drm/i915: Disable pagefaults along execbuffer relocation fast path
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
673a394b 37
88241785 38static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
05394f39
CW
39static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
88241785
CW
41static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
05394f39 46static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
88241785
CW
47static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
d9e86c0e
CW
50static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
05394f39
CW
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
71acb5eb 54 struct drm_i915_gem_pwrite *args,
05394f39
CW
55 struct drm_file *file);
56static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
673a394b 57
17250b71
CW
58static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
61
31169714 62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69}
70
71static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73{
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76}
77
21dd3734
CW
78static int
79i915_gem_wait_for_error(struct drm_device *dev)
30dbf0c0
CW
80{
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
21dd3734
CW
93 if (atomic_read(&dev_priv->mm.wedged)) {
94 /* GPU is hung, bump the completion count to account for
95 * the token we just consumed so that we never hit zero and
96 * end up waiting upon a subsequent completion event that
97 * will never happen.
98 */
99 spin_lock_irqsave(&x->wait.lock, flags);
100 x->done++;
101 spin_unlock_irqrestore(&x->wait.lock, flags);
102 }
103 return 0;
30dbf0c0
CW
104}
105
54cf91dc 106int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 107{
76c1dec1
CW
108 int ret;
109
21dd3734 110 ret = i915_gem_wait_for_error(dev);
76c1dec1
CW
111 if (ret)
112 return ret;
113
114 ret = mutex_lock_interruptible(&dev->struct_mutex);
115 if (ret)
116 return ret;
117
23bc5982 118 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
119 return 0;
120}
30dbf0c0 121
7d1c4804 122static inline bool
05394f39 123i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 124{
05394f39 125 return obj->gtt_space && !obj->active && obj->pin_count == 0;
7d1c4804
CW
126}
127
2021746e
CW
128void i915_gem_do_init(struct drm_device *dev,
129 unsigned long start,
130 unsigned long mappable_end,
131 unsigned long end)
673a394b
EA
132{
133 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 134
bee4a186 135 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
673a394b 136
bee4a186
CW
137 dev_priv->mm.gtt_start = start;
138 dev_priv->mm.gtt_mappable_end = mappable_end;
139 dev_priv->mm.gtt_end = end;
73aa808f 140 dev_priv->mm.gtt_total = end - start;
fb7d516a 141 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
bee4a186
CW
142
143 /* Take over this portion of the GTT */
144 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
79e53945 145}
673a394b 146
79e53945
JB
147int
148i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 149 struct drm_file *file)
79e53945
JB
150{
151 struct drm_i915_gem_init *args = data;
2021746e
CW
152
153 if (args->gtt_start >= args->gtt_end ||
154 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
155 return -EINVAL;
79e53945
JB
156
157 mutex_lock(&dev->struct_mutex);
2021746e 158 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
159 mutex_unlock(&dev->struct_mutex);
160
2021746e 161 return 0;
673a394b
EA
162}
163
5a125c3c
EA
164int
165i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 166 struct drm_file *file)
5a125c3c 167{
73aa808f 168 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 169 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
170 struct drm_i915_gem_object *obj;
171 size_t pinned;
5a125c3c
EA
172
173 if (!(dev->driver->driver_features & DRIVER_GEM))
174 return -ENODEV;
175
6299f992 176 pinned = 0;
73aa808f 177 mutex_lock(&dev->struct_mutex);
6299f992
CW
178 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
179 pinned += obj->gtt_space->size;
73aa808f 180 mutex_unlock(&dev->struct_mutex);
5a125c3c 181
6299f992
CW
182 args->aper_size = dev_priv->mm.gtt_total;
183 args->aper_available_size = args->aper_size -pinned;
184
5a125c3c
EA
185 return 0;
186}
187
ff72145b
DA
188static int
189i915_gem_create(struct drm_file *file,
190 struct drm_device *dev,
191 uint64_t size,
192 uint32_t *handle_p)
673a394b 193{
05394f39 194 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
195 int ret;
196 u32 handle;
673a394b 197
ff72145b 198 size = roundup(size, PAGE_SIZE);
673a394b
EA
199
200 /* Allocate the new object */
ff72145b 201 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
202 if (obj == NULL)
203 return -ENOMEM;
204
05394f39 205 ret = drm_gem_handle_create(file, &obj->base, &handle);
1dfd9754 206 if (ret) {
05394f39
CW
207 drm_gem_object_release(&obj->base);
208 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
202f2fef 209 kfree(obj);
673a394b 210 return ret;
1dfd9754 211 }
673a394b 212
202f2fef 213 /* drop reference from allocate - handle holds it now */
05394f39 214 drm_gem_object_unreference(&obj->base);
202f2fef
CW
215 trace_i915_gem_object_create(obj);
216
ff72145b 217 *handle_p = handle;
673a394b
EA
218 return 0;
219}
220
ff72145b
DA
221int
222i915_gem_dumb_create(struct drm_file *file,
223 struct drm_device *dev,
224 struct drm_mode_create_dumb *args)
225{
226 /* have to work out size/pitch and return them */
ed0291fd 227 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
228 args->size = args->pitch * args->height;
229 return i915_gem_create(file, dev,
230 args->size, &args->handle);
231}
232
233int i915_gem_dumb_destroy(struct drm_file *file,
234 struct drm_device *dev,
235 uint32_t handle)
236{
237 return drm_gem_handle_delete(file, handle);
238}
239
240/**
241 * Creates a new mm object and returns a handle to it.
242 */
243int
244i915_gem_create_ioctl(struct drm_device *dev, void *data,
245 struct drm_file *file)
246{
247 struct drm_i915_gem_create *args = data;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250}
251
05394f39 252static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
280b713b 253{
05394f39 254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
280b713b
EA
255
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
05394f39 257 obj->tiling_mode != I915_TILING_NONE;
280b713b
EA
258}
259
99a03df5 260static inline void
40123c1f
EA
261slow_shmem_copy(struct page *dst_page,
262 int dst_offset,
263 struct page *src_page,
264 int src_offset,
265 int length)
266{
267 char *dst_vaddr, *src_vaddr;
268
99a03df5
CW
269 dst_vaddr = kmap(dst_page);
270 src_vaddr = kmap(src_page);
40123c1f
EA
271
272 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
273
99a03df5
CW
274 kunmap(src_page);
275 kunmap(dst_page);
40123c1f
EA
276}
277
99a03df5 278static inline void
280b713b
EA
279slow_shmem_bit17_copy(struct page *gpu_page,
280 int gpu_offset,
281 struct page *cpu_page,
282 int cpu_offset,
283 int length,
284 int is_read)
285{
286 char *gpu_vaddr, *cpu_vaddr;
287
288 /* Use the unswizzled path if this page isn't affected. */
289 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
290 if (is_read)
291 return slow_shmem_copy(cpu_page, cpu_offset,
292 gpu_page, gpu_offset, length);
293 else
294 return slow_shmem_copy(gpu_page, gpu_offset,
295 cpu_page, cpu_offset, length);
296 }
297
99a03df5
CW
298 gpu_vaddr = kmap(gpu_page);
299 cpu_vaddr = kmap(cpu_page);
280b713b
EA
300
301 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
302 * XORing with the other bits (A9 for Y, A9 and A10 for X)
303 */
304 while (length > 0) {
305 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306 int this_length = min(cacheline_end - gpu_offset, length);
307 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309 if (is_read) {
310 memcpy(cpu_vaddr + cpu_offset,
311 gpu_vaddr + swizzled_gpu_offset,
312 this_length);
313 } else {
314 memcpy(gpu_vaddr + swizzled_gpu_offset,
315 cpu_vaddr + cpu_offset,
316 this_length);
317 }
318 cpu_offset += this_length;
319 gpu_offset += this_length;
320 length -= this_length;
321 }
322
99a03df5
CW
323 kunmap(cpu_page);
324 kunmap(gpu_page);
280b713b
EA
325}
326
eb01459f
EA
327/**
328 * This is the fast shmem pread path, which attempts to copy_from_user directly
329 * from the backing pages of the object to the user's address space. On a
330 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
331 */
332static int
05394f39
CW
333i915_gem_shmem_pread_fast(struct drm_device *dev,
334 struct drm_i915_gem_object *obj,
eb01459f 335 struct drm_i915_gem_pread *args,
05394f39 336 struct drm_file *file)
eb01459f 337{
05394f39 338 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f 339 ssize_t remain;
e5281ccd 340 loff_t offset;
eb01459f
EA
341 char __user *user_data;
342 int page_offset, page_length;
eb01459f
EA
343
344 user_data = (char __user *) (uintptr_t) args->data_ptr;
345 remain = args->size;
346
eb01459f
EA
347 offset = args->offset;
348
349 while (remain > 0) {
e5281ccd
CW
350 struct page *page;
351 char *vaddr;
352 int ret;
353
eb01459f
EA
354 /* Operation in this page
355 *
eb01459f
EA
356 * page_offset = offset within page
357 * page_length = bytes to copy for this page
358 */
eb01459f
EA
359 page_offset = offset & (PAGE_SIZE-1);
360 page_length = remain;
361 if ((page_offset + remain) > PAGE_SIZE)
362 page_length = PAGE_SIZE - page_offset;
363
e5281ccd
CW
364 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
365 GFP_HIGHUSER | __GFP_RECLAIMABLE);
366 if (IS_ERR(page))
367 return PTR_ERR(page);
368
369 vaddr = kmap_atomic(page);
370 ret = __copy_to_user_inatomic(user_data,
371 vaddr + page_offset,
372 page_length);
373 kunmap_atomic(vaddr);
374
375 mark_page_accessed(page);
376 page_cache_release(page);
377 if (ret)
4f27b75d 378 return -EFAULT;
eb01459f
EA
379
380 remain -= page_length;
381 user_data += page_length;
382 offset += page_length;
383 }
384
4f27b75d 385 return 0;
eb01459f
EA
386}
387
388/**
389 * This is the fallback shmem pread path, which allocates temporary storage
390 * in kernel space to copy_to_user into outside of the struct_mutex, so we
391 * can copy out of the object's backing pages while holding the struct mutex
392 * and not take page faults.
393 */
394static int
05394f39
CW
395i915_gem_shmem_pread_slow(struct drm_device *dev,
396 struct drm_i915_gem_object *obj,
eb01459f 397 struct drm_i915_gem_pread *args,
05394f39 398 struct drm_file *file)
eb01459f 399{
05394f39 400 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
eb01459f
EA
401 struct mm_struct *mm = current->mm;
402 struct page **user_pages;
403 ssize_t remain;
404 loff_t offset, pinned_pages, i;
405 loff_t first_data_page, last_data_page, num_pages;
e5281ccd
CW
406 int shmem_page_offset;
407 int data_page_index, data_page_offset;
eb01459f
EA
408 int page_length;
409 int ret;
410 uint64_t data_ptr = args->data_ptr;
280b713b 411 int do_bit17_swizzling;
eb01459f
EA
412
413 remain = args->size;
414
415 /* Pin the user pages containing the data. We can't fault while
416 * holding the struct mutex, yet we want to hold it while
417 * dereferencing the user data.
418 */
419 first_data_page = data_ptr / PAGE_SIZE;
420 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
421 num_pages = last_data_page - first_data_page + 1;
422
4f27b75d 423 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
424 if (user_pages == NULL)
425 return -ENOMEM;
426
4f27b75d 427 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
428 down_read(&mm->mmap_sem);
429 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 430 num_pages, 1, 0, user_pages, NULL);
eb01459f 431 up_read(&mm->mmap_sem);
4f27b75d 432 mutex_lock(&dev->struct_mutex);
eb01459f
EA
433 if (pinned_pages < num_pages) {
434 ret = -EFAULT;
4f27b75d 435 goto out;
eb01459f
EA
436 }
437
4f27b75d
CW
438 ret = i915_gem_object_set_cpu_read_domain_range(obj,
439 args->offset,
440 args->size);
07f73f69 441 if (ret)
4f27b75d 442 goto out;
eb01459f 443
4f27b75d 444 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 445
eb01459f
EA
446 offset = args->offset;
447
448 while (remain > 0) {
e5281ccd
CW
449 struct page *page;
450
eb01459f
EA
451 /* Operation in this page
452 *
eb01459f
EA
453 * shmem_page_offset = offset within page in shmem file
454 * data_page_index = page number in get_user_pages return
455 * data_page_offset = offset with data_page_index page.
456 * page_length = bytes to copy for this page
457 */
eb01459f
EA
458 shmem_page_offset = offset & ~PAGE_MASK;
459 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
460 data_page_offset = data_ptr & ~PAGE_MASK;
461
462 page_length = remain;
463 if ((shmem_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - shmem_page_offset;
465 if ((data_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - data_page_offset;
467
e5281ccd
CW
468 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
469 GFP_HIGHUSER | __GFP_RECLAIMABLE);
470 if (IS_ERR(page))
471 return PTR_ERR(page);
472
280b713b 473 if (do_bit17_swizzling) {
e5281ccd 474 slow_shmem_bit17_copy(page,
280b713b 475 shmem_page_offset,
99a03df5
CW
476 user_pages[data_page_index],
477 data_page_offset,
478 page_length,
479 1);
480 } else {
481 slow_shmem_copy(user_pages[data_page_index],
482 data_page_offset,
e5281ccd 483 page,
99a03df5
CW
484 shmem_page_offset,
485 page_length);
280b713b 486 }
eb01459f 487
e5281ccd
CW
488 mark_page_accessed(page);
489 page_cache_release(page);
490
eb01459f
EA
491 remain -= page_length;
492 data_ptr += page_length;
493 offset += page_length;
494 }
495
4f27b75d 496out:
eb01459f
EA
497 for (i = 0; i < pinned_pages; i++) {
498 SetPageDirty(user_pages[i]);
e5281ccd 499 mark_page_accessed(user_pages[i]);
eb01459f
EA
500 page_cache_release(user_pages[i]);
501 }
8e7d2b2c 502 drm_free_large(user_pages);
eb01459f
EA
503
504 return ret;
505}
506
673a394b
EA
507/**
508 * Reads data from the object referenced by handle.
509 *
510 * On error, the contents of *data are undefined.
511 */
512int
513i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 514 struct drm_file *file)
673a394b
EA
515{
516 struct drm_i915_gem_pread *args = data;
05394f39 517 struct drm_i915_gem_object *obj;
35b62a89 518 int ret = 0;
673a394b 519
51311d0a
CW
520 if (args->size == 0)
521 return 0;
522
523 if (!access_ok(VERIFY_WRITE,
524 (char __user *)(uintptr_t)args->data_ptr,
525 args->size))
526 return -EFAULT;
527
528 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
529 args->size);
530 if (ret)
531 return -EFAULT;
532
4f27b75d 533 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 534 if (ret)
4f27b75d 535 return ret;
673a394b 536
05394f39 537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 538 if (&obj->base == NULL) {
1d7cfea1
CW
539 ret = -ENOENT;
540 goto unlock;
4f27b75d 541 }
673a394b 542
7dcd2499 543 /* Bounds check source. */
05394f39
CW
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
ce9d419d 546 ret = -EINVAL;
35b62a89 547 goto out;
ce9d419d
CW
548 }
549
db53a302
CW
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
4f27b75d
CW
552 ret = i915_gem_object_set_cpu_read_domain_range(obj,
553 args->offset,
554 args->size);
555 if (ret)
e5281ccd 556 goto out;
4f27b75d
CW
557
558 ret = -EFAULT;
559 if (!i915_gem_object_needs_bit17_swizzle(obj))
05394f39 560 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
4f27b75d 561 if (ret == -EFAULT)
05394f39 562 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
673a394b 563
35b62a89 564out:
05394f39 565 drm_gem_object_unreference(&obj->base);
1d7cfea1 566unlock:
4f27b75d 567 mutex_unlock(&dev->struct_mutex);
eb01459f 568 return ret;
673a394b
EA
569}
570
0839ccb8
KP
571/* This is the fast write path which cannot handle
572 * page faults in the source data
9b7530cc 573 */
0839ccb8
KP
574
575static inline int
576fast_user_write(struct io_mapping *mapping,
577 loff_t page_base, int page_offset,
578 char __user *user_data,
579 int length)
9b7530cc 580{
9b7530cc 581 char *vaddr_atomic;
0839ccb8 582 unsigned long unwritten;
9b7530cc 583
3e4d3af5 584 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
585 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
586 user_data, length);
3e4d3af5 587 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 588 return unwritten;
0839ccb8
KP
589}
590
591/* Here's the write path which can sleep for
592 * page faults
593 */
594
ab34c226 595static inline void
3de09aa3
EA
596slow_kernel_write(struct io_mapping *mapping,
597 loff_t gtt_base, int gtt_offset,
598 struct page *user_page, int user_offset,
599 int length)
0839ccb8 600{
ab34c226
CW
601 char __iomem *dst_vaddr;
602 char *src_vaddr;
0839ccb8 603
ab34c226
CW
604 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
605 src_vaddr = kmap(user_page);
606
607 memcpy_toio(dst_vaddr + gtt_offset,
608 src_vaddr + user_offset,
609 length);
610
611 kunmap(user_page);
612 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
613}
614
3de09aa3
EA
615/**
616 * This is the fast pwrite path, where we copy the data directly from the
617 * user into the GTT, uncached.
