drm/i915: Include bound and active pages in the count of shrinkable objects
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12 43static __must_check int
23f54483
BW
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
c8725f3d
CW
46static void
47i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
05394f39
CW
49static int i915_gem_phys_pwrite(struct drm_device *dev,
50 struct drm_i915_gem_object *obj,
71acb5eb 51 struct drm_i915_gem_pwrite *args,
05394f39 52 struct drm_file *file);
673a394b 53
61050808
CW
54static void i915_gem_write_fence(struct drm_device *dev, int reg,
55 struct drm_i915_gem_object *obj);
56static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57 struct drm_i915_fence_reg *fence,
58 bool enable);
59
ceabbba5 60static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 61 struct shrink_control *sc);
ceabbba5 62static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 63 struct shrink_control *sc);
d9973b43
CW
64static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
65static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 66static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 67
c76ce038
CW
68static bool cpu_cache_is_coherent(struct drm_device *dev,
69 enum i915_cache_level level)
70{
71 return HAS_LLC(dev) || level != I915_CACHE_NONE;
72}
73
2c22569b
CW
74static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
75{
76 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
77 return true;
78
79 return obj->pin_display;
80}
81
61050808
CW
82static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83{
84 if (obj->tiling_mode)
85 i915_gem_release_mmap(obj);
86
87 /* As we do not have an associated fence register, we will force
88 * a tiling change if we ever need to acquire one.
89 */
5d82e3e6 90 obj->fence_dirty = false;
61050808
CW
91 obj->fence_reg = I915_FENCE_REG_NONE;
92}
93
73aa808f
CW
94/* some bookkeeping */
95static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 size_t size)
97{
c20e8355 98 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99 dev_priv->mm.object_count++;
100 dev_priv->mm.object_memory += size;
c20e8355 101 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102}
103
104static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
105 size_t size)
106{
c20e8355 107 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108 dev_priv->mm.object_count--;
109 dev_priv->mm.object_memory -= size;
c20e8355 110 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111}
112
21dd3734 113static int
33196ded 114i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 115{
30dbf0c0
CW
116 int ret;
117
7abb690a
DV
118#define EXIT_COND (!i915_reset_in_progress(error) || \
119 i915_terminally_wedged(error))
1f83fee0 120 if (EXIT_COND)
30dbf0c0
CW
121 return 0;
122
0a6759c6
DV
123 /*
124 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
125 * userspace. If it takes that long something really bad is going on and
126 * we should simply try to bail out and fail as gracefully as possible.
127 */
1f83fee0
DV
128 ret = wait_event_interruptible_timeout(error->reset_queue,
129 EXIT_COND,
130 10*HZ);
0a6759c6
DV
131 if (ret == 0) {
132 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
133 return -EIO;
134 } else if (ret < 0) {
30dbf0c0 135 return ret;
0a6759c6 136 }
1f83fee0 137#undef EXIT_COND
30dbf0c0 138
21dd3734 139 return 0;
30dbf0c0
CW
140}
141
54cf91dc 142int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 143{
33196ded 144 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
145 int ret;
146
33196ded 147 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
148 if (ret)
149 return ret;
150
151 ret = mutex_lock_interruptible(&dev->struct_mutex);
152 if (ret)
153 return ret;
154
23bc5982 155 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
156 return 0;
157}
30dbf0c0 158
7d1c4804 159static inline bool
05394f39 160i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 161{
9843877d 162 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
163}
164
79e53945
JB
165int
166i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 167 struct drm_file *file)
79e53945 168{
93d18799 169 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 170 struct drm_i915_gem_init *args = data;
2021746e 171
7bb6fb8d
DV
172 if (drm_core_check_feature(dev, DRIVER_MODESET))
173 return -ENODEV;
174
2021746e
CW
175 if (args->gtt_start >= args->gtt_end ||
176 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
177 return -EINVAL;
79e53945 178
f534bc0b
DV
179 /* GEM with user mode setting was never supported on ilk and later. */
180 if (INTEL_INFO(dev)->gen >= 5)
181 return -ENODEV;
182
79e53945 183 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
184 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
185 args->gtt_end);
93d18799 186 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
187 mutex_unlock(&dev->struct_mutex);
188
2021746e 189 return 0;
673a394b
EA
190}
191
5a125c3c
EA
192int
193i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 194 struct drm_file *file)
5a125c3c 195{
73aa808f 196 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 197 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
198 struct drm_i915_gem_object *obj;
199 size_t pinned;
5a125c3c 200
6299f992 201 pinned = 0;
73aa808f 202 mutex_lock(&dev->struct_mutex);
35c20a60 203 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 204 if (i915_gem_obj_is_pinned(obj))
f343c5f6 205 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 206 mutex_unlock(&dev->struct_mutex);
5a125c3c 207
853ba5d2 208 args->aper_size = dev_priv->gtt.base.total;
0206e353 209 args->aper_available_size = args->aper_size - pinned;
6299f992 210
5a125c3c
EA
211 return 0;
212}
213
42dcedd4
CW
214void *i915_gem_object_alloc(struct drm_device *dev)
215{
216 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 217 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
218}
219
220void i915_gem_object_free(struct drm_i915_gem_object *obj)
221{
222 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
223 kmem_cache_free(dev_priv->slab, obj);
224}
225
ff72145b
DA
226static int
227i915_gem_create(struct drm_file *file,
228 struct drm_device *dev,
229 uint64_t size,
230 uint32_t *handle_p)
673a394b 231{
05394f39 232 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
233 int ret;
234 u32 handle;
673a394b 235
ff72145b 236 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
237 if (size == 0)
238 return -EINVAL;
673a394b
EA
239
240 /* Allocate the new object */
ff72145b 241 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
242 if (obj == NULL)
243 return -ENOMEM;
244
05394f39 245 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 246 /* drop reference from allocate - handle holds it now */
d861e338
DV
247 drm_gem_object_unreference_unlocked(&obj->base);
248 if (ret)
249 return ret;
202f2fef 250
ff72145b 251 *handle_p = handle;
673a394b
EA
252 return 0;
253}
254
ff72145b
DA
255int
256i915_gem_dumb_create(struct drm_file *file,
257 struct drm_device *dev,
258 struct drm_mode_create_dumb *args)
259{
260 /* have to work out size/pitch and return them */
de45eaf7 261 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
262 args->size = args->pitch * args->height;
263 return i915_gem_create(file, dev,
264 args->size, &args->handle);
265}
266
ff72145b
DA
267/**
268 * Creates a new mm object and returns a handle to it.
269 */
270int
271i915_gem_create_ioctl(struct drm_device *dev, void *data,
272 struct drm_file *file)
273{
274 struct drm_i915_gem_create *args = data;
63ed2cb2 275
ff72145b
DA
276 return i915_gem_create(file, dev,
277 args->size, &args->handle);
278}
279
8461d226
DV
280static inline int
281__copy_to_user_swizzled(char __user *cpu_vaddr,
282 const char *gpu_vaddr, int gpu_offset,
283 int length)
284{
285 int ret, cpu_offset = 0;
286
287 while (length > 0) {
288 int cacheline_end = ALIGN(gpu_offset + 1, 64);
289 int this_length = min(cacheline_end - gpu_offset, length);
290 int swizzled_gpu_offset = gpu_offset ^ 64;
291
292 ret = __copy_to_user(cpu_vaddr + cpu_offset,
293 gpu_vaddr + swizzled_gpu_offset,
294 this_length);
295 if (ret)
296 return ret + length;
297
298 cpu_offset += this_length;
299 gpu_offset += this_length;
300 length -= this_length;
301 }
302
303 return 0;
304}
305
8c59967c 306static inline int
4f0c7cfb
BW
307__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
308 const char __user *cpu_vaddr,
8c59967c
DV
309 int length)
310{
311 int ret, cpu_offset = 0;
312
313 while (length > 0) {
314 int cacheline_end = ALIGN(gpu_offset + 1, 64);
315 int this_length = min(cacheline_end - gpu_offset, length);
316 int swizzled_gpu_offset = gpu_offset ^ 64;
317
318 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
319 cpu_vaddr + cpu_offset,
320 this_length);
321 if (ret)
322 return ret + length;
323
324 cpu_offset += this_length;
325 gpu_offset += this_length;
326 length -= this_length;
327 }
328
329 return 0;
330}
331
4c914c0c
BV
332/*
333 * Pins the specified object's pages and synchronizes the object with
334 * GPU accesses. Sets needs_clflush to non-zero if the caller should
335 * flush the object from the CPU cache.
336 */
337int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
338 int *needs_clflush)
339{
340 int ret;
341
342 *needs_clflush = 0;
343
344 if (!obj->base.filp)
345 return -EINVAL;
346
347 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
348 /* If we're not in the cpu read domain, set ourself into the gtt
349 * read domain and manually flush cachelines (if required). This
350 * optimizes for the case when the gpu will dirty the data
351 * anyway again before the next pread happens. */
352 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
353 obj->cache_level);
354 ret = i915_gem_object_wait_rendering(obj, true);
355 if (ret)
356 return ret;
c8725f3d
CW
357
358 i915_gem_object_retire(obj);
4c914c0c
BV
359 }
360
361 ret = i915_gem_object_get_pages(obj);
362 if (ret)
363 return ret;
364
365 i915_gem_object_pin_pages(obj);
366
367 return ret;
368}
369
d174bd64
DV
370/* Per-page copy function for the shmem pread fastpath.
371 * Flushes invalid cachelines before reading the target if
372 * needs_clflush is set. */
eb01459f 373static int
d174bd64
DV
374shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
375 char __user *user_data,
376 bool page_do_bit17_swizzling, bool needs_clflush)
377{
378 char *vaddr;
379 int ret;
380
e7e58eb5 381 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
382 return -EINVAL;
383
384 vaddr = kmap_atomic(page);
385 if (needs_clflush)
386 drm_clflush_virt_range(vaddr + shmem_page_offset,
387 page_length);
388 ret = __copy_to_user_inatomic(user_data,
389 vaddr + shmem_page_offset,
390 page_length);
391 kunmap_atomic(vaddr);
392
f60d7f0c 393 return ret ? -EFAULT : 0;
d174bd64
DV
394}
395
23c18c71
DV
396static void
397shmem_clflush_swizzled_range(char *addr, unsigned long length,
398 bool swizzled)
399{
e7e58eb5 400 if (unlikely(swizzled)) {
23c18c71
DV
401 unsigned long start = (unsigned long) addr;
402 unsigned long end = (unsigned long) addr + length;
403
404 /* For swizzling simply ensure that we always flush both
405 * channels. Lame, but simple and it works. Swizzled
406 * pwrite/pread is far from a hotpath - current userspace
407 * doesn't use it at all. */
408 start = round_down(start, 128);
409 end = round_up(end, 128);
410
411 drm_clflush_virt_range((void *)start, end - start);
412 } else {
413 drm_clflush_virt_range(addr, length);
414 }
415
416}
417
d174bd64
DV
418/* Only difference to the fast-path function is that this can handle bit17
419 * and uses non-atomic copy and kmap functions. */
420static int
421shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
422 char __user *user_data,
423 bool page_do_bit17_swizzling, bool needs_clflush)
424{
425 char *vaddr;
426 int ret;
427
428 vaddr = kmap(page);
429 if (needs_clflush)
23c18c71
DV
430 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
431 page_length,
432 page_do_bit17_swizzling);
d174bd64
DV
433
434 if (page_do_bit17_swizzling)
435 ret = __copy_to_user_swizzled(user_data,
436 vaddr, shmem_page_offset,
437 page_length);
438 else
439 ret = __copy_to_user(user_data,
440 vaddr + shmem_page_offset,
441 page_length);
442 kunmap(page);
443
f60d7f0c 444 return ret ? - EFAULT : 0;
d174bd64
DV
445}
446
eb01459f 447static int
dbf7bff0
DV
448i915_gem_shmem_pread(struct drm_device *dev,
449 struct drm_i915_gem_object *obj,
450 struct drm_i915_gem_pread *args,
451 struct drm_file *file)
eb01459f 452{
8461d226 453 char __user *user_data;
eb01459f 454 ssize_t remain;
8461d226 455 loff_t offset;
eb2c0c81 456 int shmem_page_offset, page_length, ret = 0;
8461d226 457 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 458 int prefaulted = 0;
8489731c 459 int needs_clflush = 0;
67d5a50c 460 struct sg_page_iter sg_iter;
eb01459f 461
2bb4629a 462 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
463 remain = args->size;
464
8461d226 465 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 466
4c914c0c 467 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
468 if (ret)
469 return ret;
470
8461d226 471 offset = args->offset;
eb01459f 472
67d5a50c
ID
473 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
474 offset >> PAGE_SHIFT) {
2db76d7c 475 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
476
477 if (remain <= 0)
478 break;
479
eb01459f
EA
480 /* Operation in this page
481 *
eb01459f 482 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
483 * page_length = bytes to copy for this page
484 */
c8cbbb8b 485 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
486 page_length = remain;
487 if ((shmem_page_offset + page_length) > PAGE_SIZE)
488 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 489
8461d226
DV
490 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
491 (page_to_phys(page) & (1 << 17)) != 0;
492
d174bd64
DV
493 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
494 user_data, page_do_bit17_swizzling,
495 needs_clflush);
496 if (ret == 0)
497 goto next_page;
dbf7bff0 498
dbf7bff0
DV
499 mutex_unlock(&dev->struct_mutex);
500
d330a953 501 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 502 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
503 /* Userspace is tricking us, but we've already clobbered
504 * its pages with the prefault and promised to write the
505 * data up to the first fault. Hence ignore any errors
506 * and just continue. */
507 (void)ret;
508 prefaulted = 1;
509 }
eb01459f 510
d174bd64
DV
511 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
512 user_data, page_do_bit17_swizzling,
513 needs_clflush);
eb01459f 514
dbf7bff0 515 mutex_lock(&dev->struct_mutex);
f60d7f0c 516
f60d7f0c 517 if (ret)
8461d226 518 goto out;
8461d226 519
17793c9a 520next_page:
eb01459f 521 remain -= page_length;
8461d226 522 user_data += page_length;
eb01459f
EA
523 offset += page_length;
524 }
525
4f27b75d 526out:
f60d7f0c
CW
527 i915_gem_object_unpin_pages(obj);
528
eb01459f
EA
529 return ret;
530}
531
673a394b
EA
532/**
533 * Reads data from the object referenced by handle.
534 *
535 * On error, the contents of *data are undefined.
536 */
537int
538i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 539 struct drm_file *file)
673a394b
EA
540{
541 struct drm_i915_gem_pread *args = data;
05394f39 542 struct drm_i915_gem_object *obj;
35b62a89 543 int ret = 0;
673a394b 544
51311d0a
CW
545 if (args->size == 0)
546 return 0;
547
548 if (!access_ok(VERIFY_WRITE,
2bb4629a 549 to_user_ptr(args->data_ptr),
51311d0a
CW
550 args->size))
551 return -EFAULT;
552
4f27b75d 553 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 554 if (ret)
4f27b75d 555 return ret;
673a394b 556
05394f39 557 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 558 if (&obj->base == NULL) {
1d7cfea1
CW
559 ret = -ENOENT;
560 goto unlock;
4f27b75d 561 }
673a394b 562
7dcd2499 563 /* Bounds check source. */
05394f39
CW
564 if (args->offset > obj->base.size ||
565 args->size > obj->base.size - args->offset) {
ce9d419d 566 ret = -EINVAL;
35b62a89 567 goto out;
ce9d419d
CW
568 }
569
1286ff73
DV
570 /* prime objects have no backing filp to GEM pread/pwrite
571 * pages from.
572 */
573 if (!obj->base.filp) {
574 ret = -EINVAL;
575 goto out;
576 }
577
db53a302
CW
578 trace_i915_gem_object_pread(obj, args->offset, args->size);
579
dbf7bff0 580 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 581
35b62a89 582out:
05394f39 583 drm_gem_object_unreference(&obj->base);
1d7cfea1 584unlock:
4f27b75d 585 mutex_unlock(&dev->struct_mutex);
eb01459f 586 return ret;
673a394b
EA
587}
588
0839ccb8
KP
589/* This is the fast write path which cannot handle
590 * page faults in the source data
9b7530cc 591 */
0839ccb8
KP
592
593static inline int
594fast_user_write(struct io_mapping *mapping,
595 loff_t page_base, int page_offset,
596 char __user *user_data,
597 int length)
9b7530cc 598{
4f0c7cfb
BW
599 void __iomem *vaddr_atomic;
600 void *vaddr;
0839ccb8 601 unsigned long unwritten;
9b7530cc 602
3e4d3af5 603 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
604 /* We can use the cpu mem copy function because this is X86. */
605 vaddr = (void __force*)vaddr_atomic + page_offset;
606 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 607 user_data, length);
3e4d3af5 608 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 609 return unwritten;
0839ccb8
KP
610}
611
3de09aa3
EA
612/**
613 * This is the fast pwrite path, where we copy the data directly from the
614 * user into the GTT, uncached.
615 */
673a394b 616static int
05394f39
CW
617i915_gem_gtt_pwrite_fast(struct drm_device *dev,
618 struct drm_i915_gem_object *obj,
3de09aa3 619 struct drm_i915_gem_pwrite *args,
05394f39 620 struct drm_file *file)
673a394b 621{
3e31c6c0 622 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 623 ssize_t remain;
0839ccb8 624 loff_t offset, page_base;
673a394b 625 char __user *user_data;
935aaa69
DV
626 int page_offset, page_length, ret;
627
1ec9e26d 628 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
629 if (ret)
630 goto out;
631
632 ret = i915_gem_object_set_to_gtt_domain(obj, true);
633 if (ret)
634 goto out_unpin;
635
636 ret = i915_gem_object_put_fence(obj);
637 if (ret)
638 goto out_unpin;
673a394b 639
2bb4629a 640 user_data = to_user_ptr(args->data_ptr);
673a394b 641 remain = args->size;
673a394b 642
f343c5f6 643 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
644
645 while (remain > 0) {
646 /* Operation in this page
647 *
0839ccb8
KP
648 * page_base = page offset within aperture
649 * page_offset = offset within page
650 * page_length = bytes to copy for this page
673a394b 651 */
c8cbbb8b
CW
652 page_base = offset & PAGE_MASK;
653 page_offset = offset_in_page(offset);
0839ccb8
KP
654 page_length = remain;
655 if ((page_offset + remain) > PAGE_SIZE)
656 page_length = PAGE_SIZE - page_offset;
657
0839ccb8 658 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
659 * source page isn't available. Return the error and we'll
660 * retry in the slow path.
0839ccb8 661 */
5d4545ae 662 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
663 page_offset, user_data, page_length)) {
664 ret = -EFAULT;
665 goto out_unpin;
666 }
673a394b 667
0839ccb8
KP
668 remain -= page_length;
669 user_data += page_length;
670 offset += page_length;
673a394b 671 }
673a394b 672
935aaa69 673out_unpin:
d7f46fc4 674 i915_gem_object_ggtt_unpin(obj);
935aaa69 675out:
3de09aa3 676 return ret;
673a394b
EA
677}
678
d174bd64
DV
679/* Per-page copy function for the shmem pwrite fastpath.
