drm/i915: Be careful with non-disp bit in PMINTRMSK
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
c8725f3d
CW
46static void
47i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
05394f39
CW
49static int i915_gem_phys_pwrite(struct drm_device *dev,
50 struct drm_i915_gem_object *obj,
71acb5eb 51 struct drm_i915_gem_pwrite *args,
05394f39 52 struct drm_file *file);
673a394b 53
61050808
CW
54static void i915_gem_write_fence(struct drm_device *dev, int reg,
55 struct drm_i915_gem_object *obj);
56static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57 struct drm_i915_fence_reg *fence,
58 bool enable);
59
7dc19d5a
DC
60static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
61 struct shrink_control *sc);
62static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
63 struct shrink_control *sc);
d9973b43
CW
64static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
65static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 66static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 67
c76ce038
CW
68static bool cpu_cache_is_coherent(struct drm_device *dev,
69 enum i915_cache_level level)
70{
71 return HAS_LLC(dev) || level != I915_CACHE_NONE;
72}
73
2c22569b
CW
74static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
75{
76 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
77 return true;
78
79 return obj->pin_display;
80}
81
61050808
CW
82static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83{
84 if (obj->tiling_mode)
85 i915_gem_release_mmap(obj);
86
87 /* As we do not have an associated fence register, we will force
88 * a tiling change if we ever need to acquire one.
89 */
5d82e3e6 90 obj->fence_dirty = false;
61050808
CW
91 obj->fence_reg = I915_FENCE_REG_NONE;
92}
93
73aa808f
CW
94/* some bookkeeping */
95static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 size_t size)
97{
c20e8355 98 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99 dev_priv->mm.object_count++;
100 dev_priv->mm.object_memory += size;
c20e8355 101 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102}
103
104static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
105 size_t size)
106{
c20e8355 107 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108 dev_priv->mm.object_count--;
109 dev_priv->mm.object_memory -= size;
c20e8355 110 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111}
112
21dd3734 113static int
33196ded 114i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 115{
30dbf0c0
CW
116 int ret;
117
7abb690a
DV
118#define EXIT_COND (!i915_reset_in_progress(error) || \
119 i915_terminally_wedged(error))
1f83fee0 120 if (EXIT_COND)
30dbf0c0
CW
121 return 0;
122
0a6759c6
DV
123 /*
124 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
125 * userspace. If it takes that long something really bad is going on and
126 * we should simply try to bail out and fail as gracefully as possible.
127 */
1f83fee0
DV
128 ret = wait_event_interruptible_timeout(error->reset_queue,
129 EXIT_COND,
130 10*HZ);
0a6759c6
DV
131 if (ret == 0) {
132 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
133 return -EIO;
134 } else if (ret < 0) {
30dbf0c0 135 return ret;
0a6759c6 136 }
1f83fee0 137#undef EXIT_COND
30dbf0c0 138
21dd3734 139 return 0;
30dbf0c0
CW
140}
141
54cf91dc 142int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 143{
33196ded 144 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
145 int ret;
146
33196ded 147 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
148 if (ret)
149 return ret;
150
151 ret = mutex_lock_interruptible(&dev->struct_mutex);
152 if (ret)
153 return ret;
154
23bc5982 155 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
156 return 0;
157}
30dbf0c0 158
7d1c4804 159static inline bool
05394f39 160i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 161{
9843877d 162 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
163}
164
79e53945
JB
165int
166i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 167 struct drm_file *file)
79e53945 168{
93d18799 169 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 170 struct drm_i915_gem_init *args = data;
2021746e 171
7bb6fb8d
DV
172 if (drm_core_check_feature(dev, DRIVER_MODESET))
173 return -ENODEV;
174
2021746e
CW
175 if (args->gtt_start >= args->gtt_end ||
176 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
177 return -EINVAL;
79e53945 178
f534bc0b
DV
179 /* GEM with user mode setting was never supported on ilk and later. */
180 if (INTEL_INFO(dev)->gen >= 5)
181 return -ENODEV;
182
79e53945 183 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
184 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
185 args->gtt_end);
93d18799 186 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
187 mutex_unlock(&dev->struct_mutex);
188
2021746e 189 return 0;
673a394b
EA
190}
191
5a125c3c
EA
192int
193i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 194 struct drm_file *file)
5a125c3c 195{
73aa808f 196 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 197 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
198 struct drm_i915_gem_object *obj;
199 size_t pinned;
5a125c3c 200
6299f992 201 pinned = 0;
73aa808f 202 mutex_lock(&dev->struct_mutex);
35c20a60 203 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 204 if (i915_gem_obj_is_pinned(obj))
f343c5f6 205 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 206 mutex_unlock(&dev->struct_mutex);
5a125c3c 207
853ba5d2 208 args->aper_size = dev_priv->gtt.base.total;
0206e353 209 args->aper_available_size = args->aper_size - pinned;
6299f992 210
5a125c3c
EA
211 return 0;
212}
213
42dcedd4
CW
214void *i915_gem_object_alloc(struct drm_device *dev)
215{
216 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 217 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
218}
219
220void i915_gem_object_free(struct drm_i915_gem_object *obj)
221{
222 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
223 kmem_cache_free(dev_priv->slab, obj);
224}
225
ff72145b
DA
226static int
227i915_gem_create(struct drm_file *file,
228 struct drm_device *dev,
229 uint64_t size,
230 uint32_t *handle_p)
673a394b 231{
05394f39 232 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
233 int ret;
234 u32 handle;
673a394b 235
ff72145b 236 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
237 if (size == 0)
238 return -EINVAL;
673a394b
EA
239
240 /* Allocate the new object */
ff72145b 241 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
242 if (obj == NULL)
243 return -ENOMEM;
244
05394f39 245 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 246 /* drop reference from allocate - handle holds it now */
d861e338
DV
247 drm_gem_object_unreference_unlocked(&obj->base);
248 if (ret)
249 return ret;
202f2fef 250
ff72145b 251 *handle_p = handle;
673a394b
EA
252 return 0;
253}
254
ff72145b
DA
255int
256i915_gem_dumb_create(struct drm_file *file,
257 struct drm_device *dev,
258 struct drm_mode_create_dumb *args)
259{
260 /* have to work out size/pitch and return them */
de45eaf7 261 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
262 args->size = args->pitch * args->height;
263 return i915_gem_create(file, dev,
264 args->size, &args->handle);
265}
266
ff72145b
DA
267/**
268 * Creates a new mm object and returns a handle to it.
269 */
270int
271i915_gem_create_ioctl(struct drm_device *dev, void *data,
272 struct drm_file *file)
273{
274 struct drm_i915_gem_create *args = data;
63ed2cb2 275
ff72145b
DA
276 return i915_gem_create(file, dev,
277 args->size, &args->handle);
278}
279
8461d226
DV
280static inline int
281__copy_to_user_swizzled(char __user *cpu_vaddr,
282 const char *gpu_vaddr, int gpu_offset,
283 int length)
284{
285 int ret, cpu_offset = 0;
286
287 while (length > 0) {
288 int cacheline_end = ALIGN(gpu_offset + 1, 64);
289 int this_length = min(cacheline_end - gpu_offset, length);
290 int swizzled_gpu_offset = gpu_offset ^ 64;
291
292 ret = __copy_to_user(cpu_vaddr + cpu_offset,
293 gpu_vaddr + swizzled_gpu_offset,
294 this_length);
295 if (ret)
296 return ret + length;
297
298 cpu_offset += this_length;
299 gpu_offset += this_length;
300 length -= this_length;
301 }
302
303 return 0;
304}
305
8c59967c 306static inline int
4f0c7cfb
BW
307__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
308 const char __user *cpu_vaddr,
8c59967c
DV
309 int length)
310{
311 int ret, cpu_offset = 0;
312
313 while (length > 0) {
314 int cacheline_end = ALIGN(gpu_offset + 1, 64);
315 int this_length = min(cacheline_end - gpu_offset, length);
316 int swizzled_gpu_offset = gpu_offset ^ 64;
317
318 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
319 cpu_vaddr + cpu_offset,
320 this_length);
321 if (ret)
322 return ret + length;
323
324 cpu_offset += this_length;
325 gpu_offset += this_length;
326 length -= this_length;
327 }
328
329 return 0;
330}
331
4c914c0c
BV
332/*
333 * Pins the specified object's pages and synchronizes the object with
334 * GPU accesses. Sets needs_clflush to non-zero if the caller should
335 * flush the object from the CPU cache.
336 */
337int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
338 int *needs_clflush)
339{
340 int ret;
341
342 *needs_clflush = 0;
343
344 if (!obj->base.filp)
345 return -EINVAL;
346
347 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
348 /* If we're not in the cpu read domain, set ourself into the gtt
349 * read domain and manually flush cachelines (if required). This
350 * optimizes for the case when the gpu will dirty the data
351 * anyway again before the next pread happens. */
352 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
353 obj->cache_level);
354 ret = i915_gem_object_wait_rendering(obj, true);
355 if (ret)
356 return ret;
c8725f3d
CW
357
358 i915_gem_object_retire(obj);
4c914c0c
BV
359 }
360
361 ret = i915_gem_object_get_pages(obj);
362 if (ret)
363 return ret;
364
365 i915_gem_object_pin_pages(obj);
366
367 return ret;
368}
369
d174bd64
DV
370/* Per-page copy function for the shmem pread fastpath.
371 * Flushes invalid cachelines before reading the target if
372 * needs_clflush is set. */
eb01459f 373static int
d174bd64
DV
374shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
375 char __user *user_data,
376 bool page_do_bit17_swizzling, bool needs_clflush)
377{
378 char *vaddr;
379 int ret;
380
e7e58eb5 381 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
382 return -EINVAL;
383
384 vaddr = kmap_atomic(page);
385 if (needs_clflush)
386 drm_clflush_virt_range(vaddr + shmem_page_offset,
387 page_length);
388 ret = __copy_to_user_inatomic(user_data,
389 vaddr + shmem_page_offset,
390 page_length);
391 kunmap_atomic(vaddr);
392
f60d7f0c 393 return ret ? -EFAULT : 0;
d174bd64
DV
394}
395
23c18c71
DV
396static void
397shmem_clflush_swizzled_range(char *addr, unsigned long length,
398 bool swizzled)
399{
e7e58eb5 400 if (unlikely(swizzled)) {
23c18c71
DV
401 unsigned long start = (unsigned long) addr;
402 unsigned long end = (unsigned long) addr + length;
403
404 /* For swizzling simply ensure that we always flush both
405 * channels. Lame, but simple and it works. Swizzled
406 * pwrite/pread is far from a hotpath - current userspace
407 * doesn't use it at all. */
408 start = round_down(start, 128);
409 end = round_up(end, 128);
410
411 drm_clflush_virt_range((void *)start, end - start);
412 } else {
413 drm_clflush_virt_range(addr, length);
414 }
415
416}
417
d174bd64
DV
418/* Only difference to the fast-path function is that this can handle bit17
419 * and uses non-atomic copy and kmap functions. */
420static int
421shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
422 char __user *user_data,
423 bool page_do_bit17_swizzling, bool needs_clflush)
424{
425 char *vaddr;
426 int ret;
427
428 vaddr = kmap(page);
429 if (needs_clflush)
23c18c71
DV
430 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
431 page_length,
432 page_do_bit17_swizzling);
d174bd64
DV
433
434 if (page_do_bit17_swizzling)
435 ret = __copy_to_user_swizzled(user_data,
436 vaddr, shmem_page_offset,
437 page_length);
438 else
439 ret = __copy_to_user(user_data,
440 vaddr + shmem_page_offset,
441 page_length);
442 kunmap(page);
443
f60d7f0c 444 return ret ? - EFAULT : 0;
d174bd64
DV
445}
446
eb01459f 447static int
dbf7bff0
DV
448i915_gem_shmem_pread(struct drm_device *dev,
449 struct drm_i915_gem_object *obj,
450 struct drm_i915_gem_pread *args,
451 struct drm_file *file)
eb01459f 452{
8461d226 453 char __user *user_data;
eb01459f 454 ssize_t remain;
8461d226 455 loff_t offset;
eb2c0c81 456 int shmem_page_offset, page_length, ret = 0;
8461d226 457 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 458 int prefaulted = 0;
8489731c 459 int needs_clflush = 0;
67d5a50c 460 struct sg_page_iter sg_iter;
eb01459f 461
2bb4629a 462 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
463 remain = args->size;
464
8461d226 465 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 466
4c914c0c 467 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
468 if (ret)
469 return ret;
470
8461d226 471 offset = args->offset;
eb01459f 472
67d5a50c
ID
473 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
474 offset >> PAGE_SHIFT) {
2db76d7c 475 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
476
477 if (remain <= 0)
478 break;
479
eb01459f
EA
480 /* Operation in this page
481 *
eb01459f 482 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
483 * page_length = bytes to copy for this page
484 */
c8cbbb8b 485 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
486 page_length = remain;
487 if ((shmem_page_offset + page_length) > PAGE_SIZE)
488 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 489
8461d226
DV
490 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
491 (page_to_phys(page) & (1 << 17)) != 0;
492
d174bd64
DV
493 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
494 user_data, page_do_bit17_swizzling,
495 needs_clflush);
496 if (ret == 0)
497 goto next_page;
dbf7bff0 498
dbf7bff0
DV
499 mutex_unlock(&dev->struct_mutex);
500
d330a953 501 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 502 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
503 /* Userspace is tricking us, but we've already clobbered
504 * its pages with the prefault and promised to write the
505 * data up to the first fault. Hence ignore any errors
506 * and just continue. */
507 (void)ret;
508 prefaulted = 1;
509 }
eb01459f 510
d174bd64
DV
511 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
512 user_data, page_do_bit17_swizzling,
513 needs_clflush);
eb01459f 514
dbf7bff0 515 mutex_lock(&dev->struct_mutex);
f60d7f0c 516
f60d7f0c 517 if (ret)
8461d226 518 goto out;
8461d226 519
17793c9a 520next_page:
eb01459f 521 remain -= page_length;
8461d226 522 user_data += page_length;
eb01459f
EA
523 offset += page_length;
524 }
525
4f27b75d 526out:
f60d7f0c
CW
527 i915_gem_object_unpin_pages(obj);
528
eb01459f
EA
529 return ret;
530}
531
673a394b
EA
532/**
533 * Reads data from the object referenced by handle.
534 *
535 * On error, the contents of *data are undefined.
536 */
537int
538i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 539 struct drm_file *file)
673a394b
EA
540{
541 struct drm_i915_gem_pread *args = data;
05394f39 542 struct drm_i915_gem_object *obj;
35b62a89 543 int ret = 0;
673a394b 544
51311d0a
CW
545 if (args->size == 0)
546 return 0;
547
548 if (!access_ok(VERIFY_WRITE,
2bb4629a 549 to_user_ptr(args->data_ptr),
51311d0a
CW
550 args->size))
551 return -EFAULT;
552
4f27b75d 553 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 554 if (ret)
4f27b75d 555 return ret;
673a394b 556
05394f39 557 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 558 if (&obj->base == NULL) {
1d7cfea1
CW
559 ret = -ENOENT;
560 goto unlock;
4f27b75d 561 }
673a394b 562
7dcd2499 563 /* Bounds check source. */
05394f39
CW
564 if (args->offset > obj->base.size ||
565 args->size > obj->base.size - args->offset) {
ce9d419d 566 ret = -EINVAL;
35b62a89 567 goto out;
ce9d419d
CW
568 }
569
1286ff73
DV
570 /* prime objects have no backing filp to GEM pread/pwrite
571 * pages from.
572 */
573 if (!obj->base.filp) {
574 ret = -EINVAL;
575 goto out;
576 }
577
db53a302
CW
578 trace_i915_gem_object_pread(obj, args->offset, args->size);
579
dbf7bff0 580 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 581
35b62a89 582out:
05394f39 583 drm_gem_object_unreference(&obj->base);
1d7cfea1 584unlock:
4f27b75d 585 mutex_unlock(&dev->struct_mutex);
eb01459f 586 return ret;
673a394b
EA
587}
588
0839ccb8
KP
589/* This is the fast write path which cannot handle
590 * page faults in the source data
9b7530cc 591 */
0839ccb8
KP
592
593static inline int
594fast_user_write(struct io_mapping *mapping,
595 loff_t page_base, int page_offset,
596 char __user *user_data,
597 int length)
9b7530cc 598{
4f0c7cfb
BW
599 void __iomem *vaddr_atomic;
600 void *vaddr;
0839ccb8 601 unsigned long unwritten;
9b7530cc 602
3e4d3af5 603 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
604 /* We can use the cpu mem copy function because this is X86. */
605 vaddr = (void __force*)vaddr_atomic + page_offset;
606 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 607 user_data, length);
3e4d3af5 608 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 609 return unwritten;
0839ccb8
KP
610}
611
3de09aa3
EA
612/**
613 * This is the fast pwrite path, where we copy the data directly from the
614 * user into the GTT, uncached.
615 */
673a394b 616static int
05394f39
CW
617i915_gem_gtt_pwrite_fast(struct drm_device *dev,
618 struct drm_i915_gem_object *obj,
3de09aa3 619 struct drm_i915_gem_pwrite *args,
05394f39 620 struct drm_file *file)
673a394b 621{
3e31c6c0 622 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 623 ssize_t remain;
0839ccb8 624 loff_t offset, page_base;
673a394b 625 char __user *user_data;
935aaa69
DV
626 int page_offset, page_length, ret;
627
1ec9e26d 628 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
629 if (ret)
630 goto out;
631
632 ret = i915_gem_object_set_to_gtt_domain(obj, true);
633 if (ret)
634 goto out_unpin;
635
636 ret = i915_gem_object_put_fence(obj);
637 if (ret)
638 goto out_unpin;
673a394b 639
2bb4629a 640 user_data = to_user_ptr(args->data_ptr);
673a394b 641 remain = args->size;
673a394b 642
f343c5f6 643 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
644
645 while (remain > 0) {
646 /* Operation in this page
647 *
0839ccb8
KP
648 * page_base = page offset within aperture
649 * page_offset = offset within page
650 * page_length = bytes to copy for this page
673a394b 651 */
c8cbbb8b
CW
652 page_base = offset & PAGE_MASK;
653 page_offset = offset_in_page(offset);
0839ccb8
KP
654 page_length = remain;
655 if ((page_offset + remain) > PAGE_SIZE)
656 page_length = PAGE_SIZE - page_offset;
657
0839ccb8 658 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
659 * source page isn't available. Return the error and we'll
660 * retry in the slow path.
0839ccb8 661 */
5d4545ae 662 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
663 page_offset, user_data, page_length)) {
664 ret = -EFAULT;
665 goto out_unpin;
666 }
673a394b 667
0839ccb8
KP
668 remain -= page_length;
669 user_data += page_length;
670 offset += page_length;
673a394b 671 }
673a394b 672
935aaa69 673out_unpin:
d7f46fc4 674 i915_gem_object_ggtt_unpin(obj);
935aaa69 675out:
3de09aa3 676 return ret;
673a394b
EA
677}
678
d174bd64
DV
679/* Per-page copy function for the shmem pwrite fastpath.
