drm/i915: L3 cache remapping is part of context switching
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
0ccdacf6 35#include "intel_mocs.h"
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 44static void
b4716185
CW
45i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46static void
47i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61}
62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
c20e8355 67 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
68 dev_priv->mm.object_count++;
69 dev_priv->mm.object_memory += size;
c20e8355 70 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
71}
72
73static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
c20e8355 76 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
c20e8355 79 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
80}
81
21dd3734 82static int
33196ded 83i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 84{
30dbf0c0
CW
85 int ret;
86
d98c52cf 87 if (!i915_reset_in_progress(error))
30dbf0c0
CW
88 return 0;
89
0a6759c6
DV
90 /*
91 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92 * userspace. If it takes that long something really bad is going on and
93 * we should simply try to bail out and fail as gracefully as possible.
94 */
1f83fee0 95 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 96 !i915_reset_in_progress(error),
1f83fee0 97 10*HZ);
0a6759c6
DV
98 if (ret == 0) {
99 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100 return -EIO;
101 } else if (ret < 0) {
30dbf0c0 102 return ret;
d98c52cf
CW
103 } else {
104 return 0;
0a6759c6 105 }
30dbf0c0
CW
106}
107
54cf91dc 108int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 109{
33196ded 110 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
111 int ret;
112
33196ded 113 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
23bc5982 121 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
122 return 0;
123}
30dbf0c0 124
5a125c3c
EA
125int
126i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 127 struct drm_file *file)
5a125c3c 128{
72e96d64 129 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 130 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 131 struct drm_i915_gem_get_aperture *args = data;
ca1543be 132 struct i915_vma *vma;
6299f992 133 size_t pinned;
5a125c3c 134
6299f992 135 pinned = 0;
73aa808f 136 mutex_lock(&dev->struct_mutex);
1c7f4bca 137 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
138 if (vma->pin_count)
139 pinned += vma->node.size;
1c7f4bca 140 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
141 if (vma->pin_count)
142 pinned += vma->node.size;
73aa808f 143 mutex_unlock(&dev->struct_mutex);
5a125c3c 144
72e96d64 145 args->aper_size = ggtt->base.total;
0206e353 146 args->aper_available_size = args->aper_size - pinned;
6299f992 147
5a125c3c
EA
148 return 0;
149}
150
6a2c4232
CW
151static int
152i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 153{
6a2c4232
CW
154 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 char *vaddr = obj->phys_handle->vaddr;
156 struct sg_table *st;
157 struct scatterlist *sg;
158 int i;
00731155 159
6a2c4232
CW
160 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 return -EINVAL;
162
163 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 struct page *page;
165 char *src;
166
167 page = shmem_read_mapping_page(mapping, i);
168 if (IS_ERR(page))
169 return PTR_ERR(page);
170
171 src = kmap_atomic(page);
172 memcpy(vaddr, src, PAGE_SIZE);
173 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 kunmap_atomic(src);
175
09cbfeaf 176 put_page(page);
6a2c4232
CW
177 vaddr += PAGE_SIZE;
178 }
179
180 i915_gem_chipset_flush(obj->base.dev);
181
182 st = kmalloc(sizeof(*st), GFP_KERNEL);
183 if (st == NULL)
184 return -ENOMEM;
185
186 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 kfree(st);
188 return -ENOMEM;
189 }
190
191 sg = st->sgl;
192 sg->offset = 0;
193 sg->length = obj->base.size;
00731155 194
6a2c4232
CW
195 sg_dma_address(sg) = obj->phys_handle->busaddr;
196 sg_dma_len(sg) = obj->base.size;
197
198 obj->pages = st;
6a2c4232
CW
199 return 0;
200}
201
202static void
203i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204{
205 int ret;
206
207 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 208
6a2c4232 209 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 210 if (WARN_ON(ret)) {
6a2c4232
CW
211 /* In the event of a disaster, abandon all caches and
212 * hope for the best.
213 */
6a2c4232
CW
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
00731155 221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 222 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
00731155 240 mark_page_accessed(page);
09cbfeaf 241 put_page(page);
00731155
CW
242 vaddr += PAGE_SIZE;
243 }
6a2c4232 244 obj->dirty = 0;
00731155
CW
245 }
246
6a2c4232
CW
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
6a2c4232
CW
249}
250
251static void
252i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253{
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255}
256
257static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261};
262
263static int
264drop_pages(struct drm_i915_gem_object *obj)
265{
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
1c7f4bca 270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
00731155
CW
278}
279
280int
281i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283{
284 drm_dma_handle_t *phys;
6a2c4232 285 int ret;
00731155
CW
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
6a2c4232
CW
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
00731155
CW
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
00731155 309 obj->phys_handle = phys;
6a2c4232
CW
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
00731155
CW
313}
314
315static int
316i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319{
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
322 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 323 int ret = 0;
6a2c4232
CW
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
00731155 331
77a0d1ca 332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
00731155
CW
347 }
348
6a2c4232 349 drm_clflush_virt_range(vaddr, args->size);
00731155 350 i915_gem_chipset_flush(dev);
063e4e6b
PZ
351
352out:
de152b62 353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 354 return ret;
00731155
CW
355}
356
42dcedd4
CW
357void *i915_gem_object_alloc(struct drm_device *dev)
358{
359 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
361}
362
363void i915_gem_object_free(struct drm_i915_gem_object *obj)
364{
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 366 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
367}
368
ff72145b
DA
369static int
370i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
673a394b 374{
05394f39 375 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
376 int ret;
377 u32 handle;
673a394b 378
ff72145b 379 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
380 if (size == 0)
381 return -EINVAL;
673a394b
EA
382
383 /* Allocate the new object */
d37cd8a8 384 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
385 if (IS_ERR(obj))
386 return PTR_ERR(obj);
673a394b 387
05394f39 388 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 389 /* drop reference from allocate - handle holds it now */
d861e338
DV
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
202f2fef 393
ff72145b 394 *handle_p = handle;
673a394b
EA
395 return 0;
396}
397
ff72145b
DA
398int
399i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402{
403 /* have to work out size/pitch and return them */
de45eaf7 404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
da6b51d0 407 args->size, &args->handle);
ff72145b
DA
408}
409
ff72145b
DA
410/**
411 * Creates a new mm object and returns a handle to it.
412 */
413int
414i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416{
417 struct drm_i915_gem_create *args = data;
63ed2cb2 418
ff72145b 419 return i915_gem_create(file, dev,
da6b51d0 420 args->size, &args->handle);
ff72145b
DA
421}
422
8461d226
DV
423static inline int
424__copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427{
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447}
448
8c59967c 449static inline int
4f0c7cfb
BW
450__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
8c59967c
DV
452 int length)
453{
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473}
474
4c914c0c
BV
475/*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482{
483 int ret;
484
485 *needs_clflush = 0;
486
1db6e2e7 487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
4c914c0c
BV
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509}
510
d174bd64
DV
511/* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
eb01459f 514static int
d174bd64
DV
515shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518{
519 char *vaddr;
520 int ret;
521
e7e58eb5 522 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
f60d7f0c 534 return ret ? -EFAULT : 0;
d174bd64
DV
535}
536
23c18c71
DV
537static void
538shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540{
e7e58eb5 541 if (unlikely(swizzled)) {
23c18c71
DV
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557}
558
d174bd64
DV
559/* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561static int
562shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565{
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
23c18c71
DV
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
d174bd64
DV
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
f60d7f0c 585 return ret ? - EFAULT : 0;
d174bd64
DV
586}
587
eb01459f 588static int
dbf7bff0
DV
589i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
eb01459f 593{
8461d226 594 char __user *user_data;
eb01459f 595 ssize_t remain;
8461d226 596 loff_t offset;
eb2c0c81 597 int shmem_page_offset, page_length, ret = 0;
8461d226 598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 599 int prefaulted = 0;
8489731c 600 int needs_clflush = 0;
67d5a50c 601 struct sg_page_iter sg_iter;
eb01459f 602
2bb4629a 603 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
604 remain = args->size;
605
8461d226 606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 607
4c914c0c 608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
609 if (ret)
610 return ret;
611
8461d226 612 offset = args->offset;
eb01459f 613
67d5a50c
ID
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
2db76d7c 616 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
617
618 if (remain <= 0)
619 break;
620
eb01459f
EA
621 /* Operation in this page
622 *
eb01459f 623 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
624 * page_length = bytes to copy for this page
625 */
c8cbbb8b 626 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 630
8461d226
DV
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
d174bd64
DV
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
dbf7bff0 639
dbf7bff0
DV
640 mutex_unlock(&dev->struct_mutex);
641
d330a953 642 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 643 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
eb01459f 651
d174bd64
DV
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
eb01459f 655
dbf7bff0 656 mutex_lock(&dev->struct_mutex);
f60d7f0c 657
f60d7f0c 658 if (ret)
8461d226 659 goto out;
8461d226 660
17793c9a 661next_page:
eb01459f 662 remain -= page_length;
8461d226 663 user_data += page_length;
eb01459f
EA
664 offset += page_length;
665 }
666
4f27b75d 667out:
f60d7f0c
CW
668 i915_gem_object_unpin_pages(obj);
669
eb01459f
EA
670 return ret;
671}
672
673a394b
EA
673/**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678int
679i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 680 struct drm_file *file)
673a394b
EA
681{
682 struct drm_i915_gem_pread *args = data;
05394f39 683 struct drm_i915_gem_object *obj;
35b62a89 684 int ret = 0;
673a394b 685
51311d0a
CW
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
2bb4629a 690 to_user_ptr(args->data_ptr),
51311d0a
CW
691 args->size))
692 return -EFAULT;
693
4f27b75d 694 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 695 if (ret)
4f27b75d 696 return ret;
673a394b 697
05394f39 698 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 699 if (&obj->base == NULL) {
1d7cfea1
CW
700 ret = -ENOENT;
701 goto unlock;
4f27b75d 702 }
673a394b 703
7dcd2499 704 /* Bounds check source. */
05394f39
CW
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
ce9d419d 707 ret = -EINVAL;
35b62a89 708 goto out;
ce9d419d
CW
709 }
710
1286ff73
DV
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
db53a302
CW
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
dbf7bff0 721 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 722
35b62a89 723out:
05394f39 724 drm_gem_object_unreference(&obj->base);
1d7cfea1 725unlock:
4f27b75d 726 mutex_unlock(&dev->struct_mutex);
eb01459f 727 return ret;
673a394b
EA
728}
729
0839ccb8
KP
730/* This is the fast write path which cannot handle
731 * page faults in the source data
9b7530cc 732 */
0839ccb8
KP
733
734static inline int
735fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
9b7530cc 739{
4f0c7cfb
BW
740 void __iomem *vaddr_atomic;
741 void *vaddr;
0839ccb8 742 unsigned long unwritten;
9b7530cc 743
3e4d3af5 744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 748 user_data, length);
3e4d3af5 749 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 750 return unwritten;
0839ccb8
KP
751}
752
3de09aa3
EA
753/**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
673a394b 757static int
05394f39
CW
758i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
3de09aa3 760 struct drm_i915_gem_pwrite *args,
05394f39 761 struct drm_file *file)
673a394b 762{
72e96d64
JL
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
673a394b 765 ssize_t remain;
0839ccb8 766 loff_t offset, page_base;
673a394b 767 char __user *user_data;
935aaa69
DV
768 int page_offset, page_length, ret;
769
1ec9e26d 770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
673a394b 781
2bb4629a 782 user_data = to_user_ptr(args->data_ptr);
673a394b 783 remain = args->size;
673a394b 784
f343c5f6 785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 786
77a0d1ca 787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 788
673a394b
EA
789 while (remain > 0) {
790 /* Operation in this page
791 *
0839ccb8
KP
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
673a394b 795 */
c8cbbb8b
CW
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
0839ccb8
KP
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
0839ccb8 802 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
0839ccb8 805 */
72e96d64 806 if (fast_user_write(ggtt->mappable, page_base,
935aaa69
DV
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
063e4e6b 809 goto out_flush;
935aaa69 810 }
673a394b 811
0839ccb8
KP
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
673a394b 815 }
673a394b 816
063e4e6b 817out_flush:
de152b62 818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 819out_unpin:
d7f46fc4 820 i915_gem_object_ggtt_unpin(obj);
935aaa69 821out:
3de09aa3 822 return ret;
673a394b
EA
823}
824
d174bd64
DV
825/* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
3043c60c 829static int
d174bd64
DV
830shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
673a394b 835{
d174bd64 836 char *vaddr;
673a394b 837 int ret;
3de09aa3 838
e7e58eb5 839 if (unlikely(page_do_bit17_swizzling))
d174bd64 840 return -EINVAL;
3de09aa3 841
d174bd64
DV
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
c2831a94
CW
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
d174bd64
DV
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
3de09aa3 852
755d2218 853 return ret ? -EFAULT : 0;
3de09aa3
EA
854}
855
d174bd64
DV
856/* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
3043c60c 858static int
d174bd64
DV
859shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
673a394b 864{
d174bd64
DV
865 char *vaddr;
866 int ret;
e5281ccd 867
d174bd64 868 vaddr = kmap(page);
e7e58eb5 869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
d174bd64
DV
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
875 user_data,
876 page_length);
d174bd64
DV
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
23c18c71
DV
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
d174bd64 885 kunmap(page);
40123c1f 886
755d2218 887 return ret ? -EFAULT : 0;
40123c1f
EA
888}
889
40123c1f 890static int
e244a443
DV
891i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
40123c1f 895{
40123c1f 896 ssize_t remain;
8c59967c
DV
897 loff_t offset;
898 char __user *user_data;
eb2c0c81 899 int shmem_page_offset, page_length, ret = 0;
8c59967c 900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 901 int hit_slowpath = 0;
58642885
DV
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
67d5a50c 904 struct sg_page_iter sg_iter;
40123c1f 905
2bb4629a 906 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
907 remain = args->size;
908
8c59967c 909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 910
58642885
DV
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
2c22569b 916 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
58642885 920 }
c76ce038
CW
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 926
755d2218
CW
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
77a0d1ca 931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 932
755d2218
CW
933 i915_gem_object_pin_pages(obj);
934
673a394b 935 offset = args->offset;
05394f39 936 obj->dirty = 1;
673a394b 937
67d5a50c
ID
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
2db76d7c 940 struct page *page = sg_page_iter_page(&sg_iter);
58642885 941 int partial_cacheline_write;
e5281ccd 942
9da3da66
CW
943 if (remain <= 0)
944 break;
945
40123c1f
EA
946 /* Operation in this page
947 *
40123c1f 948 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
949 * page_length = bytes to copy for this page
950 */
c8cbbb8b 951 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 956
58642885
DV
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
8c59967c
DV
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
d174bd64
DV
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
e244a443
DV
973
974 hit_slowpath = 1;
e244a443 975 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
40123c1f 980
e244a443 981 mutex_lock(&dev->struct_mutex);
755d2218 982
755d2218 983 if (ret)
8c59967c 984 goto out;
8c59967c 985
17793c9a 986next_page:
40123c1f 987 remain -= page_length;
8c59967c 988 user_data += page_length;
40123c1f 989 offset += page_length;
673a394b
EA
990 }
991
fbd5a26d 992out:
755d2218
CW
993 i915_gem_object_unpin_pages(obj);
994
e244a443 995 if (hit_slowpath) {
8dcf015e
DV
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1003 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1004 needs_clflush_after = true;
e244a443 1005 }
8c59967c 1006 }
673a394b 1007
58642885 1008 if (needs_clflush_after)
e76e9aeb 1009 i915_gem_chipset_flush(dev);
ed75a55b
VS
1010 else
1011 obj->cache_dirty = true;
58642885 1012
de152b62 1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1014 return ret;
673a394b
EA
1015}
1016
1017/**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022int
1023i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1024 struct drm_file *file)
673a394b 1025{
5d77d9c5 1026 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1027 struct drm_i915_gem_pwrite *args = data;
05394f39 1028 struct drm_i915_gem_object *obj;
51311d0a
CW
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
2bb4629a 1035 to_user_ptr(args->data_ptr),
51311d0a
CW
1036 args->size))
1037 return -EFAULT;
1038
d330a953 1039 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1040 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
673a394b 1045
5d77d9c5
ID
1046 intel_runtime_pm_get(dev_priv);
1047
fbd5a26d 1048 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1049 if (ret)
5d77d9c5 1050 goto put_rpm;
1d7cfea1 1051
05394f39 1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1053 if (&obj->base == NULL) {
1d7cfea1
CW
1054 ret = -ENOENT;
1055 goto unlock;
fbd5a26d 1056 }
673a394b 1057
7dcd2499 1058 /* Bounds check destination. */
05394f39
CW
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
ce9d419d 1061 ret = -EINVAL;
35b62a89 1062 goto out;
ce9d419d
CW
1063 }
1064
1286ff73
DV
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
db53a302
CW
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
935aaa69 1075 ret = -EFAULT;
673a394b
EA
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
2c22569b
CW
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
fbd5a26d 1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1089 }
673a394b 1090
6a2c4232
CW
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
5c0480f2 1097
35b62a89 1098out:
05394f39 1099 drm_gem_object_unreference(&obj->base);
1d7cfea1 1100unlock:
fbd5a26d 1101 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1102put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
673a394b
EA
1105 return ret;
1106}
1107
f4457ae7
CW
1108static int
1109i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
b361237b 1110{
f4457ae7
CW
1111 if (__i915_terminally_wedged(reset_counter))
1112 return -EIO;
d98c52cf 1113
f4457ae7 1114 if (__i915_reset_in_progress(reset_counter)) {
b361237b
CW
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
d98c52cf 1120 return -EAGAIN;
b361237b
CW
1121 }
1122
1123 return 0;
1124}
1125
094f9a54
CW
1126static void fake_irq(unsigned long data)
1127{
1128 wake_up_process((struct task_struct *)data);
1129}
1130
1131static bool missed_irq(struct drm_i915_private *dev_priv,
0bc40be8 1132 struct intel_engine_cs *engine)
094f9a54 1133{
0bc40be8 1134 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
094f9a54
CW
1135}
1136
ca5b721e
CW
1137static unsigned long local_clock_us(unsigned *cpu)
1138{
1139 unsigned long t;
1140
1141 /* Cheaply and approximately convert from nanoseconds to microseconds.
1142 * The result and subsequent calculations are also defined in the same
1143 * approximate microseconds units. The principal source of timing
1144 * error here is from the simple truncation.
1145 *
1146 * Note that local_clock() is only defined wrt to the current CPU;
1147 * the comparisons are no longer valid if we switch CPUs. Instead of
1148 * blocking preemption for the entire busywait, we can detect the CPU
1149 * switch and use that as indicator of system load and a reason to
1150 * stop busywaiting, see busywait_stop().
1151 */
1152 *cpu = get_cpu();
1153 t = local_clock() >> 10;
1154 put_cpu();
1155
1156 return t;
1157}
1158
1159static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160{
1161 unsigned this_cpu;
1162
1163 if (time_after(local_clock_us(&this_cpu), timeout))
1164 return true;
1165
1166 return this_cpu != cpu;
1167}
1168
91b0c352 1169static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1170{
2def4ad9 1171 unsigned long timeout;
ca5b721e
CW
1172 unsigned cpu;
1173
1174 /* When waiting for high frequency requests, e.g. during synchronous
1175 * rendering split between the CPU and GPU, the finite amount of time
1176 * required to set up the irq and wait upon it limits the response
1177 * rate. By busywaiting on the request completion for a short while we
1178 * can service the high frequency waits as quick as possible. However,
1179 * if it is a slow request, we want to sleep as quickly as possible.
