drm/i915: move the wait_rendering call into flush_gpu_write_domain
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
ba3d8d74 51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
de151cf6
JB
52static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
53 unsigned alignment);
de151cf6 54static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
55static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
56 struct drm_i915_gem_pwrite *args,
57 struct drm_file *file_priv);
be72615b 58static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 59
31169714
CW
60static LIST_HEAD(shrink_list);
61static DEFINE_SPINLOCK(shrink_list_lock);
62
7d1c4804
CW
63static inline bool
64i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
65{
66 return obj_priv->gtt_space &&
67 !obj_priv->active &&
68 obj_priv->pin_count == 0;
69}
70
79e53945
JB
71int i915_gem_do_init(struct drm_device *dev, unsigned long start,
72 unsigned long end)
673a394b
EA
73{
74 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 75
79e53945
JB
76 if (start >= end ||
77 (start & (PAGE_SIZE - 1)) != 0 ||
78 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
79 return -EINVAL;
80 }
81
79e53945
JB
82 drm_mm_init(&dev_priv->mm.gtt_space, start,
83 end - start);
673a394b 84
79e53945
JB
85 dev->gtt_total = (uint32_t) (end - start);
86
87 return 0;
88}
673a394b 89
79e53945
JB
90int
91i915_gem_init_ioctl(struct drm_device *dev, void *data,
92 struct drm_file *file_priv)
93{
94 struct drm_i915_gem_init *args = data;
95 int ret;
96
97 mutex_lock(&dev->struct_mutex);
98 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
673a394b
EA
99 mutex_unlock(&dev->struct_mutex);
100
79e53945 101 return ret;
673a394b
EA
102}
103
5a125c3c
EA
104int
105i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
106 struct drm_file *file_priv)
107{
5a125c3c 108 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
109
110 if (!(dev->driver->driver_features & DRIVER_GEM))
111 return -ENODEV;
112
113 args->aper_size = dev->gtt_total;
2678d9d6
KP
114 args->aper_available_size = (args->aper_size -
115 atomic_read(&dev->pin_memory));
5a125c3c
EA
116
117 return 0;
118}
119
673a394b
EA
120
121/**
122 * Creates a new mm object and returns a handle to it.
123 */
124int
125i915_gem_create_ioctl(struct drm_device *dev, void *data,
126 struct drm_file *file_priv)
127{
128 struct drm_i915_gem_create *args = data;
129 struct drm_gem_object *obj;
a1a2d1d3
PP
130 int ret;
131 u32 handle;
673a394b
EA
132
133 args->size = roundup(args->size, PAGE_SIZE);
134
135 /* Allocate the new object */
ac52bc56 136 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
137 if (obj == NULL)
138 return -ENOMEM;
139
140 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754
CW
141 if (ret) {
142 drm_gem_object_unreference_unlocked(obj);
673a394b 143 return ret;
1dfd9754 144 }
673a394b 145
1dfd9754
CW
146 /* Sink the floating reference from kref_init(handlecount) */
147 drm_gem_object_handle_unreference_unlocked(obj);
673a394b 148
1dfd9754 149 args->handle = handle;
673a394b
EA
150 return 0;
151}
152
eb01459f
EA
153static inline int
154fast_shmem_read(struct page **pages,
155 loff_t page_base, int page_offset,
156 char __user *data,
157 int length)
158{
159 char __iomem *vaddr;
2bc43b5c 160 int unwritten;
eb01459f
EA
161
162 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
163 if (vaddr == NULL)
164 return -ENOMEM;
2bc43b5c 165 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
eb01459f
EA
166 kunmap_atomic(vaddr, KM_USER0);
167
2bc43b5c
FM
168 if (unwritten)
169 return -EFAULT;
170
171 return 0;
eb01459f
EA
172}
173
280b713b
EA
174static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
175{
176 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 177 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
178
179 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
180 obj_priv->tiling_mode != I915_TILING_NONE;
181}
182
99a03df5 183static inline void
40123c1f
EA
184slow_shmem_copy(struct page *dst_page,
185 int dst_offset,
186 struct page *src_page,
187 int src_offset,
188 int length)
189{
190 char *dst_vaddr, *src_vaddr;
191
99a03df5
CW
192 dst_vaddr = kmap(dst_page);
193 src_vaddr = kmap(src_page);
40123c1f
EA
194
195 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
196
99a03df5
CW
197 kunmap(src_page);
198 kunmap(dst_page);
40123c1f
EA
199}
200
99a03df5 201static inline void
280b713b
EA
202slow_shmem_bit17_copy(struct page *gpu_page,
203 int gpu_offset,
204 struct page *cpu_page,
205 int cpu_offset,
206 int length,
207 int is_read)
208{
209 char *gpu_vaddr, *cpu_vaddr;
210
211 /* Use the unswizzled path if this page isn't affected. */
212 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
213 if (is_read)
214 return slow_shmem_copy(cpu_page, cpu_offset,
215 gpu_page, gpu_offset, length);
216 else
217 return slow_shmem_copy(gpu_page, gpu_offset,
218 cpu_page, cpu_offset, length);
219 }
220
99a03df5
CW
221 gpu_vaddr = kmap(gpu_page);
222 cpu_vaddr = kmap(cpu_page);
280b713b
EA
223
224 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225 * XORing with the other bits (A9 for Y, A9 and A10 for X)
226 */
227 while (length > 0) {
228 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229 int this_length = min(cacheline_end - gpu_offset, length);
230 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232 if (is_read) {
233 memcpy(cpu_vaddr + cpu_offset,
234 gpu_vaddr + swizzled_gpu_offset,
235 this_length);
236 } else {
237 memcpy(gpu_vaddr + swizzled_gpu_offset,
238 cpu_vaddr + cpu_offset,
239 this_length);
240 }
241 cpu_offset += this_length;
242 gpu_offset += this_length;
243 length -= this_length;
244 }
245
99a03df5
CW
246 kunmap(cpu_page);
247 kunmap(gpu_page);
280b713b
EA
248}
249
eb01459f
EA
250/**
251 * This is the fast shmem pread path, which attempts to copy_from_user directly
252 * from the backing pages of the object to the user's address space. On a
253 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
254 */
255static int
256i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
257 struct drm_i915_gem_pread *args,
258 struct drm_file *file_priv)
259{
23010e43 260 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
261 ssize_t remain;
262 loff_t offset, page_base;
263 char __user *user_data;
264 int page_offset, page_length;
265 int ret;
266
267 user_data = (char __user *) (uintptr_t) args->data_ptr;
268 remain = args->size;
269
270 mutex_lock(&dev->struct_mutex);
271
4bdadb97 272 ret = i915_gem_object_get_pages(obj, 0);
eb01459f
EA
273 if (ret != 0)
274 goto fail_unlock;
275
276 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
277 args->size);
278 if (ret != 0)
279 goto fail_put_pages;
280
23010e43 281 obj_priv = to_intel_bo(obj);
eb01459f
EA
282 offset = args->offset;
283
284 while (remain > 0) {
285 /* Operation in this page
286 *
287 * page_base = page offset within aperture
288 * page_offset = offset within page
289 * page_length = bytes to copy for this page
290 */
291 page_base = (offset & ~(PAGE_SIZE-1));
292 page_offset = offset & (PAGE_SIZE-1);
293 page_length = remain;
294 if ((page_offset + remain) > PAGE_SIZE)
295 page_length = PAGE_SIZE - page_offset;
296
297 ret = fast_shmem_read(obj_priv->pages,
298 page_base, page_offset,
299 user_data, page_length);
300 if (ret)
301 goto fail_put_pages;
302
303 remain -= page_length;
304 user_data += page_length;
305 offset += page_length;
306 }
307
308fail_put_pages:
309 i915_gem_object_put_pages(obj);
310fail_unlock:
311 mutex_unlock(&dev->struct_mutex);
312
313 return ret;
314}
315
07f73f69
CW
316static int
317i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
318{
319 int ret;
320
4bdadb97 321 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
322
323 /* If we've insufficient memory to map in the pages, attempt
324 * to make some space by throwing out some old buffers.
325 */
326 if (ret == -ENOMEM) {
327 struct drm_device *dev = obj->dev;
07f73f69 328
0108a3ed
DV
329 ret = i915_gem_evict_something(dev, obj->size,
330 i915_gem_get_gtt_alignment(obj));
07f73f69
CW
331 if (ret)
332 return ret;
333
4bdadb97 334 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
335 }
336
337 return ret;
338}
339
eb01459f
EA
340/**
341 * This is the fallback shmem pread path, which allocates temporary storage
342 * in kernel space to copy_to_user into outside of the struct_mutex, so we
343 * can copy out of the object's backing pages while holding the struct mutex
344 * and not take page faults.
345 */
346static int
347i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
348 struct drm_i915_gem_pread *args,
349 struct drm_file *file_priv)
350{
23010e43 351 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
352 struct mm_struct *mm = current->mm;
353 struct page **user_pages;
354 ssize_t remain;
355 loff_t offset, pinned_pages, i;
356 loff_t first_data_page, last_data_page, num_pages;
357 int shmem_page_index, shmem_page_offset;
358 int data_page_index, data_page_offset;
359 int page_length;
360 int ret;
361 uint64_t data_ptr = args->data_ptr;
280b713b 362 int do_bit17_swizzling;
eb01459f
EA
363
364 remain = args->size;
365
366 /* Pin the user pages containing the data. We can't fault while
367 * holding the struct mutex, yet we want to hold it while
368 * dereferencing the user data.
369 */
370 first_data_page = data_ptr / PAGE_SIZE;
371 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
372 num_pages = last_data_page - first_data_page + 1;
373
8e7d2b2c 374 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
eb01459f
EA
375 if (user_pages == NULL)
376 return -ENOMEM;
377
378 down_read(&mm->mmap_sem);
379 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 380 num_pages, 1, 0, user_pages, NULL);
eb01459f
EA
381 up_read(&mm->mmap_sem);
382 if (pinned_pages < num_pages) {
383 ret = -EFAULT;
384 goto fail_put_user_pages;
385 }
386
280b713b
EA
387 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
388
eb01459f
EA
389 mutex_lock(&dev->struct_mutex);
390
07f73f69
CW
391 ret = i915_gem_object_get_pages_or_evict(obj);
392 if (ret)
eb01459f
EA
393 goto fail_unlock;
394
395 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
396 args->size);
397 if (ret != 0)
398 goto fail_put_pages;
399
23010e43 400 obj_priv = to_intel_bo(obj);
eb01459f
EA
401 offset = args->offset;
402
403 while (remain > 0) {
404 /* Operation in this page
405 *
406 * shmem_page_index = page number within shmem file
407 * shmem_page_offset = offset within page in shmem file
408 * data_page_index = page number in get_user_pages return
409 * data_page_offset = offset with data_page_index page.
410 * page_length = bytes to copy for this page
411 */
412 shmem_page_index = offset / PAGE_SIZE;
413 shmem_page_offset = offset & ~PAGE_MASK;
414 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
415 data_page_offset = data_ptr & ~PAGE_MASK;
416
417 page_length = remain;
418 if ((shmem_page_offset + page_length) > PAGE_SIZE)
419 page_length = PAGE_SIZE - shmem_page_offset;
420 if ((data_page_offset + page_length) > PAGE_SIZE)
421 page_length = PAGE_SIZE - data_page_offset;
422
280b713b 423 if (do_bit17_swizzling) {
99a03df5 424 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 425 shmem_page_offset,
99a03df5
CW
426 user_pages[data_page_index],
427 data_page_offset,
428 page_length,
429 1);
430 } else {
431 slow_shmem_copy(user_pages[data_page_index],
432 data_page_offset,
433 obj_priv->pages[shmem_page_index],
434 shmem_page_offset,
435 page_length);
280b713b 436 }
eb01459f
EA
437
438 remain -= page_length;
439 data_ptr += page_length;
440 offset += page_length;
441 }
442
443fail_put_pages:
444 i915_gem_object_put_pages(obj);
445fail_unlock:
446 mutex_unlock(&dev->struct_mutex);
447fail_put_user_pages:
448 for (i = 0; i < pinned_pages; i++) {
449 SetPageDirty(user_pages[i]);
450 page_cache_release(user_pages[i]);
451 }
8e7d2b2c 452 drm_free_large(user_pages);
eb01459f
EA
453
454 return ret;
455}
456
673a394b
EA
457/**
458 * Reads data from the object referenced by handle.
459 *
460 * On error, the contents of *data are undefined.
461 */
462int
463i915_gem_pread_ioctl(struct drm_device *dev, void *data,
464 struct drm_file *file_priv)
465{
466 struct drm_i915_gem_pread *args = data;
467 struct drm_gem_object *obj;
468 struct drm_i915_gem_object *obj_priv;
673a394b
EA
469 int ret;
470
471 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
472 if (obj == NULL)
bf79cb91 473 return -ENOENT;
23010e43 474 obj_priv = to_intel_bo(obj);
673a394b
EA
475
476 /* Bounds check source.
477 *
478 * XXX: This could use review for overflow issues...
479 */
480 if (args->offset > obj->size || args->size > obj->size ||
481 args->offset + args->size > obj->size) {
bc9025bd 482 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
483 return -EINVAL;
484 }
485
280b713b 486 if (i915_gem_object_needs_bit17_swizzle(obj)) {
eb01459f 487 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
280b713b
EA
488 } else {
489 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
490 if (ret != 0)
491 ret = i915_gem_shmem_pread_slow(dev, obj, args,
492 file_priv);
493 }
673a394b 494
bc9025bd 495 drm_gem_object_unreference_unlocked(obj);
673a394b 496
eb01459f 497 return ret;
673a394b
EA
498}
499
0839ccb8
KP
500/* This is the fast write path which cannot handle
501 * page faults in the source data
9b7530cc 502 */
0839ccb8
KP
503
504static inline int
505fast_user_write(struct io_mapping *mapping,
506 loff_t page_base, int page_offset,
507 char __user *user_data,
508 int length)
9b7530cc 509{
9b7530cc 510 char *vaddr_atomic;
0839ccb8 511 unsigned long unwritten;
9b7530cc 512
fca3ec01 513 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
0839ccb8
KP
514 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
515 user_data, length);
fca3ec01 516 io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
0839ccb8
KP
517 if (unwritten)
518 return -EFAULT;
519 return 0;
520}
521
522/* Here's the write path which can sleep for
523 * page faults
524 */
525
ab34c226 526static inline void
3de09aa3
EA
527slow_kernel_write(struct io_mapping *mapping,
528 loff_t gtt_base, int gtt_offset,
529 struct page *user_page, int user_offset,
530 int length)
0839ccb8 531{
ab34c226
CW
532 char __iomem *dst_vaddr;
533 char *src_vaddr;
0839ccb8 534
ab34c226
CW
535 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
536 src_vaddr = kmap(user_page);
537
538 memcpy_toio(dst_vaddr + gtt_offset,
539 src_vaddr + user_offset,
540 length);
541
542 kunmap(user_page);
543 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
544}
545
40123c1f
EA
546static inline int
547fast_shmem_write(struct page **pages,
548 loff_t page_base, int page_offset,
549 char __user *data,
550 int length)
551{
552 char __iomem *vaddr;
d0088775 553 unsigned long unwritten;
40123c1f
EA
554
555 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
556 if (vaddr == NULL)
557 return -ENOMEM;
d0088775 558 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
40123c1f
EA
559 kunmap_atomic(vaddr, KM_USER0);
560
d0088775
DA
561 if (unwritten)
562 return -EFAULT;
40123c1f
EA
563 return 0;
564}
565
3de09aa3
EA
566/**
567 * This is the fast pwrite path, where we copy the data directly from the
568 * user into the GTT, uncached.
569 */
673a394b 570static int
3de09aa3
EA
571i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
572 struct drm_i915_gem_pwrite *args,
573 struct drm_file *file_priv)
673a394b 574{
23010e43 575 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 576 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 577 ssize_t remain;
0839ccb8 578 loff_t offset, page_base;
673a394b 579 char __user *user_data;
0839ccb8
KP
580 int page_offset, page_length;
581 int ret;
673a394b
EA
582
583 user_data = (char __user *) (uintptr_t) args->data_ptr;
584 remain = args->size;
585 if (!access_ok(VERIFY_READ, user_data, remain))
586 return -EFAULT;
587
588
589 mutex_lock(&dev->struct_mutex);
590 ret = i915_gem_object_pin(obj, 0);
591 if (ret) {
592 mutex_unlock(&dev->struct_mutex);
593 return ret;
594 }
2ef7eeaa 595 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
673a394b
EA
596 if (ret)
597 goto fail;
598
23010e43 599 obj_priv = to_intel_bo(obj);
673a394b 600 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
601
602 while (remain > 0) {
603 /* Operation in this page
604 *
0839ccb8
KP
605 * page_base = page offset within aperture
606 * page_offset = offset within page
607 * page_length = bytes to copy for this page
673a394b 608 */
0839ccb8
KP
609 page_base = (offset & ~(PAGE_SIZE-1));
610 page_offset = offset & (PAGE_SIZE-1);
611 page_length = remain;
612 if ((page_offset + remain) > PAGE_SIZE)
613 page_length = PAGE_SIZE - page_offset;
614
615 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
616 page_offset, user_data, page_length);
617
618 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
619 * source page isn't available. Return the error and we'll
620 * retry in the slow path.
0839ccb8 621 */
3de09aa3
EA
622 if (ret)
623 goto fail;
673a394b 624
0839ccb8
KP
625 remain -= page_length;
626 user_data += page_length;
627 offset += page_length;
673a394b 628 }
673a394b
EA
629
630fail:
631 i915_gem_object_unpin(obj);
632 mutex_unlock(&dev->struct_mutex);
633
634 return ret;
635}
636
3de09aa3
EA
637/**
638 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
639 * the memory and maps it using kmap_atomic for copying.
640 *
641 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
642 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
643 */
3043c60c 644static int
3de09aa3
EA
645i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
646 struct drm_i915_gem_pwrite *args,
647 struct drm_file *file_priv)
673a394b 648{
23010e43 649 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
650 drm_i915_private_t *dev_priv = dev->dev_private;
651 ssize_t remain;
652 loff_t gtt_page_base, offset;
653 loff_t first_data_page, last_data_page, num_pages;
654 loff_t pinned_pages, i;
655 struct page **user_pages;
656 struct mm_struct *mm = current->mm;
657 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 658 int ret;
3de09aa3
EA
659 uint64_t data_ptr = args->data_ptr;
660
661 remain = args->size;
662
663 /* Pin the user pages containing the data. We can't fault while
664 * holding the struct mutex, and all of the pwrite implementations
665 * want to hold it while dereferencing the user data.
666 */
667 first_data_page = data_ptr / PAGE_SIZE;
668 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
669 num_pages = last_data_page - first_data_page + 1;
670
8e7d2b2c 671 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
3de09aa3
EA
672 if (user_pages == NULL)
673 return -ENOMEM;
674
675 down_read(&mm->mmap_sem);
676 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
677 num_pages, 0, 0, user_pages, NULL);
678 up_read(&mm->mmap_sem);
679 if (pinned_pages < num_pages) {
680 ret = -EFAULT;
681 goto out_unpin_pages;
682 }
673a394b
EA
683
684 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
685 ret = i915_gem_object_pin(obj, 0);
686 if (ret)
687 goto out_unlock;
688
689 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
690 if (ret)
691 goto out_unpin_object;
692
23010e43 693 obj_priv = to_intel_bo(obj);
3de09aa3
EA
694 offset = obj_priv->gtt_offset + args->offset;
695
696 while (remain > 0) {
697 /* Operation in this page
698 *
699 * gtt_page_base = page offset within aperture
700 * gtt_page_offset = offset within page in aperture
701 * data_page_index = page number in get_user_pages return
702 * data_page_offset = offset with data_page_index page.
703 * page_length = bytes to copy for this page
704 */
705 gtt_page_base = offset & PAGE_MASK;
706 gtt_page_offset = offset & ~PAGE_MASK;
707 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
708 data_page_offset = data_ptr & ~PAGE_MASK;
709
710 page_length = remain;
711 if ((gtt_page_offset + page_length) > PAGE_SIZE)
712 page_length = PAGE_SIZE - gtt_page_offset;
713 if ((data_page_offset + page_length) > PAGE_SIZE)
714 page_length = PAGE_SIZE - data_page_offset;
715
ab34c226
CW
716 slow_kernel_write(dev_priv->mm.gtt_mapping,
717 gtt_page_base, gtt_page_offset,
718 user_pages[data_page_index],
719 data_page_offset,
720 page_length);
3de09aa3
EA
721
722 remain -= page_length;
723 offset += page_length;
724 data_ptr += page_length;
725 }
726
727out_unpin_object:
728 i915_gem_object_unpin(obj);
729out_unlock:
730 mutex_unlock(&dev->struct_mutex);
731out_unpin_pages:
732 for (i = 0; i < pinned_pages; i++)
733 page_cache_release(user_pages[i]);
8e7d2b2c 734 drm_free_large(user_pages);
3de09aa3
EA
735
736 return ret;
737}
738
40123c1f
EA
739/**
740 * This is the fast shmem pwrite path, which attempts to directly
741 * copy_from_user into the kmapped pages backing the object.
