drm/i915: Remove highly confusing i915_gem_obj_ggtt_pin()
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
c13d87ea 32#include "i915_gem_dmabuf.h"
eb82289a 33#include "i915_vgpu.h"
1c5d22f7 34#include "i915_trace.h"
652c393a 35#include "intel_drv.h"
0ccdacf6 36#include "intel_mocs.h"
c13d87ea 37#include <linux/reservation.h>
5949eac4 38#include <linux/shmem_fs.h>
5a0e3ad6 39#include <linux/slab.h>
673a394b 40#include <linux/swap.h>
79e53945 41#include <linux/pci.h>
1286ff73 42#include <linux/dma-buf.h>
673a394b 43
05394f39 44static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 45static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
61050808 46
c76ce038
CW
47static bool cpu_cache_is_coherent(struct drm_device *dev,
48 enum i915_cache_level level)
49{
50 return HAS_LLC(dev) || level != I915_CACHE_NONE;
51}
52
2c22569b
CW
53static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
54{
b50a5371
AS
55 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
56 return false;
57
2c22569b
CW
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
4f1959ee
AS
64static int
65insert_mappable_node(struct drm_i915_private *i915,
66 struct drm_mm_node *node, u32 size)
67{
68 memset(node, 0, sizeof(*node));
69 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
70 size, 0, 0, 0,
71 i915->ggtt.mappable_end,
72 DRM_MM_SEARCH_DEFAULT,
73 DRM_MM_CREATE_DEFAULT);
74}
75
76static void
77remove_mappable_node(struct drm_mm_node *node)
78{
79 drm_mm_remove_node(node);
80}
81
73aa808f
CW
82/* some bookkeeping */
83static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85{
c20e8355 86 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
87 dev_priv->mm.object_count++;
88 dev_priv->mm.object_memory += size;
c20e8355 89 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
90}
91
92static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count--;
97 dev_priv->mm.object_memory -= size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
21dd3734 101static int
33196ded 102i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 103{
30dbf0c0
CW
104 int ret;
105
d98c52cf 106 if (!i915_reset_in_progress(error))
30dbf0c0
CW
107 return 0;
108
0a6759c6
DV
109 /*
110 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
111 * userspace. If it takes that long something really bad is going on and
112 * we should simply try to bail out and fail as gracefully as possible.
113 */
1f83fee0 114 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 115 !i915_reset_in_progress(error),
1f83fee0 116 10*HZ);
0a6759c6
DV
117 if (ret == 0) {
118 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
119 return -EIO;
120 } else if (ret < 0) {
30dbf0c0 121 return ret;
d98c52cf
CW
122 } else {
123 return 0;
0a6759c6 124 }
30dbf0c0
CW
125}
126
54cf91dc 127int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 128{
fac5e23e 129 struct drm_i915_private *dev_priv = to_i915(dev);
76c1dec1
CW
130 int ret;
131
33196ded 132 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
133 if (ret)
134 return ret;
135
136 ret = mutex_lock_interruptible(&dev->struct_mutex);
137 if (ret)
138 return ret;
139
76c1dec1
CW
140 return 0;
141}
30dbf0c0 142
5a125c3c
EA
143int
144i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 145 struct drm_file *file)
5a125c3c 146{
72e96d64 147 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 148 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 149 struct drm_i915_gem_get_aperture *args = data;
ca1543be 150 struct i915_vma *vma;
6299f992 151 size_t pinned;
5a125c3c 152
6299f992 153 pinned = 0;
73aa808f 154 mutex_lock(&dev->struct_mutex);
1c7f4bca 155 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
20dfbde4 156 if (i915_vma_is_pinned(vma))
ca1543be 157 pinned += vma->node.size;
1c7f4bca 158 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
20dfbde4 159 if (i915_vma_is_pinned(vma))
ca1543be 160 pinned += vma->node.size;
73aa808f 161 mutex_unlock(&dev->struct_mutex);
5a125c3c 162
72e96d64 163 args->aper_size = ggtt->base.total;
0206e353 164 args->aper_available_size = args->aper_size - pinned;
6299f992 165
5a125c3c
EA
166 return 0;
167}
168
6a2c4232
CW
169static int
170i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 171{
6a2c4232
CW
172 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
173 char *vaddr = obj->phys_handle->vaddr;
174 struct sg_table *st;
175 struct scatterlist *sg;
176 int i;
00731155 177
6a2c4232
CW
178 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
179 return -EINVAL;
180
181 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
182 struct page *page;
183 char *src;
184
185 page = shmem_read_mapping_page(mapping, i);
186 if (IS_ERR(page))
187 return PTR_ERR(page);
188
189 src = kmap_atomic(page);
190 memcpy(vaddr, src, PAGE_SIZE);
191 drm_clflush_virt_range(vaddr, PAGE_SIZE);
192 kunmap_atomic(src);
193
09cbfeaf 194 put_page(page);
6a2c4232
CW
195 vaddr += PAGE_SIZE;
196 }
197
c033666a 198 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
199
200 st = kmalloc(sizeof(*st), GFP_KERNEL);
201 if (st == NULL)
202 return -ENOMEM;
203
204 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
205 kfree(st);
206 return -ENOMEM;
207 }
208
209 sg = st->sgl;
210 sg->offset = 0;
211 sg->length = obj->base.size;
00731155 212
6a2c4232
CW
213 sg_dma_address(sg) = obj->phys_handle->busaddr;
214 sg_dma_len(sg) = obj->base.size;
215
216 obj->pages = st;
6a2c4232
CW
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 226
6a2c4232 227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 228 if (WARN_ON(ret)) {
6a2c4232
CW
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
6a2c4232
CW
232 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
233 }
234
235 if (obj->madv == I915_MADV_DONTNEED)
236 obj->dirty = 0;
237
238 if (obj->dirty) {
00731155 239 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 240 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
241 int i;
242
243 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
244 struct page *page;
245 char *dst;
246
247 page = shmem_read_mapping_page(mapping, i);
248 if (IS_ERR(page))
249 continue;
250
251 dst = kmap_atomic(page);
252 drm_clflush_virt_range(vaddr, PAGE_SIZE);
253 memcpy(dst, vaddr, PAGE_SIZE);
254 kunmap_atomic(dst);
255
256 set_page_dirty(page);
257 if (obj->madv == I915_MADV_WILLNEED)
00731155 258 mark_page_accessed(page);
09cbfeaf 259 put_page(page);
00731155
CW
260 vaddr += PAGE_SIZE;
261 }
6a2c4232 262 obj->dirty = 0;
00731155
CW
263 }
264
6a2c4232
CW
265 sg_free_table(obj->pages);
266 kfree(obj->pages);
6a2c4232
CW
267}
268
269static void
270i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
271{
272 drm_pci_free(obj->base.dev, obj->phys_handle);
273}
274
275static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
276 .get_pages = i915_gem_object_get_pages_phys,
277 .put_pages = i915_gem_object_put_pages_phys,
278 .release = i915_gem_object_release_phys,
279};
280
aa653a68
CW
281int
282i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283{
284 struct i915_vma *vma;
285 LIST_HEAD(still_in_list);
286 int ret;
287
288 /* The vma will only be freed if it is marked as closed, and if we wait
289 * upon rendering to the vma, we may unbind anything in the list.
