret)
2051 goto out;
de151cf6 2052
0de23977 2053 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2054
1d7cfea1 2055out:
05394f39 2056 drm_gem_object_unreference(&obj->base);
1d7cfea1 2057unlock:
de151cf6 2058 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2059 return ret;
de151cf6
JB
2060}
2061
ff72145b
DA
2062/**
2063 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2064 * @dev: DRM device
2065 * @data: GTT mapping ioctl data
2066 * @file: GEM object info
2067 *
2068 * Simply returns the fake offset to userspace so it can mmap it.
2069 * The mmap call will end up in drm_gem_mmap(), which will set things
2070 * up so we can get faults in the handler above.
2071 *
2072 * The fault handler will take care of binding the object into the GTT
2073 * (since it may have been evicted to make room for something), allocating
2074 * a fence register, and mapping the appropriate aperture address into
2075 * userspace.
2076 */
2077int
2078i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2079 struct drm_file *file)
2080{
2081 struct drm_i915_gem_mmap_gtt *args = data;
2082
da6b51d0 2083 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2084}
2085
225067ee
DV
2086/* Immediately discard the backing storage */
2087static void
2088i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2089{
4d6294bf 2090 i915_gem_object_free_mmap_offset(obj);
1286ff73 2091
4d6294bf
CW
2092 if (obj->base.filp == NULL)
2093 return;
e5281ccd 2094
225067ee
DV
2095 /* Our goal here is to return as much of the memory as
2096 * is possible back to the system as we are called from OOM.
2097 * To do this we must instruct the shmfs to drop all of its
2098 * backing pages, *now*.
2099 */
5537252b 2100 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2101 obj->madv = __I915_MADV_PURGED;
2102}
e5281ccd 2103
5537252b
CW
2104/* Try to discard unwanted pages */
2105static void
2106i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2107{
5537252b
CW
2108 struct address_space *mapping;
2109
2110 switch (obj->madv) {
2111 case I915_MADV_DONTNEED:
2112 i915_gem_object_truncate(obj);
2113 case __I915_MADV_PURGED:
2114 return;
2115 }
2116
2117 if (obj->base.filp == NULL)
2118 return;
2119
2120 mapping = file_inode(obj->base.filp)->i_mapping,
2121 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2122}
2123
5cdf5881 2124static void
05394f39 2125i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2126{
90797e6d
ID
2127 struct sg_page_iter sg_iter;
2128 int ret;
1286ff73 2129
05394f39 2130 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2131
6c085a72
CW
2132 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2133 if (ret) {
2134 /* In the event of a disaster, abandon all caches and
2135 * hope for the best.
2136 */
2137 WARN_ON(ret != -EIO);
2c22569b 2138 i915_gem_clflush_object(obj, true);
6c085a72
CW
2139 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2140 }
2141
e2273302
ID
2142 i915_gem_gtt_finish_object(obj);
2143
6dacfd2f 2144 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2145 i915_gem_object_save_bit_17_swizzle(obj);
2146
05394f39
CW
2147 if (obj->madv == I915_MADV_DONTNEED)
2148 obj->dirty = 0;
3ef94daa 2149
90797e6d 2150 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2151 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2152
05394f39 2153 if (obj->dirty)
9da3da66 2154 set_page_dirty(page);
3ef94daa 2155
05394f39 2156 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2157 mark_page_accessed(page);
3ef94daa 2158
9da3da66 2159 page_cache_release(page);
3ef94daa 2160 }
05394f39 2161 obj->dirty = 0;
673a394b 2162
9da3da66
CW
2163 sg_free_table(obj->pages);
2164 kfree(obj->pages);
37e680a1 2165}
6c085a72 2166
dd624afd 2167int
37e680a1
CW
2168i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2169{
2170 const struct drm_i915_gem_object_ops *ops = obj->ops;
2171
2f745ad3 2172 if (obj->pages == NULL)
37e680a1
CW
2173 return 0;
2174
a5570178
CW
2175 if (obj->pages_pin_count)
2176 return -EBUSY;
2177
9843877d 2178 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2179
a2165e31
CW
2180 /* ->put_pages might need to allocate memory for the bit17 swizzle
2181 * array, hence protect them from being reaped by removing them from gtt
2182 * lists early. */
35c20a60 2183 list_del(&obj->global_list);
a2165e31 2184
37e680a1 2185 ops->put_pages(obj);
05394f39 2186 obj->pages = NULL;
37e680a1 2187
5537252b 2188 i915_gem_object_invalidate(obj);
6c085a72
CW
2189
2190 return 0;
2191}
2192
37e680a1 2193static int
6c085a72 2194i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2195{
6c085a72 2196 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2197 int page_count, i;
2198 struct address_space *mapping;
9da3da66
CW
2199 struct sg_table *st;
2200 struct scatterlist *sg;
90797e6d 2201 struct sg_page_iter sg_iter;
e5281ccd 2202 struct page *page;
90797e6d 2203 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2204 int ret;
6c085a72 2205 gfp_t gfp;
e5281ccd 2206
6c085a72
CW
2207 /* Assert that the object is not currently in any GPU domain. As it
2208 * wasn't in the GTT, there shouldn't be any way it could have been in
2209 * a GPU cache
2210 */
2211 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2212 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2213
9da3da66
CW
2214 st = kmalloc(sizeof(*st), GFP_KERNEL);
2215 if (st == NULL)
2216 return -ENOMEM;
2217
05394f39 2218 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2219 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2220 kfree(st);
e5281ccd 2221 return -ENOMEM;
9da3da66 2222 }
e5281ccd 2223
9da3da66
CW
2224 /* Get the list of pages out of our struct file. They'll be pinned
2225 * at this point until we release them.
2226 *
2227 * Fail silently without starting the shrinker
2228 */
496ad9aa 2229 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2230 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2231 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2232 sg = st->sgl;
2233 st->nents = 0;
2234 for (i = 0; i < page_count; i++) {
6c085a72
CW
2235 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2236 if (IS_ERR(page)) {
21ab4e74
CW
2237 i915_gem_shrink(dev_priv,
2238 page_count,
2239 I915_SHRINK_BOUND |
2240 I915_SHRINK_UNBOUND |
2241 I915_SHRINK_PURGEABLE);
6c085a72
CW
2242 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2243 }
2244 if (IS_ERR(page)) {
2245 /* We've tried hard to allocate the memory by reaping
2246 * our own buffer, now let the real VM do its job and
2247 * go down in flames if truly OOM.
2248 */
6c085a72 2249 i915_gem_shrink_all(dev_priv);
f461d1be 2250 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2251 if (IS_ERR(page)) {
2252 ret = PTR_ERR(page);
6c085a72 2253 goto err_pages;
e2273302 2254 }
6c085a72 2255 }
426729dc
KRW
2256#ifdef CONFIG_SWIOTLB
2257 if (swiotlb_nr_tbl()) {
2258 st->nents++;
2259 sg_set_page(sg, page, PAGE_SIZE, 0);
2260 sg = sg_next(sg);
2261 continue;
2262 }
2263#endif
90797e6d
ID
2264 if (!i || page_to_pfn(page) != last_pfn + 1) {
2265 if (i)
2266 sg = sg_next(sg);
2267 st->nents++;
2268 sg_set_page(sg, page, PAGE_SIZE, 0);
2269 } else {
2270 sg->length += PAGE_SIZE;
2271 }
2272 last_pfn = page_to_pfn(page);
3bbbe706
DV
2273
2274 /* Check that the i965g/gm workaround works. */
2275 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2276 }
426729dc
KRW
2277#ifdef CONFIG_SWIOTLB
2278 if (!swiotlb_nr_tbl())
2279#endif
2280 sg_mark_end(sg);
74ce6b6c
CW
2281 obj->pages = st;
2282
e2273302
ID
2283 ret = i915_gem_gtt_prepare_object(obj);
2284 if (ret)
2285 goto err_pages;
2286
6dacfd2f 2287 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2288 i915_gem_object_do_bit_17_swizzle(obj);
2289
656bfa3a
DV
2290 if (obj->tiling_mode != I915_TILING_NONE &&
2291 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2292 i915_gem_object_pin_pages(obj);
2293
e5281ccd
CW
2294 return 0;
2295
2296err_pages:
90797e6d
ID
2297 sg_mark_end(sg);
2298 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2299 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2300 sg_free_table(st);
2301 kfree(st);
0820baf3
CW
2302
2303 /* shmemfs first checks if there is enough memory to allocate the page
2304 * and reports ENOSPC should there be insufficient, along with the usual
2305 * ENOMEM for a genuine allocation failure.
2306 *
2307 * We use ENOSPC in our driver to mean that we have run out of aperture
2308 * space and so want to translate the error from shmemfs back to our
2309 * usual understanding of ENOMEM.
2310 */
e2273302
ID
2311 if (ret == -ENOSPC)
2312 ret = -ENOMEM;
2313
2314 return ret;
673a394b
EA
2315}
2316
37e680a1
CW
2317/* Ensure that the associated pages are gathered from the backing storage
2318 * and pinned into our object. i915_gem_object_get_pages() may be called
2319 * multiple times before they are released by a single call to
2320 * i915_gem_object_put_pages() - once the pages are no longer referenced
2321 * either as a result of memory pressure (reaping pages under the shrinker)
2322 * or as the object is itself released.
2323 */
2324int
2325i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2326{
2327 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2328 const struct drm_i915_gem_object_ops *ops = obj->ops;
2329 int ret;
2330
2f745ad3 2331 if (obj->pages)
37e680a1
CW
2332 return 0;
2333
43e28f09 2334 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2335 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2336 return -EFAULT;
43e28f09
CW
2337 }
2338
a5570178
CW
2339 BUG_ON(obj->pages_pin_count);
2340
37e680a1
CW
2341 ret = ops->get_pages(obj);
2342 if (ret)
2343 return ret;
2344
35c20a60 2345 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2346
2347 obj->get_page.sg = obj->pages->sgl;
2348 obj->get_page.last = 0;
2349
37e680a1 2350 return 0;
673a394b
EA
2351}
2352
b4716185 2353void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2354 struct drm_i915_gem_request *req)
673a394b 2355{
b4716185 2356 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2357 struct intel_engine_cs *ring;
2358
2359 ring = i915_gem_request_get_ring(req);
673a394b
EA
2360
2361 /* Add a reference if we're newly entering the active list. */
b4716185 2362 if (obj->active == 0)
05394f39 2363 drm_gem_object_reference(&obj->base);
b4716185 2364 obj->active |= intel_ring_flag(ring);
e35a41de 2365
b4716185 2366 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2367 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2368
b4716185 2369 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2370}
2371
b4716185
CW
2372static void
2373i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2374{
b4716185
CW
2375 RQ_BUG_ON(obj->last_write_req == NULL);
2376 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2377
2378 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2379 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2380}
2381
caea7476 2382static void
b4716185 2383i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2384{
feb822cf 2385 struct i915_vma *vma;
ce44b0ea 2386
b4716185
CW
2387 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2388 RQ_BUG_ON(!(obj->active & (1 << ring)));
2389
2390 list_del_init(&obj->ring_list[ring]);
2391 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2392
2393 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2394 i915_gem_object_retire__write(obj);
2395
2396 obj->active &= ~(1 << ring);
2397 if (obj->active)
2398 return;
caea7476 2399
6c246959
CW
2400 /* Bump our place on the bound list to keep it roughly in LRU order
2401 * so that we don't steal from recently used but inactive objects
2402 * (unless we are forced to ofc!)
2403 */
2404 list_move_tail(&obj->global_list,
2405 &to_i915(obj->base.dev)->mm.bound_list);
2406
fe14d5f4
TU
2407 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2408 if (!list_empty(&vma->mm_list))
2409 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2410 }
caea7476 2411
97b2a6a1 2412 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2413 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2414}
2415
9d773091 2416static int
fca26bb4 2417i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2418{
9d773091 2419 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2420 struct intel_engine_cs *ring;
9d773091 2421 int ret, i, j;
53d227f2 2422
107f27a5 2423 /* Carefully retire all requests without writing to the rings */
9d773091 2424 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2425 ret = intel_ring_idle(ring);
2426 if (ret)
2427 return ret;
9d773091 2428 }
9d773091 2429 i915_gem_retire_requests(dev);
107f27a5
CW
2430
2431 /* Finally reset hw state */
9d773091 2432 for_each_ring(ring, dev_priv, i) {
fca26bb4 2433 intel_ring_init_seqno(ring, seqno);
498d2ac1 2434
ebc348b2
BW
2435 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2436 ring->semaphore.sync_seqno[j] = 0;
9d773091 2437 }
53d227f2 2438
9d773091 2439 return 0;
53d227f2
DV
2440}
2441
fca26bb4
MK
2442int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2443{
2444 struct drm_i915_private *dev_priv = dev->dev_private;
2445 int ret;
2446
2447 if (seqno == 0)
2448 return -EINVAL;
2449
2450 /* HWS page needs to be set less than what we
2451 * will inject to ring
2452 */
2453 ret = i915_gem_init_seqno(dev, seqno - 1);
2454 if (ret)
2455 return ret;
2456
2457 /* Carefully set the last_seqno value so that wrap
2458 * detection still works
2459 */
2460 dev_priv->next_seqno = seqno;
2461 dev_priv->last_seqno = seqno - 1;
2462 if (dev_priv->last_seqno == 0)
2463 dev_priv->last_seqno--;
2464
2465 return 0;
2466}
2467
9d773091
CW
2468int
2469i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2470{
9d773091
CW
2471 struct drm_i915_private *dev_priv = dev->dev_private;
2472
2473 /* reserve 0 for non-seqno */
2474 if (dev_priv->next_seqno == 0) {
fca26bb4 2475 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2476 if (ret)
2477 return ret;
53d227f2 2478
9d773091
CW
2479 dev_priv->next_seqno = 1;
2480 }
53d227f2 2481
f72b3435 2482 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2483 return 0;
53d227f2
DV
2484}
2485
bf7dc5b7
JH
2486/*
2487 * NB: This function is not allowed to fail. Doing so would mean the the
2488 * request is not being tracked for completion but the work itself is
2489 * going to happen on the hardware. This would be a Bad Thing(tm).
