drm/i915: vlv: clean up GTLC wake control/status register macros
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
05394f39
CW
46static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
71acb5eb 48 struct drm_i915_gem_pwrite *args,
05394f39 49 struct drm_file *file);
673a394b 50
61050808
CW
51static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
7dc19d5a
DC
57static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
58 struct shrink_control *sc);
59static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
60 struct shrink_control *sc);
d9973b43
CW
61static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 63static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
cb216aa8 64static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
31169714 65
c76ce038
CW
66static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68{
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70}
71
2c22569b
CW
72static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73{
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78}
79
61050808
CW
80static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81{
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
5d82e3e6 88 obj->fence_dirty = false;
61050808
CW
89 obj->fence_reg = I915_FENCE_REG_NONE;
90}
91
73aa808f
CW
92/* some bookkeeping */
93static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95{
c20e8355 96 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
c20e8355 99 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
100}
101
102static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104{
c20e8355 105 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
c20e8355 108 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
109}
110
21dd3734 111static int
33196ded 112i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 113{
30dbf0c0
CW
114 int ret;
115
7abb690a
DV
116#define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
1f83fee0 118 if (EXIT_COND)
30dbf0c0
CW
119 return 0;
120
0a6759c6
DV
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
1f83fee0
DV
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
0a6759c6
DV
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
30dbf0c0 133 return ret;
0a6759c6 134 }
1f83fee0 135#undef EXIT_COND
30dbf0c0 136
21dd3734 137 return 0;
30dbf0c0
CW
138}
139
54cf91dc 140int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 141{
33196ded 142 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
143 int ret;
144
33196ded 145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
23bc5982 153 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
154 return 0;
155}
30dbf0c0 156
7d1c4804 157static inline bool
05394f39 158i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 159{
9843877d 160 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
161}
162
79e53945
JB
163int
164i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 165 struct drm_file *file)
79e53945 166{
93d18799 167 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 168 struct drm_i915_gem_init *args = data;
2021746e 169
7bb6fb8d
DV
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
2021746e
CW
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
79e53945 176
f534bc0b
DV
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
79e53945 181 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
93d18799 184 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
185 mutex_unlock(&dev->struct_mutex);
186
2021746e 187 return 0;
673a394b
EA
188}
189
5a125c3c
EA
190int
191i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 192 struct drm_file *file)
5a125c3c 193{
73aa808f 194 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 195 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
5a125c3c 198
6299f992 199 pinned = 0;
73aa808f 200 mutex_lock(&dev->struct_mutex);
35c20a60 201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 202 if (i915_gem_obj_is_pinned(obj))
f343c5f6 203 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 204 mutex_unlock(&dev->struct_mutex);
5a125c3c 205
853ba5d2 206 args->aper_size = dev_priv->gtt.base.total;
0206e353 207 args->aper_available_size = args->aper_size - pinned;
6299f992 208
5a125c3c
EA
209 return 0;
210}
211
42dcedd4
CW
212void *i915_gem_object_alloc(struct drm_device *dev)
213{
214 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 215 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
216}
217
218void i915_gem_object_free(struct drm_i915_gem_object *obj)
219{
220 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221 kmem_cache_free(dev_priv->slab, obj);
222}
223
ff72145b
DA
224static int
225i915_gem_create(struct drm_file *file,
226 struct drm_device *dev,
227 uint64_t size,
228 uint32_t *handle_p)
673a394b 229{
05394f39 230 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
231 int ret;
232 u32 handle;
673a394b 233
ff72145b 234 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
235 if (size == 0)
236 return -EINVAL;
673a394b
EA
237
238 /* Allocate the new object */
ff72145b 239 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
240 if (obj == NULL)
241 return -ENOMEM;
242
05394f39 243 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 244 /* drop reference from allocate - handle holds it now */
d861e338
DV
245 drm_gem_object_unreference_unlocked(&obj->base);
246 if (ret)
247 return ret;
202f2fef 248
ff72145b 249 *handle_p = handle;
673a394b
EA
250 return 0;
251}
252
ff72145b
DA
253int
254i915_gem_dumb_create(struct drm_file *file,
255 struct drm_device *dev,
256 struct drm_mode_create_dumb *args)
257{
258 /* have to work out size/pitch and return them */
de45eaf7 259 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
260 args->size = args->pitch * args->height;
261 return i915_gem_create(file, dev,
262 args->size, &args->handle);
263}
264
ff72145b
DA
265/**
266 * Creates a new mm object and returns a handle to it.
267 */
268int
269i915_gem_create_ioctl(struct drm_device *dev, void *data,
270 struct drm_file *file)
271{
272 struct drm_i915_gem_create *args = data;
63ed2cb2 273
ff72145b
DA
274 return i915_gem_create(file, dev,
275 args->size, &args->handle);
276}
277
8461d226
DV
278static inline int
279__copy_to_user_swizzled(char __user *cpu_vaddr,
280 const char *gpu_vaddr, int gpu_offset,
281 int length)
282{
283 int ret, cpu_offset = 0;
284
285 while (length > 0) {
286 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287 int this_length = min(cacheline_end - gpu_offset, length);
288 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291 gpu_vaddr + swizzled_gpu_offset,
292 this_length);
293 if (ret)
294 return ret + length;
295
296 cpu_offset += this_length;
297 gpu_offset += this_length;
298 length -= this_length;
299 }
300
301 return 0;
302}
303
8c59967c 304static inline int
4f0c7cfb
BW
305__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306 const char __user *cpu_vaddr,
8c59967c
DV
307 int length)
308{
309 int ret, cpu_offset = 0;
310
311 while (length > 0) {
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 int this_length = min(cacheline_end - gpu_offset, length);
314 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317 cpu_vaddr + cpu_offset,
318 this_length);
319 if (ret)
320 return ret + length;
321
322 cpu_offset += this_length;
323 gpu_offset += this_length;
324 length -= this_length;
325 }
326
327 return 0;
328}
329
4c914c0c
BV
330/*
331 * Pins the specified object's pages and synchronizes the object with
332 * GPU accesses. Sets needs_clflush to non-zero if the caller should
333 * flush the object from the CPU cache.
334 */
335int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
336 int *needs_clflush)
337{
338 int ret;
339
340 *needs_clflush = 0;
341
342 if (!obj->base.filp)
343 return -EINVAL;
344
345 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
346 /* If we're not in the cpu read domain, set ourself into the gtt
347 * read domain and manually flush cachelines (if required). This
348 * optimizes for the case when the gpu will dirty the data
349 * anyway again before the next pread happens. */
350 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
351 obj->cache_level);
352 ret = i915_gem_object_wait_rendering(obj, true);
353 if (ret)
354 return ret;
355 }
356
357 ret = i915_gem_object_get_pages(obj);
358 if (ret)
359 return ret;
360
361 i915_gem_object_pin_pages(obj);
362
363 return ret;
364}
365
d174bd64
DV
366/* Per-page copy function for the shmem pread fastpath.
367 * Flushes invalid cachelines before reading the target if
368 * needs_clflush is set. */
eb01459f 369static int
d174bd64
DV
370shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
371 char __user *user_data,
372 bool page_do_bit17_swizzling, bool needs_clflush)
373{
374 char *vaddr;
375 int ret;
376
e7e58eb5 377 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
378 return -EINVAL;
379
380 vaddr = kmap_atomic(page);
381 if (needs_clflush)
382 drm_clflush_virt_range(vaddr + shmem_page_offset,
383 page_length);
384 ret = __copy_to_user_inatomic(user_data,
385 vaddr + shmem_page_offset,
386 page_length);
387 kunmap_atomic(vaddr);
388
f60d7f0c 389 return ret ? -EFAULT : 0;
d174bd64
DV
390}
391
23c18c71
DV
392static void
393shmem_clflush_swizzled_range(char *addr, unsigned long length,
394 bool swizzled)
395{
e7e58eb5 396 if (unlikely(swizzled)) {
23c18c71
DV
397 unsigned long start = (unsigned long) addr;
398 unsigned long end = (unsigned long) addr + length;
399
400 /* For swizzling simply ensure that we always flush both
401 * channels. Lame, but simple and it works. Swizzled
402 * pwrite/pread is far from a hotpath - current userspace
403 * doesn't use it at all. */
404 start = round_down(start, 128);
405 end = round_up(end, 128);
406
407 drm_clflush_virt_range((void *)start, end - start);
408 } else {
409 drm_clflush_virt_range(addr, length);
410 }
411
412}
413
d174bd64
DV
414/* Only difference to the fast-path function is that this can handle bit17
415 * and uses non-atomic copy and kmap functions. */
416static int
417shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
418 char __user *user_data,
419 bool page_do_bit17_swizzling, bool needs_clflush)
420{
421 char *vaddr;
422 int ret;
423
424 vaddr = kmap(page);
425 if (needs_clflush)
23c18c71
DV
426 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
427 page_length,
428 page_do_bit17_swizzling);
d174bd64
DV
429
430 if (page_do_bit17_swizzling)
431 ret = __copy_to_user_swizzled(user_data,
432 vaddr, shmem_page_offset,
433 page_length);
434 else
435 ret = __copy_to_user(user_data,
436 vaddr + shmem_page_offset,
437 page_length);
438 kunmap(page);
439
f60d7f0c 440 return ret ? - EFAULT : 0;
d174bd64
DV
441}
442
eb01459f 443static int
dbf7bff0
DV
444i915_gem_shmem_pread(struct drm_device *dev,
445 struct drm_i915_gem_object *obj,
446 struct drm_i915_gem_pread *args,
447 struct drm_file *file)
eb01459f 448{
8461d226 449 char __user *user_data;
eb01459f 450 ssize_t remain;
8461d226 451 loff_t offset;
eb2c0c81 452 int shmem_page_offset, page_length, ret = 0;
8461d226 453 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 454 int prefaulted = 0;
8489731c 455 int needs_clflush = 0;
67d5a50c 456 struct sg_page_iter sg_iter;
eb01459f 457
2bb4629a 458 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
459 remain = args->size;
460
8461d226 461 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 462
4c914c0c 463 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
464 if (ret)
465 return ret;
466
8461d226 467 offset = args->offset;
eb01459f 468
67d5a50c
ID
469 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
470 offset >> PAGE_SHIFT) {
2db76d7c 471 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
472
473 if (remain <= 0)
474 break;
475
eb01459f
EA
476 /* Operation in this page
477 *
eb01459f 478 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
479 * page_length = bytes to copy for this page
480 */
c8cbbb8b 481 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
482 page_length = remain;
483 if ((shmem_page_offset + page_length) > PAGE_SIZE)
484 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 485
8461d226
DV
486 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
487 (page_to_phys(page) & (1 << 17)) != 0;
488
d174bd64
DV
489 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492 if (ret == 0)
493 goto next_page;
dbf7bff0 494
dbf7bff0
DV
495 mutex_unlock(&dev->struct_mutex);
496
d330a953 497 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 498 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
499 /* Userspace is tricking us, but we've already clobbered
500 * its pages with the prefault and promised to write the
501 * data up to the first fault. Hence ignore any errors
502 * and just continue. */
503 (void)ret;
504 prefaulted = 1;
505 }
eb01459f 506
d174bd64
DV
507 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
508 user_data, page_do_bit17_swizzling,
509 needs_clflush);
eb01459f 510
dbf7bff0 511 mutex_lock(&dev->struct_mutex);
f60d7f0c 512
f60d7f0c 513 if (ret)
8461d226 514 goto out;
8461d226 515
17793c9a 516next_page:
eb01459f 517 remain -= page_length;
8461d226 518 user_data += page_length;
eb01459f
EA
519 offset += page_length;
520 }
521
4f27b75d 522out:
f60d7f0c
CW
523 i915_gem_object_unpin_pages(obj);
524
eb01459f
EA
525 return ret;
526}
527
673a394b
EA
528/**
529 * Reads data from the object referenced by handle.
530 *
531 * On error, the contents of *data are undefined.
532 */
533int
534i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 535 struct drm_file *file)
673a394b
EA
536{
537 struct drm_i915_gem_pread *args = data;
05394f39 538 struct drm_i915_gem_object *obj;
35b62a89 539 int ret = 0;
673a394b 540
51311d0a
CW
541 if (args->size == 0)
542 return 0;
543
544 if (!access_ok(VERIFY_WRITE,
2bb4629a 545 to_user_ptr(args->data_ptr),
51311d0a
CW
546 args->size))
547 return -EFAULT;
548
4f27b75d 549 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 550 if (ret)
4f27b75d 551 return ret;
673a394b 552
05394f39 553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 554 if (&obj->base == NULL) {
1d7cfea1
CW
555 ret = -ENOENT;
556 goto unlock;
4f27b75d 557 }
673a394b 558
7dcd2499 559 /* Bounds check source. */
05394f39
CW
560 if (args->offset > obj->base.size ||
561 args->size > obj->base.size - args->offset) {
ce9d419d 562 ret = -EINVAL;
35b62a89 563 goto out;
ce9d419d
CW
564 }
565
1286ff73
DV
566 /* prime objects have no backing filp to GEM pread/pwrite
567 * pages from.
568 */
569 if (!obj->base.filp) {
570 ret = -EINVAL;
571 goto out;
572 }
573
db53a302
CW
574 trace_i915_gem_object_pread(obj, args->offset, args->size);
575
dbf7bff0 576 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 577
35b62a89 578out:
05394f39 579 drm_gem_object_unreference(&obj->base);
1d7cfea1 580unlock:
4f27b75d 581 mutex_unlock(&dev->struct_mutex);
eb01459f 582 return ret;
673a394b
EA
583}
584
0839ccb8
KP
585/* This is the fast write path which cannot handle
586 * page faults in the source data
9b7530cc 587 */
0839ccb8
KP
588
589static inline int
590fast_user_write(struct io_mapping *mapping,
591 loff_t page_base, int page_offset,
592 char __user *user_data,
593 int length)
9b7530cc 594{
4f0c7cfb
BW
595 void __iomem *vaddr_atomic;
596 void *vaddr;
0839ccb8 597 unsigned long unwritten;
9b7530cc 598
3e4d3af5 599 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
600 /* We can use the cpu mem copy function because this is X86. */
601 vaddr = (void __force*)vaddr_atomic + page_offset;
602 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 603 user_data, length);
3e4d3af5 604 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 605 return unwritten;
0839ccb8
KP
606}
607
3de09aa3
EA
608/**
609 * This is the fast pwrite path, where we copy the data directly from the
610 * user into the GTT, uncached.
611 */
673a394b 612static int
05394f39
CW
613i915_gem_gtt_pwrite_fast(struct drm_device *dev,
614 struct drm_i915_gem_object *obj,
3de09aa3 615 struct drm_i915_gem_pwrite *args,
05394f39 616 struct drm_file *file)
673a394b 617{
3e31c6c0 618 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 619 ssize_t remain;
0839ccb8 620 loff_t offset, page_base;
673a394b 621 char __user *user_data;
935aaa69
DV
622 int page_offset, page_length, ret;
623
1ec9e26d 624 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
625 if (ret)
626 goto out;
627
628 ret = i915_gem_object_set_to_gtt_domain(obj, true);
629 if (ret)
630 goto out_unpin;
631
632 ret = i915_gem_object_put_fence(obj);
633 if (ret)
634 goto out_unpin;
673a394b 635
2bb4629a 636 user_data = to_user_ptr(args->data_ptr);
673a394b 637 remain = args->size;
673a394b 638
f343c5f6 639 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
640
641 while (remain > 0) {
642 /* Operation in this page
643 *
0839ccb8
KP
644 * page_base = page offset within aperture
645 * page_offset = offset within page
646 * page_length = bytes to copy for this page
673a394b 647 */
c8cbbb8b
CW
648 page_base = offset & PAGE_MASK;
649 page_offset = offset_in_page(offset);
0839ccb8
KP
650 page_length = remain;
651 if ((page_offset + remain) > PAGE_SIZE)
652 page_length = PAGE_SIZE - page_offset;
653
0839ccb8 654 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
655 * source page isn't available. Return the error and we'll
656 * retry in the slow path.
0839ccb8 657 */
5d4545ae 658 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
659 page_offset, user_data, page_length)) {
660 ret = -EFAULT;
661 goto out_unpin;
662 }
673a394b 663
0839ccb8
KP
664 remain -= page_length;
665 user_data += page_length;
666 offset += page_length;
673a394b 667 }
673a394b 668
935aaa69 669out_unpin:
d7f46fc4 670 i915_gem_object_ggtt_unpin(obj);
935aaa69 671out:
3de09aa3 672 return ret;
673a394b
EA
673}
674
d174bd64
DV
675/* Per-page copy function for the shmem pwrite fastpath.