1180 * The tradeoff between waiting and sleeping is roughly the time it
1181 * takes to sleep on a request, on the order of a microsecond.
1182 */
2def4ad9 1183
4a570db5 1184 if (req->engine->irq_refcount)
2def4ad9
CW
1185 return -EBUSY;
1186
821485dc
CW
1187 /* Only spin if we know the GPU is processing this request */
1188 if (!i915_gem_request_started(req, true))
1189 return -EAGAIN;
1190
ca5b721e 1191 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1192 while (!need_resched()) {
eed29a5b 1193 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1194 return 0;
1195
91b0c352
CW
1196 if (signal_pending_state(state, current))
1197 break;
1198
ca5b721e 1199 if (busywait_stop(timeout, cpu))
2def4ad9 1200 break;
b29c19b6 1201
2def4ad9
CW
1202 cpu_relax_lowlatency();
1203 }
821485dc 1204
eed29a5b 1205 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1206 return 0;
1207
1208 return -EAGAIN;
b29c19b6
CW
1209}
1210
b361237b 1211/**
9c654818
JH
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
b361237b
CW
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
f69061be
DV
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
9c654818 1224 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1225 * errno with remaining time filled in timeout argument.
1226 */
9c654818 1227int __i915_wait_request(struct drm_i915_gem_request *req,
b29c19b6 1228 bool interruptible,
5ed0bdf2 1229 s64 *timeout,
2e1b8730 1230 struct intel_rps_client *rps)
b361237b 1231{
666796da 1232 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
e2f80391 1233 struct drm_device *dev = engine->dev;
3e31c6c0 1234 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21 1235 const bool irq_test_in_progress =
666796da 1236 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
91b0c352 1237 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1238 DEFINE_WAIT(wait);
47e9766d 1239 unsigned long timeout_expire;
e0313db0 1240 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1241 int ret;
1242
9df7575f 1243 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1244
b4716185
CW
1245 if (list_empty(&req->list))
1246 return 0;
1247
1b5a433a 1248 if (i915_gem_request_completed(req, true))
b361237b
CW
1249 return 0;
1250
bb6d1984
CW
1251 timeout_expire = 0;
1252 if (timeout) {
1253 if (WARN_ON(*timeout < 0))
1254 return -EINVAL;
1255
1256 if (*timeout == 0)
1257 return -ETIME;
1258
1259 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1260
1261 /*
1262 * Record current time in case interrupted by signal, or wedged.
1263 */
1264 before = ktime_get_raw_ns();
bb6d1984 1265 }
b361237b 1266
2e1b8730 1267 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1268 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1269
74328ee5 1270 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1271
1272 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1273 ret = __i915_spin_request(req, state);
2def4ad9
CW
1274 if (ret == 0)
1275 goto out;
1276
e2f80391 1277 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
2def4ad9
CW
1278 ret = -ENODEV;
1279 goto out;
1280 }
1281
094f9a54
CW
1282 for (;;) {
1283 struct timer_list timer;
b361237b 1284
e2f80391 1285 prepare_to_wait(&engine->irq_queue, &wait, state);
b361237b 1286
f69061be 1287 /* We need to check whether any gpu reset happened in between
f4457ae7
CW
1288 * the request being submitted and now. If a reset has occurred,
1289 * the request is effectively complete (we either are in the
1290 * process of or have discarded the rendering and completely
1291 * reset the GPU. The results of the request are lost and we
1292 * are free to continue on with the original operation.
1293 */
299259a3 1294 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
f4457ae7 1295 ret = 0;
094f9a54
CW
1296 break;
1297 }
f69061be 1298
1b5a433a 1299 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1300 ret = 0;
1301 break;
1302 }
b361237b 1303
91b0c352 1304 if (signal_pending_state(state, current)) {
094f9a54
CW
1305 ret = -ERESTARTSYS;
1306 break;
1307 }
1308
47e9766d 1309 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1310 ret = -ETIME;
1311 break;
1312 }
1313
1314 timer.function = NULL;
e2f80391 1315 if (timeout || missed_irq(dev_priv, engine)) {
47e9766d
MK
1316 unsigned long expire;
1317
094f9a54 1318 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
e2f80391 1319 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1320 mod_timer(&timer, expire);
1321 }
1322
5035c275 1323 io_schedule();
094f9a54 1324
094f9a54
CW
1325 if (timer.function) {
1326 del_singleshot_timer_sync(&timer);
1327 destroy_timer_on_stack(&timer);
1328 }
1329 }
168c3f21 1330 if (!irq_test_in_progress)
e2f80391 1331 engine->irq_put(engine);
094f9a54 1332
e2f80391 1333 finish_wait(&engine->irq_queue, &wait);
b361237b 1334
2def4ad9 1335out:
2def4ad9
CW
1336 trace_i915_gem_request_wait_end(req);
1337
b361237b 1338 if (timeout) {
e0313db0 1339 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1340
1341 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1342
1343 /*
1344 * Apparently ktime isn't accurate enough and occasionally has a
1345 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1346 * things up to make the test happy. We allow up to 1 jiffy.
1347 *
1348 * This is a regrssion from the timespec->ktime conversion.
1349 */
1350 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1351 *timeout = 0;
b361237b
CW
1352 }
1353
094f9a54 1354 return ret;
b361237b
CW
1355}
1356
fcfa423c
JH
1357int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1358 struct drm_file *file)
1359{
fcfa423c
JH
1360 struct drm_i915_file_private *file_priv;
1361
1362 WARN_ON(!req || !file || req->file_priv);
1363
1364 if (!req || !file)
1365 return -EINVAL;
1366
1367 if (req->file_priv)
1368 return -EINVAL;
1369
fcfa423c
JH
1370 file_priv = file->driver_priv;
1371
1372 spin_lock(&file_priv->mm.lock);
1373 req->file_priv = file_priv;
1374 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1375 spin_unlock(&file_priv->mm.lock);
1376
1377 req->pid = get_pid(task_pid(current));
1378
1379 return 0;
1380}
1381
b4716185
CW
1382static inline void
1383i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1384{
1385 struct drm_i915_file_private *file_priv = request->file_priv;
1386
1387 if (!file_priv)
1388 return;
1389
1390 spin_lock(&file_priv->mm.lock);
1391 list_del(&request->client_list);
1392 request->file_priv = NULL;
1393 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1394
1395 put_pid(request->pid);
1396 request->pid = NULL;
b4716185
CW
1397}
1398
1399static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1400{
1401 trace_i915_gem_request_retire(request);
1402
1403 /* We know the GPU must have read the request to have
1404 * sent us the seqno + interrupt, so use the position
1405 * of tail of the request to update the last known position
1406 * of the GPU head.
1407 *
1408 * Note this requires that we are always called in request
1409 * completion order.
1410 */
1411 request->ringbuf->last_retired_head = request->postfix;
1412
1413 list_del_init(&request->list);
1414 i915_gem_request_remove_from_client(request);
1415
b4716185
CW
1416 i915_gem_request_unreference(request);
1417}
1418
1419static void
1420__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1421{
4a570db5 1422 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1423 struct drm_i915_gem_request *tmp;
1424
1425 lockdep_assert_held(&engine->dev->struct_mutex);
1426
1427 if (list_empty(&req->list))
1428 return;
1429
1430 do {
1431 tmp = list_first_entry(&engine->request_list,
1432 typeof(*tmp), list);
1433
1434 i915_gem_request_retire(tmp);
1435 } while (tmp != req);
1436
1437 WARN_ON(i915_verify_lists(engine->dev));
1438}
1439
b361237b 1440/**
a4b3a571 1441 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1442 * request and object lists appropriately for that event.
1443 */
1444int
a4b3a571 1445i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1446{
791bee12 1447 struct drm_i915_private *dev_priv = req->i915;
a4b3a571 1448 bool interruptible;
b361237b
CW
1449 int ret;
1450
a4b3a571
DV
1451 interruptible = dev_priv->mm.interruptible;
1452
791bee12 1453 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
b361237b 1454
299259a3 1455 ret = __i915_wait_request(req, interruptible, NULL, NULL);
b4716185
CW
1456 if (ret)
1457 return ret;
d26e3af8 1458
b4716185 1459 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1460 return 0;
1461}
1462
b361237b
CW
1463/**
1464 * Ensures that all rendering to the object has completed and the object is
1465 * safe to unbind from the GTT or access from the CPU.
1466 */
2e2f351d 1467int
b361237b
CW
1468i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1469 bool readonly)
1470{
b4716185 1471 int ret, i;
b361237b 1472
b4716185 1473 if (!obj->active)
b361237b
CW
1474 return 0;
1475
b4716185
CW
1476 if (readonly) {
1477 if (obj->last_write_req != NULL) {
1478 ret = i915_wait_request(obj->last_write_req);
1479 if (ret)
1480 return ret;
b361237b 1481
4a570db5 1482 i = obj->last_write_req->engine->id;
b4716185
CW
1483 if (obj->last_read_req[i] == obj->last_write_req)
1484 i915_gem_object_retire__read(obj, i);
1485 else
1486 i915_gem_object_retire__write(obj);
1487 }
1488 } else {
666796da 1489 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1490 if (obj->last_read_req[i] == NULL)
1491 continue;
1492
1493 ret = i915_wait_request(obj->last_read_req[i]);
1494 if (ret)
1495 return ret;
1496
1497 i915_gem_object_retire__read(obj, i);
1498 }
d501b1d2 1499 GEM_BUG_ON(obj->active);
b4716185
CW
1500 }
1501
1502 return 0;
1503}
1504
1505static void
1506i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1507 struct drm_i915_gem_request *req)
1508{
4a570db5 1509 int ring = req->engine->id;
b4716185
CW
1510
1511 if (obj->last_read_req[ring] == req)
1512 i915_gem_object_retire__read(obj, ring);
1513 else if (obj->last_write_req == req)
1514 i915_gem_object_retire__write(obj);
1515
1516 __i915_gem_request_retire__upto(req);
b361237b
CW
1517}
1518
3236f57a
CW
1519/* A nonblocking variant of the above wait. This is a highly dangerous routine
1520 * as the object state may change during this call.
1521 */
1522static __must_check int
1523i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1524 struct intel_rps_client *rps,
3236f57a
CW
1525 bool readonly)
1526{
1527 struct drm_device *dev = obj->base.dev;
1528 struct drm_i915_private *dev_priv = dev->dev_private;
666796da 1529 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185 1530 int ret, i, n = 0;
3236f57a
CW
1531
1532 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1533 BUG_ON(!dev_priv->mm.interruptible);
1534
b4716185 1535 if (!obj->active)
3236f57a
CW
1536 return 0;
1537
b4716185
CW
1538 if (readonly) {
1539 struct drm_i915_gem_request *req;
1540
1541 req = obj->last_write_req;
1542 if (req == NULL)
1543 return 0;
1544
b4716185
CW
1545 requests[n++] = i915_gem_request_reference(req);
1546 } else {
666796da 1547 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1548 struct drm_i915_gem_request *req;
1549
1550 req = obj->last_read_req[i];
1551 if (req == NULL)
1552 continue;
1553
b4716185
CW
1554 requests[n++] = i915_gem_request_reference(req);
1555 }
1556 }
1557
3236f57a 1558 mutex_unlock(&dev->struct_mutex);
299259a3 1559 ret = 0;
b4716185 1560 for (i = 0; ret == 0 && i < n; i++)
299259a3 1561 ret = __i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1562 mutex_lock(&dev->struct_mutex);
1563
b4716185
CW
1564 for (i = 0; i < n; i++) {
1565 if (ret == 0)
1566 i915_gem_object_retire_request(obj, requests[i]);
1567 i915_gem_request_unreference(requests[i]);
1568 }
1569
1570 return ret;
3236f57a
CW
1571}
1572
2e1b8730
CW
1573static struct intel_rps_client *to_rps_client(struct drm_file *file)
1574{
1575 struct drm_i915_file_private *fpriv = file->driver_priv;
1576 return &fpriv->rps;
1577}
1578
673a394b 1579/**
2ef7eeaa
EA
1580 * Called when user space prepares to use an object with the CPU, either
1581 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1582 */
1583int
1584i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1585 struct drm_file *file)
673a394b
EA
1586{
1587 struct drm_i915_gem_set_domain *args = data;
05394f39 1588 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1589 uint32_t read_domains = args->read_domains;
1590 uint32_t write_domain = args->write_domain;
673a394b
EA
1591 int ret;
1592
2ef7eeaa 1593 /* Only handle setting domains to types used by the CPU. */
21d509e3 1594 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1595 return -EINVAL;
1596
21d509e3 1597 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1598 return -EINVAL;
1599
1600 /* Having something in the write domain implies it's in the read
1601 * domain, and only that read domain. Enforce that in the request.
1602 */
1603 if (write_domain != 0 && read_domains != write_domain)
1604 return -EINVAL;
1605
76c1dec1 1606 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1607 if (ret)
76c1dec1 1608 return ret;
1d7cfea1 1609
05394f39 1610 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1611 if (&obj->base == NULL) {
1d7cfea1
CW
1612 ret = -ENOENT;
1613 goto unlock;
76c1dec1 1614 }
673a394b 1615
3236f57a
CW
1616 /* Try to flush the object off the GPU without holding the lock.
1617 * We will repeat the flush holding the lock in the normal manner
1618 * to catch cases where we are gazumped.
1619 */
6e4930f6 1620 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1621 to_rps_client(file),
6e4930f6 1622 !write_domain);
3236f57a
CW
1623 if (ret)
1624 goto unref;
1625
43566ded 1626 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1627 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1628 else
e47c68e9 1629 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1630
031b698a
DV
1631 if (write_domain != 0)
1632 intel_fb_obj_invalidate(obj,
1633 write_domain == I915_GEM_DOMAIN_GTT ?
1634 ORIGIN_GTT : ORIGIN_CPU);
1635
3236f57a 1636unref:
05394f39 1637 drm_gem_object_unreference(&obj->base);
1d7cfea1 1638unlock:
673a394b
EA
1639 mutex_unlock(&dev->struct_mutex);
1640 return ret;
1641}
1642
1643/**
1644 * Called when user space has done writes to this buffer
1645 */
1646int
1647i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1648 struct drm_file *file)
673a394b
EA
1649{
1650 struct drm_i915_gem_sw_finish *args = data;
05394f39 1651 struct drm_i915_gem_object *obj;
673a394b
EA
1652 int ret = 0;
1653
76c1dec1 1654 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1655 if (ret)
76c1dec1 1656 return ret;
1d7cfea1 1657
05394f39 1658 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1659 if (&obj->base == NULL) {
1d7cfea1
CW
1660 ret = -ENOENT;
1661 goto unlock;
673a394b
EA
1662 }
1663
673a394b 1664 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1665 if (obj->pin_display)
e62b59e4 1666 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1667
05394f39 1668 drm_gem_object_unreference(&obj->base);
1d7cfea1 1669unlock:
673a394b
EA
1670 mutex_unlock(&dev->struct_mutex);
1671 return ret;
1672}
1673
1674/**
1675 * Maps the contents of an object, returning the address it is mapped
1676 * into.
1677 *
1678 * While the mapping holds a reference on the contents of the object, it doesn't
1679 * imply a ref on the object itself.
34367381
DV
1680 *
1681 * IMPORTANT:
1682 *
1683 * DRM driver writers who look a this function as an example for how to do GEM
1684 * mmap support, please don't implement mmap support like here. The modern way
1685 * to implement DRM mmap support is with an mmap offset ioctl (like
1686 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1687 * That way debug tooling like valgrind will understand what's going on, hiding
1688 * the mmap call in a driver private ioctl will break that. The i915 driver only
1689 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1690 */
1691int
1692i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1693 struct drm_file *file)
673a394b
EA
1694{
1695 struct drm_i915_gem_mmap *args = data;
1696 struct drm_gem_object *obj;
673a394b
EA
1697 unsigned long addr;
1698
1816f923
AG
1699 if (args->flags & ~(I915_MMAP_WC))
1700 return -EINVAL;
1701
1702 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1703 return -ENODEV;
1704
05394f39 1705 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1706 if (obj == NULL)
bf79cb91 1707 return -ENOENT;
673a394b 1708
1286ff73
DV
1709 /* prime objects have no backing filp to GEM mmap
1710 * pages from.
1711 */
1712 if (!obj->filp) {
1713 drm_gem_object_unreference_unlocked(obj);
1714 return -EINVAL;
1715 }
1716
6be5ceb0 1717 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1718 PROT_READ | PROT_WRITE, MAP_SHARED,
1719 args->offset);
1816f923
AG
1720 if (args->flags & I915_MMAP_WC) {
1721 struct mm_struct *mm = current->mm;
1722 struct vm_area_struct *vma;
1723
1724 down_write(&mm->mmap_sem);
1725 vma = find_vma(mm, addr);
1726 if (vma)
1727 vma->vm_page_prot =
1728 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1729 else
1730 addr = -ENOMEM;
1731 up_write(&mm->mmap_sem);
1732 }
bc9025bd 1733 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1734 if (IS_ERR((void *)addr))
1735 return addr;
1736
1737 args->addr_ptr = (uint64_t) addr;
1738
1739 return 0;
1740}
1741
de151cf6
JB
1742/**
1743 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1744 * @vma: VMA in question
1745 * @vmf: fault info
de151cf6
JB
1746 *
1747 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1748 * from userspace. The fault handler takes care of binding the object to
1749 * the GTT (if needed), allocating and programming a fence register (again,
1750 * only if needed based on whether the old reg is still valid or the object
1751 * is tiled) and inserting a new PTE into the faulting process.
1752 *
1753 * Note that the faulting process may involve evicting existing objects
1754 * from the GTT and/or fence registers to make room. So performance may
1755 * suffer if the GTT working set is large or there are few fence registers
1756 * left.
1757 */
1758int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1759{
05394f39
CW
1760 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1761 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1762 struct drm_i915_private *dev_priv = to_i915(dev);
1763 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1764 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1765 pgoff_t page_offset;
1766 unsigned long pfn;
1767 int ret = 0;
0f973f27 1768 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1769
f65c9168
PZ
1770 intel_runtime_pm_get(dev_priv);
1771
de151cf6
JB
1772 /* We don't use vmf->pgoff since that has the fake offset */
1773 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1774 PAGE_SHIFT;
1775
d9bc7e9f
CW
1776 ret = i915_mutex_lock_interruptible(dev);
1777 if (ret)
1778 goto out;
a00b10c3 1779
db53a302
CW
1780 trace_i915_gem_object_fault(obj, page_offset, true, write);
1781
6e4930f6
CW
1782 /* Try to flush the object off the GPU first without holding the lock.
1783 * Upon reacquiring the lock, we will perform our sanity checks and then
1784 * repeat the flush holding the lock in the normal manner to catch cases
1785 * where we are gazumped.
1786 */
1787 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1788 if (ret)
1789 goto unlock;
1790
eb119bd6
CW
1791 /* Access to snoopable pages through the GTT is incoherent. */
1792 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1793 ret = -EFAULT;
eb119bd6
CW
1794 goto unlock;
1795 }
1796
c5ad54cf 1797 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1798 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1799 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1800 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1801
c5ad54cf
JL
1802 memset(&view, 0, sizeof(view));
1803 view.type = I915_GGTT_VIEW_PARTIAL;
1804 view.params.partial.offset = rounddown(page_offset, chunk_size);
1805 view.params.partial.size =
1806 min_t(unsigned int,
1807 chunk_size,
1808 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1809 view.params.partial.offset);
1810 }
1811
1812 /* Now pin it into the GTT if needed */
1813 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1814 if (ret)
1815 goto unlock;
4a684a41 1816
c9839303
CW
1817 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1818 if (ret)
1819 goto unpin;
74898d7e 1820
06d98131 1821 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1822 if (ret)
c9839303 1823 goto unpin;
7d1c4804 1824
b90b91d8 1825 /* Finally, remap it using the new GTT offset */
72e96d64 1826 pfn = ggtt->mappable_base +
c5ad54cf 1827 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1828 pfn >>= PAGE_SHIFT;
de151cf6 1829
c5ad54cf
JL
1830 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1831 /* Overriding existing pages in partial view does not cause
1832 * us any trouble as TLBs are still valid because the fault
1833 * is due to userspace losing part of the mapping or never
1834 * having accessed it before (at this partials' range).