680 * Flushes invalid cachelines before writing to the target if
681 * needs_clflush_before is set and flushes out any written cachelines after
682 * writing if needs_clflush is set. */
3043c60c 683static int
d174bd64
DV
684shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
685 char __user *user_data,
686 bool page_do_bit17_swizzling,
687 bool needs_clflush_before,
688 bool needs_clflush_after)
673a394b 689{
d174bd64 690 char *vaddr;
673a394b 691 int ret;
3de09aa3 692
e7e58eb5 693 if (unlikely(page_do_bit17_swizzling))
d174bd64 694 return -EINVAL;
3de09aa3 695
d174bd64
DV
696 vaddr = kmap_atomic(page);
697 if (needs_clflush_before)
698 drm_clflush_virt_range(vaddr + shmem_page_offset,
699 page_length);
c2831a94
CW
700 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
701 user_data, page_length);
d174bd64
DV
702 if (needs_clflush_after)
703 drm_clflush_virt_range(vaddr + shmem_page_offset,
704 page_length);
705 kunmap_atomic(vaddr);
3de09aa3 706
755d2218 707 return ret ? -EFAULT : 0;
3de09aa3
EA
708}
709
d174bd64
DV
710/* Only difference to the fast-path function is that this can handle bit17
711 * and uses non-atomic copy and kmap functions. */
3043c60c 712static int
d174bd64
DV
713shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
714 char __user *user_data,
715 bool page_do_bit17_swizzling,
716 bool needs_clflush_before,
717 bool needs_clflush_after)
673a394b 718{
d174bd64
DV
719 char *vaddr;
720 int ret;
e5281ccd 721
d174bd64 722 vaddr = kmap(page);
e7e58eb5 723 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
724 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
725 page_length,
726 page_do_bit17_swizzling);
d174bd64
DV
727 if (page_do_bit17_swizzling)
728 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
729 user_data,
730 page_length);
d174bd64
DV
731 else
732 ret = __copy_from_user(vaddr + shmem_page_offset,
733 user_data,
734 page_length);
735 if (needs_clflush_after)
23c18c71
DV
736 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
737 page_length,
738 page_do_bit17_swizzling);
d174bd64 739 kunmap(page);
40123c1f 740
755d2218 741 return ret ? -EFAULT : 0;
40123c1f
EA
742}
743
40123c1f 744static int
e244a443
DV
745i915_gem_shmem_pwrite(struct drm_device *dev,
746 struct drm_i915_gem_object *obj,
747 struct drm_i915_gem_pwrite *args,
748 struct drm_file *file)
40123c1f 749{
40123c1f 750 ssize_t remain;
8c59967c
DV
751 loff_t offset;
752 char __user *user_data;
eb2c0c81 753 int shmem_page_offset, page_length, ret = 0;
8c59967c 754 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 755 int hit_slowpath = 0;
58642885
DV
756 int needs_clflush_after = 0;
757 int needs_clflush_before = 0;
67d5a50c 758 struct sg_page_iter sg_iter;
40123c1f 759
2bb4629a 760 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
761 remain = args->size;
762
8c59967c 763 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 764
58642885
DV
765 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
766 /* If we're not in the cpu write domain, set ourself into the gtt
767 * write domain and manually flush cachelines (if required). This
768 * optimizes for the case when the gpu will use the data
769 * right away and we therefore have to clflush anyway. */
2c22569b 770 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
771 ret = i915_gem_object_wait_rendering(obj, false);
772 if (ret)
773 return ret;
c8725f3d
CW
774
775 i915_gem_object_retire(obj);
58642885 776 }
c76ce038
CW
777 /* Same trick applies to invalidate partially written cachelines read
778 * before writing. */
779 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
780 needs_clflush_before =
781 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 782
755d2218
CW
783 ret = i915_gem_object_get_pages(obj);
784 if (ret)
785 return ret;
786
787 i915_gem_object_pin_pages(obj);
788
673a394b 789 offset = args->offset;
05394f39 790 obj->dirty = 1;
673a394b 791
67d5a50c
ID
792 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
793 offset >> PAGE_SHIFT) {
2db76d7c 794 struct page *page = sg_page_iter_page(&sg_iter);
58642885 795 int partial_cacheline_write;
e5281ccd 796
9da3da66
CW
797 if (remain <= 0)
798 break;
799
40123c1f
EA
800 /* Operation in this page
801 *
40123c1f 802 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
803 * page_length = bytes to copy for this page
804 */
c8cbbb8b 805 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
806
807 page_length = remain;
808 if ((shmem_page_offset + page_length) > PAGE_SIZE)
809 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 810
58642885
DV
811 /* If we don't overwrite a cacheline completely we need to be
812 * careful to have up-to-date data by first clflushing. Don't
813 * overcomplicate things and flush the entire patch. */
814 partial_cacheline_write = needs_clflush_before &&
815 ((shmem_page_offset | page_length)
816 & (boot_cpu_data.x86_clflush_size - 1));
817
8c59967c
DV
818 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
819 (page_to_phys(page) & (1 << 17)) != 0;
820
d174bd64
DV
821 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
822 user_data, page_do_bit17_swizzling,
823 partial_cacheline_write,
824 needs_clflush_after);
825 if (ret == 0)
826 goto next_page;
e244a443
DV
827
828 hit_slowpath = 1;
e244a443 829 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
830 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
831 user_data, page_do_bit17_swizzling,
832 partial_cacheline_write,
833 needs_clflush_after);
40123c1f 834
e244a443 835 mutex_lock(&dev->struct_mutex);
755d2218 836
755d2218 837 if (ret)
8c59967c 838 goto out;
8c59967c 839
17793c9a 840next_page:
40123c1f 841 remain -= page_length;
8c59967c 842 user_data += page_length;
40123c1f 843 offset += page_length;
673a394b
EA
844 }
845
fbd5a26d 846out:
755d2218
CW
847 i915_gem_object_unpin_pages(obj);
848
e244a443 849 if (hit_slowpath) {
8dcf015e
DV
850 /*
851 * Fixup: Flush cpu caches in case we didn't flush the dirty
852 * cachelines in-line while writing and the object moved
853 * out of the cpu write domain while we've dropped the lock.
854 */
855 if (!needs_clflush_after &&
856 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
857 if (i915_gem_clflush_object(obj, obj->pin_display))
858 i915_gem_chipset_flush(dev);
e244a443 859 }
8c59967c 860 }
673a394b 861
58642885 862 if (needs_clflush_after)
e76e9aeb 863 i915_gem_chipset_flush(dev);
58642885 864
40123c1f 865 return ret;
673a394b
EA
866}
867
868/**
869 * Writes data to the object referenced by handle.
870 *
871 * On error, the contents of the buffer that were to be modified are undefined.
872 */
873int
874i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 875 struct drm_file *file)
673a394b
EA
876{
877 struct drm_i915_gem_pwrite *args = data;
05394f39 878 struct drm_i915_gem_object *obj;
51311d0a
CW
879 int ret;
880
881 if (args->size == 0)
882 return 0;
883
884 if (!access_ok(VERIFY_READ,
2bb4629a 885 to_user_ptr(args->data_ptr),
51311d0a
CW
886 args->size))
887 return -EFAULT;
888
d330a953 889 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
890 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
891 args->size);
892 if (ret)
893 return -EFAULT;
894 }
673a394b 895
fbd5a26d 896 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 897 if (ret)
fbd5a26d 898 return ret;
1d7cfea1 899
05394f39 900 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 901 if (&obj->base == NULL) {
1d7cfea1
CW
902 ret = -ENOENT;
903 goto unlock;
fbd5a26d 904 }
673a394b 905
7dcd2499 906 /* Bounds check destination. */
05394f39
CW
907 if (args->offset > obj->base.size ||
908 args->size > obj->base.size - args->offset) {
ce9d419d 909 ret = -EINVAL;
35b62a89 910 goto out;
ce9d419d
CW
911 }
912
1286ff73
DV
913 /* prime objects have no backing filp to GEM pread/pwrite
914 * pages from.
915 */
916 if (!obj->base.filp) {
917 ret = -EINVAL;
918 goto out;
919 }
920
db53a302
CW
921 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
922
935aaa69 923 ret = -EFAULT;
673a394b
EA
924 /* We can only do the GTT pwrite on untiled buffers, as otherwise
925 * it would end up going through the fenced access, and we'll get
926 * different detiling behavior between reading and writing.
927 * pread/pwrite currently are reading and writing from the CPU
928 * perspective, requiring manual detiling by the client.
929 */
5c0480f2 930 if (obj->phys_obj) {
fbd5a26d 931 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
932 goto out;
933 }
934
2c22569b
CW
935 if (obj->tiling_mode == I915_TILING_NONE &&
936 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
937 cpu_write_needs_clflush(obj)) {
fbd5a26d 938 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
939 /* Note that the gtt paths might fail with non-page-backed user
940 * pointers (e.g. gtt mappings when moving data between
941 * textures). Fallback to the shmem path in that case. */
fbd5a26d 942 }
673a394b 943
86a1ee26 944 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 945 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 946
35b62a89 947out:
05394f39 948 drm_gem_object_unreference(&obj->base);
1d7cfea1 949unlock:
fbd5a26d 950 mutex_unlock(&dev->struct_mutex);
673a394b
EA
951 return ret;
952}
953
b361237b 954int
33196ded 955i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
956 bool interruptible)
957{
1f83fee0 958 if (i915_reset_in_progress(error)) {
b361237b
CW
959 /* Non-interruptible callers can't handle -EAGAIN, hence return
960 * -EIO unconditionally for these. */
961 if (!interruptible)
962 return -EIO;
963
1f83fee0
DV
964 /* Recovery complete, but the reset failed ... */
965 if (i915_terminally_wedged(error))
b361237b
CW
966 return -EIO;
967
968 return -EAGAIN;
969 }
970
971 return 0;
972}
973
974/*
975 * Compare seqno against outstanding lazy request. Emit a request if they are
976 * equal.
977 */
978static int
979i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
980{
981 int ret;
982
983 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
984
985 ret = 0;
1823521d 986 if (seqno == ring->outstanding_lazy_seqno)
0025c077 987 ret = i915_add_request(ring, NULL);
b361237b
CW
988
989 return ret;
990}
991
094f9a54
CW
992static void fake_irq(unsigned long data)
993{
994 wake_up_process((struct task_struct *)data);
995}
996
997static bool missed_irq(struct drm_i915_private *dev_priv,
998 struct intel_ring_buffer *ring)
999{
1000 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1001}
1002
b29c19b6
CW
1003static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1004{
1005 if (file_priv == NULL)
1006 return true;
1007
1008 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1009}
1010
b361237b
CW
1011/**
1012 * __wait_seqno - wait until execution of seqno has finished
1013 * @ring: the ring expected to report seqno
1014 * @seqno: duh!
f69061be 1015 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1016 * @interruptible: do an interruptible wait (normally yes)
1017 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1018 *
f69061be
DV
1019 * Note: It is of utmost importance that the passed in seqno and reset_counter
1020 * values have been read by the caller in an smp safe manner. Where read-side
1021 * locks are involved, it is sufficient to read the reset_counter before
1022 * unlocking the lock that protects the seqno. For lockless tricks, the
1023 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1024 * inserted.
1025 *
b361237b
CW
1026 * Returns 0 if the seqno was found within the alloted time. Else returns the
1027 * errno with remaining time filled in timeout argument.
1028 */
1029static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1030 unsigned reset_counter,
b29c19b6
CW
1031 bool interruptible,
1032 struct timespec *timeout,
1033 struct drm_i915_file_private *file_priv)
b361237b 1034{
3d13ef2e 1035 struct drm_device *dev = ring->dev;
3e31c6c0 1036 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1037 const bool irq_test_in_progress =
1038 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1039 struct timespec before, now;
1040 DEFINE_WAIT(wait);
47e9766d 1041 unsigned long timeout_expire;
b361237b
CW
1042 int ret;
1043
5d584b2e 1044 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
c67a470b 1045
b361237b
CW
1046 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1047 return 0;
1048
47e9766d 1049 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1050
3d13ef2e 1051 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1052 gen6_rps_boost(dev_priv);
1053 if (file_priv)
1054 mod_delayed_work(dev_priv->wq,
1055 &file_priv->mm.idle_work,
1056 msecs_to_jiffies(100));
1057 }
1058
168c3f21 1059 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1060 return -ENODEV;
1061
094f9a54
CW
1062 /* Record current time in case interrupted by signal, or wedged */
1063 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1064 getrawmonotonic(&before);
094f9a54
CW
1065 for (;;) {
1066 struct timer_list timer;
b361237b 1067
094f9a54
CW
1068 prepare_to_wait(&ring->irq_queue, &wait,
1069 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1070
f69061be
DV
1071 /* We need to check whether any gpu reset happened in between
1072 * the caller grabbing the seqno and now ... */
094f9a54
CW
1073 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1074 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1075 * is truely gone. */
1076 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1077 if (ret == 0)
1078 ret = -EAGAIN;
1079 break;
1080 }
f69061be 1081
094f9a54
CW
1082 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1083 ret = 0;
1084 break;
1085 }
b361237b 1086
094f9a54
CW
1087 if (interruptible && signal_pending(current)) {
1088 ret = -ERESTARTSYS;
1089 break;
1090 }
1091
47e9766d 1092 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1093 ret = -ETIME;
1094 break;
1095 }
1096
1097 timer.function = NULL;
1098 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1099 unsigned long expire;
1100
094f9a54 1101 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1102 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1103 mod_timer(&timer, expire);
1104 }
1105
5035c275 1106 io_schedule();
094f9a54 1107
094f9a54
CW
1108 if (timer.function) {
1109 del_singleshot_timer_sync(&timer);
1110 destroy_timer_on_stack(&timer);
1111 }
1112 }
b361237b 1113 getrawmonotonic(&now);
094f9a54 1114 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1115
168c3f21
MK
1116 if (!irq_test_in_progress)
1117 ring->irq_put(ring);
094f9a54
CW
1118
1119 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1120
1121 if (timeout) {
1122 struct timespec sleep_time = timespec_sub(now, before);
1123 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1124 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1125 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1126 }
1127
094f9a54 1128 return ret;
b361237b
CW
1129}
1130
1131/**
1132 * Waits for a sequence number to be signaled, and cleans up the
1133 * request and object lists appropriately for that event.
1134 */
1135int
1136i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1137{
1138 struct drm_device *dev = ring->dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 bool interruptible = dev_priv->mm.interruptible;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(seqno == 0);
1145
33196ded 1146 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1147 if (ret)
1148 return ret;
1149
1150 ret = i915_gem_check_olr(ring, seqno);
1151 if (ret)
1152 return ret;
1153
f69061be
DV
1154 return __wait_seqno(ring, seqno,
1155 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1156 interruptible, NULL, NULL);
b361237b
CW
1157}
1158
d26e3af8
CW
1159static int
1160i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1161 struct intel_ring_buffer *ring)
1162{
c8725f3d
CW
1163 if (!obj->active)
1164 return 0;
d26e3af8
CW
1165
1166 /* Manually manage the write flush as we may have not yet
1167 * retired the buffer.
1168 *
1169 * Note that the last_write_seqno is always the earlier of
1170 * the two (read/write) seqno, so if we haved successfully waited,
1171 * we know we have passed the last write.
1172 */
1173 obj->last_write_seqno = 0;
d26e3af8
CW
1174
1175 return 0;
1176}
1177
b361237b
CW
1178/**
1179 * Ensures that all rendering to the object has completed and the object is
1180 * safe to unbind from the GTT or access from the CPU.
1181 */
1182static __must_check int
1183i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1184 bool readonly)
1185{
1186 struct intel_ring_buffer *ring = obj->ring;
1187 u32 seqno;
1188 int ret;
1189
1190 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1191 if (seqno == 0)
1192 return 0;
1193
1194 ret = i915_wait_seqno(ring, seqno);
1195 if (ret)
1196 return ret;
1197
d26e3af8 1198 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1199}
1200
3236f57a
CW
1201/* A nonblocking variant of the above wait. This is a highly dangerous routine
1202 * as the object state may change during this call.
1203 */
1204static __must_check int
1205i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1206 struct drm_i915_file_private *file_priv,
3236f57a
CW
1207 bool readonly)
1208{
1209 struct drm_device *dev = obj->base.dev;
1210 struct drm_i915_private *dev_priv = dev->dev_private;
1211 struct intel_ring_buffer *ring = obj->ring;
f69061be 1212 unsigned reset_counter;
3236f57a
CW
1213 u32 seqno;
1214 int ret;
1215
1216 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1217 BUG_ON(!dev_priv->mm.interruptible);
1218
1219 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1220 if (seqno == 0)
1221 return 0;
1222
33196ded 1223 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1224 if (ret)
1225 return ret;
1226
1227 ret = i915_gem_check_olr(ring, seqno);
1228 if (ret)
1229 return ret;
1230
f69061be 1231 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1232 mutex_unlock(&dev->struct_mutex);
6e4930f6 1233 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1234 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1235 if (ret)
1236 return ret;
3236f57a 1237
d26e3af8 1238 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1239}
1240
673a394b 1241/**
2ef7eeaa
EA
1242 * Called when user space prepares to use an object with the CPU, either
1243 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1244 */
1245int
1246i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1247 struct drm_file *file)
673a394b
EA
1248{
1249 struct drm_i915_gem_set_domain *args = data;
05394f39 1250 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1251 uint32_t read_domains = args->read_domains;
1252 uint32_t write_domain = args->write_domain;
673a394b
EA
1253 int ret;
1254
2ef7eeaa 1255 /* Only handle setting domains to types used by the CPU. */
21d509e3 1256 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1257 return -EINVAL;
1258
21d509e3 1259 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1260 return -EINVAL;
1261
1262 /* Having something in the write domain implies it's in the read
1263 * domain, and only that read domain. Enforce that in the request.
1264 */
1265 if (write_domain != 0 && read_domains != write_domain)
1266 return -EINVAL;
1267
76c1dec1 1268 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1269 if (ret)
76c1dec1 1270 return ret;
1d7cfea1 1271
05394f39 1272 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1273 if (&obj->base == NULL) {
1d7cfea1
CW
1274 ret = -ENOENT;
1275 goto unlock;
76c1dec1 1276 }
673a394b 1277
3236f57a
CW
1278 /* Try to flush the object off the GPU without holding the lock.
1279 * We will repeat the flush holding the lock in the normal manner
1280 * to catch cases where we are gazumped.
1281 */
6e4930f6
CW
1282 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1283 file->driver_priv,
1284 !write_domain);
3236f57a
CW
1285 if (ret)
1286 goto unref;
1287
2ef7eeaa
EA
1288 if (read_domains & I915_GEM_DOMAIN_GTT) {
1289 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1290
1291 /* Silently promote "you're not bound, there was nothing to do"
1292 * to success, since the client was just asking us to
1293 * make sure everything was done.
1294 */
1295 if (ret == -EINVAL)
1296 ret = 0;
2ef7eeaa 1297 } else {
e47c68e9 1298 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1299 }
1300
3236f57a 1301unref:
05394f39 1302 drm_gem_object_unreference(&obj->base);
1d7cfea1 1303unlock:
673a394b
EA
1304 mutex_unlock(&dev->struct_mutex);
1305 return ret;
1306}
1307
1308/**
1309 * Called when user space has done writes to this buffer
1310 */
1311int
1312i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1313 struct drm_file *file)
673a394b
EA
1314{
1315 struct drm_i915_gem_sw_finish *args = data;
05394f39 1316 struct drm_i915_gem_object *obj;
673a394b
EA
1317 int ret = 0;
1318
76c1dec1 1319 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1320 if (ret)
76c1dec1 1321 return ret;
1d7cfea1 1322
05394f39 1323 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1324 if (&obj->base == NULL) {
1d7cfea1
CW
1325 ret = -ENOENT;
1326 goto unlock;
673a394b
EA
1327 }
1328
673a394b 1329 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1330 if (obj->pin_display)
1331 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1332
05394f39 1333 drm_gem_object_unreference(&obj->base);
1d7cfea1 1334unlock:
673a394b
EA
1335 mutex_unlock(&dev->struct_mutex);
1336 return ret;
1337}
1338
1339/**
1340 * Maps the contents of an object, returning the address it is mapped
1341 * into.
1342 *
1343 * While the mapping holds a reference on the contents of the object, it doesn't
1344 * imply a ref on the object itself.
1345 */
1346int
1347i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1348 struct drm_file *file)
673a394b
EA
1349{
1350 struct drm_i915_gem_mmap *args = data;
1351 struct drm_gem_object *obj;
673a394b
EA
1352 unsigned long addr;
1353
05394f39 1354 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1355 if (obj == NULL)
bf79cb91 1356 return -ENOENT;
673a394b 1357
1286ff73
DV
1358 /* prime objects have no backing filp to GEM mmap
1359 * pages from.