676 * Flushes invalid cachelines before writing to the target if
677 * needs_clflush_before is set and flushes out any written cachelines after
678 * writing if needs_clflush is set. */
3043c60c 679static int
d174bd64
DV
680shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
681 char __user *user_data,
682 bool page_do_bit17_swizzling,
683 bool needs_clflush_before,
684 bool needs_clflush_after)
673a394b 685{
d174bd64 686 char *vaddr;
673a394b 687 int ret;
3de09aa3 688
e7e58eb5 689 if (unlikely(page_do_bit17_swizzling))
d174bd64 690 return -EINVAL;
3de09aa3 691
d174bd64
DV
692 vaddr = kmap_atomic(page);
693 if (needs_clflush_before)
694 drm_clflush_virt_range(vaddr + shmem_page_offset,
695 page_length);
c2831a94
CW
696 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
697 user_data, page_length);
d174bd64
DV
698 if (needs_clflush_after)
699 drm_clflush_virt_range(vaddr + shmem_page_offset,
700 page_length);
701 kunmap_atomic(vaddr);
3de09aa3 702
755d2218 703 return ret ? -EFAULT : 0;
3de09aa3
EA
704}
705
d174bd64
DV
706/* Only difference to the fast-path function is that this can handle bit17
707 * and uses non-atomic copy and kmap functions. */
3043c60c 708static int
d174bd64
DV
709shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
710 char __user *user_data,
711 bool page_do_bit17_swizzling,
712 bool needs_clflush_before,
713 bool needs_clflush_after)
673a394b 714{
d174bd64
DV
715 char *vaddr;
716 int ret;
e5281ccd 717
d174bd64 718 vaddr = kmap(page);
e7e58eb5 719 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721 page_length,
722 page_do_bit17_swizzling);
d174bd64
DV
723 if (page_do_bit17_swizzling)
724 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
725 user_data,
726 page_length);
d174bd64
DV
727 else
728 ret = __copy_from_user(vaddr + shmem_page_offset,
729 user_data,
730 page_length);
731 if (needs_clflush_after)
23c18c71
DV
732 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
733 page_length,
734 page_do_bit17_swizzling);
d174bd64 735 kunmap(page);
40123c1f 736
755d2218 737 return ret ? -EFAULT : 0;
40123c1f
EA
738}
739
40123c1f 740static int
e244a443
DV
741i915_gem_shmem_pwrite(struct drm_device *dev,
742 struct drm_i915_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file)
40123c1f 745{
40123c1f 746 ssize_t remain;
8c59967c
DV
747 loff_t offset;
748 char __user *user_data;
eb2c0c81 749 int shmem_page_offset, page_length, ret = 0;
8c59967c 750 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 751 int hit_slowpath = 0;
58642885
DV
752 int needs_clflush_after = 0;
753 int needs_clflush_before = 0;
67d5a50c 754 struct sg_page_iter sg_iter;
40123c1f 755
2bb4629a 756 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
757 remain = args->size;
758
8c59967c 759 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 760
58642885
DV
761 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
762 /* If we're not in the cpu write domain, set ourself into the gtt
763 * write domain and manually flush cachelines (if required). This
764 * optimizes for the case when the gpu will use the data
765 * right away and we therefore have to clflush anyway. */
2c22569b 766 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
767 ret = i915_gem_object_wait_rendering(obj, false);
768 if (ret)
769 return ret;
58642885 770 }
c76ce038
CW
771 /* Same trick applies to invalidate partially written cachelines read
772 * before writing. */
773 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
774 needs_clflush_before =
775 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 776
755d2218
CW
777 ret = i915_gem_object_get_pages(obj);
778 if (ret)
779 return ret;
780
781 i915_gem_object_pin_pages(obj);
782
673a394b 783 offset = args->offset;
05394f39 784 obj->dirty = 1;
673a394b 785
67d5a50c
ID
786 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
787 offset >> PAGE_SHIFT) {
2db76d7c 788 struct page *page = sg_page_iter_page(&sg_iter);
58642885 789 int partial_cacheline_write;
e5281ccd 790
9da3da66
CW
791 if (remain <= 0)
792 break;
793
40123c1f
EA
794 /* Operation in this page
795 *
40123c1f 796 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
797 * page_length = bytes to copy for this page
798 */
c8cbbb8b 799 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
800
801 page_length = remain;
802 if ((shmem_page_offset + page_length) > PAGE_SIZE)
803 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 804
58642885
DV
805 /* If we don't overwrite a cacheline completely we need to be
806 * careful to have up-to-date data by first clflushing. Don't
807 * overcomplicate things and flush the entire patch. */
808 partial_cacheline_write = needs_clflush_before &&
809 ((shmem_page_offset | page_length)
810 & (boot_cpu_data.x86_clflush_size - 1));
811
8c59967c
DV
812 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
813 (page_to_phys(page) & (1 << 17)) != 0;
814
d174bd64
DV
815 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 partial_cacheline_write,
818 needs_clflush_after);
819 if (ret == 0)
820 goto next_page;
e244a443
DV
821
822 hit_slowpath = 1;
e244a443 823 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
824 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
825 user_data, page_do_bit17_swizzling,
826 partial_cacheline_write,
827 needs_clflush_after);
40123c1f 828
e244a443 829 mutex_lock(&dev->struct_mutex);
755d2218 830
755d2218 831 if (ret)
8c59967c 832 goto out;
8c59967c 833
17793c9a 834next_page:
40123c1f 835 remain -= page_length;
8c59967c 836 user_data += page_length;
40123c1f 837 offset += page_length;
673a394b
EA
838 }
839
fbd5a26d 840out:
755d2218
CW
841 i915_gem_object_unpin_pages(obj);
842
e244a443 843 if (hit_slowpath) {
8dcf015e
DV
844 /*
845 * Fixup: Flush cpu caches in case we didn't flush the dirty
846 * cachelines in-line while writing and the object moved
847 * out of the cpu write domain while we've dropped the lock.
848 */
849 if (!needs_clflush_after &&
850 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
851 if (i915_gem_clflush_object(obj, obj->pin_display))
852 i915_gem_chipset_flush(dev);
e244a443 853 }
8c59967c 854 }
673a394b 855
58642885 856 if (needs_clflush_after)
e76e9aeb 857 i915_gem_chipset_flush(dev);
58642885 858
40123c1f 859 return ret;
673a394b
EA
860}
861
862/**
863 * Writes data to the object referenced by handle.
864 *
865 * On error, the contents of the buffer that were to be modified are undefined.
866 */
867int
868i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 869 struct drm_file *file)
673a394b
EA
870{
871 struct drm_i915_gem_pwrite *args = data;
05394f39 872 struct drm_i915_gem_object *obj;
51311d0a
CW
873 int ret;
874
875 if (args->size == 0)
876 return 0;
877
878 if (!access_ok(VERIFY_READ,
2bb4629a 879 to_user_ptr(args->data_ptr),
51311d0a
CW
880 args->size))
881 return -EFAULT;
882
d330a953 883 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
884 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
885 args->size);
886 if (ret)
887 return -EFAULT;
888 }
673a394b 889
fbd5a26d 890 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 891 if (ret)
fbd5a26d 892 return ret;
1d7cfea1 893
05394f39 894 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 895 if (&obj->base == NULL) {
1d7cfea1
CW
896 ret = -ENOENT;
897 goto unlock;
fbd5a26d 898 }
673a394b 899
7dcd2499 900 /* Bounds check destination. */
05394f39
CW
901 if (args->offset > obj->base.size ||
902 args->size > obj->base.size - args->offset) {
ce9d419d 903 ret = -EINVAL;
35b62a89 904 goto out;
ce9d419d
CW
905 }
906
1286ff73
DV
907 /* prime objects have no backing filp to GEM pread/pwrite
908 * pages from.
909 */
910 if (!obj->base.filp) {
911 ret = -EINVAL;
912 goto out;
913 }
914
db53a302
CW
915 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
916
935aaa69 917 ret = -EFAULT;
673a394b
EA
918 /* We can only do the GTT pwrite on untiled buffers, as otherwise
919 * it would end up going through the fenced access, and we'll get
920 * different detiling behavior between reading and writing.
921 * pread/pwrite currently are reading and writing from the CPU
922 * perspective, requiring manual detiling by the client.
923 */
5c0480f2 924 if (obj->phys_obj) {
fbd5a26d 925 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
926 goto out;
927 }
928
2c22569b
CW
929 if (obj->tiling_mode == I915_TILING_NONE &&
930 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
931 cpu_write_needs_clflush(obj)) {
fbd5a26d 932 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
933 /* Note that the gtt paths might fail with non-page-backed user
934 * pointers (e.g. gtt mappings when moving data between
935 * textures). Fallback to the shmem path in that case. */
fbd5a26d 936 }
673a394b 937
86a1ee26 938 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 939 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 940
35b62a89 941out:
05394f39 942 drm_gem_object_unreference(&obj->base);
1d7cfea1 943unlock:
fbd5a26d 944 mutex_unlock(&dev->struct_mutex);
673a394b
EA
945 return ret;
946}
947
b361237b 948int
33196ded 949i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
950 bool interruptible)
951{
1f83fee0 952 if (i915_reset_in_progress(error)) {
b361237b
CW
953 /* Non-interruptible callers can't handle -EAGAIN, hence return
954 * -EIO unconditionally for these. */
955 if (!interruptible)
956 return -EIO;
957
1f83fee0
DV
958 /* Recovery complete, but the reset failed ... */
959 if (i915_terminally_wedged(error))
b361237b
CW
960 return -EIO;
961
962 return -EAGAIN;
963 }
964
965 return 0;
966}
967
968/*
969 * Compare seqno against outstanding lazy request. Emit a request if they are
970 * equal.
971 */
972static int
973i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974{
975 int ret;
976
977 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979 ret = 0;
1823521d 980 if (seqno == ring->outstanding_lazy_seqno)
0025c077 981 ret = i915_add_request(ring, NULL);
b361237b
CW
982
983 return ret;
984}
985
094f9a54
CW
986static void fake_irq(unsigned long data)
987{
988 wake_up_process((struct task_struct *)data);
989}
990
991static bool missed_irq(struct drm_i915_private *dev_priv,
992 struct intel_ring_buffer *ring)
993{
994 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
995}
996
b29c19b6
CW
997static bool can_wait_boost(struct drm_i915_file_private *file_priv)
998{
999 if (file_priv == NULL)
1000 return true;
1001
1002 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1003}
1004
b361237b
CW
1005/**
1006 * __wait_seqno - wait until execution of seqno has finished
1007 * @ring: the ring expected to report seqno
1008 * @seqno: duh!
f69061be 1009 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1010 * @interruptible: do an interruptible wait (normally yes)
1011 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1012 *
f69061be
DV
1013 * Note: It is of utmost importance that the passed in seqno and reset_counter
1014 * values have been read by the caller in an smp safe manner. Where read-side
1015 * locks are involved, it is sufficient to read the reset_counter before
1016 * unlocking the lock that protects the seqno. For lockless tricks, the
1017 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1018 * inserted.
1019 *
b361237b
CW
1020 * Returns 0 if the seqno was found within the alloted time. Else returns the
1021 * errno with remaining time filled in timeout argument.
1022 */
1023static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1024 unsigned reset_counter,
b29c19b6
CW
1025 bool interruptible,
1026 struct timespec *timeout,
1027 struct drm_i915_file_private *file_priv)
b361237b 1028{
3d13ef2e 1029 struct drm_device *dev = ring->dev;
3e31c6c0 1030 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1031 const bool irq_test_in_progress =
1032 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1033 struct timespec before, now;
1034 DEFINE_WAIT(wait);
47e9766d 1035 unsigned long timeout_expire;
b361237b
CW
1036 int ret;
1037
5d584b2e 1038 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
c67a470b 1039
b361237b
CW
1040 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1041 return 0;
1042
47e9766d 1043 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1044
3d13ef2e 1045 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1046 gen6_rps_boost(dev_priv);
1047 if (file_priv)
1048 mod_delayed_work(dev_priv->wq,
1049 &file_priv->mm.idle_work,
1050 msecs_to_jiffies(100));
1051 }
1052
168c3f21 1053 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1054 return -ENODEV;
1055
094f9a54
CW
1056 /* Record current time in case interrupted by signal, or wedged */
1057 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1058 getrawmonotonic(&before);
094f9a54
CW
1059 for (;;) {
1060 struct timer_list timer;
b361237b 1061
094f9a54
CW
1062 prepare_to_wait(&ring->irq_queue, &wait,
1063 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1064
f69061be
DV
1065 /* We need to check whether any gpu reset happened in between
1066 * the caller grabbing the seqno and now ... */
094f9a54
CW
1067 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1068 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1069 * is truely gone. */
1070 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1071 if (ret == 0)
1072 ret = -EAGAIN;
1073 break;
1074 }
f69061be 1075
094f9a54
CW
1076 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1077 ret = 0;
1078 break;
1079 }
b361237b 1080
094f9a54
CW
1081 if (interruptible && signal_pending(current)) {
1082 ret = -ERESTARTSYS;
1083 break;
1084 }
1085
47e9766d 1086 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1087 ret = -ETIME;
1088 break;
1089 }
1090
1091 timer.function = NULL;
1092 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1093 unsigned long expire;
1094
094f9a54 1095 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1096 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1097 mod_timer(&timer, expire);
1098 }
1099
5035c275 1100 io_schedule();
094f9a54 1101
094f9a54
CW
1102 if (timer.function) {
1103 del_singleshot_timer_sync(&timer);
1104 destroy_timer_on_stack(&timer);
1105 }
1106 }
b361237b 1107 getrawmonotonic(&now);
094f9a54 1108 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1109
168c3f21
MK
1110 if (!irq_test_in_progress)
1111 ring->irq_put(ring);
094f9a54
CW
1112
1113 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1114
1115 if (timeout) {
1116 struct timespec sleep_time = timespec_sub(now, before);
1117 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1118 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1119 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1120 }
1121
094f9a54 1122 return ret;
b361237b
CW
1123}
1124
1125/**
1126 * Waits for a sequence number to be signaled, and cleans up the
1127 * request and object lists appropriately for that event.
1128 */
1129int
1130i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1131{
1132 struct drm_device *dev = ring->dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 bool interruptible = dev_priv->mm.interruptible;
1135 int ret;
1136
1137 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1138 BUG_ON(seqno == 0);
1139
33196ded 1140 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1141 if (ret)
1142 return ret;
1143
1144 ret = i915_gem_check_olr(ring, seqno);
1145 if (ret)
1146 return ret;
1147
f69061be
DV
1148 return __wait_seqno(ring, seqno,
1149 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1150 interruptible, NULL, NULL);
b361237b
CW
1151}
1152
d26e3af8
CW
1153static int
1154i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1155 struct intel_ring_buffer *ring)
1156{
1157 i915_gem_retire_requests_ring(ring);
1158
1159 /* Manually manage the write flush as we may have not yet
1160 * retired the buffer.
1161 *
1162 * Note that the last_write_seqno is always the earlier of
1163 * the two (read/write) seqno, so if we haved successfully waited,
1164 * we know we have passed the last write.
1165 */
1166 obj->last_write_seqno = 0;
1167 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168
1169 return 0;
1170}
1171
b361237b
CW
1172/**
1173 * Ensures that all rendering to the object has completed and the object is
1174 * safe to unbind from the GTT or access from the CPU.
1175 */
1176static __must_check int
1177i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1178 bool readonly)
1179{
1180 struct intel_ring_buffer *ring = obj->ring;
1181 u32 seqno;
1182 int ret;
1183
1184 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1185 if (seqno == 0)
1186 return 0;
1187
1188 ret = i915_wait_seqno(ring, seqno);
1189 if (ret)
1190 return ret;
1191
d26e3af8 1192 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1193}
1194
3236f57a
CW
1195/* A nonblocking variant of the above wait. This is a highly dangerous routine
1196 * as the object state may change during this call.
1197 */
1198static __must_check int
1199i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1200 struct drm_i915_file_private *file_priv,
3236f57a
CW
1201 bool readonly)
1202{
1203 struct drm_device *dev = obj->base.dev;
1204 struct drm_i915_private *dev_priv = dev->dev_private;
1205 struct intel_ring_buffer *ring = obj->ring;
f69061be 1206 unsigned reset_counter;
3236f57a
CW
1207 u32 seqno;
1208 int ret;
1209
1210 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1211 BUG_ON(!dev_priv->mm.interruptible);
1212
1213 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1214 if (seqno == 0)
1215 return 0;
1216
33196ded 1217 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1218 if (ret)
1219 return ret;
1220
1221 ret = i915_gem_check_olr(ring, seqno);
1222 if (ret)
1223 return ret;
1224
f69061be 1225 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1226 mutex_unlock(&dev->struct_mutex);
6e4930f6 1227 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1228 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1229 if (ret)
1230 return ret;
3236f57a 1231
d26e3af8 1232 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1233}
1234
673a394b 1235/**
2ef7eeaa
EA
1236 * Called when user space prepares to use an object with the CPU, either
1237 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1238 */
1239int
1240i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1241 struct drm_file *file)
673a394b
EA
1242{
1243 struct drm_i915_gem_set_domain *args = data;
05394f39 1244 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1245 uint32_t read_domains = args->read_domains;
1246 uint32_t write_domain = args->write_domain;
673a394b
EA
1247 int ret;
1248
2ef7eeaa 1249 /* Only handle setting domains to types used by the CPU. */
21d509e3 1250 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1251 return -EINVAL;
1252
21d509e3 1253 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1254 return -EINVAL;
1255
1256 /* Having something in the write domain implies it's in the read
1257 * domain, and only that read domain. Enforce that in the request.
1258 */
1259 if (write_domain != 0 && read_domains != write_domain)
1260 return -EINVAL;
1261
76c1dec1 1262 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1263 if (ret)
76c1dec1 1264 return ret;
1d7cfea1 1265
05394f39 1266 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1267 if (&obj->base == NULL) {
1d7cfea1
CW
1268 ret = -ENOENT;
1269 goto unlock;
76c1dec1 1270 }
673a394b 1271
3236f57a
CW
1272 /* Try to flush the object off the GPU without holding the lock.
1273 * We will repeat the flush holding the lock in the normal manner
1274 * to catch cases where we are gazumped.
1275 */
6e4930f6
CW
1276 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1277 file->driver_priv,
1278 !write_domain);
3236f57a
CW
1279 if (ret)
1280 goto unref;
1281
2ef7eeaa
EA
1282 if (read_domains & I915_GEM_DOMAIN_GTT) {
1283 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1284
1285 /* Silently promote "you're not bound, there was nothing to do"
1286 * to success, since the client was just asking us to
1287 * make sure everything was done.
1288 */
1289 if (ret == -EINVAL)
1290 ret = 0;
2ef7eeaa 1291 } else {
e47c68e9 1292 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1293 }
1294
3236f57a 1295unref:
05394f39 1296 drm_gem_object_unreference(&obj->base);
1d7cfea1 1297unlock:
673a394b
EA
1298 mutex_unlock(&dev->struct_mutex);
1299 return ret;
1300}
1301
1302/**
1303 * Called when user space has done writes to this buffer
1304 */
1305int
1306i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1307 struct drm_file *file)
673a394b
EA
1308{
1309 struct drm_i915_gem_sw_finish *args = data;
05394f39 1310 struct drm_i915_gem_object *obj;
673a394b
EA
1311 int ret = 0;
1312
76c1dec1 1313 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1314 if (ret)
76c1dec1 1315 return ret;
1d7cfea1 1316
05394f39 1317 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1318 if (&obj->base == NULL) {
1d7cfea1
CW
1319 ret = -ENOENT;
1320 goto unlock;
673a394b
EA
1321 }
1322
673a394b 1323 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1324 if (obj->pin_display)
1325 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1326
05394f39 1327 drm_gem_object_unreference(&obj->base);
1d7cfea1 1328unlock:
673a394b
EA
1329 mutex_unlock(&dev->struct_mutex);
1330 return ret;
1331}
1332
1333/**
1334 * Maps the contents of an object, returning the address it is mapped
1335 * into.
1336 *
1337 * While the mapping holds a reference on the contents of the object, it doesn't
1338 * imply a ref on the object itself.
1339 */
1340int
1341i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1342 struct drm_file *file)
673a394b
EA
1343{
1344 struct drm_i915_gem_mmap *args = data;
1345 struct drm_gem_object *obj;
673a394b
EA
1346 unsigned long addr;
1347
05394f39 1348 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1349 if (obj == NULL)
bf79cb91 1350 return -ENOENT;
673a394b 1351
1286ff73
DV
1352 /* prime objects have no backing filp to GEM mmap
1353 * pages from.
1354 */
1355 if (!obj->filp) {
1356 drm_gem_object_unreference_unlocked(obj);
1357 return -EINVAL;
1358 }
1359
6be5ceb0 1360 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1361 PROT_READ | PROT_WRITE, MAP_SHARED,
1362 args->offset);
bc9025bd 1363 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1364 if (IS_ERR((void *)addr))
1365 return addr;
1366
1367 args->addr_ptr = (uint64_t) addr;
1368
1369 return 0;
1370}
1371
de151cf6
JB
1372/**
1373 * i915_gem_fault - fault a page into the GTT
1374 * vma: VMA in question
1375 * vmf: fault info
1376 *
1377 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1378 * from userspace. The fault handler takes care of binding the object to
1379 * the GTT (if needed), allocating and programming a fence register (again,
1380 * only if needed based on whether the old reg is still valid or the object
1381 * is tiled) and inserting a new PTE into the faulting process.
1382 *
1383 * Note that the faulting process may involve evicting existing objects
1384 * from the GTT and/or fence registers to make room. So performance may
1385 * suffer if the GTT working set is large or there are few fence registers
1386 * left.
1387 */
1388int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1389{
05394f39
CW
1390 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1391 struct drm_device *dev = obj->base.dev;
3e31c6c0 1392 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1393 pgoff_t page_offset;
1394 unsigned long pfn;
1395 int ret = 0;
0f973f27 1396 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1397
f65c9168
PZ
1398 intel_runtime_pm_get(dev_priv);
1399
de151cf6
JB
1400 /* We don't use vmf->pgoff since that has the fake offset */
1401 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1402 PAGE_SHIFT;
1403
d9bc7e9f
CW
1404 ret = i915_mutex_lock_interruptible(dev);
1405 if (ret)
1406 goto out;
a00b10c3 1407
db53a302
CW
1408 trace_i915_gem_object_fault(obj, page_offset, true, write);
1409
6e4930f6
CW
1410 /* Try to flush the object off the GPU first without holding the lock.