1835 */
1836 unsigned long base = vma->vm_start +
1837 (view.params.partial.offset << PAGE_SHIFT);
1838 unsigned int i;
b90b91d8 1839
c5ad54cf
JL
1840 for (i = 0; i < view.params.partial.size; i++) {
1841 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1842 if (ret)
1843 break;
1844 }
1845
1846 obj->fault_mappable = true;
c5ad54cf
JL
1847 } else {
1848 if (!obj->fault_mappable) {
1849 unsigned long size = min_t(unsigned long,
1850 vma->vm_end - vma->vm_start,
1851 obj->base.size);
1852 int i;
1853
1854 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1855 ret = vm_insert_pfn(vma,
1856 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1857 pfn + i);
1858 if (ret)
1859 break;
1860 }
1861
1862 obj->fault_mappable = true;
1863 } else
1864 ret = vm_insert_pfn(vma,
1865 (unsigned long)vmf->virtual_address,
1866 pfn + page_offset);
1867 }
c9839303 1868unpin:
c5ad54cf 1869 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1870unlock:
de151cf6 1871 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1872out:
de151cf6 1873 switch (ret) {
d9bc7e9f 1874 case -EIO:
2232f031
DV
1875 /*
1876 * We eat errors when the gpu is terminally wedged to avoid
1877 * userspace unduly crashing (gl has no provisions for mmaps to
1878 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1879 * and so needs to be reported.
1880 */
1881 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1882 ret = VM_FAULT_SIGBUS;
1883 break;
1884 }
045e769a 1885 case -EAGAIN:
571c608d
DV
1886 /*
1887 * EAGAIN means the gpu is hung and we'll wait for the error
1888 * handler to reset everything when re-faulting in
1889 * i915_mutex_lock_interruptible.
d9bc7e9f 1890 */
c715089f
CW
1891 case 0:
1892 case -ERESTARTSYS:
bed636ab 1893 case -EINTR:
e79e0fe3
DR
1894 case -EBUSY:
1895 /*
1896 * EBUSY is ok: this just means that another thread
1897 * already did the job.
1898 */
f65c9168
PZ
1899 ret = VM_FAULT_NOPAGE;
1900 break;
de151cf6 1901 case -ENOMEM:
f65c9168
PZ
1902 ret = VM_FAULT_OOM;
1903 break;
a7c2e1aa 1904 case -ENOSPC:
45d67817 1905 case -EFAULT:
f65c9168
PZ
1906 ret = VM_FAULT_SIGBUS;
1907 break;
de151cf6 1908 default:
a7c2e1aa 1909 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1910 ret = VM_FAULT_SIGBUS;
1911 break;
de151cf6 1912 }
f65c9168
PZ
1913
1914 intel_runtime_pm_put(dev_priv);
1915 return ret;
de151cf6
JB
1916}
1917
901782b2
CW
1918/**
1919 * i915_gem_release_mmap - remove physical page mappings
1920 * @obj: obj in question
1921 *
af901ca1 1922 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1923 * relinquish ownership of the pages back to the system.
1924 *
1925 * It is vital that we remove the page mapping if we have mapped a tiled
1926 * object through the GTT and then lose the fence register due to
1927 * resource pressure. Similarly if the object has been moved out of the
1928 * aperture, than pages mapped into userspace must be revoked. Removing the
1929 * mapping will then trigger a page fault on the next user access, allowing
1930 * fixup by i915_gem_fault().
1931 */
d05ca301 1932void
05394f39 1933i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1934{
349f2ccf
CW
1935 /* Serialisation between user GTT access and our code depends upon
1936 * revoking the CPU's PTE whilst the mutex is held. The next user
1937 * pagefault then has to wait until we release the mutex.
1938 */
1939 lockdep_assert_held(&obj->base.dev->struct_mutex);
1940
6299f992
CW
1941 if (!obj->fault_mappable)
1942 return;
901782b2 1943
6796cb16
DH
1944 drm_vma_node_unmap(&obj->base.vma_node,
1945 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1946
1947 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1948 * memory transactions from userspace before we return. The TLB
1949 * flushing implied above by changing the PTE above *should* be
1950 * sufficient, an extra barrier here just provides us with a bit
1951 * of paranoid documentation about our requirement to serialise
1952 * memory writes before touching registers / GSM.
1953 */
1954 wmb();
1955
6299f992 1956 obj->fault_mappable = false;
901782b2
CW
1957}
1958
eedd10f4
CW
1959void
1960i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1961{
1962 struct drm_i915_gem_object *obj;
1963
1964 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1965 i915_gem_release_mmap(obj);
1966}
1967
0fa87796 1968uint32_t
e28f8711 1969i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1970{
e28f8711 1971 uint32_t gtt_size;
92b88aeb
CW
1972
1973 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1974 tiling_mode == I915_TILING_NONE)
1975 return size;
92b88aeb
CW
1976
1977 /* Previous chips need a power-of-two fence region when tiling */
1978 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1979 gtt_size = 1024*1024;
92b88aeb 1980 else
e28f8711 1981 gtt_size = 512*1024;
92b88aeb 1982
e28f8711
CW
1983 while (gtt_size < size)
1984 gtt_size <<= 1;
92b88aeb 1985
e28f8711 1986 return gtt_size;
92b88aeb
CW
1987}
1988
de151cf6
JB
1989/**
1990 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1991 * @obj: object to check
1992 *
1993 * Return the required GTT alignment for an object, taking into account
5e783301 1994 * potential fence register mapping.
de151cf6 1995 */
d865110c
ID
1996uint32_t
1997i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1998 int tiling_mode, bool fenced)
de151cf6 1999{
de151cf6
JB
2000 /*
2001 * Minimum alignment is 4k (GTT page size), but might be greater
2002 * if a fence register is needed for the object.
2003 */
d865110c 2004 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2005 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2006 return 4096;
2007
a00b10c3
CW
2008 /*
2009 * Previous chips need to be aligned to the size of the smallest
2010 * fence register that can contain the object.
2011 */
e28f8711 2012 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2013}
2014
d8cb5086
CW
2015static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2016{
2017 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2018 int ret;
2019
0de23977 2020 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
2021 return 0;
2022
da494d7c
DV
2023 dev_priv->mm.shrinker_no_lock_stealing = true;
2024
d8cb5086
CW
2025 ret = drm_gem_create_mmap_offset(&obj->base);
2026 if (ret != -ENOSPC)
da494d7c 2027 goto out;
d8cb5086
CW
2028
2029 /* Badly fragmented mmap space? The only way we can recover
2030 * space is by destroying unwanted objects. We can't randomly release
2031 * mmap_offsets as userspace expects them to be persistent for the
2032 * lifetime of the objects. The closest we can is to release the
2033 * offsets on purgeable objects by truncating it and marking it purged,
2034 * which prevents userspace from ever using that object again.
2035 */
21ab4e74
CW
2036 i915_gem_shrink(dev_priv,
2037 obj->base.size >> PAGE_SHIFT,
2038 I915_SHRINK_BOUND |
2039 I915_SHRINK_UNBOUND |
2040 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2041 ret = drm_gem_create_mmap_offset(&obj->base);
2042 if (ret != -ENOSPC)
da494d7c 2043 goto out;
d8cb5086
CW
2044
2045 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2046 ret = drm_gem_create_mmap_offset(&obj->base);
2047out:
2048 dev_priv->mm.shrinker_no_lock_stealing = false;
2049
2050 return ret;
d8cb5086
CW
2051}
2052
2053static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2054{
d8cb5086
CW
2055 drm_gem_free_mmap_offset(&obj->base);
2056}
2057
da6b51d0 2058int
ff72145b
DA
2059i915_gem_mmap_gtt(struct drm_file *file,
2060 struct drm_device *dev,
da6b51d0 2061 uint32_t handle,
ff72145b 2062 uint64_t *offset)
de151cf6 2063{
05394f39 2064 struct drm_i915_gem_object *obj;
de151cf6
JB
2065 int ret;
2066
76c1dec1 2067 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2068 if (ret)
76c1dec1 2069 return ret;
de151cf6 2070
ff72145b 2071 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2072 if (&obj->base == NULL) {
1d7cfea1
CW
2073 ret = -ENOENT;
2074 goto unlock;
2075 }
de151cf6 2076
05394f39 2077 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2078 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2079 ret = -EFAULT;
1d7cfea1 2080 goto out;
ab18282d
CW
2081 }
2082
d8cb5086
CW
2083 ret = i915_gem_object_create_mmap_offset(obj);
2084 if (ret)
2085 goto out;
de151cf6 2086
0de23977 2087 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2088
1d7cfea1 2089out:
05394f39 2090 drm_gem_object_unreference(&obj->base);
1d7cfea1 2091unlock:
de151cf6 2092 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2093 return ret;
de151cf6
JB
2094}
2095
ff72145b
DA
2096/**
2097 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2098 * @dev: DRM device
2099 * @data: GTT mapping ioctl data
2100 * @file: GEM object info
2101 *
2102 * Simply returns the fake offset to userspace so it can mmap it.
2103 * The mmap call will end up in drm_gem_mmap(), which will set things
2104 * up so we can get faults in the handler above.
2105 *
2106 * The fault handler will take care of binding the object into the GTT
2107 * (since it may have been evicted to make room for something), allocating
2108 * a fence register, and mapping the appropriate aperture address into
2109 * userspace.
2110 */
2111int
2112i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2113 struct drm_file *file)
2114{
2115 struct drm_i915_gem_mmap_gtt *args = data;
2116
da6b51d0 2117 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2118}
2119
225067ee
DV
2120/* Immediately discard the backing storage */
2121static void
2122i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2123{
4d6294bf 2124 i915_gem_object_free_mmap_offset(obj);
1286ff73 2125
4d6294bf
CW
2126 if (obj->base.filp == NULL)
2127 return;
e5281ccd 2128
225067ee
DV
2129 /* Our goal here is to return as much of the memory as
2130 * is possible back to the system as we are called from OOM.
2131 * To do this we must instruct the shmfs to drop all of its
2132 * backing pages, *now*.
2133 */
5537252b 2134 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2135 obj->madv = __I915_MADV_PURGED;
2136}
e5281ccd 2137
5537252b
CW
2138/* Try to discard unwanted pages */
2139static void
2140i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2141{
5537252b
CW
2142 struct address_space *mapping;
2143
2144 switch (obj->madv) {
2145 case I915_MADV_DONTNEED:
2146 i915_gem_object_truncate(obj);
2147 case __I915_MADV_PURGED:
2148 return;
2149 }
2150
2151 if (obj->base.filp == NULL)
2152 return;
2153
2154 mapping = file_inode(obj->base.filp)->i_mapping,
2155 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2156}
2157
5cdf5881 2158static void
05394f39 2159i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2160{
90797e6d
ID
2161 struct sg_page_iter sg_iter;
2162 int ret;
1286ff73 2163
05394f39 2164 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2165
6c085a72 2166 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2167 if (WARN_ON(ret)) {
6c085a72
CW
2168 /* In the event of a disaster, abandon all caches and
2169 * hope for the best.
2170 */
2c22569b 2171 i915_gem_clflush_object(obj, true);
6c085a72
CW
2172 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2173 }
2174
e2273302
ID
2175 i915_gem_gtt_finish_object(obj);
2176
6dacfd2f 2177 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2178 i915_gem_object_save_bit_17_swizzle(obj);
2179
05394f39
CW
2180 if (obj->madv == I915_MADV_DONTNEED)
2181 obj->dirty = 0;
3ef94daa 2182
90797e6d 2183 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2184 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2185
05394f39 2186 if (obj->dirty)
9da3da66 2187 set_page_dirty(page);
3ef94daa 2188
05394f39 2189 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2190 mark_page_accessed(page);
3ef94daa 2191
09cbfeaf 2192 put_page(page);
3ef94daa 2193 }
05394f39 2194 obj->dirty = 0;
673a394b 2195
9da3da66
CW
2196 sg_free_table(obj->pages);
2197 kfree(obj->pages);
37e680a1 2198}
6c085a72 2199
dd624afd 2200int
37e680a1
CW
2201i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2202{
2203 const struct drm_i915_gem_object_ops *ops = obj->ops;
2204
2f745ad3 2205 if (obj->pages == NULL)
37e680a1
CW
2206 return 0;
2207
a5570178
CW
2208 if (obj->pages_pin_count)
2209 return -EBUSY;
2210
9843877d 2211 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2212
a2165e31
CW
2213 /* ->put_pages might need to allocate memory for the bit17 swizzle
2214 * array, hence protect them from being reaped by removing them from gtt
2215 * lists early. */
35c20a60 2216 list_del(&obj->global_list);
a2165e31 2217
0a798eb9 2218 if (obj->mapping) {
fb8621d3
CW
2219 if (is_vmalloc_addr(obj->mapping))
2220 vunmap(obj->mapping);
2221 else
2222 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2223 obj->mapping = NULL;
2224 }
2225
37e680a1 2226 ops->put_pages(obj);
05394f39 2227 obj->pages = NULL;
37e680a1 2228
5537252b 2229 i915_gem_object_invalidate(obj);
6c085a72
CW
2230
2231 return 0;
2232}
2233
37e680a1 2234static int
6c085a72 2235i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2236{
6c085a72 2237 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2238 int page_count, i;
2239 struct address_space *mapping;
9da3da66
CW
2240 struct sg_table *st;
2241 struct scatterlist *sg;
90797e6d 2242 struct sg_page_iter sg_iter;
e5281ccd 2243 struct page *page;
90797e6d 2244 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2245 int ret;
6c085a72 2246 gfp_t gfp;
e5281ccd 2247
6c085a72
CW
2248 /* Assert that the object is not currently in any GPU domain. As it
2249 * wasn't in the GTT, there shouldn't be any way it could have been in
2250 * a GPU cache
2251 */
2252 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2253 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2254
9da3da66
CW
2255 st = kmalloc(sizeof(*st), GFP_KERNEL);
2256 if (st == NULL)
2257 return -ENOMEM;
2258
05394f39 2259 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2260 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2261 kfree(st);
e5281ccd 2262 return -ENOMEM;
9da3da66 2263 }
e5281ccd 2264
9da3da66
CW
2265 /* Get the list of pages out of our struct file. They'll be pinned
2266 * at this point until we release them.
2267 *
2268 * Fail silently without starting the shrinker
2269 */
496ad9aa 2270 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2271 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2272 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2273 sg = st->sgl;
2274 st->nents = 0;
2275 for (i = 0; i < page_count; i++) {
6c085a72
CW
2276 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2277 if (IS_ERR(page)) {
21ab4e74
CW
2278 i915_gem_shrink(dev_priv,
2279 page_count,
2280 I915_SHRINK_BOUND |
2281 I915_SHRINK_UNBOUND |
2282 I915_SHRINK_PURGEABLE);
6c085a72
CW
2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 }
2285 if (IS_ERR(page)) {
2286 /* We've tried hard to allocate the memory by reaping
2287 * our own buffer, now let the real VM do its job and
2288 * go down in flames if truly OOM.
2289 */
6c085a72 2290 i915_gem_shrink_all(dev_priv);
f461d1be 2291 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2292 if (IS_ERR(page)) {
2293 ret = PTR_ERR(page);
6c085a72 2294 goto err_pages;
e2273302 2295 }
6c085a72 2296 }
426729dc
KRW
2297#ifdef CONFIG_SWIOTLB
2298 if (swiotlb_nr_tbl()) {
2299 st->nents++;
2300 sg_set_page(sg, page, PAGE_SIZE, 0);
2301 sg = sg_next(sg);
2302 continue;
2303 }
2304#endif
90797e6d
ID
2305 if (!i || page_to_pfn(page) != last_pfn + 1) {
2306 if (i)
2307 sg = sg_next(sg);
2308 st->nents++;
2309 sg_set_page(sg, page, PAGE_SIZE, 0);
2310 } else {
2311 sg->length += PAGE_SIZE;
2312 }
2313 last_pfn = page_to_pfn(page);
3bbbe706
DV
2314
2315 /* Check that the i965g/gm workaround works. */
2316 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2317 }
426729dc
KRW
2318#ifdef CONFIG_SWIOTLB
2319 if (!swiotlb_nr_tbl())
2320#endif
2321 sg_mark_end(sg);
74ce6b6c
CW
2322 obj->pages = st;
2323
e2273302
ID
2324 ret = i915_gem_gtt_prepare_object(obj);
2325 if (ret)
2326 goto err_pages;
2327
6dacfd2f 2328 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2329 i915_gem_object_do_bit_17_swizzle(obj);
2330
656bfa3a
DV
2331 if (obj->tiling_mode != I915_TILING_NONE &&
2332 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2333 i915_gem_object_pin_pages(obj);
2334
e5281ccd
CW
2335 return 0;
2336
2337err_pages:
90797e6d
ID
2338 sg_mark_end(sg);
2339 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
09cbfeaf 2340 put_page(sg_page_iter_page(&sg_iter));
9da3da66
CW
2341 sg_free_table(st);
2342 kfree(st);
0820baf3
CW
2343
2344 /* shmemfs first checks if there is enough memory to allocate the page
2345 * and reports ENOSPC should there be insufficient, along with the usual
2346 * ENOMEM for a genuine allocation failure.
2347 *
2348 * We use ENOSPC in our driver to mean that we have run out of aperture
2349 * space and so want to translate the error from shmemfs back to our
2350 * usual understanding of ENOMEM.
2351 */
e2273302
ID
2352 if (ret == -ENOSPC)
2353 ret = -ENOMEM;
2354
2355 return ret;
673a394b
EA
2356}
2357
37e680a1
CW
2358/* Ensure that the associated pages are gathered from the backing storage
2359 * and pinned into our object. i915_gem_object_get_pages() may be called
2360 * multiple times before they are released by a single call to
2361 * i915_gem_object_put_pages() - once the pages are no longer referenced
2362 * either as a result of memory pressure (reaping pages under the shrinker)
2363 * or as the object is itself released.
