drm/i915: drop the double-OP_STOREDW usage in blt_ring_flush
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <drm/drmP.h>
29#include <drm/i915_drm.h>
673a394b 30#include "i915_drv.h"
1c5d22f7 31#include "i915_trace.h"
652c393a 32#include "intel_drv.h"
5949eac4 33#include <linux/shmem_fs.h>
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
1286ff73 37#include <linux/dma-buf.h>
673a394b 38
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
86a1ee26
CW
43 bool map_and_fenceable,
44 bool nonblocking);
05394f39
CW
45static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
71acb5eb 47 struct drm_i915_gem_pwrite *args,
05394f39 48 struct drm_file *file);
673a394b 49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
17250b71 56static int i915_gem_inactive_shrink(struct shrinker *shrinker,
1495f230 57 struct shrink_control *sc);
6c085a72
CW
58static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 60static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 61
61050808
CW
62static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63{
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
5d82e3e6 70 obj->fence_dirty = false;
61050808
CW
71 obj->fence_reg = I915_FENCE_REG_NONE;
72}
73
73aa808f
CW
74/* some bookkeeping */
75static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77{
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80}
81
82static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87}
88
21dd3734
CW
89static int
90i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
91{
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
0a6759c6
DV
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
30dbf0c0 110 return ret;
0a6759c6 111 }
30dbf0c0 112
21dd3734
CW
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
30dbf0c0
CW
124}
125
54cf91dc 126int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 127{
76c1dec1
CW
128 int ret;
129
21dd3734 130 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
23bc5982 138 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
139 return 0;
140}
30dbf0c0 141
7d1c4804 142static inline bool
05394f39 143i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 144{
6c085a72 145 return obj->gtt_space && !obj->active;
7d1c4804
CW
146}
147
79e53945
JB
148int
149i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 150 struct drm_file *file)
79e53945
JB
151{
152 struct drm_i915_gem_init *args = data;
2021746e 153
7bb6fb8d
DV
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
2021746e
CW
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
79e53945 160
f534bc0b
DV
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
79e53945 165 mutex_lock(&dev->struct_mutex);
644ec02b
DV
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
673a394b
EA
168 mutex_unlock(&dev->struct_mutex);
169
2021746e 170 return 0;
673a394b
EA
171}
172
5a125c3c
EA
173int
174i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 175 struct drm_file *file)
5a125c3c 176{
73aa808f 177 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 178 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
5a125c3c 181
6299f992 182 pinned = 0;
73aa808f 183 mutex_lock(&dev->struct_mutex);
6c085a72 184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
1b50247a
CW
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
73aa808f 187 mutex_unlock(&dev->struct_mutex);
5a125c3c 188
6299f992 189 args->aper_size = dev_priv->mm.gtt_total;
0206e353 190 args->aper_available_size = args->aper_size - pinned;
6299f992 191
5a125c3c
EA
192 return 0;
193}
194
ff72145b
DA
195static int
196i915_gem_create(struct drm_file *file,
197 struct drm_device *dev,
198 uint64_t size,
199 uint32_t *handle_p)
673a394b 200{
05394f39 201 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
202 int ret;
203 u32 handle;
673a394b 204
ff72145b 205 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
206 if (size == 0)
207 return -EINVAL;
673a394b
EA
208
209 /* Allocate the new object */
ff72145b 210 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
211 if (obj == NULL)
212 return -ENOMEM;
213
05394f39 214 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 215 if (ret) {
05394f39
CW
216 drm_gem_object_release(&obj->base);
217 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 218 kfree(obj);
673a394b 219 return ret;
1dfd9754 220 }
673a394b 221
202f2fef 222 /* drop reference from allocate - handle holds it now */
05394f39 223 drm_gem_object_unreference(&obj->base);
202f2fef
CW
224 trace_i915_gem_object_create(obj);
225
ff72145b 226 *handle_p = handle;
673a394b
EA
227 return 0;
228}
229
ff72145b
DA
230int
231i915_gem_dumb_create(struct drm_file *file,
232 struct drm_device *dev,
233 struct drm_mode_create_dumb *args)
234{
235 /* have to work out size/pitch and return them */
ed0291fd 236 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
237 args->size = args->pitch * args->height;
238 return i915_gem_create(file, dev,
239 args->size, &args->handle);
240}
241
242int i915_gem_dumb_destroy(struct drm_file *file,
243 struct drm_device *dev,
244 uint32_t handle)
245{
246 return drm_gem_handle_delete(file, handle);
247}
248
249/**
250 * Creates a new mm object and returns a handle to it.
251 */
252int
253i915_gem_create_ioctl(struct drm_device *dev, void *data,
254 struct drm_file *file)
255{
256 struct drm_i915_gem_create *args = data;
63ed2cb2 257
ff72145b
DA
258 return i915_gem_create(file, dev,
259 args->size, &args->handle);
260}
261
05394f39 262static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 263{
05394f39 264 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
265
266 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 267 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
268}
269
8461d226
DV
270static inline int
271__copy_to_user_swizzled(char __user *cpu_vaddr,
272 const char *gpu_vaddr, int gpu_offset,
273 int length)
274{
275 int ret, cpu_offset = 0;
276
277 while (length > 0) {
278 int cacheline_end = ALIGN(gpu_offset + 1, 64);
279 int this_length = min(cacheline_end - gpu_offset, length);
280 int swizzled_gpu_offset = gpu_offset ^ 64;
281
282 ret = __copy_to_user(cpu_vaddr + cpu_offset,
283 gpu_vaddr + swizzled_gpu_offset,
284 this_length);
285 if (ret)
286 return ret + length;
287
288 cpu_offset += this_length;
289 gpu_offset += this_length;
290 length -= this_length;
291 }
292
293 return 0;
294}
295
8c59967c 296static inline int
4f0c7cfb
BW
297__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
298 const char __user *cpu_vaddr,
8c59967c
DV
299 int length)
300{
301 int ret, cpu_offset = 0;
302
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
307
308 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
309 cpu_vaddr + cpu_offset,
310 this_length);
311 if (ret)
312 return ret + length;
313
314 cpu_offset += this_length;
315 gpu_offset += this_length;
316 length -= this_length;
317 }
318
319 return 0;
320}
321
d174bd64
DV
322/* Per-page copy function for the shmem pread fastpath.
323 * Flushes invalid cachelines before reading the target if
324 * needs_clflush is set. */
eb01459f 325static int
d174bd64
DV
326shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
327 char __user *user_data,
328 bool page_do_bit17_swizzling, bool needs_clflush)
329{
330 char *vaddr;
331 int ret;
332
e7e58eb5 333 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
334 return -EINVAL;
335
336 vaddr = kmap_atomic(page);
337 if (needs_clflush)
338 drm_clflush_virt_range(vaddr + shmem_page_offset,
339 page_length);
340 ret = __copy_to_user_inatomic(user_data,
341 vaddr + shmem_page_offset,
342 page_length);
343 kunmap_atomic(vaddr);
344
f60d7f0c 345 return ret ? -EFAULT : 0;
d174bd64
DV
346}
347
23c18c71
DV
348static void
349shmem_clflush_swizzled_range(char *addr, unsigned long length,
350 bool swizzled)
351{
e7e58eb5 352 if (unlikely(swizzled)) {
23c18c71
DV
353 unsigned long start = (unsigned long) addr;
354 unsigned long end = (unsigned long) addr + length;
355
356 /* For swizzling simply ensure that we always flush both
357 * channels. Lame, but simple and it works. Swizzled
358 * pwrite/pread is far from a hotpath - current userspace
359 * doesn't use it at all. */
360 start = round_down(start, 128);
361 end = round_up(end, 128);
362
363 drm_clflush_virt_range((void *)start, end - start);
364 } else {
365 drm_clflush_virt_range(addr, length);
366 }
367
368}
369
d174bd64
DV
370/* Only difference to the fast-path function is that this can handle bit17
371 * and uses non-atomic copy and kmap functions. */
372static int
373shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
374 char __user *user_data,
375 bool page_do_bit17_swizzling, bool needs_clflush)
376{
377 char *vaddr;
378 int ret;
379
380 vaddr = kmap(page);
381 if (needs_clflush)
23c18c71
DV
382 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
383 page_length,
384 page_do_bit17_swizzling);
d174bd64
DV
385
386 if (page_do_bit17_swizzling)
387 ret = __copy_to_user_swizzled(user_data,
388 vaddr, shmem_page_offset,
389 page_length);
390 else
391 ret = __copy_to_user(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap(page);
395
f60d7f0c 396 return ret ? - EFAULT : 0;
d174bd64
DV
397}
398
eb01459f 399static int
dbf7bff0
DV
400i915_gem_shmem_pread(struct drm_device *dev,
401 struct drm_i915_gem_object *obj,
402 struct drm_i915_gem_pread *args,
403 struct drm_file *file)
eb01459f 404{
8461d226 405 char __user *user_data;
eb01459f 406 ssize_t remain;
8461d226 407 loff_t offset;
eb2c0c81 408 int shmem_page_offset, page_length, ret = 0;
8461d226 409 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
dbf7bff0 410 int hit_slowpath = 0;
96d79b52 411 int prefaulted = 0;
8489731c 412 int needs_clflush = 0;
9da3da66
CW
413 struct scatterlist *sg;
414 int i;
eb01459f 415
8461d226 416 user_data = (char __user *) (uintptr_t) args->data_ptr;
eb01459f
EA
417 remain = args->size;
418
8461d226 419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 420
8489731c
DV
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
6c085a72
CW
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
8489731c 433 }
eb01459f 434
f60d7f0c
CW
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
8461d226 441 offset = args->offset;
eb01459f 442
9da3da66 443 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd
CW
444 struct page *page;
445
9da3da66
CW
446 if (i < offset >> PAGE_SHIFT)
447 continue;
448
449 if (remain <= 0)
450 break;
451
eb01459f
EA
452 /* Operation in this page
453 *
eb01459f 454 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
455 * page_length = bytes to copy for this page
456 */
c8cbbb8b 457 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
458 page_length = remain;
459 if ((shmem_page_offset + page_length) > PAGE_SIZE)
460 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 461
9da3da66 462 page = sg_page(sg);
8461d226
DV
463 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464 (page_to_phys(page) & (1 << 17)) != 0;
465
d174bd64
DV
466 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467 user_data, page_do_bit17_swizzling,
468 needs_clflush);
469 if (ret == 0)
470 goto next_page;
dbf7bff0
DV
471
472 hit_slowpath = 1;
dbf7bff0
DV
473 mutex_unlock(&dev->struct_mutex);
474
96d79b52 475 if (!prefaulted) {
f56f821f 476 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
477 /* Userspace is tricking us, but we've already clobbered
478 * its pages with the prefault and promised to write the
479 * data up to the first fault. Hence ignore any errors
480 * and just continue. */
481 (void)ret;
482 prefaulted = 1;
483 }
eb01459f 484
d174bd64
DV
485 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486 user_data, page_do_bit17_swizzling,
487 needs_clflush);
eb01459f 488
dbf7bff0 489 mutex_lock(&dev->struct_mutex);
f60d7f0c 490
dbf7bff0 491next_page:
e5281ccd 492 mark_page_accessed(page);
e5281ccd 493
f60d7f0c 494 if (ret)
8461d226 495 goto out;
8461d226 496
eb01459f 497 remain -= page_length;
8461d226 498 user_data += page_length;
eb01459f
EA
499 offset += page_length;
500 }
501
4f27b75d 502out:
f60d7f0c
CW
503 i915_gem_object_unpin_pages(obj);
504
dbf7bff0
DV
505 if (hit_slowpath) {
506 /* Fixup: Kill any reinstated backing storage pages */
507 if (obj->madv == __I915_MADV_PURGED)
508 i915_gem_object_truncate(obj);
509 }
eb01459f
EA
510
511 return ret;
512}
513
673a394b
EA
514/**
515 * Reads data from the object referenced by handle.
516 *
517 * On error, the contents of *data are undefined.
518 */
519int
520i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 521 struct drm_file *file)
673a394b
EA
522{
523 struct drm_i915_gem_pread *args = data;
05394f39 524 struct drm_i915_gem_object *obj;
35b62a89 525 int ret = 0;
673a394b 526
51311d0a
CW
527 if (args->size == 0)
528 return 0;
529
530 if (!access_ok(VERIFY_WRITE,
531 (char __user *)(uintptr_t)args->data_ptr,
532 args->size))
533 return -EFAULT;
534
4f27b75d 535 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 536 if (ret)
4f27b75d 537 return ret;
673a394b 538
05394f39 539 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 540 if (&obj->base == NULL) {
1d7cfea1
CW
541 ret = -ENOENT;
542 goto unlock;
4f27b75d 543 }
673a394b 544
7dcd2499 545 /* Bounds check source. */
05394f39
CW
546 if (args->offset > obj->base.size ||
547 args->size > obj->base.size - args->offset) {
ce9d419d 548 ret = -EINVAL;
35b62a89 549 goto out;
ce9d419d
CW
550 }
551
1286ff73
DV
552 /* prime objects have no backing filp to GEM pread/pwrite
553 * pages from.
554 */
555 if (!obj->base.filp) {
556 ret = -EINVAL;
557 goto out;
558 }
559
db53a302
CW
560 trace_i915_gem_object_pread(obj, args->offset, args->size);
561
dbf7bff0 562 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 563
35b62a89 564out:
05394f39 565 drm_gem_object_unreference(&obj->base);
1d7cfea1 566unlock:
4f27b75d 567 mutex_unlock(&dev->struct_mutex);
eb01459f 568 return ret;
673a394b
EA
569}
570
0839ccb8
KP
571/* This is the fast write path which cannot handle
572 * page faults in the source data
9b7530cc 573 */
0839ccb8
KP
574
575static inline int
576fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
9b7530cc 580{
4f0c7cfb
BW
581 void __iomem *vaddr_atomic;
582 void *vaddr;
0839ccb8 583 unsigned long unwritten;
9b7530cc 584
3e4d3af5 585 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
586 /* We can use the cpu mem copy function because this is X86. */
587 vaddr = (void __force*)vaddr_atomic + page_offset;
588 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 589 user_data, length);
3e4d3af5 590 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 591 return unwritten;
0839ccb8
KP
592}
593
3de09aa3
EA
594/**
595 * This is the fast pwrite path, where we copy the data directly from the
596 * user into the GTT, uncached.
597 */
673a394b 598static int
05394f39
CW
599i915_gem_gtt_pwrite_fast(struct drm_device *dev,
600 struct drm_i915_gem_object *obj,
3de09aa3 601 struct drm_i915_gem_pwrite *args,
05394f39 602 struct drm_file *file)
673a394b 603{
0839ccb8 604 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 605 ssize_t remain;
0839ccb8 606 loff_t offset, page_base;
673a394b 607 char __user *user_data;
935aaa69
DV
608 int page_offset, page_length, ret;
609
86a1ee26 610 ret = i915_gem_object_pin(obj, 0, true, true);
935aaa69
DV
611 if (ret)
612 goto out;
613
614 ret = i915_gem_object_set_to_gtt_domain(obj, true);
615 if (ret)
616 goto out_unpin;
617
618 ret = i915_gem_object_put_fence(obj);
619 if (ret)
620 goto out_unpin;
673a394b
EA
621
622 user_data = (char __user *) (uintptr_t) args->data_ptr;
623 remain = args->size;
673a394b 624
05394f39 625 offset = obj->gtt_offset + args->offset;
673a394b
EA
626
627 while (remain > 0) {
628 /* Operation in this page
629 *
0839ccb8
KP
630 * page_base = page offset within aperture
631 * page_offset = offset within page
632 * page_length = bytes to copy for this page
673a394b 633 */
c8cbbb8b
CW
634 page_base = offset & PAGE_MASK;
635 page_offset = offset_in_page(offset);
0839ccb8
KP
636 page_length = remain;
637 if ((page_offset + remain) > PAGE_SIZE)
638 page_length = PAGE_SIZE - page_offset;
639
0839ccb8 640 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
641 * source page isn't available. Return the error and we'll
642 * retry in the slow path.
0839ccb8 643 */
fbd5a26d 644 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
935aaa69
DV
645 page_offset, user_data, page_length)) {
646 ret = -EFAULT;
647 goto out_unpin;
648 }
673a394b 649
0839ccb8
KP
650 remain -= page_length;
651 user_data += page_length;
652 offset += page_length;
673a394b 653 }
673a394b 654
935aaa69
DV
655out_unpin:
656 i915_gem_object_unpin(obj);
657out:
3de09aa3 658 return ret;
673a394b
EA
659}
660
d174bd64
DV
661/* Per-page copy function for the shmem pwrite fastpath.