1411 * Upon reacquiring the lock, we will perform our sanity checks and then
1412 * repeat the flush holding the lock in the normal manner to catch cases
1413 * where we are gazumped.
1414 */
1415 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1416 if (ret)
1417 goto unlock;
1418
eb119bd6
CW
1419 /* Access to snoopable pages through the GTT is incoherent. */
1420 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1421 ret = -EINVAL;
1422 goto unlock;
1423 }
1424
d9bc7e9f 1425 /* Now bind it into the GTT if needed */
1ec9e26d 1426 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1427 if (ret)
1428 goto unlock;
4a684a41 1429
c9839303
CW
1430 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1431 if (ret)
1432 goto unpin;
74898d7e 1433
06d98131 1434 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1435 if (ret)
c9839303 1436 goto unpin;
7d1c4804 1437
6299f992
CW
1438 obj->fault_mappable = true;
1439
f343c5f6
BW
1440 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1441 pfn >>= PAGE_SHIFT;
1442 pfn += page_offset;
de151cf6
JB
1443
1444 /* Finally, remap it using the new GTT offset */
1445 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1446unpin:
d7f46fc4 1447 i915_gem_object_ggtt_unpin(obj);
c715089f 1448unlock:
de151cf6 1449 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1450out:
de151cf6 1451 switch (ret) {
d9bc7e9f 1452 case -EIO:
a9340cca
DV
1453 /* If this -EIO is due to a gpu hang, give the reset code a
1454 * chance to clean up the mess. Otherwise return the proper
1455 * SIGBUS. */
f65c9168
PZ
1456 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1457 ret = VM_FAULT_SIGBUS;
1458 break;
1459 }
045e769a 1460 case -EAGAIN:
571c608d
DV
1461 /*
1462 * EAGAIN means the gpu is hung and we'll wait for the error
1463 * handler to reset everything when re-faulting in
1464 * i915_mutex_lock_interruptible.
d9bc7e9f 1465 */
c715089f
CW
1466 case 0:
1467 case -ERESTARTSYS:
bed636ab 1468 case -EINTR:
e79e0fe3
DR
1469 case -EBUSY:
1470 /*
1471 * EBUSY is ok: this just means that another thread
1472 * already did the job.
1473 */
f65c9168
PZ
1474 ret = VM_FAULT_NOPAGE;
1475 break;
de151cf6 1476 case -ENOMEM:
f65c9168
PZ
1477 ret = VM_FAULT_OOM;
1478 break;
a7c2e1aa 1479 case -ENOSPC:
45d67817 1480 case -EFAULT:
f65c9168
PZ
1481 ret = VM_FAULT_SIGBUS;
1482 break;
de151cf6 1483 default:
a7c2e1aa 1484 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1485 ret = VM_FAULT_SIGBUS;
1486 break;
de151cf6 1487 }
f65c9168
PZ
1488
1489 intel_runtime_pm_put(dev_priv);
1490 return ret;
de151cf6
JB
1491}
1492
48018a57
PZ
1493void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1494{
1495 struct i915_vma *vma;
1496
1497 /*
1498 * Only the global gtt is relevant for gtt memory mappings, so restrict
1499 * list traversal to objects bound into the global address space. Note
1500 * that the active list should be empty, but better safe than sorry.
1501 */
1502 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1503 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1504 i915_gem_release_mmap(vma->obj);
1505 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1506 i915_gem_release_mmap(vma->obj);
1507}
1508
901782b2
CW
1509/**
1510 * i915_gem_release_mmap - remove physical page mappings
1511 * @obj: obj in question
1512 *
af901ca1 1513 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1514 * relinquish ownership of the pages back to the system.
1515 *
1516 * It is vital that we remove the page mapping if we have mapped a tiled
1517 * object through the GTT and then lose the fence register due to
1518 * resource pressure. Similarly if the object has been moved out of the
1519 * aperture, than pages mapped into userspace must be revoked. Removing the
1520 * mapping will then trigger a page fault on the next user access, allowing
1521 * fixup by i915_gem_fault().
1522 */
d05ca301 1523void
05394f39 1524i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1525{
6299f992
CW
1526 if (!obj->fault_mappable)
1527 return;
901782b2 1528
6796cb16
DH
1529 drm_vma_node_unmap(&obj->base.vma_node,
1530 obj->base.dev->anon_inode->i_mapping);
6299f992 1531 obj->fault_mappable = false;
901782b2
CW
1532}
1533
0fa87796 1534uint32_t
e28f8711 1535i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1536{
e28f8711 1537 uint32_t gtt_size;
92b88aeb
CW
1538
1539 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1540 tiling_mode == I915_TILING_NONE)
1541 return size;
92b88aeb
CW
1542
1543 /* Previous chips need a power-of-two fence region when tiling */
1544 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1545 gtt_size = 1024*1024;
92b88aeb 1546 else
e28f8711 1547 gtt_size = 512*1024;
92b88aeb 1548
e28f8711
CW
1549 while (gtt_size < size)
1550 gtt_size <<= 1;
92b88aeb 1551
e28f8711 1552 return gtt_size;
92b88aeb
CW
1553}
1554
de151cf6
JB
1555/**
1556 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1557 * @obj: object to check
1558 *
1559 * Return the required GTT alignment for an object, taking into account
5e783301 1560 * potential fence register mapping.
de151cf6 1561 */
d865110c
ID
1562uint32_t
1563i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1564 int tiling_mode, bool fenced)
de151cf6 1565{
de151cf6
JB
1566 /*
1567 * Minimum alignment is 4k (GTT page size), but might be greater
1568 * if a fence register is needed for the object.
1569 */
d865110c 1570 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1571 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1572 return 4096;
1573
a00b10c3
CW
1574 /*
1575 * Previous chips need to be aligned to the size of the smallest
1576 * fence register that can contain the object.
1577 */
e28f8711 1578 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1579}
1580
d8cb5086
CW
1581static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1582{
1583 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1584 int ret;
1585
0de23977 1586 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1587 return 0;
1588
da494d7c
DV
1589 dev_priv->mm.shrinker_no_lock_stealing = true;
1590
d8cb5086
CW
1591 ret = drm_gem_create_mmap_offset(&obj->base);
1592 if (ret != -ENOSPC)
da494d7c 1593 goto out;
d8cb5086
CW
1594
1595 /* Badly fragmented mmap space? The only way we can recover
1596 * space is by destroying unwanted objects. We can't randomly release
1597 * mmap_offsets as userspace expects them to be persistent for the
1598 * lifetime of the objects. The closest we can is to release the
1599 * offsets on purgeable objects by truncating it and marking it purged,
1600 * which prevents userspace from ever using that object again.
1601 */
1602 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1603 ret = drm_gem_create_mmap_offset(&obj->base);
1604 if (ret != -ENOSPC)
da494d7c 1605 goto out;
d8cb5086
CW
1606
1607 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1608 ret = drm_gem_create_mmap_offset(&obj->base);
1609out:
1610 dev_priv->mm.shrinker_no_lock_stealing = false;
1611
1612 return ret;
d8cb5086
CW
1613}
1614
1615static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1616{
d8cb5086
CW
1617 drm_gem_free_mmap_offset(&obj->base);
1618}
1619
de151cf6 1620int
ff72145b
DA
1621i915_gem_mmap_gtt(struct drm_file *file,
1622 struct drm_device *dev,
1623 uint32_t handle,
1624 uint64_t *offset)
de151cf6 1625{
da761a6e 1626 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1627 struct drm_i915_gem_object *obj;
de151cf6
JB
1628 int ret;
1629
76c1dec1 1630 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1631 if (ret)
76c1dec1 1632 return ret;
de151cf6 1633
ff72145b 1634 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1635 if (&obj->base == NULL) {
1d7cfea1
CW
1636 ret = -ENOENT;
1637 goto unlock;
1638 }
de151cf6 1639
5d4545ae 1640 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1641 ret = -E2BIG;
ff56b0bc 1642 goto out;
da761a6e
CW
1643 }
1644
05394f39 1645 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1646 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1647 ret = -EFAULT;
1d7cfea1 1648 goto out;
ab18282d
CW
1649 }
1650
d8cb5086
CW
1651 ret = i915_gem_object_create_mmap_offset(obj);
1652 if (ret)
1653 goto out;
de151cf6 1654
0de23977 1655 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1656
1d7cfea1 1657out:
05394f39 1658 drm_gem_object_unreference(&obj->base);
1d7cfea1 1659unlock:
de151cf6 1660 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1661 return ret;
de151cf6
JB
1662}
1663
ff72145b
DA
1664/**
1665 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1666 * @dev: DRM device
1667 * @data: GTT mapping ioctl data
1668 * @file: GEM object info
1669 *
1670 * Simply returns the fake offset to userspace so it can mmap it.
1671 * The mmap call will end up in drm_gem_mmap(), which will set things
1672 * up so we can get faults in the handler above.
1673 *
1674 * The fault handler will take care of binding the object into the GTT
1675 * (since it may have been evicted to make room for something), allocating
1676 * a fence register, and mapping the appropriate aperture address into
1677 * userspace.
1678 */
1679int
1680i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1681 struct drm_file *file)
1682{
1683 struct drm_i915_gem_mmap_gtt *args = data;
1684
ff72145b
DA
1685 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1686}
1687
225067ee
DV
1688/* Immediately discard the backing storage */
1689static void
1690i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1691{
e5281ccd 1692 struct inode *inode;
e5281ccd 1693
4d6294bf 1694 i915_gem_object_free_mmap_offset(obj);
1286ff73 1695
4d6294bf
CW
1696 if (obj->base.filp == NULL)
1697 return;
e5281ccd 1698
225067ee
DV
1699 /* Our goal here is to return as much of the memory as
1700 * is possible back to the system as we are called from OOM.
1701 * To do this we must instruct the shmfs to drop all of its
1702 * backing pages, *now*.
1703 */
496ad9aa 1704 inode = file_inode(obj->base.filp);
225067ee 1705 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1706
225067ee
DV
1707 obj->madv = __I915_MADV_PURGED;
1708}
e5281ccd 1709
225067ee
DV
1710static inline int
1711i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1712{
1713 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1714}
1715
5cdf5881 1716static void
05394f39 1717i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1718{
90797e6d
ID
1719 struct sg_page_iter sg_iter;
1720 int ret;
1286ff73 1721
05394f39 1722 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1723
6c085a72
CW
1724 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1725 if (ret) {
1726 /* In the event of a disaster, abandon all caches and
1727 * hope for the best.
1728 */
1729 WARN_ON(ret != -EIO);
2c22569b 1730 i915_gem_clflush_object(obj, true);
6c085a72
CW
1731 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1732 }
1733
6dacfd2f 1734 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1735 i915_gem_object_save_bit_17_swizzle(obj);
1736
05394f39
CW
1737 if (obj->madv == I915_MADV_DONTNEED)
1738 obj->dirty = 0;
3ef94daa 1739
90797e6d 1740 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1741 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1742
05394f39 1743 if (obj->dirty)
9da3da66 1744 set_page_dirty(page);
3ef94daa 1745
05394f39 1746 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1747 mark_page_accessed(page);
3ef94daa 1748
9da3da66 1749 page_cache_release(page);
3ef94daa 1750 }
05394f39 1751 obj->dirty = 0;
673a394b 1752
9da3da66
CW
1753 sg_free_table(obj->pages);
1754 kfree(obj->pages);
37e680a1 1755}
6c085a72 1756
dd624afd 1757int
37e680a1
CW
1758i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1759{
1760 const struct drm_i915_gem_object_ops *ops = obj->ops;
1761
2f745ad3 1762 if (obj->pages == NULL)
37e680a1
CW
1763 return 0;
1764
a5570178
CW
1765 if (obj->pages_pin_count)
1766 return -EBUSY;
1767
9843877d 1768 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1769
a2165e31
CW
1770 /* ->put_pages might need to allocate memory for the bit17 swizzle
1771 * array, hence protect them from being reaped by removing them from gtt
1772 * lists early. */
35c20a60 1773 list_del(&obj->global_list);
a2165e31 1774
37e680a1 1775 ops->put_pages(obj);
05394f39 1776 obj->pages = NULL;
37e680a1 1777
6c085a72
CW
1778 if (i915_gem_object_is_purgeable(obj))
1779 i915_gem_object_truncate(obj);
1780
1781 return 0;
1782}
1783
d9973b43 1784static unsigned long
93927ca5
DV
1785__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1786 bool purgeable_only)
6c085a72 1787{
57094f82 1788 struct list_head still_bound_list;
6c085a72 1789 struct drm_i915_gem_object *obj, *next;
d9973b43 1790 unsigned long count = 0;
6c085a72
CW
1791
1792 list_for_each_entry_safe(obj, next,
1793 &dev_priv->mm.unbound_list,
35c20a60 1794 global_list) {
93927ca5 1795 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1796 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1797 count += obj->base.size >> PAGE_SHIFT;
1798 if (count >= target)
1799 return count;
1800 }
1801 }
1802
57094f82
CW
1803 /*
1804 * As we may completely rewrite the bound list whilst unbinding
1805 * (due to retiring requests) we have to strictly process only
1806 * one element of the list at the time, and recheck the list
1807 * on every iteration.
1808 */
1809 INIT_LIST_HEAD(&still_bound_list);
1810 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1811 struct i915_vma *vma, *v;
80dcfdbd 1812
57094f82
CW
1813 obj = list_first_entry(&dev_priv->mm.bound_list,
1814 typeof(*obj), global_list);
1815 list_move_tail(&obj->global_list, &still_bound_list);
1816
80dcfdbd
BW
1817 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1818 continue;
1819
57094f82
CW
1820 /*
1821 * Hold a reference whilst we unbind this object, as we may
1822 * end up waiting for and retiring requests. This might
1823 * release the final reference (held by the active list)
1824 * and result in the object being freed from under us.
1825 * in this object being freed.
1826 *
1827 * Note 1: Shrinking the bound list is special since only active
1828 * (and hence bound objects) can contain such limbo objects, so
1829 * we don't need special tricks for shrinking the unbound list.
1830 * The only other place where we have to be careful with active
1831 * objects suddenly disappearing due to retiring requests is the
1832 * eviction code.
1833 *
1834 * Note 2: Even though the bound list doesn't hold a reference
1835 * to the object we can safely grab one here: The final object
1836 * unreferencing and the bound_list are both protected by the
1837 * dev->struct_mutex and so we won't ever be able to observe an
1838 * object on the bound_list with a reference count equals 0.
1839 */
1840 drm_gem_object_reference(&obj->base);
1841
07fe0b12
BW
1842 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1843 if (i915_vma_unbind(vma))
1844 break;
80dcfdbd 1845
57094f82 1846 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1847 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1848
1849 drm_gem_object_unreference(&obj->base);
6c085a72 1850 }
57094f82 1851 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1852
1853 return count;
1854}
1855
d9973b43 1856static unsigned long
93927ca5
DV
1857i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1858{
1859 return __i915_gem_shrink(dev_priv, target, true);
1860}
1861
d9973b43 1862static unsigned long
6c085a72
CW
1863i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1864{
1865 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1866 long freed = 0;
6c085a72
CW
1867
1868 i915_gem_evict_everything(dev_priv->dev);
1869
35c20a60 1870 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a 1871 global_list) {
d9973b43 1872 if (i915_gem_object_put_pages(obj) == 0)
7dc19d5a 1873 freed += obj->base.size >> PAGE_SHIFT;
7dc19d5a
DC
1874 }
1875 return freed;
225067ee
DV
1876}
1877
37e680a1 1878static int
6c085a72 1879i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1880{
6c085a72 1881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1882 int page_count, i;
1883 struct address_space *mapping;
9da3da66
CW
1884 struct sg_table *st;
1885 struct scatterlist *sg;
90797e6d 1886 struct sg_page_iter sg_iter;
e5281ccd 1887 struct page *page;
90797e6d 1888 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1889 gfp_t gfp;
e5281ccd 1890
6c085a72
CW
1891 /* Assert that the object is not currently in any GPU domain. As it
1892 * wasn't in the GTT, there shouldn't be any way it could have been in
1893 * a GPU cache
1894 */
1895 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1896 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1897
9da3da66
CW
1898 st = kmalloc(sizeof(*st), GFP_KERNEL);
1899 if (st == NULL)
1900 return -ENOMEM;
1901
05394f39 1902 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1903 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1904 kfree(st);
e5281ccd 1905 return -ENOMEM;
9da3da66 1906 }
e5281ccd 1907
9da3da66
CW
1908 /* Get the list of pages out of our struct file. They'll be pinned
1909 * at this point until we release them.
1910 *
1911 * Fail silently without starting the shrinker
1912 */
496ad9aa 1913 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1914 gfp = mapping_gfp_mask(mapping);
caf49191 1915 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1916 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1917 sg = st->sgl;
1918 st->nents = 0;
1919 for (i = 0; i < page_count; i++) {
6c085a72
CW
1920 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1921 if (IS_ERR(page)) {
1922 i915_gem_purge(dev_priv, page_count);
1923 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1924 }
1925 if (IS_ERR(page)) {
1926 /* We've tried hard to allocate the memory by reaping
1927 * our own buffer, now let the real VM do its job and
1928 * go down in flames if truly OOM.
1929 */
caf49191 1930 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1931 gfp |= __GFP_IO | __GFP_WAIT;
1932
1933 i915_gem_shrink_all(dev_priv);
1934 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1935 if (IS_ERR(page))
1936 goto err_pages;
1937
caf49191 1938 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1939 gfp &= ~(__GFP_IO | __GFP_WAIT);
1940 }
426729dc
KRW
1941#ifdef CONFIG_SWIOTLB
1942 if (swiotlb_nr_tbl()) {
1943 st->nents++;
1944 sg_set_page(sg, page, PAGE_SIZE, 0);
1945 sg = sg_next(sg);
1946 continue;
1947 }
1948#endif
90797e6d
ID
1949 if (!i || page_to_pfn(page) != last_pfn + 1) {
1950 if (i)
1951 sg = sg_next(sg);
1952 st->nents++;
1953 sg_set_page(sg, page, PAGE_SIZE, 0);
1954 } else {
1955 sg->length += PAGE_SIZE;
1956 }
1957 last_pfn = page_to_pfn(page);
3bbbe706
DV
1958
1959 /* Check that the i965g/gm workaround works. */
1960 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1961 }
426729dc
KRW
1962#ifdef CONFIG_SWIOTLB
1963 if (!swiotlb_nr_tbl())
1964#endif
1965 sg_mark_end(sg);
74ce6b6c
CW
1966 obj->pages = st;
1967
6dacfd2f 1968 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1969 i915_gem_object_do_bit_17_swizzle(obj);
1970
1971 return 0;
1972
1973err_pages:
90797e6d
ID
1974 sg_mark_end(sg);
1975 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1976 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1977 sg_free_table(st);
1978 kfree(st);
e5281ccd 1979 return PTR_ERR(page);
673a394b
EA
1980}
1981
37e680a1
CW
1982/* Ensure that the associated pages are gathered from the backing storage
1983 * and pinned into our object. i915_gem_object_get_pages() may be called
1984 * multiple times before they are released by a single call to
1985 * i915_gem_object_put_pages() - once the pages are no longer referenced
1986 * either as a result of memory pressure (reaping pages under the shrinker)
1987 * or as the object is itself released.