2364 */
2365int
2366i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2367{
2368 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2369 const struct drm_i915_gem_object_ops *ops = obj->ops;
2370 int ret;
2371
2f745ad3 2372 if (obj->pages)
37e680a1
CW
2373 return 0;
2374
43e28f09 2375 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2376 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2377 return -EFAULT;
43e28f09
CW
2378 }
2379
a5570178
CW
2380 BUG_ON(obj->pages_pin_count);
2381
37e680a1
CW
2382 ret = ops->get_pages(obj);
2383 if (ret)
2384 return ret;
2385
35c20a60 2386 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2387
2388 obj->get_page.sg = obj->pages->sgl;
2389 obj->get_page.last = 0;
2390
37e680a1 2391 return 0;
673a394b
EA
2392}
2393
0a798eb9
CW
2394void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2395{
2396 int ret;
2397
2398 lockdep_assert_held(&obj->base.dev->struct_mutex);
2399
2400 ret = i915_gem_object_get_pages(obj);
2401 if (ret)
2402 return ERR_PTR(ret);
2403
2404 i915_gem_object_pin_pages(obj);
2405
2406 if (obj->mapping == NULL) {
0a798eb9 2407 struct page **pages;
0a798eb9 2408
fb8621d3
CW
2409 pages = NULL;
2410 if (obj->base.size == PAGE_SIZE)
2411 obj->mapping = kmap(sg_page(obj->pages->sgl));
2412 else
2413 pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2414 sizeof(*pages),
2415 GFP_TEMPORARY);
0a798eb9 2416 if (pages != NULL) {
fb8621d3
CW
2417 struct sg_page_iter sg_iter;
2418 int n;
2419
0a798eb9
CW
2420 n = 0;
2421 for_each_sg_page(obj->pages->sgl, &sg_iter,
2422 obj->pages->nents, 0)
2423 pages[n++] = sg_page_iter_page(&sg_iter);
2424
2425 obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2426 drm_free_large(pages);
2427 }
2428 if (obj->mapping == NULL) {
2429 i915_gem_object_unpin_pages(obj);
2430 return ERR_PTR(-ENOMEM);
2431 }
2432 }
2433
2434 return obj->mapping;
2435}
2436
b4716185 2437void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2438 struct drm_i915_gem_request *req)
673a394b 2439{
b4716185 2440 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2441 struct intel_engine_cs *engine;
b2af0376 2442
666796da 2443 engine = i915_gem_request_get_engine(req);
673a394b
EA
2444
2445 /* Add a reference if we're newly entering the active list. */
b4716185 2446 if (obj->active == 0)
05394f39 2447 drm_gem_object_reference(&obj->base);
666796da 2448 obj->active |= intel_engine_flag(engine);
e35a41de 2449
117897f4 2450 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2451 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2452
1c7f4bca 2453 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2454}
2455
b4716185
CW
2456static void
2457i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2458{
d501b1d2
CW
2459 GEM_BUG_ON(obj->last_write_req == NULL);
2460 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2461
2462 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2463 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2464}
2465
caea7476 2466static void
b4716185 2467i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2468{
feb822cf 2469 struct i915_vma *vma;
ce44b0ea 2470
d501b1d2
CW
2471 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2472 GEM_BUG_ON(!(obj->active & (1 << ring)));
b4716185 2473
117897f4 2474 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2475 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2476
4a570db5 2477 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2478 i915_gem_object_retire__write(obj);
2479
2480 obj->active &= ~(1 << ring);
2481 if (obj->active)
2482 return;
caea7476 2483
6c246959
CW
2484 /* Bump our place on the bound list to keep it roughly in LRU order
2485 * so that we don't steal from recently used but inactive objects
2486 * (unless we are forced to ofc!)
2487 */
2488 list_move_tail(&obj->global_list,
2489 &to_i915(obj->base.dev)->mm.bound_list);
2490
1c7f4bca
CW
2491 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2492 if (!list_empty(&vma->vm_link))
2493 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2494 }
caea7476 2495
97b2a6a1 2496 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2497 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2498}
2499
9d773091 2500static int
fca26bb4 2501i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2502{
9d773091 2503 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2504 struct intel_engine_cs *engine;
29dcb570 2505 int ret;
53d227f2 2506
107f27a5 2507 /* Carefully retire all requests without writing to the rings */
b4ac5afc 2508 for_each_engine(engine, dev_priv) {
666796da 2509 ret = intel_engine_idle(engine);
107f27a5
CW
2510 if (ret)
2511 return ret;
9d773091 2512 }
9d773091 2513 i915_gem_retire_requests(dev);
107f27a5
CW
2514
2515 /* Finally reset hw state */
29dcb570 2516 for_each_engine(engine, dev_priv)
e2f80391 2517 intel_ring_init_seqno(engine, seqno);
498d2ac1 2518
9d773091 2519 return 0;
53d227f2
DV
2520}
2521
fca26bb4
MK
2522int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2523{
2524 struct drm_i915_private *dev_priv = dev->dev_private;
2525 int ret;
2526
2527 if (seqno == 0)
2528 return -EINVAL;
2529
2530 /* HWS page needs to be set less than what we
2531 * will inject to ring
2532 */
2533 ret = i915_gem_init_seqno(dev, seqno - 1);
2534 if (ret)
2535 return ret;
2536
2537 /* Carefully set the last_seqno value so that wrap
2538 * detection still works
2539 */
2540 dev_priv->next_seqno = seqno;
2541 dev_priv->last_seqno = seqno - 1;
2542 if (dev_priv->last_seqno == 0)
2543 dev_priv->last_seqno--;
2544
2545 return 0;
2546}
2547
9d773091
CW
2548int
2549i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2550{
9d773091
CW
2551 struct drm_i915_private *dev_priv = dev->dev_private;
2552
2553 /* reserve 0 for non-seqno */
2554 if (dev_priv->next_seqno == 0) {
fca26bb4 2555 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2556 if (ret)
2557 return ret;
53d227f2 2558
9d773091
CW
2559 dev_priv->next_seqno = 1;
2560 }
53d227f2 2561
f72b3435 2562 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2563 return 0;
53d227f2
DV
2564}
2565
bf7dc5b7
JH
2566/*
2567 * NB: This function is not allowed to fail. Doing so would mean the the
2568 * request is not being tracked for completion but the work itself is
2569 * going to happen on the hardware. This would be a Bad Thing(tm).
2570 */
75289874 2571void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2572 struct drm_i915_gem_object *obj,
2573 bool flush_caches)
673a394b 2574{
e2f80391 2575 struct intel_engine_cs *engine;
75289874 2576 struct drm_i915_private *dev_priv;
48e29f55 2577 struct intel_ringbuffer *ringbuf;
6d3d8274 2578 u32 request_start;
3cce469c
CW
2579 int ret;
2580
48e29f55 2581 if (WARN_ON(request == NULL))
bf7dc5b7 2582 return;
48e29f55 2583
4a570db5 2584 engine = request->engine;
39dabecd 2585 dev_priv = request->i915;
75289874
JH
2586 ringbuf = request->ringbuf;
2587
29b1b415
JH
2588 /*
2589 * To ensure that this call will not fail, space for its emissions
2590 * should already have been reserved in the ring buffer. Let the ring
2591 * know that it is time to use that space up.
2592 */
2593 intel_ring_reserved_space_use(ringbuf);
2594
48e29f55 2595 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2596 /*
2597 * Emit any outstanding flushes - execbuf can fail to emit the flush
2598 * after having emitted the batchbuffer command. Hence we need to fix
2599 * things up similar to emitting the lazy request. The difference here
2600 * is that the flush _must_ happen before the next request, no matter
2601 * what.
2602 */
5b4a60c2
JH
2603 if (flush_caches) {
2604 if (i915.enable_execlists)
4866d729 2605 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2606 else
4866d729 2607 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2608 /* Not allowed to fail! */
2609 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2610 }
cc889e0f 2611
7c90b7de
CW
2612 trace_i915_gem_request_add(request);
2613
2614 request->head = request_start;
2615
2616 /* Whilst this request exists, batch_obj will be on the
2617 * active_list, and so will hold the active reference. Only when this
2618 * request is retired will the the batch_obj be moved onto the
2619 * inactive_list and lose its active reference. Hence we do not need
2620 * to explicitly hold another reference here.
2621 */
2622 request->batch_obj = obj;
2623
2624 /* Seal the request and mark it as pending execution. Note that
2625 * we may inspect this state, without holding any locks, during
2626 * hangcheck. Hence we apply the barrier to ensure that we do not
2627 * see a more recent value in the hws than we are tracking.
2628 */
2629 request->emitted_jiffies = jiffies;
2630 request->previous_seqno = engine->last_submitted_seqno;
2631 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2632 list_add_tail(&request->list, &engine->request_list);
2633
a71d8d94
CW
2634 /* Record the position of the start of the request so that
2635 * should we detect the updated seqno part-way through the
2636 * GPU processing the request, we never over-estimate the
2637 * position of the head.
2638 */
6d3d8274 2639 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2640
bf7dc5b7 2641 if (i915.enable_execlists)
e2f80391 2642 ret = engine->emit_request(request);
bf7dc5b7 2643 else {
e2f80391 2644 ret = engine->add_request(request);
53292cdb
MT
2645
2646 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2647 }
bf7dc5b7
JH
2648 /* Not allowed to fail! */
2649 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2650
e2f80391 2651 i915_queue_hangcheck(engine->dev);
10cd45b6 2652
87255483
DV
2653 queue_delayed_work(dev_priv->wq,
2654 &dev_priv->mm.retire_work,
2655 round_jiffies_up_relative(HZ));
2656 intel_mark_busy(dev_priv->dev);
cc889e0f 2657
29b1b415
JH
2658 /* Sanity check that the reserved size was large enough. */
2659 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2660}
2661
939fd762 2662static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2663 const struct intel_context *ctx)
be62acb4 2664{
44e2c070 2665 unsigned long elapsed;
be62acb4 2666
44e2c070
MK
2667 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2668
2669 if (ctx->hang_stats.banned)
be62acb4
MK
2670 return true;
2671
676fa572
CW
2672 if (ctx->hang_stats.ban_period_seconds &&
2673 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2674 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2675 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2676 return true;
88b4aa87
MK
2677 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2678 if (i915_stop_ring_allow_warn(dev_priv))
2679 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2680 return true;
3fac8978 2681 }
be62acb4
MK
2682 }
2683
2684 return false;
2685}
2686
939fd762 2687static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2688 struct intel_context *ctx,
b6b0fac0 2689 const bool guilty)
aa60c664 2690{
44e2c070
MK
2691 struct i915_ctx_hang_stats *hs;
2692
2693 if (WARN_ON(!ctx))
2694 return;
aa60c664 2695
44e2c070
MK
2696 hs = &ctx->hang_stats;
2697
2698 if (guilty) {
939fd762 2699 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2700 hs->batch_active++;
2701 hs->guilty_ts = get_seconds();
2702 } else {
2703 hs->batch_pending++;
aa60c664
MK
2704 }
2705}
2706
abfe262a
JH
2707void i915_gem_request_free(struct kref *req_ref)
2708{
2709 struct drm_i915_gem_request *req = container_of(req_ref,
2710 typeof(*req), ref);
2711 struct intel_context *ctx = req->ctx;
2712
fcfa423c
JH
2713 if (req->file_priv)
2714 i915_gem_request_remove_from_client(req);
2715
0794aed3 2716 if (ctx) {
e28e404c 2717 if (i915.enable_execlists && ctx != req->i915->kernel_context)
4a570db5 2718 intel_lr_context_unpin(ctx, req->engine);
abfe262a 2719
dcb4c12a
OM
2720 i915_gem_context_unreference(ctx);
2721 }
abfe262a 2722
efab6d8d 2723 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2724}
2725
26827088 2726static inline int
0bc40be8 2727__i915_gem_request_alloc(struct intel_engine_cs *engine,
26827088
DG
2728 struct intel_context *ctx,
2729 struct drm_i915_gem_request **req_out)
6689cb2b 2730{
0bc40be8 2731 struct drm_i915_private *dev_priv = to_i915(engine->dev);
299259a3 2732 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
eed29a5b 2733 struct drm_i915_gem_request *req;
6689cb2b 2734 int ret;
6689cb2b 2735
217e46b5
JH
2736 if (!req_out)
2737 return -EINVAL;
2738
bccca494 2739 *req_out = NULL;
6689cb2b 2740
f4457ae7
CW
2741 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2742 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2743 * and restart.
2744 */
2745 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
299259a3
CW
2746 if (ret)
2747 return ret;
2748
eed29a5b
DV
2749 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2750 if (req == NULL)
6689cb2b
JH
2751 return -ENOMEM;
2752
0bc40be8 2753 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
9a0c1e27
CW
2754 if (ret)
2755 goto err;
6689cb2b 2756
40e895ce
JH
2757 kref_init(&req->ref);
2758 req->i915 = dev_priv;
4a570db5 2759 req->engine = engine;
299259a3 2760 req->reset_counter = reset_counter;
40e895ce
JH
2761 req->ctx = ctx;
2762 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2763
2764 if (i915.enable_execlists)
40e895ce 2765 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2766 else
eed29a5b 2767 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2768 if (ret) {
2769 i915_gem_context_unreference(req->ctx);
9a0c1e27 2770 goto err;
40e895ce 2771 }
6689cb2b 2772
29b1b415
JH
2773 /*
2774 * Reserve space in the ring buffer for all the commands required to
2775 * eventually emit this request. This is to guarantee that the
2776 * i915_add_request() call can't fail. Note that the reserve may need
2777 * to be redone if the request is not actually submitted straight
2778 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2779 */
ccd98fe4
JH
2780 if (i915.enable_execlists)
2781 ret = intel_logical_ring_reserve_space(req);
2782 else
2783 ret = intel_ring_reserve_space(req);
2784 if (ret) {
2785 /*
2786 * At this point, the request is fully allocated even if not
2787 * fully prepared. Thus it can be cleaned up using the proper
2788 * free code.
2789 */
aa9b7810
CW
2790 intel_ring_reserved_space_cancel(req->ringbuf);
2791 i915_gem_request_unreference(req);
ccd98fe4
JH
2792 return ret;
2793 }
29b1b415 2794
bccca494 2795 *req_out = req;
6689cb2b 2796 return 0;
9a0c1e27
CW
2797
2798err:
2799 kmem_cache_free(dev_priv->requests, req);
2800 return ret;
0e50e96b
MK
2801}
2802
26827088
DG
2803/**
2804 * i915_gem_request_alloc - allocate a request structure
2805 *
2806 * @engine: engine that we wish to issue the request on.
2807 * @ctx: context that the request will be associated with.
2808 * This can be NULL if the request is not directly related to
2809 * any specific user context, in which case this function will
2810 * choose an appropriate context to use.
2811 *
2812 * Returns a pointer to the allocated request if successful,
2813 * or an error code if not.
2814 */
2815struct drm_i915_gem_request *
2816i915_gem_request_alloc(struct intel_engine_cs *engine,
2817 struct intel_context *ctx)
2818{
2819 struct drm_i915_gem_request *req;
2820 int err;
2821
2822 if (ctx == NULL)
ed54c1a1 2823 ctx = to_i915(engine->dev)->kernel_context;
26827088
DG
2824 err = __i915_gem_request_alloc(engine, ctx, &req);
2825 return err ? ERR_PTR(err) : req;
2826}
2827
8d9fc7fd 2828struct drm_i915_gem_request *
0bc40be8 2829i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2830{
4db080f9
CW
2831 struct drm_i915_gem_request *request;
2832
0bc40be8 2833 list_for_each_entry(request, &engine->request_list, list) {
1b5a433a 2834 if (i915_gem_request_completed(request, false))
4db080f9 2835 continue;
aa60c664 2836
b6b0fac0 2837 return request;
4db080f9 2838 }
b6b0fac0
MK
2839
2840 return NULL;
2841}
2842
666796da 2843static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
0bc40be8 2844 struct intel_engine_cs *engine)
b6b0fac0
MK
2845{
2846 struct drm_i915_gem_request *request;
2847 bool ring_hung;
2848
0bc40be8 2849 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2850
2851 if (request == NULL)
2852 return;
2853
0bc40be8 2854 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2855
939fd762 2856 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0 2857
0bc40be8 2858 list_for_each_entry_continue(request, &engine->request_list, list)
939fd762 2859 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2860}
aa60c664 2861
666796da 2862static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
0bc40be8 2863 struct intel_engine_cs *engine)
4db080f9 2864{
608c1a52
CW
2865 struct intel_ringbuffer *buffer;
2866
0bc40be8 2867 while (!list_empty(&engine->active_list)) {
05394f39 2868 struct drm_i915_gem_object *obj;
9375e446 2869
0bc40be8 2870 obj = list_first_entry(&engine->active_list,
05394f39 2871 struct drm_i915_gem_object,
117897f4 2872 engine_list[engine->id]);
9375e446 2873
0bc40be8 2874 i915_gem_object_retire__read(obj, engine->id);
673a394b 2875 }
1d62beea 2876
dcb4c12a
OM
2877 /*
2878 * Clear the execlists queue up before freeing the requests, as those
2879 * are the ones that keep the context and ringbuffer backing objects
2880 * pinned in place.
2881 */
dcb4c12a 2882
7de1691a 2883 if (i915.enable_execlists) {
27af5eea
TU
2884 /* Ensure irq handler finishes or is cancelled. */
2885 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2886
27af5eea 2887 spin_lock_bh(&engine->execlist_lock);
c5baa566 2888 /* list_splice_tail_init checks for empty lists */
0bc40be8
TU
2889 list_splice_tail_init(&engine->execlist_queue,
2890 &engine->execlist_retired_req_list);
27af5eea 2891 spin_unlock_bh(&engine->execlist_lock);
1197b4f2 2892
0bc40be8 2893 intel_execlists_retire_requests(engine);
dcb4c12a
OM
2894 }
2895
1d62beea
BW
2896 /*
2897 * We must free the requests after all the corresponding objects have
2898 * been moved off active lists. Which is the same order as the normal
2899 * retire_requests function does. This is important if object hold
2900 * implicit references on things like e.g. ppgtt address spaces through
2901 * the request.
2902 */
0bc40be8 2903 while (!list_empty(&engine->request_list)) {
1d62beea
BW
2904 struct drm_i915_gem_request *request;
2905
0bc40be8 2906 request = list_first_entry(&engine->request_list,
1d62beea
BW
2907 struct drm_i915_gem_request,
2908 list);
2909
b4716185 2910 i915_gem_request_retire(request);
1d62beea 2911 }
608c1a52
CW
2912
2913 /* Having flushed all requests from all queues, we know that all
2914 * ringbuffers must now be empty. However, since we do not reclaim
2915 * all space when retiring the request (to prevent HEADs colliding
2916 * with rapid ringbuffer wraparound) the amount of available space
2917 * upon reset is less than when we start. Do one more pass over
2918 * all the ringbuffers to reset last_retired_head.
2919 */
0bc40be8 2920 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
2921 buffer->last_retired_head = buffer->tail;
2922 intel_ring_update_space(buffer);
2923 }
2ed53a94
CW
2924
2925 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
673a394b
EA
2926}
2927
069efc1d 2928void i915_gem_reset(struct drm_device *dev)
673a394b 2929{
77f01230 2930 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2931 struct intel_engine_cs *engine;
673a394b 2932
4db080f9
CW
2933 /*
2934 * Before we free the objects from the requests, we need to inspect
2935 * them for finding the guilty party. As the requests only borrow
2936 * their reference to the objects, the inspection must be done first.
2937 */
b4ac5afc 2938 for_each_engine(engine, dev_priv)
666796da 2939 i915_gem_reset_engine_status(dev_priv, engine);
4db080f9 2940
b4ac5afc 2941 for_each_engine(engine, dev_priv)
666796da 2942 i915_gem_reset_engine_cleanup(dev_priv, engine);
dfaae392 2943
acce9ffa
BW
2944 i915_gem_context_reset(dev);
2945
19b2dbde 2946 i915_gem_restore_fences(dev);
b4716185
CW
2947
2948 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2949}
2950
2951/**
2952 * This function clears the request list as sequence numbers are passed.
2953 */
1cf0ba14 2954void
0bc40be8 2955i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 2956{
0bc40be8 2957 WARN_ON(i915_verify_lists(engine->dev));
673a394b 2958
832a3aad
CW
2959 /* Retire requests first as we use it above for the early return.
