Merge 3.12-rc3 into char-misc-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5949eac4 34#include <linux/shmem_fs.h>
5a0e3ad6 35#include <linux/slab.h>
673a394b 36#include <linux/swap.h>
79e53945 37#include <linux/pci.h>
1286ff73 38#include <linux/dma-buf.h>
673a394b 39
05394f39 40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
07fe0b12
BW
43static __must_check int
44i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
45 struct i915_address_space *vm,
46 unsigned alignment,
47 bool map_and_fenceable,
48 bool nonblocking);
05394f39
CW
49static int i915_gem_phys_pwrite(struct drm_device *dev,
50 struct drm_i915_gem_object *obj,
71acb5eb 51 struct drm_i915_gem_pwrite *args,
05394f39 52 struct drm_file *file);
673a394b 53
61050808
CW
54static void i915_gem_write_fence(struct drm_device *dev, int reg,
55 struct drm_i915_gem_object *obj);
56static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
57 struct drm_i915_fence_reg *fence,
58 bool enable);
59
7dc19d5a
DC
60static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
61 struct shrink_control *sc);
62static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
63 struct shrink_control *sc);
6c085a72 64static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
7dc19d5a 65static long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
8c59967c 66static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
31169714 67
c76ce038
CW
68static bool cpu_cache_is_coherent(struct drm_device *dev,
69 enum i915_cache_level level)
70{
71 return HAS_LLC(dev) || level != I915_CACHE_NONE;
72}
73
2c22569b
CW
74static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
75{
76 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
77 return true;
78
79 return obj->pin_display;
80}
81
61050808
CW
82static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
83{
84 if (obj->tiling_mode)
85 i915_gem_release_mmap(obj);
86
87 /* As we do not have an associated fence register, we will force
88 * a tiling change if we ever need to acquire one.
89 */
5d82e3e6 90 obj->fence_dirty = false;
61050808
CW
91 obj->fence_reg = I915_FENCE_REG_NONE;
92}
93
73aa808f
CW
94/* some bookkeeping */
95static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
96 size_t size)
97{
c20e8355 98 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99 dev_priv->mm.object_count++;
100 dev_priv->mm.object_memory += size;
c20e8355 101 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
102}
103
104static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
105 size_t size)
106{
c20e8355 107 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108 dev_priv->mm.object_count--;
109 dev_priv->mm.object_memory -= size;
c20e8355 110 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
111}
112
21dd3734 113static int
33196ded 114i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 115{
30dbf0c0
CW
116 int ret;
117
7abb690a
DV
118#define EXIT_COND (!i915_reset_in_progress(error) || \
119 i915_terminally_wedged(error))
1f83fee0 120 if (EXIT_COND)
30dbf0c0
CW
121 return 0;
122
0a6759c6
DV
123 /*
124 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
125 * userspace. If it takes that long something really bad is going on and
126 * we should simply try to bail out and fail as gracefully as possible.
127 */
1f83fee0
DV
128 ret = wait_event_interruptible_timeout(error->reset_queue,
129 EXIT_COND,
130 10*HZ);
0a6759c6
DV
131 if (ret == 0) {
132 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
133 return -EIO;
134 } else if (ret < 0) {
30dbf0c0 135 return ret;
0a6759c6 136 }
1f83fee0 137#undef EXIT_COND
30dbf0c0 138
21dd3734 139 return 0;
30dbf0c0
CW
140}
141
54cf91dc 142int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 143{
33196ded 144 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
145 int ret;
146
33196ded 147 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
148 if (ret)
149 return ret;
150
151 ret = mutex_lock_interruptible(&dev->struct_mutex);
152 if (ret)
153 return ret;
154
23bc5982 155 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
156 return 0;
157}
30dbf0c0 158
7d1c4804 159static inline bool
05394f39 160i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 161{
9843877d 162 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
163}
164
79e53945
JB
165int
166i915_gem_init_ioctl(struct drm_device *dev, void *data,
05394f39 167 struct drm_file *file)
79e53945 168{
93d18799 169 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 170 struct drm_i915_gem_init *args = data;
2021746e 171
7bb6fb8d
DV
172 if (drm_core_check_feature(dev, DRIVER_MODESET))
173 return -ENODEV;
174
2021746e
CW
175 if (args->gtt_start >= args->gtt_end ||
176 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
177 return -EINVAL;
79e53945 178
f534bc0b
DV
179 /* GEM with user mode setting was never supported on ilk and later. */
180 if (INTEL_INFO(dev)->gen >= 5)
181 return -ENODEV;
182
79e53945 183 mutex_lock(&dev->struct_mutex);
d7e5008f
BW
184 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
185 args->gtt_end);
93d18799 186 dev_priv->gtt.mappable_end = args->gtt_end;
673a394b
EA
187 mutex_unlock(&dev->struct_mutex);
188
2021746e 189 return 0;
673a394b
EA
190}
191
5a125c3c
EA
192int
193i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 194 struct drm_file *file)
5a125c3c 195{
73aa808f 196 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 197 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
198 struct drm_i915_gem_object *obj;
199 size_t pinned;
5a125c3c 200
6299f992 201 pinned = 0;
73aa808f 202 mutex_lock(&dev->struct_mutex);
35c20a60 203 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1b50247a 204 if (obj->pin_count)
f343c5f6 205 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 206 mutex_unlock(&dev->struct_mutex);
5a125c3c 207
853ba5d2 208 args->aper_size = dev_priv->gtt.base.total;
0206e353 209 args->aper_available_size = args->aper_size - pinned;
6299f992 210
5a125c3c
EA
211 return 0;
212}
213
42dcedd4
CW
214void *i915_gem_object_alloc(struct drm_device *dev)
215{
216 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 217 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
218}
219
220void i915_gem_object_free(struct drm_i915_gem_object *obj)
221{
222 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
223 kmem_cache_free(dev_priv->slab, obj);
224}
225
ff72145b
DA
226static int
227i915_gem_create(struct drm_file *file,
228 struct drm_device *dev,
229 uint64_t size,
230 uint32_t *handle_p)
673a394b 231{
05394f39 232 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
233 int ret;
234 u32 handle;
673a394b 235
ff72145b 236 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
237 if (size == 0)
238 return -EINVAL;
673a394b
EA
239
240 /* Allocate the new object */
ff72145b 241 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
242 if (obj == NULL)
243 return -ENOMEM;
244
05394f39 245 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 246 /* drop reference from allocate - handle holds it now */
d861e338
DV
247 drm_gem_object_unreference_unlocked(&obj->base);
248 if (ret)
249 return ret;
202f2fef 250
ff72145b 251 *handle_p = handle;
673a394b
EA
252 return 0;
253}
254
ff72145b
DA
255int
256i915_gem_dumb_create(struct drm_file *file,
257 struct drm_device *dev,
258 struct drm_mode_create_dumb *args)
259{
260 /* have to work out size/pitch and return them */
ed0291fd 261 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
ff72145b
DA
262 args->size = args->pitch * args->height;
263 return i915_gem_create(file, dev,
264 args->size, &args->handle);
265}
266
ff72145b
DA
267/**
268 * Creates a new mm object and returns a handle to it.
269 */
270int
271i915_gem_create_ioctl(struct drm_device *dev, void *data,
272 struct drm_file *file)
273{
274 struct drm_i915_gem_create *args = data;
63ed2cb2 275
ff72145b
DA
276 return i915_gem_create(file, dev,
277 args->size, &args->handle);
278}
279
8461d226
DV
280static inline int
281__copy_to_user_swizzled(char __user *cpu_vaddr,
282 const char *gpu_vaddr, int gpu_offset,
283 int length)
284{
285 int ret, cpu_offset = 0;
286
287 while (length > 0) {
288 int cacheline_end = ALIGN(gpu_offset + 1, 64);
289 int this_length = min(cacheline_end - gpu_offset, length);
290 int swizzled_gpu_offset = gpu_offset ^ 64;
291
292 ret = __copy_to_user(cpu_vaddr + cpu_offset,
293 gpu_vaddr + swizzled_gpu_offset,
294 this_length);
295 if (ret)
296 return ret + length;
297
298 cpu_offset += this_length;
299 gpu_offset += this_length;
300 length -= this_length;
301 }
302
303 return 0;
304}
305
8c59967c 306static inline int
4f0c7cfb
BW
307__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
308 const char __user *cpu_vaddr,
8c59967c
DV
309 int length)
310{
311 int ret, cpu_offset = 0;
312
313 while (length > 0) {
314 int cacheline_end = ALIGN(gpu_offset + 1, 64);
315 int this_length = min(cacheline_end - gpu_offset, length);
316 int swizzled_gpu_offset = gpu_offset ^ 64;
317
318 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
319 cpu_vaddr + cpu_offset,
320 this_length);
321 if (ret)
322 return ret + length;
323
324 cpu_offset += this_length;
325 gpu_offset += this_length;
326 length -= this_length;
327 }
328
329 return 0;
330}
331
d174bd64
DV
332/* Per-page copy function for the shmem pread fastpath.
333 * Flushes invalid cachelines before reading the target if
334 * needs_clflush is set. */
eb01459f 335static int
d174bd64
DV
336shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
337 char __user *user_data,
338 bool page_do_bit17_swizzling, bool needs_clflush)
339{
340 char *vaddr;
341 int ret;
342
e7e58eb5 343 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
344 return -EINVAL;
345
346 vaddr = kmap_atomic(page);
347 if (needs_clflush)
348 drm_clflush_virt_range(vaddr + shmem_page_offset,
349 page_length);
350 ret = __copy_to_user_inatomic(user_data,
351 vaddr + shmem_page_offset,
352 page_length);
353 kunmap_atomic(vaddr);
354
f60d7f0c 355 return ret ? -EFAULT : 0;
d174bd64
DV
356}
357
23c18c71
DV
358static void
359shmem_clflush_swizzled_range(char *addr, unsigned long length,
360 bool swizzled)
361{
e7e58eb5 362 if (unlikely(swizzled)) {
23c18c71
DV
363 unsigned long start = (unsigned long) addr;
364 unsigned long end = (unsigned long) addr + length;
365
366 /* For swizzling simply ensure that we always flush both
367 * channels. Lame, but simple and it works. Swizzled
368 * pwrite/pread is far from a hotpath - current userspace
369 * doesn't use it at all. */
370 start = round_down(start, 128);
371 end = round_up(end, 128);
372
373 drm_clflush_virt_range((void *)start, end - start);
374 } else {
375 drm_clflush_virt_range(addr, length);
376 }
377
378}
379
d174bd64
DV
380/* Only difference to the fast-path function is that this can handle bit17
381 * and uses non-atomic copy and kmap functions. */
382static int
383shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
384 char __user *user_data,
385 bool page_do_bit17_swizzling, bool needs_clflush)
386{
387 char *vaddr;
388 int ret;
389
390 vaddr = kmap(page);
391 if (needs_clflush)
23c18c71
DV
392 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
393 page_length,
394 page_do_bit17_swizzling);
d174bd64
DV
395
396 if (page_do_bit17_swizzling)
397 ret = __copy_to_user_swizzled(user_data,
398 vaddr, shmem_page_offset,
399 page_length);
400 else
401 ret = __copy_to_user(user_data,
402 vaddr + shmem_page_offset,
403 page_length);
404 kunmap(page);
405
f60d7f0c 406 return ret ? - EFAULT : 0;
d174bd64
DV
407}
408
eb01459f 409static int
dbf7bff0
DV
410i915_gem_shmem_pread(struct drm_device *dev,
411 struct drm_i915_gem_object *obj,
412 struct drm_i915_gem_pread *args,
413 struct drm_file *file)
eb01459f 414{
8461d226 415 char __user *user_data;
eb01459f 416 ssize_t remain;
8461d226 417 loff_t offset;
eb2c0c81 418 int shmem_page_offset, page_length, ret = 0;
8461d226 419 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 420 int prefaulted = 0;
8489731c 421 int needs_clflush = 0;
67d5a50c 422 struct sg_page_iter sg_iter;
eb01459f 423
2bb4629a 424 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
425 remain = args->size;
426
8461d226 427 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 428
8489731c
DV
429 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
430 /* If we're not in the cpu read domain, set ourself into the gtt
431 * read domain and manually flush cachelines (if required). This
432 * optimizes for the case when the gpu will dirty the data
433 * anyway again before the next pread happens. */
c76ce038 434 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
9843877d 435 if (i915_gem_obj_bound_any(obj)) {
6c085a72
CW
436 ret = i915_gem_object_set_to_gtt_domain(obj, false);
437 if (ret)
438 return ret;
439 }
8489731c 440 }
eb01459f 441
f60d7f0c
CW
442 ret = i915_gem_object_get_pages(obj);
443 if (ret)
444 return ret;
445
446 i915_gem_object_pin_pages(obj);
447
8461d226 448 offset = args->offset;
eb01459f 449
67d5a50c
ID
450 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
451 offset >> PAGE_SHIFT) {
2db76d7c 452 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
453
454 if (remain <= 0)
455 break;
456
eb01459f
EA
457 /* Operation in this page
458 *
eb01459f 459 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
460 * page_length = bytes to copy for this page
461 */
c8cbbb8b 462 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
463 page_length = remain;
464 if ((shmem_page_offset + page_length) > PAGE_SIZE)
465 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 466
8461d226
DV
467 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
468 (page_to_phys(page) & (1 << 17)) != 0;
469
d174bd64
DV
470 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
471 user_data, page_do_bit17_swizzling,
472 needs_clflush);
473 if (ret == 0)
474 goto next_page;
dbf7bff0 475
dbf7bff0
DV
476 mutex_unlock(&dev->struct_mutex);
477
0b74b508 478 if (likely(!i915_prefault_disable) && !prefaulted) {
f56f821f 479 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
480 /* Userspace is tricking us, but we've already clobbered
481 * its pages with the prefault and promised to write the
482 * data up to the first fault. Hence ignore any errors
483 * and just continue. */
484 (void)ret;
485 prefaulted = 1;
486 }
eb01459f 487
d174bd64
DV
488 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
489 user_data, page_do_bit17_swizzling,
490 needs_clflush);
eb01459f 491
dbf7bff0 492 mutex_lock(&dev->struct_mutex);
f60d7f0c 493
dbf7bff0 494next_page:
e5281ccd 495 mark_page_accessed(page);
e5281ccd 496
f60d7f0c 497 if (ret)
8461d226 498 goto out;
8461d226 499
eb01459f 500 remain -= page_length;
8461d226 501 user_data += page_length;
eb01459f
EA
502 offset += page_length;
503 }
504
4f27b75d 505out:
f60d7f0c
CW
506 i915_gem_object_unpin_pages(obj);
507
eb01459f
EA
508 return ret;
509}
510
673a394b
EA
511/**
512 * Reads data from the object referenced by handle.
513 *
514 * On error, the contents of *data are undefined.
515 */
516int
517i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 518 struct drm_file *file)
673a394b
EA
519{
520 struct drm_i915_gem_pread *args = data;
05394f39 521 struct drm_i915_gem_object *obj;
35b62a89 522 int ret = 0;
673a394b 523
51311d0a
CW
524 if (args->size == 0)
525 return 0;
526
527 if (!access_ok(VERIFY_WRITE,
2bb4629a 528 to_user_ptr(args->data_ptr),
51311d0a
CW
529 args->size))
530 return -EFAULT;
531
4f27b75d 532 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 533 if (ret)
4f27b75d 534 return ret;
673a394b 535
05394f39 536 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 537 if (&obj->base == NULL) {
1d7cfea1
CW
538 ret = -ENOENT;
539 goto unlock;
4f27b75d 540 }
673a394b 541
7dcd2499 542 /* Bounds check source. */
05394f39
CW
543 if (args->offset > obj->base.size ||
544 args->size > obj->base.size - args->offset) {
ce9d419d 545 ret = -EINVAL;
35b62a89 546 goto out;
ce9d419d
CW
547 }
548
1286ff73
DV
549 /* prime objects have no backing filp to GEM pread/pwrite
550 * pages from.
551 */
552 if (!obj->base.filp) {
553 ret = -EINVAL;
554 goto out;
555 }
556
db53a302
CW
557 trace_i915_gem_object_pread(obj, args->offset, args->size);
558
dbf7bff0 559 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 560
35b62a89 561out:
05394f39 562 drm_gem_object_unreference(&obj->base);
1d7cfea1 563unlock:
4f27b75d 564 mutex_unlock(&dev->struct_mutex);
eb01459f 565 return ret;
673a394b
EA
566}
567
0839ccb8
KP
568/* This is the fast write path which cannot handle
569 * page faults in the source data
9b7530cc 570 */
0839ccb8
KP
571
572static inline int
573fast_user_write(struct io_mapping *mapping,
574 loff_t page_base, int page_offset,
575 char __user *user_data,
576 int length)
9b7530cc 577{
4f0c7cfb
BW
578 void __iomem *vaddr_atomic;
579 void *vaddr;
0839ccb8 580 unsigned long unwritten;
9b7530cc 581
3e4d3af5 582 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
583 /* We can use the cpu mem copy function because this is X86. */
584 vaddr = (void __force*)vaddr_atomic + page_offset;
585 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 586 user_data, length);
3e4d3af5 587 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 588 return unwritten;
0839ccb8
KP
589}
590
3de09aa3
EA
591/**
592 * This is the fast pwrite path, where we copy the data directly from the
593 * user into the GTT, uncached.
594 */
673a394b 595static int
05394f39
CW
596i915_gem_gtt_pwrite_fast(struct drm_device *dev,
597 struct drm_i915_gem_object *obj,
3de09aa3 598 struct drm_i915_gem_pwrite *args,
05394f39 599 struct drm_file *file)
673a394b 600{
0839ccb8 601 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 602 ssize_t remain;
0839ccb8 603 loff_t offset, page_base;
673a394b 604 char __user *user_data;
935aaa69
DV
605 int page_offset, page_length, ret;
606
c37e2204 607 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
935aaa69
DV
608 if (ret)
609 goto out;
610
611 ret = i915_gem_object_set_to_gtt_domain(obj, true);
612 if (ret)
613 goto out_unpin;
614
615 ret = i915_gem_object_put_fence(obj);
616 if (ret)
617 goto out_unpin;
673a394b 618
2bb4629a 619 user_data = to_user_ptr(args->data_ptr);
673a394b 620 remain = args->size;
673a394b 621
f343c5f6 622 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
623
624 while (remain > 0) {
625 /* Operation in this page
626 *
0839ccb8
KP
627 * page_base = page offset within aperture
628 * page_offset = offset within page
629 * page_length = bytes to copy for this page
673a394b 630 */
c8cbbb8b
CW
631 page_base = offset & PAGE_MASK;
632 page_offset = offset_in_page(offset);
0839ccb8
KP
633 page_length = remain;
634 if ((page_offset + remain) > PAGE_SIZE)
635 page_length = PAGE_SIZE - page_offset;
636
0839ccb8 637 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
638 * source page isn't available. Return the error and we'll
639 * retry in the slow path.
0839ccb8 640 */
5d4545ae 641 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
642 page_offset, user_data, page_length)) {
643 ret = -EFAULT;
644 goto out_unpin;
645 }
673a394b 646
0839ccb8
KP
647 remain -= page_length;
648 user_data += page_length;
649 offset += page_length;
673a394b 650 }
673a394b 651
935aaa69
DV
652out_unpin:
653 i915_gem_object_unpin(obj);
654out:
3de09aa3 655 return ret;
673a394b
EA
656}
657
d174bd64
DV
658/* Per-page copy function for the shmem pwrite fastpath.