680 * Flushes invalid cachelines before writing to the target if
681 * needs_clflush_before is set and flushes out any written cachelines after
682 * writing if needs_clflush is set. */
3043c60c 683static int
d174bd64
DV
684shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
685 char __user *user_data,
686 bool page_do_bit17_swizzling,
687 bool needs_clflush_before,
688 bool needs_clflush_after)
673a394b 689{
d174bd64 690 char *vaddr;
673a394b 691 int ret;
3de09aa3 692
e7e58eb5 693 if (unlikely(page_do_bit17_swizzling))
d174bd64 694 return -EINVAL;
3de09aa3 695
d174bd64
DV
696 vaddr = kmap_atomic(page);
697 if (needs_clflush_before)
698 drm_clflush_virt_range(vaddr + shmem_page_offset,
699 page_length);
c2831a94
CW
700 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
701 user_data, page_length);
d174bd64
DV
702 if (needs_clflush_after)
703 drm_clflush_virt_range(vaddr + shmem_page_offset,
704 page_length);
705 kunmap_atomic(vaddr);
3de09aa3 706
755d2218 707 return ret ? -EFAULT : 0;
3de09aa3
EA
708}
709
d174bd64
DV
710/* Only difference to the fast-path function is that this can handle bit17
711 * and uses non-atomic copy and kmap functions. */
3043c60c 712static int
d174bd64
DV
713shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
714 char __user *user_data,
715 bool page_do_bit17_swizzling,
716 bool needs_clflush_before,
717 bool needs_clflush_after)
673a394b 718{
d174bd64
DV
719 char *vaddr;
720 int ret;
e5281ccd 721
d174bd64 722 vaddr = kmap(page);
e7e58eb5 723 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
724 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
725 page_length,
726 page_do_bit17_swizzling);
d174bd64
DV
727 if (page_do_bit17_swizzling)
728 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
729 user_data,
730 page_length);
d174bd64
DV
731 else
732 ret = __copy_from_user(vaddr + shmem_page_offset,
733 user_data,
734 page_length);
735 if (needs_clflush_after)
23c18c71
DV
736 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
737 page_length,
738 page_do_bit17_swizzling);
d174bd64 739 kunmap(page);
40123c1f 740
755d2218 741 return ret ? -EFAULT : 0;
40123c1f
EA
742}
743
40123c1f 744static int
e244a443
DV
745i915_gem_shmem_pwrite(struct drm_device *dev,
746 struct drm_i915_gem_object *obj,
747 struct drm_i915_gem_pwrite *args,
748 struct drm_file *file)
40123c1f 749{
40123c1f 750 ssize_t remain;
8c59967c
DV
751 loff_t offset;
752 char __user *user_data;
eb2c0c81 753 int shmem_page_offset, page_length, ret = 0;
8c59967c 754 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 755 int hit_slowpath = 0;
58642885
DV
756 int needs_clflush_after = 0;
757 int needs_clflush_before = 0;
67d5a50c 758 struct sg_page_iter sg_iter;
40123c1f 759
2bb4629a 760 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
761 remain = args->size;
762
8c59967c 763 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 764
58642885
DV
765 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
766 /* If we're not in the cpu write domain, set ourself into the gtt
767 * write domain and manually flush cachelines (if required). This
768 * optimizes for the case when the gpu will use the data
769 * right away and we therefore have to clflush anyway. */
2c22569b 770 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
771 ret = i915_gem_object_wait_rendering(obj, false);
772 if (ret)
773 return ret;
c8725f3d
CW
774
775 i915_gem_object_retire(obj);
58642885 776 }
c76ce038
CW
777 /* Same trick applies to invalidate partially written cachelines read
778 * before writing. */
779 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
780 needs_clflush_before =
781 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 782
755d2218
CW
783 ret = i915_gem_object_get_pages(obj);
784 if (ret)
785 return ret;
786
787 i915_gem_object_pin_pages(obj);
788
673a394b 789 offset = args->offset;
05394f39 790 obj->dirty = 1;
673a394b 791
67d5a50c
ID
792 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
793 offset >> PAGE_SHIFT) {
2db76d7c 794 struct page *page = sg_page_iter_page(&sg_iter);
58642885 795 int partial_cacheline_write;
e5281ccd 796
9da3da66
CW
797 if (remain <= 0)
798 break;
799
40123c1f
EA
800 /* Operation in this page
801 *
40123c1f 802 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
803 * page_length = bytes to copy for this page
804 */
c8cbbb8b 805 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
806
807 page_length = remain;
808 if ((shmem_page_offset + page_length) > PAGE_SIZE)
809 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 810
58642885
DV
811 /* If we don't overwrite a cacheline completely we need to be
812 * careful to have up-to-date data by first clflushing. Don't
813 * overcomplicate things and flush the entire patch. */
814 partial_cacheline_write = needs_clflush_before &&
815 ((shmem_page_offset | page_length)
816 & (boot_cpu_data.x86_clflush_size - 1));
817
8c59967c
DV
818 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
819 (page_to_phys(page) & (1 << 17)) != 0;
820
d174bd64
DV
821 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
822 user_data, page_do_bit17_swizzling,
823 partial_cacheline_write,
824 needs_clflush_after);
825 if (ret == 0)
826 goto next_page;
e244a443
DV
827
828 hit_slowpath = 1;
e244a443 829 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
830 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
831 user_data, page_do_bit17_swizzling,
832 partial_cacheline_write,
833 needs_clflush_after);
40123c1f 834
e244a443 835 mutex_lock(&dev->struct_mutex);
755d2218 836
755d2218 837 if (ret)
8c59967c 838 goto out;
8c59967c 839
17793c9a 840next_page:
40123c1f 841 remain -= page_length;
8c59967c 842 user_data += page_length;
40123c1f 843 offset += page_length;
673a394b
EA
844 }
845
fbd5a26d 846out:
755d2218
CW
847 i915_gem_object_unpin_pages(obj);
848
e244a443 849 if (hit_slowpath) {
8dcf015e
DV
850 /*
851 * Fixup: Flush cpu caches in case we didn't flush the dirty
852 * cachelines in-line while writing and the object moved
853 * out of the cpu write domain while we've dropped the lock.
854 */
855 if (!needs_clflush_after &&
856 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
857 if (i915_gem_clflush_object(obj, obj->pin_display))
858 i915_gem_chipset_flush(dev);
e244a443 859 }
8c59967c 860 }
673a394b 861
58642885 862 if (needs_clflush_after)
e76e9aeb 863 i915_gem_chipset_flush(dev);
58642885 864
40123c1f 865 return ret;
673a394b
EA
866}
867
868/**
869 * Writes data to the object referenced by handle.
870 *
871 * On error, the contents of the buffer that were to be modified are undefined.
872 */
873int
874i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 875 struct drm_file *file)
673a394b
EA
876{
877 struct drm_i915_gem_pwrite *args = data;
05394f39 878 struct drm_i915_gem_object *obj;
51311d0a
CW
879 int ret;
880
881 if (args->size == 0)
882 return 0;
883
884 if (!access_ok(VERIFY_READ,
2bb4629a 885 to_user_ptr(args->data_ptr),
51311d0a
CW
886 args->size))
887 return -EFAULT;
888
d330a953 889 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
890 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
891 args->size);
892 if (ret)
893 return -EFAULT;
894 }
673a394b 895
fbd5a26d 896 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 897 if (ret)
fbd5a26d 898 return ret;
1d7cfea1 899
05394f39 900 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 901 if (&obj->base == NULL) {
1d7cfea1
CW
902 ret = -ENOENT;
903 goto unlock;
fbd5a26d 904 }
673a394b 905
7dcd2499 906 /* Bounds check destination. */
05394f39
CW
907 if (args->offset > obj->base.size ||
908 args->size > obj->base.size - args->offset) {
ce9d419d 909 ret = -EINVAL;
35b62a89 910 goto out;
ce9d419d
CW
911 }
912
1286ff73
DV
913 /* prime objects have no backing filp to GEM pread/pwrite
914 * pages from.
915 */
916 if (!obj->base.filp) {
917 ret = -EINVAL;
918 goto out;
919 }
920
db53a302
CW
921 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
922
935aaa69 923 ret = -EFAULT;
673a394b
EA
924 /* We can only do the GTT pwrite on untiled buffers, as otherwise
925 * it would end up going through the fenced access, and we'll get
926 * different detiling behavior between reading and writing.
927 * pread/pwrite currently are reading and writing from the CPU
928 * perspective, requiring manual detiling by the client.
929 */
5c0480f2 930 if (obj->phys_obj) {
fbd5a26d 931 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
932 goto out;
933 }
934
2c22569b
CW
935 if (obj->tiling_mode == I915_TILING_NONE &&
936 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
937 cpu_write_needs_clflush(obj)) {
fbd5a26d 938 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
939 /* Note that the gtt paths might fail with non-page-backed user
940 * pointers (e.g. gtt mappings when moving data between
941 * textures). Fallback to the shmem path in that case. */
fbd5a26d 942 }
673a394b 943
86a1ee26 944 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 945 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 946
35b62a89 947out:
05394f39 948 drm_gem_object_unreference(&obj->base);
1d7cfea1 949unlock:
fbd5a26d 950 mutex_unlock(&dev->struct_mutex);
673a394b
EA
951 return ret;
952}
953
b361237b 954int
33196ded 955i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
956 bool interruptible)
957{
1f83fee0 958 if (i915_reset_in_progress(error)) {
b361237b
CW
959 /* Non-interruptible callers can't handle -EAGAIN, hence return
960 * -EIO unconditionally for these. */
961 if (!interruptible)
962 return -EIO;
963
1f83fee0
DV
964 /* Recovery complete, but the reset failed ... */
965 if (i915_terminally_wedged(error))
b361237b
CW
966 return -EIO;
967
968 return -EAGAIN;
969 }
970
971 return 0;
972}
973
974/*
975 * Compare seqno against outstanding lazy request. Emit a request if they are
976 * equal.
977 */
978static int
979i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
980{
981 int ret;
982
983 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
984
985 ret = 0;
1823521d 986 if (seqno == ring->outstanding_lazy_seqno)
0025c077 987 ret = i915_add_request(ring, NULL);
b361237b
CW
988
989 return ret;
990}
991
094f9a54
CW
992static void fake_irq(unsigned long data)
993{
994 wake_up_process((struct task_struct *)data);
995}
996
997static bool missed_irq(struct drm_i915_private *dev_priv,
998 struct intel_ring_buffer *ring)
999{
1000 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1001}
1002
b29c19b6
CW
1003static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1004{
1005 if (file_priv == NULL)
1006 return true;
1007
1008 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1009}
1010
b361237b
CW
1011/**
1012 * __wait_seqno - wait until execution of seqno has finished
1013 * @ring: the ring expected to report seqno
1014 * @seqno: duh!
f69061be 1015 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1016 * @interruptible: do an interruptible wait (normally yes)
1017 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1018 *
f69061be
DV
1019 * Note: It is of utmost importance that the passed in seqno and reset_counter
1020 * values have been read by the caller in an smp safe manner. Where read-side
1021 * locks are involved, it is sufficient to read the reset_counter before
1022 * unlocking the lock that protects the seqno. For lockless tricks, the
1023 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1024 * inserted.
1025 *
b361237b
CW
1026 * Returns 0 if the seqno was found within the alloted time. Else returns the
1027 * errno with remaining time filled in timeout argument.
1028 */
1029static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 1030 unsigned reset_counter,
b29c19b6
CW
1031 bool interruptible,
1032 struct timespec *timeout,
1033 struct drm_i915_file_private *file_priv)
b361237b 1034{
3d13ef2e 1035 struct drm_device *dev = ring->dev;
3e31c6c0 1036 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1037 const bool irq_test_in_progress =
1038 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54
CW
1039 struct timespec before, now;
1040 DEFINE_WAIT(wait);
47e9766d 1041 unsigned long timeout_expire;
b361237b
CW
1042 int ret;
1043
5d584b2e 1044 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
c67a470b 1045
b361237b
CW
1046 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1047 return 0;
1048
47e9766d 1049 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
b361237b 1050
3d13ef2e 1051 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
b29c19b6
CW
1052 gen6_rps_boost(dev_priv);
1053 if (file_priv)
1054 mod_delayed_work(dev_priv->wq,
1055 &file_priv->mm.idle_work,
1056 msecs_to_jiffies(100));
1057 }
1058
168c3f21 1059 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1060 return -ENODEV;
1061
094f9a54
CW
1062 /* Record current time in case interrupted by signal, or wedged */
1063 trace_i915_gem_request_wait_begin(ring, seqno);
b361237b 1064 getrawmonotonic(&before);
094f9a54
CW
1065 for (;;) {
1066 struct timer_list timer;
b361237b 1067
094f9a54
CW
1068 prepare_to_wait(&ring->irq_queue, &wait,
1069 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1070
f69061be
DV
1071 /* We need to check whether any gpu reset happened in between
1072 * the caller grabbing the seqno and now ... */
094f9a54
CW
1073 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1074 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1075 * is truely gone. */
1076 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1077 if (ret == 0)
1078 ret = -EAGAIN;
1079 break;
1080 }
f69061be 1081
094f9a54
CW
1082 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1083 ret = 0;
1084 break;
1085 }
b361237b 1086
094f9a54
CW
1087 if (interruptible && signal_pending(current)) {
1088 ret = -ERESTARTSYS;
1089 break;
1090 }
1091
47e9766d 1092 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1093 ret = -ETIME;
1094 break;
1095 }
1096
1097 timer.function = NULL;
1098 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1099 unsigned long expire;
1100
094f9a54 1101 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1102 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1103 mod_timer(&timer, expire);
1104 }
1105
5035c275 1106 io_schedule();
094f9a54 1107
094f9a54
CW
1108 if (timer.function) {
1109 del_singleshot_timer_sync(&timer);
1110 destroy_timer_on_stack(&timer);
1111 }
1112 }
b361237b 1113 getrawmonotonic(&now);
094f9a54 1114 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1115
168c3f21
MK
1116 if (!irq_test_in_progress)
1117 ring->irq_put(ring);
094f9a54
CW
1118
1119 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1120
1121 if (timeout) {
1122 struct timespec sleep_time = timespec_sub(now, before);
1123 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1124 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1125 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1126 }
1127
094f9a54 1128 return ret;
b361237b
CW
1129}
1130
1131/**
1132 * Waits for a sequence number to be signaled, and cleans up the
1133 * request and object lists appropriately for that event.
1134 */
1135int
1136i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1137{
1138 struct drm_device *dev = ring->dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 bool interruptible = dev_priv->mm.interruptible;
1141 int ret;
1142
1143 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1144 BUG_ON(seqno == 0);
1145
33196ded 1146 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1147 if (ret)
1148 return ret;
1149
1150 ret = i915_gem_check_olr(ring, seqno);
1151 if (ret)
1152 return ret;
1153
f69061be
DV
1154 return __wait_seqno(ring, seqno,
1155 atomic_read(&dev_priv->gpu_error.reset_counter),
b29c19b6 1156 interruptible, NULL, NULL);
b361237b
CW
1157}
1158
d26e3af8
CW
1159static int
1160i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1161 struct intel_ring_buffer *ring)
1162{
c8725f3d
CW
1163 if (!obj->active)
1164 return 0;
d26e3af8
CW
1165
1166 /* Manually manage the write flush as we may have not yet
1167 * retired the buffer.
1168 *
1169 * Note that the last_write_seqno is always the earlier of
1170 * the two (read/write) seqno, so if we haved successfully waited,
1171 * we know we have passed the last write.
1172 */
1173 obj->last_write_seqno = 0;
d26e3af8
CW
1174
1175 return 0;
1176}
1177
b361237b
CW
1178/**
1179 * Ensures that all rendering to the object has completed and the object is
1180 * safe to unbind from the GTT or access from the CPU.
1181 */
1182static __must_check int
1183i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1184 bool readonly)
1185{
1186 struct intel_ring_buffer *ring = obj->ring;
1187 u32 seqno;
1188 int ret;
1189
1190 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1191 if (seqno == 0)
1192 return 0;
1193
1194 ret = i915_wait_seqno(ring, seqno);
1195 if (ret)
1196 return ret;
1197
d26e3af8 1198 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1199}
1200
3236f57a
CW
1201/* A nonblocking variant of the above wait. This is a highly dangerous routine
1202 * as the object state may change during this call.
1203 */
1204static __must_check int
1205i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1206 struct drm_i915_file_private *file_priv,
3236f57a
CW
1207 bool readonly)
1208{
1209 struct drm_device *dev = obj->base.dev;
1210 struct drm_i915_private *dev_priv = dev->dev_private;
1211 struct intel_ring_buffer *ring = obj->ring;
f69061be 1212 unsigned reset_counter;
3236f57a
CW
1213 u32 seqno;
1214 int ret;
1215
1216 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1217 BUG_ON(!dev_priv->mm.interruptible);
1218
1219 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1220 if (seqno == 0)
1221 return 0;
1222
33196ded 1223 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1224 if (ret)
1225 return ret;
1226
1227 ret = i915_gem_check_olr(ring, seqno);
1228 if (ret)
1229 return ret;
1230
f69061be 1231 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1232 mutex_unlock(&dev->struct_mutex);
6e4930f6 1233 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
3236f57a 1234 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1235 if (ret)
1236 return ret;
3236f57a 1237
d26e3af8 1238 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1239}
1240
673a394b 1241/**
2ef7eeaa
EA
1242 * Called when user space prepares to use an object with the CPU, either
1243 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1244 */
1245int
1246i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1247 struct drm_file *file)
673a394b
EA
1248{
1249 struct drm_i915_gem_set_domain *args = data;
05394f39 1250 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1251 uint32_t read_domains = args->read_domains;
1252 uint32_t write_domain = args->write_domain;
673a394b
EA
1253 int ret;
1254
2ef7eeaa 1255 /* Only handle setting domains to types used by the CPU. */
21d509e3 1256 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1257 return -EINVAL;
1258
21d509e3 1259 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1260 return -EINVAL;
1261
1262 /* Having something in the write domain implies it's in the read
1263 * domain, and only that read domain. Enforce that in the request.
1264 */
1265 if (write_domain != 0 && read_domains != write_domain)
1266 return -EINVAL;
1267
76c1dec1 1268 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1269 if (ret)
76c1dec1 1270 return ret;
1d7cfea1 1271
05394f39 1272 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1273 if (&obj->base == NULL) {
1d7cfea1
CW
1274 ret = -ENOENT;
1275 goto unlock;
76c1dec1 1276 }
673a394b 1277
3236f57a
CW
1278 /* Try to flush the object off the GPU without holding the lock.
1279 * We will repeat the flush holding the lock in the normal manner
1280 * to catch cases where we are gazumped.
1281 */
6e4930f6
CW
1282 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1283 file->driver_priv,
1284 !write_domain);
3236f57a
CW
1285 if (ret)
1286 goto unref;
1287
2ef7eeaa
EA
1288 if (read_domains & I915_GEM_DOMAIN_GTT) {
1289 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1290
1291 /* Silently promote "you're not bound, there was nothing to do"
1292 * to success, since the client was just asking us to
1293 * make sure everything was done.
1294 */
1295 if (ret == -EINVAL)
1296 ret = 0;
2ef7eeaa 1297 } else {
e47c68e9 1298 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1299 }
1300
3236f57a 1301unref:
05394f39 1302 drm_gem_object_unreference(&obj->base);
1d7cfea1 1303unlock:
673a394b
EA
1304 mutex_unlock(&dev->struct_mutex);
1305 return ret;
1306}
1307
1308/**
1309 * Called when user space has done writes to this buffer
1310 */
1311int
1312i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1313 struct drm_file *file)
673a394b
EA
1314{
1315 struct drm_i915_gem_sw_finish *args = data;
05394f39 1316 struct drm_i915_gem_object *obj;
673a394b
EA
1317 int ret = 0;
1318
76c1dec1 1319 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1320 if (ret)
76c1dec1 1321 return ret;
1d7cfea1 1322
05394f39 1323 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1324 if (&obj->base == NULL) {
1d7cfea1
CW
1325 ret = -ENOENT;
1326 goto unlock;
673a394b
EA
1327 }
1328
673a394b 1329 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1330 if (obj->pin_display)
1331 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1332
05394f39 1333 drm_gem_object_unreference(&obj->base);
1d7cfea1 1334unlock:
673a394b
EA
1335 mutex_unlock(&dev->struct_mutex);
1336 return ret;
1337}
1338
1339/**
1340 * Maps the contents of an object, returning the address it is mapped
1341 * into.
1342 *
1343 * While the mapping holds a reference on the contents of the object, it doesn't
1344 * imply a ref on the object itself.
1345 */
1346int
1347i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1348 struct drm_file *file)
673a394b
EA
1349{
1350 struct drm_i915_gem_mmap *args = data;
1351 struct drm_gem_object *obj;
673a394b
EA
1352 unsigned long addr;
1353
05394f39 1354 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1355 if (obj == NULL)
bf79cb91 1356 return -ENOENT;
673a394b 1357
1286ff73
DV
1358 /* prime objects have no backing filp to GEM mmap
1359 * pages from.
1360 */
1361 if (!obj->filp) {
1362 drm_gem_object_unreference_unlocked(obj);
1363 return -EINVAL;
1364 }
1365
6be5ceb0 1366 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1367 PROT_READ | PROT_WRITE, MAP_SHARED,
1368 args->offset);
bc9025bd 1369 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1370 if (IS_ERR((void *)addr))
1371 return addr;
1372
1373 args->addr_ptr = (uint64_t) addr;
1374
1375 return 0;
1376}
1377
de151cf6
JB
1378/**
1379 * i915_gem_fault - fault a page into the GTT
1380 * vma: VMA in question
1381 * vmf: fault info
1382 *
1383 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1384 * from userspace. The fault handler takes care of binding the object to
1385 * the GTT (if needed), allocating and programming a fence register (again,
1386 * only if needed based on whether the old reg is still valid or the object
1387 * is tiled) and inserting a new PTE into the faulting process.