2960 * If we retire requests last, we may use a later seqno and so clear
2961 * the requests lists without clearing the active list, leading to
2962 * confusion.
e9103038 2963 */
0bc40be8 2964 while (!list_empty(&engine->request_list)) {
673a394b 2965 struct drm_i915_gem_request *request;
673a394b 2966
0bc40be8 2967 request = list_first_entry(&engine->request_list,
673a394b
EA
2968 struct drm_i915_gem_request,
2969 list);
673a394b 2970
1b5a433a 2971 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2972 break;
2973
b4716185 2974 i915_gem_request_retire(request);
b84d5f0c 2975 }
673a394b 2976
832a3aad
CW
2977 /* Move any buffers on the active list that are no longer referenced
2978 * by the ringbuffer to the flushing/inactive lists as appropriate,
2979 * before we free the context associated with the requests.
2980 */
0bc40be8 2981 while (!list_empty(&engine->active_list)) {
832a3aad
CW
2982 struct drm_i915_gem_object *obj;
2983
0bc40be8
TU
2984 obj = list_first_entry(&engine->active_list,
2985 struct drm_i915_gem_object,
117897f4 2986 engine_list[engine->id]);
832a3aad 2987
0bc40be8 2988 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
2989 break;
2990
0bc40be8 2991 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
2992 }
2993
0bc40be8
TU
2994 if (unlikely(engine->trace_irq_req &&
2995 i915_gem_request_completed(engine->trace_irq_req, true))) {
2996 engine->irq_put(engine);
2997 i915_gem_request_assign(&engine->trace_irq_req, NULL);
9d34e5db 2998 }
23bc5982 2999
0bc40be8 3000 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
3001}
3002
b29c19b6 3003bool
b09a1fec
CW
3004i915_gem_retire_requests(struct drm_device *dev)
3005{
3e31c6c0 3006 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3007 struct intel_engine_cs *engine;
b29c19b6 3008 bool idle = true;
b09a1fec 3009
b4ac5afc 3010 for_each_engine(engine, dev_priv) {
e2f80391
TU
3011 i915_gem_retire_requests_ring(engine);
3012 idle &= list_empty(&engine->request_list);
c86ee3a9 3013 if (i915.enable_execlists) {
27af5eea 3014 spin_lock_bh(&engine->execlist_lock);
e2f80391 3015 idle &= list_empty(&engine->execlist_queue);
27af5eea 3016 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 3017
e2f80391 3018 intel_execlists_retire_requests(engine);
c86ee3a9 3019 }
b29c19b6
CW
3020 }
3021
3022 if (idle)
3023 mod_delayed_work(dev_priv->wq,
3024 &dev_priv->mm.idle_work,
3025 msecs_to_jiffies(100));
3026
3027 return idle;
b09a1fec
CW
3028}
3029
75ef9da2 3030static void
673a394b
EA
3031i915_gem_retire_work_handler(struct work_struct *work)
3032{
b29c19b6
CW
3033 struct drm_i915_private *dev_priv =
3034 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3035 struct drm_device *dev = dev_priv->dev;
0a58705b 3036 bool idle;
673a394b 3037
891b48cf 3038 /* Come back later if the device is busy... */
b29c19b6
CW
3039 idle = false;
3040 if (mutex_trylock(&dev->struct_mutex)) {
3041 idle = i915_gem_retire_requests(dev);
3042 mutex_unlock(&dev->struct_mutex);
673a394b 3043 }
b29c19b6 3044 if (!idle)
bcb45086
CW
3045 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3046 round_jiffies_up_relative(HZ));
b29c19b6 3047}
0a58705b 3048
b29c19b6
CW
3049static void
3050i915_gem_idle_work_handler(struct work_struct *work)
3051{
3052 struct drm_i915_private *dev_priv =
3053 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3054 struct drm_device *dev = dev_priv->dev;
b4ac5afc 3055 struct intel_engine_cs *engine;
b29c19b6 3056
b4ac5afc
DG
3057 for_each_engine(engine, dev_priv)
3058 if (!list_empty(&engine->request_list))
423795cb 3059 return;
35c94185 3060
30ecad77 3061 /* we probably should sync with hangcheck here, using cancel_work_sync.
b4ac5afc 3062 * Also locking seems to be fubar here, engine->request_list is protected
30ecad77
DV
3063 * by dev->struct_mutex. */
3064
35c94185
CW
3065 intel_mark_idle(dev);
3066
3067 if (mutex_trylock(&dev->struct_mutex)) {
b4ac5afc 3068 for_each_engine(engine, dev_priv)
e2f80391 3069 i915_gem_batch_pool_fini(&engine->batch_pool);
b29c19b6 3070
35c94185
CW
3071 mutex_unlock(&dev->struct_mutex);
3072 }
673a394b
EA
3073}
3074
30dfebf3
DV
3075/**
3076 * Ensures that an object will eventually get non-busy by flushing any required
3077 * write domains, emitting any outstanding lazy request and retiring and
3078 * completed requests.
3079 */
3080static int
3081i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3082{
a5ac0f90 3083 int i;
b4716185
CW
3084
3085 if (!obj->active)
3086 return 0;
30dfebf3 3087
666796da 3088 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3089 struct drm_i915_gem_request *req;
41c52415 3090
b4716185
CW
3091 req = obj->last_read_req[i];
3092 if (req == NULL)
3093 continue;
3094
3095 if (list_empty(&req->list))
3096 goto retire;
3097
b4716185
CW
3098 if (i915_gem_request_completed(req, true)) {
3099 __i915_gem_request_retire__upto(req);
3100retire:
3101 i915_gem_object_retire__read(obj, i);
3102 }
30dfebf3
DV
3103 }
3104
3105 return 0;
3106}
3107
23ba4fd0
BW
3108/**
3109 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3110 * @DRM_IOCTL_ARGS: standard ioctl arguments
3111 *
3112 * Returns 0 if successful, else an error is returned with the remaining time in
3113 * the timeout parameter.
3114 * -ETIME: object is still busy after timeout
3115 * -ERESTARTSYS: signal interrupted the wait
3116 * -ENONENT: object doesn't exist
3117 * Also possible, but rare:
3118 * -EAGAIN: GPU wedged
3119 * -ENOMEM: damn
3120 * -ENODEV: Internal IRQ fail
3121 * -E?: The add request failed
3122 *
3123 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3124 * non-zero timeout parameter the wait ioctl will wait for the given number of
3125 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3126 * without holding struct_mutex the object may become re-busied before this
3127 * function completes. A similar but shorter * race condition exists in the busy
3128 * ioctl
3129 */
3130int
3131i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3132{
3133 struct drm_i915_gem_wait *args = data;
3134 struct drm_i915_gem_object *obj;
666796da 3135 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185
CW
3136 int i, n = 0;
3137 int ret;
23ba4fd0 3138
11b5d511
DV
3139 if (args->flags != 0)
3140 return -EINVAL;
3141
23ba4fd0
BW
3142 ret = i915_mutex_lock_interruptible(dev);
3143 if (ret)
3144 return ret;
3145
3146 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3147 if (&obj->base == NULL) {
3148 mutex_unlock(&dev->struct_mutex);
3149 return -ENOENT;
3150 }
3151
30dfebf3
DV
3152 /* Need to make sure the object gets inactive eventually. */
3153 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3154 if (ret)
3155 goto out;
3156
b4716185 3157 if (!obj->active)
97b2a6a1 3158 goto out;
23ba4fd0 3159
23ba4fd0 3160 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3161 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3162 */
762e4583 3163 if (args->timeout_ns == 0) {
23ba4fd0
BW
3164 ret = -ETIME;
3165 goto out;
3166 }
3167
3168 drm_gem_object_unreference(&obj->base);
b4716185 3169
666796da 3170 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3171 if (obj->last_read_req[i] == NULL)
3172 continue;
3173
3174 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3175 }
3176
23ba4fd0
BW
3177 mutex_unlock(&dev->struct_mutex);
3178
b4716185
CW
3179 for (i = 0; i < n; i++) {
3180 if (ret == 0)
299259a3 3181 ret = __i915_wait_request(req[i], true,
b4716185 3182 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3183 to_rps_client(file));
b4716185
CW
3184 i915_gem_request_unreference__unlocked(req[i]);
3185 }
ff865885 3186 return ret;
23ba4fd0
BW
3187
3188out:
3189 drm_gem_object_unreference(&obj->base);
3190 mutex_unlock(&dev->struct_mutex);
3191 return ret;
3192}
3193
b4716185
CW
3194static int
3195__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3196 struct intel_engine_cs *to,
91af127f
JH
3197 struct drm_i915_gem_request *from_req,
3198 struct drm_i915_gem_request **to_req)
b4716185
CW
3199{
3200 struct intel_engine_cs *from;
3201 int ret;
3202
666796da 3203 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3204 if (to == from)
3205 return 0;
3206
91af127f 3207 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3208 return 0;
3209
b4716185 3210 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3211 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3212 ret = __i915_wait_request(from_req,
a6f766f3
CW
3213 i915->mm.interruptible,
3214 NULL,
3215 &i915->rps.semaphores);
b4716185
CW
3216 if (ret)
3217 return ret;
3218
91af127f 3219 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3220 } else {
3221 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3222 u32 seqno = i915_gem_request_get_seqno(from_req);
3223
3224 WARN_ON(!to_req);
b4716185
CW
3225
3226 if (seqno <= from->semaphore.sync_seqno[idx])
3227 return 0;
3228
91af127f 3229 if (*to_req == NULL) {
26827088
DG
3230 struct drm_i915_gem_request *req;
3231
3232 req = i915_gem_request_alloc(to, NULL);
3233 if (IS_ERR(req))
3234 return PTR_ERR(req);
3235
3236 *to_req = req;
91af127f
JH
3237 }
3238
599d924c
JH
3239 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3240 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3241 if (ret)
3242 return ret;
3243
3244 /* We use last_read_req because sync_to()
3245 * might have just caused seqno wrap under
3246 * the radar.
3247 */
3248 from->semaphore.sync_seqno[idx] =
3249 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3250 }
3251
3252 return 0;
3253}
3254
5816d648
BW
3255/**
3256 * i915_gem_object_sync - sync an object to a ring.
3257 *
3258 * @obj: object which may be in use on another ring.
3259 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3260 * @to_req: request we wish to use the object for. See below.
3261 * This will be allocated and returned if a request is
3262 * required but not passed in.
5816d648
BW
3263 *
3264 * This code is meant to abstract object synchronization with the GPU.
3265 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3266 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3267 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3268 * into a buffer at any time, but multiple readers. To ensure each has
3269 * a coherent view of memory, we must:
3270 *
3271 * - If there is an outstanding write request to the object, the new
3272 * request must wait for it to complete (either CPU or in hw, requests
3273 * on the same ring will be naturally ordered).
3274 *
3275 * - If we are a write request (pending_write_domain is set), the new
3276 * request must wait for outstanding read requests to complete.
5816d648 3277 *
91af127f
JH
3278 * For CPU synchronisation (NULL to) no request is required. For syncing with
3279 * rings to_req must be non-NULL. However, a request does not have to be
3280 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3281 * request will be allocated automatically and returned through *to_req. Note
3282 * that it is not guaranteed that commands will be emitted (because the system
3283 * might already be idle). Hence there is no need to create a request that
3284 * might never have any work submitted. Note further that if a request is
3285 * returned in *to_req, it is the responsibility of the caller to submit
3286 * that request (after potentially adding more work to it).
3287 *
5816d648
BW
3288 * Returns 0 if successful, else propagates up the lower layer error.
3289 */
2911a35b
BW
3290int
3291i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3292 struct intel_engine_cs *to,
3293 struct drm_i915_gem_request **to_req)
2911a35b 3294{
b4716185 3295 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3296 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3297 int ret, i, n;
41c52415 3298
b4716185 3299 if (!obj->active)
2911a35b
BW
3300 return 0;
3301
b4716185
CW
3302 if (to == NULL)
3303 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3304
b4716185
CW
3305 n = 0;
3306 if (readonly) {
3307 if (obj->last_write_req)
3308 req[n++] = obj->last_write_req;
3309 } else {
666796da 3310 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3311 if (obj->last_read_req[i])
3312 req[n++] = obj->last_read_req[i];
3313 }
3314 for (i = 0; i < n; i++) {
91af127f 3315 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3316 if (ret)
3317 return ret;
3318 }
2911a35b 3319
b4716185 3320 return 0;
2911a35b
BW
3321}
3322
b5ffc9bc
CW
3323static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3324{
3325 u32 old_write_domain, old_read_domains;
3326
b5ffc9bc
CW
3327 /* Force a pagefault for domain tracking on next user access */
3328 i915_gem_release_mmap(obj);
3329
b97c3d9c
KP
3330 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3331 return;
3332
b5ffc9bc
CW
3333 old_read_domains = obj->base.read_domains;
3334 old_write_domain = obj->base.write_domain;
3335
3336 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3337 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3338
3339 trace_i915_gem_object_change_domain(obj,
3340 old_read_domains,
3341 old_write_domain);
3342}
3343
8ef8561f
CW
3344static void __i915_vma_iounmap(struct i915_vma *vma)
3345{
3346 GEM_BUG_ON(vma->pin_count);
3347
3348 if (vma->iomap == NULL)
3349 return;
3350
3351 io_mapping_unmap(vma->iomap);
3352 vma->iomap = NULL;
3353}
3354
e9f24d5f 3355static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3356{
07fe0b12 3357 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3358 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3359 int ret;
673a394b 3360
1c7f4bca 3361 if (list_empty(&vma->obj_link))
673a394b
EA
3362 return 0;
3363
0ff501cb
DV
3364 if (!drm_mm_node_allocated(&vma->node)) {
3365 i915_gem_vma_destroy(vma);
0ff501cb
DV
3366 return 0;
3367 }
433544bd 3368
d7f46fc4 3369 if (vma->pin_count)
31d8d651 3370 return -EBUSY;
673a394b 3371
c4670ad0
CW
3372 BUG_ON(obj->pages == NULL);
3373
e9f24d5f
TU
3374 if (wait) {
3375 ret = i915_gem_object_wait_rendering(obj, false);
3376 if (ret)
3377 return ret;
3378 }
a8198eea 3379
596c5923 3380 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3381 i915_gem_object_finish_gtt(obj);
5323fd04 3382
8b1bc9b4
DV
3383 /* release the fence reg _after_ flushing */
3384 ret = i915_gem_object_put_fence(obj);
3385 if (ret)
3386 return ret;
8ef8561f
CW
3387
3388 __i915_vma_iounmap(vma);
8b1bc9b4 3389 }
96b47b65 3390
07fe0b12 3391 trace_i915_vma_unbind(vma);
db53a302 3392
777dc5bb 3393 vma->vm->unbind_vma(vma);
5e562f1d 3394 vma->bound = 0;
6f65e29a 3395
1c7f4bca 3396 list_del_init(&vma->vm_link);
596c5923 3397 if (vma->is_ggtt) {
fe14d5f4
TU
3398 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3399 obj->map_and_fenceable = false;
3400 } else if (vma->ggtt_view.pages) {
3401 sg_free_table(vma->ggtt_view.pages);
3402 kfree(vma->ggtt_view.pages);
fe14d5f4 3403 }
016a65a3 3404 vma->ggtt_view.pages = NULL;
fe14d5f4 3405 }
673a394b 3406
2f633156
BW
3407 drm_mm_remove_node(&vma->node);
3408 i915_gem_vma_destroy(vma);
3409
3410 /* Since the unbound list is global, only move to that list if
b93dab6e 3411 * no more VMAs exist. */
e2273302 3412 if (list_empty(&obj->vma_list))
2f633156 3413 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3414
70903c3b
CW
3415 /* And finally now the object is completely decoupled from this vma,
3416 * we can drop its hold on the backing storage and allow it to be
3417 * reaped by the shrinker.
3418 */
3419 i915_gem_object_unpin_pages(obj);
3420
88241785 3421 return 0;
54cf91dc
CW
3422}
3423
e9f24d5f
TU
3424int i915_vma_unbind(struct i915_vma *vma)
3425{
3426 return __i915_vma_unbind(vma, true);
3427}
3428
3429int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3430{
3431 return __i915_vma_unbind(vma, false);
3432}
3433
b2da9fe5 3434int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3435{
3e31c6c0 3436 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3437 struct intel_engine_cs *engine;
b4ac5afc 3438 int ret;
4df2faf4 3439
4df2faf4 3440 /* Flush everything onto the inactive list. */
b4ac5afc 3441 for_each_engine(engine, dev_priv) {
ecdb5fd8 3442 if (!i915.enable_execlists) {
73cfa865
JH
3443 struct drm_i915_gem_request *req;
3444
e2f80391 3445 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
3446 if (IS_ERR(req))
3447 return PTR_ERR(req);
73cfa865 3448
ba01cc93 3449 ret = i915_switch_context(req);
75289874 3450 i915_add_request_no_flush(req);
aa9b7810
CW
3451 if (ret)
3452 return ret;
ecdb5fd8 3453 }
b6c7488d 3454
666796da 3455 ret = intel_engine_idle(engine);
1ec14ad3
CW
3456 if (ret)
3457 return ret;
3458 }
4df2faf4 3459
b4716185 3460 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3461 return 0;
4df2faf4
DV
3462}
3463
4144f9b5 3464static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3465 unsigned long cache_level)
3466{
4144f9b5 3467 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3468 struct drm_mm_node *other;
3469
4144f9b5
CW
3470 /*
3471 * On some machines we have to be careful when putting differing types
3472 * of snoopable memory together to avoid the prefetcher crossing memory
3473 * domains and dying. During vm initialisation, we decide whether or not
3474 * these constraints apply and set the drm_mm.color_adjust
3475 * appropriately.
42d6ab48 3476 */
4144f9b5 3477 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3478 return true;
3479
c6cfb325 3480 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3481 return true;
3482
3483 if (list_empty(&gtt_space->node_list))
3484 return true;
3485
3486 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3487 if (other->allocated && !other->hole_follows && other->color != cache_level)
3488 return false;
3489
3490 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3491 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3492 return false;
3493
3494 return true;
3495}
3496
673a394b 3497/**
91e6711e
JL
3498 * Finds free space in the GTT aperture and binds the object or a view of it
3499 * there.
673a394b 3500 */
262de145 3501static struct i915_vma *
07fe0b12
BW
3502i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3503 struct i915_address_space *vm,
ec7adb6e 3504 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3505 unsigned alignment,
ec7adb6e 3506 uint64_t flags)
673a394b 3507{
05394f39 3508 struct drm_device *dev = obj->base.dev;
72e96d64
JL
3509 struct drm_i915_private *dev_priv = to_i915(dev);
3510 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 3511 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3512 u32 search_flag, alloc_flag;
3513 u64 start, end;
65bd342f 3514 u64 size, fence_size;
2f633156 3515 struct i915_vma *vma;
07f73f69 3516 int ret;
673a394b 3517
91e6711e
JL
3518 if (i915_is_ggtt(vm)) {
3519 u32 view_size;
3520
3521 if (WARN_ON(!ggtt_view))
3522 return ERR_PTR(-EINVAL);
ec7adb6e 3523
91e6711e
JL
3524 view_size = i915_ggtt_view_size(obj, ggtt_view);
3525
3526 fence_size = i915_gem_get_gtt_size(dev,
3527 view_size,
3528 obj->tiling_mode);
3529 fence_alignment = i915_gem_get_gtt_alignment(dev,
3530 view_size,
3531 obj->tiling_mode,
3532 true);
3533 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3534 view_size,
3535 obj->tiling_mode,
3536 false);
3537 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3538 } else {
3539 fence_size = i915_gem_get_gtt_size(dev,
3540 obj->base.size,
3541 obj->tiling_mode);
3542 fence_alignment = i915_gem_get_gtt_alignment(dev,
3543 obj->base.size,
3544 obj->tiling_mode,
3545 true);
3546 unfenced_alignment =
3547 i915_gem_get_gtt_alignment(dev,
3548 obj->base.size,
3549 obj->tiling_mode,
3550 false);
3551 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3552 }
a00b10c3 3553
101b506a
MT
3554 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3555 end = vm->total;
3556 if (flags & PIN_MAPPABLE)
72e96d64 3557 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3558 if (flags & PIN_ZONE_4G)
48ea1e32 3559 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3560
673a394b 3561 if (alignment == 0)
1ec9e26d 3562 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3563 unfenced_alignment;
1ec9e26d 3564 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3565 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3566 ggtt_view ? ggtt_view->type : 0,
3567 alignment);
262de145 3568 return ERR_PTR(-EINVAL);
673a394b
EA
3569 }
3570
91e6711e
JL
3571 /* If binding the object/GGTT view requires more space than the entire
3572 * aperture has, reject it early before evicting everything in a vain
3573 * attempt to find space.