618 */
673a394b 619static int
05394f39
CW
620i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621 struct drm_i915_gem_object *obj,
3de09aa3 622 struct drm_i915_gem_pwrite *args,
05394f39 623 struct drm_file *file)
673a394b 624{
0839ccb8 625 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 626 ssize_t remain;
0839ccb8 627 loff_t offset, page_base;
673a394b 628 char __user *user_data;
0839ccb8 629 int page_offset, page_length;
673a394b
EA
630
631 user_data = (char __user *) (uintptr_t) args->data_ptr;
632 remain = args->size;
673a394b 633
05394f39 634 offset = obj->gtt_offset + args->offset;
673a394b
EA
635
636 while (remain > 0) {
637 /* Operation in this page
638 *
0839ccb8
KP
639 * page_base = page offset within aperture
640 * page_offset = offset within page
641 * page_length = bytes to copy for this page
673a394b 642 */
0839ccb8
KP
643 page_base = (offset & ~(PAGE_SIZE-1));
644 page_offset = offset & (PAGE_SIZE-1);
645 page_length = remain;
646 if ((page_offset + remain) > PAGE_SIZE)
647 page_length = PAGE_SIZE - page_offset;
648
0839ccb8 649 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
650 * source page isn't available. Return the error and we'll
651 * retry in the slow path.
0839ccb8 652 */
fbd5a26d
CW
653 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
654 page_offset, user_data, page_length))
655
656 return -EFAULT;
673a394b 657
0839ccb8
KP
658 remain -= page_length;
659 user_data += page_length;
660 offset += page_length;
673a394b 661 }
673a394b 662
fbd5a26d 663 return 0;
673a394b
EA
664}
665
3de09aa3
EA
666/**
667 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
668 * the memory and maps it using kmap_atomic for copying.
669 *
670 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
671 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
672 */
3043c60c 673static int
05394f39
CW
674i915_gem_gtt_pwrite_slow(struct drm_device *dev,
675 struct drm_i915_gem_object *obj,
3de09aa3 676 struct drm_i915_gem_pwrite *args,
05394f39 677 struct drm_file *file)
673a394b 678{
3de09aa3
EA
679 drm_i915_private_t *dev_priv = dev->dev_private;
680 ssize_t remain;
681 loff_t gtt_page_base, offset;
682 loff_t first_data_page, last_data_page, num_pages;
683 loff_t pinned_pages, i;
684 struct page **user_pages;
685 struct mm_struct *mm = current->mm;
686 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 687 int ret;
3de09aa3
EA
688 uint64_t data_ptr = args->data_ptr;
689
690 remain = args->size;
691
692 /* Pin the user pages containing the data. We can't fault while
693 * holding the struct mutex, and all of the pwrite implementations
694 * want to hold it while dereferencing the user data.
695 */
696 first_data_page = data_ptr / PAGE_SIZE;
697 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
698 num_pages = last_data_page - first_data_page + 1;
699
fbd5a26d 700 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
701 if (user_pages == NULL)
702 return -ENOMEM;
703
fbd5a26d 704 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
705 down_read(&mm->mmap_sem);
706 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
707 num_pages, 0, 0, user_pages, NULL);
708 up_read(&mm->mmap_sem);
fbd5a26d 709 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
710 if (pinned_pages < num_pages) {
711 ret = -EFAULT;
712 goto out_unpin_pages;
713 }
673a394b 714
d9e86c0e
CW
715 ret = i915_gem_object_set_to_gtt_domain(obj, true);
716 if (ret)
717 goto out_unpin_pages;
718
719 ret = i915_gem_object_put_fence(obj);
3de09aa3 720 if (ret)
fbd5a26d 721 goto out_unpin_pages;
3de09aa3 722
05394f39 723 offset = obj->gtt_offset + args->offset;
3de09aa3
EA
724
725 while (remain > 0) {
726 /* Operation in this page
727 *
728 * gtt_page_base = page offset within aperture
729 * gtt_page_offset = offset within page in aperture
730 * data_page_index = page number in get_user_pages return
731 * data_page_offset = offset with data_page_index page.
732 * page_length = bytes to copy for this page
733 */
734 gtt_page_base = offset & PAGE_MASK;
735 gtt_page_offset = offset & ~PAGE_MASK;
736 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
737 data_page_offset = data_ptr & ~PAGE_MASK;
738
739 page_length = remain;
740 if ((gtt_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - gtt_page_offset;
742 if ((data_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - data_page_offset;
744
ab34c226
CW
745 slow_kernel_write(dev_priv->mm.gtt_mapping,
746 gtt_page_base, gtt_page_offset,
747 user_pages[data_page_index],
748 data_page_offset,
749 page_length);
3de09aa3
EA
750
751 remain -= page_length;
752 offset += page_length;
753 data_ptr += page_length;
754 }
755
3de09aa3
EA
756out_unpin_pages:
757 for (i = 0; i < pinned_pages; i++)
758 page_cache_release(user_pages[i]);
8e7d2b2c 759 drm_free_large(user_pages);
3de09aa3
EA
760
761 return ret;
762}
763
40123c1f
EA
764/**
765 * This is the fast shmem pwrite path, which attempts to directly
766 * copy_from_user into the kmapped pages backing the object.
767 */
3043c60c 768static int
05394f39
CW
769i915_gem_shmem_pwrite_fast(struct drm_device *dev,
770 struct drm_i915_gem_object *obj,
40123c1f 771 struct drm_i915_gem_pwrite *args,
05394f39 772 struct drm_file *file)
673a394b 773{
05394f39 774 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f 775 ssize_t remain;
e5281ccd 776 loff_t offset;
40123c1f
EA
777 char __user *user_data;
778 int page_offset, page_length;
40123c1f
EA
779
780 user_data = (char __user *) (uintptr_t) args->data_ptr;
781 remain = args->size;
673a394b 782
40123c1f 783 offset = args->offset;
05394f39 784 obj->dirty = 1;
40123c1f
EA
785
786 while (remain > 0) {
e5281ccd
CW
787 struct page *page;
788 char *vaddr;
789 int ret;
790
40123c1f
EA
791 /* Operation in this page
792 *
40123c1f
EA
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
795 */
40123c1f
EA
796 page_offset = offset & (PAGE_SIZE-1);
797 page_length = remain;
798 if ((page_offset + remain) > PAGE_SIZE)
799 page_length = PAGE_SIZE - page_offset;
800
e5281ccd
CW
801 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
802 GFP_HIGHUSER | __GFP_RECLAIMABLE);
803 if (IS_ERR(page))
804 return PTR_ERR(page);
805
806 vaddr = kmap_atomic(page, KM_USER0);
807 ret = __copy_from_user_inatomic(vaddr + page_offset,
808 user_data,
809 page_length);
810 kunmap_atomic(vaddr, KM_USER0);
811
812 set_page_dirty(page);
813 mark_page_accessed(page);
814 page_cache_release(page);
815
816 /* If we get a fault while copying data, then (presumably) our
817 * source page isn't available. Return the error and we'll
818 * retry in the slow path.
819 */
820 if (ret)
fbd5a26d 821 return -EFAULT;
40123c1f
EA
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
fbd5a26d 828 return 0;
40123c1f
EA
829}
830
831/**
832 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
833 * the memory and maps it using kmap_atomic for copying.
834 *
835 * This avoids taking mmap_sem for faulting on the user's address while the
836 * struct_mutex is held.
837 */
838static int
05394f39
CW
839i915_gem_shmem_pwrite_slow(struct drm_device *dev,
840 struct drm_i915_gem_object *obj,
40123c1f 841 struct drm_i915_gem_pwrite *args,
05394f39 842 struct drm_file *file)
40123c1f 843{
05394f39 844 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
40123c1f
EA
845 struct mm_struct *mm = current->mm;
846 struct page **user_pages;
847 ssize_t remain;
848 loff_t offset, pinned_pages, i;
849 loff_t first_data_page, last_data_page, num_pages;
e5281ccd 850 int shmem_page_offset;
40123c1f
EA
851 int data_page_index, data_page_offset;
852 int page_length;
853 int ret;
854 uint64_t data_ptr = args->data_ptr;
280b713b 855 int do_bit17_swizzling;
40123c1f
EA
856
857 remain = args->size;
858
859 /* Pin the user pages containing the data. We can't fault while
860 * holding the struct mutex, and all of the pwrite implementations
861 * want to hold it while dereferencing the user data.
862 */
863 first_data_page = data_ptr / PAGE_SIZE;
864 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
865 num_pages = last_data_page - first_data_page + 1;
866
4f27b75d 867 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
868 if (user_pages == NULL)
869 return -ENOMEM;
870
fbd5a26d 871 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
872 down_read(&mm->mmap_sem);
873 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
874 num_pages, 0, 0, user_pages, NULL);
875 up_read(&mm->mmap_sem);
fbd5a26d 876 mutex_lock(&dev->struct_mutex);
40123c1f
EA
877 if (pinned_pages < num_pages) {
878 ret = -EFAULT;
fbd5a26d 879 goto out;
673a394b
EA
880 }
881
fbd5a26d 882 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 883 if (ret)
fbd5a26d 884 goto out;
40123c1f 885
fbd5a26d 886 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 887
673a394b 888 offset = args->offset;
05394f39 889 obj->dirty = 1;
673a394b 890
40123c1f 891 while (remain > 0) {
e5281ccd
CW
892 struct page *page;
893
40123c1f
EA
894 /* Operation in this page
895 *
40123c1f
EA
896 * shmem_page_offset = offset within page in shmem file
897 * data_page_index = page number in get_user_pages return
898 * data_page_offset = offset with data_page_index page.
899 * page_length = bytes to copy for this page
900 */
40123c1f
EA
901 shmem_page_offset = offset & ~PAGE_MASK;
902 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
903 data_page_offset = data_ptr & ~PAGE_MASK;
904
905 page_length = remain;
906 if ((shmem_page_offset + page_length) > PAGE_SIZE)
907 page_length = PAGE_SIZE - shmem_page_offset;
908 if ((data_page_offset + page_length) > PAGE_SIZE)
909 page_length = PAGE_SIZE - data_page_offset;
910
e5281ccd
CW
911 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
912 GFP_HIGHUSER | __GFP_RECLAIMABLE);
913 if (IS_ERR(page)) {
914 ret = PTR_ERR(page);
915 goto out;
916 }
917
280b713b 918 if (do_bit17_swizzling) {
e5281ccd 919 slow_shmem_bit17_copy(page,
280b713b
EA
920 shmem_page_offset,
921 user_pages[data_page_index],
922 data_page_offset,
99a03df5
CW
923 page_length,
924 0);
925 } else {
e5281ccd 926 slow_shmem_copy(page,
99a03df5
CW
927 shmem_page_offset,
928 user_pages[data_page_index],
929 data_page_offset,
930 page_length);
280b713b 931 }
40123c1f 932
e5281ccd
CW
933 set_page_dirty(page);
934 mark_page_accessed(page);
935 page_cache_release(page);
936
40123c1f
EA
937 remain -= page_length;
938 data_ptr += page_length;
939 offset += page_length;
673a394b
EA
940 }
941
fbd5a26d 942out:
40123c1f
EA
943 for (i = 0; i < pinned_pages; i++)
944 page_cache_release(user_pages[i]);
8e7d2b2c 945 drm_free_large(user_pages);
673a394b 946
40123c1f 947 return ret;
673a394b
EA
948}
949
950/**
951 * Writes data to the object referenced by handle.
952 *
953 * On error, the contents of the buffer that were to be modified are undefined.
954 */
955int
956i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 957 struct drm_file *file)
673a394b
EA
958{
959 struct drm_i915_gem_pwrite *args = data;
05394f39 960 struct drm_i915_gem_object *obj;
51311d0a
CW
961 int ret;
962
963 if (args->size == 0)
964 return 0;
965
966 if (!access_ok(VERIFY_READ,
967 (char __user *)(uintptr_t)args->data_ptr,
968 args->size))
969 return -EFAULT;
970
971 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
972 args->size);
973 if (ret)
974 return -EFAULT;
673a394b 975
fbd5a26d 976 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 977 if (ret)
fbd5a26d 978 return ret;
1d7cfea1 979
05394f39 980 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 981 if (&obj->base == NULL) {
1d7cfea1
CW
982 ret = -ENOENT;
983 goto unlock;
fbd5a26d 984 }
673a394b 985
7dcd2499 986 /* Bounds check destination. */
05394f39
CW
987 if (args->offset > obj->base.size ||
988 args->size > obj->base.size - args->offset) {
ce9d419d 989 ret = -EINVAL;
35b62a89 990 goto out;
ce9d419d
CW
991 }
992
db53a302
CW
993 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
994
673a394b
EA
995 /* We can only do the GTT pwrite on untiled buffers, as otherwise
996 * it would end up going through the fenced access, and we'll get
997 * different detiling behavior between reading and writing.
998 * pread/pwrite currently are reading and writing from the CPU
999 * perspective, requiring manual detiling by the client.
1000 */
05394f39 1001 if (obj->phys_obj)
fbd5a26d 1002 ret = i915_gem_phys_pwrite(dev, obj, args, file);
d9e86c0e 1003 else if (obj->gtt_space &&
05394f39 1004 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
75e9e915 1005 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1006 if (ret)
1007 goto out;
1008
d9e86c0e
CW
1009 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1010 if (ret)
1011 goto out_unpin;
1012
1013 ret = i915_gem_object_put_fence(obj);
fbd5a26d
CW
1014 if (ret)
1015 goto out_unpin;
1016
1017 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1018 if (ret == -EFAULT)
1019 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1020
1021out_unpin:
1022 i915_gem_object_unpin(obj);
40123c1f 1023 } else {
fbd5a26d
CW
1024 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1025 if (ret)
e5281ccd 1026 goto out;
673a394b 1027
fbd5a26d
CW
1028 ret = -EFAULT;
1029 if (!i915_gem_object_needs_bit17_swizzle(obj))
1030 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1031 if (ret == -EFAULT)
1032 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
fbd5a26d 1033 }
673a394b 1034
35b62a89 1035out:
05394f39 1036 drm_gem_object_unreference(&obj->base);
1d7cfea1 1037unlock:
fbd5a26d 1038 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1039 return ret;
1040}
1041
1042/**
2ef7eeaa
EA
1043 * Called when user space prepares to use an object with the CPU, either
1044 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1045 */
1046int
1047i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1048 struct drm_file *file)
673a394b
EA
1049{
1050 struct drm_i915_gem_set_domain *args = data;
05394f39 1051 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1052 uint32_t read_domains = args->read_domains;
1053 uint32_t write_domain = args->write_domain;
673a394b
EA
1054 int ret;
1055
1056 if (!(dev->driver->driver_features & DRIVER_GEM))
1057 return -ENODEV;
1058
2ef7eeaa 1059 /* Only handle setting domains to types used by the CPU. */
21d509e3 1060 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1061 return -EINVAL;
1062
21d509e3 1063 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1064 return -EINVAL;
1065
1066 /* Having something in the write domain implies it's in the read
1067 * domain, and only that read domain. Enforce that in the request.
1068 */
1069 if (write_domain != 0 && read_domains != write_domain)
1070 return -EINVAL;
1071
76c1dec1 1072 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1073 if (ret)
76c1dec1 1074 return ret;
1d7cfea1 1075
05394f39 1076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1077 if (&obj->base == NULL) {
1d7cfea1
CW
1078 ret = -ENOENT;
1079 goto unlock;
76c1dec1 1080 }
673a394b 1081
2ef7eeaa
EA
1082 if (read_domains & I915_GEM_DOMAIN_GTT) {
1083 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1084
1085 /* Silently promote "you're not bound, there was nothing to do"
1086 * to success, since the client was just asking us to
1087 * make sure everything was done.
1088 */
1089 if (ret == -EINVAL)
1090 ret = 0;
2ef7eeaa 1091 } else {
e47c68e9 1092 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1093 }
1094
05394f39 1095 drm_gem_object_unreference(&obj->base);
1d7cfea1 1096unlock:
673a394b
EA
1097 mutex_unlock(&dev->struct_mutex);
1098 return ret;
1099}
1100
1101/**
1102 * Called when user space has done writes to this buffer
1103 */
1104int
1105i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1106 struct drm_file *file)
673a394b
EA
1107{
1108 struct drm_i915_gem_sw_finish *args = data;
05394f39 1109 struct drm_i915_gem_object *obj;
673a394b
EA
1110 int ret = 0;
1111
1112 if (!(dev->driver->driver_features & DRIVER_GEM))
1113 return -ENODEV;
1114
76c1dec1 1115 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1116 if (ret)
76c1dec1 1117 return ret;
1d7cfea1 1118
05394f39 1119 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1120 if (&obj->base == NULL) {
1d7cfea1
CW
1121 ret = -ENOENT;
1122 goto unlock;
673a394b
EA
1123 }
1124
673a394b 1125 /* Pinned buffers may be scanout, so flush the cache */
05394f39 1126 if (obj->pin_count)
e47c68e9
EA
1127 i915_gem_object_flush_cpu_write_domain(obj);
1128
05394f39 1129 drm_gem_object_unreference(&obj->base);
1d7cfea1 1130unlock:
673a394b
EA
1131 mutex_unlock(&dev->struct_mutex);
1132 return ret;
1133}
1134
1135/**
1136 * Maps the contents of an object, returning the address it is mapped
1137 * into.
1138 *
1139 * While the mapping holds a reference on the contents of the object, it doesn't
1140 * imply a ref on the object itself.