1360 */
1361 if (!obj->filp) {
1362 drm_gem_object_unreference_unlocked(obj);
1363 return -EINVAL;
1364 }
1365
6be5ceb0 1366 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1367 PROT_READ | PROT_WRITE, MAP_SHARED,
1368 args->offset);
bc9025bd 1369 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1370 if (IS_ERR((void *)addr))
1371 return addr;
1372
1373 args->addr_ptr = (uint64_t) addr;
1374
1375 return 0;
1376}
1377
de151cf6
JB
1378/**
1379 * i915_gem_fault - fault a page into the GTT
1380 * vma: VMA in question
1381 * vmf: fault info
1382 *
1383 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1384 * from userspace. The fault handler takes care of binding the object to
1385 * the GTT (if needed), allocating and programming a fence register (again,
1386 * only if needed based on whether the old reg is still valid or the object
1387 * is tiled) and inserting a new PTE into the faulting process.
1388 *
1389 * Note that the faulting process may involve evicting existing objects
1390 * from the GTT and/or fence registers to make room. So performance may
1391 * suffer if the GTT working set is large or there are few fence registers
1392 * left.
1393 */
1394int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1395{
05394f39
CW
1396 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1397 struct drm_device *dev = obj->base.dev;
3e31c6c0 1398 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1399 pgoff_t page_offset;
1400 unsigned long pfn;
1401 int ret = 0;
0f973f27 1402 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1403
f65c9168
PZ
1404 intel_runtime_pm_get(dev_priv);
1405
de151cf6
JB
1406 /* We don't use vmf->pgoff since that has the fake offset */
1407 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1408 PAGE_SHIFT;
1409
d9bc7e9f
CW
1410 ret = i915_mutex_lock_interruptible(dev);
1411 if (ret)
1412 goto out;
a00b10c3 1413
db53a302
CW
1414 trace_i915_gem_object_fault(obj, page_offset, true, write);
1415
6e4930f6
CW
1416 /* Try to flush the object off the GPU first without holding the lock.
1417 * Upon reacquiring the lock, we will perform our sanity checks and then
1418 * repeat the flush holding the lock in the normal manner to catch cases
1419 * where we are gazumped.
1420 */
1421 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1422 if (ret)
1423 goto unlock;
1424
eb119bd6
CW
1425 /* Access to snoopable pages through the GTT is incoherent. */
1426 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1427 ret = -EINVAL;
1428 goto unlock;
1429 }
1430
d9bc7e9f 1431 /* Now bind it into the GTT if needed */
1ec9e26d 1432 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1433 if (ret)
1434 goto unlock;
4a684a41 1435
c9839303
CW
1436 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1437 if (ret)
1438 goto unpin;
74898d7e 1439
06d98131 1440 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1441 if (ret)
c9839303 1442 goto unpin;
7d1c4804 1443
6299f992
CW
1444 obj->fault_mappable = true;
1445
f343c5f6
BW
1446 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1447 pfn >>= PAGE_SHIFT;
1448 pfn += page_offset;
de151cf6
JB
1449
1450 /* Finally, remap it using the new GTT offset */
1451 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1452unpin:
d7f46fc4 1453 i915_gem_object_ggtt_unpin(obj);
c715089f 1454unlock:
de151cf6 1455 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1456out:
de151cf6 1457 switch (ret) {
d9bc7e9f 1458 case -EIO:
a9340cca
DV
1459 /* If this -EIO is due to a gpu hang, give the reset code a
1460 * chance to clean up the mess. Otherwise return the proper
1461 * SIGBUS. */
f65c9168
PZ
1462 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1463 ret = VM_FAULT_SIGBUS;
1464 break;
1465 }
045e769a 1466 case -EAGAIN:
571c608d
DV
1467 /*
1468 * EAGAIN means the gpu is hung and we'll wait for the error
1469 * handler to reset everything when re-faulting in
1470 * i915_mutex_lock_interruptible.
d9bc7e9f 1471 */
c715089f
CW
1472 case 0:
1473 case -ERESTARTSYS:
bed636ab 1474 case -EINTR:
e79e0fe3
DR
1475 case -EBUSY:
1476 /*
1477 * EBUSY is ok: this just means that another thread
1478 * already did the job.
1479 */
f65c9168
PZ
1480 ret = VM_FAULT_NOPAGE;
1481 break;
de151cf6 1482 case -ENOMEM:
f65c9168
PZ
1483 ret = VM_FAULT_OOM;
1484 break;
a7c2e1aa 1485 case -ENOSPC:
45d67817 1486 case -EFAULT:
f65c9168
PZ
1487 ret = VM_FAULT_SIGBUS;
1488 break;
de151cf6 1489 default:
a7c2e1aa 1490 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1491 ret = VM_FAULT_SIGBUS;
1492 break;
de151cf6 1493 }
f65c9168
PZ
1494
1495 intel_runtime_pm_put(dev_priv);
1496 return ret;
de151cf6
JB
1497}
1498
48018a57
PZ
1499void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1500{
1501 struct i915_vma *vma;
1502
1503 /*
1504 * Only the global gtt is relevant for gtt memory mappings, so restrict
1505 * list traversal to objects bound into the global address space. Note
1506 * that the active list should be empty, but better safe than sorry.
1507 */
1508 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1509 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1510 i915_gem_release_mmap(vma->obj);
1511 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1512 i915_gem_release_mmap(vma->obj);
1513}
1514
901782b2
CW
1515/**
1516 * i915_gem_release_mmap - remove physical page mappings
1517 * @obj: obj in question
1518 *
af901ca1 1519 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1520 * relinquish ownership of the pages back to the system.
1521 *
1522 * It is vital that we remove the page mapping if we have mapped a tiled
1523 * object through the GTT and then lose the fence register due to
1524 * resource pressure. Similarly if the object has been moved out of the
1525 * aperture, than pages mapped into userspace must be revoked. Removing the
1526 * mapping will then trigger a page fault on the next user access, allowing
1527 * fixup by i915_gem_fault().
1528 */
d05ca301 1529void
05394f39 1530i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1531{
6299f992
CW
1532 if (!obj->fault_mappable)
1533 return;
901782b2 1534
6796cb16
DH
1535 drm_vma_node_unmap(&obj->base.vma_node,
1536 obj->base.dev->anon_inode->i_mapping);
6299f992 1537 obj->fault_mappable = false;
901782b2
CW
1538}
1539
0fa87796 1540uint32_t
e28f8711 1541i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1542{
e28f8711 1543 uint32_t gtt_size;
92b88aeb
CW
1544
1545 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1546 tiling_mode == I915_TILING_NONE)
1547 return size;
92b88aeb
CW
1548
1549 /* Previous chips need a power-of-two fence region when tiling */
1550 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1551 gtt_size = 1024*1024;
92b88aeb 1552 else
e28f8711 1553 gtt_size = 512*1024;
92b88aeb 1554
e28f8711
CW
1555 while (gtt_size < size)
1556 gtt_size <<= 1;
92b88aeb 1557
e28f8711 1558 return gtt_size;
92b88aeb
CW
1559}
1560
de151cf6
JB
1561/**
1562 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1563 * @obj: object to check
1564 *
1565 * Return the required GTT alignment for an object, taking into account
5e783301 1566 * potential fence register mapping.
de151cf6 1567 */
d865110c
ID
1568uint32_t
1569i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1570 int tiling_mode, bool fenced)
de151cf6 1571{
de151cf6
JB
1572 /*
1573 * Minimum alignment is 4k (GTT page size), but might be greater
1574 * if a fence register is needed for the object.
1575 */
d865110c 1576 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1577 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1578 return 4096;
1579
a00b10c3
CW
1580 /*
1581 * Previous chips need to be aligned to the size of the smallest
1582 * fence register that can contain the object.
1583 */
e28f8711 1584 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1585}
1586
d8cb5086
CW
1587static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1588{
1589 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1590 int ret;
1591
0de23977 1592 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1593 return 0;
1594
da494d7c
DV
1595 dev_priv->mm.shrinker_no_lock_stealing = true;
1596
d8cb5086
CW
1597 ret = drm_gem_create_mmap_offset(&obj->base);
1598 if (ret != -ENOSPC)
da494d7c 1599 goto out;
d8cb5086
CW
1600
1601 /* Badly fragmented mmap space? The only way we can recover
1602 * space is by destroying unwanted objects. We can't randomly release
1603 * mmap_offsets as userspace expects them to be persistent for the
1604 * lifetime of the objects. The closest we can is to release the
1605 * offsets on purgeable objects by truncating it and marking it purged,
1606 * which prevents userspace from ever using that object again.
1607 */
1608 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1609 ret = drm_gem_create_mmap_offset(&obj->base);
1610 if (ret != -ENOSPC)
da494d7c 1611 goto out;
d8cb5086
CW
1612
1613 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1614 ret = drm_gem_create_mmap_offset(&obj->base);
1615out:
1616 dev_priv->mm.shrinker_no_lock_stealing = false;
1617
1618 return ret;
d8cb5086
CW
1619}
1620
1621static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1622{
d8cb5086
CW
1623 drm_gem_free_mmap_offset(&obj->base);
1624}
1625
de151cf6 1626int
ff72145b
DA
1627i915_gem_mmap_gtt(struct drm_file *file,
1628 struct drm_device *dev,
1629 uint32_t handle,
1630 uint64_t *offset)
de151cf6 1631{
da761a6e 1632 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1633 struct drm_i915_gem_object *obj;
de151cf6
JB
1634 int ret;
1635
76c1dec1 1636 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1637 if (ret)
76c1dec1 1638 return ret;
de151cf6 1639
ff72145b 1640 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1641 if (&obj->base == NULL) {
1d7cfea1
CW
1642 ret = -ENOENT;
1643 goto unlock;
1644 }
de151cf6 1645
5d4545ae 1646 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1647 ret = -E2BIG;
ff56b0bc 1648 goto out;
da761a6e
CW
1649 }
1650
05394f39 1651 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1652 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1653 ret = -EFAULT;
1d7cfea1 1654 goto out;
ab18282d
CW
1655 }
1656
d8cb5086
CW
1657 ret = i915_gem_object_create_mmap_offset(obj);
1658 if (ret)
1659 goto out;
de151cf6 1660
0de23977 1661 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1662
1d7cfea1 1663out:
05394f39 1664 drm_gem_object_unreference(&obj->base);
1d7cfea1 1665unlock:
de151cf6 1666 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1667 return ret;
de151cf6
JB
1668}
1669
ff72145b
DA
1670/**
1671 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1672 * @dev: DRM device
1673 * @data: GTT mapping ioctl data
1674 * @file: GEM object info
1675 *
1676 * Simply returns the fake offset to userspace so it can mmap it.
1677 * The mmap call will end up in drm_gem_mmap(), which will set things
1678 * up so we can get faults in the handler above.
1679 *
1680 * The fault handler will take care of binding the object into the GTT
1681 * (since it may have been evicted to make room for something), allocating
1682 * a fence register, and mapping the appropriate aperture address into
1683 * userspace.
1684 */
1685int
1686i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1687 struct drm_file *file)
1688{
1689 struct drm_i915_gem_mmap_gtt *args = data;
1690
ff72145b
DA
1691 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1692}
1693
225067ee
DV
1694/* Immediately discard the backing storage */
1695static void
1696i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1697{
e5281ccd 1698 struct inode *inode;
e5281ccd 1699
4d6294bf 1700 i915_gem_object_free_mmap_offset(obj);
1286ff73 1701
4d6294bf
CW
1702 if (obj->base.filp == NULL)
1703 return;
e5281ccd 1704
225067ee
DV
1705 /* Our goal here is to return as much of the memory as
1706 * is possible back to the system as we are called from OOM.
1707 * To do this we must instruct the shmfs to drop all of its
1708 * backing pages, *now*.
1709 */
496ad9aa 1710 inode = file_inode(obj->base.filp);
225067ee 1711 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1712
225067ee
DV
1713 obj->madv = __I915_MADV_PURGED;
1714}
e5281ccd 1715
225067ee
DV
1716static inline int
1717i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1718{
1719 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1720}
1721
5cdf5881 1722static void
05394f39 1723i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1724{
90797e6d
ID
1725 struct sg_page_iter sg_iter;
1726 int ret;
1286ff73 1727
05394f39 1728 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1729
6c085a72
CW
1730 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1731 if (ret) {
1732 /* In the event of a disaster, abandon all caches and
1733 * hope for the best.
1734 */
1735 WARN_ON(ret != -EIO);
2c22569b 1736 i915_gem_clflush_object(obj, true);
6c085a72
CW
1737 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1738 }
1739
6dacfd2f 1740 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1741 i915_gem_object_save_bit_17_swizzle(obj);
1742
05394f39
CW
1743 if (obj->madv == I915_MADV_DONTNEED)
1744 obj->dirty = 0;
3ef94daa 1745
90797e6d 1746 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1747 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1748
05394f39 1749 if (obj->dirty)
9da3da66 1750 set_page_dirty(page);
3ef94daa 1751
05394f39 1752 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1753 mark_page_accessed(page);
3ef94daa 1754
9da3da66 1755 page_cache_release(page);
3ef94daa 1756 }
05394f39 1757 obj->dirty = 0;
673a394b 1758
9da3da66
CW
1759 sg_free_table(obj->pages);
1760 kfree(obj->pages);
37e680a1 1761}
6c085a72 1762
dd624afd 1763int
37e680a1
CW
1764i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1765{
1766 const struct drm_i915_gem_object_ops *ops = obj->ops;
1767
2f745ad3 1768 if (obj->pages == NULL)
37e680a1
CW
1769 return 0;
1770
a5570178
CW
1771 if (obj->pages_pin_count)
1772 return -EBUSY;
1773
9843877d 1774 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1775
a2165e31
CW
1776 /* ->put_pages might need to allocate memory for the bit17 swizzle
1777 * array, hence protect them from being reaped by removing them from gtt
1778 * lists early. */
35c20a60 1779 list_del(&obj->global_list);
a2165e31 1780
37e680a1 1781 ops->put_pages(obj);
05394f39 1782 obj->pages = NULL;
37e680a1 1783
6c085a72
CW
1784 if (i915_gem_object_is_purgeable(obj))
1785 i915_gem_object_truncate(obj);
1786
1787 return 0;
1788}
1789
d9973b43 1790static unsigned long
93927ca5
DV
1791__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1792 bool purgeable_only)
6c085a72 1793{
c8725f3d
CW
1794 struct list_head still_in_list;
1795 struct drm_i915_gem_object *obj;
d9973b43 1796 unsigned long count = 0;
6c085a72 1797
57094f82 1798 /*
c8725f3d 1799 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1800 * (due to retiring requests) we have to strictly process only
1801 * one element of the list at the time, and recheck the list
1802 * on every iteration.
c8725f3d
CW
1803 *
1804 * In particular, we must hold a reference whilst removing the
1805 * object as we may end up waiting for and/or retiring the objects.
1806 * This might release the final reference (held by the active list)
1807 * and result in the object being freed from under us. This is
1808 * similar to the precautions the eviction code must take whilst
1809 * removing objects.
1810 *
1811 * Also note that although these lists do not hold a reference to
1812 * the object we can safely grab one here: The final object
1813 * unreferencing and the bound_list are both protected by the
1814 * dev->struct_mutex and so we won't ever be able to observe an
1815 * object on the bound_list with a reference count equals 0.
57094f82 1816 */
c8725f3d
CW
1817 INIT_LIST_HEAD(&still_in_list);
1818 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1819 obj = list_first_entry(&dev_priv->mm.unbound_list,
1820 typeof(*obj), global_list);
1821 list_move_tail(&obj->global_list, &still_in_list);
1822
1823 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1824 continue;
1825
1826 drm_gem_object_reference(&obj->base);
1827
1828 if (i915_gem_object_put_pages(obj) == 0)
1829 count += obj->base.size >> PAGE_SHIFT;
1830
1831 drm_gem_object_unreference(&obj->base);
1832 }
1833 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1834
1835 INIT_LIST_HEAD(&still_in_list);
57094f82 1836 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1837 struct i915_vma *vma, *v;
80dcfdbd 1838
57094f82
CW
1839 obj = list_first_entry(&dev_priv->mm.bound_list,
1840 typeof(*obj), global_list);
c8725f3d 1841 list_move_tail(&obj->global_list, &still_in_list);
57094f82 1842
80dcfdbd
BW
1843 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1844 continue;
1845
57094f82
CW
1846 drm_gem_object_reference(&obj->base);
1847
07fe0b12
BW
1848 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1849 if (i915_vma_unbind(vma))
1850 break;
80dcfdbd 1851
57094f82 1852 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1853 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1854
1855 drm_gem_object_unreference(&obj->base);
6c085a72 1856 }
c8725f3d 1857 list_splice(&still_in_list, &dev_priv->mm.bound_list);
6c085a72
CW
1858
1859 return count;
1860}
1861
d9973b43 1862static unsigned long
93927ca5
DV
1863i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1864{
1865 return __i915_gem_shrink(dev_priv, target, true);
1866}
1867
d9973b43 1868static unsigned long
6c085a72
CW
1869i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1870{
6c085a72 1871 i915_gem_evict_everything(dev_priv->dev);
c8725f3d 1872 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
225067ee
DV
1873}
1874
37e680a1 1875static int
6c085a72 1876i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1877{
6c085a72 1878 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1879 int page_count, i;
1880 struct address_space *mapping;
9da3da66
CW
1881 struct sg_table *st;
1882 struct scatterlist *sg;
90797e6d 1883 struct sg_page_iter sg_iter;
e5281ccd 1884 struct page *page;
90797e6d 1885 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1886 gfp_t gfp;
e5281ccd 1887
6c085a72
CW
1888 /* Assert that the object is not currently in any GPU domain. As it
1889 * wasn't in the GTT, there shouldn't be any way it could have been in
1890 * a GPU cache
1891 */
1892 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1893 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1894
9da3da66
CW
1895 st = kmalloc(sizeof(*st), GFP_KERNEL);
1896 if (st == NULL)
1897 return -ENOMEM;
1898
05394f39 1899 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1900 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1901 kfree(st);
e5281ccd 1902 return -ENOMEM;
9da3da66 1903 }
e5281ccd 1904
9da3da66
CW
1905 /* Get the list of pages out of our struct file. They'll be pinned
1906 * at this point until we release them.
1907 *
1908 * Fail silently without starting the shrinker
1909 */
496ad9aa 1910 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1911 gfp = mapping_gfp_mask(mapping);
caf49191 1912 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1913 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1914 sg = st->sgl;
1915 st->nents = 0;
1916 for (i = 0; i < page_count; i++) {
6c085a72
CW
1917 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1918 if (IS_ERR(page)) {
1919 i915_gem_purge(dev_priv, page_count);
1920 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1921 }
1922 if (IS_ERR(page)) {
1923 /* We've tried hard to allocate the memory by reaping
1924 * our own buffer, now let the real VM do its job and
1925 * go down in flames if truly OOM.
1926 */
caf49191 1927 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1928 gfp |= __GFP_IO | __GFP_WAIT;
1929
1930 i915_gem_shrink_all(dev_priv);
1931 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1932 if (IS_ERR(page))
1933 goto err_pages;
1934
caf49191 1935 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1936 gfp &= ~(__GFP_IO | __GFP_WAIT);
1937 }
426729dc
KRW
1938#ifdef CONFIG_SWIOTLB
1939 if (swiotlb_nr_tbl()) {
1940 st->nents++;
1941 sg_set_page(sg, page, PAGE_SIZE, 0);
1942 sg = sg_next(sg);
1943 continue;
1944 }
1945#endif
90797e6d
ID
1946 if (!i || page_to_pfn(page) != last_pfn + 1) {
1947 if (i)
1948 sg = sg_next(sg);
1949 st->nents++;
1950 sg_set_page(sg, page, PAGE_SIZE, 0);
1951 } else {
1952 sg->length += PAGE_SIZE;
1953 }
1954 last_pfn = page_to_pfn(page);
3bbbe706
DV
1955
1956 /* Check that the i965g/gm workaround works. */
1957 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1958 }
426729dc
KRW
1959#ifdef CONFIG_SWIOTLB
1960 if (!swiotlb_nr_tbl())
1961#endif
1962 sg_mark_end(sg);
74ce6b6c
CW
1963 obj->pages = st;
1964
6dacfd2f 1965 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1966 i915_gem_object_do_bit_17_swizzle(obj);
1967
1968 return 0;
1969
1970err_pages:
90797e6d
ID
1971 sg_mark_end(sg);
1972 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1973 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1974 sg_free_table(st);
1975 kfree(st);
e5281ccd 1976 return PTR_ERR(page);
673a394b
EA
1977}
1978
37e680a1
CW
1979/* Ensure that the associated pages are gathered from the backing storage
1980 * and pinned into our object. i915_gem_object_get_pages() may be called
1981 * multiple times before they are released by a single call to
1982 * i915_gem_object_put_pages() - once the pages are no longer referenced
1983 * either as a result of memory pressure (reaping pages under the shrinker)
1984 * or as the object is itself released.