654fc607 3574 */
91e6711e 3575 if (size > end) {
65bd342f 3576 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3577 ggtt_view ? ggtt_view->type : 0,
3578 size,
1ec9e26d 3579 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3580 end);
262de145 3581 return ERR_PTR(-E2BIG);
654fc607
CW
3582 }
3583
37e680a1 3584 ret = i915_gem_object_get_pages(obj);
6c085a72 3585 if (ret)
262de145 3586 return ERR_PTR(ret);
6c085a72 3587
fbdda6fb
CW
3588 i915_gem_object_pin_pages(obj);
3589
ec7adb6e
JL
3590 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3591 i915_gem_obj_lookup_or_create_vma(obj, vm);
3592
262de145 3593 if (IS_ERR(vma))
bc6bc15b 3594 goto err_unpin;
2f633156 3595
506a8e87
CW
3596 if (flags & PIN_OFFSET_FIXED) {
3597 uint64_t offset = flags & PIN_OFFSET_MASK;
3598
3599 if (offset & (alignment - 1) || offset + size > end) {
3600 ret = -EINVAL;
3601 goto err_free_vma;
3602 }
3603 vma->node.start = offset;
3604 vma->node.size = size;
3605 vma->node.color = obj->cache_level;
3606 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3607 if (ret) {
3608 ret = i915_gem_evict_for_vma(vma);
3609 if (ret == 0)
3610 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3611 }
3612 if (ret)
3613 goto err_free_vma;
101b506a 3614 } else {
506a8e87
CW
3615 if (flags & PIN_HIGH) {
3616 search_flag = DRM_MM_SEARCH_BELOW;
3617 alloc_flag = DRM_MM_CREATE_TOP;
3618 } else {
3619 search_flag = DRM_MM_SEARCH_DEFAULT;
3620 alloc_flag = DRM_MM_CREATE_DEFAULT;
3621 }
101b506a 3622
0a9ae0d7 3623search_free:
506a8e87
CW
3624 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3625 size, alignment,
3626 obj->cache_level,
3627 start, end,
3628 search_flag,
3629 alloc_flag);
3630 if (ret) {
3631 ret = i915_gem_evict_something(dev, vm, size, alignment,
3632 obj->cache_level,
3633 start, end,
3634 flags);
3635 if (ret == 0)
3636 goto search_free;
9731129c 3637
506a8e87
CW
3638 goto err_free_vma;
3639 }
673a394b 3640 }
4144f9b5 3641 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3642 ret = -EINVAL;
bc6bc15b 3643 goto err_remove_node;
673a394b
EA
3644 }
3645
fe14d5f4 3646 trace_i915_vma_bind(vma, flags);
0875546c 3647 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3648 if (ret)
e2273302 3649 goto err_remove_node;
fe14d5f4 3650
35c20a60 3651 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3652 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3653
262de145 3654 return vma;
2f633156 3655
bc6bc15b 3656err_remove_node:
6286ef9b 3657 drm_mm_remove_node(&vma->node);
bc6bc15b 3658err_free_vma:
2f633156 3659 i915_gem_vma_destroy(vma);
262de145 3660 vma = ERR_PTR(ret);
bc6bc15b 3661err_unpin:
2f633156 3662 i915_gem_object_unpin_pages(obj);
262de145 3663 return vma;
673a394b
EA
3664}
3665
000433b6 3666bool
2c22569b
CW
3667i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3668 bool force)
673a394b 3669{
673a394b
EA
3670 /* If we don't have a page list set up, then we're not pinned
3671 * to GPU, and we can ignore the cache flush because it'll happen
3672 * again at bind time.
3673 */
05394f39 3674 if (obj->pages == NULL)
000433b6 3675 return false;
673a394b 3676
769ce464
ID
3677 /*
3678 * Stolen memory is always coherent with the GPU as it is explicitly
3679 * marked as wc by the system, or the system is cache-coherent.
3680 */
6a2c4232 3681 if (obj->stolen || obj->phys_handle)
000433b6 3682 return false;
769ce464 3683
9c23f7fc
CW
3684 /* If the GPU is snooping the contents of the CPU cache,
3685 * we do not need to manually clear the CPU cache lines. However,
3686 * the caches are only snooped when the render cache is
3687 * flushed/invalidated. As we always have to emit invalidations
3688 * and flushes when moving into and out of the RENDER domain, correct
3689 * snooping behaviour occurs naturally as the result of our domain
3690 * tracking.
3691 */
0f71979a
CW
3692 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3693 obj->cache_dirty = true;
000433b6 3694 return false;
0f71979a 3695 }
9c23f7fc 3696
1c5d22f7 3697 trace_i915_gem_object_clflush(obj);
9da3da66 3698 drm_clflush_sg(obj->pages);
0f71979a 3699 obj->cache_dirty = false;
000433b6
CW
3700
3701 return true;
e47c68e9
EA
3702}
3703
3704/** Flushes the GTT write domain for the object if it's dirty. */
3705static void
05394f39 3706i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3707{
1c5d22f7
CW
3708 uint32_t old_write_domain;
3709
05394f39 3710 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3711 return;
3712
63256ec5 3713 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3714 * to it immediately go to main memory as far as we know, so there's
3715 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3716 *
3717 * However, we do have to enforce the order so that all writes through
3718 * the GTT land before any writes to the device, such as updates to
3719 * the GATT itself.
e47c68e9 3720 */
63256ec5
CW
3721 wmb();
3722
05394f39
CW
3723 old_write_domain = obj->base.write_domain;
3724 obj->base.write_domain = 0;
1c5d22f7 3725
de152b62 3726 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3727
1c5d22f7 3728 trace_i915_gem_object_change_domain(obj,
05394f39 3729 obj->base.read_domains,
1c5d22f7 3730 old_write_domain);
e47c68e9
EA
3731}
3732
3733/** Flushes the CPU write domain for the object if it's dirty. */
3734static void
e62b59e4 3735i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3736{
1c5d22f7 3737 uint32_t old_write_domain;
e47c68e9 3738
05394f39 3739 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3740 return;
3741
e62b59e4 3742 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3743 i915_gem_chipset_flush(obj->base.dev);
3744
05394f39
CW
3745 old_write_domain = obj->base.write_domain;
3746 obj->base.write_domain = 0;
1c5d22f7 3747
de152b62 3748 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3749
1c5d22f7 3750 trace_i915_gem_object_change_domain(obj,
05394f39 3751 obj->base.read_domains,
1c5d22f7 3752 old_write_domain);
e47c68e9
EA
3753}
3754
2ef7eeaa
EA
3755/**
3756 * Moves a single object to the GTT read, and possibly write domain.
3757 *
3758 * This function returns when the move is complete, including waiting on
3759 * flushes to occur.
3760 */
79e53945 3761int
2021746e 3762i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3763{
72e96d64
JL
3764 struct drm_device *dev = obj->base.dev;
3765 struct drm_i915_private *dev_priv = to_i915(dev);
3766 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1c5d22f7 3767 uint32_t old_write_domain, old_read_domains;
43566ded 3768 struct i915_vma *vma;
e47c68e9 3769 int ret;
2ef7eeaa 3770
8d7e3de1
CW
3771 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3772 return 0;
3773
0201f1ec 3774 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3775 if (ret)
3776 return ret;
3777
43566ded
CW
3778 /* Flush and acquire obj->pages so that we are coherent through
3779 * direct access in memory with previous cached writes through
3780 * shmemfs and that our cache domain tracking remains valid.
3781 * For example, if the obj->filp was moved to swap without us
3782 * being notified and releasing the pages, we would mistakenly
3783 * continue to assume that the obj remained out of the CPU cached
3784 * domain.
3785 */
3786 ret = i915_gem_object_get_pages(obj);
3787 if (ret)
3788 return ret;
3789
e62b59e4 3790 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3791
d0a57789
CW
3792 /* Serialise direct access to this object with the barriers for
3793 * coherent writes from the GPU, by effectively invalidating the
3794 * GTT domain upon first access.
3795 */
3796 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3797 mb();
3798
05394f39
CW
3799 old_write_domain = obj->base.write_domain;
3800 old_read_domains = obj->base.read_domains;
1c5d22f7 3801
e47c68e9
EA
3802 /* It should now be out of any other write domains, and we can update
3803 * the domain values for our changes.
3804 */
05394f39
CW
3805 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3806 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3807 if (write) {
05394f39
CW
3808 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3809 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3810 obj->dirty = 1;
2ef7eeaa
EA
3811 }
3812
1c5d22f7
CW
3813 trace_i915_gem_object_change_domain(obj,
3814 old_read_domains,
3815 old_write_domain);
3816
8325a09d 3817 /* And bump the LRU for this access */
43566ded
CW
3818 vma = i915_gem_obj_to_ggtt(obj);
3819 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 3820 list_move_tail(&vma->vm_link,
72e96d64 3821 &ggtt->base.inactive_list);
8325a09d 3822
e47c68e9
EA
3823 return 0;
3824}
3825
ef55f92a
CW
3826/**
3827 * Changes the cache-level of an object across all VMA.
3828 *
3829 * After this function returns, the object will be in the new cache-level
3830 * across all GTT and the contents of the backing storage will be coherent,
3831 * with respect to the new cache-level. In order to keep the backing storage
3832 * coherent for all users, we only allow a single cache level to be set
3833 * globally on the object and prevent it from being changed whilst the
3834 * hardware is reading from the object. That is if the object is currently
3835 * on the scanout it will be set to uncached (or equivalent display
3836 * cache coherency) and all non-MOCS GPU access will also be uncached so
3837 * that all direct access to the scanout remains coherent.
3838 */
e4ffd173
CW
3839int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3840 enum i915_cache_level cache_level)
3841{
7bddb01f 3842 struct drm_device *dev = obj->base.dev;
df6f783a 3843 struct i915_vma *vma, *next;
ef55f92a 3844 bool bound = false;
ed75a55b 3845 int ret = 0;
e4ffd173
CW
3846
3847 if (obj->cache_level == cache_level)
ed75a55b 3848 goto out;
e4ffd173 3849
ef55f92a
CW
3850 /* Inspect the list of currently bound VMA and unbind any that would
3851 * be invalid given the new cache-level. This is principally to
3852 * catch the issue of the CS prefetch crossing page boundaries and
3853 * reading an invalid PTE on older architectures.
3854 */
1c7f4bca 3855 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
3856 if (!drm_mm_node_allocated(&vma->node))
3857 continue;
3858
3859 if (vma->pin_count) {
3860 DRM_DEBUG("can not change the cache level of pinned objects\n");
3861 return -EBUSY;
3862 }
3863
4144f9b5 3864 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3865 ret = i915_vma_unbind(vma);
3089c6f2
BW
3866 if (ret)
3867 return ret;
ef55f92a
CW
3868 } else
3869 bound = true;
42d6ab48
CW
3870 }
3871
ef55f92a
CW
3872 /* We can reuse the existing drm_mm nodes but need to change the
3873 * cache-level on the PTE. We could simply unbind them all and
3874 * rebind with the correct cache-level on next use. However since
3875 * we already have a valid slot, dma mapping, pages etc, we may as
3876 * rewrite the PTE in the belief that doing so tramples upon less
3877 * state and so involves less work.
3878 */
3879 if (bound) {
3880 /* Before we change the PTE, the GPU must not be accessing it.
3881 * If we wait upon the object, we know that all the bound
3882 * VMA are no longer active.
3883 */
2e2f351d 3884 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3885 if (ret)
3886 return ret;
3887
ef55f92a
CW
3888 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3889 /* Access to snoopable pages through the GTT is
3890 * incoherent and on some machines causes a hard
3891 * lockup. Relinquish the CPU mmaping to force
3892 * userspace to refault in the pages and we can
3893 * then double check if the GTT mapping is still
3894 * valid for that pointer access.
3895 */
3896 i915_gem_release_mmap(obj);
3897
3898 /* As we no longer need a fence for GTT access,
3899 * we can relinquish it now (and so prevent having
3900 * to steal a fence from someone else on the next
3901 * fence request). Note GPU activity would have
3902 * dropped the fence as all snoopable access is
3903 * supposed to be linear.
3904 */
e4ffd173
CW
3905 ret = i915_gem_object_put_fence(obj);
3906 if (ret)
3907 return ret;
ef55f92a
CW
3908 } else {
3909 /* We either have incoherent backing store and
3910 * so no GTT access or the architecture is fully
3911 * coherent. In such cases, existing GTT mmaps
3912 * ignore the cache bit in the PTE and we can
3913 * rewrite it without confusing the GPU or having
3914 * to force userspace to fault back in its mmaps.
3915 */
e4ffd173
CW
3916 }
3917
1c7f4bca 3918 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3919 if (!drm_mm_node_allocated(&vma->node))
3920 continue;
3921
3922 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3923 if (ret)
3924 return ret;
3925 }
e4ffd173
CW
3926 }
3927
1c7f4bca 3928 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3929 vma->node.color = cache_level;
3930 obj->cache_level = cache_level;
3931
ed75a55b 3932out:
ef55f92a
CW
3933 /* Flush the dirty CPU caches to the backing storage so that the
3934 * object is now coherent at its new cache level (with respect
3935 * to the access domain).
3936 */
0f71979a
CW
3937 if (obj->cache_dirty &&
3938 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3939 cpu_write_needs_clflush(obj)) {
3940 if (i915_gem_clflush_object(obj, true))
3941 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3942 }
3943
e4ffd173
CW
3944 return 0;
3945}
3946
199adf40
BW
3947int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3948 struct drm_file *file)
e6994aee 3949{
199adf40 3950 struct drm_i915_gem_caching *args = data;
e6994aee 3951 struct drm_i915_gem_object *obj;
e6994aee
CW
3952
3953 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3954 if (&obj->base == NULL)
3955 return -ENOENT;
e6994aee 3956
651d794f
CW
3957 switch (obj->cache_level) {
3958 case I915_CACHE_LLC:
3959 case I915_CACHE_L3_LLC:
3960 args->caching = I915_CACHING_CACHED;
3961 break;
3962
4257d3ba
CW
3963 case I915_CACHE_WT:
3964 args->caching = I915_CACHING_DISPLAY;
3965 break;
3966
651d794f
CW
3967 default:
3968 args->caching = I915_CACHING_NONE;
3969 break;
3970 }
e6994aee 3971
432be69d
CW
3972 drm_gem_object_unreference_unlocked(&obj->base);
3973 return 0;
e6994aee
CW
3974}
3975
199adf40
BW
3976int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3977 struct drm_file *file)
e6994aee 3978{
fd0fe6ac 3979 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3980 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3981 struct drm_i915_gem_object *obj;
3982 enum i915_cache_level level;
3983 int ret;
3984
199adf40
BW
3985 switch (args->caching) {
3986 case I915_CACHING_NONE:
e6994aee
CW
3987 level = I915_CACHE_NONE;
3988 break;
199adf40 3989 case I915_CACHING_CACHED:
e5756c10
ID
3990 /*
3991 * Due to a HW issue on BXT A stepping, GPU stores via a
3992 * snooped mapping may leave stale data in a corresponding CPU
3993 * cacheline, whereas normally such cachelines would get
3994 * invalidated.
3995 */
ca377809 3996 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3997 return -ENODEV;
3998
e6994aee
CW
3999 level = I915_CACHE_LLC;
4000 break;
4257d3ba
CW
4001 case I915_CACHING_DISPLAY:
4002 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4003 break;
e6994aee
CW
4004 default:
4005 return -EINVAL;
4006 }
4007
fd0fe6ac
ID
4008 intel_runtime_pm_get(dev_priv);
4009
3bc2913e
BW
4010 ret = i915_mutex_lock_interruptible(dev);
4011 if (ret)
fd0fe6ac 4012 goto rpm_put;
3bc2913e 4013
e6994aee
CW
4014 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4015 if (&obj->base == NULL) {
4016 ret = -ENOENT;
4017 goto unlock;
4018 }
4019
4020 ret = i915_gem_object_set_cache_level(obj, level);
4021
4022 drm_gem_object_unreference(&obj->base);
4023unlock:
4024 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
4025rpm_put:
4026 intel_runtime_pm_put(dev_priv);
4027
e6994aee
CW
4028 return ret;
4029}
4030
b9241ea3 4031/*
2da3b9b9
CW
4032 * Prepare buffer for display plane (scanout, cursors, etc).
4033 * Can be called from an uninterruptible phase (modesetting) and allows
4034 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4035 */
4036int
2da3b9b9
CW
4037i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4038 u32 alignment,
e6617330 4039 const struct i915_ggtt_view *view)
b9241ea3 4040{
2da3b9b9 4041 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4042 int ret;
4043
cc98b413
CW
4044 /* Mark the pin_display early so that we account for the
4045 * display coherency whilst setting up the cache domains.
4046 */
8a0c39b1 4047 obj->pin_display++;
cc98b413 4048
a7ef0640
EA
4049 /* The display engine is not coherent with the LLC cache on gen6. As
4050 * a result, we make sure that the pinning that is about to occur is
4051 * done with uncached PTEs. This is lowest common denominator for all
4052 * chipsets.
4053 *
4054 * However for gen6+, we could do better by using the GFDT bit instead
4055 * of uncaching, which would allow us to flush all the LLC-cached data
4056 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4057 */
651d794f
CW
4058 ret = i915_gem_object_set_cache_level(obj,
4059 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4060 if (ret)
cc98b413 4061 goto err_unpin_display;
a7ef0640 4062
2da3b9b9
CW
4063 /* As the user may map the buffer once pinned in the display plane
4064 * (e.g. libkms for the bootup splash), we have to ensure that we
4065 * always use map_and_fenceable for all scanout buffers.
4066 */
50470bb0
TU
4067 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4068 view->type == I915_GGTT_VIEW_NORMAL ?
4069 PIN_MAPPABLE : 0);
2da3b9b9 4070 if (ret)
cc98b413 4071 goto err_unpin_display;
2da3b9b9 4072
e62b59e4 4073 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4074
2da3b9b9 4075 old_write_domain = obj->base.write_domain;
05394f39 4076 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4077
4078 /* It should now be out of any other write domains, and we can update
4079 * the domain values for our changes.
4080 */
e5f1d962 4081 obj->base.write_domain = 0;
05394f39 4082 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4083
4084 trace_i915_gem_object_change_domain(obj,
4085 old_read_domains,
2da3b9b9 4086 old_write_domain);
b9241ea3
ZW
4087
4088 return 0;
cc98b413
CW
4089
4090err_unpin_display:
8a0c39b1 4091 obj->pin_display--;
cc98b413
CW
4092 return ret;
4093}
4094
4095void
e6617330
TU
4096i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4097 const struct i915_ggtt_view *view)
cc98b413 4098{
8a0c39b1
TU
4099 if (WARN_ON(obj->pin_display == 0))
4100 return;
4101
e6617330
TU
4102 i915_gem_object_ggtt_unpin_view(obj, view);
4103
8a0c39b1 4104 obj->pin_display--;
b9241ea3
ZW
4105}
4106
e47c68e9
EA
4107/**
4108 * Moves a single object to the CPU read, and possibly write domain.