1141 */
1142int
1143i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1144 struct drm_file *file)
673a394b 1145{
da761a6e 1146 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1147 struct drm_i915_gem_mmap *args = data;
1148 struct drm_gem_object *obj;
673a394b
EA
1149 unsigned long addr;
1150
1151 if (!(dev->driver->driver_features & DRIVER_GEM))
1152 return -ENODEV;
1153
05394f39 1154 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1155 if (obj == NULL)
bf79cb91 1156 return -ENOENT;
673a394b 1157
da761a6e
CW
1158 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1159 drm_gem_object_unreference_unlocked(obj);
1160 return -E2BIG;
1161 }
1162
673a394b
EA
1163 down_write(&current->mm->mmap_sem);
1164 addr = do_mmap(obj->filp, 0, args->size,
1165 PROT_READ | PROT_WRITE, MAP_SHARED,
1166 args->offset);
1167 up_write(&current->mm->mmap_sem);
bc9025bd 1168 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1169 if (IS_ERR((void *)addr))
1170 return addr;
1171
1172 args->addr_ptr = (uint64_t) addr;
1173
1174 return 0;
1175}
1176
de151cf6
JB
1177/**
1178 * i915_gem_fault - fault a page into the GTT
1179 * vma: VMA in question
1180 * vmf: fault info
1181 *
1182 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1183 * from userspace. The fault handler takes care of binding the object to
1184 * the GTT (if needed), allocating and programming a fence register (again,
1185 * only if needed based on whether the old reg is still valid or the object
1186 * is tiled) and inserting a new PTE into the faulting process.
1187 *
1188 * Note that the faulting process may involve evicting existing objects
1189 * from the GTT and/or fence registers to make room. So performance may
1190 * suffer if the GTT working set is large or there are few fence registers
1191 * left.
1192 */
1193int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1194{
05394f39
CW
1195 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1196 struct drm_device *dev = obj->base.dev;
7d1c4804 1197 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1198 pgoff_t page_offset;
1199 unsigned long pfn;
1200 int ret = 0;
0f973f27 1201 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1202
1203 /* We don't use vmf->pgoff since that has the fake offset */
1204 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1205 PAGE_SHIFT;
1206
d9bc7e9f
CW
1207 ret = i915_mutex_lock_interruptible(dev);
1208 if (ret)
1209 goto out;
a00b10c3 1210
db53a302
CW
1211 trace_i915_gem_object_fault(obj, page_offset, true, write);
1212
d9bc7e9f 1213 /* Now bind it into the GTT if needed */
919926ae
CW
1214 if (!obj->map_and_fenceable) {
1215 ret = i915_gem_object_unbind(obj);
1216 if (ret)
1217 goto unlock;
a00b10c3 1218 }
05394f39 1219 if (!obj->gtt_space) {
75e9e915 1220 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1221 if (ret)
1222 goto unlock;
de151cf6
JB
1223 }
1224
4a684a41
CW
1225 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1226 if (ret)
1227 goto unlock;
1228
d9e86c0e
CW
1229 if (obj->tiling_mode == I915_TILING_NONE)
1230 ret = i915_gem_object_put_fence(obj);
1231 else
ce453d81 1232 ret = i915_gem_object_get_fence(obj, NULL);
d9e86c0e
CW
1233 if (ret)
1234 goto unlock;
de151cf6 1235
05394f39
CW
1236 if (i915_gem_object_is_inactive(obj))
1237 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1238
6299f992
CW
1239 obj->fault_mappable = true;
1240
05394f39 1241 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
de151cf6
JB
1242 page_offset;
1243
1244 /* Finally, remap it using the new GTT offset */
1245 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1246unlock:
de151cf6 1247 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1248out:
de151cf6 1249 switch (ret) {
d9bc7e9f 1250 case -EIO:
045e769a 1251 case -EAGAIN:
d9bc7e9f
CW
1252 /* Give the error handler a chance to run and move the
1253 * objects off the GPU active list. Next time we service the
1254 * fault, we should be able to transition the page into the
1255 * GTT without touching the GPU (and so avoid further
1256 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1257 * with coherency, just lost writes.
1258 */
045e769a 1259 set_need_resched();
c715089f
CW
1260 case 0:
1261 case -ERESTARTSYS:
bed636ab 1262 case -EINTR:
c715089f 1263 return VM_FAULT_NOPAGE;
de151cf6 1264 case -ENOMEM:
de151cf6 1265 return VM_FAULT_OOM;
de151cf6 1266 default:
c715089f 1267 return VM_FAULT_SIGBUS;
de151cf6
JB
1268 }
1269}
1270
1271/**
1272 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1273 * @obj: obj in question
1274 *
1275 * GEM memory mapping works by handing back to userspace a fake mmap offset
1276 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1277 * up the object based on the offset and sets up the various memory mapping
1278 * structures.
1279 *
1280 * This routine allocates and attaches a fake offset for @obj.
1281 */
1282static int
05394f39 1283i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
de151cf6 1284{
05394f39 1285 struct drm_device *dev = obj->base.dev;
de151cf6 1286 struct drm_gem_mm *mm = dev->mm_private;
de151cf6 1287 struct drm_map_list *list;
f77d390c 1288 struct drm_local_map *map;
de151cf6
JB
1289 int ret = 0;
1290
1291 /* Set the object up for mmap'ing */
05394f39 1292 list = &obj->base.map_list;
9a298b2a 1293 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1294 if (!list->map)
1295 return -ENOMEM;
1296
1297 map = list->map;
1298 map->type = _DRM_GEM;
05394f39 1299 map->size = obj->base.size;
de151cf6
JB
1300 map->handle = obj;
1301
1302 /* Get a DRM GEM mmap offset allocated... */
1303 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
05394f39
CW
1304 obj->base.size / PAGE_SIZE,
1305 0, 0);
de151cf6 1306 if (!list->file_offset_node) {
05394f39
CW
1307 DRM_ERROR("failed to allocate offset for bo %d\n",
1308 obj->base.name);
9e0ae534 1309 ret = -ENOSPC;
de151cf6
JB
1310 goto out_free_list;
1311 }
1312
1313 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
05394f39
CW
1314 obj->base.size / PAGE_SIZE,
1315 0);
de151cf6
JB
1316 if (!list->file_offset_node) {
1317 ret = -ENOMEM;
1318 goto out_free_list;
1319 }
1320
1321 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1322 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1323 if (ret) {
de151cf6
JB
1324 DRM_ERROR("failed to add to map hash\n");
1325 goto out_free_mm;
1326 }
1327
de151cf6
JB
1328 return 0;
1329
1330out_free_mm:
1331 drm_mm_put_block(list->file_offset_node);
1332out_free_list:
9a298b2a 1333 kfree(list->map);
39a01d1f 1334 list->map = NULL;
de151cf6
JB
1335
1336 return ret;
1337}
1338
901782b2
CW
1339/**
1340 * i915_gem_release_mmap - remove physical page mappings
1341 * @obj: obj in question
1342 *
af901ca1 1343 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1344 * relinquish ownership of the pages back to the system.
1345 *
1346 * It is vital that we remove the page mapping if we have mapped a tiled
1347 * object through the GTT and then lose the fence register due to
1348 * resource pressure. Similarly if the object has been moved out of the
1349 * aperture, than pages mapped into userspace must be revoked. Removing the
1350 * mapping will then trigger a page fault on the next user access, allowing
1351 * fixup by i915_gem_fault().
1352 */
d05ca301 1353void
05394f39 1354i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1355{
6299f992
CW
1356 if (!obj->fault_mappable)
1357 return;
901782b2 1358
6299f992
CW
1359 unmap_mapping_range(obj->base.dev->dev_mapping,
1360 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1361 obj->base.size, 1);
fb7d516a 1362
6299f992 1363 obj->fault_mappable = false;
901782b2
CW
1364}
1365
ab00b3e5 1366static void
05394f39 1367i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
ab00b3e5 1368{
05394f39 1369 struct drm_device *dev = obj->base.dev;
ab00b3e5 1370 struct drm_gem_mm *mm = dev->mm_private;
05394f39 1371 struct drm_map_list *list = &obj->base.map_list;
ab00b3e5 1372
ab00b3e5 1373 drm_ht_remove_item(&mm->offset_hash, &list->hash);
39a01d1f
CW
1374 drm_mm_put_block(list->file_offset_node);
1375 kfree(list->map);
1376 list->map = NULL;
ab00b3e5
JB
1377}
1378
92b88aeb
CW
1379static uint32_t
1380i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1381{
1382 struct drm_device *dev = obj->base.dev;
1383 uint32_t size;
1384
1385 if (INTEL_INFO(dev)->gen >= 4 ||
1386 obj->tiling_mode == I915_TILING_NONE)
1387 return obj->base.size;
1388
1389 /* Previous chips need a power-of-two fence region when tiling */
1390 if (INTEL_INFO(dev)->gen == 3)
1391 size = 1024*1024;
1392 else
1393 size = 512*1024;
1394
1395 while (size < obj->base.size)
1396 size <<= 1;
1397
1398 return size;
1399}
1400
de151cf6
JB
1401/**
1402 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1403 * @obj: object to check
1404 *
1405 * Return the required GTT alignment for an object, taking into account
5e783301 1406 * potential fence register mapping.
de151cf6
JB
1407 */
1408static uint32_t
05394f39 1409i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
de151cf6 1410{
05394f39 1411 struct drm_device *dev = obj->base.dev;
de151cf6
JB
1412
1413 /*
1414 * Minimum alignment is 4k (GTT page size), but might be greater
1415 * if a fence register is needed for the object.
1416 */
a00b10c3 1417 if (INTEL_INFO(dev)->gen >= 4 ||
05394f39 1418 obj->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1419 return 4096;
1420
a00b10c3
CW
1421 /*
1422 * Previous chips need to be aligned to the size of the smallest
1423 * fence register that can contain the object.
1424 */
05394f39 1425 return i915_gem_get_gtt_size(obj);
a00b10c3
CW
1426}
1427
5e783301
DV
1428/**
1429 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1430 * unfenced object
1431 * @obj: object to check
1432 *
1433 * Return the required GTT alignment for an object, only taking into account
1434 * unfenced tiled surface requirements.
1435 */
467cffba 1436uint32_t
05394f39 1437i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
5e783301 1438{
05394f39 1439 struct drm_device *dev = obj->base.dev;
5e783301
DV
1440 int tile_height;
1441
1442 /*
1443 * Minimum alignment is 4k (GTT page size) for sane hw.
1444 */
1445 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
05394f39 1446 obj->tiling_mode == I915_TILING_NONE)
5e783301
DV
1447 return 4096;
1448
1449 /*
1450 * Older chips need unfenced tiled buffers to be aligned to the left
1451 * edge of an even tile row (where tile rows are counted as if the bo is
1452 * placed in a fenced gtt region).
1453 */
1454 if (IS_GEN2(dev) ||
05394f39 1455 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
5e783301
DV
1456 tile_height = 32;
1457 else
1458 tile_height = 8;
1459
05394f39 1460 return tile_height * obj->stride * 2;
5e783301
DV
1461}
1462
de151cf6 1463int
ff72145b
DA
1464i915_gem_mmap_gtt(struct drm_file *file,
1465 struct drm_device *dev,
1466 uint32_t handle,
1467 uint64_t *offset)
de151cf6 1468{
da761a6e 1469 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1470 struct drm_i915_gem_object *obj;
de151cf6
JB
1471 int ret;
1472
1473 if (!(dev->driver->driver_features & DRIVER_GEM))
1474 return -ENODEV;
1475
76c1dec1 1476 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1477 if (ret)
76c1dec1 1478 return ret;
de151cf6 1479
ff72145b 1480 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1481 if (&obj->base == NULL) {
1d7cfea1
CW
1482 ret = -ENOENT;
1483 goto unlock;
1484 }
de151cf6 1485
05394f39 1486 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
da761a6e
CW
1487 ret = -E2BIG;
1488 goto unlock;
1489 }
1490
05394f39 1491 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1492 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1493 ret = -EINVAL;
1494 goto out;
ab18282d
CW
1495 }
1496
05394f39 1497 if (!obj->base.map_list.map) {
de151cf6 1498 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1499 if (ret)
1500 goto out;
de151cf6
JB
1501 }
1502
ff72145b 1503 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
de151cf6 1504
1d7cfea1 1505out:
05394f39 1506 drm_gem_object_unreference(&obj->base);
1d7cfea1 1507unlock:
de151cf6 1508 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1509 return ret;
de151cf6
JB
1510}
1511
ff72145b
DA
1512/**
1513 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1514 * @dev: DRM device
1515 * @data: GTT mapping ioctl data
1516 * @file: GEM object info
1517 *
1518 * Simply returns the fake offset to userspace so it can mmap it.
1519 * The mmap call will end up in drm_gem_mmap(), which will set things
1520 * up so we can get faults in the handler above.
1521 *
1522 * The fault handler will take care of binding the object into the GTT
1523 * (since it may have been evicted to make room for something), allocating
1524 * a fence register, and mapping the appropriate aperture address into
1525 * userspace.
1526 */
1527int
1528i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1529 struct drm_file *file)
1530{
1531 struct drm_i915_gem_mmap_gtt *args = data;
1532
1533 if (!(dev->driver->driver_features & DRIVER_GEM))
1534 return -ENODEV;
1535
1536 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1537}
1538
1539
e5281ccd 1540static int
05394f39 1541i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
e5281ccd
CW
1542 gfp_t gfpmask)
1543{
e5281ccd
CW
1544 int page_count, i;
1545 struct address_space *mapping;
1546 struct inode *inode;
1547 struct page *page;
1548
1549 /* Get the list of pages out of our struct file. They'll be pinned
1550 * at this point until we release them.
1551 */
05394f39
CW
1552 page_count = obj->base.size / PAGE_SIZE;
1553 BUG_ON(obj->pages != NULL);
1554 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1555 if (obj->pages == NULL)
e5281ccd
CW
1556 return -ENOMEM;
1557
05394f39 1558 inode = obj->base.filp->f_path.dentry->d_inode;
e5281ccd
CW
1559 mapping = inode->i_mapping;
1560 for (i = 0; i < page_count; i++) {
1561 page = read_cache_page_gfp(mapping, i,
1562 GFP_HIGHUSER |
1563 __GFP_COLD |
1564 __GFP_RECLAIMABLE |
1565 gfpmask);
1566 if (IS_ERR(page))
1567 goto err_pages;
1568
05394f39 1569 obj->pages[i] = page;
e5281ccd
CW
1570 }
1571
05394f39 1572 if (obj->tiling_mode != I915_TILING_NONE)
e5281ccd
CW
1573 i915_gem_object_do_bit_17_swizzle(obj);
1574
1575 return 0;
1576
1577err_pages:
1578 while (i--)
05394f39 1579 page_cache_release(obj->pages[i]);
e5281ccd 1580
05394f39
CW
1581 drm_free_large(obj->pages);
1582 obj->pages = NULL;
e5281ccd
CW
1583 return PTR_ERR(page);
1584}
1585
5cdf5881 1586static void
05394f39 1587i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1588{
05394f39 1589 int page_count = obj->base.size / PAGE_SIZE;
673a394b
EA
1590 int i;
1591
05394f39 1592 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1593
05394f39 1594 if (obj->tiling_mode != I915_TILING_NONE)
280b713b
EA
1595 i915_gem_object_save_bit_17_swizzle(obj);
1596
05394f39
CW
1597 if (obj->madv == I915_MADV_DONTNEED)
1598 obj->dirty = 0;
3ef94daa
CW
1599
1600 for (i = 0; i < page_count; i++) {
05394f39
CW
1601 if (obj->dirty)
1602 set_page_dirty(obj->pages[i]);
3ef94daa 1603
05394f39
CW
1604 if (obj->madv == I915_MADV_WILLNEED)
1605 mark_page_accessed(obj->pages[i]);
3ef94daa 1606
05394f39 1607 page_cache_release(obj->pages[i]);
3ef94daa 1608 }
05394f39 1609 obj->dirty = 0;
673a394b 1610
05394f39
CW
1611 drm_free_large(obj->pages);
1612 obj->pages = NULL;
673a394b
EA
1613}
1614
54cf91dc 1615void
05394f39 1616i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1ec14ad3
CW
1617 struct intel_ring_buffer *ring,
1618 u32 seqno)
673a394b 1619{
05394f39 1620 struct drm_device *dev = obj->base.dev;
69dc4987 1621 struct drm_i915_private *dev_priv = dev->dev_private;
617dbe27 1622
852835f3 1623 BUG_ON(ring == NULL);
05394f39 1624 obj->ring = ring;
673a394b
EA
1625
1626 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1627 if (!obj->active) {
1628 drm_gem_object_reference(&obj->base);
1629 obj->active = 1;
673a394b 1630 }
e35a41de 1631
673a394b 1632 /* Move from whatever list we were on to the tail of execution. */
05394f39
CW
1633 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1634 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1635
05394f39 1636 obj->last_rendering_seqno = seqno;
caea7476
CW
1637 if (obj->fenced_gpu_access) {
1638 struct drm_i915_fence_reg *reg;
1639
1640 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1641
1642 obj->last_fenced_seqno = seqno;
1643 obj->last_fenced_ring = ring;
1644
1645 reg = &dev_priv->fence_regs[obj->fence_reg];
1646 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1647 }
1648}
1649
1650static void
1651i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1652{
1653 list_del_init(&obj->ring_list);
1654 obj->last_rendering_seqno = 0;
673a394b
EA
1655}
1656
ce44b0ea 1657static void
05394f39 1658i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
ce44b0ea 1659{
05394f39 1660 struct drm_device *dev = obj->base.dev;
ce44b0ea 1661 drm_i915_private_t *dev_priv = dev->dev_private;
ce44b0ea 1662
05394f39
CW
1663 BUG_ON(!obj->active);
1664 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
caea7476
CW
1665
1666 i915_gem_object_move_off_active(obj);
1667}
1668
1669static void
1670i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1671{
1672 struct drm_device *dev = obj->base.dev;
1673 struct drm_i915_private *dev_priv = dev->dev_private;
1674
1675 if (obj->pin_count != 0)
1676 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1677 else
1678 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1679
1680 BUG_ON(!list_empty(&obj->gpu_write_list));
1681 BUG_ON(!obj->active);
1682 obj->ring = NULL;
1683
1684 i915_gem_object_move_off_active(obj);
1685 obj->fenced_gpu_access = false;
caea7476
CW
1686
1687 obj->active = 0;
87ca9c8a 1688 obj->pending_gpu_write = false;
caea7476
CW
1689 drm_gem_object_unreference(&obj->base);
1690
1691 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1692}
673a394b 1693
963b4836
CW
1694/* Immediately discard the backing storage */
1695static void
05394f39 1696i915_gem_object_truncate(struct drm_i915_gem_object *obj)
963b4836 1697{
bb6baf76 1698 struct inode *inode;
963b4836 1699
ae9fed6b
CW
1700 /* Our goal here is to return as much of the memory as
1701 * is possible back to the system as we are called from OOM.