2490 */
75289874 2491void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2492 struct drm_i915_gem_object *obj,
2493 bool flush_caches)
673a394b 2494{
75289874
JH
2495 struct intel_engine_cs *ring;
2496 struct drm_i915_private *dev_priv;
48e29f55 2497 struct intel_ringbuffer *ringbuf;
6d3d8274 2498 u32 request_start;
3cce469c
CW
2499 int ret;
2500
48e29f55 2501 if (WARN_ON(request == NULL))
bf7dc5b7 2502 return;
48e29f55 2503
75289874
JH
2504 ring = request->ring;
2505 dev_priv = ring->dev->dev_private;
2506 ringbuf = request->ringbuf;
2507
29b1b415
JH
2508 /*
2509 * To ensure that this call will not fail, space for its emissions
2510 * should already have been reserved in the ring buffer. Let the ring
2511 * know that it is time to use that space up.
2512 */
2513 intel_ring_reserved_space_use(ringbuf);
2514
48e29f55 2515 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2516 /*
2517 * Emit any outstanding flushes - execbuf can fail to emit the flush
2518 * after having emitted the batchbuffer command. Hence we need to fix
2519 * things up similar to emitting the lazy request. The difference here
2520 * is that the flush _must_ happen before the next request, no matter
2521 * what.
2522 */
5b4a60c2
JH
2523 if (flush_caches) {
2524 if (i915.enable_execlists)
4866d729 2525 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2526 else
4866d729 2527 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2528 /* Not allowed to fail! */
2529 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2530 }
cc889e0f 2531
a71d8d94
CW
2532 /* Record the position of the start of the request so that
2533 * should we detect the updated seqno part-way through the
2534 * GPU processing the request, we never over-estimate the
2535 * position of the head.
2536 */
6d3d8274 2537 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2538
bf7dc5b7 2539 if (i915.enable_execlists)
c4e76638 2540 ret = ring->emit_request(request);
bf7dc5b7 2541 else {
ee044a88 2542 ret = ring->add_request(request);
53292cdb
MT
2543
2544 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2545 }
bf7dc5b7
JH
2546 /* Not allowed to fail! */
2547 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2548
7d736f4f 2549 request->head = request_start;
7d736f4f
MK
2550
2551 /* Whilst this request exists, batch_obj will be on the
2552 * active_list, and so will hold the active reference. Only when this
2553 * request is retired will the the batch_obj be moved onto the
2554 * inactive_list and lose its active reference. Hence we do not need
2555 * to explicitly hold another reference here.
2556 */
9a7e0c2a 2557 request->batch_obj = obj;
0e50e96b 2558
673a394b 2559 request->emitted_jiffies = jiffies;
94f7bbe1 2560 ring->last_submitted_seqno = request->seqno;
852835f3 2561 list_add_tail(&request->list, &ring->request_list);
673a394b 2562
74328ee5 2563 trace_i915_gem_request_add(request);
db53a302 2564
87255483 2565 i915_queue_hangcheck(ring->dev);
10cd45b6 2566
87255483
DV
2567 queue_delayed_work(dev_priv->wq,
2568 &dev_priv->mm.retire_work,
2569 round_jiffies_up_relative(HZ));
2570 intel_mark_busy(dev_priv->dev);
cc889e0f 2571
29b1b415
JH
2572 /* Sanity check that the reserved size was large enough. */
2573 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2574}
2575
939fd762 2576static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2577 const struct intel_context *ctx)
be62acb4 2578{
44e2c070 2579 unsigned long elapsed;
be62acb4 2580
44e2c070
MK
2581 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2582
2583 if (ctx->hang_stats.banned)
be62acb4
MK
2584 return true;
2585
676fa572
CW
2586 if (ctx->hang_stats.ban_period_seconds &&
2587 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2588 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2589 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2590 return true;
88b4aa87
MK
2591 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2592 if (i915_stop_ring_allow_warn(dev_priv))
2593 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2594 return true;
3fac8978 2595 }
be62acb4
MK
2596 }
2597
2598 return false;
2599}
2600
939fd762 2601static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2602 struct intel_context *ctx,
b6b0fac0 2603 const bool guilty)
aa60c664 2604{
44e2c070
MK
2605 struct i915_ctx_hang_stats *hs;
2606
2607 if (WARN_ON(!ctx))
2608 return;
aa60c664 2609
44e2c070
MK
2610 hs = &ctx->hang_stats;
2611
2612 if (guilty) {
939fd762 2613 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2614 hs->batch_active++;
2615 hs->guilty_ts = get_seconds();
2616 } else {
2617 hs->batch_pending++;
aa60c664
MK
2618 }
2619}
2620
abfe262a
JH
2621void i915_gem_request_free(struct kref *req_ref)
2622{
2623 struct drm_i915_gem_request *req = container_of(req_ref,
2624 typeof(*req), ref);
2625 struct intel_context *ctx = req->ctx;
2626
fcfa423c
JH
2627 if (req->file_priv)
2628 i915_gem_request_remove_from_client(req);
2629
0794aed3
TD
2630 if (ctx) {
2631 if (i915.enable_execlists) {
8ba319da
MK
2632 if (ctx != req->ring->default_context)
2633 intel_lr_context_unpin(req);
0794aed3 2634 }
abfe262a 2635
dcb4c12a
OM
2636 i915_gem_context_unreference(ctx);
2637 }
abfe262a 2638
efab6d8d 2639 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2640}
2641
6689cb2b 2642int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2643 struct intel_context *ctx,
2644 struct drm_i915_gem_request **req_out)
6689cb2b 2645{
efab6d8d 2646 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2647 struct drm_i915_gem_request *req;
6689cb2b 2648 int ret;
6689cb2b 2649
217e46b5
JH
2650 if (!req_out)
2651 return -EINVAL;
2652
bccca494 2653 *req_out = NULL;
6689cb2b 2654
eed29a5b
DV
2655 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2656 if (req == NULL)
6689cb2b
JH
2657 return -ENOMEM;
2658
eed29a5b 2659 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2660 if (ret)
2661 goto err;
6689cb2b 2662
40e895ce
JH
2663 kref_init(&req->ref);
2664 req->i915 = dev_priv;
eed29a5b 2665 req->ring = ring;
40e895ce
JH
2666 req->ctx = ctx;
2667 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2668
2669 if (i915.enable_execlists)
40e895ce 2670 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2671 else
eed29a5b 2672 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2673 if (ret) {
2674 i915_gem_context_unreference(req->ctx);
9a0c1e27 2675 goto err;
40e895ce 2676 }
6689cb2b 2677
29b1b415
JH
2678 /*
2679 * Reserve space in the ring buffer for all the commands required to
2680 * eventually emit this request. This is to guarantee that the
2681 * i915_add_request() call can't fail. Note that the reserve may need
2682 * to be redone if the request is not actually submitted straight
2683 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2684 */
ccd98fe4
JH
2685 if (i915.enable_execlists)
2686 ret = intel_logical_ring_reserve_space(req);
2687 else
2688 ret = intel_ring_reserve_space(req);
2689 if (ret) {
2690 /*
2691 * At this point, the request is fully allocated even if not
2692 * fully prepared. Thus it can be cleaned up using the proper
2693 * free code.
2694 */
2695 i915_gem_request_cancel(req);
2696 return ret;
2697 }
29b1b415 2698
bccca494 2699 *req_out = req;
6689cb2b 2700 return 0;
9a0c1e27
CW
2701
2702err:
2703 kmem_cache_free(dev_priv->requests, req);
2704 return ret;
0e50e96b
MK
2705}
2706
29b1b415
JH
2707void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2708{
2709 intel_ring_reserved_space_cancel(req->ringbuf);
2710
2711 i915_gem_request_unreference(req);
2712}
2713
8d9fc7fd 2714struct drm_i915_gem_request *
a4872ba6 2715i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2716{
4db080f9
CW
2717 struct drm_i915_gem_request *request;
2718
2719 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2720 if (i915_gem_request_completed(request, false))
4db080f9 2721 continue;
aa60c664 2722
b6b0fac0 2723 return request;
4db080f9 2724 }
b6b0fac0
MK
2725
2726 return NULL;
2727}
2728
2729static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2730 struct intel_engine_cs *ring)
b6b0fac0
MK
2731{
2732 struct drm_i915_gem_request *request;
2733 bool ring_hung;
2734
8d9fc7fd 2735 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2736
2737 if (request == NULL)
2738 return;
2739
2740 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2741
939fd762 2742 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2743
2744 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2745 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2746}
aa60c664 2747
4db080f9 2748static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2749 struct intel_engine_cs *ring)
4db080f9 2750{
608c1a52
CW
2751 struct intel_ringbuffer *buffer;
2752
dfaae392 2753 while (!list_empty(&ring->active_list)) {
05394f39 2754 struct drm_i915_gem_object *obj;
9375e446 2755
05394f39
CW
2756 obj = list_first_entry(&ring->active_list,
2757 struct drm_i915_gem_object,
b4716185 2758 ring_list[ring->id]);
9375e446 2759
b4716185 2760 i915_gem_object_retire__read(obj, ring->id);
673a394b 2761 }
1d62beea 2762
dcb4c12a
OM
2763 /*
2764 * Clear the execlists queue up before freeing the requests, as those
2765 * are the ones that keep the context and ringbuffer backing objects
2766 * pinned in place.
2767 */
dcb4c12a 2768
7de1691a
TE
2769 if (i915.enable_execlists) {
2770 spin_lock_irq(&ring->execlist_lock);
1197b4f2 2771
c5baa566
TE
2772 /* list_splice_tail_init checks for empty lists */
2773 list_splice_tail_init(&ring->execlist_queue,
2774 &ring->execlist_retired_req_list);
af3302b9 2775
7de1691a 2776 spin_unlock_irq(&ring->execlist_lock);
c5baa566 2777 intel_execlists_retire_requests(ring);
dcb4c12a
OM
2778 }
2779
1d62beea
BW
2780 /*
2781 * We must free the requests after all the corresponding objects have
2782 * been moved off active lists. Which is the same order as the normal
2783 * retire_requests function does. This is important if object hold
2784 * implicit references on things like e.g. ppgtt address spaces through
2785 * the request.
2786 */
2787 while (!list_empty(&ring->request_list)) {
2788 struct drm_i915_gem_request *request;
2789
2790 request = list_first_entry(&ring->request_list,
2791 struct drm_i915_gem_request,
2792 list);
2793
b4716185 2794 i915_gem_request_retire(request);
1d62beea 2795 }
608c1a52
CW
2796
2797 /* Having flushed all requests from all queues, we know that all
2798 * ringbuffers must now be empty. However, since we do not reclaim
2799 * all space when retiring the request (to prevent HEADs colliding
2800 * with rapid ringbuffer wraparound) the amount of available space
2801 * upon reset is less than when we start. Do one more pass over
2802 * all the ringbuffers to reset last_retired_head.
2803 */
2804 list_for_each_entry(buffer, &ring->buffers, link) {
2805 buffer->last_retired_head = buffer->tail;
2806 intel_ring_update_space(buffer);
2807 }
673a394b
EA
2808}
2809
069efc1d 2810void i915_gem_reset(struct drm_device *dev)
673a394b 2811{
77f01230 2812 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2813 struct intel_engine_cs *ring;
1ec14ad3 2814 int i;
673a394b 2815
4db080f9
CW
2816 /*
2817 * Before we free the objects from the requests, we need to inspect
2818 * them for finding the guilty party. As the requests only borrow
2819 * their reference to the objects, the inspection must be done first.
2820 */
2821 for_each_ring(ring, dev_priv, i)
2822 i915_gem_reset_ring_status(dev_priv, ring);
2823
b4519513 2824 for_each_ring(ring, dev_priv, i)
4db080f9 2825 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2826
acce9ffa
BW
2827 i915_gem_context_reset(dev);
2828
19b2dbde 2829 i915_gem_restore_fences(dev);
b4716185
CW
2830
2831 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2832}
2833
2834/**
2835 * This function clears the request list as sequence numbers are passed.