742 */
3043c60c 743static int
40123c1f
EA
744i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
745 struct drm_i915_gem_pwrite *args,
746 struct drm_file *file_priv)
673a394b 747{
23010e43 748 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
749 ssize_t remain;
750 loff_t offset, page_base;
751 char __user *user_data;
752 int page_offset, page_length;
673a394b 753 int ret;
40123c1f
EA
754
755 user_data = (char __user *) (uintptr_t) args->data_ptr;
756 remain = args->size;
673a394b
EA
757
758 mutex_lock(&dev->struct_mutex);
759
4bdadb97 760 ret = i915_gem_object_get_pages(obj, 0);
40123c1f
EA
761 if (ret != 0)
762 goto fail_unlock;
673a394b 763
e47c68e9 764 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
40123c1f
EA
765 if (ret != 0)
766 goto fail_put_pages;
767
23010e43 768 obj_priv = to_intel_bo(obj);
40123c1f
EA
769 offset = args->offset;
770 obj_priv->dirty = 1;
771
772 while (remain > 0) {
773 /* Operation in this page
774 *
775 * page_base = page offset within aperture
776 * page_offset = offset within page
777 * page_length = bytes to copy for this page
778 */
779 page_base = (offset & ~(PAGE_SIZE-1));
780 page_offset = offset & (PAGE_SIZE-1);
781 page_length = remain;
782 if ((page_offset + remain) > PAGE_SIZE)
783 page_length = PAGE_SIZE - page_offset;
784
785 ret = fast_shmem_write(obj_priv->pages,
786 page_base, page_offset,
787 user_data, page_length);
788 if (ret)
789 goto fail_put_pages;
790
791 remain -= page_length;
792 user_data += page_length;
793 offset += page_length;
794 }
795
796fail_put_pages:
797 i915_gem_object_put_pages(obj);
798fail_unlock:
799 mutex_unlock(&dev->struct_mutex);
800
801 return ret;
802}
803
804/**
805 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
806 * the memory and maps it using kmap_atomic for copying.
807 *
808 * This avoids taking mmap_sem for faulting on the user's address while the
809 * struct_mutex is held.
810 */
811static int
812i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
813 struct drm_i915_gem_pwrite *args,
814 struct drm_file *file_priv)
815{
23010e43 816 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
817 struct mm_struct *mm = current->mm;
818 struct page **user_pages;
819 ssize_t remain;
820 loff_t offset, pinned_pages, i;
821 loff_t first_data_page, last_data_page, num_pages;
822 int shmem_page_index, shmem_page_offset;
823 int data_page_index, data_page_offset;
824 int page_length;
825 int ret;
826 uint64_t data_ptr = args->data_ptr;
280b713b 827 int do_bit17_swizzling;
40123c1f
EA
828
829 remain = args->size;
830
831 /* Pin the user pages containing the data. We can't fault while
832 * holding the struct mutex, and all of the pwrite implementations
833 * want to hold it while dereferencing the user data.
834 */
835 first_data_page = data_ptr / PAGE_SIZE;
836 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
837 num_pages = last_data_page - first_data_page + 1;
838
8e7d2b2c 839 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
40123c1f
EA
840 if (user_pages == NULL)
841 return -ENOMEM;
842
843 down_read(&mm->mmap_sem);
844 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
845 num_pages, 0, 0, user_pages, NULL);
846 up_read(&mm->mmap_sem);
847 if (pinned_pages < num_pages) {
848 ret = -EFAULT;
849 goto fail_put_user_pages;
673a394b
EA
850 }
851
280b713b
EA
852 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
853
40123c1f
EA
854 mutex_lock(&dev->struct_mutex);
855
07f73f69
CW
856 ret = i915_gem_object_get_pages_or_evict(obj);
857 if (ret)
40123c1f
EA
858 goto fail_unlock;
859
860 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
861 if (ret != 0)
862 goto fail_put_pages;
863
23010e43 864 obj_priv = to_intel_bo(obj);
673a394b 865 offset = args->offset;
40123c1f 866 obj_priv->dirty = 1;
673a394b 867
40123c1f
EA
868 while (remain > 0) {
869 /* Operation in this page
870 *
871 * shmem_page_index = page number within shmem file
872 * shmem_page_offset = offset within page in shmem file
873 * data_page_index = page number in get_user_pages return
874 * data_page_offset = offset with data_page_index page.
875 * page_length = bytes to copy for this page
876 */
877 shmem_page_index = offset / PAGE_SIZE;
878 shmem_page_offset = offset & ~PAGE_MASK;
879 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
880 data_page_offset = data_ptr & ~PAGE_MASK;
881
882 page_length = remain;
883 if ((shmem_page_offset + page_length) > PAGE_SIZE)
884 page_length = PAGE_SIZE - shmem_page_offset;
885 if ((data_page_offset + page_length) > PAGE_SIZE)
886 page_length = PAGE_SIZE - data_page_offset;
887
280b713b 888 if (do_bit17_swizzling) {
99a03df5 889 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
890 shmem_page_offset,
891 user_pages[data_page_index],
892 data_page_offset,
99a03df5
CW
893 page_length,
894 0);
895 } else {
896 slow_shmem_copy(obj_priv->pages[shmem_page_index],
897 shmem_page_offset,
898 user_pages[data_page_index],
899 data_page_offset,
900 page_length);
280b713b 901 }
40123c1f
EA
902
903 remain -= page_length;
904 data_ptr += page_length;
905 offset += page_length;
673a394b
EA
906 }
907
40123c1f
EA
908fail_put_pages:
909 i915_gem_object_put_pages(obj);
910fail_unlock:
673a394b 911 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
912fail_put_user_pages:
913 for (i = 0; i < pinned_pages; i++)
914 page_cache_release(user_pages[i]);
8e7d2b2c 915 drm_free_large(user_pages);
673a394b 916
40123c1f 917 return ret;
673a394b
EA
918}
919
920/**
921 * Writes data to the object referenced by handle.
922 *
923 * On error, the contents of the buffer that were to be modified are undefined.
924 */
925int
926i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
927 struct drm_file *file_priv)
928{
929 struct drm_i915_gem_pwrite *args = data;
930 struct drm_gem_object *obj;
931 struct drm_i915_gem_object *obj_priv;
932 int ret = 0;
933
934 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
935 if (obj == NULL)
bf79cb91 936 return -ENOENT;
23010e43 937 obj_priv = to_intel_bo(obj);
673a394b
EA
938
939 /* Bounds check destination.
940 *
941 * XXX: This could use review for overflow issues...
942 */
943 if (args->offset > obj->size || args->size > obj->size ||
944 args->offset + args->size > obj->size) {
bc9025bd 945 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
946 return -EINVAL;
947 }
948
949 /* We can only do the GTT pwrite on untiled buffers, as otherwise
950 * it would end up going through the fenced access, and we'll get
951 * different detiling behavior between reading and writing.
952 * pread/pwrite currently are reading and writing from the CPU
953 * perspective, requiring manual detiling by the client.
954 */
71acb5eb
DA
955 if (obj_priv->phys_obj)
956 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
957 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
9b8c4a0b
CW
958 dev->gtt_total != 0 &&
959 obj->write_domain != I915_GEM_DOMAIN_CPU) {
3de09aa3
EA
960 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
961 if (ret == -EFAULT) {
962 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
963 file_priv);
964 }
280b713b
EA
965 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
966 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
40123c1f
EA
967 } else {
968 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
969 if (ret == -EFAULT) {
970 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
971 file_priv);
972 }
973 }
673a394b
EA
974
975#if WATCH_PWRITE
976 if (ret)
977 DRM_INFO("pwrite failed %d\n", ret);
978#endif
979
bc9025bd 980 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
981
982 return ret;
983}
984
985/**
2ef7eeaa
EA
986 * Called when user space prepares to use an object with the CPU, either
987 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
988 */
989int
990i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
991 struct drm_file *file_priv)
992{
a09ba7fa 993 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
994 struct drm_i915_gem_set_domain *args = data;
995 struct drm_gem_object *obj;
652c393a 996 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
997 uint32_t read_domains = args->read_domains;
998 uint32_t write_domain = args->write_domain;
673a394b
EA
999 int ret;
1000
1001 if (!(dev->driver->driver_features & DRIVER_GEM))
1002 return -ENODEV;
1003
2ef7eeaa 1004 /* Only handle setting domains to types used by the CPU. */
21d509e3 1005 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1006 return -EINVAL;
1007
21d509e3 1008 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1009 return -EINVAL;
1010
1011 /* Having something in the write domain implies it's in the read
1012 * domain, and only that read domain. Enforce that in the request.
1013 */
1014 if (write_domain != 0 && read_domains != write_domain)
1015 return -EINVAL;
1016
673a394b
EA
1017 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1018 if (obj == NULL)
bf79cb91 1019 return -ENOENT;
23010e43 1020 obj_priv = to_intel_bo(obj);
673a394b
EA
1021
1022 mutex_lock(&dev->struct_mutex);
652c393a
JB
1023
1024 intel_mark_busy(dev, obj);
1025
673a394b 1026#if WATCH_BUF
cfd43c02 1027 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
2ef7eeaa 1028 obj, obj->size, read_domains, write_domain);
673a394b 1029#endif
2ef7eeaa
EA
1030 if (read_domains & I915_GEM_DOMAIN_GTT) {
1031 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1032
a09ba7fa
EA
1033 /* Update the LRU on the fence for the CPU access that's
1034 * about to occur.
1035 */
1036 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1037 struct drm_i915_fence_reg *reg =
1038 &dev_priv->fence_regs[obj_priv->fence_reg];
1039 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1040 &dev_priv->mm.fence_list);
1041 }
1042
02354392
EA
1043 /* Silently promote "you're not bound, there was nothing to do"
1044 * to success, since the client was just asking us to
1045 * make sure everything was done.
1046 */
1047 if (ret == -EINVAL)
1048 ret = 0;
2ef7eeaa 1049 } else {
e47c68e9 1050 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1051 }
1052
7d1c4804
CW
1053
1054 /* Maintain LRU order of "inactive" objects */
1055 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1056 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1057
673a394b
EA
1058 drm_gem_object_unreference(obj);
1059 mutex_unlock(&dev->struct_mutex);
1060 return ret;
1061}
1062
1063/**
1064 * Called when user space has done writes to this buffer
1065 */
1066int
1067i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1068 struct drm_file *file_priv)
1069{
1070 struct drm_i915_gem_sw_finish *args = data;
1071 struct drm_gem_object *obj;
1072 struct drm_i915_gem_object *obj_priv;
1073 int ret = 0;
1074
1075 if (!(dev->driver->driver_features & DRIVER_GEM))
1076 return -ENODEV;
1077
1078 mutex_lock(&dev->struct_mutex);
1079 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1080 if (obj == NULL) {
1081 mutex_unlock(&dev->struct_mutex);
bf79cb91 1082 return -ENOENT;
673a394b
EA
1083 }
1084
1085#if WATCH_BUF
cfd43c02 1086 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
673a394b
EA
1087 __func__, args->handle, obj, obj->size);
1088#endif
23010e43 1089 obj_priv = to_intel_bo(obj);
673a394b
EA
1090
1091 /* Pinned buffers may be scanout, so flush the cache */
e47c68e9
EA
1092 if (obj_priv->pin_count)
1093 i915_gem_object_flush_cpu_write_domain(obj);
1094
673a394b
EA
1095 drm_gem_object_unreference(obj);
1096 mutex_unlock(&dev->struct_mutex);
1097 return ret;
1098}
1099
1100/**
1101 * Maps the contents of an object, returning the address it is mapped
1102 * into.
1103 *
1104 * While the mapping holds a reference on the contents of the object, it doesn't
1105 * imply a ref on the object itself.
1106 */
1107int
1108i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1109 struct drm_file *file_priv)
1110{
1111 struct drm_i915_gem_mmap *args = data;
1112 struct drm_gem_object *obj;
1113 loff_t offset;
1114 unsigned long addr;
1115
1116 if (!(dev->driver->driver_features & DRIVER_GEM))
1117 return -ENODEV;
1118
1119 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1120 if (obj == NULL)
bf79cb91 1121 return -ENOENT;
673a394b
EA
1122
1123 offset = args->offset;
1124
1125 down_write(&current->mm->mmap_sem);
1126 addr = do_mmap(obj->filp, 0, args->size,
1127 PROT_READ | PROT_WRITE, MAP_SHARED,
1128 args->offset);
1129 up_write(&current->mm->mmap_sem);
bc9025bd 1130 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1131 if (IS_ERR((void *)addr))
1132 return addr;
1133
1134 args->addr_ptr = (uint64_t) addr;
1135
1136 return 0;
1137}
1138
de151cf6
JB
1139/**
1140 * i915_gem_fault - fault a page into the GTT
1141 * vma: VMA in question
1142 * vmf: fault info
1143 *
1144 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1145 * from userspace. The fault handler takes care of binding the object to
1146 * the GTT (if needed), allocating and programming a fence register (again,
1147 * only if needed based on whether the old reg is still valid or the object
1148 * is tiled) and inserting a new PTE into the faulting process.
1149 *
1150 * Note that the faulting process may involve evicting existing objects
1151 * from the GTT and/or fence registers to make room. So performance may
1152 * suffer if the GTT working set is large or there are few fence registers
1153 * left.
1154 */
1155int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1156{
1157 struct drm_gem_object *obj = vma->vm_private_data;
1158 struct drm_device *dev = obj->dev;
7d1c4804 1159 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1160 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1161 pgoff_t page_offset;
1162 unsigned long pfn;
1163 int ret = 0;
0f973f27 1164 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1165
1166 /* We don't use vmf->pgoff since that has the fake offset */
1167 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1168 PAGE_SHIFT;
1169
1170 /* Now bind it into the GTT if needed */
1171 mutex_lock(&dev->struct_mutex);
1172 if (!obj_priv->gtt_space) {
e67b8ce1 1173 ret = i915_gem_object_bind_to_gtt(obj, 0);
c715089f
CW
1174 if (ret)
1175 goto unlock;
07f4f3e8 1176
07f4f3e8 1177 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1178 if (ret)
1179 goto unlock;
de151cf6
JB
1180 }
1181
1182 /* Need a new fence register? */
a09ba7fa 1183 if (obj_priv->tiling_mode != I915_TILING_NONE) {
8c4b8c3f 1184 ret = i915_gem_object_get_fence_reg(obj);
c715089f
CW
1185 if (ret)
1186 goto unlock;
d9ddcb96 1187 }
de151cf6 1188
7d1c4804
CW
1189 if (i915_gem_object_is_inactive(obj_priv))
1190 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1191
de151cf6
JB
1192 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1193 page_offset;
1194
1195 /* Finally, remap it using the new GTT offset */
1196 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1197unlock:
de151cf6
JB
1198 mutex_unlock(&dev->struct_mutex);
1199
1200 switch (ret) {
c715089f
CW
1201 case 0:
1202 case -ERESTARTSYS:
1203 return VM_FAULT_NOPAGE;
de151cf6
JB
1204 case -ENOMEM:
1205 case -EAGAIN:
1206 return VM_FAULT_OOM;
de151cf6 1207 default:
c715089f 1208 return VM_FAULT_SIGBUS;
de151cf6
JB
1209 }
1210}
1211
1212/**
1213 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1214 * @obj: obj in question
1215 *
1216 * GEM memory mapping works by handing back to userspace a fake mmap offset
1217 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1218 * up the object based on the offset and sets up the various memory mapping
1219 * structures.
1220 *
1221 * This routine allocates and attaches a fake offset for @obj.
1222 */
1223static int
1224i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1225{
1226 struct drm_device *dev = obj->dev;
1227 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1228 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1229 struct drm_map_list *list;
f77d390c 1230 struct drm_local_map *map;
de151cf6
JB
1231 int ret = 0;
1232
1233 /* Set the object up for mmap'ing */
1234 list = &obj->map_list;
9a298b2a 1235 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1236 if (!list->map)
1237 return -ENOMEM;
1238
1239 map = list->map;
1240 map->type = _DRM_GEM;
1241 map->size = obj->size;
1242 map->handle = obj;
1243
1244 /* Get a DRM GEM mmap offset allocated... */
1245 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1246 obj->size / PAGE_SIZE, 0, 0);
1247 if (!list->file_offset_node) {
1248 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1249 ret = -ENOMEM;
1250 goto out_free_list;
1251 }
1252
1253 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1254 obj->size / PAGE_SIZE, 0);
1255 if (!list->file_offset_node) {
1256 ret = -ENOMEM;
1257 goto out_free_list;
1258 }
1259
1260 list->hash.key = list->file_offset_node->start;
1261 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1262 DRM_ERROR("failed to add to map hash\n");
5618ca6a 1263 ret = -ENOMEM;
de151cf6
JB
1264 goto out_free_mm;
1265 }
1266
1267 /* By now we should be all set, any drm_mmap request on the offset
1268 * below will get to our mmap & fault handler */
1269 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1270
1271 return 0;
1272
1273out_free_mm:
1274 drm_mm_put_block(list->file_offset_node);
1275out_free_list:
9a298b2a 1276 kfree(list->map);
de151cf6
JB
1277
1278 return ret;
1279}
1280
901782b2
CW
1281/**
1282 * i915_gem_release_mmap - remove physical page mappings
1283 * @obj: obj in question
1284 *
af901ca1 1285 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1286 * relinquish ownership of the pages back to the system.
1287 *
1288 * It is vital that we remove the page mapping if we have mapped a tiled
1289 * object through the GTT and then lose the fence register due to
1290 * resource pressure. Similarly if the object has been moved out of the
1291 * aperture, than pages mapped into userspace must be revoked. Removing the
1292 * mapping will then trigger a page fault on the next user access, allowing
1293 * fixup by i915_gem_fault().
1294 */
d05ca301 1295void
901782b2
CW
1296i915_gem_release_mmap(struct drm_gem_object *obj)
1297{
1298 struct drm_device *dev = obj->dev;
23010e43 1299 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1300
1301 if (dev->dev_mapping)
1302 unmap_mapping_range(dev->dev_mapping,
1303 obj_priv->mmap_offset, obj->size, 1);
1304}
1305
ab00b3e5
JB
1306static void
1307i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1308{
1309 struct drm_device *dev = obj->dev;
23010e43 1310 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1311 struct drm_gem_mm *mm = dev->mm_private;
1312 struct drm_map_list *list;
1313
1314 list = &obj->map_list;
1315 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1316
1317 if (list->file_offset_node) {
1318 drm_mm_put_block(list->file_offset_node);
1319 list->file_offset_node = NULL;
1320 }
1321
1322 if (list->map) {
9a298b2a 1323 kfree(list->map);
ab00b3e5
JB
1324 list->map = NULL;
1325 }
1326
1327 obj_priv->mmap_offset = 0;
1328}
1329
de151cf6
JB
1330/**
1331 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1332 * @obj: object to check
1333 *
1334 * Return the required GTT alignment for an object, taking into account
1335 * potential fence register mapping if needed.
1336 */
1337static uint32_t
1338i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1339{
1340 struct drm_device *dev = obj->dev;
23010e43 1341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1342 int start, i;
1343
1344 /*
1345 * Minimum alignment is 4k (GTT page size), but might be greater
1346 * if a fence register is needed for the object.
1347 */
1348 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1349 return 4096;
1350
1351 /*
1352 * Previous chips need to be aligned to the size of the smallest
1353 * fence register that can contain the object.
1354 */
1355 if (IS_I9XX(dev))
1356 start = 1024*1024;
1357 else
1358 start = 512*1024;
1359
1360 for (i = start; i < obj->size; i <<= 1)
1361 ;
1362
1363 return i;
1364}
1365
1366/**
1367 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1368 * @dev: DRM device
1369 * @data: GTT mapping ioctl data
1370 * @file_priv: GEM object info
1371 *
1372 * Simply returns the fake offset to userspace so it can mmap it.
1373 * The mmap call will end up in drm_gem_mmap(), which will set things
1374 * up so we can get faults in the handler above.
1375 *
1376 * The fault handler will take care of binding the object into the GTT
1377 * (since it may have been evicted to make room for something), allocating
1378 * a fence register, and mapping the appropriate aperture address into
1379 * userspace.