659 * Flushes invalid cachelines before writing to the target if
660 * needs_clflush_before is set and flushes out any written cachelines after
661 * writing if needs_clflush is set. */
3043c60c 662static int
d174bd64
DV
663shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
664 char __user *user_data,
665 bool page_do_bit17_swizzling,
666 bool needs_clflush_before,
667 bool needs_clflush_after)
673a394b 668{
d174bd64 669 char *vaddr;
673a394b 670 int ret;
3de09aa3 671
e7e58eb5 672 if (unlikely(page_do_bit17_swizzling))
d174bd64 673 return -EINVAL;
3de09aa3 674
d174bd64
DV
675 vaddr = kmap_atomic(page);
676 if (needs_clflush_before)
677 drm_clflush_virt_range(vaddr + shmem_page_offset,
678 page_length);
679 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
680 user_data,
681 page_length);
682 if (needs_clflush_after)
683 drm_clflush_virt_range(vaddr + shmem_page_offset,
684 page_length);
685 kunmap_atomic(vaddr);
3de09aa3 686
755d2218 687 return ret ? -EFAULT : 0;
3de09aa3
EA
688}
689
d174bd64
DV
690/* Only difference to the fast-path function is that this can handle bit17
691 * and uses non-atomic copy and kmap functions. */
3043c60c 692static int
d174bd64
DV
693shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
694 char __user *user_data,
695 bool page_do_bit17_swizzling,
696 bool needs_clflush_before,
697 bool needs_clflush_after)
673a394b 698{
d174bd64
DV
699 char *vaddr;
700 int ret;
e5281ccd 701
d174bd64 702 vaddr = kmap(page);
e7e58eb5 703 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
704 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
705 page_length,
706 page_do_bit17_swizzling);
d174bd64
DV
707 if (page_do_bit17_swizzling)
708 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
709 user_data,
710 page_length);
d174bd64
DV
711 else
712 ret = __copy_from_user(vaddr + shmem_page_offset,
713 user_data,
714 page_length);
715 if (needs_clflush_after)
23c18c71
DV
716 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
717 page_length,
718 page_do_bit17_swizzling);
d174bd64 719 kunmap(page);
40123c1f 720
755d2218 721 return ret ? -EFAULT : 0;
40123c1f
EA
722}
723
40123c1f 724static int
e244a443
DV
725i915_gem_shmem_pwrite(struct drm_device *dev,
726 struct drm_i915_gem_object *obj,
727 struct drm_i915_gem_pwrite *args,
728 struct drm_file *file)
40123c1f 729{
40123c1f 730 ssize_t remain;
8c59967c
DV
731 loff_t offset;
732 char __user *user_data;
eb2c0c81 733 int shmem_page_offset, page_length, ret = 0;
8c59967c 734 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 735 int hit_slowpath = 0;
58642885
DV
736 int needs_clflush_after = 0;
737 int needs_clflush_before = 0;
67d5a50c 738 struct sg_page_iter sg_iter;
40123c1f 739
2bb4629a 740 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
741 remain = args->size;
742
8c59967c 743 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 744
58642885
DV
745 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
746 /* If we're not in the cpu write domain, set ourself into the gtt
747 * write domain and manually flush cachelines (if required). This
748 * optimizes for the case when the gpu will use the data
749 * right away and we therefore have to clflush anyway. */
2c22569b 750 needs_clflush_after = cpu_write_needs_clflush(obj);
9843877d 751 if (i915_gem_obj_bound_any(obj)) {
6c085a72
CW
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 return ret;
755 }
58642885 756 }
c76ce038
CW
757 /* Same trick applies to invalidate partially written cachelines read
758 * before writing. */
759 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
760 needs_clflush_before =
761 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 762
755d2218
CW
763 ret = i915_gem_object_get_pages(obj);
764 if (ret)
765 return ret;
766
767 i915_gem_object_pin_pages(obj);
768
673a394b 769 offset = args->offset;
05394f39 770 obj->dirty = 1;
673a394b 771
67d5a50c
ID
772 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
773 offset >> PAGE_SHIFT) {
2db76d7c 774 struct page *page = sg_page_iter_page(&sg_iter);
58642885 775 int partial_cacheline_write;
e5281ccd 776
9da3da66
CW
777 if (remain <= 0)
778 break;
779
40123c1f
EA
780 /* Operation in this page
781 *
40123c1f 782 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
783 * page_length = bytes to copy for this page
784 */
c8cbbb8b 785 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
786
787 page_length = remain;
788 if ((shmem_page_offset + page_length) > PAGE_SIZE)
789 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 790
58642885
DV
791 /* If we don't overwrite a cacheline completely we need to be
792 * careful to have up-to-date data by first clflushing. Don't
793 * overcomplicate things and flush the entire patch. */
794 partial_cacheline_write = needs_clflush_before &&
795 ((shmem_page_offset | page_length)
796 & (boot_cpu_data.x86_clflush_size - 1));
797
8c59967c
DV
798 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
799 (page_to_phys(page) & (1 << 17)) != 0;
800
d174bd64
DV
801 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
802 user_data, page_do_bit17_swizzling,
803 partial_cacheline_write,
804 needs_clflush_after);
805 if (ret == 0)
806 goto next_page;
e244a443
DV
807
808 hit_slowpath = 1;
e244a443 809 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
810 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
811 user_data, page_do_bit17_swizzling,
812 partial_cacheline_write,
813 needs_clflush_after);
40123c1f 814
e244a443 815 mutex_lock(&dev->struct_mutex);
755d2218 816
e244a443 817next_page:
e5281ccd
CW
818 set_page_dirty(page);
819 mark_page_accessed(page);
e5281ccd 820
755d2218 821 if (ret)
8c59967c 822 goto out;
8c59967c 823
40123c1f 824 remain -= page_length;
8c59967c 825 user_data += page_length;
40123c1f 826 offset += page_length;
673a394b
EA
827 }
828
fbd5a26d 829out:
755d2218
CW
830 i915_gem_object_unpin_pages(obj);
831
e244a443 832 if (hit_slowpath) {
8dcf015e
DV
833 /*
834 * Fixup: Flush cpu caches in case we didn't flush the dirty
835 * cachelines in-line while writing and the object moved
836 * out of the cpu write domain while we've dropped the lock.
837 */
838 if (!needs_clflush_after &&
839 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
840 if (i915_gem_clflush_object(obj, obj->pin_display))
841 i915_gem_chipset_flush(dev);
e244a443 842 }
8c59967c 843 }
673a394b 844
58642885 845 if (needs_clflush_after)
e76e9aeb 846 i915_gem_chipset_flush(dev);
58642885 847
40123c1f 848 return ret;
673a394b
EA
849}
850
851/**
852 * Writes data to the object referenced by handle.
853 *
854 * On error, the contents of the buffer that were to be modified are undefined.
855 */
856int
857i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 858 struct drm_file *file)
673a394b
EA
859{
860 struct drm_i915_gem_pwrite *args = data;
05394f39 861 struct drm_i915_gem_object *obj;
51311d0a
CW
862 int ret;
863
864 if (args->size == 0)
865 return 0;
866
867 if (!access_ok(VERIFY_READ,
2bb4629a 868 to_user_ptr(args->data_ptr),
51311d0a
CW
869 args->size))
870 return -EFAULT;
871
0b74b508
XZ
872 if (likely(!i915_prefault_disable)) {
873 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
874 args->size);
875 if (ret)
876 return -EFAULT;
877 }
673a394b 878
fbd5a26d 879 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 880 if (ret)
fbd5a26d 881 return ret;
1d7cfea1 882
05394f39 883 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 884 if (&obj->base == NULL) {
1d7cfea1
CW
885 ret = -ENOENT;
886 goto unlock;
fbd5a26d 887 }
673a394b 888
7dcd2499 889 /* Bounds check destination. */
05394f39
CW
890 if (args->offset > obj->base.size ||
891 args->size > obj->base.size - args->offset) {
ce9d419d 892 ret = -EINVAL;
35b62a89 893 goto out;
ce9d419d
CW
894 }
895
1286ff73
DV
896 /* prime objects have no backing filp to GEM pread/pwrite
897 * pages from.
898 */
899 if (!obj->base.filp) {
900 ret = -EINVAL;
901 goto out;
902 }
903
db53a302
CW
904 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
905
935aaa69 906 ret = -EFAULT;
673a394b
EA
907 /* We can only do the GTT pwrite on untiled buffers, as otherwise
908 * it would end up going through the fenced access, and we'll get
909 * different detiling behavior between reading and writing.
910 * pread/pwrite currently are reading and writing from the CPU
911 * perspective, requiring manual detiling by the client.
912 */
5c0480f2 913 if (obj->phys_obj) {
fbd5a26d 914 ret = i915_gem_phys_pwrite(dev, obj, args, file);
5c0480f2
DV
915 goto out;
916 }
917
2c22569b
CW
918 if (obj->tiling_mode == I915_TILING_NONE &&
919 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
920 cpu_write_needs_clflush(obj)) {
fbd5a26d 921 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
922 /* Note that the gtt paths might fail with non-page-backed user
923 * pointers (e.g. gtt mappings when moving data between
924 * textures). Fallback to the shmem path in that case. */
fbd5a26d 925 }
673a394b 926
86a1ee26 927 if (ret == -EFAULT || ret == -ENOSPC)
935aaa69 928 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
5c0480f2 929
35b62a89 930out:
05394f39 931 drm_gem_object_unreference(&obj->base);
1d7cfea1 932unlock:
fbd5a26d 933 mutex_unlock(&dev->struct_mutex);
673a394b
EA
934 return ret;
935}
936
b361237b 937int
33196ded 938i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
939 bool interruptible)
940{
1f83fee0 941 if (i915_reset_in_progress(error)) {
b361237b
CW
942 /* Non-interruptible callers can't handle -EAGAIN, hence return
943 * -EIO unconditionally for these. */
944 if (!interruptible)
945 return -EIO;
946
1f83fee0
DV
947 /* Recovery complete, but the reset failed ... */
948 if (i915_terminally_wedged(error))
b361237b
CW
949 return -EIO;
950
951 return -EAGAIN;
952 }
953
954 return 0;
955}
956
957/*
958 * Compare seqno against outstanding lazy request. Emit a request if they are
959 * equal.
960 */
961static int
962i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
963{
964 int ret;
965
966 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
967
968 ret = 0;
969 if (seqno == ring->outstanding_lazy_request)
0025c077 970 ret = i915_add_request(ring, NULL);
b361237b
CW
971
972 return ret;
973}
974
975/**
976 * __wait_seqno - wait until execution of seqno has finished
977 * @ring: the ring expected to report seqno
978 * @seqno: duh!
f69061be 979 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
980 * @interruptible: do an interruptible wait (normally yes)
981 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
982 *
f69061be
DV
983 * Note: It is of utmost importance that the passed in seqno and reset_counter
984 * values have been read by the caller in an smp safe manner. Where read-side
985 * locks are involved, it is sufficient to read the reset_counter before
986 * unlocking the lock that protects the seqno. For lockless tricks, the
987 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
988 * inserted.
989 *
b361237b
CW
990 * Returns 0 if the seqno was found within the alloted time. Else returns the
991 * errno with remaining time filled in timeout argument.
992 */
993static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
f69061be 994 unsigned reset_counter,
b361237b
CW
995 bool interruptible, struct timespec *timeout)
996{
997 drm_i915_private_t *dev_priv = ring->dev->dev_private;
998 struct timespec before, now, wait_time={1,0};
999 unsigned long timeout_jiffies;
1000 long end;
1001 bool wait_forever = true;
1002 int ret;
1003
c67a470b
PZ
1004 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1005
b361237b
CW
1006 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1007 return 0;
1008
1009 trace_i915_gem_request_wait_begin(ring, seqno);
1010
1011 if (timeout != NULL) {
1012 wait_time = *timeout;
1013 wait_forever = false;
1014 }
1015
e054cc39 1016 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
b361237b
CW
1017
1018 if (WARN_ON(!ring->irq_get(ring)))
1019 return -ENODEV;
1020
1021 /* Record current time in case interrupted by signal, or wedged * */
1022 getrawmonotonic(&before);
1023
1024#define EXIT_COND \
1025 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
f69061be
DV
1026 i915_reset_in_progress(&dev_priv->gpu_error) || \
1027 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
b361237b
CW
1028 do {
1029 if (interruptible)
1030 end = wait_event_interruptible_timeout(ring->irq_queue,
1031 EXIT_COND,
1032 timeout_jiffies);
1033 else
1034 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1035 timeout_jiffies);
1036
f69061be
DV
1037 /* We need to check whether any gpu reset happened in between
1038 * the caller grabbing the seqno and now ... */
1039 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1040 end = -EAGAIN;
1041
1042 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1043 * gone. */
33196ded 1044 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1045 if (ret)
1046 end = ret;
1047 } while (end == 0 && wait_forever);
1048
1049 getrawmonotonic(&now);
1050
1051 ring->irq_put(ring);
1052 trace_i915_gem_request_wait_end(ring, seqno);
1053#undef EXIT_COND
1054
1055 if (timeout) {
1056 struct timespec sleep_time = timespec_sub(now, before);
1057 *timeout = timespec_sub(*timeout, sleep_time);
4f42f4ef
CW
1058 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1059 set_normalized_timespec(timeout, 0, 0);
b361237b
CW
1060 }
1061
1062 switch (end) {
1063 case -EIO:
1064 case -EAGAIN: /* Wedged */
1065 case -ERESTARTSYS: /* Signal */
1066 return (int)end;
1067 case 0: /* Timeout */
b361237b
CW
1068 return -ETIME;
1069 default: /* Completed */
1070 WARN_ON(end < 0); /* We're not aware of other errors */
1071 return 0;
1072 }
1073}
1074
1075/**
1076 * Waits for a sequence number to be signaled, and cleans up the
1077 * request and object lists appropriately for that event.
1078 */
1079int
1080i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1081{
1082 struct drm_device *dev = ring->dev;
1083 struct drm_i915_private *dev_priv = dev->dev_private;
1084 bool interruptible = dev_priv->mm.interruptible;
1085 int ret;
1086
1087 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1088 BUG_ON(seqno == 0);
1089
33196ded 1090 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1091 if (ret)
1092 return ret;
1093
1094 ret = i915_gem_check_olr(ring, seqno);
1095 if (ret)
1096 return ret;
1097
f69061be
DV
1098 return __wait_seqno(ring, seqno,
1099 atomic_read(&dev_priv->gpu_error.reset_counter),
1100 interruptible, NULL);
b361237b
CW
1101}
1102
d26e3af8
CW
1103static int
1104i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1105 struct intel_ring_buffer *ring)
1106{
1107 i915_gem_retire_requests_ring(ring);
1108
1109 /* Manually manage the write flush as we may have not yet
1110 * retired the buffer.
1111 *
1112 * Note that the last_write_seqno is always the earlier of
1113 * the two (read/write) seqno, so if we haved successfully waited,
1114 * we know we have passed the last write.
1115 */
1116 obj->last_write_seqno = 0;
1117 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1118
1119 return 0;
1120}
1121
b361237b
CW
1122/**
1123 * Ensures that all rendering to the object has completed and the object is
1124 * safe to unbind from the GTT or access from the CPU.
1125 */
1126static __must_check int
1127i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1128 bool readonly)
1129{
1130 struct intel_ring_buffer *ring = obj->ring;
1131 u32 seqno;
1132 int ret;
1133
1134 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1135 if (seqno == 0)
1136 return 0;
1137
1138 ret = i915_wait_seqno(ring, seqno);
1139 if (ret)
1140 return ret;
1141
d26e3af8 1142 return i915_gem_object_wait_rendering__tail(obj, ring);
b361237b
CW
1143}
1144
3236f57a
CW
1145/* A nonblocking variant of the above wait. This is a highly dangerous routine
1146 * as the object state may change during this call.
1147 */
1148static __must_check int
1149i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1150 bool readonly)
1151{
1152 struct drm_device *dev = obj->base.dev;
1153 struct drm_i915_private *dev_priv = dev->dev_private;
1154 struct intel_ring_buffer *ring = obj->ring;
f69061be 1155 unsigned reset_counter;
3236f57a
CW
1156 u32 seqno;
1157 int ret;
1158
1159 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1160 BUG_ON(!dev_priv->mm.interruptible);
1161
1162 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1163 if (seqno == 0)
1164 return 0;
1165
33196ded 1166 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1167 if (ret)
1168 return ret;
1169
1170 ret = i915_gem_check_olr(ring, seqno);
1171 if (ret)
1172 return ret;
1173
f69061be 1174 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3236f57a 1175 mutex_unlock(&dev->struct_mutex);
f69061be 1176 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3236f57a 1177 mutex_lock(&dev->struct_mutex);
d26e3af8
CW
1178 if (ret)
1179 return ret;
3236f57a 1180
d26e3af8 1181 return i915_gem_object_wait_rendering__tail(obj, ring);
3236f57a
CW
1182}
1183
673a394b 1184/**
2ef7eeaa
EA
1185 * Called when user space prepares to use an object with the CPU, either
1186 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1187 */
1188int
1189i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1190 struct drm_file *file)
673a394b
EA
1191{
1192 struct drm_i915_gem_set_domain *args = data;
05394f39 1193 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1194 uint32_t read_domains = args->read_domains;
1195 uint32_t write_domain = args->write_domain;
673a394b
EA
1196 int ret;
1197
2ef7eeaa 1198 /* Only handle setting domains to types used by the CPU. */
21d509e3 1199 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1200 return -EINVAL;
1201
21d509e3 1202 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1203 return -EINVAL;
1204
1205 /* Having something in the write domain implies it's in the read
1206 * domain, and only that read domain. Enforce that in the request.
1207 */
1208 if (write_domain != 0 && read_domains != write_domain)
1209 return -EINVAL;
1210
76c1dec1 1211 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1212 if (ret)
76c1dec1 1213 return ret;
1d7cfea1 1214
05394f39 1215 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1216 if (&obj->base == NULL) {
1d7cfea1
CW
1217 ret = -ENOENT;
1218 goto unlock;
76c1dec1 1219 }
673a394b 1220
3236f57a
CW
1221 /* Try to flush the object off the GPU without holding the lock.
1222 * We will repeat the flush holding the lock in the normal manner
1223 * to catch cases where we are gazumped.
1224 */
1225 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1226 if (ret)
1227 goto unref;
1228
2ef7eeaa
EA
1229 if (read_domains & I915_GEM_DOMAIN_GTT) {
1230 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1231
1232 /* Silently promote "you're not bound, there was nothing to do"
1233 * to success, since the client was just asking us to
1234 * make sure everything was done.
1235 */
1236 if (ret == -EINVAL)
1237 ret = 0;
2ef7eeaa 1238 } else {
e47c68e9 1239 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1240 }
1241
3236f57a 1242unref:
05394f39 1243 drm_gem_object_unreference(&obj->base);
1d7cfea1 1244unlock:
673a394b
EA
1245 mutex_unlock(&dev->struct_mutex);
1246 return ret;
1247}
1248
1249/**
1250 * Called when user space has done writes to this buffer
1251 */
1252int
1253i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1254 struct drm_file *file)
673a394b
EA
1255{
1256 struct drm_i915_gem_sw_finish *args = data;
05394f39 1257 struct drm_i915_gem_object *obj;
673a394b
EA
1258 int ret = 0;
1259
76c1dec1 1260 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1261 if (ret)
76c1dec1 1262 return ret;
1d7cfea1 1263
05394f39 1264 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1265 if (&obj->base == NULL) {
1d7cfea1
CW
1266 ret = -ENOENT;
1267 goto unlock;
673a394b
EA
1268 }
1269
673a394b 1270 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1271 if (obj->pin_display)
1272 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1273
05394f39 1274 drm_gem_object_unreference(&obj->base);
1d7cfea1 1275unlock:
673a394b
EA
1276 mutex_unlock(&dev->struct_mutex);
1277 return ret;
1278}
1279
1280/**
1281 * Maps the contents of an object, returning the address it is mapped
1282 * into.
1283 *
1284 * While the mapping holds a reference on the contents of the object, it doesn't
1285 * imply a ref on the object itself.
1286 */
1287int
1288i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1289 struct drm_file *file)
673a394b
EA
1290{
1291 struct drm_i915_gem_mmap *args = data;
1292 struct drm_gem_object *obj;
673a394b
EA
1293 unsigned long addr;
1294
05394f39 1295 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1296 if (obj == NULL)
bf79cb91 1297 return -ENOENT;
673a394b 1298
1286ff73
DV
1299 /* prime objects have no backing filp to GEM mmap
1300 * pages from.
1301 */
1302 if (!obj->filp) {
1303 drm_gem_object_unreference_unlocked(obj);
1304 return -EINVAL;
1305 }
1306
6be5ceb0 1307 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1308 PROT_READ | PROT_WRITE, MAP_SHARED,
1309 args->offset);
bc9025bd 1310 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1311 if (IS_ERR((void *)addr))
1312 return addr;
1313
1314 args->addr_ptr = (uint64_t) addr;
1315
1316 return 0;
1317}
1318
de151cf6
JB
1319/**
1320 * i915_gem_fault - fault a page into the GTT
1321 * vma: VMA in question
1322 * vmf: fault info
1323 *
1324 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1325 * from userspace. The fault handler takes care of binding the object to
1326 * the GTT (if needed), allocating and programming a fence register (again,
1327 * only if needed based on whether the old reg is still valid or the object
1328 * is tiled) and inserting a new PTE into the faulting process.