2836 */
1cf0ba14 2837void
a4872ba6 2838i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2839{
db53a302 2840 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2841
832a3aad
CW
2842 /* Retire requests first as we use it above for the early return.
2843 * If we retire requests last, we may use a later seqno and so clear
2844 * the requests lists without clearing the active list, leading to
2845 * confusion.
e9103038 2846 */
852835f3 2847 while (!list_empty(&ring->request_list)) {
673a394b 2848 struct drm_i915_gem_request *request;
673a394b 2849
852835f3 2850 request = list_first_entry(&ring->request_list,
673a394b
EA
2851 struct drm_i915_gem_request,
2852 list);
673a394b 2853
1b5a433a 2854 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2855 break;
2856
b4716185 2857 i915_gem_request_retire(request);
b84d5f0c 2858 }
673a394b 2859
832a3aad
CW
2860 /* Move any buffers on the active list that are no longer referenced
2861 * by the ringbuffer to the flushing/inactive lists as appropriate,
2862 * before we free the context associated with the requests.
2863 */
2864 while (!list_empty(&ring->active_list)) {
2865 struct drm_i915_gem_object *obj;
2866
2867 obj = list_first_entry(&ring->active_list,
2868 struct drm_i915_gem_object,
b4716185 2869 ring_list[ring->id]);
832a3aad 2870
b4716185 2871 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2872 break;
2873
b4716185 2874 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2875 }
2876
581c26e8
JH
2877 if (unlikely(ring->trace_irq_req &&
2878 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2879 ring->irq_put(ring);
581c26e8 2880 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2881 }
23bc5982 2882
db53a302 2883 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2884}
2885
b29c19b6 2886bool
b09a1fec
CW
2887i915_gem_retire_requests(struct drm_device *dev)
2888{
3e31c6c0 2889 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2890 struct intel_engine_cs *ring;
b29c19b6 2891 bool idle = true;
1ec14ad3 2892 int i;
b09a1fec 2893
b29c19b6 2894 for_each_ring(ring, dev_priv, i) {
b4519513 2895 i915_gem_retire_requests_ring(ring);
b29c19b6 2896 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2897 if (i915.enable_execlists) {
2898 unsigned long flags;
2899
2900 spin_lock_irqsave(&ring->execlist_lock, flags);
2901 idle &= list_empty(&ring->execlist_queue);
2902 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2903
2904 intel_execlists_retire_requests(ring);
2905 }
b29c19b6
CW
2906 }
2907
2908 if (idle)
2909 mod_delayed_work(dev_priv->wq,
2910 &dev_priv->mm.idle_work,
2911 msecs_to_jiffies(100));
2912
2913 return idle;
b09a1fec
CW
2914}
2915
75ef9da2 2916static void
673a394b
EA
2917i915_gem_retire_work_handler(struct work_struct *work)
2918{
b29c19b6
CW
2919 struct drm_i915_private *dev_priv =
2920 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2921 struct drm_device *dev = dev_priv->dev;
0a58705b 2922 bool idle;
673a394b 2923
891b48cf 2924 /* Come back later if the device is busy... */
b29c19b6
CW
2925 idle = false;
2926 if (mutex_trylock(&dev->struct_mutex)) {
2927 idle = i915_gem_retire_requests(dev);
2928 mutex_unlock(&dev->struct_mutex);
673a394b 2929 }
b29c19b6 2930 if (!idle)
bcb45086
CW
2931 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2932 round_jiffies_up_relative(HZ));
b29c19b6 2933}
0a58705b 2934
b29c19b6
CW
2935static void
2936i915_gem_idle_work_handler(struct work_struct *work)
2937{
2938 struct drm_i915_private *dev_priv =
2939 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2940 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2941 struct intel_engine_cs *ring;
2942 int i;
b29c19b6 2943
423795cb
CW
2944 for_each_ring(ring, dev_priv, i)
2945 if (!list_empty(&ring->request_list))
2946 return;
35c94185
CW
2947
2948 intel_mark_idle(dev);
2949
2950 if (mutex_trylock(&dev->struct_mutex)) {
2951 struct intel_engine_cs *ring;
2952 int i;
2953
2954 for_each_ring(ring, dev_priv, i)
2955 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2956
35c94185
CW
2957 mutex_unlock(&dev->struct_mutex);
2958 }
673a394b
EA
2959}
2960
30dfebf3
DV
2961/**
2962 * Ensures that an object will eventually get non-busy by flushing any required
2963 * write domains, emitting any outstanding lazy request and retiring and
2964 * completed requests.
2965 */
2966static int
2967i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2968{
a5ac0f90 2969 int i;
b4716185
CW
2970
2971 if (!obj->active)
2972 return 0;
30dfebf3 2973
b4716185
CW
2974 for (i = 0; i < I915_NUM_RINGS; i++) {
2975 struct drm_i915_gem_request *req;
41c52415 2976
b4716185
CW
2977 req = obj->last_read_req[i];
2978 if (req == NULL)
2979 continue;
2980
2981 if (list_empty(&req->list))
2982 goto retire;
2983
b4716185
CW
2984 if (i915_gem_request_completed(req, true)) {
2985 __i915_gem_request_retire__upto(req);
2986retire:
2987 i915_gem_object_retire__read(obj, i);
2988 }
30dfebf3
DV
2989 }
2990
2991 return 0;
2992}
2993
23ba4fd0
BW
2994/**
2995 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2996 * @DRM_IOCTL_ARGS: standard ioctl arguments
2997 *
2998 * Returns 0 if successful, else an error is returned with the remaining time in
2999 * the timeout parameter.
3000 * -ETIME: object is still busy after timeout
3001 * -ERESTARTSYS: signal interrupted the wait
3002 * -ENONENT: object doesn't exist
3003 * Also possible, but rare:
3004 * -EAGAIN: GPU wedged
3005 * -ENOMEM: damn
3006 * -ENODEV: Internal IRQ fail
3007 * -E?: The add request failed
3008 *
3009 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3010 * non-zero timeout parameter the wait ioctl will wait for the given number of
3011 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3012 * without holding struct_mutex the object may become re-busied before this
3013 * function completes. A similar but shorter * race condition exists in the busy
3014 * ioctl
3015 */
3016int
3017i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3018{
3e31c6c0 3019 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3020 struct drm_i915_gem_wait *args = data;
3021 struct drm_i915_gem_object *obj;
b4716185 3022 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3023 unsigned reset_counter;
b4716185
CW
3024 int i, n = 0;
3025 int ret;
23ba4fd0 3026
11b5d511
DV
3027 if (args->flags != 0)
3028 return -EINVAL;
3029
23ba4fd0
BW
3030 ret = i915_mutex_lock_interruptible(dev);
3031 if (ret)
3032 return ret;
3033
3034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3035 if (&obj->base == NULL) {
3036 mutex_unlock(&dev->struct_mutex);
3037 return -ENOENT;
3038 }
3039
30dfebf3
DV
3040 /* Need to make sure the object gets inactive eventually. */
3041 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3042 if (ret)
3043 goto out;
3044
b4716185 3045 if (!obj->active)
97b2a6a1 3046 goto out;
23ba4fd0 3047
23ba4fd0 3048 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3049 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3050 */
762e4583 3051 if (args->timeout_ns == 0) {
23ba4fd0
BW
3052 ret = -ETIME;
3053 goto out;
3054 }
3055
3056 drm_gem_object_unreference(&obj->base);
f69061be 3057 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3058
3059 for (i = 0; i < I915_NUM_RINGS; i++) {
3060 if (obj->last_read_req[i] == NULL)
3061 continue;
3062
3063 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3064 }
3065
23ba4fd0
BW
3066 mutex_unlock(&dev->struct_mutex);
3067
b4716185
CW
3068 for (i = 0; i < n; i++) {
3069 if (ret == 0)
3070 ret = __i915_wait_request(req[i], reset_counter, true,
3071 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3072 to_rps_client(file));
b4716185
CW
3073 i915_gem_request_unreference__unlocked(req[i]);
3074 }
ff865885 3075 return ret;
23ba4fd0
BW
3076
3077out:
3078 drm_gem_object_unreference(&obj->base);
3079 mutex_unlock(&dev->struct_mutex);
3080 return ret;
3081}
3082
b4716185
CW
3083static int
3084__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3085 struct intel_engine_cs *to,
91af127f
JH
3086 struct drm_i915_gem_request *from_req,
3087 struct drm_i915_gem_request **to_req)
b4716185
CW
3088{
3089 struct intel_engine_cs *from;
3090 int ret;
3091
91af127f 3092 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3093 if (to == from)
3094 return 0;
3095
91af127f 3096 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3097 return 0;
3098
b4716185 3099 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3100 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3101 ret = __i915_wait_request(from_req,
a6f766f3
CW
3102 atomic_read(&i915->gpu_error.reset_counter),
3103 i915->mm.interruptible,
3104 NULL,
3105 &i915->rps.semaphores);
b4716185
CW
3106 if (ret)
3107 return ret;
3108
91af127f 3109 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3110 } else {
3111 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3112 u32 seqno = i915_gem_request_get_seqno(from_req);
3113
3114 WARN_ON(!to_req);
b4716185
CW
3115
3116 if (seqno <= from->semaphore.sync_seqno[idx])
3117 return 0;
3118
91af127f
JH
3119 if (*to_req == NULL) {
3120 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3121 if (ret)
3122 return ret;
3123 }
3124
599d924c
JH
3125 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3126 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3127 if (ret)
3128 return ret;
3129
3130 /* We use last_read_req because sync_to()
3131 * might have just caused seqno wrap under
3132 * the radar.
3133 */
3134 from->semaphore.sync_seqno[idx] =
3135 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3136 }
3137
3138 return 0;
3139}
3140
5816d648
BW
3141/**
3142 * i915_gem_object_sync - sync an object to a ring.
3143 *
3144 * @obj: object which may be in use on another ring.
3145 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3146 * @to_req: request we wish to use the object for. See below.
3147 * This will be allocated and returned if a request is
3148 * required but not passed in.
5816d648
BW
3149 *
3150 * This code is meant to abstract object synchronization with the GPU.
3151 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3152 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3153 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3154 * into a buffer at any time, but multiple readers. To ensure each has
3155 * a coherent view of memory, we must:
3156 *
3157 * - If there is an outstanding write request to the object, the new
3158 * request must wait for it to complete (either CPU or in hw, requests
3159 * on the same ring will be naturally ordered).
3160 *
3161 * - If we are a write request (pending_write_domain is set), the new
3162 * request must wait for outstanding read requests to complete.
5816d648 3163 *
91af127f
JH
3164 * For CPU synchronisation (NULL to) no request is required. For syncing with
3165 * rings to_req must be non-NULL. However, a request does not have to be
3166 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3167 * request will be allocated automatically and returned through *to_req. Note
3168 * that it is not guaranteed that commands will be emitted (because the system
3169 * might already be idle). Hence there is no need to create a request that
3170 * might never have any work submitted. Note further that if a request is
3171 * returned in *to_req, it is the responsibility of the caller to submit
3172 * that request (after potentially adding more work to it).
3173 *
5816d648
BW
3174 * Returns 0 if successful, else propagates up the lower layer error.