1988 */
1989int
1990i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1991{
1992 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1993 const struct drm_i915_gem_object_ops *ops = obj->ops;
1994 int ret;
1995
2f745ad3 1996 if (obj->pages)
37e680a1
CW
1997 return 0;
1998
43e28f09 1999 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2000 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2001 return -EFAULT;
43e28f09
CW
2002 }
2003
a5570178
CW
2004 BUG_ON(obj->pages_pin_count);
2005
37e680a1
CW
2006 ret = ops->get_pages(obj);
2007 if (ret)
2008 return ret;
2009
35c20a60 2010 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2011 return 0;
673a394b
EA
2012}
2013
e2d05a8b 2014static void
05394f39 2015i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 2016 struct intel_ring_buffer *ring)
673a394b 2017{
05394f39 2018 struct drm_device *dev = obj->base.dev;
69dc4987 2019 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2020 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2021
852835f3 2022 BUG_ON(ring == NULL);
02978ff5
CW
2023 if (obj->ring != ring && obj->last_write_seqno) {
2024 /* Keep the seqno relative to the current ring */
2025 obj->last_write_seqno = seqno;
2026 }
05394f39 2027 obj->ring = ring;
673a394b
EA
2028
2029 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2030 if (!obj->active) {
2031 drm_gem_object_reference(&obj->base);
2032 obj->active = 1;
673a394b 2033 }
e35a41de 2034
05394f39 2035 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2036
0201f1ec 2037 obj->last_read_seqno = seqno;
caea7476 2038
7dd49065 2039 if (obj->fenced_gpu_access) {
caea7476 2040 obj->last_fenced_seqno = seqno;
caea7476 2041
7dd49065
CW
2042 /* Bump MRU to take account of the delayed flush */
2043 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2044 struct drm_i915_fence_reg *reg;
2045
2046 reg = &dev_priv->fence_regs[obj->fence_reg];
2047 list_move_tail(&reg->lru_list,
2048 &dev_priv->mm.fence_list);
2049 }
caea7476
CW
2050 }
2051}
2052
e2d05a8b
BW
2053void i915_vma_move_to_active(struct i915_vma *vma,
2054 struct intel_ring_buffer *ring)
2055{
2056 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2057 return i915_gem_object_move_to_active(vma->obj, ring);
2058}
2059
caea7476 2060static void
caea7476 2061i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2062{
ca191b13 2063 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2064 struct i915_address_space *vm;
2065 struct i915_vma *vma;
ce44b0ea 2066
65ce3027 2067 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2068 BUG_ON(!obj->active);
caea7476 2069
feb822cf
BW
2070 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2071 vma = i915_gem_obj_to_vma(obj, vm);
2072 if (vma && !list_empty(&vma->mm_list))
2073 list_move_tail(&vma->mm_list, &vm->inactive_list);
2074 }
caea7476 2075
65ce3027 2076 list_del_init(&obj->ring_list);
caea7476
CW
2077 obj->ring = NULL;
2078
65ce3027
CW
2079 obj->last_read_seqno = 0;
2080 obj->last_write_seqno = 0;
2081 obj->base.write_domain = 0;
2082
2083 obj->last_fenced_seqno = 0;
caea7476 2084 obj->fenced_gpu_access = false;
caea7476
CW
2085
2086 obj->active = 0;
2087 drm_gem_object_unreference(&obj->base);
2088
2089 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2090}
673a394b 2091
9d773091 2092static int
fca26bb4 2093i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2094{
9d773091
CW
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 struct intel_ring_buffer *ring;
2097 int ret, i, j;
53d227f2 2098
107f27a5 2099 /* Carefully retire all requests without writing to the rings */
9d773091 2100 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2101 ret = intel_ring_idle(ring);
2102 if (ret)
2103 return ret;
9d773091 2104 }
9d773091 2105 i915_gem_retire_requests(dev);
107f27a5
CW
2106
2107 /* Finally reset hw state */
9d773091 2108 for_each_ring(ring, dev_priv, i) {
fca26bb4 2109 intel_ring_init_seqno(ring, seqno);
498d2ac1 2110
9d773091
CW
2111 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2112 ring->sync_seqno[j] = 0;
2113 }
53d227f2 2114
9d773091 2115 return 0;
53d227f2
DV
2116}
2117
fca26bb4
MK
2118int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2119{
2120 struct drm_i915_private *dev_priv = dev->dev_private;
2121 int ret;
2122
2123 if (seqno == 0)
2124 return -EINVAL;
2125
2126 /* HWS page needs to be set less than what we
2127 * will inject to ring
2128 */
2129 ret = i915_gem_init_seqno(dev, seqno - 1);
2130 if (ret)
2131 return ret;
2132
2133 /* Carefully set the last_seqno value so that wrap
2134 * detection still works
2135 */
2136 dev_priv->next_seqno = seqno;
2137 dev_priv->last_seqno = seqno - 1;
2138 if (dev_priv->last_seqno == 0)
2139 dev_priv->last_seqno--;
2140
2141 return 0;
2142}
2143
9d773091
CW
2144int
2145i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2146{
9d773091
CW
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148
2149 /* reserve 0 for non-seqno */
2150 if (dev_priv->next_seqno == 0) {
fca26bb4 2151 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2152 if (ret)
2153 return ret;
53d227f2 2154
9d773091
CW
2155 dev_priv->next_seqno = 1;
2156 }
53d227f2 2157
f72b3435 2158 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2159 return 0;
53d227f2
DV
2160}
2161
0025c077
MK
2162int __i915_add_request(struct intel_ring_buffer *ring,
2163 struct drm_file *file,
7d736f4f 2164 struct drm_i915_gem_object *obj,
0025c077 2165 u32 *out_seqno)
673a394b 2166{
3e31c6c0 2167 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2168 struct drm_i915_gem_request *request;
7d736f4f 2169 u32 request_ring_position, request_start;
3cce469c
CW
2170 int ret;
2171
7d736f4f 2172 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2173 /*
2174 * Emit any outstanding flushes - execbuf can fail to emit the flush
2175 * after having emitted the batchbuffer command. Hence we need to fix
2176 * things up similar to emitting the lazy request. The difference here
2177 * is that the flush _must_ happen before the next request, no matter
2178 * what.
2179 */
a7b9761d
CW
2180 ret = intel_ring_flush_all_caches(ring);
2181 if (ret)
2182 return ret;
cc889e0f 2183
3c0e234c
CW
2184 request = ring->preallocated_lazy_request;
2185 if (WARN_ON(request == NULL))
acb868d3 2186 return -ENOMEM;
cc889e0f 2187
a71d8d94
CW
2188 /* Record the position of the start of the request so that
2189 * should we detect the updated seqno part-way through the
2190 * GPU processing the request, we never over-estimate the
2191 * position of the head.
2192 */
2193 request_ring_position = intel_ring_get_tail(ring);
2194
9d773091 2195 ret = ring->add_request(ring);
3c0e234c 2196 if (ret)
3bb73aba 2197 return ret;
673a394b 2198
9d773091 2199 request->seqno = intel_ring_get_seqno(ring);
852835f3 2200 request->ring = ring;
7d736f4f 2201 request->head = request_start;
a71d8d94 2202 request->tail = request_ring_position;
7d736f4f
MK
2203
2204 /* Whilst this request exists, batch_obj will be on the
2205 * active_list, and so will hold the active reference. Only when this
2206 * request is retired will the the batch_obj be moved onto the
2207 * inactive_list and lose its active reference. Hence we do not need
2208 * to explicitly hold another reference here.
2209 */
9a7e0c2a 2210 request->batch_obj = obj;
0e50e96b 2211
9a7e0c2a
CW
2212 /* Hold a reference to the current context so that we can inspect
2213 * it later in case a hangcheck error event fires.
2214 */
2215 request->ctx = ring->last_context;
0e50e96b
MK
2216 if (request->ctx)
2217 i915_gem_context_reference(request->ctx);
2218
673a394b 2219 request->emitted_jiffies = jiffies;
852835f3 2220 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2221 request->file_priv = NULL;
852835f3 2222
db53a302
CW
2223 if (file) {
2224 struct drm_i915_file_private *file_priv = file->driver_priv;
2225
1c25595f 2226 spin_lock(&file_priv->mm.lock);
f787a5f5 2227 request->file_priv = file_priv;
b962442e 2228 list_add_tail(&request->client_list,
f787a5f5 2229 &file_priv->mm.request_list);
1c25595f 2230 spin_unlock(&file_priv->mm.lock);
b962442e 2231 }
673a394b 2232
9d773091 2233 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2234 ring->outstanding_lazy_seqno = 0;
3c0e234c 2235 ring->preallocated_lazy_request = NULL;
db53a302 2236
db1b76ca 2237 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2238 i915_queue_hangcheck(ring->dev);
2239
f62a0076
CW
2240 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2241 queue_delayed_work(dev_priv->wq,
2242 &dev_priv->mm.retire_work,
2243 round_jiffies_up_relative(HZ));
2244 intel_mark_busy(dev_priv->dev);
f65d9421 2245 }
cc889e0f 2246
acb868d3 2247 if (out_seqno)
9d773091 2248 *out_seqno = request->seqno;
3cce469c 2249 return 0;
673a394b
EA
2250}
2251
f787a5f5
CW
2252static inline void
2253i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2254{
1c25595f 2255 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2256
1c25595f
CW
2257 if (!file_priv)
2258 return;
1c5d22f7 2259
1c25595f 2260 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2261 list_del(&request->client_list);
2262 request->file_priv = NULL;
1c25595f 2263 spin_unlock(&file_priv->mm.lock);
673a394b 2264}
673a394b 2265
939fd762 2266static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
44e2c070 2267 const struct i915_hw_context *ctx)
be62acb4 2268{
44e2c070 2269 unsigned long elapsed;
be62acb4 2270
44e2c070
MK
2271 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2272
2273 if (ctx->hang_stats.banned)
be62acb4
MK
2274 return true;
2275
2276 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2277 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2278 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2279 return true;
88b4aa87
MK
2280 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2281 if (i915_stop_ring_allow_warn(dev_priv))
2282 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2283 return true;
3fac8978 2284 }
be62acb4
MK
2285 }
2286
2287 return false;
2288}
2289
939fd762
MK
2290static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2291 struct i915_hw_context *ctx,
b6b0fac0 2292 const bool guilty)
aa60c664 2293{
44e2c070
MK
2294 struct i915_ctx_hang_stats *hs;
2295
2296 if (WARN_ON(!ctx))
2297 return;
aa60c664 2298
44e2c070
MK
2299 hs = &ctx->hang_stats;
2300
2301 if (guilty) {
939fd762 2302 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2303 hs->batch_active++;
2304 hs->guilty_ts = get_seconds();
2305 } else {
2306 hs->batch_pending++;
aa60c664
MK
2307 }
2308}
2309
0e50e96b
MK
2310static void i915_gem_free_request(struct drm_i915_gem_request *request)
2311{
2312 list_del(&request->list);
2313 i915_gem_request_remove_from_client(request);
2314
2315 if (request->ctx)
2316 i915_gem_context_unreference(request->ctx);
2317
2318 kfree(request);
2319}
2320
8d9fc7fd
CW
2321struct drm_i915_gem_request *
2322i915_gem_find_active_request(struct intel_ring_buffer *ring)
9375e446 2323{
4db080f9 2324 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2325 u32 completed_seqno;
2326
2327 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2328
2329 list_for_each_entry(request, &ring->request_list, list) {
2330 if (i915_seqno_passed(completed_seqno, request->seqno))
2331 continue;
aa60c664 2332
b6b0fac0 2333 return request;
4db080f9 2334 }
b6b0fac0
MK
2335
2336 return NULL;
2337}
2338
2339static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2340 struct intel_ring_buffer *ring)
2341{
2342 struct drm_i915_gem_request *request;
2343 bool ring_hung;
2344
8d9fc7fd 2345 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2346
2347 if (request == NULL)
2348 return;
2349
2350 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2351
939fd762 2352 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2353
2354 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2355 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2356}
aa60c664 2357
4db080f9
CW
2358static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2359 struct intel_ring_buffer *ring)
2360{
dfaae392 2361 while (!list_empty(&ring->active_list)) {
05394f39 2362 struct drm_i915_gem_object *obj;
9375e446 2363
05394f39
CW
2364 obj = list_first_entry(&ring->active_list,
2365 struct drm_i915_gem_object,
2366 ring_list);
9375e446 2367
05394f39 2368 i915_gem_object_move_to_inactive(obj);
673a394b 2369 }
1d62beea
BW
2370
2371 /*
2372 * We must free the requests after all the corresponding objects have
2373 * been moved off active lists. Which is the same order as the normal
2374 * retire_requests function does. This is important if object hold
2375 * implicit references on things like e.g. ppgtt address spaces through
2376 * the request.
2377 */
2378 while (!list_empty(&ring->request_list)) {
2379 struct drm_i915_gem_request *request;
2380
2381 request = list_first_entry(&ring->request_list,
2382 struct drm_i915_gem_request,
2383 list);
2384
2385 i915_gem_free_request(request);
2386 }
e3efda49
CW
2387
2388 /* These may not have been flush before the reset, do so now */
2389 kfree(ring->preallocated_lazy_request);
2390 ring->preallocated_lazy_request = NULL;
2391 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2392}
2393
19b2dbde 2394void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2395{
2396 struct drm_i915_private *dev_priv = dev->dev_private;
2397 int i;
2398
4b9de737 2399 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2400 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2401
94a335db
DV
2402 /*
2403 * Commit delayed tiling changes if we have an object still
2404 * attached to the fence, otherwise just clear the fence.
2405 */
2406 if (reg->obj) {
2407 i915_gem_object_update_fence(reg->obj, reg,
2408 reg->obj->tiling_mode);
2409 } else {
2410 i915_gem_write_fence(dev, i, NULL);
2411 }
312817a3
CW
2412 }
2413}
2414
069efc1d 2415void i915_gem_reset(struct drm_device *dev)
673a394b 2416{
77f01230 2417 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2418 struct intel_ring_buffer *ring;
1ec14ad3 2419 int i;
673a394b 2420
4db080f9
CW
2421 /*
2422 * Before we free the objects from the requests, we need to inspect
2423 * them for finding the guilty party. As the requests only borrow
2424 * their reference to the objects, the inspection must be done first.
2425 */
2426 for_each_ring(ring, dev_priv, i)
2427 i915_gem_reset_ring_status(dev_priv, ring);
2428
b4519513 2429 for_each_ring(ring, dev_priv, i)
4db080f9 2430 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2431
acce9ffa
BW
2432 i915_gem_context_reset(dev);
2433
19b2dbde 2434 i915_gem_restore_fences(dev);
673a394b
EA
2435}
2436
2437/**
2438 * This function clears the request list as sequence numbers are passed.
2439 */
cb216aa8 2440static void
db53a302 2441i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2442{
673a394b
EA
2443 uint32_t seqno;
2444
db53a302 2445 if (list_empty(&ring->request_list))
6c0594a3
KW
2446 return;
2447
db53a302 2448 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2449
b2eadbc8 2450 seqno = ring->get_seqno(ring, true);
1ec14ad3 2451
e9103038
CW
2452 /* Move any buffers on the active list that are no longer referenced
2453 * by the ringbuffer to the flushing/inactive lists as appropriate,
2454 * before we free the context associated with the requests.
2455 */
2456 while (!list_empty(&ring->active_list)) {
2457 struct drm_i915_gem_object *obj;
2458
2459 obj = list_first_entry(&ring->active_list,
2460 struct drm_i915_gem_object,
2461 ring_list);
2462
2463 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2464 break;
2465
2466 i915_gem_object_move_to_inactive(obj);
2467 }
2468
2469
852835f3 2470 while (!list_empty(&ring->request_list)) {
673a394b 2471 struct drm_i915_gem_request *request;
673a394b 2472
852835f3 2473 request = list_first_entry(&ring->request_list,
673a394b
EA
2474 struct drm_i915_gem_request,
2475 list);
673a394b 2476
dfaae392 2477 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2478 break;
2479
db53a302 2480 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2481 /* We know the GPU must have read the request to have
2482 * sent us the seqno + interrupt, so use the position
2483 * of tail of the request to update the last known position
2484 * of the GPU head.
2485 */
2486 ring->last_retired_head = request->tail;
b84d5f0c 2487
0e50e96b 2488 i915_gem_free_request(request);
b84d5f0c 2489 }
673a394b 2490
db53a302
CW
2491 if (unlikely(ring->trace_irq_seqno &&
2492 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2493 ring->irq_put(ring);
db53a302 2494 ring->trace_irq_seqno = 0;
9d34e5db 2495 }
23bc5982 2496
db53a302 2497 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2498}
2499
b29c19b6 2500bool
b09a1fec
CW
2501i915_gem_retire_requests(struct drm_device *dev)
2502{
3e31c6c0 2503 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2504 struct intel_ring_buffer *ring;
b29c19b6 2505 bool idle = true;
1ec14ad3 2506 int i;
b09a1fec 2507
b29c19b6 2508 for_each_ring(ring, dev_priv, i) {
b4519513 2509 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2510 idle &= list_empty(&ring->request_list);
2511 }
2512
2513 if (idle)
2514 mod_delayed_work(dev_priv->wq,
2515 &dev_priv->mm.idle_work,
2516 msecs_to_jiffies(100));
2517
2518 return idle;
b09a1fec
CW
2519}
2520
75ef9da2 2521static void
673a394b
EA
2522i915_gem_retire_work_handler(struct work_struct *work)
2523{
b29c19b6
CW
2524 struct drm_i915_private *dev_priv =
2525 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2526 struct drm_device *dev = dev_priv->dev;
0a58705b 2527 bool idle;
673a394b 2528
891b48cf 2529 /* Come back later if the device is busy... */
b29c19b6
CW
2530 idle = false;
2531 if (mutex_trylock(&dev->struct_mutex)) {
2532 idle = i915_gem_retire_requests(dev);
2533 mutex_unlock(&dev->struct_mutex);
673a394b 2534 }
b29c19b6 2535 if (!idle)
bcb45086
CW
2536 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2537 round_jiffies_up_relative(HZ));
b29c19b6 2538}
0a58705b 2539
b29c19b6
CW
2540static void
2541i915_gem_idle_work_handler(struct work_struct *work)
2542{
2543 struct drm_i915_private *dev_priv =
2544 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2545
2546 intel_mark_idle(dev_priv->dev);
673a394b
EA
2547}
2548
30dfebf3
DV
2549/**
2550 * Ensures that an object will eventually get non-busy by flushing any required
2551 * write domains, emitting any outstanding lazy request and retiring and
2552 * completed requests.
2553 */
2554static int
2555i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2556{
2557 int ret;
2558
2559 if (obj->active) {
0201f1ec 2560 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2561 if (ret)
2562 return ret;
2563
30dfebf3
DV
2564 i915_gem_retire_requests_ring(obj->ring);
2565 }
2566
2567 return 0;
2568}
2569
23ba4fd0
BW
2570/**
2571 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2572 * @DRM_IOCTL_ARGS: standard ioctl arguments
2573 *
2574 * Returns 0 if successful, else an error is returned with the remaining time in
2575 * the timeout parameter.