4109 *
4110 * This function returns when the move is complete, including waiting on
4111 * flushes to occur.
4112 */
dabdfe02 4113int
919926ae 4114i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4115{
1c5d22f7 4116 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4117 int ret;
4118
8d7e3de1
CW
4119 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4120 return 0;
4121
0201f1ec 4122 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4123 if (ret)
4124 return ret;
4125
e47c68e9 4126 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4127
05394f39
CW
4128 old_write_domain = obj->base.write_domain;
4129 old_read_domains = obj->base.read_domains;
1c5d22f7 4130
e47c68e9 4131 /* Flush the CPU cache if it's still invalid. */
05394f39 4132 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4133 i915_gem_clflush_object(obj, false);
2ef7eeaa 4134
05394f39 4135 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4136 }
4137
4138 /* It should now be out of any other write domains, and we can update
4139 * the domain values for our changes.
4140 */
05394f39 4141 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4142
4143 /* If we're writing through the CPU, then the GPU read domains will
4144 * need to be invalidated at next use.
4145 */
4146 if (write) {
05394f39
CW
4147 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4148 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4149 }
2ef7eeaa 4150
1c5d22f7
CW
4151 trace_i915_gem_object_change_domain(obj,
4152 old_read_domains,
4153 old_write_domain);
4154
2ef7eeaa
EA
4155 return 0;
4156}
4157
673a394b
EA
4158/* Throttle our rendering by waiting until the ring has completed our requests
4159 * emitted over 20 msec ago.
4160 *
b962442e
EA
4161 * Note that if we were to use the current jiffies each time around the loop,
4162 * we wouldn't escape the function with any frames outstanding if the time to
4163 * render a frame was over 20ms.
4164 *
673a394b
EA
4165 * This should get us reasonable parallelism between CPU and GPU but also
4166 * relatively low latency when blocking on a particular request to finish.
4167 */
40a5f0de 4168static int
f787a5f5 4169i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4170{
f787a5f5
CW
4171 struct drm_i915_private *dev_priv = dev->dev_private;
4172 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4173 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4174 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 4175 int ret;
93533c29 4176
308887aa
DV
4177 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4178 if (ret)
4179 return ret;
4180
f4457ae7
CW
4181 /* ABI: return -EIO if already wedged */
4182 if (i915_terminally_wedged(&dev_priv->gpu_error))
4183 return -EIO;
e110e8d6 4184
1c25595f 4185 spin_lock(&file_priv->mm.lock);
f787a5f5 4186 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4187 if (time_after_eq(request->emitted_jiffies, recent_enough))
4188 break;
40a5f0de 4189
fcfa423c
JH
4190 /*
4191 * Note that the request might not have been submitted yet.
4192 * In which case emitted_jiffies will be zero.
4193 */
4194 if (!request->emitted_jiffies)
4195 continue;
4196
54fb2411 4197 target = request;
b962442e 4198 }
ff865885
JH
4199 if (target)
4200 i915_gem_request_reference(target);
1c25595f 4201 spin_unlock(&file_priv->mm.lock);
40a5f0de 4202
54fb2411 4203 if (target == NULL)
f787a5f5 4204 return 0;
2bc43b5c 4205
299259a3 4206 ret = __i915_wait_request(target, true, NULL, NULL);
f787a5f5
CW
4207 if (ret == 0)
4208 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4209
41037f9f 4210 i915_gem_request_unreference__unlocked(target);
ff865885 4211
40a5f0de
EA
4212 return ret;
4213}
4214
d23db88c
CW
4215static bool
4216i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4217{
4218 struct drm_i915_gem_object *obj = vma->obj;
4219
4220 if (alignment &&
4221 vma->node.start & (alignment - 1))
4222 return true;
4223
4224 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4225 return true;
4226
4227 if (flags & PIN_OFFSET_BIAS &&
4228 vma->node.start < (flags & PIN_OFFSET_MASK))
4229 return true;
4230
506a8e87
CW
4231 if (flags & PIN_OFFSET_FIXED &&
4232 vma->node.start != (flags & PIN_OFFSET_MASK))
4233 return true;
4234
d23db88c
CW
4235 return false;
4236}
4237
d0710abb
CW
4238void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4239{
4240 struct drm_i915_gem_object *obj = vma->obj;
4241 bool mappable, fenceable;
4242 u32 fence_size, fence_alignment;
4243
4244 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4245 obj->base.size,
4246 obj->tiling_mode);
4247 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4248 obj->base.size,
4249 obj->tiling_mode,
4250 true);
4251
4252 fenceable = (vma->node.size == fence_size &&
4253 (vma->node.start & (fence_alignment - 1)) == 0);
4254
4255 mappable = (vma->node.start + fence_size <=
62106b4f 4256 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4257
4258 obj->map_and_fenceable = mappable && fenceable;
4259}
4260
ec7adb6e
JL
4261static int
4262i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4263 struct i915_address_space *vm,
4264 const struct i915_ggtt_view *ggtt_view,
4265 uint32_t alignment,
4266 uint64_t flags)
673a394b 4267{
6e7186af 4268 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4269 struct i915_vma *vma;
ef79e17c 4270 unsigned bound;
673a394b
EA
4271 int ret;
4272
6e7186af
BW
4273 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4274 return -ENODEV;
4275
bf3d149b 4276 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4277 return -EINVAL;
07fe0b12 4278
c826c449
CW
4279 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4280 return -EINVAL;
4281
ec7adb6e
JL
4282 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4283 return -EINVAL;
4284
4285 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4286 i915_gem_obj_to_vma(obj, vm);
4287
07fe0b12 4288 if (vma) {
d7f46fc4
BW
4289 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4290 return -EBUSY;
4291
d23db88c 4292 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4293 WARN(vma->pin_count,
ec7adb6e 4294 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4295 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4296 " obj->map_and_fenceable=%d\n",
ec7adb6e 4297 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4298 upper_32_bits(vma->node.start),
4299 lower_32_bits(vma->node.start),
fe14d5f4 4300 alignment,
d23db88c 4301 !!(flags & PIN_MAPPABLE),
05394f39 4302 obj->map_and_fenceable);
07fe0b12 4303 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4304 if (ret)
4305 return ret;
8ea99c92
DV
4306
4307 vma = NULL;
ac0c6b5a
CW
4308 }
4309 }
4310
ef79e17c 4311 bound = vma ? vma->bound : 0;
8ea99c92 4312 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4313 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4314 flags);
262de145
DV
4315 if (IS_ERR(vma))
4316 return PTR_ERR(vma);
0875546c
DV
4317 } else {
4318 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4319 if (ret)
4320 return ret;
4321 }
74898d7e 4322
91e6711e
JL
4323 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4324 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4325 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4326 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4327 }
ef79e17c 4328
8ea99c92 4329 vma->pin_count++;
673a394b
EA
4330 return 0;
4331}
4332
ec7adb6e
JL
4333int
4334i915_gem_object_pin(struct drm_i915_gem_object *obj,
4335 struct i915_address_space *vm,
4336 uint32_t alignment,
4337 uint64_t flags)
4338{
4339 return i915_gem_object_do_pin(obj, vm,
4340 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4341 alignment, flags);
4342}
4343
4344int
4345i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4346 const struct i915_ggtt_view *view,
4347 uint32_t alignment,
4348 uint64_t flags)
4349{
72e96d64
JL
4350 struct drm_device *dev = obj->base.dev;
4351 struct drm_i915_private *dev_priv = to_i915(dev);
4352 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4353
ade7daa1 4354 BUG_ON(!view);
ec7adb6e 4355
72e96d64 4356 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 4357 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4358}
4359
673a394b 4360void
e6617330
TU
4361i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4362 const struct i915_ggtt_view *view)
673a394b 4363{
e6617330 4364 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4365
e6617330 4366 WARN_ON(vma->pin_count == 0);
9abc4648 4367 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4368
30154650 4369 --vma->pin_count;
673a394b
EA
4370}
4371
673a394b
EA
4372int
4373i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4374 struct drm_file *file)
673a394b
EA
4375{
4376 struct drm_i915_gem_busy *args = data;
05394f39 4377 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4378 int ret;
4379
76c1dec1 4380 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4381 if (ret)
76c1dec1 4382 return ret;
673a394b 4383
05394f39 4384 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4385 if (&obj->base == NULL) {
1d7cfea1
CW
4386 ret = -ENOENT;
4387 goto unlock;
673a394b 4388 }
d1b851fc 4389
0be555b6
CW
4390 /* Count all active objects as busy, even if they are currently not used
4391 * by the gpu. Users of this interface expect objects to eventually
4392 * become non-busy without any further actions, therefore emit any
4393 * necessary flushes here.
c4de0a5d 4394 */
30dfebf3 4395 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4396 if (ret)
4397 goto unref;
0be555b6 4398
426960be
CW
4399 args->busy = 0;
4400 if (obj->active) {
4401 int i;
4402
666796da 4403 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4404 struct drm_i915_gem_request *req;
4405
4406 req = obj->last_read_req[i];
4407 if (req)
4a570db5 4408 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4409 }
4410 if (obj->last_write_req)
4a570db5 4411 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4412 }
673a394b 4413
b4716185 4414unref:
05394f39 4415 drm_gem_object_unreference(&obj->base);
1d7cfea1 4416unlock:
673a394b 4417 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4418 return ret;
673a394b
EA
4419}
4420
4421int
4422i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4423 struct drm_file *file_priv)
4424{
0206e353 4425 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4426}
4427
3ef94daa
CW
4428int
4429i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4430 struct drm_file *file_priv)
4431{
656bfa3a 4432 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4433 struct drm_i915_gem_madvise *args = data;
05394f39 4434 struct drm_i915_gem_object *obj;
76c1dec1 4435 int ret;
3ef94daa
CW
4436
4437 switch (args->madv) {
4438 case I915_MADV_DONTNEED:
4439 case I915_MADV_WILLNEED:
4440 break;
4441 default:
4442 return -EINVAL;
4443 }
4444
1d7cfea1
CW
4445 ret = i915_mutex_lock_interruptible(dev);
4446 if (ret)
4447 return ret;
4448
05394f39 4449 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4450 if (&obj->base == NULL) {
1d7cfea1
CW
4451 ret = -ENOENT;
4452 goto unlock;
3ef94daa 4453 }
3ef94daa 4454
d7f46fc4 4455 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4456 ret = -EINVAL;
4457 goto out;
3ef94daa
CW
4458 }
4459
656bfa3a
DV
4460 if (obj->pages &&
4461 obj->tiling_mode != I915_TILING_NONE &&
4462 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4463 if (obj->madv == I915_MADV_WILLNEED)
4464 i915_gem_object_unpin_pages(obj);
4465 if (args->madv == I915_MADV_WILLNEED)
4466 i915_gem_object_pin_pages(obj);
4467 }
4468
05394f39
CW
4469 if (obj->madv != __I915_MADV_PURGED)
4470 obj->madv = args->madv;
3ef94daa 4471
6c085a72 4472 /* if the object is no longer attached, discard its backing storage */
be6a0376 4473 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4474 i915_gem_object_truncate(obj);
4475
05394f39 4476 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4477
1d7cfea1 4478out:
05394f39 4479 drm_gem_object_unreference(&obj->base);
1d7cfea1 4480unlock:
3ef94daa 4481 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4482 return ret;
3ef94daa
CW
4483}
4484
37e680a1
CW
4485void i915_gem_object_init(struct drm_i915_gem_object *obj,
4486 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4487{
b4716185
CW
4488 int i;
4489
35c20a60 4490 INIT_LIST_HEAD(&obj->global_list);
666796da 4491 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4492 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4493 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4494 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4495 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4496
37e680a1
CW
4497 obj->ops = ops;
4498
0327d6ba
CW
4499 obj->fence_reg = I915_FENCE_REG_NONE;
4500 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4501
4502 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4503}
4504
37e680a1 4505static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4506 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4507 .get_pages = i915_gem_object_get_pages_gtt,
4508 .put_pages = i915_gem_object_put_pages_gtt,
4509};
4510
d37cd8a8 4511struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4512 size_t size)
ac52bc56 4513{
c397b908 4514 struct drm_i915_gem_object *obj;
5949eac4 4515 struct address_space *mapping;
1a240d4d 4516 gfp_t mask;
fe3db79b 4517 int ret;
ac52bc56 4518
42dcedd4 4519 obj = i915_gem_object_alloc(dev);
c397b908 4520 if (obj == NULL)
fe3db79b 4521 return ERR_PTR(-ENOMEM);
673a394b 4522
fe3db79b
CW
4523 ret = drm_gem_object_init(dev, &obj->base, size);
4524 if (ret)
4525 goto fail;
673a394b 4526
bed1ea95
CW
4527 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4528 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4529 /* 965gm cannot relocate objects above 4GiB. */
4530 mask &= ~__GFP_HIGHMEM;
4531 mask |= __GFP_DMA32;
4532 }
4533
496ad9aa 4534 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4535 mapping_set_gfp_mask(mapping, mask);
5949eac4 4536
37e680a1 4537 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4538
c397b908
DV
4539 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4540 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4541
3d29b842
ED
4542 if (HAS_LLC(dev)) {
4543 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4544 * cache) for about a 10% performance improvement
4545 * compared to uncached. Graphics requests other than
4546 * display scanout are coherent with the CPU in
4547 * accessing this cache. This means in this mode we
4548 * don't need to clflush on the CPU side, and on the
4549 * GPU side we only need to flush internal caches to
4550 * get data visible to the CPU.
4551 *
4552 * However, we maintain the display planes as UC, and so
4553 * need to rebind when first used as such.
4554 */
4555 obj->cache_level = I915_CACHE_LLC;
4556 } else
4557 obj->cache_level = I915_CACHE_NONE;
4558
d861e338
DV
4559 trace_i915_gem_object_create(obj);
4560
05394f39 4561 return obj;
fe3db79b
CW
4562
4563fail:
4564 i915_gem_object_free(obj);
4565
4566 return ERR_PTR(ret);
c397b908
DV
4567}
4568
340fbd8c
CW
4569static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4570{
4571 /* If we are the last user of the backing storage (be it shmemfs
4572 * pages or stolen etc), we know that the pages are going to be
4573 * immediately released. In this case, we can then skip copying
4574 * back the contents from the GPU.
4575 */
4576
4577 if (obj->madv != I915_MADV_WILLNEED)
4578 return false;
4579
4580 if (obj->base.filp == NULL)
4581 return true;
4582
4583 /* At first glance, this looks racy, but then again so would be
4584 * userspace racing mmap against close. However, the first external
4585 * reference to the filp can only be obtained through the
4586 * i915_gem_mmap_ioctl() which safeguards us against the user
4587 * acquiring such a reference whilst we are in the middle of
4588 * freeing the object.
4589 */
4590 return atomic_long_read(&obj->base.filp->f_count) == 1;
4591}
4592
1488fc08 4593void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4594{
1488fc08 4595 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4596 struct drm_device *dev = obj->base.dev;
3e31c6c0 4597 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4598 struct i915_vma *vma, *next;
673a394b 4599
f65c9168
PZ
4600 intel_runtime_pm_get(dev_priv);
4601
26e12f89
CW
4602 trace_i915_gem_object_destroy(obj);
4603
1c7f4bca 4604 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4605 int ret;
4606
4607 vma->pin_count = 0;
4608 ret = i915_vma_unbind(vma);
07fe0b12
BW
4609 if (WARN_ON(ret == -ERESTARTSYS)) {
4610 bool was_interruptible;
1488fc08 4611
07fe0b12
BW
4612 was_interruptible = dev_priv->mm.interruptible;
4613 dev_priv->mm.interruptible = false;
1488fc08 4614
07fe0b12 4615 WARN_ON(i915_vma_unbind(vma));
1488fc08 4616
07fe0b12
BW
4617 dev_priv->mm.interruptible = was_interruptible;
4618 }
1488fc08
CW
4619 }
4620
1d64ae71
BW
4621 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4622 * before progressing. */
4623 if (obj->stolen)
4624 i915_gem_object_unpin_pages(obj);
4625
a071fa00
DV
4626 WARN_ON(obj->frontbuffer_bits);
4627
656bfa3a
DV
4628 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4629 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4630 obj->tiling_mode != I915_TILING_NONE)
4631 i915_gem_object_unpin_pages(obj);
4632
401c29f6
BW
4633 if (WARN_ON(obj->pages_pin_count))
4634 obj->pages_pin_count = 0;
340fbd8c 4635 if (discard_backing_storage(obj))
5537252b 4636 obj->madv = I915_MADV_DONTNEED;
37e680a1 4637 i915_gem_object_put_pages(obj);
d8cb5086 4638 i915_gem_object_free_mmap_offset(obj);
de151cf6 4639
9da3da66
CW
4640 BUG_ON(obj->pages);
4641
2f745ad3
CW
4642 if (obj->base.import_attach)
4643 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4644
5cc9ed4b
CW
4645 if (obj->ops->release)
4646 obj->ops->release(obj);
4647
05394f39
CW
4648 drm_gem_object_release(&obj->base);
4649 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4650
05394f39 4651 kfree(obj->bit_17);
42dcedd4 4652 i915_gem_object_free(obj);
f65c9168
PZ
4653
4654 intel_runtime_pm_put(dev_priv);
673a394b
EA
4655}
4656
ec7adb6e
JL
4657struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4658 struct i915_address_space *vm)
e656a6cb
DV
4659{
4660 struct i915_vma *vma;
1c7f4bca 4661 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4662 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4663 vma->vm == vm)
e656a6cb 4664 return vma;
ec7adb6e
JL
4665 }
4666 return NULL;
4667}
4668
4669struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4670 const struct i915_ggtt_view *view)
4671{
ec7adb6e 4672 struct i915_vma *vma;
e656a6cb 4673
598b9ec8 4674 GEM_BUG_ON(!view);
ec7adb6e 4675
1c7f4bca 4676 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4677 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4678 return vma;
e656a6cb
DV
4679 return NULL;
4680}
4681
2f633156
BW
4682void i915_gem_vma_destroy(struct i915_vma *vma)
4683{
4684 WARN_ON(vma->node.allocated);
aaa05667
CW
4685
4686 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4687 if (!list_empty(&vma->exec_list))
4688 return;
4689
596c5923
CW
4690 if (!vma->is_ggtt)
4691 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4692
1c7f4bca 4693 list_del(&vma->obj_link);
b93dab6e 4694
e20d2ab7 4695 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4696}
4697
e3efda49 4698static void
117897f4 4699i915_gem_stop_engines(struct drm_device *dev)
e3efda49
CW
4700{
4701 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4702 struct intel_engine_cs *engine;
e3efda49 4703
b4ac5afc 4704 for_each_engine(engine, dev_priv)
117897f4 4705 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4706}
4707
29105ccc 4708int
45c5f202 4709i915_gem_suspend(struct drm_device *dev)
29105ccc 4710{
3e31c6c0 4711 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4712 int ret = 0;
28dfe52a 4713
45c5f202 4714 mutex_lock(&dev->struct_mutex);
b2da9fe5 4715 ret = i915_gpu_idle(dev);
f7403347 4716 if (ret)
45c5f202 4717 goto err;
f7403347 4718
b2da9fe5 4719 i915_gem_retire_requests(dev);
673a394b 4720
117897f4 4721 i915_gem_stop_engines(dev);
b2e862d0 4722 i915_gem_context_lost(dev_priv);
45c5f202
CW
4723 mutex_unlock(&dev->struct_mutex);
4724
737b1506 4725 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4726 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4727 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4728
bdcf120b
CW
4729 /* Assert that we sucessfully flushed all the work and
4730 * reset the GPU back to its idle, low power state.