290 */
291 while ((vma = list_first_entry_or_null(&obj->vma_list,
292 struct i915_vma,
293 obj_link))) {
294 list_move_tail(&vma->obj_link, &still_in_list);
295 ret = i915_vma_unbind(vma);
296 if (ret)
297 break;
298 }
299 list_splice(&still_in_list, &obj->vma_list);
300
301 return ret;
302}
303
00731155
CW
304int
305i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
306 int align)
307{
308 drm_dma_handle_t *phys;
6a2c4232 309 int ret;
00731155
CW
310
311 if (obj->phys_handle) {
312 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
313 return -EBUSY;
314
315 return 0;
316 }
317
318 if (obj->madv != I915_MADV_WILLNEED)
319 return -EFAULT;
320
321 if (obj->base.filp == NULL)
322 return -EINVAL;
323
4717ca9e
CW
324 ret = i915_gem_object_unbind(obj);
325 if (ret)
326 return ret;
327
328 ret = i915_gem_object_put_pages(obj);
6a2c4232
CW
329 if (ret)
330 return ret;
331
00731155
CW
332 /* create a new object */
333 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
334 if (!phys)
335 return -ENOMEM;
336
00731155 337 obj->phys_handle = phys;
6a2c4232
CW
338 obj->ops = &i915_gem_phys_ops;
339
340 return i915_gem_object_get_pages(obj);
00731155
CW
341}
342
343static int
344i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
345 struct drm_i915_gem_pwrite *args,
346 struct drm_file *file_priv)
347{
348 struct drm_device *dev = obj->base.dev;
349 void *vaddr = obj->phys_handle->vaddr + args->offset;
3ed605bc 350 char __user *user_data = u64_to_user_ptr(args->data_ptr);
063e4e6b 351 int ret = 0;
6a2c4232
CW
352
353 /* We manually control the domain here and pretend that it
354 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
355 */
356 ret = i915_gem_object_wait_rendering(obj, false);
357 if (ret)
358 return ret;
00731155 359
77a0d1ca 360 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
361 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
362 unsigned long unwritten;
363
364 /* The physical object once assigned is fixed for the lifetime
365 * of the obj, so we can safely drop the lock and continue
366 * to access vaddr.
367 */
368 mutex_unlock(&dev->struct_mutex);
369 unwritten = copy_from_user(vaddr, user_data, args->size);
370 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
371 if (unwritten) {
372 ret = -EFAULT;
373 goto out;
374 }
00731155
CW
375 }
376
6a2c4232 377 drm_clflush_virt_range(vaddr, args->size);
c033666a 378 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
379
380out:
de152b62 381 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 382 return ret;
00731155
CW
383}
384
42dcedd4
CW
385void *i915_gem_object_alloc(struct drm_device *dev)
386{
fac5e23e 387 struct drm_i915_private *dev_priv = to_i915(dev);
efab6d8d 388 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
389}
390
391void i915_gem_object_free(struct drm_i915_gem_object *obj)
392{
fac5e23e 393 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
efab6d8d 394 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
395}
396
ff72145b
DA
397static int
398i915_gem_create(struct drm_file *file,
399 struct drm_device *dev,
400 uint64_t size,
401 uint32_t *handle_p)
673a394b 402{
05394f39 403 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
404 int ret;
405 u32 handle;
673a394b 406
ff72145b 407 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
408 if (size == 0)
409 return -EINVAL;
673a394b
EA
410
411 /* Allocate the new object */
d37cd8a8 412 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
413 if (IS_ERR(obj))
414 return PTR_ERR(obj);
673a394b 415
05394f39 416 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 417 /* drop reference from allocate - handle holds it now */
34911fd3 418 i915_gem_object_put_unlocked(obj);
d861e338
DV
419 if (ret)
420 return ret;
202f2fef 421
ff72145b 422 *handle_p = handle;
673a394b
EA
423 return 0;
424}
425
ff72145b
DA
426int
427i915_gem_dumb_create(struct drm_file *file,
428 struct drm_device *dev,
429 struct drm_mode_create_dumb *args)
430{
431 /* have to work out size/pitch and return them */
de45eaf7 432 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
433 args->size = args->pitch * args->height;
434 return i915_gem_create(file, dev,
da6b51d0 435 args->size, &args->handle);
ff72145b
DA
436}
437
ff72145b
DA
438/**
439 * Creates a new mm object and returns a handle to it.
14bb2c11
TU
440 * @dev: drm device pointer
441 * @data: ioctl data blob
442 * @file: drm file pointer
ff72145b
DA
443 */
444int
445i915_gem_create_ioctl(struct drm_device *dev, void *data,
446 struct drm_file *file)
447{
448 struct drm_i915_gem_create *args = data;
63ed2cb2 449
ff72145b 450 return i915_gem_create(file, dev,
da6b51d0 451 args->size, &args->handle);
ff72145b
DA
452}
453
8461d226
DV
454static inline int
455__copy_to_user_swizzled(char __user *cpu_vaddr,
456 const char *gpu_vaddr, int gpu_offset,
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_to_user(cpu_vaddr + cpu_offset,
467 gpu_vaddr + swizzled_gpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
8c59967c 480static inline int
4f0c7cfb
BW
481__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
482 const char __user *cpu_vaddr,
8c59967c
DV
483 int length)
484{
485 int ret, cpu_offset = 0;
486
487 while (length > 0) {
488 int cacheline_end = ALIGN(gpu_offset + 1, 64);
489 int this_length = min(cacheline_end - gpu_offset, length);
490 int swizzled_gpu_offset = gpu_offset ^ 64;
491
492 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
493 cpu_vaddr + cpu_offset,
494 this_length);
495 if (ret)
496 return ret + length;
497
498 cpu_offset += this_length;
499 gpu_offset += this_length;
500 length -= this_length;
501 }
502
503 return 0;
504}
505
4c914c0c
BV
506/*
507 * Pins the specified object's pages and synchronizes the object with
508 * GPU accesses. Sets needs_clflush to non-zero if the caller should
509 * flush the object from the CPU cache.