1985 */
1986int
1987i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1988{
1989 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1990 const struct drm_i915_gem_object_ops *ops = obj->ops;
1991 int ret;
1992
2f745ad3 1993 if (obj->pages)
37e680a1
CW
1994 return 0;
1995
43e28f09 1996 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1997 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 1998 return -EFAULT;
43e28f09
CW
1999 }
2000
a5570178
CW
2001 BUG_ON(obj->pages_pin_count);
2002
37e680a1
CW
2003 ret = ops->get_pages(obj);
2004 if (ret)
2005 return ret;
2006
35c20a60 2007 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2008 return 0;
673a394b
EA
2009}
2010
e2d05a8b 2011static void
05394f39 2012i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 2013 struct intel_ring_buffer *ring)
673a394b 2014{
05394f39 2015 struct drm_device *dev = obj->base.dev;
69dc4987 2016 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2017 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2018
852835f3 2019 BUG_ON(ring == NULL);
02978ff5
CW
2020 if (obj->ring != ring && obj->last_write_seqno) {
2021 /* Keep the seqno relative to the current ring */
2022 obj->last_write_seqno = seqno;
2023 }
05394f39 2024 obj->ring = ring;
673a394b
EA
2025
2026 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2027 if (!obj->active) {
2028 drm_gem_object_reference(&obj->base);
2029 obj->active = 1;
673a394b 2030 }
e35a41de 2031
05394f39 2032 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2033
0201f1ec 2034 obj->last_read_seqno = seqno;
caea7476 2035
7dd49065 2036 if (obj->fenced_gpu_access) {
caea7476 2037 obj->last_fenced_seqno = seqno;
caea7476 2038
7dd49065
CW
2039 /* Bump MRU to take account of the delayed flush */
2040 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2041 struct drm_i915_fence_reg *reg;
2042
2043 reg = &dev_priv->fence_regs[obj->fence_reg];
2044 list_move_tail(&reg->lru_list,
2045 &dev_priv->mm.fence_list);
2046 }
caea7476
CW
2047 }
2048}
2049
e2d05a8b
BW
2050void i915_vma_move_to_active(struct i915_vma *vma,
2051 struct intel_ring_buffer *ring)
2052{
2053 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2054 return i915_gem_object_move_to_active(vma->obj, ring);
2055}
2056
caea7476 2057static void
caea7476 2058i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2059{
ca191b13 2060 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2061 struct i915_address_space *vm;
2062 struct i915_vma *vma;
ce44b0ea 2063
65ce3027 2064 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2065 BUG_ON(!obj->active);
caea7476 2066
feb822cf
BW
2067 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2068 vma = i915_gem_obj_to_vma(obj, vm);
2069 if (vma && !list_empty(&vma->mm_list))
2070 list_move_tail(&vma->mm_list, &vm->inactive_list);
2071 }
caea7476 2072
65ce3027 2073 list_del_init(&obj->ring_list);
caea7476
CW
2074 obj->ring = NULL;
2075
65ce3027
CW
2076 obj->last_read_seqno = 0;
2077 obj->last_write_seqno = 0;
2078 obj->base.write_domain = 0;
2079
2080 obj->last_fenced_seqno = 0;
caea7476 2081 obj->fenced_gpu_access = false;
caea7476
CW
2082
2083 obj->active = 0;
2084 drm_gem_object_unreference(&obj->base);
2085
2086 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2087}
673a394b 2088
c8725f3d
CW
2089static void
2090i915_gem_object_retire(struct drm_i915_gem_object *obj)
2091{
2092 struct intel_ring_buffer *ring = obj->ring;
2093
2094 if (ring == NULL)
2095 return;
2096
2097 if (i915_seqno_passed(ring->get_seqno(ring, true),
2098 obj->last_read_seqno))
2099 i915_gem_object_move_to_inactive(obj);
2100}
2101
9d773091 2102static int
fca26bb4 2103i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2104{
9d773091
CW
2105 struct drm_i915_private *dev_priv = dev->dev_private;
2106 struct intel_ring_buffer *ring;
2107 int ret, i, j;
53d227f2 2108
107f27a5 2109 /* Carefully retire all requests without writing to the rings */
9d773091 2110 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2111 ret = intel_ring_idle(ring);
2112 if (ret)
2113 return ret;
9d773091 2114 }
9d773091 2115 i915_gem_retire_requests(dev);
107f27a5
CW
2116
2117 /* Finally reset hw state */
9d773091 2118 for_each_ring(ring, dev_priv, i) {
fca26bb4 2119 intel_ring_init_seqno(ring, seqno);
498d2ac1 2120
ebc348b2
BW
2121 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2122 ring->semaphore.sync_seqno[j] = 0;
9d773091 2123 }
53d227f2 2124
9d773091 2125 return 0;
53d227f2
DV
2126}
2127
fca26bb4
MK
2128int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2129{
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2131 int ret;
2132
2133 if (seqno == 0)
2134 return -EINVAL;
2135
2136 /* HWS page needs to be set less than what we
2137 * will inject to ring
2138 */
2139 ret = i915_gem_init_seqno(dev, seqno - 1);
2140 if (ret)
2141 return ret;
2142
2143 /* Carefully set the last_seqno value so that wrap
2144 * detection still works
2145 */
2146 dev_priv->next_seqno = seqno;
2147 dev_priv->last_seqno = seqno - 1;
2148 if (dev_priv->last_seqno == 0)
2149 dev_priv->last_seqno--;
2150
2151 return 0;
2152}
2153
9d773091
CW
2154int
2155i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2156{
9d773091
CW
2157 struct drm_i915_private *dev_priv = dev->dev_private;
2158
2159 /* reserve 0 for non-seqno */
2160 if (dev_priv->next_seqno == 0) {
fca26bb4 2161 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2162 if (ret)
2163 return ret;
53d227f2 2164
9d773091
CW
2165 dev_priv->next_seqno = 1;
2166 }
53d227f2 2167
f72b3435 2168 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2169 return 0;
53d227f2
DV
2170}
2171
0025c077
MK
2172int __i915_add_request(struct intel_ring_buffer *ring,
2173 struct drm_file *file,
7d736f4f 2174 struct drm_i915_gem_object *obj,
0025c077 2175 u32 *out_seqno)
673a394b 2176{
3e31c6c0 2177 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2178 struct drm_i915_gem_request *request;
7d736f4f 2179 u32 request_ring_position, request_start;
3cce469c
CW
2180 int ret;
2181
7d736f4f 2182 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2183 /*
2184 * Emit any outstanding flushes - execbuf can fail to emit the flush
2185 * after having emitted the batchbuffer command. Hence we need to fix
2186 * things up similar to emitting the lazy request. The difference here
2187 * is that the flush _must_ happen before the next request, no matter
2188 * what.
2189 */
a7b9761d
CW
2190 ret = intel_ring_flush_all_caches(ring);
2191 if (ret)
2192 return ret;
cc889e0f 2193
3c0e234c
CW
2194 request = ring->preallocated_lazy_request;
2195 if (WARN_ON(request == NULL))
acb868d3 2196 return -ENOMEM;
cc889e0f 2197
a71d8d94
CW
2198 /* Record the position of the start of the request so that
2199 * should we detect the updated seqno part-way through the
2200 * GPU processing the request, we never over-estimate the
2201 * position of the head.
2202 */
2203 request_ring_position = intel_ring_get_tail(ring);
2204
9d773091 2205 ret = ring->add_request(ring);
3c0e234c 2206 if (ret)
3bb73aba 2207 return ret;
673a394b 2208
9d773091 2209 request->seqno = intel_ring_get_seqno(ring);
852835f3 2210 request->ring = ring;
7d736f4f 2211 request->head = request_start;
a71d8d94 2212 request->tail = request_ring_position;
7d736f4f
MK
2213
2214 /* Whilst this request exists, batch_obj will be on the
2215 * active_list, and so will hold the active reference. Only when this
2216 * request is retired will the the batch_obj be moved onto the
2217 * inactive_list and lose its active reference. Hence we do not need
2218 * to explicitly hold another reference here.
2219 */
9a7e0c2a 2220 request->batch_obj = obj;
0e50e96b 2221
9a7e0c2a
CW
2222 /* Hold a reference to the current context so that we can inspect
2223 * it later in case a hangcheck error event fires.
2224 */
2225 request->ctx = ring->last_context;
0e50e96b
MK
2226 if (request->ctx)
2227 i915_gem_context_reference(request->ctx);
2228
673a394b 2229 request->emitted_jiffies = jiffies;
852835f3 2230 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2231 request->file_priv = NULL;
852835f3 2232
db53a302
CW
2233 if (file) {
2234 struct drm_i915_file_private *file_priv = file->driver_priv;
2235
1c25595f 2236 spin_lock(&file_priv->mm.lock);
f787a5f5 2237 request->file_priv = file_priv;
b962442e 2238 list_add_tail(&request->client_list,
f787a5f5 2239 &file_priv->mm.request_list);
1c25595f 2240 spin_unlock(&file_priv->mm.lock);
b962442e 2241 }
673a394b 2242
9d773091 2243 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2244 ring->outstanding_lazy_seqno = 0;
3c0e234c 2245 ring->preallocated_lazy_request = NULL;
db53a302 2246
db1b76ca 2247 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2248 i915_queue_hangcheck(ring->dev);
2249
f62a0076
CW
2250 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2251 queue_delayed_work(dev_priv->wq,
2252 &dev_priv->mm.retire_work,
2253 round_jiffies_up_relative(HZ));
2254 intel_mark_busy(dev_priv->dev);
f65d9421 2255 }
cc889e0f 2256
acb868d3 2257 if (out_seqno)
9d773091 2258 *out_seqno = request->seqno;
3cce469c 2259 return 0;
673a394b
EA
2260}
2261
f787a5f5
CW
2262static inline void
2263i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2264{
1c25595f 2265 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2266
1c25595f
CW
2267 if (!file_priv)
2268 return;
1c5d22f7 2269
1c25595f 2270 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2271 list_del(&request->client_list);
2272 request->file_priv = NULL;
1c25595f 2273 spin_unlock(&file_priv->mm.lock);
673a394b 2274}
673a394b 2275
939fd762 2276static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
44e2c070 2277 const struct i915_hw_context *ctx)
be62acb4 2278{
44e2c070 2279 unsigned long elapsed;
be62acb4 2280
44e2c070
MK
2281 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2282
2283 if (ctx->hang_stats.banned)
be62acb4
MK
2284 return true;
2285
2286 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2287 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2288 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2289 return true;
88b4aa87
MK
2290 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2291 if (i915_stop_ring_allow_warn(dev_priv))
2292 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2293 return true;
3fac8978 2294 }
be62acb4
MK
2295 }
2296
2297 return false;
2298}
2299
939fd762
MK
2300static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2301 struct i915_hw_context *ctx,
b6b0fac0 2302 const bool guilty)
aa60c664 2303{
44e2c070
MK
2304 struct i915_ctx_hang_stats *hs;
2305
2306 if (WARN_ON(!ctx))
2307 return;
aa60c664 2308
44e2c070
MK
2309 hs = &ctx->hang_stats;
2310
2311 if (guilty) {
939fd762 2312 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2313 hs->batch_active++;
2314 hs->guilty_ts = get_seconds();
2315 } else {
2316 hs->batch_pending++;
aa60c664
MK
2317 }
2318}
2319
0e50e96b
MK
2320static void i915_gem_free_request(struct drm_i915_gem_request *request)
2321{
2322 list_del(&request->list);
2323 i915_gem_request_remove_from_client(request);
2324
2325 if (request->ctx)
2326 i915_gem_context_unreference(request->ctx);
2327
2328 kfree(request);
2329}
2330
8d9fc7fd
CW
2331struct drm_i915_gem_request *
2332i915_gem_find_active_request(struct intel_ring_buffer *ring)
9375e446 2333{
4db080f9 2334 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2335 u32 completed_seqno;
2336
2337 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2338
2339 list_for_each_entry(request, &ring->request_list, list) {
2340 if (i915_seqno_passed(completed_seqno, request->seqno))
2341 continue;
aa60c664 2342
b6b0fac0 2343 return request;
4db080f9 2344 }
b6b0fac0
MK
2345
2346 return NULL;
2347}
2348
2349static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2350 struct intel_ring_buffer *ring)
2351{
2352 struct drm_i915_gem_request *request;
2353 bool ring_hung;
2354
8d9fc7fd 2355 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2356
2357 if (request == NULL)
2358 return;
2359
2360 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2361
939fd762 2362 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2363
2364 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2365 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2366}
aa60c664 2367
4db080f9
CW
2368static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2369 struct intel_ring_buffer *ring)
2370{
dfaae392 2371 while (!list_empty(&ring->active_list)) {
05394f39 2372 struct drm_i915_gem_object *obj;
9375e446 2373
05394f39
CW
2374 obj = list_first_entry(&ring->active_list,
2375 struct drm_i915_gem_object,
2376 ring_list);
9375e446 2377
05394f39 2378 i915_gem_object_move_to_inactive(obj);
673a394b 2379 }
1d62beea
BW
2380
2381 /*
2382 * We must free the requests after all the corresponding objects have
2383 * been moved off active lists. Which is the same order as the normal
2384 * retire_requests function does. This is important if object hold
2385 * implicit references on things like e.g. ppgtt address spaces through
2386 * the request.
2387 */
2388 while (!list_empty(&ring->request_list)) {
2389 struct drm_i915_gem_request *request;
2390
2391 request = list_first_entry(&ring->request_list,
2392 struct drm_i915_gem_request,
2393 list);
2394
2395 i915_gem_free_request(request);
2396 }
e3efda49
CW
2397
2398 /* These may not have been flush before the reset, do so now */
2399 kfree(ring->preallocated_lazy_request);
2400 ring->preallocated_lazy_request = NULL;
2401 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2402}
2403
19b2dbde 2404void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2405{
2406 struct drm_i915_private *dev_priv = dev->dev_private;
2407 int i;
2408
4b9de737 2409 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2410 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2411
94a335db
DV
2412 /*
2413 * Commit delayed tiling changes if we have an object still
2414 * attached to the fence, otherwise just clear the fence.
2415 */
2416 if (reg->obj) {
2417 i915_gem_object_update_fence(reg->obj, reg,
2418 reg->obj->tiling_mode);
2419 } else {
2420 i915_gem_write_fence(dev, i, NULL);
2421 }
312817a3
CW
2422 }
2423}
2424
069efc1d 2425void i915_gem_reset(struct drm_device *dev)
673a394b 2426{
77f01230 2427 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2428 struct intel_ring_buffer *ring;
1ec14ad3 2429 int i;
673a394b 2430
4db080f9
CW
2431 /*
2432 * Before we free the objects from the requests, we need to inspect
2433 * them for finding the guilty party. As the requests only borrow
2434 * their reference to the objects, the inspection must be done first.
2435 */
2436 for_each_ring(ring, dev_priv, i)
2437 i915_gem_reset_ring_status(dev_priv, ring);
2438
b4519513 2439 for_each_ring(ring, dev_priv, i)
4db080f9 2440 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2441
acce9ffa
BW
2442 i915_gem_context_reset(dev);
2443
19b2dbde 2444 i915_gem_restore_fences(dev);
673a394b
EA
2445}
2446
2447/**
2448 * This function clears the request list as sequence numbers are passed.
2449 */
1cf0ba14 2450void
db53a302 2451i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2452{
673a394b
EA
2453 uint32_t seqno;
2454
db53a302 2455 if (list_empty(&ring->request_list))
6c0594a3
KW
2456 return;
2457
db53a302 2458 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2459
b2eadbc8 2460 seqno = ring->get_seqno(ring, true);
1ec14ad3 2461
e9103038
CW
2462 /* Move any buffers on the active list that are no longer referenced
2463 * by the ringbuffer to the flushing/inactive lists as appropriate,
2464 * before we free the context associated with the requests.
2465 */
2466 while (!list_empty(&ring->active_list)) {
2467 struct drm_i915_gem_object *obj;
2468
2469 obj = list_first_entry(&ring->active_list,
2470 struct drm_i915_gem_object,
2471 ring_list);
2472
2473 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2474 break;
2475
2476 i915_gem_object_move_to_inactive(obj);
2477 }
2478
2479
852835f3 2480 while (!list_empty(&ring->request_list)) {
673a394b 2481 struct drm_i915_gem_request *request;
673a394b 2482
852835f3 2483 request = list_first_entry(&ring->request_list,
673a394b
EA
2484 struct drm_i915_gem_request,
2485 list);
673a394b 2486
dfaae392 2487 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2488 break;
2489
db53a302 2490 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2491 /* We know the GPU must have read the request to have
2492 * sent us the seqno + interrupt, so use the position
2493 * of tail of the request to update the last known position
2494 * of the GPU head.
2495 */
2496 ring->last_retired_head = request->tail;
b84d5f0c 2497
0e50e96b 2498 i915_gem_free_request(request);
b84d5f0c 2499 }
673a394b 2500
db53a302
CW
2501 if (unlikely(ring->trace_irq_seqno &&
2502 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2503 ring->irq_put(ring);
db53a302 2504 ring->trace_irq_seqno = 0;
9d34e5db 2505 }
23bc5982 2506
db53a302 2507 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2508}
2509
b29c19b6 2510bool
b09a1fec
CW
2511i915_gem_retire_requests(struct drm_device *dev)
2512{
3e31c6c0 2513 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2514 struct intel_ring_buffer *ring;
b29c19b6 2515 bool idle = true;
1ec14ad3 2516 int i;
b09a1fec 2517
b29c19b6 2518 for_each_ring(ring, dev_priv, i) {
b4519513 2519 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2520 idle &= list_empty(&ring->request_list);
2521 }
2522
2523 if (idle)
2524 mod_delayed_work(dev_priv->wq,
2525 &dev_priv->mm.idle_work,
2526 msecs_to_jiffies(100));
2527
2528 return idle;
b09a1fec
CW
2529}
2530
75ef9da2 2531static void
673a394b
EA
2532i915_gem_retire_work_handler(struct work_struct *work)
2533{
b29c19b6
CW
2534 struct drm_i915_private *dev_priv =
2535 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2536 struct drm_device *dev = dev_priv->dev;
0a58705b 2537 bool idle;
673a394b 2538
891b48cf 2539 /* Come back later if the device is busy... */
b29c19b6
CW
2540 idle = false;
2541 if (mutex_trylock(&dev->struct_mutex)) {
2542 idle = i915_gem_retire_requests(dev);
2543 mutex_unlock(&dev->struct_mutex);
673a394b 2544 }
b29c19b6 2545 if (!idle)
bcb45086
CW
2546 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2547 round_jiffies_up_relative(HZ));
b29c19b6 2548}
0a58705b 2549
b29c19b6
CW
2550static void
2551i915_gem_idle_work_handler(struct work_struct *work)
2552{
2553 struct drm_i915_private *dev_priv =
2554 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2555
2556 intel_mark_idle(dev_priv->dev);
673a394b
EA
2557}
2558
30dfebf3
DV
2559/**
2560 * Ensures that an object will eventually get non-busy by flushing any required
2561 * write domains, emitting any outstanding lazy request and retiring and
2562 * completed requests.