1388 *
1389 * Note that the faulting process may involve evicting existing objects
1390 * from the GTT and/or fence registers to make room. So performance may
1391 * suffer if the GTT working set is large or there are few fence registers
1392 * left.
1393 */
1394int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1395{
05394f39
CW
1396 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1397 struct drm_device *dev = obj->base.dev;
3e31c6c0 1398 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1399 pgoff_t page_offset;
1400 unsigned long pfn;
1401 int ret = 0;
0f973f27 1402 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1403
f65c9168
PZ
1404 intel_runtime_pm_get(dev_priv);
1405
de151cf6
JB
1406 /* We don't use vmf->pgoff since that has the fake offset */
1407 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1408 PAGE_SHIFT;
1409
d9bc7e9f
CW
1410 ret = i915_mutex_lock_interruptible(dev);
1411 if (ret)
1412 goto out;
a00b10c3 1413
db53a302
CW
1414 trace_i915_gem_object_fault(obj, page_offset, true, write);
1415
6e4930f6
CW
1416 /* Try to flush the object off the GPU first without holding the lock.
1417 * Upon reacquiring the lock, we will perform our sanity checks and then
1418 * repeat the flush holding the lock in the normal manner to catch cases
1419 * where we are gazumped.
1420 */
1421 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1422 if (ret)
1423 goto unlock;
1424
eb119bd6
CW
1425 /* Access to snoopable pages through the GTT is incoherent. */
1426 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1427 ret = -EINVAL;
1428 goto unlock;
1429 }
1430
d9bc7e9f 1431 /* Now bind it into the GTT if needed */
1ec9e26d 1432 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1433 if (ret)
1434 goto unlock;
4a684a41 1435
c9839303
CW
1436 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1437 if (ret)
1438 goto unpin;
74898d7e 1439
06d98131 1440 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1441 if (ret)
c9839303 1442 goto unpin;
7d1c4804 1443
6299f992
CW
1444 obj->fault_mappable = true;
1445
f343c5f6
BW
1446 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1447 pfn >>= PAGE_SHIFT;
1448 pfn += page_offset;
de151cf6
JB
1449
1450 /* Finally, remap it using the new GTT offset */
1451 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303 1452unpin:
d7f46fc4 1453 i915_gem_object_ggtt_unpin(obj);
c715089f 1454unlock:
de151cf6 1455 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1456out:
de151cf6 1457 switch (ret) {
d9bc7e9f 1458 case -EIO:
a9340cca
DV
1459 /* If this -EIO is due to a gpu hang, give the reset code a
1460 * chance to clean up the mess. Otherwise return the proper
1461 * SIGBUS. */
f65c9168
PZ
1462 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1463 ret = VM_FAULT_SIGBUS;
1464 break;
1465 }
045e769a 1466 case -EAGAIN:
571c608d
DV
1467 /*
1468 * EAGAIN means the gpu is hung and we'll wait for the error
1469 * handler to reset everything when re-faulting in
1470 * i915_mutex_lock_interruptible.
d9bc7e9f 1471 */
c715089f
CW
1472 case 0:
1473 case -ERESTARTSYS:
bed636ab 1474 case -EINTR:
e79e0fe3
DR
1475 case -EBUSY:
1476 /*
1477 * EBUSY is ok: this just means that another thread
1478 * already did the job.
1479 */
f65c9168
PZ
1480 ret = VM_FAULT_NOPAGE;
1481 break;
de151cf6 1482 case -ENOMEM:
f65c9168
PZ
1483 ret = VM_FAULT_OOM;
1484 break;
a7c2e1aa 1485 case -ENOSPC:
45d67817 1486 case -EFAULT:
f65c9168
PZ
1487 ret = VM_FAULT_SIGBUS;
1488 break;
de151cf6 1489 default:
a7c2e1aa 1490 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1491 ret = VM_FAULT_SIGBUS;
1492 break;
de151cf6 1493 }
f65c9168
PZ
1494
1495 intel_runtime_pm_put(dev_priv);
1496 return ret;
de151cf6
JB
1497}
1498
48018a57
PZ
1499void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1500{
1501 struct i915_vma *vma;
1502
1503 /*
1504 * Only the global gtt is relevant for gtt memory mappings, so restrict
1505 * list traversal to objects bound into the global address space. Note
1506 * that the active list should be empty, but better safe than sorry.
1507 */
1508 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1509 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1510 i915_gem_release_mmap(vma->obj);
1511 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1512 i915_gem_release_mmap(vma->obj);
1513}
1514
901782b2
CW
1515/**
1516 * i915_gem_release_mmap - remove physical page mappings
1517 * @obj: obj in question
1518 *
af901ca1 1519 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1520 * relinquish ownership of the pages back to the system.
1521 *
1522 * It is vital that we remove the page mapping if we have mapped a tiled
1523 * object through the GTT and then lose the fence register due to
1524 * resource pressure. Similarly if the object has been moved out of the
1525 * aperture, than pages mapped into userspace must be revoked. Removing the
1526 * mapping will then trigger a page fault on the next user access, allowing
1527 * fixup by i915_gem_fault().
1528 */
d05ca301 1529void
05394f39 1530i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1531{
6299f992
CW
1532 if (!obj->fault_mappable)
1533 return;
901782b2 1534
6796cb16
DH
1535 drm_vma_node_unmap(&obj->base.vma_node,
1536 obj->base.dev->anon_inode->i_mapping);
6299f992 1537 obj->fault_mappable = false;
901782b2
CW
1538}
1539
0fa87796 1540uint32_t
e28f8711 1541i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1542{
e28f8711 1543 uint32_t gtt_size;
92b88aeb
CW
1544
1545 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1546 tiling_mode == I915_TILING_NONE)
1547 return size;
92b88aeb
CW
1548
1549 /* Previous chips need a power-of-two fence region when tiling */
1550 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1551 gtt_size = 1024*1024;
92b88aeb 1552 else
e28f8711 1553 gtt_size = 512*1024;
92b88aeb 1554
e28f8711
CW
1555 while (gtt_size < size)
1556 gtt_size <<= 1;
92b88aeb 1557
e28f8711 1558 return gtt_size;
92b88aeb
CW
1559}
1560
de151cf6
JB
1561/**
1562 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1563 * @obj: object to check
1564 *
1565 * Return the required GTT alignment for an object, taking into account
5e783301 1566 * potential fence register mapping.
de151cf6 1567 */
d865110c
ID
1568uint32_t
1569i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1570 int tiling_mode, bool fenced)
de151cf6 1571{
de151cf6
JB
1572 /*
1573 * Minimum alignment is 4k (GTT page size), but might be greater
1574 * if a fence register is needed for the object.
1575 */
d865110c 1576 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1577 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1578 return 4096;
1579
a00b10c3
CW
1580 /*
1581 * Previous chips need to be aligned to the size of the smallest
1582 * fence register that can contain the object.
1583 */
e28f8711 1584 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1585}
1586
d8cb5086
CW
1587static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1588{
1589 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1590 int ret;
1591
0de23977 1592 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1593 return 0;
1594
da494d7c
DV
1595 dev_priv->mm.shrinker_no_lock_stealing = true;
1596
d8cb5086
CW
1597 ret = drm_gem_create_mmap_offset(&obj->base);
1598 if (ret != -ENOSPC)
da494d7c 1599 goto out;
d8cb5086
CW
1600
1601 /* Badly fragmented mmap space? The only way we can recover
1602 * space is by destroying unwanted objects. We can't randomly release
1603 * mmap_offsets as userspace expects them to be persistent for the
1604 * lifetime of the objects. The closest we can is to release the
1605 * offsets on purgeable objects by truncating it and marking it purged,
1606 * which prevents userspace from ever using that object again.
1607 */
1608 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1609 ret = drm_gem_create_mmap_offset(&obj->base);
1610 if (ret != -ENOSPC)
da494d7c 1611 goto out;
d8cb5086
CW
1612
1613 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1614 ret = drm_gem_create_mmap_offset(&obj->base);
1615out:
1616 dev_priv->mm.shrinker_no_lock_stealing = false;
1617
1618 return ret;
d8cb5086
CW
1619}
1620
1621static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1622{
d8cb5086
CW
1623 drm_gem_free_mmap_offset(&obj->base);
1624}
1625
de151cf6 1626int
ff72145b
DA
1627i915_gem_mmap_gtt(struct drm_file *file,
1628 struct drm_device *dev,
1629 uint32_t handle,
1630 uint64_t *offset)
de151cf6 1631{
da761a6e 1632 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1633 struct drm_i915_gem_object *obj;
de151cf6
JB
1634 int ret;
1635
76c1dec1 1636 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1637 if (ret)
76c1dec1 1638 return ret;
de151cf6 1639
ff72145b 1640 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1641 if (&obj->base == NULL) {
1d7cfea1
CW
1642 ret = -ENOENT;
1643 goto unlock;
1644 }
de151cf6 1645
5d4545ae 1646 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1647 ret = -E2BIG;
ff56b0bc 1648 goto out;
da761a6e
CW
1649 }
1650
05394f39 1651 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1652 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1653 ret = -EFAULT;
1d7cfea1 1654 goto out;
ab18282d
CW
1655 }
1656
d8cb5086
CW
1657 ret = i915_gem_object_create_mmap_offset(obj);
1658 if (ret)
1659 goto out;
de151cf6 1660
0de23977 1661 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1662
1d7cfea1 1663out:
05394f39 1664 drm_gem_object_unreference(&obj->base);
1d7cfea1 1665unlock:
de151cf6 1666 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1667 return ret;
de151cf6
JB
1668}
1669
ff72145b
DA
1670/**
1671 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1672 * @dev: DRM device
1673 * @data: GTT mapping ioctl data
1674 * @file: GEM object info
1675 *
1676 * Simply returns the fake offset to userspace so it can mmap it.
1677 * The mmap call will end up in drm_gem_mmap(), which will set things
1678 * up so we can get faults in the handler above.
1679 *
1680 * The fault handler will take care of binding the object into the GTT
1681 * (since it may have been evicted to make room for something), allocating
1682 * a fence register, and mapping the appropriate aperture address into
1683 * userspace.
1684 */
1685int
1686i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1687 struct drm_file *file)
1688{
1689 struct drm_i915_gem_mmap_gtt *args = data;
1690
ff72145b
DA
1691 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1692}
1693
225067ee
DV
1694/* Immediately discard the backing storage */
1695static void
1696i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1697{
e5281ccd 1698 struct inode *inode;
e5281ccd 1699
4d6294bf 1700 i915_gem_object_free_mmap_offset(obj);
1286ff73 1701
4d6294bf
CW
1702 if (obj->base.filp == NULL)
1703 return;
e5281ccd 1704
225067ee
DV
1705 /* Our goal here is to return as much of the memory as
1706 * is possible back to the system as we are called from OOM.
1707 * To do this we must instruct the shmfs to drop all of its
1708 * backing pages, *now*.
1709 */
496ad9aa 1710 inode = file_inode(obj->base.filp);
225067ee 1711 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1712
225067ee
DV
1713 obj->madv = __I915_MADV_PURGED;
1714}
e5281ccd 1715
225067ee
DV
1716static inline int
1717i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1718{
1719 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1720}
1721
5cdf5881 1722static void
05394f39 1723i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1724{
90797e6d
ID
1725 struct sg_page_iter sg_iter;
1726 int ret;
1286ff73 1727
05394f39 1728 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1729
6c085a72
CW
1730 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1731 if (ret) {
1732 /* In the event of a disaster, abandon all caches and
1733 * hope for the best.
1734 */
1735 WARN_ON(ret != -EIO);
2c22569b 1736 i915_gem_clflush_object(obj, true);
6c085a72
CW
1737 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1738 }
1739
6dacfd2f 1740 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1741 i915_gem_object_save_bit_17_swizzle(obj);
1742
05394f39
CW
1743 if (obj->madv == I915_MADV_DONTNEED)
1744 obj->dirty = 0;
3ef94daa 1745
90797e6d 1746 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1747 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1748
05394f39 1749 if (obj->dirty)
9da3da66 1750 set_page_dirty(page);
3ef94daa 1751
05394f39 1752 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1753 mark_page_accessed(page);
3ef94daa 1754
9da3da66 1755 page_cache_release(page);
3ef94daa 1756 }
05394f39 1757 obj->dirty = 0;
673a394b 1758
9da3da66
CW
1759 sg_free_table(obj->pages);
1760 kfree(obj->pages);
37e680a1 1761}
6c085a72 1762
dd624afd 1763int
37e680a1
CW
1764i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1765{
1766 const struct drm_i915_gem_object_ops *ops = obj->ops;
1767
2f745ad3 1768 if (obj->pages == NULL)
37e680a1
CW
1769 return 0;
1770
a5570178
CW
1771 if (obj->pages_pin_count)
1772 return -EBUSY;
1773
9843877d 1774 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1775
a2165e31
CW
1776 /* ->put_pages might need to allocate memory for the bit17 swizzle
1777 * array, hence protect them from being reaped by removing them from gtt
1778 * lists early. */
35c20a60 1779 list_del(&obj->global_list);
a2165e31 1780
37e680a1 1781 ops->put_pages(obj);
05394f39 1782 obj->pages = NULL;
37e680a1 1783
6c085a72
CW
1784 if (i915_gem_object_is_purgeable(obj))
1785 i915_gem_object_truncate(obj);
1786
1787 return 0;
1788}
1789
d9973b43 1790static unsigned long
93927ca5
DV
1791__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1792 bool purgeable_only)
6c085a72 1793{
c8725f3d
CW
1794 struct list_head still_in_list;
1795 struct drm_i915_gem_object *obj;
d9973b43 1796 unsigned long count = 0;
6c085a72 1797
57094f82 1798 /*
c8725f3d 1799 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
1800 * (due to retiring requests) we have to strictly process only
1801 * one element of the list at the time, and recheck the list
1802 * on every iteration.
c8725f3d
CW
1803 *
1804 * In particular, we must hold a reference whilst removing the
1805 * object as we may end up waiting for and/or retiring the objects.
1806 * This might release the final reference (held by the active list)
1807 * and result in the object being freed from under us. This is
1808 * similar to the precautions the eviction code must take whilst
1809 * removing objects.
1810 *
1811 * Also note that although these lists do not hold a reference to
1812 * the object we can safely grab one here: The final object
1813 * unreferencing and the bound_list are both protected by the
1814 * dev->struct_mutex and so we won't ever be able to observe an
1815 * object on the bound_list with a reference count equals 0.
57094f82 1816 */
c8725f3d
CW
1817 INIT_LIST_HEAD(&still_in_list);
1818 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1819 obj = list_first_entry(&dev_priv->mm.unbound_list,
1820 typeof(*obj), global_list);
1821 list_move_tail(&obj->global_list, &still_in_list);
1822
1823 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1824 continue;
1825
1826 drm_gem_object_reference(&obj->base);
1827
1828 if (i915_gem_object_put_pages(obj) == 0)
1829 count += obj->base.size >> PAGE_SHIFT;
1830
1831 drm_gem_object_unreference(&obj->base);
1832 }
1833 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1834
1835 INIT_LIST_HEAD(&still_in_list);
57094f82 1836 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1837 struct i915_vma *vma, *v;
80dcfdbd 1838
57094f82
CW
1839 obj = list_first_entry(&dev_priv->mm.bound_list,
1840 typeof(*obj), global_list);
c8725f3d 1841 list_move_tail(&obj->global_list, &still_in_list);
57094f82 1842
80dcfdbd
BW
1843 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1844 continue;
1845
57094f82
CW
1846 drm_gem_object_reference(&obj->base);
1847
07fe0b12
BW
1848 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1849 if (i915_vma_unbind(vma))
1850 break;
80dcfdbd 1851
57094f82 1852 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1853 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1854
1855 drm_gem_object_unreference(&obj->base);
6c085a72 1856 }
c8725f3d 1857 list_splice(&still_in_list, &dev_priv->mm.bound_list);
6c085a72
CW
1858
1859 return count;
1860}
1861
d9973b43 1862static unsigned long
93927ca5
DV
1863i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1864{
1865 return __i915_gem_shrink(dev_priv, target, true);
1866}
1867
d9973b43 1868static unsigned long
6c085a72
CW
1869i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1870{
6c085a72 1871 i915_gem_evict_everything(dev_priv->dev);
c8725f3d 1872 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
225067ee
DV
1873}
1874
37e680a1 1875static int
6c085a72 1876i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1877{
6c085a72 1878 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1879 int page_count, i;
1880 struct address_space *mapping;
9da3da66
CW
1881 struct sg_table *st;
1882 struct scatterlist *sg;
90797e6d 1883 struct sg_page_iter sg_iter;
e5281ccd 1884 struct page *page;
90797e6d 1885 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1886 gfp_t gfp;
e5281ccd 1887
6c085a72
CW
1888 /* Assert that the object is not currently in any GPU domain. As it
1889 * wasn't in the GTT, there shouldn't be any way it could have been in
1890 * a GPU cache
1891 */
1892 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1893 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1894
9da3da66
CW
1895 st = kmalloc(sizeof(*st), GFP_KERNEL);
1896 if (st == NULL)
1897 return -ENOMEM;
1898
05394f39 1899 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1900 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1901 kfree(st);
e5281ccd 1902 return -ENOMEM;
9da3da66 1903 }
e5281ccd 1904
9da3da66
CW
1905 /* Get the list of pages out of our struct file. They'll be pinned
1906 * at this point until we release them.
1907 *
1908 * Fail silently without starting the shrinker
1909 */
496ad9aa 1910 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1911 gfp = mapping_gfp_mask(mapping);
caf49191 1912 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1913 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1914 sg = st->sgl;
1915 st->nents = 0;
1916 for (i = 0; i < page_count; i++) {
6c085a72
CW
1917 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1918 if (IS_ERR(page)) {
1919 i915_gem_purge(dev_priv, page_count);
1920 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1921 }
1922 if (IS_ERR(page)) {
1923 /* We've tried hard to allocate the memory by reaping
1924 * our own buffer, now let the real VM do its job and
1925 * go down in flames if truly OOM.
1926 */
caf49191 1927 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1928 gfp |= __GFP_IO | __GFP_WAIT;
1929
1930 i915_gem_shrink_all(dev_priv);
1931 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1932 if (IS_ERR(page))
1933 goto err_pages;
1934
caf49191 1935 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1936 gfp &= ~(__GFP_IO | __GFP_WAIT);
1937 }
426729dc
KRW
1938#ifdef CONFIG_SWIOTLB
1939 if (swiotlb_nr_tbl()) {
1940 st->nents++;
1941 sg_set_page(sg, page, PAGE_SIZE, 0);
1942 sg = sg_next(sg);
1943 continue;
1944 }
1945#endif
90797e6d
ID
1946 if (!i || page_to_pfn(page) != last_pfn + 1) {
1947 if (i)
1948 sg = sg_next(sg);
1949 st->nents++;
1950 sg_set_page(sg, page, PAGE_SIZE, 0);
1951 } else {
1952 sg->length += PAGE_SIZE;
1953 }
1954 last_pfn = page_to_pfn(page);
3bbbe706
DV
1955
1956 /* Check that the i965g/gm workaround works. */
1957 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 1958 }
426729dc
KRW
1959#ifdef CONFIG_SWIOTLB
1960 if (!swiotlb_nr_tbl())
1961#endif
1962 sg_mark_end(sg);
74ce6b6c
CW
1963 obj->pages = st;
1964
6dacfd2f 1965 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1966 i915_gem_object_do_bit_17_swizzle(obj);
1967
1968 return 0;
1969
1970err_pages:
90797e6d
ID
1971 sg_mark_end(sg);
1972 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1973 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1974 sg_free_table(st);
1975 kfree(st);
0820baf3
CW
1976
1977 /* shmemfs first checks if there is enough memory to allocate the page
1978 * and reports ENOSPC should there be insufficient, along with the usual
1979 * ENOMEM for a genuine allocation failure.
1980 *
1981 * We use ENOSPC in our driver to mean that we have run out of aperture
1982 * space and so want to translate the error from shmemfs back to our
1983 * usual understanding of ENOMEM.
