drm/i915: Add *_ring_begin() to request allocation
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
b4716185
CW
41#define RQ_BUG_ON(expr)
42
05394f39 43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 45static void
b4716185
CW
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808
CW
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
c76ce038
CW
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
2c22569b
CW
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
61050808
CW
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
5d82e3e6 77 obj->fence_dirty = false;
61050808
CW
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
73aa808f
CW
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
c20e8355 85 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
c20e8355 88 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
c20e8355 94 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
c20e8355 97 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
98}
99
21dd3734 100static int
33196ded 101i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 102{
30dbf0c0
CW
103 int ret;
104
7abb690a
DV
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
1f83fee0 107 if (EXIT_COND)
30dbf0c0
CW
108 return 0;
109
0a6759c6
DV
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
1f83fee0
DV
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
0a6759c6
DV
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
30dbf0c0 122 return ret;
0a6759c6 123 }
1f83fee0 124#undef EXIT_COND
30dbf0c0 125
21dd3734 126 return 0;
30dbf0c0
CW
127}
128
54cf91dc 129int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 130{
33196ded 131 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
132 int ret;
133
33196ded 134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
23bc5982 142 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
143 return 0;
144}
30dbf0c0 145
5a125c3c
EA
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 148 struct drm_file *file)
5a125c3c 149{
73aa808f 150 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 151 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
5a125c3c 154
6299f992 155 pinned = 0;
73aa808f 156 mutex_lock(&dev->struct_mutex);
35c20a60 157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 158 if (i915_gem_obj_is_pinned(obj))
f343c5f6 159 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 160 mutex_unlock(&dev->struct_mutex);
5a125c3c 161
853ba5d2 162 args->aper_size = dev_priv->gtt.base.total;
0206e353 163 args->aper_available_size = args->aper_size - pinned;
6299f992 164
5a125c3c
EA
165 return 0;
166}
167
6a2c4232
CW
168static int
169i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 170{
6a2c4232
CW
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
00731155 176
6a2c4232
CW
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
00731155 211
6a2c4232
CW
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 226
6a2c4232
CW
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
00731155 240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 241 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
00731155 259 mark_page_accessed(page);
6a2c4232 260 page_cache_release(page);
00731155
CW
261 vaddr += PAGE_SIZE;
262 }
6a2c4232 263 obj->dirty = 0;
00731155
CW
264 }
265
6a2c4232
CW
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
00731155
CW
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
6a2c4232 306 int ret;
00731155
CW
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
6a2c4232
CW
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
00731155
CW
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
00731155 330 obj->phys_handle = phys;
6a2c4232
CW
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
00731155
CW
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 344 int ret = 0;
6a2c4232
CW
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
00731155 352
77a0d1ca 353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
00731155
CW
368 }
369
6a2c4232 370 drm_clflush_virt_range(vaddr, args->size);
00731155 371 i915_gem_chipset_flush(dev);
063e4e6b
PZ
372
373out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
00731155
CW
376}
377
42dcedd4
CW
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
380 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 387 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
388}
389
ff72145b
DA
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
673a394b 395{
05394f39 396 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
397 int ret;
398 u32 handle;
673a394b 399
ff72145b 400 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
401 if (size == 0)
402 return -EINVAL;
673a394b
EA
403
404 /* Allocate the new object */
ff72145b 405 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
406 if (obj == NULL)
407 return -ENOMEM;
408
05394f39 409 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 410 /* drop reference from allocate - handle holds it now */
d861e338
DV
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
202f2fef 414
ff72145b 415 *handle_p = handle;
673a394b
EA
416 return 0;
417}
418
ff72145b
DA
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
de45eaf7 425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
da6b51d0 428 args->size, &args->handle);
ff72145b
DA
429}
430
ff72145b
DA
431/**
432 * Creates a new mm object and returns a handle to it.
433 */
434int
435i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437{
438 struct drm_i915_gem_create *args = data;
63ed2cb2 439
ff72145b 440 return i915_gem_create(file, dev,
da6b51d0 441 args->size, &args->handle);
ff72145b
DA
442}
443
8461d226
DV
444static inline int
445__copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448{
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468}
469
8c59967c 470static inline int
4f0c7cfb
BW
471__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
8c59967c
DV
473 int length)
474{
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494}
495
4c914c0c
BV
496/*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503{
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530}
531
d174bd64
DV
532/* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
eb01459f 535static int
d174bd64
DV
536shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539{
540 char *vaddr;
541 int ret;
542
e7e58eb5 543 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
f60d7f0c 555 return ret ? -EFAULT : 0;
d174bd64
DV
556}
557
23c18c71
DV
558static void
559shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561{
e7e58eb5 562 if (unlikely(swizzled)) {
23c18c71
DV
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578}
579
d174bd64
DV
580/* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582static int
583shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586{
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
23c18c71
DV
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
d174bd64
DV
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
f60d7f0c 606 return ret ? - EFAULT : 0;
d174bd64
DV
607}
608
eb01459f 609static int
dbf7bff0
DV
610i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
eb01459f 614{
8461d226 615 char __user *user_data;
eb01459f 616 ssize_t remain;
8461d226 617 loff_t offset;
eb2c0c81 618 int shmem_page_offset, page_length, ret = 0;
8461d226 619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 620 int prefaulted = 0;
8489731c 621 int needs_clflush = 0;
67d5a50c 622 struct sg_page_iter sg_iter;
eb01459f 623
2bb4629a 624 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
625 remain = args->size;
626
8461d226 627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 628
4c914c0c 629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
630 if (ret)
631 return ret;
632
8461d226 633 offset = args->offset;
eb01459f 634
67d5a50c
ID
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
2db76d7c 637 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
638
639 if (remain <= 0)
640 break;
641
eb01459f
EA
642 /* Operation in this page
643 *
eb01459f 644 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
645 * page_length = bytes to copy for this page
646 */
c8cbbb8b 647 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 651
8461d226
DV
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
d174bd64
DV
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
dbf7bff0 660
dbf7bff0
DV
661 mutex_unlock(&dev->struct_mutex);
662
d330a953 663 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 664 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
eb01459f 672
d174bd64
DV
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
eb01459f 676
dbf7bff0 677 mutex_lock(&dev->struct_mutex);
f60d7f0c 678
f60d7f0c 679 if (ret)
8461d226 680 goto out;
8461d226 681
17793c9a 682next_page:
eb01459f 683 remain -= page_length;
8461d226 684 user_data += page_length;
eb01459f
EA
685 offset += page_length;
686 }
687
4f27b75d 688out:
f60d7f0c
CW
689 i915_gem_object_unpin_pages(obj);
690
eb01459f
EA
691 return ret;
692}
693
673a394b
EA
694/**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699int
700i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 701 struct drm_file *file)
673a394b
EA
702{
703 struct drm_i915_gem_pread *args = data;
05394f39 704 struct drm_i915_gem_object *obj;
35b62a89 705 int ret = 0;
673a394b 706
51311d0a
CW
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
2bb4629a 711 to_user_ptr(args->data_ptr),
51311d0a
CW
712 args->size))
713 return -EFAULT;
714
4f27b75d 715 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 716 if (ret)
4f27b75d 717 return ret;
673a394b 718
05394f39 719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 720 if (&obj->base == NULL) {
1d7cfea1
CW
721 ret = -ENOENT;
722 goto unlock;
4f27b75d 723 }
673a394b 724
7dcd2499 725 /* Bounds check source. */
05394f39
CW
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
ce9d419d 728 ret = -EINVAL;
35b62a89 729 goto out;
ce9d419d
CW
730 }
731
1286ff73
DV
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
db53a302
CW
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
dbf7bff0 742 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 743
35b62a89 744out:
05394f39 745 drm_gem_object_unreference(&obj->base);
1d7cfea1 746unlock:
4f27b75d 747 mutex_unlock(&dev->struct_mutex);
eb01459f 748 return ret;
673a394b
EA
749}
750
0839ccb8
KP
751/* This is the fast write path which cannot handle
752 * page faults in the source data
9b7530cc 753 */
0839ccb8
KP
754
755static inline int
756fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
9b7530cc 760{
4f0c7cfb
BW
761 void __iomem *vaddr_atomic;
762 void *vaddr;
0839ccb8 763 unsigned long unwritten;
9b7530cc 764
3e4d3af5 765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 769 user_data, length);
3e4d3af5 770 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 771 return unwritten;
0839ccb8
KP
772}
773
3de09aa3
EA
774/**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
673a394b 778static int
05394f39
CW
779i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
3de09aa3 781 struct drm_i915_gem_pwrite *args,
05394f39 782 struct drm_file *file)
673a394b 783{
3e31c6c0 784 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 785 ssize_t remain;
0839ccb8 786 loff_t offset, page_base;
673a394b 787 char __user *user_data;
935aaa69
DV
788 int page_offset, page_length, ret;
789
1ec9e26d 790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
673a394b 801
2bb4629a 802 user_data = to_user_ptr(args->data_ptr);
673a394b 803 remain = args->size;
673a394b 804
f343c5f6 805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 806
77a0d1ca 807 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 808
673a394b
EA
809 while (remain > 0) {
810 /* Operation in this page
811 *
0839ccb8
KP
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
673a394b 815 */
c8cbbb8b
CW
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
0839ccb8
KP
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
0839ccb8 822 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
0839ccb8 825 */
5d4545ae 826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
063e4e6b 829 goto out_flush;
935aaa69 830 }
673a394b 831
0839ccb8
KP
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
673a394b 835 }
673a394b 836
063e4e6b
PZ
837out_flush:
838 intel_fb_obj_flush(obj, false);
935aaa69 839out_unpin:
d7f46fc4 840 i915_gem_object_ggtt_unpin(obj);
935aaa69 841out:
3de09aa3 842 return ret;
673a394b
EA
843}
844
d174bd64
DV
845/* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
3043c60c 849static int
d174bd64
DV
850shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
673a394b 855{
d174bd64 856 char *vaddr;
673a394b 857 int ret;
3de09aa3 858
e7e58eb5 859 if (unlikely(page_do_bit17_swizzling))
d174bd64 860 return -EINVAL;
3de09aa3 861
d174bd64
DV
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
c2831a94
CW
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
d174bd64
DV
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
3de09aa3 872
755d2218 873 return ret ? -EFAULT : 0;
3de09aa3
EA
874}
875
d174bd64
DV
876/* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
3043c60c 878static int
d174bd64
DV
879shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
673a394b 884{
d174bd64
DV
885 char *vaddr;
886 int ret;
e5281ccd 887
d174bd64 888 vaddr = kmap(page);
e7e58eb5 889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
d174bd64
DV
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
895 user_data,
896 page_length);
d174bd64
DV
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
23c18c71
DV
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
d174bd64 905 kunmap(page);
40123c1f 906
755d2218 907 return ret ? -EFAULT : 0;
40123c1f
EA
908}
909
40123c1f 910static int
e244a443
DV
911i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
40123c1f 915{
40123c1f 916 ssize_t remain;
8c59967c
DV
917 loff_t offset;
918 char __user *user_data;
eb2c0c81 919 int shmem_page_offset, page_length, ret = 0;
8c59967c 920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 921 int hit_slowpath = 0;
58642885
DV
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
67d5a50c 924 struct sg_page_iter sg_iter;
40123c1f 925
2bb4629a 926 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
927 remain = args->size;
928
8c59967c 929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 930
58642885
DV
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
2c22569b 936 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
58642885 940 }
c76ce038
CW
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 946
755d2218
CW
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
77a0d1ca 951 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 952
755d2218
CW
953 i915_gem_object_pin_pages(obj);
954
673a394b 955 offset = args->offset;
05394f39 956 obj->dirty = 1;
673a394b 957
67d5a50c
ID
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
2db76d7c 960 struct page *page = sg_page_iter_page(&sg_iter);
58642885 961 int partial_cacheline_write;
e5281ccd 962
9da3da66
CW
963 if (remain <= 0)
964 break;
965
40123c1f
EA
966 /* Operation in this page
967 *
40123c1f 968 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
969 * page_length = bytes to copy for this page
970 */
c8cbbb8b 971 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 976
58642885
DV
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
8c59967c
DV
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
d174bd64
DV
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
e244a443
DV
993
994 hit_slowpath = 1;
e244a443 995 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
40123c1f 1000
e244a443 1001 mutex_lock(&dev->struct_mutex);
755d2218 1002
755d2218 1003 if (ret)
8c59967c 1004 goto out;
8c59967c 1005
17793c9a 1006next_page:
40123c1f 1007 remain -= page_length;
8c59967c 1008 user_data += page_length;
40123c1f 1009 offset += page_length;
673a394b
EA
1010 }
1011
fbd5a26d 1012out:
755d2218
CW
1013 i915_gem_object_unpin_pages(obj);
1014
e244a443 1015 if (hit_slowpath) {
8dcf015e
DV
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
e244a443 1025 }
8c59967c 1026 }
673a394b 1027
58642885 1028 if (needs_clflush_after)
e76e9aeb 1029 i915_gem_chipset_flush(dev);
58642885 1030
063e4e6b 1031 intel_fb_obj_flush(obj, false);
40123c1f 1032 return ret;
673a394b
EA
1033}
1034
1035/**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040int
1041i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1042 struct drm_file *file)
673a394b 1043{
5d77d9c5 1044 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1045 struct drm_i915_gem_pwrite *args = data;
05394f39 1046 struct drm_i915_gem_object *obj;
51311d0a
CW
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
2bb4629a 1053 to_user_ptr(args->data_ptr),
51311d0a
CW
1054 args->size))
1055 return -EFAULT;
1056
d330a953 1057 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
673a394b 1063
5d77d9c5
ID
1064 intel_runtime_pm_get(dev_priv);
1065
fbd5a26d 1066 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1067 if (ret)
5d77d9c5 1068 goto put_rpm;
1d7cfea1 1069
05394f39 1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1071 if (&obj->base == NULL) {
1d7cfea1
CW
1072 ret = -ENOENT;
1073 goto unlock;
fbd5a26d 1074 }
673a394b 1075
7dcd2499 1076 /* Bounds check destination. */
05394f39
CW
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
ce9d419d 1079 ret = -EINVAL;
35b62a89 1080 goto out;
ce9d419d
CW
1081 }
1082
1286ff73
DV
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
db53a302
CW
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
935aaa69 1093 ret = -EFAULT;
673a394b
EA
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
2c22569b
CW
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
fbd5a26d 1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1107 }
673a394b 1108
6a2c4232
CW
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
5c0480f2 1115
35b62a89 1116out:
05394f39 1117 drm_gem_object_unreference(&obj->base);
1d7cfea1 1118unlock:
fbd5a26d 1119 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1120put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
673a394b
EA
1123 return ret;
1124}
1125
b361237b 1126int
33196ded 1127i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1128 bool interruptible)
1129{
1f83fee0 1130 if (i915_reset_in_progress(error)) {
b361237b
CW
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1f83fee0
DV
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
b361237b
CW
1138 return -EIO;
1139
6689c167
MA
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
b361237b
CW
1147 }
1148
1149 return 0;
1150}
1151
1152/*
b6660d59 1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
b361237b 1154 */
84c33a64 1155int
b6660d59 1156i915_gem_check_olr(struct drm_i915_gem_request *req)
b361237b 1157{
b6660d59 1158 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
b361237b 1159
b6660d59 1160 if (req == req->ring->outstanding_lazy_request)
75289874 1161 i915_add_request(req);
b361237b 1162
bf7dc5b7 1163 return 0;
b361237b
CW
1164}
1165
094f9a54
CW
1166static void fake_irq(unsigned long data)
1167{
1168 wake_up_process((struct task_struct *)data);
1169}
1170
1171static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1172 struct intel_engine_cs *ring)
094f9a54
CW
1173{
1174 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1175}
1176
eed29a5b 1177static int __i915_spin_request(struct drm_i915_gem_request *req)
b29c19b6 1178{
2def4ad9
CW
1179 unsigned long timeout;
1180
eed29a5b 1181 if (i915_gem_request_get_ring(req)->irq_refcount)
2def4ad9
CW
1182 return -EBUSY;
1183
1184 timeout = jiffies + 1;
1185 while (!need_resched()) {
eed29a5b 1186 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1187 return 0;
1188
1189 if (time_after_eq(jiffies, timeout))
1190 break;
b29c19b6 1191
2def4ad9
CW
1192 cpu_relax_lowlatency();
1193 }
eed29a5b 1194 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1195 return 0;
1196
1197 return -EAGAIN;
b29c19b6
CW
1198}
1199
b361237b 1200/**
9c654818
JH
1201 * __i915_wait_request - wait until execution of request has finished
1202 * @req: duh!
1203 * @reset_counter: reset sequence associated with the given request
b361237b
CW
1204 * @interruptible: do an interruptible wait (normally yes)
1205 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1206 *
f69061be
DV
1207 * Note: It is of utmost importance that the passed in seqno and reset_counter
1208 * values have been read by the caller in an smp safe manner. Where read-side
1209 * locks are involved, it is sufficient to read the reset_counter before
1210 * unlocking the lock that protects the seqno. For lockless tricks, the
1211 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1212 * inserted.
1213 *
9c654818 1214 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1215 * errno with remaining time filled in timeout argument.
1216 */
9c654818 1217int __i915_wait_request(struct drm_i915_gem_request *req,
f69061be 1218 unsigned reset_counter,
b29c19b6 1219 bool interruptible,
5ed0bdf2 1220 s64 *timeout,
2e1b8730 1221 struct intel_rps_client *rps)
b361237b 1222{
9c654818 1223 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
3d13ef2e 1224 struct drm_device *dev = ring->dev;
3e31c6c0 1225 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1226 const bool irq_test_in_progress =
1227 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1228 DEFINE_WAIT(wait);
47e9766d 1229 unsigned long timeout_expire;
5ed0bdf2 1230 s64 before, now;
b361237b
CW
1231 int ret;
1232
9df7575f 1233 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1234
b4716185
CW
1235 if (list_empty(&req->list))
1236 return 0;
1237
1b5a433a 1238 if (i915_gem_request_completed(req, true))
b361237b
CW
1239 return 0;
1240
7bd0e226
DV
1241 timeout_expire = timeout ?
1242 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
b361237b 1243
2e1b8730 1244 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1245 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1246
094f9a54 1247 /* Record current time in case interrupted by signal, or wedged */
74328ee5 1248 trace_i915_gem_request_wait_begin(req);
5ed0bdf2 1249 before = ktime_get_raw_ns();
2def4ad9
CW
1250
1251 /* Optimistic spin for the next jiffie before touching IRQs */
1252 ret = __i915_spin_request(req);
1253 if (ret == 0)
1254 goto out;
1255
1256 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1257 ret = -ENODEV;
1258 goto out;
1259 }
1260
094f9a54
CW
1261 for (;;) {
1262 struct timer_list timer;
b361237b 1263
094f9a54
CW
1264 prepare_to_wait(&ring->irq_queue, &wait,
1265 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1266
f69061be
DV
1267 /* We need to check whether any gpu reset happened in between
1268 * the caller grabbing the seqno and now ... */
094f9a54
CW
1269 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1270 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1271 * is truely gone. */
1272 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1273 if (ret == 0)
1274 ret = -EAGAIN;
1275 break;
1276 }
f69061be 1277
1b5a433a 1278 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1279 ret = 0;
1280 break;
1281 }
b361237b 1282
094f9a54
CW
1283 if (interruptible && signal_pending(current)) {
1284 ret = -ERESTARTSYS;
1285 break;
1286 }
1287
47e9766d 1288 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1289 ret = -ETIME;
1290 break;
1291 }
1292
1293 timer.function = NULL;
1294 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1295 unsigned long expire;
1296
094f9a54 1297 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1298 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1299 mod_timer(&timer, expire);
1300 }
1301
5035c275 1302 io_schedule();
094f9a54 1303
094f9a54
CW
1304 if (timer.function) {
1305 del_singleshot_timer_sync(&timer);
1306 destroy_timer_on_stack(&timer);
1307 }
1308 }
168c3f21
MK
1309 if (!irq_test_in_progress)
1310 ring->irq_put(ring);
094f9a54
CW
1311
1312 finish_wait(&ring->irq_queue, &wait);
b361237b 1313
2def4ad9
CW
1314out:
1315 now = ktime_get_raw_ns();
1316 trace_i915_gem_request_wait_end(req);
1317
b361237b 1318 if (timeout) {
5ed0bdf2
TG
1319 s64 tres = *timeout - (now - before);
1320
1321 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1322
1323 /*
1324 * Apparently ktime isn't accurate enough and occasionally has a
1325 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1326 * things up to make the test happy. We allow up to 1 jiffy.