1329 *
1330 * Note that the faulting process may involve evicting existing objects
1331 * from the GTT and/or fence registers to make room. So performance may
1332 * suffer if the GTT working set is large or there are few fence registers
1333 * left.
1334 */
1335int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1336{
05394f39
CW
1337 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1338 struct drm_device *dev = obj->base.dev;
7d1c4804 1339 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6
JB
1340 pgoff_t page_offset;
1341 unsigned long pfn;
1342 int ret = 0;
0f973f27 1343 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1344
1345 /* We don't use vmf->pgoff since that has the fake offset */
1346 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1347 PAGE_SHIFT;
1348
d9bc7e9f
CW
1349 ret = i915_mutex_lock_interruptible(dev);
1350 if (ret)
1351 goto out;
a00b10c3 1352
db53a302
CW
1353 trace_i915_gem_object_fault(obj, page_offset, true, write);
1354
eb119bd6
CW
1355 /* Access to snoopable pages through the GTT is incoherent. */
1356 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1357 ret = -EINVAL;
1358 goto unlock;
1359 }
1360
d9bc7e9f 1361 /* Now bind it into the GTT if needed */
c37e2204 1362 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
c9839303
CW
1363 if (ret)
1364 goto unlock;
4a684a41 1365
c9839303
CW
1366 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1367 if (ret)
1368 goto unpin;
74898d7e 1369
06d98131 1370 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1371 if (ret)
c9839303 1372 goto unpin;
7d1c4804 1373
6299f992
CW
1374 obj->fault_mappable = true;
1375
f343c5f6
BW
1376 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1377 pfn >>= PAGE_SHIFT;
1378 pfn += page_offset;
de151cf6
JB
1379
1380 /* Finally, remap it using the new GTT offset */
1381 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c9839303
CW
1382unpin:
1383 i915_gem_object_unpin(obj);
c715089f 1384unlock:
de151cf6 1385 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1386out:
de151cf6 1387 switch (ret) {
d9bc7e9f 1388 case -EIO:
a9340cca
DV
1389 /* If this -EIO is due to a gpu hang, give the reset code a
1390 * chance to clean up the mess. Otherwise return the proper
1391 * SIGBUS. */
1f83fee0 1392 if (i915_terminally_wedged(&dev_priv->gpu_error))
a9340cca 1393 return VM_FAULT_SIGBUS;
045e769a 1394 case -EAGAIN:
571c608d
DV
1395 /*
1396 * EAGAIN means the gpu is hung and we'll wait for the error
1397 * handler to reset everything when re-faulting in
1398 * i915_mutex_lock_interruptible.
d9bc7e9f 1399 */
c715089f
CW
1400 case 0:
1401 case -ERESTARTSYS:
bed636ab 1402 case -EINTR:
e79e0fe3
DR
1403 case -EBUSY:
1404 /*
1405 * EBUSY is ok: this just means that another thread
1406 * already did the job.
1407 */
c715089f 1408 return VM_FAULT_NOPAGE;
de151cf6 1409 case -ENOMEM:
de151cf6 1410 return VM_FAULT_OOM;
a7c2e1aa
DV
1411 case -ENOSPC:
1412 return VM_FAULT_SIGBUS;
de151cf6 1413 default:
a7c2e1aa 1414 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
c715089f 1415 return VM_FAULT_SIGBUS;
de151cf6
JB
1416 }
1417}
1418
901782b2
CW
1419/**
1420 * i915_gem_release_mmap - remove physical page mappings
1421 * @obj: obj in question
1422 *
af901ca1 1423 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1424 * relinquish ownership of the pages back to the system.
1425 *
1426 * It is vital that we remove the page mapping if we have mapped a tiled
1427 * object through the GTT and then lose the fence register due to
1428 * resource pressure. Similarly if the object has been moved out of the
1429 * aperture, than pages mapped into userspace must be revoked. Removing the
1430 * mapping will then trigger a page fault on the next user access, allowing
1431 * fixup by i915_gem_fault().
1432 */
d05ca301 1433void
05394f39 1434i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1435{
6299f992
CW
1436 if (!obj->fault_mappable)
1437 return;
901782b2 1438
51335df9 1439 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
6299f992 1440 obj->fault_mappable = false;
901782b2
CW
1441}
1442
0fa87796 1443uint32_t
e28f8711 1444i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1445{
e28f8711 1446 uint32_t gtt_size;
92b88aeb
CW
1447
1448 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1449 tiling_mode == I915_TILING_NONE)
1450 return size;
92b88aeb
CW
1451
1452 /* Previous chips need a power-of-two fence region when tiling */
1453 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1454 gtt_size = 1024*1024;
92b88aeb 1455 else
e28f8711 1456 gtt_size = 512*1024;
92b88aeb 1457
e28f8711
CW
1458 while (gtt_size < size)
1459 gtt_size <<= 1;
92b88aeb 1460
e28f8711 1461 return gtt_size;
92b88aeb
CW
1462}
1463
de151cf6
JB
1464/**
1465 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1466 * @obj: object to check
1467 *
1468 * Return the required GTT alignment for an object, taking into account
5e783301 1469 * potential fence register mapping.
de151cf6 1470 */
d865110c
ID
1471uint32_t
1472i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1473 int tiling_mode, bool fenced)
de151cf6 1474{
de151cf6
JB
1475 /*
1476 * Minimum alignment is 4k (GTT page size), but might be greater
1477 * if a fence register is needed for the object.
1478 */
d865110c 1479 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1480 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1481 return 4096;
1482
a00b10c3
CW
1483 /*
1484 * Previous chips need to be aligned to the size of the smallest
1485 * fence register that can contain the object.
1486 */
e28f8711 1487 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1488}
1489
d8cb5086
CW
1490static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1491{
1492 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1493 int ret;
1494
0de23977 1495 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1496 return 0;
1497
da494d7c
DV
1498 dev_priv->mm.shrinker_no_lock_stealing = true;
1499
d8cb5086
CW
1500 ret = drm_gem_create_mmap_offset(&obj->base);
1501 if (ret != -ENOSPC)
da494d7c 1502 goto out;
d8cb5086
CW
1503
1504 /* Badly fragmented mmap space? The only way we can recover
1505 * space is by destroying unwanted objects. We can't randomly release
1506 * mmap_offsets as userspace expects them to be persistent for the
1507 * lifetime of the objects. The closest we can is to release the
1508 * offsets on purgeable objects by truncating it and marking it purged,
1509 * which prevents userspace from ever using that object again.
1510 */
1511 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1512 ret = drm_gem_create_mmap_offset(&obj->base);
1513 if (ret != -ENOSPC)
da494d7c 1514 goto out;
d8cb5086
CW
1515
1516 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1517 ret = drm_gem_create_mmap_offset(&obj->base);
1518out:
1519 dev_priv->mm.shrinker_no_lock_stealing = false;
1520
1521 return ret;
d8cb5086
CW
1522}
1523
1524static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1525{
d8cb5086
CW
1526 drm_gem_free_mmap_offset(&obj->base);
1527}
1528
de151cf6 1529int
ff72145b
DA
1530i915_gem_mmap_gtt(struct drm_file *file,
1531 struct drm_device *dev,
1532 uint32_t handle,
1533 uint64_t *offset)
de151cf6 1534{
da761a6e 1535 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1536 struct drm_i915_gem_object *obj;
de151cf6
JB
1537 int ret;
1538
76c1dec1 1539 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1540 if (ret)
76c1dec1 1541 return ret;
de151cf6 1542
ff72145b 1543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1544 if (&obj->base == NULL) {
1d7cfea1
CW
1545 ret = -ENOENT;
1546 goto unlock;
1547 }
de151cf6 1548
5d4545ae 1549 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1550 ret = -E2BIG;
ff56b0bc 1551 goto out;
da761a6e
CW
1552 }
1553
05394f39 1554 if (obj->madv != I915_MADV_WILLNEED) {
ab18282d 1555 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1556 ret = -EINVAL;
1557 goto out;
ab18282d
CW
1558 }
1559
d8cb5086
CW
1560 ret = i915_gem_object_create_mmap_offset(obj);
1561 if (ret)
1562 goto out;
de151cf6 1563
0de23977 1564 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1565
1d7cfea1 1566out:
05394f39 1567 drm_gem_object_unreference(&obj->base);
1d7cfea1 1568unlock:
de151cf6 1569 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1570 return ret;
de151cf6
JB
1571}
1572
ff72145b
DA
1573/**
1574 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1575 * @dev: DRM device
1576 * @data: GTT mapping ioctl data
1577 * @file: GEM object info
1578 *
1579 * Simply returns the fake offset to userspace so it can mmap it.
1580 * The mmap call will end up in drm_gem_mmap(), which will set things
1581 * up so we can get faults in the handler above.
1582 *
1583 * The fault handler will take care of binding the object into the GTT
1584 * (since it may have been evicted to make room for something), allocating
1585 * a fence register, and mapping the appropriate aperture address into
1586 * userspace.
1587 */
1588int
1589i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1590 struct drm_file *file)
1591{
1592 struct drm_i915_gem_mmap_gtt *args = data;
1593
ff72145b
DA
1594 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1595}
1596
225067ee
DV
1597/* Immediately discard the backing storage */
1598static void
1599i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1600{
e5281ccd 1601 struct inode *inode;
e5281ccd 1602
4d6294bf 1603 i915_gem_object_free_mmap_offset(obj);
1286ff73 1604
4d6294bf
CW
1605 if (obj->base.filp == NULL)
1606 return;
e5281ccd 1607
225067ee
DV
1608 /* Our goal here is to return as much of the memory as
1609 * is possible back to the system as we are called from OOM.
1610 * To do this we must instruct the shmfs to drop all of its
1611 * backing pages, *now*.
1612 */
496ad9aa 1613 inode = file_inode(obj->base.filp);
225067ee 1614 shmem_truncate_range(inode, 0, (loff_t)-1);
e5281ccd 1615
225067ee
DV
1616 obj->madv = __I915_MADV_PURGED;
1617}
e5281ccd 1618
225067ee
DV
1619static inline int
1620i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1621{
1622 return obj->madv == I915_MADV_DONTNEED;
e5281ccd
CW
1623}
1624
5cdf5881 1625static void
05394f39 1626i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1627{
90797e6d
ID
1628 struct sg_page_iter sg_iter;
1629 int ret;
1286ff73 1630
05394f39 1631 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1632
6c085a72
CW
1633 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1634 if (ret) {
1635 /* In the event of a disaster, abandon all caches and
1636 * hope for the best.
1637 */
1638 WARN_ON(ret != -EIO);
2c22569b 1639 i915_gem_clflush_object(obj, true);
6c085a72
CW
1640 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1641 }
1642
6dacfd2f 1643 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1644 i915_gem_object_save_bit_17_swizzle(obj);
1645
05394f39
CW
1646 if (obj->madv == I915_MADV_DONTNEED)
1647 obj->dirty = 0;
3ef94daa 1648
90797e6d 1649 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1650 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1651
05394f39 1652 if (obj->dirty)
9da3da66 1653 set_page_dirty(page);
3ef94daa 1654
05394f39 1655 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 1656 mark_page_accessed(page);
3ef94daa 1657
9da3da66 1658 page_cache_release(page);
3ef94daa 1659 }
05394f39 1660 obj->dirty = 0;
673a394b 1661
9da3da66
CW
1662 sg_free_table(obj->pages);
1663 kfree(obj->pages);
37e680a1 1664}
6c085a72 1665
dd624afd 1666int
37e680a1
CW
1667i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1668{
1669 const struct drm_i915_gem_object_ops *ops = obj->ops;
1670
2f745ad3 1671 if (obj->pages == NULL)
37e680a1
CW
1672 return 0;
1673
a5570178
CW
1674 if (obj->pages_pin_count)
1675 return -EBUSY;
1676
9843877d 1677 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 1678
a2165e31
CW
1679 /* ->put_pages might need to allocate memory for the bit17 swizzle
1680 * array, hence protect them from being reaped by removing them from gtt
1681 * lists early. */
35c20a60 1682 list_del(&obj->global_list);
a2165e31 1683
37e680a1 1684 ops->put_pages(obj);
05394f39 1685 obj->pages = NULL;
37e680a1 1686
6c085a72
CW
1687 if (i915_gem_object_is_purgeable(obj))
1688 i915_gem_object_truncate(obj);
1689
1690 return 0;
1691}
1692
1693static long
93927ca5
DV
1694__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1695 bool purgeable_only)
6c085a72 1696{
57094f82 1697 struct list_head still_bound_list;
6c085a72
CW
1698 struct drm_i915_gem_object *obj, *next;
1699 long count = 0;
1700
1701 list_for_each_entry_safe(obj, next,
1702 &dev_priv->mm.unbound_list,
35c20a60 1703 global_list) {
93927ca5 1704 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
37e680a1 1705 i915_gem_object_put_pages(obj) == 0) {
6c085a72
CW
1706 count += obj->base.size >> PAGE_SHIFT;
1707 if (count >= target)
1708 return count;
1709 }
1710 }
1711
57094f82
CW
1712 /*
1713 * As we may completely rewrite the bound list whilst unbinding
1714 * (due to retiring requests) we have to strictly process only
1715 * one element of the list at the time, and recheck the list
1716 * on every iteration.
1717 */
1718 INIT_LIST_HEAD(&still_bound_list);
1719 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
07fe0b12 1720 struct i915_vma *vma, *v;
80dcfdbd 1721
57094f82
CW
1722 obj = list_first_entry(&dev_priv->mm.bound_list,
1723 typeof(*obj), global_list);
1724 list_move_tail(&obj->global_list, &still_bound_list);
1725
80dcfdbd
BW
1726 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1727 continue;
1728
57094f82
CW
1729 /*
1730 * Hold a reference whilst we unbind this object, as we may
1731 * end up waiting for and retiring requests. This might
1732 * release the final reference (held by the active list)
1733 * and result in the object being freed from under us.
1734 * in this object being freed.
1735 *
1736 * Note 1: Shrinking the bound list is special since only active
1737 * (and hence bound objects) can contain such limbo objects, so
1738 * we don't need special tricks for shrinking the unbound list.
1739 * The only other place where we have to be careful with active
1740 * objects suddenly disappearing due to retiring requests is the
1741 * eviction code.
1742 *
1743 * Note 2: Even though the bound list doesn't hold a reference
1744 * to the object we can safely grab one here: The final object
1745 * unreferencing and the bound_list are both protected by the
1746 * dev->struct_mutex and so we won't ever be able to observe an
1747 * object on the bound_list with a reference count equals 0.
1748 */
1749 drm_gem_object_reference(&obj->base);
1750
07fe0b12
BW
1751 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1752 if (i915_vma_unbind(vma))
1753 break;
80dcfdbd 1754
57094f82 1755 if (i915_gem_object_put_pages(obj) == 0)
6c085a72 1756 count += obj->base.size >> PAGE_SHIFT;
57094f82
CW
1757
1758 drm_gem_object_unreference(&obj->base);
6c085a72 1759 }
57094f82 1760 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
6c085a72
CW
1761
1762 return count;
1763}
1764
93927ca5
DV
1765static long
1766i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1767{
1768 return __i915_gem_shrink(dev_priv, target, true);
1769}
1770
7dc19d5a 1771static long
6c085a72
CW
1772i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1773{
1774 struct drm_i915_gem_object *obj, *next;
7dc19d5a 1775 long freed = 0;
6c085a72
CW
1776
1777 i915_gem_evict_everything(dev_priv->dev);
1778
35c20a60 1779 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
7dc19d5a
DC
1780 global_list) {
1781 if (obj->pages_pin_count == 0)
1782 freed += obj->base.size >> PAGE_SHIFT;
37e680a1 1783 i915_gem_object_put_pages(obj);
7dc19d5a
DC
1784 }
1785 return freed;
225067ee
DV
1786}
1787
37e680a1 1788static int
6c085a72 1789i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 1790{
6c085a72 1791 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
1792 int page_count, i;
1793 struct address_space *mapping;
9da3da66
CW
1794 struct sg_table *st;
1795 struct scatterlist *sg;
90797e6d 1796 struct sg_page_iter sg_iter;
e5281ccd 1797 struct page *page;
90797e6d 1798 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 1799 gfp_t gfp;
e5281ccd 1800
6c085a72
CW
1801 /* Assert that the object is not currently in any GPU domain. As it
1802 * wasn't in the GTT, there shouldn't be any way it could have been in
1803 * a GPU cache
1804 */
1805 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1806 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1807
9da3da66
CW
1808 st = kmalloc(sizeof(*st), GFP_KERNEL);
1809 if (st == NULL)
1810 return -ENOMEM;
1811
05394f39 1812 page_count = obj->base.size / PAGE_SIZE;
9da3da66 1813 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 1814 kfree(st);
e5281ccd 1815 return -ENOMEM;
9da3da66 1816 }
e5281ccd 1817
9da3da66
CW
1818 /* Get the list of pages out of our struct file. They'll be pinned
1819 * at this point until we release them.
1820 *
1821 * Fail silently without starting the shrinker
1822 */
496ad9aa 1823 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 1824 gfp = mapping_gfp_mask(mapping);
caf49191 1825 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 1826 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
1827 sg = st->sgl;
1828 st->nents = 0;
1829 for (i = 0; i < page_count; i++) {
6c085a72
CW
1830 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1831 if (IS_ERR(page)) {
1832 i915_gem_purge(dev_priv, page_count);
1833 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1834 }
1835 if (IS_ERR(page)) {
1836 /* We've tried hard to allocate the memory by reaping
1837 * our own buffer, now let the real VM do its job and
1838 * go down in flames if truly OOM.
1839 */
caf49191 1840 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
6c085a72
CW
1841 gfp |= __GFP_IO | __GFP_WAIT;
1842
1843 i915_gem_shrink_all(dev_priv);
1844 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1845 if (IS_ERR(page))
1846 goto err_pages;
1847
caf49191 1848 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72
CW
1849 gfp &= ~(__GFP_IO | __GFP_WAIT);
1850 }
426729dc
KRW
1851#ifdef CONFIG_SWIOTLB
1852 if (swiotlb_nr_tbl()) {
1853 st->nents++;
1854 sg_set_page(sg, page, PAGE_SIZE, 0);
1855 sg = sg_next(sg);
1856 continue;
1857 }
1858#endif
90797e6d
ID
1859 if (!i || page_to_pfn(page) != last_pfn + 1) {
1860 if (i)
1861 sg = sg_next(sg);
1862 st->nents++;
1863 sg_set_page(sg, page, PAGE_SIZE, 0);
1864 } else {
1865 sg->length += PAGE_SIZE;
1866 }
1867 last_pfn = page_to_pfn(page);
e5281ccd 1868 }
426729dc
KRW
1869#ifdef CONFIG_SWIOTLB
1870 if (!swiotlb_nr_tbl())
1871#endif
1872 sg_mark_end(sg);
74ce6b6c
CW
1873 obj->pages = st;
1874
6dacfd2f 1875 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
1876 i915_gem_object_do_bit_17_swizzle(obj);
1877
1878 return 0;
1879
1880err_pages:
90797e6d
ID
1881 sg_mark_end(sg);
1882 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 1883 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
1884 sg_free_table(st);
1885 kfree(st);
e5281ccd 1886 return PTR_ERR(page);
673a394b
EA
1887}
1888
37e680a1
CW
1889/* Ensure that the associated pages are gathered from the backing storage
1890 * and pinned into our object. i915_gem_object_get_pages() may be called
1891 * multiple times before they are released by a single call to
1892 * i915_gem_object_put_pages() - once the pages are no longer referenced
1893 * either as a result of memory pressure (reaping pages under the shrinker)
1894 * or as the object is itself released.