3175 */
2911a35b
BW
3176int
3177i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3178 struct intel_engine_cs *to,
3179 struct drm_i915_gem_request **to_req)
2911a35b 3180{
b4716185
CW
3181 const bool readonly = obj->base.pending_write_domain == 0;
3182 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3183 int ret, i, n;
41c52415 3184
b4716185 3185 if (!obj->active)
2911a35b
BW
3186 return 0;
3187
b4716185
CW
3188 if (to == NULL)
3189 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3190
b4716185
CW
3191 n = 0;
3192 if (readonly) {
3193 if (obj->last_write_req)
3194 req[n++] = obj->last_write_req;
3195 } else {
3196 for (i = 0; i < I915_NUM_RINGS; i++)
3197 if (obj->last_read_req[i])
3198 req[n++] = obj->last_read_req[i];
3199 }
3200 for (i = 0; i < n; i++) {
91af127f 3201 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3202 if (ret)
3203 return ret;
3204 }
2911a35b 3205
b4716185 3206 return 0;
2911a35b
BW
3207}
3208
b5ffc9bc
CW
3209static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3210{
3211 u32 old_write_domain, old_read_domains;
3212
b5ffc9bc
CW
3213 /* Force a pagefault for domain tracking on next user access */
3214 i915_gem_release_mmap(obj);
3215
b97c3d9c
KP
3216 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3217 return;
3218
97c809fd
CW
3219 /* Wait for any direct GTT access to complete */
3220 mb();
3221
b5ffc9bc
CW
3222 old_read_domains = obj->base.read_domains;
3223 old_write_domain = obj->base.write_domain;
3224
3225 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3226 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3227
3228 trace_i915_gem_object_change_domain(obj,
3229 old_read_domains,
3230 old_write_domain);
3231}
3232
e9f24d5f 3233static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3234{
07fe0b12 3235 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3236 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3237 int ret;
673a394b 3238
07fe0b12 3239 if (list_empty(&vma->vma_link))
673a394b
EA
3240 return 0;
3241
0ff501cb
DV
3242 if (!drm_mm_node_allocated(&vma->node)) {
3243 i915_gem_vma_destroy(vma);
0ff501cb
DV
3244 return 0;
3245 }
433544bd 3246
d7f46fc4 3247 if (vma->pin_count)
31d8d651 3248 return -EBUSY;
673a394b 3249
c4670ad0
CW
3250 BUG_ON(obj->pages == NULL);
3251
e9f24d5f
TU
3252 if (wait) {
3253 ret = i915_gem_object_wait_rendering(obj, false);
3254 if (ret)
3255 return ret;
3256 }
a8198eea 3257
fe14d5f4
TU
3258 if (i915_is_ggtt(vma->vm) &&
3259 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3260 i915_gem_object_finish_gtt(obj);
5323fd04 3261
8b1bc9b4
DV
3262 /* release the fence reg _after_ flushing */
3263 ret = i915_gem_object_put_fence(obj);
3264 if (ret)
3265 return ret;
3266 }
96b47b65 3267
07fe0b12 3268 trace_i915_vma_unbind(vma);
db53a302 3269
777dc5bb 3270 vma->vm->unbind_vma(vma);
5e562f1d 3271 vma->bound = 0;
6f65e29a 3272
64bf9303 3273 list_del_init(&vma->mm_list);
fe14d5f4
TU
3274 if (i915_is_ggtt(vma->vm)) {
3275 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3276 obj->map_and_fenceable = false;
3277 } else if (vma->ggtt_view.pages) {
3278 sg_free_table(vma->ggtt_view.pages);
3279 kfree(vma->ggtt_view.pages);
fe14d5f4 3280 }
016a65a3 3281 vma->ggtt_view.pages = NULL;
fe14d5f4 3282 }
673a394b 3283
2f633156
BW
3284 drm_mm_remove_node(&vma->node);
3285 i915_gem_vma_destroy(vma);
3286
3287 /* Since the unbound list is global, only move to that list if
b93dab6e 3288 * no more VMAs exist. */
e2273302 3289 if (list_empty(&obj->vma_list))
2f633156 3290 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3291
70903c3b
CW
3292 /* And finally now the object is completely decoupled from this vma,
3293 * we can drop its hold on the backing storage and allow it to be
3294 * reaped by the shrinker.
3295 */
3296 i915_gem_object_unpin_pages(obj);
3297
88241785 3298 return 0;
54cf91dc
CW
3299}
3300
e9f24d5f
TU
3301int i915_vma_unbind(struct i915_vma *vma)
3302{
3303 return __i915_vma_unbind(vma, true);
3304}
3305
3306int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3307{
3308 return __i915_vma_unbind(vma, false);
3309}
3310
b2da9fe5 3311int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3312{
3e31c6c0 3313 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3314 struct intel_engine_cs *ring;
1ec14ad3 3315 int ret, i;
4df2faf4 3316
4df2faf4 3317 /* Flush everything onto the inactive list. */
b4519513 3318 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3319 if (!i915.enable_execlists) {
73cfa865
JH
3320 struct drm_i915_gem_request *req;
3321
3322 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3323 if (ret)
3324 return ret;
73cfa865 3325
ba01cc93 3326 ret = i915_switch_context(req);
73cfa865
JH
3327 if (ret) {
3328 i915_gem_request_cancel(req);
3329 return ret;
3330 }
3331
75289874 3332 i915_add_request_no_flush(req);
ecdb5fd8 3333 }
b6c7488d 3334
3e960501 3335 ret = intel_ring_idle(ring);
1ec14ad3
CW
3336 if (ret)
3337 return ret;
3338 }
4df2faf4 3339
b4716185 3340 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3341 return 0;
4df2faf4
DV
3342}
3343
4144f9b5 3344static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3345 unsigned long cache_level)
3346{
4144f9b5 3347 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3348 struct drm_mm_node *other;
3349
4144f9b5
CW
3350 /*
3351 * On some machines we have to be careful when putting differing types
3352 * of snoopable memory together to avoid the prefetcher crossing memory
3353 * domains and dying. During vm initialisation, we decide whether or not
3354 * these constraints apply and set the drm_mm.color_adjust
3355 * appropriately.
42d6ab48 3356 */
4144f9b5 3357 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3358 return true;
3359
c6cfb325 3360 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3361 return true;
3362
3363 if (list_empty(&gtt_space->node_list))
3364 return true;
3365
3366 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3367 if (other->allocated && !other->hole_follows && other->color != cache_level)
3368 return false;
3369
3370 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3371 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3372 return false;
3373
3374 return true;
3375}
3376
673a394b 3377/**
91e6711e
JL
3378 * Finds free space in the GTT aperture and binds the object or a view of it
3379 * there.
673a394b 3380 */
262de145 3381static struct i915_vma *
07fe0b12
BW
3382i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3383 struct i915_address_space *vm,
ec7adb6e 3384 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3385 unsigned alignment,
ec7adb6e 3386 uint64_t flags)
673a394b 3387{
05394f39 3388 struct drm_device *dev = obj->base.dev;
3e31c6c0 3389 struct drm_i915_private *dev_priv = dev->dev_private;
65bd342f 3390 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3391 u32 search_flag, alloc_flag;
3392 u64 start, end;
65bd342f 3393 u64 size, fence_size;
2f633156 3394 struct i915_vma *vma;
07f73f69 3395 int ret;
673a394b 3396
91e6711e
JL
3397 if (i915_is_ggtt(vm)) {
3398 u32 view_size;
3399
3400 if (WARN_ON(!ggtt_view))
3401 return ERR_PTR(-EINVAL);
ec7adb6e 3402
91e6711e
JL
3403 view_size = i915_ggtt_view_size(obj, ggtt_view);
3404
3405 fence_size = i915_gem_get_gtt_size(dev,
3406 view_size,
3407 obj->tiling_mode);
3408 fence_alignment = i915_gem_get_gtt_alignment(dev,
3409 view_size,
3410 obj->tiling_mode,
3411 true);
3412 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3413 view_size,
3414 obj->tiling_mode,
3415 false);
3416 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3417 } else {
3418 fence_size = i915_gem_get_gtt_size(dev,
3419 obj->base.size,
3420 obj->tiling_mode);
3421 fence_alignment = i915_gem_get_gtt_alignment(dev,
3422 obj->base.size,
3423 obj->tiling_mode,
3424 true);
3425 unfenced_alignment =
3426 i915_gem_get_gtt_alignment(dev,
3427 obj->base.size,
3428 obj->tiling_mode,
3429 false);
3430 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3431 }
a00b10c3 3432
101b506a
MT
3433 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3434 end = vm->total;
3435 if (flags & PIN_MAPPABLE)
3436 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3437 if (flags & PIN_ZONE_4G)
3438 end = min_t(u64, end, (1ULL << 32));
3439
673a394b 3440 if (alignment == 0)
1ec9e26d 3441 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3442 unfenced_alignment;
1ec9e26d 3443 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3444 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3445 ggtt_view ? ggtt_view->type : 0,
3446 alignment);
262de145 3447 return ERR_PTR(-EINVAL);
673a394b
EA
3448 }
3449
91e6711e
JL
3450 /* If binding the object/GGTT view requires more space than the entire
3451 * aperture has, reject it early before evicting everything in a vain
3452 * attempt to find space.
654fc607 3453 */
91e6711e 3454 if (size > end) {
65bd342f 3455 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3456 ggtt_view ? ggtt_view->type : 0,
3457 size,
1ec9e26d 3458 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3459 end);
262de145 3460 return ERR_PTR(-E2BIG);
654fc607
CW
3461 }
3462
37e680a1 3463 ret = i915_gem_object_get_pages(obj);
6c085a72 3464 if (ret)
262de145 3465 return ERR_PTR(ret);
6c085a72 3466
fbdda6fb
CW
3467 i915_gem_object_pin_pages(obj);
3468
ec7adb6e
JL
3469 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3470 i915_gem_obj_lookup_or_create_vma(obj, vm);
3471
262de145 3472 if (IS_ERR(vma))
bc6bc15b 3473 goto err_unpin;
2f633156 3474
506a8e87
CW
3475 if (flags & PIN_OFFSET_FIXED) {
3476 uint64_t offset = flags & PIN_OFFSET_MASK;
3477
3478 if (offset & (alignment - 1) || offset + size > end) {
3479 ret = -EINVAL;
3480 goto err_free_vma;
3481 }
3482 vma->node.start = offset;
3483 vma->node.size = size;
3484 vma->node.color = obj->cache_level;
3485 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3486 if (ret) {
3487 ret = i915_gem_evict_for_vma(vma);
3488 if (ret == 0)
3489 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3490 }
3491 if (ret)
3492 goto err_free_vma;
101b506a 3493 } else {
506a8e87
CW
3494 if (flags & PIN_HIGH) {
3495 search_flag = DRM_MM_SEARCH_BELOW;
3496 alloc_flag = DRM_MM_CREATE_TOP;
3497 } else {
3498 search_flag = DRM_MM_SEARCH_DEFAULT;
3499 alloc_flag = DRM_MM_CREATE_DEFAULT;
3500 }
101b506a 3501
0a9ae0d7 3502search_free:
506a8e87
CW
3503 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3504 size, alignment,
3505 obj->cache_level,
3506 start, end,
3507 search_flag,
3508 alloc_flag);
3509 if (ret) {
3510 ret = i915_gem_evict_something(dev, vm, size, alignment,
3511 obj->cache_level,
3512 start, end,
3513 flags);
3514 if (ret == 0)
3515 goto search_free;
9731129c 3516
506a8e87
CW
3517 goto err_free_vma;
3518 }
673a394b 3519 }
4144f9b5 3520 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3521 ret = -EINVAL;
bc6bc15b 3522 goto err_remove_node;
673a394b
EA
3523 }
3524
fe14d5f4 3525 trace_i915_vma_bind(vma, flags);
0875546c 3526 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3527 if (ret)
e2273302 3528 goto err_remove_node;
fe14d5f4 3529
35c20a60 3530 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3531 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3532
262de145 3533 return vma;
2f633156 3534
bc6bc15b 3535err_remove_node:
6286ef9b 3536 drm_mm_remove_node(&vma->node);
bc6bc15b 3537err_free_vma:
2f633156 3538 i915_gem_vma_destroy(vma);
262de145 3539 vma = ERR_PTR(ret);
bc6bc15b 3540err_unpin:
2f633156 3541 i915_gem_object_unpin_pages(obj);
262de145 3542 return vma;
673a394b
EA
3543}
3544
000433b6 3545bool
2c22569b
CW
3546i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3547 bool force)
673a394b 3548{
673a394b
EA
3549 /* If we don't have a page list set up, then we're not pinned
3550 * to GPU, and we can ignore the cache flush because it'll happen
3551 * again at bind time.
3552 */
05394f39 3553 if (obj->pages == NULL)
000433b6 3554 return false;
673a394b 3555
769ce464
ID
3556 /*
3557 * Stolen memory is always coherent with the GPU as it is explicitly
3558 * marked as wc by the system, or the system is cache-coherent.
3559 */
6a2c4232 3560 if (obj->stolen || obj->phys_handle)
000433b6 3561 return false;
769ce464 3562
9c23f7fc
CW
3563 /* If the GPU is snooping the contents of the CPU cache,
3564 * we do not need to manually clear the CPU cache lines. However,
3565 * the caches are only snooped when the render cache is
3566 * flushed/invalidated. As we always have to emit invalidations
3567 * and flushes when moving into and out of the RENDER domain, correct
3568 * snooping behaviour occurs naturally as the result of our domain
3569 * tracking.
3570 */
0f71979a
CW
3571 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3572 obj->cache_dirty = true;
000433b6 3573 return false;
0f71979a 3574 }
9c23f7fc 3575
1c5d22f7 3576 trace_i915_gem_object_clflush(obj);
9da3da66 3577 drm_clflush_sg(obj->pages);
0f71979a 3578 obj->cache_dirty = false;
000433b6
CW
3579
3580 return true;
e47c68e9
EA
3581}
3582
3583/** Flushes the GTT write domain for the object if it's dirty. */
3584static void
05394f39 3585i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3586{
1c5d22f7
CW
3587 uint32_t old_write_domain;
3588
05394f39 3589 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3590 return;
3591
63256ec5 3592 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3593 * to it immediately go to main memory as far as we know, so there's
3594 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3595 *
3596 * However, we do have to enforce the order so that all writes through
3597 * the GTT land before any writes to the device, such as updates to
3598 * the GATT itself.
e47c68e9 3599 */
63256ec5
CW
3600 wmb();
3601
05394f39
CW
3602 old_write_domain = obj->base.write_domain;
3603 obj->base.write_domain = 0;
1c5d22f7 3604
de152b62 3605 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3606
1c5d22f7 3607 trace_i915_gem_object_change_domain(obj,
05394f39 3608 obj->base.read_domains,
1c5d22f7 3609 old_write_domain);
e47c68e9
EA
3610}
3611
3612/** Flushes the CPU write domain for the object if it's dirty. */
3613static void
e62b59e4 3614i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3615{
1c5d22f7 3616 uint32_t old_write_domain;
e47c68e9 3617
05394f39 3618 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3619 return;
3620
e62b59e4 3621 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3622 i915_gem_chipset_flush(obj->base.dev);
3623
05394f39
CW
3624 old_write_domain = obj->base.write_domain;
3625 obj->base.write_domain = 0;
1c5d22f7 3626
de152b62 3627 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3628
1c5d22f7 3629 trace_i915_gem_object_change_domain(obj,
05394f39 3630 obj->base.read_domains,
1c5d22f7 3631 old_write_domain);
e47c68e9
EA
3632}
3633
2ef7eeaa
EA
3634/**
3635 * Moves a single object to the GTT read, and possibly write domain.