662 * Flushes invalid cachelines before writing to the target if
663 * needs_clflush_before is set and flushes out any written cachelines after
664 * writing if needs_clflush is set. */
3043c60c 665static int
d174bd64
DV
666shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
667 char __user *user_data,
668 bool page_do_bit17_swizzling,
669 bool needs_clflush_before,
670 bool needs_clflush_after)
673a394b 671{
d174bd64 672 char *vaddr;
673a394b 673 int ret;
3de09aa3 674
e7e58eb5 675 if (unlikely(page_do_bit17_swizzling))
d174bd64 676 return -EINVAL;
3de09aa3 677
d174bd64
DV
678 vaddr = kmap_atomic(page);
679 if (needs_clflush_before)
680 drm_clflush_virt_range(vaddr + shmem_page_offset,
681 page_length);
682 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
683 user_data,
684 page_length);
685 if (needs_clflush_after)
686 drm_clflush_virt_range(vaddr + shmem_page_offset,
687 page_length);
688 kunmap_atomic(vaddr);
3de09aa3 689
755d2218 690 return ret ? -EFAULT : 0;
3de09aa3
EA
691}
692
d174bd64
DV
693/* Only difference to the fast-path function is that this can handle bit17
694 * and uses non-atomic copy and kmap functions. */
3043c60c 695static int
d174bd64
DV
696shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
697 char __user *user_data,
698 bool page_do_bit17_swizzling,
699 bool needs_clflush_before,
700 bool needs_clflush_after)
673a394b 701{
d174bd64
DV
702 char *vaddr;
703 int ret;
e5281ccd 704
d174bd64 705 vaddr = kmap(page);
e7e58eb5 706 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
707 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
708 page_length,
709 page_do_bit17_swizzling);
d174bd64
DV
710 if (page_do_bit17_swizzling)
711 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
712 user_data,
713 page_length);
d174bd64
DV
714 else
715 ret = __copy_from_user(vaddr + shmem_page_offset,
716 user_data,
717 page_length);
718 if (needs_clflush_after)
23c18c71
DV
719 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
720 page_length,
721 page_do_bit17_swizzling);
d174bd64 722 kunmap(page);
40123c1f 723
755d2218 724 return ret ? -EFAULT : 0;
40123c1f
EA
725}
726
40123c1f 727static int
e244a443
DV
728i915_gem_shmem_pwrite(struct drm_device *dev,
729 struct drm_i915_gem_object *obj,
730 struct drm_i915_gem_pwrite *args,
731 struct drm_file *file)
40123c1f 732{
40123c1f 733 ssize_t remain;
8c59967c
DV
734 loff_t offset;
735 char __user *user_data;
eb2c0c81 736 int shmem_page_offset, page_length, ret = 0;
8c59967c 737 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 738 int hit_slowpath = 0;
58642885
DV
739 int needs_clflush_after = 0;
740 int needs_clflush_before = 0;
9da3da66
CW
741 int i;
742 struct scatterlist *sg;
40123c1f 743
8c59967c 744 user_data = (char __user *) (uintptr_t) args->data_ptr;
40123c1f
EA
745 remain = args->size;
746
8c59967c 747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 748
58642885
DV
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 if (obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_after = 1;
6c085a72
CW
756 if (obj->gtt_space) {
757 ret = i915_gem_object_set_to_gtt_domain(obj, true);
758 if (ret)
759 return ret;
760 }
58642885
DV
761 }
762 /* Same trick applies for invalidate partially written cachelines before
763 * writing. */
764 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
765 && obj->cache_level == I915_CACHE_NONE)
766 needs_clflush_before = 1;
767
755d2218
CW
768 ret = i915_gem_object_get_pages(obj);
769 if (ret)
770 return ret;
771
772 i915_gem_object_pin_pages(obj);
773
673a394b 774 offset = args->offset;
05394f39 775 obj->dirty = 1;
673a394b 776
9da3da66 777 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
e5281ccd 778 struct page *page;
58642885 779 int partial_cacheline_write;
e5281ccd 780
9da3da66
CW
781 if (i < offset >> PAGE_SHIFT)
782 continue;
783
784 if (remain <= 0)
785 break;
786
40123c1f
EA
787 /* Operation in this page
788 *
40123c1f 789 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
790 * page_length = bytes to copy for this page
791 */
c8cbbb8b 792 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
793
794 page_length = remain;
795 if ((shmem_page_offset + page_length) > PAGE_SIZE)
796 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 797
58642885
DV
798 /* If we don't overwrite a cacheline completely we need to be
799 * careful to have up-to-date data by first clflushing. Don't
800 * overcomplicate things and flush the entire patch. */
801 partial_cacheline_write = needs_clflush_before &&
802 ((shmem_page_offset | page_length)
803 & (boot_cpu_data.x86_clflush_size - 1));
804
9da3da66 805 page = sg_page(sg);
8c59967c
DV
806 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
807 (page_to_phys(page) & (1 << 17)) != 0;
808
d174bd64
DV
809 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813 if (ret == 0)
814 goto next_page;
e244a443
DV
815
816 hit_slowpath = 1;
e244a443 817 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
818 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
819 user_data, page_do_bit17_swizzling,
820 partial_cacheline_write,
821 needs_clflush_after);
40123c1f 822
e244a443 823 mutex_lock(&dev->struct_mutex);
755d2218 824
e244a443 825next_page:
e5281ccd
CW
826 set_page_dirty(page);
827 mark_page_accessed(page);
e5281ccd 828
755d2218 829 if (ret)
8c59967c 830 goto out;
8c59967c 831
40123c1f 832 remain -= page_length;
8c59967c 833 user_data += page_length;
40123c1f 834 offset += page_length;
673a394b
EA
835 }
836
fbd5a26d 837out:
755d2218
CW
838 i915_gem_object_unpin_pages(obj);
839
e244a443
DV
840 if (hit_slowpath) {
841 /* Fixup: Kill any reinstated backing storage pages */
842 if (obj->madv == __I915_MADV_PURGED)
843 i915_gem_object_truncate(obj);
844 /* and flush dirty cachelines in case the object isn't in the cpu write
845 * domain anymore. */
846 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
847 i915_gem_clflush_object(obj);
848 intel_gtt_chipset_flush();
849 }
8c59967c 850 }
673a394b 851
58642885
DV
852 if (needs_clflush_after)
853 intel_gtt_chipset_flush();
854
40123c1f 855 return ret;
673a394b
EA
856}
857
858/**
859 * Writes data to the object referenced by handle.
860 *
861 * On error, the contents of the buffer that were to be modified are undefined.
862 */
863int
864i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 865 struct drm_file *file)
673a394b
EA
866{
867 struct drm_i915_gem_pwrite *args = data;
05394f39 868 struct drm_i915_gem_object *obj;
51311d0a
CW
869 int ret;
870
871 if (args->size == 0)
872 return 0;
873
874 if (!access_ok(VERIFY_READ,
875 (char __user *)(uintptr_t)args->data_ptr,
876 args->size))
877 return -EFAULT;
878
f56f821f
DV
879 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
880 args->size);
51311d0a
CW
881 if (ret)
882 return -EFAULT;
673a394b 883
fbd5a26d 884 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 885 if (ret)
fbd5a26d 886 return ret;
1d7cfea1 887
05394f39 888 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 889 if (&obj->base == NULL) {
1d7cfea1
CW
890 ret = -ENOENT;
891 goto unlock;
fbd5a26d 892 }
673a394b 893
7dcd2499 894 /* Bounds check destination. */
05394f39
CW
895 if (args->offset > obj->base.size ||
896 args->size > obj->base.size - args->offset) {
ce9d419d 897 ret = -EINVAL;
35b62a89 898 goto out;
ce9d419d
CW
899 }
900
1286ff73
DV
901 /* prime objects have no backing filp to GEM pread/pwrite
902 * pages from.
903 */
904 if (!obj->base.filp) {
905 ret = -EINVAL;
906 goto out;
907 }
908
db53a302
CW
909 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
910
935aaa69 911 ret = -EFAULT;
673a394b
EA
912 /* We can only do the GTT pwrite on untiled buffers, as otherwise
913 * it would end up going through the fenced access, and we'll get
914 * different detiling behavior between reading and writing.
915 * pread/pwrite currently are reading and writing from the CPU
916 * perspective, requiring manual detiling by the client.
917 */
5c0480f2 918 if (obj->phys_obj) {
fbd5a26d 919 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
920 goto out;
921 }
922
86a1ee26 923 if (obj->cache_level == I915_CACHE_NONE &&
c07496fa 924 obj->tiling_mode == I915_TILING_NONE &&
5c0480f2 925 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
fbd5a26d 926 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
927 /* Note that the gtt paths might fail with non-page-backed user
928 * pointers (e.g. gtt mappings when moving data between
929 * textures). Fallback to the shmem path in that case. */
fbd5a26d 930 }
673a394b 931
86a1ee26 932 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 933 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 934
35b62a89 935out:
05394f39 936 drm_gem_object_unreference(&obj->base);
1d7cfea1 937unlock:
fbd5a26d 938 mutex_unlock(&dev->struct_mutex);
673a394b
EA
939 return ret;
940}
941
b361237b
CW
942int
943i915_gem_check_wedge(struct drm_i915_private *dev_priv,
944 bool interruptible)
945{
946 if (atomic_read(&dev_priv->mm.wedged)) {
947 struct completion *x = &dev_priv->error_completion;
948 bool recovery_complete;
949 unsigned long flags;
950
951 /* Give the error handler a chance to run. */
952 spin_lock_irqsave(&x->wait.lock, flags);
953 recovery_complete = x->done > 0;
954 spin_unlock_irqrestore(&x->wait.lock, flags);
955
956 /* Non-interruptible callers can't handle -EAGAIN, hence return
957 * -EIO unconditionally for these. */
958 if (!interruptible)
959 return -EIO;
960
961 /* Recovery complete, but still wedged means reset failure. */
962 if (recovery_complete)
963 return -EIO;
964
965 return -EAGAIN;
966 }
967
968 return 0;
969}
970
971/*
972 * Compare seqno against outstanding lazy request. Emit a request if they are
973 * equal.
974 */
975static int
976i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
977{
978 int ret;
979
980 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
981
982 ret = 0;
983 if (seqno == ring->outstanding_lazy_request)
984 ret = i915_add_request(ring, NULL, NULL);
985
986 return ret;
987}
988
989/**
990 * __wait_seqno - wait until execution of seqno has finished
991 * @ring: the ring expected to report seqno
992 * @seqno: duh!
993 * @interruptible: do an interruptible wait (normally yes)
994 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
995 *
996 * Returns 0 if the seqno was found within the alloted time. Else returns the
997 * errno with remaining time filled in timeout argument.
998 */
999static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1000 bool interruptible, struct timespec *timeout)
1001{
1002 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1003 struct timespec before, now, wait_time={1,0};
1004 unsigned long timeout_jiffies;
1005 long end;
1006 bool wait_forever = true;
1007 int ret;
1008
1009 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1010 return 0;
1011
1012 trace_i915_gem_request_wait_begin(ring, seqno);
1013
1014 if (timeout != NULL) {
1015 wait_time = *timeout;
1016 wait_forever = false;
1017 }
1018
1019 timeout_jiffies = timespec_to_jiffies(&wait_time);
1020
1021 if (WARN_ON(!ring->irq_get(ring)))
1022 return -ENODEV;
1023
1024 /* Record current time in case interrupted by signal, or wedged * */
1025 getrawmonotonic(&before);
1026
1027#define EXIT_COND \
1028 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1029 atomic_read(&dev_priv->mm.wedged))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 ret = i915_gem_check_wedge(dev_priv, interruptible);
1040 if (ret)
1041 end = ret;
1042 } while (end == 0 && wait_forever);
1043
1044 getrawmonotonic(&now);
1045
1046 ring->irq_put(ring);
1047 trace_i915_gem_request_wait_end(ring, seqno);
1048#undef EXIT_COND
1049
1050 if (timeout) {
1051 struct timespec sleep_time = timespec_sub(now, before);
1052 *timeout = timespec_sub(*timeout, sleep_time);
1053 }
1054
1055 switch (end) {
1056 case -EIO:
1057 case -EAGAIN: /* Wedged */
1058 case -ERESTARTSYS: /* Signal */
1059 return (int)end;
1060 case 0: /* Timeout */
1061 if (timeout)
1062 set_normalized_timespec(timeout, 0, 0);
1063 return -ETIME;
1064 default: /* Completed */
1065 WARN_ON(end < 0); /* We're not aware of other errors */
1066 return 0;
1067 }
1068}
1069
1070/**
1071 * Waits for a sequence number to be signaled, and cleans up the
1072 * request and object lists appropriately for that event.
1073 */
1074int
1075i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1076{
1077 struct drm_device *dev = ring->dev;
1078 struct drm_i915_private *dev_priv = dev->dev_private;
1079 bool interruptible = dev_priv->mm.interruptible;
1080 int ret;
1081
1082 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1083 BUG_ON(seqno == 0);
1084
1085 ret = i915_gem_check_wedge(dev_priv, interruptible);
1086 if (ret)
1087 return ret;
1088
1089 ret = i915_gem_check_olr(ring, seqno);
1090 if (ret)
1091 return ret;
1092
1093 return __wait_seqno(ring, seqno, interruptible, NULL);
1094}
1095
1096/**
1097 * Ensures that all rendering to the object has completed and the object is
1098 * safe to unbind from the GTT or access from the CPU.
1099 */
1100static __must_check int
1101i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1102 bool readonly)
1103{
1104 struct intel_ring_buffer *ring = obj->ring;
1105 u32 seqno;
1106 int ret;
1107
1108 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1109 if (seqno == 0)
1110 return 0;
1111
1112 ret = i915_wait_seqno(ring, seqno);
1113 if (ret)
1114 return ret;
1115
1116 i915_gem_retire_requests_ring(ring);
1117
1118 /* Manually manage the write flush as we may have not yet
1119 * retired the buffer.
1120 */
1121 if (obj->last_write_seqno &&
1122 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1123 obj->last_write_seqno = 0;
1124 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1125 }
1126
1127 return 0;
1128}
1129
3236f57a
CW
1130/* A nonblocking variant of the above wait. This is a highly dangerous routine
1131 * as the object state may change during this call.
1132 */
1133static __must_check int
1134i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1135 bool readonly)
1136{
1137 struct drm_device *dev = obj->base.dev;
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 struct intel_ring_buffer *ring = obj->ring;
1140 u32 seqno;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(!dev_priv->mm.interruptible);
1145
1146 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1147 if (seqno == 0)
1148 return 0;
1149
1150 ret = i915_gem_check_wedge(dev_priv, true);
1151 if (ret)
1152 return ret;
1153
1154 ret = i915_gem_check_olr(ring, seqno);
1155 if (ret)
1156 return ret;
1157
1158 mutex_unlock(&dev->struct_mutex);
1159 ret = __wait_seqno(ring, seqno, true, NULL);
1160 mutex_lock(&dev->struct_mutex);
1161
1162 i915_gem_retire_requests_ring(ring);
1163
1164 /* Manually manage the write flush as we may have not yet
1165 * retired the buffer.
1166 */
1167 if (obj->last_write_seqno &&
1168 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1169 obj->last_write_seqno = 0;
1170 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1171 }
1172
1173 return ret;
1174}
1175
673a394b 1176/**
2ef7eeaa
EA
1177 * Called when user space prepares to use an object with the CPU, either
1178 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1179 */
1180int
1181i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1182 struct drm_file *file)
673a394b
EA
1183{
1184 struct drm_i915_gem_set_domain *args = data;
05394f39 1185 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1186 uint32_t read_domains = args->read_domains;
1187 uint32_t write_domain = args->write_domain;
673a394b
EA
1188 int ret;
1189
2ef7eeaa 1190 /* Only handle setting domains to types used by the CPU. */
21d509e3 1191 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1192 return -EINVAL;
1193
21d509e3 1194 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1195 return -EINVAL;
1196
1197 /* Having something in the write domain implies it's in the read
1198 * domain, and only that read domain. Enforce that in the request.
1199 */
1200 if (write_domain != 0 && read_domains != write_domain)
1201 return -EINVAL;
1202
76c1dec1 1203 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1204 if (ret)
76c1dec1 1205 return ret;
1d7cfea1 1206
05394f39 1207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1208 if (&obj->base == NULL) {
1d7cfea1
CW
1209 ret = -ENOENT;
1210 goto unlock;
76c1dec1 1211 }
673a394b 1212
3236f57a
CW
1213 /* Try to flush the object off the GPU without holding the lock.
1214 * We will repeat the flush holding the lock in the normal manner
1215 * to catch cases where we are gazumped.
1216 */
1217 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1218 if (ret)
1219 goto unref;
1220
2ef7eeaa
EA
1221 if (read_domains & I915_GEM_DOMAIN_GTT) {
1222 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1223
1224 /* Silently promote "you're not bound, there was nothing to do"
1225 * to success, since the client was just asking us to
1226 * make sure everything was done.
1227 */
1228 if (ret == -EINVAL)
1229 ret = 0;
2ef7eeaa 1230 } else {
e47c68e9 1231 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1232 }
1233
3236f57a 1234unref:
05394f39 1235 drm_gem_object_unreference(&obj->base);
1d7cfea1 1236unlock:
673a394b
EA
1237 mutex_unlock(&dev->struct_mutex);
1238 return ret;
1239}
1240
1241/**
1242 * Called when user space has done writes to this buffer
1243 */
1244int
1245i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1246 struct drm_file *file)
673a394b
EA
1247{
1248 struct drm_i915_gem_sw_finish *args = data;
05394f39 1249 struct drm_i915_gem_object *obj;
673a394b
EA
1250 int ret = 0;
1251
76c1dec1 1252 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1253 if (ret)
76c1dec1 1254 return ret;
1d7cfea1 1255
05394f39 1256 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1257 if (&obj->base == NULL) {
1d7cfea1
CW
1258 ret = -ENOENT;
1259 goto unlock;
673a394b
EA
1260 }
1261
673a394b 1262 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1263 if (obj->pin_count)
e47c68e9
EA
1264 i915_gem_object_flush_cpu_write_domain(obj);
1265
05394f39 1266 drm_gem_object_unreference(&obj->base);
1d7cfea1 1267unlock:
673a394b
EA
1268 mutex_unlock(&dev->struct_mutex);
1269 return ret;
1270}
1271
1272/**
1273 * Maps the contents of an object, returning the address it is mapped
1274 * into.