1895 */
1896int
1897i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1898{
1899 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1900 const struct drm_i915_gem_object_ops *ops = obj->ops;
1901 int ret;
1902
2f745ad3 1903 if (obj->pages)
37e680a1
CW
1904 return 0;
1905
43e28f09
CW
1906 if (obj->madv != I915_MADV_WILLNEED) {
1907 DRM_ERROR("Attempting to obtain a purgeable object\n");
1908 return -EINVAL;
1909 }
1910
a5570178
CW
1911 BUG_ON(obj->pages_pin_count);
1912
37e680a1
CW
1913 ret = ops->get_pages(obj);
1914 if (ret)
1915 return ret;
1916
35c20a60 1917 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 1918 return 0;
673a394b
EA
1919}
1920
54cf91dc 1921void
05394f39 1922i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
9d773091 1923 struct intel_ring_buffer *ring)
673a394b 1924{
05394f39 1925 struct drm_device *dev = obj->base.dev;
69dc4987 1926 struct drm_i915_private *dev_priv = dev->dev_private;
9d773091 1927 u32 seqno = intel_ring_get_seqno(ring);
617dbe27 1928
852835f3 1929 BUG_ON(ring == NULL);
02978ff5
CW
1930 if (obj->ring != ring && obj->last_write_seqno) {
1931 /* Keep the seqno relative to the current ring */
1932 obj->last_write_seqno = seqno;
1933 }
05394f39 1934 obj->ring = ring;
673a394b
EA
1935
1936 /* Add a reference if we're newly entering the active list. */
05394f39
CW
1937 if (!obj->active) {
1938 drm_gem_object_reference(&obj->base);
1939 obj->active = 1;
673a394b 1940 }
e35a41de 1941
05394f39 1942 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 1943
0201f1ec 1944 obj->last_read_seqno = seqno;
caea7476 1945
7dd49065 1946 if (obj->fenced_gpu_access) {
caea7476 1947 obj->last_fenced_seqno = seqno;
caea7476 1948
7dd49065
CW
1949 /* Bump MRU to take account of the delayed flush */
1950 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1951 struct drm_i915_fence_reg *reg;
1952
1953 reg = &dev_priv->fence_regs[obj->fence_reg];
1954 list_move_tail(&reg->lru_list,
1955 &dev_priv->mm.fence_list);
1956 }
caea7476
CW
1957 }
1958}
1959
1960static void
caea7476 1961i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 1962{
ca191b13
BW
1963 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1964 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1965 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
ce44b0ea 1966
65ce3027 1967 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 1968 BUG_ON(!obj->active);
caea7476 1969
ca191b13 1970 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
caea7476 1971
65ce3027 1972 list_del_init(&obj->ring_list);
caea7476
CW
1973 obj->ring = NULL;
1974
65ce3027
CW
1975 obj->last_read_seqno = 0;
1976 obj->last_write_seqno = 0;
1977 obj->base.write_domain = 0;
1978
1979 obj->last_fenced_seqno = 0;
caea7476 1980 obj->fenced_gpu_access = false;
caea7476
CW
1981
1982 obj->active = 0;
1983 drm_gem_object_unreference(&obj->base);
1984
1985 WARN_ON(i915_verify_lists(dev));
ce44b0ea 1986}
673a394b 1987
9d773091 1988static int
fca26bb4 1989i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 1990{
9d773091
CW
1991 struct drm_i915_private *dev_priv = dev->dev_private;
1992 struct intel_ring_buffer *ring;
1993 int ret, i, j;
53d227f2 1994
107f27a5 1995 /* Carefully retire all requests without writing to the rings */
9d773091 1996 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
1997 ret = intel_ring_idle(ring);
1998 if (ret)
1999 return ret;
9d773091 2000 }
9d773091 2001 i915_gem_retire_requests(dev);
107f27a5
CW
2002
2003 /* Finally reset hw state */
9d773091 2004 for_each_ring(ring, dev_priv, i) {
fca26bb4 2005 intel_ring_init_seqno(ring, seqno);
498d2ac1 2006
9d773091
CW
2007 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2008 ring->sync_seqno[j] = 0;
2009 }
53d227f2 2010
9d773091 2011 return 0;
53d227f2
DV
2012}
2013
fca26bb4
MK
2014int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2015{
2016 struct drm_i915_private *dev_priv = dev->dev_private;
2017 int ret;
2018
2019 if (seqno == 0)
2020 return -EINVAL;
2021
2022 /* HWS page needs to be set less than what we
2023 * will inject to ring
2024 */
2025 ret = i915_gem_init_seqno(dev, seqno - 1);
2026 if (ret)
2027 return ret;
2028
2029 /* Carefully set the last_seqno value so that wrap
2030 * detection still works
2031 */
2032 dev_priv->next_seqno = seqno;
2033 dev_priv->last_seqno = seqno - 1;
2034 if (dev_priv->last_seqno == 0)
2035 dev_priv->last_seqno--;
2036
2037 return 0;
2038}
2039
9d773091
CW
2040int
2041i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2042{
9d773091
CW
2043 struct drm_i915_private *dev_priv = dev->dev_private;
2044
2045 /* reserve 0 for non-seqno */
2046 if (dev_priv->next_seqno == 0) {
fca26bb4 2047 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2048 if (ret)
2049 return ret;
53d227f2 2050
9d773091
CW
2051 dev_priv->next_seqno = 1;
2052 }
53d227f2 2053
f72b3435 2054 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2055 return 0;
53d227f2
DV
2056}
2057
0025c077
MK
2058int __i915_add_request(struct intel_ring_buffer *ring,
2059 struct drm_file *file,
7d736f4f 2060 struct drm_i915_gem_object *obj,
0025c077 2061 u32 *out_seqno)
673a394b 2062{
db53a302 2063 drm_i915_private_t *dev_priv = ring->dev->dev_private;
acb868d3 2064 struct drm_i915_gem_request *request;
7d736f4f 2065 u32 request_ring_position, request_start;
673a394b 2066 int was_empty;
3cce469c
CW
2067 int ret;
2068
7d736f4f 2069 request_start = intel_ring_get_tail(ring);
cc889e0f
DV
2070 /*
2071 * Emit any outstanding flushes - execbuf can fail to emit the flush
2072 * after having emitted the batchbuffer command. Hence we need to fix
2073 * things up similar to emitting the lazy request. The difference here
2074 * is that the flush _must_ happen before the next request, no matter
2075 * what.
2076 */
a7b9761d
CW
2077 ret = intel_ring_flush_all_caches(ring);
2078 if (ret)
2079 return ret;
cc889e0f 2080
acb868d3
CW
2081 request = kmalloc(sizeof(*request), GFP_KERNEL);
2082 if (request == NULL)
2083 return -ENOMEM;
cc889e0f 2084
673a394b 2085
a71d8d94
CW
2086 /* Record the position of the start of the request so that
2087 * should we detect the updated seqno part-way through the
2088 * GPU processing the request, we never over-estimate the
2089 * position of the head.
2090 */
2091 request_ring_position = intel_ring_get_tail(ring);
2092
9d773091 2093 ret = ring->add_request(ring);
3bb73aba
CW
2094 if (ret) {
2095 kfree(request);
2096 return ret;
2097 }
673a394b 2098
9d773091 2099 request->seqno = intel_ring_get_seqno(ring);
852835f3 2100 request->ring = ring;
7d736f4f 2101 request->head = request_start;
a71d8d94 2102 request->tail = request_ring_position;
0e50e96b 2103 request->ctx = ring->last_context;
7d736f4f
MK
2104 request->batch_obj = obj;
2105
2106 /* Whilst this request exists, batch_obj will be on the
2107 * active_list, and so will hold the active reference. Only when this
2108 * request is retired will the the batch_obj be moved onto the
2109 * inactive_list and lose its active reference. Hence we do not need
2110 * to explicitly hold another reference here.
2111 */
0e50e96b
MK
2112
2113 if (request->ctx)
2114 i915_gem_context_reference(request->ctx);
2115
673a394b 2116 request->emitted_jiffies = jiffies;
852835f3
ZN
2117 was_empty = list_empty(&ring->request_list);
2118 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2119 request->file_priv = NULL;
852835f3 2120
db53a302
CW
2121 if (file) {
2122 struct drm_i915_file_private *file_priv = file->driver_priv;
2123
1c25595f 2124 spin_lock(&file_priv->mm.lock);
f787a5f5 2125 request->file_priv = file_priv;
b962442e 2126 list_add_tail(&request->client_list,
f787a5f5 2127 &file_priv->mm.request_list);
1c25595f 2128 spin_unlock(&file_priv->mm.lock);
b962442e 2129 }
673a394b 2130
9d773091 2131 trace_i915_gem_request_add(ring, request->seqno);
5391d0cf 2132 ring->outstanding_lazy_request = 0;
db53a302 2133
db1b76ca 2134 if (!dev_priv->ums.mm_suspended) {
10cd45b6
MK
2135 i915_queue_hangcheck(ring->dev);
2136
f047e395 2137 if (was_empty) {
b3b079db 2138 queue_delayed_work(dev_priv->wq,
bcb45086
CW
2139 &dev_priv->mm.retire_work,
2140 round_jiffies_up_relative(HZ));
f047e395
CW
2141 intel_mark_busy(dev_priv->dev);
2142 }
f65d9421 2143 }
cc889e0f 2144
acb868d3 2145 if (out_seqno)
9d773091 2146 *out_seqno = request->seqno;
3cce469c 2147 return 0;
673a394b
EA
2148}
2149
f787a5f5
CW
2150static inline void
2151i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2152{
1c25595f 2153 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2154
1c25595f
CW
2155 if (!file_priv)
2156 return;
1c5d22f7 2157
1c25595f 2158 spin_lock(&file_priv->mm.lock);
09bfa517
HRK
2159 if (request->file_priv) {
2160 list_del(&request->client_list);
2161 request->file_priv = NULL;
2162 }
1c25595f 2163 spin_unlock(&file_priv->mm.lock);
673a394b 2164}
673a394b 2165
d1ccbb5d
BW
2166static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2167 struct i915_address_space *vm)
aa60c664 2168{
d1ccbb5d
BW
2169 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2170 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
aa60c664
MK
2171 return true;
2172
2173 return false;
2174}
2175
2176static bool i915_head_inside_request(const u32 acthd_unmasked,
2177 const u32 request_start,
2178 const u32 request_end)
2179{
2180 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2181
2182 if (request_start < request_end) {
2183 if (acthd >= request_start && acthd < request_end)
2184 return true;
2185 } else if (request_start > request_end) {
2186 if (acthd >= request_start || acthd < request_end)
2187 return true;
2188 }
2189
2190 return false;
2191}
2192
d1ccbb5d
BW
2193static struct i915_address_space *
2194request_to_vm(struct drm_i915_gem_request *request)
2195{
2196 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2197 struct i915_address_space *vm;
2198
2199 vm = &dev_priv->gtt.base;
2200
2201 return vm;
2202}
2203
aa60c664
MK
2204static bool i915_request_guilty(struct drm_i915_gem_request *request,
2205 const u32 acthd, bool *inside)
2206{
2207 /* There is a possibility that unmasked head address
2208 * pointing inside the ring, matches the batch_obj address range.
2209 * However this is extremely unlikely.
2210 */
aa60c664 2211 if (request->batch_obj) {
d1ccbb5d
BW
2212 if (i915_head_inside_object(acthd, request->batch_obj,
2213 request_to_vm(request))) {
aa60c664
MK
2214 *inside = true;
2215 return true;
2216 }
2217 }
2218
2219 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2220 *inside = false;
2221 return true;
2222 }
2223
2224 return false;
2225}
2226
2227static void i915_set_reset_status(struct intel_ring_buffer *ring,
2228 struct drm_i915_gem_request *request,
2229 u32 acthd)
2230{
2231 struct i915_ctx_hang_stats *hs = NULL;
2232 bool inside, guilty;
d1ccbb5d 2233 unsigned long offset = 0;
aa60c664
MK
2234
2235 /* Innocent until proven guilty */
2236 guilty = false;
2237
d1ccbb5d
BW
2238 if (request->batch_obj)
2239 offset = i915_gem_obj_offset(request->batch_obj,
2240 request_to_vm(request));
2241
f2f4d82f 2242 if (ring->hangcheck.action != HANGCHECK_WAIT &&
aa60c664 2243 i915_request_guilty(request, acthd, &inside)) {
f343c5f6 2244 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
aa60c664
MK
2245 ring->name,
2246 inside ? "inside" : "flushing",
d1ccbb5d 2247 offset,
aa60c664
MK
2248 request->ctx ? request->ctx->id : 0,
2249 acthd);
2250
2251 guilty = true;
2252 }
2253
2254 /* If contexts are disabled or this is the default context, use
2255 * file_priv->reset_state
2256 */
2257 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2258 hs = &request->ctx->hang_stats;
2259 else if (request->file_priv)
2260 hs = &request->file_priv->hang_stats;
2261
2262 if (hs) {
2263 if (guilty)
2264 hs->batch_active++;
2265 else
2266 hs->batch_pending++;
2267 }
2268}
2269
0e50e96b
MK
2270static void i915_gem_free_request(struct drm_i915_gem_request *request)
2271{
2272 list_del(&request->list);
2273 i915_gem_request_remove_from_client(request);
2274
2275 if (request->ctx)
2276 i915_gem_context_unreference(request->ctx);
2277
2278 kfree(request);
2279}
2280
dfaae392
CW
2281static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2282 struct intel_ring_buffer *ring)
9375e446 2283{
aa60c664
MK
2284 u32 completed_seqno;
2285 u32 acthd;
2286
2287 acthd = intel_ring_get_active_head(ring);
2288 completed_seqno = ring->get_seqno(ring, false);
2289
dfaae392
CW
2290 while (!list_empty(&ring->request_list)) {
2291 struct drm_i915_gem_request *request;
673a394b 2292
dfaae392
CW
2293 request = list_first_entry(&ring->request_list,
2294 struct drm_i915_gem_request,
2295 list);
de151cf6 2296
aa60c664
MK
2297 if (request->seqno > completed_seqno)
2298 i915_set_reset_status(ring, request, acthd);
2299
0e50e96b 2300 i915_gem_free_request(request);
dfaae392 2301 }
673a394b 2302
dfaae392 2303 while (!list_empty(&ring->active_list)) {
05394f39 2304 struct drm_i915_gem_object *obj;
9375e446 2305
05394f39
CW
2306 obj = list_first_entry(&ring->active_list,
2307 struct drm_i915_gem_object,
2308 ring_list);
9375e446 2309
05394f39 2310 i915_gem_object_move_to_inactive(obj);
673a394b
EA
2311 }
2312}
2313
19b2dbde 2314void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2315{
2316 struct drm_i915_private *dev_priv = dev->dev_private;
2317 int i;
2318
4b9de737 2319 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2320 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2321
94a335db
DV
2322 /*
2323 * Commit delayed tiling changes if we have an object still
2324 * attached to the fence, otherwise just clear the fence.
2325 */
2326 if (reg->obj) {
2327 i915_gem_object_update_fence(reg->obj, reg,
2328 reg->obj->tiling_mode);
2329 } else {
2330 i915_gem_write_fence(dev, i, NULL);
2331 }
312817a3
CW
2332 }
2333}
2334
069efc1d 2335void i915_gem_reset(struct drm_device *dev)
673a394b 2336{
77f01230 2337 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 2338 struct intel_ring_buffer *ring;
1ec14ad3 2339 int i;
673a394b 2340
b4519513
CW
2341 for_each_ring(ring, dev_priv, i)
2342 i915_gem_reset_ring_lists(dev_priv, ring);
dfaae392 2343
19b2dbde 2344 i915_gem_restore_fences(dev);
673a394b
EA
2345}
2346
2347/**
2348 * This function clears the request list as sequence numbers are passed.
2349 */
a71d8d94 2350void
db53a302 2351i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
673a394b 2352{
673a394b
EA
2353 uint32_t seqno;
2354
db53a302 2355 if (list_empty(&ring->request_list))
6c0594a3
KW
2356 return;
2357
db53a302 2358 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2359
b2eadbc8 2360 seqno = ring->get_seqno(ring, true);
1ec14ad3 2361
852835f3 2362 while (!list_empty(&ring->request_list)) {
673a394b 2363 struct drm_i915_gem_request *request;
673a394b 2364
852835f3 2365 request = list_first_entry(&ring->request_list,
673a394b
EA
2366 struct drm_i915_gem_request,
2367 list);
673a394b 2368
dfaae392 2369 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2370 break;
2371
db53a302 2372 trace_i915_gem_request_retire(ring, request->seqno);
a71d8d94
CW
2373 /* We know the GPU must have read the request to have
2374 * sent us the seqno + interrupt, so use the position
2375 * of tail of the request to update the last known position
2376 * of the GPU head.
2377 */
2378 ring->last_retired_head = request->tail;
b84d5f0c 2379
0e50e96b 2380 i915_gem_free_request(request);
b84d5f0c 2381 }
673a394b 2382
b84d5f0c
CW
2383 /* Move any buffers on the active list that are no longer referenced
2384 * by the ringbuffer to the flushing/inactive lists as appropriate.
2385 */
2386 while (!list_empty(&ring->active_list)) {
05394f39 2387 struct drm_i915_gem_object *obj;
b84d5f0c 2388
0206e353 2389 obj = list_first_entry(&ring->active_list,
05394f39
CW
2390 struct drm_i915_gem_object,
2391 ring_list);
673a394b 2392
0201f1ec 2393 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
673a394b 2394 break;
b84d5f0c 2395
65ce3027 2396 i915_gem_object_move_to_inactive(obj);
673a394b 2397 }
9d34e5db 2398
db53a302
CW
2399 if (unlikely(ring->trace_irq_seqno &&
2400 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2401 ring->irq_put(ring);
db53a302 2402 ring->trace_irq_seqno = 0;
9d34e5db 2403 }
23bc5982 2404
db53a302 2405 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2406}
2407
b09a1fec
CW
2408void
2409i915_gem_retire_requests(struct drm_device *dev)
2410{
2411 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2412 struct intel_ring_buffer *ring;
1ec14ad3 2413 int i;
b09a1fec 2414
b4519513
CW
2415 for_each_ring(ring, dev_priv, i)
2416 i915_gem_retire_requests_ring(ring);
b09a1fec
CW
2417}
2418
75ef9da2 2419static void
673a394b
EA
2420i915_gem_retire_work_handler(struct work_struct *work)
2421{
2422 drm_i915_private_t *dev_priv;
2423 struct drm_device *dev;
b4519513 2424 struct intel_ring_buffer *ring;
0a58705b
CW
2425 bool idle;
2426 int i;
673a394b
EA
2427
2428 dev_priv = container_of(work, drm_i915_private_t,
2429 mm.retire_work.work);
2430 dev = dev_priv->dev;
2431
891b48cf
CW
2432 /* Come back later if the device is busy... */
2433 if (!mutex_trylock(&dev->struct_mutex)) {
bcb45086
CW
2434 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2435 round_jiffies_up_relative(HZ));
891b48cf
CW
2436 return;
2437 }
673a394b 2438
b09a1fec 2439 i915_gem_retire_requests(dev);
673a394b 2440
0a58705b
CW
2441 /* Send a periodic flush down the ring so we don't hold onto GEM
2442 * objects indefinitely.
673a394b 2443 */
0a58705b 2444 idle = true;
b4519513 2445 for_each_ring(ring, dev_priv, i) {
3bb73aba 2446 if (ring->gpu_caches_dirty)
0025c077 2447 i915_add_request(ring, NULL);
0a58705b
CW
2448
2449 idle &= list_empty(&ring->request_list);
673a394b
EA
2450 }
2451
db1b76ca 2452 if (!dev_priv->ums.mm_suspended && !idle)
bcb45086
CW
2453 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2454 round_jiffies_up_relative(HZ));
f047e395
CW
2455 if (idle)
2456 intel_mark_idle(dev);
0a58705b 2457
673a394b 2458 mutex_unlock(&dev->struct_mutex);
673a394b
EA
2459}
2460
30dfebf3
DV
2461/**
2462 * Ensures that an object will eventually get non-busy by flushing any required
2463 * write domains, emitting any outstanding lazy request and retiring and
2464 * completed requests.
2465 */
2466static int
2467i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2468{
2469 int ret;
2470
2471 if (obj->active) {
0201f1ec 2472 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
30dfebf3
DV
2473 if (ret)
2474 return ret;
2475
30dfebf3
DV
2476 i915_gem_retire_requests_ring(obj->ring);
2477 }
2478
2479 return 0;
2480}
2481
23ba4fd0
BW
2482/**
2483 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2484 * @DRM_IOCTL_ARGS: standard ioctl arguments
2485 *
2486 * Returns 0 if successful, else an error is returned with the remaining time in
2487 * the timeout parameter.