1702 * To do this we must instruct the shmfs to drop all of its
1703 * backing pages, *now*. Here we mirror the actions taken
1704 * when by shmem_delete_inode() to release the backing store.
1705 */
05394f39 1706 inode = obj->base.filp->f_path.dentry->d_inode;
ae9fed6b
CW
1707 truncate_inode_pages(inode->i_mapping, 0);
1708 if (inode->i_op->truncate_range)
1709 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76 1710
05394f39 1711 obj->madv = __I915_MADV_PURGED;
963b4836
CW
1712}
1713
1714static inline int
05394f39 1715i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
963b4836 1716{
05394f39 1717 return obj->madv == I915_MADV_DONTNEED;
963b4836
CW
1718}
1719
63560396 1720static void
db53a302
CW
1721i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1722 uint32_t flush_domains)
63560396 1723{
05394f39 1724 struct drm_i915_gem_object *obj, *next;
63560396 1725
05394f39 1726 list_for_each_entry_safe(obj, next,
64193406 1727 &ring->gpu_write_list,
63560396 1728 gpu_write_list) {
05394f39
CW
1729 if (obj->base.write_domain & flush_domains) {
1730 uint32_t old_write_domain = obj->base.write_domain;
63560396 1731
05394f39
CW
1732 obj->base.write_domain = 0;
1733 list_del_init(&obj->gpu_write_list);
1ec14ad3 1734 i915_gem_object_move_to_active(obj, ring,
db53a302 1735 i915_gem_next_request_seqno(ring));
63560396 1736
63560396 1737 trace_i915_gem_object_change_domain(obj,
05394f39 1738 obj->base.read_domains,
63560396
DV
1739 old_write_domain);
1740 }
1741 }
1742}
8187a2b7 1743
3cce469c 1744int
db53a302 1745i915_add_request(struct intel_ring_buffer *ring,
f787a5f5 1746 struct drm_file *file,
db53a302 1747 struct drm_i915_gem_request *request)
673a394b 1748{
db53a302 1749 drm_i915_private_t *dev_priv = ring->dev->dev_private;
673a394b
EA
1750 uint32_t seqno;
1751 int was_empty;
3cce469c
CW
1752 int ret;
1753
1754 BUG_ON(request == NULL);
673a394b 1755
3cce469c
CW
1756 ret = ring->add_request(ring, &seqno);
1757 if (ret)
1758 return ret;
673a394b 1759
db53a302 1760 trace_i915_gem_request_add(ring, seqno);
673a394b
EA
1761
1762 request->seqno = seqno;
852835f3 1763 request->ring = ring;
673a394b 1764 request->emitted_jiffies = jiffies;
852835f3
ZN
1765 was_empty = list_empty(&ring->request_list);
1766 list_add_tail(&request->list, &ring->request_list);
1767
db53a302
CW
1768 if (file) {
1769 struct drm_i915_file_private *file_priv = file->driver_priv;
1770
1c25595f 1771 spin_lock(&file_priv->mm.lock);
f787a5f5 1772 request->file_priv = file_priv;
b962442e 1773 list_add_tail(&request->client_list,
f787a5f5 1774 &file_priv->mm.request_list);
1c25595f 1775 spin_unlock(&file_priv->mm.lock);
b962442e 1776 }
673a394b 1777
db53a302
CW
1778 ring->outstanding_lazy_request = false;
1779
f65d9421 1780 if (!dev_priv->mm.suspended) {
b3b079db
CW
1781 mod_timer(&dev_priv->hangcheck_timer,
1782 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1783 if (was_empty)
b3b079db
CW
1784 queue_delayed_work(dev_priv->wq,
1785 &dev_priv->mm.retire_work, HZ);
f65d9421 1786 }
3cce469c 1787 return 0;
673a394b
EA
1788}
1789
f787a5f5
CW
1790static inline void
1791i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1792{
1c25595f 1793 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1794
1c25595f
CW
1795 if (!file_priv)
1796 return;
1c5d22f7 1797
1c25595f 1798 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
1799 if (request->file_priv) {
1800 list_del(&request->client_list);
1801 request->file_priv = NULL;
1802 }
1c25595f 1803 spin_unlock(&file_priv->mm.lock);
673a394b 1804}
673a394b 1805
dfaae392
CW
1806static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1807 struct intel_ring_buffer *ring)
9375e446 1808{
dfaae392
CW
1809 while (!list_empty(&ring->request_list)) {
1810 struct drm_i915_gem_request *request;
673a394b 1811
dfaae392
CW
1812 request = list_first_entry(&ring->request_list,
1813 struct drm_i915_gem_request,
1814 list);
de151cf6 1815
dfaae392 1816 list_del(&request->list);
f787a5f5 1817 i915_gem_request_remove_from_client(request);
dfaae392
CW
1818 kfree(request);
1819 }
673a394b 1820
dfaae392 1821 while (!list_empty(&ring->active_list)) {
05394f39 1822 struct drm_i915_gem_object *obj;
9375e446 1823
05394f39
CW
1824 obj = list_first_entry(&ring->active_list,
1825 struct drm_i915_gem_object,
1826 ring_list);
9375e446 1827
05394f39
CW
1828 obj->base.write_domain = 0;
1829 list_del_init(&obj->gpu_write_list);
1830 i915_gem_object_move_to_inactive(obj);
673a394b
EA
1831 }
1832}
1833
312817a3
CW
1834static void i915_gem_reset_fences(struct drm_device *dev)
1835{
1836 struct drm_i915_private *dev_priv = dev->dev_private;
1837 int i;
1838
1839 for (i = 0; i < 16; i++) {
1840 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c
CW
1841 struct drm_i915_gem_object *obj = reg->obj;
1842
1843 if (!obj)
1844 continue;
1845
1846 if (obj->tiling_mode)
1847 i915_gem_release_mmap(obj);
1848
d9e86c0e
CW
1849 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1850 reg->obj->fenced_gpu_access = false;
1851 reg->obj->last_fenced_seqno = 0;
1852 reg->obj->last_fenced_ring = NULL;
1853 i915_gem_clear_fence_reg(dev, reg);
312817a3
CW
1854 }
1855}
1856
069efc1d 1857void i915_gem_reset(struct drm_device *dev)
673a394b 1858{
77f01230 1859 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1860 struct drm_i915_gem_object *obj;
1ec14ad3 1861 int i;
673a394b 1862
1ec14ad3
CW
1863 for (i = 0; i < I915_NUM_RINGS; i++)
1864 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
dfaae392
CW
1865
1866 /* Remove anything from the flushing lists. The GPU cache is likely
1867 * to be lost on reset along with the data, so simply move the
1868 * lost bo to the inactive list.
1869 */
1870 while (!list_empty(&dev_priv->mm.flushing_list)) {
05394f39
CW
1871 obj= list_first_entry(&dev_priv->mm.flushing_list,
1872 struct drm_i915_gem_object,
1873 mm_list);
dfaae392 1874
05394f39
CW
1875 obj->base.write_domain = 0;
1876 list_del_init(&obj->gpu_write_list);
1877 i915_gem_object_move_to_inactive(obj);
dfaae392
CW
1878 }
1879
1880 /* Move everything out of the GPU domains to ensure we do any
1881 * necessary invalidation upon reuse.
1882 */
05394f39 1883 list_for_each_entry(obj,
77f01230 1884 &dev_priv->mm.inactive_list,
69dc4987 1885 mm_list)
77f01230 1886 {
05394f39 1887 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
77f01230 1888 }
069efc1d
CW
1889
1890 /* The fence registers are invalidated so clear them out */
312817a3 1891 i915_gem_reset_fences(dev);
673a394b
EA
1892}
1893
1894/**
1895 * This function clears the request list as sequence numbers are passed.
1896 */
b09a1fec 1897static void
db53a302 1898i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 1899{
673a394b 1900 uint32_t seqno;
1ec14ad3 1901 int i;
673a394b 1902
db53a302 1903 if (list_empty(&ring->request_list))
6c0594a3
KW
1904 return;
1905
db53a302 1906 WARN_ON(i915_verify_lists(ring->dev));
673a394b 1907
78501eac 1908 seqno = ring->get_seqno(ring);
1ec14ad3 1909
076e2c0e 1910 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1ec14ad3
CW
1911 if (seqno >= ring->sync_seqno[i])
1912 ring->sync_seqno[i] = 0;
1913
852835f3 1914 while (!list_empty(&ring->request_list)) {
673a394b 1915 struct drm_i915_gem_request *request;
673a394b 1916
852835f3 1917 request = list_first_entry(&ring->request_list,
673a394b
EA
1918 struct drm_i915_gem_request,
1919 list);
673a394b 1920
dfaae392 1921 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1922 break;
1923
db53a302 1924 trace_i915_gem_request_retire(ring, request->seqno);
b84d5f0c
CW
1925
1926 list_del(&request->list);
f787a5f5 1927 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1928 kfree(request);
1929 }
673a394b 1930
b84d5f0c
CW
1931 /* Move any buffers on the active list that are no longer referenced
1932 * by the ringbuffer to the flushing/inactive lists as appropriate.
1933 */
1934 while (!list_empty(&ring->active_list)) {
05394f39 1935 struct drm_i915_gem_object *obj;
b84d5f0c 1936
05394f39
CW
1937 obj= list_first_entry(&ring->active_list,
1938 struct drm_i915_gem_object,
1939 ring_list);
673a394b 1940
05394f39 1941 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
673a394b 1942 break;
b84d5f0c 1943
05394f39 1944 if (obj->base.write_domain != 0)
b84d5f0c
CW
1945 i915_gem_object_move_to_flushing(obj);
1946 else
1947 i915_gem_object_move_to_inactive(obj);
673a394b 1948 }
9d34e5db 1949
db53a302
CW
1950 if (unlikely(ring->trace_irq_seqno &&
1951 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 1952 ring->irq_put(ring);
db53a302 1953 ring->trace_irq_seqno = 0;
9d34e5db 1954 }
23bc5982 1955
db53a302 1956 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
1957}
1958
b09a1fec
CW
1959void
1960i915_gem_retire_requests(struct drm_device *dev)
1961{
1962 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 1963 int i;
b09a1fec 1964
be72615b 1965 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
05394f39 1966 struct drm_i915_gem_object *obj, *next;
be72615b
CW
1967
1968 /* We must be careful that during unbind() we do not
1969 * accidentally infinitely recurse into retire requests.
1970 * Currently:
1971 * retire -> free -> unbind -> wait -> retire_ring
1972 */
05394f39 1973 list_for_each_entry_safe(obj, next,
be72615b 1974 &dev_priv->mm.deferred_free_list,
69dc4987 1975 mm_list)
05394f39 1976 i915_gem_free_object_tail(obj);
be72615b
CW
1977 }
1978
1ec14ad3 1979 for (i = 0; i < I915_NUM_RINGS; i++)
db53a302 1980 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
b09a1fec
CW
1981}
1982
75ef9da2 1983static void
673a394b
EA
1984i915_gem_retire_work_handler(struct work_struct *work)
1985{
1986 drm_i915_private_t *dev_priv;
1987 struct drm_device *dev;
0a58705b
CW
1988 bool idle;
1989 int i;
673a394b
EA
1990
1991 dev_priv = container_of(work, drm_i915_private_t,
1992 mm.retire_work.work);
1993 dev = dev_priv->dev;
1994
891b48cf
CW
1995 /* Come back later if the device is busy... */
1996 if (!mutex_trylock(&dev->struct_mutex)) {
1997 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1998 return;
1999 }
2000
b09a1fec 2001 i915_gem_retire_requests(dev);
d1b851fc 2002
0a58705b
CW
2003 /* Send a periodic flush down the ring so we don't hold onto GEM
2004 * objects indefinitely.
2005 */
2006 idle = true;
2007 for (i = 0; i < I915_NUM_RINGS; i++) {
2008 struct intel_ring_buffer *ring = &dev_priv->ring[i];
2009
2010 if (!list_empty(&ring->gpu_write_list)) {
2011 struct drm_i915_gem_request *request;
2012 int ret;
2013
db53a302
CW
2014 ret = i915_gem_flush_ring(ring,
2015 0, I915_GEM_GPU_DOMAINS);
0a58705b
CW
2016 request = kzalloc(sizeof(*request), GFP_KERNEL);
2017 if (ret || request == NULL ||
db53a302 2018 i915_add_request(ring, NULL, request))
0a58705b
CW
2019 kfree(request);
2020 }
2021
2022 idle &= list_empty(&ring->request_list);
2023 }
2024
2025 if (!dev_priv->mm.suspended && !idle)
9c9fe1f8 2026 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
0a58705b 2027
673a394b
EA
2028 mutex_unlock(&dev->struct_mutex);
2029}
2030
db53a302
CW
2031/**
2032 * Waits for a sequence number to be signaled, and cleans up the
2033 * request and object lists appropriately for that event.
2034 */
5a5a0c64 2035int
db53a302 2036i915_wait_request(struct intel_ring_buffer *ring,
ce453d81 2037 uint32_t seqno)
673a394b 2038{
db53a302 2039 drm_i915_private_t *dev_priv = ring->dev->dev_private;
802c7eb6 2040 u32 ier;
673a394b
EA
2041 int ret = 0;
2042
2043 BUG_ON(seqno == 0);
2044
d9bc7e9f
CW
2045 if (atomic_read(&dev_priv->mm.wedged)) {
2046 struct completion *x = &dev_priv->error_completion;
2047 bool recovery_complete;
2048 unsigned long flags;
2049
2050 /* Give the error handler a chance to run. */
2051 spin_lock_irqsave(&x->wait.lock, flags);
2052 recovery_complete = x->done > 0;
2053 spin_unlock_irqrestore(&x->wait.lock, flags);
2054
2055 return recovery_complete ? -EIO : -EAGAIN;
2056 }
30dbf0c0 2057
5d97eb69 2058 if (seqno == ring->outstanding_lazy_request) {
3cce469c
CW
2059 struct drm_i915_gem_request *request;
2060
2061 request = kzalloc(sizeof(*request), GFP_KERNEL);
2062 if (request == NULL)
e35a41de 2063 return -ENOMEM;
3cce469c 2064
db53a302 2065 ret = i915_add_request(ring, NULL, request);
3cce469c
CW
2066 if (ret) {
2067 kfree(request);
2068 return ret;
2069 }
2070
2071 seqno = request->seqno;
e35a41de 2072 }
ffed1d09 2073
78501eac 2074 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
db53a302 2075 if (HAS_PCH_SPLIT(ring->dev))
036a4a7d
ZW
2076 ier = I915_READ(DEIER) | I915_READ(GTIER);
2077 else
2078 ier = I915_READ(IER);
802c7eb6
JB
2079 if (!ier) {
2080 DRM_ERROR("something (likely vbetool) disabled "
2081 "interrupts, re-enabling\n");
db53a302
CW
2082 i915_driver_irq_preinstall(ring->dev);
2083 i915_driver_irq_postinstall(ring->dev);
802c7eb6
JB
2084 }
2085
db53a302 2086 trace_i915_gem_request_wait_begin(ring, seqno);
1c5d22f7 2087
b2223497 2088 ring->waiting_seqno = seqno;
b13c2b96 2089 if (ring->irq_get(ring)) {
ce453d81 2090 if (dev_priv->mm.interruptible)
b13c2b96
CW
2091 ret = wait_event_interruptible(ring->irq_queue,
2092 i915_seqno_passed(ring->get_seqno(ring), seqno)
2093 || atomic_read(&dev_priv->mm.wedged));
2094 else
2095 wait_event(ring->irq_queue,
2096 i915_seqno_passed(ring->get_seqno(ring), seqno)
2097 || atomic_read(&dev_priv->mm.wedged));
2098
2099 ring->irq_put(ring);
b5ba177d
CW
2100 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2101 seqno) ||
2102 atomic_read(&dev_priv->mm.wedged), 3000))
2103 ret = -EBUSY;
b2223497 2104 ring->waiting_seqno = 0;
1c5d22f7 2105
db53a302 2106 trace_i915_gem_request_wait_end(ring, seqno);
673a394b 2107 }
ba1234d1 2108 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2109 ret = -EAGAIN;
673a394b
EA
2110
2111 if (ret && ret != -ERESTARTSYS)
8bff917c 2112 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2113 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2114 dev_priv->next_seqno);
673a394b
EA
2115
2116 /* Directly dispatch request retiring. While we have the work queue
2117 * to handle this, the waiter on a request often wants an associated
2118 * buffer to have made it to the inactive list, and we would need
2119 * a separate wait queue to handle that.
2120 */
2121 if (ret == 0)
db53a302 2122 i915_gem_retire_requests_ring(ring);
673a394b
EA
2123
2124 return ret;
2125}
2126
673a394b
EA
2127/**
2128 * Ensures that all rendering to the object has completed and the object is
2129 * safe to unbind from the GTT or access from the CPU.
2130 */
54cf91dc 2131int
ce453d81 2132i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
673a394b 2133{
673a394b
EA
2134 int ret;
2135
e47c68e9
EA
2136 /* This function only exists to support waiting for existing rendering,
2137 * not for emitting required flushes.