510 */
511int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
512 int *needs_clflush)
513{
514 int ret;
515
516 *needs_clflush = 0;
517
b9bcd14a 518 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4c914c0c
BV
519 return -EINVAL;
520
c13d87ea
CW
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524
4c914c0c
BV
525 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
526 /* If we're not in the cpu read domain, set ourself into the gtt
527 * read domain and manually flush cachelines (if required). This
528 * optimizes for the case when the gpu will dirty the data
529 * anyway again before the next pread happens. */
530 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
531 obj->cache_level);
4c914c0c
BV
532 }
533
534 ret = i915_gem_object_get_pages(obj);
535 if (ret)
536 return ret;
537
538 i915_gem_object_pin_pages(obj);
539
540 return ret;
541}
542
d174bd64
DV
543/* Per-page copy function for the shmem pread fastpath.
544 * Flushes invalid cachelines before reading the target if
545 * needs_clflush is set. */
eb01459f 546static int
d174bd64
DV
547shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
548 char __user *user_data,
549 bool page_do_bit17_swizzling, bool needs_clflush)
550{
551 char *vaddr;
552 int ret;
553
e7e58eb5 554 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
555 return -EINVAL;
556
557 vaddr = kmap_atomic(page);
558 if (needs_clflush)
559 drm_clflush_virt_range(vaddr + shmem_page_offset,
560 page_length);
561 ret = __copy_to_user_inatomic(user_data,
562 vaddr + shmem_page_offset,
563 page_length);
564 kunmap_atomic(vaddr);
565
f60d7f0c 566 return ret ? -EFAULT : 0;
d174bd64
DV
567}
568
23c18c71
DV
569static void
570shmem_clflush_swizzled_range(char *addr, unsigned long length,
571 bool swizzled)
572{
e7e58eb5 573 if (unlikely(swizzled)) {
23c18c71
DV
574 unsigned long start = (unsigned long) addr;
575 unsigned long end = (unsigned long) addr + length;
576
577 /* For swizzling simply ensure that we always flush both
578 * channels. Lame, but simple and it works. Swizzled
579 * pwrite/pread is far from a hotpath - current userspace
580 * doesn't use it at all. */
581 start = round_down(start, 128);
582 end = round_up(end, 128);
583
584 drm_clflush_virt_range((void *)start, end - start);
585 } else {
586 drm_clflush_virt_range(addr, length);
587 }
588
589}
590
d174bd64
DV
591/* Only difference to the fast-path function is that this can handle bit17
592 * and uses non-atomic copy and kmap functions. */
593static int
594shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
595 char __user *user_data,
596 bool page_do_bit17_swizzling, bool needs_clflush)
597{
598 char *vaddr;
599 int ret;
600
601 vaddr = kmap(page);
602 if (needs_clflush)
23c18c71
DV
603 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
604 page_length,
605 page_do_bit17_swizzling);
d174bd64
DV
606
607 if (page_do_bit17_swizzling)
608 ret = __copy_to_user_swizzled(user_data,
609 vaddr, shmem_page_offset,
610 page_length);
611 else
612 ret = __copy_to_user(user_data,
613 vaddr + shmem_page_offset,
614 page_length);
615 kunmap(page);
616
f60d7f0c 617 return ret ? - EFAULT : 0;
d174bd64
DV
618}
619
b50a5371
AS
620static inline unsigned long
621slow_user_access(struct io_mapping *mapping,
622 uint64_t page_base, int page_offset,
623 char __user *user_data,
624 unsigned long length, bool pwrite)
625{
626 void __iomem *ioaddr;
627 void *vaddr;
628 uint64_t unwritten;
629
630 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
631 /* We can use the cpu mem copy function because this is X86. */
632 vaddr = (void __force *)ioaddr + page_offset;
633 if (pwrite)
634 unwritten = __copy_from_user(vaddr, user_data, length);
635 else
636 unwritten = __copy_to_user(user_data, vaddr, length);
637
638 io_mapping_unmap(ioaddr);
639 return unwritten;
640}
641
642static int
643i915_gem_gtt_pread(struct drm_device *dev,
644 struct drm_i915_gem_object *obj, uint64_t size,
645 uint64_t data_offset, uint64_t data_ptr)
646{
fac5e23e 647 struct drm_i915_private *dev_priv = to_i915(dev);
b50a5371
AS
648 struct i915_ggtt *ggtt = &dev_priv->ggtt;
649 struct drm_mm_node node;
650 char __user *user_data;
651 uint64_t remain;
652 uint64_t offset;
653 int ret;
654
de895082 655 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
b50a5371
AS
656 if (ret) {
657 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
658 if (ret)
659 goto out;
660
661 ret = i915_gem_object_get_pages(obj);
662 if (ret) {
663 remove_mappable_node(&node);
664 goto out;
665 }
666
667 i915_gem_object_pin_pages(obj);
668 } else {
669 node.start = i915_gem_obj_ggtt_offset(obj);
670 node.allocated = false;
671 ret = i915_gem_object_put_fence(obj);
672 if (ret)
673 goto out_unpin;
674 }
675
676 ret = i915_gem_object_set_to_gtt_domain(obj, false);
677 if (ret)
678 goto out_unpin;
679
680 user_data = u64_to_user_ptr(data_ptr);
681 remain = size;
682 offset = data_offset;
683
684 mutex_unlock(&dev->struct_mutex);
685 if (likely(!i915.prefault_disable)) {
686 ret = fault_in_multipages_writeable(user_data, remain);
687 if (ret) {
688 mutex_lock(&dev->struct_mutex);
689 goto out_unpin;
690 }
691 }
692
693 while (remain > 0) {
694 /* Operation in this page
695 *
696 * page_base = page offset within aperture
697 * page_offset = offset within page
698 * page_length = bytes to copy for this page
699 */
700 u32 page_base = node.start;
701 unsigned page_offset = offset_in_page(offset);
702 unsigned page_length = PAGE_SIZE - page_offset;
703 page_length = remain < page_length ? remain : page_length;
704 if (node.allocated) {
705 wmb();
706 ggtt->base.insert_page(&ggtt->base,
707 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
708 node.start,
709 I915_CACHE_NONE, 0);
710 wmb();
711 } else {
712 page_base += offset & PAGE_MASK;
713 }
714 /* This is a slow read/write as it tries to read from
715 * and write to user memory which may result into page
716 * faults, and so we cannot perform this under struct_mutex.