2563 */
2564static int
2565i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2566{
2567 int ret;
2568
2569 if (obj->active) {
0201f1ec 2570 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2571 if (ret)
2572 return ret;
2573
30dfebf3
DV
2574 i915_gem_retire_requests_ring(obj->ring);
2575 }
2576
2577 return 0;
2578}
2579
23ba4fd0
BW
2580/**
2581 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2582 * @DRM_IOCTL_ARGS: standard ioctl arguments
2583 *
2584 * Returns 0 if successful, else an error is returned with the remaining time in
2585 * the timeout parameter.
2586 * -ETIME: object is still busy after timeout
2587 * -ERESTARTSYS: signal interrupted the wait
2588 * -ENONENT: object doesn't exist
2589 * Also possible, but rare:
2590 * -EAGAIN: GPU wedged
2591 * -ENOMEM: damn
2592 * -ENODEV: Internal IRQ fail
2593 * -E?: The add request failed
2594 *
2595 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2596 * non-zero timeout parameter the wait ioctl will wait for the given number of
2597 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2598 * without holding struct_mutex the object may become re-busied before this
2599 * function completes. A similar but shorter * race condition exists in the busy
2600 * ioctl
2601 */
2602int
2603i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2604{
3e31c6c0 2605 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2606 struct drm_i915_gem_wait *args = data;
2607 struct drm_i915_gem_object *obj;
2608 struct intel_ring_buffer *ring = NULL;
eac1f14f 2609 struct timespec timeout_stack, *timeout = NULL;
f69061be 2610 unsigned reset_counter;
23ba4fd0
BW
2611 u32 seqno = 0;
2612 int ret = 0;
2613
eac1f14f
BW
2614 if (args->timeout_ns >= 0) {
2615 timeout_stack = ns_to_timespec(args->timeout_ns);
2616 timeout = &timeout_stack;
2617 }
23ba4fd0
BW
2618
2619 ret = i915_mutex_lock_interruptible(dev);
2620 if (ret)
2621 return ret;
2622
2623 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2624 if (&obj->base == NULL) {
2625 mutex_unlock(&dev->struct_mutex);
2626 return -ENOENT;
2627 }
2628
30dfebf3
DV
2629 /* Need to make sure the object gets inactive eventually. */
2630 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2631 if (ret)
2632 goto out;
2633
2634 if (obj->active) {
0201f1ec 2635 seqno = obj->last_read_seqno;
23ba4fd0
BW
2636 ring = obj->ring;
2637 }
2638
2639 if (seqno == 0)
2640 goto out;
2641
23ba4fd0
BW
2642 /* Do this after OLR check to make sure we make forward progress polling
2643 * on this IOCTL with a 0 timeout (like busy ioctl)
2644 */
2645 if (!args->timeout_ns) {
2646 ret = -ETIME;
2647 goto out;
2648 }
2649
2650 drm_gem_object_unreference(&obj->base);
f69061be 2651 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2652 mutex_unlock(&dev->struct_mutex);
2653
b29c19b6 2654 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2655 if (timeout)
eac1f14f 2656 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2657 return ret;
2658
2659out:
2660 drm_gem_object_unreference(&obj->base);
2661 mutex_unlock(&dev->struct_mutex);
2662 return ret;
2663}
2664
5816d648
BW
2665/**
2666 * i915_gem_object_sync - sync an object to a ring.
2667 *
2668 * @obj: object which may be in use on another ring.
2669 * @to: ring we wish to use the object on. May be NULL.
2670 *
2671 * This code is meant to abstract object synchronization with the GPU.
2672 * Calling with NULL implies synchronizing the object with the CPU
2673 * rather than a particular GPU ring.
2674 *
2675 * Returns 0 if successful, else propagates up the lower layer error.
2676 */
2911a35b
BW
2677int
2678i915_gem_object_sync(struct drm_i915_gem_object *obj,
2679 struct intel_ring_buffer *to)
2680{
2681 struct intel_ring_buffer *from = obj->ring;
2682 u32 seqno;
2683 int ret, idx;
2684
2685 if (from == NULL || to == from)
2686 return 0;
2687
5816d648 2688 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2689 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2690
2691 idx = intel_ring_sync_index(from, to);
2692
0201f1ec 2693 seqno = obj->last_read_seqno;
ebc348b2 2694 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2695 return 0;
2696
b4aca010
BW
2697 ret = i915_gem_check_olr(obj->ring, seqno);
2698 if (ret)
2699 return ret;
2911a35b 2700
b52b89da 2701 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2702 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2703 if (!ret)
7b01e260
MK
2704 /* We use last_read_seqno because sync_to()
2705 * might have just caused seqno wrap under
2706 * the radar.
2707 */
ebc348b2 2708 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2709
e3a5a225 2710 return ret;
2911a35b
BW
2711}
2712
b5ffc9bc
CW
2713static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2714{
2715 u32 old_write_domain, old_read_domains;
2716
b5ffc9bc
CW
2717 /* Force a pagefault for domain tracking on next user access */
2718 i915_gem_release_mmap(obj);
2719
b97c3d9c
KP
2720 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2721 return;
2722
97c809fd
CW
2723 /* Wait for any direct GTT access to complete */
2724 mb();
2725
b5ffc9bc
CW
2726 old_read_domains = obj->base.read_domains;
2727 old_write_domain = obj->base.write_domain;
2728
2729 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2730 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2731
2732 trace_i915_gem_object_change_domain(obj,
2733 old_read_domains,
2734 old_write_domain);
2735}
2736
07fe0b12 2737int i915_vma_unbind(struct i915_vma *vma)
673a394b 2738{
07fe0b12 2739 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2740 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2741 int ret;
673a394b 2742
07fe0b12 2743 if (list_empty(&vma->vma_link))
673a394b
EA
2744 return 0;
2745
0ff501cb
DV
2746 if (!drm_mm_node_allocated(&vma->node)) {
2747 i915_gem_vma_destroy(vma);
0ff501cb
DV
2748 return 0;
2749 }
433544bd 2750
d7f46fc4 2751 if (vma->pin_count)
31d8d651 2752 return -EBUSY;
673a394b 2753
c4670ad0
CW
2754 BUG_ON(obj->pages == NULL);
2755
a8198eea 2756 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2757 if (ret)
a8198eea
CW
2758 return ret;
2759 /* Continue on if we fail due to EIO, the GPU is hung so we
2760 * should be safe and we need to cleanup or else we might
2761 * cause memory corruption through use-after-free.
2762 */
2763
8b1bc9b4
DV
2764 if (i915_is_ggtt(vma->vm)) {
2765 i915_gem_object_finish_gtt(obj);
5323fd04 2766
8b1bc9b4
DV
2767 /* release the fence reg _after_ flushing */
2768 ret = i915_gem_object_put_fence(obj);
2769 if (ret)
2770 return ret;
2771 }
96b47b65 2772
07fe0b12 2773 trace_i915_vma_unbind(vma);
db53a302 2774
6f65e29a
BW
2775 vma->unbind_vma(vma);
2776
74163907 2777 i915_gem_gtt_finish_object(obj);
7bddb01f 2778
64bf9303 2779 list_del_init(&vma->mm_list);
75e9e915 2780 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2781 if (i915_is_ggtt(vma->vm))
2782 obj->map_and_fenceable = true;
673a394b 2783
2f633156
BW
2784 drm_mm_remove_node(&vma->node);
2785 i915_gem_vma_destroy(vma);
2786
2787 /* Since the unbound list is global, only move to that list if
b93dab6e 2788 * no more VMAs exist. */
2f633156
BW
2789 if (list_empty(&obj->vma_list))
2790 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2791
70903c3b
CW
2792 /* And finally now the object is completely decoupled from this vma,
2793 * we can drop its hold on the backing storage and allow it to be
2794 * reaped by the shrinker.
2795 */
2796 i915_gem_object_unpin_pages(obj);
2797
88241785 2798 return 0;
54cf91dc
CW
2799}
2800
b2da9fe5 2801int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2802{
3e31c6c0 2803 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2804 struct intel_ring_buffer *ring;
1ec14ad3 2805 int ret, i;
4df2faf4 2806
4df2faf4 2807 /* Flush everything onto the inactive list. */
b4519513 2808 for_each_ring(ring, dev_priv, i) {
691e6415 2809 ret = i915_switch_context(ring, ring->default_context);
b6c7488d
BW
2810 if (ret)
2811 return ret;
2812
3e960501 2813 ret = intel_ring_idle(ring);
1ec14ad3
CW
2814 if (ret)
2815 return ret;
2816 }
4df2faf4 2817
8a1a49f9 2818 return 0;
4df2faf4
DV
2819}
2820
9ce079e4
CW
2821static void i965_write_fence_reg(struct drm_device *dev, int reg,
2822 struct drm_i915_gem_object *obj)
de151cf6 2823{
3e31c6c0 2824 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
2825 int fence_reg;
2826 int fence_pitch_shift;
de151cf6 2827
56c844e5
ID
2828 if (INTEL_INFO(dev)->gen >= 6) {
2829 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2830 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2831 } else {
2832 fence_reg = FENCE_REG_965_0;
2833 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2834 }
2835
d18b9619
CW
2836 fence_reg += reg * 8;
2837
2838 /* To w/a incoherency with non-atomic 64-bit register updates,
2839 * we split the 64-bit update into two 32-bit writes. In order
2840 * for a partial fence not to be evaluated between writes, we
2841 * precede the update with write to turn off the fence register,
2842 * and only enable the fence as the last step.
2843 *
2844 * For extra levels of paranoia, we make sure each step lands
2845 * before applying the next step.
2846 */
2847 I915_WRITE(fence_reg, 0);
2848 POSTING_READ(fence_reg);
2849
9ce079e4 2850 if (obj) {
f343c5f6 2851 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2852 uint64_t val;
de151cf6 2853
f343c5f6 2854 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2855 0xfffff000) << 32;
f343c5f6 2856 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2857 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2858 if (obj->tiling_mode == I915_TILING_Y)
2859 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2860 val |= I965_FENCE_REG_VALID;
c6642782 2861
d18b9619
CW
2862 I915_WRITE(fence_reg + 4, val >> 32);
2863 POSTING_READ(fence_reg + 4);
2864
2865 I915_WRITE(fence_reg + 0, val);
2866 POSTING_READ(fence_reg);
2867 } else {
2868 I915_WRITE(fence_reg + 4, 0);
2869 POSTING_READ(fence_reg + 4);
2870 }
de151cf6
JB
2871}
2872
9ce079e4
CW
2873static void i915_write_fence_reg(struct drm_device *dev, int reg,
2874 struct drm_i915_gem_object *obj)
de151cf6 2875{
3e31c6c0 2876 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 2877 u32 val;
de151cf6 2878
9ce079e4 2879 if (obj) {
f343c5f6 2880 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2881 int pitch_val;
2882 int tile_width;
c6642782 2883
f343c5f6 2884 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2885 (size & -size) != size ||
f343c5f6
BW
2886 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2887 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2888 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2889
9ce079e4
CW
2890 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2891 tile_width = 128;
2892 else
2893 tile_width = 512;
2894
2895 /* Note: pitch better be a power of two tile widths */
2896 pitch_val = obj->stride / tile_width;
2897 pitch_val = ffs(pitch_val) - 1;
2898
f343c5f6 2899 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2900 if (obj->tiling_mode == I915_TILING_Y)
2901 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2902 val |= I915_FENCE_SIZE_BITS(size);
2903 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2904 val |= I830_FENCE_REG_VALID;
2905 } else
2906 val = 0;
2907
2908 if (reg < 8)
2909 reg = FENCE_REG_830_0 + reg * 4;
2910 else
2911 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2912
2913 I915_WRITE(reg, val);
2914 POSTING_READ(reg);
de151cf6
JB
2915}
2916
9ce079e4
CW
2917static void i830_write_fence_reg(struct drm_device *dev, int reg,
2918 struct drm_i915_gem_object *obj)
de151cf6 2919{
3e31c6c0 2920 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 2921 uint32_t val;
de151cf6 2922
9ce079e4 2923 if (obj) {
f343c5f6 2924 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2925 uint32_t pitch_val;
de151cf6 2926
f343c5f6 2927 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2928 (size & -size) != size ||
f343c5f6
BW
2929 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2930 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2931 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2932
9ce079e4
CW
2933 pitch_val = obj->stride / 128;
2934 pitch_val = ffs(pitch_val) - 1;
de151cf6 2935
f343c5f6 2936 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2937 if (obj->tiling_mode == I915_TILING_Y)
2938 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2939 val |= I830_FENCE_SIZE_BITS(size);
2940 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2941 val |= I830_FENCE_REG_VALID;
2942 } else
2943 val = 0;
c6642782 2944
9ce079e4
CW
2945 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2946 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2947}
2948
d0a57789
CW
2949inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2950{
2951 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2952}
2953
9ce079e4
CW
2954static void i915_gem_write_fence(struct drm_device *dev, int reg,
2955 struct drm_i915_gem_object *obj)
2956{
d0a57789
CW
2957 struct drm_i915_private *dev_priv = dev->dev_private;
2958
2959 /* Ensure that all CPU reads are completed before installing a fence
2960 * and all writes before removing the fence.
2961 */
2962 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2963 mb();
2964
94a335db
DV
2965 WARN(obj && (!obj->stride || !obj->tiling_mode),
2966 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2967 obj->stride, obj->tiling_mode);
2968
9ce079e4 2969 switch (INTEL_INFO(dev)->gen) {
5ab31333 2970 case 8:
9ce079e4 2971 case 7:
56c844e5 2972 case 6:
9ce079e4
CW
2973 case 5:
2974 case 4: i965_write_fence_reg(dev, reg, obj); break;
2975 case 3: i915_write_fence_reg(dev, reg, obj); break;
2976 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2977 default: BUG();
9ce079e4 2978 }
d0a57789
CW
2979
2980 /* And similarly be paranoid that no direct access to this region
2981 * is reordered to before the fence is installed.
2982 */
2983 if (i915_gem_object_needs_mb(obj))
2984 mb();
de151cf6
JB
2985}
2986
61050808
CW
2987static inline int fence_number(struct drm_i915_private *dev_priv,
2988 struct drm_i915_fence_reg *fence)
2989{
2990 return fence - dev_priv->fence_regs;
2991}
2992
2993static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2994 struct drm_i915_fence_reg *fence,
2995 bool enable)
2996{
2dc8aae0 2997 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2998 int reg = fence_number(dev_priv, fence);
2999
3000 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3001
3002 if (enable) {
46a0b638 3003 obj->fence_reg = reg;
61050808
CW
3004 fence->obj = obj;
3005 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3006 } else {
3007 obj->fence_reg = I915_FENCE_REG_NONE;
3008 fence->obj = NULL;
3009 list_del_init(&fence->lru_list);
3010 }
94a335db 3011 obj->fence_dirty = false;
61050808
CW
3012}
3013
d9e86c0e 3014static int
d0a57789 3015i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3016{
1c293ea3 3017 if (obj->last_fenced_seqno) {
86d5bc37 3018 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3019 if (ret)
3020 return ret;
d9e86c0e
CW
3021
3022 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3023 }
3024
86d5bc37 3025 obj->fenced_gpu_access = false;
d9e86c0e
CW
3026 return 0;
3027}
3028
3029int
3030i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3031{
61050808 3032 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3033 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3034 int ret;
3035
d0a57789 3036 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3037 if (ret)
3038 return ret;
3039
61050808
CW
3040 if (obj->fence_reg == I915_FENCE_REG_NONE)
3041 return 0;
d9e86c0e 3042
f9c513e9
CW
3043 fence = &dev_priv->fence_regs[obj->fence_reg];
3044
aff10b30
DV
3045 if (WARN_ON(fence->pin_count))
3046 return -EBUSY;
3047
61050808 3048 i915_gem_object_fence_lost(obj);
f9c513e9 3049 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3050
3051 return 0;
3052}
3053
3054static struct drm_i915_fence_reg *
a360bb1a 3055i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3056{
ae3db24a 3057 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3058 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3059 int i;
ae3db24a
DV
3060
3061 /* First try to find a free reg */
d9e86c0e 3062 avail = NULL;
ae3db24a
DV
3063 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3064 reg = &dev_priv->fence_regs[i];
3065 if (!reg->obj)
d9e86c0e 3066 return reg;
ae3db24a 3067
1690e1eb 3068 if (!reg->pin_count)
d9e86c0e 3069 avail = reg;
ae3db24a
DV
3070 }
3071
d9e86c0e 3072 if (avail == NULL)
5dce5b93 3073 goto deadlock;
ae3db24a
DV
3074
3075 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3076 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3077 if (reg->pin_count)
ae3db24a
DV
3078 continue;
3079
8fe301ad 3080 return reg;
ae3db24a
DV
3081 }
3082
5dce5b93
CW
3083deadlock:
3084 /* Wait for completion of pending flips which consume fences */
3085 if (intel_has_pending_fb_unpin(dev))
3086 return ERR_PTR(-EAGAIN);
3087
3088 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3089}
3090
de151cf6 3091/**
9a5a53b3 3092 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3093 * @obj: object to map through a fence reg
3094 *
3095 * When mapping objects through the GTT, userspace wants to be able to write
3096 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3097 * This function walks the fence regs looking for a free one for @obj,
3098 * stealing one if it can't find any.
3099 *
3100 * It then sets up the reg based on the object's properties: address, pitch
3101 * and tiling format.
9a5a53b3
CW
3102 *
3103 * For an untiled surface, this removes any existing fence.
de151cf6 3104 */
8c4b8c3f 3105int
06d98131 3106i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3107{
05394f39 3108 struct drm_device *dev = obj->base.dev;
79e53945 3109 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3110 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3111 struct drm_i915_fence_reg *reg;
ae3db24a 3112 int ret;
de151cf6 3113
14415745
CW
3114 /* Have we updated the tiling parameters upon the object and so
3115 * will need to serialise the write to the associated fence register?
3116 */
5d82e3e6 3117 if (obj->fence_dirty) {
d0a57789 3118 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3119 if (ret)
3120 return ret;
3121 }
9a5a53b3 3122
d9e86c0e 3123 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3124 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3125 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3126 if (!obj->fence_dirty) {
14415745
CW
3127 list_move_tail(&reg->lru_list,
3128 &dev_priv->mm.fence_list);
3129 return 0;
3130 }
3131 } else if (enable) {
3132 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3133 if (IS_ERR(reg))
3134 return PTR_ERR(reg);
d9e86c0e 3135
14415745
CW
3136 if (reg->obj) {
3137 struct drm_i915_gem_object *old = reg->obj;
3138
d0a57789 3139 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3140 if (ret)
3141 return ret;
3142
14415745 3143 i915_gem_object_fence_lost(old);
29c5a587 3144 }
14415745 3145 } else
a09ba7fa 3146 return 0;
a09ba7fa 3147
14415745 3148 i915_gem_object_update_fence(obj, reg, enable);
14415745 3149
9ce079e4 3150 return 0;
de151cf6
JB
3151}
3152
42d6ab48
CW
3153static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3154 struct drm_mm_node *gtt_space,
3155 unsigned long cache_level)
3156{
3157 struct drm_mm_node *other;
3158
3159 /* On non-LLC machines we have to be careful when putting differing
3160 * types of snoopable memory together to avoid the prefetcher
4239ca77 3161 * crossing memory domains and dying.
42d6ab48
CW
3162 */
3163 if (HAS_LLC(dev))
3164 return true;
3165
c6cfb325 3166 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3167 return true;
3168
3169 if (list_empty(&gtt_space->node_list))
3170 return true;
3171
3172 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3173 if (other->allocated && !other->hole_follows && other->color != cache_level)
3174 return false;
3175
3176 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3177 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3178 return false;
3179
3180 return true;
3181}
3182
3183static void i915_gem_verify_gtt(struct drm_device *dev)
3184{
3185#if WATCH_GTT
3186 struct drm_i915_private *dev_priv = dev->dev_private;
3187 struct drm_i915_gem_object *obj;
3188 int err = 0;
3189
35c20a60 3190 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3191 if (obj->gtt_space == NULL) {
3192 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3193 err++;
3194 continue;
3195 }
3196
3197 if (obj->cache_level != obj->gtt_space->color) {
3198 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3199 i915_gem_obj_ggtt_offset(obj),
3200 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3201 obj->cache_level,
3202 obj->gtt_space->color);
3203 err++;
3204 continue;
3205 }
3206
3207 if (!i915_gem_valid_gtt_space(dev,
3208 obj->gtt_space,
3209 obj->cache_level)) {
3210 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3211 i915_gem_obj_ggtt_offset(obj),
3212 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3213 obj->cache_level);
3214 err++;
3215 continue;
3216 }
3217 }
3218
3219 WARN_ON(err);
3220#endif
3221}
3222
673a394b
EA
3223/**
3224 * Finds free space in the GTT aperture and binds the object there.