1984 */
1985 if (PTR_ERR(page) == -ENOSPC)
1986 return -ENOMEM;
1987 else
1988 return PTR_ERR(page);
673a394b
EA
1989}
1990
37e680a1
CW
1991/* Ensure that the associated pages are gathered from the backing storage
1992 * and pinned into our object. i915_gem_object_get_pages() may be called
1993 * multiple times before they are released by a single call to
1994 * i915_gem_object_put_pages() - once the pages are no longer referenced
1995 * either as a result of memory pressure (reaping pages under the shrinker)
1996 * or as the object is itself released.
1997 */
1998int
1999i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2000{
2001 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2002 const struct drm_i915_gem_object_ops *ops = obj->ops;
2003 int ret;
2004
2f745ad3 2005 if (obj->pages)
37e680a1
CW
2006 return 0;
2007
43e28f09 2008 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2009 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2010 return -EFAULT;
43e28f09
CW
2011 }
2012
a5570178
CW
2013 BUG_ON(obj->pages_pin_count);
2014
37e680a1
CW
2015 ret = ops->get_pages(obj);
2016 if (ret)
2017 return ret;
2018
35c20a60 2019 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2020 return 0;
673a394b
EA
2021}
2022
e2d05a8b 2023static void
05394f39 2024i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 2025 struct intel_ring_buffer *ring)
673a394b 2026{
05394f39 2027 struct drm_device *dev = obj->base.dev;
69dc4987 2028 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 2029 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 2030
852835f3 2031 BUG_ON(ring == NULL);
02978ff5
CW
2032 if (obj->ring != ring && obj->last_write_seqno) {
2033 /* Keep the seqno relative to the current ring */
2034 obj->last_write_seqno = seqno;
2035 }
05394f39 2036 obj->ring = ring;
673a394b
EA
2037
2038 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2039 if (!obj->active) {
2040 drm_gem_object_reference(&obj->base);
2041 obj->active = 1;
673a394b 2042 }
e35a41de 2043
05394f39 2044 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2045
0201f1ec 2046 obj->last_read_seqno = seqno;
caea7476 2047
7dd49065 2048 if (obj->fenced_gpu_access) {
caea7476 2049 obj->last_fenced_seqno = seqno;
caea7476 2050
7dd49065
CW
2051 /* Bump MRU to take account of the delayed flush */
2052 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2053 struct drm_i915_fence_reg *reg;
2054
2055 reg = &dev_priv->fence_regs[obj->fence_reg];
2056 list_move_tail(&reg->lru_list,
2057 &dev_priv->mm.fence_list);
2058 }
caea7476
CW
2059 }
2060}
2061
e2d05a8b
BW
2062void i915_vma_move_to_active(struct i915_vma *vma,
2063 struct intel_ring_buffer *ring)
2064{
2065 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2066 return i915_gem_object_move_to_active(vma->obj, ring);
2067}
2068
caea7476 2069static void
caea7476 2070i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2071{
ca191b13 2072 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2073 struct i915_address_space *vm;
2074 struct i915_vma *vma;
ce44b0ea 2075
65ce3027 2076 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2077 BUG_ON(!obj->active);
caea7476 2078
feb822cf
BW
2079 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2080 vma = i915_gem_obj_to_vma(obj, vm);
2081 if (vma && !list_empty(&vma->mm_list))
2082 list_move_tail(&vma->mm_list, &vm->inactive_list);
2083 }
caea7476 2084
65ce3027 2085 list_del_init(&obj->ring_list);
caea7476
CW
2086 obj->ring = NULL;
2087
65ce3027
CW
2088 obj->last_read_seqno = 0;
2089 obj->last_write_seqno = 0;
2090 obj->base.write_domain = 0;
2091
2092 obj->last_fenced_seqno = 0;
caea7476 2093 obj->fenced_gpu_access = false;
caea7476
CW
2094
2095 obj->active = 0;
2096 drm_gem_object_unreference(&obj->base);
2097
2098 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2099}
673a394b 2100
c8725f3d
CW
2101static void
2102i915_gem_object_retire(struct drm_i915_gem_object *obj)
2103{
2104 struct intel_ring_buffer *ring = obj->ring;
2105
2106 if (ring == NULL)
2107 return;
2108
2109 if (i915_seqno_passed(ring->get_seqno(ring, true),
2110 obj->last_read_seqno))
2111 i915_gem_object_move_to_inactive(obj);
2112}
2113
9d773091 2114static int
fca26bb4 2115i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2116{
9d773091
CW
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118 struct intel_ring_buffer *ring;
2119 int ret, i, j;
53d227f2 2120
107f27a5 2121 /* Carefully retire all requests without writing to the rings */
9d773091 2122 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2123 ret = intel_ring_idle(ring);
2124 if (ret)
2125 return ret;
9d773091 2126 }
9d773091 2127 i915_gem_retire_requests(dev);
107f27a5
CW
2128
2129 /* Finally reset hw state */
9d773091 2130 for_each_ring(ring, dev_priv, i) {
fca26bb4 2131 intel_ring_init_seqno(ring, seqno);
498d2ac1 2132
ebc348b2
BW
2133 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2134 ring->semaphore.sync_seqno[j] = 0;
9d773091 2135 }
53d227f2 2136
9d773091 2137 return 0;
53d227f2
DV
2138}
2139
fca26bb4
MK
2140int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2141{
2142 struct drm_i915_private *dev_priv = dev->dev_private;
2143 int ret;
2144
2145 if (seqno == 0)
2146 return -EINVAL;
2147
2148 /* HWS page needs to be set less than what we
2149 * will inject to ring
2150 */
2151 ret = i915_gem_init_seqno(dev, seqno - 1);
2152 if (ret)
2153 return ret;
2154
2155 /* Carefully set the last_seqno value so that wrap
2156 * detection still works
2157 */
2158 dev_priv->next_seqno = seqno;
2159 dev_priv->last_seqno = seqno - 1;
2160 if (dev_priv->last_seqno == 0)
2161 dev_priv->last_seqno--;
2162
2163 return 0;
2164}
2165
9d773091
CW
2166int
2167i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2168{
9d773091
CW
2169 struct drm_i915_private *dev_priv = dev->dev_private;
2170
2171 /* reserve 0 for non-seqno */
2172 if (dev_priv->next_seqno == 0) {
fca26bb4 2173 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2174 if (ret)
2175 return ret;
53d227f2 2176
9d773091
CW
2177 dev_priv->next_seqno = 1;
2178 }
53d227f2 2179
f72b3435 2180 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2181 return 0;
53d227f2
DV
2182}
2183
0025c077
MK
2184int __i915_add_request(struct intel_ring_buffer *ring,
2185 struct drm_file *file,
7d736f4f 2186 struct drm_i915_gem_object *obj,
0025c077 2187 u32 *out_seqno)
673a394b 2188{
3e31c6c0 2189 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2190 struct drm_i915_gem_request *request;
7d736f4f 2191 u32 request_ring_position, request_start;
3cce469c
CW
2192 int ret;
2193
7d736f4f 2194 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2195 /*
2196 * Emit any outstanding flushes - execbuf can fail to emit the flush
2197 * after having emitted the batchbuffer command. Hence we need to fix
2198 * things up similar to emitting the lazy request. The difference here
2199 * is that the flush _must_ happen before the next request, no matter
2200 * what.
2201 */
a7b9761d
CW
2202 ret = intel_ring_flush_all_caches(ring);
2203 if (ret)
2204 return ret;
cc889e0f 2205
3c0e234c
CW
2206 request = ring->preallocated_lazy_request;
2207 if (WARN_ON(request == NULL))
acb868d3 2208 return -ENOMEM;
cc889e0f 2209
a71d8d94
CW
2210 /* Record the position of the start of the request so that
2211 * should we detect the updated seqno part-way through the
2212 * GPU processing the request, we never over-estimate the
2213 * position of the head.
2214 */
2215 request_ring_position = intel_ring_get_tail(ring);
2216
9d773091 2217 ret = ring->add_request(ring);
3c0e234c 2218 if (ret)
3bb73aba 2219 return ret;
673a394b 2220
9d773091 2221 request->seqno = intel_ring_get_seqno(ring);
852835f3 2222 request->ring = ring;
7d736f4f 2223 request->head = request_start;
a71d8d94 2224 request->tail = request_ring_position;
7d736f4f
MK
2225
2226 /* Whilst this request exists, batch_obj will be on the
2227 * active_list, and so will hold the active reference. Only when this
2228 * request is retired will the the batch_obj be moved onto the
2229 * inactive_list and lose its active reference. Hence we do not need
2230 * to explicitly hold another reference here.
2231 */
9a7e0c2a 2232 request->batch_obj = obj;
0e50e96b 2233
9a7e0c2a
CW
2234 /* Hold a reference to the current context so that we can inspect
2235 * it later in case a hangcheck error event fires.
2236 */
2237 request->ctx = ring->last_context;
0e50e96b
MK
2238 if (request->ctx)
2239 i915_gem_context_reference(request->ctx);
2240
673a394b 2241 request->emitted_jiffies = jiffies;
852835f3 2242 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2243 request->file_priv = NULL;
852835f3 2244
db53a302
CW
2245 if (file) {
2246 struct drm_i915_file_private *file_priv = file->driver_priv;
2247
1c25595f 2248 spin_lock(&file_priv->mm.lock);
f787a5f5 2249 request->file_priv = file_priv;
b962442e 2250 list_add_tail(&request->client_list,
f787a5f5 2251 &file_priv->mm.request_list);
1c25595f 2252 spin_unlock(&file_priv->mm.lock);
b962442e 2253 }
673a394b 2254
9d773091 2255 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2256 ring->outstanding_lazy_seqno = 0;
3c0e234c 2257 ring->preallocated_lazy_request = NULL;
db53a302 2258
db1b76ca 2259 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2260 i915_queue_hangcheck(ring->dev);
2261
f62a0076
CW
2262 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2263 queue_delayed_work(dev_priv->wq,
2264 &dev_priv->mm.retire_work,
2265 round_jiffies_up_relative(HZ));
2266 intel_mark_busy(dev_priv->dev);
f65d9421 2267 }
cc889e0f 2268
acb868d3 2269 if (out_seqno)
9d773091 2270 *out_seqno = request->seqno;
3cce469c 2271 return 0;
673a394b
EA
2272}
2273
f787a5f5
CW
2274static inline void
2275i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2276{
1c25595f 2277 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2278
1c25595f
CW
2279 if (!file_priv)
2280 return;
1c5d22f7 2281
1c25595f 2282 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2283 list_del(&request->client_list);
2284 request->file_priv = NULL;
1c25595f 2285 spin_unlock(&file_priv->mm.lock);
673a394b 2286}
673a394b 2287
939fd762 2288static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
44e2c070 2289 const struct i915_hw_context *ctx)
be62acb4 2290{
44e2c070 2291 unsigned long elapsed;
be62acb4 2292
44e2c070
MK
2293 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2294
2295 if (ctx->hang_stats.banned)
be62acb4
MK
2296 return true;
2297
2298 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2299 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2300 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2301 return true;
88b4aa87
MK
2302 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2303 if (i915_stop_ring_allow_warn(dev_priv))
2304 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2305 return true;
3fac8978 2306 }
be62acb4
MK
2307 }
2308
2309 return false;
2310}
2311
939fd762
MK
2312static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2313 struct i915_hw_context *ctx,
b6b0fac0 2314 const bool guilty)
aa60c664 2315{
44e2c070
MK
2316 struct i915_ctx_hang_stats *hs;
2317
2318 if (WARN_ON(!ctx))
2319 return;
aa60c664 2320
44e2c070
MK
2321 hs = &ctx->hang_stats;
2322
2323 if (guilty) {
939fd762 2324 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2325 hs->batch_active++;
2326 hs->guilty_ts = get_seconds();
2327 } else {
2328 hs->batch_pending++;
aa60c664
MK
2329 }
2330}
2331
0e50e96b
MK
2332static void i915_gem_free_request(struct drm_i915_gem_request *request)
2333{
2334 list_del(&request->list);
2335 i915_gem_request_remove_from_client(request);
2336
2337 if (request->ctx)
2338 i915_gem_context_unreference(request->ctx);
2339
2340 kfree(request);
2341}
2342
8d9fc7fd
CW
2343struct drm_i915_gem_request *
2344i915_gem_find_active_request(struct intel_ring_buffer *ring)
9375e446 2345{
4db080f9 2346 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2347 u32 completed_seqno;
2348
2349 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2350
2351 list_for_each_entry(request, &ring->request_list, list) {
2352 if (i915_seqno_passed(completed_seqno, request->seqno))
2353 continue;
aa60c664 2354
b6b0fac0 2355 return request;
4db080f9 2356 }
b6b0fac0
MK
2357
2358 return NULL;
2359}
2360
2361static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2362 struct intel_ring_buffer *ring)
2363{
2364 struct drm_i915_gem_request *request;
2365 bool ring_hung;
2366
8d9fc7fd 2367 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2368
2369 if (request == NULL)
2370 return;
2371
2372 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2373
939fd762 2374 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2375
2376 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2377 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2378}
aa60c664 2379
4db080f9
CW
2380static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2381 struct intel_ring_buffer *ring)
2382{
dfaae392 2383 while (!list_empty(&ring->active_list)) {
05394f39 2384 struct drm_i915_gem_object *obj;
9375e446 2385
05394f39
CW
2386 obj = list_first_entry(&ring->active_list,
2387 struct drm_i915_gem_object,
2388 ring_list);
9375e446 2389
05394f39 2390 i915_gem_object_move_to_inactive(obj);
673a394b 2391 }
1d62beea
BW
2392
2393 /*
2394 * We must free the requests after all the corresponding objects have
2395 * been moved off active lists. Which is the same order as the normal
2396 * retire_requests function does. This is important if object hold
2397 * implicit references on things like e.g. ppgtt address spaces through
2398 * the request.
2399 */
2400 while (!list_empty(&ring->request_list)) {
2401 struct drm_i915_gem_request *request;
2402
2403 request = list_first_entry(&ring->request_list,
2404 struct drm_i915_gem_request,
2405 list);
2406
2407 i915_gem_free_request(request);
2408 }
e3efda49
CW
2409
2410 /* These may not have been flush before the reset, do so now */
2411 kfree(ring->preallocated_lazy_request);
2412 ring->preallocated_lazy_request = NULL;
2413 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2414}
2415
19b2dbde 2416void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2417{
2418 struct drm_i915_private *dev_priv = dev->dev_private;
2419 int i;
2420
4b9de737 2421 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2422 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2423
94a335db
DV
2424 /*
2425 * Commit delayed tiling changes if we have an object still
2426 * attached to the fence, otherwise just clear the fence.
2427 */
2428 if (reg->obj) {
2429 i915_gem_object_update_fence(reg->obj, reg,
2430 reg->obj->tiling_mode);
2431 } else {
2432 i915_gem_write_fence(dev, i, NULL);
2433 }
312817a3
CW
2434 }
2435}
2436
069efc1d 2437void i915_gem_reset(struct drm_device *dev)
673a394b 2438{
77f01230 2439 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2440 struct intel_ring_buffer *ring;
1ec14ad3 2441 int i;
673a394b 2442
4db080f9
CW
2443 /*
2444 * Before we free the objects from the requests, we need to inspect
2445 * them for finding the guilty party. As the requests only borrow
2446 * their reference to the objects, the inspection must be done first.
2447 */
2448 for_each_ring(ring, dev_priv, i)
2449 i915_gem_reset_ring_status(dev_priv, ring);
2450
b4519513 2451 for_each_ring(ring, dev_priv, i)
4db080f9 2452 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2453
acce9ffa
BW
2454 i915_gem_context_reset(dev);
2455
19b2dbde 2456 i915_gem_restore_fences(dev);
673a394b
EA
2457}
2458
2459/**
2460 * This function clears the request list as sequence numbers are passed.
2461 */
1cf0ba14 2462void
db53a302 2463i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2464{
673a394b
EA
2465 uint32_t seqno;
2466
db53a302 2467 if (list_empty(&ring->request_list))
6c0594a3
KW
2468 return;
2469
db53a302 2470 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2471
b2eadbc8 2472 seqno = ring->get_seqno(ring, true);
1ec14ad3 2473
e9103038
CW
2474 /* Move any buffers on the active list that are no longer referenced
2475 * by the ringbuffer to the flushing/inactive lists as appropriate,
2476 * before we free the context associated with the requests.
2477 */
2478 while (!list_empty(&ring->active_list)) {
2479 struct drm_i915_gem_object *obj;
2480
2481 obj = list_first_entry(&ring->active_list,
2482 struct drm_i915_gem_object,
2483 ring_list);
2484
2485 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2486 break;
2487
2488 i915_gem_object_move_to_inactive(obj);
2489 }
2490
2491
852835f3 2492 while (!list_empty(&ring->request_list)) {
673a394b 2493 struct drm_i915_gem_request *request;
673a394b 2494
852835f3 2495 request = list_first_entry(&ring->request_list,
673a394b
EA
2496 struct drm_i915_gem_request,
2497 list);
673a394b 2498
dfaae392 2499 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2500 break;
2501
db53a302 2502 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2503 /* We know the GPU must have read the request to have
2504 * sent us the seqno + interrupt, so use the position
2505 * of tail of the request to update the last known position
2506 * of the GPU head.
2507 */
2508 ring->last_retired_head = request->tail;
b84d5f0c 2509
0e50e96b 2510 i915_gem_free_request(request);
b84d5f0c 2511 }
673a394b 2512
db53a302
CW
2513 if (unlikely(ring->trace_irq_seqno &&
2514 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2515 ring->irq_put(ring);
db53a302 2516 ring->trace_irq_seqno = 0;
9d34e5db 2517 }
23bc5982 2518
db53a302 2519 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2520}
2521
b29c19b6 2522bool
b09a1fec
CW
2523i915_gem_retire_requests(struct drm_device *dev)
2524{
3e31c6c0 2525 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2526 struct intel_ring_buffer *ring;
b29c19b6 2527 bool idle = true;
1ec14ad3 2528 int i;
b09a1fec 2529
b29c19b6 2530 for_each_ring(ring, dev_priv, i) {
b4519513 2531 i915_gem_retire_requests_ring(ring);
b29c19b6
CW
2532 idle &= list_empty(&ring->request_list);
2533 }
2534
2535 if (idle)
2536 mod_delayed_work(dev_priv->wq,
2537 &dev_priv->mm.idle_work,
2538 msecs_to_jiffies(100));
2539
2540 return idle;
b09a1fec
CW
2541}
2542
75ef9da2 2543static void
673a394b
EA
2544i915_gem_retire_work_handler(struct work_struct *work)
2545{
b29c19b6
CW
2546 struct drm_i915_private *dev_priv =
2547 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2548 struct drm_device *dev = dev_priv->dev;
0a58705b 2549 bool idle;
673a394b 2550
891b48cf 2551 /* Come back later if the device is busy... */
b29c19b6
CW
2552 idle = false;
2553 if (mutex_trylock(&dev->struct_mutex)) {
2554 idle = i915_gem_retire_requests(dev);
2555 mutex_unlock(&dev->struct_mutex);
673a394b 2556 }
b29c19b6 2557 if (!idle)
bcb45086
CW
2558 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2559 round_jiffies_up_relative(HZ));
b29c19b6 2560}
0a58705b 2561
b29c19b6
CW
2562static void
2563i915_gem_idle_work_handler(struct work_struct *work)
2564{
2565 struct drm_i915_private *dev_priv =
2566 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2567
2568 intel_mark_idle(dev_priv->dev);
673a394b
EA
2569}
2570
30dfebf3
DV
2571/**
2572 * Ensures that an object will eventually get non-busy by flushing any required
2573 * write domains, emitting any outstanding lazy request and retiring and
2574 * completed requests.
2575 */
2576static int
2577i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2578{
2579 int ret;
2580
2581 if (obj->active) {
0201f1ec 2582 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2583 if (ret)
2584 return ret;
2585
30dfebf3
DV
2586 i915_gem_retire_requests_ring(obj->ring);
2587 }
2588
2589 return 0;
2590}
2591
23ba4fd0
BW
2592/**
2593 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2594 * @DRM_IOCTL_ARGS: standard ioctl arguments
2595 *
2596 * Returns 0 if successful, else an error is returned with the remaining time in
2597 * the timeout parameter.