717 */
718 if (slow_user_access(ggtt->mappable, page_base,
719 page_offset, user_data,
720 page_length, false)) {
721 ret = -EFAULT;
722 break;
723 }
724
725 remain -= page_length;
726 user_data += page_length;
727 offset += page_length;
728 }
729
730 mutex_lock(&dev->struct_mutex);
731 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
732 /* The user has modified the object whilst we tried
733 * reading from it, and we now have no idea what domain
734 * the pages should be in. As we have just been touching
735 * them directly, flush everything back to the GTT
736 * domain.
737 */
738 ret = i915_gem_object_set_to_gtt_domain(obj, false);
739 }
740
741out_unpin:
742 if (node.allocated) {
743 wmb();
744 ggtt->base.clear_range(&ggtt->base,
745 node.start, node.size,
746 true);
747 i915_gem_object_unpin_pages(obj);
748 remove_mappable_node(&node);
749 } else {
750 i915_gem_object_ggtt_unpin(obj);
751 }
752out:
753 return ret;
754}
755
eb01459f 756static int
dbf7bff0
DV
757i915_gem_shmem_pread(struct drm_device *dev,
758 struct drm_i915_gem_object *obj,
759 struct drm_i915_gem_pread *args,
760 struct drm_file *file)
eb01459f 761{
8461d226 762 char __user *user_data;
eb01459f 763 ssize_t remain;
8461d226 764 loff_t offset;
eb2c0c81 765 int shmem_page_offset, page_length, ret = 0;
8461d226 766 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 767 int prefaulted = 0;
8489731c 768 int needs_clflush = 0;
67d5a50c 769 struct sg_page_iter sg_iter;
eb01459f 770
6eae0059 771 if (!i915_gem_object_has_struct_page(obj))
b50a5371
AS
772 return -ENODEV;
773
3ed605bc 774 user_data = u64_to_user_ptr(args->data_ptr);
eb01459f
EA
775 remain = args->size;
776
8461d226 777 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 778
4c914c0c 779 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
780 if (ret)
781 return ret;
782
8461d226 783 offset = args->offset;
eb01459f 784
67d5a50c
ID
785 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
786 offset >> PAGE_SHIFT) {
2db76d7c 787 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
788
789 if (remain <= 0)
790 break;
791
eb01459f
EA
792 /* Operation in this page
793 *
eb01459f 794 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
795 * page_length = bytes to copy for this page
796 */
c8cbbb8b 797 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
798 page_length = remain;
799 if ((shmem_page_offset + page_length) > PAGE_SIZE)
800 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 801
8461d226
DV
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
d174bd64
DV
805 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 needs_clflush);
808 if (ret == 0)
809 goto next_page;
dbf7bff0 810
dbf7bff0
DV
811 mutex_unlock(&dev->struct_mutex);
812
d330a953 813 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 814 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
815 /* Userspace is tricking us, but we've already clobbered
816 * its pages with the prefault and promised to write the
817 * data up to the first fault. Hence ignore any errors
818 * and just continue. */
819 (void)ret;
820 prefaulted = 1;
821 }
eb01459f 822
d174bd64
DV
823 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
824 user_data, page_do_bit17_swizzling,
825 needs_clflush);
eb01459f 826
dbf7bff0 827 mutex_lock(&dev->struct_mutex);
f60d7f0c 828
f60d7f0c 829 if (ret)
8461d226 830 goto out;
8461d226 831
17793c9a 832next_page:
eb01459f 833 remain -= page_length;
8461d226 834 user_data += page_length;
eb01459f
EA
835 offset += page_length;
836 }
837
4f27b75d 838out:
f60d7f0c
CW
839 i915_gem_object_unpin_pages(obj);
840
eb01459f
EA
841 return ret;
842}
843
673a394b
EA
844/**
845 * Reads data from the object referenced by handle.
14bb2c11
TU
846 * @dev: drm device pointer
847 * @data: ioctl data blob
848 * @file: drm file pointer
673a394b
EA
849 *
850 * On error, the contents of *data are undefined.