1275 *
1276 * While the mapping holds a reference on the contents of the object, it doesn't
1277 * imply a ref on the object itself.
1278 */
1279int
1280i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1281 struct drm_file *file)
673a394b
EA
1282{
1283 struct drm_i915_gem_mmap *args = data;
1284 struct drm_gem_object *obj;
673a394b
EA
1285 unsigned long addr;
1286
05394f39 1287 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1288 if (obj == NULL)
bf79cb91 1289 return -ENOENT;
673a394b 1290
1286ff73
DV
1291 /* prime objects have no backing filp to GEM mmap
1292 * pages from.
1293 */
1294 if (!obj->filp) {
1295 drm_gem_object_unreference_unlocked(obj);
1296 return -EINVAL;
1297 }
1298
6be5ceb0 1299 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1300 PROT_READ | PROT_WRITE, MAP_SHARED,
1301 args->offset);
bc9025bd 1302 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1303 if (IS_ERR((void *)addr))
1304 return addr;
1305
1306 args->addr_ptr = (uint64_t) addr;
1307
1308 return 0;
1309}
1310
de151cf6
JB
1311/**
1312 * i915_gem_fault - fault a page into the GTT
1313 * vma: VMA in question
1314 * vmf: fault info
1315 *
1316 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1317 * from userspace. The fault handler takes care of binding the object to
1318 * the GTT (if needed), allocating and programming a fence register (again,
1319 * only if needed based on whether the old reg is still valid or the object
1320 * is tiled) and inserting a new PTE into the faulting process.
1321 *
1322 * Note that the faulting process may involve evicting existing objects
1323 * from the GTT and/or fence registers to make room. So performance may
1324 * suffer if the GTT working set is large or there are few fence registers
1325 * left.
1326 */
1327int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1328{
05394f39
CW
1329 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1330 struct drm_device *dev = obj->base.dev;
7d1c4804 1331 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1332 pgoff_t page_offset;
1333 unsigned long pfn;
1334 int ret = 0;
0f973f27 1335 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1336
1337 /* We don't use vmf->pgoff since that has the fake offset */
1338 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1339 PAGE_SHIFT;
1340
d9bc7e9f
CW
1341 ret = i915_mutex_lock_interruptible(dev);
1342 if (ret)
1343 goto out;
a00b10c3 1344
db53a302
CW
1345 trace_i915_gem_object_fault(obj, page_offset, true, write);
1346
d9bc7e9f 1347 /* Now bind it into the GTT if needed */
919926ae
CW
1348 if (!obj->map_and_fenceable) {
1349 ret = i915_gem_object_unbind(obj);
1350 if (ret)
1351 goto unlock;
a00b10c3 1352 }
05394f39 1353 if (!obj->gtt_space) {
86a1ee26 1354 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
c715089f
CW
1355 if (ret)
1356 goto unlock;
de151cf6 1357
e92d03bf
EA
1358 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1359 if (ret)
1360 goto unlock;
1361 }
4a684a41 1362
74898d7e
DV
1363 if (!obj->has_global_gtt_mapping)
1364 i915_gem_gtt_bind_object(obj, obj->cache_level);
1365
06d98131 1366 ret = i915_gem_object_get_fence(obj);
d9e86c0e
CW
1367 if (ret)
1368 goto unlock;
de151cf6 1369
05394f39
CW
1370 if (i915_gem_object_is_inactive(obj))
1371 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1372
6299f992
CW
1373 obj->fault_mappable = true;
1374
dd2757f8 1375 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1376 page_offset;
1377
1378 /* Finally, remap it using the new GTT offset */
1379 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1380unlock:
de151cf6 1381 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1382out:
de151cf6 1383 switch (ret) {
d9bc7e9f 1384 case -EIO:
a9340cca
DV
1385 /* If this -EIO is due to a gpu hang, give the reset code a
1386 * chance to clean up the mess. Otherwise return the proper
1387 * SIGBUS. */
1388 if (!atomic_read(&dev_priv->mm.wedged))
1389 return VM_FAULT_SIGBUS;
045e769a 1390 case -EAGAIN:
d9bc7e9f
CW
1391 /* Give the error handler a chance to run and move the
1392 * objects off the GPU active list. Next time we service the
1393 * fault, we should be able to transition the page into the
1394 * GTT without touching the GPU (and so avoid further
1395 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1396 * with coherency, just lost writes.
1397 */
045e769a 1398 set_need_resched();
c715089f
CW
1399 case 0:
1400 case -ERESTARTSYS:
bed636ab 1401 case -EINTR:
e79e0fe3
DR
1402 case -EBUSY:
1403 /*
1404 * EBUSY is ok: this just means that another thread
1405 * already did the job.
1406 */
c715089f 1407 return VM_FAULT_NOPAGE;
de151cf6 1408 case -ENOMEM:
de151cf6 1409 return VM_FAULT_OOM;
de151cf6 1410 default:
4d0f817e 1411 WARN_ON_ONCE(ret);
c715089f 1412 return VM_FAULT_SIGBUS;
de151cf6
JB
1413 }
1414}
1415
901782b2
CW
1416/**
1417 * i915_gem_release_mmap - remove physical page mappings
1418 * @obj: obj in question
1419 *
af901ca1 1420 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1421 * relinquish ownership of the pages back to the system.
1422 *
1423 * It is vital that we remove the page mapping if we have mapped a tiled
1424 * object through the GTT and then lose the fence register due to
1425 * resource pressure. Similarly if the object has been moved out of the
1426 * aperture, than pages mapped into userspace must be revoked. Removing the
1427 * mapping will then trigger a page fault on the next user access, allowing
1428 * fixup by i915_gem_fault().
1429 */
d05ca301 1430void
05394f39 1431i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1432{
6299f992
CW
1433 if (!obj->fault_mappable)
1434 return;
901782b2 1435
f6e47884
CW
1436 if (obj->base.dev->dev_mapping)
1437 unmap_mapping_range(obj->base.dev->dev_mapping,
1438 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1439 obj->base.size, 1);
fb7d516a 1440
6299f992 1441 obj->fault_mappable = false;
901782b2
CW
1442}
1443
92b88aeb 1444static uint32_t
e28f8711 1445i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1446{
e28f8711 1447 uint32_t gtt_size;
92b88aeb
CW
1448
1449 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1450 tiling_mode == I915_TILING_NONE)
1451 return size;
92b88aeb
CW
1452
1453 /* Previous chips need a power-of-two fence region when tiling */
1454 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1455 gtt_size = 1024*1024;
92b88aeb 1456 else
e28f8711 1457 gtt_size = 512*1024;
92b88aeb 1458
e28f8711
CW
1459 while (gtt_size < size)
1460 gtt_size <<= 1;
92b88aeb 1461
e28f8711 1462 return gtt_size;
92b88aeb
CW
1463}
1464
de151cf6
JB
1465/**
1466 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467 * @obj: object to check
1468 *
1469 * Return the required GTT alignment for an object, taking into account
5e783301 1470 * potential fence register mapping.
de151cf6
JB
1471 */
1472static uint32_t
e28f8711
CW
1473i915_gem_get_gtt_alignment(struct drm_device *dev,
1474 uint32_t size,
1475 int tiling_mode)
de151cf6 1476{
de151cf6
JB
1477 /*
1478 * Minimum alignment is 4k (GTT page size), but might be greater
1479 * if a fence register is needed for the object.
1480 */
a00b10c3 1481 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711 1482 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1483 return 4096;
1484
a00b10c3
CW
1485 /*
1486 * Previous chips need to be aligned to the size of the smallest
1487 * fence register that can contain the object.
1488 */
e28f8711 1489 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1490}
1491
5e783301
DV
1492/**
1493 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1494 * unfenced object
e28f8711
CW
1495 * @dev: the device
1496 * @size: size of the object
1497 * @tiling_mode: tiling mode of the object
5e783301
DV
1498 *
1499 * Return the required GTT alignment for an object, only taking into account
1500 * unfenced tiled surface requirements.
1501 */
467cffba 1502uint32_t
e28f8711
CW
1503i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1504 uint32_t size,
1505 int tiling_mode)
5e783301 1506{
5e783301
DV
1507 /*
1508 * Minimum alignment is 4k (GTT page size) for sane hw.
1509 */
1510 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
e28f8711 1511 tiling_mode == I915_TILING_NONE)
5e783301
DV
1512 return 4096;
1513
e28f8711
CW
1514 /* Previous hardware however needs to be aligned to a power-of-two
1515 * tile height. The simplest method for determining this is to reuse
1516 * the power-of-tile object size.
5e783301 1517 */
e28f8711 1518 return i915_gem_get_gtt_size(dev, size, tiling_mode);
5e783301
DV
1519}
1520
d8cb5086
CW
1521static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1522{
1523 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1524 int ret;
1525
1526 if (obj->base.map_list.map)
1527 return 0;
1528
1529 ret = drm_gem_create_mmap_offset(&obj->base);
1530 if (ret != -ENOSPC)
1531 return ret;
1532
1533 /* Badly fragmented mmap space? The only way we can recover
1534 * space is by destroying unwanted objects. We can't randomly release
1535 * mmap_offsets as userspace expects them to be persistent for the
1536 * lifetime of the objects. The closest we can is to release the
1537 * offsets on purgeable objects by truncating it and marking it purged,
1538 * which prevents userspace from ever using that object again.
1539 */
1540 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1541 ret = drm_gem_create_mmap_offset(&obj->base);
1542 if (ret != -ENOSPC)
1543 return ret;
1544
1545 i915_gem_shrink_all(dev_priv);
1546 return drm_gem_create_mmap_offset(&obj->base);
1547}
1548
1549static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1550{
1551 if (!obj->base.map_list.map)
1552 return;
1553
1554 drm_gem_free_mmap_offset(&obj->base);
1555}
1556
de151cf6 1557int
ff72145b
DA
1558i915_gem_mmap_gtt(struct drm_file *file,
1559 struct drm_device *dev,
1560 uint32_t handle,
1561 uint64_t *offset)
de151cf6 1562{
da761a6e 1563 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1564 struct drm_i915_gem_object *obj;
de151cf6
JB
1565 int ret;
1566
76c1dec1 1567 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1568 if (ret)
76c1dec1 1569 return ret;
de151cf6 1570
ff72145b 1571 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1572 if (&obj->base == NULL) {
1d7cfea1
CW
1573 ret = -ENOENT;
1574 goto unlock;
1575 }
de151cf6 1576
05394f39 1577 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e 1578 ret = -E2BIG;
ff56b0bc 1579 goto out;
da761a6e
CW
1580 }
1581
05394f39 1582 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1583 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1584 ret = -EINVAL;
1585 goto out;
ab18282d
CW
1586 }
1587
d8cb5086
CW
1588 ret = i915_gem_object_create_mmap_offset(obj);
1589 if (ret)
1590 goto out;
de151cf6 1591
ff72145b 1592 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1593
1d7cfea1 1594out:
05394f39 1595 drm_gem_object_unreference(&obj->base);
1d7cfea1 1596unlock:
de151cf6 1597 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1598 return ret;
de151cf6
JB
1599}
1600
ff72145b
DA
1601/**
1602 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1603 * @dev: DRM device
1604 * @data: GTT mapping ioctl data
1605 * @file: GEM object info
1606 *
1607 * Simply returns the fake offset to userspace so it can mmap it.
1608 * The mmap call will end up in drm_gem_mmap(), which will set things
1609 * up so we can get faults in the handler above.
1610 *
1611 * The fault handler will take care of binding the object into the GTT
1612 * (since it may have been evicted to make room for something), allocating
1613 * a fence register, and mapping the appropriate aperture address into
1614 * userspace.
1615 */
1616int
1617i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1618 struct drm_file *file)
1619{
1620 struct drm_i915_gem_mmap_gtt *args = data;
1621
ff72145b
DA
1622 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1623}
1624
225067ee
DV
1625/* Immediately discard the backing storage */
1626static void
1627i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1628{
e5281ccd 1629 struct inode *inode;
e5281ccd 1630
4d6294bf 1631 i915_gem_object_free_mmap_offset(obj);
1286ff73 1632
4d6294bf
CW
1633 if (obj->base.filp == NULL)
1634 return;
e5281ccd 1635
225067ee
DV
1636 /* Our goal here is to return as much of the memory as
1637 * is possible back to the system as we are called from OOM.
1638 * To do this we must instruct the shmfs to drop all of its
1639 * backing pages, *now*.
1640 */
05394f39 1641 inode = obj->base.filp->f_path.dentry->d_inode;
225067ee 1642 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1643
225067ee
DV
1644 obj->madv = __I915_MADV_PURGED;
1645}
e5281ccd 1646
225067ee
DV
1647static inline int
1648i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1649{
1650 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1651}
1652
37e680a1 1653static void
05394f39 1654i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1655{
05394f39 1656 int page_count = obj->base.size / PAGE_SIZE;
9da3da66 1657 struct scatterlist *sg;
6c085a72 1658 int ret, i;
673a394b 1659
05394f39 1660 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1661
6c085a72
CW
1662 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1663 if (ret) {
1664 /* In the event of a disaster, abandon all caches and
1665 * hope for the best.
1666 */
1667 WARN_ON(ret != -EIO);
1668 i915_gem_clflush_object(obj);
1669 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1670 }
1671
6dacfd2f 1672 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1673 i915_gem_object_save_bit_17_swizzle(obj);
1674
05394f39
CW
1675 if (obj->madv == I915_MADV_DONTNEED)
1676 obj->dirty = 0;
3ef94daa 1677
9da3da66
CW
1678 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1679 struct page *page = sg_page(sg);
1680
05394f39 1681 if (obj->dirty)
9da3da66 1682 set_page_dirty(page);
3ef94daa 1683
05394f39 1684 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1685 mark_page_accessed(page);
3ef94daa 1686
9da3da66 1687 page_cache_release(page);
3ef94daa 1688 }
05394f39 1689 obj->dirty = 0;
673a394b 1690
9da3da66
CW
1691 sg_free_table(obj->pages);
1692 kfree(obj->pages);
37e680a1 1693}
6c085a72 1694
37e680a1
CW
1695static int
1696i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1697{
1698 const struct drm_i915_gem_object_ops *ops = obj->ops;
1699
2f745ad3 1700 if (obj->pages == NULL)
37e680a1
CW
1701 return 0;
1702
1703 BUG_ON(obj->gtt_space);
6c085a72 1704
a5570178
CW
1705 if (obj->pages_pin_count)
1706 return -EBUSY;
1707
37e680a1 1708 ops->put_pages(obj);
9da3da66 1709 obj->pages = NULL;
37e680a1
CW
1710
1711 list_del(&obj->gtt_list);
6c085a72
CW
1712 if (i915_gem_object_is_purgeable(obj))
1713 i915_gem_object_truncate(obj);
1714
1715 return 0;
1716}
1717
1718static long
1719i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1720{
1721 struct drm_i915_gem_object *obj, *next;
1722 long count = 0;
1723
1724 list_for_each_entry_safe(obj, next,
1725 &dev_priv->mm.unbound_list,
1726 gtt_list) {
1727 if (i915_gem_object_is_purgeable(obj) &&
37e680a1 1728 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1729 count += obj->base.size >> PAGE_SHIFT;
1730 if (count >= target)
1731 return count;
1732 }
1733 }
1734
1735 list_for_each_entry_safe(obj, next,
1736 &dev_priv->mm.inactive_list,
1737 mm_list) {
1738 if (i915_gem_object_is_purgeable(obj) &&
1739 i915_gem_object_unbind(obj) == 0 &&
37e680a1 1740 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1741 count += obj->base.size >> PAGE_SHIFT;
1742 if (count >= target)
1743 return count;
1744 }
1745 }
1746
1747 return count;
1748}
1749
1750static void
1751i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1752{
1753 struct drm_i915_gem_object *obj, *next;
1754
1755 i915_gem_evict_everything(dev_priv->dev);
1756
1757 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
37e680a1 1758 i915_gem_object_put_pages(obj);
225067ee
DV
1759}
1760
37e680a1 1761static int
6c085a72 1762i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1763{
6c085a72 1764 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1765 int page_count, i;
1766 struct address_space *mapping;
9da3da66
CW
1767 struct sg_table *st;
1768 struct scatterlist *sg;
e5281ccd 1769 struct page *page;
6c085a72 1770 gfp_t gfp;
e5281ccd 1771
6c085a72
CW
1772 /* Assert that the object is not currently in any GPU domain. As it
1773 * wasn't in the GTT, there shouldn't be any way it could have been in
1774 * a GPU cache
1775 */
1776 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1777 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1778
9da3da66
CW
1779 st = kmalloc(sizeof(*st), GFP_KERNEL);
1780 if (st == NULL)
1781 return -ENOMEM;
1782
05394f39 1783 page_count = obj->base.size / PAGE_SIZE;
9da3da66
CW
1784 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1785 sg_free_table(st);
1786 kfree(st);
e5281ccd 1787 return -ENOMEM;
9da3da66 1788 }
e5281ccd 1789
9da3da66
CW
1790 /* Get the list of pages out of our struct file. They'll be pinned
1791 * at this point until we release them.