1380 */
1381int
1382i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1383 struct drm_file *file_priv)
1384{
1385 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1386 struct drm_gem_object *obj;
1387 struct drm_i915_gem_object *obj_priv;
1388 int ret;
1389
1390 if (!(dev->driver->driver_features & DRIVER_GEM))
1391 return -ENODEV;
1392
1393 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1394 if (obj == NULL)
bf79cb91 1395 return -ENOENT;
de151cf6
JB
1396
1397 mutex_lock(&dev->struct_mutex);
1398
23010e43 1399 obj_priv = to_intel_bo(obj);
de151cf6 1400
ab18282d
CW
1401 if (obj_priv->madv != I915_MADV_WILLNEED) {
1402 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1403 drm_gem_object_unreference(obj);
1404 mutex_unlock(&dev->struct_mutex);
1405 return -EINVAL;
1406 }
1407
1408
de151cf6
JB
1409 if (!obj_priv->mmap_offset) {
1410 ret = i915_gem_create_mmap_offset(obj);
13af1062
CW
1411 if (ret) {
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
de151cf6 1414 return ret;
13af1062 1415 }
de151cf6
JB
1416 }
1417
1418 args->offset = obj_priv->mmap_offset;
1419
de151cf6
JB
1420 /*
1421 * Pull it into the GTT so that we have a page list (makes the
1422 * initial fault faster and any subsequent flushing possible).
1423 */
1424 if (!obj_priv->agp_mem) {
e67b8ce1 1425 ret = i915_gem_object_bind_to_gtt(obj, 0);
de151cf6
JB
1426 if (ret) {
1427 drm_gem_object_unreference(obj);
1428 mutex_unlock(&dev->struct_mutex);
1429 return ret;
1430 }
de151cf6
JB
1431 }
1432
1433 drm_gem_object_unreference(obj);
1434 mutex_unlock(&dev->struct_mutex);
1435
1436 return 0;
1437}
1438
6911a9b8 1439void
856fa198 1440i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1441{
23010e43 1442 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1443 int page_count = obj->size / PAGE_SIZE;
1444 int i;
1445
856fa198 1446 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1447 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1448
856fa198
EA
1449 if (--obj_priv->pages_refcount != 0)
1450 return;
673a394b 1451
280b713b
EA
1452 if (obj_priv->tiling_mode != I915_TILING_NONE)
1453 i915_gem_object_save_bit_17_swizzle(obj);
1454
3ef94daa 1455 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1456 obj_priv->dirty = 0;
3ef94daa
CW
1457
1458 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1459 if (obj_priv->dirty)
1460 set_page_dirty(obj_priv->pages[i]);
1461
1462 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1463 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1464
1465 page_cache_release(obj_priv->pages[i]);
1466 }
673a394b
EA
1467 obj_priv->dirty = 0;
1468
8e7d2b2c 1469 drm_free_large(obj_priv->pages);
856fa198 1470 obj_priv->pages = NULL;
673a394b
EA
1471}
1472
e35a41de 1473static uint32_t
a6910434
DV
1474i915_gem_next_request_seqno(struct drm_device *dev,
1475 struct intel_ring_buffer *ring)
e35a41de
DV
1476{
1477 drm_i915_private_t *dev_priv = dev->dev_private;
1478
a6910434
DV
1479 ring->outstanding_lazy_request = true;
1480
e35a41de
DV
1481 return dev_priv->next_seqno;
1482}
1483
673a394b 1484static void
617dbe27 1485i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1486 struct intel_ring_buffer *ring)
673a394b
EA
1487{
1488 struct drm_device *dev = obj->dev;
1489 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1490 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
617dbe27
DV
1491 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1492
852835f3
ZN
1493 BUG_ON(ring == NULL);
1494 obj_priv->ring = ring;
673a394b
EA
1495
1496 /* Add a reference if we're newly entering the active list. */
1497 if (!obj_priv->active) {
1498 drm_gem_object_reference(obj);
1499 obj_priv->active = 1;
1500 }
e35a41de 1501
673a394b 1502 /* Move from whatever list we were on to the tail of execution. */
5e118f41 1503 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1504 list_move_tail(&obj_priv->list, &ring->active_list);
5e118f41 1505 spin_unlock(&dev_priv->mm.active_list_lock);
ce44b0ea 1506 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1507}
1508
ce44b0ea
EA
1509static void
1510i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1511{
1512 struct drm_device *dev = obj->dev;
1513 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1514 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1515
1516 BUG_ON(!obj_priv->active);
1517 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1518 obj_priv->last_rendering_seqno = 0;
1519}
673a394b 1520
963b4836
CW
1521/* Immediately discard the backing storage */
1522static void
1523i915_gem_object_truncate(struct drm_gem_object *obj)
1524{
23010e43 1525 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1526 struct inode *inode;
963b4836 1527
ae9fed6b
CW
1528 /* Our goal here is to return as much of the memory as
1529 * is possible back to the system as we are called from OOM.
1530 * To do this we must instruct the shmfs to drop all of its
1531 * backing pages, *now*. Here we mirror the actions taken
1532 * when by shmem_delete_inode() to release the backing store.
1533 */
bb6baf76 1534 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1535 truncate_inode_pages(inode->i_mapping, 0);
1536 if (inode->i_op->truncate_range)
1537 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1538
1539 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1540}
1541
1542static inline int
1543i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1544{
1545 return obj_priv->madv == I915_MADV_DONTNEED;
1546}
1547
673a394b
EA
1548static void
1549i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1550{
1551 struct drm_device *dev = obj->dev;
1552 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1553 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1554
1555 i915_verify_inactive(dev, __FILE__, __LINE__);
1556 if (obj_priv->pin_count != 0)
1557 list_del_init(&obj_priv->list);
1558 else
1559 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1560
99fcb766
DV
1561 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1562
ce44b0ea 1563 obj_priv->last_rendering_seqno = 0;
852835f3 1564 obj_priv->ring = NULL;
673a394b
EA
1565 if (obj_priv->active) {
1566 obj_priv->active = 0;
1567 drm_gem_object_unreference(obj);
1568 }
1569 i915_verify_inactive(dev, __FILE__, __LINE__);
1570}
1571
8a1a49f9 1572void
63560396 1573i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1574 uint32_t flush_domains,
852835f3 1575 struct intel_ring_buffer *ring)
63560396
DV
1576{
1577 drm_i915_private_t *dev_priv = dev->dev_private;
1578 struct drm_i915_gem_object *obj_priv, *next;
1579
1580 list_for_each_entry_safe(obj_priv, next,
1581 &dev_priv->mm.gpu_write_list,
1582 gpu_write_list) {
a8089e84 1583 struct drm_gem_object *obj = &obj_priv->base;
63560396
DV
1584
1585 if ((obj->write_domain & flush_domains) ==
852835f3
ZN
1586 obj->write_domain &&
1587 obj_priv->ring->ring_flag == ring->ring_flag) {
63560396
DV
1588 uint32_t old_write_domain = obj->write_domain;
1589
1590 obj->write_domain = 0;
1591 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1592 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1593
1594 /* update the fence lru list */
007cc8ac
DV
1595 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1596 struct drm_i915_fence_reg *reg =
1597 &dev_priv->fence_regs[obj_priv->fence_reg];
1598 list_move_tail(&reg->lru_list,
63560396 1599 &dev_priv->mm.fence_list);
007cc8ac 1600 }
63560396
DV
1601
1602 trace_i915_gem_object_change_domain(obj,
1603 obj->read_domains,
1604 old_write_domain);
1605 }
1606 }
1607}
8187a2b7 1608
5a5a0c64 1609uint32_t
8a1a49f9
DV
1610i915_add_request(struct drm_device *dev,
1611 struct drm_file *file_priv,
1612 struct intel_ring_buffer *ring)
673a394b
EA
1613{
1614 drm_i915_private_t *dev_priv = dev->dev_private;
b962442e 1615 struct drm_i915_file_private *i915_file_priv = NULL;
673a394b
EA
1616 struct drm_i915_gem_request *request;
1617 uint32_t seqno;
1618 int was_empty;
673a394b 1619
b962442e
EA
1620 if (file_priv != NULL)
1621 i915_file_priv = file_priv->driver_priv;
1622
9a298b2a 1623 request = kzalloc(sizeof(*request), GFP_KERNEL);
673a394b
EA
1624 if (request == NULL)
1625 return 0;
1626
8a1a49f9 1627 seqno = ring->add_request(dev, ring, file_priv, 0);
673a394b
EA
1628
1629 request->seqno = seqno;
852835f3 1630 request->ring = ring;
673a394b 1631 request->emitted_jiffies = jiffies;
852835f3
ZN
1632 was_empty = list_empty(&ring->request_list);
1633 list_add_tail(&request->list, &ring->request_list);
1634
b962442e
EA
1635 if (i915_file_priv) {
1636 list_add_tail(&request->client_list,
1637 &i915_file_priv->mm.request_list);
1638 } else {
1639 INIT_LIST_HEAD(&request->client_list);
1640 }
673a394b 1641
f65d9421
BG
1642 if (!dev_priv->mm.suspended) {
1643 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1644 if (was_empty)
1645 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1646 }
673a394b
EA
1647 return seqno;
1648}
1649
1650/**
1651 * Command execution barrier
1652 *
1653 * Ensures that all commands in the ring are finished
1654 * before signalling the CPU
1655 */
8a1a49f9 1656static void
852835f3 1657i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1658{
673a394b 1659 uint32_t flush_domains = 0;
673a394b
EA
1660
1661 /* The sampler always gets flushed on i965 (sigh) */
1662 if (IS_I965G(dev))
1663 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3
ZN
1664
1665 ring->flush(dev, ring,
1666 I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1667}
1668
1669/**
1670 * Moves buffers associated only with the given active seqno from the active
1671 * to inactive list, potentially freeing them.
1672 */
1673static void
1674i915_gem_retire_request(struct drm_device *dev,
1675 struct drm_i915_gem_request *request)
1676{
1677 drm_i915_private_t *dev_priv = dev->dev_private;
1678
1c5d22f7
CW
1679 trace_i915_gem_request_retire(dev, request->seqno);
1680
673a394b
EA
1681 /* Move any buffers on the active list that are no longer referenced
1682 * by the ringbuffer to the flushing/inactive lists as appropriate.
1683 */
5e118f41 1684 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 1685 while (!list_empty(&request->ring->active_list)) {
673a394b
EA
1686 struct drm_gem_object *obj;
1687 struct drm_i915_gem_object *obj_priv;
1688
852835f3 1689 obj_priv = list_first_entry(&request->ring->active_list,
673a394b
EA
1690 struct drm_i915_gem_object,
1691 list);
a8089e84 1692 obj = &obj_priv->base;
673a394b
EA
1693
1694 /* If the seqno being retired doesn't match the oldest in the
1695 * list, then the oldest in the list must still be newer than
1696 * this seqno.
1697 */
1698 if (obj_priv->last_rendering_seqno != request->seqno)
5e118f41 1699 goto out;
de151cf6 1700
673a394b
EA
1701#if WATCH_LRU
1702 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1703 __func__, request->seqno, obj);
1704#endif
1705
ce44b0ea
EA
1706 if (obj->write_domain != 0)
1707 i915_gem_object_move_to_flushing(obj);
68c84342
SL
1708 else {
1709 /* Take a reference on the object so it won't be
1710 * freed while the spinlock is held. The list
1711 * protection for this spinlock is safe when breaking
1712 * the lock like this since the next thing we do
1713 * is just get the head of the list again.
1714 */
1715 drm_gem_object_reference(obj);
673a394b 1716 i915_gem_object_move_to_inactive(obj);
68c84342
SL
1717 spin_unlock(&dev_priv->mm.active_list_lock);
1718 drm_gem_object_unreference(obj);
1719 spin_lock(&dev_priv->mm.active_list_lock);
1720 }
673a394b 1721 }
5e118f41
CW
1722out:
1723 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b
EA
1724}
1725
1726/**
1727 * Returns true if seq1 is later than seq2.
1728 */
22be1724 1729bool
673a394b
EA
1730i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1731{
1732 return (int32_t)(seq1 - seq2) >= 0;
1733}
1734
1735uint32_t
852835f3 1736i915_get_gem_seqno(struct drm_device *dev,
d1b851fc 1737 struct intel_ring_buffer *ring)
673a394b 1738{
852835f3 1739 return ring->get_gem_seqno(dev, ring);
673a394b
EA
1740}
1741
1742/**
1743 * This function clears the request list as sequence numbers are passed.
1744 */
b09a1fec
CW
1745static void
1746i915_gem_retire_requests_ring(struct drm_device *dev,
1747 struct intel_ring_buffer *ring)
673a394b
EA
1748{
1749 drm_i915_private_t *dev_priv = dev->dev_private;
1750 uint32_t seqno;
1751
8187a2b7 1752 if (!ring->status_page.page_addr
852835f3 1753 || list_empty(&ring->request_list))
6c0594a3
KW
1754 return;
1755
852835f3 1756 seqno = i915_get_gem_seqno(dev, ring);
673a394b 1757
852835f3 1758 while (!list_empty(&ring->request_list)) {
673a394b
EA
1759 struct drm_i915_gem_request *request;
1760 uint32_t retiring_seqno;
1761
852835f3 1762 request = list_first_entry(&ring->request_list,
673a394b
EA
1763 struct drm_i915_gem_request,
1764 list);
1765 retiring_seqno = request->seqno;
1766
1767 if (i915_seqno_passed(seqno, retiring_seqno) ||
ba1234d1 1768 atomic_read(&dev_priv->mm.wedged)) {
673a394b
EA
1769 i915_gem_retire_request(dev, request);
1770
1771 list_del(&request->list);
b962442e 1772 list_del(&request->client_list);
9a298b2a 1773 kfree(request);
673a394b
EA
1774 } else
1775 break;
1776 }
9d34e5db
CW
1777
1778 if (unlikely (dev_priv->trace_irq_seqno &&
1779 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
8187a2b7
ZN
1780
1781 ring->user_irq_put(dev, ring);
9d34e5db
CW
1782 dev_priv->trace_irq_seqno = 0;
1783 }
673a394b
EA
1784}
1785
b09a1fec
CW
1786void
1787i915_gem_retire_requests(struct drm_device *dev)
1788{
1789 drm_i915_private_t *dev_priv = dev->dev_private;
1790
be72615b
CW
1791 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1792 struct drm_i915_gem_object *obj_priv, *tmp;
1793
1794 /* We must be careful that during unbind() we do not
1795 * accidentally infinitely recurse into retire requests.
1796 * Currently:
1797 * retire -> free -> unbind -> wait -> retire_ring
1798 */
1799 list_for_each_entry_safe(obj_priv, tmp,
1800 &dev_priv->mm.deferred_free_list,
1801 list)
1802 i915_gem_free_object_tail(&obj_priv->base);
1803 }
1804
b09a1fec
CW
1805 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1806 if (HAS_BSD(dev))
1807 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1808}
1809
75ef9da2 1810static void
673a394b
EA
1811i915_gem_retire_work_handler(struct work_struct *work)
1812{
1813 drm_i915_private_t *dev_priv;
1814 struct drm_device *dev;
1815
1816 dev_priv = container_of(work, drm_i915_private_t,
1817 mm.retire_work.work);
1818 dev = dev_priv->dev;
1819
1820 mutex_lock(&dev->struct_mutex);
b09a1fec 1821 i915_gem_retire_requests(dev);
d1b851fc 1822
6dbe2772 1823 if (!dev_priv->mm.suspended &&
d1b851fc
ZN
1824 (!list_empty(&dev_priv->render_ring.request_list) ||
1825 (HAS_BSD(dev) &&
1826 !list_empty(&dev_priv->bsd_ring.request_list))))
9c9fe1f8 1827 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1828 mutex_unlock(&dev->struct_mutex);
1829}
1830
5a5a0c64 1831int
852835f3 1832i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1833 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1834{
1835 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1836 u32 ier;
673a394b
EA
1837 int ret = 0;
1838
1839 BUG_ON(seqno == 0);
1840
e35a41de 1841 if (seqno == dev_priv->next_seqno) {
8a1a49f9 1842 seqno = i915_add_request(dev, NULL, ring);
e35a41de
DV
1843 if (seqno == 0)
1844 return -ENOMEM;
1845 }
1846
ba1234d1 1847 if (atomic_read(&dev_priv->mm.wedged))
ffed1d09
BG
1848 return -EIO;
1849
852835f3 1850 if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
bad720ff 1851 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
1852 ier = I915_READ(DEIER) | I915_READ(GTIER);
1853 else
1854 ier = I915_READ(IER);
802c7eb6
JB
1855 if (!ier) {
1856 DRM_ERROR("something (likely vbetool) disabled "
1857 "interrupts, re-enabling\n");
1858 i915_driver_irq_preinstall(dev);
1859 i915_driver_irq_postinstall(dev);
1860 }
1861
1c5d22f7
CW
1862 trace_i915_gem_request_wait_begin(dev, seqno);
1863
852835f3 1864 ring->waiting_gem_seqno = seqno;
8187a2b7 1865 ring->user_irq_get(dev, ring);
48764bf4 1866 if (interruptible)
852835f3
ZN
1867 ret = wait_event_interruptible(ring->irq_queue,
1868 i915_seqno_passed(
1869 ring->get_gem_seqno(dev, ring), seqno)
1870 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1871 else
852835f3
ZN
1872 wait_event(ring->irq_queue,
1873 i915_seqno_passed(
1874 ring->get_gem_seqno(dev, ring), seqno)
1875 || atomic_read(&dev_priv->mm.wedged));
48764bf4 1876
8187a2b7 1877 ring->user_irq_put(dev, ring);
852835f3 1878 ring->waiting_gem_seqno = 0;
1c5d22f7
CW
1879
1880 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 1881 }
ba1234d1 1882 if (atomic_read(&dev_priv->mm.wedged))
673a394b
EA
1883 ret = -EIO;
1884
1885 if (ret && ret != -ERESTARTSYS)
8bff917c
DV
1886 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1887 __func__, ret, seqno, ring->get_gem_seqno(dev, ring),
1888 dev_priv->next_seqno);
673a394b
EA
1889
1890 /* Directly dispatch request retiring. While we have the work queue
1891 * to handle this, the waiter on a request often wants an associated
1892 * buffer to have made it to the inactive list, and we would need
1893 * a separate wait queue to handle that.
1894 */
1895 if (ret == 0)
b09a1fec 1896 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
1897
1898 return ret;
1899}
1900
48764bf4
DV
1901/**
1902 * Waits for a sequence number to be signaled, and cleans up the
1903 * request and object lists appropriately for that event.
1904 */
1905static int
852835f3
ZN
1906i915_wait_request(struct drm_device *dev, uint32_t seqno,
1907 struct intel_ring_buffer *ring)
48764bf4 1908{
852835f3 1909 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
1910}
1911
8187a2b7
ZN
1912static void
1913i915_gem_flush(struct drm_device *dev,
1914 uint32_t invalidate_domains,
1915 uint32_t flush_domains)
1916{
1917 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 1918
8187a2b7
ZN
1919 if (flush_domains & I915_GEM_DOMAIN_CPU)
1920 drm_agp_chipset_flush(dev);
8bff917c 1921
8187a2b7
ZN
1922 dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1923 invalidate_domains,
1924 flush_domains);
d1b851fc
ZN
1925
1926 if (HAS_BSD(dev))
1927 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1928 invalidate_domains,
1929 flush_domains);
8187a2b7
ZN
1930}
1931
673a394b
EA
1932/**
1933 * Ensures that all rendering to the object has completed and the object is
1934 * safe to unbind from the GTT or access from the CPU.
1935 */
1936static int
ba3d8d74 1937i915_gem_object_wait_rendering(struct drm_gem_object *obj)
673a394b
EA
1938{
1939 struct drm_device *dev = obj->dev;
23010e43 1940 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1941 int ret;
1942
e47c68e9
EA
1943 /* This function only exists to support waiting for existing rendering,
1944 * not for emitting required flushes.
673a394b 1945 */
e47c68e9 1946 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
1947
1948 /* If there is rendering queued on the buffer being evicted, wait for
1949 * it.
1950 */
1951 if (obj_priv->active) {
1952#if WATCH_BUF
1953 DRM_INFO("%s: object %p wait for seqno %08x\n",
1954 __func__, obj, obj_priv->last_rendering_seqno);
1955#endif
ba3d8d74
DV
1956 ret = i915_wait_request(dev,
1957 obj_priv->last_rendering_seqno,
1958 obj_priv->ring);
673a394b
EA
1959 if (ret != 0)
1960 return ret;
1961 }
1962
1963 return 0;
1964}
1965
1966/**
1967 * Unbinds an object from the GTT aperture.