2488 * -ETIME: object is still busy after timeout
2489 * -ERESTARTSYS: signal interrupted the wait
2490 * -ENONENT: object doesn't exist
2491 * Also possible, but rare:
2492 * -EAGAIN: GPU wedged
2493 * -ENOMEM: damn
2494 * -ENODEV: Internal IRQ fail
2495 * -E?: The add request failed
2496 *
2497 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2498 * non-zero timeout parameter the wait ioctl will wait for the given number of
2499 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2500 * without holding struct_mutex the object may become re-busied before this
2501 * function completes. A similar but shorter * race condition exists in the busy
2502 * ioctl
2503 */
2504int
2505i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2506{
f69061be 2507 drm_i915_private_t *dev_priv = dev->dev_private;
23ba4fd0
BW
2508 struct drm_i915_gem_wait *args = data;
2509 struct drm_i915_gem_object *obj;
2510 struct intel_ring_buffer *ring = NULL;
eac1f14f 2511 struct timespec timeout_stack, *timeout = NULL;
f69061be 2512 unsigned reset_counter;
23ba4fd0
BW
2513 u32 seqno = 0;
2514 int ret = 0;
2515
eac1f14f
BW
2516 if (args->timeout_ns >= 0) {
2517 timeout_stack = ns_to_timespec(args->timeout_ns);
2518 timeout = &timeout_stack;
2519 }
23ba4fd0
BW
2520
2521 ret = i915_mutex_lock_interruptible(dev);
2522 if (ret)
2523 return ret;
2524
2525 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2526 if (&obj->base == NULL) {
2527 mutex_unlock(&dev->struct_mutex);
2528 return -ENOENT;
2529 }
2530
30dfebf3
DV
2531 /* Need to make sure the object gets inactive eventually. */
2532 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2533 if (ret)
2534 goto out;
2535
2536 if (obj->active) {
0201f1ec 2537 seqno = obj->last_read_seqno;
23ba4fd0
BW
2538 ring = obj->ring;
2539 }
2540
2541 if (seqno == 0)
2542 goto out;
2543
23ba4fd0
BW
2544 /* Do this after OLR check to make sure we make forward progress polling
2545 * on this IOCTL with a 0 timeout (like busy ioctl)
2546 */
2547 if (!args->timeout_ns) {
2548 ret = -ETIME;
2549 goto out;
2550 }
2551
2552 drm_gem_object_unreference(&obj->base);
f69061be 2553 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
23ba4fd0
BW
2554 mutex_unlock(&dev->struct_mutex);
2555
f69061be 2556 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
4f42f4ef 2557 if (timeout)
eac1f14f 2558 args->timeout_ns = timespec_to_ns(timeout);
23ba4fd0
BW
2559 return ret;
2560
2561out:
2562 drm_gem_object_unreference(&obj->base);
2563 mutex_unlock(&dev->struct_mutex);
2564 return ret;
2565}
2566
5816d648
BW
2567/**
2568 * i915_gem_object_sync - sync an object to a ring.
2569 *
2570 * @obj: object which may be in use on another ring.
2571 * @to: ring we wish to use the object on. May be NULL.
2572 *
2573 * This code is meant to abstract object synchronization with the GPU.
2574 * Calling with NULL implies synchronizing the object with the CPU
2575 * rather than a particular GPU ring.
2576 *
2577 * Returns 0 if successful, else propagates up the lower layer error.
2578 */
2911a35b
BW
2579int
2580i915_gem_object_sync(struct drm_i915_gem_object *obj,
2581 struct intel_ring_buffer *to)
2582{
2583 struct intel_ring_buffer *from = obj->ring;
2584 u32 seqno;
2585 int ret, idx;
2586
2587 if (from == NULL || to == from)
2588 return 0;
2589
5816d648 2590 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 2591 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
2592
2593 idx = intel_ring_sync_index(from, to);
2594
0201f1ec 2595 seqno = obj->last_read_seqno;
2911a35b
BW
2596 if (seqno <= from->sync_seqno[idx])
2597 return 0;
2598
b4aca010
BW
2599 ret = i915_gem_check_olr(obj->ring, seqno);
2600 if (ret)
2601 return ret;
2911a35b 2602
1500f7ea 2603 ret = to->sync_to(to, from, seqno);
e3a5a225 2604 if (!ret)
7b01e260
MK
2605 /* We use last_read_seqno because sync_to()
2606 * might have just caused seqno wrap under
2607 * the radar.
2608 */
2609 from->sync_seqno[idx] = obj->last_read_seqno;
2911a35b 2610
e3a5a225 2611 return ret;
2911a35b
BW
2612}
2613
b5ffc9bc
CW
2614static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2615{
2616 u32 old_write_domain, old_read_domains;
2617
b5ffc9bc
CW
2618 /* Force a pagefault for domain tracking on next user access */
2619 i915_gem_release_mmap(obj);
2620
b97c3d9c
KP
2621 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2622 return;
2623
97c809fd
CW
2624 /* Wait for any direct GTT access to complete */
2625 mb();
2626
b5ffc9bc
CW
2627 old_read_domains = obj->base.read_domains;
2628 old_write_domain = obj->base.write_domain;
2629
2630 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2631 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2632
2633 trace_i915_gem_object_change_domain(obj,
2634 old_read_domains,
2635 old_write_domain);
2636}
2637
07fe0b12 2638int i915_vma_unbind(struct i915_vma *vma)
673a394b 2639{
07fe0b12 2640 struct drm_i915_gem_object *obj = vma->obj;
7bddb01f 2641 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
43e28f09 2642 int ret;
673a394b 2643
07fe0b12 2644 if (list_empty(&vma->vma_link))
673a394b
EA
2645 return 0;
2646
433544bd
BW
2647 if (!drm_mm_node_allocated(&vma->node))
2648 goto destroy;
2649
31d8d651
CW
2650 if (obj->pin_count)
2651 return -EBUSY;
673a394b 2652
c4670ad0
CW
2653 BUG_ON(obj->pages == NULL);
2654
a8198eea 2655 ret = i915_gem_object_finish_gpu(obj);
1488fc08 2656 if (ret)
a8198eea
CW
2657 return ret;
2658 /* Continue on if we fail due to EIO, the GPU is hung so we
2659 * should be safe and we need to cleanup or else we might
2660 * cause memory corruption through use-after-free.
2661 */
2662
b5ffc9bc 2663 i915_gem_object_finish_gtt(obj);
5323fd04 2664
96b47b65 2665 /* release the fence reg _after_ flushing */
d9e86c0e 2666 ret = i915_gem_object_put_fence(obj);
1488fc08 2667 if (ret)
d9e86c0e 2668 return ret;
96b47b65 2669
07fe0b12 2670 trace_i915_vma_unbind(vma);
db53a302 2671
74898d7e
DV
2672 if (obj->has_global_gtt_mapping)
2673 i915_gem_gtt_unbind_object(obj);
7bddb01f
DV
2674 if (obj->has_aliasing_ppgtt_mapping) {
2675 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2676 obj->has_aliasing_ppgtt_mapping = 0;
2677 }
74163907 2678 i915_gem_gtt_finish_object(obj);
401c29f6 2679 i915_gem_object_unpin_pages(obj);
7bddb01f 2680
ca191b13 2681 list_del(&vma->mm_list);
75e9e915 2682 /* Avoid an unnecessary call to unbind on rebind. */
5cacaac7
BW
2683 if (i915_is_ggtt(vma->vm))
2684 obj->map_and_fenceable = true;
673a394b 2685
2f633156 2686 drm_mm_remove_node(&vma->node);
433544bd
BW
2687
2688destroy:
2f633156
BW
2689 i915_gem_vma_destroy(vma);
2690
2691 /* Since the unbound list is global, only move to that list if
2692 * no more VMAs exist.
2693 * NB: Until we have real VMAs there will only ever be one */
2694 WARN_ON(!list_empty(&obj->vma_list));
2695 if (list_empty(&obj->vma_list))
2696 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 2697
88241785 2698 return 0;
54cf91dc
CW
2699}
2700
07fe0b12
BW
2701/**
2702 * Unbinds an object from the global GTT aperture.
2703 */
2704int
2705i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2706{
2707 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2708 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2709
58e73e15 2710 if (!i915_gem_obj_ggtt_bound(obj))
07fe0b12
BW
2711 return 0;
2712
2713 if (obj->pin_count)
2714 return -EBUSY;
2715
2716 BUG_ON(obj->pages == NULL);
2717
2718 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2719}
2720
b2da9fe5 2721int i915_gpu_idle(struct drm_device *dev)
4df2faf4
DV
2722{
2723 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 2724 struct intel_ring_buffer *ring;
1ec14ad3 2725 int ret, i;
4df2faf4 2726
4df2faf4 2727 /* Flush everything onto the inactive list. */
b4519513 2728 for_each_ring(ring, dev_priv, i) {
b6c7488d
BW
2729 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2730 if (ret)
2731 return ret;
2732
3e960501 2733 ret = intel_ring_idle(ring);
1ec14ad3
CW
2734 if (ret)
2735 return ret;
2736 }
4df2faf4 2737
8a1a49f9 2738 return 0;
4df2faf4
DV
2739}
2740
9ce079e4
CW
2741static void i965_write_fence_reg(struct drm_device *dev, int reg,
2742 struct drm_i915_gem_object *obj)
de151cf6 2743{
de151cf6 2744 drm_i915_private_t *dev_priv = dev->dev_private;
56c844e5
ID
2745 int fence_reg;
2746 int fence_pitch_shift;
de151cf6 2747
56c844e5
ID
2748 if (INTEL_INFO(dev)->gen >= 6) {
2749 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2750 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2751 } else {
2752 fence_reg = FENCE_REG_965_0;
2753 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2754 }
2755
d18b9619
CW
2756 fence_reg += reg * 8;
2757
2758 /* To w/a incoherency with non-atomic 64-bit register updates,
2759 * we split the 64-bit update into two 32-bit writes. In order
2760 * for a partial fence not to be evaluated between writes, we
2761 * precede the update with write to turn off the fence register,
2762 * and only enable the fence as the last step.
2763 *
2764 * For extra levels of paranoia, we make sure each step lands
2765 * before applying the next step.
2766 */
2767 I915_WRITE(fence_reg, 0);
2768 POSTING_READ(fence_reg);
2769
9ce079e4 2770 if (obj) {
f343c5f6 2771 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 2772 uint64_t val;
de151cf6 2773
f343c5f6 2774 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 2775 0xfffff000) << 32;
f343c5f6 2776 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 2777 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
2778 if (obj->tiling_mode == I915_TILING_Y)
2779 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2780 val |= I965_FENCE_REG_VALID;
c6642782 2781
d18b9619
CW
2782 I915_WRITE(fence_reg + 4, val >> 32);
2783 POSTING_READ(fence_reg + 4);
2784
2785 I915_WRITE(fence_reg + 0, val);
2786 POSTING_READ(fence_reg);
2787 } else {
2788 I915_WRITE(fence_reg + 4, 0);
2789 POSTING_READ(fence_reg + 4);
2790 }
de151cf6
JB
2791}
2792
9ce079e4
CW
2793static void i915_write_fence_reg(struct drm_device *dev, int reg,
2794 struct drm_i915_gem_object *obj)
de151cf6 2795{
de151cf6 2796 drm_i915_private_t *dev_priv = dev->dev_private;
9ce079e4 2797 u32 val;
de151cf6 2798
9ce079e4 2799 if (obj) {
f343c5f6 2800 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
2801 int pitch_val;
2802 int tile_width;
c6642782 2803
f343c5f6 2804 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 2805 (size & -size) != size ||
f343c5f6
BW
2806 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2807 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2808 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 2809
9ce079e4
CW
2810 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2811 tile_width = 128;
2812 else
2813 tile_width = 512;
2814
2815 /* Note: pitch better be a power of two tile widths */
2816 pitch_val = obj->stride / tile_width;
2817 pitch_val = ffs(pitch_val) - 1;
2818
f343c5f6 2819 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2820 if (obj->tiling_mode == I915_TILING_Y)
2821 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2822 val |= I915_FENCE_SIZE_BITS(size);
2823 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2824 val |= I830_FENCE_REG_VALID;
2825 } else
2826 val = 0;
2827
2828 if (reg < 8)
2829 reg = FENCE_REG_830_0 + reg * 4;
2830 else
2831 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2832
2833 I915_WRITE(reg, val);
2834 POSTING_READ(reg);
de151cf6
JB
2835}
2836
9ce079e4
CW
2837static void i830_write_fence_reg(struct drm_device *dev, int reg,
2838 struct drm_i915_gem_object *obj)
de151cf6 2839{
de151cf6 2840 drm_i915_private_t *dev_priv = dev->dev_private;
de151cf6 2841 uint32_t val;
de151cf6 2842
9ce079e4 2843 if (obj) {
f343c5f6 2844 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 2845 uint32_t pitch_val;
de151cf6 2846
f343c5f6 2847 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 2848 (size & -size) != size ||
f343c5f6
BW
2849 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2850 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2851 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 2852
9ce079e4
CW
2853 pitch_val = obj->stride / 128;
2854 pitch_val = ffs(pitch_val) - 1;
de151cf6 2855
f343c5f6 2856 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
2857 if (obj->tiling_mode == I915_TILING_Y)
2858 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2859 val |= I830_FENCE_SIZE_BITS(size);
2860 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2861 val |= I830_FENCE_REG_VALID;
2862 } else
2863 val = 0;
c6642782 2864
9ce079e4
CW
2865 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2866 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2867}
2868
d0a57789
CW
2869inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2870{
2871 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2872}
2873
9ce079e4
CW
2874static void i915_gem_write_fence(struct drm_device *dev, int reg,
2875 struct drm_i915_gem_object *obj)
2876{
d0a57789
CW
2877 struct drm_i915_private *dev_priv = dev->dev_private;
2878
2879 /* Ensure that all CPU reads are completed before installing a fence
2880 * and all writes before removing the fence.
2881 */
2882 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2883 mb();
2884
94a335db
DV
2885 WARN(obj && (!obj->stride || !obj->tiling_mode),
2886 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2887 obj->stride, obj->tiling_mode);
2888
9ce079e4
CW
2889 switch (INTEL_INFO(dev)->gen) {
2890 case 7:
56c844e5 2891 case 6:
9ce079e4
CW
2892 case 5:
2893 case 4: i965_write_fence_reg(dev, reg, obj); break;
2894 case 3: i915_write_fence_reg(dev, reg, obj); break;
2895 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 2896 default: BUG();
9ce079e4 2897 }
d0a57789
CW
2898
2899 /* And similarly be paranoid that no direct access to this region
2900 * is reordered to before the fence is installed.
2901 */
2902 if (i915_gem_object_needs_mb(obj))
2903 mb();
de151cf6
JB
2904}
2905
61050808
CW
2906static inline int fence_number(struct drm_i915_private *dev_priv,
2907 struct drm_i915_fence_reg *fence)
2908{
2909 return fence - dev_priv->fence_regs;
2910}
2911
2912static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2913 struct drm_i915_fence_reg *fence,
2914 bool enable)
2915{
2dc8aae0 2916 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
2917 int reg = fence_number(dev_priv, fence);
2918
2919 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
2920
2921 if (enable) {
46a0b638 2922 obj->fence_reg = reg;
61050808
CW
2923 fence->obj = obj;
2924 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2925 } else {
2926 obj->fence_reg = I915_FENCE_REG_NONE;
2927 fence->obj = NULL;
2928 list_del_init(&fence->lru_list);
2929 }
94a335db 2930 obj->fence_dirty = false;
61050808
CW
2931}
2932
d9e86c0e 2933static int
d0a57789 2934i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 2935{
1c293ea3 2936 if (obj->last_fenced_seqno) {
86d5bc37 2937 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
18991845
CW
2938 if (ret)
2939 return ret;
d9e86c0e
CW
2940
2941 obj->last_fenced_seqno = 0;
d9e86c0e
CW
2942 }
2943
86d5bc37 2944 obj->fenced_gpu_access = false;
d9e86c0e
CW
2945 return 0;
2946}
2947
2948int
2949i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2950{
61050808 2951 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 2952 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
2953 int ret;
2954
d0a57789 2955 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
2956 if (ret)
2957 return ret;
2958
61050808
CW
2959 if (obj->fence_reg == I915_FENCE_REG_NONE)
2960 return 0;
d9e86c0e 2961
f9c513e9
CW
2962 fence = &dev_priv->fence_regs[obj->fence_reg];
2963
61050808 2964 i915_gem_object_fence_lost(obj);
f9c513e9 2965 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
2966
2967 return 0;
2968}
2969
2970static struct drm_i915_fence_reg *
a360bb1a 2971i915_find_fence_reg(struct drm_device *dev)
ae3db24a 2972{
ae3db24a 2973 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 2974 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 2975 int i;
ae3db24a
DV
2976
2977 /* First try to find a free reg */
d9e86c0e 2978 avail = NULL;
ae3db24a
DV
2979 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2980 reg = &dev_priv->fence_regs[i];
2981 if (!reg->obj)
d9e86c0e 2982 return reg;
ae3db24a 2983
1690e1eb 2984 if (!reg->pin_count)
d9e86c0e 2985 avail = reg;
ae3db24a
DV
2986 }
2987
d9e86c0e
CW
2988 if (avail == NULL)
2989 return NULL;
ae3db24a
DV
2990
2991 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 2992 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 2993 if (reg->pin_count)
ae3db24a
DV
2994 continue;
2995
8fe301ad 2996 return reg;
ae3db24a
DV
2997 }
2998
8fe301ad 2999 return NULL;
ae3db24a
DV
3000}
3001
de151cf6 3002/**
9a5a53b3 3003 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3004 * @obj: object to map through a fence reg
3005 *
3006 * When mapping objects through the GTT, userspace wants to be able to write
3007 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3008 * This function walks the fence regs looking for a free one for @obj,
3009 * stealing one if it can't find any.
3010 *
3011 * It then sets up the reg based on the object's properties: address, pitch
3012 * and tiling format.
9a5a53b3
CW
3013 *
3014 * For an untiled surface, this removes any existing fence.
de151cf6 3015 */
8c4b8c3f 3016int
06d98131 3017i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3018{
05394f39 3019 struct drm_device *dev = obj->base.dev;
79e53945 3020 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3021 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3022 struct drm_i915_fence_reg *reg;
ae3db24a 3023 int ret;
de151cf6 3024
14415745
CW
3025 /* Have we updated the tiling parameters upon the object and so
3026 * will need to serialise the write to the associated fence register?
3027 */
5d82e3e6 3028 if (obj->fence_dirty) {
d0a57789 3029 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3030 if (ret)
3031 return ret;
3032 }
9a5a53b3 3033
d9e86c0e 3034 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3035 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3036 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3037 if (!obj->fence_dirty) {
14415745
CW
3038 list_move_tail(&reg->lru_list,
3039 &dev_priv->mm.fence_list);
3040 return 0;
3041 }
3042 } else if (enable) {
3043 reg = i915_find_fence_reg(dev);
3044 if (reg == NULL)
3045 return -EDEADLK;
d9e86c0e 3046
14415745
CW
3047 if (reg->obj) {
3048 struct drm_i915_gem_object *old = reg->obj;
3049
d0a57789 3050 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3051 if (ret)
3052 return ret;
3053
14415745 3054 i915_gem_object_fence_lost(old);
29c5a587 3055 }
14415745 3056 } else
a09ba7fa 3057 return 0;
a09ba7fa 3058
14415745 3059 i915_gem_object_update_fence(obj, reg, enable);
14415745 3060
9ce079e4 3061 return 0;
de151cf6
JB
3062}
3063
42d6ab48
CW
3064static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3065 struct drm_mm_node *gtt_space,
3066 unsigned long cache_level)
3067{
3068 struct drm_mm_node *other;
3069
3070 /* On non-LLC machines we have to be careful when putting differing
3071 * types of snoopable memory together to avoid the prefetcher
4239ca77 3072 * crossing memory domains and dying.
42d6ab48
CW
3073 */
3074 if (HAS_LLC(dev))
3075 return true;
3076
c6cfb325 3077 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3078 return true;
3079
3080 if (list_empty(&gtt_space->node_list))
3081 return true;
3082
3083 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3084 if (other->allocated && !other->hole_follows && other->color != cache_level)
3085 return false;
3086
3087 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3088 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3089 return false;
3090
3091 return true;
3092}
3093
3094static void i915_gem_verify_gtt(struct drm_device *dev)
3095{
3096#if WATCH_GTT
3097 struct drm_i915_private *dev_priv = dev->dev_private;
3098 struct drm_i915_gem_object *obj;
3099 int err = 0;
3100
35c20a60 3101 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
42d6ab48
CW
3102 if (obj->gtt_space == NULL) {
3103 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3104 err++;
3105 continue;
3106 }
3107
3108 if (obj->cache_level != obj->gtt_space->color) {
3109 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
f343c5f6
BW
3110 i915_gem_obj_ggtt_offset(obj),
3111 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3112 obj->cache_level,
3113 obj->gtt_space->color);
3114 err++;
3115 continue;
3116 }
3117
3118 if (!i915_gem_valid_gtt_space(dev,
3119 obj->gtt_space,
3120 obj->cache_level)) {
3121 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
f343c5f6
BW
3122 i915_gem_obj_ggtt_offset(obj),
3123 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
42d6ab48
CW
3124 obj->cache_level);
3125 err++;
3126 continue;
3127 }
3128 }
3129
3130 WARN_ON(err);
3131#endif
3132}
3133
673a394b
EA
3134/**
3135 * Finds free space in the GTT aperture and binds the object there.