1327 *
1328 * This is a regrssion from the timespec->ktime conversion.
1329 */
1330 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1331 *timeout = 0;
b361237b
CW
1332 }
1333
094f9a54 1334 return ret;
b361237b
CW
1335}
1336
b4716185
CW
1337static inline void
1338i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1339{
1340 struct drm_i915_file_private *file_priv = request->file_priv;
1341
1342 if (!file_priv)
1343 return;
1344
1345 spin_lock(&file_priv->mm.lock);
1346 list_del(&request->client_list);
1347 request->file_priv = NULL;
1348 spin_unlock(&file_priv->mm.lock);
1349}
1350
1351static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352{
1353 trace_i915_gem_request_retire(request);
1354
1355 /* We know the GPU must have read the request to have
1356 * sent us the seqno + interrupt, so use the position
1357 * of tail of the request to update the last known position
1358 * of the GPU head.
1359 *
1360 * Note this requires that we are always called in request
1361 * completion order.
1362 */
1363 request->ringbuf->last_retired_head = request->postfix;
1364
1365 list_del_init(&request->list);
1366 i915_gem_request_remove_from_client(request);
1367
1368 put_pid(request->pid);
1369
1370 i915_gem_request_unreference(request);
1371}
1372
1373static void
1374__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375{
1376 struct intel_engine_cs *engine = req->ring;
1377 struct drm_i915_gem_request *tmp;
1378
1379 lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381 if (list_empty(&req->list))
1382 return;
1383
1384 do {
1385 tmp = list_first_entry(&engine->request_list,
1386 typeof(*tmp), list);
1387
1388 i915_gem_request_retire(tmp);
1389 } while (tmp != req);
1390
1391 WARN_ON(i915_verify_lists(engine->dev));
1392}
1393
b361237b 1394/**
a4b3a571 1395 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1396 * request and object lists appropriately for that event.
1397 */
1398int
a4b3a571 1399i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1400{
a4b3a571
DV
1401 struct drm_device *dev;
1402 struct drm_i915_private *dev_priv;
1403 bool interruptible;
b361237b
CW
1404 int ret;
1405
a4b3a571
DV
1406 BUG_ON(req == NULL);
1407
1408 dev = req->ring->dev;
1409 dev_priv = dev->dev_private;
1410 interruptible = dev_priv->mm.interruptible;
1411
b361237b 1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
b361237b 1413
33196ded 1414 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1415 if (ret)
1416 return ret;
1417
a4b3a571 1418 ret = i915_gem_check_olr(req);
b361237b
CW
1419 if (ret)
1420 return ret;
1421
b4716185
CW
1422 ret = __i915_wait_request(req,
1423 atomic_read(&dev_priv->gpu_error.reset_counter),
9c654818 1424 interruptible, NULL, NULL);
b4716185
CW
1425 if (ret)
1426 return ret;
d26e3af8 1427
b4716185 1428 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1429 return 0;
1430}
1431
b361237b
CW
1432/**
1433 * Ensures that all rendering to the object has completed and the object is
1434 * safe to unbind from the GTT or access from the CPU.
1435 */
2e2f351d 1436int
b361237b
CW
1437i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1438 bool readonly)
1439{
b4716185 1440 int ret, i;
b361237b 1441
b4716185 1442 if (!obj->active)
b361237b
CW
1443 return 0;
1444
b4716185
CW
1445 if (readonly) {
1446 if (obj->last_write_req != NULL) {
1447 ret = i915_wait_request(obj->last_write_req);
1448 if (ret)
1449 return ret;
b361237b 1450
b4716185
CW
1451 i = obj->last_write_req->ring->id;
1452 if (obj->last_read_req[i] == obj->last_write_req)
1453 i915_gem_object_retire__read(obj, i);
1454 else
1455 i915_gem_object_retire__write(obj);
1456 }
1457 } else {
1458 for (i = 0; i < I915_NUM_RINGS; i++) {
1459 if (obj->last_read_req[i] == NULL)
1460 continue;
1461
1462 ret = i915_wait_request(obj->last_read_req[i]);
1463 if (ret)
1464 return ret;
1465
1466 i915_gem_object_retire__read(obj, i);
1467 }
1468 RQ_BUG_ON(obj->active);
1469 }
1470
1471 return 0;
1472}
1473
1474static void
1475i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1476 struct drm_i915_gem_request *req)
1477{
1478 int ring = req->ring->id;
1479
1480 if (obj->last_read_req[ring] == req)
1481 i915_gem_object_retire__read(obj, ring);
1482 else if (obj->last_write_req == req)
1483 i915_gem_object_retire__write(obj);
1484
1485 __i915_gem_request_retire__upto(req);
b361237b
CW
1486}
1487
3236f57a
CW
1488/* A nonblocking variant of the above wait. This is a highly dangerous routine
1489 * as the object state may change during this call.
1490 */
1491static __must_check int
1492i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1493 struct intel_rps_client *rps,
3236f57a
CW
1494 bool readonly)
1495{
1496 struct drm_device *dev = obj->base.dev;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
b4716185 1498 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
f69061be 1499 unsigned reset_counter;
b4716185 1500 int ret, i, n = 0;
3236f57a
CW
1501
1502 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1503 BUG_ON(!dev_priv->mm.interruptible);
1504
b4716185 1505 if (!obj->active)
3236f57a
CW
1506 return 0;
1507
33196ded 1508 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1509 if (ret)
1510 return ret;
1511
f69061be 1512 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
1513
1514 if (readonly) {
1515 struct drm_i915_gem_request *req;
1516
1517 req = obj->last_write_req;
1518 if (req == NULL)
1519 return 0;
1520
1521 ret = i915_gem_check_olr(req);
1522 if (ret)
1523 goto err;
1524
1525 requests[n++] = i915_gem_request_reference(req);
1526 } else {
1527 for (i = 0; i < I915_NUM_RINGS; i++) {
1528 struct drm_i915_gem_request *req;
1529
1530 req = obj->last_read_req[i];
1531 if (req == NULL)
1532 continue;
1533
1534 ret = i915_gem_check_olr(req);
1535 if (ret)
1536 goto err;
1537
1538 requests[n++] = i915_gem_request_reference(req);
1539 }
1540 }
1541
3236f57a 1542 mutex_unlock(&dev->struct_mutex);
b4716185
CW
1543 for (i = 0; ret == 0 && i < n; i++)
1544 ret = __i915_wait_request(requests[i], reset_counter, true,
2e1b8730 1545 NULL, rps);
3236f57a
CW
1546 mutex_lock(&dev->struct_mutex);
1547
b4716185
CW
1548err:
1549 for (i = 0; i < n; i++) {
1550 if (ret == 0)
1551 i915_gem_object_retire_request(obj, requests[i]);
1552 i915_gem_request_unreference(requests[i]);
1553 }
1554
1555 return ret;
3236f57a
CW
1556}
1557
2e1b8730
CW
1558static struct intel_rps_client *to_rps_client(struct drm_file *file)
1559{
1560 struct drm_i915_file_private *fpriv = file->driver_priv;
1561 return &fpriv->rps;
1562}
1563
673a394b 1564/**
2ef7eeaa
EA
1565 * Called when user space prepares to use an object with the CPU, either
1566 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1567 */
1568int
1569i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1570 struct drm_file *file)
673a394b
EA
1571{
1572 struct drm_i915_gem_set_domain *args = data;
05394f39 1573 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1574 uint32_t read_domains = args->read_domains;
1575 uint32_t write_domain = args->write_domain;
673a394b
EA
1576 int ret;
1577
2ef7eeaa 1578 /* Only handle setting domains to types used by the CPU. */
21d509e3 1579 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1580 return -EINVAL;
1581
21d509e3 1582 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1583 return -EINVAL;
1584
1585 /* Having something in the write domain implies it's in the read
1586 * domain, and only that read domain. Enforce that in the request.
1587 */
1588 if (write_domain != 0 && read_domains != write_domain)
1589 return -EINVAL;
1590
76c1dec1 1591 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1592 if (ret)
76c1dec1 1593 return ret;
1d7cfea1 1594
05394f39 1595 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1596 if (&obj->base == NULL) {
1d7cfea1
CW
1597 ret = -ENOENT;
1598 goto unlock;
76c1dec1 1599 }
673a394b 1600
3236f57a
CW
1601 /* Try to flush the object off the GPU without holding the lock.
1602 * We will repeat the flush holding the lock in the normal manner
1603 * to catch cases where we are gazumped.
1604 */
6e4930f6 1605 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1606 to_rps_client(file),
6e4930f6 1607 !write_domain);
3236f57a
CW
1608 if (ret)
1609 goto unref;
1610
43566ded 1611 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1612 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1613 else
e47c68e9 1614 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1615
3236f57a 1616unref:
05394f39 1617 drm_gem_object_unreference(&obj->base);
1d7cfea1 1618unlock:
673a394b
EA
1619 mutex_unlock(&dev->struct_mutex);
1620 return ret;
1621}
1622
1623/**
1624 * Called when user space has done writes to this buffer
1625 */
1626int
1627i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1628 struct drm_file *file)
673a394b
EA
1629{
1630 struct drm_i915_gem_sw_finish *args = data;
05394f39 1631 struct drm_i915_gem_object *obj;
673a394b
EA
1632 int ret = 0;
1633
76c1dec1 1634 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1635 if (ret)
76c1dec1 1636 return ret;
1d7cfea1 1637
05394f39 1638 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1639 if (&obj->base == NULL) {
1d7cfea1
CW
1640 ret = -ENOENT;
1641 goto unlock;
673a394b
EA
1642 }
1643
673a394b 1644 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1645 if (obj->pin_display)
e62b59e4 1646 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1647
05394f39 1648 drm_gem_object_unreference(&obj->base);
1d7cfea1 1649unlock:
673a394b
EA
1650 mutex_unlock(&dev->struct_mutex);
1651 return ret;
1652}
1653
1654/**
1655 * Maps the contents of an object, returning the address it is mapped
1656 * into.
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
34367381
DV
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1670 */
1671int
1672i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1673 struct drm_file *file)
673a394b
EA
1674{
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_gem_object *obj;
673a394b
EA
1677 unsigned long addr;
1678
1816f923
AG
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
1682 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683 return -ENODEV;
1684
05394f39 1685 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1686 if (obj == NULL)
bf79cb91 1687 return -ENOENT;
673a394b 1688
1286ff73
DV
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
1692 if (!obj->filp) {
1693 drm_gem_object_unreference_unlocked(obj);
1694 return -EINVAL;
1695 }
1696
6be5ceb0 1697 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1816f923
AG
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
1704 down_write(&mm->mmap_sem);
1705 vma = find_vma(mm, addr);
1706 if (vma)
1707 vma->vm_page_prot =
1708 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709 else
1710 addr = -ENOMEM;
1711 up_write(&mm->mmap_sem);
1712 }
bc9025bd 1713 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1714 if (IS_ERR((void *)addr))
1715 return addr;
1716
1717 args->addr_ptr = (uint64_t) addr;
1718
1719 return 0;
1720}
1721
de151cf6
JB
1722/**
1723 * i915_gem_fault - fault a page into the GTT
1724 * vma: VMA in question
1725 * vmf: fault info
1726 *
1727 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728 * from userspace. The fault handler takes care of binding the object to
1729 * the GTT (if needed), allocating and programming a fence register (again,
1730 * only if needed based on whether the old reg is still valid or the object
1731 * is tiled) and inserting a new PTE into the faulting process.
1732 *
1733 * Note that the faulting process may involve evicting existing objects
1734 * from the GTT and/or fence registers to make room. So performance may
1735 * suffer if the GTT working set is large or there are few fence registers
1736 * left.
1737 */
1738int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739{
05394f39
CW
1740 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741 struct drm_device *dev = obj->base.dev;
3e31c6c0 1742 struct drm_i915_private *dev_priv = dev->dev_private;
c5ad54cf 1743 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1744 pgoff_t page_offset;
1745 unsigned long pfn;
1746 int ret = 0;
0f973f27 1747 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1748
f65c9168
PZ
1749 intel_runtime_pm_get(dev_priv);
1750
de151cf6
JB
1751 /* We don't use vmf->pgoff since that has the fake offset */
1752 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753 PAGE_SHIFT;
1754
d9bc7e9f
CW
1755 ret = i915_mutex_lock_interruptible(dev);
1756 if (ret)
1757 goto out;
a00b10c3 1758
db53a302
CW
1759 trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
6e4930f6
CW
1761 /* Try to flush the object off the GPU first without holding the lock.
1762 * Upon reacquiring the lock, we will perform our sanity checks and then
1763 * repeat the flush holding the lock in the normal manner to catch cases
1764 * where we are gazumped.
1765 */
1766 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767 if (ret)
1768 goto unlock;
1769
eb119bd6
CW
1770 /* Access to snoopable pages through the GTT is incoherent. */
1771 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1772 ret = -EFAULT;
eb119bd6
CW
1773 goto unlock;
1774 }
1775
c5ad54cf 1776 /* Use a partial view if the object is bigger than the aperture. */
e7ded2d7
JL
1777 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1779 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1780
c5ad54cf
JL
1781 memset(&view, 0, sizeof(view));
1782 view.type = I915_GGTT_VIEW_PARTIAL;
1783 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784 view.params.partial.size =
1785 min_t(unsigned int,
1786 chunk_size,
1787 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788 view.params.partial.offset);
1789 }
1790
1791 /* Now pin it into the GTT if needed */
1792 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1793 if (ret)
1794 goto unlock;
4a684a41 1795
c9839303
CW
1796 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797 if (ret)
1798 goto unpin;
74898d7e 1799
06d98131 1800 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1801 if (ret)
c9839303 1802 goto unpin;
7d1c4804 1803
b90b91d8 1804 /* Finally, remap it using the new GTT offset */
c5ad54cf
JL
1805 pfn = dev_priv->gtt.mappable_base +
1806 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1807 pfn >>= PAGE_SHIFT;
de151cf6 1808
c5ad54cf
JL
1809 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810 /* Overriding existing pages in partial view does not cause
1811 * us any trouble as TLBs are still valid because the fault
1812 * is due to userspace losing part of the mapping or never
1813 * having accessed it before (at this partials' range).
1814 */
1815 unsigned long base = vma->vm_start +
1816 (view.params.partial.offset << PAGE_SHIFT);
1817 unsigned int i;
b90b91d8 1818
c5ad54cf
JL
1819 for (i = 0; i < view.params.partial.size; i++) {
1820 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1821 if (ret)
1822 break;
1823 }
1824
1825 obj->fault_mappable = true;
c5ad54cf
JL
1826 } else {
1827 if (!obj->fault_mappable) {
1828 unsigned long size = min_t(unsigned long,
1829 vma->vm_end - vma->vm_start,
1830 obj->base.size);
1831 int i;
1832
1833 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834 ret = vm_insert_pfn(vma,
1835 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836 pfn + i);
1837 if (ret)
1838 break;
1839 }
1840
1841 obj->fault_mappable = true;
1842 } else
1843 ret = vm_insert_pfn(vma,
1844 (unsigned long)vmf->virtual_address,
1845 pfn + page_offset);
1846 }
c9839303 1847unpin:
c5ad54cf 1848 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1849unlock:
de151cf6 1850 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1851out:
de151cf6 1852 switch (ret) {
d9bc7e9f 1853 case -EIO:
2232f031
DV
1854 /*
1855 * We eat errors when the gpu is terminally wedged to avoid
1856 * userspace unduly crashing (gl has no provisions for mmaps to
1857 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858 * and so needs to be reported.
1859 */
1860 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1861 ret = VM_FAULT_SIGBUS;
1862 break;
1863 }
045e769a 1864 case -EAGAIN:
571c608d
DV
1865 /*
1866 * EAGAIN means the gpu is hung and we'll wait for the error
1867 * handler to reset everything when re-faulting in
1868 * i915_mutex_lock_interruptible.
d9bc7e9f 1869 */
c715089f
CW
1870 case 0:
1871 case -ERESTARTSYS:
bed636ab 1872 case -EINTR:
e79e0fe3
DR
1873 case -EBUSY:
1874 /*
1875 * EBUSY is ok: this just means that another thread
1876 * already did the job.
1877 */
f65c9168
PZ
1878 ret = VM_FAULT_NOPAGE;
1879 break;
de151cf6 1880 case -ENOMEM:
f65c9168
PZ
1881 ret = VM_FAULT_OOM;
1882 break;
a7c2e1aa 1883 case -ENOSPC:
45d67817 1884 case -EFAULT:
f65c9168
PZ
1885 ret = VM_FAULT_SIGBUS;
1886 break;
de151cf6 1887 default:
a7c2e1aa 1888 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1889 ret = VM_FAULT_SIGBUS;
1890 break;
de151cf6 1891 }
f65c9168
PZ
1892
1893 intel_runtime_pm_put(dev_priv);
1894 return ret;
de151cf6
JB
1895}
1896
901782b2
CW
1897/**
1898 * i915_gem_release_mmap - remove physical page mappings
1899 * @obj: obj in question
1900 *
af901ca1 1901 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1902 * relinquish ownership of the pages back to the system.
1903 *
1904 * It is vital that we remove the page mapping if we have mapped a tiled
1905 * object through the GTT and then lose the fence register due to
1906 * resource pressure. Similarly if the object has been moved out of the
1907 * aperture, than pages mapped into userspace must be revoked. Removing the
1908 * mapping will then trigger a page fault on the next user access, allowing
1909 * fixup by i915_gem_fault().
1910 */
d05ca301 1911void
05394f39 1912i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1913{
6299f992
CW
1914 if (!obj->fault_mappable)
1915 return;
901782b2 1916
6796cb16
DH
1917 drm_vma_node_unmap(&obj->base.vma_node,
1918 obj->base.dev->anon_inode->i_mapping);
6299f992 1919 obj->fault_mappable = false;
901782b2
CW
1920}
1921
eedd10f4
CW
1922void
1923i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924{
1925 struct drm_i915_gem_object *obj;
1926
1927 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928 i915_gem_release_mmap(obj);
1929}
1930
0fa87796 1931uint32_t
e28f8711 1932i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1933{
e28f8711 1934 uint32_t gtt_size;
92b88aeb
CW
1935
1936 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1937 tiling_mode == I915_TILING_NONE)
1938 return size;
92b88aeb
CW
1939
1940 /* Previous chips need a power-of-two fence region when tiling */
1941 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1942 gtt_size = 1024*1024;
92b88aeb 1943 else
e28f8711 1944 gtt_size = 512*1024;
92b88aeb 1945
e28f8711
CW
1946 while (gtt_size < size)
1947 gtt_size <<= 1;
92b88aeb 1948
e28f8711 1949 return gtt_size;
92b88aeb
CW
1950}
1951
de151cf6
JB
1952/**
1953 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954 * @obj: object to check
1955 *
1956 * Return the required GTT alignment for an object, taking into account
5e783301 1957 * potential fence register mapping.
de151cf6 1958 */
d865110c
ID
1959uint32_t
1960i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961 int tiling_mode, bool fenced)
de151cf6 1962{
de151cf6
JB
1963 /*
1964 * Minimum alignment is 4k (GTT page size), but might be greater
1965 * if a fence register is needed for the object.