3636 *
3637 * This function returns when the move is complete, including waiting on
3638 * flushes to occur.
3639 */
79e53945 3640int
2021746e 3641i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3642{
1c5d22f7 3643 uint32_t old_write_domain, old_read_domains;
43566ded 3644 struct i915_vma *vma;
e47c68e9 3645 int ret;
2ef7eeaa 3646
8d7e3de1
CW
3647 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3648 return 0;
3649
0201f1ec 3650 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3651 if (ret)
3652 return ret;
3653
43566ded
CW
3654 /* Flush and acquire obj->pages so that we are coherent through
3655 * direct access in memory with previous cached writes through
3656 * shmemfs and that our cache domain tracking remains valid.
3657 * For example, if the obj->filp was moved to swap without us
3658 * being notified and releasing the pages, we would mistakenly
3659 * continue to assume that the obj remained out of the CPU cached
3660 * domain.
3661 */
3662 ret = i915_gem_object_get_pages(obj);
3663 if (ret)
3664 return ret;
3665
e62b59e4 3666 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3667
d0a57789
CW
3668 /* Serialise direct access to this object with the barriers for
3669 * coherent writes from the GPU, by effectively invalidating the
3670 * GTT domain upon first access.
3671 */
3672 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3673 mb();
3674
05394f39
CW
3675 old_write_domain = obj->base.write_domain;
3676 old_read_domains = obj->base.read_domains;
1c5d22f7 3677
e47c68e9
EA
3678 /* It should now be out of any other write domains, and we can update
3679 * the domain values for our changes.
3680 */
05394f39
CW
3681 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3682 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3683 if (write) {
05394f39
CW
3684 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3685 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3686 obj->dirty = 1;
2ef7eeaa
EA
3687 }
3688
1c5d22f7
CW
3689 trace_i915_gem_object_change_domain(obj,
3690 old_read_domains,
3691 old_write_domain);
3692
8325a09d 3693 /* And bump the LRU for this access */
43566ded
CW
3694 vma = i915_gem_obj_to_ggtt(obj);
3695 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 3696 list_move_tail(&vma->mm_list,
43566ded 3697 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 3698
e47c68e9
EA
3699 return 0;
3700}
3701
ef55f92a
CW
3702/**
3703 * Changes the cache-level of an object across all VMA.
3704 *
3705 * After this function returns, the object will be in the new cache-level
3706 * across all GTT and the contents of the backing storage will be coherent,
3707 * with respect to the new cache-level. In order to keep the backing storage
3708 * coherent for all users, we only allow a single cache level to be set
3709 * globally on the object and prevent it from being changed whilst the
3710 * hardware is reading from the object. That is if the object is currently
3711 * on the scanout it will be set to uncached (or equivalent display
3712 * cache coherency) and all non-MOCS GPU access will also be uncached so
3713 * that all direct access to the scanout remains coherent.
3714 */
e4ffd173
CW
3715int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3716 enum i915_cache_level cache_level)
3717{
7bddb01f 3718 struct drm_device *dev = obj->base.dev;
df6f783a 3719 struct i915_vma *vma, *next;
ef55f92a 3720 bool bound = false;
ed75a55b 3721 int ret = 0;
e4ffd173
CW
3722
3723 if (obj->cache_level == cache_level)
ed75a55b 3724 goto out;
e4ffd173 3725
ef55f92a
CW
3726 /* Inspect the list of currently bound VMA and unbind any that would
3727 * be invalid given the new cache-level. This is principally to
3728 * catch the issue of the CS prefetch crossing page boundaries and
3729 * reading an invalid PTE on older architectures.
3730 */
df6f783a 3731 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
ef55f92a
CW
3732 if (!drm_mm_node_allocated(&vma->node))
3733 continue;
3734
3735 if (vma->pin_count) {
3736 DRM_DEBUG("can not change the cache level of pinned objects\n");
3737 return -EBUSY;
3738 }
3739
4144f9b5 3740 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3741 ret = i915_vma_unbind(vma);
3089c6f2
BW
3742 if (ret)
3743 return ret;
ef55f92a
CW
3744 } else
3745 bound = true;
42d6ab48
CW
3746 }
3747
ef55f92a
CW
3748 /* We can reuse the existing drm_mm nodes but need to change the
3749 * cache-level on the PTE. We could simply unbind them all and
3750 * rebind with the correct cache-level on next use. However since
3751 * we already have a valid slot, dma mapping, pages etc, we may as
3752 * rewrite the PTE in the belief that doing so tramples upon less
3753 * state and so involves less work.
3754 */
3755 if (bound) {
3756 /* Before we change the PTE, the GPU must not be accessing it.
3757 * If we wait upon the object, we know that all the bound
3758 * VMA are no longer active.
3759 */
2e2f351d 3760 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3761 if (ret)
3762 return ret;
3763
ef55f92a
CW
3764 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3765 /* Access to snoopable pages through the GTT is
3766 * incoherent and on some machines causes a hard
3767 * lockup. Relinquish the CPU mmaping to force
3768 * userspace to refault in the pages and we can
3769 * then double check if the GTT mapping is still
3770 * valid for that pointer access.
3771 */
3772 i915_gem_release_mmap(obj);
3773
3774 /* As we no longer need a fence for GTT access,
3775 * we can relinquish it now (and so prevent having
3776 * to steal a fence from someone else on the next
3777 * fence request). Note GPU activity would have
3778 * dropped the fence as all snoopable access is
3779 * supposed to be linear.
3780 */
e4ffd173
CW
3781 ret = i915_gem_object_put_fence(obj);
3782 if (ret)
3783 return ret;
ef55f92a
CW
3784 } else {
3785 /* We either have incoherent backing store and
3786 * so no GTT access or the architecture is fully
3787 * coherent. In such cases, existing GTT mmaps
3788 * ignore the cache bit in the PTE and we can
3789 * rewrite it without confusing the GPU or having
3790 * to force userspace to fault back in its mmaps.
3791 */
e4ffd173
CW
3792 }
3793
ef55f92a
CW
3794 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3795 if (!drm_mm_node_allocated(&vma->node))
3796 continue;
3797
3798 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3799 if (ret)
3800 return ret;
3801 }
e4ffd173
CW
3802 }
3803
2c22569b
CW
3804 list_for_each_entry(vma, &obj->vma_list, vma_link)
3805 vma->node.color = cache_level;
3806 obj->cache_level = cache_level;
3807
ed75a55b 3808out:
ef55f92a
CW
3809 /* Flush the dirty CPU caches to the backing storage so that the
3810 * object is now coherent at its new cache level (with respect
3811 * to the access domain).
3812 */
0f71979a
CW
3813 if (obj->cache_dirty &&
3814 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3815 cpu_write_needs_clflush(obj)) {
3816 if (i915_gem_clflush_object(obj, true))
3817 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3818 }
3819
e4ffd173
CW
3820 return 0;
3821}
3822
199adf40
BW
3823int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3824 struct drm_file *file)
e6994aee 3825{
199adf40 3826 struct drm_i915_gem_caching *args = data;
e6994aee 3827 struct drm_i915_gem_object *obj;
e6994aee
CW
3828
3829 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3830 if (&obj->base == NULL)
3831 return -ENOENT;
e6994aee 3832
651d794f
CW
3833 switch (obj->cache_level) {
3834 case I915_CACHE_LLC:
3835 case I915_CACHE_L3_LLC:
3836 args->caching = I915_CACHING_CACHED;
3837 break;
3838
4257d3ba
CW
3839 case I915_CACHE_WT:
3840 args->caching = I915_CACHING_DISPLAY;
3841 break;
3842
651d794f
CW
3843 default:
3844 args->caching = I915_CACHING_NONE;
3845 break;
3846 }
e6994aee 3847
432be69d
CW
3848 drm_gem_object_unreference_unlocked(&obj->base);
3849 return 0;
e6994aee
CW
3850}
3851
199adf40
BW
3852int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3853 struct drm_file *file)
e6994aee 3854{
fd0fe6ac 3855 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3856 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3857 struct drm_i915_gem_object *obj;
3858 enum i915_cache_level level;
3859 int ret;
3860
199adf40
BW
3861 switch (args->caching) {
3862 case I915_CACHING_NONE:
e6994aee
CW
3863 level = I915_CACHE_NONE;
3864 break;
199adf40 3865 case I915_CACHING_CACHED:
e5756c10
ID
3866 /*
3867 * Due to a HW issue on BXT A stepping, GPU stores via a
3868 * snooped mapping may leave stale data in a corresponding CPU
3869 * cacheline, whereas normally such cachelines would get
3870 * invalidated.
3871 */
e87a005d 3872 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
e5756c10
ID
3873 return -ENODEV;
3874
e6994aee
CW
3875 level = I915_CACHE_LLC;
3876 break;
4257d3ba
CW
3877 case I915_CACHING_DISPLAY:
3878 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3879 break;
e6994aee
CW
3880 default:
3881 return -EINVAL;
3882 }
3883
fd0fe6ac
ID
3884 intel_runtime_pm_get(dev_priv);
3885
3bc2913e
BW
3886 ret = i915_mutex_lock_interruptible(dev);
3887 if (ret)
fd0fe6ac 3888 goto rpm_put;
3bc2913e 3889
e6994aee
CW
3890 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3891 if (&obj->base == NULL) {
3892 ret = -ENOENT;
3893 goto unlock;
3894 }
3895
3896 ret = i915_gem_object_set_cache_level(obj, level);
3897
3898 drm_gem_object_unreference(&obj->base);
3899unlock:
3900 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3901rpm_put:
3902 intel_runtime_pm_put(dev_priv);
3903
e6994aee
CW
3904 return ret;
3905}
3906
b9241ea3 3907/*
2da3b9b9
CW
3908 * Prepare buffer for display plane (scanout, cursors, etc).
3909 * Can be called from an uninterruptible phase (modesetting) and allows
3910 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3911 */
3912int
2da3b9b9
CW
3913i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3914 u32 alignment,
e6617330 3915 const struct i915_ggtt_view *view)
b9241ea3 3916{
2da3b9b9 3917 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3918 int ret;
3919
cc98b413
CW
3920 /* Mark the pin_display early so that we account for the
3921 * display coherency whilst setting up the cache domains.
3922 */
8a0c39b1 3923 obj->pin_display++;
cc98b413 3924
a7ef0640
EA
3925 /* The display engine is not coherent with the LLC cache on gen6. As
3926 * a result, we make sure that the pinning that is about to occur is
3927 * done with uncached PTEs. This is lowest common denominator for all
3928 * chipsets.
3929 *
3930 * However for gen6+, we could do better by using the GFDT bit instead
3931 * of uncaching, which would allow us to flush all the LLC-cached data
3932 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3933 */
651d794f
CW
3934 ret = i915_gem_object_set_cache_level(obj,
3935 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3936 if (ret)
cc98b413 3937 goto err_unpin_display;
a7ef0640 3938
2da3b9b9
CW
3939 /* As the user may map the buffer once pinned in the display plane
3940 * (e.g. libkms for the bootup splash), we have to ensure that we
3941 * always use map_and_fenceable for all scanout buffers.
3942 */
50470bb0
TU
3943 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3944 view->type == I915_GGTT_VIEW_NORMAL ?
3945 PIN_MAPPABLE : 0);
2da3b9b9 3946 if (ret)
cc98b413 3947 goto err_unpin_display;
2da3b9b9 3948
e62b59e4 3949 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3950
2da3b9b9 3951 old_write_domain = obj->base.write_domain;
05394f39 3952 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3953
3954 /* It should now be out of any other write domains, and we can update
3955 * the domain values for our changes.
3956 */
e5f1d962 3957 obj->base.write_domain = 0;
05394f39 3958 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3959
3960 trace_i915_gem_object_change_domain(obj,
3961 old_read_domains,
2da3b9b9 3962 old_write_domain);
b9241ea3
ZW
3963
3964 return 0;
cc98b413
CW
3965
3966err_unpin_display:
8a0c39b1 3967 obj->pin_display--;
cc98b413
CW
3968 return ret;
3969}
3970
3971void
e6617330
TU
3972i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3973 const struct i915_ggtt_view *view)
cc98b413 3974{
8a0c39b1
TU
3975 if (WARN_ON(obj->pin_display == 0))
3976 return;
3977
e6617330
TU
3978 i915_gem_object_ggtt_unpin_view(obj, view);
3979
8a0c39b1 3980 obj->pin_display--;
b9241ea3
ZW
3981}
3982
e47c68e9
EA
3983/**
3984 * Moves a single object to the CPU read, and possibly write domain.