3136 */
3137static int
07fe0b12
BW
3138i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3139 struct i915_address_space *vm,
3140 unsigned alignment,
3141 bool map_and_fenceable,
3142 bool nonblocking)
673a394b 3143{
05394f39 3144 struct drm_device *dev = obj->base.dev;
673a394b 3145 drm_i915_private_t *dev_priv = dev->dev_private;
5e783301 3146 u32 size, fence_size, fence_alignment, unfenced_alignment;
07fe0b12
BW
3147 size_t gtt_max =
3148 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3149 struct i915_vma *vma;
07f73f69 3150 int ret;
673a394b 3151
e28f8711
CW
3152 fence_size = i915_gem_get_gtt_size(dev,
3153 obj->base.size,
3154 obj->tiling_mode);
3155 fence_alignment = i915_gem_get_gtt_alignment(dev,
3156 obj->base.size,
d865110c 3157 obj->tiling_mode, true);
e28f8711 3158 unfenced_alignment =
d865110c 3159 i915_gem_get_gtt_alignment(dev,
e28f8711 3160 obj->base.size,
d865110c 3161 obj->tiling_mode, false);
a00b10c3 3162
673a394b 3163 if (alignment == 0)
5e783301
DV
3164 alignment = map_and_fenceable ? fence_alignment :
3165 unfenced_alignment;
75e9e915 3166 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
673a394b
EA
3167 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3168 return -EINVAL;
3169 }
3170
05394f39 3171 size = map_and_fenceable ? fence_size : obj->base.size;
a00b10c3 3172
654fc607
CW
3173 /* If the object is bigger than the entire aperture, reject it early
3174 * before evicting everything in a vain attempt to find space.
3175 */
0a9ae0d7 3176 if (obj->base.size > gtt_max) {
3765f304 3177 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
a36689cb
CW
3178 obj->base.size,
3179 map_and_fenceable ? "mappable" : "total",
0a9ae0d7 3180 gtt_max);
654fc607
CW
3181 return -E2BIG;
3182 }
3183
37e680a1 3184 ret = i915_gem_object_get_pages(obj);
6c085a72
CW
3185 if (ret)
3186 return ret;
3187
fbdda6fb
CW
3188 i915_gem_object_pin_pages(obj);
3189
07fe0b12 3190 BUG_ON(!i915_is_ggtt(vm));
07fe0b12 3191
accfef2e 3192 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
db473b36 3193 if (IS_ERR(vma)) {
bc6bc15b
DV
3194 ret = PTR_ERR(vma);
3195 goto err_unpin;
2f633156
BW
3196 }
3197
accfef2e
BW
3198 /* For now we only ever use 1 vma per object */
3199 WARN_ON(!list_is_singular(&obj->vma_list));
3200
0a9ae0d7 3201search_free:
07fe0b12 3202 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3203 size, alignment,
31e5d7c6
DH
3204 obj->cache_level, 0, gtt_max,
3205 DRM_MM_SEARCH_DEFAULT);
dc9dd7a2 3206 if (ret) {
f6cd1f15 3207 ret = i915_gem_evict_something(dev, vm, size, alignment,
42d6ab48 3208 obj->cache_level,
86a1ee26
CW
3209 map_and_fenceable,
3210 nonblocking);
dc9dd7a2
CW
3211 if (ret == 0)
3212 goto search_free;
9731129c 3213
bc6bc15b 3214 goto err_free_vma;
673a394b 3215 }
2f633156 3216 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
c6cfb325 3217 obj->cache_level))) {
2f633156 3218 ret = -EINVAL;
bc6bc15b 3219 goto err_remove_node;
673a394b
EA
3220 }
3221
74163907 3222 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3223 if (ret)
bc6bc15b 3224 goto err_remove_node;
673a394b 3225
35c20a60 3226 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3227 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3228
4bd561b3
BW
3229 if (i915_is_ggtt(vm)) {
3230 bool mappable, fenceable;
a00b10c3 3231
49987099
DV
3232 fenceable = (vma->node.size == fence_size &&
3233 (vma->node.start & (fence_alignment - 1)) == 0);
4bd561b3 3234
49987099
DV
3235 mappable = (vma->node.start + obj->base.size <=
3236 dev_priv->gtt.mappable_end);
a00b10c3 3237
5cacaac7 3238 obj->map_and_fenceable = mappable && fenceable;
4bd561b3 3239 }
75e9e915 3240
7ace7ef2 3241 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
75e9e915 3242
07fe0b12 3243 trace_i915_vma_bind(vma, map_and_fenceable);
42d6ab48 3244 i915_gem_verify_gtt(dev);
673a394b 3245 return 0;
2f633156 3246
bc6bc15b 3247err_remove_node:
6286ef9b 3248 drm_mm_remove_node(&vma->node);
bc6bc15b 3249err_free_vma:
2f633156 3250 i915_gem_vma_destroy(vma);
bc6bc15b 3251err_unpin:
2f633156 3252 i915_gem_object_unpin_pages(obj);
2f633156 3253 return ret;
673a394b
EA
3254}
3255
000433b6 3256bool
2c22569b
CW
3257i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3258 bool force)
673a394b 3259{
673a394b
EA
3260 /* If we don't have a page list set up, then we're not pinned
3261 * to GPU, and we can ignore the cache flush because it'll happen
3262 * again at bind time.
3263 */
05394f39 3264 if (obj->pages == NULL)
000433b6 3265 return false;
673a394b 3266
769ce464
ID
3267 /*
3268 * Stolen memory is always coherent with the GPU as it is explicitly
3269 * marked as wc by the system, or the system is cache-coherent.
3270 */
3271 if (obj->stolen)
000433b6 3272 return false;
769ce464 3273
9c23f7fc
CW
3274 /* If the GPU is snooping the contents of the CPU cache,
3275 * we do not need to manually clear the CPU cache lines. However,
3276 * the caches are only snooped when the render cache is
3277 * flushed/invalidated. As we always have to emit invalidations
3278 * and flushes when moving into and out of the RENDER domain, correct
3279 * snooping behaviour occurs naturally as the result of our domain
3280 * tracking.
3281 */
2c22569b 3282 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3283 return false;
9c23f7fc 3284
1c5d22f7 3285 trace_i915_gem_object_clflush(obj);
9da3da66 3286 drm_clflush_sg(obj->pages);
000433b6
CW
3287
3288 return true;
e47c68e9
EA
3289}
3290
3291/** Flushes the GTT write domain for the object if it's dirty. */
3292static void
05394f39 3293i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3294{
1c5d22f7
CW
3295 uint32_t old_write_domain;
3296
05394f39 3297 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3298 return;
3299
63256ec5 3300 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3301 * to it immediately go to main memory as far as we know, so there's
3302 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3303 *
3304 * However, we do have to enforce the order so that all writes through
3305 * the GTT land before any writes to the device, such as updates to
3306 * the GATT itself.
e47c68e9 3307 */
63256ec5
CW
3308 wmb();
3309
05394f39
CW
3310 old_write_domain = obj->base.write_domain;
3311 obj->base.write_domain = 0;
1c5d22f7
CW
3312
3313 trace_i915_gem_object_change_domain(obj,
05394f39 3314 obj->base.read_domains,
1c5d22f7 3315 old_write_domain);
e47c68e9
EA
3316}
3317
3318/** Flushes the CPU write domain for the object if it's dirty. */
3319static void
2c22569b
CW
3320i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3321 bool force)
e47c68e9 3322{
1c5d22f7 3323 uint32_t old_write_domain;
e47c68e9 3324
05394f39 3325 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3326 return;
3327
000433b6
CW
3328 if (i915_gem_clflush_object(obj, force))
3329 i915_gem_chipset_flush(obj->base.dev);
3330
05394f39
CW
3331 old_write_domain = obj->base.write_domain;
3332 obj->base.write_domain = 0;
1c5d22f7
CW
3333
3334 trace_i915_gem_object_change_domain(obj,
05394f39 3335 obj->base.read_domains,
1c5d22f7 3336 old_write_domain);
e47c68e9
EA
3337}
3338
2ef7eeaa
EA
3339/**
3340 * Moves a single object to the GTT read, and possibly write domain.
3341 *
3342 * This function returns when the move is complete, including waiting on
3343 * flushes to occur.
3344 */
79e53945 3345int
2021746e 3346i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3347{
8325a09d 3348 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1c5d22f7 3349 uint32_t old_write_domain, old_read_domains;
e47c68e9 3350 int ret;
2ef7eeaa 3351
02354392 3352 /* Not valid to be called on unbound objects. */
9843877d 3353 if (!i915_gem_obj_bound_any(obj))
02354392
EA
3354 return -EINVAL;
3355
8d7e3de1
CW
3356 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3357 return 0;
3358
0201f1ec 3359 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3360 if (ret)
3361 return ret;
3362
2c22569b 3363 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3364
d0a57789
CW
3365 /* Serialise direct access to this object with the barriers for
3366 * coherent writes from the GPU, by effectively invalidating the
3367 * GTT domain upon first access.
3368 */
3369 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3370 mb();
3371
05394f39
CW
3372 old_write_domain = obj->base.write_domain;
3373 old_read_domains = obj->base.read_domains;
1c5d22f7 3374
e47c68e9
EA
3375 /* It should now be out of any other write domains, and we can update
3376 * the domain values for our changes.
3377 */
05394f39
CW
3378 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3379 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3380 if (write) {
05394f39
CW
3381 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3382 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3383 obj->dirty = 1;
2ef7eeaa
EA
3384 }
3385
1c5d22f7
CW
3386 trace_i915_gem_object_change_domain(obj,
3387 old_read_domains,
3388 old_write_domain);
3389
8325a09d 3390 /* And bump the LRU for this access */
ca191b13
BW
3391 if (i915_gem_object_is_inactive(obj)) {
3392 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3393 &dev_priv->gtt.base);
3394 if (vma)
3395 list_move_tail(&vma->mm_list,
3396 &dev_priv->gtt.base.inactive_list);
3397
3398 }
8325a09d 3399
e47c68e9
EA
3400 return 0;
3401}
3402
e4ffd173
CW
3403int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3404 enum i915_cache_level cache_level)
3405{
7bddb01f
DV
3406 struct drm_device *dev = obj->base.dev;
3407 drm_i915_private_t *dev_priv = dev->dev_private;
3089c6f2 3408 struct i915_vma *vma;
e4ffd173
CW
3409 int ret;
3410
3411 if (obj->cache_level == cache_level)
3412 return 0;
3413
3414 if (obj->pin_count) {
3415 DRM_DEBUG("can not change the cache level of pinned objects\n");
3416 return -EBUSY;
3417 }
3418
3089c6f2
BW
3419 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3420 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
07fe0b12 3421 ret = i915_vma_unbind(vma);
3089c6f2
BW
3422 if (ret)
3423 return ret;
3424
3425 break;
3426 }
42d6ab48
CW
3427 }
3428
3089c6f2 3429 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3430 ret = i915_gem_object_finish_gpu(obj);
3431 if (ret)
3432 return ret;
3433
3434 i915_gem_object_finish_gtt(obj);
3435
3436 /* Before SandyBridge, you could not use tiling or fence
3437 * registers with snooped memory, so relinquish any fences
3438 * currently pointing to our region in the aperture.
3439 */
42d6ab48 3440 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3441 ret = i915_gem_object_put_fence(obj);
3442 if (ret)
3443 return ret;
3444 }
3445
74898d7e
DV
3446 if (obj->has_global_gtt_mapping)
3447 i915_gem_gtt_bind_object(obj, cache_level);
7bddb01f
DV
3448 if (obj->has_aliasing_ppgtt_mapping)
3449 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3450 obj, cache_level);
e4ffd173
CW
3451 }
3452
2c22569b
CW
3453 list_for_each_entry(vma, &obj->vma_list, vma_link)
3454 vma->node.color = cache_level;
3455 obj->cache_level = cache_level;
3456
3457 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3458 u32 old_read_domains, old_write_domain;
3459
3460 /* If we're coming from LLC cached, then we haven't
3461 * actually been tracking whether the data is in the
3462 * CPU cache or not, since we only allow one bit set
3463 * in obj->write_domain and have been skipping the clflushes.
3464 * Just set it to the CPU cache for now.
3465 */
3466 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3467
3468 old_read_domains = obj->base.read_domains;
3469 old_write_domain = obj->base.write_domain;
3470
3471 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3472 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3473
3474 trace_i915_gem_object_change_domain(obj,
3475 old_read_domains,
3476 old_write_domain);
3477 }
3478
42d6ab48 3479 i915_gem_verify_gtt(dev);
e4ffd173
CW
3480 return 0;
3481}
3482
199adf40
BW
3483int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3484 struct drm_file *file)
e6994aee 3485{
199adf40 3486 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3487 struct drm_i915_gem_object *obj;
3488 int ret;
3489
3490 ret = i915_mutex_lock_interruptible(dev);
3491 if (ret)
3492 return ret;
3493
3494 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3495 if (&obj->base == NULL) {
3496 ret = -ENOENT;
3497 goto unlock;
3498 }
3499
651d794f
CW
3500 switch (obj->cache_level) {
3501 case I915_CACHE_LLC:
3502 case I915_CACHE_L3_LLC:
3503 args->caching = I915_CACHING_CACHED;
3504 break;
3505
4257d3ba
CW
3506 case I915_CACHE_WT:
3507 args->caching = I915_CACHING_DISPLAY;
3508 break;
3509
651d794f
CW
3510 default:
3511 args->caching = I915_CACHING_NONE;
3512 break;
3513 }
e6994aee
CW
3514
3515 drm_gem_object_unreference(&obj->base);
3516unlock:
3517 mutex_unlock(&dev->struct_mutex);
3518 return ret;
3519}
3520
199adf40
BW
3521int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3522 struct drm_file *file)
e6994aee 3523{
199adf40 3524 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3525 struct drm_i915_gem_object *obj;
3526 enum i915_cache_level level;
3527 int ret;
3528
199adf40
BW
3529 switch (args->caching) {
3530 case I915_CACHING_NONE:
e6994aee
CW
3531 level = I915_CACHE_NONE;
3532 break;
199adf40 3533 case I915_CACHING_CACHED:
e6994aee
CW
3534 level = I915_CACHE_LLC;
3535 break;
4257d3ba
CW
3536 case I915_CACHING_DISPLAY:
3537 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3538 break;
e6994aee
CW
3539 default:
3540 return -EINVAL;
3541 }
3542
3bc2913e
BW
3543 ret = i915_mutex_lock_interruptible(dev);
3544 if (ret)
3545 return ret;
3546
e6994aee
CW
3547 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3548 if (&obj->base == NULL) {
3549 ret = -ENOENT;
3550 goto unlock;
3551 }
3552
3553 ret = i915_gem_object_set_cache_level(obj, level);
3554
3555 drm_gem_object_unreference(&obj->base);
3556unlock:
3557 mutex_unlock(&dev->struct_mutex);
3558 return ret;
3559}
3560
cc98b413
CW
3561static bool is_pin_display(struct drm_i915_gem_object *obj)
3562{
3563 /* There are 3 sources that pin objects:
3564 * 1. The display engine (scanouts, sprites, cursors);
3565 * 2. Reservations for execbuffer;
3566 * 3. The user.
3567 *
3568 * We can ignore reservations as we hold the struct_mutex and
3569 * are only called outside of the reservation path. The user
3570 * can only increment pin_count once, and so if after
3571 * subtracting the potential reference by the user, any pin_count
3572 * remains, it must be due to another use by the display engine.
3573 */
3574 return obj->pin_count - !!obj->user_pin_count;
3575}
3576
b9241ea3 3577/*
2da3b9b9
CW
3578 * Prepare buffer for display plane (scanout, cursors, etc).
3579 * Can be called from an uninterruptible phase (modesetting) and allows
3580 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3581 */
3582int
2da3b9b9
CW
3583i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3584 u32 alignment,
919926ae 3585 struct intel_ring_buffer *pipelined)
b9241ea3 3586{
2da3b9b9 3587 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3588 int ret;
3589
0be73284 3590 if (pipelined != obj->ring) {
2911a35b
BW
3591 ret = i915_gem_object_sync(obj, pipelined);
3592 if (ret)
b9241ea3
ZW
3593 return ret;
3594 }
3595
cc98b413
CW
3596 /* Mark the pin_display early so that we account for the
3597 * display coherency whilst setting up the cache domains.
3598 */
3599 obj->pin_display = true;
3600
a7ef0640
EA
3601 /* The display engine is not coherent with the LLC cache on gen6. As
3602 * a result, we make sure that the pinning that is about to occur is
3603 * done with uncached PTEs. This is lowest common denominator for all
3604 * chipsets.
3605 *
3606 * However for gen6+, we could do better by using the GFDT bit instead
3607 * of uncaching, which would allow us to flush all the LLC-cached data
3608 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3609 */
651d794f
CW
3610 ret = i915_gem_object_set_cache_level(obj,
3611 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3612 if (ret)
cc98b413 3613 goto err_unpin_display;
a7ef0640 3614
2da3b9b9
CW
3615 /* As the user may map the buffer once pinned in the display plane
3616 * (e.g. libkms for the bootup splash), we have to ensure that we
3617 * always use map_and_fenceable for all scanout buffers.
3618 */
c37e2204 3619 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
2da3b9b9 3620 if (ret)
cc98b413 3621 goto err_unpin_display;
2da3b9b9 3622
2c22569b 3623 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3624
2da3b9b9 3625 old_write_domain = obj->base.write_domain;
05394f39 3626 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3627
3628 /* It should now be out of any other write domains, and we can update
3629 * the domain values for our changes.
3630 */
e5f1d962 3631 obj->base.write_domain = 0;
05394f39 3632 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3633
3634 trace_i915_gem_object_change_domain(obj,
3635 old_read_domains,
2da3b9b9 3636 old_write_domain);
b9241ea3
ZW
3637
3638 return 0;
cc98b413
CW
3639
3640err_unpin_display:
3641 obj->pin_display = is_pin_display(obj);
3642 return ret;
3643}
3644
3645void
3646i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3647{
3648 i915_gem_object_unpin(obj);
3649 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
3650}
3651
85345517 3652int
a8198eea 3653i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 3654{
88241785
CW
3655 int ret;
3656
a8198eea 3657 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
3658 return 0;
3659
0201f1ec 3660 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
3661 if (ret)
3662 return ret;
3663
a8198eea
CW
3664 /* Ensure that we invalidate the GPU's caches and TLBs. */
3665 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 3666 return 0;
85345517
CW
3667}
3668
e47c68e9
EA
3669/**
3670 * Moves a single object to the CPU read, and possibly write domain.
3671 *
3672 * This function returns when the move is complete, including waiting on
3673 * flushes to occur.
3674 */
dabdfe02 3675int
919926ae 3676i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3677{
1c5d22f7 3678 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3679 int ret;
3680
8d7e3de1
CW
3681 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3682 return 0;
3683
0201f1ec 3684 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3685 if (ret)
3686 return ret;
3687
e47c68e9 3688 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3689
05394f39
CW
3690 old_write_domain = obj->base.write_domain;
3691 old_read_domains = obj->base.read_domains;
1c5d22f7 3692
e47c68e9 3693 /* Flush the CPU cache if it's still invalid. */
05394f39 3694 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3695 i915_gem_clflush_object(obj, false);
2ef7eeaa 3696
05394f39 3697 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3698 }
3699
3700 /* It should now be out of any other write domains, and we can update
3701 * the domain values for our changes.
3702 */
05394f39 3703 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3704
3705 /* If we're writing through the CPU, then the GPU read domains will
3706 * need to be invalidated at next use.
3707 */
3708 if (write) {
05394f39
CW
3709 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3710 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3711 }
2ef7eeaa 3712
1c5d22f7
CW
3713 trace_i915_gem_object_change_domain(obj,
3714 old_read_domains,
3715 old_write_domain);
3716
2ef7eeaa
EA
3717 return 0;
3718}
3719
673a394b
EA
3720/* Throttle our rendering by waiting until the ring has completed our requests
3721 * emitted over 20 msec ago.