1966 */
d865110c 1967 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1968 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1969 return 4096;
1970
a00b10c3
CW
1971 /*
1972 * Previous chips need to be aligned to the size of the smallest
1973 * fence register that can contain the object.
1974 */
e28f8711 1975 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1976}
1977
d8cb5086
CW
1978static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979{
1980 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981 int ret;
1982
0de23977 1983 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1984 return 0;
1985
da494d7c
DV
1986 dev_priv->mm.shrinker_no_lock_stealing = true;
1987
d8cb5086
CW
1988 ret = drm_gem_create_mmap_offset(&obj->base);
1989 if (ret != -ENOSPC)
da494d7c 1990 goto out;
d8cb5086
CW
1991
1992 /* Badly fragmented mmap space? The only way we can recover
1993 * space is by destroying unwanted objects. We can't randomly release
1994 * mmap_offsets as userspace expects them to be persistent for the
1995 * lifetime of the objects. The closest we can is to release the
1996 * offsets on purgeable objects by truncating it and marking it purged,
1997 * which prevents userspace from ever using that object again.
1998 */
21ab4e74
CW
1999 i915_gem_shrink(dev_priv,
2000 obj->base.size >> PAGE_SHIFT,
2001 I915_SHRINK_BOUND |
2002 I915_SHRINK_UNBOUND |
2003 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2004 ret = drm_gem_create_mmap_offset(&obj->base);
2005 if (ret != -ENOSPC)
da494d7c 2006 goto out;
d8cb5086
CW
2007
2008 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2009 ret = drm_gem_create_mmap_offset(&obj->base);
2010out:
2011 dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013 return ret;
d8cb5086
CW
2014}
2015
2016static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017{
d8cb5086
CW
2018 drm_gem_free_mmap_offset(&obj->base);
2019}
2020
da6b51d0 2021int
ff72145b
DA
2022i915_gem_mmap_gtt(struct drm_file *file,
2023 struct drm_device *dev,
da6b51d0 2024 uint32_t handle,
ff72145b 2025 uint64_t *offset)
de151cf6 2026{
05394f39 2027 struct drm_i915_gem_object *obj;
de151cf6
JB
2028 int ret;
2029
76c1dec1 2030 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2031 if (ret)
76c1dec1 2032 return ret;
de151cf6 2033
ff72145b 2034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2035 if (&obj->base == NULL) {
1d7cfea1
CW
2036 ret = -ENOENT;
2037 goto unlock;
2038 }
de151cf6 2039
05394f39 2040 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2041 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2042 ret = -EFAULT;
1d7cfea1 2043 goto out;
ab18282d
CW
2044 }
2045
d8cb5086
CW
2046 ret = i915_gem_object_create_mmap_offset(obj);
2047 if (ret)
2048 goto out;
de151cf6 2049
0de23977 2050 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2051
1d7cfea1 2052out:
05394f39 2053 drm_gem_object_unreference(&obj->base);
1d7cfea1 2054unlock:
de151cf6 2055 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2056 return ret;
de151cf6
JB
2057}
2058
ff72145b
DA
2059/**
2060 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061 * @dev: DRM device
2062 * @data: GTT mapping ioctl data
2063 * @file: GEM object info
2064 *
2065 * Simply returns the fake offset to userspace so it can mmap it.
2066 * The mmap call will end up in drm_gem_mmap(), which will set things
2067 * up so we can get faults in the handler above.
2068 *
2069 * The fault handler will take care of binding the object into the GTT
2070 * (since it may have been evicted to make room for something), allocating
2071 * a fence register, and mapping the appropriate aperture address into
2072 * userspace.
2073 */
2074int
2075i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076 struct drm_file *file)
2077{
2078 struct drm_i915_gem_mmap_gtt *args = data;
2079
da6b51d0 2080 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2081}
2082
225067ee
DV
2083/* Immediately discard the backing storage */
2084static void
2085i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2086{
4d6294bf 2087 i915_gem_object_free_mmap_offset(obj);
1286ff73 2088
4d6294bf
CW
2089 if (obj->base.filp == NULL)
2090 return;
e5281ccd 2091
225067ee
DV
2092 /* Our goal here is to return as much of the memory as
2093 * is possible back to the system as we are called from OOM.
2094 * To do this we must instruct the shmfs to drop all of its
2095 * backing pages, *now*.
2096 */
5537252b 2097 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2098 obj->madv = __I915_MADV_PURGED;
2099}
e5281ccd 2100
5537252b
CW
2101/* Try to discard unwanted pages */
2102static void
2103i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2104{
5537252b
CW
2105 struct address_space *mapping;
2106
2107 switch (obj->madv) {
2108 case I915_MADV_DONTNEED:
2109 i915_gem_object_truncate(obj);
2110 case __I915_MADV_PURGED:
2111 return;
2112 }
2113
2114 if (obj->base.filp == NULL)
2115 return;
2116
2117 mapping = file_inode(obj->base.filp)->i_mapping,
2118 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2119}
2120
5cdf5881 2121static void
05394f39 2122i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2123{
90797e6d
ID
2124 struct sg_page_iter sg_iter;
2125 int ret;
1286ff73 2126
05394f39 2127 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2128
6c085a72
CW
2129 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130 if (ret) {
2131 /* In the event of a disaster, abandon all caches and
2132 * hope for the best.
2133 */
2134 WARN_ON(ret != -EIO);
2c22569b 2135 i915_gem_clflush_object(obj, true);
6c085a72
CW
2136 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137 }
2138
6dacfd2f 2139 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2140 i915_gem_object_save_bit_17_swizzle(obj);
2141
05394f39
CW
2142 if (obj->madv == I915_MADV_DONTNEED)
2143 obj->dirty = 0;
3ef94daa 2144
90797e6d 2145 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2146 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2147
05394f39 2148 if (obj->dirty)
9da3da66 2149 set_page_dirty(page);
3ef94daa 2150
05394f39 2151 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2152 mark_page_accessed(page);
3ef94daa 2153
9da3da66 2154 page_cache_release(page);
3ef94daa 2155 }
05394f39 2156 obj->dirty = 0;
673a394b 2157
9da3da66
CW
2158 sg_free_table(obj->pages);
2159 kfree(obj->pages);
37e680a1 2160}
6c085a72 2161
dd624afd 2162int
37e680a1
CW
2163i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2164{
2165 const struct drm_i915_gem_object_ops *ops = obj->ops;
2166
2f745ad3 2167 if (obj->pages == NULL)
37e680a1
CW
2168 return 0;
2169
a5570178
CW
2170 if (obj->pages_pin_count)
2171 return -EBUSY;
2172
9843877d 2173 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2174
a2165e31
CW
2175 /* ->put_pages might need to allocate memory for the bit17 swizzle
2176 * array, hence protect them from being reaped by removing them from gtt
2177 * lists early. */
35c20a60 2178 list_del(&obj->global_list);
a2165e31 2179
37e680a1 2180 ops->put_pages(obj);
05394f39 2181 obj->pages = NULL;
37e680a1 2182
5537252b 2183 i915_gem_object_invalidate(obj);
6c085a72
CW
2184
2185 return 0;
2186}
2187
37e680a1 2188static int
6c085a72 2189i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2190{
6c085a72 2191 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2192 int page_count, i;
2193 struct address_space *mapping;
9da3da66
CW
2194 struct sg_table *st;
2195 struct scatterlist *sg;
90797e6d 2196 struct sg_page_iter sg_iter;
e5281ccd 2197 struct page *page;
90797e6d 2198 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2199 gfp_t gfp;
e5281ccd 2200
6c085a72
CW
2201 /* Assert that the object is not currently in any GPU domain. As it
2202 * wasn't in the GTT, there shouldn't be any way it could have been in
2203 * a GPU cache
2204 */
2205 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2206 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2207
9da3da66
CW
2208 st = kmalloc(sizeof(*st), GFP_KERNEL);
2209 if (st == NULL)
2210 return -ENOMEM;
2211
05394f39 2212 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2213 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2214 kfree(st);
e5281ccd 2215 return -ENOMEM;
9da3da66 2216 }
e5281ccd 2217
9da3da66
CW
2218 /* Get the list of pages out of our struct file. They'll be pinned
2219 * at this point until we release them.
2220 *
2221 * Fail silently without starting the shrinker
2222 */
496ad9aa 2223 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2224 gfp = mapping_gfp_mask(mapping);
caf49191 2225 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2226 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2227 sg = st->sgl;
2228 st->nents = 0;
2229 for (i = 0; i < page_count; i++) {
6c085a72
CW
2230 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2231 if (IS_ERR(page)) {
21ab4e74
CW
2232 i915_gem_shrink(dev_priv,
2233 page_count,
2234 I915_SHRINK_BOUND |
2235 I915_SHRINK_UNBOUND |
2236 I915_SHRINK_PURGEABLE);
6c085a72
CW
2237 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2238 }
2239 if (IS_ERR(page)) {
2240 /* We've tried hard to allocate the memory by reaping
2241 * our own buffer, now let the real VM do its job and
2242 * go down in flames if truly OOM.
2243 */
6c085a72 2244 i915_gem_shrink_all(dev_priv);
f461d1be 2245 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2246 if (IS_ERR(page))
2247 goto err_pages;
6c085a72 2248 }
426729dc
KRW
2249#ifdef CONFIG_SWIOTLB
2250 if (swiotlb_nr_tbl()) {
2251 st->nents++;
2252 sg_set_page(sg, page, PAGE_SIZE, 0);
2253 sg = sg_next(sg);
2254 continue;
2255 }
2256#endif
90797e6d
ID
2257 if (!i || page_to_pfn(page) != last_pfn + 1) {
2258 if (i)
2259 sg = sg_next(sg);
2260 st->nents++;
2261 sg_set_page(sg, page, PAGE_SIZE, 0);
2262 } else {
2263 sg->length += PAGE_SIZE;
2264 }
2265 last_pfn = page_to_pfn(page);
3bbbe706
DV
2266
2267 /* Check that the i965g/gm workaround works. */
2268 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2269 }
426729dc
KRW
2270#ifdef CONFIG_SWIOTLB
2271 if (!swiotlb_nr_tbl())
2272#endif
2273 sg_mark_end(sg);
74ce6b6c
CW
2274 obj->pages = st;
2275
6dacfd2f 2276 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2277 i915_gem_object_do_bit_17_swizzle(obj);
2278
656bfa3a
DV
2279 if (obj->tiling_mode != I915_TILING_NONE &&
2280 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2281 i915_gem_object_pin_pages(obj);
2282
e5281ccd
CW
2283 return 0;
2284
2285err_pages:
90797e6d
ID
2286 sg_mark_end(sg);
2287 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2288 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2289 sg_free_table(st);
2290 kfree(st);
0820baf3
CW
2291
2292 /* shmemfs first checks if there is enough memory to allocate the page
2293 * and reports ENOSPC should there be insufficient, along with the usual
2294 * ENOMEM for a genuine allocation failure.
2295 *
2296 * We use ENOSPC in our driver to mean that we have run out of aperture
2297 * space and so want to translate the error from shmemfs back to our
2298 * usual understanding of ENOMEM.
2299 */
2300 if (PTR_ERR(page) == -ENOSPC)
2301 return -ENOMEM;
2302 else
2303 return PTR_ERR(page);
673a394b
EA
2304}
2305
37e680a1
CW
2306/* Ensure that the associated pages are gathered from the backing storage
2307 * and pinned into our object. i915_gem_object_get_pages() may be called
2308 * multiple times before they are released by a single call to
2309 * i915_gem_object_put_pages() - once the pages are no longer referenced
2310 * either as a result of memory pressure (reaping pages under the shrinker)
2311 * or as the object is itself released.
2312 */
2313int
2314i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2315{
2316 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2317 const struct drm_i915_gem_object_ops *ops = obj->ops;
2318 int ret;
2319
2f745ad3 2320 if (obj->pages)
37e680a1
CW
2321 return 0;
2322
43e28f09 2323 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2324 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2325 return -EFAULT;
43e28f09
CW
2326 }
2327
a5570178
CW
2328 BUG_ON(obj->pages_pin_count);
2329
37e680a1
CW
2330 ret = ops->get_pages(obj);
2331 if (ret)
2332 return ret;
2333
35c20a60 2334 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2335
2336 obj->get_page.sg = obj->pages->sgl;
2337 obj->get_page.last = 0;
2338
37e680a1 2339 return 0;
673a394b
EA
2340}
2341
b4716185 2342void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2343 struct drm_i915_gem_request *req)
673a394b 2344{
b4716185 2345 struct drm_i915_gem_object *obj = vma->obj;
b2af0376
JH
2346 struct intel_engine_cs *ring;
2347
2348 ring = i915_gem_request_get_ring(req);
673a394b
EA
2349
2350 /* Add a reference if we're newly entering the active list. */
b4716185 2351 if (obj->active == 0)
05394f39 2352 drm_gem_object_reference(&obj->base);
b4716185 2353 obj->active |= intel_ring_flag(ring);
e35a41de 2354
b4716185 2355 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
b2af0376 2356 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
caea7476 2357
b4716185 2358 list_move_tail(&vma->mm_list, &vma->vm->active_list);
caea7476
CW
2359}
2360
b4716185
CW
2361static void
2362i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2363{
b4716185
CW
2364 RQ_BUG_ON(obj->last_write_req == NULL);
2365 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2366
2367 i915_gem_request_assign(&obj->last_write_req, NULL);
2368 intel_fb_obj_flush(obj, true);
e2d05a8b
BW
2369}
2370
caea7476 2371static void
b4716185 2372i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2373{
feb822cf 2374 struct i915_vma *vma;
ce44b0ea 2375
b4716185
CW
2376 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2377 RQ_BUG_ON(!(obj->active & (1 << ring)));
2378
2379 list_del_init(&obj->ring_list[ring]);
2380 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2381
2382 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2383 i915_gem_object_retire__write(obj);
2384
2385 obj->active &= ~(1 << ring);
2386 if (obj->active)
2387 return;
caea7476 2388
fe14d5f4
TU
2389 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2390 if (!list_empty(&vma->mm_list))
2391 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
feb822cf 2392 }
caea7476 2393
97b2a6a1 2394 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2395 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2396}
2397
9d773091 2398static int
fca26bb4 2399i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2400{
9d773091 2401 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2402 struct intel_engine_cs *ring;
9d773091 2403 int ret, i, j;
53d227f2 2404
107f27a5 2405 /* Carefully retire all requests without writing to the rings */
9d773091 2406 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2407 ret = intel_ring_idle(ring);
2408 if (ret)
2409 return ret;
9d773091 2410 }
9d773091 2411 i915_gem_retire_requests(dev);
107f27a5
CW
2412
2413 /* Finally reset hw state */
9d773091 2414 for_each_ring(ring, dev_priv, i) {
fca26bb4 2415 intel_ring_init_seqno(ring, seqno);
498d2ac1 2416
ebc348b2
BW
2417 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2418 ring->semaphore.sync_seqno[j] = 0;
9d773091 2419 }
53d227f2 2420
9d773091 2421 return 0;
53d227f2
DV
2422}
2423
fca26bb4
MK
2424int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2425{
2426 struct drm_i915_private *dev_priv = dev->dev_private;
2427 int ret;
2428
2429 if (seqno == 0)
2430 return -EINVAL;
2431
2432 /* HWS page needs to be set less than what we
2433 * will inject to ring
2434 */
2435 ret = i915_gem_init_seqno(dev, seqno - 1);
2436 if (ret)
2437 return ret;
2438
2439 /* Carefully set the last_seqno value so that wrap
2440 * detection still works
2441 */
2442 dev_priv->next_seqno = seqno;
2443 dev_priv->last_seqno = seqno - 1;
2444 if (dev_priv->last_seqno == 0)
2445 dev_priv->last_seqno--;
2446
2447 return 0;
2448}
2449
9d773091
CW
2450int
2451i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2452{
9d773091
CW
2453 struct drm_i915_private *dev_priv = dev->dev_private;
2454
2455 /* reserve 0 for non-seqno */
2456 if (dev_priv->next_seqno == 0) {
fca26bb4 2457 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2458 if (ret)
2459 return ret;
53d227f2 2460
9d773091
CW
2461 dev_priv->next_seqno = 1;
2462 }
53d227f2 2463
f72b3435 2464 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2465 return 0;
53d227f2
DV
2466}
2467
bf7dc5b7
JH
2468/*
2469 * NB: This function is not allowed to fail. Doing so would mean the the
2470 * request is not being tracked for completion but the work itself is
2471 * going to happen on the hardware. This would be a Bad Thing(tm).
2472 */
75289874 2473void __i915_add_request(struct drm_i915_gem_request *request,
bf7dc5b7 2474 struct drm_file *file,
5b4a60c2
JH
2475 struct drm_i915_gem_object *obj,
2476 bool flush_caches)
673a394b 2477{
75289874
JH
2478 struct intel_engine_cs *ring;
2479 struct drm_i915_private *dev_priv;
48e29f55 2480 struct intel_ringbuffer *ringbuf;
6d3d8274 2481 u32 request_start;
3cce469c
CW
2482 int ret;
2483
48e29f55 2484 if (WARN_ON(request == NULL))
bf7dc5b7 2485 return;
48e29f55 2486
75289874
JH
2487 ring = request->ring;
2488 dev_priv = ring->dev->dev_private;
2489 ringbuf = request->ringbuf;
2490
2491 WARN_ON(request != ring->outstanding_lazy_request);
48e29f55 2492
29b1b415
JH
2493 /*
2494 * To ensure that this call will not fail, space for its emissions
2495 * should already have been reserved in the ring buffer. Let the ring
2496 * know that it is time to use that space up.
2497 */
2498 intel_ring_reserved_space_use(ringbuf);
2499
48e29f55 2500 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2501 /*
2502 * Emit any outstanding flushes - execbuf can fail to emit the flush
2503 * after having emitted the batchbuffer command. Hence we need to fix
2504 * things up similar to emitting the lazy request. The difference here
2505 * is that the flush _must_ happen before the next request, no matter
2506 * what.
2507 */
5b4a60c2
JH
2508 if (flush_caches) {
2509 if (i915.enable_execlists)
4866d729 2510 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2511 else
4866d729 2512 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2513 /* Not allowed to fail! */
2514 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2515 }
cc889e0f 2516
a71d8d94
CW
2517 /* Record the position of the start of the request so that
2518 * should we detect the updated seqno part-way through the
2519 * GPU processing the request, we never over-estimate the
2520 * position of the head.
2521 */
6d3d8274 2522 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2523
bf7dc5b7 2524 if (i915.enable_execlists)
c4e76638 2525 ret = ring->emit_request(request);
bf7dc5b7 2526 else {
ee044a88 2527 ret = ring->add_request(request);
53292cdb
MT
2528
2529 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2530 }
bf7dc5b7
JH
2531 /* Not allowed to fail! */
2532 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2533
7d736f4f 2534 request->head = request_start;
7d736f4f
MK
2535
2536 /* Whilst this request exists, batch_obj will be on the
2537 * active_list, and so will hold the active reference. Only when this
2538 * request is retired will the the batch_obj be moved onto the
2539 * inactive_list and lose its active reference. Hence we do not need
2540 * to explicitly hold another reference here.