673a394b 2138 */
05394f39 2139 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2140
2141 /* If there is rendering queued on the buffer being evicted, wait for
2142 * it.
2143 */
05394f39 2144 if (obj->active) {
ce453d81 2145 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2cf34d7b 2146 if (ret)
673a394b
EA
2147 return ret;
2148 }
2149
2150 return 0;
2151}
2152
2153/**
2154 * Unbinds an object from the GTT aperture.
2155 */
0f973f27 2156int
05394f39 2157i915_gem_object_unbind(struct drm_i915_gem_object *obj)
673a394b 2158{
673a394b
EA
2159 int ret = 0;
2160
05394f39 2161 if (obj->gtt_space == NULL)
673a394b
EA
2162 return 0;
2163
05394f39 2164 if (obj->pin_count != 0) {
673a394b
EA
2165 DRM_ERROR("Attempting to unbind pinned buffer\n");
2166 return -EINVAL;
2167 }
2168
5323fd04
EA
2169 /* blow away mappings if mapped through GTT */
2170 i915_gem_release_mmap(obj);
2171
673a394b
EA
2172 /* Move the object to the CPU domain to ensure that
2173 * any possible CPU writes while it's not in the GTT
2174 * are flushed when we go to remap it. This will
2175 * also ensure that all pending GPU writes are finished
2176 * before we unbind.
2177 */
e47c68e9 2178 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2179 if (ret == -ERESTARTSYS)
673a394b 2180 return ret;
8dc1775d
CW
2181 /* Continue on if we fail due to EIO, the GPU is hung so we
2182 * should be safe and we need to cleanup or else we might
2183 * cause memory corruption through use-after-free.
2184 */
812ed492
CW
2185 if (ret) {
2186 i915_gem_clflush_object(obj);
05394f39 2187 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
812ed492 2188 }
673a394b 2189
96b47b65 2190 /* release the fence reg _after_ flushing */
d9e86c0e
CW
2191 ret = i915_gem_object_put_fence(obj);
2192 if (ret == -ERESTARTSYS)
2193 return ret;
96b47b65 2194
db53a302
CW
2195 trace_i915_gem_object_unbind(obj);
2196
7c2e6fdf 2197 i915_gem_gtt_unbind_object(obj);
e5281ccd 2198 i915_gem_object_put_pages_gtt(obj);
673a394b 2199
6299f992 2200 list_del_init(&obj->gtt_list);
05394f39 2201 list_del_init(&obj->mm_list);
75e9e915 2202 /* Avoid an unnecessary call to unbind on rebind. */
05394f39 2203 obj->map_and_fenceable = true;
673a394b 2204
05394f39
CW
2205 drm_mm_put_block(obj->gtt_space);
2206 obj->gtt_space = NULL;
2207 obj->gtt_offset = 0;
673a394b 2208
05394f39 2209 if (i915_gem_object_is_purgeable(obj))
963b4836
CW
2210 i915_gem_object_truncate(obj);
2211
8dc1775d 2212 return ret;
673a394b
EA
2213}
2214
88241785 2215int
db53a302 2216i915_gem_flush_ring(struct intel_ring_buffer *ring,
54cf91dc
CW
2217 uint32_t invalidate_domains,
2218 uint32_t flush_domains)
2219{
88241785
CW
2220 int ret;
2221
db53a302
CW
2222 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2223
88241785
CW
2224 ret = ring->flush(ring, invalidate_domains, flush_domains);
2225 if (ret)
2226 return ret;
2227
db53a302 2228 i915_gem_process_flushing_list(ring, flush_domains);
88241785 2229 return 0;
54cf91dc
CW
2230}
2231
db53a302 2232static int i915_ring_idle(struct intel_ring_buffer *ring)
a56ba56c 2233{
88241785
CW
2234 int ret;
2235
395b70be 2236 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
64193406
CW
2237 return 0;
2238
88241785 2239 if (!list_empty(&ring->gpu_write_list)) {
db53a302 2240 ret = i915_gem_flush_ring(ring,
0ac74c6b 2241 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
88241785
CW
2242 if (ret)
2243 return ret;
2244 }
2245
ce453d81 2246 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
a56ba56c
CW
2247}
2248
b47eb4a2 2249int
4df2faf4
DV
2250i915_gpu_idle(struct drm_device *dev)
2251{
2252 drm_i915_private_t *dev_priv = dev->dev_private;
2253 bool lists_empty;
1ec14ad3 2254 int ret, i;
4df2faf4 2255
d1b851fc 2256 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
395b70be 2257 list_empty(&dev_priv->mm.active_list));
4df2faf4
DV
2258 if (lists_empty)
2259 return 0;
2260
2261 /* Flush everything onto the inactive list. */
1ec14ad3 2262 for (i = 0; i < I915_NUM_RINGS; i++) {
db53a302 2263 ret = i915_ring_idle(&dev_priv->ring[i]);
1ec14ad3
CW
2264 if (ret)
2265 return ret;
2266 }
4df2faf4 2267
8a1a49f9 2268 return 0;
4df2faf4
DV
2269}
2270
c6642782
DV
2271static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2272 struct intel_ring_buffer *pipelined)
4e901fdc 2273{
05394f39 2274 struct drm_device *dev = obj->base.dev;
4e901fdc 2275 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2276 u32 size = obj->gtt_space->size;
2277 int regnum = obj->fence_reg;
4e901fdc
EA
2278 uint64_t val;
2279
05394f39 2280 val = (uint64_t)((obj->gtt_offset + size - 4096) &
c6642782 2281 0xfffff000) << 32;
05394f39
CW
2282 val |= obj->gtt_offset & 0xfffff000;
2283 val |= (uint64_t)((obj->stride / 128) - 1) <<
4e901fdc
EA
2284 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2285
05394f39 2286 if (obj->tiling_mode == I915_TILING_Y)
4e901fdc
EA
2287 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2288 val |= I965_FENCE_REG_VALID;
2289
c6642782
DV
2290 if (pipelined) {
2291 int ret = intel_ring_begin(pipelined, 6);
2292 if (ret)
2293 return ret;
2294
2295 intel_ring_emit(pipelined, MI_NOOP);
2296 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2297 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2298 intel_ring_emit(pipelined, (u32)val);
2299 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2300 intel_ring_emit(pipelined, (u32)(val >> 32));
2301 intel_ring_advance(pipelined);
2302 } else
2303 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2304
2305 return 0;
4e901fdc
EA
2306}
2307
c6642782
DV
2308static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2309 struct intel_ring_buffer *pipelined)
de151cf6 2310{
05394f39 2311 struct drm_device *dev = obj->base.dev;
de151cf6 2312 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2313 u32 size = obj->gtt_space->size;
2314 int regnum = obj->fence_reg;
de151cf6
JB
2315 uint64_t val;
2316
05394f39 2317 val = (uint64_t)((obj->gtt_offset + size - 4096) &
de151cf6 2318 0xfffff000) << 32;
05394f39
CW
2319 val |= obj->gtt_offset & 0xfffff000;
2320 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2321 if (obj->tiling_mode == I915_TILING_Y)
de151cf6
JB
2322 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2323 val |= I965_FENCE_REG_VALID;
2324
c6642782
DV
2325 if (pipelined) {
2326 int ret = intel_ring_begin(pipelined, 6);
2327 if (ret)
2328 return ret;
2329
2330 intel_ring_emit(pipelined, MI_NOOP);
2331 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2332 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2333 intel_ring_emit(pipelined, (u32)val);
2334 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2335 intel_ring_emit(pipelined, (u32)(val >> 32));
2336 intel_ring_advance(pipelined);
2337 } else
2338 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2339
2340 return 0;
de151cf6
JB
2341}
2342
c6642782
DV
2343static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2344 struct intel_ring_buffer *pipelined)
de151cf6 2345{
05394f39 2346 struct drm_device *dev = obj->base.dev;
de151cf6 2347 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 2348 u32 size = obj->gtt_space->size;
c6642782 2349 u32 fence_reg, val, pitch_val;
0f973f27 2350 int tile_width;
de151cf6 2351
c6642782
DV
2352 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2353 (size & -size) != size ||
2354 (obj->gtt_offset & (size - 1)),
2355 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2356 obj->gtt_offset, obj->map_and_fenceable, size))
2357 return -EINVAL;
de151cf6 2358
c6642782 2359 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
0f973f27 2360 tile_width = 128;
de151cf6 2361 else
0f973f27
JB
2362 tile_width = 512;
2363
2364 /* Note: pitch better be a power of two tile widths */
05394f39 2365 pitch_val = obj->stride / tile_width;
0f973f27 2366 pitch_val = ffs(pitch_val) - 1;
de151cf6 2367
05394f39
CW
2368 val = obj->gtt_offset;
2369 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2370 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
a00b10c3 2371 val |= I915_FENCE_SIZE_BITS(size);
de151cf6
JB
2372 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2373 val |= I830_FENCE_REG_VALID;
2374
05394f39 2375 fence_reg = obj->fence_reg;
a00b10c3
CW
2376 if (fence_reg < 8)
2377 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f 2378 else
a00b10c3 2379 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
c6642782
DV
2380
2381 if (pipelined) {
2382 int ret = intel_ring_begin(pipelined, 4);
2383 if (ret)
2384 return ret;
2385
2386 intel_ring_emit(pipelined, MI_NOOP);
2387 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2388 intel_ring_emit(pipelined, fence_reg);
2389 intel_ring_emit(pipelined, val);
2390 intel_ring_advance(pipelined);
2391 } else
2392 I915_WRITE(fence_reg, val);
2393
2394 return 0;
de151cf6
JB
2395}
2396
c6642782
DV
2397static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2398 struct intel_ring_buffer *pipelined)
de151cf6 2399{
05394f39 2400 struct drm_device *dev = obj->base.dev;
de151cf6 2401 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39
CW
2402 u32 size = obj->gtt_space->size;
2403 int regnum = obj->fence_reg;
de151cf6
JB
2404 uint32_t val;
2405 uint32_t pitch_val;
2406
c6642782
DV
2407 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2408 (size & -size) != size ||
2409 (obj->gtt_offset & (size - 1)),
2410 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2411 obj->gtt_offset, size))
2412 return -EINVAL;
de151cf6 2413
05394f39 2414 pitch_val = obj->stride / 128;
e76a16de 2415 pitch_val = ffs(pitch_val) - 1;
e76a16de 2416
05394f39
CW
2417 val = obj->gtt_offset;
2418 if (obj->tiling_mode == I915_TILING_Y)
de151cf6 2419 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
c6642782 2420 val |= I830_FENCE_SIZE_BITS(size);
de151cf6
JB
2421 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2422 val |= I830_FENCE_REG_VALID;
2423
c6642782
DV
2424 if (pipelined) {
2425 int ret = intel_ring_begin(pipelined, 4);
2426 if (ret)
2427 return ret;
2428
2429 intel_ring_emit(pipelined, MI_NOOP);
2430 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2431 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2432 intel_ring_emit(pipelined, val);
2433 intel_ring_advance(pipelined);
2434 } else
2435 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2436
2437 return 0;
de151cf6
JB
2438}
2439
d9e86c0e
CW
2440static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2441{
2442 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2443}
2444
2445static int
2446i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
ce453d81 2447 struct intel_ring_buffer *pipelined)
d9e86c0e
CW
2448{
2449 int ret;
2450
2451 if (obj->fenced_gpu_access) {
88241785 2452 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 2453 ret = i915_gem_flush_ring(obj->last_fenced_ring,
88241785
CW
2454 0, obj->base.write_domain);
2455 if (ret)
2456 return ret;
2457 }
d9e86c0e
CW
2458
2459 obj->fenced_gpu_access = false;
2460 }
2461
2462 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2463 if (!ring_passed_seqno(obj->last_fenced_ring,
2464 obj->last_fenced_seqno)) {
db53a302 2465 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2466 obj->last_fenced_seqno);
d9e86c0e
CW
2467 if (ret)
2468 return ret;
2469 }
2470
2471 obj->last_fenced_seqno = 0;
2472 obj->last_fenced_ring = NULL;
2473 }
2474
63256ec5
CW
2475 /* Ensure that all CPU reads are completed before installing a fence
2476 * and all writes before removing the fence.
2477 */
2478 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2479 mb();
2480
d9e86c0e
CW
2481 return 0;
2482}
2483
2484int
2485i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2486{
2487 int ret;
2488
2489 if (obj->tiling_mode)
2490 i915_gem_release_mmap(obj);
2491
ce453d81 2492 ret = i915_gem_object_flush_fence(obj, NULL);
d9e86c0e
CW
2493 if (ret)
2494 return ret;
2495
2496 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2497 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2498 i915_gem_clear_fence_reg(obj->base.dev,
2499 &dev_priv->fence_regs[obj->fence_reg]);
2500
2501 obj->fence_reg = I915_FENCE_REG_NONE;
2502 }
2503
2504 return 0;
2505}
2506
2507static struct drm_i915_fence_reg *
2508i915_find_fence_reg(struct drm_device *dev,
2509 struct intel_ring_buffer *pipelined)
ae3db24a 2510{
ae3db24a 2511 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e
CW
2512 struct drm_i915_fence_reg *reg, *first, *avail;
2513 int i;
ae3db24a
DV
2514
2515 /* First try to find a free reg */
d9e86c0e 2516 avail = NULL;
ae3db24a
DV
2517 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2518 reg = &dev_priv->fence_regs[i];
2519 if (!reg->obj)
d9e86c0e 2520 return reg;
ae3db24a 2521
05394f39 2522 if (!reg->obj->pin_count)
d9e86c0e 2523 avail = reg;
ae3db24a
DV
2524 }
2525
d9e86c0e
CW
2526 if (avail == NULL)
2527 return NULL;
ae3db24a
DV
2528
2529 /* None available, try to steal one or wait for a user to finish */
d9e86c0e
CW
2530 avail = first = NULL;
2531 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2532 if (reg->obj->pin_count)
ae3db24a
DV
2533 continue;
2534
d9e86c0e
CW
2535 if (first == NULL)
2536 first = reg;
2537
2538 if (!pipelined ||
2539 !reg->obj->last_fenced_ring ||
2540 reg->obj->last_fenced_ring == pipelined) {
2541 avail = reg;
2542 break;
2543 }
ae3db24a
DV
2544 }
2545
d9e86c0e
CW
2546 if (avail == NULL)
2547 avail = first;
ae3db24a 2548
a00b10c3 2549 return avail;
ae3db24a
DV
2550}
2551
de151cf6 2552/**
d9e86c0e 2553 * i915_gem_object_get_fence - set up a fence reg for an object
de151cf6 2554 * @obj: object to map through a fence reg
d9e86c0e
CW
2555 * @pipelined: ring on which to queue the change, or NULL for CPU access
2556 * @interruptible: must we wait uninterruptibly for the register to retire?
de151cf6
JB
2557 *
2558 * When mapping objects through the GTT, userspace wants to be able to write
2559 * to them without having to worry about swizzling if the object is tiled.
2560 *
2561 * This function walks the fence regs looking for a free one for @obj,
2562 * stealing one if it can't find any.
2563 *
2564 * It then sets up the reg based on the object's properties: address, pitch
2565 * and tiling format.