2576 * -ETIME: object is still busy after timeout
2577 * -ERESTARTSYS: signal interrupted the wait
2578 * -ENONENT: object doesn't exist
2579 * Also possible, but rare:
2580 * -EAGAIN: GPU wedged
2581 * -ENOMEM: damn
2582 * -ENODEV: Internal IRQ fail
2583 * -E?: The add request failed
2584 *
2585 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2586 * non-zero timeout parameter the wait ioctl will wait for the given number of
2587 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2588 * without holding struct_mutex the object may become re-busied before this
2589 * function completes. A similar but shorter * race condition exists in the busy
2590 * ioctl
2591 */
2592int
2593i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2594{
3e31c6c0 2595 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2596 struct drm_i915_gem_wait *args = data;
2597 struct drm_i915_gem_object *obj;
2598 struct intel_ring_buffer *ring = NULL;
eac1f14f 2599 struct timespec timeout_stack, *timeout = NULL;
f69061be 2600 unsigned reset_counter;
23ba4fd0
BW
2601 u32 seqno = 0;
2602 int ret = 0;
2603
eac1f14f
BW
2604 if (args->timeout_ns >= 0) {
2605 timeout_stack = ns_to_timespec(args->timeout_ns);
2606 timeout = &timeout_stack;
2607 }
23ba4fd0
BW
2608
2609 ret = i915_mutex_lock_interruptible(dev);
2610 if (ret)
2611 return ret;
2612
2613 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2614 if (&obj->base == NULL) {
2615 mutex_unlock(&dev->struct_mutex);
2616 return -ENOENT;
2617 }
2618
30dfebf3
DV
2619 /* Need to make sure the object gets inactive eventually. */
2620 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2621 if (ret)
2622 goto out;
2623
2624 if (obj->active) {
0201f1ec 2625 seqno = obj->last_read_seqno;
23ba4fd0
BW
2626 ring = obj->ring;
2627 }
2628
2629 if (seqno == 0)
2630 goto out;
2631
23ba4fd0
BW
2632 /* Do this after OLR check to make sure we make forward progress polling
2633 * on this IOCTL with a 0 timeout (like busy ioctl)
2634 */
2635 if (!args->timeout_ns) {
2636 ret = -ETIME;
2637 goto out;
2638 }
2639
2640 drm_gem_object_unreference(&obj->base);
f69061be 2641 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2642 mutex_unlock(&dev->struct_mutex);
2643
b29c19b6 2644 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2645 if (timeout)
eac1f14f 2646 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2647 return ret;
2648
2649out:
2650 drm_gem_object_unreference(&obj->base);
2651 mutex_unlock(&dev->struct_mutex);
2652 return ret;
2653}
2654
5816d648
BW
2655/**
2656 * i915_gem_object_sync - sync an object to a ring.
2657 *
2658 * @obj: object which may be in use on another ring.
2659 * @to: ring we wish to use the object on. May be NULL.
2660 *
2661 * This code is meant to abstract object synchronization with the GPU.
2662 * Calling with NULL implies synchronizing the object with the CPU
2663 * rather than a particular GPU ring.
2664 *
2665 * Returns 0 if successful, else propagates up the lower layer error.
2666 */
2911a35b
BW
2667int
2668i915_gem_object_sync(struct drm_i915_gem_object *obj,
2669 struct intel_ring_buffer *to)
2670{
2671 struct intel_ring_buffer *from = obj->ring;
2672 u32 seqno;
2673 int ret, idx;
2674
2675 if (from == NULL || to == from)
2676 return 0;
2677
5816d648 2678 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2679 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2680
2681 idx = intel_ring_sync_index(from, to);
2682
0201f1ec 2683 seqno = obj->last_read_seqno;
2911a35b
BW
2684 if (seqno <= from->sync_seqno[idx])
2685 return 0;
2686
b4aca010
BW
2687 ret = i915_gem_check_olr(obj->ring, seqno);
2688 if (ret)
2689 return ret;
2911a35b 2690
b52b89da 2691 trace_i915_gem_ring_sync_to(from, to, seqno);
1500f7ea 2692 ret = to->sync_to(to, from, seqno);
e3a5a225 2693 if (!ret)
7b01e260
MK
2694 /* We use last_read_seqno because sync_to()
2695 * might have just caused seqno wrap under
2696 * the radar.
2697 */
2698 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2699
e3a5a225 2700 return ret;
2911a35b
BW
2701}
2702
b5ffc9bc
CW
2703static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2704{
2705 u32 old_write_domain, old_read_domains;
2706
b5ffc9bc
CW
2707 /* Force a pagefault for domain tracking on next user access */
2708 i915_gem_release_mmap(obj);
2709
b97c3d9c
KP
2710 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2711 return;
2712
97c809fd
CW
2713 /* Wait for any direct GTT access to complete */
2714 mb();
2715
b5ffc9bc
CW
2716 old_read_domains = obj->base.read_domains;
2717 old_write_domain = obj->base.write_domain;
2718
2719 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2720 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2721
2722 trace_i915_gem_object_change_domain(obj,
2723 old_read_domains,
2724 old_write_domain);
2725}
2726
07fe0b12 2727int i915_vma_unbind(struct i915_vma *vma)
673a394b 2728{
07fe0b12 2729 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2730 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2731 int ret;
673a394b 2732
07fe0b12 2733 if (list_empty(&vma->vma_link))
673a394b
EA
2734 return 0;
2735
0ff501cb
DV
2736 if (!drm_mm_node_allocated(&vma->node)) {
2737 i915_gem_vma_destroy(vma);
0ff501cb
DV
2738 return 0;
2739 }
433544bd 2740
d7f46fc4 2741 if (vma->pin_count)
31d8d651 2742 return -EBUSY;
673a394b 2743
c4670ad0
CW
2744 BUG_ON(obj->pages == NULL);
2745
a8198eea 2746 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2747 if (ret)
a8198eea
CW
2748 return ret;
2749 /* Continue on if we fail due to EIO, the GPU is hung so we
2750 * should be safe and we need to cleanup or else we might
2751 * cause memory corruption through use-after-free.
2752 */
2753
b5ffc9bc 2754 i915_gem_object_finish_gtt(obj);
5323fd04 2755
96b47b65 2756 /* release the fence reg _after_ flushing */
d9e86c0e 2757 ret = i915_gem_object_put_fence(obj);
1488fc08 2758 if (ret)
d9e86c0e 2759 return ret;
96b47b65 2760
07fe0b12 2761 trace_i915_vma_unbind(vma);
db53a302 2762
6f65e29a
BW
2763 vma->unbind_vma(vma);
2764
74163907 2765 i915_gem_gtt_finish_object(obj);
7bddb01f 2766
64bf9303 2767 list_del_init(&vma->mm_list);
75e9e915 2768 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2769 if (i915_is_ggtt(vma->vm))
2770 obj->map_and_fenceable = true;
673a394b 2771
2f633156
BW
2772 drm_mm_remove_node(&vma->node);
2773 i915_gem_vma_destroy(vma);
2774
2775 /* Since the unbound list is global, only move to that list if
b93dab6e 2776 * no more VMAs exist. */
2f633156
BW
2777 if (list_empty(&obj->vma_list))
2778 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2779
70903c3b
CW
2780 /* And finally now the object is completely decoupled from this vma,
2781 * we can drop its hold on the backing storage and allow it to be
2782 * reaped by the shrinker.
2783 */
2784 i915_gem_object_unpin_pages(obj);
2785
88241785 2786 return 0;
54cf91dc
CW
2787}
2788
b2da9fe5 2789int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2790{
3e31c6c0 2791 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2792 struct intel_ring_buffer *ring;
1ec14ad3 2793 int ret, i;
4df2faf4 2794
4df2faf4 2795 /* Flush everything onto the inactive list. */
b4519513 2796 for_each_ring(ring, dev_priv, i) {
691e6415 2797 ret = i915_switch_context(ring, ring->default_context);
b6c7488d
BW
2798 if (ret)
2799 return ret;
2800
3e960501 2801 ret = intel_ring_idle(ring);
1ec14ad3
CW
2802 if (ret)
2803 return ret;
2804 }
4df2faf4 2805
8a1a49f9 2806 return 0;
4df2faf4
DV
2807}
2808
9ce079e4
CW
2809static void i965_write_fence_reg(struct drm_device *dev, int reg,
2810 struct drm_i915_gem_object *obj)
de151cf6 2811{
3e31c6c0 2812 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
2813 int fence_reg;
2814 int fence_pitch_shift;
de151cf6 2815
56c844e5
ID
2816 if (INTEL_INFO(dev)->gen >= 6) {
2817 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2818 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2819 } else {
2820 fence_reg = FENCE_REG_965_0;
2821 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2822 }
2823
d18b9619
CW
2824 fence_reg += reg * 8;
2825
2826 /* To w/a incoherency with non-atomic 64-bit register updates,
2827 * we split the 64-bit update into two 32-bit writes. In order
2828 * for a partial fence not to be evaluated between writes, we
2829 * precede the update with write to turn off the fence register,
2830 * and only enable the fence as the last step.
2831 *
2832 * For extra levels of paranoia, we make sure each step lands
2833 * before applying the next step.
2834 */
2835 I915_WRITE(fence_reg, 0);
2836 POSTING_READ(fence_reg);
2837
9ce079e4 2838 if (obj) {
f343c5f6 2839 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2840 uint64_t val;
de151cf6 2841
f343c5f6 2842 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2843 0xfffff000) << 32;
f343c5f6 2844 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2845 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2846 if (obj->tiling_mode == I915_TILING_Y)
2847 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2848 val |= I965_FENCE_REG_VALID;
c6642782 2849
d18b9619
CW
2850 I915_WRITE(fence_reg + 4, val >> 32);
2851 POSTING_READ(fence_reg + 4);
2852
2853 I915_WRITE(fence_reg + 0, val);
2854 POSTING_READ(fence_reg);
2855 } else {
2856 I915_WRITE(fence_reg + 4, 0);
2857 POSTING_READ(fence_reg + 4);
2858 }
de151cf6
JB
2859}
2860
9ce079e4
CW
2861static void i915_write_fence_reg(struct drm_device *dev, int reg,
2862 struct drm_i915_gem_object *obj)
de151cf6 2863{
3e31c6c0 2864 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 2865 u32 val;
de151cf6 2866
9ce079e4 2867 if (obj) {
f343c5f6 2868 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2869 int pitch_val;
2870 int tile_width;
c6642782 2871
f343c5f6 2872 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2873 (size & -size) != size ||
f343c5f6
BW
2874 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2875 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2876 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2877
9ce079e4
CW
2878 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2879 tile_width = 128;
2880 else
2881 tile_width = 512;
2882
2883 /* Note: pitch better be a power of two tile widths */
2884 pitch_val = obj->stride / tile_width;
2885 pitch_val = ffs(pitch_val) - 1;
2886
f343c5f6 2887 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2888 if (obj->tiling_mode == I915_TILING_Y)
2889 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2890 val |= I915_FENCE_SIZE_BITS(size);
2891 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2892 val |= I830_FENCE_REG_VALID;
2893 } else
2894 val = 0;
2895
2896 if (reg < 8)
2897 reg = FENCE_REG_830_0 + reg * 4;
2898 else
2899 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2900
2901 I915_WRITE(reg, val);
2902 POSTING_READ(reg);
de151cf6
JB
2903}
2904
9ce079e4
CW
2905static void i830_write_fence_reg(struct drm_device *dev, int reg,
2906 struct drm_i915_gem_object *obj)
de151cf6 2907{
3e31c6c0 2908 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 2909 uint32_t val;
de151cf6 2910
9ce079e4 2911 if (obj) {
f343c5f6 2912 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2913 uint32_t pitch_val;
de151cf6 2914
f343c5f6 2915 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2916 (size & -size) != size ||
f343c5f6
BW
2917 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2918 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2919 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2920
9ce079e4
CW
2921 pitch_val = obj->stride / 128;
2922 pitch_val = ffs(pitch_val) - 1;
de151cf6 2923
f343c5f6 2924 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2925 if (obj->tiling_mode == I915_TILING_Y)
2926 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2927 val |= I830_FENCE_SIZE_BITS(size);
2928 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2929 val |= I830_FENCE_REG_VALID;
2930 } else
2931 val = 0;
c6642782 2932
9ce079e4
CW
2933 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2934 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2935}
2936
d0a57789
CW
2937inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2938{
2939 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2940}
2941
9ce079e4
CW
2942static void i915_gem_write_fence(struct drm_device *dev, int reg,
2943 struct drm_i915_gem_object *obj)
2944{
d0a57789
CW
2945 struct drm_i915_private *dev_priv = dev->dev_private;
2946
2947 /* Ensure that all CPU reads are completed before installing a fence
2948 * and all writes before removing the fence.
2949 */
2950 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2951 mb();
2952
94a335db
DV
2953 WARN(obj && (!obj->stride || !obj->tiling_mode),
2954 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2955 obj->stride, obj->tiling_mode);
2956
9ce079e4 2957 switch (INTEL_INFO(dev)->gen) {
5ab31333 2958 case 8:
9ce079e4 2959 case 7:
56c844e5 2960 case 6:
9ce079e4
CW
2961 case 5:
2962 case 4: i965_write_fence_reg(dev, reg, obj); break;
2963 case 3: i915_write_fence_reg(dev, reg, obj); break;
2964 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2965 default: BUG();
9ce079e4 2966 }
d0a57789
CW
2967
2968 /* And similarly be paranoid that no direct access to this region
2969 * is reordered to before the fence is installed.
2970 */
2971 if (i915_gem_object_needs_mb(obj))
2972 mb();
de151cf6
JB
2973}
2974
61050808
CW
2975static inline int fence_number(struct drm_i915_private *dev_priv,
2976 struct drm_i915_fence_reg *fence)
2977{
2978 return fence - dev_priv->fence_regs;
2979}
2980
2981static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2982 struct drm_i915_fence_reg *fence,
2983 bool enable)
2984{
2dc8aae0 2985 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2986 int reg = fence_number(dev_priv, fence);
2987
2988 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2989
2990 if (enable) {
46a0b638 2991 obj->fence_reg = reg;
61050808
CW
2992 fence->obj = obj;
2993 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2994 } else {
2995 obj->fence_reg = I915_FENCE_REG_NONE;
2996 fence->obj = NULL;
2997 list_del_init(&fence->lru_list);
2998 }
94a335db 2999 obj->fence_dirty = false;
61050808
CW
3000}
3001
d9e86c0e 3002static int
d0a57789 3003i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3004{
1c293ea3 3005 if (obj->last_fenced_seqno) {
86d5bc37 3006 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3007 if (ret)
3008 return ret;
d9e86c0e
CW
3009
3010 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3011 }
3012
86d5bc37 3013 obj->fenced_gpu_access = false;
d9e86c0e
CW
3014 return 0;
3015}
3016
3017int
3018i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3019{
61050808 3020 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3021 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3022 int ret;
3023
d0a57789 3024 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3025 if (ret)
3026 return ret;
3027
61050808
CW
3028 if (obj->fence_reg == I915_FENCE_REG_NONE)
3029 return 0;
d9e86c0e 3030
f9c513e9
CW
3031 fence = &dev_priv->fence_regs[obj->fence_reg];
3032
61050808 3033 i915_gem_object_fence_lost(obj);
f9c513e9 3034 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3035
3036 return 0;
3037}
3038
3039static struct drm_i915_fence_reg *
a360bb1a 3040i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3041{
ae3db24a 3042 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3043 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3044 int i;
ae3db24a
DV
3045
3046 /* First try to find a free reg */
d9e86c0e 3047 avail = NULL;
ae3db24a
DV
3048 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3049 reg = &dev_priv->fence_regs[i];
3050 if (!reg->obj)
d9e86c0e 3051 return reg;
ae3db24a 3052
1690e1eb 3053 if (!reg->pin_count)
d9e86c0e 3054 avail = reg;
ae3db24a
DV
3055 }
3056
d9e86c0e 3057 if (avail == NULL)
5dce5b93 3058 goto deadlock;
ae3db24a
DV
3059
3060 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3061 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3062 if (reg->pin_count)
ae3db24a
DV
3063 continue;
3064
8fe301ad 3065 return reg;
ae3db24a
DV
3066 }
3067
5dce5b93
CW
3068deadlock:
3069 /* Wait for completion of pending flips which consume fences */
3070 if (intel_has_pending_fb_unpin(dev))
3071 return ERR_PTR(-EAGAIN);
3072
3073 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3074}
3075
de151cf6 3076/**
9a5a53b3 3077 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3078 * @obj: object to map through a fence reg
3079 *
3080 * When mapping objects through the GTT, userspace wants to be able to write
3081 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3082 * This function walks the fence regs looking for a free one for @obj,
3083 * stealing one if it can't find any.
3084 *
3085 * It then sets up the reg based on the object's properties: address, pitch
3086 * and tiling format.
9a5a53b3
CW
3087 *
3088 * For an untiled surface, this removes any existing fence.
de151cf6 3089 */
8c4b8c3f 3090int
06d98131 3091i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3092{
05394f39 3093 struct drm_device *dev = obj->base.dev;
79e53945 3094 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3095 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3096 struct drm_i915_fence_reg *reg;
ae3db24a 3097 int ret;
de151cf6 3098
14415745
CW
3099 /* Have we updated the tiling parameters upon the object and so
3100 * will need to serialise the write to the associated fence register?
3101 */
5d82e3e6 3102 if (obj->fence_dirty) {
d0a57789 3103 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3104 if (ret)
3105 return ret;
3106 }
9a5a53b3 3107
d9e86c0e 3108 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3109 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3110 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3111 if (!obj->fence_dirty) {
14415745
CW
3112 list_move_tail(&reg->lru_list,
3113 &dev_priv->mm.fence_list);
3114 return 0;
3115 }
3116 } else if (enable) {
3117 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3118 if (IS_ERR(reg))
3119 return PTR_ERR(reg);
d9e86c0e 3120
14415745
CW
3121 if (reg->obj) {
3122 struct drm_i915_gem_object *old = reg->obj;
3123
d0a57789 3124 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3125 if (ret)
3126 return ret;
3127
14415745 3128 i915_gem_object_fence_lost(old);
29c5a587 3129 }
14415745 3130 } else
a09ba7fa 3131 return 0;
a09ba7fa 3132
14415745 3133 i915_gem_object_update_fence(obj, reg, enable);
14415745 3134
9ce079e4 3135 return 0;
de151cf6
JB
3136}
3137
42d6ab48
CW
3138static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3139 struct drm_mm_node *gtt_space,
3140 unsigned long cache_level)
3141{
3142 struct drm_mm_node *other;
3143
3144 /* On non-LLC machines we have to be careful when putting differing
3145 * types of snoopable memory together to avoid the prefetcher
4239ca77 3146 * crossing memory domains and dying.
42d6ab48
CW
3147 */
3148 if (HAS_LLC(dev))
3149 return true;
3150
c6cfb325 3151 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3152 return true;
3153
3154 if (list_empty(&gtt_space->node_list))
3155 return true;
3156
3157 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3158 if (other->allocated && !other->hole_follows && other->color != cache_level)
3159 return false;
3160
3161 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3162 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3163 return false;
3164
3165 return true;
3166}
3167
3168static void i915_gem_verify_gtt(struct drm_device *dev)
3169{
3170#if WATCH_GTT
3171 struct drm_i915_private *dev_priv = dev->dev_private;
3172 struct drm_i915_gem_object *obj;
3173 int err = 0;
3174
35c20a60 3175 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3176 if (obj->gtt_space == NULL) {
3177 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3178 err++;
3179 continue;
3180 }
3181
3182 if (obj->cache_level != obj->gtt_space->color) {
3183 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3184 i915_gem_obj_ggtt_offset(obj),
3185 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3186 obj->cache_level,
3187 obj->gtt_space->color);
3188 err++;
3189 continue;
3190 }
3191
3192 if (!i915_gem_valid_gtt_space(dev,
3193 obj->gtt_space,
3194 obj->cache_level)) {
3195 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3196 i915_gem_obj_ggtt_offset(obj),
3197 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3198 obj->cache_level);
3199 err++;
3200 continue;
3201 }
3202 }
3203
3204 WARN_ON(err);
3205#endif
3206}
3207
673a394b
EA
3208/**
3209 * Finds free space in the GTT aperture and binds the object there.