1968 */
0f973f27 1969int
673a394b
EA
1970i915_gem_object_unbind(struct drm_gem_object *obj)
1971{
1972 struct drm_device *dev = obj->dev;
4a87b8ca 1973 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1974 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1975 int ret = 0;
1976
1977#if WATCH_BUF
1978 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1979 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1980#endif
1981 if (obj_priv->gtt_space == NULL)
1982 return 0;
1983
1984 if (obj_priv->pin_count != 0) {
1985 DRM_ERROR("Attempting to unbind pinned buffer\n");
1986 return -EINVAL;
1987 }
1988
5323fd04
EA
1989 /* blow away mappings if mapped through GTT */
1990 i915_gem_release_mmap(obj);
1991
673a394b
EA
1992 /* Move the object to the CPU domain to ensure that
1993 * any possible CPU writes while it's not in the GTT
1994 * are flushed when we go to remap it. This will
1995 * also ensure that all pending GPU writes are finished
1996 * before we unbind.
1997 */
e47c68e9 1998 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 1999 if (ret == -ERESTARTSYS)
673a394b 2000 return ret;
8dc1775d
CW
2001 /* Continue on if we fail due to EIO, the GPU is hung so we
2002 * should be safe and we need to cleanup or else we might
2003 * cause memory corruption through use-after-free.
2004 */
673a394b 2005
96b47b65
DV
2006 /* release the fence reg _after_ flushing */
2007 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2008 i915_gem_clear_fence_reg(obj);
2009
673a394b
EA
2010 if (obj_priv->agp_mem != NULL) {
2011 drm_unbind_agp(obj_priv->agp_mem);
2012 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2013 obj_priv->agp_mem = NULL;
2014 }
2015
856fa198 2016 i915_gem_object_put_pages(obj);
a32808c0 2017 BUG_ON(obj_priv->pages_refcount);
673a394b
EA
2018
2019 if (obj_priv->gtt_space) {
2020 atomic_dec(&dev->gtt_count);
2021 atomic_sub(obj->size, &dev->gtt_memory);
2022
2023 drm_mm_put_block(obj_priv->gtt_space);
2024 obj_priv->gtt_space = NULL;
2025 }
2026
2027 /* Remove ourselves from the LRU list if present. */
4a87b8ca 2028 spin_lock(&dev_priv->mm.active_list_lock);
673a394b
EA
2029 if (!list_empty(&obj_priv->list))
2030 list_del_init(&obj_priv->list);
4a87b8ca 2031 spin_unlock(&dev_priv->mm.active_list_lock);
673a394b 2032
963b4836
CW
2033 if (i915_gem_object_is_purgeable(obj_priv))
2034 i915_gem_object_truncate(obj);
2035
1c5d22f7
CW
2036 trace_i915_gem_object_unbind(obj);
2037
8dc1775d 2038 return ret;
673a394b
EA
2039}
2040
b47eb4a2 2041int
4df2faf4
DV
2042i915_gpu_idle(struct drm_device *dev)
2043{
2044 drm_i915_private_t *dev_priv = dev->dev_private;
2045 bool lists_empty;
d1b851fc 2046 uint32_t seqno1, seqno2;
852835f3 2047 int ret;
4df2faf4
DV
2048
2049 spin_lock(&dev_priv->mm.active_list_lock);
d1b851fc
ZN
2050 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2051 list_empty(&dev_priv->render_ring.active_list) &&
2052 (!HAS_BSD(dev) ||
2053 list_empty(&dev_priv->bsd_ring.active_list)));
4df2faf4
DV
2054 spin_unlock(&dev_priv->mm.active_list_lock);
2055
2056 if (lists_empty)
2057 return 0;
2058
2059 /* Flush everything onto the inactive list. */
2060 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
8a1a49f9 2061 seqno1 = i915_add_request(dev, NULL, &dev_priv->render_ring);
d1b851fc 2062 if (seqno1 == 0)
4df2faf4 2063 return -ENOMEM;
d1b851fc 2064 ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
8a1a49f9
DV
2065 if (ret)
2066 return ret;
d1b851fc
ZN
2067
2068 if (HAS_BSD(dev)) {
8a1a49f9 2069 seqno2 = i915_add_request(dev, NULL, &dev_priv->bsd_ring);
d1b851fc
ZN
2070 if (seqno2 == 0)
2071 return -ENOMEM;
d1b851fc
ZN
2072 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2073 if (ret)
2074 return ret;
2075 }
2076
8a1a49f9 2077 return 0;
4df2faf4
DV
2078}
2079
6911a9b8 2080int
4bdadb97
CW
2081i915_gem_object_get_pages(struct drm_gem_object *obj,
2082 gfp_t gfpmask)
673a394b 2083{
23010e43 2084 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2085 int page_count, i;
2086 struct address_space *mapping;
2087 struct inode *inode;
2088 struct page *page;
673a394b 2089
778c3544
DV
2090 BUG_ON(obj_priv->pages_refcount
2091 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2092
856fa198 2093 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2094 return 0;
2095
2096 /* Get the list of pages out of our struct file. They'll be pinned
2097 * at this point until we release them.
2098 */
2099 page_count = obj->size / PAGE_SIZE;
856fa198 2100 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2101 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2102 if (obj_priv->pages == NULL) {
856fa198 2103 obj_priv->pages_refcount--;
673a394b
EA
2104 return -ENOMEM;
2105 }
2106
2107 inode = obj->filp->f_path.dentry->d_inode;
2108 mapping = inode->i_mapping;
2109 for (i = 0; i < page_count; i++) {
4bdadb97 2110 page = read_cache_page_gfp(mapping, i,
985b823b 2111 GFP_HIGHUSER |
4bdadb97 2112 __GFP_COLD |
cd9f040d 2113 __GFP_RECLAIMABLE |
4bdadb97 2114 gfpmask);
1f2b1013
CW
2115 if (IS_ERR(page))
2116 goto err_pages;
2117
856fa198 2118 obj_priv->pages[i] = page;
673a394b 2119 }
280b713b
EA
2120
2121 if (obj_priv->tiling_mode != I915_TILING_NONE)
2122 i915_gem_object_do_bit_17_swizzle(obj);
2123
673a394b 2124 return 0;
1f2b1013
CW
2125
2126err_pages:
2127 while (i--)
2128 page_cache_release(obj_priv->pages[i]);
2129
2130 drm_free_large(obj_priv->pages);
2131 obj_priv->pages = NULL;
2132 obj_priv->pages_refcount--;
2133 return PTR_ERR(page);
673a394b
EA
2134}
2135
4e901fdc
EA
2136static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2137{
2138 struct drm_gem_object *obj = reg->obj;
2139 struct drm_device *dev = obj->dev;
2140 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2141 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2142 int regnum = obj_priv->fence_reg;
2143 uint64_t val;
2144
2145 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2146 0xfffff000) << 32;
2147 val |= obj_priv->gtt_offset & 0xfffff000;
2148 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2149 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2150
2151 if (obj_priv->tiling_mode == I915_TILING_Y)
2152 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2153 val |= I965_FENCE_REG_VALID;
2154
2155 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2156}
2157
de151cf6
JB
2158static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2159{
2160 struct drm_gem_object *obj = reg->obj;
2161 struct drm_device *dev = obj->dev;
2162 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2163 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2164 int regnum = obj_priv->fence_reg;
2165 uint64_t val;
2166
2167 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2168 0xfffff000) << 32;
2169 val |= obj_priv->gtt_offset & 0xfffff000;
2170 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2171 if (obj_priv->tiling_mode == I915_TILING_Y)
2172 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2173 val |= I965_FENCE_REG_VALID;
2174
2175 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2176}
2177
2178static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2179{
2180 struct drm_gem_object *obj = reg->obj;
2181 struct drm_device *dev = obj->dev;
2182 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2183 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2184 int regnum = obj_priv->fence_reg;
0f973f27 2185 int tile_width;
dc529a4f 2186 uint32_t fence_reg, val;
de151cf6
JB
2187 uint32_t pitch_val;
2188
2189 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2190 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2191 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2192 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2193 return;
2194 }
2195
0f973f27
JB
2196 if (obj_priv->tiling_mode == I915_TILING_Y &&
2197 HAS_128_BYTE_Y_TILING(dev))
2198 tile_width = 128;
de151cf6 2199 else
0f973f27
JB
2200 tile_width = 512;
2201
2202 /* Note: pitch better be a power of two tile widths */
2203 pitch_val = obj_priv->stride / tile_width;
2204 pitch_val = ffs(pitch_val) - 1;
de151cf6 2205
c36a2a6d
DV
2206 if (obj_priv->tiling_mode == I915_TILING_Y &&
2207 HAS_128_BYTE_Y_TILING(dev))
2208 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2209 else
2210 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2211
de151cf6
JB
2212 val = obj_priv->gtt_offset;
2213 if (obj_priv->tiling_mode == I915_TILING_Y)
2214 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2215 val |= I915_FENCE_SIZE_BITS(obj->size);
2216 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2217 val |= I830_FENCE_REG_VALID;
2218
dc529a4f
EA
2219 if (regnum < 8)
2220 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2221 else
2222 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2223 I915_WRITE(fence_reg, val);
de151cf6
JB
2224}
2225
2226static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2227{
2228 struct drm_gem_object *obj = reg->obj;
2229 struct drm_device *dev = obj->dev;
2230 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2231 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2232 int regnum = obj_priv->fence_reg;
2233 uint32_t val;
2234 uint32_t pitch_val;
8d7773a3 2235 uint32_t fence_size_bits;
de151cf6 2236
8d7773a3 2237 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2238 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2239 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2240 __func__, obj_priv->gtt_offset);
de151cf6
JB
2241 return;
2242 }
2243
e76a16de
EA
2244 pitch_val = obj_priv->stride / 128;
2245 pitch_val = ffs(pitch_val) - 1;
2246 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2247
de151cf6
JB
2248 val = obj_priv->gtt_offset;
2249 if (obj_priv->tiling_mode == I915_TILING_Y)
2250 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2251 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2252 WARN_ON(fence_size_bits & ~0x00000f00);
2253 val |= fence_size_bits;
de151cf6
JB
2254 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2255 val |= I830_FENCE_REG_VALID;
2256
2257 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2258}
2259
ae3db24a
DV
2260static int i915_find_fence_reg(struct drm_device *dev)
2261{
2262 struct drm_i915_fence_reg *reg = NULL;
2263 struct drm_i915_gem_object *obj_priv = NULL;
2264 struct drm_i915_private *dev_priv = dev->dev_private;
2265 struct drm_gem_object *obj = NULL;
2266 int i, avail, ret;
2267
2268 /* First try to find a free reg */
2269 avail = 0;
2270 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2271 reg = &dev_priv->fence_regs[i];
2272 if (!reg->obj)
2273 return i;
2274
23010e43 2275 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2276 if (!obj_priv->pin_count)
2277 avail++;
2278 }
2279
2280 if (avail == 0)
2281 return -ENOSPC;
2282
2283 /* None available, try to steal one or wait for a user to finish */
2284 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2285 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2286 lru_list) {
2287 obj = reg->obj;
2288 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2289
2290 if (obj_priv->pin_count)
2291 continue;
2292
2293 /* found one! */
2294 i = obj_priv->fence_reg;
2295 break;
2296 }
2297
2298 BUG_ON(i == I915_FENCE_REG_NONE);
2299
2300 /* We only have a reference on obj from the active list. put_fence_reg
2301 * might drop that one, causing a use-after-free in it. So hold a
2302 * private reference to obj like the other callers of put_fence_reg
2303 * (set_tiling ioctl) do. */
2304 drm_gem_object_reference(obj);
2305 ret = i915_gem_object_put_fence_reg(obj);
2306 drm_gem_object_unreference(obj);
2307 if (ret != 0)
2308 return ret;
2309
2310 return i;
2311}
2312
de151cf6
JB
2313/**
2314 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2315 * @obj: object to map through a fence reg
2316 *
2317 * When mapping objects through the GTT, userspace wants to be able to write
2318 * to them without having to worry about swizzling if the object is tiled.
2319 *
2320 * This function walks the fence regs looking for a free one for @obj,
2321 * stealing one if it can't find any.
2322 *
2323 * It then sets up the reg based on the object's properties: address, pitch
2324 * and tiling format.
2325 */
8c4b8c3f
CW
2326int
2327i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
de151cf6
JB
2328{
2329 struct drm_device *dev = obj->dev;
79e53945 2330 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2331 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2332 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2333 int ret;
de151cf6 2334
a09ba7fa
EA
2335 /* Just update our place in the LRU if our fence is getting used. */
2336 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2337 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2338 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2339 return 0;
2340 }
2341
de151cf6
JB
2342 switch (obj_priv->tiling_mode) {
2343 case I915_TILING_NONE:
2344 WARN(1, "allocating a fence for non-tiled object?\n");
2345 break;
2346 case I915_TILING_X:
0f973f27
JB
2347 if (!obj_priv->stride)
2348 return -EINVAL;
2349 WARN((obj_priv->stride & (512 - 1)),
2350 "object 0x%08x is X tiled but has non-512B pitch\n",
2351 obj_priv->gtt_offset);
de151cf6
JB
2352 break;
2353 case I915_TILING_Y:
0f973f27
JB
2354 if (!obj_priv->stride)
2355 return -EINVAL;
2356 WARN((obj_priv->stride & (128 - 1)),
2357 "object 0x%08x is Y tiled but has non-128B pitch\n",
2358 obj_priv->gtt_offset);
de151cf6
JB
2359 break;
2360 }
2361
ae3db24a
DV
2362 ret = i915_find_fence_reg(dev);
2363 if (ret < 0)
2364 return ret;
de151cf6 2365
ae3db24a
DV
2366 obj_priv->fence_reg = ret;
2367 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2368 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2369
de151cf6
JB
2370 reg->obj = obj;
2371
4e901fdc
EA
2372 if (IS_GEN6(dev))
2373 sandybridge_write_fence_reg(reg);
2374 else if (IS_I965G(dev))
de151cf6
JB
2375 i965_write_fence_reg(reg);
2376 else if (IS_I9XX(dev))
2377 i915_write_fence_reg(reg);
2378 else
2379 i830_write_fence_reg(reg);
d9ddcb96 2380
ae3db24a
DV
2381 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2382 obj_priv->tiling_mode);
1c5d22f7 2383
d9ddcb96 2384 return 0;
de151cf6
JB
2385}
2386
2387/**
2388 * i915_gem_clear_fence_reg - clear out fence register info
2389 * @obj: object to clear
2390 *
2391 * Zeroes out the fence register itself and clears out the associated
2392 * data structures in dev_priv and obj_priv.
2393 */
2394static void
2395i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2396{
2397 struct drm_device *dev = obj->dev;
79e53945 2398 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2399 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2400 struct drm_i915_fence_reg *reg =
2401 &dev_priv->fence_regs[obj_priv->fence_reg];
de151cf6 2402
4e901fdc
EA
2403 if (IS_GEN6(dev)) {
2404 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2405 (obj_priv->fence_reg * 8), 0);
2406 } else if (IS_I965G(dev)) {
de151cf6 2407 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
4e901fdc 2408 } else {
dc529a4f
EA
2409 uint32_t fence_reg;
2410
2411 if (obj_priv->fence_reg < 8)
2412 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2413 else
2414 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2415 8) * 4;
2416
2417 I915_WRITE(fence_reg, 0);
2418 }
de151cf6 2419
007cc8ac 2420 reg->obj = NULL;
de151cf6 2421 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2422 list_del_init(&reg->lru_list);
de151cf6
JB
2423}
2424
52dc7d32
CW
2425/**
2426 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2427 * to the buffer to finish, and then resets the fence register.
2428 * @obj: tiled object holding a fence register.
2429 *
2430 * Zeroes out the fence register itself and clears out the associated
2431 * data structures in dev_priv and obj_priv.
2432 */
2433int
2434i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2435{
2436 struct drm_device *dev = obj->dev;
23010e43 2437 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
52dc7d32
CW
2438
2439 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2440 return 0;
2441
10ae9bd2
DV
2442 /* If we've changed tiling, GTT-mappings of the object
2443 * need to re-fault to ensure that the correct fence register
2444 * setup is in place.
2445 */
2446 i915_gem_release_mmap(obj);
2447
52dc7d32
CW
2448 /* On the i915, GPU access to tiled buffers is via a fence,
2449 * therefore we must wait for any outstanding access to complete
2450 * before clearing the fence.
2451 */
2452 if (!IS_I965G(dev)) {
2453 int ret;
2454
ba3d8d74 2455 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
52dc7d32
CW
2456 if (ret != 0)
2457 return ret;
2458 }
2459
4a726612 2460 i915_gem_object_flush_gtt_write_domain(obj);
52dc7d32
CW
2461 i915_gem_clear_fence_reg (obj);
2462
2463 return 0;
2464}
2465
673a394b
EA
2466/**
2467 * Finds free space in the GTT aperture and binds the object there.
2468 */
2469static int
2470i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2471{
2472 struct drm_device *dev = obj->dev;
2473 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2474 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2475 struct drm_mm_node *free_space;
4bdadb97 2476 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2477 int ret;
673a394b 2478
bb6baf76 2479 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2480 DRM_ERROR("Attempting to bind a purgeable object\n");
2481 return -EINVAL;
2482 }
2483
673a394b 2484 if (alignment == 0)
0f973f27 2485 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2486 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2487 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2488 return -EINVAL;
2489 }
2490
654fc607
CW
2491 /* If the object is bigger than the entire aperture, reject it early
2492 * before evicting everything in a vain attempt to find space.
2493 */
2494 if (obj->size > dev->gtt_total) {
2495 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2496 return -E2BIG;
2497 }
2498
673a394b
EA
2499 search_free:
2500 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2501 obj->size, alignment, 0);
2502 if (free_space != NULL) {
2503 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2504 alignment);
db3307a9 2505 if (obj_priv->gtt_space != NULL)
673a394b 2506 obj_priv->gtt_offset = obj_priv->gtt_space->start;
673a394b
EA
2507 }
2508 if (obj_priv->gtt_space == NULL) {
2509 /* If the gtt is empty and we're still having trouble
2510 * fitting our object in, we're out of memory.
2511 */
2512#if WATCH_LRU
2513 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2514#endif
0108a3ed 2515 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2516 if (ret)
673a394b 2517 return ret;
9731129c 2518
673a394b
EA
2519 goto search_free;
2520 }
2521
2522#if WATCH_BUF
cfd43c02 2523 DRM_INFO("Binding object of size %zd at 0x%08x\n",
673a394b
EA
2524 obj->size, obj_priv->gtt_offset);
2525#endif
4bdadb97 2526 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2527 if (ret) {
2528 drm_mm_put_block(obj_priv->gtt_space);
2529 obj_priv->gtt_space = NULL;
07f73f69
CW
2530
2531 if (ret == -ENOMEM) {
2532 /* first try to clear up some space from the GTT */
0108a3ed
DV
2533 ret = i915_gem_evict_something(dev, obj->size,
2534 alignment);
07f73f69 2535 if (ret) {
07f73f69 2536 /* now try to shrink everyone else */
4bdadb97
CW
2537 if (gfpmask) {
2538 gfpmask = 0;
2539 goto search_free;
07f73f69
CW
2540 }
2541
2542 return ret;
2543 }
2544
2545 goto search_free;
2546 }
2547
673a394b
EA
2548 return ret;
2549 }
2550
673a394b
EA
2551 /* Create an AGP memory structure pointing at our pages, and bind it
2552 * into the GTT.
2553 */
2554 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2555 obj_priv->pages,
07f73f69 2556 obj->size >> PAGE_SHIFT,
ba1eb1d8
KP
2557 obj_priv->gtt_offset,
2558 obj_priv->agp_type);
673a394b 2559 if (obj_priv->agp_mem == NULL) {
856fa198 2560 i915_gem_object_put_pages(obj);
673a394b
EA
2561 drm_mm_put_block(obj_priv->gtt_space);
2562 obj_priv->gtt_space = NULL;
07f73f69 2563
0108a3ed 2564 ret = i915_gem_evict_something(dev, obj->size, alignment);
9731129c 2565 if (ret)
07f73f69 2566 return ret;
07f73f69
CW
2567
2568 goto search_free;
673a394b
EA
2569 }
2570 atomic_inc(&dev->gtt_count);
2571 atomic_add(obj->size, &dev->gtt_memory);
2572
bf1a1092
CW
2573 /* keep track of bounds object by adding it to the inactive list */
2574 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2575
673a394b
EA
2576 /* Assert that the object is not currently in any GPU domain. As it
2577 * wasn't in the GTT, there shouldn't be any way it could have been in
2578 * a GPU cache
2579 */
21d509e3
CW
2580 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2581 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2582
1c5d22f7
CW
2583 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2584
673a394b
EA
2585 return 0;
2586}
2587
2588void
2589i915_gem_clflush_object(struct drm_gem_object *obj)
2590{
23010e43 2591 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2592
2593 /* If we don't have a page list set up, then we're not pinned
2594 * to GPU, and we can ignore the cache flush because it'll happen
2595 * again at bind time.