851 */
852int
853i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 854 struct drm_file *file)
673a394b
EA
855{
856 struct drm_i915_gem_pread *args = data;
05394f39 857 struct drm_i915_gem_object *obj;
35b62a89 858 int ret = 0;
673a394b 859
51311d0a
CW
860 if (args->size == 0)
861 return 0;
862
863 if (!access_ok(VERIFY_WRITE,
3ed605bc 864 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
865 args->size))
866 return -EFAULT;
867
4f27b75d 868 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 869 if (ret)
4f27b75d 870 return ret;
673a394b 871
03ac0642
CW
872 obj = i915_gem_object_lookup(file, args->handle);
873 if (!obj) {
1d7cfea1
CW
874 ret = -ENOENT;
875 goto unlock;
4f27b75d 876 }
673a394b 877
7dcd2499 878 /* Bounds check source. */
05394f39
CW
879 if (args->offset > obj->base.size ||
880 args->size > obj->base.size - args->offset) {
ce9d419d 881 ret = -EINVAL;
35b62a89 882 goto out;
ce9d419d
CW
883 }
884
db53a302
CW
885 trace_i915_gem_object_pread(obj, args->offset, args->size);
886
dbf7bff0 887 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 888
b50a5371 889 /* pread for non shmem backed objects */
1dd5b6f2
CW
890 if (ret == -EFAULT || ret == -ENODEV) {
891 intel_runtime_pm_get(to_i915(dev));
b50a5371
AS
892 ret = i915_gem_gtt_pread(dev, obj, args->size,
893 args->offset, args->data_ptr);
1dd5b6f2
CW
894 intel_runtime_pm_put(to_i915(dev));
895 }
b50a5371 896
35b62a89 897out:
f8c417cd 898 i915_gem_object_put(obj);
1d7cfea1 899unlock:
4f27b75d 900 mutex_unlock(&dev->struct_mutex);
eb01459f 901 return ret;
673a394b
EA
902}
903
0839ccb8
KP
904/* This is the fast write path which cannot handle
905 * page faults in the source data
9b7530cc 906 */
0839ccb8
KP
907
908static inline int
909fast_user_write(struct io_mapping *mapping,
910 loff_t page_base, int page_offset,
911 char __user *user_data,
912 int length)
9b7530cc 913{
4f0c7cfb
BW
914 void __iomem *vaddr_atomic;
915 void *vaddr;
0839ccb8 916 unsigned long unwritten;
9b7530cc 917
3e4d3af5 918 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
919 /* We can use the cpu mem copy function because this is X86. */
920 vaddr = (void __force*)vaddr_atomic + page_offset;
921 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 922 user_data, length);
3e4d3af5 923 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 924 return unwritten;
0839ccb8
KP
925}
926
3de09aa3
EA
927/**
928 * This is the fast pwrite path, where we copy the data directly from the
929 * user into the GTT, uncached.
62f90b38 930 * @i915: i915 device private data
14bb2c11
TU
931 * @obj: i915 gem object
932 * @args: pwrite arguments structure
933 * @file: drm file pointer
3de09aa3 934 */
673a394b 935static int
4f1959ee 936i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
05394f39 937 struct drm_i915_gem_object *obj,
3de09aa3 938 struct drm_i915_gem_pwrite *args,
05394f39 939 struct drm_file *file)
673a394b 940{
4f1959ee 941 struct i915_ggtt *ggtt = &i915->ggtt;
b50a5371 942 struct drm_device *dev = obj->base.dev;
4f1959ee
AS
943 struct drm_mm_node node;
944 uint64_t remain, offset;
673a394b 945 char __user *user_data;
4f1959ee 946 int ret;
b50a5371
AS
947 bool hit_slow_path = false;
948
949 if (obj->tiling_mode != I915_TILING_NONE)
950 return -EFAULT;
935aaa69 951
de895082
CW
952 ret = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
953 PIN_MAPPABLE | PIN_NONBLOCK);
4f1959ee
AS
954 if (ret) {
955 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
956 if (ret)
957 goto out;
958
959 ret = i915_gem_object_get_pages(obj);
960 if (ret) {
961 remove_mappable_node(&node);
962 goto out;
963 }
964
965 i915_gem_object_pin_pages(obj);
966 } else {
967 node.start = i915_gem_obj_ggtt_offset(obj);
968 node.allocated = false;
b50a5371
AS
969 ret = i915_gem_object_put_fence(obj);
970 if (ret)
971 goto out_unpin;
4f1959ee 972 }
935aaa69
DV
973
974 ret = i915_gem_object_set_to_gtt_domain(obj, true);
975 if (ret)
976 goto out_unpin;
977
77a0d1ca 978 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4f1959ee 979 obj->dirty = true;
063e4e6b 980
4f1959ee
AS
981 user_data = u64_to_user_ptr(args->data_ptr);
982 offset = args->offset;
983 remain = args->size;
984 while (remain) {
673a394b
EA
985 /* Operation in this page
986 *
0839ccb8
KP
987 * page_base = page offset within aperture
988 * page_offset = offset within page
989 * page_length = bytes to copy for this page
673a394b 990 */
4f1959ee
AS
991 u32 page_base = node.start;
992 unsigned page_offset = offset_in_page(offset);
993 unsigned page_length = PAGE_SIZE - page_offset;
994 page_length = remain < page_length ? remain : page_length;
995 if (node.allocated) {
996 wmb(); /* flush the write before we modify the GGTT */
997 ggtt->base.insert_page(&ggtt->base,
998 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
999 node.start, I915_CACHE_NONE, 0);
1000 wmb(); /* flush modifications to the GGTT (insert_page) */
1001 } else {
1002 page_base += offset & PAGE_MASK;
1003 }
0839ccb8 1004 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
1005 * source page isn't available. Return the error and we'll
1006 * retry in the slow path.
b50a5371
AS
1007 * If the object is non-shmem backed, we retry again with the
1008 * path that handles page fault.
0839ccb8 1009 */
72e96d64 1010 if (fast_user_write(ggtt->mappable, page_base,
935aaa69 1011 page_offset, user_data, page_length)) {
b50a5371
AS
1012 hit_slow_path = true;
1013 mutex_unlock(&dev->struct_mutex);
1014 if (slow_user_access(ggtt->mappable,
1015 page_base,
1016 page_offset, user_data,
1017 page_length, true)) {
1018 ret = -EFAULT;
1019 mutex_lock(&dev->struct_mutex);
1020 goto out_flush;
1021 }
1022
1023 mutex_lock(&dev->struct_mutex);
935aaa69 1024 }
673a394b 1025
0839ccb8
KP
1026 remain -= page_length;
1027 user_data += page_length;
1028 offset += page_length;
673a394b 1029 }
673a394b 1030
063e4e6b 1031out_flush:
b50a5371
AS
1032 if (hit_slow_path) {
1033 if (ret == 0 &&
1034 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1035 /* The user has modified the object whilst we tried
1036 * reading from it, and we now have no idea what domain
1037 * the pages should be in. As we have just been touching
1038 * them directly, flush everything back to the GTT
1039 * domain.
1040 */
1041 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1042 }
1043 }
1044
de152b62 1045 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 1046out_unpin:
4f1959ee
AS
1047 if (node.allocated) {
1048 wmb();
1049 ggtt->base.clear_range(&ggtt->base,
1050 node.start, node.size,
1051 true);
1052 i915_gem_object_unpin_pages(obj);
1053 remove_mappable_node(&node);
1054 } else {
1055 i915_gem_object_ggtt_unpin(obj);
1056 }
935aaa69 1057out:
3de09aa3 1058 return ret;
673a394b
EA
1059}
1060
d174bd64
DV
1061/* Per-page copy function for the shmem pwrite fastpath.