3210 */
262de145 3211static struct i915_vma *
07fe0b12
BW
3212i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3213 struct i915_address_space *vm,
3214 unsigned alignment,
1ec9e26d 3215 unsigned flags)
673a394b 3216{
05394f39 3217 struct drm_device *dev = obj->base.dev;
3e31c6c0 3218 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3219 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12 3220 size_t gtt_max =
1ec9e26d 3221 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3222 struct i915_vma *vma;
07f73f69 3223 int ret;
673a394b 3224
e28f8711
CW
3225 fence_size = i915_gem_get_gtt_size(dev,
3226 obj->base.size,
3227 obj->tiling_mode);
3228 fence_alignment = i915_gem_get_gtt_alignment(dev,
3229 obj->base.size,
d865110c 3230 obj->tiling_mode, true);
e28f8711 3231 unfenced_alignment =
d865110c 3232 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3233 obj->base.size,
3234 obj->tiling_mode, false);
a00b10c3 3235
673a394b 3236 if (alignment == 0)
1ec9e26d 3237 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3238 unfenced_alignment;
1ec9e26d 3239 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3240 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3241 return ERR_PTR(-EINVAL);
673a394b
EA
3242 }
3243
1ec9e26d 3244 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3245
654fc607
CW
3246 /* If the object is bigger than the entire aperture, reject it early
3247 * before evicting everything in a vain attempt to find space.
3248 */
0a9ae0d7 3249 if (obj->base.size > gtt_max) {
bd9b6a4e 3250 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb 3251 obj->base.size,
1ec9e26d 3252 flags & PIN_MAPPABLE ? "mappable" : "total",
0a9ae0d7 3253 gtt_max);
262de145 3254 return ERR_PTR(-E2BIG);
654fc607
CW
3255 }
3256
37e680a1 3257 ret = i915_gem_object_get_pages(obj);
6c085a72 3258 if (ret)
262de145 3259 return ERR_PTR(ret);
6c085a72 3260
fbdda6fb
CW
3261 i915_gem_object_pin_pages(obj);
3262
accfef2e 3263 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3264 if (IS_ERR(vma))
bc6bc15b 3265 goto err_unpin;
2f633156 3266
0a9ae0d7 3267search_free:
07fe0b12 3268 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3269 size, alignment,
31e5d7c6 3270 obj->cache_level, 0, gtt_max,
62347f9e
LK
3271 DRM_MM_SEARCH_DEFAULT,
3272 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3273 if (ret) {
f6cd1f15 3274 ret = i915_gem_evict_something(dev, vm, size, alignment,
1ec9e26d 3275 obj->cache_level, flags);
dc9dd7a2
CW
3276 if (ret == 0)
3277 goto search_free;
9731129c 3278
bc6bc15b 3279 goto err_free_vma;
673a394b 3280 }
2f633156 3281 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3282 obj->cache_level))) {
2f633156 3283 ret = -EINVAL;
bc6bc15b 3284 goto err_remove_node;
673a394b
EA
3285 }
3286
74163907 3287 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3288 if (ret)
bc6bc15b 3289 goto err_remove_node;
673a394b 3290
35c20a60 3291 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3292 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3293
4bd561b3
BW
3294 if (i915_is_ggtt(vm)) {
3295 bool mappable, fenceable;
a00b10c3 3296
49987099
DV
3297 fenceable = (vma->node.size == fence_size &&
3298 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3299
49987099
DV
3300 mappable = (vma->node.start + obj->base.size <=
3301 dev_priv->gtt.mappable_end);
a00b10c3 3302
5cacaac7 3303 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3304 }
75e9e915 3305
1ec9e26d 3306 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3307
1ec9e26d 3308 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3309 vma->bind_vma(vma, obj->cache_level,
3310 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3311
42d6ab48 3312 i915_gem_verify_gtt(dev);
262de145 3313 return vma;
2f633156 3314
bc6bc15b 3315err_remove_node:
6286ef9b 3316 drm_mm_remove_node(&vma->node);
bc6bc15b 3317err_free_vma:
2f633156 3318 i915_gem_vma_destroy(vma);
262de145 3319 vma = ERR_PTR(ret);
bc6bc15b 3320err_unpin:
2f633156 3321 i915_gem_object_unpin_pages(obj);
262de145 3322 return vma;
673a394b
EA
3323}
3324
000433b6 3325bool
2c22569b
CW
3326i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3327 bool force)
673a394b 3328{
673a394b
EA
3329 /* If we don't have a page list set up, then we're not pinned
3330 * to GPU, and we can ignore the cache flush because it'll happen
3331 * again at bind time.
3332 */
05394f39 3333 if (obj->pages == NULL)
000433b6 3334 return false;
673a394b 3335
769ce464
ID
3336 /*
3337 * Stolen memory is always coherent with the GPU as it is explicitly
3338 * marked as wc by the system, or the system is cache-coherent.
3339 */
3340 if (obj->stolen)
000433b6 3341 return false;
769ce464 3342
9c23f7fc
CW
3343 /* If the GPU is snooping the contents of the CPU cache,
3344 * we do not need to manually clear the CPU cache lines. However,
3345 * the caches are only snooped when the render cache is
3346 * flushed/invalidated. As we always have to emit invalidations
3347 * and flushes when moving into and out of the RENDER domain, correct
3348 * snooping behaviour occurs naturally as the result of our domain
3349 * tracking.
3350 */
2c22569b 3351 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3352 return false;
9c23f7fc 3353
1c5d22f7 3354 trace_i915_gem_object_clflush(obj);
9da3da66 3355 drm_clflush_sg(obj->pages);
000433b6
CW
3356
3357 return true;
e47c68e9
EA
3358}
3359
3360/** Flushes the GTT write domain for the object if it's dirty. */
3361static void
05394f39 3362i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3363{
1c5d22f7
CW
3364 uint32_t old_write_domain;
3365
05394f39 3366 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3367 return;
3368
63256ec5 3369 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3370 * to it immediately go to main memory as far as we know, so there's
3371 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3372 *
3373 * However, we do have to enforce the order so that all writes through
3374 * the GTT land before any writes to the device, such as updates to
3375 * the GATT itself.
e47c68e9 3376 */
63256ec5
CW
3377 wmb();
3378
05394f39
CW
3379 old_write_domain = obj->base.write_domain;
3380 obj->base.write_domain = 0;
1c5d22f7
CW
3381
3382 trace_i915_gem_object_change_domain(obj,
05394f39 3383 obj->base.read_domains,
1c5d22f7 3384 old_write_domain);
e47c68e9
EA
3385}
3386
3387/** Flushes the CPU write domain for the object if it's dirty. */
3388static void
2c22569b
CW
3389i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3390 bool force)
e47c68e9 3391{
1c5d22f7 3392 uint32_t old_write_domain;
e47c68e9 3393
05394f39 3394 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3395 return;
3396
000433b6
CW
3397 if (i915_gem_clflush_object(obj, force))
3398 i915_gem_chipset_flush(obj->base.dev);
3399
05394f39
CW
3400 old_write_domain = obj->base.write_domain;
3401 obj->base.write_domain = 0;
1c5d22f7
CW
3402
3403 trace_i915_gem_object_change_domain(obj,
05394f39 3404 obj->base.read_domains,
1c5d22f7 3405 old_write_domain);
e47c68e9
EA
3406}
3407
2ef7eeaa
EA
3408/**
3409 * Moves a single object to the GTT read, and possibly write domain.
3410 *
3411 * This function returns when the move is complete, including waiting on
3412 * flushes to occur.
3413 */
79e53945 3414int
2021746e 3415i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3416{
3e31c6c0 3417 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3418 uint32_t old_write_domain, old_read_domains;
e47c68e9 3419 int ret;
2ef7eeaa 3420
02354392 3421 /* Not valid to be called on unbound objects. */
9843877d 3422 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3423 return -EINVAL;
3424
8d7e3de1
CW
3425 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3426 return 0;
3427
0201f1ec 3428 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3429 if (ret)
3430 return ret;
3431
2c22569b 3432 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3433
d0a57789
CW
3434 /* Serialise direct access to this object with the barriers for
3435 * coherent writes from the GPU, by effectively invalidating the
3436 * GTT domain upon first access.
3437 */
3438 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3439 mb();
3440
05394f39
CW
3441 old_write_domain = obj->base.write_domain;
3442 old_read_domains = obj->base.read_domains;
1c5d22f7 3443
e47c68e9
EA
3444 /* It should now be out of any other write domains, and we can update
3445 * the domain values for our changes.
3446 */
05394f39
CW
3447 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3448 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3449 if (write) {
05394f39
CW
3450 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3451 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3452 obj->dirty = 1;
2ef7eeaa
EA
3453 }
3454
1c5d22f7
CW
3455 trace_i915_gem_object_change_domain(obj,
3456 old_read_domains,
3457 old_write_domain);
3458
8325a09d 3459 /* And bump the LRU for this access */
ca191b13 3460 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3461 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3462 if (vma)
3463 list_move_tail(&vma->mm_list,
3464 &dev_priv->gtt.base.inactive_list);
3465
3466 }
8325a09d 3467
e47c68e9
EA
3468 return 0;
3469}
3470
e4ffd173
CW
3471int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3472 enum i915_cache_level cache_level)
3473{
7bddb01f 3474 struct drm_device *dev = obj->base.dev;
df6f783a 3475 struct i915_vma *vma, *next;
e4ffd173
CW
3476 int ret;
3477
3478 if (obj->cache_level == cache_level)
3479 return 0;
3480
d7f46fc4 3481 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3482 DRM_DEBUG("can not change the cache level of pinned objects\n");
3483 return -EBUSY;
3484 }
3485
df6f783a 3486 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3487 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3488 ret = i915_vma_unbind(vma);
3089c6f2
BW
3489 if (ret)
3490 return ret;
3089c6f2 3491 }
42d6ab48
CW
3492 }
3493
3089c6f2 3494 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3495 ret = i915_gem_object_finish_gpu(obj);
3496 if (ret)
3497 return ret;
3498
3499 i915_gem_object_finish_gtt(obj);
3500
3501 /* Before SandyBridge, you could not use tiling or fence
3502 * registers with snooped memory, so relinquish any fences
3503 * currently pointing to our region in the aperture.
3504 */
42d6ab48 3505 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3506 ret = i915_gem_object_put_fence(obj);
3507 if (ret)
3508 return ret;
3509 }
3510
6f65e29a 3511 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3512 if (drm_mm_node_allocated(&vma->node))
3513 vma->bind_vma(vma, cache_level,
3514 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3515 }
3516
2c22569b
CW
3517 list_for_each_entry(vma, &obj->vma_list, vma_link)
3518 vma->node.color = cache_level;
3519 obj->cache_level = cache_level;
3520
3521 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3522 u32 old_read_domains, old_write_domain;
3523
3524 /* If we're coming from LLC cached, then we haven't
3525 * actually been tracking whether the data is in the
3526 * CPU cache or not, since we only allow one bit set
3527 * in obj->write_domain and have been skipping the clflushes.
3528 * Just set it to the CPU cache for now.
3529 */
3530 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3531
3532 old_read_domains = obj->base.read_domains;
3533 old_write_domain = obj->base.write_domain;
3534
3535 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3536 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3537
3538 trace_i915_gem_object_change_domain(obj,
3539 old_read_domains,
3540 old_write_domain);
3541 }
3542
42d6ab48 3543 i915_gem_verify_gtt(dev);
e4ffd173
CW
3544 return 0;
3545}
3546
199adf40
BW
3547int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3548 struct drm_file *file)
e6994aee 3549{
199adf40 3550 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3551 struct drm_i915_gem_object *obj;
3552 int ret;
3553
3554 ret = i915_mutex_lock_interruptible(dev);
3555 if (ret)
3556 return ret;
3557
3558 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3559 if (&obj->base == NULL) {
3560 ret = -ENOENT;
3561 goto unlock;
3562 }
3563
651d794f
CW
3564 switch (obj->cache_level) {
3565 case I915_CACHE_LLC:
3566 case I915_CACHE_L3_LLC:
3567 args->caching = I915_CACHING_CACHED;
3568 break;
3569
4257d3ba
CW
3570 case I915_CACHE_WT:
3571 args->caching = I915_CACHING_DISPLAY;
3572 break;
3573
651d794f
CW
3574 default:
3575 args->caching = I915_CACHING_NONE;
3576 break;
3577 }
e6994aee
CW
3578
3579 drm_gem_object_unreference(&obj->base);
3580unlock:
3581 mutex_unlock(&dev->struct_mutex);
3582 return ret;
3583}
3584
199adf40
BW
3585int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3586 struct drm_file *file)
e6994aee 3587{
199adf40 3588 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3589 struct drm_i915_gem_object *obj;
3590 enum i915_cache_level level;
3591 int ret;
3592
199adf40
BW
3593 switch (args->caching) {
3594 case I915_CACHING_NONE:
e6994aee
CW
3595 level = I915_CACHE_NONE;
3596 break;
199adf40 3597 case I915_CACHING_CACHED:
e6994aee
CW
3598 level = I915_CACHE_LLC;
3599 break;
4257d3ba
CW
3600 case I915_CACHING_DISPLAY:
3601 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3602 break;
e6994aee
CW
3603 default:
3604 return -EINVAL;
3605 }
3606
3bc2913e
BW
3607 ret = i915_mutex_lock_interruptible(dev);
3608 if (ret)
3609 return ret;
3610
e6994aee
CW
3611 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3612 if (&obj->base == NULL) {
3613 ret = -ENOENT;
3614 goto unlock;
3615 }
3616
3617 ret = i915_gem_object_set_cache_level(obj, level);
3618
3619 drm_gem_object_unreference(&obj->base);
3620unlock:
3621 mutex_unlock(&dev->struct_mutex);
3622 return ret;
3623}
3624
cc98b413
CW
3625static bool is_pin_display(struct drm_i915_gem_object *obj)
3626{
3627 /* There are 3 sources that pin objects:
3628 * 1. The display engine (scanouts, sprites, cursors);
3629 * 2. Reservations for execbuffer;
3630 * 3. The user.
3631 *
3632 * We can ignore reservations as we hold the struct_mutex and
3633 * are only called outside of the reservation path. The user
3634 * can only increment pin_count once, and so if after
3635 * subtracting the potential reference by the user, any pin_count
3636 * remains, it must be due to another use by the display engine.
3637 */
d7f46fc4 3638 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
cc98b413
CW
3639}
3640
b9241ea3 3641/*
2da3b9b9
CW
3642 * Prepare buffer for display plane (scanout, cursors, etc).
3643 * Can be called from an uninterruptible phase (modesetting) and allows
3644 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3645 */
3646int
2da3b9b9
CW
3647i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3648 u32 alignment,
919926ae 3649 struct intel_ring_buffer *pipelined)
b9241ea3 3650{
2da3b9b9 3651 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3652 int ret;
3653
0be73284 3654 if (pipelined != obj->ring) {
2911a35b
BW
3655 ret = i915_gem_object_sync(obj, pipelined);
3656 if (ret)
b9241ea3
ZW
3657 return ret;
3658 }
3659
cc98b413
CW
3660 /* Mark the pin_display early so that we account for the
3661 * display coherency whilst setting up the cache domains.
3662 */
3663 obj->pin_display = true;
3664
a7ef0640
EA
3665 /* The display engine is not coherent with the LLC cache on gen6. As
3666 * a result, we make sure that the pinning that is about to occur is
3667 * done with uncached PTEs. This is lowest common denominator for all
3668 * chipsets.
3669 *
3670 * However for gen6+, we could do better by using the GFDT bit instead
3671 * of uncaching, which would allow us to flush all the LLC-cached data
3672 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3673 */
651d794f
CW
3674 ret = i915_gem_object_set_cache_level(obj,
3675 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3676 if (ret)
cc98b413 3677 goto err_unpin_display;
a7ef0640 3678
2da3b9b9
CW
3679 /* As the user may map the buffer once pinned in the display plane
3680 * (e.g. libkms for the bootup splash), we have to ensure that we
3681 * always use map_and_fenceable for all scanout buffers.
3682 */
1ec9e26d 3683 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3684 if (ret)
cc98b413 3685 goto err_unpin_display;
2da3b9b9 3686
2c22569b 3687 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3688
2da3b9b9 3689 old_write_domain = obj->base.write_domain;
05394f39 3690 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3691
3692 /* It should now be out of any other write domains, and we can update
3693 * the domain values for our changes.
3694 */
e5f1d962 3695 obj->base.write_domain = 0;
05394f39 3696 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3697
3698 trace_i915_gem_object_change_domain(obj,
3699 old_read_domains,
2da3b9b9 3700 old_write_domain);
b9241ea3
ZW
3701
3702 return 0;
cc98b413
CW
3703
3704err_unpin_display:
3705 obj->pin_display = is_pin_display(obj);
3706 return ret;
3707}
3708
3709void
3710i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3711{
d7f46fc4 3712 i915_gem_object_ggtt_unpin(obj);
cc98b413 3713 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3714}
3715
85345517 3716int
a8198eea 3717i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3718{
88241785
CW
3719 int ret;
3720
a8198eea 3721 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3722 return 0;
3723
0201f1ec 3724 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3725 if (ret)
3726 return ret;
3727
a8198eea
CW
3728 /* Ensure that we invalidate the GPU's caches and TLBs. */
3729 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3730 return 0;
85345517
CW
3731}
3732
e47c68e9
EA
3733/**
3734 * Moves a single object to the CPU read, and possibly write domain.
3735 *
3736 * This function returns when the move is complete, including waiting on
3737 * flushes to occur.
3738 */
dabdfe02 3739int
919926ae 3740i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3741{
1c5d22f7 3742 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3743 int ret;
3744
8d7e3de1
CW
3745 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3746 return 0;
3747
0201f1ec 3748 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3749 if (ret)
3750 return ret;
3751
e47c68e9 3752 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3753
05394f39
CW
3754 old_write_domain = obj->base.write_domain;
3755 old_read_domains = obj->base.read_domains;
1c5d22f7 3756
e47c68e9 3757 /* Flush the CPU cache if it's still invalid. */
05394f39 3758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3759 i915_gem_clflush_object(obj, false);
2ef7eeaa 3760
05394f39 3761 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3762 }
3763
3764 /* It should now be out of any other write domains, and we can update
3765 * the domain values for our changes.
3766 */
05394f39 3767 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3768
3769 /* If we're writing through the CPU, then the GPU read domains will
3770 * need to be invalidated at next use.
3771 */
3772 if (write) {
05394f39
CW
3773 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3774 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3775 }
2ef7eeaa 3776
1c5d22f7
CW
3777 trace_i915_gem_object_change_domain(obj,
3778 old_read_domains,
3779 old_write_domain);
3780
2ef7eeaa
EA
3781 return 0;
3782}
3783
673a394b
EA
3784/* Throttle our rendering by waiting until the ring has completed our requests
3785 * emitted over 20 msec ago.
3786 *
b962442e
EA
3787 * Note that if we were to use the current jiffies each time around the loop,
3788 * we wouldn't escape the function with any frames outstanding if the time to
3789 * render a frame was over 20ms.