2566 */
8c4b8c3f 2567int
d9e86c0e 2568i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
ce453d81 2569 struct intel_ring_buffer *pipelined)
de151cf6 2570{
05394f39 2571 struct drm_device *dev = obj->base.dev;
79e53945 2572 struct drm_i915_private *dev_priv = dev->dev_private;
d9e86c0e 2573 struct drm_i915_fence_reg *reg;
ae3db24a 2574 int ret;
de151cf6 2575
6bda10d1
CW
2576 /* XXX disable pipelining. There are bugs. Shocking. */
2577 pipelined = NULL;
2578
d9e86c0e 2579 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
2580 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2581 reg = &dev_priv->fence_regs[obj->fence_reg];
007cc8ac 2582 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
d9e86c0e 2583
29c5a587
CW
2584 if (obj->tiling_changed) {
2585 ret = i915_gem_object_flush_fence(obj, pipelined);
2586 if (ret)
2587 return ret;
2588
2589 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2590 pipelined = NULL;
2591
2592 if (pipelined) {
2593 reg->setup_seqno =
2594 i915_gem_next_request_seqno(pipelined);
2595 obj->last_fenced_seqno = reg->setup_seqno;
2596 obj->last_fenced_ring = pipelined;
2597 }
2598
2599 goto update;
2600 }
d9e86c0e
CW
2601
2602 if (!pipelined) {
2603 if (reg->setup_seqno) {
2604 if (!ring_passed_seqno(obj->last_fenced_ring,
2605 reg->setup_seqno)) {
db53a302 2606 ret = i915_wait_request(obj->last_fenced_ring,
ce453d81 2607 reg->setup_seqno);
d9e86c0e
CW
2608 if (ret)
2609 return ret;
2610 }
2611
2612 reg->setup_seqno = 0;
2613 }
2614 } else if (obj->last_fenced_ring &&
2615 obj->last_fenced_ring != pipelined) {
ce453d81 2616 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e
CW
2617 if (ret)
2618 return ret;
d9e86c0e
CW
2619 }
2620
a09ba7fa
EA
2621 return 0;
2622 }
2623
d9e86c0e
CW
2624 reg = i915_find_fence_reg(dev, pipelined);
2625 if (reg == NULL)
2626 return -ENOSPC;
de151cf6 2627
ce453d81 2628 ret = i915_gem_object_flush_fence(obj, pipelined);
d9e86c0e 2629 if (ret)
ae3db24a 2630 return ret;
de151cf6 2631
d9e86c0e
CW
2632 if (reg->obj) {
2633 struct drm_i915_gem_object *old = reg->obj;
2634
2635 drm_gem_object_reference(&old->base);
2636
2637 if (old->tiling_mode)
2638 i915_gem_release_mmap(old);
2639
ce453d81 2640 ret = i915_gem_object_flush_fence(old, pipelined);
d9e86c0e
CW
2641 if (ret) {
2642 drm_gem_object_unreference(&old->base);
2643 return ret;
2644 }
2645
2646 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2647 pipelined = NULL;
2648
2649 old->fence_reg = I915_FENCE_REG_NONE;
2650 old->last_fenced_ring = pipelined;
2651 old->last_fenced_seqno =
db53a302 2652 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2653
2654 drm_gem_object_unreference(&old->base);
2655 } else if (obj->last_fenced_seqno == 0)
2656 pipelined = NULL;
a09ba7fa 2657
de151cf6 2658 reg->obj = obj;
d9e86c0e
CW
2659 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2660 obj->fence_reg = reg - dev_priv->fence_regs;
2661 obj->last_fenced_ring = pipelined;
de151cf6 2662
d9e86c0e 2663 reg->setup_seqno =
db53a302 2664 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
d9e86c0e
CW
2665 obj->last_fenced_seqno = reg->setup_seqno;
2666
2667update:
2668 obj->tiling_changed = false;
e259befd
CW
2669 switch (INTEL_INFO(dev)->gen) {
2670 case 6:
c6642782 2671 ret = sandybridge_write_fence_reg(obj, pipelined);
e259befd
CW
2672 break;
2673 case 5:
2674 case 4:
c6642782 2675 ret = i965_write_fence_reg(obj, pipelined);
e259befd
CW
2676 break;
2677 case 3:
c6642782 2678 ret = i915_write_fence_reg(obj, pipelined);
e259befd
CW
2679 break;
2680 case 2:
c6642782 2681 ret = i830_write_fence_reg(obj, pipelined);
e259befd
CW
2682 break;
2683 }
d9ddcb96 2684
c6642782 2685 return ret;
de151cf6
JB
2686}
2687
2688/**
2689 * i915_gem_clear_fence_reg - clear out fence register info
2690 * @obj: object to clear
2691 *
2692 * Zeroes out the fence register itself and clears out the associated
05394f39 2693 * data structures in dev_priv and obj.
de151cf6
JB
2694 */
2695static void
d9e86c0e
CW
2696i915_gem_clear_fence_reg(struct drm_device *dev,
2697 struct drm_i915_fence_reg *reg)
de151cf6 2698{
79e53945 2699 drm_i915_private_t *dev_priv = dev->dev_private;
d9e86c0e 2700 uint32_t fence_reg = reg - dev_priv->fence_regs;
de151cf6 2701
e259befd
CW
2702 switch (INTEL_INFO(dev)->gen) {
2703 case 6:
d9e86c0e 2704 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
e259befd
CW
2705 break;
2706 case 5:
2707 case 4:
d9e86c0e 2708 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
e259befd
CW
2709 break;
2710 case 3:
d9e86c0e
CW
2711 if (fence_reg >= 8)
2712 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
dc529a4f 2713 else
e259befd 2714 case 2:
d9e86c0e 2715 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
dc529a4f
EA
2716
2717 I915_WRITE(fence_reg, 0);
e259befd 2718 break;
dc529a4f 2719 }
de151cf6 2720
007cc8ac 2721 list_del_init(&reg->lru_list);
d9e86c0e
CW
2722 reg->obj = NULL;
2723 reg->setup_seqno = 0;
52dc7d32
CW
2724}
2725
673a394b
EA
2726/**
2727 * Finds free space in the GTT aperture and binds the object there.
2728 */
2729static int
05394f39 2730i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
920afa77 2731 unsigned alignment,
75e9e915 2732 bool map_and_fenceable)
673a394b 2733{
05394f39 2734 struct drm_device *dev = obj->base.dev;
673a394b 2735 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 2736 struct drm_mm_node *free_space;
a00b10c3 2737 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
5e783301 2738 u32 size, fence_size, fence_alignment, unfenced_alignment;
75e9e915 2739 bool mappable, fenceable;
07f73f69 2740 int ret;
673a394b 2741
05394f39 2742 if (obj->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2743 DRM_ERROR("Attempting to bind a purgeable object\n");
2744 return -EINVAL;
2745 }
2746
05394f39
CW
2747 fence_size = i915_gem_get_gtt_size(obj);
2748 fence_alignment = i915_gem_get_gtt_alignment(obj);
2749 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
a00b10c3 2750
673a394b 2751 if (alignment == 0)
5e783301
DV
2752 alignment = map_and_fenceable ? fence_alignment :
2753 unfenced_alignment;
75e9e915 2754 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
2755 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2756 return -EINVAL;
2757 }
2758
05394f39 2759 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 2760
654fc607
CW
2761 /* If the object is bigger than the entire aperture, reject it early
2762 * before evicting everything in a vain attempt to find space.
2763 */
05394f39 2764 if (obj->base.size >
75e9e915 2765 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2766 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2767 return -E2BIG;
2768 }
2769
673a394b 2770 search_free:
75e9e915 2771 if (map_and_fenceable)
920afa77
DV
2772 free_space =
2773 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
a00b10c3 2774 size, alignment, 0,
920afa77
DV
2775 dev_priv->mm.gtt_mappable_end,
2776 0);
2777 else
2778 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
a00b10c3 2779 size, alignment, 0);
920afa77
DV
2780
2781 if (free_space != NULL) {
75e9e915 2782 if (map_and_fenceable)
05394f39 2783 obj->gtt_space =
920afa77 2784 drm_mm_get_block_range_generic(free_space,
a00b10c3 2785 size, alignment, 0,
920afa77
DV
2786 dev_priv->mm.gtt_mappable_end,
2787 0);
2788 else
05394f39 2789 obj->gtt_space =
a00b10c3 2790 drm_mm_get_block(free_space, size, alignment);
920afa77 2791 }
05394f39 2792 if (obj->gtt_space == NULL) {
673a394b
EA
2793 /* If the gtt is empty and we're still having trouble
2794 * fitting our object in, we're out of memory.
2795 */
75e9e915
DV
2796 ret = i915_gem_evict_something(dev, size, alignment,
2797 map_and_fenceable);
9731129c 2798 if (ret)
673a394b 2799 return ret;
9731129c 2800
673a394b
EA
2801 goto search_free;
2802 }
2803
e5281ccd 2804 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
673a394b 2805 if (ret) {
05394f39
CW
2806 drm_mm_put_block(obj->gtt_space);
2807 obj->gtt_space = NULL;
07f73f69
CW
2808
2809 if (ret == -ENOMEM) {
809b6334
CW
2810 /* first try to reclaim some memory by clearing the GTT */
2811 ret = i915_gem_evict_everything(dev, false);
07f73f69 2812 if (ret) {
07f73f69 2813 /* now try to shrink everyone else */
4bdadb97
CW
2814 if (gfpmask) {
2815 gfpmask = 0;
2816 goto search_free;
07f73f69
CW
2817 }
2818
809b6334 2819 return -ENOMEM;
07f73f69
CW
2820 }
2821
2822 goto search_free;
2823 }
2824
673a394b
EA
2825 return ret;
2826 }
2827
7c2e6fdf
DV
2828 ret = i915_gem_gtt_bind_object(obj);
2829 if (ret) {
e5281ccd 2830 i915_gem_object_put_pages_gtt(obj);
05394f39
CW
2831 drm_mm_put_block(obj->gtt_space);
2832 obj->gtt_space = NULL;
07f73f69 2833
809b6334 2834 if (i915_gem_evict_everything(dev, false))
07f73f69 2835 return ret;
07f73f69
CW
2836
2837 goto search_free;
673a394b 2838 }
673a394b 2839
6299f992 2840 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
05394f39 2841 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
bf1a1092 2842
673a394b
EA
2843 /* Assert that the object is not currently in any GPU domain. As it
2844 * wasn't in the GTT, there shouldn't be any way it could have been in
2845 * a GPU cache
2846 */
05394f39
CW
2847 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2848 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2849
6299f992 2850 obj->gtt_offset = obj->gtt_space->start;
1c5d22f7 2851
75e9e915 2852 fenceable =
05394f39
CW
2853 obj->gtt_space->size == fence_size &&
2854 (obj->gtt_space->start & (fence_alignment -1)) == 0;
a00b10c3 2855
75e9e915 2856 mappable =
05394f39 2857 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
a00b10c3 2858
05394f39 2859 obj->map_and_fenceable = mappable && fenceable;
75e9e915 2860
db53a302 2861 trace_i915_gem_object_bind(obj, map_and_fenceable);
673a394b
EA
2862 return 0;
2863}
2864
2865void
05394f39 2866i915_gem_clflush_object(struct drm_i915_gem_object *obj)
673a394b 2867{
673a394b
EA
2868 /* If we don't have a page list set up, then we're not pinned
2869 * to GPU, and we can ignore the cache flush because it'll happen
2870 * again at bind time.
2871 */
05394f39 2872 if (obj->pages == NULL)
673a394b
EA
2873 return;
2874
1c5d22f7 2875 trace_i915_gem_object_clflush(obj);
cfa16a0d 2876
05394f39 2877 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
673a394b
EA
2878}
2879
e47c68e9 2880/** Flushes any GPU write domain for the object if it's dirty. */
88241785 2881static int
3619df03 2882i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2883{
05394f39 2884 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
88241785 2885 return 0;
e47c68e9
EA
2886
2887 /* Queue the GPU write cache flushing we need. */
db53a302 2888 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
e47c68e9
EA
2889}
2890
2891/** Flushes the GTT write domain for the object if it's dirty. */
2892static void
05394f39 2893i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2894{
1c5d22f7
CW
2895 uint32_t old_write_domain;
2896
05394f39 2897 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
2898 return;
2899
63256ec5 2900 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
2901 * to it immediately go to main memory as far as we know, so there's
2902 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
2903 *
2904 * However, we do have to enforce the order so that all writes through
2905 * the GTT land before any writes to the device, such as updates to
2906 * the GATT itself.
e47c68e9 2907 */
63256ec5
CW
2908 wmb();
2909
4a684a41
CW
2910 i915_gem_release_mmap(obj);
2911
05394f39
CW
2912 old_write_domain = obj->base.write_domain;
2913 obj->base.write_domain = 0;
1c5d22f7
CW
2914
2915 trace_i915_gem_object_change_domain(obj,
05394f39 2916 obj->base.read_domains,
1c5d22f7 2917 old_write_domain);
e47c68e9
EA
2918}
2919
2920/** Flushes the CPU write domain for the object if it's dirty. */
2921static void
05394f39 2922i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 2923{
1c5d22f7 2924 uint32_t old_write_domain;
e47c68e9 2925
05394f39 2926 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
2927 return;
2928
2929 i915_gem_clflush_object(obj);
40ce6575 2930 intel_gtt_chipset_flush();
05394f39
CW
2931 old_write_domain = obj->base.write_domain;
2932 obj->base.write_domain = 0;
1c5d22f7
CW
2933
2934 trace_i915_gem_object_change_domain(obj,
05394f39 2935 obj->base.read_domains,
1c5d22f7 2936 old_write_domain);
e47c68e9
EA
2937}
2938
2ef7eeaa
EA
2939/**
2940 * Moves a single object to the GTT read, and possibly write domain.
2941 *
2942 * This function returns when the move is complete, including waiting on
2943 * flushes to occur.
2944 */
79e53945 2945int
2021746e 2946i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 2947{
1c5d22f7 2948 uint32_t old_write_domain, old_read_domains;
e47c68e9 2949 int ret;
2ef7eeaa 2950
02354392 2951 /* Not valid to be called on unbound objects. */
05394f39 2952 if (obj->gtt_space == NULL)
02354392
EA
2953 return -EINVAL;
2954
8d7e3de1
CW
2955 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2956 return 0;
2957
88241785
CW
2958 ret = i915_gem_object_flush_gpu_write_domain(obj);
2959 if (ret)
2960 return ret;
2961
87ca9c8a 2962 if (obj->pending_gpu_write || write) {
ce453d81 2963 ret = i915_gem_object_wait_rendering(obj);
87ca9c8a
CW
2964 if (ret)
2965 return ret;
2966 }
2dafb1e0 2967
7213342d 2968 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2969
05394f39
CW
2970 old_write_domain = obj->base.write_domain;
2971 old_read_domains = obj->base.read_domains;
1c5d22f7 2972
e47c68e9
EA
2973 /* It should now be out of any other write domains, and we can update
2974 * the domain values for our changes.
2975 */
05394f39
CW
2976 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2977 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 2978 if (write) {
05394f39
CW
2979 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2980 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2981 obj->dirty = 1;
2ef7eeaa
EA
2982 }
2983
1c5d22f7
CW
2984 trace_i915_gem_object_change_domain(obj,
2985 old_read_domains,
2986 old_write_domain);
2987
e47c68e9
EA
2988 return 0;
2989}
2990
b9241ea3
ZW
2991/*
2992 * Prepare buffer for display plane. Use uninterruptible for possible flush
2993 * wait, as in modesetting process we're not supposed to be interrupted.
2994 */
2995int
05394f39 2996i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
919926ae 2997 struct intel_ring_buffer *pipelined)
b9241ea3 2998{
ba3d8d74 2999 uint32_t old_read_domains;
b9241ea3
ZW
3000 int ret;
3001
3002 /* Not valid to be called on unbound objects. */
05394f39 3003 if (obj->gtt_space == NULL)
b9241ea3
ZW
3004 return -EINVAL;
3005
88241785
CW
3006 ret = i915_gem_object_flush_gpu_write_domain(obj);
3007 if (ret)
3008 return ret;
3009
b9241ea3 3010
ced270fa 3011 /* Currently, we are always called from an non-interruptible context. */
0be73284 3012 if (pipelined != obj->ring) {
ce453d81 3013 ret = i915_gem_object_wait_rendering(obj);
ced270fa 3014 if (ret)
b9241ea3
ZW
3015 return ret;
3016 }
3017
b118c1e3
CW
3018 i915_gem_object_flush_cpu_write_domain(obj);
3019
05394f39
CW
3020 old_read_domains = obj->base.read_domains;
3021 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3022
3023 trace_i915_gem_object_change_domain(obj,
3024 old_read_domains,
05394f39 3025 obj->base.write_domain);
b9241ea3
ZW
3026
3027 return 0;
3028}
3029
85345517 3030int
ce453d81 3031i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
85345517 3032{
88241785
CW
3033 int ret;
3034
85345517
CW
3035 if (!obj->active)
3036 return 0;
3037
88241785 3038 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3039 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
88241785
CW
3040 if (ret)
3041 return ret;
3042 }
85345517 3043
ce453d81 3044 return i915_gem_object_wait_rendering(obj);
85345517
CW
3045}
3046
e47c68e9
EA
3047/**
3048 * Moves a single object to the CPU read, and possibly write domain.
3049 *
3050 * This function returns when the move is complete, including waiting on
3051 * flushes to occur.
3052 */
3053static int
919926ae 3054i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3055{
1c5d22f7 3056 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3057 int ret;
3058
8d7e3de1
CW
3059 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3060 return 0;
3061
88241785
CW
3062 ret = i915_gem_object_flush_gpu_write_domain(obj);
3063 if (ret)
3064 return ret;
3065
ce453d81 3066 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3067 if (ret)
e47c68e9 3068 return ret;
2ef7eeaa 3069
e47c68e9 3070 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3071
e47c68e9
EA
3072 /* If we have a partially-valid cache of the object in the CPU,
3073 * finish invalidating it and free the per-page flags.
2ef7eeaa 3074 */
e47c68e9 3075 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 3076
05394f39
CW
3077 old_write_domain = obj->base.write_domain;
3078 old_read_domains = obj->base.read_domains;
1c5d22f7 3079
e47c68e9 3080 /* Flush the CPU cache if it's still invalid. */
05394f39 3081 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 3082 i915_gem_clflush_object(obj);
2ef7eeaa 3083
05394f39 3084 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3085 }
3086
3087 /* It should now be out of any other write domains, and we can update
3088 * the domain values for our changes.
3089 */
05394f39 3090 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3091
3092 /* If we're writing through the CPU, then the GPU read domains will
3093 * need to be invalidated at next use.
3094 */
3095 if (write) {
05394f39
CW
3096 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3097 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3098 }
2ef7eeaa 3099
1c5d22f7
CW
3100 trace_i915_gem_object_change_domain(obj,
3101 old_read_domains,
3102 old_write_domain);
3103
2ef7eeaa
EA
3104 return 0;
3105}
3106
673a394b 3107/**
e47c68e9 3108 * Moves the object from a partially CPU read to a full one.
673a394b 3109 *
e47c68e9
EA
3110 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3111 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3112 */
e47c68e9 3113static void
05394f39 3114i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
673a394b 3115{
05394f39 3116 if (!obj->page_cpu_valid)
e47c68e9
EA
3117 return;
3118
3119 /* If we're partially in the CPU read domain, finish moving it in.
3120 */
05394f39 3121 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3122 int i;
3123
05394f39
CW
3124 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3125 if (obj->page_cpu_valid[i])
e47c68e9 3126 continue;
05394f39 3127 drm_clflush_pages(obj->pages + i, 1);
e47c68e9 3128 }
e47c68e9
EA
3129 }
3130
3131 /* Free the page_cpu_valid mappings which are now stale, whether
3132 * or not we've got I915_GEM_DOMAIN_CPU.
3133 */
05394f39
CW
3134 kfree(obj->page_cpu_valid);
3135 obj->page_cpu_valid = NULL;
e47c68e9
EA
3136}
3137
3138/**
3139 * Set the CPU read domain on a range of the object.