1062 * Flushes invalid cachelines before writing to the target if
1063 * needs_clflush_before is set and flushes out any written cachelines after
1064 * writing if needs_clflush is set. */
3043c60c 1065static int
d174bd64
DV
1066shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1067 char __user *user_data,
1068 bool page_do_bit17_swizzling,
1069 bool needs_clflush_before,
1070 bool needs_clflush_after)
673a394b 1071{
d174bd64 1072 char *vaddr;
673a394b 1073 int ret;
3de09aa3 1074
e7e58eb5 1075 if (unlikely(page_do_bit17_swizzling))
d174bd64 1076 return -EINVAL;
3de09aa3 1077
d174bd64
DV
1078 vaddr = kmap_atomic(page);
1079 if (needs_clflush_before)
1080 drm_clflush_virt_range(vaddr + shmem_page_offset,
1081 page_length);
c2831a94
CW
1082 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1083 user_data, page_length);
d174bd64
DV
1084 if (needs_clflush_after)
1085 drm_clflush_virt_range(vaddr + shmem_page_offset,
1086 page_length);
1087 kunmap_atomic(vaddr);
3de09aa3 1088
755d2218 1089 return ret ? -EFAULT : 0;
3de09aa3
EA
1090}
1091
d174bd64
DV
1092/* Only difference to the fast-path function is that this can handle bit17
1093 * and uses non-atomic copy and kmap functions. */
3043c60c 1094static int
d174bd64
DV
1095shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1096 char __user *user_data,
1097 bool page_do_bit17_swizzling,
1098 bool needs_clflush_before,
1099 bool needs_clflush_after)
673a394b 1100{
d174bd64
DV
1101 char *vaddr;
1102 int ret;
e5281ccd 1103
d174bd64 1104 vaddr = kmap(page);
e7e58eb5 1105 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
1106 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107 page_length,
1108 page_do_bit17_swizzling);
d174bd64
DV
1109 if (page_do_bit17_swizzling)
1110 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
1111 user_data,
1112 page_length);
d174bd64
DV
1113 else
1114 ret = __copy_from_user(vaddr + shmem_page_offset,
1115 user_data,
1116 page_length);
1117 if (needs_clflush_after)
23c18c71
DV
1118 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1119 page_length,
1120 page_do_bit17_swizzling);
d174bd64 1121 kunmap(page);
40123c1f 1122
755d2218 1123 return ret ? -EFAULT : 0;
40123c1f
EA
1124}
1125
40123c1f 1126static int
e244a443
DV
1127i915_gem_shmem_pwrite(struct drm_device *dev,
1128 struct drm_i915_gem_object *obj,
1129 struct drm_i915_gem_pwrite *args,
1130 struct drm_file *file)
40123c1f 1131{
40123c1f 1132 ssize_t remain;
8c59967c
DV
1133 loff_t offset;
1134 char __user *user_data;
eb2c0c81 1135 int shmem_page_offset, page_length, ret = 0;
8c59967c 1136 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 1137 int hit_slowpath = 0;
58642885
DV
1138 int needs_clflush_after = 0;
1139 int needs_clflush_before = 0;
67d5a50c 1140 struct sg_page_iter sg_iter;
40123c1f 1141
3ed605bc 1142 user_data = u64_to_user_ptr(args->data_ptr);
40123c1f
EA
1143 remain = args->size;
1144
8c59967c 1145 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 1146
c13d87ea
CW
1147 ret = i915_gem_object_wait_rendering(obj, false);
1148 if (ret)
1149 return ret;
1150
58642885
DV
1151 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1152 /* If we're not in the cpu write domain, set ourself into the gtt
1153 * write domain and manually flush cachelines (if required). This
1154 * optimizes for the case when the gpu will use the data
1155 * right away and we therefore have to clflush anyway. */
2c22569b 1156 needs_clflush_after = cpu_write_needs_clflush(obj);
58642885 1157 }
c76ce038
CW
1158 /* Same trick applies to invalidate partially written cachelines read
1159 * before writing. */
1160 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1161 needs_clflush_before =
1162 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 1163
755d2218
CW
1164 ret = i915_gem_object_get_pages(obj);
1165 if (ret)
1166 return ret;
1167
77a0d1ca 1168 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 1169
755d2218
CW
1170 i915_gem_object_pin_pages(obj);
1171
673a394b 1172 offset = args->offset;
05394f39 1173 obj->dirty = 1;
673a394b 1174
67d5a50c
ID
1175 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1176 offset >> PAGE_SHIFT) {
2db76d7c 1177 struct page *page = sg_page_iter_page(&sg_iter);
58642885 1178 int partial_cacheline_write;
e5281ccd 1179
9da3da66
CW
1180 if (remain <= 0)
1181 break;
1182
40123c1f
EA
1183 /* Operation in this page
1184 *
40123c1f 1185 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
1186 * page_length = bytes to copy for this page
1187 */
c8cbbb8b 1188 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
1189
1190 page_length = remain;
1191 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1192 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 1193
58642885
DV
1194 /* If we don't overwrite a cacheline completely we need to be
1195 * careful to have up-to-date data by first clflushing. Don't
1196 * overcomplicate things and flush the entire patch. */
1197 partial_cacheline_write = needs_clflush_before &&
1198 ((shmem_page_offset | page_length)
1199 & (boot_cpu_data.x86_clflush_size - 1));
1200
8c59967c
DV
1201 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1202 (page_to_phys(page) & (1 << 17)) != 0;
1203
d174bd64
DV
1204 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1205 user_data, page_do_bit17_swizzling,
1206 partial_cacheline_write,
1207 needs_clflush_after);
1208 if (ret == 0)
1209 goto next_page;
e244a443
DV
1210
1211 hit_slowpath = 1;
e244a443 1212 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1213 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1214 user_data, page_do_bit17_swizzling,
1215 partial_cacheline_write,
1216 needs_clflush_after);
40123c1f 1217
e244a443 1218 mutex_lock(&dev->struct_mutex);
755d2218 1219
755d2218 1220 if (ret)
8c59967c 1221 goto out;
8c59967c 1222
17793c9a 1223next_page:
40123c1f 1224 remain -= page_length;
8c59967c 1225 user_data += page_length;
40123c1f 1226 offset += page_length;
673a394b
EA
1227 }
1228
fbd5a26d 1229out:
755d2218
CW
1230 i915_gem_object_unpin_pages(obj);
1231
e244a443 1232 if (hit_slowpath) {
8dcf015e
DV
1233 /*
1234 * Fixup: Flush cpu caches in case we didn't flush the dirty
1235 * cachelines in-line while writing and the object moved
1236 * out of the cpu write domain while we've dropped the lock.