3790 *
673a394b
EA
3791 * This should get us reasonable parallelism between CPU and GPU but also
3792 * relatively low latency when blocking on a particular request to finish.
3793 */
40a5f0de 3794static int
f787a5f5 3795i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3796{
f787a5f5
CW
3797 struct drm_i915_private *dev_priv = dev->dev_private;
3798 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3799 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3800 struct drm_i915_gem_request *request;
3801 struct intel_ring_buffer *ring = NULL;
f69061be 3802 unsigned reset_counter;
f787a5f5
CW
3803 u32 seqno = 0;
3804 int ret;
93533c29 3805
308887aa
DV
3806 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3807 if (ret)
3808 return ret;
3809
3810 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3811 if (ret)
3812 return ret;
e110e8d6 3813
1c25595f 3814 spin_lock(&file_priv->mm.lock);
f787a5f5 3815 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3816 if (time_after_eq(request->emitted_jiffies, recent_enough))
3817 break;
40a5f0de 3818
f787a5f5
CW
3819 ring = request->ring;
3820 seqno = request->seqno;
b962442e 3821 }
f69061be 3822 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3823 spin_unlock(&file_priv->mm.lock);
40a5f0de 3824
f787a5f5
CW
3825 if (seqno == 0)
3826 return 0;
2bc43b5c 3827
b29c19b6 3828 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3829 if (ret == 0)
3830 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3831
3832 return ret;
3833}
3834
673a394b 3835int
05394f39 3836i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3837 struct i915_address_space *vm,
05394f39 3838 uint32_t alignment,
1ec9e26d 3839 unsigned flags)
673a394b 3840{
07fe0b12 3841 struct i915_vma *vma;
673a394b
EA
3842 int ret;
3843
bf3d149b 3844 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 3845 return -EINVAL;
07fe0b12
BW
3846
3847 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 3848 if (vma) {
d7f46fc4
BW
3849 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3850 return -EBUSY;
3851
07fe0b12
BW
3852 if ((alignment &&
3853 vma->node.start & (alignment - 1)) ||
1ec9e26d 3854 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
d7f46fc4 3855 WARN(vma->pin_count,
ae7d49d8 3856 "bo is already pinned with incorrect alignment:"
f343c5f6 3857 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3858 " obj->map_and_fenceable=%d\n",
07fe0b12 3859 i915_gem_obj_offset(obj, vm), alignment,
1ec9e26d 3860 flags & PIN_MAPPABLE,
05394f39 3861 obj->map_and_fenceable);
07fe0b12 3862 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3863 if (ret)
3864 return ret;
8ea99c92
DV
3865
3866 vma = NULL;
ac0c6b5a
CW
3867 }
3868 }
3869
8ea99c92 3870 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
3871 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3872 if (IS_ERR(vma))
3873 return PTR_ERR(vma);
22c344e9 3874 }
76446cac 3875
8ea99c92
DV
3876 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3877 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 3878
8ea99c92 3879 vma->pin_count++;
1ec9e26d
DV
3880 if (flags & PIN_MAPPABLE)
3881 obj->pin_mappable |= true;
673a394b
EA
3882
3883 return 0;
3884}
3885
3886void
d7f46fc4 3887i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 3888{
d7f46fc4 3889 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 3890
d7f46fc4
BW
3891 BUG_ON(!vma);
3892 BUG_ON(vma->pin_count == 0);
3893 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3894
3895 if (--vma->pin_count == 0)
6299f992 3896 obj->pin_mappable = false;
673a394b
EA
3897}
3898
3899int
3900i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3901 struct drm_file *file)
673a394b
EA
3902{
3903 struct drm_i915_gem_pin *args = data;
05394f39 3904 struct drm_i915_gem_object *obj;
673a394b
EA
3905 int ret;
3906
02f6bccc
DV
3907 if (INTEL_INFO(dev)->gen >= 6)
3908 return -ENODEV;
3909
1d7cfea1
CW
3910 ret = i915_mutex_lock_interruptible(dev);
3911 if (ret)
3912 return ret;
673a394b 3913
05394f39 3914 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3915 if (&obj->base == NULL) {
1d7cfea1
CW
3916 ret = -ENOENT;
3917 goto unlock;
673a394b 3918 }
673a394b 3919
05394f39 3920 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 3921 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 3922 ret = -EFAULT;
1d7cfea1 3923 goto out;
3ef94daa
CW
3924 }
3925
05394f39 3926 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 3927 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 3928 args->handle);
1d7cfea1
CW
3929 ret = -EINVAL;
3930 goto out;
79e53945
JB
3931 }
3932
aa5f8021
DV
3933 if (obj->user_pin_count == ULONG_MAX) {
3934 ret = -EBUSY;
3935 goto out;
3936 }
3937
93be8788 3938 if (obj->user_pin_count == 0) {
1ec9e26d 3939 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
3940 if (ret)
3941 goto out;
673a394b
EA
3942 }
3943
93be8788
CW
3944 obj->user_pin_count++;
3945 obj->pin_filp = file;
3946
f343c5f6 3947 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3948out:
05394f39 3949 drm_gem_object_unreference(&obj->base);
1d7cfea1 3950unlock:
673a394b 3951 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3952 return ret;
673a394b
EA
3953}
3954
3955int
3956i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3957 struct drm_file *file)
673a394b
EA
3958{
3959 struct drm_i915_gem_pin *args = data;
05394f39 3960 struct drm_i915_gem_object *obj;
76c1dec1 3961 int ret;
673a394b 3962
1d7cfea1
CW
3963 ret = i915_mutex_lock_interruptible(dev);
3964 if (ret)
3965 return ret;
673a394b 3966
05394f39 3967 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3968 if (&obj->base == NULL) {
1d7cfea1
CW
3969 ret = -ENOENT;
3970 goto unlock;
673a394b 3971 }
76c1dec1 3972
05394f39 3973 if (obj->pin_filp != file) {
bd9b6a4e 3974 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 3975 args->handle);
1d7cfea1
CW
3976 ret = -EINVAL;
3977 goto out;
79e53945 3978 }
05394f39
CW
3979 obj->user_pin_count--;
3980 if (obj->user_pin_count == 0) {
3981 obj->pin_filp = NULL;
d7f46fc4 3982 i915_gem_object_ggtt_unpin(obj);
79e53945 3983 }
673a394b 3984
1d7cfea1 3985out:
05394f39 3986 drm_gem_object_unreference(&obj->base);
1d7cfea1 3987unlock:
673a394b 3988 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3989 return ret;
673a394b
EA
3990}
3991
3992int
3993i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3994 struct drm_file *file)
673a394b
EA
3995{
3996 struct drm_i915_gem_busy *args = data;
05394f39 3997 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3998 int ret;
3999
76c1dec1 4000 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4001 if (ret)
76c1dec1 4002 return ret;
673a394b 4003
05394f39 4004 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4005 if (&obj->base == NULL) {
1d7cfea1
CW
4006 ret = -ENOENT;
4007 goto unlock;
673a394b 4008 }
d1b851fc 4009
0be555b6
CW
4010 /* Count all active objects as busy, even if they are currently not used
4011 * by the gpu. Users of this interface expect objects to eventually
4012 * become non-busy without any further actions, therefore emit any
4013 * necessary flushes here.
c4de0a5d 4014 */
30dfebf3 4015 ret = i915_gem_object_flush_active(obj);
0be555b6 4016
30dfebf3 4017 args->busy = obj->active;
e9808edd
CW
4018 if (obj->ring) {
4019 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4020 args->busy |= intel_ring_flag(obj->ring) << 16;
4021 }
673a394b 4022
05394f39 4023 drm_gem_object_unreference(&obj->base);
1d7cfea1 4024unlock:
673a394b 4025 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4026 return ret;
673a394b
EA
4027}
4028
4029int
4030i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4031 struct drm_file *file_priv)
4032{
0206e353 4033 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4034}
4035
3ef94daa
CW
4036int
4037i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4038 struct drm_file *file_priv)
4039{
4040 struct drm_i915_gem_madvise *args = data;
05394f39 4041 struct drm_i915_gem_object *obj;
76c1dec1 4042 int ret;
3ef94daa
CW
4043
4044 switch (args->madv) {
4045 case I915_MADV_DONTNEED:
4046 case I915_MADV_WILLNEED:
4047 break;
4048 default:
4049 return -EINVAL;
4050 }
4051
1d7cfea1
CW
4052 ret = i915_mutex_lock_interruptible(dev);
4053 if (ret)
4054 return ret;
4055
05394f39 4056 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4057 if (&obj->base == NULL) {
1d7cfea1
CW
4058 ret = -ENOENT;
4059 goto unlock;
3ef94daa 4060 }
3ef94daa 4061
d7f46fc4 4062 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4063 ret = -EINVAL;
4064 goto out;
3ef94daa
CW
4065 }
4066
05394f39
CW
4067 if (obj->madv != __I915_MADV_PURGED)
4068 obj->madv = args->madv;
3ef94daa 4069
6c085a72
CW
4070 /* if the object is no longer attached, discard its backing storage */
4071 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4072 i915_gem_object_truncate(obj);
4073
05394f39 4074 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4075
1d7cfea1 4076out:
05394f39 4077 drm_gem_object_unreference(&obj->base);
1d7cfea1 4078unlock:
3ef94daa 4079 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4080 return ret;
3ef94daa
CW
4081}
4082
37e680a1
CW
4083void i915_gem_object_init(struct drm_i915_gem_object *obj,
4084 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4085{
35c20a60 4086 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4087 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4088 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4089 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4090
37e680a1
CW
4091 obj->ops = ops;
4092
0327d6ba
CW
4093 obj->fence_reg = I915_FENCE_REG_NONE;
4094 obj->madv = I915_MADV_WILLNEED;
4095 /* Avoid an unnecessary call to unbind on the first bind. */
4096 obj->map_and_fenceable = true;
4097
4098 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4099}
4100
37e680a1
CW
4101static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4102 .get_pages = i915_gem_object_get_pages_gtt,
4103 .put_pages = i915_gem_object_put_pages_gtt,
4104};
4105
05394f39
CW
4106struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4107 size_t size)
ac52bc56 4108{
c397b908 4109 struct drm_i915_gem_object *obj;
5949eac4 4110 struct address_space *mapping;
1a240d4d 4111 gfp_t mask;
ac52bc56 4112
42dcedd4 4113 obj = i915_gem_object_alloc(dev);
c397b908
DV
4114 if (obj == NULL)
4115 return NULL;
673a394b 4116
c397b908 4117 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4118 i915_gem_object_free(obj);
c397b908
DV
4119 return NULL;
4120 }
673a394b 4121
bed1ea95
CW
4122 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4123 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4124 /* 965gm cannot relocate objects above 4GiB. */
4125 mask &= ~__GFP_HIGHMEM;
4126 mask |= __GFP_DMA32;
4127 }
4128
496ad9aa 4129 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4130 mapping_set_gfp_mask(mapping, mask);
5949eac4 4131
37e680a1 4132 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4133
c397b908
DV
4134 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4135 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4136
3d29b842
ED
4137 if (HAS_LLC(dev)) {
4138 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4139 * cache) for about a 10% performance improvement
4140 * compared to uncached. Graphics requests other than
4141 * display scanout are coherent with the CPU in
4142 * accessing this cache. This means in this mode we
4143 * don't need to clflush on the CPU side, and on the
4144 * GPU side we only need to flush internal caches to
4145 * get data visible to the CPU.
4146 *
4147 * However, we maintain the display planes as UC, and so
4148 * need to rebind when first used as such.
4149 */
4150 obj->cache_level = I915_CACHE_LLC;
4151 } else
4152 obj->cache_level = I915_CACHE_NONE;
4153
d861e338
DV
4154 trace_i915_gem_object_create(obj);
4155
05394f39 4156 return obj;
c397b908
DV
4157}
4158
1488fc08 4159void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4160{
1488fc08 4161 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4162 struct drm_device *dev = obj->base.dev;
3e31c6c0 4163 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4164 struct i915_vma *vma, *next;
673a394b 4165
f65c9168
PZ
4166 intel_runtime_pm_get(dev_priv);
4167
26e12f89
CW
4168 trace_i915_gem_object_destroy(obj);
4169
1488fc08
CW
4170 if (obj->phys_obj)
4171 i915_gem_detach_phys_object(dev, obj);
4172
07fe0b12 4173 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4174 int ret;
4175
4176 vma->pin_count = 0;
4177 ret = i915_vma_unbind(vma);
07fe0b12
BW
4178 if (WARN_ON(ret == -ERESTARTSYS)) {
4179 bool was_interruptible;
1488fc08 4180
07fe0b12
BW
4181 was_interruptible = dev_priv->mm.interruptible;
4182 dev_priv->mm.interruptible = false;
1488fc08 4183
07fe0b12 4184 WARN_ON(i915_vma_unbind(vma));
1488fc08 4185
07fe0b12
BW
4186 dev_priv->mm.interruptible = was_interruptible;
4187 }
1488fc08
CW
4188 }
4189
1d64ae71
BW
4190 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4191 * before progressing. */
4192 if (obj->stolen)
4193 i915_gem_object_unpin_pages(obj);
4194
401c29f6
BW
4195 if (WARN_ON(obj->pages_pin_count))
4196 obj->pages_pin_count = 0;
37e680a1 4197 i915_gem_object_put_pages(obj);
d8cb5086 4198 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4199 i915_gem_object_release_stolen(obj);
de151cf6 4200
9da3da66
CW
4201 BUG_ON(obj->pages);
4202
2f745ad3
CW
4203 if (obj->base.import_attach)
4204 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4205
05394f39
CW
4206 drm_gem_object_release(&obj->base);
4207 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4208
05394f39 4209 kfree(obj->bit_17);
42dcedd4 4210 i915_gem_object_free(obj);
f65c9168
PZ
4211
4212 intel_runtime_pm_put(dev_priv);
673a394b
EA
4213}
4214
e656a6cb 4215struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4216 struct i915_address_space *vm)
e656a6cb
DV
4217{
4218 struct i915_vma *vma;
4219 list_for_each_entry(vma, &obj->vma_list, vma_link)
4220 if (vma->vm == vm)
4221 return vma;
4222
4223 return NULL;
4224}
4225
2f633156
BW
4226void i915_gem_vma_destroy(struct i915_vma *vma)
4227{
4228 WARN_ON(vma->node.allocated);
aaa05667
CW
4229
4230 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4231 if (!list_empty(&vma->exec_list))
4232 return;
4233
8b9c2b94 4234 list_del(&vma->vma_link);
b93dab6e 4235
2f633156
BW
4236 kfree(vma);
4237}
4238
e3efda49
CW
4239static void
4240i915_gem_stop_ringbuffers(struct drm_device *dev)
4241{
4242 struct drm_i915_private *dev_priv = dev->dev_private;
4243 struct intel_ring_buffer *ring;
4244 int i;
4245
4246 for_each_ring(ring, dev_priv, i)
4247 intel_stop_ring_buffer(ring);
4248}
4249
29105ccc 4250int
45c5f202 4251i915_gem_suspend(struct drm_device *dev)
29105ccc 4252{
3e31c6c0 4253 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4254 int ret = 0;
28dfe52a 4255
45c5f202 4256 mutex_lock(&dev->struct_mutex);
f7403347 4257 if (dev_priv->ums.mm_suspended)
45c5f202 4258 goto err;
28dfe52a 4259
b2da9fe5 4260 ret = i915_gpu_idle(dev);
f7403347 4261 if (ret)
45c5f202 4262 goto err;
f7403347 4263
b2da9fe5 4264 i915_gem_retire_requests(dev);
673a394b 4265
29105ccc 4266 /* Under UMS, be paranoid and evict. */
a39d7efc 4267 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4268 i915_gem_evict_everything(dev);
29105ccc 4269
29105ccc 4270 i915_kernel_lost_context(dev);
e3efda49 4271 i915_gem_stop_ringbuffers(dev);
29105ccc 4272
45c5f202
CW
4273 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4274 * We need to replace this with a semaphore, or something.
4275 * And not confound ums.mm_suspended!
4276 */
4277 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4278 DRIVER_MODESET);
4279 mutex_unlock(&dev->struct_mutex);
4280
4281 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4282 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4283 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4284
673a394b 4285 return 0;
45c5f202
CW
4286
4287err:
4288 mutex_unlock(&dev->struct_mutex);
4289 return ret;
673a394b
EA
4290}
4291
c3787e2e 4292int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4293{
c3787e2e 4294 struct drm_device *dev = ring->dev;
3e31c6c0 4295 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4296 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4297 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4298 int i, ret;
b9524a1e 4299
040d2baa 4300 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4301 return 0;
b9524a1e 4302
c3787e2e
BW
4303 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4304 if (ret)
4305 return ret;
b9524a1e 4306
c3787e2e
BW
4307 /*
4308 * Note: We do not worry about the concurrent register cacheline hang
4309 * here because no other code should access these registers other than
4310 * at initialization time.