2541 */
9a7e0c2a 2542 request->batch_obj = obj;
0e50e96b 2543
673a394b 2544 request->emitted_jiffies = jiffies;
852835f3 2545 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2546 request->file_priv = NULL;
852835f3 2547
db53a302
CW
2548 if (file) {
2549 struct drm_i915_file_private *file_priv = file->driver_priv;
2550
1c25595f 2551 spin_lock(&file_priv->mm.lock);
f787a5f5 2552 request->file_priv = file_priv;
b962442e 2553 list_add_tail(&request->client_list,
f787a5f5 2554 &file_priv->mm.request_list);
1c25595f 2555 spin_unlock(&file_priv->mm.lock);
071c92de
MK
2556
2557 request->pid = get_pid(task_pid(current));
b962442e 2558 }
673a394b 2559
74328ee5 2560 trace_i915_gem_request_add(request);
6259cead 2561 ring->outstanding_lazy_request = NULL;
db53a302 2562
87255483 2563 i915_queue_hangcheck(ring->dev);
10cd45b6 2564
87255483
DV
2565 queue_delayed_work(dev_priv->wq,
2566 &dev_priv->mm.retire_work,
2567 round_jiffies_up_relative(HZ));
2568 intel_mark_busy(dev_priv->dev);
cc889e0f 2569
29b1b415
JH
2570 /* Sanity check that the reserved size was large enough. */
2571 intel_ring_reserved_space_end(ringbuf);
673a394b
EA
2572}
2573
939fd762 2574static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2575 const struct intel_context *ctx)
be62acb4 2576{
44e2c070 2577 unsigned long elapsed;
be62acb4 2578
44e2c070
MK
2579 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2580
2581 if (ctx->hang_stats.banned)
be62acb4
MK
2582 return true;
2583
676fa572
CW
2584 if (ctx->hang_stats.ban_period_seconds &&
2585 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2586 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2587 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2588 return true;
88b4aa87
MK
2589 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2590 if (i915_stop_ring_allow_warn(dev_priv))
2591 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2592 return true;
3fac8978 2593 }
be62acb4
MK
2594 }
2595
2596 return false;
2597}
2598
939fd762 2599static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2600 struct intel_context *ctx,
b6b0fac0 2601 const bool guilty)
aa60c664 2602{
44e2c070
MK
2603 struct i915_ctx_hang_stats *hs;
2604
2605 if (WARN_ON(!ctx))
2606 return;
aa60c664 2607
44e2c070
MK
2608 hs = &ctx->hang_stats;
2609
2610 if (guilty) {
939fd762 2611 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2612 hs->batch_active++;
2613 hs->guilty_ts = get_seconds();
2614 } else {
2615 hs->batch_pending++;
aa60c664
MK
2616 }
2617}
2618
abfe262a
JH
2619void i915_gem_request_free(struct kref *req_ref)
2620{
2621 struct drm_i915_gem_request *req = container_of(req_ref,
2622 typeof(*req), ref);
2623 struct intel_context *ctx = req->ctx;
2624
0794aed3
TD
2625 if (ctx) {
2626 if (i915.enable_execlists) {
abfe262a 2627 struct intel_engine_cs *ring = req->ring;
0e50e96b 2628
0794aed3
TD
2629 if (ctx != ring->default_context)
2630 intel_lr_context_unpin(ring, ctx);
2631 }
abfe262a 2632
dcb4c12a
OM
2633 i915_gem_context_unreference(ctx);
2634 }
abfe262a 2635
efab6d8d 2636 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2637}
2638
6689cb2b 2639int i915_gem_request_alloc(struct intel_engine_cs *ring,
217e46b5
JH
2640 struct intel_context *ctx,
2641 struct drm_i915_gem_request **req_out)
6689cb2b 2642{
efab6d8d 2643 struct drm_i915_private *dev_priv = to_i915(ring->dev);
eed29a5b 2644 struct drm_i915_gem_request *req;
6689cb2b 2645 int ret;
6689cb2b 2646
217e46b5
JH
2647 if (!req_out)
2648 return -EINVAL;
2649
2650 if ((*req_out = ring->outstanding_lazy_request) != NULL)
6689cb2b
JH
2651 return 0;
2652
eed29a5b
DV
2653 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2654 if (req == NULL)
6689cb2b
JH
2655 return -ENOMEM;
2656
eed29a5b 2657 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
9a0c1e27
CW
2658 if (ret)
2659 goto err;
6689cb2b 2660
40e895ce
JH
2661 kref_init(&req->ref);
2662 req->i915 = dev_priv;
eed29a5b 2663 req->ring = ring;
40e895ce
JH
2664 req->ctx = ctx;
2665 i915_gem_context_reference(req->ctx);
6689cb2b
JH
2666
2667 if (i915.enable_execlists)
40e895ce 2668 ret = intel_logical_ring_alloc_request_extras(req);
6689cb2b 2669 else
eed29a5b 2670 ret = intel_ring_alloc_request_extras(req);
40e895ce
JH
2671 if (ret) {
2672 i915_gem_context_unreference(req->ctx);
9a0c1e27 2673 goto err;
40e895ce 2674 }
6689cb2b 2675
29b1b415
JH
2676 /*
2677 * Reserve space in the ring buffer for all the commands required to
2678 * eventually emit this request. This is to guarantee that the
2679 * i915_add_request() call can't fail. Note that the reserve may need
2680 * to be redone if the request is not actually submitted straight
2681 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2682 */
ccd98fe4
JH
2683 if (i915.enable_execlists)
2684 ret = intel_logical_ring_reserve_space(req);
2685 else
2686 ret = intel_ring_reserve_space(req);
2687 if (ret) {
2688 /*
2689 * At this point, the request is fully allocated even if not
2690 * fully prepared. Thus it can be cleaned up using the proper
2691 * free code.
2692 */
2693 i915_gem_request_cancel(req);
2694 return ret;
2695 }
29b1b415 2696
217e46b5 2697 *req_out = ring->outstanding_lazy_request = req;
6689cb2b 2698 return 0;
9a0c1e27
CW
2699
2700err:
2701 kmem_cache_free(dev_priv->requests, req);
2702 return ret;
0e50e96b
MK
2703}
2704
29b1b415
JH
2705void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2706{
2707 intel_ring_reserved_space_cancel(req->ringbuf);
2708
2709 i915_gem_request_unreference(req);
2710}
2711
8d9fc7fd 2712struct drm_i915_gem_request *
a4872ba6 2713i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2714{
4db080f9
CW
2715 struct drm_i915_gem_request *request;
2716
2717 list_for_each_entry(request, &ring->request_list, list) {
1b5a433a 2718 if (i915_gem_request_completed(request, false))
4db080f9 2719 continue;
aa60c664 2720
b6b0fac0 2721 return request;
4db080f9 2722 }
b6b0fac0
MK
2723
2724 return NULL;
2725}
2726
2727static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2728 struct intel_engine_cs *ring)
b6b0fac0
MK
2729{
2730 struct drm_i915_gem_request *request;
2731 bool ring_hung;
2732
8d9fc7fd 2733 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2734
2735 if (request == NULL)
2736 return;
2737
2738 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2739
939fd762 2740 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2741
2742 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2743 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2744}
aa60c664 2745
4db080f9 2746static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2747 struct intel_engine_cs *ring)
4db080f9 2748{
dfaae392 2749 while (!list_empty(&ring->active_list)) {
05394f39 2750 struct drm_i915_gem_object *obj;
9375e446 2751
05394f39
CW
2752 obj = list_first_entry(&ring->active_list,
2753 struct drm_i915_gem_object,
b4716185 2754 ring_list[ring->id]);
9375e446 2755
b4716185 2756 i915_gem_object_retire__read(obj, ring->id);
673a394b 2757 }
1d62beea 2758
dcb4c12a
OM
2759 /*
2760 * Clear the execlists queue up before freeing the requests, as those
2761 * are the ones that keep the context and ringbuffer backing objects
2762 * pinned in place.
2763 */
2764 while (!list_empty(&ring->execlist_queue)) {
6d3d8274 2765 struct drm_i915_gem_request *submit_req;
dcb4c12a
OM
2766
2767 submit_req = list_first_entry(&ring->execlist_queue,
6d3d8274 2768 struct drm_i915_gem_request,
dcb4c12a
OM
2769 execlist_link);
2770 list_del(&submit_req->execlist_link);
1197b4f2
MK
2771
2772 if (submit_req->ctx != ring->default_context)
2773 intel_lr_context_unpin(ring, submit_req->ctx);
2774
b3a38998 2775 i915_gem_request_unreference(submit_req);
dcb4c12a
OM
2776 }
2777
1d62beea
BW
2778 /*
2779 * We must free the requests after all the corresponding objects have
2780 * been moved off active lists. Which is the same order as the normal
2781 * retire_requests function does. This is important if object hold
2782 * implicit references on things like e.g. ppgtt address spaces through
2783 * the request.
2784 */
2785 while (!list_empty(&ring->request_list)) {
2786 struct drm_i915_gem_request *request;
2787
2788 request = list_first_entry(&ring->request_list,
2789 struct drm_i915_gem_request,
2790 list);
2791
b4716185 2792 i915_gem_request_retire(request);
1d62beea 2793 }
e3efda49 2794
6259cead
JH
2795 /* This may not have been flushed before the reset, so clean it now */
2796 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
673a394b
EA
2797}
2798
19b2dbde 2799void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2800{
2801 struct drm_i915_private *dev_priv = dev->dev_private;
2802 int i;
2803
4b9de737 2804 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2805 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2806
94a335db
DV
2807 /*
2808 * Commit delayed tiling changes if we have an object still
2809 * attached to the fence, otherwise just clear the fence.
2810 */
2811 if (reg->obj) {
2812 i915_gem_object_update_fence(reg->obj, reg,
2813 reg->obj->tiling_mode);
2814 } else {
2815 i915_gem_write_fence(dev, i, NULL);
2816 }
312817a3
CW
2817 }
2818}
2819
069efc1d 2820void i915_gem_reset(struct drm_device *dev)
673a394b 2821{
77f01230 2822 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2823 struct intel_engine_cs *ring;
1ec14ad3 2824 int i;
673a394b 2825
4db080f9
CW
2826 /*
2827 * Before we free the objects from the requests, we need to inspect
2828 * them for finding the guilty party. As the requests only borrow
2829 * their reference to the objects, the inspection must be done first.
2830 */
2831 for_each_ring(ring, dev_priv, i)
2832 i915_gem_reset_ring_status(dev_priv, ring);
2833
b4519513 2834 for_each_ring(ring, dev_priv, i)
4db080f9 2835 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2836
acce9ffa
BW
2837 i915_gem_context_reset(dev);
2838
19b2dbde 2839 i915_gem_restore_fences(dev);
b4716185
CW
2840
2841 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2842}
2843
2844/**
2845 * This function clears the request list as sequence numbers are passed.
2846 */
1cf0ba14 2847void
a4872ba6 2848i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2849{
db53a302 2850 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2851
832a3aad
CW
2852 /* Retire requests first as we use it above for the early return.
2853 * If we retire requests last, we may use a later seqno and so clear
2854 * the requests lists without clearing the active list, leading to
2855 * confusion.
e9103038 2856 */
852835f3 2857 while (!list_empty(&ring->request_list)) {
673a394b 2858 struct drm_i915_gem_request *request;
673a394b 2859
852835f3 2860 request = list_first_entry(&ring->request_list,
673a394b
EA
2861 struct drm_i915_gem_request,
2862 list);
673a394b 2863
1b5a433a 2864 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2865 break;
2866
b4716185 2867 i915_gem_request_retire(request);
b84d5f0c 2868 }
673a394b 2869
832a3aad
CW
2870 /* Move any buffers on the active list that are no longer referenced
2871 * by the ringbuffer to the flushing/inactive lists as appropriate,
2872 * before we free the context associated with the requests.
2873 */
2874 while (!list_empty(&ring->active_list)) {
2875 struct drm_i915_gem_object *obj;
2876
2877 obj = list_first_entry(&ring->active_list,
2878 struct drm_i915_gem_object,
b4716185 2879 ring_list[ring->id]);
832a3aad 2880
b4716185 2881 if (!list_empty(&obj->last_read_req[ring->id]->list))
832a3aad
CW
2882 break;
2883
b4716185 2884 i915_gem_object_retire__read(obj, ring->id);
832a3aad
CW
2885 }
2886
581c26e8
JH
2887 if (unlikely(ring->trace_irq_req &&
2888 i915_gem_request_completed(ring->trace_irq_req, true))) {
1ec14ad3 2889 ring->irq_put(ring);
581c26e8 2890 i915_gem_request_assign(&ring->trace_irq_req, NULL);
9d34e5db 2891 }
23bc5982 2892
db53a302 2893 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2894}
2895
b29c19b6 2896bool
b09a1fec
CW
2897i915_gem_retire_requests(struct drm_device *dev)
2898{
3e31c6c0 2899 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2900 struct intel_engine_cs *ring;
b29c19b6 2901 bool idle = true;
1ec14ad3 2902 int i;
b09a1fec 2903
b29c19b6 2904 for_each_ring(ring, dev_priv, i) {
b4519513 2905 i915_gem_retire_requests_ring(ring);
b29c19b6 2906 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2907 if (i915.enable_execlists) {
2908 unsigned long flags;
2909
2910 spin_lock_irqsave(&ring->execlist_lock, flags);
2911 idle &= list_empty(&ring->execlist_queue);
2912 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2913
2914 intel_execlists_retire_requests(ring);
2915 }
b29c19b6
CW
2916 }
2917
2918 if (idle)
2919 mod_delayed_work(dev_priv->wq,
2920 &dev_priv->mm.idle_work,
2921 msecs_to_jiffies(100));
2922
2923 return idle;
b09a1fec
CW
2924}
2925
75ef9da2 2926static void
673a394b
EA
2927i915_gem_retire_work_handler(struct work_struct *work)
2928{
b29c19b6
CW
2929 struct drm_i915_private *dev_priv =
2930 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2931 struct drm_device *dev = dev_priv->dev;
0a58705b 2932 bool idle;
673a394b 2933
891b48cf 2934 /* Come back later if the device is busy... */
b29c19b6
CW
2935 idle = false;
2936 if (mutex_trylock(&dev->struct_mutex)) {
2937 idle = i915_gem_retire_requests(dev);
2938 mutex_unlock(&dev->struct_mutex);
673a394b 2939 }
b29c19b6 2940 if (!idle)
bcb45086
CW
2941 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2942 round_jiffies_up_relative(HZ));
b29c19b6 2943}
0a58705b 2944
b29c19b6
CW
2945static void
2946i915_gem_idle_work_handler(struct work_struct *work)
2947{
2948 struct drm_i915_private *dev_priv =
2949 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 2950 struct drm_device *dev = dev_priv->dev;
423795cb
CW
2951 struct intel_engine_cs *ring;
2952 int i;
b29c19b6 2953
423795cb
CW
2954 for_each_ring(ring, dev_priv, i)
2955 if (!list_empty(&ring->request_list))
2956 return;
35c94185
CW
2957
2958 intel_mark_idle(dev);
2959
2960 if (mutex_trylock(&dev->struct_mutex)) {
2961 struct intel_engine_cs *ring;
2962 int i;
2963
2964 for_each_ring(ring, dev_priv, i)
2965 i915_gem_batch_pool_fini(&ring->batch_pool);
b29c19b6 2966
35c94185
CW
2967 mutex_unlock(&dev->struct_mutex);
2968 }
673a394b
EA
2969}
2970
30dfebf3
DV
2971/**
2972 * Ensures that an object will eventually get non-busy by flushing any required
2973 * write domains, emitting any outstanding lazy request and retiring and
2974 * completed requests.
2975 */
2976static int
2977i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2978{
b4716185
CW
2979 int ret, i;
2980
2981 if (!obj->active)
2982 return 0;
30dfebf3 2983
b4716185
CW
2984 for (i = 0; i < I915_NUM_RINGS; i++) {
2985 struct drm_i915_gem_request *req;
41c52415 2986
b4716185
CW
2987 req = obj->last_read_req[i];
2988 if (req == NULL)
2989 continue;
2990
2991 if (list_empty(&req->list))
2992 goto retire;
2993
2994 ret = i915_gem_check_olr(req);
30dfebf3
DV
2995 if (ret)
2996 return ret;
2997
b4716185
CW
2998 if (i915_gem_request_completed(req, true)) {
2999 __i915_gem_request_retire__upto(req);
3000retire:
3001 i915_gem_object_retire__read(obj, i);
3002 }
30dfebf3
DV
3003 }
3004
3005 return 0;
3006}
3007
23ba4fd0
BW
3008/**
3009 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3010 * @DRM_IOCTL_ARGS: standard ioctl arguments
3011 *
3012 * Returns 0 if successful, else an error is returned with the remaining time in
3013 * the timeout parameter.
3014 * -ETIME: object is still busy after timeout
3015 * -ERESTARTSYS: signal interrupted the wait
3016 * -ENONENT: object doesn't exist
3017 * Also possible, but rare:
3018 * -EAGAIN: GPU wedged
3019 * -ENOMEM: damn
3020 * -ENODEV: Internal IRQ fail
3021 * -E?: The add request failed
3022 *
3023 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3024 * non-zero timeout parameter the wait ioctl will wait for the given number of
3025 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3026 * without holding struct_mutex the object may become re-busied before this
3027 * function completes. A similar but shorter * race condition exists in the busy
3028 * ioctl
3029 */
3030int
3031i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3032{
3e31c6c0 3033 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
3034 struct drm_i915_gem_wait *args = data;
3035 struct drm_i915_gem_object *obj;
b4716185 3036 struct drm_i915_gem_request *req[I915_NUM_RINGS];
f69061be 3037 unsigned reset_counter;
b4716185
CW
3038 int i, n = 0;
3039 int ret;
23ba4fd0 3040
11b5d511
DV
3041 if (args->flags != 0)
3042 return -EINVAL;
3043
23ba4fd0
BW
3044 ret = i915_mutex_lock_interruptible(dev);
3045 if (ret)
3046 return ret;
3047
3048 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3049 if (&obj->base == NULL) {
3050 mutex_unlock(&dev->struct_mutex);
3051 return -ENOENT;
3052 }
3053
30dfebf3
DV
3054 /* Need to make sure the object gets inactive eventually. */
3055 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3056 if (ret)
3057 goto out;
3058
b4716185 3059 if (!obj->active)
97b2a6a1 3060 goto out;
23ba4fd0 3061
23ba4fd0 3062 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3063 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3064 */
762e4583 3065 if (args->timeout_ns == 0) {
23ba4fd0
BW
3066 ret = -ETIME;
3067 goto out;
3068 }
3069
3070 drm_gem_object_unreference(&obj->base);
f69061be 3071 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
b4716185
CW
3072
3073 for (i = 0; i < I915_NUM_RINGS; i++) {
3074 if (obj->last_read_req[i] == NULL)
3075 continue;
3076
3077 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3078 }
3079
23ba4fd0
BW
3080 mutex_unlock(&dev->struct_mutex);
3081
b4716185
CW
3082 for (i = 0; i < n; i++) {
3083 if (ret == 0)
3084 ret = __i915_wait_request(req[i], reset_counter, true,
3085 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3086 file->driver_priv);
3087 i915_gem_request_unreference__unlocked(req[i]);
3088 }
ff865885 3089 return ret;
23ba4fd0
BW
3090
3091out:
3092 drm_gem_object_unreference(&obj->base);
3093 mutex_unlock(&dev->struct_mutex);
3094 return ret;
3095}
3096
b4716185
CW
3097static int
3098__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3099 struct intel_engine_cs *to,
91af127f
JH
3100 struct drm_i915_gem_request *from_req,
3101 struct drm_i915_gem_request **to_req)
b4716185
CW
3102{
3103 struct intel_engine_cs *from;
3104 int ret;
3105
91af127f 3106 from = i915_gem_request_get_ring(from_req);
b4716185
CW
3107 if (to == from)
3108 return 0;
3109
91af127f 3110 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3111 return 0;
3112
91af127f 3113 ret = i915_gem_check_olr(from_req);
b4716185
CW
3114 if (ret)
3115 return ret;
3116
3117 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3118 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3119 ret = __i915_wait_request(from_req,
a6f766f3
CW
3120 atomic_read(&i915->gpu_error.reset_counter),
3121 i915->mm.interruptible,
3122 NULL,
3123 &i915->rps.semaphores);
b4716185
CW
3124 if (ret)
3125 return ret;
3126
91af127f 3127 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3128 } else {
3129 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3130 u32 seqno = i915_gem_request_get_seqno(from_req);
3131
3132 WARN_ON(!to_req);
b4716185
CW
3133
3134 if (seqno <= from->semaphore.sync_seqno[idx])
3135 return 0;
3136
91af127f
JH
3137 if (*to_req == NULL) {
3138 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3139 if (ret)
3140 return ret;
3141 }
3142
599d924c
JH
3143 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3144 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3145 if (ret)
3146 return ret;
3147
3148 /* We use last_read_req because sync_to()
3149 * might have just caused seqno wrap under
3150 * the radar.