2598 * -ETIME: object is still busy after timeout
2599 * -ERESTARTSYS: signal interrupted the wait
2600 * -ENONENT: object doesn't exist
2601 * Also possible, but rare:
2602 * -EAGAIN: GPU wedged
2603 * -ENOMEM: damn
2604 * -ENODEV: Internal IRQ fail
2605 * -E?: The add request failed
2606 *
2607 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2608 * non-zero timeout parameter the wait ioctl will wait for the given number of
2609 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2610 * without holding struct_mutex the object may become re-busied before this
2611 * function completes. A similar but shorter * race condition exists in the busy
2612 * ioctl
2613 */
2614int
2615i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2616{
3e31c6c0 2617 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2618 struct drm_i915_gem_wait *args = data;
2619 struct drm_i915_gem_object *obj;
2620 struct intel_ring_buffer *ring = NULL;
eac1f14f 2621 struct timespec timeout_stack, *timeout = NULL;
f69061be 2622 unsigned reset_counter;
23ba4fd0
BW
2623 u32 seqno = 0;
2624 int ret = 0;
2625
eac1f14f
BW
2626 if (args->timeout_ns >= 0) {
2627 timeout_stack = ns_to_timespec(args->timeout_ns);
2628 timeout = &timeout_stack;
2629 }
23ba4fd0
BW
2630
2631 ret = i915_mutex_lock_interruptible(dev);
2632 if (ret)
2633 return ret;
2634
2635 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2636 if (&obj->base == NULL) {
2637 mutex_unlock(&dev->struct_mutex);
2638 return -ENOENT;
2639 }
2640
30dfebf3
DV
2641 /* Need to make sure the object gets inactive eventually. */
2642 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2643 if (ret)
2644 goto out;
2645
2646 if (obj->active) {
0201f1ec 2647 seqno = obj->last_read_seqno;
23ba4fd0
BW
2648 ring = obj->ring;
2649 }
2650
2651 if (seqno == 0)
2652 goto out;
2653
23ba4fd0
BW
2654 /* Do this after OLR check to make sure we make forward progress polling
2655 * on this IOCTL with a 0 timeout (like busy ioctl)
2656 */
2657 if (!args->timeout_ns) {
2658 ret = -ETIME;
2659 goto out;
2660 }
2661
2662 drm_gem_object_unreference(&obj->base);
f69061be 2663 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2664 mutex_unlock(&dev->struct_mutex);
2665
b29c19b6 2666 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
4f42f4ef 2667 if (timeout)
eac1f14f 2668 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2669 return ret;
2670
2671out:
2672 drm_gem_object_unreference(&obj->base);
2673 mutex_unlock(&dev->struct_mutex);
2674 return ret;
2675}
2676
5816d648
BW
2677/**
2678 * i915_gem_object_sync - sync an object to a ring.
2679 *
2680 * @obj: object which may be in use on another ring.
2681 * @to: ring we wish to use the object on. May be NULL.
2682 *
2683 * This code is meant to abstract object synchronization with the GPU.
2684 * Calling with NULL implies synchronizing the object with the CPU
2685 * rather than a particular GPU ring.
2686 *
2687 * Returns 0 if successful, else propagates up the lower layer error.
2688 */
2911a35b
BW
2689int
2690i915_gem_object_sync(struct drm_i915_gem_object *obj,
2691 struct intel_ring_buffer *to)
2692{
2693 struct intel_ring_buffer *from = obj->ring;
2694 u32 seqno;
2695 int ret, idx;
2696
2697 if (from == NULL || to == from)
2698 return 0;
2699
5816d648 2700 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2701 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2702
2703 idx = intel_ring_sync_index(from, to);
2704
0201f1ec 2705 seqno = obj->last_read_seqno;
ebc348b2 2706 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
2707 return 0;
2708
b4aca010
BW
2709 ret = i915_gem_check_olr(obj->ring, seqno);
2710 if (ret)
2711 return ret;
2911a35b 2712
b52b89da 2713 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 2714 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 2715 if (!ret)
7b01e260
MK
2716 /* We use last_read_seqno because sync_to()
2717 * might have just caused seqno wrap under
2718 * the radar.
2719 */
ebc348b2 2720 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2721
e3a5a225 2722 return ret;
2911a35b
BW
2723}
2724
b5ffc9bc
CW
2725static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2726{
2727 u32 old_write_domain, old_read_domains;
2728
b5ffc9bc
CW
2729 /* Force a pagefault for domain tracking on next user access */
2730 i915_gem_release_mmap(obj);
2731
b97c3d9c
KP
2732 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2733 return;
2734
97c809fd
CW
2735 /* Wait for any direct GTT access to complete */
2736 mb();
2737
b5ffc9bc
CW
2738 old_read_domains = obj->base.read_domains;
2739 old_write_domain = obj->base.write_domain;
2740
2741 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2742 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2743
2744 trace_i915_gem_object_change_domain(obj,
2745 old_read_domains,
2746 old_write_domain);
2747}
2748
07fe0b12 2749int i915_vma_unbind(struct i915_vma *vma)
673a394b 2750{
07fe0b12 2751 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 2752 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 2753 int ret;
673a394b 2754
07fe0b12 2755 if (list_empty(&vma->vma_link))
673a394b
EA
2756 return 0;
2757
0ff501cb
DV
2758 if (!drm_mm_node_allocated(&vma->node)) {
2759 i915_gem_vma_destroy(vma);
0ff501cb
DV
2760 return 0;
2761 }
433544bd 2762
d7f46fc4 2763 if (vma->pin_count)
31d8d651 2764 return -EBUSY;
673a394b 2765
c4670ad0
CW
2766 BUG_ON(obj->pages == NULL);
2767
a8198eea 2768 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2769 if (ret)
a8198eea
CW
2770 return ret;
2771 /* Continue on if we fail due to EIO, the GPU is hung so we
2772 * should be safe and we need to cleanup or else we might
2773 * cause memory corruption through use-after-free.
2774 */
2775
8b1bc9b4
DV
2776 if (i915_is_ggtt(vma->vm)) {
2777 i915_gem_object_finish_gtt(obj);
5323fd04 2778
8b1bc9b4
DV
2779 /* release the fence reg _after_ flushing */
2780 ret = i915_gem_object_put_fence(obj);
2781 if (ret)
2782 return ret;
2783 }
96b47b65 2784
07fe0b12 2785 trace_i915_vma_unbind(vma);
db53a302 2786
6f65e29a
BW
2787 vma->unbind_vma(vma);
2788
74163907 2789 i915_gem_gtt_finish_object(obj);
7bddb01f 2790
64bf9303 2791 list_del_init(&vma->mm_list);
75e9e915 2792 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2793 if (i915_is_ggtt(vma->vm))
2794 obj->map_and_fenceable = true;
673a394b 2795
2f633156
BW
2796 drm_mm_remove_node(&vma->node);
2797 i915_gem_vma_destroy(vma);
2798
2799 /* Since the unbound list is global, only move to that list if
b93dab6e 2800 * no more VMAs exist. */
2f633156
BW
2801 if (list_empty(&obj->vma_list))
2802 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2803
70903c3b
CW
2804 /* And finally now the object is completely decoupled from this vma,
2805 * we can drop its hold on the backing storage and allow it to be
2806 * reaped by the shrinker.
2807 */
2808 i915_gem_object_unpin_pages(obj);
2809
88241785 2810 return 0;
54cf91dc
CW
2811}
2812
b2da9fe5 2813int i915_gpu_idle(struct drm_device *dev)
4df2faf4 2814{
3e31c6c0 2815 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2816 struct intel_ring_buffer *ring;
1ec14ad3 2817 int ret, i;
4df2faf4 2818
4df2faf4 2819 /* Flush everything onto the inactive list. */
b4519513 2820 for_each_ring(ring, dev_priv, i) {
691e6415 2821 ret = i915_switch_context(ring, ring->default_context);
b6c7488d
BW
2822 if (ret)
2823 return ret;
2824
3e960501 2825 ret = intel_ring_idle(ring);
1ec14ad3
CW
2826 if (ret)
2827 return ret;
2828 }
4df2faf4 2829
8a1a49f9 2830 return 0;
4df2faf4
DV
2831}
2832
9ce079e4
CW
2833static void i965_write_fence_reg(struct drm_device *dev, int reg,
2834 struct drm_i915_gem_object *obj)
de151cf6 2835{
3e31c6c0 2836 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
2837 int fence_reg;
2838 int fence_pitch_shift;
de151cf6 2839
56c844e5
ID
2840 if (INTEL_INFO(dev)->gen >= 6) {
2841 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2842 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2843 } else {
2844 fence_reg = FENCE_REG_965_0;
2845 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2846 }
2847
d18b9619
CW
2848 fence_reg += reg * 8;
2849
2850 /* To w/a incoherency with non-atomic 64-bit register updates,
2851 * we split the 64-bit update into two 32-bit writes. In order
2852 * for a partial fence not to be evaluated between writes, we
2853 * precede the update with write to turn off the fence register,
2854 * and only enable the fence as the last step.
2855 *
2856 * For extra levels of paranoia, we make sure each step lands
2857 * before applying the next step.
2858 */
2859 I915_WRITE(fence_reg, 0);
2860 POSTING_READ(fence_reg);
2861
9ce079e4 2862 if (obj) {
f343c5f6 2863 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2864 uint64_t val;
de151cf6 2865
f343c5f6 2866 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2867 0xfffff000) << 32;
f343c5f6 2868 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2869 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2870 if (obj->tiling_mode == I915_TILING_Y)
2871 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2872 val |= I965_FENCE_REG_VALID;
c6642782 2873
d18b9619
CW
2874 I915_WRITE(fence_reg + 4, val >> 32);
2875 POSTING_READ(fence_reg + 4);
2876
2877 I915_WRITE(fence_reg + 0, val);
2878 POSTING_READ(fence_reg);
2879 } else {
2880 I915_WRITE(fence_reg + 4, 0);
2881 POSTING_READ(fence_reg + 4);
2882 }
de151cf6
JB
2883}
2884
9ce079e4
CW
2885static void i915_write_fence_reg(struct drm_device *dev, int reg,
2886 struct drm_i915_gem_object *obj)
de151cf6 2887{
3e31c6c0 2888 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 2889 u32 val;
de151cf6 2890
9ce079e4 2891 if (obj) {
f343c5f6 2892 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2893 int pitch_val;
2894 int tile_width;
c6642782 2895
f343c5f6 2896 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2897 (size & -size) != size ||
f343c5f6
BW
2898 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2899 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2900 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2901
9ce079e4
CW
2902 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2903 tile_width = 128;
2904 else
2905 tile_width = 512;
2906
2907 /* Note: pitch better be a power of two tile widths */
2908 pitch_val = obj->stride / tile_width;
2909 pitch_val = ffs(pitch_val) - 1;
2910
f343c5f6 2911 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2912 if (obj->tiling_mode == I915_TILING_Y)
2913 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2914 val |= I915_FENCE_SIZE_BITS(size);
2915 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2916 val |= I830_FENCE_REG_VALID;
2917 } else
2918 val = 0;
2919
2920 if (reg < 8)
2921 reg = FENCE_REG_830_0 + reg * 4;
2922 else
2923 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2924
2925 I915_WRITE(reg, val);
2926 POSTING_READ(reg);
de151cf6
JB
2927}
2928
9ce079e4
CW
2929static void i830_write_fence_reg(struct drm_device *dev, int reg,
2930 struct drm_i915_gem_object *obj)
de151cf6 2931{
3e31c6c0 2932 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 2933 uint32_t val;
de151cf6 2934
9ce079e4 2935 if (obj) {
f343c5f6 2936 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2937 uint32_t pitch_val;
de151cf6 2938
f343c5f6 2939 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2940 (size & -size) != size ||
f343c5f6
BW
2941 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2942 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2943 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2944
9ce079e4
CW
2945 pitch_val = obj->stride / 128;
2946 pitch_val = ffs(pitch_val) - 1;
de151cf6 2947
f343c5f6 2948 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2949 if (obj->tiling_mode == I915_TILING_Y)
2950 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2951 val |= I830_FENCE_SIZE_BITS(size);
2952 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2953 val |= I830_FENCE_REG_VALID;
2954 } else
2955 val = 0;
c6642782 2956
9ce079e4
CW
2957 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2958 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2959}
2960
d0a57789
CW
2961inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2962{
2963 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2964}
2965
9ce079e4
CW
2966static void i915_gem_write_fence(struct drm_device *dev, int reg,
2967 struct drm_i915_gem_object *obj)
2968{
d0a57789
CW
2969 struct drm_i915_private *dev_priv = dev->dev_private;
2970
2971 /* Ensure that all CPU reads are completed before installing a fence
2972 * and all writes before removing the fence.
2973 */
2974 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2975 mb();
2976
94a335db
DV
2977 WARN(obj && (!obj->stride || !obj->tiling_mode),
2978 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2979 obj->stride, obj->tiling_mode);
2980
9ce079e4 2981 switch (INTEL_INFO(dev)->gen) {
5ab31333 2982 case 8:
9ce079e4 2983 case 7:
56c844e5 2984 case 6:
9ce079e4
CW
2985 case 5:
2986 case 4: i965_write_fence_reg(dev, reg, obj); break;
2987 case 3: i915_write_fence_reg(dev, reg, obj); break;
2988 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2989 default: BUG();
9ce079e4 2990 }
d0a57789
CW
2991
2992 /* And similarly be paranoid that no direct access to this region
2993 * is reordered to before the fence is installed.
2994 */
2995 if (i915_gem_object_needs_mb(obj))
2996 mb();
de151cf6
JB
2997}
2998
61050808
CW
2999static inline int fence_number(struct drm_i915_private *dev_priv,
3000 struct drm_i915_fence_reg *fence)
3001{
3002 return fence - dev_priv->fence_regs;
3003}
3004
3005static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3006 struct drm_i915_fence_reg *fence,
3007 bool enable)
3008{
2dc8aae0 3009 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3010 int reg = fence_number(dev_priv, fence);
3011
3012 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3013
3014 if (enable) {
46a0b638 3015 obj->fence_reg = reg;
61050808
CW
3016 fence->obj = obj;
3017 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3018 } else {
3019 obj->fence_reg = I915_FENCE_REG_NONE;
3020 fence->obj = NULL;
3021 list_del_init(&fence->lru_list);
3022 }
94a335db 3023 obj->fence_dirty = false;
61050808
CW
3024}
3025
d9e86c0e 3026static int
d0a57789 3027i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3028{
1c293ea3 3029 if (obj->last_fenced_seqno) {
86d5bc37 3030 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
3031 if (ret)
3032 return ret;
d9e86c0e
CW
3033
3034 obj->last_fenced_seqno = 0;
d9e86c0e
CW
3035 }
3036
86d5bc37 3037 obj->fenced_gpu_access = false;
d9e86c0e
CW
3038 return 0;
3039}
3040
3041int
3042i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3043{
61050808 3044 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3045 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3046 int ret;
3047
d0a57789 3048 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3049 if (ret)
3050 return ret;
3051
61050808
CW
3052 if (obj->fence_reg == I915_FENCE_REG_NONE)
3053 return 0;
d9e86c0e 3054
f9c513e9
CW
3055 fence = &dev_priv->fence_regs[obj->fence_reg];
3056
aff10b30
DV
3057 if (WARN_ON(fence->pin_count))
3058 return -EBUSY;
3059
61050808 3060 i915_gem_object_fence_lost(obj);
f9c513e9 3061 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3062
3063 return 0;
3064}
3065
3066static struct drm_i915_fence_reg *
a360bb1a 3067i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3068{
ae3db24a 3069 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3070 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3071 int i;
ae3db24a
DV
3072
3073 /* First try to find a free reg */
d9e86c0e 3074 avail = NULL;
ae3db24a
DV
3075 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3076 reg = &dev_priv->fence_regs[i];
3077 if (!reg->obj)
d9e86c0e 3078 return reg;
ae3db24a 3079
1690e1eb 3080 if (!reg->pin_count)
d9e86c0e 3081 avail = reg;
ae3db24a
DV
3082 }
3083
d9e86c0e 3084 if (avail == NULL)
5dce5b93 3085 goto deadlock;
ae3db24a
DV
3086
3087 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3088 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3089 if (reg->pin_count)
ae3db24a
DV
3090 continue;
3091
8fe301ad 3092 return reg;
ae3db24a
DV
3093 }
3094
5dce5b93
CW
3095deadlock:
3096 /* Wait for completion of pending flips which consume fences */
3097 if (intel_has_pending_fb_unpin(dev))
3098 return ERR_PTR(-EAGAIN);
3099
3100 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3101}
3102
de151cf6 3103/**
9a5a53b3 3104 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3105 * @obj: object to map through a fence reg
3106 *
3107 * When mapping objects through the GTT, userspace wants to be able to write
3108 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3109 * This function walks the fence regs looking for a free one for @obj,
3110 * stealing one if it can't find any.
3111 *
3112 * It then sets up the reg based on the object's properties: address, pitch
3113 * and tiling format.
9a5a53b3
CW
3114 *
3115 * For an untiled surface, this removes any existing fence.
de151cf6 3116 */
8c4b8c3f 3117int
06d98131 3118i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3119{
05394f39 3120 struct drm_device *dev = obj->base.dev;
79e53945 3121 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3122 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3123 struct drm_i915_fence_reg *reg;
ae3db24a 3124 int ret;
de151cf6 3125
14415745
CW
3126 /* Have we updated the tiling parameters upon the object and so
3127 * will need to serialise the write to the associated fence register?
3128 */
5d82e3e6 3129 if (obj->fence_dirty) {
d0a57789 3130 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3131 if (ret)
3132 return ret;
3133 }
9a5a53b3 3134
d9e86c0e 3135 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3136 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3137 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3138 if (!obj->fence_dirty) {
14415745
CW
3139 list_move_tail(&reg->lru_list,
3140 &dev_priv->mm.fence_list);
3141 return 0;
3142 }
3143 } else if (enable) {
3144 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3145 if (IS_ERR(reg))
3146 return PTR_ERR(reg);
d9e86c0e 3147
14415745
CW
3148 if (reg->obj) {
3149 struct drm_i915_gem_object *old = reg->obj;
3150
d0a57789 3151 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3152 if (ret)
3153 return ret;
3154
14415745 3155 i915_gem_object_fence_lost(old);
29c5a587 3156 }
14415745 3157 } else
a09ba7fa 3158 return 0;
a09ba7fa 3159
14415745 3160 i915_gem_object_update_fence(obj, reg, enable);
14415745 3161
9ce079e4 3162 return 0;
de151cf6
JB
3163}
3164
42d6ab48
CW
3165static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3166 struct drm_mm_node *gtt_space,
3167 unsigned long cache_level)
3168{
3169 struct drm_mm_node *other;
3170
3171 /* On non-LLC machines we have to be careful when putting differing
3172 * types of snoopable memory together to avoid the prefetcher
4239ca77 3173 * crossing memory domains and dying.
42d6ab48
CW
3174 */
3175 if (HAS_LLC(dev))
3176 return true;
3177
c6cfb325 3178 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3179 return true;
3180
3181 if (list_empty(&gtt_space->node_list))
3182 return true;
3183
3184 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3185 if (other->allocated && !other->hole_follows && other->color != cache_level)
3186 return false;
3187
3188 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3189 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3190 return false;
3191
3192 return true;
3193}
3194
3195static void i915_gem_verify_gtt(struct drm_device *dev)
3196{
3197#if WATCH_GTT
3198 struct drm_i915_private *dev_priv = dev->dev_private;
3199 struct drm_i915_gem_object *obj;
3200 int err = 0;
3201
35c20a60 3202 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3203 if (obj->gtt_space == NULL) {
3204 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3205 err++;
3206 continue;
3207 }
3208
3209 if (obj->cache_level != obj->gtt_space->color) {
3210 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3211 i915_gem_obj_ggtt_offset(obj),
3212 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3213 obj->cache_level,
3214 obj->gtt_space->color);
3215 err++;
3216 continue;
3217 }
3218
3219 if (!i915_gem_valid_gtt_space(dev,
3220 obj->gtt_space,
3221 obj->cache_level)) {
3222 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3223 i915_gem_obj_ggtt_offset(obj),
3224 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3225 obj->cache_level);
3226 err++;
3227 continue;
3228 }
3229 }
3230
3231 WARN_ON(err);
3232#endif
3233}
3234
673a394b
EA
3235/**
3236 * Finds free space in the GTT aperture and binds the object there.