2596 */
856fa198 2597 if (obj_priv->pages == NULL)
673a394b
EA
2598 return;
2599
1c5d22f7 2600 trace_i915_gem_object_clflush(obj);
cfa16a0d 2601
856fa198 2602 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2603}
2604
e47c68e9 2605/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2606static int
ba3d8d74
DV
2607i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2608 bool pipelined)
e47c68e9
EA
2609{
2610 struct drm_device *dev = obj->dev;
1c5d22f7 2611 uint32_t old_write_domain;
e47c68e9
EA
2612
2613 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2614 return 0;
e47c68e9
EA
2615
2616 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2617 old_write_domain = obj->write_domain;
e47c68e9 2618 i915_gem_flush(dev, 0, obj->write_domain);
1c5d22f7
CW
2619
2620 trace_i915_gem_object_change_domain(obj,
2621 obj->read_domains,
2622 old_write_domain);
ba3d8d74
DV
2623
2624 if (pipelined)
2625 return 0;
2626
2627 return i915_gem_object_wait_rendering(obj);
e47c68e9
EA
2628}
2629
2630/** Flushes the GTT write domain for the object if it's dirty. */
2631static void
2632i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2633{
1c5d22f7
CW
2634 uint32_t old_write_domain;
2635
e47c68e9
EA
2636 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2637 return;
2638
2639 /* No actual flushing is required for the GTT write domain. Writes
2640 * to it immediately go to main memory as far as we know, so there's
2641 * no chipset flush. It also doesn't land in render cache.
2642 */
1c5d22f7 2643 old_write_domain = obj->write_domain;
e47c68e9 2644 obj->write_domain = 0;
1c5d22f7
CW
2645
2646 trace_i915_gem_object_change_domain(obj,
2647 obj->read_domains,
2648 old_write_domain);
e47c68e9
EA
2649}
2650
2651/** Flushes the CPU write domain for the object if it's dirty. */
2652static void
2653i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2654{
2655 struct drm_device *dev = obj->dev;
1c5d22f7 2656 uint32_t old_write_domain;
e47c68e9
EA
2657
2658 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2659 return;
2660
2661 i915_gem_clflush_object(obj);
2662 drm_agp_chipset_flush(dev);
1c5d22f7 2663 old_write_domain = obj->write_domain;
e47c68e9 2664 obj->write_domain = 0;
1c5d22f7
CW
2665
2666 trace_i915_gem_object_change_domain(obj,
2667 obj->read_domains,
2668 old_write_domain);
e47c68e9
EA
2669}
2670
2dafb1e0 2671int
6b95a207
KH
2672i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2673{
2dafb1e0
CW
2674 int ret = 0;
2675
6b95a207
KH
2676 switch (obj->write_domain) {
2677 case I915_GEM_DOMAIN_GTT:
2678 i915_gem_object_flush_gtt_write_domain(obj);
2679 break;
2680 case I915_GEM_DOMAIN_CPU:
2681 i915_gem_object_flush_cpu_write_domain(obj);
2682 break;
2683 default:
ba3d8d74 2684 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
6b95a207
KH
2685 break;
2686 }
2dafb1e0
CW
2687
2688 return ret;
6b95a207
KH
2689}
2690
2ef7eeaa
EA
2691/**
2692 * Moves a single object to the GTT read, and possibly write domain.
2693 *
2694 * This function returns when the move is complete, including waiting on
2695 * flushes to occur.
2696 */
79e53945 2697int
2ef7eeaa
EA
2698i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2699{
23010e43 2700 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2701 uint32_t old_write_domain, old_read_domains;
e47c68e9 2702 int ret;
2ef7eeaa 2703
02354392
EA
2704 /* Not valid to be called on unbound objects. */
2705 if (obj_priv->gtt_space == NULL)
2706 return -EINVAL;
2707
ba3d8d74 2708 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2709 if (ret != 0)
2710 return ret;
2711
1c5d22f7
CW
2712 old_write_domain = obj->write_domain;
2713 old_read_domains = obj->read_domains;
2714
e47c68e9
EA
2715 /* If we're writing through the GTT domain, then CPU and GPU caches
2716 * will need to be invalidated at next use.
2ef7eeaa 2717 */
ba3d8d74
DV
2718 if (write) {
2719 ret = i915_gem_object_wait_rendering(obj);
2720 if (ret)
2721 return ret;
2722
e47c68e9 2723 obj->read_domains &= I915_GEM_DOMAIN_GTT;
ba3d8d74 2724 }
2ef7eeaa 2725
e47c68e9 2726 i915_gem_object_flush_cpu_write_domain(obj);
2ef7eeaa 2727
e47c68e9
EA
2728 /* It should now be out of any other write domains, and we can update
2729 * the domain values for our changes.
2730 */
2731 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2732 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2733 if (write) {
2734 obj->write_domain = I915_GEM_DOMAIN_GTT;
2735 obj_priv->dirty = 1;
2ef7eeaa
EA
2736 }
2737
1c5d22f7
CW
2738 trace_i915_gem_object_change_domain(obj,
2739 old_read_domains,
2740 old_write_domain);
2741
e47c68e9
EA
2742 return 0;
2743}
2744
b9241ea3
ZW
2745/*
2746 * Prepare buffer for display plane. Use uninterruptible for possible flush
2747 * wait, as in modesetting process we're not supposed to be interrupted.
2748 */
2749int
2750i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2751{
23010e43 2752 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2753 uint32_t old_read_domains;
b9241ea3
ZW
2754 int ret;
2755
2756 /* Not valid to be called on unbound objects. */
2757 if (obj_priv->gtt_space == NULL)
2758 return -EINVAL;
2759
ba3d8d74 2760 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
e35a41de
DV
2761 if (ret != 0)
2762 return ret;
b9241ea3 2763
b118c1e3
CW
2764 i915_gem_object_flush_cpu_write_domain(obj);
2765
b9241ea3 2766 old_read_domains = obj->read_domains;
b118c1e3 2767 obj->read_domains = I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2768
2769 trace_i915_gem_object_change_domain(obj,
2770 old_read_domains,
ba3d8d74 2771 obj->write_domain);
b9241ea3
ZW
2772
2773 return 0;
2774}
2775
e47c68e9
EA
2776/**
2777 * Moves a single object to the CPU read, and possibly write domain.
2778 *
2779 * This function returns when the move is complete, including waiting on
2780 * flushes to occur.
2781 */
2782static int
2783i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2784{
1c5d22f7 2785 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2786 int ret;
2787
ba3d8d74 2788 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2789 if (ret != 0)
2790 return ret;
2ef7eeaa 2791
e47c68e9 2792 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2793
e47c68e9
EA
2794 /* If we have a partially-valid cache of the object in the CPU,
2795 * finish invalidating it and free the per-page flags.
2ef7eeaa 2796 */
e47c68e9 2797 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2798
1c5d22f7
CW
2799 old_write_domain = obj->write_domain;
2800 old_read_domains = obj->read_domains;
2801
e47c68e9
EA
2802 /* Flush the CPU cache if it's still invalid. */
2803 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2804 i915_gem_clflush_object(obj);
2ef7eeaa 2805
e47c68e9 2806 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2807 }
2808
2809 /* It should now be out of any other write domains, and we can update
2810 * the domain values for our changes.
2811 */
e47c68e9
EA
2812 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2813
2814 /* If we're writing through the CPU, then the GPU read domains will
2815 * need to be invalidated at next use.
2816 */
2817 if (write) {
ba3d8d74
DV
2818 ret = i915_gem_object_wait_rendering(obj);
2819 if (ret)
2820 return ret;
2821
e47c68e9
EA
2822 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2823 obj->write_domain = I915_GEM_DOMAIN_CPU;
2824 }
2ef7eeaa 2825
1c5d22f7
CW
2826 trace_i915_gem_object_change_domain(obj,
2827 old_read_domains,
2828 old_write_domain);
2829
2ef7eeaa
EA
2830 return 0;
2831}
2832
673a394b
EA
2833/*
2834 * Set the next domain for the specified object. This
2835 * may not actually perform the necessary flushing/invaliding though,
2836 * as that may want to be batched with other set_domain operations
2837 *
2838 * This is (we hope) the only really tricky part of gem. The goal
2839 * is fairly simple -- track which caches hold bits of the object
2840 * and make sure they remain coherent. A few concrete examples may
2841 * help to explain how it works. For shorthand, we use the notation
2842 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2843 * a pair of read and write domain masks.
2844 *
2845 * Case 1: the batch buffer
2846 *
2847 * 1. Allocated
2848 * 2. Written by CPU
2849 * 3. Mapped to GTT
2850 * 4. Read by GPU
2851 * 5. Unmapped from GTT
2852 * 6. Freed
2853 *
2854 * Let's take these a step at a time
2855 *
2856 * 1. Allocated
2857 * Pages allocated from the kernel may still have
2858 * cache contents, so we set them to (CPU, CPU) always.
2859 * 2. Written by CPU (using pwrite)
2860 * The pwrite function calls set_domain (CPU, CPU) and
2861 * this function does nothing (as nothing changes)
2862 * 3. Mapped by GTT
2863 * This function asserts that the object is not
2864 * currently in any GPU-based read or write domains
2865 * 4. Read by GPU
2866 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2867 * As write_domain is zero, this function adds in the
2868 * current read domains (CPU+COMMAND, 0).
2869 * flush_domains is set to CPU.
2870 * invalidate_domains is set to COMMAND
2871 * clflush is run to get data out of the CPU caches
2872 * then i915_dev_set_domain calls i915_gem_flush to
2873 * emit an MI_FLUSH and drm_agp_chipset_flush
2874 * 5. Unmapped from GTT
2875 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2876 * flush_domains and invalidate_domains end up both zero
2877 * so no flushing/invalidating happens
2878 * 6. Freed
2879 * yay, done
2880 *
2881 * Case 2: The shared render buffer
2882 *
2883 * 1. Allocated
2884 * 2. Mapped to GTT
2885 * 3. Read/written by GPU
2886 * 4. set_domain to (CPU,CPU)
2887 * 5. Read/written by CPU
2888 * 6. Read/written by GPU
2889 *
2890 * 1. Allocated
2891 * Same as last example, (CPU, CPU)
2892 * 2. Mapped to GTT
2893 * Nothing changes (assertions find that it is not in the GPU)
2894 * 3. Read/written by GPU
2895 * execbuffer calls set_domain (RENDER, RENDER)
2896 * flush_domains gets CPU
2897 * invalidate_domains gets GPU
2898 * clflush (obj)
2899 * MI_FLUSH and drm_agp_chipset_flush
2900 * 4. set_domain (CPU, CPU)
2901 * flush_domains gets GPU
2902 * invalidate_domains gets CPU
2903 * wait_rendering (obj) to make sure all drawing is complete.
2904 * This will include an MI_FLUSH to get the data from GPU
2905 * to memory
2906 * clflush (obj) to invalidate the CPU cache
2907 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2908 * 5. Read/written by CPU
2909 * cache lines are loaded and dirtied
2910 * 6. Read written by GPU
2911 * Same as last GPU access
2912 *
2913 * Case 3: The constant buffer
2914 *
2915 * 1. Allocated
2916 * 2. Written by CPU
2917 * 3. Read by GPU
2918 * 4. Updated (written) by CPU again
2919 * 5. Read by GPU
2920 *
2921 * 1. Allocated
2922 * (CPU, CPU)
2923 * 2. Written by CPU
2924 * (CPU, CPU)
2925 * 3. Read by GPU
2926 * (CPU+RENDER, 0)
2927 * flush_domains = CPU
2928 * invalidate_domains = RENDER
2929 * clflush (obj)
2930 * MI_FLUSH
2931 * drm_agp_chipset_flush
2932 * 4. Updated (written) by CPU again
2933 * (CPU, CPU)
2934 * flush_domains = 0 (no previous write domain)
2935 * invalidate_domains = 0 (no new read domains)
2936 * 5. Read by GPU
2937 * (CPU+RENDER, 0)
2938 * flush_domains = CPU
2939 * invalidate_domains = RENDER
2940 * clflush (obj)
2941 * MI_FLUSH
2942 * drm_agp_chipset_flush
2943 */
c0d90829 2944static void
8b0e378a 2945i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
673a394b
EA
2946{
2947 struct drm_device *dev = obj->dev;
23010e43 2948 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2949 uint32_t invalidate_domains = 0;
2950 uint32_t flush_domains = 0;
1c5d22f7 2951 uint32_t old_read_domains;
e47c68e9 2952
8b0e378a
EA
2953 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2954 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
673a394b 2955
652c393a
JB
2956 intel_mark_busy(dev, obj);
2957
673a394b
EA
2958#if WATCH_BUF
2959 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2960 __func__, obj,
8b0e378a
EA
2961 obj->read_domains, obj->pending_read_domains,
2962 obj->write_domain, obj->pending_write_domain);
673a394b
EA
2963#endif
2964 /*
2965 * If the object isn't moving to a new write domain,
2966 * let the object stay in multiple read domains
2967 */
8b0e378a
EA
2968 if (obj->pending_write_domain == 0)
2969 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
2970 else
2971 obj_priv->dirty = 1;
2972
2973 /*
2974 * Flush the current write domain if
2975 * the new read domains don't match. Invalidate
2976 * any read domains which differ from the old
2977 * write domain
2978 */
8b0e378a
EA
2979 if (obj->write_domain &&
2980 obj->write_domain != obj->pending_read_domains) {
673a394b 2981 flush_domains |= obj->write_domain;
8b0e378a
EA
2982 invalidate_domains |=
2983 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
2984 }
2985 /*
2986 * Invalidate any read caches which may have
2987 * stale data. That is, any new read domains.
2988 */
8b0e378a 2989 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
673a394b
EA
2990 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2991#if WATCH_BUF
2992 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2993 __func__, flush_domains, invalidate_domains);
2994#endif
673a394b
EA
2995 i915_gem_clflush_object(obj);
2996 }
2997
1c5d22f7
CW
2998 old_read_domains = obj->read_domains;
2999
efbeed96
EA
3000 /* The actual obj->write_domain will be updated with
3001 * pending_write_domain after we emit the accumulated flush for all
3002 * of our domain changes in execbuffers (which clears objects'
3003 * write_domains). So if we have a current write domain that we
3004 * aren't changing, set pending_write_domain to that.
3005 */
3006 if (flush_domains == 0 && obj->pending_write_domain == 0)
3007 obj->pending_write_domain = obj->write_domain;
8b0e378a 3008 obj->read_domains = obj->pending_read_domains;
673a394b
EA
3009
3010 dev->invalidate_domains |= invalidate_domains;
3011 dev->flush_domains |= flush_domains;
3012#if WATCH_BUF
3013 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3014 __func__,
3015 obj->read_domains, obj->write_domain,
3016 dev->invalidate_domains, dev->flush_domains);
3017#endif
1c5d22f7
CW
3018
3019 trace_i915_gem_object_change_domain(obj,
3020 old_read_domains,
3021 obj->write_domain);
673a394b
EA
3022}
3023
3024/**
e47c68e9 3025 * Moves the object from a partially CPU read to a full one.
673a394b 3026 *
e47c68e9
EA
3027 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3028 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3029 */
e47c68e9
EA
3030static void
3031i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3032{
23010e43 3033 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3034
e47c68e9
EA
3035 if (!obj_priv->page_cpu_valid)
3036 return;
3037
3038 /* If we're partially in the CPU read domain, finish moving it in.
3039 */
3040 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3041 int i;
3042
3043 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3044 if (obj_priv->page_cpu_valid[i])
3045 continue;
856fa198 3046 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3047 }
e47c68e9
EA
3048 }
3049
3050 /* Free the page_cpu_valid mappings which are now stale, whether
3051 * or not we've got I915_GEM_DOMAIN_CPU.
3052 */
9a298b2a 3053 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3054 obj_priv->page_cpu_valid = NULL;
3055}
3056
3057/**
3058 * Set the CPU read domain on a range of the object.
3059 *
3060 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3061 * not entirely valid. The page_cpu_valid member of the object flags which
3062 * pages have been flushed, and will be respected by
3063 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3064 * of the whole object.
3065 *
3066 * This function returns when the move is complete, including waiting on
3067 * flushes to occur.
3068 */
3069static int
3070i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3071 uint64_t offset, uint64_t size)
3072{
23010e43 3073 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3074 uint32_t old_read_domains;
e47c68e9 3075 int i, ret;
673a394b 3076
e47c68e9
EA
3077 if (offset == 0 && size == obj->size)
3078 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3079
ba3d8d74 3080 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3081 if (ret != 0)
6a47baa6 3082 return ret;
e47c68e9
EA
3083 i915_gem_object_flush_gtt_write_domain(obj);
3084
3085 /* If we're already fully in the CPU read domain, we're done. */
3086 if (obj_priv->page_cpu_valid == NULL &&
3087 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3088 return 0;
673a394b 3089
e47c68e9
EA
3090 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3091 * newly adding I915_GEM_DOMAIN_CPU
3092 */
673a394b 3093 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3094 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3095 GFP_KERNEL);
e47c68e9
EA
3096 if (obj_priv->page_cpu_valid == NULL)
3097 return -ENOMEM;
3098 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3099 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3100
3101 /* Flush the cache on any pages that are still invalid from the CPU's
3102 * perspective.
3103 */
e47c68e9
EA
3104 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3105 i++) {
673a394b
EA
3106 if (obj_priv->page_cpu_valid[i])
3107 continue;
3108
856fa198 3109 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3110
3111 obj_priv->page_cpu_valid[i] = 1;
3112 }
3113
e47c68e9
EA
3114 /* It should now be out of any other write domains, and we can update
3115 * the domain values for our changes.
3116 */
3117 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3118
1c5d22f7 3119 old_read_domains = obj->read_domains;
e47c68e9
EA
3120 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3121
1c5d22f7
CW
3122 trace_i915_gem_object_change_domain(obj,
3123 old_read_domains,
3124 obj->write_domain);
3125
673a394b
EA
3126 return 0;
3127}
3128
673a394b
EA
3129/**
3130 * Pin an object to the GTT and evaluate the relocations landing in it.
3131 */
3132static int
3133i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3134 struct drm_file *file_priv,
76446cac 3135 struct drm_i915_gem_exec_object2 *entry,
40a5f0de 3136 struct drm_i915_gem_relocation_entry *relocs)
673a394b
EA
3137{
3138 struct drm_device *dev = obj->dev;
0839ccb8 3139 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 3140 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3141 int i, ret;
0839ccb8 3142 void __iomem *reloc_page;
76446cac
JB
3143 bool need_fence;
3144
3145 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3146 obj_priv->tiling_mode != I915_TILING_NONE;
3147
3148 /* Check fence reg constraints and rebind if necessary */
808b24d6
CW
3149 if (need_fence &&
3150 !i915_gem_object_fence_offset_ok(obj,
3151 obj_priv->tiling_mode)) {
3152 ret = i915_gem_object_unbind(obj);
3153 if (ret)
3154 return ret;
3155 }
673a394b
EA
3156
3157 /* Choose the GTT offset for our buffer and put it there. */
3158 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3159 if (ret)
3160 return ret;
3161
76446cac
JB
3162 /*
3163 * Pre-965 chips need a fence register set up in order to
3164 * properly handle blits to/from tiled surfaces.
3165 */
3166 if (need_fence) {
3167 ret = i915_gem_object_get_fence_reg(obj);
3168 if (ret != 0) {
76446cac
JB
3169 i915_gem_object_unpin(obj);
3170 return ret;
3171 }
3172 }
3173
673a394b
EA
3174 entry->offset = obj_priv->gtt_offset;
3175
673a394b
EA
3176 /* Apply the relocations, using the GTT aperture to avoid cache
3177 * flushing requirements.