1237 */
1238 if (!needs_clflush_after &&
1239 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1240 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1241 needs_clflush_after = true;
e244a443 1242 }
8c59967c 1243 }
673a394b 1244
58642885 1245 if (needs_clflush_after)
c033666a 1246 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1247 else
1248 obj->cache_dirty = true;
58642885 1249
de152b62 1250 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1251 return ret;
673a394b
EA
1252}
1253
1254/**
1255 * Writes data to the object referenced by handle.
14bb2c11
TU
1256 * @dev: drm device
1257 * @data: ioctl data blob
1258 * @file: drm file
673a394b
EA
1259 *
1260 * On error, the contents of the buffer that were to be modified are undefined.
1261 */
1262int
1263i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1264 struct drm_file *file)
673a394b 1265{
fac5e23e 1266 struct drm_i915_private *dev_priv = to_i915(dev);
673a394b 1267 struct drm_i915_gem_pwrite *args = data;
05394f39 1268 struct drm_i915_gem_object *obj;
51311d0a
CW
1269 int ret;
1270
1271 if (args->size == 0)
1272 return 0;
1273
1274 if (!access_ok(VERIFY_READ,
3ed605bc 1275 u64_to_user_ptr(args->data_ptr),
51311d0a
CW
1276 args->size))
1277 return -EFAULT;
1278
d330a953 1279 if (likely(!i915.prefault_disable)) {
3ed605bc 1280 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
0b74b508
XZ
1281 args->size);
1282 if (ret)
1283 return -EFAULT;
1284 }
673a394b 1285
5d77d9c5
ID
1286 intel_runtime_pm_get(dev_priv);
1287
fbd5a26d 1288 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1289 if (ret)
5d77d9c5 1290 goto put_rpm;
1d7cfea1 1291
03ac0642
CW
1292 obj = i915_gem_object_lookup(file, args->handle);
1293 if (!obj) {
1d7cfea1
CW
1294 ret = -ENOENT;
1295 goto unlock;
fbd5a26d 1296 }
673a394b 1297
7dcd2499 1298 /* Bounds check destination. */
05394f39
CW
1299 if (args->offset > obj->base.size ||
1300 args->size > obj->base.size - args->offset) {
ce9d419d 1301 ret = -EINVAL;
35b62a89 1302 goto out;
ce9d419d
CW
1303 }
1304
db53a302
CW
1305 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1306
935aaa69 1307 ret = -EFAULT;
673a394b
EA
1308 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1309 * it would end up going through the fenced access, and we'll get
1310 * different detiling behavior between reading and writing.
1311 * pread/pwrite currently are reading and writing from the CPU
1312 * perspective, requiring manual detiling by the client.
1313 */
6eae0059
CW
1314 if (!i915_gem_object_has_struct_page(obj) ||
1315 cpu_write_needs_clflush(obj)) {
4f1959ee 1316 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
935aaa69
DV
1317 /* Note that the gtt paths might fail with non-page-backed user
1318 * pointers (e.g. gtt mappings when moving data between
1319 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1320 }
673a394b 1321
d1054ee4 1322 if (ret == -EFAULT || ret == -ENOSPC) {
6a2c4232
CW
1323 if (obj->phys_handle)
1324 ret = i915_gem_phys_pwrite(obj, args, file);
6eae0059 1325 else if (i915_gem_object_has_struct_page(obj))
6a2c4232 1326 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
b50a5371
AS
1327 else
1328 ret = -ENODEV;
6a2c4232 1329 }
5c0480f2 1330
35b62a89 1331out:
f8c417cd 1332 i915_gem_object_put(obj);
1d7cfea1 1333unlock:
fbd5a26d 1334 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1335put_rpm:
1336 intel_runtime_pm_put(dev_priv);
1337
673a394b
EA
1338 return ret;
1339}
1340
b361237b
CW
1341/**
1342 * Ensures that all rendering to the object has completed and the object is
1343 * safe to unbind from the GTT or access from the CPU.
14bb2c11
TU
1344 * @obj: i915 gem object
1345 * @readonly: waiting for read access or write
b361237b 1346 */
2e2f351d 1347int
b361237b
CW
1348i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1349 bool readonly)
1350{
c13d87ea 1351 struct reservation_object *resv;
8cac6f6c
CW
1352 struct i915_gem_active *active;
1353 unsigned long active_mask;
1354 int idx, ret;
b361237b 1355
8cac6f6c
CW
1356 lockdep_assert_held(&obj->base.dev->struct_mutex);
1357
1358 if (!readonly) {
1359 active = obj->last_read;
1360 active_mask = obj->active;
b4716185 1361 } else {
8cac6f6c
CW
1362 active_mask = 1;
1363 active = &obj->last_write;
1364 }
b4716185 1365
8cac6f6c 1366 for_each_active(active_mask, idx) {
fa545cbf
CW
1367 ret = i915_gem_active_wait(&active[idx],
1368 &obj->base.dev->struct_mutex);
8cac6f6c
CW
1369 if (ret)
1370 return ret;
b4716185
CW
1371 }
1372
c13d87ea
CW
1373 resv = i915_gem_object_get_dmabuf_resv(obj);
1374 if (resv) {
1375 long err;
1376
1377 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
1378 MAX_SCHEDULE_TIMEOUT);
1379 if (err < 0)
1380 return err;
1381 }
1382
b4716185
CW
1383 return 0;
1384}
1385
3236f57a
CW
1386/* A nonblocking variant of the above wait. This is a highly dangerous routine
1387 * as the object state may change during this call.