3237 */
262de145 3238static struct i915_vma *
07fe0b12
BW
3239i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3240 struct i915_address_space *vm,
3241 unsigned alignment,
1ec9e26d 3242 unsigned flags)
673a394b 3243{
05394f39 3244 struct drm_device *dev = obj->base.dev;
3e31c6c0 3245 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3246 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12 3247 size_t gtt_max =
1ec9e26d 3248 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3249 struct i915_vma *vma;
07f73f69 3250 int ret;
673a394b 3251
e28f8711
CW
3252 fence_size = i915_gem_get_gtt_size(dev,
3253 obj->base.size,
3254 obj->tiling_mode);
3255 fence_alignment = i915_gem_get_gtt_alignment(dev,
3256 obj->base.size,
d865110c 3257 obj->tiling_mode, true);
e28f8711 3258 unfenced_alignment =
d865110c 3259 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3260 obj->base.size,
3261 obj->tiling_mode, false);
a00b10c3 3262
673a394b 3263 if (alignment == 0)
1ec9e26d 3264 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3265 unfenced_alignment;
1ec9e26d 3266 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3267 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3268 return ERR_PTR(-EINVAL);
673a394b
EA
3269 }
3270
1ec9e26d 3271 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3272
654fc607
CW
3273 /* If the object is bigger than the entire aperture, reject it early
3274 * before evicting everything in a vain attempt to find space.
3275 */
0a9ae0d7 3276 if (obj->base.size > gtt_max) {
bd9b6a4e 3277 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb 3278 obj->base.size,
1ec9e26d 3279 flags & PIN_MAPPABLE ? "mappable" : "total",
0a9ae0d7 3280 gtt_max);
262de145 3281 return ERR_PTR(-E2BIG);
654fc607
CW
3282 }
3283
37e680a1 3284 ret = i915_gem_object_get_pages(obj);
6c085a72 3285 if (ret)
262de145 3286 return ERR_PTR(ret);
6c085a72 3287
fbdda6fb
CW
3288 i915_gem_object_pin_pages(obj);
3289
accfef2e 3290 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3291 if (IS_ERR(vma))
bc6bc15b 3292 goto err_unpin;
2f633156 3293
0a9ae0d7 3294search_free:
07fe0b12 3295 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3296 size, alignment,
31e5d7c6 3297 obj->cache_level, 0, gtt_max,
62347f9e
LK
3298 DRM_MM_SEARCH_DEFAULT,
3299 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3300 if (ret) {
f6cd1f15 3301 ret = i915_gem_evict_something(dev, vm, size, alignment,
1ec9e26d 3302 obj->cache_level, flags);
dc9dd7a2
CW
3303 if (ret == 0)
3304 goto search_free;
9731129c 3305
bc6bc15b 3306 goto err_free_vma;
673a394b 3307 }
2f633156 3308 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3309 obj->cache_level))) {
2f633156 3310 ret = -EINVAL;
bc6bc15b 3311 goto err_remove_node;
673a394b
EA
3312 }
3313
74163907 3314 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3315 if (ret)
bc6bc15b 3316 goto err_remove_node;
673a394b 3317
35c20a60 3318 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3319 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3320
4bd561b3
BW
3321 if (i915_is_ggtt(vm)) {
3322 bool mappable, fenceable;
a00b10c3 3323
49987099
DV
3324 fenceable = (vma->node.size == fence_size &&
3325 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3326
49987099
DV
3327 mappable = (vma->node.start + obj->base.size <=
3328 dev_priv->gtt.mappable_end);
a00b10c3 3329
5cacaac7 3330 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3331 }
75e9e915 3332
1ec9e26d 3333 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
75e9e915 3334
1ec9e26d 3335 trace_i915_vma_bind(vma, flags);
8ea99c92
DV
3336 vma->bind_vma(vma, obj->cache_level,
3337 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3338
42d6ab48 3339 i915_gem_verify_gtt(dev);
262de145 3340 return vma;
2f633156 3341
bc6bc15b 3342err_remove_node:
6286ef9b 3343 drm_mm_remove_node(&vma->node);
bc6bc15b 3344err_free_vma:
2f633156 3345 i915_gem_vma_destroy(vma);
262de145 3346 vma = ERR_PTR(ret);
bc6bc15b 3347err_unpin:
2f633156 3348 i915_gem_object_unpin_pages(obj);
262de145 3349 return vma;
673a394b
EA
3350}
3351
000433b6 3352bool
2c22569b
CW
3353i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3354 bool force)
673a394b 3355{
673a394b
EA
3356 /* If we don't have a page list set up, then we're not pinned
3357 * to GPU, and we can ignore the cache flush because it'll happen
3358 * again at bind time.
3359 */
05394f39 3360 if (obj->pages == NULL)
000433b6 3361 return false;
673a394b 3362
769ce464
ID
3363 /*
3364 * Stolen memory is always coherent with the GPU as it is explicitly
3365 * marked as wc by the system, or the system is cache-coherent.
3366 */
3367 if (obj->stolen)
000433b6 3368 return false;
769ce464 3369
9c23f7fc
CW
3370 /* If the GPU is snooping the contents of the CPU cache,
3371 * we do not need to manually clear the CPU cache lines. However,
3372 * the caches are only snooped when the render cache is
3373 * flushed/invalidated. As we always have to emit invalidations
3374 * and flushes when moving into and out of the RENDER domain, correct
3375 * snooping behaviour occurs naturally as the result of our domain
3376 * tracking.
3377 */
2c22569b 3378 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3379 return false;
9c23f7fc 3380
1c5d22f7 3381 trace_i915_gem_object_clflush(obj);
9da3da66 3382 drm_clflush_sg(obj->pages);
000433b6
CW
3383
3384 return true;
e47c68e9
EA
3385}
3386
3387/** Flushes the GTT write domain for the object if it's dirty. */
3388static void
05394f39 3389i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3390{
1c5d22f7
CW
3391 uint32_t old_write_domain;
3392
05394f39 3393 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3394 return;
3395
63256ec5 3396 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3397 * to it immediately go to main memory as far as we know, so there's
3398 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3399 *
3400 * However, we do have to enforce the order so that all writes through
3401 * the GTT land before any writes to the device, such as updates to
3402 * the GATT itself.
e47c68e9 3403 */
63256ec5
CW
3404 wmb();
3405
05394f39
CW
3406 old_write_domain = obj->base.write_domain;
3407 obj->base.write_domain = 0;
1c5d22f7
CW
3408
3409 trace_i915_gem_object_change_domain(obj,
05394f39 3410 obj->base.read_domains,
1c5d22f7 3411 old_write_domain);
e47c68e9
EA
3412}
3413
3414/** Flushes the CPU write domain for the object if it's dirty. */
3415static void
2c22569b
CW
3416i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3417 bool force)
e47c68e9 3418{
1c5d22f7 3419 uint32_t old_write_domain;
e47c68e9 3420
05394f39 3421 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3422 return;
3423
000433b6
CW
3424 if (i915_gem_clflush_object(obj, force))
3425 i915_gem_chipset_flush(obj->base.dev);
3426
05394f39
CW
3427 old_write_domain = obj->base.write_domain;
3428 obj->base.write_domain = 0;
1c5d22f7
CW
3429
3430 trace_i915_gem_object_change_domain(obj,
05394f39 3431 obj->base.read_domains,
1c5d22f7 3432 old_write_domain);
e47c68e9
EA
3433}
3434
2ef7eeaa
EA
3435/**
3436 * Moves a single object to the GTT read, and possibly write domain.
3437 *
3438 * This function returns when the move is complete, including waiting on
3439 * flushes to occur.
3440 */
79e53945 3441int
2021746e 3442i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3443{
3e31c6c0 3444 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3445 uint32_t old_write_domain, old_read_domains;
e47c68e9 3446 int ret;
2ef7eeaa 3447
02354392 3448 /* Not valid to be called on unbound objects. */
9843877d 3449 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3450 return -EINVAL;
3451
8d7e3de1
CW
3452 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3453 return 0;
3454
0201f1ec 3455 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3456 if (ret)
3457 return ret;
3458
c8725f3d 3459 i915_gem_object_retire(obj);
2c22569b 3460 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3461
d0a57789
CW
3462 /* Serialise direct access to this object with the barriers for
3463 * coherent writes from the GPU, by effectively invalidating the
3464 * GTT domain upon first access.
3465 */
3466 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3467 mb();
3468
05394f39
CW
3469 old_write_domain = obj->base.write_domain;
3470 old_read_domains = obj->base.read_domains;
1c5d22f7 3471
e47c68e9
EA
3472 /* It should now be out of any other write domains, and we can update
3473 * the domain values for our changes.
3474 */
05394f39
CW
3475 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3476 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3477 if (write) {
05394f39
CW
3478 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3479 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3480 obj->dirty = 1;
2ef7eeaa
EA
3481 }
3482
1c5d22f7
CW
3483 trace_i915_gem_object_change_domain(obj,
3484 old_read_domains,
3485 old_write_domain);
3486
8325a09d 3487 /* And bump the LRU for this access */
ca191b13 3488 if (i915_gem_object_is_inactive(obj)) {
5c2abbea 3489 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
ca191b13
BW
3490 if (vma)
3491 list_move_tail(&vma->mm_list,
3492 &dev_priv->gtt.base.inactive_list);
3493
3494 }
8325a09d 3495
e47c68e9
EA
3496 return 0;
3497}
3498
e4ffd173
CW
3499int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3500 enum i915_cache_level cache_level)
3501{
7bddb01f 3502 struct drm_device *dev = obj->base.dev;
df6f783a 3503 struct i915_vma *vma, *next;
e4ffd173
CW
3504 int ret;
3505
3506 if (obj->cache_level == cache_level)
3507 return 0;
3508
d7f46fc4 3509 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3510 DRM_DEBUG("can not change the cache level of pinned objects\n");
3511 return -EBUSY;
3512 }
3513
df6f783a 3514 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3089c6f2 3515 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3516 ret = i915_vma_unbind(vma);
3089c6f2
BW
3517 if (ret)
3518 return ret;
3089c6f2 3519 }
42d6ab48
CW
3520 }
3521
3089c6f2 3522 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3523 ret = i915_gem_object_finish_gpu(obj);
3524 if (ret)
3525 return ret;
3526
3527 i915_gem_object_finish_gtt(obj);
3528
3529 /* Before SandyBridge, you could not use tiling or fence
3530 * registers with snooped memory, so relinquish any fences
3531 * currently pointing to our region in the aperture.
3532 */
42d6ab48 3533 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3534 ret = i915_gem_object_put_fence(obj);
3535 if (ret)
3536 return ret;
3537 }
3538
6f65e29a 3539 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3540 if (drm_mm_node_allocated(&vma->node))
3541 vma->bind_vma(vma, cache_level,
3542 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
e4ffd173
CW
3543 }
3544
2c22569b
CW
3545 list_for_each_entry(vma, &obj->vma_list, vma_link)
3546 vma->node.color = cache_level;
3547 obj->cache_level = cache_level;
3548
3549 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3550 u32 old_read_domains, old_write_domain;
3551
3552 /* If we're coming from LLC cached, then we haven't
3553 * actually been tracking whether the data is in the
3554 * CPU cache or not, since we only allow one bit set
3555 * in obj->write_domain and have been skipping the clflushes.
3556 * Just set it to the CPU cache for now.
3557 */
c8725f3d 3558 i915_gem_object_retire(obj);
e4ffd173 3559 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3560
3561 old_read_domains = obj->base.read_domains;
3562 old_write_domain = obj->base.write_domain;
3563
3564 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3565 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3566
3567 trace_i915_gem_object_change_domain(obj,
3568 old_read_domains,
3569 old_write_domain);
3570 }
3571
42d6ab48 3572 i915_gem_verify_gtt(dev);
e4ffd173
CW
3573 return 0;
3574}
3575
199adf40
BW
3576int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3577 struct drm_file *file)
e6994aee 3578{
199adf40 3579 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3580 struct drm_i915_gem_object *obj;
3581 int ret;
3582
3583 ret = i915_mutex_lock_interruptible(dev);
3584 if (ret)
3585 return ret;
3586
3587 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3588 if (&obj->base == NULL) {
3589 ret = -ENOENT;
3590 goto unlock;
3591 }
3592
651d794f
CW
3593 switch (obj->cache_level) {
3594 case I915_CACHE_LLC:
3595 case I915_CACHE_L3_LLC:
3596 args->caching = I915_CACHING_CACHED;
3597 break;
3598
4257d3ba
CW
3599 case I915_CACHE_WT:
3600 args->caching = I915_CACHING_DISPLAY;
3601 break;
3602
651d794f
CW
3603 default:
3604 args->caching = I915_CACHING_NONE;
3605 break;
3606 }
e6994aee
CW
3607
3608 drm_gem_object_unreference(&obj->base);
3609unlock:
3610 mutex_unlock(&dev->struct_mutex);
3611 return ret;
3612}
3613
199adf40
BW
3614int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3615 struct drm_file *file)
e6994aee 3616{
199adf40 3617 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3618 struct drm_i915_gem_object *obj;
3619 enum i915_cache_level level;
3620 int ret;
3621
199adf40
BW
3622 switch (args->caching) {
3623 case I915_CACHING_NONE:
e6994aee
CW
3624 level = I915_CACHE_NONE;
3625 break;
199adf40 3626 case I915_CACHING_CACHED:
e6994aee
CW
3627 level = I915_CACHE_LLC;
3628 break;
4257d3ba
CW
3629 case I915_CACHING_DISPLAY:
3630 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3631 break;
e6994aee
CW
3632 default:
3633 return -EINVAL;
3634 }
3635
3bc2913e
BW
3636 ret = i915_mutex_lock_interruptible(dev);
3637 if (ret)
3638 return ret;
3639
e6994aee
CW
3640 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3641 if (&obj->base == NULL) {
3642 ret = -ENOENT;
3643 goto unlock;
3644 }
3645
3646 ret = i915_gem_object_set_cache_level(obj, level);
3647
3648 drm_gem_object_unreference(&obj->base);
3649unlock:
3650 mutex_unlock(&dev->struct_mutex);
3651 return ret;
3652}
3653
cc98b413
CW
3654static bool is_pin_display(struct drm_i915_gem_object *obj)
3655{
19656430
OM
3656 struct i915_vma *vma;
3657
3658 if (list_empty(&obj->vma_list))
3659 return false;
3660
3661 vma = i915_gem_obj_to_ggtt(obj);
3662 if (!vma)
3663 return false;
3664
cc98b413
CW
3665 /* There are 3 sources that pin objects:
3666 * 1. The display engine (scanouts, sprites, cursors);
3667 * 2. Reservations for execbuffer;
3668 * 3. The user.
3669 *
3670 * We can ignore reservations as we hold the struct_mutex and
3671 * are only called outside of the reservation path. The user
3672 * can only increment pin_count once, and so if after
3673 * subtracting the potential reference by the user, any pin_count
3674 * remains, it must be due to another use by the display engine.
3675 */
19656430 3676 return vma->pin_count - !!obj->user_pin_count;
cc98b413
CW
3677}
3678
b9241ea3 3679/*
2da3b9b9
CW
3680 * Prepare buffer for display plane (scanout, cursors, etc).
3681 * Can be called from an uninterruptible phase (modesetting) and allows
3682 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3683 */
3684int
2da3b9b9
CW
3685i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3686 u32 alignment,
919926ae 3687 struct intel_ring_buffer *pipelined)
b9241ea3 3688{
2da3b9b9 3689 u32 old_read_domains, old_write_domain;
19656430 3690 bool was_pin_display;
b9241ea3
ZW
3691 int ret;
3692
0be73284 3693 if (pipelined != obj->ring) {
2911a35b
BW
3694 ret = i915_gem_object_sync(obj, pipelined);
3695 if (ret)
b9241ea3
ZW
3696 return ret;
3697 }
3698
cc98b413
CW
3699 /* Mark the pin_display early so that we account for the
3700 * display coherency whilst setting up the cache domains.
3701 */
19656430 3702 was_pin_display = obj->pin_display;
cc98b413
CW
3703 obj->pin_display = true;
3704
a7ef0640
EA
3705 /* The display engine is not coherent with the LLC cache on gen6. As
3706 * a result, we make sure that the pinning that is about to occur is
3707 * done with uncached PTEs. This is lowest common denominator for all
3708 * chipsets.
3709 *
3710 * However for gen6+, we could do better by using the GFDT bit instead
3711 * of uncaching, which would allow us to flush all the LLC-cached data
3712 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3713 */
651d794f
CW
3714 ret = i915_gem_object_set_cache_level(obj,
3715 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3716 if (ret)
cc98b413 3717 goto err_unpin_display;
a7ef0640 3718
2da3b9b9
CW
3719 /* As the user may map the buffer once pinned in the display plane
3720 * (e.g. libkms for the bootup splash), we have to ensure that we
3721 * always use map_and_fenceable for all scanout buffers.
3722 */
1ec9e26d 3723 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3724 if (ret)
cc98b413 3725 goto err_unpin_display;
2da3b9b9 3726
2c22569b 3727 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3728
2da3b9b9 3729 old_write_domain = obj->base.write_domain;
05394f39 3730 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3731
3732 /* It should now be out of any other write domains, and we can update
3733 * the domain values for our changes.
3734 */
e5f1d962 3735 obj->base.write_domain = 0;
05394f39 3736 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3737
3738 trace_i915_gem_object_change_domain(obj,
3739 old_read_domains,
2da3b9b9 3740 old_write_domain);
b9241ea3
ZW
3741
3742 return 0;
cc98b413
CW
3743
3744err_unpin_display:
19656430
OM
3745 WARN_ON(was_pin_display != is_pin_display(obj));
3746 obj->pin_display = was_pin_display;
cc98b413
CW
3747 return ret;
3748}
3749
3750void
3751i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3752{
d7f46fc4 3753 i915_gem_object_ggtt_unpin(obj);
cc98b413 3754 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3755}
3756
85345517 3757int
a8198eea 3758i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3759{
88241785
CW
3760 int ret;
3761
a8198eea 3762 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3763 return 0;
3764
0201f1ec 3765 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3766 if (ret)
3767 return ret;
3768
a8198eea
CW
3769 /* Ensure that we invalidate the GPU's caches and TLBs. */
3770 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3771 return 0;
85345517
CW
3772}
3773
e47c68e9
EA
3774/**
3775 * Moves a single object to the CPU read, and possibly write domain.
3776 *
3777 * This function returns when the move is complete, including waiting on
3778 * flushes to occur.
3779 */
dabdfe02 3780int
919926ae 3781i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3782{
1c5d22f7 3783 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3784 int ret;
3785
8d7e3de1
CW
3786 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3787 return 0;
3788
0201f1ec 3789 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3790 if (ret)
3791 return ret;
3792
c8725f3d 3793 i915_gem_object_retire(obj);
e47c68e9 3794 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3795
05394f39
CW
3796 old_write_domain = obj->base.write_domain;
3797 old_read_domains = obj->base.read_domains;
1c5d22f7 3798
e47c68e9 3799 /* Flush the CPU cache if it's still invalid. */
05394f39 3800 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3801 i915_gem_clflush_object(obj, false);
2ef7eeaa 3802
05394f39 3803 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3804 }
3805
3806 /* It should now be out of any other write domains, and we can update
3807 * the domain values for our changes.
3808 */
05394f39 3809 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3810
3811 /* If we're writing through the CPU, then the GPU read domains will
3812 * need to be invalidated at next use.
3813 */
3814 if (write) {
05394f39
CW
3815 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3816 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3817 }
2ef7eeaa 3818
1c5d22f7
CW
3819 trace_i915_gem_object_change_domain(obj,
3820 old_read_domains,
3821 old_write_domain);
3822
2ef7eeaa
EA
3823 return 0;
3824}
3825
673a394b
EA
3826/* Throttle our rendering by waiting until the ring has completed our requests
3827 * emitted over 20 msec ago.
3828 *
b962442e
EA
3829 * Note that if we were to use the current jiffies each time around the loop,
3830 * we wouldn't escape the function with any frames outstanding if the time to
3831 * render a frame was over 20ms.
3832 *
673a394b
EA
3833 * This should get us reasonable parallelism between CPU and GPU but also
3834 * relatively low latency when blocking on a particular request to finish.