1792 *
1793 * Fail silently without starting the shrinker
1794 */
6c085a72
CW
1795 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1796 gfp = mapping_gfp_mask(mapping);
d7c3b937 1797 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72 1798 gfp &= ~(__GFP_IO | __GFP_WAIT);
9da3da66 1799 for_each_sg(st->sgl, sg, page_count, i) {
6c085a72
CW
1800 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1801 if (IS_ERR(page)) {
1802 i915_gem_purge(dev_priv, page_count);
1803 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1804 }
1805 if (IS_ERR(page)) {
1806 /* We've tried hard to allocate the memory by reaping
1807 * our own buffer, now let the real VM do its job and
1808 * go down in flames if truly OOM.
1809 */
d7c3b937 1810 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
6c085a72
CW
1811 gfp |= __GFP_IO | __GFP_WAIT;
1812
1813 i915_gem_shrink_all(dev_priv);
1814 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1815 if (IS_ERR(page))
1816 goto err_pages;
1817
d7c3b937 1818 gfp |= __GFP_NORETRY | __GFP_NOWARN;
6c085a72
CW
1819 gfp &= ~(__GFP_IO | __GFP_WAIT);
1820 }
e5281ccd 1821
9da3da66 1822 sg_set_page(sg, page, PAGE_SIZE, 0);
e5281ccd
CW
1823 }
1824
6dacfd2f 1825 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1826 i915_gem_object_do_bit_17_swizzle(obj);
1827
9da3da66 1828 obj->pages = st;
e5281ccd
CW
1829 return 0;
1830
1831err_pages:
9da3da66
CW
1832 for_each_sg(st->sgl, sg, i, page_count)
1833 page_cache_release(sg_page(sg));
1834 sg_free_table(st);
1835 kfree(st);
e5281ccd 1836 return PTR_ERR(page);
673a394b
EA
1837}
1838
37e680a1
CW
1839/* Ensure that the associated pages are gathered from the backing storage
1840 * and pinned into our object. i915_gem_object_get_pages() may be called
1841 * multiple times before they are released by a single call to
1842 * i915_gem_object_put_pages() - once the pages are no longer referenced
1843 * either as a result of memory pressure (reaping pages under the shrinker)
1844 * or as the object is itself released.
1845 */
1846int
1847i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1848{
1849 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1850 const struct drm_i915_gem_object_ops *ops = obj->ops;
1851 int ret;
1852
2f745ad3 1853 if (obj->pages)
37e680a1
CW
1854 return 0;
1855
a5570178
CW
1856 BUG_ON(obj->pages_pin_count);
1857
37e680a1
CW
1858 ret = ops->get_pages(obj);
1859 if (ret)
1860 return ret;
1861
1862 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1863 return 0;
1864}
1865
54cf91dc 1866void
05394f39 1867i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1868 struct intel_ring_buffer *ring,
1869 u32 seqno)
673a394b 1870{
05394f39 1871 struct drm_device *dev = obj->base.dev;
69dc4987 1872 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1873
852835f3 1874 BUG_ON(ring == NULL);
05394f39 1875 obj->ring = ring;
673a394b
EA
1876
1877 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1878 if (!obj->active) {
1879 drm_gem_object_reference(&obj->base);
1880 obj->active = 1;
673a394b 1881 }
e35a41de 1882
673a394b 1883 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1884 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1885 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1886
0201f1ec 1887 obj->last_read_seqno = seqno;
caea7476 1888
7dd49065 1889 if (obj->fenced_gpu_access) {
caea7476 1890 obj->last_fenced_seqno = seqno;
caea7476 1891
7dd49065
CW
1892 /* Bump MRU to take account of the delayed flush */
1893 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1894 struct drm_i915_fence_reg *reg;
1895
1896 reg = &dev_priv->fence_regs[obj->fence_reg];
1897 list_move_tail(&reg->lru_list,
1898 &dev_priv->mm.fence_list);
1899 }
caea7476
CW
1900 }
1901}
1902
caea7476
CW
1903static void
1904i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1905{
1906 struct drm_device *dev = obj->base.dev;
1907 struct drm_i915_private *dev_priv = dev->dev_private;
1908
65ce3027 1909 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
caea7476 1910 BUG_ON(!obj->active);
65ce3027 1911
f047e395
CW
1912 if (obj->pin_count) /* are we a framebuffer? */
1913 intel_mark_fb_idle(obj);
1914
1915 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1916
65ce3027 1917 list_del_init(&obj->ring_list);
caea7476
CW
1918 obj->ring = NULL;
1919
65ce3027
CW
1920 obj->last_read_seqno = 0;
1921 obj->last_write_seqno = 0;
1922 obj->base.write_domain = 0;
1923
1924 obj->last_fenced_seqno = 0;
caea7476 1925 obj->fenced_gpu_access = false;
caea7476
CW
1926
1927 obj->active = 0;
1928 drm_gem_object_unreference(&obj->base);
1929
1930 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1931}
673a394b 1932
53d227f2
DV
1933static u32
1934i915_gem_get_seqno(struct drm_device *dev)
1935{
1936 drm_i915_private_t *dev_priv = dev->dev_private;
1937 u32 seqno = dev_priv->next_seqno;
1938
1939 /* reserve 0 for non-seqno */
1940 if (++dev_priv->next_seqno == 0)
1941 dev_priv->next_seqno = 1;
1942
1943 return seqno;
1944}
1945
1946u32
1947i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1948{
1949 if (ring->outstanding_lazy_request == 0)
1950 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1951
1952 return ring->outstanding_lazy_request;
1953}
1954
3cce469c 1955int
db53a302 1956i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1957 struct drm_file *file,
acb868d3 1958 u32 *out_seqno)
673a394b 1959{
db53a302 1960 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 1961 struct drm_i915_gem_request *request;
a71d8d94 1962 u32 request_ring_position;
acb868d3 1963 u32 seqno;
673a394b 1964 int was_empty;
3cce469c
CW
1965 int ret;
1966
cc889e0f
DV
1967 /*
1968 * Emit any outstanding flushes - execbuf can fail to emit the flush
1969 * after having emitted the batchbuffer command. Hence we need to fix
1970 * things up similar to emitting the lazy request. The difference here
1971 * is that the flush _must_ happen before the next request, no matter
1972 * what.
1973 */
a7b9761d
CW
1974 ret = intel_ring_flush_all_caches(ring);
1975 if (ret)
1976 return ret;
cc889e0f 1977
acb868d3
CW
1978 request = kmalloc(sizeof(*request), GFP_KERNEL);
1979 if (request == NULL)
1980 return -ENOMEM;
3bb73aba 1981
53d227f2 1982 seqno = i915_gem_next_request_seqno(ring);
673a394b 1983
a71d8d94
CW
1984 /* Record the position of the start of the request so that
1985 * should we detect the updated seqno part-way through the
1986 * GPU processing the request, we never over-estimate the
1987 * position of the head.
1988 */
1989 request_ring_position = intel_ring_get_tail(ring);
1990
3cce469c 1991 ret = ring->add_request(ring, &seqno);
3bb73aba
CW
1992 if (ret) {
1993 kfree(request);
1994 return ret;
1995 }
673a394b 1996
db53a302 1997 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1998
1999 request->seqno = seqno;
852835f3 2000 request->ring = ring;
a71d8d94 2001 request->tail = request_ring_position;
673a394b 2002 request->emitted_jiffies = jiffies;
852835f3
ZN
2003 was_empty = list_empty(&ring->request_list);
2004 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2005 request->file_priv = NULL;
852835f3 2006
db53a302
CW
2007 if (file) {
2008 struct drm_i915_file_private *file_priv = file->driver_priv;
2009
1c25595f 2010 spin_lock(&file_priv->mm.lock);
f787a5f5 2011 request->file_priv = file_priv;
b962442e 2012 list_add_tail(&request->client_list,
f787a5f5 2013 &file_priv->mm.request_list);
1c25595f 2014 spin_unlock(&file_priv->mm.lock);
b962442e 2015 }
673a394b 2016
5391d0cf 2017 ring->outstanding_lazy_request = 0;
db53a302 2018
f65d9421 2019 if (!dev_priv->mm.suspended) {
3e0dc6b0
BW
2020 if (i915_enable_hangcheck) {
2021 mod_timer(&dev_priv->hangcheck_timer,
cecc21fe 2022 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3e0dc6b0 2023 }
f047e395 2024 if (was_empty) {
b3b079db 2025 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2026 &dev_priv->mm.retire_work,
2027 round_jiffies_up_relative(HZ));
f047e395
CW
2028 intel_mark_busy(dev_priv->dev);
2029 }
f65d9421 2030 }
cc889e0f 2031
acb868d3
CW
2032 if (out_seqno)
2033 *out_seqno = seqno;
3cce469c 2034 return 0;
673a394b
EA
2035}
2036
f787a5f5
CW
2037static inline void
2038i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2039{
1c25595f 2040 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2041
1c25595f
CW
2042 if (!file_priv)
2043 return;
1c5d22f7 2044
1c25595f 2045 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2046 if (request->file_priv) {
2047 list_del(&request->client_list);
2048 request->file_priv = NULL;
2049 }
1c25595f 2050 spin_unlock(&file_priv->mm.lock);
673a394b 2051}
673a394b 2052
dfaae392
CW
2053static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2054 struct intel_ring_buffer *ring)
9375e446 2055{
dfaae392
CW
2056 while (!list_empty(&ring->request_list)) {
2057 struct drm_i915_gem_request *request;
673a394b 2058
dfaae392
CW
2059 request = list_first_entry(&ring->request_list,
2060 struct drm_i915_gem_request,
2061 list);
de151cf6 2062
dfaae392 2063 list_del(&request->list);
f787a5f5 2064 i915_gem_request_remove_from_client(request);
dfaae392
CW
2065 kfree(request);
2066 }
673a394b 2067
dfaae392 2068 while (!list_empty(&ring->active_list)) {
05394f39 2069 struct drm_i915_gem_object *obj;
9375e446 2070
05394f39
CW
2071 obj = list_first_entry(&ring->active_list,
2072 struct drm_i915_gem_object,
2073 ring_list);
9375e446 2074
05394f39 2075 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2076 }
2077}
2078
312817a3
CW
2079static void i915_gem_reset_fences(struct drm_device *dev)
2080{
2081 struct drm_i915_private *dev_priv = dev->dev_private;
2082 int i;
2083
4b9de737 2084 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2085 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2086
ada726c7 2087 i915_gem_write_fence(dev, i, NULL);
7d2cb39c 2088
ada726c7
CW
2089 if (reg->obj)
2090 i915_gem_object_fence_lost(reg->obj);
7d2cb39c 2091
ada726c7
CW
2092 reg->pin_count = 0;
2093 reg->obj = NULL;
2094 INIT_LIST_HEAD(&reg->lru_list);
312817a3 2095 }
ada726c7
CW
2096
2097 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
312817a3
CW
2098}
2099
069efc1d 2100void i915_gem_reset(struct drm_device *dev)
673a394b 2101{
77f01230 2102 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2103 struct drm_i915_gem_object *obj;
b4519513 2104 struct intel_ring_buffer *ring;
1ec14ad3 2105 int i;
673a394b 2106
b4519513
CW
2107 for_each_ring(ring, dev_priv, i)
2108 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2109
dfaae392
CW
2110 /* Move everything out of the GPU domains to ensure we do any
2111 * necessary invalidation upon reuse.
2112 */
05394f39 2113 list_for_each_entry(obj,
77f01230 2114 &dev_priv->mm.inactive_list,
69dc4987 2115 mm_list)
77f01230 2116 {
05394f39 2117 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 2118 }
069efc1d
CW
2119
2120 /* The fence registers are invalidated so clear them out */
312817a3 2121 i915_gem_reset_fences(dev);
673a394b
EA
2122}
2123
2124/**
2125 * This function clears the request list as sequence numbers are passed.
2126 */
a71d8d94 2127void
db53a302 2128i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2129{
673a394b 2130 uint32_t seqno;
1ec14ad3 2131 int i;
673a394b 2132
db53a302 2133 if (list_empty(&ring->request_list))
6c0594a3
KW
2134 return;
2135
db53a302 2136 WARN_ON(i915_verify_lists(ring->dev));
5c81fe85 2137
b2eadbc8 2138 seqno = ring->get_seqno(ring, true);
604dd3ec 2139
076e2c0e 2140 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
2141 if (seqno >= ring->sync_seqno[i])
2142 ring->sync_seqno[i] = 0;
5c81fe85 2143
852835f3 2144 while (!list_empty(&ring->request_list)) {
673a394b 2145 struct drm_i915_gem_request *request;
604dd3ec 2146
852835f3 2147 request = list_first_entry(&ring->request_list,
673a394b
EA
2148 struct drm_i915_gem_request,
2149 list);
5c81fe85 2150
dfaae392 2151 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c 2152 break;
604dd3ec 2153
db53a302 2154 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2155 /* We know the GPU must have read the request to have
2156 * sent us the seqno + interrupt, so use the position
2157 * of tail of the request to update the last known position
2158 * of the GPU head.
2159 */
2160 ring->last_retired_head = request->tail;
604dd3ec 2161
b84d5f0c 2162 list_del(&request->list);
f787a5f5 2163 i915_gem_request_remove_from_client(request);
b84d5f0c 2164 kfree(request);
5c81fe85
BW
2165 }
2166
b84d5f0c
CW
2167 /* Move any buffers on the active list that are no longer referenced
2168 * by the ringbuffer to the flushing/inactive lists as appropriate.
2169 */
2170 while (!list_empty(&ring->active_list)) {
05394f39 2171 struct drm_i915_gem_object *obj;
604dd3ec 2172
0206e353 2173 obj = list_first_entry(&ring->active_list,
05394f39
CW
2174 struct drm_i915_gem_object,
2175 ring_list);
673a394b 2176
0201f1ec 2177 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2178 break;
673a394b 2179
65ce3027 2180 i915_gem_object_move_to_inactive(obj);
673a394b 2181 }
3cce469c 2182
db53a302
CW
2183 if (unlikely(ring->trace_irq_seqno &&
2184 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2185 ring->irq_put(ring);
db53a302 2186 ring->trace_irq_seqno = 0;
9d34e5db 2187 }
23bc5982 2188
db53a302 2189 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2190}
ffed1d09 2191
b09a1fec
CW
2192void
2193i915_gem_retire_requests(struct drm_device *dev)
2194{
2195 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2196 struct intel_ring_buffer *ring;
1ec14ad3 2197 int i;
673a394b 2198
b4519513
CW
2199 for_each_ring(ring, dev_priv, i)
2200 i915_gem_retire_requests_ring(ring);
673a394b
EA
2201}
2202
75ef9da2 2203static void
673a394b 2204i915_gem_retire_work_handler(struct work_struct *work)
673a394b 2205{
673a394b
EA
2206 drm_i915_private_t *dev_priv;
2207 struct drm_device *dev;
b4519513 2208 struct intel_ring_buffer *ring;
0a58705b
CW
2209 bool idle;
2210 int i;
673a394b 2211
673a394b
EA
2212 dev_priv = container_of(work, drm_i915_private_t,
2213 mm.retire_work.work);
2214 dev = dev_priv->dev;
0201f1ec 2215
891b48cf
CW
2216 /* Come back later if the device is busy... */
2217 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2218 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2219 round_jiffies_up_relative(HZ));
891b48cf
CW
2220 return;
2221 }
2222
b09a1fec 2223 i915_gem_retire_requests(dev);
0201f1ec 2224
0a58705b
CW
2225 /* Send a periodic flush down the ring so we don't hold onto GEM
2226 * objects indefinitely.
0201f1ec 2227 */
0a58705b 2228 idle = true;
b4519513 2229 for_each_ring(ring, dev_priv, i) {
3bb73aba
CW
2230 if (ring->gpu_caches_dirty)
2231 i915_add_request(ring, NULL, NULL);
0a58705b
CW
2232
2233 idle &= list_empty(&ring->request_list);
673a394b
EA
2234 }
2235
0a58705b 2236 if (!dev_priv->mm.suspended && !idle)
bcb45086
CW
2237 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2238 round_jiffies_up_relative(HZ));
f047e395
CW
2239 if (idle)
2240 intel_mark_idle(dev);
0a58705b 2241
673a394b 2242 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2243}
2244
30dfebf3
DV
2245/**
2246 * Ensures that an object will eventually get non-busy by flushing any required
2247 * write domains, emitting any outstanding lazy request and retiring and
2248 * completed requests.
2249 */
2250static int
2251i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2252{
2253 int ret;
2254
2255 if (obj->active) {
0201f1ec 2256 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2257 if (ret)
2258 return ret;
0201f1ec 2259
30dfebf3
DV
2260 i915_gem_retire_requests_ring(obj->ring);
2261 }
2262
2263 return 0;
2264}
2265
23ba4fd0
BW
2266/**
2267 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2268 * @DRM_IOCTL_ARGS: standard ioctl arguments
2269 *
2270 * Returns 0 if successful, else an error is returned with the remaining time in
2271 * the timeout parameter.