3140 *
3141 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3142 * not entirely valid. The page_cpu_valid member of the object flags which
3143 * pages have been flushed, and will be respected by
3144 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3145 * of the whole object.
3146 *
3147 * This function returns when the move is complete, including waiting on
3148 * flushes to occur.
3149 */
3150static int
05394f39 3151i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
e47c68e9
EA
3152 uint64_t offset, uint64_t size)
3153{
1c5d22f7 3154 uint32_t old_read_domains;
e47c68e9 3155 int i, ret;
673a394b 3156
05394f39 3157 if (offset == 0 && size == obj->base.size)
e47c68e9 3158 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3159
88241785
CW
3160 ret = i915_gem_object_flush_gpu_write_domain(obj);
3161 if (ret)
3162 return ret;
3163
ce453d81 3164 ret = i915_gem_object_wait_rendering(obj);
de18a29e 3165 if (ret)
6a47baa6 3166 return ret;
de18a29e 3167
e47c68e9
EA
3168 i915_gem_object_flush_gtt_write_domain(obj);
3169
3170 /* If we're already fully in the CPU read domain, we're done. */
05394f39
CW
3171 if (obj->page_cpu_valid == NULL &&
3172 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
e47c68e9 3173 return 0;
673a394b 3174
e47c68e9
EA
3175 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3176 * newly adding I915_GEM_DOMAIN_CPU
3177 */
05394f39
CW
3178 if (obj->page_cpu_valid == NULL) {
3179 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3180 GFP_KERNEL);
3181 if (obj->page_cpu_valid == NULL)
e47c68e9 3182 return -ENOMEM;
05394f39
CW
3183 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3184 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
673a394b
EA
3185
3186 /* Flush the cache on any pages that are still invalid from the CPU's
3187 * perspective.
3188 */
e47c68e9
EA
3189 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3190 i++) {
05394f39 3191 if (obj->page_cpu_valid[i])
673a394b
EA
3192 continue;
3193
05394f39 3194 drm_clflush_pages(obj->pages + i, 1);
673a394b 3195
05394f39 3196 obj->page_cpu_valid[i] = 1;
673a394b
EA
3197 }
3198
e47c68e9
EA
3199 /* It should now be out of any other write domains, and we can update
3200 * the domain values for our changes.
3201 */
05394f39 3202 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9 3203
05394f39
CW
3204 old_read_domains = obj->base.read_domains;
3205 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
e47c68e9 3206
1c5d22f7
CW
3207 trace_i915_gem_object_change_domain(obj,
3208 old_read_domains,
05394f39 3209 obj->base.write_domain);
1c5d22f7 3210
673a394b
EA
3211 return 0;
3212}
3213
673a394b
EA
3214/* Throttle our rendering by waiting until the ring has completed our requests
3215 * emitted over 20 msec ago.
3216 *
b962442e
EA
3217 * Note that if we were to use the current jiffies each time around the loop,
3218 * we wouldn't escape the function with any frames outstanding if the time to
3219 * render a frame was over 20ms.
3220 *
673a394b
EA
3221 * This should get us reasonable parallelism between CPU and GPU but also
3222 * relatively low latency when blocking on a particular request to finish.
3223 */
40a5f0de 3224static int
f787a5f5 3225i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3226{
f787a5f5
CW
3227 struct drm_i915_private *dev_priv = dev->dev_private;
3228 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3229 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3230 struct drm_i915_gem_request *request;
3231 struct intel_ring_buffer *ring = NULL;
3232 u32 seqno = 0;
3233 int ret;
93533c29 3234
e110e8d6
CW
3235 if (atomic_read(&dev_priv->mm.wedged))
3236 return -EIO;
3237
1c25595f 3238 spin_lock(&file_priv->mm.lock);
f787a5f5 3239 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3240 if (time_after_eq(request->emitted_jiffies, recent_enough))
3241 break;
40a5f0de 3242
f787a5f5
CW
3243 ring = request->ring;
3244 seqno = request->seqno;
b962442e 3245 }
1c25595f 3246 spin_unlock(&file_priv->mm.lock);
40a5f0de 3247
f787a5f5
CW
3248 if (seqno == 0)
3249 return 0;
2bc43b5c 3250
f787a5f5 3251 ret = 0;
78501eac 3252 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3253 /* And wait for the seqno passing without holding any locks and
3254 * causing extra latency for others. This is safe as the irq
3255 * generation is designed to be run atomically and so is
3256 * lockless.
3257 */
b13c2b96
CW
3258 if (ring->irq_get(ring)) {
3259 ret = wait_event_interruptible(ring->irq_queue,
3260 i915_seqno_passed(ring->get_seqno(ring), seqno)
3261 || atomic_read(&dev_priv->mm.wedged));
3262 ring->irq_put(ring);
40a5f0de 3263
b13c2b96
CW
3264 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3265 ret = -EIO;
3266 }
40a5f0de
EA
3267 }
3268
f787a5f5
CW
3269 if (ret == 0)
3270 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3271
3272 return ret;
3273}
3274
673a394b 3275int
05394f39
CW
3276i915_gem_object_pin(struct drm_i915_gem_object *obj,
3277 uint32_t alignment,
75e9e915 3278 bool map_and_fenceable)
673a394b 3279{
05394f39 3280 struct drm_device *dev = obj->base.dev;
f13d3f73 3281 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
3282 int ret;
3283
05394f39 3284 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 3285 WARN_ON(i915_verify_lists(dev));
ac0c6b5a 3286
05394f39
CW
3287 if (obj->gtt_space != NULL) {
3288 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3289 (map_and_fenceable && !obj->map_and_fenceable)) {
3290 WARN(obj->pin_count,
ae7d49d8 3291 "bo is already pinned with incorrect alignment:"
75e9e915
DV
3292 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3293 " obj->map_and_fenceable=%d\n",
05394f39 3294 obj->gtt_offset, alignment,
75e9e915 3295 map_and_fenceable,
05394f39 3296 obj->map_and_fenceable);
ac0c6b5a
CW
3297 ret = i915_gem_object_unbind(obj);
3298 if (ret)
3299 return ret;
3300 }
3301 }
3302
05394f39 3303 if (obj->gtt_space == NULL) {
a00b10c3 3304 ret = i915_gem_object_bind_to_gtt(obj, alignment,
75e9e915 3305 map_and_fenceable);
9731129c 3306 if (ret)
673a394b 3307 return ret;
22c344e9 3308 }
76446cac 3309
05394f39 3310 if (obj->pin_count++ == 0) {
05394f39
CW
3311 if (!obj->active)
3312 list_move_tail(&obj->mm_list,
f13d3f73 3313 &dev_priv->mm.pinned_list);
673a394b 3314 }
6299f992 3315 obj->pin_mappable |= map_and_fenceable;
673a394b 3316
23bc5982 3317 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3318 return 0;
3319}
3320
3321void
05394f39 3322i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3323{
05394f39 3324 struct drm_device *dev = obj->base.dev;
673a394b 3325 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 3326
23bc5982 3327 WARN_ON(i915_verify_lists(dev));
05394f39
CW
3328 BUG_ON(obj->pin_count == 0);
3329 BUG_ON(obj->gtt_space == NULL);
673a394b 3330
05394f39
CW
3331 if (--obj->pin_count == 0) {
3332 if (!obj->active)
3333 list_move_tail(&obj->mm_list,
673a394b 3334 &dev_priv->mm.inactive_list);
6299f992 3335 obj->pin_mappable = false;
673a394b 3336 }
23bc5982 3337 WARN_ON(i915_verify_lists(dev));
673a394b
EA
3338}
3339
3340int
3341i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3342 struct drm_file *file)
673a394b
EA
3343{
3344 struct drm_i915_gem_pin *args = data;
05394f39 3345 struct drm_i915_gem_object *obj;
673a394b
EA
3346 int ret;
3347
1d7cfea1
CW
3348 ret = i915_mutex_lock_interruptible(dev);
3349 if (ret)
3350 return ret;
673a394b 3351
05394f39 3352 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3353 if (&obj->base == NULL) {
1d7cfea1
CW
3354 ret = -ENOENT;
3355 goto unlock;
673a394b 3356 }
673a394b 3357
05394f39 3358 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3359 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3360 ret = -EINVAL;
3361 goto out;
3ef94daa
CW
3362 }
3363
05394f39 3364 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3365 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3366 args->handle);
1d7cfea1
CW
3367 ret = -EINVAL;
3368 goto out;
79e53945
JB
3369 }
3370
05394f39
CW
3371 obj->user_pin_count++;
3372 obj->pin_filp = file;
3373 if (obj->user_pin_count == 1) {
75e9e915 3374 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
3375 if (ret)
3376 goto out;
673a394b
EA
3377 }
3378
3379 /* XXX - flush the CPU caches for pinned objects
3380 * as the X server doesn't manage domains yet
3381 */
e47c68e9 3382 i915_gem_object_flush_cpu_write_domain(obj);
05394f39 3383 args->offset = obj->gtt_offset;
1d7cfea1 3384out:
05394f39 3385 drm_gem_object_unreference(&obj->base);
1d7cfea1 3386unlock:
673a394b 3387 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3388 return ret;
673a394b
EA
3389}
3390
3391int
3392i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3393 struct drm_file *file)
673a394b
EA
3394{
3395 struct drm_i915_gem_pin *args = data;
05394f39 3396 struct drm_i915_gem_object *obj;
76c1dec1 3397 int ret;
673a394b 3398
1d7cfea1
CW
3399 ret = i915_mutex_lock_interruptible(dev);
3400 if (ret)
3401 return ret;
673a394b 3402
05394f39 3403 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3404 if (&obj->base == NULL) {
1d7cfea1
CW
3405 ret = -ENOENT;
3406 goto unlock;
673a394b 3407 }
76c1dec1 3408
05394f39 3409 if (obj->pin_filp != file) {
79e53945
JB
3410 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3411 args->handle);
1d7cfea1
CW
3412 ret = -EINVAL;
3413 goto out;
79e53945 3414 }
05394f39
CW
3415 obj->user_pin_count--;
3416 if (obj->user_pin_count == 0) {
3417 obj->pin_filp = NULL;
79e53945
JB
3418 i915_gem_object_unpin(obj);
3419 }
673a394b 3420
1d7cfea1 3421out:
05394f39 3422 drm_gem_object_unreference(&obj->base);
1d7cfea1 3423unlock:
673a394b 3424 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3425 return ret;
673a394b
EA
3426}
3427
3428int
3429i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3430 struct drm_file *file)
673a394b
EA
3431{
3432 struct drm_i915_gem_busy *args = data;
05394f39 3433 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3434 int ret;
3435
76c1dec1 3436 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3437 if (ret)
76c1dec1 3438 return ret;
673a394b 3439
05394f39 3440 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3441 if (&obj->base == NULL) {
1d7cfea1
CW
3442 ret = -ENOENT;
3443 goto unlock;
673a394b 3444 }
d1b851fc 3445
0be555b6
CW
3446 /* Count all active objects as busy, even if they are currently not used
3447 * by the gpu. Users of this interface expect objects to eventually
3448 * become non-busy without any further actions, therefore emit any
3449 * necessary flushes here.
c4de0a5d 3450 */
05394f39 3451 args->busy = obj->active;
0be555b6
CW
3452 if (args->busy) {
3453 /* Unconditionally flush objects, even when the gpu still uses this
3454 * object. Userspace calling this function indicates that it wants to
3455 * use this buffer rather sooner than later, so issuing the required
3456 * flush earlier is beneficial.
3457 */
1a1c6976 3458 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
db53a302 3459 ret = i915_gem_flush_ring(obj->ring,
88241785 3460 0, obj->base.write_domain);
1a1c6976
CW
3461 } else if (obj->ring->outstanding_lazy_request ==
3462 obj->last_rendering_seqno) {
3463 struct drm_i915_gem_request *request;
3464
7a194876
CW
3465 /* This ring is not being cleared by active usage,
3466 * so emit a request to do so.
3467 */
1a1c6976
CW
3468 request = kzalloc(sizeof(*request), GFP_KERNEL);
3469 if (request)
db53a302 3470 ret = i915_add_request(obj->ring, NULL,request);
1a1c6976 3471 else
7a194876
CW
3472 ret = -ENOMEM;
3473 }
0be555b6
CW
3474
3475 /* Update the active list for the hardware's current position.
3476 * Otherwise this only updates on a delayed timer or when irqs
3477 * are actually unmasked, and our working set ends up being
3478 * larger than required.
3479 */
db53a302 3480 i915_gem_retire_requests_ring(obj->ring);
0be555b6 3481
05394f39 3482 args->busy = obj->active;
0be555b6 3483 }
673a394b 3484
05394f39 3485 drm_gem_object_unreference(&obj->base);
1d7cfea1 3486unlock:
673a394b 3487 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3488 return ret;
673a394b
EA
3489}
3490
3491int
3492i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3493 struct drm_file *file_priv)
3494{
3495 return i915_gem_ring_throttle(dev, file_priv);
3496}
3497
3ef94daa
CW
3498int
3499i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3500 struct drm_file *file_priv)
3501{
3502 struct drm_i915_gem_madvise *args = data;
05394f39 3503 struct drm_i915_gem_object *obj;
76c1dec1 3504 int ret;
3ef94daa
CW
3505
3506 switch (args->madv) {
3507 case I915_MADV_DONTNEED:
3508 case I915_MADV_WILLNEED:
3509 break;
3510 default:
3511 return -EINVAL;
3512 }
3513
1d7cfea1
CW
3514 ret = i915_mutex_lock_interruptible(dev);
3515 if (ret)
3516 return ret;
3517
05394f39 3518 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3519 if (&obj->base == NULL) {
1d7cfea1
CW
3520 ret = -ENOENT;
3521 goto unlock;
3ef94daa 3522 }
3ef94daa 3523
05394f39 3524 if (obj->pin_count) {
1d7cfea1
CW
3525 ret = -EINVAL;
3526 goto out;
3ef94daa
CW
3527 }
3528
05394f39
CW
3529 if (obj->madv != __I915_MADV_PURGED)
3530 obj->madv = args->madv;
3ef94daa 3531
2d7ef395 3532 /* if the object is no longer bound, discard its backing storage */
05394f39
CW
3533 if (i915_gem_object_is_purgeable(obj) &&
3534 obj->gtt_space == NULL)
2d7ef395
CW
3535 i915_gem_object_truncate(obj);
3536
05394f39 3537 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3538
1d7cfea1 3539out:
05394f39 3540 drm_gem_object_unreference(&obj->base);
1d7cfea1 3541unlock:
3ef94daa 3542 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3543 return ret;
3ef94daa
CW
3544}
3545
05394f39
CW
3546struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3547 size_t size)
ac52bc56 3548{
73aa808f 3549 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 3550 struct drm_i915_gem_object *obj;
ac52bc56 3551
c397b908
DV
3552 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3553 if (obj == NULL)
3554 return NULL;
673a394b 3555
c397b908
DV
3556 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3557 kfree(obj);
3558 return NULL;
3559 }
673a394b 3560
73aa808f
CW
3561 i915_gem_info_add_obj(dev_priv, size);
3562
c397b908
DV
3563 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3564 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3565
c397b908 3566 obj->agp_type = AGP_USER_MEMORY;
62b8b215 3567 obj->base.driver_private = NULL;
c397b908 3568 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987 3569 INIT_LIST_HEAD(&obj->mm_list);
93a37f20 3570 INIT_LIST_HEAD(&obj->gtt_list);
69dc4987 3571 INIT_LIST_HEAD(&obj->ring_list);
432e58ed 3572 INIT_LIST_HEAD(&obj->exec_list);
c397b908 3573 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 3574 obj->madv = I915_MADV_WILLNEED;
75e9e915
DV
3575 /* Avoid an unnecessary call to unbind on the first bind. */
3576 obj->map_and_fenceable = true;
de151cf6 3577
05394f39 3578 return obj;
c397b908
DV
3579}
3580
3581int i915_gem_init_object(struct drm_gem_object *obj)
3582{
3583 BUG();
de151cf6 3584
673a394b
EA
3585 return 0;
3586}
3587
05394f39 3588static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
673a394b 3589{
05394f39 3590 struct drm_device *dev = obj->base.dev;
be72615b 3591 drm_i915_private_t *dev_priv = dev->dev_private;
be72615b 3592 int ret;
673a394b 3593
be72615b
CW
3594 ret = i915_gem_object_unbind(obj);
3595 if (ret == -ERESTARTSYS) {
05394f39 3596 list_move(&obj->mm_list,
be72615b
CW
3597 &dev_priv->mm.deferred_free_list);
3598 return;
3599 }
673a394b 3600
05394f39 3601 if (obj->base.map_list.map)
7e616158 3602 i915_gem_free_mmap_offset(obj);
de151cf6 3603
05394f39
CW
3604 drm_gem_object_release(&obj->base);
3605 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 3606
05394f39
CW
3607 kfree(obj->page_cpu_valid);
3608 kfree(obj->bit_17);
3609 kfree(obj);
db53a302
CW
3610
3611 trace_i915_gem_object_destroy(obj);
673a394b
EA
3612}
3613
05394f39 3614void i915_gem_free_object(struct drm_gem_object *gem_obj)
be72615b 3615{
05394f39
CW
3616 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3617 struct drm_device *dev = obj->base.dev;
be72615b 3618
05394f39 3619 while (obj->pin_count > 0)
be72615b
CW
3620 i915_gem_object_unpin(obj);
3621
05394f39 3622 if (obj->phys_obj)
be72615b
CW
3623 i915_gem_detach_phys_object(dev, obj);
3624
3625 i915_gem_free_object_tail(obj);
3626}
3627
29105ccc
CW
3628int
3629i915_gem_idle(struct drm_device *dev)
3630{
3631 drm_i915_private_t *dev_priv = dev->dev_private;
3632 int ret;
28dfe52a 3633
29105ccc 3634 mutex_lock(&dev->struct_mutex);
1c5d22f7 3635
87acb0a5 3636 if (dev_priv->mm.suspended) {
29105ccc
CW
3637 mutex_unlock(&dev->struct_mutex);
3638 return 0;
28dfe52a
EA
3639 }
3640
29105ccc 3641 ret = i915_gpu_idle(dev);
6dbe2772
KP
3642 if (ret) {
3643 mutex_unlock(&dev->struct_mutex);
673a394b 3644 return ret;
6dbe2772 3645 }
673a394b 3646
29105ccc
CW
3647 /* Under UMS, be paranoid and evict. */
3648 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
5eac3ab4 3649 ret = i915_gem_evict_inactive(dev, false);
29105ccc
CW
3650 if (ret) {
3651 mutex_unlock(&dev->struct_mutex);
3652 return ret;
3653 }
3654 }
3655
312817a3
CW
3656 i915_gem_reset_fences(dev);
3657
29105ccc
CW
3658 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3659 * We need to replace this with a semaphore, or something.