3835 */
40a5f0de 3836static int
f787a5f5 3837i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3838{
f787a5f5
CW
3839 struct drm_i915_private *dev_priv = dev->dev_private;
3840 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3841 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3842 struct drm_i915_gem_request *request;
3843 struct intel_ring_buffer *ring = NULL;
f69061be 3844 unsigned reset_counter;
f787a5f5
CW
3845 u32 seqno = 0;
3846 int ret;
93533c29 3847
308887aa
DV
3848 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3849 if (ret)
3850 return ret;
3851
3852 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3853 if (ret)
3854 return ret;
e110e8d6 3855
1c25595f 3856 spin_lock(&file_priv->mm.lock);
f787a5f5 3857 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3858 if (time_after_eq(request->emitted_jiffies, recent_enough))
3859 break;
40a5f0de 3860
f787a5f5
CW
3861 ring = request->ring;
3862 seqno = request->seqno;
b962442e 3863 }
f69061be 3864 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3865 spin_unlock(&file_priv->mm.lock);
40a5f0de 3866
f787a5f5
CW
3867 if (seqno == 0)
3868 return 0;
2bc43b5c 3869
b29c19b6 3870 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
f787a5f5
CW
3871 if (ret == 0)
3872 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3873
3874 return ret;
3875}
3876
673a394b 3877int
05394f39 3878i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3879 struct i915_address_space *vm,
05394f39 3880 uint32_t alignment,
1ec9e26d 3881 unsigned flags)
673a394b 3882{
6e7186af 3883 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 3884 struct i915_vma *vma;
673a394b
EA
3885 int ret;
3886
6e7186af
BW
3887 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3888 return -ENODEV;
3889
bf3d149b 3890 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 3891 return -EINVAL;
07fe0b12
BW
3892
3893 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 3894 if (vma) {
d7f46fc4
BW
3895 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3896 return -EBUSY;
3897
07fe0b12
BW
3898 if ((alignment &&
3899 vma->node.start & (alignment - 1)) ||
1ec9e26d 3900 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
d7f46fc4 3901 WARN(vma->pin_count,
ae7d49d8 3902 "bo is already pinned with incorrect alignment:"
f343c5f6 3903 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3904 " obj->map_and_fenceable=%d\n",
07fe0b12 3905 i915_gem_obj_offset(obj, vm), alignment,
1ec9e26d 3906 flags & PIN_MAPPABLE,
05394f39 3907 obj->map_and_fenceable);
07fe0b12 3908 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3909 if (ret)
3910 return ret;
8ea99c92
DV
3911
3912 vma = NULL;
ac0c6b5a
CW
3913 }
3914 }
3915
8ea99c92 3916 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
3917 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3918 if (IS_ERR(vma))
3919 return PTR_ERR(vma);
22c344e9 3920 }
76446cac 3921
8ea99c92
DV
3922 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3923 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 3924
8ea99c92 3925 vma->pin_count++;
1ec9e26d
DV
3926 if (flags & PIN_MAPPABLE)
3927 obj->pin_mappable |= true;
673a394b
EA
3928
3929 return 0;
3930}
3931
3932void
d7f46fc4 3933i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 3934{
d7f46fc4 3935 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 3936
d7f46fc4
BW
3937 BUG_ON(!vma);
3938 BUG_ON(vma->pin_count == 0);
3939 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3940
3941 if (--vma->pin_count == 0)
6299f992 3942 obj->pin_mappable = false;
673a394b
EA
3943}
3944
d8ffa60b
DV
3945bool
3946i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
3947{
3948 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3949 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3950 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
3951
3952 WARN_ON(!ggtt_vma ||
3953 dev_priv->fence_regs[obj->fence_reg].pin_count >
3954 ggtt_vma->pin_count);
3955 dev_priv->fence_regs[obj->fence_reg].pin_count++;
3956 return true;
3957 } else
3958 return false;
3959}
3960
3961void
3962i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
3963{
3964 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3965 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3966 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
3967 dev_priv->fence_regs[obj->fence_reg].pin_count--;
3968 }
3969}
3970
673a394b
EA
3971int
3972i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3973 struct drm_file *file)
673a394b
EA
3974{
3975 struct drm_i915_gem_pin *args = data;
05394f39 3976 struct drm_i915_gem_object *obj;
673a394b
EA
3977 int ret;
3978
02f6bccc
DV
3979 if (INTEL_INFO(dev)->gen >= 6)
3980 return -ENODEV;
3981
1d7cfea1
CW
3982 ret = i915_mutex_lock_interruptible(dev);
3983 if (ret)
3984 return ret;
673a394b 3985
05394f39 3986 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3987 if (&obj->base == NULL) {
1d7cfea1
CW
3988 ret = -ENOENT;
3989 goto unlock;
673a394b 3990 }
673a394b 3991
05394f39 3992 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 3993 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
8c99e57d 3994 ret = -EFAULT;
1d7cfea1 3995 goto out;
3ef94daa
CW
3996 }
3997
05394f39 3998 if (obj->pin_filp != NULL && obj->pin_filp != file) {
bd9b6a4e 3999 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
79e53945 4000 args->handle);
1d7cfea1
CW
4001 ret = -EINVAL;
4002 goto out;
79e53945
JB
4003 }
4004
aa5f8021
DV
4005 if (obj->user_pin_count == ULONG_MAX) {
4006 ret = -EBUSY;
4007 goto out;
4008 }
4009
93be8788 4010 if (obj->user_pin_count == 0) {
1ec9e26d 4011 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
1d7cfea1
CW
4012 if (ret)
4013 goto out;
673a394b
EA
4014 }
4015
93be8788
CW
4016 obj->user_pin_count++;
4017 obj->pin_filp = file;
4018
f343c5f6 4019 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 4020out:
05394f39 4021 drm_gem_object_unreference(&obj->base);
1d7cfea1 4022unlock:
673a394b 4023 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4024 return ret;
673a394b
EA
4025}
4026
4027int
4028i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 4029 struct drm_file *file)
673a394b
EA
4030{
4031 struct drm_i915_gem_pin *args = data;
05394f39 4032 struct drm_i915_gem_object *obj;
76c1dec1 4033 int ret;
673a394b 4034
1d7cfea1
CW
4035 ret = i915_mutex_lock_interruptible(dev);
4036 if (ret)
4037 return ret;
673a394b 4038
05394f39 4039 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4040 if (&obj->base == NULL) {
1d7cfea1
CW
4041 ret = -ENOENT;
4042 goto unlock;
673a394b 4043 }
76c1dec1 4044
05394f39 4045 if (obj->pin_filp != file) {
bd9b6a4e 4046 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
79e53945 4047 args->handle);
1d7cfea1
CW
4048 ret = -EINVAL;
4049 goto out;
79e53945 4050 }
05394f39
CW
4051 obj->user_pin_count--;
4052 if (obj->user_pin_count == 0) {
4053 obj->pin_filp = NULL;
d7f46fc4 4054 i915_gem_object_ggtt_unpin(obj);
79e53945 4055 }
673a394b 4056
1d7cfea1 4057out:
05394f39 4058 drm_gem_object_unreference(&obj->base);
1d7cfea1 4059unlock:
673a394b 4060 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4061 return ret;
673a394b
EA
4062}
4063
4064int
4065i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4066 struct drm_file *file)
673a394b
EA
4067{
4068 struct drm_i915_gem_busy *args = data;
05394f39 4069 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4070 int ret;
4071
76c1dec1 4072 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4073 if (ret)
76c1dec1 4074 return ret;
673a394b 4075
05394f39 4076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4077 if (&obj->base == NULL) {
1d7cfea1
CW
4078 ret = -ENOENT;
4079 goto unlock;
673a394b 4080 }
d1b851fc 4081
0be555b6
CW
4082 /* Count all active objects as busy, even if they are currently not used
4083 * by the gpu. Users of this interface expect objects to eventually
4084 * become non-busy without any further actions, therefore emit any
4085 * necessary flushes here.
c4de0a5d 4086 */
30dfebf3 4087 ret = i915_gem_object_flush_active(obj);
0be555b6 4088
30dfebf3 4089 args->busy = obj->active;
e9808edd
CW
4090 if (obj->ring) {
4091 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4092 args->busy |= intel_ring_flag(obj->ring) << 16;
4093 }
673a394b 4094
05394f39 4095 drm_gem_object_unreference(&obj->base);
1d7cfea1 4096unlock:
673a394b 4097 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4098 return ret;
673a394b
EA
4099}
4100
4101int
4102i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4103 struct drm_file *file_priv)
4104{
0206e353 4105 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4106}
4107
3ef94daa
CW
4108int
4109i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4110 struct drm_file *file_priv)
4111{
4112 struct drm_i915_gem_madvise *args = data;
05394f39 4113 struct drm_i915_gem_object *obj;
76c1dec1 4114 int ret;
3ef94daa
CW
4115
4116 switch (args->madv) {
4117 case I915_MADV_DONTNEED:
4118 case I915_MADV_WILLNEED:
4119 break;
4120 default:
4121 return -EINVAL;
4122 }
4123
1d7cfea1
CW
4124 ret = i915_mutex_lock_interruptible(dev);
4125 if (ret)
4126 return ret;
4127
05394f39 4128 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4129 if (&obj->base == NULL) {
1d7cfea1
CW
4130 ret = -ENOENT;
4131 goto unlock;
3ef94daa 4132 }
3ef94daa 4133
d7f46fc4 4134 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4135 ret = -EINVAL;
4136 goto out;
3ef94daa
CW
4137 }
4138
05394f39
CW
4139 if (obj->madv != __I915_MADV_PURGED)
4140 obj->madv = args->madv;
3ef94daa 4141
6c085a72
CW
4142 /* if the object is no longer attached, discard its backing storage */
4143 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4144 i915_gem_object_truncate(obj);
4145
05394f39 4146 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4147
1d7cfea1 4148out:
05394f39 4149 drm_gem_object_unreference(&obj->base);
1d7cfea1 4150unlock:
3ef94daa 4151 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4152 return ret;
3ef94daa
CW
4153}
4154
37e680a1
CW
4155void i915_gem_object_init(struct drm_i915_gem_object *obj,
4156 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4157{
35c20a60 4158 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4159 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4160 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4161 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4162
37e680a1
CW
4163 obj->ops = ops;
4164
0327d6ba
CW
4165 obj->fence_reg = I915_FENCE_REG_NONE;
4166 obj->madv = I915_MADV_WILLNEED;
4167 /* Avoid an unnecessary call to unbind on the first bind. */
4168 obj->map_and_fenceable = true;
4169
4170 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4171}
4172
37e680a1
CW
4173static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4174 .get_pages = i915_gem_object_get_pages_gtt,
4175 .put_pages = i915_gem_object_put_pages_gtt,
4176};
4177
05394f39
CW
4178struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4179 size_t size)
ac52bc56 4180{
c397b908 4181 struct drm_i915_gem_object *obj;
5949eac4 4182 struct address_space *mapping;
1a240d4d 4183 gfp_t mask;
ac52bc56 4184
42dcedd4 4185 obj = i915_gem_object_alloc(dev);
c397b908
DV
4186 if (obj == NULL)
4187 return NULL;
673a394b 4188
c397b908 4189 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4190 i915_gem_object_free(obj);
c397b908
DV
4191 return NULL;
4192 }
673a394b 4193
bed1ea95
CW
4194 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4195 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4196 /* 965gm cannot relocate objects above 4GiB. */
4197 mask &= ~__GFP_HIGHMEM;
4198 mask |= __GFP_DMA32;
4199 }
4200
496ad9aa 4201 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4202 mapping_set_gfp_mask(mapping, mask);
5949eac4 4203
37e680a1 4204 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4205
c397b908
DV
4206 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4207 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4208
3d29b842
ED
4209 if (HAS_LLC(dev)) {
4210 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4211 * cache) for about a 10% performance improvement
4212 * compared to uncached. Graphics requests other than
4213 * display scanout are coherent with the CPU in
4214 * accessing this cache. This means in this mode we
4215 * don't need to clflush on the CPU side, and on the
4216 * GPU side we only need to flush internal caches to
4217 * get data visible to the CPU.
4218 *
4219 * However, we maintain the display planes as UC, and so
4220 * need to rebind when first used as such.
4221 */
4222 obj->cache_level = I915_CACHE_LLC;
4223 } else
4224 obj->cache_level = I915_CACHE_NONE;
4225
d861e338
DV
4226 trace_i915_gem_object_create(obj);
4227
05394f39 4228 return obj;
c397b908
DV
4229}
4230
1488fc08 4231void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4232{
1488fc08 4233 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4234 struct drm_device *dev = obj->base.dev;
3e31c6c0 4235 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4236 struct i915_vma *vma, *next;
673a394b 4237
f65c9168
PZ
4238 intel_runtime_pm_get(dev_priv);
4239
26e12f89
CW
4240 trace_i915_gem_object_destroy(obj);
4241
1488fc08
CW
4242 if (obj->phys_obj)
4243 i915_gem_detach_phys_object(dev, obj);
4244
07fe0b12 4245 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4246 int ret;
4247
4248 vma->pin_count = 0;
4249 ret = i915_vma_unbind(vma);
07fe0b12
BW
4250 if (WARN_ON(ret == -ERESTARTSYS)) {
4251 bool was_interruptible;
1488fc08 4252
07fe0b12
BW
4253 was_interruptible = dev_priv->mm.interruptible;
4254 dev_priv->mm.interruptible = false;
1488fc08 4255
07fe0b12 4256 WARN_ON(i915_vma_unbind(vma));
1488fc08 4257
07fe0b12
BW
4258 dev_priv->mm.interruptible = was_interruptible;
4259 }
1488fc08
CW
4260 }
4261
1d64ae71
BW
4262 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4263 * before progressing. */
4264 if (obj->stolen)
4265 i915_gem_object_unpin_pages(obj);
4266
401c29f6
BW
4267 if (WARN_ON(obj->pages_pin_count))
4268 obj->pages_pin_count = 0;
37e680a1 4269 i915_gem_object_put_pages(obj);
d8cb5086 4270 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4271 i915_gem_object_release_stolen(obj);
de151cf6 4272
9da3da66
CW
4273 BUG_ON(obj->pages);
4274
2f745ad3
CW
4275 if (obj->base.import_attach)
4276 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4277
5cc9ed4b
CW
4278 if (obj->ops->release)
4279 obj->ops->release(obj);
4280
05394f39
CW
4281 drm_gem_object_release(&obj->base);
4282 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4283
05394f39 4284 kfree(obj->bit_17);
42dcedd4 4285 i915_gem_object_free(obj);
f65c9168
PZ
4286
4287 intel_runtime_pm_put(dev_priv);
673a394b
EA
4288}
4289
e656a6cb 4290struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4291 struct i915_address_space *vm)
e656a6cb
DV
4292{
4293 struct i915_vma *vma;
4294 list_for_each_entry(vma, &obj->vma_list, vma_link)
4295 if (vma->vm == vm)
4296 return vma;
4297
4298 return NULL;
4299}
4300
2f633156
BW
4301void i915_gem_vma_destroy(struct i915_vma *vma)
4302{
4303 WARN_ON(vma->node.allocated);
aaa05667
CW
4304
4305 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4306 if (!list_empty(&vma->exec_list))
4307 return;
4308
8b9c2b94 4309 list_del(&vma->vma_link);
b93dab6e 4310
2f633156
BW
4311 kfree(vma);
4312}
4313
e3efda49
CW
4314static void
4315i915_gem_stop_ringbuffers(struct drm_device *dev)
4316{
4317 struct drm_i915_private *dev_priv = dev->dev_private;
4318 struct intel_ring_buffer *ring;
4319 int i;
4320
4321 for_each_ring(ring, dev_priv, i)
4322 intel_stop_ring_buffer(ring);
4323}
4324
29105ccc 4325int
45c5f202 4326i915_gem_suspend(struct drm_device *dev)
29105ccc 4327{
3e31c6c0 4328 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4329 int ret = 0;
28dfe52a 4330
45c5f202 4331 mutex_lock(&dev->struct_mutex);
f7403347 4332 if (dev_priv->ums.mm_suspended)
45c5f202 4333 goto err;
28dfe52a 4334
b2da9fe5 4335 ret = i915_gpu_idle(dev);
f7403347 4336 if (ret)
45c5f202 4337 goto err;
f7403347 4338
b2da9fe5 4339 i915_gem_retire_requests(dev);
673a394b 4340
29105ccc 4341 /* Under UMS, be paranoid and evict. */
a39d7efc 4342 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4343 i915_gem_evict_everything(dev);
29105ccc 4344
29105ccc 4345 i915_kernel_lost_context(dev);
e3efda49 4346 i915_gem_stop_ringbuffers(dev);
29105ccc 4347
45c5f202
CW
4348 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4349 * We need to replace this with a semaphore, or something.
4350 * And not confound ums.mm_suspended!
4351 */
4352 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4353 DRIVER_MODESET);
4354 mutex_unlock(&dev->struct_mutex);
4355
4356 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4357 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
b29c19b6 4358 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
29105ccc 4359
673a394b 4360 return 0;
45c5f202
CW
4361
4362err:
4363 mutex_unlock(&dev->struct_mutex);
4364 return ret;
673a394b
EA
4365}
4366
c3787e2e 4367int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
b9524a1e 4368{
c3787e2e 4369 struct drm_device *dev = ring->dev;
3e31c6c0 4370 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4371 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4372 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4373 int i, ret;
b9524a1e 4374
040d2baa 4375 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4376 return 0;
b9524a1e 4377
c3787e2e
BW
4378 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4379 if (ret)
4380 return ret;
b9524a1e 4381
c3787e2e
BW
4382 /*
4383 * Note: We do not worry about the concurrent register cacheline hang
4384 * here because no other code should access these registers other than
4385 * at initialization time.
4386 */
b9524a1e 4387 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4388 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4389 intel_ring_emit(ring, reg_base + i);
4390 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4391 }
4392
c3787e2e 4393 intel_ring_advance(ring);
b9524a1e 4394
c3787e2e 4395 return ret;
b9524a1e
BW
4396}
4397
f691e2f4
DV
4398void i915_gem_init_swizzling(struct drm_device *dev)
4399{
3e31c6c0 4400 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4401
11782b02 4402 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4403 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4404 return;
4405
4406 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4407 DISP_TILE_SURFACE_SWIZZLING);
4408
11782b02
DV
4409 if (IS_GEN5(dev))
4410 return;
4411
f691e2f4
DV
4412 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4413 if (IS_GEN6(dev))
6b26c86d 4414 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4415 else if (IS_GEN7(dev))
6b26c86d 4416 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4417 else if (IS_GEN8(dev))
4418 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4419 else
4420 BUG();
f691e2f4 4421}
e21af88d 4422
67b1b571
CW
4423static bool
4424intel_enable_blt(struct drm_device *dev)
4425{
4426 if (!HAS_BLT(dev))
4427 return false;
4428
4429 /* The blitter was dysfunctional on early prototypes */
4430 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4431 DRM_INFO("BLT not supported on this pre-production hardware;"
4432 " graphics performance will be degraded.\n");
4433 return false;
4434 }
4435
4436 return true;
4437}
4438
4fc7c971 4439static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4440{
4fc7c971 4441 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4442 int ret;
68f95ba9 4443
5c1143bb 4444 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4445 if (ret)
b6913e4b 4446 return ret;
68f95ba9
CW
4447
4448 if (HAS_BSD(dev)) {
5c1143bb 4449 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4450 if (ret)
4451 goto cleanup_render_ring;
d1b851fc 4452 }
68f95ba9 4453
67b1b571 4454 if (intel_enable_blt(dev)) {
549f7365
CW
4455 ret = intel_init_blt_ring_buffer(dev);
4456 if (ret)
4457 goto cleanup_bsd_ring;
4458 }
4459
9a8a2213
BW
4460 if (HAS_VEBOX(dev)) {
4461 ret = intel_init_vebox_ring_buffer(dev);
4462 if (ret)
4463 goto cleanup_blt_ring;
4464 }
4465
845f74a7
ZY
4466 if (HAS_BSD2(dev)) {
4467 ret = intel_init_bsd2_ring_buffer(dev);
4468 if (ret)
4469 goto cleanup_vebox_ring;
4470 }
9a8a2213 4471
99433931 4472 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4473 if (ret)
845f74a7 4474 goto cleanup_bsd2_ring;
4fc7c971
BW
4475
4476 return 0;
4477
845f74a7
ZY
4478cleanup_bsd2_ring:
4479 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4480cleanup_vebox_ring:
4481 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4482cleanup_blt_ring:
4483 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4484cleanup_bsd_ring:
4485 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4486cleanup_render_ring:
4487 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4488
4489 return ret;
4490}
4491
4492int
4493i915_gem_init_hw(struct drm_device *dev)
4494{
3e31c6c0 4495 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4496 int ret, i;
4fc7c971
BW
4497
4498 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4499 return -EIO;
4500
59124506 4501 if (dev_priv->ellc_size)
05e21cc4 4502 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4503
0bf21347
VS
4504 if (IS_HASWELL(dev))
4505 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4506 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4507
88a2b2a3 4508 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4509 if (IS_IVYBRIDGE(dev)) {
4510 u32 temp = I915_READ(GEN7_MSG_CTL);
4511 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4512 I915_WRITE(GEN7_MSG_CTL, temp);
4513 } else if (INTEL_INFO(dev)->gen >= 7) {
4514 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4515 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4516 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4517 }
88a2b2a3
BW
4518 }
4519
4fc7c971
BW
4520 i915_gem_init_swizzling(dev);
4521
4522 ret = i915_gem_init_rings(dev);
99433931
MK
4523 if (ret)
4524 return ret;
4525
c3787e2e
BW
4526 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4527 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4528
254f965c 4529 /*
2fa48d8d
BW
4530 * XXX: Contexts should only be initialized once. Doing a switch to the
4531 * default context switch however is something we'd like to do after
4532 * reset or thaw (the latter may not actually be necessary for HW, but
4533 * goes with our code better). Context switching requires rings (for
4534 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4535 */
2fa48d8d 4536 ret = i915_gem_context_enable(dev_priv);
60990320 4537 if (ret && ret != -EIO) {
2fa48d8d 4538 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4539 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4540 }
e21af88d 4541
2fa48d8d 4542 return ret;
8187a2b7
ZN
4543}
4544
1070a42b
CW
4545int i915_gem_init(struct drm_device *dev)
4546{
4547 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4548 int ret;
4549
1070a42b 4550 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4551
4552 if (IS_VALLEYVIEW(dev)) {
4553 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4554 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4555 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4556 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4557 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4558 }
4559
5cc9ed4b 4560 i915_gem_init_userptr(dev);
d7e5008f 4561 i915_gem_init_global_gtt(dev);
d62b4892 4562
2fa48d8d 4563 ret = i915_gem_context_init(dev);
e3848694
MK
4564 if (ret) {
4565 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4566 return ret;
e3848694 4567 }
2fa48d8d 4568
1070a42b 4569 ret = i915_gem_init_hw(dev);
60990320
CW
4570 if (ret == -EIO) {
4571 /* Allow ring initialisation to fail by marking the GPU as
4572 * wedged. But we only want to do this where the GPU is angry,
4573 * for all other failure, such as an allocation failure, bail.