3151 */
3152 from->semaphore.sync_seqno[idx] =
3153 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3154 }
3155
3156 return 0;
3157}
3158
5816d648
BW
3159/**
3160 * i915_gem_object_sync - sync an object to a ring.
3161 *
3162 * @obj: object which may be in use on another ring.
3163 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3164 * @to_req: request we wish to use the object for. See below.
3165 * This will be allocated and returned if a request is
3166 * required but not passed in.
5816d648
BW
3167 *
3168 * This code is meant to abstract object synchronization with the GPU.
3169 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3170 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3171 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3172 * into a buffer at any time, but multiple readers. To ensure each has
3173 * a coherent view of memory, we must:
3174 *
3175 * - If there is an outstanding write request to the object, the new
3176 * request must wait for it to complete (either CPU or in hw, requests
3177 * on the same ring will be naturally ordered).
3178 *
3179 * - If we are a write request (pending_write_domain is set), the new
3180 * request must wait for outstanding read requests to complete.
5816d648 3181 *
91af127f
JH
3182 * For CPU synchronisation (NULL to) no request is required. For syncing with
3183 * rings to_req must be non-NULL. However, a request does not have to be
3184 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3185 * request will be allocated automatically and returned through *to_req. Note
3186 * that it is not guaranteed that commands will be emitted (because the system
3187 * might already be idle). Hence there is no need to create a request that
3188 * might never have any work submitted. Note further that if a request is
3189 * returned in *to_req, it is the responsibility of the caller to submit
3190 * that request (after potentially adding more work to it).
3191 *
5816d648
BW
3192 * Returns 0 if successful, else propagates up the lower layer error.
3193 */
2911a35b
BW
3194int
3195i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3196 struct intel_engine_cs *to,
3197 struct drm_i915_gem_request **to_req)
2911a35b 3198{
b4716185
CW
3199 const bool readonly = obj->base.pending_write_domain == 0;
3200 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3201 int ret, i, n;
41c52415 3202
b4716185 3203 if (!obj->active)
2911a35b
BW
3204 return 0;
3205
b4716185
CW
3206 if (to == NULL)
3207 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3208
b4716185
CW
3209 n = 0;
3210 if (readonly) {
3211 if (obj->last_write_req)
3212 req[n++] = obj->last_write_req;
3213 } else {
3214 for (i = 0; i < I915_NUM_RINGS; i++)
3215 if (obj->last_read_req[i])
3216 req[n++] = obj->last_read_req[i];
3217 }
3218 for (i = 0; i < n; i++) {
91af127f 3219 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3220 if (ret)
3221 return ret;
3222 }
2911a35b 3223
b4716185 3224 return 0;
2911a35b
BW
3225}
3226
b5ffc9bc
CW
3227static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3228{
3229 u32 old_write_domain, old_read_domains;
3230
b5ffc9bc
CW
3231 /* Force a pagefault for domain tracking on next user access */
3232 i915_gem_release_mmap(obj);
3233
b97c3d9c
KP
3234 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3235 return;
3236
97c809fd
CW
3237 /* Wait for any direct GTT access to complete */
3238 mb();
3239
b5ffc9bc
CW
3240 old_read_domains = obj->base.read_domains;
3241 old_write_domain = obj->base.write_domain;
3242
3243 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3244 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3245
3246 trace_i915_gem_object_change_domain(obj,
3247 old_read_domains,
3248 old_write_domain);
3249}
3250
07fe0b12 3251int i915_vma_unbind(struct i915_vma *vma)
673a394b 3252{
07fe0b12 3253 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3254 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3255 int ret;
673a394b 3256
07fe0b12 3257 if (list_empty(&vma->vma_link))
673a394b
EA
3258 return 0;
3259
0ff501cb
DV
3260 if (!drm_mm_node_allocated(&vma->node)) {
3261 i915_gem_vma_destroy(vma);
0ff501cb
DV
3262 return 0;
3263 }
433544bd 3264
d7f46fc4 3265 if (vma->pin_count)
31d8d651 3266 return -EBUSY;
673a394b 3267
c4670ad0
CW
3268 BUG_ON(obj->pages == NULL);
3269
2e2f351d 3270 ret = i915_gem_object_wait_rendering(obj, false);
1488fc08 3271 if (ret)
a8198eea
CW
3272 return ret;
3273 /* Continue on if we fail due to EIO, the GPU is hung so we
3274 * should be safe and we need to cleanup or else we might
3275 * cause memory corruption through use-after-free.
3276 */
3277
fe14d5f4
TU
3278 if (i915_is_ggtt(vma->vm) &&
3279 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3280 i915_gem_object_finish_gtt(obj);
5323fd04 3281
8b1bc9b4
DV
3282 /* release the fence reg _after_ flushing */
3283 ret = i915_gem_object_put_fence(obj);
3284 if (ret)
3285 return ret;
3286 }
96b47b65 3287
07fe0b12 3288 trace_i915_vma_unbind(vma);
db53a302 3289
777dc5bb 3290 vma->vm->unbind_vma(vma);
5e562f1d 3291 vma->bound = 0;
6f65e29a 3292
64bf9303 3293 list_del_init(&vma->mm_list);
fe14d5f4
TU
3294 if (i915_is_ggtt(vma->vm)) {
3295 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3296 obj->map_and_fenceable = false;
3297 } else if (vma->ggtt_view.pages) {
3298 sg_free_table(vma->ggtt_view.pages);
3299 kfree(vma->ggtt_view.pages);
3300 vma->ggtt_view.pages = NULL;
3301 }
3302 }
673a394b 3303
2f633156
BW
3304 drm_mm_remove_node(&vma->node);
3305 i915_gem_vma_destroy(vma);
3306
3307 /* Since the unbound list is global, only move to that list if
b93dab6e 3308 * no more VMAs exist. */
9490edb5
AR
3309 if (list_empty(&obj->vma_list)) {
3310 i915_gem_gtt_finish_object(obj);
2f633156 3311 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3312 }
673a394b 3313
70903c3b
CW
3314 /* And finally now the object is completely decoupled from this vma,
3315 * we can drop its hold on the backing storage and allow it to be
3316 * reaped by the shrinker.
3317 */
3318 i915_gem_object_unpin_pages(obj);
3319
88241785 3320 return 0;
54cf91dc
CW
3321}
3322
b2da9fe5 3323int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3324{
3e31c6c0 3325 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3326 struct intel_engine_cs *ring;
1ec14ad3 3327 int ret, i;
4df2faf4 3328
4df2faf4 3329 /* Flush everything onto the inactive list. */
b4519513 3330 for_each_ring(ring, dev_priv, i) {
ecdb5fd8 3331 if (!i915.enable_execlists) {
73cfa865
JH
3332 struct drm_i915_gem_request *req;
3333
3334 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
ecdb5fd8
TD
3335 if (ret)
3336 return ret;
73cfa865 3337
ba01cc93 3338 ret = i915_switch_context(req);
73cfa865
JH
3339 if (ret) {
3340 i915_gem_request_cancel(req);
3341 return ret;
3342 }
3343
75289874 3344 i915_add_request_no_flush(req);
ecdb5fd8 3345 }
b6c7488d 3346
73cfa865
JH
3347 WARN_ON(ring->outstanding_lazy_request);
3348
3e960501 3349 ret = intel_ring_idle(ring);
1ec14ad3
CW
3350 if (ret)
3351 return ret;
3352 }
4df2faf4 3353
b4716185 3354 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3355 return 0;
4df2faf4
DV
3356}
3357
9ce079e4
CW
3358static void i965_write_fence_reg(struct drm_device *dev, int reg,
3359 struct drm_i915_gem_object *obj)
de151cf6 3360{
3e31c6c0 3361 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3362 int fence_reg;
3363 int fence_pitch_shift;
de151cf6 3364
56c844e5
ID
3365 if (INTEL_INFO(dev)->gen >= 6) {
3366 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3367 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3368 } else {
3369 fence_reg = FENCE_REG_965_0;
3370 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3371 }
3372
d18b9619
CW
3373 fence_reg += reg * 8;
3374
3375 /* To w/a incoherency with non-atomic 64-bit register updates,
3376 * we split the 64-bit update into two 32-bit writes. In order
3377 * for a partial fence not to be evaluated between writes, we
3378 * precede the update with write to turn off the fence register,
3379 * and only enable the fence as the last step.
3380 *
3381 * For extra levels of paranoia, we make sure each step lands
3382 * before applying the next step.
3383 */
3384 I915_WRITE(fence_reg, 0);
3385 POSTING_READ(fence_reg);
3386
9ce079e4 3387 if (obj) {
f343c5f6 3388 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3389 uint64_t val;
de151cf6 3390
af1a7301
BP
3391 /* Adjust fence size to match tiled area */
3392 if (obj->tiling_mode != I915_TILING_NONE) {
3393 uint32_t row_size = obj->stride *
3394 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3395 size = (size / row_size) * row_size;
3396 }
3397
f343c5f6 3398 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3399 0xfffff000) << 32;
f343c5f6 3400 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3401 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3402 if (obj->tiling_mode == I915_TILING_Y)
3403 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3404 val |= I965_FENCE_REG_VALID;
c6642782 3405
d18b9619
CW
3406 I915_WRITE(fence_reg + 4, val >> 32);
3407 POSTING_READ(fence_reg + 4);
3408
3409 I915_WRITE(fence_reg + 0, val);
3410 POSTING_READ(fence_reg);
3411 } else {
3412 I915_WRITE(fence_reg + 4, 0);
3413 POSTING_READ(fence_reg + 4);
3414 }
de151cf6
JB
3415}
3416
9ce079e4
CW
3417static void i915_write_fence_reg(struct drm_device *dev, int reg,
3418 struct drm_i915_gem_object *obj)
de151cf6 3419{
3e31c6c0 3420 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3421 u32 val;
de151cf6 3422
9ce079e4 3423 if (obj) {
f343c5f6 3424 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3425 int pitch_val;
3426 int tile_width;
c6642782 3427
f343c5f6 3428 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3429 (size & -size) != size ||
f343c5f6
BW
3430 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3431 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3432 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3433
9ce079e4
CW
3434 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3435 tile_width = 128;
3436 else
3437 tile_width = 512;
3438
3439 /* Note: pitch better be a power of two tile widths */
3440 pitch_val = obj->stride / tile_width;
3441 pitch_val = ffs(pitch_val) - 1;
3442
f343c5f6 3443 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3444 if (obj->tiling_mode == I915_TILING_Y)
3445 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3446 val |= I915_FENCE_SIZE_BITS(size);
3447 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3448 val |= I830_FENCE_REG_VALID;
3449 } else
3450 val = 0;
3451
3452 if (reg < 8)
3453 reg = FENCE_REG_830_0 + reg * 4;
3454 else
3455 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3456
3457 I915_WRITE(reg, val);
3458 POSTING_READ(reg);
de151cf6
JB
3459}
3460
9ce079e4
CW
3461static void i830_write_fence_reg(struct drm_device *dev, int reg,
3462 struct drm_i915_gem_object *obj)
de151cf6 3463{
3e31c6c0 3464 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3465 uint32_t val;
de151cf6 3466
9ce079e4 3467 if (obj) {
f343c5f6 3468 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3469 uint32_t pitch_val;
de151cf6 3470
f343c5f6 3471 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3472 (size & -size) != size ||
f343c5f6
BW
3473 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3474 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3475 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3476
9ce079e4
CW
3477 pitch_val = obj->stride / 128;
3478 pitch_val = ffs(pitch_val) - 1;
de151cf6 3479
f343c5f6 3480 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3481 if (obj->tiling_mode == I915_TILING_Y)
3482 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3483 val |= I830_FENCE_SIZE_BITS(size);
3484 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3485 val |= I830_FENCE_REG_VALID;
3486 } else
3487 val = 0;
c6642782 3488
9ce079e4
CW
3489 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3490 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3491}
3492
d0a57789
CW
3493inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3494{
3495 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3496}
3497
9ce079e4
CW
3498static void i915_gem_write_fence(struct drm_device *dev, int reg,
3499 struct drm_i915_gem_object *obj)
3500{
d0a57789
CW
3501 struct drm_i915_private *dev_priv = dev->dev_private;
3502
3503 /* Ensure that all CPU reads are completed before installing a fence
3504 * and all writes before removing the fence.
3505 */
3506 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3507 mb();
3508
94a335db
DV
3509 WARN(obj && (!obj->stride || !obj->tiling_mode),
3510 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3511 obj->stride, obj->tiling_mode);
3512
ce38ab05
RV
3513 if (IS_GEN2(dev))
3514 i830_write_fence_reg(dev, reg, obj);
3515 else if (IS_GEN3(dev))
3516 i915_write_fence_reg(dev, reg, obj);
3517 else if (INTEL_INFO(dev)->gen >= 4)
3518 i965_write_fence_reg(dev, reg, obj);
d0a57789
CW
3519
3520 /* And similarly be paranoid that no direct access to this region
3521 * is reordered to before the fence is installed.
3522 */
3523 if (i915_gem_object_needs_mb(obj))
3524 mb();
de151cf6
JB
3525}
3526
61050808
CW
3527static inline int fence_number(struct drm_i915_private *dev_priv,
3528 struct drm_i915_fence_reg *fence)
3529{
3530 return fence - dev_priv->fence_regs;
3531}
3532
3533static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3534 struct drm_i915_fence_reg *fence,
3535 bool enable)
3536{
2dc8aae0 3537 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3538 int reg = fence_number(dev_priv, fence);
3539
3540 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3541
3542 if (enable) {
46a0b638 3543 obj->fence_reg = reg;
61050808
CW
3544 fence->obj = obj;
3545 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3546 } else {
3547 obj->fence_reg = I915_FENCE_REG_NONE;
3548 fence->obj = NULL;
3549 list_del_init(&fence->lru_list);
3550 }
94a335db 3551 obj->fence_dirty = false;
61050808
CW
3552}
3553
d9e86c0e 3554static int
d0a57789 3555i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3556{
97b2a6a1 3557 if (obj->last_fenced_req) {
a4b3a571 3558 int ret = i915_wait_request(obj->last_fenced_req);
18991845
CW
3559 if (ret)
3560 return ret;
d9e86c0e 3561
97b2a6a1 3562 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3563 }
3564
3565 return 0;
3566}
3567
3568int
3569i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3570{
61050808 3571 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3572 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3573 int ret;
3574
d0a57789 3575 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3576 if (ret)
3577 return ret;
3578
61050808
CW
3579 if (obj->fence_reg == I915_FENCE_REG_NONE)
3580 return 0;
d9e86c0e 3581
f9c513e9
CW
3582 fence = &dev_priv->fence_regs[obj->fence_reg];
3583
aff10b30
DV
3584 if (WARN_ON(fence->pin_count))
3585 return -EBUSY;
3586
61050808 3587 i915_gem_object_fence_lost(obj);
f9c513e9 3588 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3589
3590 return 0;
3591}
3592
3593static struct drm_i915_fence_reg *
a360bb1a 3594i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3595{
ae3db24a 3596 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3597 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3598 int i;
ae3db24a
DV
3599
3600 /* First try to find a free reg */
d9e86c0e 3601 avail = NULL;
ae3db24a
DV
3602 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3603 reg = &dev_priv->fence_regs[i];
3604 if (!reg->obj)
d9e86c0e 3605 return reg;
ae3db24a 3606
1690e1eb 3607 if (!reg->pin_count)
d9e86c0e 3608 avail = reg;
ae3db24a
DV
3609 }
3610
d9e86c0e 3611 if (avail == NULL)
5dce5b93 3612 goto deadlock;
ae3db24a
DV
3613
3614 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3615 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3616 if (reg->pin_count)
ae3db24a
DV
3617 continue;
3618
8fe301ad 3619 return reg;
ae3db24a
DV
3620 }
3621
5dce5b93
CW
3622deadlock:
3623 /* Wait for completion of pending flips which consume fences */
3624 if (intel_has_pending_fb_unpin(dev))
3625 return ERR_PTR(-EAGAIN);
3626
3627 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3628}
3629
de151cf6 3630/**
9a5a53b3 3631 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3632 * @obj: object to map through a fence reg
3633 *
3634 * When mapping objects through the GTT, userspace wants to be able to write
3635 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3636 * This function walks the fence regs looking for a free one for @obj,
3637 * stealing one if it can't find any.
3638 *
3639 * It then sets up the reg based on the object's properties: address, pitch
3640 * and tiling format.
9a5a53b3
CW
3641 *
3642 * For an untiled surface, this removes any existing fence.
de151cf6 3643 */
8c4b8c3f 3644int
06d98131 3645i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3646{
05394f39 3647 struct drm_device *dev = obj->base.dev;
79e53945 3648 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3649 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3650 struct drm_i915_fence_reg *reg;
ae3db24a 3651 int ret;
de151cf6 3652
14415745
CW
3653 /* Have we updated the tiling parameters upon the object and so
3654 * will need to serialise the write to the associated fence register?
3655 */
5d82e3e6 3656 if (obj->fence_dirty) {
d0a57789 3657 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3658 if (ret)
3659 return ret;
3660 }
9a5a53b3 3661
d9e86c0e 3662 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3663 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3664 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3665 if (!obj->fence_dirty) {
14415745
CW
3666 list_move_tail(&reg->lru_list,
3667 &dev_priv->mm.fence_list);
3668 return 0;
3669 }
3670 } else if (enable) {
e6a84468
CW
3671 if (WARN_ON(!obj->map_and_fenceable))
3672 return -EINVAL;
3673
14415745 3674 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3675 if (IS_ERR(reg))
3676 return PTR_ERR(reg);
d9e86c0e 3677
14415745
CW
3678 if (reg->obj) {
3679 struct drm_i915_gem_object *old = reg->obj;
3680
d0a57789 3681 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3682 if (ret)
3683 return ret;
3684
14415745 3685 i915_gem_object_fence_lost(old);
29c5a587 3686 }
14415745 3687 } else
a09ba7fa 3688 return 0;
a09ba7fa 3689
14415745 3690 i915_gem_object_update_fence(obj, reg, enable);
14415745 3691
9ce079e4 3692 return 0;
de151cf6
JB
3693}
3694
4144f9b5 3695static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3696 unsigned long cache_level)
3697{
4144f9b5 3698 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3699 struct drm_mm_node *other;
3700
4144f9b5
CW
3701 /*
3702 * On some machines we have to be careful when putting differing types
3703 * of snoopable memory together to avoid the prefetcher crossing memory
3704 * domains and dying. During vm initialisation, we decide whether or not
3705 * these constraints apply and set the drm_mm.color_adjust
3706 * appropriately.