3985 *
3986 * This function returns when the move is complete, including waiting on
3987 * flushes to occur.
3988 */
dabdfe02 3989int
919926ae 3990i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3991{
1c5d22f7 3992 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3993 int ret;
3994
8d7e3de1
CW
3995 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3996 return 0;
3997
0201f1ec 3998 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3999 if (ret)
4000 return ret;
4001
e47c68e9 4002 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4003
05394f39
CW
4004 old_write_domain = obj->base.write_domain;
4005 old_read_domains = obj->base.read_domains;
1c5d22f7 4006
e47c68e9 4007 /* Flush the CPU cache if it's still invalid. */
05394f39 4008 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4009 i915_gem_clflush_object(obj, false);
2ef7eeaa 4010
05394f39 4011 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4012 }
4013
4014 /* It should now be out of any other write domains, and we can update
4015 * the domain values for our changes.
4016 */
05394f39 4017 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4018
4019 /* If we're writing through the CPU, then the GPU read domains will
4020 * need to be invalidated at next use.
4021 */
4022 if (write) {
05394f39
CW
4023 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4024 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4025 }
2ef7eeaa 4026
1c5d22f7
CW
4027 trace_i915_gem_object_change_domain(obj,
4028 old_read_domains,
4029 old_write_domain);
4030
2ef7eeaa
EA
4031 return 0;
4032}
4033
673a394b
EA
4034/* Throttle our rendering by waiting until the ring has completed our requests
4035 * emitted over 20 msec ago.
4036 *
b962442e
EA
4037 * Note that if we were to use the current jiffies each time around the loop,
4038 * we wouldn't escape the function with any frames outstanding if the time to
4039 * render a frame was over 20ms.
4040 *
673a394b
EA
4041 * This should get us reasonable parallelism between CPU and GPU but also
4042 * relatively low latency when blocking on a particular request to finish.
4043 */
40a5f0de 4044static int
f787a5f5 4045i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4046{
f787a5f5
CW
4047 struct drm_i915_private *dev_priv = dev->dev_private;
4048 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4049 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4050 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4051 unsigned reset_counter;
f787a5f5 4052 int ret;
93533c29 4053
308887aa
DV
4054 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4055 if (ret)
4056 return ret;
4057
4058 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4059 if (ret)
4060 return ret;
e110e8d6 4061
1c25595f 4062 spin_lock(&file_priv->mm.lock);
f787a5f5 4063 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4064 if (time_after_eq(request->emitted_jiffies, recent_enough))
4065 break;
40a5f0de 4066
fcfa423c
JH
4067 /*
4068 * Note that the request might not have been submitted yet.
4069 * In which case emitted_jiffies will be zero.
4070 */
4071 if (!request->emitted_jiffies)
4072 continue;
4073
54fb2411 4074 target = request;
b962442e 4075 }
f69061be 4076 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4077 if (target)
4078 i915_gem_request_reference(target);
1c25595f 4079 spin_unlock(&file_priv->mm.lock);
40a5f0de 4080
54fb2411 4081 if (target == NULL)
f787a5f5 4082 return 0;
2bc43b5c 4083
9c654818 4084 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4085 if (ret == 0)
4086 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4087
41037f9f 4088 i915_gem_request_unreference__unlocked(target);
ff865885 4089
40a5f0de
EA
4090 return ret;
4091}
4092
d23db88c
CW
4093static bool
4094i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4095{
4096 struct drm_i915_gem_object *obj = vma->obj;
4097
4098 if (alignment &&
4099 vma->node.start & (alignment - 1))
4100 return true;
4101
4102 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4103 return true;
4104
4105 if (flags & PIN_OFFSET_BIAS &&
4106 vma->node.start < (flags & PIN_OFFSET_MASK))
4107 return true;
4108
506a8e87
CW
4109 if (flags & PIN_OFFSET_FIXED &&
4110 vma->node.start != (flags & PIN_OFFSET_MASK))
4111 return true;
4112
d23db88c
CW
4113 return false;
4114}
4115
d0710abb
CW
4116void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4117{
4118 struct drm_i915_gem_object *obj = vma->obj;
4119 bool mappable, fenceable;
4120 u32 fence_size, fence_alignment;
4121
4122 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4123 obj->base.size,
4124 obj->tiling_mode);
4125 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4126 obj->base.size,
4127 obj->tiling_mode,
4128 true);
4129
4130 fenceable = (vma->node.size == fence_size &&
4131 (vma->node.start & (fence_alignment - 1)) == 0);
4132
4133 mappable = (vma->node.start + fence_size <=
4134 to_i915(obj->base.dev)->gtt.mappable_end);
4135
4136 obj->map_and_fenceable = mappable && fenceable;
4137}
4138
ec7adb6e
JL
4139static int
4140i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4141 struct i915_address_space *vm,
4142 const struct i915_ggtt_view *ggtt_view,
4143 uint32_t alignment,
4144 uint64_t flags)
673a394b 4145{
6e7186af 4146 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4147 struct i915_vma *vma;
ef79e17c 4148 unsigned bound;
673a394b
EA
4149 int ret;
4150
6e7186af
BW
4151 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4152 return -ENODEV;
4153
bf3d149b 4154 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4155 return -EINVAL;
07fe0b12 4156
c826c449
CW
4157 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4158 return -EINVAL;
4159
ec7adb6e
JL
4160 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4161 return -EINVAL;
4162
4163 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4164 i915_gem_obj_to_vma(obj, vm);
4165
4166 if (IS_ERR(vma))
4167 return PTR_ERR(vma);
4168
07fe0b12 4169 if (vma) {
d7f46fc4
BW
4170 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4171 return -EBUSY;
4172
d23db88c 4173 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4174 WARN(vma->pin_count,
ec7adb6e 4175 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4176 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4177 " obj->map_and_fenceable=%d\n",
ec7adb6e 4178 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4179 upper_32_bits(vma->node.start),
4180 lower_32_bits(vma->node.start),
fe14d5f4 4181 alignment,
d23db88c 4182 !!(flags & PIN_MAPPABLE),
05394f39 4183 obj->map_and_fenceable);
07fe0b12 4184 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4185 if (ret)
4186 return ret;
8ea99c92
DV
4187
4188 vma = NULL;
ac0c6b5a
CW
4189 }
4190 }
4191
ef79e17c 4192 bound = vma ? vma->bound : 0;
8ea99c92 4193 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4194 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4195 flags);
262de145
DV
4196 if (IS_ERR(vma))
4197 return PTR_ERR(vma);
0875546c
DV
4198 } else {
4199 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4200 if (ret)
4201 return ret;
4202 }
74898d7e 4203
91e6711e
JL
4204 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4205 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4206 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4207 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4208 }
ef79e17c 4209
8ea99c92 4210 vma->pin_count++;
673a394b
EA
4211 return 0;
4212}
4213
ec7adb6e
JL
4214int
4215i915_gem_object_pin(struct drm_i915_gem_object *obj,
4216 struct i915_address_space *vm,
4217 uint32_t alignment,
4218 uint64_t flags)
4219{
4220 return i915_gem_object_do_pin(obj, vm,
4221 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4222 alignment, flags);
4223}
4224
4225int
4226i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4227 const struct i915_ggtt_view *view,
4228 uint32_t alignment,
4229 uint64_t flags)
4230{
4231 if (WARN_ONCE(!view, "no view specified"))
4232 return -EINVAL;
4233
4234 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4235 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4236}
4237
673a394b 4238void
e6617330
TU
4239i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4240 const struct i915_ggtt_view *view)
673a394b 4241{
e6617330 4242 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4243
d7f46fc4 4244 BUG_ON(!vma);
e6617330 4245 WARN_ON(vma->pin_count == 0);
9abc4648 4246 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4247
30154650 4248 --vma->pin_count;
673a394b
EA
4249}
4250
673a394b
EA
4251int
4252i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4253 struct drm_file *file)
673a394b
EA
4254{
4255 struct drm_i915_gem_busy *args = data;
05394f39 4256 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4257 int ret;
4258
76c1dec1 4259 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4260 if (ret)
76c1dec1 4261 return ret;
673a394b 4262
05394f39 4263 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4264 if (&obj->base == NULL) {
1d7cfea1
CW
4265 ret = -ENOENT;
4266 goto unlock;
673a394b 4267 }
d1b851fc 4268
0be555b6
CW
4269 /* Count all active objects as busy, even if they are currently not used
4270 * by the gpu. Users of this interface expect objects to eventually
4271 * become non-busy without any further actions, therefore emit any
4272 * necessary flushes here.
c4de0a5d 4273 */
30dfebf3 4274 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4275 if (ret)
4276 goto unref;
0be555b6 4277
b4716185
CW
4278 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4279 args->busy = obj->active << 16;
4280 if (obj->last_write_req)
4281 args->busy |= obj->last_write_req->ring->id;
673a394b 4282
b4716185 4283unref:
05394f39 4284 drm_gem_object_unreference(&obj->base);
1d7cfea1 4285unlock:
673a394b 4286 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4287 return ret;
673a394b
EA
4288}
4289
4290int
4291i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4292 struct drm_file *file_priv)
4293{
0206e353 4294 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4295}
4296
3ef94daa
CW
4297int
4298i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4299 struct drm_file *file_priv)
4300{
656bfa3a 4301 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4302 struct drm_i915_gem_madvise *args = data;
05394f39 4303 struct drm_i915_gem_object *obj;
76c1dec1 4304 int ret;
3ef94daa
CW
4305
4306 switch (args->madv) {
4307 case I915_MADV_DONTNEED:
4308 case I915_MADV_WILLNEED:
4309 break;
4310 default:
4311 return -EINVAL;
4312 }
4313
1d7cfea1
CW
4314 ret = i915_mutex_lock_interruptible(dev);
4315 if (ret)
4316 return ret;
4317
05394f39 4318 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4319 if (&obj->base == NULL) {
1d7cfea1
CW
4320 ret = -ENOENT;
4321 goto unlock;
3ef94daa 4322 }
3ef94daa 4323
d7f46fc4 4324 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4325 ret = -EINVAL;
4326 goto out;
3ef94daa
CW
4327 }
4328
656bfa3a
DV
4329 if (obj->pages &&
4330 obj->tiling_mode != I915_TILING_NONE &&
4331 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4332 if (obj->madv == I915_MADV_WILLNEED)
4333 i915_gem_object_unpin_pages(obj);
4334 if (args->madv == I915_MADV_WILLNEED)
4335 i915_gem_object_pin_pages(obj);
4336 }
4337
05394f39
CW
4338 if (obj->madv != __I915_MADV_PURGED)
4339 obj->madv = args->madv;
3ef94daa 4340
6c085a72 4341 /* if the object is no longer attached, discard its backing storage */
be6a0376 4342 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4343 i915_gem_object_truncate(obj);
4344
05394f39 4345 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4346
1d7cfea1 4347out:
05394f39 4348 drm_gem_object_unreference(&obj->base);
1d7cfea1 4349unlock:
3ef94daa 4350 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4351 return ret;
3ef94daa
CW
4352}
4353
37e680a1
CW
4354void i915_gem_object_init(struct drm_i915_gem_object *obj,
4355 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4356{
b4716185
CW
4357 int i;
4358
35c20a60 4359 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4360 for (i = 0; i < I915_NUM_RINGS; i++)
4361 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4362 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4363 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4364 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4365
37e680a1
CW
4366 obj->ops = ops;
4367
0327d6ba
CW
4368 obj->fence_reg = I915_FENCE_REG_NONE;
4369 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4370
4371 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4372}
4373
37e680a1
CW
4374static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4375 .get_pages = i915_gem_object_get_pages_gtt,
4376 .put_pages = i915_gem_object_put_pages_gtt,
4377};
4378
05394f39
CW
4379struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4380 size_t size)
ac52bc56 4381{
c397b908 4382 struct drm_i915_gem_object *obj;
5949eac4 4383 struct address_space *mapping;
1a240d4d 4384 gfp_t mask;
ac52bc56 4385
42dcedd4 4386 obj = i915_gem_object_alloc(dev);
c397b908
DV
4387 if (obj == NULL)
4388 return NULL;
673a394b 4389
c397b908 4390 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4391 i915_gem_object_free(obj);
c397b908
DV
4392 return NULL;
4393 }
673a394b 4394
bed1ea95
CW
4395 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4396 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4397 /* 965gm cannot relocate objects above 4GiB. */
4398 mask &= ~__GFP_HIGHMEM;
4399 mask |= __GFP_DMA32;
4400 }
4401
496ad9aa 4402 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4403 mapping_set_gfp_mask(mapping, mask);
5949eac4 4404
37e680a1 4405 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4406
c397b908
DV
4407 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4408 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4409
3d29b842
ED
4410 if (HAS_LLC(dev)) {
4411 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4412 * cache) for about a 10% performance improvement
4413 * compared to uncached. Graphics requests other than
4414 * display scanout are coherent with the CPU in
4415 * accessing this cache. This means in this mode we
4416 * don't need to clflush on the CPU side, and on the
4417 * GPU side we only need to flush internal caches to
4418 * get data visible to the CPU.
4419 *
4420 * However, we maintain the display planes as UC, and so
4421 * need to rebind when first used as such.