3225 */
262de145 3226static struct i915_vma *
07fe0b12
BW
3227i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3228 struct i915_address_space *vm,
3229 unsigned alignment,
1ec9e26d 3230 unsigned flags)
673a394b 3231{
05394f39 3232 struct drm_device *dev = obj->base.dev;
3e31c6c0 3233 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3234 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12 3235 size_t gtt_max =
1ec9e26d 3236 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3237 struct i915_vma *vma;
07f73f69 3238 int ret;
673a394b 3239
e28f8711
CW
3240 fence_size = i915_gem_get_gtt_size(dev,
3241 obj->base.size,
3242 obj->tiling_mode);
3243 fence_alignment = i915_gem_get_gtt_alignment(dev,
3244 obj->base.size,
d865110c 3245 obj->tiling_mode, true);
e28f8711 3246 unfenced_alignment =
d865110c 3247 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3248 obj->base.size,
3249 obj->tiling_mode, false);
a00b10c3 3250
673a394b 3251 if (alignment == 0)
1ec9e26d 3252 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3253 unfenced_alignment;
1ec9e26d 3254 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3255 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3256 return ERR_PTR(-EINVAL);
673a394b
EA
3257 }
3258
1ec9e26d 3259 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3260
654fc607
CW
3261 /* If the object is bigger than the entire aperture, reject it early
3262 * before evicting everything in a vain attempt to find space.
3263 */
0a9ae0d7 3264 if (obj->base.size > gtt_max) {
bd9b6a4e 3265 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb 3266 obj->base.size,
1ec9e26d 3267 flags & PIN_MAPPABLE ? "mappable" : "total",
0a9ae0d7 3268 gtt_max);
262de145 3269 return ERR_PTR(-E2BIG);
654fc607
CW
3270 }
3271
37e680a1 3272 ret = i915_gem_object_get_pages(obj);
6c085a72 3273 if (ret)
262de145 3274 return ERR_PTR(ret);
6c085a72 3275
fbdda6fb
CW
3276 i915_gem_object_pin_pages(obj);
3277
accfef2e 3278 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3279 if (IS_ERR(vma))
bc6bc15b 3280 goto err_unpin;
2f633156 3281
0a9ae0d7 3282search_free:
07fe0b12 3283 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3284 size, alignment,
31e5d7c6 3285 obj->cache_level, 0, gtt_max,
62347f9e
LK
3286 DRM_MM_SEARCH_DEFAULT,
3287 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3288 if (ret) {
f6cd1f15 3289 ret = i915_gem_evict_something(dev, vm, size, alignment,
1ec9e26d 3290 obj->cache_level, flags);
dc9dd7a2
CW
3291 if (ret == 0)
3292 goto search_free;
9731129c 3293
bc6bc15b 3294 goto err_free_vma;
673a394b 3295 }
2f633156 3296 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3297 obj->cache_level))) {
2f633156 3298 ret = -EINVAL;
bc6bc15b 3299 goto err_remove_node;
673a394b
EA
3300 }
3301
74163907 3302 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3303 if (ret)
bc6bc15b 3304 goto err_remove_node;
673a394b 3305
35c20a60 3306 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3307 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3308
4bd561b3
BW
3309 if (i915_is_ggtt(vm)) {
3310 bool mappable, fenceable;
a00b10c3 3311
49987099
DV
3312 fenceable = (vma->node.size == fence_size &&
3313 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3314
49987099
DV
3315 mappable = (vma->node.start + obj->base.size <=
3316 dev_priv->gtt.mappable_end);
a00b10c3 3317
5cacaac7 3318 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3319 }
75e9e915 3320
1ec9e26d 3321 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3322
1ec9e26d 3323 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3324 vma->bind_vma(vma, obj->cache_level,
3325 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3326
42d6ab48 3327 i915_gem_verify_gtt(dev);
262de145 3328 return vma;
2f633156 3329
bc6bc15b 3330err_remove_node:
6286ef9b 3331 drm_mm_remove_node(&vma->node);
bc6bc15b 3332err_free_vma:
2f633156 3333 i915_gem_vma_destroy(vma);
262de145 3334 vma = ERR_PTR(ret);
bc6bc15b 3335err_unpin:
2f633156 3336 i915_gem_object_unpin_pages(obj);
262de145 3337 return vma;
673a394b
EA
3338}
3339
000433b6 3340bool
2c22569b
CW
3341i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3342 bool force)
673a394b 3343{
673a394b
EA
3344 /* If we don't have a page list set up, then we're not pinned
3345 * to GPU, and we can ignore the cache flush because it'll happen
3346 * again at bind time.
3347 */
05394f39 3348 if (obj->pages == NULL)
000433b6 3349 return false;
673a394b 3350
769ce464
ID
3351 /*
3352 * Stolen memory is always coherent with the GPU as it is explicitly
3353 * marked as wc by the system, or the system is cache-coherent.
3354 */
3355 if (obj->stolen)
000433b6 3356 return false;
769ce464 3357
9c23f7fc
CW
3358 /* If the GPU is snooping the contents of the CPU cache,
3359 * we do not need to manually clear the CPU cache lines. However,
3360 * the caches are only snooped when the render cache is
3361 * flushed/invalidated. As we always have to emit invalidations
3362 * and flushes when moving into and out of the RENDER domain, correct
3363 * snooping behaviour occurs naturally as the result of our domain
3364 * tracking.
3365 */
2c22569b 3366 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3367 return false;
9c23f7fc 3368
1c5d22f7 3369 trace_i915_gem_object_clflush(obj);
9da3da66 3370 drm_clflush_sg(obj->pages);
000433b6
CW
3371
3372 return true;
e47c68e9
EA
3373}
3374
3375/** Flushes the GTT write domain for the object if it's dirty. */
3376static void
05394f39 3377i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3378{
1c5d22f7
CW
3379 uint32_t old_write_domain;
3380
05394f39 3381 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3382 return;
3383
63256ec5 3384 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3385 * to it immediately go to main memory as far as we know, so there's
3386 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3387 *
3388 * However, we do have to enforce the order so that all writes through
3389 * the GTT land before any writes to the device, such as updates to
3390 * the GATT itself.
e47c68e9 3391 */
63256ec5
CW
3392 wmb();
3393
05394f39
CW
3394 old_write_domain = obj->base.write_domain;
3395 obj->base.write_domain = 0;
1c5d22f7
CW
3396
3397 trace_i915_gem_object_change_domain(obj,
05394f39 3398 obj->base.read_domains,
1c5d22f7 3399 old_write_domain);
e47c68e9
EA
3400}
3401
3402/** Flushes the CPU write domain for the object if it's dirty. */
3403static void
2c22569b
CW
3404i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3405 bool force)
e47c68e9 3406{
1c5d22f7 3407 uint32_t old_write_domain;
e47c68e9 3408
05394f39 3409 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3410 return;
3411
000433b6
CW
3412 if (i915_gem_clflush_object(obj, force))
3413 i915_gem_chipset_flush(obj->base.dev);
3414
05394f39
CW
3415 old_write_domain = obj->base.write_domain;
3416 obj->base.write_domain = 0;
1c5d22f7
CW
3417
3418 trace_i915_gem_object_change_domain(obj,
05394f39 3419 obj->base.read_domains,
1c5d22f7 3420 old_write_domain);
e47c68e9
EA
3421}
3422
2ef7eeaa
EA
3423/**
3424 * Moves a single object to the GTT read, and possibly write domain.
3425 *
3426 * This function returns when the move is complete, including waiting on
3427 * flushes to occur.
3428 */
79e53945 3429int
2021746e 3430i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3431{
3e31c6c0 3432 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3433 uint32_t old_write_domain, old_read_domains;
e47c68e9 3434 int ret;
2ef7eeaa 3435
02354392 3436 /* Not valid to be called on unbound objects. */
9843877d 3437 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3438 return -EINVAL;
3439
8d7e3de1
CW
3440 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3441 return 0;
3442
0201f1ec 3443 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3444 if (ret)
3445 return ret;
3446
c8725f3d 3447 i915_gem_object_retire(obj);
2c22569b 3448 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3449
d0a57789
CW
3450 /* Serialise direct access to this object with the barriers for
3451 * coherent writes from the GPU, by effectively invalidating the
3452 * GTT domain upon first access.
3453 */
3454 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3455 mb();
3456
05394f39
CW
3457 old_write_domain = obj->base.write_domain;
3458 old_read_domains = obj->base.read_domains;
1c5d22f7 3459
e47c68e9
EA
3460 /* It should now be out of any other write domains, and we can update
3461 * the domain values for our changes.
3462 */
05394f39
CW
3463 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3464 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3465 if (write) {
05394f39
CW
3466 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3467 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3468 obj->dirty = 1;
2ef7eeaa
EA
3469 }
3470
1c5d22f7
CW
3471 trace_i915_gem_object_change_domain(obj,
3472 old_read_domains,
3473 old_write_domain);
3474
8325a09d 3475 /* And bump the LRU for this access */
ca191b13 3476 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3477 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3478 if (vma)
3479 list_move_tail(&vma->mm_list,
3480 &dev_priv->gtt.base.inactive_list);
3481
3482 }
8325a09d 3483
e47c68e9
EA
3484 return 0;
3485}
3486
e4ffd173
CW
3487int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3488 enum i915_cache_level cache_level)
3489{
7bddb01f 3490 struct drm_device *dev = obj->base.dev;
df6f783a 3491 struct i915_vma *vma, *next;
e4ffd173
CW
3492 int ret;
3493
3494 if (obj->cache_level == cache_level)
3495 return 0;
3496
d7f46fc4 3497 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3498 DRM_DEBUG("can not change the cache level of pinned objects\n");
3499 return -EBUSY;
3500 }
3501
df6f783a 3502 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3503 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3504 ret = i915_vma_unbind(vma);
3089c6f2
BW
3505 if (ret)
3506 return ret;
3089c6f2 3507 }
42d6ab48
CW
3508 }
3509
3089c6f2 3510 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3511 ret = i915_gem_object_finish_gpu(obj);
3512 if (ret)
3513 return ret;
3514
3515 i915_gem_object_finish_gtt(obj);
3516
3517 /* Before SandyBridge, you could not use tiling or fence
3518 * registers with snooped memory, so relinquish any fences
3519 * currently pointing to our region in the aperture.
3520 */
42d6ab48 3521 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3522 ret = i915_gem_object_put_fence(obj);
3523 if (ret)
3524 return ret;
3525 }
3526
6f65e29a 3527 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3528 if (drm_mm_node_allocated(&vma->node))
3529 vma->bind_vma(vma, cache_level,
3530 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3531 }
3532
2c22569b
CW
3533 list_for_each_entry(vma, &obj->vma_list, vma_link)
3534 vma->node.color = cache_level;
3535 obj->cache_level = cache_level;
3536
3537 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3538 u32 old_read_domains, old_write_domain;
3539
3540 /* If we're coming from LLC cached, then we haven't
3541 * actually been tracking whether the data is in the
3542 * CPU cache or not, since we only allow one bit set
3543 * in obj->write_domain and have been skipping the clflushes.
3544 * Just set it to the CPU cache for now.
3545 */
c8725f3d 3546 i915_gem_object_retire(obj);
e4ffd173 3547 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3548
3549 old_read_domains = obj->base.read_domains;
3550 old_write_domain = obj->base.write_domain;
3551
3552 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3553 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3554
3555 trace_i915_gem_object_change_domain(obj,
3556 old_read_domains,
3557 old_write_domain);
3558 }
3559
42d6ab48 3560 i915_gem_verify_gtt(dev);
e4ffd173
CW
3561 return 0;
3562}
3563
199adf40
BW
3564int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3565 struct drm_file *file)
e6994aee 3566{
199adf40 3567 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3568 struct drm_i915_gem_object *obj;
3569 int ret;
3570
3571 ret = i915_mutex_lock_interruptible(dev);
3572 if (ret)
3573 return ret;
3574
3575 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3576 if (&obj->base == NULL) {
3577 ret = -ENOENT;
3578 goto unlock;
3579 }
3580
651d794f
CW
3581 switch (obj->cache_level) {
3582 case I915_CACHE_LLC:
3583 case I915_CACHE_L3_LLC:
3584 args->caching = I915_CACHING_CACHED;
3585 break;
3586
4257d3ba
CW
3587 case I915_CACHE_WT:
3588 args->caching = I915_CACHING_DISPLAY;
3589 break;
3590
651d794f
CW
3591 default:
3592 args->caching = I915_CACHING_NONE;
3593 break;
3594 }
e6994aee
CW
3595
3596 drm_gem_object_unreference(&obj->base);
3597unlock:
3598 mutex_unlock(&dev->struct_mutex);
3599 return ret;
3600}
3601
199adf40
BW
3602int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3603 struct drm_file *file)
e6994aee 3604{
199adf40 3605 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3606 struct drm_i915_gem_object *obj;
3607 enum i915_cache_level level;
3608 int ret;
3609
199adf40
BW
3610 switch (args->caching) {
3611 case I915_CACHING_NONE:
e6994aee
CW
3612 level = I915_CACHE_NONE;
3613 break;
199adf40 3614 case I915_CACHING_CACHED:
e6994aee
CW
3615 level = I915_CACHE_LLC;
3616 break;
4257d3ba
CW
3617 case I915_CACHING_DISPLAY:
3618 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3619 break;
e6994aee
CW
3620 default:
3621 return -EINVAL;
3622 }
3623
3bc2913e
BW
3624 ret = i915_mutex_lock_interruptible(dev);
3625 if (ret)
3626 return ret;
3627
e6994aee
CW
3628 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3629 if (&obj->base == NULL) {
3630 ret = -ENOENT;
3631 goto unlock;
3632 }
3633
3634 ret = i915_gem_object_set_cache_level(obj, level);
3635
3636 drm_gem_object_unreference(&obj->base);
3637unlock:
3638 mutex_unlock(&dev->struct_mutex);
3639 return ret;
3640}
3641
cc98b413
CW
3642static bool is_pin_display(struct drm_i915_gem_object *obj)
3643{
19656430
OM
3644 struct i915_vma *vma;
3645
3646 if (list_empty(&obj->vma_list))
3647 return false;
3648
3649 vma = i915_gem_obj_to_ggtt(obj);
3650 if (!vma)
3651 return false;
3652
cc98b413
CW
3653 /* There are 3 sources that pin objects:
3654 * 1. The display engine (scanouts, sprites, cursors);
3655 * 2. Reservations for execbuffer;
3656 * 3. The user.
3657 *
3658 * We can ignore reservations as we hold the struct_mutex and
3659 * are only called outside of the reservation path. The user
3660 * can only increment pin_count once, and so if after
3661 * subtracting the potential reference by the user, any pin_count
3662 * remains, it must be due to another use by the display engine.
3663 */
19656430 3664 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3665}
3666
b9241ea3 3667/*
2da3b9b9
CW
3668 * Prepare buffer for display plane (scanout, cursors, etc).
3669 * Can be called from an uninterruptible phase (modesetting) and allows
3670 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3671 */
3672int
2da3b9b9
CW
3673i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3674 u32 alignment,
919926ae 3675 struct intel_ring_buffer *pipelined)
b9241ea3 3676{
2da3b9b9 3677 u32 old_read_domains, old_write_domain;
19656430 3678 bool was_pin_display;
b9241ea3
ZW
3679 int ret;
3680
0be73284 3681 if (pipelined != obj->ring) {
2911a35b
BW
3682 ret = i915_gem_object_sync(obj, pipelined);
3683 if (ret)
b9241ea3
ZW
3684 return ret;
3685 }
3686
cc98b413
CW
3687 /* Mark the pin_display early so that we account for the
3688 * display coherency whilst setting up the cache domains.
3689 */
19656430 3690 was_pin_display = obj->pin_display;
cc98b413
CW
3691 obj->pin_display = true;
3692
a7ef0640
EA
3693 /* The display engine is not coherent with the LLC cache on gen6. As
3694 * a result, we make sure that the pinning that is about to occur is
3695 * done with uncached PTEs. This is lowest common denominator for all
3696 * chipsets.
3697 *
3698 * However for gen6+, we could do better by using the GFDT bit instead
3699 * of uncaching, which would allow us to flush all the LLC-cached data
3700 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3701 */
651d794f
CW
3702 ret = i915_gem_object_set_cache_level(obj,
3703 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3704 if (ret)
cc98b413 3705 goto err_unpin_display;
a7ef0640 3706
2da3b9b9
CW
3707 /* As the user may map the buffer once pinned in the display plane
3708 * (e.g. libkms for the bootup splash), we have to ensure that we
3709 * always use map_and_fenceable for all scanout buffers.
3710 */
1ec9e26d 3711 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3712 if (ret)
cc98b413 3713 goto err_unpin_display;
2da3b9b9 3714
2c22569b 3715 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3716
2da3b9b9 3717 old_write_domain = obj->base.write_domain;
05394f39 3718 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3719
3720 /* It should now be out of any other write domains, and we can update
3721 * the domain values for our changes.
3722 */
e5f1d962 3723 obj->base.write_domain = 0;
05394f39 3724 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3725
3726 trace_i915_gem_object_change_domain(obj,
3727 old_read_domains,
2da3b9b9 3728 old_write_domain);
b9241ea3
ZW
3729
3730 return 0;
cc98b413
CW
3731
3732err_unpin_display:
19656430
OM
3733 WARN_ON(was_pin_display != is_pin_display(obj));
3734 obj->pin_display = was_pin_display;
cc98b413
CW
3735 return ret;
3736}
3737
3738void
3739i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3740{
d7f46fc4 3741 i915_gem_object_ggtt_unpin(obj);
cc98b413 3742 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3743}
3744
85345517 3745int
a8198eea 3746i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3747{
88241785
CW
3748 int ret;
3749
a8198eea 3750 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3751 return 0;
3752
0201f1ec 3753 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3754 if (ret)
3755 return ret;
3756
a8198eea
CW
3757 /* Ensure that we invalidate the GPU's caches and TLBs. */
3758 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3759 return 0;
85345517
CW
3760}
3761
e47c68e9
EA
3762/**
3763 * Moves a single object to the CPU read, and possibly write domain.
3764 *
3765 * This function returns when the move is complete, including waiting on
3766 * flushes to occur.
3767 */
dabdfe02 3768int
919926ae 3769i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3770{
1c5d22f7 3771 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3772 int ret;
3773
8d7e3de1
CW
3774 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3775 return 0;
3776
0201f1ec 3777 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3778 if (ret)
3779 return ret;
3780
c8725f3d 3781 i915_gem_object_retire(obj);
e47c68e9 3782 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3783
05394f39
CW
3784 old_write_domain = obj->base.write_domain;
3785 old_read_domains = obj->base.read_domains;
1c5d22f7 3786
e47c68e9 3787 /* Flush the CPU cache if it's still invalid. */
05394f39 3788 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3789 i915_gem_clflush_object(obj, false);
2ef7eeaa 3790
05394f39 3791 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3792 }
3793
3794 /* It should now be out of any other write domains, and we can update
3795 * the domain values for our changes.
3796 */
05394f39 3797 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3798
3799 /* If we're writing through the CPU, then the GPU read domains will
3800 * need to be invalidated at next use.
3801 */
3802 if (write) {
05394f39
CW
3803 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3804 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3805 }
2ef7eeaa 3806
1c5d22f7
CW
3807 trace_i915_gem_object_change_domain(obj,
3808 old_read_domains,
3809 old_write_domain);
3810
2ef7eeaa
EA
3811 return 0;
3812}
3813
673a394b
EA
3814/* Throttle our rendering by waiting until the ring has completed our requests
3815 * emitted over 20 msec ago.