42d6ab48 3707 */
4144f9b5 3708 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3709 return true;
3710
c6cfb325 3711 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3712 return true;
3713
3714 if (list_empty(&gtt_space->node_list))
3715 return true;
3716
3717 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3718 if (other->allocated && !other->hole_follows && other->color != cache_level)
3719 return false;
3720
3721 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3722 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3723 return false;
3724
3725 return true;
3726}
3727
673a394b 3728/**
91e6711e
JL
3729 * Finds free space in the GTT aperture and binds the object or a view of it
3730 * there.
673a394b 3731 */
262de145 3732static struct i915_vma *
07fe0b12
BW
3733i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3734 struct i915_address_space *vm,
ec7adb6e 3735 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3736 unsigned alignment,
ec7adb6e 3737 uint64_t flags)
673a394b 3738{
05394f39 3739 struct drm_device *dev = obj->base.dev;
3e31c6c0 3740 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3741 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3742 unsigned long start =
3743 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3744 unsigned long end =
1ec9e26d 3745 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3746 struct i915_vma *vma;
07f73f69 3747 int ret;
673a394b 3748
91e6711e
JL
3749 if (i915_is_ggtt(vm)) {
3750 u32 view_size;
3751
3752 if (WARN_ON(!ggtt_view))
3753 return ERR_PTR(-EINVAL);
ec7adb6e 3754
91e6711e
JL
3755 view_size = i915_ggtt_view_size(obj, ggtt_view);
3756
3757 fence_size = i915_gem_get_gtt_size(dev,
3758 view_size,
3759 obj->tiling_mode);
3760 fence_alignment = i915_gem_get_gtt_alignment(dev,
3761 view_size,
3762 obj->tiling_mode,
3763 true);
3764 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3765 view_size,
3766 obj->tiling_mode,
3767 false);
3768 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3769 } else {
3770 fence_size = i915_gem_get_gtt_size(dev,
3771 obj->base.size,
3772 obj->tiling_mode);
3773 fence_alignment = i915_gem_get_gtt_alignment(dev,
3774 obj->base.size,
3775 obj->tiling_mode,
3776 true);
3777 unfenced_alignment =
3778 i915_gem_get_gtt_alignment(dev,
3779 obj->base.size,
3780 obj->tiling_mode,
3781 false);
3782 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3783 }
a00b10c3 3784
673a394b 3785 if (alignment == 0)
1ec9e26d 3786 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3787 unfenced_alignment;
1ec9e26d 3788 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3789 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3790 ggtt_view ? ggtt_view->type : 0,
3791 alignment);
262de145 3792 return ERR_PTR(-EINVAL);
673a394b
EA
3793 }
3794
91e6711e
JL
3795 /* If binding the object/GGTT view requires more space than the entire
3796 * aperture has, reject it early before evicting everything in a vain
3797 * attempt to find space.
654fc607 3798 */
91e6711e
JL
3799 if (size > end) {
3800 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3801 ggtt_view ? ggtt_view->type : 0,
3802 size,
1ec9e26d 3803 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3804 end);
262de145 3805 return ERR_PTR(-E2BIG);
654fc607
CW
3806 }
3807
37e680a1 3808 ret = i915_gem_object_get_pages(obj);
6c085a72 3809 if (ret)
262de145 3810 return ERR_PTR(ret);
6c085a72 3811
fbdda6fb
CW
3812 i915_gem_object_pin_pages(obj);
3813
ec7adb6e
JL
3814 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3815 i915_gem_obj_lookup_or_create_vma(obj, vm);
3816
262de145 3817 if (IS_ERR(vma))
bc6bc15b 3818 goto err_unpin;
2f633156 3819
0a9ae0d7 3820search_free:
07fe0b12 3821 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3822 size, alignment,
d23db88c
CW
3823 obj->cache_level,
3824 start, end,
62347f9e
LK
3825 DRM_MM_SEARCH_DEFAULT,
3826 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3827 if (ret) {
f6cd1f15 3828 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3829 obj->cache_level,
3830 start, end,
3831 flags);
dc9dd7a2
CW
3832 if (ret == 0)
3833 goto search_free;
9731129c 3834
bc6bc15b 3835 goto err_free_vma;
673a394b 3836 }
4144f9b5 3837 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3838 ret = -EINVAL;
bc6bc15b 3839 goto err_remove_node;
673a394b
EA
3840 }
3841
74163907 3842 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3843 if (ret)
bc6bc15b 3844 goto err_remove_node;
673a394b 3845
fe14d5f4 3846 trace_i915_vma_bind(vma, flags);
0875546c 3847 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
3848 if (ret)
3849 goto err_finish_gtt;
3850
35c20a60 3851 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3852 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3853
262de145 3854 return vma;
2f633156 3855
fe14d5f4
TU
3856err_finish_gtt:
3857 i915_gem_gtt_finish_object(obj);
bc6bc15b 3858err_remove_node:
6286ef9b 3859 drm_mm_remove_node(&vma->node);
bc6bc15b 3860err_free_vma:
2f633156 3861 i915_gem_vma_destroy(vma);
262de145 3862 vma = ERR_PTR(ret);
bc6bc15b 3863err_unpin:
2f633156 3864 i915_gem_object_unpin_pages(obj);
262de145 3865 return vma;
673a394b
EA
3866}
3867
000433b6 3868bool
2c22569b
CW
3869i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3870 bool force)
673a394b 3871{
673a394b
EA
3872 /* If we don't have a page list set up, then we're not pinned
3873 * to GPU, and we can ignore the cache flush because it'll happen
3874 * again at bind time.
3875 */
05394f39 3876 if (obj->pages == NULL)
000433b6 3877 return false;
673a394b 3878
769ce464
ID
3879 /*
3880 * Stolen memory is always coherent with the GPU as it is explicitly
3881 * marked as wc by the system, or the system is cache-coherent.
3882 */
6a2c4232 3883 if (obj->stolen || obj->phys_handle)
000433b6 3884 return false;
769ce464 3885
9c23f7fc
CW
3886 /* If the GPU is snooping the contents of the CPU cache,
3887 * we do not need to manually clear the CPU cache lines. However,
3888 * the caches are only snooped when the render cache is
3889 * flushed/invalidated. As we always have to emit invalidations
3890 * and flushes when moving into and out of the RENDER domain, correct
3891 * snooping behaviour occurs naturally as the result of our domain
3892 * tracking.
3893 */
0f71979a
CW
3894 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3895 obj->cache_dirty = true;
000433b6 3896 return false;
0f71979a 3897 }
9c23f7fc 3898
1c5d22f7 3899 trace_i915_gem_object_clflush(obj);
9da3da66 3900 drm_clflush_sg(obj->pages);
0f71979a 3901 obj->cache_dirty = false;
000433b6
CW
3902
3903 return true;
e47c68e9
EA
3904}
3905
3906/** Flushes the GTT write domain for the object if it's dirty. */
3907static void
05394f39 3908i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3909{
1c5d22f7
CW
3910 uint32_t old_write_domain;
3911
05394f39 3912 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3913 return;
3914
63256ec5 3915 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3916 * to it immediately go to main memory as far as we know, so there's
3917 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3918 *
3919 * However, we do have to enforce the order so that all writes through
3920 * the GTT land before any writes to the device, such as updates to
3921 * the GATT itself.
e47c68e9 3922 */
63256ec5
CW
3923 wmb();
3924
05394f39
CW
3925 old_write_domain = obj->base.write_domain;
3926 obj->base.write_domain = 0;
1c5d22f7 3927
f99d7069
DV
3928 intel_fb_obj_flush(obj, false);
3929
1c5d22f7 3930 trace_i915_gem_object_change_domain(obj,
05394f39 3931 obj->base.read_domains,
1c5d22f7 3932 old_write_domain);
e47c68e9
EA
3933}
3934
3935/** Flushes the CPU write domain for the object if it's dirty. */
3936static void
e62b59e4 3937i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3938{
1c5d22f7 3939 uint32_t old_write_domain;
e47c68e9 3940
05394f39 3941 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3942 return;
3943
e62b59e4 3944 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3945 i915_gem_chipset_flush(obj->base.dev);
3946
05394f39
CW
3947 old_write_domain = obj->base.write_domain;
3948 obj->base.write_domain = 0;
1c5d22f7 3949
f99d7069
DV
3950 intel_fb_obj_flush(obj, false);
3951
1c5d22f7 3952 trace_i915_gem_object_change_domain(obj,
05394f39 3953 obj->base.read_domains,
1c5d22f7 3954 old_write_domain);
e47c68e9
EA
3955}
3956
2ef7eeaa
EA
3957/**
3958 * Moves a single object to the GTT read, and possibly write domain.
3959 *
3960 * This function returns when the move is complete, including waiting on
3961 * flushes to occur.
3962 */
79e53945 3963int
2021746e 3964i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3965{
1c5d22f7 3966 uint32_t old_write_domain, old_read_domains;
43566ded 3967 struct i915_vma *vma;
e47c68e9 3968 int ret;
2ef7eeaa 3969
8d7e3de1
CW
3970 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3971 return 0;
3972
0201f1ec 3973 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3974 if (ret)
3975 return ret;
3976
43566ded
CW
3977 /* Flush and acquire obj->pages so that we are coherent through
3978 * direct access in memory with previous cached writes through
3979 * shmemfs and that our cache domain tracking remains valid.
3980 * For example, if the obj->filp was moved to swap without us
3981 * being notified and releasing the pages, we would mistakenly
3982 * continue to assume that the obj remained out of the CPU cached
3983 * domain.
3984 */
3985 ret = i915_gem_object_get_pages(obj);
3986 if (ret)
3987 return ret;
3988
e62b59e4 3989 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3990
d0a57789
CW
3991 /* Serialise direct access to this object with the barriers for
3992 * coherent writes from the GPU, by effectively invalidating the
3993 * GTT domain upon first access.
3994 */
3995 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3996 mb();
3997
05394f39
CW
3998 old_write_domain = obj->base.write_domain;
3999 old_read_domains = obj->base.read_domains;
1c5d22f7 4000
e47c68e9
EA
4001 /* It should now be out of any other write domains, and we can update
4002 * the domain values for our changes.
4003 */
05394f39
CW
4004 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4005 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 4006 if (write) {
05394f39
CW
4007 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4008 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4009 obj->dirty = 1;
2ef7eeaa
EA
4010 }
4011
f99d7069 4012 if (write)
77a0d1ca 4013 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
f99d7069 4014
1c5d22f7
CW
4015 trace_i915_gem_object_change_domain(obj,
4016 old_read_domains,
4017 old_write_domain);
4018
8325a09d 4019 /* And bump the LRU for this access */
43566ded
CW
4020 vma = i915_gem_obj_to_ggtt(obj);
4021 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
dc8cd1e7 4022 list_move_tail(&vma->mm_list,
43566ded 4023 &to_i915(obj->base.dev)->gtt.base.inactive_list);
8325a09d 4024
e47c68e9
EA
4025 return 0;
4026}
4027
e4ffd173
CW
4028int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4029 enum i915_cache_level cache_level)
4030{
7bddb01f 4031 struct drm_device *dev = obj->base.dev;
df6f783a 4032 struct i915_vma *vma, *next;
e4ffd173
CW
4033 int ret;
4034
4035 if (obj->cache_level == cache_level)
4036 return 0;
4037
d7f46fc4 4038 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
4039 DRM_DEBUG("can not change the cache level of pinned objects\n");
4040 return -EBUSY;
4041 }
4042
df6f783a 4043 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 4044 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 4045 ret = i915_vma_unbind(vma);
3089c6f2
BW
4046 if (ret)
4047 return ret;
3089c6f2 4048 }
42d6ab48
CW
4049 }
4050
3089c6f2 4051 if (i915_gem_obj_bound_any(obj)) {
2e2f351d 4052 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
4053 if (ret)
4054 return ret;
4055
4056 i915_gem_object_finish_gtt(obj);
4057
4058 /* Before SandyBridge, you could not use tiling or fence
4059 * registers with snooped memory, so relinquish any fences
4060 * currently pointing to our region in the aperture.
4061 */
42d6ab48 4062 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
4063 ret = i915_gem_object_put_fence(obj);
4064 if (ret)
4065 return ret;
4066 }
4067
6f65e29a 4068 list_for_each_entry(vma, &obj->vma_list, vma_link)
fe14d5f4
TU
4069 if (drm_mm_node_allocated(&vma->node)) {
4070 ret = i915_vma_bind(vma, cache_level,
0875546c 4071 PIN_UPDATE);
fe14d5f4
TU
4072 if (ret)
4073 return ret;
4074 }
e4ffd173
CW
4075 }
4076
2c22569b
CW
4077 list_for_each_entry(vma, &obj->vma_list, vma_link)
4078 vma->node.color = cache_level;
4079 obj->cache_level = cache_level;
4080
0f71979a
CW
4081 if (obj->cache_dirty &&
4082 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4083 cpu_write_needs_clflush(obj)) {
4084 if (i915_gem_clflush_object(obj, true))
4085 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
4086 }
4087
e4ffd173
CW
4088 return 0;
4089}
4090
199adf40
BW
4091int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4092 struct drm_file *file)
e6994aee 4093{
199adf40 4094 struct drm_i915_gem_caching *args = data;
e6994aee 4095 struct drm_i915_gem_object *obj;
e6994aee
CW
4096
4097 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
4098 if (&obj->base == NULL)
4099 return -ENOENT;
e6994aee 4100
651d794f
CW
4101 switch (obj->cache_level) {
4102 case I915_CACHE_LLC:
4103 case I915_CACHE_L3_LLC:
4104 args->caching = I915_CACHING_CACHED;
4105 break;
4106
4257d3ba
CW
4107 case I915_CACHE_WT:
4108 args->caching = I915_CACHING_DISPLAY;
4109 break;
4110
651d794f
CW
4111 default:
4112 args->caching = I915_CACHING_NONE;
4113 break;
4114 }
e6994aee 4115
432be69d
CW
4116 drm_gem_object_unreference_unlocked(&obj->base);
4117 return 0;
e6994aee
CW
4118}
4119
199adf40
BW
4120int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4121 struct drm_file *file)
e6994aee 4122{
199adf40 4123 struct drm_i915_gem_caching *args = data;
e6994aee
CW
4124 struct drm_i915_gem_object *obj;
4125 enum i915_cache_level level;
4126 int ret;
4127
199adf40
BW
4128 switch (args->caching) {
4129 case I915_CACHING_NONE:
e6994aee
CW
4130 level = I915_CACHE_NONE;
4131 break;
199adf40 4132 case I915_CACHING_CACHED:
e6994aee
CW
4133 level = I915_CACHE_LLC;
4134 break;
4257d3ba
CW
4135 case I915_CACHING_DISPLAY:
4136 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4137 break;
e6994aee
CW
4138 default:
4139 return -EINVAL;
4140 }
4141
3bc2913e
BW
4142 ret = i915_mutex_lock_interruptible(dev);
4143 if (ret)
4144 return ret;
4145
e6994aee
CW
4146 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4147 if (&obj->base == NULL) {
4148 ret = -ENOENT;
4149 goto unlock;
4150 }
4151
4152 ret = i915_gem_object_set_cache_level(obj, level);
4153
4154 drm_gem_object_unreference(&obj->base);
4155unlock:
4156 mutex_unlock(&dev->struct_mutex);
4157 return ret;
4158}
4159
b9241ea3 4160/*
2da3b9b9
CW
4161 * Prepare buffer for display plane (scanout, cursors, etc).
4162 * Can be called from an uninterruptible phase (modesetting) and allows
4163 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4164 */
4165int
2da3b9b9
CW
4166i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4167 u32 alignment,
e6617330 4168 struct intel_engine_cs *pipelined,
91af127f 4169 struct drm_i915_gem_request **pipelined_request,
e6617330 4170 const struct i915_ggtt_view *view)
b9241ea3 4171{
2da3b9b9 4172 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4173 int ret;
4174
91af127f 4175 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
b4716185
CW
4176 if (ret)
4177 return ret;
b9241ea3 4178
cc98b413
CW
4179 /* Mark the pin_display early so that we account for the
4180 * display coherency whilst setting up the cache domains.
4181 */
8a0c39b1 4182 obj->pin_display++;
cc98b413 4183
a7ef0640
EA
4184 /* The display engine is not coherent with the LLC cache on gen6. As
4185 * a result, we make sure that the pinning that is about to occur is
4186 * done with uncached PTEs. This is lowest common denominator for all
4187 * chipsets.
4188 *
4189 * However for gen6+, we could do better by using the GFDT bit instead
4190 * of uncaching, which would allow us to flush all the LLC-cached data
4191 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4192 */
651d794f
CW
4193 ret = i915_gem_object_set_cache_level(obj,
4194 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4195 if (ret)
cc98b413 4196 goto err_unpin_display;
a7ef0640 4197
2da3b9b9
CW
4198 /* As the user may map the buffer once pinned in the display plane
4199 * (e.g. libkms for the bootup splash), we have to ensure that we
4200 * always use map_and_fenceable for all scanout buffers.
4201 */
50470bb0
TU
4202 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4203 view->type == I915_GGTT_VIEW_NORMAL ?
4204 PIN_MAPPABLE : 0);
2da3b9b9 4205 if (ret)
cc98b413 4206 goto err_unpin_display;
2da3b9b9 4207
e62b59e4 4208 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4209
2da3b9b9 4210 old_write_domain = obj->base.write_domain;
05394f39 4211 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4212
4213 /* It should now be out of any other write domains, and we can update
4214 * the domain values for our changes.
4215 */
e5f1d962 4216 obj->base.write_domain = 0;
05394f39 4217 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4218
4219 trace_i915_gem_object_change_domain(obj,
4220 old_read_domains,
2da3b9b9 4221 old_write_domain);
b9241ea3
ZW
4222
4223 return 0;
cc98b413
CW
4224
4225err_unpin_display:
8a0c39b1 4226 obj->pin_display--;
cc98b413
CW
4227 return ret;
4228}
4229
4230void
e6617330
TU
4231i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4232 const struct i915_ggtt_view *view)
cc98b413 4233{
8a0c39b1
TU
4234 if (WARN_ON(obj->pin_display == 0))
4235 return;
4236
e6617330
TU
4237 i915_gem_object_ggtt_unpin_view(obj, view);
4238
8a0c39b1 4239 obj->pin_display--;
b9241ea3
ZW
4240}
4241
e47c68e9
EA
4242/**
4243 * Moves a single object to the CPU read, and possibly write domain.
4244 *
4245 * This function returns when the move is complete, including waiting on
4246 * flushes to occur.
4247 */
dabdfe02 4248int
919926ae 4249i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4250{
1c5d22f7 4251 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4252 int ret;
4253
8d7e3de1
CW
4254 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4255 return 0;
4256
0201f1ec 4257 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4258 if (ret)
4259 return ret;
4260
e47c68e9 4261 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4262
05394f39
CW
4263 old_write_domain = obj->base.write_domain;
4264 old_read_domains = obj->base.read_domains;
1c5d22f7 4265
e47c68e9 4266 /* Flush the CPU cache if it's still invalid. */
05394f39 4267 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4268 i915_gem_clflush_object(obj, false);
2ef7eeaa 4269
05394f39 4270 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4271 }
4272
4273 /* It should now be out of any other write domains, and we can update
4274 * the domain values for our changes.