4731 */
4732 WARN_ON(dev_priv->mm.busy);
4733
673a394b 4734 return 0;
45c5f202
CW
4735
4736err:
4737 mutex_unlock(&dev->struct_mutex);
4738 return ret;
673a394b
EA
4739}
4740
f691e2f4
DV
4741void i915_gem_init_swizzling(struct drm_device *dev)
4742{
3e31c6c0 4743 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4744
11782b02 4745 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4746 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4747 return;
4748
4749 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4750 DISP_TILE_SURFACE_SWIZZLING);
4751
11782b02
DV
4752 if (IS_GEN5(dev))
4753 return;
4754
f691e2f4
DV
4755 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4756 if (IS_GEN6(dev))
6b26c86d 4757 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4758 else if (IS_GEN7(dev))
6b26c86d 4759 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4760 else if (IS_GEN8(dev))
4761 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4762 else
4763 BUG();
f691e2f4 4764}
e21af88d 4765
81e7f200
VS
4766static void init_unused_ring(struct drm_device *dev, u32 base)
4767{
4768 struct drm_i915_private *dev_priv = dev->dev_private;
4769
4770 I915_WRITE(RING_CTL(base), 0);
4771 I915_WRITE(RING_HEAD(base), 0);
4772 I915_WRITE(RING_TAIL(base), 0);
4773 I915_WRITE(RING_START(base), 0);
4774}
4775
4776static void init_unused_rings(struct drm_device *dev)
4777{
4778 if (IS_I830(dev)) {
4779 init_unused_ring(dev, PRB1_BASE);
4780 init_unused_ring(dev, SRB0_BASE);
4781 init_unused_ring(dev, SRB1_BASE);
4782 init_unused_ring(dev, SRB2_BASE);
4783 init_unused_ring(dev, SRB3_BASE);
4784 } else if (IS_GEN2(dev)) {
4785 init_unused_ring(dev, SRB0_BASE);
4786 init_unused_ring(dev, SRB1_BASE);
4787 } else if (IS_GEN3(dev)) {
4788 init_unused_ring(dev, PRB1_BASE);
4789 init_unused_ring(dev, PRB2_BASE);
4790 }
4791}
4792
117897f4 4793int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 4794{
4fc7c971 4795 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4796 int ret;
68f95ba9 4797
5c1143bb 4798 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4799 if (ret)
b6913e4b 4800 return ret;
68f95ba9
CW
4801
4802 if (HAS_BSD(dev)) {
5c1143bb 4803 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4804 if (ret)
4805 goto cleanup_render_ring;
d1b851fc 4806 }
68f95ba9 4807
d39398f5 4808 if (HAS_BLT(dev)) {
549f7365
CW
4809 ret = intel_init_blt_ring_buffer(dev);
4810 if (ret)
4811 goto cleanup_bsd_ring;
4812 }
4813
9a8a2213
BW
4814 if (HAS_VEBOX(dev)) {
4815 ret = intel_init_vebox_ring_buffer(dev);
4816 if (ret)
4817 goto cleanup_blt_ring;
4818 }
4819
845f74a7
ZY
4820 if (HAS_BSD2(dev)) {
4821 ret = intel_init_bsd2_ring_buffer(dev);
4822 if (ret)
4823 goto cleanup_vebox_ring;
4824 }
9a8a2213 4825
4fc7c971
BW
4826 return 0;
4827
9a8a2213 4828cleanup_vebox_ring:
117897f4 4829 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 4830cleanup_blt_ring:
117897f4 4831 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 4832cleanup_bsd_ring:
117897f4 4833 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 4834cleanup_render_ring:
117897f4 4835 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
4836
4837 return ret;
4838}
4839
4840int
4841i915_gem_init_hw(struct drm_device *dev)
4842{
3e31c6c0 4843 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4844 struct intel_engine_cs *engine;
b4ac5afc 4845 int ret, j;
4fc7c971
BW
4846
4847 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4848 return -EIO;
4849
5e4f5189
CW
4850 /* Double layer security blanket, see i915_gem_init() */
4851 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4852
3accaf7e 4853 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4854 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4855
0bf21347
VS
4856 if (IS_HASWELL(dev))
4857 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4858 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4859
88a2b2a3 4860 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4861 if (IS_IVYBRIDGE(dev)) {
4862 u32 temp = I915_READ(GEN7_MSG_CTL);
4863 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4864 I915_WRITE(GEN7_MSG_CTL, temp);
4865 } else if (INTEL_INFO(dev)->gen >= 7) {
4866 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4867 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4868 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4869 }
88a2b2a3
BW
4870 }
4871
4fc7c971
BW
4872 i915_gem_init_swizzling(dev);
4873
d5abdfda
DV
4874 /*
4875 * At least 830 can leave some of the unused rings
4876 * "active" (ie. head != tail) after resume which
4877 * will prevent c3 entry. Makes sure all unused rings
4878 * are totally idle.
4879 */
4880 init_unused_rings(dev);
4881
ed54c1a1 4882 BUG_ON(!dev_priv->kernel_context);
90638cc1 4883
4ad2fd88
JH
4884 ret = i915_ppgtt_init_hw(dev);
4885 if (ret) {
4886 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4887 goto out;
4888 }
4889
4890 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4891 for_each_engine(engine, dev_priv) {
e2f80391 4892 ret = engine->init_hw(engine);
35a57ffb 4893 if (ret)
5e4f5189 4894 goto out;
35a57ffb 4895 }
99433931 4896
0ccdacf6
PA
4897 intel_mocs_init_l3cc_table(dev);
4898
33a732f4 4899 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4900 if (HAS_GUC_UCODE(dev)) {
4901 ret = intel_guc_ucode_load(dev);
4902 if (ret) {
9f9e539f
DV
4903 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4904 ret = -EIO;
4905 goto out;
87bcdd2e 4906 }
33a732f4
AD
4907 }
4908
e84fe803
NH
4909 /*
4910 * Increment the next seqno by 0x100 so we have a visible break
4911 * on re-initialisation
4912 */
4913 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4914 if (ret)
4915 goto out;
4916
4ad2fd88 4917 /* Now it is safe to go back round and do everything else: */
b4ac5afc 4918 for_each_engine(engine, dev_priv) {
dc4be607
JH
4919 struct drm_i915_gem_request *req;
4920
e2f80391 4921 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
4922 if (IS_ERR(req)) {
4923 ret = PTR_ERR(req);
aa9b7810 4924 break;
dc4be607
JH
4925 }
4926
e2f80391 4927 if (engine->id == RCS) {
aa9b7810
CW
4928 for (j = 0; j < NUM_L3_SLICES(dev); j++) {
4929 ret = i915_gem_l3_remap(req, j);
4930 if (ret)
4931 goto err_request;
4932 }
4ad2fd88 4933 }
c3787e2e 4934
b3dd6b96 4935 ret = i915_ppgtt_init_ring(req);
aa9b7810
CW
4936 if (ret)
4937 goto err_request;
82460d97 4938
b3dd6b96 4939 ret = i915_gem_context_enable(req);
aa9b7810
CW
4940 if (ret)
4941 goto err_request;
4942
4943err_request:
4944 i915_add_request_no_flush(req);
4945 if (ret) {
4946 DRM_ERROR("Failed to enable %s, error=%d\n",
b4ac5afc 4947 engine->name, ret);
117897f4 4948 i915_gem_cleanup_engines(dev);
aa9b7810 4949 break;
90638cc1 4950 }
b7c36d25 4951 }
e21af88d 4952
5e4f5189
CW
4953out:
4954 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4955 return ret;
8187a2b7
ZN
4956}
4957
1070a42b
CW
4958int i915_gem_init(struct drm_device *dev)
4959{
4960 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4961 int ret;
4962
127f1003
OM
4963 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4964 i915.enable_execlists);
4965
1070a42b 4966 mutex_lock(&dev->struct_mutex);
d62b4892 4967
a83014d3 4968 if (!i915.enable_execlists) {
f3dc74c0 4969 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
4970 dev_priv->gt.init_engines = i915_gem_init_engines;
4971 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4972 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 4973 } else {
f3dc74c0 4974 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
4975 dev_priv->gt.init_engines = intel_logical_rings_init;
4976 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4977 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4978 }
4979
5e4f5189
CW
4980 /* This is just a security blanket to placate dragons.
4981 * On some systems, we very sporadically observe that the first TLBs
4982 * used by the CS may be stale, despite us poking the TLB reset. If
4983 * we hold the forcewake during initialisation these problems
4984 * just magically go away.
4985 */
4986 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4987
6c5566a8 4988 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4989 if (ret)
4990 goto out_unlock;
6c5566a8 4991
d85489d3 4992 i915_gem_init_ggtt(dev);
d62b4892 4993
2fa48d8d 4994 ret = i915_gem_context_init(dev);
7bcc3777
JN
4995 if (ret)
4996 goto out_unlock;
2fa48d8d 4997
117897f4 4998 ret = dev_priv->gt.init_engines(dev);
35a57ffb 4999 if (ret)
7bcc3777 5000 goto out_unlock;
2fa48d8d 5001
1070a42b 5002 ret = i915_gem_init_hw(dev);
60990320
CW
5003 if (ret == -EIO) {
5004 /* Allow ring initialisation to fail by marking the GPU as
5005 * wedged. But we only want to do this where the GPU is angry,
5006 * for all other failure, such as an allocation failure, bail.
5007 */
5008 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 5009 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 5010 ret = 0;
1070a42b 5011 }
7bcc3777
JN
5012
5013out_unlock:
5e4f5189 5014 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5015 mutex_unlock(&dev->struct_mutex);
1070a42b 5016
60990320 5017 return ret;
1070a42b
CW
5018}
5019
8187a2b7 5020void
117897f4 5021i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 5022{
3e31c6c0 5023 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 5024 struct intel_engine_cs *engine;
8187a2b7 5025
b4ac5afc 5026 for_each_engine(engine, dev_priv)
117897f4 5027 dev_priv->gt.cleanup_engine(engine);
a647828a 5028
ee4b6faf
MK
5029 if (i915.enable_execlists)
5030 /*
5031 * Neither the BIOS, ourselves or any other kernel
5032 * expects the system to be in execlists mode on startup,
5033 * so we need to reset the GPU back to legacy mode.
5034 */
5035 intel_gpu_reset(dev, ALL_ENGINES);
8187a2b7
ZN
5036}
5037
64193406 5038static void
666796da 5039init_engine_lists(struct intel_engine_cs *engine)
64193406 5040{
0bc40be8
TU
5041 INIT_LIST_HEAD(&engine->active_list);
5042 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
5043}
5044
40ae4e16
ID
5045void
5046i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5047{
5048 struct drm_device *dev = dev_priv->dev;
5049
5050 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5051 !IS_CHERRYVIEW(dev_priv))
5052 dev_priv->num_fence_regs = 32;
5053 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5054 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5055 dev_priv->num_fence_regs = 16;
5056 else
5057 dev_priv->num_fence_regs = 8;
5058
5059 if (intel_vgpu_active(dev))
5060 dev_priv->num_fence_regs =
5061 I915_READ(vgtif_reg(avail_rs.fence_num));
5062
5063 /* Initialize fence registers to zero */
5064 i915_gem_restore_fences(dev);
5065
5066 i915_gem_detect_bit_6_swizzle(dev);
5067}
5068
673a394b 5069void
d64aa096 5070i915_gem_load_init(struct drm_device *dev)
673a394b 5071{
3e31c6c0 5072 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5073 int i;
5074
efab6d8d 5075 dev_priv->objects =
42dcedd4
CW
5076 kmem_cache_create("i915_gem_object",
5077 sizeof(struct drm_i915_gem_object), 0,
5078 SLAB_HWCACHE_ALIGN,
5079 NULL);
e20d2ab7
CW
5080 dev_priv->vmas =
5081 kmem_cache_create("i915_gem_vma",
5082 sizeof(struct i915_vma), 0,
5083 SLAB_HWCACHE_ALIGN,
5084 NULL);
efab6d8d
CW
5085 dev_priv->requests =
5086 kmem_cache_create("i915_gem_request",
5087 sizeof(struct drm_i915_gem_request), 0,
5088 SLAB_HWCACHE_ALIGN,
5089 NULL);
673a394b 5090
fc8c067e 5091 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5092 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5093 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5094 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5095 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5096 for (i = 0; i < I915_NUM_ENGINES; i++)
5097 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5098 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5099 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5100 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5101 i915_gem_retire_work_handler);
b29c19b6
CW
5102 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5103 i915_gem_idle_work_handler);
1f83fee0 5104 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5105
72bfa19c
CW
5106 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5107
e84fe803
NH
5108 /*
5109 * Set initial sequence number for requests.
5110 * Using this number allows the wraparound to happen early,
5111 * catching any obvious problems.
5112 */
5113 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5114 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5115
19b2dbde 5116 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5117
6b95a207 5118 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5119
ce453d81
CW
5120 dev_priv->mm.interruptible = true;
5121
f99d7069 5122 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5123}
71acb5eb 5124
d64aa096
ID
5125void i915_gem_load_cleanup(struct drm_device *dev)
5126{
5127 struct drm_i915_private *dev_priv = to_i915(dev);
5128
5129 kmem_cache_destroy(dev_priv->requests);
5130 kmem_cache_destroy(dev_priv->vmas);
5131 kmem_cache_destroy(dev_priv->objects);
5132}
5133
f787a5f5 5134void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5135{
f787a5f5 5136 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5137
5138 /* Clean up our request list when the client is going away, so that
5139 * later retire_requests won't dereference our soon-to-be-gone
5140 * file_priv.
5141 */
1c25595f 5142 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5143 while (!list_empty(&file_priv->mm.request_list)) {
5144 struct drm_i915_gem_request *request;
5145
5146 request = list_first_entry(&file_priv->mm.request_list,
5147 struct drm_i915_gem_request,
5148 client_list);
5149 list_del(&request->client_list);
5150 request->file_priv = NULL;
5151 }
1c25595f 5152 spin_unlock(&file_priv->mm.lock);
b29c19b6 5153
2e1b8730 5154 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5155 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5156 list_del(&file_priv->rps.link);
8d3afd7d 5157 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5158 }
b29c19b6
CW
5159}
5160
5161int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5162{
5163 struct drm_i915_file_private *file_priv;
e422b888 5164 int ret;
b29c19b6
CW
5165
5166 DRM_DEBUG_DRIVER("\n");
5167
5168 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5169 if (!file_priv)
5170 return -ENOMEM;
5171
5172 file->driver_priv = file_priv;
5173 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5174 file_priv->file = file;
2e1b8730 5175 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5176
5177 spin_lock_init(&file_priv->mm.lock);
5178 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5179
de1add36
TU
5180 file_priv->bsd_ring = -1;
5181
e422b888
BW
5182 ret = i915_gem_context_open(dev, file);
5183 if (ret)
5184 kfree(file_priv);
b29c19b6 5185
e422b888 5186 return ret;
b29c19b6
CW
5187}
5188
b680c37a
DV
5189/**
5190 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5191 * @old: current GEM buffer for the frontbuffer slots
5192 * @new: new GEM buffer for the frontbuffer slots
5193 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5194 *
5195 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5196 * from @old and setting them in @new. Both @old and @new can be NULL.
5197 */
a071fa00
DV
5198void i915_gem_track_fb(struct drm_i915_gem_object *old,
5199 struct drm_i915_gem_object *new,
5200 unsigned frontbuffer_bits)
5201{
5202 if (old) {
5203 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5204 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5205 old->frontbuffer_bits &= ~frontbuffer_bits;
5206 }
5207
5208 if (new) {
5209 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5210 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5211 new->frontbuffer_bits |= frontbuffer_bits;
5212 }
5213}
5214
a70a3148 5215/* All the new VM stuff */
088e0df4
MT
5216u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5217 struct i915_address_space *vm)
a70a3148
BW
5218{
5219 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5220 struct i915_vma *vma;
5221
896ab1a5 5222 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5223
1c7f4bca 5224 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5225 if (vma->is_ggtt &&
ec7adb6e
JL
5226 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5227 continue;
5228 if (vma->vm == vm)
a70a3148 5229 return vma->node.start;
a70a3148 5230 }
ec7adb6e 5231
f25748ea
DV
5232 WARN(1, "%s vma for this object not found.\n",
5233 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5234 return -1;
5235}
5236
088e0df4
MT
5237u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5238 const struct i915_ggtt_view *view)
a70a3148
BW
5239{
5240 struct i915_vma *vma;
5241
1c7f4bca 5242 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 5243 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5244 return vma->node.start;
5245
5678ad73 5246 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5247 return -1;
5248}
5249
5250bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5251 struct i915_address_space *vm)
5252{
5253 struct i915_vma *vma;
5254
1c7f4bca 5255 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5256 if (vma->is_ggtt &&
ec7adb6e
JL
5257 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5258 continue;
5259 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5260 return true;
5261 }
5262
5263 return false;
5264}
5265
5266bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5267 const struct i915_ggtt_view *view)
ec7adb6e 5268{
ec7adb6e
JL
5269 struct i915_vma *vma;
5270
1c7f4bca 5271 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 5272 if (vma->is_ggtt &&
9abc4648 5273 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5274 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5275 return true;
5276
5277 return false;
5278}
5279
5280bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5281{
5a1d5eb0 5282 struct i915_vma *vma;
a70a3148 5283
1c7f4bca 5284 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5285 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5286 return true;
5287
5288 return false;
5289}
5290
8da32727 5291unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 5292{
a70a3148
BW
5293 struct i915_vma *vma;
5294
8da32727 5295 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 5296
1c7f4bca 5297 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5298 if (vma->is_ggtt &&
8da32727 5299 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 5300 return vma->node.size;
ec7adb6e 5301 }
8da32727 5302
a70a3148
BW
5303 return 0;
5304}
5305
ec7adb6e 5306bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5307{
5308 struct i915_vma *vma;
1c7f4bca 5309 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5310 if (vma->pin_count > 0)
5311 return true;
a6631ae1 5312
ec7adb6e 5313 return false;
5c2abbea 5314}
ea70299d 5315
033908ae
DG
5316/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5317struct page *
5318i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5319{
5320 struct page *page;
5321
5322 /* Only default objects have per-page dirty tracking */
de472664 5323 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
033908ae
DG
5324 return NULL;
5325
5326 page = i915_gem_object_get_page(obj, n);
5327 set_page_dirty(page);
5328 return page;
5329}
5330
ea70299d
DG
5331/* Allocate a new GEM object and fill it with the supplied data */
5332struct drm_i915_gem_object *
5333i915_gem_object_create_from_data(struct drm_device *dev,
5334 const void *data, size_t size)
5335{
5336 struct drm_i915_gem_object *obj;
5337 struct sg_table *sg;
5338 size_t bytes;
5339 int ret;
5340
d37cd8a8 5341 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 5342 if (IS_ERR(obj))
ea70299d
DG
5343 return obj;
5344
5345 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5346 if (ret)
5347 goto fail;
5348
5349 ret = i915_gem_object_get_pages(obj);
5350 if (ret)
5351 goto fail;
5352
5353 i915_gem_object_pin_pages(obj);
5354 sg = obj->pages;
5355 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5356 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5357 i915_gem_object_unpin_pages(obj);
5358
5359 if (WARN_ON(bytes != size)) {
5360 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5361 ret = -EFAULT;
5362 goto fail;
5363 }
5364
5365 return obj;
5366
5367fail:
5368 drm_gem_object_unreference(&obj->base);
5369 return ERR_PTR(ret);
5370}
This page took 1.271867 seconds and 5 git commands to generate.