2272 * -ETIME: object is still busy after timeout
2273 * -ERESTARTSYS: signal interrupted the wait
2274 * -ENONENT: object doesn't exist
2275 * Also possible, but rare:
2276 * -EAGAIN: GPU wedged
2277 * -ENOMEM: damn
2278 * -ENODEV: Internal IRQ fail
2279 * -E?: The add request failed
2280 *
2281 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2282 * non-zero timeout parameter the wait ioctl will wait for the given number of
2283 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2284 * without holding struct_mutex the object may become re-busied before this
2285 * function completes. A similar but shorter * race condition exists in the busy
2286 * ioctl
2287 */
2288int
2289i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2290{
2291 struct drm_i915_gem_wait *args = data;
2292 struct drm_i915_gem_object *obj;
2293 struct intel_ring_buffer *ring = NULL;
eac1f14f 2294 struct timespec timeout_stack, *timeout = NULL;
23ba4fd0
BW
2295 u32 seqno = 0;
2296 int ret = 0;
2297
eac1f14f
BW
2298 if (args->timeout_ns >= 0) {
2299 timeout_stack = ns_to_timespec(args->timeout_ns);
2300 timeout = &timeout_stack;
2301 }
23ba4fd0
BW
2302
2303 ret = i915_mutex_lock_interruptible(dev);
2304 if (ret)
2305 return ret;
2306
2307 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2308 if (&obj->base == NULL) {
2309 mutex_unlock(&dev->struct_mutex);
2310 return -ENOENT;
2311 }
2312
30dfebf3
DV
2313 /* Need to make sure the object gets inactive eventually. */
2314 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2315 if (ret)
2316 goto out;
2317
2318 if (obj->active) {
0201f1ec 2319 seqno = obj->last_read_seqno;
23ba4fd0
BW
2320 ring = obj->ring;
2321 }
2322
2323 if (seqno == 0)
2324 goto out;
2325
23ba4fd0
BW
2326 /* Do this after OLR check to make sure we make forward progress polling
2327 * on this IOCTL with a 0 timeout (like busy ioctl)
2328 */
2329 if (!args->timeout_ns) {
2330 ret = -ETIME;
2331 goto out;
2332 }
2333
2334 drm_gem_object_unreference(&obj->base);
2335 mutex_unlock(&dev->struct_mutex);
2336
eac1f14f
BW
2337 ret = __wait_seqno(ring, seqno, true, timeout);
2338 if (timeout) {
2339 WARN_ON(!timespec_valid(timeout));
2340 args->timeout_ns = timespec_to_ns(timeout);
2341 }
23ba4fd0
BW
2342 return ret;
2343
2344out:
2345 drm_gem_object_unreference(&obj->base);
2346 mutex_unlock(&dev->struct_mutex);
2347 return ret;
2348}
2349
5816d648
BW
2350/**
2351 * i915_gem_object_sync - sync an object to a ring.
2352 *
2353 * @obj: object which may be in use on another ring.
2354 * @to: ring we wish to use the object on. May be NULL.
2355 *
2356 * This code is meant to abstract object synchronization with the GPU.
2357 * Calling with NULL implies synchronizing the object with the CPU
2358 * rather than a particular GPU ring.
2359 *
2360 * Returns 0 if successful, else propagates up the lower layer error.
2361 */
2911a35b
BW
2362int
2363i915_gem_object_sync(struct drm_i915_gem_object *obj,
2364 struct intel_ring_buffer *to)
2365{
2366 struct intel_ring_buffer *from = obj->ring;
2367 u32 seqno;
2368 int ret, idx;
2369
2370 if (from == NULL || to == from)
2371 return 0;
2372
5816d648 2373 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2374 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2375
2376 idx = intel_ring_sync_index(from, to);
2377
0201f1ec 2378 seqno = obj->last_read_seqno;
2911a35b
BW
2379 if (seqno <= from->sync_seqno[idx])
2380 return 0;
2381
b4aca010
BW
2382 ret = i915_gem_check_olr(obj->ring, seqno);
2383 if (ret)
2384 return ret;
2911a35b 2385
1500f7ea 2386 ret = to->sync_to(to, from, seqno);
e3a5a225
BW
2387 if (!ret)
2388 from->sync_seqno[idx] = seqno;
2911a35b 2389
e3a5a225 2390 return ret;
2911a35b
BW
2391}
2392
b5ffc9bc
CW
2393static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2394{
2395 u32 old_write_domain, old_read_domains;
2396
b5ffc9bc
CW
2397 /* Act a barrier for all accesses through the GTT */
2398 mb();
2399
2400 /* Force a pagefault for domain tracking on next user access */
2401 i915_gem_release_mmap(obj);
2402
b97c3d9c
KP
2403 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2404 return;
2405
b5ffc9bc
CW
2406 old_read_domains = obj->base.read_domains;
2407 old_write_domain = obj->base.write_domain;
2408
2409 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2410 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2411
2412 trace_i915_gem_object_change_domain(obj,
2413 old_read_domains,
2414 old_write_domain);
2415}
2416
673a394b
EA
2417/**
2418 * Unbinds an object from the GTT aperture.
2419 */
0f973f27 2420int
05394f39 2421i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2422{
7bddb01f 2423 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
673a394b
EA
2424 int ret = 0;
2425
05394f39 2426 if (obj->gtt_space == NULL)
673a394b
EA
2427 return 0;
2428
31d8d651
CW
2429 if (obj->pin_count)
2430 return -EBUSY;
673a394b 2431
c4670ad0
CW
2432 BUG_ON(obj->pages == NULL);
2433
a8198eea 2434 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2435 if (ret)
a8198eea
CW
2436 return ret;
2437 /* Continue on if we fail due to EIO, the GPU is hung so we
2438 * should be safe and we need to cleanup or else we might
2439 * cause memory corruption through use-after-free.
2440 */
2441
b5ffc9bc 2442 i915_gem_object_finish_gtt(obj);
5323fd04 2443
96b47b65 2444 /* release the fence reg _after_ flushing */
d9e86c0e 2445 ret = i915_gem_object_put_fence(obj);
1488fc08 2446 if (ret)
d9e86c0e 2447 return ret;
96b47b65 2448
db53a302
CW
2449 trace_i915_gem_object_unbind(obj);
2450
74898d7e
DV
2451 if (obj->has_global_gtt_mapping)
2452 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2453 if (obj->has_aliasing_ppgtt_mapping) {
2454 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2455 obj->has_aliasing_ppgtt_mapping = 0;
2456 }
74163907 2457 i915_gem_gtt_finish_object(obj);
7bddb01f 2458
6c085a72
CW
2459 list_del(&obj->mm_list);
2460 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
75e9e915 2461 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2462 obj->map_and_fenceable = true;
673a394b 2463
05394f39
CW
2464 drm_mm_put_block(obj->gtt_space);
2465 obj->gtt_space = NULL;
2466 obj->gtt_offset = 0;
673a394b 2467
6c085a72 2468 return 0;
673a394b
EA
2469}
2470
b2da9fe5 2471static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2472{
69c2fc89 2473 if (list_empty(&ring->active_list))
64193406
CW
2474 return 0;
2475
199b2bc2 2476 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2477}
2478
b2da9fe5 2479int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2480{
2481 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2482 struct intel_ring_buffer *ring;
1ec14ad3 2483 int ret, i;
4df2faf4 2484
4df2faf4 2485 /* Flush everything onto the inactive list. */
b4519513 2486 for_each_ring(ring, dev_priv, i) {
b6c7488d 2487 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
1ec14ad3
CW
2488 if (ret)
2489 return ret;
b4519513 2490
b4519513 2491 ret = i915_ring_idle(ring);
f2ef6eb1
BW
2492 if (ret)
2493 return ret;
1ec14ad3 2494 }
4df2faf4 2495
8a1a49f9 2496 return 0;
4df2faf4
DV
2497}
2498
9ce079e4
CW
2499static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2500 struct drm_i915_gem_object *obj)
4e901fdc 2501{
4e901fdc 2502 drm_i915_private_t *dev_priv = dev->dev_private;
4e901fdc
EA
2503 uint64_t val;
2504
9ce079e4
CW
2505 if (obj) {
2506 u32 size = obj->gtt_space->size;
4e901fdc 2507
9ce079e4
CW
2508 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2509 0xfffff000) << 32;
2510 val |= obj->gtt_offset & 0xfffff000;
2511 val |= (uint64_t)((obj->stride / 128) - 1) <<
2512 SANDYBRIDGE_FENCE_PITCH_SHIFT;
4e901fdc 2513
9ce079e4
CW
2514 if (obj->tiling_mode == I915_TILING_Y)
2515 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2516 val |= I965_FENCE_REG_VALID;
2517 } else
2518 val = 0;
c6642782 2519
9ce079e4
CW
2520 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2521 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
4e901fdc
EA
2522}
2523
9ce079e4
CW
2524static void i965_write_fence_reg(struct drm_device *dev, int reg,
2525 struct drm_i915_gem_object *obj)
de151cf6 2526{
de151cf6 2527 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
2528 uint64_t val;
2529
9ce079e4
CW
2530 if (obj) {
2531 u32 size = obj->gtt_space->size;
de151cf6 2532
9ce079e4
CW
2533 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2534 0xfffff000) << 32;
2535 val |= obj->gtt_offset & 0xfffff000;
2536 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2537 if (obj->tiling_mode == I915_TILING_Y)
2538 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2539 val |= I965_FENCE_REG_VALID;
2540 } else
2541 val = 0;
c6642782 2542
9ce079e4
CW
2543 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2544 POSTING_READ(FENCE_REG_965_0 + reg * 8);
de151cf6
JB
2545}
2546
9ce079e4
CW
2547static void i915_write_fence_reg(struct drm_device *dev, int reg,
2548 struct drm_i915_gem_object *obj)
de151cf6 2549{
de151cf6 2550 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2551 u32 val;
de151cf6 2552
9ce079e4
CW
2553 if (obj) {
2554 u32 size = obj->gtt_space->size;
2555 int pitch_val;
2556 int tile_width;
c6642782 2557
9ce079e4
CW
2558 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2559 (size & -size) != size ||
2560 (obj->gtt_offset & (size - 1)),
2561 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2562 obj->gtt_offset, obj->map_and_fenceable, size);
c6642782 2563
9ce079e4
CW
2564 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2565 tile_width = 128;
2566 else
2567 tile_width = 512;
2568
2569 /* Note: pitch better be a power of two tile widths */
2570 pitch_val = obj->stride / tile_width;
2571 pitch_val = ffs(pitch_val) - 1;
2572
2573 val = obj->gtt_offset;
2574 if (obj->tiling_mode == I915_TILING_Y)
2575 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2576 val |= I915_FENCE_SIZE_BITS(size);
2577 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2578 val |= I830_FENCE_REG_VALID;
2579 } else
2580 val = 0;
2581
2582 if (reg < 8)
2583 reg = FENCE_REG_830_0 + reg * 4;
2584 else
2585 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2586
2587 I915_WRITE(reg, val);
2588 POSTING_READ(reg);
de151cf6
JB
2589}
2590
9ce079e4
CW
2591static void i830_write_fence_reg(struct drm_device *dev, int reg,
2592 struct drm_i915_gem_object *obj)
de151cf6 2593{
de151cf6 2594 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2595 uint32_t val;
de151cf6 2596
9ce079e4
CW
2597 if (obj) {
2598 u32 size = obj->gtt_space->size;
2599 uint32_t pitch_val;
de151cf6 2600
9ce079e4
CW
2601 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2602 (size & -size) != size ||
2603 (obj->gtt_offset & (size - 1)),
2604 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2605 obj->gtt_offset, size);
e76a16de 2606
9ce079e4
CW
2607 pitch_val = obj->stride / 128;
2608 pitch_val = ffs(pitch_val) - 1;
de151cf6 2609
9ce079e4
CW
2610 val = obj->gtt_offset;
2611 if (obj->tiling_mode == I915_TILING_Y)
2612 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2613 val |= I830_FENCE_SIZE_BITS(size);
2614 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2615 val |= I830_FENCE_REG_VALID;
2616 } else
2617 val = 0;
c6642782 2618
9ce079e4
CW
2619 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2620 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2621}
2622
2623static void i915_gem_write_fence(struct drm_device *dev, int reg,
2624 struct drm_i915_gem_object *obj)
2625{
2626 switch (INTEL_INFO(dev)->gen) {
2627 case 7:
2628 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2629 case 5:
2630 case 4: i965_write_fence_reg(dev, reg, obj); break;
2631 case 3: i915_write_fence_reg(dev, reg, obj); break;
2632 case 2: i830_write_fence_reg(dev, reg, obj); break;
2633 default: break;
2634 }
de151cf6
JB
2635}
2636
61050808
CW
2637static inline int fence_number(struct drm_i915_private *dev_priv,
2638 struct drm_i915_fence_reg *fence)
2639{
2640 return fence - dev_priv->fence_regs;
2641}
2642
2643static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2644 struct drm_i915_fence_reg *fence,
2645 bool enable)
2646{
2647 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2648 int reg = fence_number(dev_priv, fence);
2649
2650 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2651
2652 if (enable) {
2653 obj->fence_reg = reg;
2654 fence->obj = obj;
2655 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2656 } else {
2657 obj->fence_reg = I915_FENCE_REG_NONE;
2658 fence->obj = NULL;
2659 list_del_init(&fence->lru_list);
2660 }
2661}
2662
d9e86c0e 2663static int
a360bb1a 2664i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2665{
1c293ea3 2666 if (obj->last_fenced_seqno) {
86d5bc37 2667 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2668 if (ret)
2669 return ret;
d9e86c0e
CW
2670
2671 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2672 }
2673
63256ec5
CW
2674 /* Ensure that all CPU reads are completed before installing a fence
2675 * and all writes before removing the fence.
2676 */
2677 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2678 mb();
2679
86d5bc37 2680 obj->fenced_gpu_access = false;
d9e86c0e
CW
2681 return 0;
2682}
2683
2684int
2685i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2686{
61050808 2687 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
d9e86c0e
CW
2688 int ret;
2689
a360bb1a 2690 ret = i915_gem_object_flush_fence(obj);
d9e86c0e
CW
2691 if (ret)
2692 return ret;
2693
61050808
CW
2694 if (obj->fence_reg == I915_FENCE_REG_NONE)
2695 return 0;
d9e86c0e 2696
61050808
CW
2697 i915_gem_object_update_fence(obj,
2698 &dev_priv->fence_regs[obj->fence_reg],
2699 false);
2700 i915_gem_object_fence_lost(obj);
d9e86c0e
CW
2701
2702 return 0;
2703}
2704
2705static struct drm_i915_fence_reg *
a360bb1a 2706i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2707{
ae3db24a 2708 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2709 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2710 int i;
ae3db24a
DV
2711
2712 /* First try to find a free reg */
d9e86c0e 2713 avail = NULL;
ae3db24a
DV
2714 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2715 reg = &dev_priv->fence_regs[i];
2716 if (!reg->obj)
d9e86c0e 2717 return reg;
ae3db24a 2718
1690e1eb 2719 if (!reg->pin_count)
d9e86c0e 2720 avail = reg;
ae3db24a
DV
2721 }
2722
d9e86c0e
CW
2723 if (avail == NULL)
2724 return NULL;
ae3db24a
DV
2725
2726 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2727 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2728 if (reg->pin_count)
ae3db24a
DV
2729 continue;
2730
8fe301ad 2731 return reg;
ae3db24a
DV
2732 }
2733
8fe301ad 2734 return NULL;
ae3db24a
DV
2735}
2736
de151cf6 2737/**
9a5a53b3 2738 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
2739 * @obj: object to map through a fence reg
2740 *
2741 * When mapping objects through the GTT, userspace wants to be able to write
2742 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
2743 * This function walks the fence regs looking for a free one for @obj,
2744 * stealing one if it can't find any.
2745 *
2746 * It then sets up the reg based on the object's properties: address, pitch
2747 * and tiling format.
9a5a53b3
CW
2748 *
2749 * For an untiled surface, this removes any existing fence.
de151cf6 2750 */
8c4b8c3f 2751int
06d98131 2752i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 2753{
05394f39 2754 struct drm_device *dev = obj->base.dev;
79e53945 2755 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 2756 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 2757 struct drm_i915_fence_reg *reg;
ae3db24a 2758 int ret;
de151cf6 2759
14415745
CW
2760 /* Have we updated the tiling parameters upon the object and so
2761 * will need to serialise the write to the associated fence register?
2762 */
5d82e3e6 2763 if (obj->fence_dirty) {
14415745
CW
2764 ret = i915_gem_object_flush_fence(obj);
2765 if (ret)
2766 return ret;
2767 }
9a5a53b3 2768
d9e86c0e 2769 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2770 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2771 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 2772 if (!obj->fence_dirty) {
14415745
CW
2773 list_move_tail(&reg->lru_list,
2774 &dev_priv->mm.fence_list);
2775 return 0;
2776 }
2777 } else if (enable) {
2778 reg = i915_find_fence_reg(dev);
2779 if (reg == NULL)
2780 return -EDEADLK;
d9e86c0e 2781
14415745
CW
2782 if (reg->obj) {
2783 struct drm_i915_gem_object *old = reg->obj;
2784
2785 ret = i915_gem_object_flush_fence(old);
29c5a587
CW
2786 if (ret)
2787 return ret;
2788
14415745 2789 i915_gem_object_fence_lost(old);
29c5a587 2790 }
14415745 2791 } else
a09ba7fa 2792 return 0;
a09ba7fa 2793
14415745 2794 i915_gem_object_update_fence(obj, reg, enable);
5d82e3e6 2795 obj->fence_dirty = false;
14415745 2796
9ce079e4 2797 return 0;
de151cf6
JB
2798}
2799
42d6ab48
CW
2800static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2801 struct drm_mm_node *gtt_space,
2802 unsigned long cache_level)
2803{
2804 struct drm_mm_node *other;
2805
2806 /* On non-LLC machines we have to be careful when putting differing
2807 * types of snoopable memory together to avoid the prefetcher
2808 * crossing memory domains and dieing.