4275 */
05394f39 4276 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4277
4278 /* If we're writing through the CPU, then the GPU read domains will
4279 * need to be invalidated at next use.
4280 */
4281 if (write) {
05394f39
CW
4282 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4283 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4284 }
2ef7eeaa 4285
f99d7069 4286 if (write)
77a0d1ca 4287 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
f99d7069 4288
1c5d22f7
CW
4289 trace_i915_gem_object_change_domain(obj,
4290 old_read_domains,
4291 old_write_domain);
4292
2ef7eeaa
EA
4293 return 0;
4294}
4295
673a394b
EA
4296/* Throttle our rendering by waiting until the ring has completed our requests
4297 * emitted over 20 msec ago.
4298 *
b962442e
EA
4299 * Note that if we were to use the current jiffies each time around the loop,
4300 * we wouldn't escape the function with any frames outstanding if the time to
4301 * render a frame was over 20ms.
4302 *
673a394b
EA
4303 * This should get us reasonable parallelism between CPU and GPU but also
4304 * relatively low latency when blocking on a particular request to finish.
4305 */
40a5f0de 4306static int
f787a5f5 4307i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4308{
f787a5f5
CW
4309 struct drm_i915_private *dev_priv = dev->dev_private;
4310 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4311 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4312 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4313 unsigned reset_counter;
f787a5f5 4314 int ret;
93533c29 4315
308887aa
DV
4316 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4317 if (ret)
4318 return ret;
4319
4320 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4321 if (ret)
4322 return ret;
e110e8d6 4323
1c25595f 4324 spin_lock(&file_priv->mm.lock);
f787a5f5 4325 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4326 if (time_after_eq(request->emitted_jiffies, recent_enough))
4327 break;
40a5f0de 4328
54fb2411 4329 target = request;
b962442e 4330 }
f69061be 4331 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4332 if (target)
4333 i915_gem_request_reference(target);
1c25595f 4334 spin_unlock(&file_priv->mm.lock);
40a5f0de 4335
54fb2411 4336 if (target == NULL)
f787a5f5 4337 return 0;
2bc43b5c 4338
9c654818 4339 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
f787a5f5
CW
4340 if (ret == 0)
4341 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4342
41037f9f 4343 i915_gem_request_unreference__unlocked(target);
ff865885 4344
40a5f0de
EA
4345 return ret;
4346}
4347
d23db88c
CW
4348static bool
4349i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4350{
4351 struct drm_i915_gem_object *obj = vma->obj;
4352
4353 if (alignment &&
4354 vma->node.start & (alignment - 1))
4355 return true;
4356
4357 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4358 return true;
4359
4360 if (flags & PIN_OFFSET_BIAS &&
4361 vma->node.start < (flags & PIN_OFFSET_MASK))
4362 return true;
4363
4364 return false;
4365}
4366
ec7adb6e
JL
4367static int
4368i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4369 struct i915_address_space *vm,
4370 const struct i915_ggtt_view *ggtt_view,
4371 uint32_t alignment,
4372 uint64_t flags)
673a394b 4373{
6e7186af 4374 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4375 struct i915_vma *vma;
ef79e17c 4376 unsigned bound;
673a394b
EA
4377 int ret;
4378
6e7186af
BW
4379 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4380 return -ENODEV;
4381
bf3d149b 4382 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4383 return -EINVAL;
07fe0b12 4384
c826c449
CW
4385 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4386 return -EINVAL;
4387
ec7adb6e
JL
4388 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4389 return -EINVAL;
4390
4391 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4392 i915_gem_obj_to_vma(obj, vm);
4393
4394 if (IS_ERR(vma))
4395 return PTR_ERR(vma);
4396
07fe0b12 4397 if (vma) {
d7f46fc4
BW
4398 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4399 return -EBUSY;
4400
d23db88c 4401 if (i915_vma_misplaced(vma, alignment, flags)) {
ec7adb6e 4402 unsigned long offset;
9abc4648 4403 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
ec7adb6e 4404 i915_gem_obj_offset(obj, vm);
d7f46fc4 4405 WARN(vma->pin_count,
ec7adb6e 4406 "bo is already pinned in %s with incorrect alignment:"
f343c5f6 4407 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4408 " obj->map_and_fenceable=%d\n",
ec7adb6e
JL
4409 ggtt_view ? "ggtt" : "ppgtt",
4410 offset,
fe14d5f4 4411 alignment,
d23db88c 4412 !!(flags & PIN_MAPPABLE),
05394f39 4413 obj->map_and_fenceable);
07fe0b12 4414 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4415 if (ret)
4416 return ret;
8ea99c92
DV
4417
4418 vma = NULL;
ac0c6b5a
CW
4419 }
4420 }
4421
ef79e17c 4422 bound = vma ? vma->bound : 0;
8ea99c92 4423 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4424 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4425 flags);
262de145
DV
4426 if (IS_ERR(vma))
4427 return PTR_ERR(vma);
0875546c
DV
4428 } else {
4429 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4430 if (ret)
4431 return ret;
4432 }
74898d7e 4433
91e6711e
JL
4434 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4435 (bound ^ vma->bound) & GLOBAL_BIND) {
ef79e17c
CW
4436 bool mappable, fenceable;
4437 u32 fence_size, fence_alignment;
4438
4439 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4440 obj->base.size,
4441 obj->tiling_mode);
4442 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4443 obj->base.size,
4444 obj->tiling_mode,
4445 true);
4446
4447 fenceable = (vma->node.size == fence_size &&
4448 (vma->node.start & (fence_alignment - 1)) == 0);
4449
e8dec1dd 4450 mappable = (vma->node.start + fence_size <=
ef79e17c
CW
4451 dev_priv->gtt.mappable_end);
4452
4453 obj->map_and_fenceable = mappable && fenceable;
ef79e17c 4454
91e6711e
JL
4455 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4456 }
ef79e17c 4457
8ea99c92 4458 vma->pin_count++;
673a394b
EA
4459 return 0;
4460}
4461
ec7adb6e
JL
4462int
4463i915_gem_object_pin(struct drm_i915_gem_object *obj,
4464 struct i915_address_space *vm,
4465 uint32_t alignment,
4466 uint64_t flags)
4467{
4468 return i915_gem_object_do_pin(obj, vm,
4469 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4470 alignment, flags);
4471}
4472
4473int
4474i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4475 const struct i915_ggtt_view *view,
4476 uint32_t alignment,
4477 uint64_t flags)
4478{
4479 if (WARN_ONCE(!view, "no view specified"))
4480 return -EINVAL;
4481
4482 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
6fafab76 4483 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4484}
4485
673a394b 4486void
e6617330
TU
4487i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4488 const struct i915_ggtt_view *view)
673a394b 4489{
e6617330 4490 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4491
d7f46fc4 4492 BUG_ON(!vma);
e6617330 4493 WARN_ON(vma->pin_count == 0);
9abc4648 4494 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4495
30154650 4496 --vma->pin_count;
673a394b
EA
4497}
4498
d8ffa60b
DV
4499bool
4500i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4501{
4502 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4503 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4504 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4505
4506 WARN_ON(!ggtt_vma ||
4507 dev_priv->fence_regs[obj->fence_reg].pin_count >
4508 ggtt_vma->pin_count);
4509 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4510 return true;
4511 } else
4512 return false;
4513}
4514
4515void
4516i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4517{
4518 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4519 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4520 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4521 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4522 }
4523}
4524
673a394b
EA
4525int
4526i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4527 struct drm_file *file)
673a394b
EA
4528{
4529 struct drm_i915_gem_busy *args = data;
05394f39 4530 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4531 int ret;
4532
76c1dec1 4533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4534 if (ret)
76c1dec1 4535 return ret;
673a394b 4536
05394f39 4537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4538 if (&obj->base == NULL) {
1d7cfea1
CW
4539 ret = -ENOENT;
4540 goto unlock;
673a394b 4541 }
d1b851fc 4542
0be555b6
CW
4543 /* Count all active objects as busy, even if they are currently not used
4544 * by the gpu. Users of this interface expect objects to eventually
4545 * become non-busy without any further actions, therefore emit any
4546 * necessary flushes here.
c4de0a5d 4547 */
30dfebf3 4548 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4549 if (ret)
4550 goto unref;
0be555b6 4551
b4716185
CW
4552 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4553 args->busy = obj->active << 16;
4554 if (obj->last_write_req)
4555 args->busy |= obj->last_write_req->ring->id;
673a394b 4556
b4716185 4557unref:
05394f39 4558 drm_gem_object_unreference(&obj->base);
1d7cfea1 4559unlock:
673a394b 4560 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4561 return ret;
673a394b
EA
4562}
4563
4564int
4565i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4566 struct drm_file *file_priv)
4567{
0206e353 4568 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4569}
4570
3ef94daa
CW
4571int
4572i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4573 struct drm_file *file_priv)
4574{
656bfa3a 4575 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4576 struct drm_i915_gem_madvise *args = data;
05394f39 4577 struct drm_i915_gem_object *obj;
76c1dec1 4578 int ret;
3ef94daa
CW
4579
4580 switch (args->madv) {
4581 case I915_MADV_DONTNEED:
4582 case I915_MADV_WILLNEED:
4583 break;
4584 default:
4585 return -EINVAL;
4586 }
4587
1d7cfea1
CW
4588 ret = i915_mutex_lock_interruptible(dev);
4589 if (ret)
4590 return ret;
4591
05394f39 4592 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4593 if (&obj->base == NULL) {
1d7cfea1
CW
4594 ret = -ENOENT;
4595 goto unlock;
3ef94daa 4596 }
3ef94daa 4597
d7f46fc4 4598 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4599 ret = -EINVAL;
4600 goto out;
3ef94daa
CW
4601 }
4602
656bfa3a
DV
4603 if (obj->pages &&
4604 obj->tiling_mode != I915_TILING_NONE &&
4605 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4606 if (obj->madv == I915_MADV_WILLNEED)
4607 i915_gem_object_unpin_pages(obj);
4608 if (args->madv == I915_MADV_WILLNEED)
4609 i915_gem_object_pin_pages(obj);
4610 }
4611
05394f39
CW
4612 if (obj->madv != __I915_MADV_PURGED)
4613 obj->madv = args->madv;
3ef94daa 4614
6c085a72 4615 /* if the object is no longer attached, discard its backing storage */
be6a0376 4616 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4617 i915_gem_object_truncate(obj);
4618
05394f39 4619 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4620
1d7cfea1 4621out:
05394f39 4622 drm_gem_object_unreference(&obj->base);
1d7cfea1 4623unlock:
3ef94daa 4624 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4625 return ret;
3ef94daa
CW
4626}
4627
37e680a1
CW
4628void i915_gem_object_init(struct drm_i915_gem_object *obj,
4629 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4630{
b4716185
CW
4631 int i;
4632
35c20a60 4633 INIT_LIST_HEAD(&obj->global_list);
b4716185
CW
4634 for (i = 0; i < I915_NUM_RINGS; i++)
4635 INIT_LIST_HEAD(&obj->ring_list[i]);
b25cb2f8 4636 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4637 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4638 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4639
37e680a1
CW
4640 obj->ops = ops;
4641
0327d6ba
CW
4642 obj->fence_reg = I915_FENCE_REG_NONE;
4643 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4644
4645 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4646}
4647
37e680a1
CW
4648static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4649 .get_pages = i915_gem_object_get_pages_gtt,
4650 .put_pages = i915_gem_object_put_pages_gtt,
4651};
4652
05394f39
CW
4653struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4654 size_t size)
ac52bc56 4655{
c397b908 4656 struct drm_i915_gem_object *obj;
5949eac4 4657 struct address_space *mapping;
1a240d4d 4658 gfp_t mask;
ac52bc56 4659
42dcedd4 4660 obj = i915_gem_object_alloc(dev);
c397b908
DV
4661 if (obj == NULL)
4662 return NULL;
673a394b 4663
c397b908 4664 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4665 i915_gem_object_free(obj);
c397b908
DV
4666 return NULL;
4667 }
673a394b 4668
bed1ea95
CW
4669 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4670 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4671 /* 965gm cannot relocate objects above 4GiB. */
4672 mask &= ~__GFP_HIGHMEM;
4673 mask |= __GFP_DMA32;
4674 }
4675
496ad9aa 4676 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4677 mapping_set_gfp_mask(mapping, mask);
5949eac4 4678
37e680a1 4679 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4680
c397b908
DV
4681 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4682 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4683
3d29b842
ED
4684 if (HAS_LLC(dev)) {
4685 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4686 * cache) for about a 10% performance improvement
4687 * compared to uncached. Graphics requests other than
4688 * display scanout are coherent with the CPU in
4689 * accessing this cache. This means in this mode we
4690 * don't need to clflush on the CPU side, and on the
4691 * GPU side we only need to flush internal caches to
4692 * get data visible to the CPU.
4693 *
4694 * However, we maintain the display planes as UC, and so
4695 * need to rebind when first used as such.
4696 */
4697 obj->cache_level = I915_CACHE_LLC;
4698 } else
4699 obj->cache_level = I915_CACHE_NONE;
4700
d861e338
DV
4701 trace_i915_gem_object_create(obj);
4702
05394f39 4703 return obj;
c397b908
DV
4704}
4705
340fbd8c
CW
4706static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4707{
4708 /* If we are the last user of the backing storage (be it shmemfs
4709 * pages or stolen etc), we know that the pages are going to be
4710 * immediately released. In this case, we can then skip copying
4711 * back the contents from the GPU.
4712 */
4713
4714 if (obj->madv != I915_MADV_WILLNEED)
4715 return false;
4716
4717 if (obj->base.filp == NULL)
4718 return true;
4719
4720 /* At first glance, this looks racy, but then again so would be
4721 * userspace racing mmap against close. However, the first external
4722 * reference to the filp can only be obtained through the
4723 * i915_gem_mmap_ioctl() which safeguards us against the user
4724 * acquiring such a reference whilst we are in the middle of
4725 * freeing the object.
4726 */
4727 return atomic_long_read(&obj->base.filp->f_count) == 1;
4728}
4729
1488fc08 4730void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4731{
1488fc08 4732 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4733 struct drm_device *dev = obj->base.dev;
3e31c6c0 4734 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4735 struct i915_vma *vma, *next;
673a394b 4736
f65c9168
PZ
4737 intel_runtime_pm_get(dev_priv);
4738
26e12f89
CW
4739 trace_i915_gem_object_destroy(obj);
4740
07fe0b12 4741 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4742 int ret;
4743
4744 vma->pin_count = 0;
4745 ret = i915_vma_unbind(vma);
07fe0b12
BW
4746 if (WARN_ON(ret == -ERESTARTSYS)) {
4747 bool was_interruptible;
1488fc08 4748
07fe0b12
BW
4749 was_interruptible = dev_priv->mm.interruptible;
4750 dev_priv->mm.interruptible = false;
1488fc08 4751
07fe0b12 4752 WARN_ON(i915_vma_unbind(vma));
1488fc08 4753
07fe0b12
BW
4754 dev_priv->mm.interruptible = was_interruptible;
4755 }
1488fc08
CW
4756 }
4757
1d64ae71
BW
4758 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4759 * before progressing. */
4760 if (obj->stolen)
4761 i915_gem_object_unpin_pages(obj);
4762
a071fa00
DV
4763 WARN_ON(obj->frontbuffer_bits);
4764
656bfa3a
DV
4765 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4766 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4767 obj->tiling_mode != I915_TILING_NONE)
4768 i915_gem_object_unpin_pages(obj);
4769
401c29f6
BW
4770 if (WARN_ON(obj->pages_pin_count))
4771 obj->pages_pin_count = 0;
340fbd8c 4772 if (discard_backing_storage(obj))
5537252b 4773 obj->madv = I915_MADV_DONTNEED;
37e680a1 4774 i915_gem_object_put_pages(obj);
d8cb5086 4775 i915_gem_object_free_mmap_offset(obj);
de151cf6 4776
9da3da66
CW
4777 BUG_ON(obj->pages);
4778
2f745ad3
CW
4779 if (obj->base.import_attach)
4780 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4781
5cc9ed4b
CW
4782 if (obj->ops->release)
4783 obj->ops->release(obj);
4784
05394f39
CW
4785 drm_gem_object_release(&obj->base);
4786 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4787
05394f39 4788 kfree(obj->bit_17);
42dcedd4 4789 i915_gem_object_free(obj);
f65c9168
PZ
4790
4791 intel_runtime_pm_put(dev_priv);
673a394b
EA
4792}
4793
ec7adb6e
JL
4794struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4795 struct i915_address_space *vm)
e656a6cb
DV
4796{
4797 struct i915_vma *vma;
ec7adb6e
JL
4798 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4799 if (i915_is_ggtt(vma->vm) &&
4800 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4801 continue;
4802 if (vma->vm == vm)
e656a6cb 4803 return vma;
ec7adb6e
JL
4804 }
4805 return NULL;
4806}
4807
4808struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4809 const struct i915_ggtt_view *view)
4810{
4811 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4812 struct i915_vma *vma;
e656a6cb 4813
ec7adb6e
JL
4814 if (WARN_ONCE(!view, "no view specified"))
4815 return ERR_PTR(-EINVAL);
4816
4817 list_for_each_entry(vma, &obj->vma_list, vma_link)
9abc4648
JL
4818 if (vma->vm == ggtt &&
4819 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4820 return vma;
e656a6cb
DV
4821 return NULL;
4822}
4823
2f633156
BW
4824void i915_gem_vma_destroy(struct i915_vma *vma)
4825{
b9d06dd9 4826 struct i915_address_space *vm = NULL;
2f633156 4827 WARN_ON(vma->node.allocated);
aaa05667
CW
4828
4829 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4830 if (!list_empty(&vma->exec_list))
4831 return;
4832
b9d06dd9 4833 vm = vma->vm;
b9d06dd9 4834
841cd773
DV
4835 if (!i915_is_ggtt(vm))
4836 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4837
8b9c2b94 4838 list_del(&vma->vma_link);
b93dab6e 4839
e20d2ab7 4840 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4841}
4842
e3efda49
CW
4843static void
4844i915_gem_stop_ringbuffers(struct drm_device *dev)
4845{
4846 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4847 struct intel_engine_cs *ring;
e3efda49
CW
4848 int i;
4849
4850 for_each_ring(ring, dev_priv, i)
a83014d3 4851 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4852}
4853
29105ccc 4854int
45c5f202 4855i915_gem_suspend(struct drm_device *dev)
29105ccc 4856{
3e31c6c0 4857 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4858 int ret = 0;
28dfe52a 4859
45c5f202 4860 mutex_lock(&dev->struct_mutex);
b2da9fe5 4861 ret = i915_gpu_idle(dev);
f7403347 4862 if (ret)
45c5f202 4863 goto err;
f7403347 4864
b2da9fe5 4865 i915_gem_retire_requests(dev);
673a394b 4866
e3efda49 4867 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4868 mutex_unlock(&dev->struct_mutex);
4869
737b1506 4870 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4871 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4872 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4873
bdcf120b
CW
4874 /* Assert that we sucessfully flushed all the work and
4875 * reset the GPU back to its idle, low power state.