3816 *
b962442e
EA
3817 * Note that if we were to use the current jiffies each time around the loop,
3818 * we wouldn't escape the function with any frames outstanding if the time to
3819 * render a frame was over 20ms.
3820 *
673a394b
EA
3821 * This should get us reasonable parallelism between CPU and GPU but also
3822 * relatively low latency when blocking on a particular request to finish.
3823 */
40a5f0de 3824static int
f787a5f5 3825i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3826{
f787a5f5
CW
3827 struct drm_i915_private *dev_priv = dev->dev_private;
3828 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3829 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3830 struct drm_i915_gem_request *request;
3831 struct intel_ring_buffer *ring = NULL;
f69061be 3832 unsigned reset_counter;
f787a5f5
CW
3833 u32 seqno = 0;
3834 int ret;
93533c29 3835
308887aa
DV
3836 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3837 if (ret)
3838 return ret;
3839
3840 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3841 if (ret)
3842 return ret;
e110e8d6 3843
1c25595f 3844 spin_lock(&file_priv->mm.lock);
f787a5f5 3845 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3846 if (time_after_eq(request->emitted_jiffies, recent_enough))
3847 break;
40a5f0de 3848
f787a5f5
CW
3849 ring = request->ring;
3850 seqno = request->seqno;
b962442e 3851 }
f69061be 3852 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3853 spin_unlock(&file_priv->mm.lock);
40a5f0de 3854
f787a5f5
CW
3855 if (seqno == 0)
3856 return 0;
2bc43b5c 3857
b29c19b6 3858 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3859 if (ret == 0)
3860 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3861
3862 return ret;
3863}
3864
673a394b 3865int
05394f39 3866i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3867 struct i915_address_space *vm,
05394f39 3868 uint32_t alignment,
1ec9e26d 3869 unsigned flags)
673a394b 3870{
6e7186af 3871 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 3872 struct i915_vma *vma;
673a394b
EA
3873 int ret;
3874
6e7186af
BW
3875 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3876 return -ENODEV;
3877
bf3d149b 3878 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 3879 return -EINVAL;
07fe0b12
BW
3880
3881 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 3882 if (vma) {
d7f46fc4
BW
3883 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3884 return -EBUSY;
3885
07fe0b12
BW
3886 if ((alignment &&
3887 vma->node.start & (alignment - 1)) ||
1ec9e26d 3888 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
d7f46fc4 3889 WARN(vma->pin_count,
ae7d49d8 3890 "bo is already pinned with incorrect alignment:"
f343c5f6 3891 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3892 " obj->map_and_fenceable=%d\n",
07fe0b12 3893 i915_gem_obj_offset(obj, vm), alignment,
1ec9e26d 3894 flags & PIN_MAPPABLE,
05394f39 3895 obj->map_and_fenceable);
07fe0b12 3896 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3897 if (ret)
3898 return ret;
8ea99c92
DV
3899
3900 vma = NULL;
ac0c6b5a
CW
3901 }
3902 }
3903
8ea99c92 3904 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
3905 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3906 if (IS_ERR(vma))
3907 return PTR_ERR(vma);
22c344e9 3908 }
76446cac 3909
8ea99c92
DV
3910 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3911 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 3912
8ea99c92 3913 vma->pin_count++;
1ec9e26d
DV
3914 if (flags & PIN_MAPPABLE)
3915 obj->pin_mappable |= true;
673a394b
EA
3916
3917 return 0;
3918}
3919
3920void
d7f46fc4 3921i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 3922{
d7f46fc4 3923 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 3924
d7f46fc4
BW
3925 BUG_ON(!vma);
3926 BUG_ON(vma->pin_count == 0);
3927 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3928
3929 if (--vma->pin_count == 0)
6299f992 3930 obj->pin_mappable = false;
673a394b
EA
3931}
3932
d8ffa60b
DV
3933bool
3934i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
3935{
3936 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3937 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3938 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
3939
3940 WARN_ON(!ggtt_vma ||
3941 dev_priv->fence_regs[obj->fence_reg].pin_count >
3942 ggtt_vma->pin_count);
3943 dev_priv->fence_regs[obj->fence_reg].pin_count++;
3944 return true;
3945 } else
3946 return false;
3947}
3948
3949void
3950i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
3951{
3952 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3953 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3954 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
3955 dev_priv->fence_regs[obj->fence_reg].pin_count--;
3956 }
3957}
3958
673a394b
EA
3959int
3960i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3961 struct drm_file *file)
673a394b
EA
3962{
3963 struct drm_i915_gem_pin *args = data;
05394f39 3964 struct drm_i915_gem_object *obj;
673a394b
EA
3965 int ret;
3966
02f6bccc
DV
3967 if (INTEL_INFO(dev)->gen >= 6)
3968 return -ENODEV;
3969
1d7cfea1
CW
3970 ret = i915_mutex_lock_interruptible(dev);
3971 if (ret)
3972 return ret;
673a394b 3973
05394f39 3974 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3975 if (&obj->base == NULL) {
1d7cfea1
CW
3976 ret = -ENOENT;
3977 goto unlock;
673a394b 3978 }
673a394b 3979
05394f39 3980 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 3981 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 3982 ret = -EFAULT;
1d7cfea1 3983 goto out;
3ef94daa
CW
3984 }
3985
05394f39 3986 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 3987 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 3988 args->handle);
1d7cfea1
CW
3989 ret = -EINVAL;
3990 goto out;
79e53945
JB
3991 }
3992
aa5f8021
DV
3993 if (obj->user_pin_count == ULONG_MAX) {
3994 ret = -EBUSY;
3995 goto out;
3996 }
3997
93be8788 3998 if (obj->user_pin_count == 0) {
1ec9e26d 3999 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4000 if (ret)
4001 goto out;
673a394b
EA
4002 }
4003
93be8788
CW
4004 obj->user_pin_count++;
4005 obj->pin_filp = file;
4006
f343c5f6 4007 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4008out:
05394f39 4009 drm_gem_object_unreference(&obj->base);
1d7cfea1 4010unlock:
673a394b 4011 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4012 return ret;
673a394b
EA
4013}
4014
4015int
4016i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4017 struct drm_file *file)
673a394b
EA
4018{
4019 struct drm_i915_gem_pin *args = data;
05394f39 4020 struct drm_i915_gem_object *obj;
76c1dec1 4021 int ret;
673a394b 4022
1d7cfea1
CW
4023 ret = i915_mutex_lock_interruptible(dev);
4024 if (ret)
4025 return ret;
673a394b 4026
05394f39 4027 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4028 if (&obj->base == NULL) {
1d7cfea1
CW
4029 ret = -ENOENT;
4030 goto unlock;
673a394b 4031 }
76c1dec1 4032
05394f39 4033 if (obj->pin_filp != file) {
bd9b6a4e 4034 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4035 args->handle);
1d7cfea1
CW
4036 ret = -EINVAL;
4037 goto out;
79e53945 4038 }
05394f39
CW
4039 obj->user_pin_count--;
4040 if (obj->user_pin_count == 0) {
4041 obj->pin_filp = NULL;
d7f46fc4 4042 i915_gem_object_ggtt_unpin(obj);
79e53945 4043 }
673a394b 4044
1d7cfea1 4045out:
05394f39 4046 drm_gem_object_unreference(&obj->base);
1d7cfea1 4047unlock:
673a394b 4048 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4049 return ret;
673a394b
EA
4050}
4051
4052int
4053i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4054 struct drm_file *file)
673a394b
EA
4055{
4056 struct drm_i915_gem_busy *args = data;
05394f39 4057 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4058 int ret;
4059
76c1dec1 4060 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4061 if (ret)
76c1dec1 4062 return ret;
673a394b 4063
05394f39 4064 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4065 if (&obj->base == NULL) {
1d7cfea1
CW
4066 ret = -ENOENT;
4067 goto unlock;
673a394b 4068 }
d1b851fc 4069
0be555b6
CW
4070 /* Count all active objects as busy, even if they are currently not used
4071 * by the gpu. Users of this interface expect objects to eventually
4072 * become non-busy without any further actions, therefore emit any
4073 * necessary flushes here.
c4de0a5d 4074 */
30dfebf3 4075 ret = i915_gem_object_flush_active(obj);
0be555b6 4076
30dfebf3 4077 args->busy = obj->active;
e9808edd
CW
4078 if (obj->ring) {
4079 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4080 args->busy |= intel_ring_flag(obj->ring) << 16;
4081 }
673a394b 4082
05394f39 4083 drm_gem_object_unreference(&obj->base);
1d7cfea1 4084unlock:
673a394b 4085 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4086 return ret;
673a394b
EA
4087}
4088
4089int
4090i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4091 struct drm_file *file_priv)
4092{
0206e353 4093 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4094}
4095
3ef94daa
CW
4096int
4097i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4098 struct drm_file *file_priv)
4099{
4100 struct drm_i915_gem_madvise *args = data;
05394f39 4101 struct drm_i915_gem_object *obj;
76c1dec1 4102 int ret;
3ef94daa
CW
4103
4104 switch (args->madv) {
4105 case I915_MADV_DONTNEED:
4106 case I915_MADV_WILLNEED:
4107 break;
4108 default:
4109 return -EINVAL;
4110 }
4111
1d7cfea1
CW
4112 ret = i915_mutex_lock_interruptible(dev);
4113 if (ret)
4114 return ret;
4115
05394f39 4116 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4117 if (&obj->base == NULL) {
1d7cfea1
CW
4118 ret = -ENOENT;
4119 goto unlock;
3ef94daa 4120 }
3ef94daa 4121
d7f46fc4 4122 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4123 ret = -EINVAL;
4124 goto out;
3ef94daa
CW
4125 }
4126
05394f39
CW
4127 if (obj->madv != __I915_MADV_PURGED)
4128 obj->madv = args->madv;
3ef94daa 4129
6c085a72
CW
4130 /* if the object is no longer attached, discard its backing storage */
4131 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4132 i915_gem_object_truncate(obj);
4133
05394f39 4134 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4135
1d7cfea1 4136out:
05394f39 4137 drm_gem_object_unreference(&obj->base);
1d7cfea1 4138unlock:
3ef94daa 4139 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4140 return ret;
3ef94daa
CW
4141}
4142
37e680a1
CW
4143void i915_gem_object_init(struct drm_i915_gem_object *obj,
4144 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4145{
35c20a60 4146 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4147 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4148 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4149 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4150
37e680a1
CW
4151 obj->ops = ops;
4152
0327d6ba
CW
4153 obj->fence_reg = I915_FENCE_REG_NONE;
4154 obj->madv = I915_MADV_WILLNEED;
4155 /* Avoid an unnecessary call to unbind on the first bind. */
4156 obj->map_and_fenceable = true;
4157
4158 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4159}
4160
37e680a1
CW
4161static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4162 .get_pages = i915_gem_object_get_pages_gtt,
4163 .put_pages = i915_gem_object_put_pages_gtt,
4164};
4165
05394f39
CW
4166struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4167 size_t size)
ac52bc56 4168{
c397b908 4169 struct drm_i915_gem_object *obj;
5949eac4 4170 struct address_space *mapping;
1a240d4d 4171 gfp_t mask;
ac52bc56 4172
42dcedd4 4173 obj = i915_gem_object_alloc(dev);
c397b908
DV
4174 if (obj == NULL)
4175 return NULL;
673a394b 4176
c397b908 4177 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4178 i915_gem_object_free(obj);
c397b908
DV
4179 return NULL;
4180 }
673a394b 4181
bed1ea95
CW
4182 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4183 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4184 /* 965gm cannot relocate objects above 4GiB. */
4185 mask &= ~__GFP_HIGHMEM;
4186 mask |= __GFP_DMA32;
4187 }
4188
496ad9aa 4189 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4190 mapping_set_gfp_mask(mapping, mask);
5949eac4 4191
37e680a1 4192 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4193
c397b908
DV
4194 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4195 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4196
3d29b842
ED
4197 if (HAS_LLC(dev)) {
4198 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4199 * cache) for about a 10% performance improvement
4200 * compared to uncached. Graphics requests other than
4201 * display scanout are coherent with the CPU in
4202 * accessing this cache. This means in this mode we
4203 * don't need to clflush on the CPU side, and on the
4204 * GPU side we only need to flush internal caches to
4205 * get data visible to the CPU.
4206 *
4207 * However, we maintain the display planes as UC, and so
4208 * need to rebind when first used as such.
4209 */
4210 obj->cache_level = I915_CACHE_LLC;
4211 } else
4212 obj->cache_level = I915_CACHE_NONE;
4213
d861e338
DV
4214 trace_i915_gem_object_create(obj);
4215
05394f39 4216 return obj;
c397b908
DV
4217}
4218
1488fc08 4219void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4220{
1488fc08 4221 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4222 struct drm_device *dev = obj->base.dev;
3e31c6c0 4223 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4224 struct i915_vma *vma, *next;
673a394b 4225
f65c9168
PZ
4226 intel_runtime_pm_get(dev_priv);
4227
26e12f89
CW
4228 trace_i915_gem_object_destroy(obj);
4229
1488fc08
CW
4230 if (obj->phys_obj)
4231 i915_gem_detach_phys_object(dev, obj);
4232
07fe0b12 4233 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4234 int ret;
4235
4236 vma->pin_count = 0;
4237 ret = i915_vma_unbind(vma);
07fe0b12
BW
4238 if (WARN_ON(ret == -ERESTARTSYS)) {
4239 bool was_interruptible;
1488fc08 4240
07fe0b12
BW
4241 was_interruptible = dev_priv->mm.interruptible;
4242 dev_priv->mm.interruptible = false;
1488fc08 4243
07fe0b12 4244 WARN_ON(i915_vma_unbind(vma));
1488fc08 4245
07fe0b12
BW
4246 dev_priv->mm.interruptible = was_interruptible;
4247 }
1488fc08
CW
4248 }
4249
1d64ae71
BW
4250 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4251 * before progressing. */
4252 if (obj->stolen)
4253 i915_gem_object_unpin_pages(obj);
4254
401c29f6
BW
4255 if (WARN_ON(obj->pages_pin_count))
4256 obj->pages_pin_count = 0;
37e680a1 4257 i915_gem_object_put_pages(obj);
d8cb5086 4258 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4259 i915_gem_object_release_stolen(obj);
de151cf6 4260
9da3da66
CW
4261 BUG_ON(obj->pages);
4262
2f745ad3
CW
4263 if (obj->base.import_attach)
4264 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4265
05394f39
CW
4266 drm_gem_object_release(&obj->base);
4267 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4268
05394f39 4269 kfree(obj->bit_17);
42dcedd4 4270 i915_gem_object_free(obj);
f65c9168
PZ
4271
4272 intel_runtime_pm_put(dev_priv);
673a394b
EA
4273}
4274
e656a6cb 4275struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4276 struct i915_address_space *vm)
e656a6cb
DV
4277{
4278 struct i915_vma *vma;
4279 list_for_each_entry(vma, &obj->vma_list, vma_link)
4280 if (vma->vm == vm)
4281 return vma;
4282
4283 return NULL;
4284}
4285
2f633156
BW
4286void i915_gem_vma_destroy(struct i915_vma *vma)
4287{
4288 WARN_ON(vma->node.allocated);
aaa05667
CW
4289
4290 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4291 if (!list_empty(&vma->exec_list))
4292 return;
4293
8b9c2b94 4294 list_del(&vma->vma_link);
b93dab6e 4295
2f633156
BW
4296 kfree(vma);
4297}
4298
e3efda49
CW
4299static void
4300i915_gem_stop_ringbuffers(struct drm_device *dev)
4301{
4302 struct drm_i915_private *dev_priv = dev->dev_private;
4303 struct intel_ring_buffer *ring;
4304 int i;
4305
4306 for_each_ring(ring, dev_priv, i)
4307 intel_stop_ring_buffer(ring);
4308}
4309
29105ccc 4310int
45c5f202 4311i915_gem_suspend(struct drm_device *dev)
29105ccc 4312{
3e31c6c0 4313 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4314 int ret = 0;
28dfe52a 4315
45c5f202 4316 mutex_lock(&dev->struct_mutex);
f7403347 4317 if (dev_priv->ums.mm_suspended)
45c5f202 4318 goto err;
28dfe52a 4319
b2da9fe5 4320 ret = i915_gpu_idle(dev);
f7403347 4321 if (ret)
45c5f202 4322 goto err;
f7403347 4323
b2da9fe5 4324 i915_gem_retire_requests(dev);
673a394b 4325
29105ccc 4326 /* Under UMS, be paranoid and evict. */
a39d7efc 4327 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4328 i915_gem_evict_everything(dev);
29105ccc 4329
29105ccc 4330 i915_kernel_lost_context(dev);
e3efda49 4331 i915_gem_stop_ringbuffers(dev);
29105ccc 4332
45c5f202
CW
4333 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4334 * We need to replace this with a semaphore, or something.
4335 * And not confound ums.mm_suspended!
4336 */
4337 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4338 DRIVER_MODESET);
4339 mutex_unlock(&dev->struct_mutex);
4340
4341 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4342 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4343 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4344
673a394b 4345 return 0;
45c5f202
CW
4346
4347err:
4348 mutex_unlock(&dev->struct_mutex);
4349 return ret;
673a394b
EA
4350}
4351
c3787e2e 4352int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4353{
c3787e2e 4354 struct drm_device *dev = ring->dev;
3e31c6c0 4355 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4356 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4357 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4358 int i, ret;
b9524a1e 4359
040d2baa 4360 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4361 return 0;
b9524a1e 4362
c3787e2e
BW
4363 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4364 if (ret)
4365 return ret;
b9524a1e 4366
c3787e2e
BW
4367 /*
4368 * Note: We do not worry about the concurrent register cacheline hang
4369 * here because no other code should access these registers other than
4370 * at initialization time.