2809 */
2810 if (HAS_LLC(dev))
2811 return true;
2812
2813 if (gtt_space == NULL)
2814 return true;
2815
2816 if (list_empty(&gtt_space->node_list))
2817 return true;
2818
2819 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2820 if (other->allocated && !other->hole_follows && other->color != cache_level)
2821 return false;
2822
2823 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2824 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2825 return false;
2826
2827 return true;
2828}
2829
2830static void i915_gem_verify_gtt(struct drm_device *dev)
2831{
2832#if WATCH_GTT
2833 struct drm_i915_private *dev_priv = dev->dev_private;
2834 struct drm_i915_gem_object *obj;
2835 int err = 0;
2836
2837 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2838 if (obj->gtt_space == NULL) {
2839 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2840 err++;
2841 continue;
2842 }
2843
2844 if (obj->cache_level != obj->gtt_space->color) {
2845 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2846 obj->gtt_space->start,
2847 obj->gtt_space->start + obj->gtt_space->size,
2848 obj->cache_level,
2849 obj->gtt_space->color);
2850 err++;
2851 continue;
2852 }
2853
2854 if (!i915_gem_valid_gtt_space(dev,
2855 obj->gtt_space,
2856 obj->cache_level)) {
2857 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2858 obj->gtt_space->start,
2859 obj->gtt_space->start + obj->gtt_space->size,
2860 obj->cache_level);
2861 err++;
2862 continue;
2863 }
2864 }
2865
2866 WARN_ON(err);
2867#endif
2868}
2869
673a394b
EA
2870/**
2871 * Finds free space in the GTT aperture and binds the object there.
2872 */
2873static int
05394f39 2874i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2875 unsigned alignment,
86a1ee26
CW
2876 bool map_and_fenceable,
2877 bool nonblocking)
673a394b 2878{
05394f39 2879 struct drm_device *dev = obj->base.dev;
673a394b 2880 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2881 struct drm_mm_node *free_space;
5e783301 2882 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2883 bool mappable, fenceable;
07f73f69 2884 int ret;
673a394b 2885
05394f39 2886 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2887 DRM_ERROR("Attempting to bind a purgeable object\n");
2888 return -EINVAL;
2889 }
2890
e28f8711
CW
2891 fence_size = i915_gem_get_gtt_size(dev,
2892 obj->base.size,
2893 obj->tiling_mode);
2894 fence_alignment = i915_gem_get_gtt_alignment(dev,
2895 obj->base.size,
2896 obj->tiling_mode);
2897 unfenced_alignment =
2898 i915_gem_get_unfenced_gtt_alignment(dev,
2899 obj->base.size,
2900 obj->tiling_mode);
a00b10c3 2901
673a394b 2902 if (alignment == 0)
5e783301
DV
2903 alignment = map_and_fenceable ? fence_alignment :
2904 unfenced_alignment;
75e9e915 2905 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2906 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2907 return -EINVAL;
2908 }
2909
05394f39 2910 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2911
654fc607
CW
2912 /* If the object is bigger than the entire aperture, reject it early
2913 * before evicting everything in a vain attempt to find space.
2914 */
05394f39 2915 if (obj->base.size >
75e9e915 2916 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2917 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2918 return -E2BIG;
2919 }
2920
37e680a1 2921 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
2922 if (ret)
2923 return ret;
2924
673a394b 2925 search_free:
75e9e915 2926 if (map_and_fenceable)
920afa77 2927 free_space =
42d6ab48
CW
2928 drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2929 size, alignment, obj->cache_level,
2930 0, dev_priv->mm.gtt_mappable_end,
2931 false);
920afa77 2932 else
42d6ab48
CW
2933 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2934 size, alignment, obj->cache_level,
2935 false);
920afa77
DV
2936
2937 if (free_space != NULL) {
75e9e915 2938 if (map_and_fenceable)
05394f39 2939 obj->gtt_space =
920afa77 2940 drm_mm_get_block_range_generic(free_space,
42d6ab48 2941 size, alignment, obj->cache_level,
6b9d89b4 2942 0, dev_priv->mm.gtt_mappable_end,
42d6ab48 2943 false);
920afa77 2944 else
05394f39 2945 obj->gtt_space =
42d6ab48
CW
2946 drm_mm_get_block_generic(free_space,
2947 size, alignment, obj->cache_level,
2948 false);
920afa77 2949 }
05394f39 2950 if (obj->gtt_space == NULL) {
75e9e915 2951 ret = i915_gem_evict_something(dev, size, alignment,
42d6ab48 2952 obj->cache_level,
86a1ee26
CW
2953 map_and_fenceable,
2954 nonblocking);
9731129c 2955 if (ret)
673a394b 2956 return ret;
9731129c 2957
673a394b
EA
2958 goto search_free;
2959 }
42d6ab48
CW
2960 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2961 obj->gtt_space,
2962 obj->cache_level))) {
2963 drm_mm_put_block(obj->gtt_space);
2964 obj->gtt_space = NULL;
2965 return -EINVAL;
2966 }
673a394b 2967
673a394b 2968
74163907 2969 ret = i915_gem_gtt_prepare_object(obj);
7c2e6fdf 2970 if (ret) {
05394f39
CW
2971 drm_mm_put_block(obj->gtt_space);
2972 obj->gtt_space = NULL;
6c085a72 2973 return ret;
673a394b 2974 }
673a394b 2975
0ebb9829
DV
2976 if (!dev_priv->mm.aliasing_ppgtt)
2977 i915_gem_gtt_bind_object(obj, obj->cache_level);
673a394b 2978
6c085a72 2979 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
05394f39 2980 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2981
6299f992 2982 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2983
75e9e915 2984 fenceable =
05394f39 2985 obj->gtt_space->size == fence_size &&
0206e353 2986 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
a00b10c3 2987
75e9e915 2988 mappable =
05394f39 2989 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2990
05394f39 2991 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2992
db53a302 2993 trace_i915_gem_object_bind(obj, map_and_fenceable);
42d6ab48 2994 i915_gem_verify_gtt(dev);
673a394b
EA
2995 return 0;
2996}
2997
2998void
05394f39 2999i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 3000{
673a394b
EA
3001 /* If we don't have a page list set up, then we're not pinned
3002 * to GPU, and we can ignore the cache flush because it'll happen
3003 * again at bind time.
3004 */
05394f39 3005 if (obj->pages == NULL)
673a394b
EA
3006 return;
3007
9c23f7fc
CW
3008 /* If the GPU is snooping the contents of the CPU cache,
3009 * we do not need to manually clear the CPU cache lines. However,
3010 * the caches are only snooped when the render cache is
3011 * flushed/invalidated. As we always have to emit invalidations
3012 * and flushes when moving into and out of the RENDER domain, correct
3013 * snooping behaviour occurs naturally as the result of our domain
3014 * tracking.
3015 */
3016 if (obj->cache_level != I915_CACHE_NONE)
3017 return;
3018
1c5d22f7 3019 trace_i915_gem_object_clflush(obj);
cfa16a0d 3020
9da3da66 3021 drm_clflush_sg(obj->pages);
673a394b
EA
3022}
3023
e47c68e9
EA
3024/** Flushes the GTT write domain for the object if it's dirty. */
3025static void
05394f39 3026i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3027{
1c5d22f7
CW
3028 uint32_t old_write_domain;
3029
05394f39 3030 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3031 return;
3032
63256ec5 3033 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3034 * to it immediately go to main memory as far as we know, so there's
3035 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3036 *
3037 * However, we do have to enforce the order so that all writes through
3038 * the GTT land before any writes to the device, such as updates to
3039 * the GATT itself.
e47c68e9 3040 */
63256ec5
CW
3041 wmb();
3042
05394f39
CW
3043 old_write_domain = obj->base.write_domain;
3044 obj->base.write_domain = 0;
1c5d22f7
CW
3045
3046 trace_i915_gem_object_change_domain(obj,
05394f39 3047 obj->base.read_domains,
1c5d22f7 3048 old_write_domain);
e47c68e9
EA
3049}
3050
3051/** Flushes the CPU write domain for the object if it's dirty. */
3052static void
05394f39 3053i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3054{
1c5d22f7 3055 uint32_t old_write_domain;
e47c68e9 3056
05394f39 3057 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3058 return;
3059
3060 i915_gem_clflush_object(obj);
40ce6575 3061 intel_gtt_chipset_flush();
05394f39
CW
3062 old_write_domain = obj->base.write_domain;
3063 obj->base.write_domain = 0;
1c5d22f7
CW
3064
3065 trace_i915_gem_object_change_domain(obj,
05394f39 3066 obj->base.read_domains,
1c5d22f7 3067 old_write_domain);
e47c68e9
EA
3068}
3069
2ef7eeaa
EA
3070/**
3071 * Moves a single object to the GTT read, and possibly write domain.
3072 *
3073 * This function returns when the move is complete, including waiting on
3074 * flushes to occur.
3075 */
79e53945 3076int
2021746e 3077i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3078{
8325a09d 3079 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3080 uint32_t old_write_domain, old_read_domains;
e47c68e9 3081 int ret;
2ef7eeaa 3082
02354392 3083 /* Not valid to be called on unbound objects. */
05394f39 3084 if (obj->gtt_space == NULL)
02354392
EA
3085 return -EINVAL;
3086
8d7e3de1
CW
3087 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3088 return 0;
3089
0201f1ec
CW
3090 ret = i915_gem_object_wait_rendering(obj, !write);
3091 if (ret)
3092 return ret;
2dafb1e0 3093
7213342d 3094 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3095
05394f39
CW
3096 old_write_domain = obj->base.write_domain;
3097 old_read_domains = obj->base.read_domains;
1c5d22f7 3098
e47c68e9
EA
3099 /* It should now be out of any other write domains, and we can update
3100 * the domain values for our changes.
3101 */
05394f39
CW
3102 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3103 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3104 if (write) {
05394f39
CW
3105 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3106 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3107 obj->dirty = 1;
2ef7eeaa
EA
3108 }
3109
1c5d22f7
CW
3110 trace_i915_gem_object_change_domain(obj,
3111 old_read_domains,
3112 old_write_domain);
3113
8325a09d
CW
3114 /* And bump the LRU for this access */
3115 if (i915_gem_object_is_inactive(obj))
3116 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3117
e47c68e9
EA
3118 return 0;
3119}
3120
e4ffd173
CW
3121int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3122 enum i915_cache_level cache_level)
3123{
7bddb01f
DV
3124 struct drm_device *dev = obj->base.dev;
3125 drm_i915_private_t *dev_priv = dev->dev_private;
e4ffd173
CW
3126 int ret;
3127
3128 if (obj->cache_level == cache_level)
3129 return 0;
3130
3131 if (obj->pin_count) {
3132 DRM_DEBUG("can not change the cache level of pinned objects\n");
3133 return -EBUSY;
3134 }
3135
42d6ab48
CW
3136 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3137 ret = i915_gem_object_unbind(obj);
3138 if (ret)
3139 return ret;
3140 }
3141
e4ffd173
CW
3142 if (obj->gtt_space) {
3143 ret = i915_gem_object_finish_gpu(obj);
3144 if (ret)
3145 return ret;
3146
3147 i915_gem_object_finish_gtt(obj);
3148
3149 /* Before SandyBridge, you could not use tiling or fence
3150 * registers with snooped memory, so relinquish any fences
3151 * currently pointing to our region in the aperture.
3152 */
42d6ab48 3153 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3154 ret = i915_gem_object_put_fence(obj);
3155 if (ret)
3156 return ret;
3157 }
3158
74898d7e
DV
3159 if (obj->has_global_gtt_mapping)
3160 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3161 if (obj->has_aliasing_ppgtt_mapping)
3162 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3163 obj, cache_level);
42d6ab48
CW
3164
3165 obj->gtt_space->color = cache_level;
e4ffd173
CW
3166 }
3167
3168 if (cache_level == I915_CACHE_NONE) {
3169 u32 old_read_domains, old_write_domain;
3170
3171 /* If we're coming from LLC cached, then we haven't
3172 * actually been tracking whether the data is in the
3173 * CPU cache or not, since we only allow one bit set
3174 * in obj->write_domain and have been skipping the clflushes.
3175 * Just set it to the CPU cache for now.
3176 */
3177 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3178 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3179
3180 old_read_domains = obj->base.read_domains;
3181 old_write_domain = obj->base.write_domain;
3182
3183 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3184 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3185
3186 trace_i915_gem_object_change_domain(obj,
3187 old_read_domains,
3188 old_write_domain);
3189 }
3190
3191 obj->cache_level = cache_level;
42d6ab48 3192 i915_gem_verify_gtt(dev);
e4ffd173
CW
3193 return 0;
3194}
3195
199adf40
BW
3196int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3197 struct drm_file *file)
e6994aee 3198{
199adf40 3199 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3200 struct drm_i915_gem_object *obj;
3201 int ret;
3202
3203 ret = i915_mutex_lock_interruptible(dev);
3204 if (ret)
3205 return ret;
3206
3207 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3208 if (&obj->base == NULL) {
3209 ret = -ENOENT;
3210 goto unlock;
3211 }
3212
199adf40 3213 args->caching = obj->cache_level != I915_CACHE_NONE;
e6994aee
CW
3214
3215 drm_gem_object_unreference(&obj->base);
3216unlock:
3217 mutex_unlock(&dev->struct_mutex);
3218 return ret;
3219}
3220
199adf40
BW
3221int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3222 struct drm_file *file)
e6994aee 3223{
199adf40 3224 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3225 struct drm_i915_gem_object *obj;
3226 enum i915_cache_level level;
3227 int ret;
3228
199adf40
BW
3229 switch (args->caching) {
3230 case I915_CACHING_NONE:
e6994aee
CW
3231 level = I915_CACHE_NONE;
3232 break;
199adf40 3233 case I915_CACHING_CACHED:
e6994aee
CW
3234 level = I915_CACHE_LLC;
3235 break;
3236 default:
3237 return -EINVAL;
3238 }
3239
3bc2913e
BW
3240 ret = i915_mutex_lock_interruptible(dev);
3241 if (ret)
3242 return ret;
3243
e6994aee
CW
3244 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3245 if (&obj->base == NULL) {
3246 ret = -ENOENT;
3247 goto unlock;
3248 }
3249
3250 ret = i915_gem_object_set_cache_level(obj, level);
3251
3252 drm_gem_object_unreference(&obj->base);
3253unlock:
3254 mutex_unlock(&dev->struct_mutex);
3255 return ret;
3256}
3257
b9241ea3 3258/*
2da3b9b9
CW
3259 * Prepare buffer for display plane (scanout, cursors, etc).
3260 * Can be called from an uninterruptible phase (modesetting) and allows
3261 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3262 */
3263int
2da3b9b9
CW
3264i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3265 u32 alignment,
919926ae 3266 struct intel_ring_buffer *pipelined)
b9241ea3 3267{
2da3b9b9 3268 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3269 int ret;
3270
0be73284 3271 if (pipelined != obj->ring) {
2911a35b
BW
3272 ret = i915_gem_object_sync(obj, pipelined);
3273 if (ret)
b9241ea3
ZW
3274 return ret;
3275 }
3276
a7ef0640
EA
3277 /* The display engine is not coherent with the LLC cache on gen6. As
3278 * a result, we make sure that the pinning that is about to occur is
3279 * done with uncached PTEs. This is lowest common denominator for all
3280 * chipsets.
3281 *
3282 * However for gen6+, we could do better by using the GFDT bit instead
3283 * of uncaching, which would allow us to flush all the LLC-cached data
3284 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3285 */
3286 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3287 if (ret)
3288 return ret;
3289
2da3b9b9
CW
3290 /* As the user may map the buffer once pinned in the display plane
3291 * (e.g. libkms for the bootup splash), we have to ensure that we
3292 * always use map_and_fenceable for all scanout buffers.
3293 */
86a1ee26 3294 ret = i915_gem_object_pin(obj, alignment, true, false);
2da3b9b9
CW
3295 if (ret)
3296 return ret;
3297
b118c1e3
CW
3298 i915_gem_object_flush_cpu_write_domain(obj);
3299
2da3b9b9 3300 old_write_domain = obj->base.write_domain;
05394f39 3301 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3302
3303 /* It should now be out of any other write domains, and we can update
3304 * the domain values for our changes.
3305 */
e5f1d962 3306 obj->base.write_domain = 0;
05394f39 3307 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3308
3309 trace_i915_gem_object_change_domain(obj,
3310 old_read_domains,
2da3b9b9 3311 old_write_domain);
b9241ea3
ZW
3312
3313 return 0;
3314}
3315
85345517 3316int
a8198eea 3317i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3318{
88241785
CW
3319 int ret;
3320
a8198eea 3321 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3322 return 0;
3323
0201f1ec 3324 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3325 if (ret)
3326 return ret;
3327
a8198eea
CW
3328 /* Ensure that we invalidate the GPU's caches and TLBs. */
3329 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3330 return 0;
85345517
CW
3331}
3332
e47c68e9
EA
3333/**
3334 * Moves a single object to the CPU read, and possibly write domain.
3335 *
3336 * This function returns when the move is complete, including waiting on
3337 * flushes to occur.