4422 */
4423 obj->cache_level = I915_CACHE_LLC;
4424 } else
4425 obj->cache_level = I915_CACHE_NONE;
4426
d861e338
DV
4427 trace_i915_gem_object_create(obj);
4428
05394f39 4429 return obj;
c397b908
DV
4430}
4431
340fbd8c
CW
4432static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4433{
4434 /* If we are the last user of the backing storage (be it shmemfs
4435 * pages or stolen etc), we know that the pages are going to be
4436 * immediately released. In this case, we can then skip copying
4437 * back the contents from the GPU.
4438 */
4439
4440 if (obj->madv != I915_MADV_WILLNEED)
4441 return false;
4442
4443 if (obj->base.filp == NULL)
4444 return true;
4445
4446 /* At first glance, this looks racy, but then again so would be
4447 * userspace racing mmap against close. However, the first external
4448 * reference to the filp can only be obtained through the
4449 * i915_gem_mmap_ioctl() which safeguards us against the user
4450 * acquiring such a reference whilst we are in the middle of
4451 * freeing the object.
4452 */
4453 return atomic_long_read(&obj->base.filp->f_count) == 1;
4454}
4455
1488fc08 4456void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4457{
1488fc08 4458 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4459 struct drm_device *dev = obj->base.dev;
3e31c6c0 4460 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4461 struct i915_vma *vma, *next;
673a394b 4462
f65c9168
PZ
4463 intel_runtime_pm_get(dev_priv);
4464
26e12f89
CW
4465 trace_i915_gem_object_destroy(obj);
4466
07fe0b12 4467 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4468 int ret;
4469
4470 vma->pin_count = 0;
4471 ret = i915_vma_unbind(vma);
07fe0b12
BW
4472 if (WARN_ON(ret == -ERESTARTSYS)) {
4473 bool was_interruptible;
1488fc08 4474
07fe0b12
BW
4475 was_interruptible = dev_priv->mm.interruptible;
4476 dev_priv->mm.interruptible = false;
1488fc08 4477
07fe0b12 4478 WARN_ON(i915_vma_unbind(vma));
1488fc08 4479
07fe0b12
BW
4480 dev_priv->mm.interruptible = was_interruptible;
4481 }
1488fc08
CW
4482 }
4483
1d64ae71
BW
4484 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4485 * before progressing. */
4486 if (obj->stolen)
4487 i915_gem_object_unpin_pages(obj);
4488
a071fa00
DV
4489 WARN_ON(obj->frontbuffer_bits);
4490
656bfa3a
DV
4491 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4492 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4493 obj->tiling_mode != I915_TILING_NONE)
4494 i915_gem_object_unpin_pages(obj);
4495
401c29f6
BW
4496 if (WARN_ON(obj->pages_pin_count))
4497 obj->pages_pin_count = 0;
340fbd8c 4498 if (discard_backing_storage(obj))
5537252b 4499 obj->madv = I915_MADV_DONTNEED;
37e680a1 4500 i915_gem_object_put_pages(obj);
d8cb5086 4501 i915_gem_object_free_mmap_offset(obj);
de151cf6 4502
9da3da66
CW
4503 BUG_ON(obj->pages);
4504
2f745ad3
CW
4505 if (obj->base.import_attach)
4506 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4507
5cc9ed4b
CW
4508 if (obj->ops->release)
4509 obj->ops->release(obj);
4510
05394f39
CW
4511 drm_gem_object_release(&obj->base);
4512 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4513
05394f39 4514 kfree(obj->bit_17);
42dcedd4 4515 i915_gem_object_free(obj);
f65c9168
PZ
4516
4517 intel_runtime_pm_put(dev_priv);
673a394b
EA
4518}
4519
ec7adb6e
JL
4520struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4521 struct i915_address_space *vm)
e656a6cb
DV
4522{
4523 struct i915_vma *vma;
ec7adb6e 4524 list_for_each_entry(vma, &obj->vma_list, vma_link) {
1b683729
TU
4525 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4526 vma->vm == vm)
e656a6cb 4527 return vma;
ec7adb6e
JL
4528 }
4529 return NULL;
4530}
4531
4532struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4533 const struct i915_ggtt_view *view)
4534{
4535 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4536 struct i915_vma *vma;
e656a6cb 4537
ec7adb6e
JL
4538 if (WARN_ONCE(!view, "no view specified"))
4539 return ERR_PTR(-EINVAL);
4540
4541 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4542 if (vma->vm == ggtt &&
4543 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4544 return vma;
e656a6cb
DV
4545 return NULL;
4546}
4547
2f633156
BW
4548void i915_gem_vma_destroy(struct i915_vma *vma)
4549{
b9d06dd9 4550 struct i915_address_space *vm = NULL;
2f633156 4551 WARN_ON(vma->node.allocated);
aaa05667
CW
4552
4553 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4554 if (!list_empty(&vma->exec_list))
4555 return;
4556
b9d06dd9 4557 vm = vma->vm;
b9d06dd9 4558
841cd773
DV
4559 if (!i915_is_ggtt(vm))
4560 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4561
8b9c2b94 4562 list_del(&vma->vma_link);
b93dab6e 4563
e20d2ab7 4564 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4565}
4566
e3efda49
CW
4567static void
4568i915_gem_stop_ringbuffers(struct drm_device *dev)
4569{
4570 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4571 struct intel_engine_cs *ring;
e3efda49
CW
4572 int i;
4573
4574 for_each_ring(ring, dev_priv, i)
a83014d3 4575 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4576}
4577
29105ccc 4578int
45c5f202 4579i915_gem_suspend(struct drm_device *dev)
29105ccc 4580{
3e31c6c0 4581 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4582 int ret = 0;
28dfe52a 4583
45c5f202 4584 mutex_lock(&dev->struct_mutex);
b2da9fe5 4585 ret = i915_gpu_idle(dev);
f7403347 4586 if (ret)
45c5f202 4587 goto err;
f7403347 4588
b2da9fe5 4589 i915_gem_retire_requests(dev);
673a394b 4590
e3efda49 4591 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4592 mutex_unlock(&dev->struct_mutex);
4593
737b1506 4594 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4595 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4596 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4597
bdcf120b
CW
4598 /* Assert that we sucessfully flushed all the work and
4599 * reset the GPU back to its idle, low power state.
4600 */
4601 WARN_ON(dev_priv->mm.busy);
4602
673a394b 4603 return 0;
45c5f202
CW
4604
4605err:
4606 mutex_unlock(&dev->struct_mutex);
4607 return ret;
673a394b
EA
4608}
4609
6909a666 4610int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4611{
6909a666 4612 struct intel_engine_cs *ring = req->ring;
c3787e2e 4613 struct drm_device *dev = ring->dev;
3e31c6c0 4614 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4615 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4616 int i, ret;
b9524a1e 4617
040d2baa 4618 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4619 return 0;
b9524a1e 4620
5fb9de1a 4621 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4622 if (ret)
4623 return ret;
b9524a1e 4624
c3787e2e
BW
4625 /*
4626 * Note: We do not worry about the concurrent register cacheline hang
4627 * here because no other code should access these registers other than
4628 * at initialization time.
4629 */
6fa1c5f1 4630 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
c3787e2e 4631 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
f92a9162 4632 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
6fa1c5f1 4633 intel_ring_emit(ring, remap_info[i]);
b9524a1e
BW
4634 }
4635
c3787e2e 4636 intel_ring_advance(ring);
b9524a1e 4637
c3787e2e 4638 return ret;
b9524a1e
BW
4639}
4640
f691e2f4
DV
4641void i915_gem_init_swizzling(struct drm_device *dev)
4642{
3e31c6c0 4643 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4644
11782b02 4645 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4646 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4647 return;
4648
4649 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4650 DISP_TILE_SURFACE_SWIZZLING);
4651
11782b02
DV
4652 if (IS_GEN5(dev))
4653 return;
4654
f691e2f4
DV
4655 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4656 if (IS_GEN6(dev))
6b26c86d 4657 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4658 else if (IS_GEN7(dev))
6b26c86d 4659 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4660 else if (IS_GEN8(dev))
4661 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4662 else
4663 BUG();
f691e2f4 4664}
e21af88d 4665
81e7f200
VS
4666static void init_unused_ring(struct drm_device *dev, u32 base)
4667{
4668 struct drm_i915_private *dev_priv = dev->dev_private;
4669
4670 I915_WRITE(RING_CTL(base), 0);
4671 I915_WRITE(RING_HEAD(base), 0);
4672 I915_WRITE(RING_TAIL(base), 0);
4673 I915_WRITE(RING_START(base), 0);
4674}
4675
4676static void init_unused_rings(struct drm_device *dev)
4677{
4678 if (IS_I830(dev)) {
4679 init_unused_ring(dev, PRB1_BASE);
4680 init_unused_ring(dev, SRB0_BASE);
4681 init_unused_ring(dev, SRB1_BASE);
4682 init_unused_ring(dev, SRB2_BASE);
4683 init_unused_ring(dev, SRB3_BASE);
4684 } else if (IS_GEN2(dev)) {
4685 init_unused_ring(dev, SRB0_BASE);
4686 init_unused_ring(dev, SRB1_BASE);
4687 } else if (IS_GEN3(dev)) {
4688 init_unused_ring(dev, PRB1_BASE);
4689 init_unused_ring(dev, PRB2_BASE);
4690 }
4691}
4692
a83014d3 4693int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4694{
4fc7c971 4695 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4696 int ret;
68f95ba9 4697
5c1143bb 4698 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4699 if (ret)
b6913e4b 4700 return ret;
68f95ba9
CW
4701
4702 if (HAS_BSD(dev)) {
5c1143bb 4703 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4704 if (ret)
4705 goto cleanup_render_ring;
d1b851fc 4706 }
68f95ba9 4707
d39398f5 4708 if (HAS_BLT(dev)) {
549f7365
CW
4709 ret = intel_init_blt_ring_buffer(dev);
4710 if (ret)
4711 goto cleanup_bsd_ring;
4712 }
4713
9a8a2213
BW
4714 if (HAS_VEBOX(dev)) {
4715 ret = intel_init_vebox_ring_buffer(dev);
4716 if (ret)
4717 goto cleanup_blt_ring;
4718 }
4719
845f74a7
ZY
4720 if (HAS_BSD2(dev)) {
4721 ret = intel_init_bsd2_ring_buffer(dev);
4722 if (ret)
4723 goto cleanup_vebox_ring;
4724 }
9a8a2213 4725
4fc7c971
BW
4726 return 0;
4727
9a8a2213
BW
4728cleanup_vebox_ring:
4729 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4730cleanup_blt_ring:
4731 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4732cleanup_bsd_ring:
4733 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4734cleanup_render_ring:
4735 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4736
4737 return ret;
4738}
4739
4740int
4741i915_gem_init_hw(struct drm_device *dev)
4742{
3e31c6c0 4743 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 4744 struct intel_engine_cs *ring;
4ad2fd88 4745 int ret, i, j;
4fc7c971
BW
4746
4747 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4748 return -EIO;
4749
5e4f5189
CW
4750 /* Double layer security blanket, see i915_gem_init() */
4751 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4752
59124506 4753 if (dev_priv->ellc_size)
05e21cc4 4754 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4755
0bf21347
VS
4756 if (IS_HASWELL(dev))
4757 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4758 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4759
88a2b2a3 4760 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4761 if (IS_IVYBRIDGE(dev)) {
4762 u32 temp = I915_READ(GEN7_MSG_CTL);
4763 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4764 I915_WRITE(GEN7_MSG_CTL, temp);
4765 } else if (INTEL_INFO(dev)->gen >= 7) {
4766 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4767 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4768 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4769 }
88a2b2a3
BW
4770 }
4771
4fc7c971
BW
4772 i915_gem_init_swizzling(dev);
4773
d5abdfda
DV
4774 /*
4775 * At least 830 can leave some of the unused rings
4776 * "active" (ie. head != tail) after resume which
4777 * will prevent c3 entry. Makes sure all unused rings
4778 * are totally idle.