3722 *
b962442e
EA
3723 * Note that if we were to use the current jiffies each time around the loop,
3724 * we wouldn't escape the function with any frames outstanding if the time to
3725 * render a frame was over 20ms.
3726 *
673a394b
EA
3727 * This should get us reasonable parallelism between CPU and GPU but also
3728 * relatively low latency when blocking on a particular request to finish.
3729 */
40a5f0de 3730static int
f787a5f5 3731i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3732{
f787a5f5
CW
3733 struct drm_i915_private *dev_priv = dev->dev_private;
3734 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3735 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3736 struct drm_i915_gem_request *request;
3737 struct intel_ring_buffer *ring = NULL;
f69061be 3738 unsigned reset_counter;
f787a5f5
CW
3739 u32 seqno = 0;
3740 int ret;
93533c29 3741
308887aa
DV
3742 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3743 if (ret)
3744 return ret;
3745
3746 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3747 if (ret)
3748 return ret;
e110e8d6 3749
1c25595f 3750 spin_lock(&file_priv->mm.lock);
f787a5f5 3751 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3752 if (time_after_eq(request->emitted_jiffies, recent_enough))
3753 break;
40a5f0de 3754
f787a5f5
CW
3755 ring = request->ring;
3756 seqno = request->seqno;
b962442e 3757 }
f69061be 3758 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1c25595f 3759 spin_unlock(&file_priv->mm.lock);
40a5f0de 3760
f787a5f5
CW
3761 if (seqno == 0)
3762 return 0;
2bc43b5c 3763
f69061be 3764 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
f787a5f5
CW
3765 if (ret == 0)
3766 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3767
3768 return ret;
3769}
3770
673a394b 3771int
05394f39 3772i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 3773 struct i915_address_space *vm,
05394f39 3774 uint32_t alignment,
86a1ee26
CW
3775 bool map_and_fenceable,
3776 bool nonblocking)
673a394b 3777{
07fe0b12 3778 struct i915_vma *vma;
673a394b
EA
3779 int ret;
3780
7e81a42e
CW
3781 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3782 return -EBUSY;
ac0c6b5a 3783
07fe0b12
BW
3784 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3785
3786 vma = i915_gem_obj_to_vma(obj, vm);
3787
3788 if (vma) {
3789 if ((alignment &&
3790 vma->node.start & (alignment - 1)) ||
05394f39
CW
3791 (map_and_fenceable && !obj->map_and_fenceable)) {
3792 WARN(obj->pin_count,
ae7d49d8 3793 "bo is already pinned with incorrect alignment:"
f343c5f6 3794 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 3795 " obj->map_and_fenceable=%d\n",
07fe0b12 3796 i915_gem_obj_offset(obj, vm), alignment,
75e9e915 3797 map_and_fenceable,
05394f39 3798 obj->map_and_fenceable);
07fe0b12 3799 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
3800 if (ret)
3801 return ret;
3802 }
3803 }
3804
07fe0b12 3805 if (!i915_gem_obj_bound(obj, vm)) {
8742267a
CW
3806 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3807
07fe0b12
BW
3808 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3809 map_and_fenceable,
3810 nonblocking);
9731129c 3811 if (ret)
673a394b 3812 return ret;
8742267a
CW
3813
3814 if (!dev_priv->mm.aliasing_ppgtt)
3815 i915_gem_gtt_bind_object(obj, obj->cache_level);
22c344e9 3816 }
76446cac 3817
74898d7e
DV
3818 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3819 i915_gem_gtt_bind_object(obj, obj->cache_level);
3820
1b50247a 3821 obj->pin_count++;
6299f992 3822 obj->pin_mappable |= map_and_fenceable;
673a394b
EA
3823
3824 return 0;
3825}
3826
3827void
05394f39 3828i915_gem_object_unpin(struct drm_i915_gem_object *obj)
673a394b 3829{
05394f39 3830 BUG_ON(obj->pin_count == 0);
9843877d 3831 BUG_ON(!i915_gem_obj_bound_any(obj));
673a394b 3832
1b50247a 3833 if (--obj->pin_count == 0)
6299f992 3834 obj->pin_mappable = false;
673a394b
EA
3835}
3836
3837int
3838i915_gem_pin_ioctl(struct drm_device *dev, void *data,
05394f39 3839 struct drm_file *file)
673a394b
EA
3840{
3841 struct drm_i915_gem_pin *args = data;
05394f39 3842 struct drm_i915_gem_object *obj;
673a394b
EA
3843 int ret;
3844
1d7cfea1
CW
3845 ret = i915_mutex_lock_interruptible(dev);
3846 if (ret)
3847 return ret;
673a394b 3848
05394f39 3849 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3850 if (&obj->base == NULL) {
1d7cfea1
CW
3851 ret = -ENOENT;
3852 goto unlock;
673a394b 3853 }
673a394b 3854
05394f39 3855 if (obj->madv != I915_MADV_WILLNEED) {
bb6baf76 3856 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
3857 ret = -EINVAL;
3858 goto out;
3ef94daa
CW
3859 }
3860
05394f39 3861 if (obj->pin_filp != NULL && obj->pin_filp != file) {
79e53945
JB
3862 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3863 args->handle);
1d7cfea1
CW
3864 ret = -EINVAL;
3865 goto out;
79e53945
JB
3866 }
3867
93be8788 3868 if (obj->user_pin_count == 0) {
c37e2204 3869 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
1d7cfea1
CW
3870 if (ret)
3871 goto out;
673a394b
EA
3872 }
3873
93be8788
CW
3874 obj->user_pin_count++;
3875 obj->pin_filp = file;
3876
f343c5f6 3877 args->offset = i915_gem_obj_ggtt_offset(obj);
1d7cfea1 3878out:
05394f39 3879 drm_gem_object_unreference(&obj->base);
1d7cfea1 3880unlock:
673a394b 3881 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3882 return ret;
673a394b
EA
3883}
3884
3885int
3886i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
05394f39 3887 struct drm_file *file)
673a394b
EA
3888{
3889 struct drm_i915_gem_pin *args = data;
05394f39 3890 struct drm_i915_gem_object *obj;
76c1dec1 3891 int ret;
673a394b 3892
1d7cfea1
CW
3893 ret = i915_mutex_lock_interruptible(dev);
3894 if (ret)
3895 return ret;
673a394b 3896
05394f39 3897 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3898 if (&obj->base == NULL) {
1d7cfea1
CW
3899 ret = -ENOENT;
3900 goto unlock;
673a394b 3901 }
76c1dec1 3902
05394f39 3903 if (obj->pin_filp != file) {
79e53945
JB
3904 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3905 args->handle);
1d7cfea1
CW
3906 ret = -EINVAL;
3907 goto out;
79e53945 3908 }
05394f39
CW
3909 obj->user_pin_count--;
3910 if (obj->user_pin_count == 0) {
3911 obj->pin_filp = NULL;
79e53945
JB
3912 i915_gem_object_unpin(obj);
3913 }
673a394b 3914
1d7cfea1 3915out:
05394f39 3916 drm_gem_object_unreference(&obj->base);
1d7cfea1 3917unlock:
673a394b 3918 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3919 return ret;
673a394b
EA
3920}
3921
3922int
3923i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3924 struct drm_file *file)
673a394b
EA
3925{
3926 struct drm_i915_gem_busy *args = data;
05394f39 3927 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3928 int ret;
3929
76c1dec1 3930 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3931 if (ret)
76c1dec1 3932 return ret;
673a394b 3933
05394f39 3934 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 3935 if (&obj->base == NULL) {
1d7cfea1
CW
3936 ret = -ENOENT;
3937 goto unlock;
673a394b 3938 }
d1b851fc 3939
0be555b6
CW
3940 /* Count all active objects as busy, even if they are currently not used
3941 * by the gpu. Users of this interface expect objects to eventually
3942 * become non-busy without any further actions, therefore emit any
3943 * necessary flushes here.
c4de0a5d 3944 */
30dfebf3 3945 ret = i915_gem_object_flush_active(obj);
0be555b6 3946
30dfebf3 3947 args->busy = obj->active;
e9808edd
CW
3948 if (obj->ring) {
3949 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3950 args->busy |= intel_ring_flag(obj->ring) << 16;
3951 }
673a394b 3952
05394f39 3953 drm_gem_object_unreference(&obj->base);
1d7cfea1 3954unlock:
673a394b 3955 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3956 return ret;
673a394b
EA
3957}
3958
3959int
3960i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3961 struct drm_file *file_priv)
3962{
0206e353 3963 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3964}
3965
3ef94daa
CW
3966int
3967i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3968 struct drm_file *file_priv)
3969{
3970 struct drm_i915_gem_madvise *args = data;
05394f39 3971 struct drm_i915_gem_object *obj;
76c1dec1 3972 int ret;
3ef94daa
CW
3973
3974 switch (args->madv) {
3975 case I915_MADV_DONTNEED:
3976 case I915_MADV_WILLNEED:
3977 break;
3978 default:
3979 return -EINVAL;
3980 }
3981
1d7cfea1
CW
3982 ret = i915_mutex_lock_interruptible(dev);
3983 if (ret)
3984 return ret;
3985
05394f39 3986 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 3987 if (&obj->base == NULL) {
1d7cfea1
CW
3988 ret = -ENOENT;
3989 goto unlock;
3ef94daa 3990 }
3ef94daa 3991
05394f39 3992 if (obj->pin_count) {
1d7cfea1
CW
3993 ret = -EINVAL;
3994 goto out;
3ef94daa
CW
3995 }
3996
05394f39
CW
3997 if (obj->madv != __I915_MADV_PURGED)
3998 obj->madv = args->madv;
3ef94daa 3999
6c085a72
CW
4000 /* if the object is no longer attached, discard its backing storage */
4001 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4002 i915_gem_object_truncate(obj);
4003
05394f39 4004 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4005
1d7cfea1 4006out:
05394f39 4007 drm_gem_object_unreference(&obj->base);
1d7cfea1 4008unlock:
3ef94daa 4009 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4010 return ret;
3ef94daa
CW
4011}
4012
37e680a1
CW
4013void i915_gem_object_init(struct drm_i915_gem_object *obj,
4014 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4015{
35c20a60 4016 INIT_LIST_HEAD(&obj->global_list);
0327d6ba
CW
4017 INIT_LIST_HEAD(&obj->ring_list);
4018 INIT_LIST_HEAD(&obj->exec_list);
b25cb2f8 4019 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4020 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4021
37e680a1
CW
4022 obj->ops = ops;
4023
0327d6ba
CW
4024 obj->fence_reg = I915_FENCE_REG_NONE;
4025 obj->madv = I915_MADV_WILLNEED;
4026 /* Avoid an unnecessary call to unbind on the first bind. */
4027 obj->map_and_fenceable = true;
4028
4029 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4030}
4031
37e680a1
CW
4032static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4033 .get_pages = i915_gem_object_get_pages_gtt,
4034 .put_pages = i915_gem_object_put_pages_gtt,
4035};
4036
05394f39
CW
4037struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4038 size_t size)
ac52bc56 4039{
c397b908 4040 struct drm_i915_gem_object *obj;
5949eac4 4041 struct address_space *mapping;
1a240d4d 4042 gfp_t mask;
ac52bc56 4043
42dcedd4 4044 obj = i915_gem_object_alloc(dev);
c397b908
DV
4045 if (obj == NULL)
4046 return NULL;
673a394b 4047
c397b908 4048 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4049 i915_gem_object_free(obj);
c397b908
DV
4050 return NULL;
4051 }
673a394b 4052
bed1ea95
CW
4053 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4054 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4055 /* 965gm cannot relocate objects above 4GiB. */
4056 mask &= ~__GFP_HIGHMEM;
4057 mask |= __GFP_DMA32;
4058 }
4059
496ad9aa 4060 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4061 mapping_set_gfp_mask(mapping, mask);
5949eac4 4062
37e680a1 4063 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4064
c397b908
DV
4065 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4066 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4067
3d29b842
ED
4068 if (HAS_LLC(dev)) {
4069 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4070 * cache) for about a 10% performance improvement
4071 * compared to uncached. Graphics requests other than
4072 * display scanout are coherent with the CPU in
4073 * accessing this cache. This means in this mode we
4074 * don't need to clflush on the CPU side, and on the
4075 * GPU side we only need to flush internal caches to
4076 * get data visible to the CPU.
4077 *
4078 * However, we maintain the display planes as UC, and so
4079 * need to rebind when first used as such.
4080 */
4081 obj->cache_level = I915_CACHE_LLC;
4082 } else
4083 obj->cache_level = I915_CACHE_NONE;
4084
d861e338
DV
4085 trace_i915_gem_object_create(obj);
4086
05394f39 4087 return obj;
c397b908
DV
4088}
4089
4090int i915_gem_init_object(struct drm_gem_object *obj)
4091{
4092 BUG();
de151cf6 4093
673a394b
EA
4094 return 0;
4095}
4096
1488fc08 4097void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4098{
1488fc08 4099 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4100 struct drm_device *dev = obj->base.dev;
be72615b 4101 drm_i915_private_t *dev_priv = dev->dev_private;
07fe0b12 4102 struct i915_vma *vma, *next;
673a394b 4103
26e12f89
CW
4104 trace_i915_gem_object_destroy(obj);
4105
1488fc08
CW
4106 if (obj->phys_obj)
4107 i915_gem_detach_phys_object(dev, obj);
4108
4109 obj->pin_count = 0;
07fe0b12
BW
4110 /* NB: 0 or 1 elements */
4111 WARN_ON(!list_empty(&obj->vma_list) &&
4112 !list_is_singular(&obj->vma_list));
4113 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4114 int ret = i915_vma_unbind(vma);
4115 if (WARN_ON(ret == -ERESTARTSYS)) {
4116 bool was_interruptible;
1488fc08 4117
07fe0b12
BW
4118 was_interruptible = dev_priv->mm.interruptible;
4119 dev_priv->mm.interruptible = false;
1488fc08 4120
07fe0b12 4121 WARN_ON(i915_vma_unbind(vma));
1488fc08 4122
07fe0b12
BW
4123 dev_priv->mm.interruptible = was_interruptible;
4124 }
1488fc08
CW
4125 }
4126
1d64ae71
BW
4127 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4128 * before progressing. */
4129 if (obj->stolen)
4130 i915_gem_object_unpin_pages(obj);
4131
401c29f6
BW
4132 if (WARN_ON(obj->pages_pin_count))
4133 obj->pages_pin_count = 0;
37e680a1 4134 i915_gem_object_put_pages(obj);
d8cb5086 4135 i915_gem_object_free_mmap_offset(obj);
0104fdbb 4136 i915_gem_object_release_stolen(obj);
de151cf6 4137
9da3da66
CW
4138 BUG_ON(obj->pages);
4139
2f745ad3
CW
4140 if (obj->base.import_attach)
4141 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4142
05394f39
CW
4143 drm_gem_object_release(&obj->base);
4144 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4145
05394f39 4146 kfree(obj->bit_17);
42dcedd4 4147 i915_gem_object_free(obj);
673a394b
EA
4148}
4149
2f633156
BW
4150struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4151 struct i915_address_space *vm)
4152{
4153 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4154 if (vma == NULL)
4155 return ERR_PTR(-ENOMEM);
4156
4157 INIT_LIST_HEAD(&vma->vma_link);
ca191b13 4158 INIT_LIST_HEAD(&vma->mm_list);
82a55ad1 4159 INIT_LIST_HEAD(&vma->exec_list);
2f633156
BW
4160 vma->vm = vm;
4161 vma->obj = obj;
4162
8b9c2b94
BW
4163 /* Keep GGTT vmas first to make debug easier */
4164 if (i915_is_ggtt(vm))
4165 list_add(&vma->vma_link, &obj->vma_list);
4166 else
4167 list_add_tail(&vma->vma_link, &obj->vma_list);
4168
2f633156
BW
4169 return vma;
4170}
4171
4172void i915_gem_vma_destroy(struct i915_vma *vma)
4173{
4174 WARN_ON(vma->node.allocated);
8b9c2b94 4175 list_del(&vma->vma_link);
2f633156
BW
4176 kfree(vma);
4177}
4178
29105ccc
CW
4179int
4180i915_gem_idle(struct drm_device *dev)
4181{
4182 drm_i915_private_t *dev_priv = dev->dev_private;
4183 int ret;
28dfe52a 4184
db1b76ca 4185 if (dev_priv->ums.mm_suspended) {
29105ccc
CW
4186 mutex_unlock(&dev->struct_mutex);
4187 return 0;
28dfe52a
EA
4188 }
4189
b2da9fe5 4190 ret = i915_gpu_idle(dev);
6dbe2772
KP
4191 if (ret) {
4192 mutex_unlock(&dev->struct_mutex);
673a394b 4193 return ret;
6dbe2772 4194 }
b2da9fe5 4195 i915_gem_retire_requests(dev);
673a394b 4196
29105ccc 4197 /* Under UMS, be paranoid and evict. */
a39d7efc 4198 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4199 i915_gem_evict_everything(dev);
29105ccc 4200
99584db3 4201 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc
CW
4202
4203 i915_kernel_lost_context(dev);
6dbe2772 4204 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4205
29105ccc
CW
4206 /* Cancel the retire work handler, which should be idle now. */
4207 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4208
673a394b
EA
4209 return 0;
4210}
4211
b9524a1e
BW
4212void i915_gem_l3_remap(struct drm_device *dev)
4213{
4214 drm_i915_private_t *dev_priv = dev->dev_private;
4215 u32 misccpctl;
4216 int i;
4217
eb32e458 4218 if (!HAS_L3_GPU_CACHE(dev))
b9524a1e
BW
4219 return;
4220
a4da4fa4 4221 if (!dev_priv->l3_parity.remap_info)
b9524a1e
BW
4222 return;
4223
4224 misccpctl = I915_READ(GEN7_MISCCPCTL);
4225 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4226 POSTING_READ(GEN7_MISCCPCTL);
4227
4228 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4229 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
a4da4fa4 4230 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
b9524a1e
BW
4231 DRM_DEBUG("0x%x was already programmed to %x\n",
4232 GEN7_L3LOG_BASE + i, remap);
a4da4fa4 4233 if (remap && !dev_priv->l3_parity.remap_info[i/4])
b9524a1e 4234 DRM_DEBUG_DRIVER("Clearing remapped register\n");
a4da4fa4 4235 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
b9524a1e
BW
4236 }
4237
4238 /* Make sure all the writes land before disabling dop clock gating */
4239 POSTING_READ(GEN7_L3LOG_BASE);
4240
4241 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4242}
4243
f691e2f4
DV
4244void i915_gem_init_swizzling(struct drm_device *dev)
4245{
4246 drm_i915_private_t *dev_priv = dev->dev_private;
4247
11782b02 4248 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4249 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4250 return;
4251
4252 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4253 DISP_TILE_SURFACE_SWIZZLING);
4254
11782b02
DV
4255 if (IS_GEN5(dev))
4256 return;
4257
f691e2f4
DV
4258 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4259 if (IS_GEN6(dev))
6b26c86d 4260 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4261 else if (IS_GEN7(dev))
6b26c86d 4262 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
8782e26c
BW
4263 else
4264 BUG();
f691e2f4 4265}
e21af88d 4266
67b1b571
CW
4267static bool
4268intel_enable_blt(struct drm_device *dev)
4269{
4270 if (!HAS_BLT(dev))
4271 return false;
4272
4273 /* The blitter was dysfunctional on early prototypes */
4274 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4275 DRM_INFO("BLT not supported on this pre-production hardware;"
4276 " graphics performance will be degraded.\n");
4277 return false;
4278 }
4279
4280 return true;
4281}
4282
4fc7c971 4283static int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4284{
4fc7c971 4285 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4286 int ret;
68f95ba9 4287
5c1143bb 4288 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4289 if (ret)
b6913e4b 4290 return ret;
68f95ba9
CW
4291
4292 if (HAS_BSD(dev)) {
5c1143bb 4293 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4294 if (ret)
4295 goto cleanup_render_ring;
d1b851fc 4296 }
68f95ba9 4297
67b1b571 4298 if (intel_enable_blt(dev)) {
549f7365
CW
4299 ret = intel_init_blt_ring_buffer(dev);
4300 if (ret)
4301 goto cleanup_bsd_ring;
4302 }
4303
9a8a2213
BW
4304 if (HAS_VEBOX(dev)) {
4305 ret = intel_init_vebox_ring_buffer(dev);
4306 if (ret)
4307 goto cleanup_blt_ring;
4308 }
4309
4310
99433931 4311 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4312 if (ret)
9a8a2213 4313 goto cleanup_vebox_ring;
4fc7c971
BW
4314
4315 return 0;
4316
9a8a2213
BW
4317cleanup_vebox_ring:
4318 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4319cleanup_blt_ring:
4320 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4321cleanup_bsd_ring:
4322 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4323cleanup_render_ring:
4324 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4325
4326 return ret;
4327}
4328
4329int
4330i915_gem_init_hw(struct drm_device *dev)
4331{
4332 drm_i915_private_t *dev_priv = dev->dev_private;
4333 int ret;
4334
4335 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4336 return -EIO;
4337
59124506 4338 if (dev_priv->ellc_size)
05e21cc4 4339 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4340
88a2b2a3
BW
4341 if (HAS_PCH_NOP(dev)) {
4342 u32 temp = I915_READ(GEN7_MSG_CTL);
4343 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4344 I915_WRITE(GEN7_MSG_CTL, temp);
4345 }
4346
4fc7c971
BW
4347 i915_gem_l3_remap(dev);
4348
4349 i915_gem_init_swizzling(dev);
4350
4351 ret = i915_gem_init_rings(dev);
99433931
MK
4352 if (ret)
4353 return ret;
4354
254f965c
BW
4355 /*
4356 * XXX: There was some w/a described somewhere suggesting loading
4357 * contexts before PPGTT.