3178 */
3179 for (i = 0; i < entry->relocation_count; i++) {
40a5f0de 3180 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
673a394b
EA
3181 struct drm_gem_object *target_obj;
3182 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
3183 uint32_t reloc_val, reloc_offset;
3184 uint32_t __iomem *reloc_entry;
673a394b 3185
673a394b 3186 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
40a5f0de 3187 reloc->target_handle);
673a394b
EA
3188 if (target_obj == NULL) {
3189 i915_gem_object_unpin(obj);
bf79cb91 3190 return -ENOENT;
673a394b 3191 }
23010e43 3192 target_obj_priv = to_intel_bo(target_obj);
673a394b 3193
8542a0bb
CW
3194#if WATCH_RELOC
3195 DRM_INFO("%s: obj %p offset %08x target %d "
3196 "read %08x write %08x gtt %08x "
3197 "presumed %08x delta %08x\n",
3198 __func__,
3199 obj,
3200 (int) reloc->offset,
3201 (int) reloc->target_handle,
3202 (int) reloc->read_domains,
3203 (int) reloc->write_domain,
3204 (int) target_obj_priv->gtt_offset,
3205 (int) reloc->presumed_offset,
3206 reloc->delta);
3207#endif
3208
673a394b
EA
3209 /* The target buffer should have appeared before us in the
3210 * exec_object list, so it should have a GTT space bound by now.
3211 */
3212 if (target_obj_priv->gtt_space == NULL) {
3213 DRM_ERROR("No GTT space found for object %d\n",
40a5f0de 3214 reloc->target_handle);
673a394b
EA
3215 drm_gem_object_unreference(target_obj);
3216 i915_gem_object_unpin(obj);
3217 return -EINVAL;
3218 }
3219
8542a0bb 3220 /* Validate that the target is in a valid r/w GPU domain */
16edd550
DV
3221 if (reloc->write_domain & (reloc->write_domain - 1)) {
3222 DRM_ERROR("reloc with multiple write domains: "
3223 "obj %p target %d offset %d "
3224 "read %08x write %08x",
3225 obj, reloc->target_handle,
3226 (int) reloc->offset,
3227 reloc->read_domains,
3228 reloc->write_domain);
3229 return -EINVAL;
3230 }
40a5f0de
EA
3231 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3232 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3233 DRM_ERROR("reloc with read/write CPU domains: "
3234 "obj %p target %d offset %d "
3235 "read %08x write %08x",
40a5f0de
EA
3236 obj, reloc->target_handle,
3237 (int) reloc->offset,
3238 reloc->read_domains,
3239 reloc->write_domain);
491152b8
CW
3240 drm_gem_object_unreference(target_obj);
3241 i915_gem_object_unpin(obj);
e47c68e9
EA
3242 return -EINVAL;
3243 }
40a5f0de
EA
3244 if (reloc->write_domain && target_obj->pending_write_domain &&
3245 reloc->write_domain != target_obj->pending_write_domain) {
673a394b
EA
3246 DRM_ERROR("Write domain conflict: "
3247 "obj %p target %d offset %d "
3248 "new %08x old %08x\n",
40a5f0de
EA
3249 obj, reloc->target_handle,
3250 (int) reloc->offset,
3251 reloc->write_domain,
673a394b
EA
3252 target_obj->pending_write_domain);
3253 drm_gem_object_unreference(target_obj);
3254 i915_gem_object_unpin(obj);
3255 return -EINVAL;
3256 }
3257
40a5f0de
EA
3258 target_obj->pending_read_domains |= reloc->read_domains;
3259 target_obj->pending_write_domain |= reloc->write_domain;
673a394b
EA
3260
3261 /* If the relocation already has the right value in it, no
3262 * more work needs to be done.
3263 */
40a5f0de 3264 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
673a394b
EA
3265 drm_gem_object_unreference(target_obj);
3266 continue;
3267 }
3268
8542a0bb
CW
3269 /* Check that the relocation address is valid... */
3270 if (reloc->offset > obj->size - 4) {
3271 DRM_ERROR("Relocation beyond object bounds: "
3272 "obj %p target %d offset %d size %d.\n",
3273 obj, reloc->target_handle,
3274 (int) reloc->offset, (int) obj->size);
3275 drm_gem_object_unreference(target_obj);
3276 i915_gem_object_unpin(obj);
3277 return -EINVAL;
3278 }
3279 if (reloc->offset & 3) {
3280 DRM_ERROR("Relocation not 4-byte aligned: "
3281 "obj %p target %d offset %d.\n",
3282 obj, reloc->target_handle,
3283 (int) reloc->offset);
3284 drm_gem_object_unreference(target_obj);
3285 i915_gem_object_unpin(obj);
3286 return -EINVAL;
3287 }
3288
3289 /* and points to somewhere within the target object. */
3290 if (reloc->delta >= target_obj->size) {
3291 DRM_ERROR("Relocation beyond target object bounds: "
3292 "obj %p target %d delta %d size %d.\n",
3293 obj, reloc->target_handle,
3294 (int) reloc->delta, (int) target_obj->size);
3295 drm_gem_object_unreference(target_obj);
3296 i915_gem_object_unpin(obj);
3297 return -EINVAL;
3298 }
3299
2ef7eeaa
EA
3300 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3301 if (ret != 0) {
3302 drm_gem_object_unreference(target_obj);
3303 i915_gem_object_unpin(obj);
3304 return -EINVAL;
673a394b
EA
3305 }
3306
3307 /* Map the page containing the relocation we're going to
3308 * perform.
3309 */
40a5f0de 3310 reloc_offset = obj_priv->gtt_offset + reloc->offset;
0839ccb8
KP
3311 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3312 (reloc_offset &
fca3ec01
CW
3313 ~(PAGE_SIZE - 1)),
3314 KM_USER0);
3043c60c 3315 reloc_entry = (uint32_t __iomem *)(reloc_page +
0839ccb8 3316 (reloc_offset & (PAGE_SIZE - 1)));
40a5f0de 3317 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
673a394b
EA
3318
3319#if WATCH_BUF
3320 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
40a5f0de 3321 obj, (unsigned int) reloc->offset,
673a394b
EA
3322 readl(reloc_entry), reloc_val);
3323#endif
3324 writel(reloc_val, reloc_entry);
fca3ec01 3325 io_mapping_unmap_atomic(reloc_page, KM_USER0);
673a394b 3326
40a5f0de
EA
3327 /* The updated presumed offset for this entry will be
3328 * copied back out to the user.
673a394b 3329 */
40a5f0de 3330 reloc->presumed_offset = target_obj_priv->gtt_offset;
673a394b
EA
3331
3332 drm_gem_object_unreference(target_obj);
3333 }
3334
673a394b
EA
3335#if WATCH_BUF
3336 if (0)
3337 i915_gem_dump_object(obj, 128, __func__, ~0);
3338#endif
3339 return 0;
3340}
3341
673a394b
EA
3342/* Throttle our rendering by waiting until the ring has completed our requests
3343 * emitted over 20 msec ago.
3344 *
b962442e
EA
3345 * Note that if we were to use the current jiffies each time around the loop,
3346 * we wouldn't escape the function with any frames outstanding if the time to
3347 * render a frame was over 20ms.
3348 *
673a394b
EA
3349 * This should get us reasonable parallelism between CPU and GPU but also
3350 * relatively low latency when blocking on a particular request to finish.
3351 */
3352static int
3353i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3354{
3355 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3356 int ret = 0;
b962442e 3357 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
673a394b
EA
3358
3359 mutex_lock(&dev->struct_mutex);
b962442e
EA
3360 while (!list_empty(&i915_file_priv->mm.request_list)) {
3361 struct drm_i915_gem_request *request;
3362
3363 request = list_first_entry(&i915_file_priv->mm.request_list,
3364 struct drm_i915_gem_request,
3365 client_list);
3366
3367 if (time_after_eq(request->emitted_jiffies, recent_enough))
3368 break;
3369
852835f3 3370 ret = i915_wait_request(dev, request->seqno, request->ring);
b962442e
EA
3371 if (ret != 0)
3372 break;
3373 }
673a394b 3374 mutex_unlock(&dev->struct_mutex);
b962442e 3375
673a394b
EA
3376 return ret;
3377}
3378
40a5f0de 3379static int
76446cac 3380i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3381 uint32_t buffer_count,
3382 struct drm_i915_gem_relocation_entry **relocs)
3383{
3384 uint32_t reloc_count = 0, reloc_index = 0, i;
3385 int ret;
3386
3387 *relocs = NULL;
3388 for (i = 0; i < buffer_count; i++) {
3389 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3390 return -EINVAL;
3391 reloc_count += exec_list[i].relocation_count;
3392 }
3393
8e7d2b2c 3394 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
76446cac
JB
3395 if (*relocs == NULL) {
3396 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
40a5f0de 3397 return -ENOMEM;
76446cac 3398 }
40a5f0de
EA
3399
3400 for (i = 0; i < buffer_count; i++) {
3401 struct drm_i915_gem_relocation_entry __user *user_relocs;
3402
3403 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3404
3405 ret = copy_from_user(&(*relocs)[reloc_index],
3406 user_relocs,
3407 exec_list[i].relocation_count *
3408 sizeof(**relocs));
3409 if (ret != 0) {
8e7d2b2c 3410 drm_free_large(*relocs);
40a5f0de 3411 *relocs = NULL;
2bc43b5c 3412 return -EFAULT;
40a5f0de
EA
3413 }
3414
3415 reloc_index += exec_list[i].relocation_count;
3416 }
3417
2bc43b5c 3418 return 0;
40a5f0de
EA
3419}
3420
3421static int
76446cac 3422i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
40a5f0de
EA
3423 uint32_t buffer_count,
3424 struct drm_i915_gem_relocation_entry *relocs)
3425{
3426 uint32_t reloc_count = 0, i;
2bc43b5c 3427 int ret = 0;
40a5f0de 3428
93533c29
CW
3429 if (relocs == NULL)
3430 return 0;
3431
40a5f0de
EA
3432 for (i = 0; i < buffer_count; i++) {
3433 struct drm_i915_gem_relocation_entry __user *user_relocs;
2bc43b5c 3434 int unwritten;
40a5f0de
EA
3435
3436 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3437
2bc43b5c
FM
3438 unwritten = copy_to_user(user_relocs,
3439 &relocs[reloc_count],
3440 exec_list[i].relocation_count *
3441 sizeof(*relocs));
3442
3443 if (unwritten) {
3444 ret = -EFAULT;
3445 goto err;
40a5f0de
EA
3446 }
3447
3448 reloc_count += exec_list[i].relocation_count;
3449 }
3450
2bc43b5c 3451err:
8e7d2b2c 3452 drm_free_large(relocs);
40a5f0de
EA
3453
3454 return ret;
3455}
3456
83d60795 3457static int
76446cac 3458i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
83d60795
CW
3459 uint64_t exec_offset)
3460{
3461 uint32_t exec_start, exec_len;
3462
3463 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3464 exec_len = (uint32_t) exec->batch_len;
3465
3466 if ((exec_start | exec_len) & 0x7)
3467 return -EINVAL;
3468
3469 if (!exec_start)
3470 return -EINVAL;
3471
3472 return 0;
3473}
3474
6b95a207
KH
3475static int
3476i915_gem_wait_for_pending_flip(struct drm_device *dev,
3477 struct drm_gem_object **object_list,
3478 int count)
3479{
3480 drm_i915_private_t *dev_priv = dev->dev_private;
3481 struct drm_i915_gem_object *obj_priv;
3482 DEFINE_WAIT(wait);
3483 int i, ret = 0;
3484
3485 for (;;) {
3486 prepare_to_wait(&dev_priv->pending_flip_queue,
3487 &wait, TASK_INTERRUPTIBLE);
3488 for (i = 0; i < count; i++) {
23010e43 3489 obj_priv = to_intel_bo(object_list[i]);
6b95a207
KH
3490 if (atomic_read(&obj_priv->pending_flip) > 0)
3491 break;
3492 }
3493 if (i == count)
3494 break;
3495
3496 if (!signal_pending(current)) {
3497 mutex_unlock(&dev->struct_mutex);
3498 schedule();
3499 mutex_lock(&dev->struct_mutex);
3500 continue;
3501 }
3502 ret = -ERESTARTSYS;
3503 break;
3504 }
3505 finish_wait(&dev_priv->pending_flip_queue, &wait);
3506
3507 return ret;
3508}
3509
43b27f40 3510
673a394b 3511int
76446cac
JB
3512i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3513 struct drm_file *file_priv,
3514 struct drm_i915_gem_execbuffer2 *args,
3515 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3516{
3517 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3518 struct drm_gem_object **object_list = NULL;
3519 struct drm_gem_object *batch_obj;
b70d11da 3520 struct drm_i915_gem_object *obj_priv;
201361a5 3521 struct drm_clip_rect *cliprects = NULL;
93533c29 3522 struct drm_i915_gem_relocation_entry *relocs = NULL;
76446cac 3523 int ret = 0, ret2, i, pinned = 0;
673a394b 3524 uint64_t exec_offset;
8a1a49f9 3525 uint32_t seqno, reloc_index;
6b95a207 3526 int pin_tries, flips;
673a394b 3527
852835f3
ZN
3528 struct intel_ring_buffer *ring = NULL;
3529
673a394b
EA
3530#if WATCH_EXEC
3531 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3532 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3533#endif
d1b851fc
ZN
3534 if (args->flags & I915_EXEC_BSD) {
3535 if (!HAS_BSD(dev)) {
3536 DRM_ERROR("execbuf with wrong flag\n");
3537 return -EINVAL;
3538 }
3539 ring = &dev_priv->bsd_ring;
3540 } else {
3541 ring = &dev_priv->render_ring;
3542 }
3543
4f481ed2
EA
3544 if (args->buffer_count < 1) {
3545 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3546 return -EINVAL;
3547 }
c8e0f93a 3548 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3549 if (object_list == NULL) {
3550 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3551 args->buffer_count);
3552 ret = -ENOMEM;
3553 goto pre_mutex_err;
3554 }
673a394b 3555
201361a5 3556 if (args->num_cliprects != 0) {
9a298b2a
EA
3557 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3558 GFP_KERNEL);
a40e8d31
OA
3559 if (cliprects == NULL) {
3560 ret = -ENOMEM;
201361a5 3561 goto pre_mutex_err;
a40e8d31 3562 }
201361a5
EA
3563
3564 ret = copy_from_user(cliprects,
3565 (struct drm_clip_rect __user *)
3566 (uintptr_t) args->cliprects_ptr,
3567 sizeof(*cliprects) * args->num_cliprects);
3568 if (ret != 0) {
3569 DRM_ERROR("copy %d cliprects failed: %d\n",
3570 args->num_cliprects, ret);
c877cdce 3571 ret = -EFAULT;
201361a5
EA
3572 goto pre_mutex_err;
3573 }
3574 }
3575
40a5f0de
EA
3576 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3577 &relocs);
3578 if (ret != 0)
3579 goto pre_mutex_err;
3580
673a394b
EA
3581 mutex_lock(&dev->struct_mutex);
3582
3583 i915_verify_inactive(dev, __FILE__, __LINE__);
3584
ba1234d1 3585 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3586 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3587 ret = -EIO;
3588 goto pre_mutex_err;
673a394b
EA
3589 }
3590
3591 if (dev_priv->mm.suspended) {
673a394b 3592 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3593 ret = -EBUSY;
3594 goto pre_mutex_err;
673a394b
EA
3595 }
3596
ac94a962 3597 /* Look up object handles */
6b95a207 3598 flips = 0;
673a394b
EA
3599 for (i = 0; i < args->buffer_count; i++) {
3600 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3601 exec_list[i].handle);
3602 if (object_list[i] == NULL) {
3603 DRM_ERROR("Invalid object handle %d at index %d\n",
3604 exec_list[i].handle, i);
0ce907f8
CW
3605 /* prevent error path from reading uninitialized data */
3606 args->buffer_count = i + 1;
bf79cb91 3607 ret = -ENOENT;
673a394b
EA
3608 goto err;
3609 }
b70d11da 3610
23010e43 3611 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3612 if (obj_priv->in_execbuffer) {
3613 DRM_ERROR("Object %p appears more than once in object list\n",
3614 object_list[i]);
0ce907f8
CW
3615 /* prevent error path from reading uninitialized data */
3616 args->buffer_count = i + 1;
bf79cb91 3617 ret = -EINVAL;
b70d11da
KH
3618 goto err;
3619 }
3620 obj_priv->in_execbuffer = true;
6b95a207
KH
3621 flips += atomic_read(&obj_priv->pending_flip);
3622 }
3623
3624 if (flips > 0) {
3625 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3626 args->buffer_count);
3627 if (ret)
3628 goto err;
ac94a962 3629 }
673a394b 3630
ac94a962
KP
3631 /* Pin and relocate */
3632 for (pin_tries = 0; ; pin_tries++) {
3633 ret = 0;
40a5f0de
EA
3634 reloc_index = 0;
3635
ac94a962
KP
3636 for (i = 0; i < args->buffer_count; i++) {
3637 object_list[i]->pending_read_domains = 0;
3638 object_list[i]->pending_write_domain = 0;
3639 ret = i915_gem_object_pin_and_relocate(object_list[i],
3640 file_priv,
40a5f0de
EA
3641 &exec_list[i],
3642 &relocs[reloc_index]);
ac94a962
KP
3643 if (ret)
3644 break;
3645 pinned = i + 1;
40a5f0de 3646 reloc_index += exec_list[i].relocation_count;
ac94a962
KP
3647 }
3648 /* success */
3649 if (ret == 0)
3650 break;
3651
3652 /* error other than GTT full, or we've already tried again */
2939e1f5 3653 if (ret != -ENOSPC || pin_tries >= 1) {
07f73f69
CW
3654 if (ret != -ERESTARTSYS) {
3655 unsigned long long total_size = 0;
3d1cc470
CW
3656 int num_fences = 0;
3657 for (i = 0; i < args->buffer_count; i++) {
43b27f40 3658 obj_priv = to_intel_bo(object_list[i]);
3d1cc470 3659
07f73f69 3660 total_size += object_list[i]->size;
3d1cc470
CW
3661 num_fences +=
3662 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3663 obj_priv->tiling_mode != I915_TILING_NONE;
3664 }
3665 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
07f73f69 3666 pinned+1, args->buffer_count,
3d1cc470
CW
3667 total_size, num_fences,
3668 ret);
07f73f69
CW
3669 DRM_ERROR("%d objects [%d pinned], "
3670 "%d object bytes [%d pinned], "
3671 "%d/%d gtt bytes\n",
3672 atomic_read(&dev->object_count),
3673 atomic_read(&dev->pin_count),
3674 atomic_read(&dev->object_memory),
3675 atomic_read(&dev->pin_memory),
3676 atomic_read(&dev->gtt_memory),
3677 dev->gtt_total);
3678 }
673a394b
EA
3679 goto err;
3680 }
ac94a962
KP
3681
3682 /* unpin all of our buffers */
3683 for (i = 0; i < pinned; i++)
3684 i915_gem_object_unpin(object_list[i]);
b1177636 3685 pinned = 0;
ac94a962
KP
3686
3687 /* evict everyone we can from the aperture */
3688 ret = i915_gem_evict_everything(dev);
07f73f69 3689 if (ret && ret != -ENOSPC)
ac94a962 3690 goto err;
673a394b
EA
3691 }
3692
3693 /* Set the pending read domains for the batch buffer to COMMAND */
3694 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3695 if (batch_obj->pending_write_domain) {
3696 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3697 ret = -EINVAL;
3698 goto err;
3699 }
3700 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3701
83d60795
CW
3702 /* Sanity check the batch buffer, prior to moving objects */
3703 exec_offset = exec_list[args->buffer_count - 1].offset;
3704 ret = i915_gem_check_execbuffer (args, exec_offset);
3705 if (ret != 0) {
3706 DRM_ERROR("execbuf with invalid offset/length\n");
3707 goto err;
3708 }
3709
673a394b
EA
3710 i915_verify_inactive(dev, __FILE__, __LINE__);
3711
646f0f6e
KP
3712 /* Zero the global flush/invalidate flags. These
3713 * will be modified as new domains are computed
3714 * for each object
3715 */
3716 dev->invalidate_domains = 0;
3717 dev->flush_domains = 0;
3718
673a394b
EA
3719 for (i = 0; i < args->buffer_count; i++) {
3720 struct drm_gem_object *obj = object_list[i];
673a394b 3721
646f0f6e 3722 /* Compute new gpu domains and update invalidate/flush */
8b0e378a 3723 i915_gem_object_set_to_gpu_domain(obj);
673a394b
EA
3724 }
3725
3726 i915_verify_inactive(dev, __FILE__, __LINE__);
3727
646f0f6e
KP
3728 if (dev->invalidate_domains | dev->flush_domains) {
3729#if WATCH_EXEC
3730 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3731 __func__,
3732 dev->invalidate_domains,
3733 dev->flush_domains);
3734#endif
3735 i915_gem_flush(dev,
3736 dev->invalidate_domains,
3737 dev->flush_domains);
a6910434
DV
3738 }
3739
3740 if (dev_priv->render_ring.outstanding_lazy_request) {
8a1a49f9 3741 (void)i915_add_request(dev, file_priv, &dev_priv->render_ring);
a6910434
DV
3742 dev_priv->render_ring.outstanding_lazy_request = false;
3743 }
3744 if (dev_priv->bsd_ring.outstanding_lazy_request) {
8a1a49f9 3745 (void)i915_add_request(dev, file_priv, &dev_priv->bsd_ring);
a6910434 3746 dev_priv->bsd_ring.outstanding_lazy_request = false;
646f0f6e 3747 }
673a394b 3748
efbeed96
EA
3749 for (i = 0; i < args->buffer_count; i++) {
3750 struct drm_gem_object *obj = object_list[i];
23010e43 3751 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3752 uint32_t old_write_domain = obj->write_domain;
efbeed96
EA
3753
3754 obj->write_domain = obj->pending_write_domain;
99fcb766
DV
3755 if (obj->write_domain)
3756 list_move_tail(&obj_priv->gpu_write_list,
3757 &dev_priv->mm.gpu_write_list);
3758 else
3759 list_del_init(&obj_priv->gpu_write_list);
3760
1c5d22f7
CW
3761 trace_i915_gem_object_change_domain(obj,
3762 obj->read_domains,
3763 old_write_domain);
efbeed96
EA
3764 }
3765
673a394b
EA
3766 i915_verify_inactive(dev, __FILE__, __LINE__);
3767
3768#if WATCH_COHERENCY
3769 for (i = 0; i < args->buffer_count; i++) {
3770 i915_gem_object_check_coherency(object_list[i],
3771 exec_list[i].handle);
3772 }
3773#endif
3774
673a394b 3775#if WATCH_EXEC
6911a9b8 3776 i915_gem_dump_object(batch_obj,
673a394b
EA
3777 args->batch_len,
3778 __func__,
3779 ~0);
3780#endif
3781
673a394b 3782 /* Exec the batchbuffer */
852835f3
ZN
3783 ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3784 cliprects, exec_offset);
673a394b
EA
3785 if (ret) {
3786 DRM_ERROR("dispatch failed %d\n", ret);
3787 goto err;
3788 }
3789
3790 /*
3791 * Ensure that the commands in the batch buffer are
3792 * finished before the interrupt fires
3793 */
8a1a49f9 3794 i915_retire_commands(dev, ring);
673a394b
EA
3795
3796 i915_verify_inactive(dev, __FILE__, __LINE__);
3797
617dbe27
DV
3798 for (i = 0; i < args->buffer_count; i++) {
3799 struct drm_gem_object *obj = object_list[i];
3800 obj_priv = to_intel_bo(obj);
3801
3802 i915_gem_object_move_to_active(obj, ring);
3803#if WATCH_LRU
3804 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3805#endif
3806 }
3807
673a394b
EA
3808 /*
3809 * Get a seqno representing the execution of the current buffer,
3810 * which we can wait on. We would like to mitigate these interrupts,
3811 * likely by only creating seqnos occasionally (so that we have
3812 * *some* interrupts representing completion of buffers that we can
3813 * wait on when trying to clear up gtt space).