4371 */
b9524a1e 4372 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4373 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4374 intel_ring_emit(ring, reg_base + i);
4375 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4376 }
4377
c3787e2e 4378 intel_ring_advance(ring);
b9524a1e 4379
c3787e2e 4380 return ret;
b9524a1e
BW
4381}
4382
f691e2f4
DV
4383void i915_gem_init_swizzling(struct drm_device *dev)
4384{
3e31c6c0 4385 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4386
11782b02 4387 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4388 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4389 return;
4390
4391 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4392 DISP_TILE_SURFACE_SWIZZLING);
4393
11782b02
DV
4394 if (IS_GEN5(dev))
4395 return;
4396
f691e2f4
DV
4397 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4398 if (IS_GEN6(dev))
6b26c86d 4399 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4400 else if (IS_GEN7(dev))
6b26c86d 4401 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4402 else if (IS_GEN8(dev))
4403 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4404 else
4405 BUG();
f691e2f4 4406}
e21af88d 4407
67b1b571
CW
4408static bool
4409intel_enable_blt(struct drm_device *dev)
4410{
4411 if (!HAS_BLT(dev))
4412 return false;
4413
4414 /* The blitter was dysfunctional on early prototypes */
4415 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4416 DRM_INFO("BLT not supported on this pre-production hardware;"
4417 " graphics performance will be degraded.\n");
4418 return false;
4419 }
4420
4421 return true;
4422}
4423
4fc7c971 4424static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4425{
4fc7c971 4426 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4427 int ret;
68f95ba9 4428
5c1143bb 4429 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4430 if (ret)
b6913e4b 4431 return ret;
68f95ba9
CW
4432
4433 if (HAS_BSD(dev)) {
5c1143bb 4434 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4435 if (ret)
4436 goto cleanup_render_ring;
d1b851fc 4437 }
68f95ba9 4438
67b1b571 4439 if (intel_enable_blt(dev)) {
549f7365
CW
4440 ret = intel_init_blt_ring_buffer(dev);
4441 if (ret)
4442 goto cleanup_bsd_ring;
4443 }
4444
9a8a2213
BW
4445 if (HAS_VEBOX(dev)) {
4446 ret = intel_init_vebox_ring_buffer(dev);
4447 if (ret)
4448 goto cleanup_blt_ring;
4449 }
4450
845f74a7
ZY
4451 if (HAS_BSD2(dev)) {
4452 ret = intel_init_bsd2_ring_buffer(dev);
4453 if (ret)
4454 goto cleanup_vebox_ring;
4455 }
9a8a2213 4456
99433931 4457 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4458 if (ret)
845f74a7 4459 goto cleanup_bsd2_ring;
4fc7c971
BW
4460
4461 return 0;
4462
845f74a7
ZY
4463cleanup_bsd2_ring:
4464 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4465cleanup_vebox_ring:
4466 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4467cleanup_blt_ring:
4468 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4469cleanup_bsd_ring:
4470 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4471cleanup_render_ring:
4472 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4473
4474 return ret;
4475}
4476
4477int
4478i915_gem_init_hw(struct drm_device *dev)
4479{
3e31c6c0 4480 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4481 int ret, i;
4fc7c971
BW
4482
4483 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4484 return -EIO;
4485
59124506 4486 if (dev_priv->ellc_size)
05e21cc4 4487 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4488
0bf21347
VS
4489 if (IS_HASWELL(dev))
4490 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4491 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4492
88a2b2a3 4493 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4494 if (IS_IVYBRIDGE(dev)) {
4495 u32 temp = I915_READ(GEN7_MSG_CTL);
4496 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4497 I915_WRITE(GEN7_MSG_CTL, temp);
4498 } else if (INTEL_INFO(dev)->gen >= 7) {
4499 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4500 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4501 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4502 }
88a2b2a3
BW
4503 }
4504
4fc7c971
BW
4505 i915_gem_init_swizzling(dev);
4506
4507 ret = i915_gem_init_rings(dev);
99433931
MK
4508 if (ret)
4509 return ret;
4510
c3787e2e
BW
4511 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4512 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4513
254f965c 4514 /*
2fa48d8d
BW
4515 * XXX: Contexts should only be initialized once. Doing a switch to the
4516 * default context switch however is something we'd like to do after
4517 * reset or thaw (the latter may not actually be necessary for HW, but
4518 * goes with our code better). Context switching requires rings (for
4519 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4520 */
2fa48d8d 4521 ret = i915_gem_context_enable(dev_priv);
60990320 4522 if (ret && ret != -EIO) {
2fa48d8d 4523 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4524 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4525 }
e21af88d 4526
2fa48d8d 4527 return ret;
8187a2b7
ZN
4528}
4529
1070a42b
CW
4530int i915_gem_init(struct drm_device *dev)
4531{
4532 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4533 int ret;
4534
1070a42b 4535 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4536
4537 if (IS_VALLEYVIEW(dev)) {
4538 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4539 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4540 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4541 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4542 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4543 }
4544
d7e5008f 4545 i915_gem_init_global_gtt(dev);
d62b4892 4546
2fa48d8d 4547 ret = i915_gem_context_init(dev);
e3848694
MK
4548 if (ret) {
4549 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4550 return ret;
e3848694 4551 }
2fa48d8d 4552
1070a42b 4553 ret = i915_gem_init_hw(dev);
60990320
CW
4554 if (ret == -EIO) {
4555 /* Allow ring initialisation to fail by marking the GPU as
4556 * wedged. But we only want to do this where the GPU is angry,
4557 * for all other failure, such as an allocation failure, bail.
4558 */
4559 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4560 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4561 ret = 0;
1070a42b 4562 }
60990320 4563 mutex_unlock(&dev->struct_mutex);
1070a42b 4564
53ca26ca
DV
4565 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4566 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4567 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4568 return ret;
1070a42b
CW
4569}
4570
8187a2b7
ZN
4571void
4572i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4573{
3e31c6c0 4574 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4575 struct intel_ring_buffer *ring;
1ec14ad3 4576 int i;
8187a2b7 4577
b4519513
CW
4578 for_each_ring(ring, dev_priv, i)
4579 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4580}
4581
673a394b
EA
4582int
4583i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4584 struct drm_file *file_priv)
4585{
db1b76ca 4586 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4587 int ret;
673a394b 4588
79e53945
JB
4589 if (drm_core_check_feature(dev, DRIVER_MODESET))
4590 return 0;
4591
1f83fee0 4592 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4593 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4594 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4595 }
4596
673a394b 4597 mutex_lock(&dev->struct_mutex);
db1b76ca 4598 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4599
f691e2f4 4600 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4601 if (ret != 0) {
4602 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4603 return ret;
d816f6ac 4604 }
9bb2d6f9 4605
5cef07e1 4606 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4607
bb0f1b5c 4608 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4609 if (ret)
4610 goto cleanup_ringbuffer;
e090c53b 4611 mutex_unlock(&dev->struct_mutex);
dbb19d30 4612
673a394b 4613 return 0;
5f35308b
CW
4614
4615cleanup_ringbuffer:
5f35308b 4616 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4617 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4618 mutex_unlock(&dev->struct_mutex);
4619
4620 return ret;
673a394b
EA
4621}
4622
4623int
4624i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4625 struct drm_file *file_priv)
4626{
79e53945
JB
4627 if (drm_core_check_feature(dev, DRIVER_MODESET))
4628 return 0;
4629
e090c53b 4630 mutex_lock(&dev->struct_mutex);
dbb19d30 4631 drm_irq_uninstall(dev);
e090c53b 4632 mutex_unlock(&dev->struct_mutex);
db1b76ca 4633
45c5f202 4634 return i915_gem_suspend(dev);
673a394b
EA
4635}
4636
4637void
4638i915_gem_lastclose(struct drm_device *dev)
4639{
4640 int ret;
673a394b 4641
e806b495
EA
4642 if (drm_core_check_feature(dev, DRIVER_MODESET))
4643 return;
4644
45c5f202 4645 ret = i915_gem_suspend(dev);
6dbe2772
KP
4646 if (ret)
4647 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4648}
4649
64193406
CW
4650static void
4651init_ring_lists(struct intel_ring_buffer *ring)
4652{
4653 INIT_LIST_HEAD(&ring->active_list);
4654 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4655}
4656
7e0d96bc
BW
4657void i915_init_vm(struct drm_i915_private *dev_priv,
4658 struct i915_address_space *vm)
fc8c067e 4659{
7e0d96bc
BW
4660 if (!i915_is_ggtt(vm))
4661 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4662 vm->dev = dev_priv->dev;
4663 INIT_LIST_HEAD(&vm->active_list);
4664 INIT_LIST_HEAD(&vm->inactive_list);
4665 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4666 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4667}
4668
673a394b
EA
4669void
4670i915_gem_load(struct drm_device *dev)
4671{
3e31c6c0 4672 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4673 int i;
4674
4675 dev_priv->slab =
4676 kmem_cache_create("i915_gem_object",
4677 sizeof(struct drm_i915_gem_object), 0,
4678 SLAB_HWCACHE_ALIGN,
4679 NULL);
673a394b 4680
fc8c067e
BW
4681 INIT_LIST_HEAD(&dev_priv->vm_list);
4682 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4683
a33afea5 4684 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4685 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4686 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4687 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4688 for (i = 0; i < I915_NUM_RINGS; i++)
4689 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4690 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4691 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4692 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4693 i915_gem_retire_work_handler);
b29c19b6
CW
4694 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4695 i915_gem_idle_work_handler);
1f83fee0 4696 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4697
94400120
DA
4698 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4699 if (IS_GEN3(dev)) {
50743298
DV
4700 I915_WRITE(MI_ARB_STATE,
4701 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4702 }
4703
72bfa19c
CW
4704 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4705
de151cf6 4706 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4707 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4708 dev_priv->fence_reg_start = 3;
de151cf6 4709
42b5aeab
VS
4710 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4711 dev_priv->num_fence_regs = 32;
4712 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4713 dev_priv->num_fence_regs = 16;
4714 else
4715 dev_priv->num_fence_regs = 8;
4716
b5aa8a0f 4717 /* Initialize fence registers to zero */
19b2dbde
CW
4718 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4719 i915_gem_restore_fences(dev);
10ed13e4 4720
673a394b 4721 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4722 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4723
ce453d81
CW
4724 dev_priv->mm.interruptible = true;
4725
7dc19d5a
DC
4726 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4727 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4728 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4729 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4730}
71acb5eb
DA
4731
4732/*
4733 * Create a physically contiguous memory object for this object
4734 * e.g. for cursor + overlay regs
4735 */
995b6762
CW
4736static int i915_gem_init_phys_object(struct drm_device *dev,
4737 int id, int size, int align)
71acb5eb 4738{
3e31c6c0 4739 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4740 struct drm_i915_gem_phys_object *phys_obj;
4741 int ret;
4742
4743 if (dev_priv->mm.phys_objs[id - 1] || !size)
4744 return 0;
4745
b14c5679 4746 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4747 if (!phys_obj)
4748 return -ENOMEM;
4749
4750 phys_obj->id = id;
4751
6eeefaf3 4752 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4753 if (!phys_obj->handle) {
4754 ret = -ENOMEM;
4755 goto kfree_obj;
4756 }
4757#ifdef CONFIG_X86
4758 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4759#endif
4760
4761 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4762
4763 return 0;
4764kfree_obj:
9a298b2a 4765 kfree(phys_obj);
71acb5eb
DA
4766 return ret;
4767}
4768
995b6762 4769static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb 4770{
3e31c6c0 4771 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4772 struct drm_i915_gem_phys_object *phys_obj;
4773
4774 if (!dev_priv->mm.phys_objs[id - 1])
4775 return;
4776
4777 phys_obj = dev_priv->mm.phys_objs[id - 1];
4778 if (phys_obj->cur_obj) {
4779 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4780 }
4781
4782#ifdef CONFIG_X86
4783 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4784#endif
4785 drm_pci_free(dev, phys_obj->handle);
4786 kfree(phys_obj);
4787 dev_priv->mm.phys_objs[id - 1] = NULL;
4788}
4789
4790void i915_gem_free_all_phys_object(struct drm_device *dev)
4791{
4792 int i;
4793
260883c8 4794 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4795 i915_gem_free_phys_object(dev, i);
4796}
4797
4798void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4799 struct drm_i915_gem_object *obj)
71acb5eb 4800{
496ad9aa 4801 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4802 char *vaddr;
71acb5eb 4803 int i;
71acb5eb
DA
4804 int page_count;
4805
05394f39 4806 if (!obj->phys_obj)
71acb5eb 4807 return;
05394f39 4808 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4809
05394f39 4810 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4811 for (i = 0; i < page_count; i++) {
5949eac4 4812 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4813 if (!IS_ERR(page)) {
4814 char *dst = kmap_atomic(page);
4815 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4816 kunmap_atomic(dst);
4817
4818 drm_clflush_pages(&page, 1);
4819
4820 set_page_dirty(page);
4821 mark_page_accessed(page);
4822 page_cache_release(page);
4823 }
71acb5eb 4824 }
e76e9aeb 4825 i915_gem_chipset_flush(dev);
d78b47b9 4826
05394f39
CW
4827 obj->phys_obj->cur_obj = NULL;
4828 obj->phys_obj = NULL;
71acb5eb
DA
4829}
4830
4831int
4832i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4833 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4834 int id,
4835 int align)
71acb5eb 4836{
496ad9aa 4837 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
3e31c6c0 4838 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4839 int ret = 0;
4840 int page_count;
4841 int i;
4842
4843 if (id > I915_MAX_PHYS_OBJECT)
4844 return -EINVAL;
4845
05394f39
CW
4846 if (obj->phys_obj) {
4847 if (obj->phys_obj->id == id)
71acb5eb
DA
4848 return 0;
4849 i915_gem_detach_phys_object(dev, obj);
4850 }
4851
71acb5eb
DA
4852 /* create a new object */
4853 if (!dev_priv->mm.phys_objs[id - 1]) {
4854 ret = i915_gem_init_phys_object(dev, id,
05394f39 4855 obj->base.size, align);
71acb5eb 4856 if (ret) {
05394f39
CW
4857 DRM_ERROR("failed to init phys object %d size: %zu\n",
4858 id, obj->base.size);
e5281ccd 4859 return ret;
71acb5eb
DA
4860 }
4861 }
4862
4863 /* bind to the object */
05394f39
CW
4864 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4865 obj->phys_obj->cur_obj = obj;
71acb5eb 4866
05394f39 4867 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4868
4869 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4870 struct page *page;
4871 char *dst, *src;
4872
5949eac4 4873 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4874 if (IS_ERR(page))
4875 return PTR_ERR(page);
71acb5eb 4876
ff75b9bc 4877 src = kmap_atomic(page);
05394f39 4878 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4879 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4880 kunmap_atomic(src);
71acb5eb 4881
e5281ccd
CW
4882 mark_page_accessed(page);
4883 page_cache_release(page);
4884 }
d78b47b9 4885
71acb5eb 4886 return 0;
71acb5eb
DA
4887}
4888
4889static int
05394f39
CW
4890i915_gem_phys_pwrite(struct drm_device *dev,
4891 struct drm_i915_gem_object *obj,
71acb5eb
DA
4892 struct drm_i915_gem_pwrite *args,
4893 struct drm_file *file_priv)
4894{
05394f39 4895 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4896 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4897
b47b30cc
CW
4898 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4899 unsigned long unwritten;
4900
4901 /* The physical object once assigned is fixed for the lifetime
4902 * of the obj, so we can safely drop the lock and continue
4903 * to access vaddr.
4904 */
4905 mutex_unlock(&dev->struct_mutex);
4906 unwritten = copy_from_user(vaddr, user_data, args->size);
4907 mutex_lock(&dev->struct_mutex);
4908 if (unwritten)
4909 return -EFAULT;
4910 }
71acb5eb 4911
e76e9aeb 4912 i915_gem_chipset_flush(dev);
71acb5eb
DA
4913 return 0;
4914}
b962442e 4915
f787a5f5 4916void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4917{
f787a5f5 4918 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4919
b29c19b6
CW
4920 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4921
b962442e
EA
4922 /* Clean up our request list when the client is going away, so that
4923 * later retire_requests won't dereference our soon-to-be-gone
4924 * file_priv.
4925 */
1c25595f 4926 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4927 while (!list_empty(&file_priv->mm.request_list)) {
4928 struct drm_i915_gem_request *request;
4929
4930 request = list_first_entry(&file_priv->mm.request_list,
4931 struct drm_i915_gem_request,
4932 client_list);
4933 list_del(&request->client_list);
4934 request->file_priv = NULL;
4935 }
1c25595f 4936 spin_unlock(&file_priv->mm.lock);
b962442e 4937}
31169714 4938
b29c19b6
CW
4939static void
4940i915_gem_file_idle_work_handler(struct work_struct *work)
4941{
4942 struct drm_i915_file_private *file_priv =
4943 container_of(work, typeof(*file_priv), mm.idle_work.work);
4944
4945 atomic_set(&file_priv->rps_wait_boost, false);
4946}
4947
4948int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4949{
4950 struct drm_i915_file_private *file_priv;
e422b888 4951 int ret;
b29c19b6
CW
4952
4953 DRM_DEBUG_DRIVER("\n");
4954
4955 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4956 if (!file_priv)
4957 return -ENOMEM;
4958
4959 file->driver_priv = file_priv;
4960 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4961 file_priv->file = file;
b29c19b6
CW
4962
4963 spin_lock_init(&file_priv->mm.lock);
4964 INIT_LIST_HEAD(&file_priv->mm.request_list);
4965 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4966 i915_gem_file_idle_work_handler);
4967
e422b888
BW
4968 ret = i915_gem_context_open(dev, file);
4969 if (ret)
4970 kfree(file_priv);
b29c19b6 4971
e422b888 4972 return ret;
b29c19b6
CW
4973}
4974
5774506f
CW
4975static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4976{
4977 if (!mutex_is_locked(mutex))
4978 return false;
4979
4980#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4981 return mutex->owner == task;
4982#else
4983 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4984 return false;
4985#endif
4986}
4987
7dc19d5a
DC
4988static unsigned long
4989i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4990{
17250b71
CW
4991 struct drm_i915_private *dev_priv =
4992 container_of(shrinker,
4993 struct drm_i915_private,
4994 mm.inactive_shrinker);
4995 struct drm_device *dev = dev_priv->dev;
6c085a72 4996 struct drm_i915_gem_object *obj;
5774506f 4997 bool unlock = true;
7dc19d5a 4998 unsigned long count;
17250b71 4999
5774506f
CW
5000 if (!mutex_trylock(&dev->struct_mutex)) {
5001 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5002 return 0;
5774506f 5003
677feac2 5004 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5005 return 0;
677feac2 5006
5774506f
CW
5007 unlock = false;
5008 }
31169714 5009
7dc19d5a 5010 count = 0;
35c20a60 5011 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5012 if (obj->pages_pin_count == 0)
7dc19d5a 5013 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5014
5015 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5016 if (obj->active)
5017 continue;
5018
d7f46fc4 5019 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
7dc19d5a 5020 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5021 }
17250b71 5022
5774506f
CW
5023 if (unlock)
5024 mutex_unlock(&dev->struct_mutex);
d9973b43 5025
7dc19d5a 5026 return count;
31169714 5027}
a70a3148
BW
5028
5029/* All the new VM stuff */
5030unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5031 struct i915_address_space *vm)
5032{
5033 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5034 struct i915_vma *vma;
5035
6f425321
BW
5036 if (!dev_priv->mm.aliasing_ppgtt ||
5037 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5038 vm = &dev_priv->gtt.base;
5039
5040 BUG_ON(list_empty(&o->vma_list));
5041 list_for_each_entry(vma, &o->vma_list, vma_link) {
5042 if (vma->vm == vm)
5043 return vma->node.start;
5044
5045 }
5046 return -1;
5047}
5048
5049bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5050 struct i915_address_space *vm)
5051{
5052 struct i915_vma *vma;
5053
5054 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5055 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5056 return true;
5057
5058 return false;
5059}
5060
5061bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5062{
5a1d5eb0 5063 struct i915_vma *vma;
a70a3148 5064
5a1d5eb0
CW
5065 list_for_each_entry(vma, &o->vma_list, vma_link)
5066 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5067 return true;
5068
5069 return false;
5070}
5071
5072unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5073 struct i915_address_space *vm)
5074{
5075 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5076 struct i915_vma *vma;
5077
6f425321
BW
5078 if (!dev_priv->mm.aliasing_ppgtt ||
5079 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5080 vm = &dev_priv->gtt.base;
5081
5082 BUG_ON(list_empty(&o->vma_list));
5083
5084 list_for_each_entry(vma, &o->vma_list, vma_link)
5085 if (vma->vm == vm)
5086 return vma->node.size;
5087
5088 return 0;
5089}
5090
7dc19d5a
DC
5091static unsigned long
5092i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5093{
5094 struct drm_i915_private *dev_priv =
5095 container_of(shrinker,
5096 struct drm_i915_private,
5097 mm.inactive_shrinker);
5098 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5099 unsigned long freed;
5100 bool unlock = true;
5101
5102 if (!mutex_trylock(&dev->struct_mutex)) {
5103 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5104 return SHRINK_STOP;
7dc19d5a
DC
5105
5106 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5107 return SHRINK_STOP;
7dc19d5a
DC
5108
5109 unlock = false;
5110 }
5111
d9973b43
CW
5112 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5113 if (freed < sc->nr_to_scan)
5114 freed += __i915_gem_shrink(dev_priv,
5115 sc->nr_to_scan - freed,
5116 false);
5117 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5118 freed += i915_gem_shrink_all(dev_priv);
5119
5120 if (unlock)
5121 mutex_unlock(&dev->struct_mutex);
d9973b43 5122
7dc19d5a
DC
5123 return freed;
5124}
5c2abbea
BW
5125
5126struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5127{
5128 struct i915_vma *vma;
5129
19656430
OM
5130 /* This WARN has probably outlived its usefulness (callers already
5131 * WARN if they don't find the GGTT vma they expect). When removing,
5132 * remember to remove the pre-check in is_pin_display() as well */
5c2abbea
BW
5133 if (WARN_ON(list_empty(&obj->vma_list)))
5134 return NULL;
5135
5136 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5137 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5138 return NULL;
5139
5140 return vma;
5141}
This page took 1.140515 seconds and 5 git commands to generate.