4779 */
4780 init_unused_rings(dev);
4781
90638cc1
JH
4782 BUG_ON(!dev_priv->ring[RCS].default_context);
4783
4ad2fd88
JH
4784 ret = i915_ppgtt_init_hw(dev);
4785 if (ret) {
4786 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4787 goto out;
4788 }
4789
4790 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
4791 for_each_ring(ring, dev_priv, i) {
4792 ret = ring->init_hw(ring);
4793 if (ret)
5e4f5189 4794 goto out;
35a57ffb 4795 }
99433931 4796
33a732f4 4797 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4798 if (HAS_GUC_UCODE(dev)) {
4799 ret = intel_guc_ucode_load(dev);
4800 if (ret) {
9f9e539f
DV
4801 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4802 ret = -EIO;
4803 goto out;
87bcdd2e 4804 }
33a732f4
AD
4805 }
4806
e84fe803
NH
4807 /*
4808 * Increment the next seqno by 0x100 so we have a visible break
4809 * on re-initialisation
4810 */
4811 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4812 if (ret)
4813 goto out;
4814
4ad2fd88
JH
4815 /* Now it is safe to go back round and do everything else: */
4816 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
4817 struct drm_i915_gem_request *req;
4818
90638cc1
JH
4819 WARN_ON(!ring->default_context);
4820
dc4be607
JH
4821 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4822 if (ret) {
4823 i915_gem_cleanup_ringbuffer(dev);
4824 goto out;
4825 }
4826
4ad2fd88
JH
4827 if (ring->id == RCS) {
4828 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 4829 i915_gem_l3_remap(req, j);
4ad2fd88 4830 }
c3787e2e 4831
b3dd6b96 4832 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
4833 if (ret && ret != -EIO) {
4834 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 4835 i915_gem_request_cancel(req);
4ad2fd88
JH
4836 i915_gem_cleanup_ringbuffer(dev);
4837 goto out;
4838 }
82460d97 4839
b3dd6b96 4840 ret = i915_gem_context_enable(req);
90638cc1
JH
4841 if (ret && ret != -EIO) {
4842 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 4843 i915_gem_request_cancel(req);
90638cc1
JH
4844 i915_gem_cleanup_ringbuffer(dev);
4845 goto out;
4846 }
dc4be607 4847
75289874 4848 i915_add_request_no_flush(req);
b7c36d25 4849 }
e21af88d 4850
5e4f5189
CW
4851out:
4852 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4853 return ret;
8187a2b7
ZN
4854}
4855
1070a42b
CW
4856int i915_gem_init(struct drm_device *dev)
4857{
4858 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4859 int ret;
4860
127f1003
OM
4861 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4862 i915.enable_execlists);
4863
1070a42b 4864 mutex_lock(&dev->struct_mutex);
d62b4892 4865
a83014d3 4866 if (!i915.enable_execlists) {
f3dc74c0 4867 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
4868 dev_priv->gt.init_rings = i915_gem_init_rings;
4869 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4870 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 4871 } else {
f3dc74c0 4872 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
4873 dev_priv->gt.init_rings = intel_logical_rings_init;
4874 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4875 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4876 }
4877
5e4f5189
CW
4878 /* This is just a security blanket to placate dragons.
4879 * On some systems, we very sporadically observe that the first TLBs
4880 * used by the CS may be stale, despite us poking the TLB reset. If
4881 * we hold the forcewake during initialisation these problems
4882 * just magically go away.
4883 */
4884 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4885
6c5566a8 4886 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4887 if (ret)
4888 goto out_unlock;
6c5566a8 4889
d7e5008f 4890 i915_gem_init_global_gtt(dev);
d62b4892 4891
2fa48d8d 4892 ret = i915_gem_context_init(dev);
7bcc3777
JN
4893 if (ret)
4894 goto out_unlock;
2fa48d8d 4895
35a57ffb
DV
4896 ret = dev_priv->gt.init_rings(dev);
4897 if (ret)
7bcc3777 4898 goto out_unlock;
2fa48d8d 4899
1070a42b 4900 ret = i915_gem_init_hw(dev);
60990320
CW
4901 if (ret == -EIO) {
4902 /* Allow ring initialisation to fail by marking the GPU as
4903 * wedged. But we only want to do this where the GPU is angry,
4904 * for all other failure, such as an allocation failure, bail.
4905 */
4906 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4907 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4908 ret = 0;
1070a42b 4909 }
7bcc3777
JN
4910
4911out_unlock:
5e4f5189 4912 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4913 mutex_unlock(&dev->struct_mutex);
1070a42b 4914
60990320 4915 return ret;
1070a42b
CW
4916}
4917
8187a2b7
ZN
4918void
4919i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4920{
3e31c6c0 4921 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4922 struct intel_engine_cs *ring;
1ec14ad3 4923 int i;
8187a2b7 4924
b4519513 4925 for_each_ring(ring, dev_priv, i)
a83014d3 4926 dev_priv->gt.cleanup_ring(ring);
a647828a
NB
4927
4928 if (i915.enable_execlists)
4929 /*
4930 * Neither the BIOS, ourselves or any other kernel
4931 * expects the system to be in execlists mode on startup,
4932 * so we need to reset the GPU back to legacy mode.
4933 */
4934 intel_gpu_reset(dev);
8187a2b7
ZN
4935}
4936
64193406 4937static void
a4872ba6 4938init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4939{
4940 INIT_LIST_HEAD(&ring->active_list);
4941 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4942}
4943
673a394b
EA
4944void
4945i915_gem_load(struct drm_device *dev)
4946{
3e31c6c0 4947 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4948 int i;
4949
efab6d8d 4950 dev_priv->objects =
42dcedd4
CW
4951 kmem_cache_create("i915_gem_object",
4952 sizeof(struct drm_i915_gem_object), 0,
4953 SLAB_HWCACHE_ALIGN,
4954 NULL);
e20d2ab7
CW
4955 dev_priv->vmas =
4956 kmem_cache_create("i915_gem_vma",
4957 sizeof(struct i915_vma), 0,
4958 SLAB_HWCACHE_ALIGN,
4959 NULL);
efab6d8d
CW
4960 dev_priv->requests =
4961 kmem_cache_create("i915_gem_request",
4962 sizeof(struct drm_i915_gem_request), 0,
4963 SLAB_HWCACHE_ALIGN,
4964 NULL);
673a394b 4965
fc8c067e 4966 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 4967 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4968 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4969 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4970 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4971 for (i = 0; i < I915_NUM_RINGS; i++)
4972 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4973 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4974 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4975 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4976 i915_gem_retire_work_handler);
b29c19b6
CW
4977 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4978 i915_gem_idle_work_handler);
1f83fee0 4979 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4980
72bfa19c
CW
4981 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4982
666a4537 4983 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
42b5aeab
VS
4984 dev_priv->num_fence_regs = 32;
4985 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4986 dev_priv->num_fence_regs = 16;
4987 else
4988 dev_priv->num_fence_regs = 8;
4989
eb82289a
YZ
4990 if (intel_vgpu_active(dev))
4991 dev_priv->num_fence_regs =
4992 I915_READ(vgtif_reg(avail_rs.fence_num));
4993
e84fe803
NH
4994 /*
4995 * Set initial sequence number for requests.
4996 * Using this number allows the wraparound to happen early,
4997 * catching any obvious problems.
4998 */
4999 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5000 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5001
b5aa8a0f 5002 /* Initialize fence registers to zero */
19b2dbde
CW
5003 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5004 i915_gem_restore_fences(dev);
10ed13e4 5005
673a394b 5006 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5007 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5008
ce453d81
CW
5009 dev_priv->mm.interruptible = true;
5010
be6a0376 5011 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5012
5013 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5014}
71acb5eb 5015
f787a5f5 5016void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5017{
f787a5f5 5018 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5019
5020 /* Clean up our request list when the client is going away, so that
5021 * later retire_requests won't dereference our soon-to-be-gone
5022 * file_priv.
5023 */
1c25595f 5024 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5025 while (!list_empty(&file_priv->mm.request_list)) {
5026 struct drm_i915_gem_request *request;
5027
5028 request = list_first_entry(&file_priv->mm.request_list,
5029 struct drm_i915_gem_request,
5030 client_list);
5031 list_del(&request->client_list);
5032 request->file_priv = NULL;
5033 }
1c25595f 5034 spin_unlock(&file_priv->mm.lock);
b29c19b6 5035
2e1b8730 5036 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5037 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5038 list_del(&file_priv->rps.link);
8d3afd7d 5039 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5040 }
b29c19b6
CW
5041}
5042
5043int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5044{
5045 struct drm_i915_file_private *file_priv;
e422b888 5046 int ret;
b29c19b6
CW
5047
5048 DRM_DEBUG_DRIVER("\n");
5049
5050 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5051 if (!file_priv)
5052 return -ENOMEM;
5053
5054 file->driver_priv = file_priv;
5055 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5056 file_priv->file = file;
2e1b8730 5057 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5058
5059 spin_lock_init(&file_priv->mm.lock);
5060 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5061
e422b888
BW
5062 ret = i915_gem_context_open(dev, file);
5063 if (ret)
5064 kfree(file_priv);
b29c19b6 5065
e422b888 5066 return ret;
b29c19b6
CW
5067}
5068
b680c37a
DV
5069/**
5070 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5071 * @old: current GEM buffer for the frontbuffer slots
5072 * @new: new GEM buffer for the frontbuffer slots
5073 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5074 *
5075 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5076 * from @old and setting them in @new. Both @old and @new can be NULL.
5077 */
a071fa00
DV
5078void i915_gem_track_fb(struct drm_i915_gem_object *old,
5079 struct drm_i915_gem_object *new,
5080 unsigned frontbuffer_bits)
5081{
5082 if (old) {
5083 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5084 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5085 old->frontbuffer_bits &= ~frontbuffer_bits;
5086 }
5087
5088 if (new) {
5089 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5090 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5091 new->frontbuffer_bits |= frontbuffer_bits;
5092 }
5093}
5094
a70a3148 5095/* All the new VM stuff */
088e0df4
MT
5096u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5097 struct i915_address_space *vm)
a70a3148
BW
5098{
5099 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5100 struct i915_vma *vma;
5101
896ab1a5 5102 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5103
a70a3148 5104 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5105 if (i915_is_ggtt(vma->vm) &&
5106 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5107 continue;
5108 if (vma->vm == vm)
a70a3148 5109 return vma->node.start;
a70a3148 5110 }
ec7adb6e 5111
f25748ea
DV
5112 WARN(1, "%s vma for this object not found.\n",
5113 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5114 return -1;
5115}
5116
088e0df4
MT
5117u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5118 const struct i915_ggtt_view *view)
a70a3148 5119{
ec7adb6e 5120 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5121 struct i915_vma *vma;
5122
5123 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5124 if (vma->vm == ggtt &&
5125 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5126 return vma->node.start;
5127
5678ad73 5128 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5129 return -1;
5130}
5131
5132bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5133 struct i915_address_space *vm)
5134{
5135 struct i915_vma *vma;
5136
5137 list_for_each_entry(vma, &o->vma_list, vma_link) {
5138 if (i915_is_ggtt(vma->vm) &&
5139 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5140 continue;
5141 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5142 return true;
5143 }
5144
5145 return false;
5146}
5147
5148bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5149 const struct i915_ggtt_view *view)
ec7adb6e
JL
5150{
5151 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5152 struct i915_vma *vma;
5153
5154 list_for_each_entry(vma, &o->vma_list, vma_link)
5155 if (vma->vm == ggtt &&
9abc4648 5156 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5157 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5158 return true;
5159
5160 return false;
5161}
5162
5163bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5164{
5a1d5eb0 5165 struct i915_vma *vma;
a70a3148 5166
5a1d5eb0
CW
5167 list_for_each_entry(vma, &o->vma_list, vma_link)
5168 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5169 return true;
5170
5171 return false;
5172}
5173
5174unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5175 struct i915_address_space *vm)
5176{
5177 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5178 struct i915_vma *vma;
5179
896ab1a5 5180 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5181
5182 BUG_ON(list_empty(&o->vma_list));
5183
ec7adb6e
JL
5184 list_for_each_entry(vma, &o->vma_list, vma_link) {
5185 if (i915_is_ggtt(vma->vm) &&
5186 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5187 continue;
a70a3148
BW
5188 if (vma->vm == vm)
5189 return vma->node.size;
ec7adb6e 5190 }
a70a3148
BW
5191 return 0;
5192}
5193
ec7adb6e 5194bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5195{
5196 struct i915_vma *vma;
a6631ae1 5197 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5198 if (vma->pin_count > 0)
5199 return true;
a6631ae1 5200
ec7adb6e 5201 return false;
5c2abbea 5202}
ea70299d 5203
033908ae
DG
5204/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5205struct page *
5206i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5207{
5208 struct page *page;
5209
5210 /* Only default objects have per-page dirty tracking */
5211 if (WARN_ON(obj->ops != &i915_gem_object_ops))
5212 return NULL;
5213
5214 page = i915_gem_object_get_page(obj, n);
5215 set_page_dirty(page);
5216 return page;
5217}
5218
ea70299d
DG
5219/* Allocate a new GEM object and fill it with the supplied data */
5220struct drm_i915_gem_object *
5221i915_gem_object_create_from_data(struct drm_device *dev,
5222 const void *data, size_t size)
5223{
5224 struct drm_i915_gem_object *obj;
5225 struct sg_table *sg;
5226 size_t bytes;
5227 int ret;
5228
5229 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5230 if (IS_ERR_OR_NULL(obj))
5231 return obj;
5232
5233 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5234 if (ret)
5235 goto fail;
5236
5237 ret = i915_gem_object_get_pages(obj);
5238 if (ret)
5239 goto fail;
5240
5241 i915_gem_object_pin_pages(obj);
5242 sg = obj->pages;
5243 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5244 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5245 i915_gem_object_unpin_pages(obj);
5246
5247 if (WARN_ON(bytes != size)) {
5248 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5249 ret = -EFAULT;
5250 goto fail;
5251 }
5252
5253 return obj;
5254
5255fail:
5256 drm_gem_object_unreference(&obj->base);
5257 return ERR_PTR(ret);
5258}
This page took 1.804926 seconds and 5 git commands to generate.