4574 */
4575 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4576 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4577 ret = 0;
1070a42b 4578 }
60990320 4579 mutex_unlock(&dev->struct_mutex);
1070a42b 4580
53ca26ca
DV
4581 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4582 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4583 dev_priv->dri1.allow_batchbuffer = 1;
60990320 4584 return ret;
1070a42b
CW
4585}
4586
8187a2b7
ZN
4587void
4588i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4589{
3e31c6c0 4590 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4591 struct intel_ring_buffer *ring;
1ec14ad3 4592 int i;
8187a2b7 4593
b4519513
CW
4594 for_each_ring(ring, dev_priv, i)
4595 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4596}
4597
673a394b
EA
4598int
4599i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4600 struct drm_file *file_priv)
4601{
db1b76ca 4602 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4603 int ret;
673a394b 4604
79e53945
JB
4605 if (drm_core_check_feature(dev, DRIVER_MODESET))
4606 return 0;
4607
1f83fee0 4608 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4609 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4610 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4611 }
4612
673a394b 4613 mutex_lock(&dev->struct_mutex);
db1b76ca 4614 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4615
f691e2f4 4616 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4617 if (ret != 0) {
4618 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4619 return ret;
d816f6ac 4620 }
9bb2d6f9 4621
5cef07e1 4622 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
dbb19d30 4623
bb0f1b5c 4624 ret = drm_irq_install(dev, dev->pdev->irq);
5f35308b
CW
4625 if (ret)
4626 goto cleanup_ringbuffer;
e090c53b 4627 mutex_unlock(&dev->struct_mutex);
dbb19d30 4628
673a394b 4629 return 0;
5f35308b
CW
4630
4631cleanup_ringbuffer:
5f35308b 4632 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4633 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4634 mutex_unlock(&dev->struct_mutex);
4635
4636 return ret;
673a394b
EA
4637}
4638
4639int
4640i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4641 struct drm_file *file_priv)
4642{
79e53945
JB
4643 if (drm_core_check_feature(dev, DRIVER_MODESET))
4644 return 0;
4645
e090c53b 4646 mutex_lock(&dev->struct_mutex);
dbb19d30 4647 drm_irq_uninstall(dev);
e090c53b 4648 mutex_unlock(&dev->struct_mutex);
db1b76ca 4649
45c5f202 4650 return i915_gem_suspend(dev);
673a394b
EA
4651}
4652
4653void
4654i915_gem_lastclose(struct drm_device *dev)
4655{
4656 int ret;
673a394b 4657
e806b495
EA
4658 if (drm_core_check_feature(dev, DRIVER_MODESET))
4659 return;
4660
45c5f202 4661 ret = i915_gem_suspend(dev);
6dbe2772
KP
4662 if (ret)
4663 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4664}
4665
64193406
CW
4666static void
4667init_ring_lists(struct intel_ring_buffer *ring)
4668{
4669 INIT_LIST_HEAD(&ring->active_list);
4670 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4671}
4672
7e0d96bc
BW
4673void i915_init_vm(struct drm_i915_private *dev_priv,
4674 struct i915_address_space *vm)
fc8c067e 4675{
7e0d96bc
BW
4676 if (!i915_is_ggtt(vm))
4677 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4678 vm->dev = dev_priv->dev;
4679 INIT_LIST_HEAD(&vm->active_list);
4680 INIT_LIST_HEAD(&vm->inactive_list);
4681 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4682 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4683}
4684
673a394b
EA
4685void
4686i915_gem_load(struct drm_device *dev)
4687{
3e31c6c0 4688 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4689 int i;
4690
4691 dev_priv->slab =
4692 kmem_cache_create("i915_gem_object",
4693 sizeof(struct drm_i915_gem_object), 0,
4694 SLAB_HWCACHE_ALIGN,
4695 NULL);
673a394b 4696
fc8c067e
BW
4697 INIT_LIST_HEAD(&dev_priv->vm_list);
4698 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4699
a33afea5 4700 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4701 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4702 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4703 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4704 for (i = 0; i < I915_NUM_RINGS; i++)
4705 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4706 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4707 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4708 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4709 i915_gem_retire_work_handler);
b29c19b6
CW
4710 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4711 i915_gem_idle_work_handler);
1f83fee0 4712 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4713
94400120
DA
4714 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4715 if (IS_GEN3(dev)) {
50743298
DV
4716 I915_WRITE(MI_ARB_STATE,
4717 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4718 }
4719
72bfa19c
CW
4720 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4721
de151cf6 4722 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4723 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4724 dev_priv->fence_reg_start = 3;
de151cf6 4725
42b5aeab
VS
4726 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4727 dev_priv->num_fence_regs = 32;
4728 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4729 dev_priv->num_fence_regs = 16;
4730 else
4731 dev_priv->num_fence_regs = 8;
4732
b5aa8a0f 4733 /* Initialize fence registers to zero */
19b2dbde
CW
4734 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4735 i915_gem_restore_fences(dev);
10ed13e4 4736
673a394b 4737 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4738 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4739
ce453d81
CW
4740 dev_priv->mm.interruptible = true;
4741
ceabbba5
CW
4742 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4743 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4744 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4745 register_shrinker(&dev_priv->mm.shrinker);
673a394b 4746}
71acb5eb
DA
4747
4748/*
4749 * Create a physically contiguous memory object for this object
4750 * e.g. for cursor + overlay regs
4751 */
995b6762
CW
4752static int i915_gem_init_phys_object(struct drm_device *dev,
4753 int id, int size, int align)
71acb5eb 4754{
3e31c6c0 4755 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4756 struct drm_i915_gem_phys_object *phys_obj;
4757 int ret;
4758
4759 if (dev_priv->mm.phys_objs[id - 1] || !size)
4760 return 0;
4761
b14c5679 4762 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
71acb5eb
DA
4763 if (!phys_obj)
4764 return -ENOMEM;
4765
4766 phys_obj->id = id;
4767
6eeefaf3 4768 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4769 if (!phys_obj->handle) {
4770 ret = -ENOMEM;
4771 goto kfree_obj;
4772 }
4773#ifdef CONFIG_X86
4774 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4775#endif
4776
4777 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4778
4779 return 0;
4780kfree_obj:
9a298b2a 4781 kfree(phys_obj);
71acb5eb
DA
4782 return ret;
4783}
4784
995b6762 4785static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb 4786{
3e31c6c0 4787 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4788 struct drm_i915_gem_phys_object *phys_obj;
4789
4790 if (!dev_priv->mm.phys_objs[id - 1])
4791 return;
4792
4793 phys_obj = dev_priv->mm.phys_objs[id - 1];
4794 if (phys_obj->cur_obj) {
4795 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4796 }
4797
4798#ifdef CONFIG_X86
4799 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4800#endif
4801 drm_pci_free(dev, phys_obj->handle);
4802 kfree(phys_obj);
4803 dev_priv->mm.phys_objs[id - 1] = NULL;
4804}
4805
4806void i915_gem_free_all_phys_object(struct drm_device *dev)
4807{
4808 int i;
4809
260883c8 4810 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4811 i915_gem_free_phys_object(dev, i);
4812}
4813
4814void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4815 struct drm_i915_gem_object *obj)
71acb5eb 4816{
496ad9aa 4817 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4818 char *vaddr;
71acb5eb 4819 int i;
71acb5eb
DA
4820 int page_count;
4821
05394f39 4822 if (!obj->phys_obj)
71acb5eb 4823 return;
05394f39 4824 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4825
05394f39 4826 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4827 for (i = 0; i < page_count; i++) {
5949eac4 4828 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4829 if (!IS_ERR(page)) {
4830 char *dst = kmap_atomic(page);
4831 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4832 kunmap_atomic(dst);
4833
4834 drm_clflush_pages(&page, 1);
4835
4836 set_page_dirty(page);
4837 mark_page_accessed(page);
4838 page_cache_release(page);
4839 }
71acb5eb 4840 }
e76e9aeb 4841 i915_gem_chipset_flush(dev);
d78b47b9 4842
05394f39
CW
4843 obj->phys_obj->cur_obj = NULL;
4844 obj->phys_obj = NULL;
71acb5eb
DA
4845}
4846
4847int
4848i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4849 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4850 int id,
4851 int align)
71acb5eb 4852{
496ad9aa 4853 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
3e31c6c0 4854 struct drm_i915_private *dev_priv = dev->dev_private;
71acb5eb
DA
4855 int ret = 0;
4856 int page_count;
4857 int i;
4858
4859 if (id > I915_MAX_PHYS_OBJECT)
4860 return -EINVAL;
4861
05394f39
CW
4862 if (obj->phys_obj) {
4863 if (obj->phys_obj->id == id)
71acb5eb
DA
4864 return 0;
4865 i915_gem_detach_phys_object(dev, obj);
4866 }
4867
71acb5eb
DA
4868 /* create a new object */
4869 if (!dev_priv->mm.phys_objs[id - 1]) {
4870 ret = i915_gem_init_phys_object(dev, id,
05394f39 4871 obj->base.size, align);
71acb5eb 4872 if (ret) {
05394f39
CW
4873 DRM_ERROR("failed to init phys object %d size: %zu\n",
4874 id, obj->base.size);
e5281ccd 4875 return ret;
71acb5eb
DA
4876 }
4877 }
4878
4879 /* bind to the object */
05394f39
CW
4880 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4881 obj->phys_obj->cur_obj = obj;
71acb5eb 4882
05394f39 4883 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4884
4885 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4886 struct page *page;
4887 char *dst, *src;
4888
5949eac4 4889 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4890 if (IS_ERR(page))
4891 return PTR_ERR(page);
71acb5eb 4892
ff75b9bc 4893 src = kmap_atomic(page);
05394f39 4894 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4895 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4896 kunmap_atomic(src);
71acb5eb 4897
e5281ccd
CW
4898 mark_page_accessed(page);
4899 page_cache_release(page);
4900 }
d78b47b9 4901
71acb5eb 4902 return 0;
71acb5eb
DA
4903}
4904
4905static int
05394f39
CW
4906i915_gem_phys_pwrite(struct drm_device *dev,
4907 struct drm_i915_gem_object *obj,
71acb5eb
DA
4908 struct drm_i915_gem_pwrite *args,
4909 struct drm_file *file_priv)
4910{
05394f39 4911 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4912 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4913
b47b30cc
CW
4914 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4915 unsigned long unwritten;
4916
4917 /* The physical object once assigned is fixed for the lifetime
4918 * of the obj, so we can safely drop the lock and continue
4919 * to access vaddr.
4920 */
4921 mutex_unlock(&dev->struct_mutex);
4922 unwritten = copy_from_user(vaddr, user_data, args->size);
4923 mutex_lock(&dev->struct_mutex);
4924 if (unwritten)
4925 return -EFAULT;
4926 }
71acb5eb 4927
e76e9aeb 4928 i915_gem_chipset_flush(dev);
71acb5eb
DA
4929 return 0;
4930}
b962442e 4931
f787a5f5 4932void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4933{
f787a5f5 4934 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4935
b29c19b6
CW
4936 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4937
b962442e
EA
4938 /* Clean up our request list when the client is going away, so that
4939 * later retire_requests won't dereference our soon-to-be-gone
4940 * file_priv.
4941 */
1c25595f 4942 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4943 while (!list_empty(&file_priv->mm.request_list)) {
4944 struct drm_i915_gem_request *request;
4945
4946 request = list_first_entry(&file_priv->mm.request_list,
4947 struct drm_i915_gem_request,
4948 client_list);
4949 list_del(&request->client_list);
4950 request->file_priv = NULL;
4951 }
1c25595f 4952 spin_unlock(&file_priv->mm.lock);
b962442e 4953}
31169714 4954
b29c19b6
CW
4955static void
4956i915_gem_file_idle_work_handler(struct work_struct *work)
4957{
4958 struct drm_i915_file_private *file_priv =
4959 container_of(work, typeof(*file_priv), mm.idle_work.work);
4960
4961 atomic_set(&file_priv->rps_wait_boost, false);
4962}
4963
4964int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4965{
4966 struct drm_i915_file_private *file_priv;
e422b888 4967 int ret;
b29c19b6
CW
4968
4969 DRM_DEBUG_DRIVER("\n");
4970
4971 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4972 if (!file_priv)
4973 return -ENOMEM;
4974
4975 file->driver_priv = file_priv;
4976 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 4977 file_priv->file = file;
b29c19b6
CW
4978
4979 spin_lock_init(&file_priv->mm.lock);
4980 INIT_LIST_HEAD(&file_priv->mm.request_list);
4981 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4982 i915_gem_file_idle_work_handler);
4983
e422b888
BW
4984 ret = i915_gem_context_open(dev, file);
4985 if (ret)
4986 kfree(file_priv);
b29c19b6 4987
e422b888 4988 return ret;
b29c19b6
CW
4989}
4990
5774506f
CW
4991static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4992{
4993 if (!mutex_is_locked(mutex))
4994 return false;
4995
4996#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4997 return mutex->owner == task;
4998#else
4999 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5000 return false;
5001#endif
5002}
5003
ceabbba5
CW
5004static int num_vma_bound(struct drm_i915_gem_object *obj)
5005{
5006 struct i915_vma *vma;
5007 int count = 0;
5008
5009 list_for_each_entry(vma, &obj->vma_list, vma_link)
5010 if (drm_mm_node_allocated(&vma->node))
5011 count++;
5012
5013 return count;
5014}
5015
7dc19d5a 5016static unsigned long
ceabbba5 5017i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5018{
17250b71 5019 struct drm_i915_private *dev_priv =
ceabbba5 5020 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5021 struct drm_device *dev = dev_priv->dev;
6c085a72 5022 struct drm_i915_gem_object *obj;
5774506f 5023 bool unlock = true;
7dc19d5a 5024 unsigned long count;
17250b71 5025
5774506f
CW
5026 if (!mutex_trylock(&dev->struct_mutex)) {
5027 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5028 return 0;
5774506f 5029
677feac2 5030 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5031 return 0;
677feac2 5032
5774506f
CW
5033 unlock = false;
5034 }
31169714 5035
7dc19d5a 5036 count = 0;
35c20a60 5037 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5038 if (obj->pages_pin_count == 0)
7dc19d5a 5039 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5040
5041 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5042 if (!i915_gem_obj_is_pinned(obj) &&
5043 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5044 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5045 }
17250b71 5046
5774506f
CW
5047 if (unlock)
5048 mutex_unlock(&dev->struct_mutex);
d9973b43 5049
7dc19d5a 5050 return count;
31169714 5051}
a70a3148
BW
5052
5053/* All the new VM stuff */
5054unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5055 struct i915_address_space *vm)
5056{
5057 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5058 struct i915_vma *vma;
5059
6f425321
BW
5060 if (!dev_priv->mm.aliasing_ppgtt ||
5061 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5062 vm = &dev_priv->gtt.base;
5063
5064 BUG_ON(list_empty(&o->vma_list));
5065 list_for_each_entry(vma, &o->vma_list, vma_link) {
5066 if (vma->vm == vm)
5067 return vma->node.start;
5068
5069 }
5070 return -1;
5071}
5072
5073bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5074 struct i915_address_space *vm)
5075{
5076 struct i915_vma *vma;
5077
5078 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5079 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5080 return true;
5081
5082 return false;
5083}
5084
5085bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5086{
5a1d5eb0 5087 struct i915_vma *vma;
a70a3148 5088
5a1d5eb0
CW
5089 list_for_each_entry(vma, &o->vma_list, vma_link)
5090 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5091 return true;
5092
5093 return false;
5094}
5095
5096unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5097 struct i915_address_space *vm)
5098{
5099 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5100 struct i915_vma *vma;
5101
6f425321
BW
5102 if (!dev_priv->mm.aliasing_ppgtt ||
5103 vm == &dev_priv->mm.aliasing_ppgtt->base)
a70a3148
BW
5104 vm = &dev_priv->gtt.base;
5105
5106 BUG_ON(list_empty(&o->vma_list));
5107
5108 list_for_each_entry(vma, &o->vma_list, vma_link)
5109 if (vma->vm == vm)
5110 return vma->node.size;
5111
5112 return 0;
5113}
5114
7dc19d5a 5115static unsigned long
ceabbba5 5116i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5117{
5118 struct drm_i915_private *dev_priv =
ceabbba5 5119 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5120 struct drm_device *dev = dev_priv->dev;
7dc19d5a
DC
5121 unsigned long freed;
5122 bool unlock = true;
5123
5124 if (!mutex_trylock(&dev->struct_mutex)) {
5125 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 5126 return SHRINK_STOP;
7dc19d5a
DC
5127
5128 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 5129 return SHRINK_STOP;
7dc19d5a
DC
5130
5131 unlock = false;
5132 }
5133
d9973b43
CW
5134 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5135 if (freed < sc->nr_to_scan)
5136 freed += __i915_gem_shrink(dev_priv,
5137 sc->nr_to_scan - freed,
5138 false);
5139 if (freed < sc->nr_to_scan)
7dc19d5a
DC
5140 freed += i915_gem_shrink_all(dev_priv);
5141
5142 if (unlock)
5143 mutex_unlock(&dev->struct_mutex);
d9973b43 5144
7dc19d5a
DC
5145 return freed;
5146}
5c2abbea
BW
5147
5148struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5149{
5150 struct i915_vma *vma;
5151
19656430
OM
5152 /* This WARN has probably outlived its usefulness (callers already
5153 * WARN if they don't find the GGTT vma they expect). When removing,
5154 * remember to remove the pre-check in is_pin_display() as well */
5c2abbea
BW
5155 if (WARN_ON(list_empty(&obj->vma_list)))
5156 return NULL;
5157
5158 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
6e164c33 5159 if (vma->vm != obj_to_ggtt(obj))
5c2abbea
BW
5160 return NULL;
5161
5162 return vma;
5163}
This page took 1.062095 seconds and 5 git commands to generate.