3814 */
8a1a49f9 3815 seqno = i915_add_request(dev, file_priv, ring);
673a394b 3816
673a394b
EA
3817#if WATCH_LRU
3818 i915_dump_lru(dev, __func__);
3819#endif
3820
3821 i915_verify_inactive(dev, __FILE__, __LINE__);
3822
673a394b 3823err:
aad87dff
JL
3824 for (i = 0; i < pinned; i++)
3825 i915_gem_object_unpin(object_list[i]);
3826
b70d11da
KH
3827 for (i = 0; i < args->buffer_count; i++) {
3828 if (object_list[i]) {
23010e43 3829 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3830 obj_priv->in_execbuffer = false;
3831 }
aad87dff 3832 drm_gem_object_unreference(object_list[i]);
b70d11da 3833 }
673a394b 3834
673a394b
EA
3835 mutex_unlock(&dev->struct_mutex);
3836
93533c29 3837pre_mutex_err:
40a5f0de
EA
3838 /* Copy the updated relocations out regardless of current error
3839 * state. Failure to update the relocs would mean that the next
3840 * time userland calls execbuf, it would do so with presumed offset
3841 * state that didn't match the actual object state.
3842 */
3843 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3844 relocs);
3845 if (ret2 != 0) {
3846 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3847
3848 if (ret == 0)
3849 ret = ret2;
3850 }
3851
8e7d2b2c 3852 drm_free_large(object_list);
9a298b2a 3853 kfree(cliprects);
673a394b
EA
3854
3855 return ret;
3856}
3857
76446cac
JB
3858/*
3859 * Legacy execbuffer just creates an exec2 list from the original exec object
3860 * list array and passes it to the real function.
3861 */
3862int
3863i915_gem_execbuffer(struct drm_device *dev, void *data,
3864 struct drm_file *file_priv)
3865{
3866 struct drm_i915_gem_execbuffer *args = data;
3867 struct drm_i915_gem_execbuffer2 exec2;
3868 struct drm_i915_gem_exec_object *exec_list = NULL;
3869 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3870 int ret, i;
3871
3872#if WATCH_EXEC
3873 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3874 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3875#endif
3876
3877 if (args->buffer_count < 1) {
3878 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3879 return -EINVAL;
3880 }
3881
3882 /* Copy in the exec list from userland */
3883 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3884 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3885 if (exec_list == NULL || exec2_list == NULL) {
3886 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3887 args->buffer_count);
3888 drm_free_large(exec_list);
3889 drm_free_large(exec2_list);
3890 return -ENOMEM;
3891 }
3892 ret = copy_from_user(exec_list,
3893 (struct drm_i915_relocation_entry __user *)
3894 (uintptr_t) args->buffers_ptr,
3895 sizeof(*exec_list) * args->buffer_count);
3896 if (ret != 0) {
3897 DRM_ERROR("copy %d exec entries failed %d\n",
3898 args->buffer_count, ret);
3899 drm_free_large(exec_list);
3900 drm_free_large(exec2_list);
3901 return -EFAULT;
3902 }
3903
3904 for (i = 0; i < args->buffer_count; i++) {
3905 exec2_list[i].handle = exec_list[i].handle;
3906 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3907 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3908 exec2_list[i].alignment = exec_list[i].alignment;
3909 exec2_list[i].offset = exec_list[i].offset;
3910 if (!IS_I965G(dev))
3911 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3912 else
3913 exec2_list[i].flags = 0;
3914 }
3915
3916 exec2.buffers_ptr = args->buffers_ptr;
3917 exec2.buffer_count = args->buffer_count;
3918 exec2.batch_start_offset = args->batch_start_offset;
3919 exec2.batch_len = args->batch_len;
3920 exec2.DR1 = args->DR1;
3921 exec2.DR4 = args->DR4;
3922 exec2.num_cliprects = args->num_cliprects;
3923 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3924 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3925
3926 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3927 if (!ret) {
3928 /* Copy the new buffer offsets back to the user's exec list. */
3929 for (i = 0; i < args->buffer_count; i++)
3930 exec_list[i].offset = exec2_list[i].offset;
3931 /* ... and back out to userspace */
3932 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3933 (uintptr_t) args->buffers_ptr,
3934 exec_list,
3935 sizeof(*exec_list) * args->buffer_count);
3936 if (ret) {
3937 ret = -EFAULT;
3938 DRM_ERROR("failed to copy %d exec entries "
3939 "back to user (%d)\n",
3940 args->buffer_count, ret);
3941 }
76446cac
JB
3942 }
3943
3944 drm_free_large(exec_list);
3945 drm_free_large(exec2_list);
3946 return ret;
3947}
3948
3949int
3950i915_gem_execbuffer2(struct drm_device *dev, void *data,
3951 struct drm_file *file_priv)
3952{
3953 struct drm_i915_gem_execbuffer2 *args = data;
3954 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3955 int ret;
3956
3957#if WATCH_EXEC
3958 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3959 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3960#endif
3961
3962 if (args->buffer_count < 1) {
3963 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3964 return -EINVAL;
3965 }
3966
3967 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3968 if (exec2_list == NULL) {
3969 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3970 args->buffer_count);
3971 return -ENOMEM;
3972 }
3973 ret = copy_from_user(exec2_list,
3974 (struct drm_i915_relocation_entry __user *)
3975 (uintptr_t) args->buffers_ptr,
3976 sizeof(*exec2_list) * args->buffer_count);
3977 if (ret != 0) {
3978 DRM_ERROR("copy %d exec entries failed %d\n",
3979 args->buffer_count, ret);
3980 drm_free_large(exec2_list);
3981 return -EFAULT;
3982 }
3983
3984 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
3985 if (!ret) {
3986 /* Copy the new buffer offsets back to the user's exec list. */
3987 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3988 (uintptr_t) args->buffers_ptr,
3989 exec2_list,
3990 sizeof(*exec2_list) * args->buffer_count);
3991 if (ret) {
3992 ret = -EFAULT;
3993 DRM_ERROR("failed to copy %d exec entries "
3994 "back to user (%d)\n",
3995 args->buffer_count, ret);
3996 }
3997 }
3998
3999 drm_free_large(exec2_list);
4000 return ret;
4001}
4002
673a394b
EA
4003int
4004i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4005{
4006 struct drm_device *dev = obj->dev;
23010e43 4007 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4008 int ret;
4009
778c3544
DV
4010 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4011
673a394b 4012 i915_verify_inactive(dev, __FILE__, __LINE__);
ac0c6b5a
CW
4013
4014 if (obj_priv->gtt_space != NULL) {
4015 if (alignment == 0)
4016 alignment = i915_gem_get_gtt_alignment(obj);
4017 if (obj_priv->gtt_offset & (alignment - 1)) {
ae7d49d8
CW
4018 WARN(obj_priv->pin_count,
4019 "bo is already pinned with incorrect alignment:"
4020 " offset=%x, req.alignment=%x\n",
4021 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4022 ret = i915_gem_object_unbind(obj);
4023 if (ret)
4024 return ret;
4025 }
4026 }
4027
673a394b
EA
4028 if (obj_priv->gtt_space == NULL) {
4029 ret = i915_gem_object_bind_to_gtt(obj, alignment);
9731129c 4030 if (ret)
673a394b 4031 return ret;
22c344e9 4032 }
76446cac 4033
673a394b
EA
4034 obj_priv->pin_count++;
4035
4036 /* If the object is not active and not pending a flush,
4037 * remove it from the inactive list
4038 */
4039 if (obj_priv->pin_count == 1) {
4040 atomic_inc(&dev->pin_count);
4041 atomic_add(obj->size, &dev->pin_memory);
4042 if (!obj_priv->active &&
bf1a1092 4043 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4044 list_del_init(&obj_priv->list);
4045 }
4046 i915_verify_inactive(dev, __FILE__, __LINE__);
4047
4048 return 0;
4049}
4050
4051void
4052i915_gem_object_unpin(struct drm_gem_object *obj)
4053{
4054 struct drm_device *dev = obj->dev;
4055 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4056 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4057
4058 i915_verify_inactive(dev, __FILE__, __LINE__);
4059 obj_priv->pin_count--;
4060 BUG_ON(obj_priv->pin_count < 0);
4061 BUG_ON(obj_priv->gtt_space == NULL);
4062
4063 /* If the object is no longer pinned, and is
4064 * neither active nor being flushed, then stick it on
4065 * the inactive list
4066 */
4067 if (obj_priv->pin_count == 0) {
4068 if (!obj_priv->active &&
21d509e3 4069 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
673a394b
EA
4070 list_move_tail(&obj_priv->list,
4071 &dev_priv->mm.inactive_list);
4072 atomic_dec(&dev->pin_count);
4073 atomic_sub(obj->size, &dev->pin_memory);
4074 }
4075 i915_verify_inactive(dev, __FILE__, __LINE__);
4076}
4077
4078int
4079i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4080 struct drm_file *file_priv)
4081{
4082 struct drm_i915_gem_pin *args = data;
4083 struct drm_gem_object *obj;
4084 struct drm_i915_gem_object *obj_priv;
4085 int ret;
4086
4087 mutex_lock(&dev->struct_mutex);
4088
4089 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4090 if (obj == NULL) {
4091 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4092 args->handle);
4093 mutex_unlock(&dev->struct_mutex);
bf79cb91 4094 return -ENOENT;
673a394b 4095 }
23010e43 4096 obj_priv = to_intel_bo(obj);
673a394b 4097
bb6baf76
CW
4098 if (obj_priv->madv != I915_MADV_WILLNEED) {
4099 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3ef94daa
CW
4100 drm_gem_object_unreference(obj);
4101 mutex_unlock(&dev->struct_mutex);
4102 return -EINVAL;
4103 }
4104
79e53945
JB
4105 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4106 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4107 args->handle);
96dec61d 4108 drm_gem_object_unreference(obj);
673a394b 4109 mutex_unlock(&dev->struct_mutex);
79e53945
JB
4110 return -EINVAL;
4111 }
4112
4113 obj_priv->user_pin_count++;
4114 obj_priv->pin_filp = file_priv;
4115 if (obj_priv->user_pin_count == 1) {
4116 ret = i915_gem_object_pin(obj, args->alignment);
4117 if (ret != 0) {
4118 drm_gem_object_unreference(obj);
4119 mutex_unlock(&dev->struct_mutex);
4120 return ret;
4121 }
673a394b
EA
4122 }
4123
4124 /* XXX - flush the CPU caches for pinned objects
4125 * as the X server doesn't manage domains yet
4126 */
e47c68e9 4127 i915_gem_object_flush_cpu_write_domain(obj);
673a394b
EA
4128 args->offset = obj_priv->gtt_offset;
4129 drm_gem_object_unreference(obj);
4130 mutex_unlock(&dev->struct_mutex);
4131
4132 return 0;
4133}
4134
4135int
4136i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4137 struct drm_file *file_priv)
4138{
4139 struct drm_i915_gem_pin *args = data;
4140 struct drm_gem_object *obj;
79e53945 4141 struct drm_i915_gem_object *obj_priv;
673a394b
EA
4142
4143 mutex_lock(&dev->struct_mutex);
4144
4145 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4146 if (obj == NULL) {
4147 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4148 args->handle);
4149 mutex_unlock(&dev->struct_mutex);
bf79cb91 4150 return -ENOENT;
673a394b
EA
4151 }
4152
23010e43 4153 obj_priv = to_intel_bo(obj);
79e53945
JB
4154 if (obj_priv->pin_filp != file_priv) {
4155 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4156 args->handle);
4157 drm_gem_object_unreference(obj);
4158 mutex_unlock(&dev->struct_mutex);
4159 return -EINVAL;
4160 }
4161 obj_priv->user_pin_count--;
4162 if (obj_priv->user_pin_count == 0) {
4163 obj_priv->pin_filp = NULL;
4164 i915_gem_object_unpin(obj);
4165 }
673a394b
EA
4166
4167 drm_gem_object_unreference(obj);
4168 mutex_unlock(&dev->struct_mutex);
4169 return 0;
4170}
4171
4172int
4173i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4174 struct drm_file *file_priv)
4175{
4176 struct drm_i915_gem_busy *args = data;
4177 struct drm_gem_object *obj;
4178 struct drm_i915_gem_object *obj_priv;
4179
673a394b
EA
4180 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4181 if (obj == NULL) {
4182 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4183 args->handle);
bf79cb91 4184 return -ENOENT;
673a394b
EA
4185 }
4186
b1ce786c 4187 mutex_lock(&dev->struct_mutex);
d1b851fc 4188
0be555b6
CW
4189 /* Count all active objects as busy, even if they are currently not used
4190 * by the gpu. Users of this interface expect objects to eventually
4191 * become non-busy without any further actions, therefore emit any
4192 * necessary flushes here.
c4de0a5d 4193 */
0be555b6
CW
4194 obj_priv = to_intel_bo(obj);
4195 args->busy = obj_priv->active;
4196 if (args->busy) {
4197 /* Unconditionally flush objects, even when the gpu still uses this
4198 * object. Userspace calling this function indicates that it wants to
4199 * use this buffer rather sooner than later, so issuing the required
4200 * flush earlier is beneficial.
4201 */
4202 if (obj->write_domain) {
4203 i915_gem_flush(dev, 0, obj->write_domain);
8a1a49f9 4204 (void)i915_add_request(dev, file_priv, obj_priv->ring);
0be555b6
CW
4205 }
4206
4207 /* Update the active list for the hardware's current position.
4208 * Otherwise this only updates on a delayed timer or when irqs
4209 * are actually unmasked, and our working set ends up being
4210 * larger than required.
4211 */
4212 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4213
4214 args->busy = obj_priv->active;
4215 }
673a394b
EA
4216
4217 drm_gem_object_unreference(obj);
4218 mutex_unlock(&dev->struct_mutex);
4219 return 0;
4220}
4221
4222int
4223i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4224 struct drm_file *file_priv)
4225{
4226 return i915_gem_ring_throttle(dev, file_priv);
4227}
4228
3ef94daa
CW
4229int
4230i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4231 struct drm_file *file_priv)
4232{
4233 struct drm_i915_gem_madvise *args = data;
4234 struct drm_gem_object *obj;
4235 struct drm_i915_gem_object *obj_priv;
4236
4237 switch (args->madv) {
4238 case I915_MADV_DONTNEED:
4239 case I915_MADV_WILLNEED:
4240 break;
4241 default:
4242 return -EINVAL;
4243 }
4244
4245 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4246 if (obj == NULL) {
4247 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4248 args->handle);
bf79cb91 4249 return -ENOENT;
3ef94daa
CW
4250 }
4251
4252 mutex_lock(&dev->struct_mutex);
23010e43 4253 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4254
4255 if (obj_priv->pin_count) {
4256 drm_gem_object_unreference(obj);
4257 mutex_unlock(&dev->struct_mutex);
4258
4259 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4260 return -EINVAL;
4261 }
4262
bb6baf76
CW
4263 if (obj_priv->madv != __I915_MADV_PURGED)
4264 obj_priv->madv = args->madv;
3ef94daa 4265
2d7ef395
CW
4266 /* if the object is no longer bound, discard its backing storage */
4267 if (i915_gem_object_is_purgeable(obj_priv) &&
4268 obj_priv->gtt_space == NULL)
4269 i915_gem_object_truncate(obj);
4270
bb6baf76
CW
4271 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4272
3ef94daa
CW
4273 drm_gem_object_unreference(obj);
4274 mutex_unlock(&dev->struct_mutex);
4275
4276 return 0;
4277}
4278
ac52bc56
DV
4279struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4280 size_t size)
4281{
c397b908 4282 struct drm_i915_gem_object *obj;
ac52bc56 4283
c397b908
DV
4284 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4285 if (obj == NULL)
4286 return NULL;
673a394b 4287
c397b908
DV
4288 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4289 kfree(obj);
4290 return NULL;
4291 }
673a394b 4292
c397b908
DV
4293 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4294 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4295
c397b908 4296 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4297 obj->base.driver_private = NULL;
c397b908
DV
4298 obj->fence_reg = I915_FENCE_REG_NONE;
4299 INIT_LIST_HEAD(&obj->list);
4300 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4301 obj->madv = I915_MADV_WILLNEED;
de151cf6 4302
c397b908
DV
4303 trace_i915_gem_object_create(&obj->base);
4304
4305 return &obj->base;
4306}
4307
4308int i915_gem_init_object(struct drm_gem_object *obj)
4309{
4310 BUG();
de151cf6 4311
673a394b
EA
4312 return 0;
4313}
4314
be72615b 4315static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4316{
de151cf6 4317 struct drm_device *dev = obj->dev;
be72615b 4318 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4319 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4320 int ret;
673a394b 4321
be72615b
CW
4322 ret = i915_gem_object_unbind(obj);
4323 if (ret == -ERESTARTSYS) {
4324 list_move(&obj_priv->list,
4325 &dev_priv->mm.deferred_free_list);
4326 return;
4327 }
673a394b 4328
7e616158
CW
4329 if (obj_priv->mmap_offset)
4330 i915_gem_free_mmap_offset(obj);
de151cf6 4331
c397b908
DV
4332 drm_gem_object_release(obj);
4333
9a298b2a 4334 kfree(obj_priv->page_cpu_valid);
280b713b 4335 kfree(obj_priv->bit_17);
c397b908 4336 kfree(obj_priv);
673a394b
EA
4337}
4338
be72615b
CW
4339void i915_gem_free_object(struct drm_gem_object *obj)
4340{
4341 struct drm_device *dev = obj->dev;
4342 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4343
4344 trace_i915_gem_object_destroy(obj);
4345
4346 while (obj_priv->pin_count > 0)
4347 i915_gem_object_unpin(obj);
4348
4349 if (obj_priv->phys_obj)
4350 i915_gem_detach_phys_object(dev, obj);
4351
4352 i915_gem_free_object_tail(obj);
4353}
4354
29105ccc
CW
4355int
4356i915_gem_idle(struct drm_device *dev)
4357{
4358 drm_i915_private_t *dev_priv = dev->dev_private;
4359 int ret;
28dfe52a 4360
29105ccc 4361 mutex_lock(&dev->struct_mutex);
1c5d22f7 4362
8187a2b7 4363 if (dev_priv->mm.suspended ||
d1b851fc
ZN
4364 (dev_priv->render_ring.gem_object == NULL) ||
4365 (HAS_BSD(dev) &&
4366 dev_priv->bsd_ring.gem_object == NULL)) {
29105ccc
CW
4367 mutex_unlock(&dev->struct_mutex);
4368 return 0;
28dfe52a
EA
4369 }
4370
29105ccc 4371 ret = i915_gpu_idle(dev);
6dbe2772
KP
4372 if (ret) {
4373 mutex_unlock(&dev->struct_mutex);
673a394b 4374 return ret;
6dbe2772 4375 }
673a394b 4376
29105ccc
CW
4377 /* Under UMS, be paranoid and evict. */
4378 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4379 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4380 if (ret) {
4381 mutex_unlock(&dev->struct_mutex);
4382 return ret;
4383 }
4384 }
4385
4386 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4387 * We need to replace this with a semaphore, or something.