4876 */
4877 WARN_ON(dev_priv->mm.busy);
4878
673a394b 4879 return 0;
45c5f202
CW
4880
4881err:
4882 mutex_unlock(&dev->struct_mutex);
4883 return ret;
673a394b
EA
4884}
4885
6909a666 4886int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
b9524a1e 4887{
6909a666 4888 struct intel_engine_cs *ring = req->ring;
c3787e2e 4889 struct drm_device *dev = ring->dev;
3e31c6c0 4890 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4891 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4892 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4893 int i, ret;
b9524a1e 4894
040d2baa 4895 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4896 return 0;
b9524a1e 4897
5fb9de1a 4898 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
c3787e2e
BW
4899 if (ret)
4900 return ret;
b9524a1e 4901
c3787e2e
BW
4902 /*
4903 * Note: We do not worry about the concurrent register cacheline hang
4904 * here because no other code should access these registers other than
4905 * at initialization time.
4906 */
b9524a1e 4907 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4908 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4909 intel_ring_emit(ring, reg_base + i);
4910 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4911 }
4912
c3787e2e 4913 intel_ring_advance(ring);
b9524a1e 4914
c3787e2e 4915 return ret;
b9524a1e
BW
4916}
4917
f691e2f4
DV
4918void i915_gem_init_swizzling(struct drm_device *dev)
4919{
3e31c6c0 4920 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4921
11782b02 4922 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4923 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4924 return;
4925
4926 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4927 DISP_TILE_SURFACE_SWIZZLING);
4928
11782b02
DV
4929 if (IS_GEN5(dev))
4930 return;
4931
f691e2f4
DV
4932 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4933 if (IS_GEN6(dev))
6b26c86d 4934 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4935 else if (IS_GEN7(dev))
6b26c86d 4936 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4937 else if (IS_GEN8(dev))
4938 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4939 else
4940 BUG();
f691e2f4 4941}
e21af88d 4942
67b1b571
CW
4943static bool
4944intel_enable_blt(struct drm_device *dev)
4945{
4946 if (!HAS_BLT(dev))
4947 return false;
4948
4949 /* The blitter was dysfunctional on early prototypes */
4950 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4951 DRM_INFO("BLT not supported on this pre-production hardware;"
4952 " graphics performance will be degraded.\n");
4953 return false;
4954 }
4955
4956 return true;
4957}
4958
81e7f200
VS
4959static void init_unused_ring(struct drm_device *dev, u32 base)
4960{
4961 struct drm_i915_private *dev_priv = dev->dev_private;
4962
4963 I915_WRITE(RING_CTL(base), 0);
4964 I915_WRITE(RING_HEAD(base), 0);
4965 I915_WRITE(RING_TAIL(base), 0);
4966 I915_WRITE(RING_START(base), 0);
4967}
4968
4969static void init_unused_rings(struct drm_device *dev)
4970{
4971 if (IS_I830(dev)) {
4972 init_unused_ring(dev, PRB1_BASE);
4973 init_unused_ring(dev, SRB0_BASE);
4974 init_unused_ring(dev, SRB1_BASE);
4975 init_unused_ring(dev, SRB2_BASE);
4976 init_unused_ring(dev, SRB3_BASE);
4977 } else if (IS_GEN2(dev)) {
4978 init_unused_ring(dev, SRB0_BASE);
4979 init_unused_ring(dev, SRB1_BASE);
4980 } else if (IS_GEN3(dev)) {
4981 init_unused_ring(dev, PRB1_BASE);
4982 init_unused_ring(dev, PRB2_BASE);
4983 }
4984}
4985
a83014d3 4986int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4987{
4fc7c971 4988 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4989 int ret;
68f95ba9 4990
5c1143bb 4991 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4992 if (ret)
b6913e4b 4993 return ret;
68f95ba9
CW
4994
4995 if (HAS_BSD(dev)) {
5c1143bb 4996 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4997 if (ret)
4998 goto cleanup_render_ring;
d1b851fc 4999 }
68f95ba9 5000
67b1b571 5001 if (intel_enable_blt(dev)) {
549f7365
CW
5002 ret = intel_init_blt_ring_buffer(dev);
5003 if (ret)
5004 goto cleanup_bsd_ring;
5005 }
5006
9a8a2213
BW
5007 if (HAS_VEBOX(dev)) {
5008 ret = intel_init_vebox_ring_buffer(dev);
5009 if (ret)
5010 goto cleanup_blt_ring;
5011 }
5012
845f74a7
ZY
5013 if (HAS_BSD2(dev)) {
5014 ret = intel_init_bsd2_ring_buffer(dev);
5015 if (ret)
5016 goto cleanup_vebox_ring;
5017 }
9a8a2213 5018
99433931 5019 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 5020 if (ret)
845f74a7 5021 goto cleanup_bsd2_ring;
4fc7c971
BW
5022
5023 return 0;
5024
845f74a7
ZY
5025cleanup_bsd2_ring:
5026 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
5027cleanup_vebox_ring:
5028 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
5029cleanup_blt_ring:
5030 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5031cleanup_bsd_ring:
5032 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5033cleanup_render_ring:
5034 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5035
5036 return ret;
5037}
5038
5039int
5040i915_gem_init_hw(struct drm_device *dev)
5041{
3e31c6c0 5042 struct drm_i915_private *dev_priv = dev->dev_private;
35a57ffb 5043 struct intel_engine_cs *ring;
4ad2fd88 5044 int ret, i, j;
4fc7c971
BW
5045
5046 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5047 return -EIO;
5048
5e4f5189
CW
5049 /* Double layer security blanket, see i915_gem_init() */
5050 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5051
59124506 5052 if (dev_priv->ellc_size)
05e21cc4 5053 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 5054
0bf21347
VS
5055 if (IS_HASWELL(dev))
5056 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5057 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 5058
88a2b2a3 5059 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
5060 if (IS_IVYBRIDGE(dev)) {
5061 u32 temp = I915_READ(GEN7_MSG_CTL);
5062 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5063 I915_WRITE(GEN7_MSG_CTL, temp);
5064 } else if (INTEL_INFO(dev)->gen >= 7) {
5065 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5066 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5067 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5068 }
88a2b2a3
BW
5069 }
5070
4fc7c971
BW
5071 i915_gem_init_swizzling(dev);
5072
d5abdfda
DV
5073 /*
5074 * At least 830 can leave some of the unused rings
5075 * "active" (ie. head != tail) after resume which
5076 * will prevent c3 entry. Makes sure all unused rings
5077 * are totally idle.
5078 */
5079 init_unused_rings(dev);
5080
90638cc1
JH
5081 BUG_ON(!dev_priv->ring[RCS].default_context);
5082
4ad2fd88
JH
5083 ret = i915_ppgtt_init_hw(dev);
5084 if (ret) {
5085 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5086 goto out;
5087 }
5088
5089 /* Need to do basic initialisation of all rings first: */
35a57ffb
DV
5090 for_each_ring(ring, dev_priv, i) {
5091 ret = ring->init_hw(ring);
5092 if (ret)
5e4f5189 5093 goto out;
35a57ffb 5094 }
99433931 5095
4ad2fd88
JH
5096 /* Now it is safe to go back round and do everything else: */
5097 for_each_ring(ring, dev_priv, i) {
dc4be607
JH
5098 struct drm_i915_gem_request *req;
5099
90638cc1
JH
5100 WARN_ON(!ring->default_context);
5101
dc4be607
JH
5102 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5103 if (ret) {
5104 i915_gem_cleanup_ringbuffer(dev);
5105 goto out;
5106 }
5107
4ad2fd88
JH
5108 if (ring->id == RCS) {
5109 for (j = 0; j < NUM_L3_SLICES(dev); j++)
6909a666 5110 i915_gem_l3_remap(req, j);
4ad2fd88 5111 }
c3787e2e 5112
b3dd6b96 5113 ret = i915_ppgtt_init_ring(req);
4ad2fd88
JH
5114 if (ret && ret != -EIO) {
5115 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
dc4be607 5116 i915_gem_request_cancel(req);
4ad2fd88
JH
5117 i915_gem_cleanup_ringbuffer(dev);
5118 goto out;
5119 }
82460d97 5120
b3dd6b96 5121 ret = i915_gem_context_enable(req);
90638cc1
JH
5122 if (ret && ret != -EIO) {
5123 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
dc4be607 5124 i915_gem_request_cancel(req);
90638cc1
JH
5125 i915_gem_cleanup_ringbuffer(dev);
5126 goto out;
5127 }
dc4be607 5128
75289874 5129 i915_add_request_no_flush(req);
b7c36d25 5130 }
e21af88d 5131
5e4f5189
CW
5132out:
5133 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 5134 return ret;
8187a2b7
ZN
5135}
5136
1070a42b
CW
5137int i915_gem_init(struct drm_device *dev)
5138{
5139 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
5140 int ret;
5141
127f1003
OM
5142 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5143 i915.enable_execlists);
5144
1070a42b 5145 mutex_lock(&dev->struct_mutex);
d62b4892
JB
5146
5147 if (IS_VALLEYVIEW(dev)) {
5148 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
5149 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5150 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5151 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
5152 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5153 }
5154
a83014d3 5155 if (!i915.enable_execlists) {
f3dc74c0 5156 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
a83014d3
OM
5157 dev_priv->gt.init_rings = i915_gem_init_rings;
5158 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5159 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd 5160 } else {
f3dc74c0 5161 dev_priv->gt.execbuf_submit = intel_execlists_submission;
454afebd
OM
5162 dev_priv->gt.init_rings = intel_logical_rings_init;
5163 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5164 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
5165 }
5166
5e4f5189
CW
5167 /* This is just a security blanket to placate dragons.
5168 * On some systems, we very sporadically observe that the first TLBs
5169 * used by the CS may be stale, despite us poking the TLB reset. If
5170 * we hold the forcewake during initialisation these problems
5171 * just magically go away.
5172 */
5173 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5174
6c5566a8 5175 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
5176 if (ret)
5177 goto out_unlock;
6c5566a8 5178
d7e5008f 5179 i915_gem_init_global_gtt(dev);
d62b4892 5180
2fa48d8d 5181 ret = i915_gem_context_init(dev);
7bcc3777
JN
5182 if (ret)
5183 goto out_unlock;
2fa48d8d 5184
35a57ffb
DV
5185 ret = dev_priv->gt.init_rings(dev);
5186 if (ret)
7bcc3777 5187 goto out_unlock;
2fa48d8d 5188
1070a42b 5189 ret = i915_gem_init_hw(dev);
60990320
CW
5190 if (ret == -EIO) {
5191 /* Allow ring initialisation to fail by marking the GPU as
5192 * wedged. But we only want to do this where the GPU is angry,
5193 * for all other failure, such as an allocation failure, bail.
5194 */
5195 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5196 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5197 ret = 0;
1070a42b 5198 }
7bcc3777
JN
5199
5200out_unlock:
5e4f5189 5201 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 5202 mutex_unlock(&dev->struct_mutex);
1070a42b 5203
60990320 5204 return ret;
1070a42b
CW
5205}
5206
8187a2b7
ZN
5207void
5208i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5209{
3e31c6c0 5210 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 5211 struct intel_engine_cs *ring;
1ec14ad3 5212 int i;
8187a2b7 5213
b4519513 5214 for_each_ring(ring, dev_priv, i)
a83014d3 5215 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
5216}
5217
64193406 5218static void
a4872ba6 5219init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
5220{
5221 INIT_LIST_HEAD(&ring->active_list);
5222 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
5223}
5224
7e0d96bc
BW
5225void i915_init_vm(struct drm_i915_private *dev_priv,
5226 struct i915_address_space *vm)
fc8c067e 5227{
7e0d96bc
BW
5228 if (!i915_is_ggtt(vm))
5229 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
5230 vm->dev = dev_priv->dev;
5231 INIT_LIST_HEAD(&vm->active_list);
5232 INIT_LIST_HEAD(&vm->inactive_list);
5233 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 5234 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
5235}
5236
673a394b
EA
5237void
5238i915_gem_load(struct drm_device *dev)
5239{
3e31c6c0 5240 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5241 int i;
5242
efab6d8d 5243 dev_priv->objects =
42dcedd4
CW
5244 kmem_cache_create("i915_gem_object",
5245 sizeof(struct drm_i915_gem_object), 0,
5246 SLAB_HWCACHE_ALIGN,
5247 NULL);
e20d2ab7
CW
5248 dev_priv->vmas =
5249 kmem_cache_create("i915_gem_vma",
5250 sizeof(struct i915_vma), 0,
5251 SLAB_HWCACHE_ALIGN,
5252 NULL);
efab6d8d
CW
5253 dev_priv->requests =
5254 kmem_cache_create("i915_gem_request",
5255 sizeof(struct drm_i915_gem_request), 0,
5256 SLAB_HWCACHE_ALIGN,
5257 NULL);
673a394b 5258
fc8c067e
BW
5259 INIT_LIST_HEAD(&dev_priv->vm_list);
5260 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5261
a33afea5 5262 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5263 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5264 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5265 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
5266 for (i = 0; i < I915_NUM_RINGS; i++)
5267 init_ring_lists(&dev_priv->ring[i]);
4b9de737 5268 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5269 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5270 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5271 i915_gem_retire_work_handler);
b29c19b6
CW
5272 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5273 i915_gem_idle_work_handler);
1f83fee0 5274 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5275
72bfa19c
CW
5276 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5277
42b5aeab
VS
5278 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5279 dev_priv->num_fence_regs = 32;
5280 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
5281 dev_priv->num_fence_regs = 16;
5282 else
5283 dev_priv->num_fence_regs = 8;
5284
eb82289a
YZ
5285 if (intel_vgpu_active(dev))
5286 dev_priv->num_fence_regs =
5287 I915_READ(vgtif_reg(avail_rs.fence_num));
5288
b5aa8a0f 5289 /* Initialize fence registers to zero */
19b2dbde
CW
5290 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5291 i915_gem_restore_fences(dev);
10ed13e4 5292
673a394b 5293 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 5294 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5295
ce453d81
CW
5296 dev_priv->mm.interruptible = true;
5297
be6a0376 5298 i915_gem_shrinker_init(dev_priv);
f99d7069
DV
5299
5300 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5301}
71acb5eb 5302
f787a5f5 5303void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5304{
f787a5f5 5305 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5306
5307 /* Clean up our request list when the client is going away, so that
5308 * later retire_requests won't dereference our soon-to-be-gone
5309 * file_priv.
5310 */
1c25595f 5311 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5312 while (!list_empty(&file_priv->mm.request_list)) {
5313 struct drm_i915_gem_request *request;
5314
5315 request = list_first_entry(&file_priv->mm.request_list,
5316 struct drm_i915_gem_request,
5317 client_list);
5318 list_del(&request->client_list);
5319 request->file_priv = NULL;
5320 }
1c25595f 5321 spin_unlock(&file_priv->mm.lock);
b29c19b6 5322
2e1b8730 5323 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5324 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5325 list_del(&file_priv->rps.link);
8d3afd7d 5326 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5327 }
b29c19b6
CW
5328}
5329
5330int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5331{
5332 struct drm_i915_file_private *file_priv;
e422b888 5333 int ret;
b29c19b6
CW
5334
5335 DRM_DEBUG_DRIVER("\n");
5336
5337 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5338 if (!file_priv)
5339 return -ENOMEM;
5340
5341 file->driver_priv = file_priv;
5342 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5343 file_priv->file = file;
2e1b8730 5344 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5345
5346 spin_lock_init(&file_priv->mm.lock);
5347 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5348
e422b888
BW
5349 ret = i915_gem_context_open(dev, file);
5350 if (ret)
5351 kfree(file_priv);
b29c19b6 5352
e422b888 5353 return ret;
b29c19b6
CW
5354}
5355
b680c37a
DV
5356/**
5357 * i915_gem_track_fb - update frontbuffer tracking
5358 * old: current GEM buffer for the frontbuffer slots
5359 * new: new GEM buffer for the frontbuffer slots
5360 * frontbuffer_bits: bitmask of frontbuffer slots
5361 *
5362 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5363 * from @old and setting them in @new. Both @old and @new can be NULL.
5364 */
a071fa00
DV
5365void i915_gem_track_fb(struct drm_i915_gem_object *old,
5366 struct drm_i915_gem_object *new,
5367 unsigned frontbuffer_bits)
5368{
5369 if (old) {
5370 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5371 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5372 old->frontbuffer_bits &= ~frontbuffer_bits;
5373 }
5374
5375 if (new) {
5376 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5377 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5378 new->frontbuffer_bits |= frontbuffer_bits;
5379 }
5380}
5381
a70a3148 5382/* All the new VM stuff */
ec7adb6e
JL
5383unsigned long
5384i915_gem_obj_offset(struct drm_i915_gem_object *o,
5385 struct i915_address_space *vm)
a70a3148
BW
5386{
5387 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5388 struct i915_vma *vma;
5389
896ab1a5 5390 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5391
a70a3148 5392 list_for_each_entry(vma, &o->vma_list, vma_link) {
ec7adb6e
JL
5393 if (i915_is_ggtt(vma->vm) &&
5394 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5395 continue;
5396 if (vma->vm == vm)
a70a3148 5397 return vma->node.start;
a70a3148 5398 }
ec7adb6e 5399
f25748ea
DV
5400 WARN(1, "%s vma for this object not found.\n",
5401 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5402 return -1;
5403}
5404
ec7adb6e
JL
5405unsigned long
5406i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
9abc4648 5407 const struct i915_ggtt_view *view)
a70a3148 5408{
ec7adb6e 5409 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
a70a3148
BW
5410 struct i915_vma *vma;
5411
5412 list_for_each_entry(vma, &o->vma_list, vma_link)
9abc4648
JL
5413 if (vma->vm == ggtt &&
5414 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5415 return vma->node.start;
5416
5678ad73 5417 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5418 return -1;
5419}
5420
5421bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5422 struct i915_address_space *vm)
5423{
5424 struct i915_vma *vma;
5425
5426 list_for_each_entry(vma, &o->vma_list, vma_link) {
5427 if (i915_is_ggtt(vma->vm) &&
5428 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5429 continue;
5430 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5431 return true;
5432 }
5433
5434 return false;
5435}
5436
5437bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5438 const struct i915_ggtt_view *view)
ec7adb6e
JL
5439{
5440 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5441 struct i915_vma *vma;
5442
5443 list_for_each_entry(vma, &o->vma_list, vma_link)
5444 if (vma->vm == ggtt &&
9abc4648 5445 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5446 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5447 return true;
5448
5449 return false;
5450}
5451
5452bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5453{
5a1d5eb0 5454 struct i915_vma *vma;
a70a3148 5455
5a1d5eb0
CW
5456 list_for_each_entry(vma, &o->vma_list, vma_link)
5457 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5458 return true;
5459
5460 return false;
5461}
5462
5463unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5464 struct i915_address_space *vm)
5465{
5466 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5467 struct i915_vma *vma;
5468
896ab1a5 5469 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5470
5471 BUG_ON(list_empty(&o->vma_list));
5472
ec7adb6e
JL
5473 list_for_each_entry(vma, &o->vma_list, vma_link) {
5474 if (i915_is_ggtt(vma->vm) &&
5475 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5476 continue;
a70a3148
BW
5477 if (vma->vm == vm)
5478 return vma->node.size;
ec7adb6e 5479 }
a70a3148
BW
5480 return 0;
5481}
5482
ec7adb6e 5483bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5484{
5485 struct i915_vma *vma;
a6631ae1 5486 list_for_each_entry(vma, &obj->vma_list, vma_link)
ec7adb6e
JL
5487 if (vma->pin_count > 0)
5488 return true;
a6631ae1 5489
ec7adb6e 5490 return false;
5c2abbea 5491}
ec7adb6e 5492
This page took 1.268977 seconds and 5 git commands to generate.