3338 */
dabdfe02 3339int
919926ae 3340i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3341{
1c5d22f7 3342 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3343 int ret;
3344
8d7e3de1
CW
3345 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3346 return 0;
3347
0201f1ec
CW
3348 ret = i915_gem_object_wait_rendering(obj, !write);
3349 if (ret)
3350 return ret;
2ef7eeaa 3351
e47c68e9 3352 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3353
05394f39
CW
3354 old_write_domain = obj->base.write_domain;
3355 old_read_domains = obj->base.read_domains;
1c5d22f7 3356
e47c68e9 3357 /* Flush the CPU cache if it's still invalid. */
05394f39 3358 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3359 i915_gem_clflush_object(obj);
2ef7eeaa 3360
05394f39 3361 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3362 }
3363
3364 /* It should now be out of any other write domains, and we can update
3365 * the domain values for our changes.
3366 */
05394f39 3367 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3368
3369 /* If we're writing through the CPU, then the GPU read domains will
3370 * need to be invalidated at next use.
3371 */
3372 if (write) {
05394f39
CW
3373 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3374 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3375 }
2ef7eeaa 3376
1c5d22f7
CW
3377 trace_i915_gem_object_change_domain(obj,
3378 old_read_domains,
3379 old_write_domain);
3380
2ef7eeaa
EA
3381 return 0;
3382}
3383
673a394b
EA
3384/* Throttle our rendering by waiting until the ring has completed our requests
3385 * emitted over 20 msec ago.
3386 *
b962442e
EA
3387 * Note that if we were to use the current jiffies each time around the loop,
3388 * we wouldn't escape the function with any frames outstanding if the time to
3389 * render a frame was over 20ms.
3390 *
673a394b
EA
3391 * This should get us reasonable parallelism between CPU and GPU but also
3392 * relatively low latency when blocking on a particular request to finish.
3393 */
40a5f0de 3394static int
f787a5f5 3395i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3396{
f787a5f5
CW
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3399 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3400 struct drm_i915_gem_request *request;
3401 struct intel_ring_buffer *ring = NULL;
3402 u32 seqno = 0;
3403 int ret;
93533c29 3404
e110e8d6
CW
3405 if (atomic_read(&dev_priv->mm.wedged))
3406 return -EIO;
3407
1c25595f 3408 spin_lock(&file_priv->mm.lock);
f787a5f5 3409 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3410 if (time_after_eq(request->emitted_jiffies, recent_enough))
3411 break;
40a5f0de 3412
f787a5f5
CW
3413 ring = request->ring;
3414 seqno = request->seqno;
b962442e 3415 }
1c25595f 3416 spin_unlock(&file_priv->mm.lock);
40a5f0de 3417
f787a5f5
CW
3418 if (seqno == 0)
3419 return 0;
2bc43b5c 3420
5c81fe85 3421 ret = __wait_seqno(ring, seqno, true, NULL);
f787a5f5
CW
3422 if (ret == 0)
3423 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3424
3425 return ret;
3426}
3427
673a394b 3428int
05394f39
CW
3429i915_gem_object_pin(struct drm_i915_gem_object *obj,
3430 uint32_t alignment,
86a1ee26
CW
3431 bool map_and_fenceable,
3432 bool nonblocking)
673a394b 3433{
673a394b
EA
3434 int ret;
3435
7e81a42e
CW
3436 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3437 return -EBUSY;
ac0c6b5a 3438
05394f39
CW
3439 if (obj->gtt_space != NULL) {
3440 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3441 (map_and_fenceable && !obj->map_and_fenceable)) {
3442 WARN(obj->pin_count,
ae7d49d8 3443 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3444 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3445 " obj->map_and_fenceable=%d\n",
05394f39 3446 obj->gtt_offset, alignment,
75e9e915 3447 map_and_fenceable,
05394f39 3448 obj->map_and_fenceable);
ac0c6b5a
CW
3449 ret = i915_gem_object_unbind(obj);
3450 if (ret)
3451 return ret;
3452 }
3453 }
3454
05394f39 3455 if (obj->gtt_space == NULL) {
a00b10c3 3456 ret = i915_gem_object_bind_to_gtt(obj, alignment,
86a1ee26
CW
3457 map_and_fenceable,
3458 nonblocking);
9731129c 3459 if (ret)
673a394b 3460 return ret;
22c344e9 3461 }
76446cac 3462
74898d7e
DV
3463 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3464 i915_gem_gtt_bind_object(obj, obj->cache_level);
3465
1b50247a 3466 obj->pin_count++;
6299f992 3467 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3468
3469 return 0;
3470}
3471
3472void
05394f39 3473i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3474{
05394f39
CW
3475 BUG_ON(obj->pin_count == 0);
3476 BUG_ON(obj->gtt_space == NULL);
673a394b 3477
1b50247a 3478 if (--obj->pin_count == 0)
6299f992 3479 obj->pin_mappable = false;
673a394b
EA
3480}
3481
3482int
3483i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3484 struct drm_file *file)
673a394b
EA
3485{
3486 struct drm_i915_gem_pin *args = data;
05394f39 3487 struct drm_i915_gem_object *obj;
673a394b
EA
3488 int ret;
3489
1d7cfea1
CW
3490 ret = i915_mutex_lock_interruptible(dev);
3491 if (ret)
3492 return ret;
673a394b 3493
05394f39 3494 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3495 if (&obj->base == NULL) {
1d7cfea1
CW
3496 ret = -ENOENT;
3497 goto unlock;
673a394b 3498 }
673a394b 3499
05394f39 3500 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3501 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3502 ret = -EINVAL;
3503 goto out;
3ef94daa
CW
3504 }
3505
05394f39 3506 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3507 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3508 args->handle);
1d7cfea1
CW
3509 ret = -EINVAL;
3510 goto out;
79e53945
JB
3511 }
3512
05394f39
CW
3513 obj->user_pin_count++;
3514 obj->pin_filp = file;
3515 if (obj->user_pin_count == 1) {
86a1ee26 3516 ret = i915_gem_object_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3517 if (ret)
3518 goto out;
673a394b
EA
3519 }
3520
3521 /* XXX - flush the CPU caches for pinned objects
3522 * as the X server doesn't manage domains yet
3523 */
e47c68e9 3524 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3525 args->offset = obj->gtt_offset;
1d7cfea1 3526out:
05394f39 3527 drm_gem_object_unreference(&obj->base);
1d7cfea1 3528unlock:
673a394b 3529 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3530 return ret;
673a394b
EA
3531}
3532
3533int
3534i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3535 struct drm_file *file)
673a394b
EA
3536{
3537 struct drm_i915_gem_pin *args = data;
05394f39 3538 struct drm_i915_gem_object *obj;
76c1dec1 3539 int ret;
673a394b 3540
1d7cfea1
CW
3541 ret = i915_mutex_lock_interruptible(dev);
3542 if (ret)
3543 return ret;
673a394b 3544
05394f39 3545 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3546 if (&obj->base == NULL) {
1d7cfea1
CW
3547 ret = -ENOENT;
3548 goto unlock;
673a394b 3549 }
76c1dec1 3550
05394f39 3551 if (obj->pin_filp != file) {
79e53945
JB
3552 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3553 args->handle);
1d7cfea1
CW
3554 ret = -EINVAL;
3555 goto out;
79e53945 3556 }
05394f39
CW
3557 obj->user_pin_count--;
3558 if (obj->user_pin_count == 0) {
3559 obj->pin_filp = NULL;
79e53945
JB
3560 i915_gem_object_unpin(obj);
3561 }
673a394b 3562
1d7cfea1 3563out:
05394f39 3564 drm_gem_object_unreference(&obj->base);
1d7cfea1 3565unlock:
673a394b 3566 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3567 return ret;
673a394b
EA
3568}
3569
3570int
3571i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3572 struct drm_file *file)
673a394b
EA
3573{
3574 struct drm_i915_gem_busy *args = data;
05394f39 3575 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3576 int ret;
3577
76c1dec1 3578 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3579 if (ret)
76c1dec1 3580 return ret;
673a394b 3581
05394f39 3582 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3583 if (&obj->base == NULL) {
1d7cfea1
CW
3584 ret = -ENOENT;
3585 goto unlock;
673a394b 3586 }
d1b851fc 3587
0be555b6
CW
3588 /* Count all active objects as busy, even if they are currently not used
3589 * by the gpu. Users of this interface expect objects to eventually
3590 * become non-busy without any further actions, therefore emit any
3591 * necessary flushes here.
c4de0a5d 3592 */
30dfebf3 3593 ret = i915_gem_object_flush_active(obj);
0be555b6 3594
30dfebf3 3595 args->busy = obj->active;
e9808edd
CW
3596 if (obj->ring) {
3597 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3598 args->busy |= intel_ring_flag(obj->ring) << 16;
3599 }
673a394b 3600
05394f39 3601 drm_gem_object_unreference(&obj->base);
1d7cfea1 3602unlock:
673a394b 3603 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3604 return ret;
673a394b
EA
3605}
3606
3607int
3608i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3609 struct drm_file *file_priv)
3610{
0206e353 3611 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3612}
3613
3ef94daa
CW
3614int
3615i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3616 struct drm_file *file_priv)
3617{
3618 struct drm_i915_gem_madvise *args = data;
05394f39 3619 struct drm_i915_gem_object *obj;
76c1dec1 3620 int ret;
3ef94daa
CW
3621
3622 switch (args->madv) {
3623 case I915_MADV_DONTNEED:
3624 case I915_MADV_WILLNEED:
3625 break;
3626 default:
3627 return -EINVAL;
3628 }
3629
1d7cfea1
CW
3630 ret = i915_mutex_lock_interruptible(dev);
3631 if (ret)
3632 return ret;
3633
05394f39 3634 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3635 if (&obj->base == NULL) {
1d7cfea1
CW
3636 ret = -ENOENT;
3637 goto unlock;
3ef94daa 3638 }
3ef94daa 3639
05394f39 3640 if (obj->pin_count) {
1d7cfea1
CW
3641 ret = -EINVAL;
3642 goto out;
3ef94daa
CW
3643 }
3644
05394f39
CW
3645 if (obj->madv != __I915_MADV_PURGED)
3646 obj->madv = args->madv;
3ef94daa 3647
6c085a72
CW
3648 /* if the object is no longer attached, discard its backing storage */
3649 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
3650 i915_gem_object_truncate(obj);
3651
05394f39 3652 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3653
1d7cfea1 3654out:
05394f39 3655 drm_gem_object_unreference(&obj->base);
1d7cfea1 3656unlock:
3ef94daa 3657 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3658 return ret;
3ef94daa
CW
3659}
3660
37e680a1
CW
3661void i915_gem_object_init(struct drm_i915_gem_object *obj,
3662 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3663{
0327d6ba
CW
3664 INIT_LIST_HEAD(&obj->mm_list);
3665 INIT_LIST_HEAD(&obj->gtt_list);
3666 INIT_LIST_HEAD(&obj->ring_list);
3667 INIT_LIST_HEAD(&obj->exec_list);
3668
37e680a1
CW
3669 obj->ops = ops;
3670
0327d6ba
CW
3671 obj->fence_reg = I915_FENCE_REG_NONE;
3672 obj->madv = I915_MADV_WILLNEED;
3673 /* Avoid an unnecessary call to unbind on the first bind. */
3674 obj->map_and_fenceable = true;
3675
3676 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3677}
3678
37e680a1
CW
3679static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3680 .get_pages = i915_gem_object_get_pages_gtt,
3681 .put_pages = i915_gem_object_put_pages_gtt,
3682};
3683
05394f39
CW
3684struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3685 size_t size)
ac52bc56 3686{
c397b908 3687 struct drm_i915_gem_object *obj;
5949eac4 3688 struct address_space *mapping;
bed1ea95 3689 u32 mask;
ac52bc56 3690
c397b908
DV
3691 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3692 if (obj == NULL)
3693 return NULL;
673a394b 3694
c397b908
DV
3695 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3696 kfree(obj);
3697 return NULL;
3698 }
673a394b 3699
bed1ea95
CW
3700 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3701 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3702 /* 965gm cannot relocate objects above 4GiB. */
3703 mask &= ~__GFP_HIGHMEM;
3704 mask |= __GFP_DMA32;
3705 }
3706
5949eac4 3707 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
bed1ea95 3708 mapping_set_gfp_mask(mapping, mask);
5949eac4 3709
37e680a1 3710 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3711
c397b908
DV
3712 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3713 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3714
3d29b842
ED
3715 if (HAS_LLC(dev)) {
3716 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3717 * cache) for about a 10% performance improvement
3718 * compared to uncached. Graphics requests other than
3719 * display scanout are coherent with the CPU in
3720 * accessing this cache. This means in this mode we
3721 * don't need to clflush on the CPU side, and on the
3722 * GPU side we only need to flush internal caches to
3723 * get data visible to the CPU.
3724 *
3725 * However, we maintain the display planes as UC, and so
3726 * need to rebind when first used as such.
3727 */
3728 obj->cache_level = I915_CACHE_LLC;
3729 } else
3730 obj->cache_level = I915_CACHE_NONE;
3731
05394f39 3732 return obj;
c397b908
DV
3733}
3734
3735int i915_gem_init_object(struct drm_gem_object *obj)
3736{
3737 BUG();
de151cf6 3738
673a394b
EA
3739 return 0;
3740}
3741
1488fc08 3742void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 3743{
1488fc08 3744 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 3745 struct drm_device *dev = obj->base.dev;
be72615b 3746 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3747
26e12f89
CW
3748 trace_i915_gem_object_destroy(obj);
3749
1488fc08
CW
3750 if (obj->phys_obj)
3751 i915_gem_detach_phys_object(dev, obj);
3752
3753 obj->pin_count = 0;
3754 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3755 bool was_interruptible;
3756
3757 was_interruptible = dev_priv->mm.interruptible;
3758 dev_priv->mm.interruptible = false;
3759
3760 WARN_ON(i915_gem_object_unbind(obj));
3761
3762 dev_priv->mm.interruptible = was_interruptible;
3763 }
3764
a5570178 3765 obj->pages_pin_count = 0;
37e680a1 3766 i915_gem_object_put_pages(obj);
d8cb5086 3767 i915_gem_object_free_mmap_offset(obj);
de151cf6 3768
9da3da66
CW
3769 BUG_ON(obj->pages);
3770
2f745ad3
CW
3771 if (obj->base.import_attach)
3772 drm_prime_gem_destroy(&obj->base, NULL);
3773
05394f39
CW
3774 drm_gem_object_release(&obj->base);
3775 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3776
05394f39
CW
3777 kfree(obj->bit_17);
3778 kfree(obj);
673a394b
EA
3779}
3780
29105ccc
CW
3781int
3782i915_gem_idle(struct drm_device *dev)
3783{
3784 drm_i915_private_t *dev_priv = dev->dev_private;
3785 int ret;
28dfe52a 3786
29105ccc 3787 mutex_lock(&dev->struct_mutex);
1c5d22f7 3788
87acb0a5 3789 if (dev_priv->mm.suspended) {
29105ccc
CW
3790 mutex_unlock(&dev->struct_mutex);
3791 return 0;
28dfe52a
EA
3792 }
3793
b2da9fe5 3794 ret = i915_gpu_idle(dev);
6dbe2772
KP
3795 if (ret) {
3796 mutex_unlock(&dev->struct_mutex);
673a394b 3797 return ret;
6dbe2772 3798 }
b2da9fe5 3799 i915_gem_retire_requests(dev);
673a394b 3800
29105ccc 3801 /* Under UMS, be paranoid and evict. */
a39d7efc 3802 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 3803 i915_gem_evict_everything(dev);
29105ccc 3804
312817a3
CW
3805 i915_gem_reset_fences(dev);
3806
29105ccc
CW
3807 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3808 * We need to replace this with a semaphore, or something.
3809 * And not confound mm.suspended!