3660 * And not confound mm.suspended!
3661 */
3662 dev_priv->mm.suspended = 1;
bc0c7f14 3663 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
3664
3665 i915_kernel_lost_context(dev);
6dbe2772 3666 i915_gem_cleanup_ringbuffer(dev);
29105ccc 3667
6dbe2772
KP
3668 mutex_unlock(&dev->struct_mutex);
3669
29105ccc
CW
3670 /* Cancel the retire work handler, which should be idle now. */
3671 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3672
673a394b
EA
3673 return 0;
3674}
3675
8187a2b7
ZN
3676int
3677i915_gem_init_ringbuffer(struct drm_device *dev)
3678{
3679 drm_i915_private_t *dev_priv = dev->dev_private;
3680 int ret;
68f95ba9 3681
5c1143bb 3682 ret = intel_init_render_ring_buffer(dev);
68f95ba9 3683 if (ret)
b6913e4b 3684 return ret;
68f95ba9
CW
3685
3686 if (HAS_BSD(dev)) {
5c1143bb 3687 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
3688 if (ret)
3689 goto cleanup_render_ring;
d1b851fc 3690 }
68f95ba9 3691
549f7365
CW
3692 if (HAS_BLT(dev)) {
3693 ret = intel_init_blt_ring_buffer(dev);
3694 if (ret)
3695 goto cleanup_bsd_ring;
3696 }
3697
6f392d54
CW
3698 dev_priv->next_seqno = 1;
3699
68f95ba9
CW
3700 return 0;
3701
549f7365 3702cleanup_bsd_ring:
1ec14ad3 3703 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
68f95ba9 3704cleanup_render_ring:
1ec14ad3 3705 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
8187a2b7
ZN
3706 return ret;
3707}
3708
3709void
3710i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3711{
3712 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3713 int i;
8187a2b7 3714
1ec14ad3
CW
3715 for (i = 0; i < I915_NUM_RINGS; i++)
3716 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
8187a2b7
ZN
3717}
3718
673a394b
EA
3719int
3720i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3721 struct drm_file *file_priv)
3722{
3723 drm_i915_private_t *dev_priv = dev->dev_private;
1ec14ad3 3724 int ret, i;
673a394b 3725
79e53945
JB
3726 if (drm_core_check_feature(dev, DRIVER_MODESET))
3727 return 0;
3728
ba1234d1 3729 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 3730 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 3731 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
3732 }
3733
673a394b 3734 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
3735 dev_priv->mm.suspended = 0;
3736
3737 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
3738 if (ret != 0) {
3739 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 3740 return ret;
d816f6ac 3741 }
9bb2d6f9 3742
69dc4987 3743 BUG_ON(!list_empty(&dev_priv->mm.active_list));
673a394b
EA
3744 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3745 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
1ec14ad3
CW
3746 for (i = 0; i < I915_NUM_RINGS; i++) {
3747 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3748 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3749 }
673a394b 3750 mutex_unlock(&dev->struct_mutex);
dbb19d30 3751
5f35308b
CW
3752 ret = drm_irq_install(dev);
3753 if (ret)
3754 goto cleanup_ringbuffer;
dbb19d30 3755
673a394b 3756 return 0;
5f35308b
CW
3757
3758cleanup_ringbuffer:
3759 mutex_lock(&dev->struct_mutex);
3760 i915_gem_cleanup_ringbuffer(dev);
3761 dev_priv->mm.suspended = 1;
3762 mutex_unlock(&dev->struct_mutex);
3763
3764 return ret;
673a394b
EA
3765}
3766
3767int
3768i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3769 struct drm_file *file_priv)
3770{
79e53945
JB
3771 if (drm_core_check_feature(dev, DRIVER_MODESET))
3772 return 0;
3773
dbb19d30 3774 drm_irq_uninstall(dev);
e6890f6f 3775 return i915_gem_idle(dev);
673a394b
EA
3776}
3777
3778void
3779i915_gem_lastclose(struct drm_device *dev)
3780{
3781 int ret;
673a394b 3782
e806b495
EA
3783 if (drm_core_check_feature(dev, DRIVER_MODESET))
3784 return;
3785
6dbe2772
KP
3786 ret = i915_gem_idle(dev);
3787 if (ret)
3788 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
3789}
3790
64193406
CW
3791static void
3792init_ring_lists(struct intel_ring_buffer *ring)
3793{
3794 INIT_LIST_HEAD(&ring->active_list);
3795 INIT_LIST_HEAD(&ring->request_list);
3796 INIT_LIST_HEAD(&ring->gpu_write_list);
3797}
3798
673a394b
EA
3799void
3800i915_gem_load(struct drm_device *dev)
3801{
b5aa8a0f 3802 int i;
673a394b
EA
3803 drm_i915_private_t *dev_priv = dev->dev_private;
3804
69dc4987 3805 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
3806 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3807 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 3808 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 3809 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 3810 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
93a37f20 3811 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
1ec14ad3
CW
3812 for (i = 0; i < I915_NUM_RINGS; i++)
3813 init_ring_lists(&dev_priv->ring[i]);
007cc8ac
DV
3814 for (i = 0; i < 16; i++)
3815 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
3816 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3817 i915_gem_retire_work_handler);
30dbf0c0 3818 init_completion(&dev_priv->error_completion);
31169714 3819
94400120
DA
3820 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3821 if (IS_GEN3(dev)) {
3822 u32 tmp = I915_READ(MI_ARB_STATE);
3823 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3824 /* arb state is a masked write, so set bit + bit in mask */
3825 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3826 I915_WRITE(MI_ARB_STATE, tmp);
3827 }
3828 }
3829
72bfa19c
CW
3830 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3831
de151cf6 3832 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
3833 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3834 dev_priv->fence_reg_start = 3;
de151cf6 3835
a6c45cf0 3836 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
3837 dev_priv->num_fence_regs = 16;
3838 else
3839 dev_priv->num_fence_regs = 8;
3840
b5aa8a0f 3841 /* Initialize fence registers to zero */
a6c45cf0
CW
3842 switch (INTEL_INFO(dev)->gen) {
3843 case 6:
3844 for (i = 0; i < 16; i++)
3845 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3846 break;
3847 case 5:
3848 case 4:
b5aa8a0f
GH
3849 for (i = 0; i < 16; i++)
3850 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
3851 break;
3852 case 3:
b5aa8a0f
GH
3853 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3854 for (i = 0; i < 8; i++)
3855 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
3856 case 2:
3857 for (i = 0; i < 8; i++)
3858 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3859 break;
b5aa8a0f 3860 }
673a394b 3861 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 3862 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 3863
ce453d81
CW
3864 dev_priv->mm.interruptible = true;
3865
17250b71
CW
3866 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3867 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3868 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 3869}
71acb5eb
DA
3870
3871/*
3872 * Create a physically contiguous memory object for this object
3873 * e.g. for cursor + overlay regs
3874 */
995b6762
CW
3875static int i915_gem_init_phys_object(struct drm_device *dev,
3876 int id, int size, int align)
71acb5eb
DA
3877{
3878 drm_i915_private_t *dev_priv = dev->dev_private;
3879 struct drm_i915_gem_phys_object *phys_obj;
3880 int ret;
3881
3882 if (dev_priv->mm.phys_objs[id - 1] || !size)
3883 return 0;
3884
9a298b2a 3885 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
3886 if (!phys_obj)
3887 return -ENOMEM;
3888
3889 phys_obj->id = id;
3890
6eeefaf3 3891 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
3892 if (!phys_obj->handle) {
3893 ret = -ENOMEM;
3894 goto kfree_obj;
3895 }
3896#ifdef CONFIG_X86
3897 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3898#endif
3899
3900 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3901
3902 return 0;
3903kfree_obj:
9a298b2a 3904 kfree(phys_obj);
71acb5eb
DA
3905 return ret;
3906}
3907
995b6762 3908static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
3909{
3910 drm_i915_private_t *dev_priv = dev->dev_private;
3911 struct drm_i915_gem_phys_object *phys_obj;
3912
3913 if (!dev_priv->mm.phys_objs[id - 1])
3914 return;
3915
3916 phys_obj = dev_priv->mm.phys_objs[id - 1];
3917 if (phys_obj->cur_obj) {
3918 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3919 }
3920
3921#ifdef CONFIG_X86
3922 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3923#endif
3924 drm_pci_free(dev, phys_obj->handle);
3925 kfree(phys_obj);
3926 dev_priv->mm.phys_objs[id - 1] = NULL;
3927}
3928
3929void i915_gem_free_all_phys_object(struct drm_device *dev)
3930{
3931 int i;
3932
260883c8 3933 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
3934 i915_gem_free_phys_object(dev, i);
3935}
3936
3937void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 3938 struct drm_i915_gem_object *obj)
71acb5eb 3939{
05394f39 3940 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
e5281ccd 3941 char *vaddr;
71acb5eb 3942 int i;
71acb5eb
DA
3943 int page_count;
3944
05394f39 3945 if (!obj->phys_obj)
71acb5eb 3946 return;
05394f39 3947 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 3948
05394f39 3949 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 3950 for (i = 0; i < page_count; i++) {
e5281ccd
CW
3951 struct page *page = read_cache_page_gfp(mapping, i,
3952 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3953 if (!IS_ERR(page)) {
3954 char *dst = kmap_atomic(page);
3955 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3956 kunmap_atomic(dst);
3957
3958 drm_clflush_pages(&page, 1);
3959
3960 set_page_dirty(page);
3961 mark_page_accessed(page);
3962 page_cache_release(page);
3963 }
71acb5eb 3964 }
40ce6575 3965 intel_gtt_chipset_flush();
d78b47b9 3966
05394f39
CW
3967 obj->phys_obj->cur_obj = NULL;
3968 obj->phys_obj = NULL;
71acb5eb
DA
3969}
3970
3971int
3972i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 3973 struct drm_i915_gem_object *obj,
6eeefaf3
CW
3974 int id,
3975 int align)
71acb5eb 3976{
05394f39 3977 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
71acb5eb 3978 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
3979 int ret = 0;
3980 int page_count;
3981 int i;
3982
3983 if (id > I915_MAX_PHYS_OBJECT)
3984 return -EINVAL;
3985
05394f39
CW
3986 if (obj->phys_obj) {
3987 if (obj->phys_obj->id == id)
71acb5eb
DA
3988 return 0;
3989 i915_gem_detach_phys_object(dev, obj);
3990 }
3991
71acb5eb
DA
3992 /* create a new object */
3993 if (!dev_priv->mm.phys_objs[id - 1]) {
3994 ret = i915_gem_init_phys_object(dev, id,
05394f39 3995 obj->base.size, align);
71acb5eb 3996 if (ret) {
05394f39
CW
3997 DRM_ERROR("failed to init phys object %d size: %zu\n",
3998 id, obj->base.size);
e5281ccd 3999 return ret;
71acb5eb
DA
4000 }
4001 }
4002
4003 /* bind to the object */
05394f39
CW
4004 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4005 obj->phys_obj->cur_obj = obj;
71acb5eb 4006
05394f39 4007 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4008
4009 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4010 struct page *page;
4011 char *dst, *src;
4012
4013 page = read_cache_page_gfp(mapping, i,
4014 GFP_HIGHUSER | __GFP_RECLAIMABLE);
4015 if (IS_ERR(page))
4016 return PTR_ERR(page);
71acb5eb 4017
ff75b9bc 4018 src = kmap_atomic(page);
05394f39 4019 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4020 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4021 kunmap_atomic(src);
71acb5eb 4022
e5281ccd
CW
4023 mark_page_accessed(page);
4024 page_cache_release(page);
4025 }
d78b47b9 4026
71acb5eb 4027 return 0;
71acb5eb
DA
4028}
4029
4030static int
05394f39
CW
4031i915_gem_phys_pwrite(struct drm_device *dev,
4032 struct drm_i915_gem_object *obj,
71acb5eb
DA
4033 struct drm_i915_gem_pwrite *args,
4034 struct drm_file *file_priv)
4035{
05394f39 4036 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
b47b30cc 4037 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
71acb5eb 4038
b47b30cc
CW
4039 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4040 unsigned long unwritten;
4041
4042 /* The physical object once assigned is fixed for the lifetime
4043 * of the obj, so we can safely drop the lock and continue
4044 * to access vaddr.
4045 */
4046 mutex_unlock(&dev->struct_mutex);
4047 unwritten = copy_from_user(vaddr, user_data, args->size);
4048 mutex_lock(&dev->struct_mutex);
4049 if (unwritten)
4050 return -EFAULT;
4051 }
71acb5eb 4052
40ce6575 4053 intel_gtt_chipset_flush();
71acb5eb
DA
4054 return 0;
4055}
b962442e 4056
f787a5f5 4057void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4058{
f787a5f5 4059 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4060
4061 /* Clean up our request list when the client is going away, so that
4062 * later retire_requests won't dereference our soon-to-be-gone
4063 * file_priv.
4064 */
1c25595f 4065 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4066 while (!list_empty(&file_priv->mm.request_list)) {
4067 struct drm_i915_gem_request *request;
4068
4069 request = list_first_entry(&file_priv->mm.request_list,
4070 struct drm_i915_gem_request,
4071 client_list);
4072 list_del(&request->client_list);
4073 request->file_priv = NULL;
4074 }
1c25595f 4075 spin_unlock(&file_priv->mm.lock);
b962442e 4076}
31169714 4077
1637ef41
CW
4078static int
4079i915_gpu_is_active(struct drm_device *dev)
4080{
4081 drm_i915_private_t *dev_priv = dev->dev_private;
4082 int lists_empty;
4083
1637ef41 4084 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
17250b71 4085 list_empty(&dev_priv->mm.active_list);
1637ef41
CW
4086
4087 return !lists_empty;
4088}
4089
31169714 4090static int
17250b71
CW
4091i915_gem_inactive_shrink(struct shrinker *shrinker,
4092 int nr_to_scan,
4093 gfp_t gfp_mask)
31169714 4094{
17250b71
CW
4095 struct drm_i915_private *dev_priv =
4096 container_of(shrinker,
4097 struct drm_i915_private,
4098 mm.inactive_shrinker);
4099 struct drm_device *dev = dev_priv->dev;
4100 struct drm_i915_gem_object *obj, *next;
4101 int cnt;
4102
4103 if (!mutex_trylock(&dev->struct_mutex))
bbe2e11a 4104 return 0;
31169714
CW
4105
4106 /* "fast-path" to count number of available objects */
4107 if (nr_to_scan == 0) {
17250b71
CW
4108 cnt = 0;
4109 list_for_each_entry(obj,
4110 &dev_priv->mm.inactive_list,
4111 mm_list)
4112 cnt++;
4113 mutex_unlock(&dev->struct_mutex);
4114 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714
CW
4115 }
4116
1637ef41 4117rescan:
31169714 4118 /* first scan for clean buffers */
17250b71 4119 i915_gem_retire_requests(dev);
31169714 4120
17250b71
CW
4121 list_for_each_entry_safe(obj, next,
4122 &dev_priv->mm.inactive_list,
4123 mm_list) {
4124 if (i915_gem_object_is_purgeable(obj)) {
2021746e
CW
4125 if (i915_gem_object_unbind(obj) == 0 &&
4126 --nr_to_scan == 0)
17250b71 4127 break;
31169714 4128 }
31169714
CW
4129 }
4130
4131 /* second pass, evict/count anything still on the inactive list */
17250b71
CW
4132 cnt = 0;
4133 list_for_each_entry_safe(obj, next,
4134 &dev_priv->mm.inactive_list,
4135 mm_list) {
2021746e
CW
4136 if (nr_to_scan &&
4137 i915_gem_object_unbind(obj) == 0)
17250b71 4138 nr_to_scan--;
2021746e 4139 else
17250b71
CW
4140 cnt++;
4141 }
4142
4143 if (nr_to_scan && i915_gpu_is_active(dev)) {
1637ef41
CW
4144 /*
4145 * We are desperate for pages, so as a last resort, wait
4146 * for the GPU to finish and discard whatever we can.
4147 * This has a dramatic impact to reduce the number of
4148 * OOM-killer events whilst running the GPU aggressively.
4149 */
17250b71 4150 if (i915_gpu_idle(dev) == 0)
1637ef41
CW
4151 goto rescan;
4152 }
17250b71
CW
4153 mutex_unlock(&dev->struct_mutex);
4154 return cnt / 100 * sysctl_vfs_cache_pressure;
31169714 4155}
This page took 0.77836 seconds and 5 git commands to generate.