4388 * And not confound mm.suspended!
4389 */
4390 dev_priv->mm.suspended = 1;
bc0c7f14 4391 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4392
4393 i915_kernel_lost_context(dev);
6dbe2772 4394 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4395
6dbe2772
KP
4396 mutex_unlock(&dev->struct_mutex);
4397
29105ccc
CW
4398 /* Cancel the retire work handler, which should be idle now. */
4399 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4400
673a394b
EA
4401 return 0;
4402}
4403
e552eb70
JB
4404/*
4405 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4406 * over cache flushing.
4407 */
8187a2b7 4408static int
e552eb70
JB
4409i915_gem_init_pipe_control(struct drm_device *dev)
4410{
4411 drm_i915_private_t *dev_priv = dev->dev_private;
4412 struct drm_gem_object *obj;
4413 struct drm_i915_gem_object *obj_priv;
4414 int ret;
4415
34dc4d44 4416 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4417 if (obj == NULL) {
4418 DRM_ERROR("Failed to allocate seqno page\n");
4419 ret = -ENOMEM;
4420 goto err;
4421 }
4422 obj_priv = to_intel_bo(obj);
4423 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4424
4425 ret = i915_gem_object_pin(obj, 4096);
4426 if (ret)
4427 goto err_unref;
4428
4429 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4430 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4431 if (dev_priv->seqno_page == NULL)
4432 goto err_unpin;
4433
4434 dev_priv->seqno_obj = obj;
4435 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4436
4437 return 0;
4438
4439err_unpin:
4440 i915_gem_object_unpin(obj);
4441err_unref:
4442 drm_gem_object_unreference(obj);
4443err:
4444 return ret;
4445}
4446
8187a2b7
ZN
4447
4448static void
e552eb70
JB
4449i915_gem_cleanup_pipe_control(struct drm_device *dev)
4450{
4451 drm_i915_private_t *dev_priv = dev->dev_private;
4452 struct drm_gem_object *obj;
4453 struct drm_i915_gem_object *obj_priv;
4454
4455 obj = dev_priv->seqno_obj;
4456 obj_priv = to_intel_bo(obj);
4457 kunmap(obj_priv->pages[0]);
4458 i915_gem_object_unpin(obj);
4459 drm_gem_object_unreference(obj);
4460 dev_priv->seqno_obj = NULL;
4461
4462 dev_priv->seqno_page = NULL;
673a394b
EA
4463}
4464
8187a2b7
ZN
4465int
4466i915_gem_init_ringbuffer(struct drm_device *dev)
4467{
4468 drm_i915_private_t *dev_priv = dev->dev_private;
4469 int ret;
68f95ba9 4470
8187a2b7 4471 dev_priv->render_ring = render_ring;
68f95ba9 4472
8187a2b7
ZN
4473 if (!I915_NEED_GFX_HWS(dev)) {
4474 dev_priv->render_ring.status_page.page_addr
4475 = dev_priv->status_page_dmah->vaddr;
4476 memset(dev_priv->render_ring.status_page.page_addr,
4477 0, PAGE_SIZE);
4478 }
68f95ba9 4479
8187a2b7
ZN
4480 if (HAS_PIPE_CONTROL(dev)) {
4481 ret = i915_gem_init_pipe_control(dev);
4482 if (ret)
4483 return ret;
4484 }
68f95ba9 4485
8187a2b7 4486 ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
68f95ba9
CW
4487 if (ret)
4488 goto cleanup_pipe_control;
4489
4490 if (HAS_BSD(dev)) {
d1b851fc
ZN
4491 dev_priv->bsd_ring = bsd_ring;
4492 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
68f95ba9
CW
4493 if (ret)
4494 goto cleanup_render_ring;
d1b851fc 4495 }
68f95ba9 4496
6f392d54
CW
4497 dev_priv->next_seqno = 1;
4498
68f95ba9
CW
4499 return 0;
4500
4501cleanup_render_ring:
4502 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4503cleanup_pipe_control:
4504 if (HAS_PIPE_CONTROL(dev))
4505 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4506 return ret;
4507}
4508
4509void
4510i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4511{
4512 drm_i915_private_t *dev_priv = dev->dev_private;
4513
4514 intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
d1b851fc
ZN
4515 if (HAS_BSD(dev))
4516 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
8187a2b7
ZN
4517 if (HAS_PIPE_CONTROL(dev))
4518 i915_gem_cleanup_pipe_control(dev);
4519}
4520
673a394b
EA
4521int
4522i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4523 struct drm_file *file_priv)
4524{
4525 drm_i915_private_t *dev_priv = dev->dev_private;
4526 int ret;
4527
79e53945
JB
4528 if (drm_core_check_feature(dev, DRIVER_MODESET))
4529 return 0;
4530
ba1234d1 4531 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4532 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4533 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4534 }
4535
673a394b 4536 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4537 dev_priv->mm.suspended = 0;
4538
4539 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4540 if (ret != 0) {
4541 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4542 return ret;
d816f6ac 4543 }
9bb2d6f9 4544
5e118f41 4545 spin_lock(&dev_priv->mm.active_list_lock);
852835f3 4546 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
d1b851fc 4547 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
5e118f41
CW
4548 spin_unlock(&dev_priv->mm.active_list_lock);
4549
673a394b
EA
4550 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4551 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4552 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
d1b851fc 4553 BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
673a394b 4554 mutex_unlock(&dev->struct_mutex);
dbb19d30 4555
5f35308b
CW
4556 ret = drm_irq_install(dev);
4557 if (ret)
4558 goto cleanup_ringbuffer;
dbb19d30 4559
673a394b 4560 return 0;
5f35308b
CW
4561
4562cleanup_ringbuffer:
4563 mutex_lock(&dev->struct_mutex);
4564 i915_gem_cleanup_ringbuffer(dev);
4565 dev_priv->mm.suspended = 1;
4566 mutex_unlock(&dev->struct_mutex);
4567
4568 return ret;
673a394b
EA
4569}
4570
4571int
4572i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4573 struct drm_file *file_priv)
4574{
79e53945
JB
4575 if (drm_core_check_feature(dev, DRIVER_MODESET))
4576 return 0;
4577
dbb19d30 4578 drm_irq_uninstall(dev);
e6890f6f 4579 return i915_gem_idle(dev);
673a394b
EA
4580}
4581
4582void
4583i915_gem_lastclose(struct drm_device *dev)
4584{
4585 int ret;
673a394b 4586
e806b495
EA
4587 if (drm_core_check_feature(dev, DRIVER_MODESET))
4588 return;
4589
6dbe2772
KP
4590 ret = i915_gem_idle(dev);
4591 if (ret)
4592 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4593}
4594
4595void
4596i915_gem_load(struct drm_device *dev)
4597{
b5aa8a0f 4598 int i;
673a394b
EA
4599 drm_i915_private_t *dev_priv = dev->dev_private;
4600
5e118f41 4601 spin_lock_init(&dev_priv->mm.active_list_lock);
673a394b 4602 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
99fcb766 4603 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
673a394b 4604 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
a09ba7fa 4605 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4606 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
852835f3
ZN
4607 INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4608 INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
d1b851fc
ZN
4609 if (HAS_BSD(dev)) {
4610 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4611 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4612 }
007cc8ac
DV
4613 for (i = 0; i < 16; i++)
4614 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4615 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4616 i915_gem_retire_work_handler);
31169714
CW
4617 spin_lock(&shrink_list_lock);
4618 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4619 spin_unlock(&shrink_list_lock);
4620
94400120
DA
4621 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4622 if (IS_GEN3(dev)) {
4623 u32 tmp = I915_READ(MI_ARB_STATE);
4624 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4625 /* arb state is a masked write, so set bit + bit in mask */
4626 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4627 I915_WRITE(MI_ARB_STATE, tmp);
4628 }
4629 }
4630
de151cf6 4631 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4632 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4633 dev_priv->fence_reg_start = 3;
de151cf6 4634
0f973f27 4635 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4636 dev_priv->num_fence_regs = 16;
4637 else
4638 dev_priv->num_fence_regs = 8;
4639
b5aa8a0f
GH
4640 /* Initialize fence registers to zero */
4641 if (IS_I965G(dev)) {
4642 for (i = 0; i < 16; i++)
4643 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4644 } else {
4645 for (i = 0; i < 8; i++)
4646 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4647 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4648 for (i = 0; i < 8; i++)
4649 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4650 }
673a394b 4651 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4652 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4653}
71acb5eb
DA
4654
4655/*
4656 * Create a physically contiguous memory object for this object
4657 * e.g. for cursor + overlay regs
4658 */
4659int i915_gem_init_phys_object(struct drm_device *dev,
6eeefaf3 4660 int id, int size, int align)
71acb5eb
DA
4661{
4662 drm_i915_private_t *dev_priv = dev->dev_private;
4663 struct drm_i915_gem_phys_object *phys_obj;
4664 int ret;
4665
4666 if (dev_priv->mm.phys_objs[id - 1] || !size)
4667 return 0;
4668
9a298b2a 4669 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4670 if (!phys_obj)
4671 return -ENOMEM;
4672
4673 phys_obj->id = id;
4674
6eeefaf3 4675 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4676 if (!phys_obj->handle) {
4677 ret = -ENOMEM;
4678 goto kfree_obj;
4679 }
4680#ifdef CONFIG_X86
4681 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4682#endif
4683
4684 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4685
4686 return 0;
4687kfree_obj:
9a298b2a 4688 kfree(phys_obj);
71acb5eb
DA
4689 return ret;
4690}
4691
4692void i915_gem_free_phys_object(struct drm_device *dev, int id)
4693{
4694 drm_i915_private_t *dev_priv = dev->dev_private;
4695 struct drm_i915_gem_phys_object *phys_obj;
4696
4697 if (!dev_priv->mm.phys_objs[id - 1])
4698 return;
4699
4700 phys_obj = dev_priv->mm.phys_objs[id - 1];
4701 if (phys_obj->cur_obj) {
4702 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4703 }
4704
4705#ifdef CONFIG_X86
4706 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4707#endif
4708 drm_pci_free(dev, phys_obj->handle);
4709 kfree(phys_obj);
4710 dev_priv->mm.phys_objs[id - 1] = NULL;
4711}
4712
4713void i915_gem_free_all_phys_object(struct drm_device *dev)
4714{
4715 int i;
4716
260883c8 4717 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4718 i915_gem_free_phys_object(dev, i);
4719}
4720
4721void i915_gem_detach_phys_object(struct drm_device *dev,
4722 struct drm_gem_object *obj)
4723{
4724 struct drm_i915_gem_object *obj_priv;
4725 int i;
4726 int ret;
4727 int page_count;
4728
23010e43 4729 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4730 if (!obj_priv->phys_obj)
4731 return;
4732
4bdadb97 4733 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4734 if (ret)
4735 goto out;
4736
4737 page_count = obj->size / PAGE_SIZE;
4738
4739 for (i = 0; i < page_count; i++) {
856fa198 4740 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4741 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4742
4743 memcpy(dst, src, PAGE_SIZE);
4744 kunmap_atomic(dst, KM_USER0);
4745 }
856fa198 4746 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4747 drm_agp_chipset_flush(dev);
d78b47b9
CW
4748
4749 i915_gem_object_put_pages(obj);
71acb5eb
DA
4750out:
4751 obj_priv->phys_obj->cur_obj = NULL;
4752 obj_priv->phys_obj = NULL;
4753}
4754
4755int
4756i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4757 struct drm_gem_object *obj,
4758 int id,
4759 int align)
71acb5eb
DA
4760{
4761 drm_i915_private_t *dev_priv = dev->dev_private;
4762 struct drm_i915_gem_object *obj_priv;
4763 int ret = 0;
4764 int page_count;
4765 int i;
4766
4767 if (id > I915_MAX_PHYS_OBJECT)
4768 return -EINVAL;
4769
23010e43 4770 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4771
4772 if (obj_priv->phys_obj) {
4773 if (obj_priv->phys_obj->id == id)
4774 return 0;
4775 i915_gem_detach_phys_object(dev, obj);
4776 }
4777
71acb5eb
DA
4778 /* create a new object */
4779 if (!dev_priv->mm.phys_objs[id - 1]) {
4780 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4781 obj->size, align);
71acb5eb 4782 if (ret) {
aeb565df 4783 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4784 goto out;
4785 }
4786 }
4787
4788 /* bind to the object */
4789 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4790 obj_priv->phys_obj->cur_obj = obj;
4791
4bdadb97 4792 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4793 if (ret) {
4794 DRM_ERROR("failed to get page list\n");
4795 goto out;
4796 }
4797
4798 page_count = obj->size / PAGE_SIZE;
4799
4800 for (i = 0; i < page_count; i++) {
856fa198 4801 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
71acb5eb
DA
4802 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4803
4804 memcpy(dst, src, PAGE_SIZE);
4805 kunmap_atomic(src, KM_USER0);
4806 }
4807
d78b47b9
CW
4808 i915_gem_object_put_pages(obj);
4809
71acb5eb
DA
4810 return 0;
4811out:
4812 return ret;
4813}
4814
4815static int
4816i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4817 struct drm_i915_gem_pwrite *args,
4818 struct drm_file *file_priv)
4819{
23010e43 4820 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4821 void *obj_addr;
4822 int ret;
4823 char __user *user_data;
4824
4825 user_data = (char __user *) (uintptr_t) args->data_ptr;
4826 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4827
44d98a61 4828 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4829 ret = copy_from_user(obj_addr, user_data, args->size);
4830 if (ret)
4831 return -EFAULT;
4832
4833 drm_agp_chipset_flush(dev);
4834 return 0;
4835}
b962442e
EA
4836
4837void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4838{
4839 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4840
4841 /* Clean up our request list when the client is going away, so that
4842 * later retire_requests won't dereference our soon-to-be-gone
4843 * file_priv.
4844 */
4845 mutex_lock(&dev->struct_mutex);
4846 while (!list_empty(&i915_file_priv->mm.request_list))
4847 list_del_init(i915_file_priv->mm.request_list.next);
4848 mutex_unlock(&dev->struct_mutex);
4849}
31169714 4850
1637ef41
CW
4851static int
4852i915_gpu_is_active(struct drm_device *dev)
4853{
4854 drm_i915_private_t *dev_priv = dev->dev_private;
4855 int lists_empty;
4856
4857 spin_lock(&dev_priv->mm.active_list_lock);
4858 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
852835f3 4859 list_empty(&dev_priv->render_ring.active_list);
d1b851fc
ZN
4860 if (HAS_BSD(dev))
4861 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
1637ef41
CW
4862 spin_unlock(&dev_priv->mm.active_list_lock);
4863
4864 return !lists_empty;
4865}
4866
31169714 4867static int
7f8275d0 4868i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4869{
4870 drm_i915_private_t *dev_priv, *next_dev;
4871 struct drm_i915_gem_object *obj_priv, *next_obj;
4872 int cnt = 0;
4873 int would_deadlock = 1;
4874
4875 /* "fast-path" to count number of available objects */
4876 if (nr_to_scan == 0) {
4877 spin_lock(&shrink_list_lock);
4878 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4879 struct drm_device *dev = dev_priv->dev;
4880
4881 if (mutex_trylock(&dev->struct_mutex)) {
4882 list_for_each_entry(obj_priv,
4883 &dev_priv->mm.inactive_list,
4884 list)
4885 cnt++;
4886 mutex_unlock(&dev->struct_mutex);
4887 }
4888 }
4889 spin_unlock(&shrink_list_lock);
4890
4891 return (cnt / 100) * sysctl_vfs_cache_pressure;
4892 }
4893
4894 spin_lock(&shrink_list_lock);
4895
1637ef41 4896rescan:
31169714
CW
4897 /* first scan for clean buffers */
4898 list_for_each_entry_safe(dev_priv, next_dev,
4899 &shrink_list, mm.shrink_list) {
4900 struct drm_device *dev = dev_priv->dev;
4901
4902 if (! mutex_trylock(&dev->struct_mutex))
4903 continue;
4904
4905 spin_unlock(&shrink_list_lock);
b09a1fec 4906 i915_gem_retire_requests(dev);
31169714
CW
4907
4908 list_for_each_entry_safe(obj_priv, next_obj,
4909 &dev_priv->mm.inactive_list,
4910 list) {
4911 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4912 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4913 if (--nr_to_scan <= 0)
4914 break;
4915 }
4916 }
4917
4918 spin_lock(&shrink_list_lock);
4919 mutex_unlock(&dev->struct_mutex);
4920
963b4836
CW
4921 would_deadlock = 0;
4922
31169714
CW
4923 if (nr_to_scan <= 0)
4924 break;
4925 }
4926
4927 /* second pass, evict/count anything still on the inactive list */
4928 list_for_each_entry_safe(dev_priv, next_dev,
4929 &shrink_list, mm.shrink_list) {
4930 struct drm_device *dev = dev_priv->dev;
4931
4932 if (! mutex_trylock(&dev->struct_mutex))
4933 continue;
4934
4935 spin_unlock(&shrink_list_lock);
4936
4937 list_for_each_entry_safe(obj_priv, next_obj,
4938 &dev_priv->mm.inactive_list,
4939 list) {
4940 if (nr_to_scan > 0) {
a8089e84 4941 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4942 nr_to_scan--;
4943 } else
4944 cnt++;
4945 }
4946
4947 spin_lock(&shrink_list_lock);
4948 mutex_unlock(&dev->struct_mutex);
4949
4950 would_deadlock = 0;
4951 }
4952
1637ef41
CW
4953 if (nr_to_scan) {
4954 int active = 0;
4955
4956 /*
4957 * We are desperate for pages, so as a last resort, wait
4958 * for the GPU to finish and discard whatever we can.
4959 * This has a dramatic impact to reduce the number of
4960 * OOM-killer events whilst running the GPU aggressively.
4961 */
4962 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4963 struct drm_device *dev = dev_priv->dev;
4964
4965 if (!mutex_trylock(&dev->struct_mutex))
4966 continue;
4967
4968 spin_unlock(&shrink_list_lock);
4969
4970 if (i915_gpu_is_active(dev)) {
4971 i915_gpu_idle(dev);
4972 active++;
4973 }
4974
4975 spin_lock(&shrink_list_lock);
4976 mutex_unlock(&dev->struct_mutex);
4977 }
4978
4979 if (active)
4980 goto rescan;
4981 }
4982
31169714
CW
4983 spin_unlock(&shrink_list_lock);
4984
4985 if (would_deadlock)
4986 return -1;
4987 else if (cnt > 0)
4988 return (cnt / 100) * sysctl_vfs_cache_pressure;
4989 else
4990 return 0;
4991}
4992
4993static struct shrinker shrinker = {
4994 .shrink = i915_gem_shrink,
4995 .seeks = DEFAULT_SEEKS,
4996};
4997
4998__init void
4999i915_gem_shrinker_init(void)
5000{
5001 register_shrinker(&shrinker);
5002}
5003
5004__exit void
5005i915_gem_shrinker_exit(void)
5006{
5007 unregister_shrinker(&shrinker);
5008}
This page took 0.50466 seconds and 5 git commands to generate.