3810 */
3811 dev_priv->mm.suspended = 1;
bc0c7f14 3812 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3813
3814 i915_kernel_lost_context(dev);
6dbe2772 3815 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3816
6dbe2772
KP
3817 mutex_unlock(&dev->struct_mutex);
3818
29105ccc
CW
3819 /* Cancel the retire work handler, which should be idle now. */
3820 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3821
673a394b
EA
3822 return 0;
3823}
3824
b9524a1e
BW
3825void i915_gem_l3_remap(struct drm_device *dev)
3826{
3827 drm_i915_private_t *dev_priv = dev->dev_private;
3828 u32 misccpctl;
3829 int i;
3830
3831 if (!IS_IVYBRIDGE(dev))
3832 return;
3833
a4da4fa4 3834 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
3835 return;
3836
3837 misccpctl = I915_READ(GEN7_MISCCPCTL);
3838 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3839 POSTING_READ(GEN7_MISCCPCTL);
3840
3841 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3842 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 3843 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
3844 DRM_DEBUG("0x%x was already programmed to %x\n",
3845 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 3846 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 3847 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 3848 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
3849 }
3850
3851 /* Make sure all the writes land before disabling dop clock gating */
3852 POSTING_READ(GEN7_L3LOG_BASE);
3853
3854 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3855}
3856
f691e2f4
DV
3857void i915_gem_init_swizzling(struct drm_device *dev)
3858{
3859 drm_i915_private_t *dev_priv = dev->dev_private;
3860
11782b02 3861 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
3862 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3863 return;
3864
3865 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3866 DISP_TILE_SURFACE_SWIZZLING);
3867
11782b02
DV
3868 if (IS_GEN5(dev))
3869 return;
3870
f691e2f4
DV
3871 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3872 if (IS_GEN6(dev))
6b26c86d 3873 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
f691e2f4 3874 else
6b26c86d 3875 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
f691e2f4 3876}
e21af88d
DV
3877
3878void i915_gem_init_ppgtt(struct drm_device *dev)
3879{
3880 drm_i915_private_t *dev_priv = dev->dev_private;
3881 uint32_t pd_offset;
3882 struct intel_ring_buffer *ring;
55a254ac
DV
3883 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3884 uint32_t __iomem *pd_addr;
3885 uint32_t pd_entry;
e21af88d
DV
3886 int i;
3887
3888 if (!dev_priv->mm.aliasing_ppgtt)
3889 return;
3890
55a254ac
DV
3891
3892 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3893 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3894 dma_addr_t pt_addr;
3895
3896 if (dev_priv->mm.gtt->needs_dmar)
3897 pt_addr = ppgtt->pt_dma_addr[i];
3898 else
3899 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3900
3901 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3902 pd_entry |= GEN6_PDE_VALID;
3903
3904 writel(pd_entry, pd_addr + i);
3905 }
3906 readl(pd_addr);
3907
3908 pd_offset = ppgtt->pd_offset;
e21af88d
DV
3909 pd_offset /= 64; /* in cachelines, */
3910 pd_offset <<= 16;
3911
3912 if (INTEL_INFO(dev)->gen == 6) {
48ecfa10
DV
3913 uint32_t ecochk, gab_ctl, ecobits;
3914
3915 ecobits = I915_READ(GAC_ECO_BITS);
3916 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
be901a5a
DV
3917
3918 gab_ctl = I915_READ(GAB_CTL);
3919 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3920
3921 ecochk = I915_READ(GAM_ECOCHK);
e21af88d
DV
3922 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3923 ECOCHK_PPGTT_CACHE64B);
6b26c86d 3924 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3925 } else if (INTEL_INFO(dev)->gen >= 7) {
3926 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3927 /* GFX_MODE is per-ring on gen7+ */
3928 }
3929
b4519513 3930 for_each_ring(ring, dev_priv, i) {
e21af88d
DV
3931 if (INTEL_INFO(dev)->gen >= 7)
3932 I915_WRITE(RING_MODE_GEN7(ring),
6b26c86d 3933 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
e21af88d
DV
3934
3935 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3936 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3937 }
3938}
3939
67b1b571
CW
3940static bool
3941intel_enable_blt(struct drm_device *dev)
3942{
3943 if (!HAS_BLT(dev))
3944 return false;
3945
3946 /* The blitter was dysfunctional on early prototypes */
3947 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3948 DRM_INFO("BLT not supported on this pre-production hardware;"
3949 " graphics performance will be degraded.\n");
3950 return false;
3951 }
3952
3953 return true;
3954}
3955
8187a2b7 3956int
f691e2f4 3957i915_gem_init_hw(struct drm_device *dev)
8187a2b7
ZN
3958{
3959 drm_i915_private_t *dev_priv = dev->dev_private;
3960 int ret;
68f95ba9 3961
8ecd1a66
DV
3962 if (!intel_enable_gtt())
3963 return -EIO;
3964
eda2d7f5
RV
3965 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3966 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3967
b9524a1e
BW
3968 i915_gem_l3_remap(dev);
3969
f691e2f4
DV
3970 i915_gem_init_swizzling(dev);
3971
5c1143bb 3972 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3973 if (ret)
b6913e4b 3974 return ret;
68f95ba9
CW
3975
3976 if (HAS_BSD(dev)) {
5c1143bb 3977 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3978 if (ret)
3979 goto cleanup_render_ring;
d1b851fc 3980 }
68f95ba9 3981
67b1b571 3982 if (intel_enable_blt(dev)) {
549f7365
CW
3983 ret = intel_init_blt_ring_buffer(dev);
3984 if (ret)
3985 goto cleanup_bsd_ring;
3986 }
3987
6f392d54
CW
3988 dev_priv->next_seqno = 1;
3989
254f965c
BW
3990 /*
3991 * XXX: There was some w/a described somewhere suggesting loading
3992 * contexts before PPGTT.
3993 */
3994 i915_gem_context_init(dev);
e21af88d
DV
3995 i915_gem_init_ppgtt(dev);
3996
68f95ba9
CW
3997 return 0;
3998
549f7365 3999cleanup_bsd_ring:
1ec14ad3 4000 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 4001cleanup_render_ring:
1ec14ad3 4002 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
4003 return ret;
4004}
4005
1070a42b
CW
4006static bool
4007intel_enable_ppgtt(struct drm_device *dev)
4008{
4009 if (i915_enable_ppgtt >= 0)
4010 return i915_enable_ppgtt;
4011
4012#ifdef CONFIG_INTEL_IOMMU
4013 /* Disable ppgtt on SNB if VT-d is on. */
4014 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
4015 return false;
4016#endif
4017
4018 return true;
4019}
4020
4021int i915_gem_init(struct drm_device *dev)
4022{
4023 struct drm_i915_private *dev_priv = dev->dev_private;
4024 unsigned long gtt_size, mappable_size;
4025 int ret;
4026
4027 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4028 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4029
4030 mutex_lock(&dev->struct_mutex);
4031 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4032 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4033 * aperture accordingly when using aliasing ppgtt. */
4034 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4035
4036 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4037
4038 ret = i915_gem_init_aliasing_ppgtt(dev);
4039 if (ret) {
4040 mutex_unlock(&dev->struct_mutex);
4041 return ret;
4042 }
4043 } else {
4044 /* Let GEM Manage all of the aperture.
4045 *
4046 * However, leave one page at the end still bound to the scratch
4047 * page. There are a number of places where the hardware
4048 * apparently prefetches past the end of the object, and we've
4049 * seen multiple hangs with the GPU head pointer stuck in a
4050 * batchbuffer bound at the last page of the aperture. One page
4051 * should be enough to keep any prefetching inside of the
4052 * aperture.
4053 */
4054 i915_gem_init_global_gtt(dev, 0, mappable_size,
4055 gtt_size);
4056 }
4057
4058 ret = i915_gem_init_hw(dev);
4059 mutex_unlock(&dev->struct_mutex);
4060 if (ret) {
4061 i915_gem_cleanup_aliasing_ppgtt(dev);
4062 return ret;
4063 }
4064
53ca26ca
DV
4065 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4066 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4067 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4068 return 0;
4069}
4070
8187a2b7
ZN
4071void
4072i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4073{
4074 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4075 struct intel_ring_buffer *ring;
1ec14ad3 4076 int i;
8187a2b7 4077
b4519513
CW
4078 for_each_ring(ring, dev_priv, i)
4079 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4080}
4081
673a394b
EA
4082int
4083i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4084 struct drm_file *file_priv)
4085{
4086 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4087 int ret;
673a394b 4088
79e53945
JB
4089 if (drm_core_check_feature(dev, DRIVER_MODESET))
4090 return 0;
4091
ba1234d1 4092 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4093 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4094 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4095 }
4096
673a394b 4097 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4098 dev_priv->mm.suspended = 0;
4099
f691e2f4 4100 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4101 if (ret != 0) {
4102 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4103 return ret;
d816f6ac 4104 }
9bb2d6f9 4105
69dc4987 4106 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b 4107 mutex_unlock(&dev->struct_mutex);
dbb19d30 4108
5f35308b
CW
4109 ret = drm_irq_install(dev);
4110 if (ret)
4111 goto cleanup_ringbuffer;
dbb19d30 4112
673a394b 4113 return 0;
5f35308b
CW
4114
4115cleanup_ringbuffer:
4116 mutex_lock(&dev->struct_mutex);
4117 i915_gem_cleanup_ringbuffer(dev);
4118 dev_priv->mm.suspended = 1;
4119 mutex_unlock(&dev->struct_mutex);
4120
4121 return ret;
673a394b
EA
4122}
4123
4124int
4125i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4126 struct drm_file *file_priv)
4127{
79e53945
JB
4128 if (drm_core_check_feature(dev, DRIVER_MODESET))
4129 return 0;
4130
dbb19d30 4131 drm_irq_uninstall(dev);
e6890f6f 4132 return i915_gem_idle(dev);
673a394b
EA
4133}
4134
4135void
4136i915_gem_lastclose(struct drm_device *dev)
4137{
4138 int ret;
673a394b 4139
e806b495
EA
4140 if (drm_core_check_feature(dev, DRIVER_MODESET))
4141 return;
4142
6dbe2772
KP
4143 ret = i915_gem_idle(dev);
4144 if (ret)
4145 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4146}
4147
64193406
CW
4148static void
4149init_ring_lists(struct intel_ring_buffer *ring)
4150{
4151 INIT_LIST_HEAD(&ring->active_list);
4152 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4153}
4154
673a394b
EA
4155void
4156i915_gem_load(struct drm_device *dev)
4157{
b5aa8a0f 4158 int i;
673a394b
EA
4159 drm_i915_private_t *dev_priv = dev->dev_private;
4160
69dc4987 4161 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b 4162 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
6c085a72
CW
4163 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4164 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4165 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4166 for (i = 0; i < I915_NUM_RINGS; i++)
4167 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4168 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4169 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4170 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4171 i915_gem_retire_work_handler);
30dbf0c0 4172 init_completion(&dev_priv->error_completion);
31169714 4173
94400120
DA
4174 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4175 if (IS_GEN3(dev)) {
50743298
DV
4176 I915_WRITE(MI_ARB_STATE,
4177 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4178 }
4179
72bfa19c
CW
4180 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4181
de151cf6 4182 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4183 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4184 dev_priv->fence_reg_start = 3;
de151cf6 4185
a6c45cf0 4186 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4187 dev_priv->num_fence_regs = 16;
4188 else
4189 dev_priv->num_fence_regs = 8;
4190
b5aa8a0f 4191 /* Initialize fence registers to zero */
ada726c7 4192 i915_gem_reset_fences(dev);
10ed13e4 4193
673a394b 4194 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4195 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4196
ce453d81
CW
4197 dev_priv->mm.interruptible = true;
4198
17250b71
CW
4199 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4200 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4201 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4202}
71acb5eb
DA
4203
4204/*
4205 * Create a physically contiguous memory object for this object
4206 * e.g. for cursor + overlay regs
4207 */
995b6762
CW
4208static int i915_gem_init_phys_object(struct drm_device *dev,
4209 int id, int size, int align)
71acb5eb
DA
4210{
4211 drm_i915_private_t *dev_priv = dev->dev_private;
4212 struct drm_i915_gem_phys_object *phys_obj;
4213 int ret;
4214
4215 if (dev_priv->mm.phys_objs[id - 1] || !size)
4216 return 0;
4217
9a298b2a 4218 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4219 if (!phys_obj)
4220 return -ENOMEM;
4221
4222 phys_obj->id = id;
4223
6eeefaf3 4224 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4225 if (!phys_obj->handle) {
4226 ret = -ENOMEM;
4227 goto kfree_obj;
4228 }
4229#ifdef CONFIG_X86
4230 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4231#endif
4232
4233 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4234
4235 return 0;
4236kfree_obj:
9a298b2a 4237 kfree(phys_obj);
71acb5eb
DA
4238 return ret;
4239}
4240
995b6762 4241static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4242{
4243 drm_i915_private_t *dev_priv = dev->dev_private;
4244 struct drm_i915_gem_phys_object *phys_obj;
4245
4246 if (!dev_priv->mm.phys_objs[id - 1])
4247 return;
4248
4249 phys_obj = dev_priv->mm.phys_objs[id - 1];
4250 if (phys_obj->cur_obj) {
4251 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4252 }
4253
4254#ifdef CONFIG_X86
4255 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4256#endif
4257 drm_pci_free(dev, phys_obj->handle);
4258 kfree(phys_obj);
4259 dev_priv->mm.phys_objs[id - 1] = NULL;
4260}
4261
4262void i915_gem_free_all_phys_object(struct drm_device *dev)
4263{
4264 int i;
4265
260883c8 4266 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4267 i915_gem_free_phys_object(dev, i);
4268}
4269
4270void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4271 struct drm_i915_gem_object *obj)
71acb5eb 4272{
05394f39 4273 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 4274 char *vaddr;
71acb5eb 4275 int i;
71acb5eb
DA
4276 int page_count;
4277
05394f39 4278 if (!obj->phys_obj)
71acb5eb 4279 return;
05394f39 4280 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4281
05394f39 4282 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4283 for (i = 0; i < page_count; i++) {
5949eac4 4284 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4285 if (!IS_ERR(page)) {
4286 char *dst = kmap_atomic(page);
4287 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4288 kunmap_atomic(dst);
4289
4290 drm_clflush_pages(&page, 1);
4291
4292 set_page_dirty(page);
4293 mark_page_accessed(page);
4294 page_cache_release(page);
4295 }
71acb5eb 4296 }
40ce6575 4297 intel_gtt_chipset_flush();
d78b47b9 4298
05394f39
CW
4299 obj->phys_obj->cur_obj = NULL;
4300 obj->phys_obj = NULL;
71acb5eb
DA
4301}
4302
4303int
4304i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4305 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4306 int id,
4307 int align)
71acb5eb 4308{
05394f39 4309 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 4310 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4311 int ret = 0;
4312 int page_count;
4313 int i;
4314
4315 if (id > I915_MAX_PHYS_OBJECT)
4316 return -EINVAL;
4317
05394f39
CW
4318 if (obj->phys_obj) {
4319 if (obj->phys_obj->id == id)
71acb5eb
DA
4320 return 0;
4321 i915_gem_detach_phys_object(dev, obj);
4322 }
4323
71acb5eb
DA
4324 /* create a new object */
4325 if (!dev_priv->mm.phys_objs[id - 1]) {
4326 ret = i915_gem_init_phys_object(dev, id,
05394f39 4327 obj->base.size, align);
71acb5eb 4328 if (ret) {
05394f39
CW
4329 DRM_ERROR("failed to init phys object %d size: %zu\n",
4330 id, obj->base.size);
e5281ccd 4331 return ret;
71acb5eb
DA
4332 }
4333 }
4334
4335 /* bind to the object */
05394f39
CW
4336 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4337 obj->phys_obj->cur_obj = obj;
71acb5eb 4338
05394f39 4339 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4340
4341 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4342 struct page *page;
4343 char *dst, *src;
4344
5949eac4 4345 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4346 if (IS_ERR(page))
4347 return PTR_ERR(page);
71acb5eb 4348
ff75b9bc 4349 src = kmap_atomic(page);
05394f39 4350 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4351 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4352 kunmap_atomic(src);
71acb5eb 4353
e5281ccd
CW
4354 mark_page_accessed(page);
4355 page_cache_release(page);
4356 }
d78b47b9 4357
71acb5eb 4358 return 0;
71acb5eb
DA
4359}
4360
4361static int
05394f39
CW
4362i915_gem_phys_pwrite(struct drm_device *dev,
4363 struct drm_i915_gem_object *obj,
71acb5eb
DA
4364 struct drm_i915_gem_pwrite *args,
4365 struct drm_file *file_priv)
4366{
05394f39 4367 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4368 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4369
b47b30cc
CW
4370 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4371 unsigned long unwritten;
4372
4373 /* The physical object once assigned is fixed for the lifetime
4374 * of the obj, so we can safely drop the lock and continue
4375 * to access vaddr.
4376 */
4377 mutex_unlock(&dev->struct_mutex);
4378 unwritten = copy_from_user(vaddr, user_data, args->size);
4379 mutex_lock(&dev->struct_mutex);
4380 if (unwritten)
4381 return -EFAULT;
4382 }
71acb5eb 4383
40ce6575 4384 intel_gtt_chipset_flush();
71acb5eb
DA
4385 return 0;
4386}
b962442e 4387
f787a5f5 4388void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4389{
f787a5f5 4390 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4391
4392 /* Clean up our request list when the client is going away, so that
4393 * later retire_requests won't dereference our soon-to-be-gone
4394 * file_priv.
4395 */
1c25595f 4396 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4397 while (!list_empty(&file_priv->mm.request_list)) {
4398 struct drm_i915_gem_request *request;
4399
4400 request = list_first_entry(&file_priv->mm.request_list,
4401 struct drm_i915_gem_request,
4402 client_list);
4403 list_del(&request->client_list);
4404 request->file_priv = NULL;
4405 }
1c25595f 4406 spin_unlock(&file_priv->mm.lock);
b962442e 4407}
31169714 4408
31169714 4409static int
1495f230 4410i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4411{
17250b71
CW
4412 struct drm_i915_private *dev_priv =
4413 container_of(shrinker,
4414 struct drm_i915_private,
4415 mm.inactive_shrinker);
4416 struct drm_device *dev = dev_priv->dev;
6c085a72 4417 struct drm_i915_gem_object *obj;
1495f230 4418 int nr_to_scan = sc->nr_to_scan;
17250b71
CW
4419 int cnt;
4420
4421 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4422 return 0;
31169714 4423
6c085a72
CW
4424 if (nr_to_scan) {
4425 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4426 if (nr_to_scan > 0)
4427 i915_gem_shrink_all(dev_priv);
31169714
CW
4428 }
4429
17250b71 4430 cnt = 0;
6c085a72 4431 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
a5570178
CW
4432 if (obj->pages_pin_count == 0)
4433 cnt += obj->base.size >> PAGE_SHIFT;
6c085a72 4434 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
a5570178 4435 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
6c085a72 4436 cnt += obj->base.size >> PAGE_SHIFT;
17250b71 4437
17250b71 4438 mutex_unlock(&dev->struct_mutex);
6c085a72 4439 return cnt;
31169714 4440}
This page took 1.218284 seconds and 5 git commands to generate.