4311 */
b9524a1e 4312 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4313 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4314 intel_ring_emit(ring, reg_base + i);
4315 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4316 }
4317
c3787e2e 4318 intel_ring_advance(ring);
b9524a1e 4319
c3787e2e 4320 return ret;
b9524a1e
BW
4321}
4322
f691e2f4
DV
4323void i915_gem_init_swizzling(struct drm_device *dev)
4324{
3e31c6c0 4325 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4326
11782b02 4327 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4328 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4329 return;
4330
4331 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4332 DISP_TILE_SURFACE_SWIZZLING);
4333
11782b02
DV
4334 if (IS_GEN5(dev))
4335 return;
4336
f691e2f4
DV
4337 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4338 if (IS_GEN6(dev))
6b26c86d 4339 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4340 else if (IS_GEN7(dev))
6b26c86d 4341 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4342 else if (IS_GEN8(dev))
4343 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4344 else
4345 BUG();
f691e2f4 4346}
e21af88d 4347
67b1b571
CW
4348static bool
4349intel_enable_blt(struct drm_device *dev)
4350{
4351 if (!HAS_BLT(dev))
4352 return false;
4353
4354 /* The blitter was dysfunctional on early prototypes */
4355 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4356 DRM_INFO("BLT not supported on this pre-production hardware;"
4357 " graphics performance will be degraded.\n");
4358 return false;
4359 }
4360
4361 return true;
4362}
4363
4fc7c971 4364static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4365{
4fc7c971 4366 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4367 int ret;
68f95ba9 4368
5c1143bb 4369 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4370 if (ret)
b6913e4b 4371 return ret;
68f95ba9
CW
4372
4373 if (HAS_BSD(dev)) {
5c1143bb 4374 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4375 if (ret)
4376 goto cleanup_render_ring;
d1b851fc 4377 }
68f95ba9 4378
67b1b571 4379 if (intel_enable_blt(dev)) {
549f7365
CW
4380 ret = intel_init_blt_ring_buffer(dev);
4381 if (ret)
4382 goto cleanup_bsd_ring;
4383 }
4384
9a8a2213
BW
4385 if (HAS_VEBOX(dev)) {
4386 ret = intel_init_vebox_ring_buffer(dev);
4387 if (ret)
4388 goto cleanup_blt_ring;
4389 }
4390
845f74a7
ZY
4391 if (HAS_BSD2(dev)) {
4392 ret = intel_init_bsd2_ring_buffer(dev);
4393 if (ret)
4394 goto cleanup_vebox_ring;
4395 }
9a8a2213 4396
99433931 4397 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4398 if (ret)
845f74a7 4399 goto cleanup_bsd2_ring;
4fc7c971
BW
4400
4401 return 0;
4402
845f74a7
ZY
4403cleanup_bsd2_ring:
4404 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4405cleanup_vebox_ring:
4406 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4407cleanup_blt_ring:
4408 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4409cleanup_bsd_ring:
4410 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4411cleanup_render_ring:
4412 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4413
4414 return ret;
4415}
4416
4417int
4418i915_gem_init_hw(struct drm_device *dev)
4419{
3e31c6c0 4420 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4421 int ret, i;
4fc7c971
BW
4422
4423 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4424 return -EIO;
4425
59124506 4426 if (dev_priv->ellc_size)
05e21cc4 4427 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4428
0bf21347
VS
4429 if (IS_HASWELL(dev))
4430 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4431 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4432
88a2b2a3 4433 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4434 if (IS_IVYBRIDGE(dev)) {
4435 u32 temp = I915_READ(GEN7_MSG_CTL);
4436 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4437 I915_WRITE(GEN7_MSG_CTL, temp);
4438 } else if (INTEL_INFO(dev)->gen >= 7) {
4439 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4440 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4441 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4442 }
88a2b2a3
BW
4443 }
4444
4fc7c971
BW
4445 i915_gem_init_swizzling(dev);
4446
4447 ret = i915_gem_init_rings(dev);
99433931
MK
4448 if (ret)
4449 return ret;
4450
c3787e2e
BW
4451 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4452 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4453
254f965c 4454 /*
2fa48d8d
BW
4455 * XXX: Contexts should only be initialized once. Doing a switch to the
4456 * default context switch however is something we'd like to do after
4457 * reset or thaw (the latter may not actually be necessary for HW, but
4458 * goes with our code better). Context switching requires rings (for
4459 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4460 */
2fa48d8d 4461 ret = i915_gem_context_enable(dev_priv);
60990320 4462 if (ret && ret != -EIO) {
2fa48d8d 4463 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4464 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4465 }
e21af88d 4466
2fa48d8d 4467 return ret;
8187a2b7
ZN
4468}
4469
1070a42b
CW
4470int i915_gem_init(struct drm_device *dev)
4471{
4472 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4473 int ret;
4474
1070a42b 4475 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4476
4477 if (IS_VALLEYVIEW(dev)) {
4478 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4479 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4480 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4481 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4482 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4483 }
4484
d7e5008f 4485 i915_gem_init_global_gtt(dev);
d62b4892 4486
2fa48d8d 4487 ret = i915_gem_context_init(dev);
e3848694
MK
4488 if (ret) {
4489 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4490 return ret;
e3848694 4491 }
2fa48d8d 4492
1070a42b 4493 ret = i915_gem_init_hw(dev);
60990320
CW
4494 if (ret == -EIO) {
4495 /* Allow ring initialisation to fail by marking the GPU as
4496 * wedged. But we only want to do this where the GPU is angry,
4497 * for all other failure, such as an allocation failure, bail.
4498 */
4499 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4500 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4501 ret = 0;
1070a42b 4502 }
60990320 4503 mutex_unlock(&dev->struct_mutex);
1070a42b 4504
53ca26ca
DV
4505 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4506 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4507 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4508 return ret;
1070a42b
CW
4509}
4510
8187a2b7
ZN
4511void
4512i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4513{
3e31c6c0 4514 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4515 struct intel_ring_buffer *ring;
1ec14ad3 4516 int i;
8187a2b7 4517
b4519513
CW
4518 for_each_ring(ring, dev_priv, i)
4519 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4520}
4521
673a394b
EA
4522int
4523i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4524 struct drm_file *file_priv)
4525{
db1b76ca 4526 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4527 int ret;
673a394b 4528
79e53945
JB
4529 if (drm_core_check_feature(dev, DRIVER_MODESET))
4530 return 0;
4531
1f83fee0 4532 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4533 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4534 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4535 }
4536
673a394b 4537 mutex_lock(&dev->struct_mutex);
db1b76ca 4538 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4539
f691e2f4 4540 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4541 if (ret != 0) {
4542 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4543 return ret;
d816f6ac 4544 }
9bb2d6f9 4545
5cef07e1 4546 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4547
bb0f1b5c 4548 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4549 if (ret)
4550 goto cleanup_ringbuffer;
e090c53b 4551 mutex_unlock(&dev->struct_mutex);
dbb19d30 4552
673a394b 4553 return 0;
5f35308b
CW
4554
4555cleanup_ringbuffer:
5f35308b 4556 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4557 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4558 mutex_unlock(&dev->struct_mutex);
4559
4560 return ret;
673a394b
EA
4561}
4562
4563int
4564i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4565 struct drm_file *file_priv)
4566{
79e53945
JB
4567 if (drm_core_check_feature(dev, DRIVER_MODESET))
4568 return 0;
4569
e090c53b 4570 mutex_lock(&dev->struct_mutex);
dbb19d30 4571 drm_irq_uninstall(dev);
e090c53b 4572 mutex_unlock(&dev->struct_mutex);
db1b76ca 4573
45c5f202 4574 return i915_gem_suspend(dev);
673a394b
EA
4575}
4576
4577void
4578i915_gem_lastclose(struct drm_device *dev)
4579{
4580 int ret;
673a394b 4581
e806b495
EA
4582 if (drm_core_check_feature(dev, DRIVER_MODESET))
4583 return;
4584
45c5f202 4585 ret = i915_gem_suspend(dev);
6dbe2772
KP
4586 if (ret)
4587 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4588}
4589
64193406
CW
4590static void
4591init_ring_lists(struct intel_ring_buffer *ring)
4592{
4593 INIT_LIST_HEAD(&ring->active_list);
4594 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4595}
4596
7e0d96bc
BW
4597void i915_init_vm(struct drm_i915_private *dev_priv,
4598 struct i915_address_space *vm)
fc8c067e 4599{
7e0d96bc
BW
4600 if (!i915_is_ggtt(vm))
4601 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4602 vm->dev = dev_priv->dev;
4603 INIT_LIST_HEAD(&vm->active_list);
4604 INIT_LIST_HEAD(&vm->inactive_list);
4605 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4606 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4607}
4608
673a394b
EA
4609void
4610i915_gem_load(struct drm_device *dev)
4611{
3e31c6c0 4612 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4613 int i;
4614
4615 dev_priv->slab =
4616 kmem_cache_create("i915_gem_object",
4617 sizeof(struct drm_i915_gem_object), 0,
4618 SLAB_HWCACHE_ALIGN,
4619 NULL);
673a394b 4620
fc8c067e
BW
4621 INIT_LIST_HEAD(&dev_priv->vm_list);
4622 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4623
a33afea5 4624 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4625 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4626 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4627 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4628 for (i = 0; i < I915_NUM_RINGS; i++)
4629 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4630 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4631 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4632 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4633 i915_gem_retire_work_handler);
b29c19b6
CW
4634 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4635 i915_gem_idle_work_handler);
1f83fee0 4636 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4637
94400120
DA
4638 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4639 if (IS_GEN3(dev)) {
50743298
DV
4640 I915_WRITE(MI_ARB_STATE,
4641 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4642 }
4643
72bfa19c
CW
4644 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4645
de151cf6 4646 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4647 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4648 dev_priv->fence_reg_start = 3;
de151cf6 4649
42b5aeab
VS
4650 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4651 dev_priv->num_fence_regs = 32;
4652 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4653 dev_priv->num_fence_regs = 16;
4654 else
4655 dev_priv->num_fence_regs = 8;
4656
b5aa8a0f 4657 /* Initialize fence registers to zero */
19b2dbde
CW
4658 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4659 i915_gem_restore_fences(dev);
10ed13e4 4660
673a394b 4661 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4662 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4663
ce453d81
CW
4664 dev_priv->mm.interruptible = true;
4665
7dc19d5a
DC
4666 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4667 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4668 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4669 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4670}
71acb5eb
DA
4671
4672/*
4673 * Create a physically contiguous memory object for this object
4674 * e.g. for cursor + overlay regs
4675 */
995b6762
CW
4676static int i915_gem_init_phys_object(struct drm_device *dev,
4677 int id, int size, int align)
71acb5eb 4678{
3e31c6c0 4679 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4680 struct drm_i915_gem_phys_object *phys_obj;
4681 int ret;
4682
4683 if (dev_priv->mm.phys_objs[id - 1] || !size)
4684 return 0;
4685
b14c5679 4686 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4687 if (!phys_obj)
4688 return -ENOMEM;
4689
4690 phys_obj->id = id;
4691
6eeefaf3 4692 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4693 if (!phys_obj->handle) {
4694 ret = -ENOMEM;
4695 goto kfree_obj;
4696 }
4697#ifdef CONFIG_X86
4698 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4699#endif
4700
4701 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4702
4703 return 0;
4704kfree_obj:
9a298b2a 4705 kfree(phys_obj);
71acb5eb
DA
4706 return ret;
4707}
4708
995b6762 4709static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb 4710{
3e31c6c0 4711 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4712 struct drm_i915_gem_phys_object *phys_obj;
4713
4714 if (!dev_priv->mm.phys_objs[id - 1])
4715 return;
4716
4717 phys_obj = dev_priv->mm.phys_objs[id - 1];
4718 if (phys_obj->cur_obj) {
4719 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4720 }
4721
4722#ifdef CONFIG_X86
4723 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4724#endif
4725 drm_pci_free(dev, phys_obj->handle);
4726 kfree(phys_obj);
4727 dev_priv->mm.phys_objs[id - 1] = NULL;
4728}
4729
4730void i915_gem_free_all_phys_object(struct drm_device *dev)
4731{
4732 int i;
4733
260883c8 4734 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4735 i915_gem_free_phys_object(dev, i);
4736}
4737
4738void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4739 struct drm_i915_gem_object *obj)
71acb5eb 4740{
496ad9aa 4741 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4742 char *vaddr;
71acb5eb 4743 int i;
71acb5eb
DA
4744 int page_count;
4745
05394f39 4746 if (!obj->phys_obj)
71acb5eb 4747 return;
05394f39 4748 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4749
05394f39 4750 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4751 for (i = 0; i < page_count; i++) {
5949eac4 4752 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4753 if (!IS_ERR(page)) {
4754 char *dst = kmap_atomic(page);
4755 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4756 kunmap_atomic(dst);
4757
4758 drm_clflush_pages(&page, 1);
4759
4760 set_page_dirty(page);
4761 mark_page_accessed(page);
4762 page_cache_release(page);
4763 }
71acb5eb 4764 }
e76e9aeb 4765 i915_gem_chipset_flush(dev);
d78b47b9 4766
05394f39
CW
4767 obj->phys_obj->cur_obj = NULL;
4768 obj->phys_obj = NULL;
71acb5eb
DA
4769}
4770
4771int
4772i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4773 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4774 int id,
4775 int align)
71acb5eb 4776{
496ad9aa 4777 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
3e31c6c0 4778 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4779 int ret = 0;
4780 int page_count;
4781 int i;
4782
4783 if (id > I915_MAX_PHYS_OBJECT)
4784 return -EINVAL;
4785
05394f39
CW
4786 if (obj->phys_obj) {
4787 if (obj->phys_obj->id == id)
71acb5eb
DA
4788 return 0;
4789 i915_gem_detach_phys_object(dev, obj);
4790 }
4791
71acb5eb
DA
4792 /* create a new object */
4793 if (!dev_priv->mm.phys_objs[id - 1]) {
4794 ret = i915_gem_init_phys_object(dev, id,
05394f39 4795 obj->base.size, align);
71acb5eb 4796 if (ret) {
05394f39
CW
4797 DRM_ERROR("failed to init phys object %d size: %zu\n",
4798 id, obj->base.size);
e5281ccd 4799 return ret;
71acb5eb
DA
4800 }
4801 }
4802
4803 /* bind to the object */
05394f39
CW
4804 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4805 obj->phys_obj->cur_obj = obj;
71acb5eb 4806
05394f39 4807 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4808
4809 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4810 struct page *page;
4811 char *dst, *src;
4812
5949eac4 4813 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4814 if (IS_ERR(page))
4815 return PTR_ERR(page);
71acb5eb 4816
ff75b9bc 4817 src = kmap_atomic(page);
05394f39 4818 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4819 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4820 kunmap_atomic(src);
71acb5eb 4821
e5281ccd
CW
4822 mark_page_accessed(page);
4823 page_cache_release(page);
4824 }
d78b47b9 4825
71acb5eb 4826 return 0;
71acb5eb
DA
4827}
4828
4829static int
05394f39
CW
4830i915_gem_phys_pwrite(struct drm_device *dev,
4831 struct drm_i915_gem_object *obj,
71acb5eb
DA
4832 struct drm_i915_gem_pwrite *args,
4833 struct drm_file *file_priv)
4834{
05394f39 4835 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4836 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4837
b47b30cc
CW
4838 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4839 unsigned long unwritten;
4840
4841 /* The physical object once assigned is fixed for the lifetime
4842 * of the obj, so we can safely drop the lock and continue
4843 * to access vaddr.
4844 */
4845 mutex_unlock(&dev->struct_mutex);
4846 unwritten = copy_from_user(vaddr, user_data, args->size);
4847 mutex_lock(&dev->struct_mutex);
4848 if (unwritten)
4849 return -EFAULT;
4850 }
71acb5eb 4851
e76e9aeb 4852 i915_gem_chipset_flush(dev);
71acb5eb
DA
4853 return 0;
4854}
b962442e 4855
f787a5f5 4856void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4857{
f787a5f5 4858 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4859
b29c19b6
CW
4860 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4861
b962442e
EA
4862 /* Clean up our request list when the client is going away, so that
4863 * later retire_requests won't dereference our soon-to-be-gone
4864 * file_priv.
4865 */
1c25595f 4866 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4867 while (!list_empty(&file_priv->mm.request_list)) {
4868 struct drm_i915_gem_request *request;
4869
4870 request = list_first_entry(&file_priv->mm.request_list,
4871 struct drm_i915_gem_request,
4872 client_list);
4873 list_del(&request->client_list);
4874 request->file_priv = NULL;
4875 }
1c25595f 4876 spin_unlock(&file_priv->mm.lock);
b962442e 4877}
31169714 4878
b29c19b6
CW
4879static void
4880i915_gem_file_idle_work_handler(struct work_struct *work)
4881{
4882 struct drm_i915_file_private *file_priv =
4883 container_of(work, typeof(*file_priv), mm.idle_work.work);
4884
4885 atomic_set(&file_priv->rps_wait_boost, false);
4886}
4887
4888int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4889{
4890 struct drm_i915_file_private *file_priv;
e422b888 4891 int ret;
b29c19b6
CW
4892
4893 DRM_DEBUG_DRIVER("\n");
4894
4895 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4896 if (!file_priv)
4897 return -ENOMEM;
4898
4899 file->driver_priv = file_priv;
4900 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4901 file_priv->file = file;
b29c19b6
CW
4902
4903 spin_lock_init(&file_priv->mm.lock);
4904 INIT_LIST_HEAD(&file_priv->mm.request_list);
4905 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4906 i915_gem_file_idle_work_handler);
4907
e422b888
BW
4908 ret = i915_gem_context_open(dev, file);
4909 if (ret)
4910 kfree(file_priv);
b29c19b6 4911
e422b888 4912 return ret;
b29c19b6
CW
4913}
4914
5774506f
CW
4915static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4916{
4917 if (!mutex_is_locked(mutex))
4918 return false;
4919
4920#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4921 return mutex->owner == task;
4922#else
4923 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4924 return false;
4925#endif
4926}
4927
7dc19d5a
DC
4928static unsigned long
4929i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4930{
17250b71
CW
4931 struct drm_i915_private *dev_priv =
4932 container_of(shrinker,
4933 struct drm_i915_private,
4934 mm.inactive_shrinker);
4935 struct drm_device *dev = dev_priv->dev;
6c085a72 4936 struct drm_i915_gem_object *obj;
5774506f 4937 bool unlock = true;
7dc19d5a 4938 unsigned long count;
17250b71 4939
5774506f
CW
4940 if (!mutex_trylock(&dev->struct_mutex)) {
4941 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4942 return 0;
5774506f 4943
677feac2 4944 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4945 return 0;
677feac2 4946
5774506f
CW
4947 unlock = false;
4948 }
31169714 4949
7dc19d5a 4950 count = 0;
35c20a60 4951 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4952 if (obj->pages_pin_count == 0)
7dc19d5a 4953 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4954
4955 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4956 if (obj->active)
4957 continue;
4958
d7f46fc4 4959 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
7dc19d5a 4960 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4961 }
17250b71 4962
5774506f
CW
4963 if (unlock)
4964 mutex_unlock(&dev->struct_mutex);
d9973b43 4965
7dc19d5a 4966 return count;
31169714 4967}
a70a3148
BW
4968
4969/* All the new VM stuff */
4970unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4971 struct i915_address_space *vm)
4972{
4973 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4974 struct i915_vma *vma;
4975
6f425321
BW
4976 if (!dev_priv->mm.aliasing_ppgtt ||
4977 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
4978 vm = &dev_priv->gtt.base;
4979
4980 BUG_ON(list_empty(&o->vma_list));
4981 list_for_each_entry(vma, &o->vma_list, vma_link) {
4982 if (vma->vm == vm)
4983 return vma->node.start;
4984
4985 }
4986 return -1;
4987}
4988
4989bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4990 struct i915_address_space *vm)
4991{
4992 struct i915_vma *vma;
4993
4994 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4995 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4996 return true;
4997
4998 return false;
4999}
5000
5001bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5002{
5a1d5eb0 5003 struct i915_vma *vma;
a70a3148 5004
5a1d5eb0
CW
5005 list_for_each_entry(vma, &o->vma_list, vma_link)
5006 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5007 return true;
5008
5009 return false;
5010}
5011
5012unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5013 struct i915_address_space *vm)
5014{
5015 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5016 struct i915_vma *vma;
5017
6f425321
BW
5018 if (!dev_priv->mm.aliasing_ppgtt ||
5019 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5020 vm = &dev_priv->gtt.base;
5021
5022 BUG_ON(list_empty(&o->vma_list));
5023
5024 list_for_each_entry(vma, &o->vma_list, vma_link)
5025 if (vma->vm == vm)
5026 return vma->node.size;
5027
5028 return 0;
5029}
5030
7dc19d5a
DC
5031static unsigned long
5032i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5033{
5034 struct drm_i915_private *dev_priv =
5035 container_of(shrinker,
5036 struct drm_i915_private,
5037 mm.inactive_shrinker);
5038 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5039 unsigned long freed;
5040 bool unlock = true;
5041
5042 if (!mutex_trylock(&dev->struct_mutex)) {
5043 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5044 return SHRINK_STOP;
7dc19d5a
DC
5045
5046 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5047 return SHRINK_STOP;
7dc19d5a
DC
5048
5049 unlock = false;
5050 }
5051
d9973b43
CW
5052 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5053 if (freed < sc->nr_to_scan)
5054 freed += __i915_gem_shrink(dev_priv,
5055 sc->nr_to_scan - freed,
5056 false);
5057 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5058 freed += i915_gem_shrink_all(dev_priv);
5059
5060 if (unlock)
5061 mutex_unlock(&dev->struct_mutex);
d9973b43 5062
7dc19d5a
DC
5063 return freed;
5064}
5c2abbea
BW
5065
5066struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5067{
5068 struct i915_vma *vma;
5069
5070 if (WARN_ON(list_empty(&obj->vma_list)))
5071 return NULL;
5072
5073 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5074 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5075 return NULL;
5076
5077 return vma;
5078}
This page took 1.072072 seconds and 5 git commands to generate.