4358 */
4359 i915_gem_context_init(dev);
b7c36d25
BW
4360 if (dev_priv->mm.aliasing_ppgtt) {
4361 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4362 if (ret) {
4363 i915_gem_cleanup_aliasing_ppgtt(dev);
4364 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4365 }
4366 }
e21af88d 4367
68f95ba9 4368 return 0;
8187a2b7
ZN
4369}
4370
1070a42b
CW
4371int i915_gem_init(struct drm_device *dev)
4372{
4373 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4374 int ret;
4375
1070a42b 4376 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4377
4378 if (IS_VALLEYVIEW(dev)) {
4379 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4380 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4381 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4382 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4383 }
4384
d7e5008f 4385 i915_gem_init_global_gtt(dev);
d62b4892 4386
1070a42b
CW
4387 ret = i915_gem_init_hw(dev);
4388 mutex_unlock(&dev->struct_mutex);
4389 if (ret) {
4390 i915_gem_cleanup_aliasing_ppgtt(dev);
4391 return ret;
4392 }
4393
53ca26ca
DV
4394 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4395 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4396 dev_priv->dri1.allow_batchbuffer = 1;
1070a42b
CW
4397 return 0;
4398}
4399
8187a2b7
ZN
4400void
4401i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4402{
4403 drm_i915_private_t *dev_priv = dev->dev_private;
b4519513 4404 struct intel_ring_buffer *ring;
1ec14ad3 4405 int i;
8187a2b7 4406
b4519513
CW
4407 for_each_ring(ring, dev_priv, i)
4408 intel_cleanup_ring_buffer(ring);
8187a2b7
ZN
4409}
4410
673a394b
EA
4411int
4412i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4413 struct drm_file *file_priv)
4414{
db1b76ca 4415 struct drm_i915_private *dev_priv = dev->dev_private;
b4519513 4416 int ret;
673a394b 4417
79e53945
JB
4418 if (drm_core_check_feature(dev, DRIVER_MODESET))
4419 return 0;
4420
1f83fee0 4421 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
673a394b 4422 DRM_ERROR("Reenabling wedged hardware, good luck\n");
1f83fee0 4423 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
673a394b
EA
4424 }
4425
673a394b 4426 mutex_lock(&dev->struct_mutex);
db1b76ca 4427 dev_priv->ums.mm_suspended = 0;
9bb2d6f9 4428
f691e2f4 4429 ret = i915_gem_init_hw(dev);
d816f6ac
WF
4430 if (ret != 0) {
4431 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4432 return ret;
d816f6ac 4433 }
9bb2d6f9 4434
5cef07e1 4435 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
673a394b 4436 mutex_unlock(&dev->struct_mutex);
dbb19d30 4437
5f35308b
CW
4438 ret = drm_irq_install(dev);
4439 if (ret)
4440 goto cleanup_ringbuffer;
dbb19d30 4441
673a394b 4442 return 0;
5f35308b
CW
4443
4444cleanup_ringbuffer:
4445 mutex_lock(&dev->struct_mutex);
4446 i915_gem_cleanup_ringbuffer(dev);
db1b76ca 4447 dev_priv->ums.mm_suspended = 1;
5f35308b
CW
4448 mutex_unlock(&dev->struct_mutex);
4449
4450 return ret;
673a394b
EA
4451}
4452
4453int
4454i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4455 struct drm_file *file_priv)
4456{
db1b76ca
DV
4457 struct drm_i915_private *dev_priv = dev->dev_private;
4458 int ret;
4459
79e53945
JB
4460 if (drm_core_check_feature(dev, DRIVER_MODESET))
4461 return 0;
4462
dbb19d30 4463 drm_irq_uninstall(dev);
db1b76ca
DV
4464
4465 mutex_lock(&dev->struct_mutex);
4466 ret = i915_gem_idle(dev);
4467
4468 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4469 * We need to replace this with a semaphore, or something.
4470 * And not confound ums.mm_suspended!
4471 */
4472 if (ret != 0)
4473 dev_priv->ums.mm_suspended = 1;
4474 mutex_unlock(&dev->struct_mutex);
4475
4476 return ret;
673a394b
EA
4477}
4478
4479void
4480i915_gem_lastclose(struct drm_device *dev)
4481{
4482 int ret;
673a394b 4483
e806b495
EA
4484 if (drm_core_check_feature(dev, DRIVER_MODESET))
4485 return;
4486
db1b76ca 4487 mutex_lock(&dev->struct_mutex);
6dbe2772
KP
4488 ret = i915_gem_idle(dev);
4489 if (ret)
4490 DRM_ERROR("failed to idle hardware: %d\n", ret);
db1b76ca 4491 mutex_unlock(&dev->struct_mutex);
673a394b
EA
4492}
4493
64193406
CW
4494static void
4495init_ring_lists(struct intel_ring_buffer *ring)
4496{
4497 INIT_LIST_HEAD(&ring->active_list);
4498 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4499}
4500
fc8c067e
BW
4501static void i915_init_vm(struct drm_i915_private *dev_priv,
4502 struct i915_address_space *vm)
4503{
4504 vm->dev = dev_priv->dev;
4505 INIT_LIST_HEAD(&vm->active_list);
4506 INIT_LIST_HEAD(&vm->inactive_list);
4507 INIT_LIST_HEAD(&vm->global_link);
4508 list_add(&vm->global_link, &dev_priv->vm_list);
4509}
4510
673a394b
EA
4511void
4512i915_gem_load(struct drm_device *dev)
4513{
4514 drm_i915_private_t *dev_priv = dev->dev_private;
42dcedd4
CW
4515 int i;
4516
4517 dev_priv->slab =
4518 kmem_cache_create("i915_gem_object",
4519 sizeof(struct drm_i915_gem_object), 0,
4520 SLAB_HWCACHE_ALIGN,
4521 NULL);
673a394b 4522
fc8c067e
BW
4523 INIT_LIST_HEAD(&dev_priv->vm_list);
4524 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4525
6c085a72
CW
4526 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4527 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4528 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4529 for (i = 0; i < I915_NUM_RINGS; i++)
4530 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4531 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4532 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4533 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4534 i915_gem_retire_work_handler);
1f83fee0 4535 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4536
94400120
DA
4537 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4538 if (IS_GEN3(dev)) {
50743298
DV
4539 I915_WRITE(MI_ARB_STATE,
4540 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4541 }
4542
72bfa19c
CW
4543 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4544
de151cf6 4545 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4546 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4547 dev_priv->fence_reg_start = 3;
de151cf6 4548
42b5aeab
VS
4549 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4550 dev_priv->num_fence_regs = 32;
4551 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4552 dev_priv->num_fence_regs = 16;
4553 else
4554 dev_priv->num_fence_regs = 8;
4555
b5aa8a0f 4556 /* Initialize fence registers to zero */
19b2dbde
CW
4557 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4558 i915_gem_restore_fences(dev);
10ed13e4 4559
673a394b 4560 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4561 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4562
ce453d81
CW
4563 dev_priv->mm.interruptible = true;
4564
7dc19d5a
DC
4565 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4566 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
17250b71
CW
4567 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4568 register_shrinker(&dev_priv->mm.inactive_shrinker);
673a394b 4569}
71acb5eb
DA
4570
4571/*
4572 * Create a physically contiguous memory object for this object
4573 * e.g. for cursor + overlay regs
4574 */
995b6762
CW
4575static int i915_gem_init_phys_object(struct drm_device *dev,
4576 int id, int size, int align)
71acb5eb
DA
4577{
4578 drm_i915_private_t *dev_priv = dev->dev_private;
4579 struct drm_i915_gem_phys_object *phys_obj;
4580 int ret;
4581
4582 if (dev_priv->mm.phys_objs[id - 1] || !size)
4583 return 0;
4584
9a298b2a 4585 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4586 if (!phys_obj)
4587 return -ENOMEM;
4588
4589 phys_obj->id = id;
4590
6eeefaf3 4591 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4592 if (!phys_obj->handle) {
4593 ret = -ENOMEM;
4594 goto kfree_obj;
4595 }
4596#ifdef CONFIG_X86
4597 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4598#endif
4599
4600 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4601
4602 return 0;
4603kfree_obj:
9a298b2a 4604 kfree(phys_obj);
71acb5eb
DA
4605 return ret;
4606}
4607
995b6762 4608static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4609{
4610 drm_i915_private_t *dev_priv = dev->dev_private;
4611 struct drm_i915_gem_phys_object *phys_obj;
4612
4613 if (!dev_priv->mm.phys_objs[id - 1])
4614 return;
4615
4616 phys_obj = dev_priv->mm.phys_objs[id - 1];
4617 if (phys_obj->cur_obj) {
4618 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4619 }
4620
4621#ifdef CONFIG_X86
4622 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4623#endif
4624 drm_pci_free(dev, phys_obj->handle);
4625 kfree(phys_obj);
4626 dev_priv->mm.phys_objs[id - 1] = NULL;
4627}
4628
4629void i915_gem_free_all_phys_object(struct drm_device *dev)
4630{
4631 int i;
4632
260883c8 4633 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4634 i915_gem_free_phys_object(dev, i);
4635}
4636
4637void i915_gem_detach_phys_object(struct drm_device *dev,
05394f39 4638 struct drm_i915_gem_object *obj)
71acb5eb 4639{
496ad9aa 4640 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
e5281ccd 4641 char *vaddr;
71acb5eb 4642 int i;
71acb5eb
DA
4643 int page_count;
4644
05394f39 4645 if (!obj->phys_obj)
71acb5eb 4646 return;
05394f39 4647 vaddr = obj->phys_obj->handle->vaddr;
71acb5eb 4648
05394f39 4649 page_count = obj->base.size / PAGE_SIZE;
71acb5eb 4650 for (i = 0; i < page_count; i++) {
5949eac4 4651 struct page *page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4652 if (!IS_ERR(page)) {
4653 char *dst = kmap_atomic(page);
4654 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4655 kunmap_atomic(dst);
4656
4657 drm_clflush_pages(&page, 1);
4658
4659 set_page_dirty(page);
4660 mark_page_accessed(page);
4661 page_cache_release(page);
4662 }
71acb5eb 4663 }
e76e9aeb 4664 i915_gem_chipset_flush(dev);
d78b47b9 4665
05394f39
CW
4666 obj->phys_obj->cur_obj = NULL;
4667 obj->phys_obj = NULL;
71acb5eb
DA
4668}
4669
4670int
4671i915_gem_attach_phys_object(struct drm_device *dev,
05394f39 4672 struct drm_i915_gem_object *obj,
6eeefaf3
CW
4673 int id,
4674 int align)
71acb5eb 4675{
496ad9aa 4676 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
71acb5eb 4677 drm_i915_private_t *dev_priv = dev->dev_private;
71acb5eb
DA
4678 int ret = 0;
4679 int page_count;
4680 int i;
4681
4682 if (id > I915_MAX_PHYS_OBJECT)
4683 return -EINVAL;
4684
05394f39
CW
4685 if (obj->phys_obj) {
4686 if (obj->phys_obj->id == id)
71acb5eb
DA
4687 return 0;
4688 i915_gem_detach_phys_object(dev, obj);
4689 }
4690
71acb5eb
DA
4691 /* create a new object */
4692 if (!dev_priv->mm.phys_objs[id - 1]) {
4693 ret = i915_gem_init_phys_object(dev, id,
05394f39 4694 obj->base.size, align);
71acb5eb 4695 if (ret) {
05394f39
CW
4696 DRM_ERROR("failed to init phys object %d size: %zu\n",
4697 id, obj->base.size);
e5281ccd 4698 return ret;
71acb5eb
DA
4699 }
4700 }
4701
4702 /* bind to the object */
05394f39
CW
4703 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4704 obj->phys_obj->cur_obj = obj;
71acb5eb 4705
05394f39 4706 page_count = obj->base.size / PAGE_SIZE;
71acb5eb
DA
4707
4708 for (i = 0; i < page_count; i++) {
e5281ccd
CW
4709 struct page *page;
4710 char *dst, *src;
4711
5949eac4 4712 page = shmem_read_mapping_page(mapping, i);
e5281ccd
CW
4713 if (IS_ERR(page))
4714 return PTR_ERR(page);
71acb5eb 4715
ff75b9bc 4716 src = kmap_atomic(page);
05394f39 4717 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
71acb5eb 4718 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4719 kunmap_atomic(src);
71acb5eb 4720
e5281ccd
CW
4721 mark_page_accessed(page);
4722 page_cache_release(page);
4723 }
d78b47b9 4724
71acb5eb 4725 return 0;
71acb5eb
DA
4726}
4727
4728static int
05394f39
CW
4729i915_gem_phys_pwrite(struct drm_device *dev,
4730 struct drm_i915_gem_object *obj,
71acb5eb
DA
4731 struct drm_i915_gem_pwrite *args,
4732 struct drm_file *file_priv)
4733{
05394f39 4734 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
2bb4629a 4735 char __user *user_data = to_user_ptr(args->data_ptr);
71acb5eb 4736
b47b30cc
CW
4737 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4738 unsigned long unwritten;
4739
4740 /* The physical object once assigned is fixed for the lifetime
4741 * of the obj, so we can safely drop the lock and continue
4742 * to access vaddr.
4743 */
4744 mutex_unlock(&dev->struct_mutex);
4745 unwritten = copy_from_user(vaddr, user_data, args->size);
4746 mutex_lock(&dev->struct_mutex);
4747 if (unwritten)
4748 return -EFAULT;
4749 }
71acb5eb 4750
e76e9aeb 4751 i915_gem_chipset_flush(dev);
71acb5eb
DA
4752 return 0;
4753}
b962442e 4754
f787a5f5 4755void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4756{
f787a5f5 4757 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4758
4759 /* Clean up our request list when the client is going away, so that
4760 * later retire_requests won't dereference our soon-to-be-gone
4761 * file_priv.
4762 */
1c25595f 4763 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4764 while (!list_empty(&file_priv->mm.request_list)) {
4765 struct drm_i915_gem_request *request;
4766
4767 request = list_first_entry(&file_priv->mm.request_list,
4768 struct drm_i915_gem_request,
4769 client_list);
4770 list_del(&request->client_list);
4771 request->file_priv = NULL;
4772 }
1c25595f 4773 spin_unlock(&file_priv->mm.lock);
b962442e 4774}
31169714 4775
5774506f
CW
4776static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4777{
4778 if (!mutex_is_locked(mutex))
4779 return false;
4780
4781#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4782 return mutex->owner == task;
4783#else
4784 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4785 return false;
4786#endif
4787}
4788
7dc19d5a
DC
4789static unsigned long
4790i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 4791{
17250b71
CW
4792 struct drm_i915_private *dev_priv =
4793 container_of(shrinker,
4794 struct drm_i915_private,
4795 mm.inactive_shrinker);
4796 struct drm_device *dev = dev_priv->dev;
6c085a72 4797 struct drm_i915_gem_object *obj;
5774506f 4798 bool unlock = true;
7dc19d5a 4799 unsigned long count;
17250b71 4800
5774506f
CW
4801 if (!mutex_trylock(&dev->struct_mutex)) {
4802 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4803 return 0;
5774506f 4804
677feac2 4805 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4806 return 0;
677feac2 4807
5774506f
CW
4808 unlock = false;
4809 }
31169714 4810
7dc19d5a 4811 count = 0;
35c20a60 4812 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 4813 if (obj->pages_pin_count == 0)
7dc19d5a 4814 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
4815
4816 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4817 if (obj->active)
4818 continue;
4819
a5570178 4820 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
7dc19d5a 4821 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 4822 }
17250b71 4823
5774506f
CW
4824 if (unlock)
4825 mutex_unlock(&dev->struct_mutex);
7dc19d5a 4826 return count;
31169714 4827}
a70a3148
BW
4828
4829/* All the new VM stuff */
4830unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4831 struct i915_address_space *vm)
4832{
4833 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4834 struct i915_vma *vma;
4835
4836 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4837 vm = &dev_priv->gtt.base;
4838
4839 BUG_ON(list_empty(&o->vma_list));
4840 list_for_each_entry(vma, &o->vma_list, vma_link) {
4841 if (vma->vm == vm)
4842 return vma->node.start;
4843
4844 }
4845 return -1;
4846}
4847
4848bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4849 struct i915_address_space *vm)
4850{
4851 struct i915_vma *vma;
4852
4853 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 4854 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
4855 return true;
4856
4857 return false;
4858}
4859
4860bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4861{
4862 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4863 struct i915_address_space *vm;
4864
4865 list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4866 if (i915_gem_obj_bound(o, vm))
4867 return true;
4868
4869 return false;
4870}
4871
4872unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4873 struct i915_address_space *vm)
4874{
4875 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4876 struct i915_vma *vma;
4877
4878 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4879 vm = &dev_priv->gtt.base;
4880
4881 BUG_ON(list_empty(&o->vma_list));
4882
4883 list_for_each_entry(vma, &o->vma_list, vma_link)
4884 if (vma->vm == vm)
4885 return vma->node.size;
4886
4887 return 0;
4888}
4889
7dc19d5a
DC
4890static unsigned long
4891i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4892{
4893 struct drm_i915_private *dev_priv =
4894 container_of(shrinker,
4895 struct drm_i915_private,
4896 mm.inactive_shrinker);
4897 struct drm_device *dev = dev_priv->dev;
4898 int nr_to_scan = sc->nr_to_scan;
4899 unsigned long freed;
4900 bool unlock = true;
4901
4902 if (!mutex_trylock(&dev->struct_mutex)) {
4903 if (!mutex_is_locked_by(&dev->struct_mutex, current))
d3227046 4904 return SHRINK_STOP;
7dc19d5a
DC
4905
4906 if (dev_priv->mm.shrinker_no_lock_stealing)
d3227046 4907 return SHRINK_STOP;
7dc19d5a
DC
4908
4909 unlock = false;
4910 }
4911
4912 freed = i915_gem_purge(dev_priv, nr_to_scan);
4913 if (freed < nr_to_scan)
4914 freed += __i915_gem_shrink(dev_priv, nr_to_scan,
4915 false);
4916 if (freed < nr_to_scan)
4917 freed += i915_gem_shrink_all(dev_priv);
4918
4919 if (unlock)
4920 mutex_unlock(&dev->struct_mutex);
4921 return freed;
4922}
4923
a70a3148
BW
4924struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4925 struct i915_address_space *vm)
4926{
4927 struct i915_vma *vma;
4928 list_for_each_entry(vma, &obj->vma_list, vma_link)
4929 if (vma->vm == vm)
4930 return vma;
4931
4932 return NULL;
4933}
accfef2e
BW
4934
4935struct i915_vma *
4936i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4937 struct i915_address_space *vm)
4938{
4939 struct i915_vma *vma;
4940
4941 vma = i915_gem_obj_to_vma(obj, vm);
4942 if (!vma)
4943 vma = i915_gem_vma_create(obj, vm);
4944
4945 return vma;
4946}
This page took 0.911935 seconds and 5 git commands to generate.