1388 */
1389static __must_check int
1390i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1391 struct intel_rps_client *rps,
3236f57a
CW
1392 bool readonly)
1393{
1394 struct drm_device *dev = obj->base.dev;
fac5e23e 1395 struct drm_i915_private *dev_priv = to_i915(dev);
666796da 1396 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
8cac6f6c
CW
1397 struct i915_gem_active *active;
1398 unsigned long active_mask;
b4716185 1399 int ret, i, n = 0;
3236f57a
CW
1400
1401 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1402 BUG_ON(!dev_priv->mm.interruptible);
1403
8cac6f6c
CW
1404 active_mask = obj->active;
1405 if (!active_mask)
3236f57a
CW
1406 return 0;
1407
8cac6f6c
CW
1408 if (!readonly) {
1409 active = obj->last_read;
b4716185 1410 } else {
8cac6f6c
CW
1411 active_mask = 1;
1412 active = &obj->last_write;
1413 }
b4716185 1414
8cac6f6c
CW
1415 for_each_active(active_mask, i) {
1416 struct drm_i915_gem_request *req;
b4716185 1417
8cac6f6c
CW
1418 req = i915_gem_active_get(&active[i],
1419 &obj->base.dev->struct_mutex);
1420 if (req)
27c01aae 1421 requests[n++] = req;
b4716185
CW
1422 }
1423
3236f57a 1424 mutex_unlock(&dev->struct_mutex);
299259a3 1425 ret = 0;
b4716185 1426 for (i = 0; ret == 0 && i < n; i++)
776f3236 1427 ret = i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1428 mutex_lock(&dev->struct_mutex);
1429
fa545cbf 1430 for (i = 0; i < n; i++)
e8a261ea 1431 i915_gem_request_put(requests[i]);
b4716185
CW
1432
1433 return ret;
3236f57a
CW
1434}
1435
2e1b8730
CW
1436static struct intel_rps_client *to_rps_client(struct drm_file *file)
1437{
1438 struct drm_i915_file_private *fpriv = file->driver_priv;
1439 return &fpriv->rps;
1440}
1441
aeecc969
CW
1442static enum fb_op_origin
1443write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1444{
1445 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1446 ORIGIN_GTT : ORIGIN_CPU;
1447}
1448
673a394b 1449/**
2ef7eeaa
EA
1450 * Called when user space prepares to use an object with the CPU, either
1451 * through the mmap ioctl's mapping or a GTT mapping.
14bb2c11
TU
1452 * @dev: drm device
1453 * @data: ioctl data blob
1454 * @file: drm file
673a394b
EA
1455 */
1456int
1457i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1458 struct drm_file *file)
673a394b
EA
1459{
1460 struct drm_i915_gem_set_domain *args = data;
05394f39 1461 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1462 uint32_t read_domains = args->read_domains;
1463 uint32_t write_domain = args->write_domain;
673a394b
EA
1464 int ret;
1465
2ef7eeaa 1466 /* Only handle setting domains to types used by the CPU. */
21d509e3 1467 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1468 return -EINVAL;
1469
21d509e3 1470 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1471 return -EINVAL;
1472
1473 /* Having something in the write domain implies it's in the read
1474 * domain, and only that read domain. Enforce that in the request.
1475 */
1476 if (write_domain != 0 && read_domains != write_domain)
1477 return -EINVAL;
1478
76c1dec1 1479 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1480 if (ret)
76c1dec1 1481 return ret;
1d7cfea1 1482
03ac0642
CW
1483 obj = i915_gem_object_lookup(file, args->handle);
1484 if (!obj) {
1d7cfea1
CW
1485 ret = -ENOENT;
1486 goto unlock;
76c1dec1 1487 }
673a394b 1488
3236f57a
CW
1489 /* Try to flush the object off the GPU without holding the lock.
1490 * We will repeat the flush holding the lock in the normal manner
1491 * to catch cases where we are gazumped.
1492 */
6e4930f6 1493 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1494 to_rps_client(file),
6e4930f6 1495 !write_domain);
3236f57a
CW
1496 if (ret)
1497 goto unref;
1498
43566ded 1499 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1500 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1501 else
e47c68e9 1502 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1503
031b698a 1504 if (write_domain != 0)
aeecc969 1505 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
031b698a 1506
3236f57a 1507unref:
f8c417cd 1508 i915_gem_object_put(obj);
1d7cfea1 1509unlock:
673a394b
EA
1510 mutex_unlock(&dev->struct_mutex);
1511 return ret;
1512}
1513
1514/**
1515 * Called when user space has done writes to this buffer
14bb2c11
TU
1516 * @dev: drm device
1517 * @data: ioctl data blob
1518 * @file: drm file
673a394b
EA
1519 */
1520int
1521i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1522 struct drm_file *file)
673a394b
EA
1523{
1524 struct drm_i915_gem_sw_finish *args = data;
05394f39 1525 struct drm_i915_gem_object *obj;
673a394b
EA
1526 int ret = 0;
1527
76c1dec1 1528 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1529 if (ret)
76c1dec1 1530 return ret;
1d7cfea1 1531
03ac0642
CW
1532 obj = i915_gem_object_lookup(file, args->handle);
1533 if (!obj) {
1d7cfea1
CW
1534 ret = -ENOENT;
1535 goto unlock;
673a394b
EA
1536 }
1537
673a394b 1538 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1539 if (obj->pin_display)
e62b59e4 1540 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1541
f8c417cd 1542 i915_gem_object_put(obj);
1d7cfea1 1543unlock:
673a394b
EA
1544 mutex_unlock(&dev->struct_mutex);
1545 return ret;
1546}
1547
1548/**
14bb2c11
TU
1549 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1550 * it is mapped to.
1551 * @dev: drm device
1552 * @data: ioctl data blob
1553 * @file: drm file
673a394b
EA
1554 *
1555 * While the mapping holds a reference on the contents of the object, it doesn't
1556 * imply a ref on the object itself.
34367381
DV
1557 *
1558 * IMPORTANT:
1559 *
1560 * DRM driver writers who look a this function as an example for how to do GEM
1561 * mmap support, please don't implement mmap support like here. The modern way
1562 * to implement DRM mmap support is with an mmap offset ioctl (like
1563 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1564 * That way debug tooling like valgrind will understand what's going on, hiding
1565 * the mmap call in a driver private ioctl will break that. The i915 driver only
1566 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1567 */
1568int
1569i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1570 struct drm_file *file)
673a394b
EA
1571{
1572 struct drm_i915_gem_mmap *args = data;
03ac0642 1573 struct drm_i915_gem_object *obj;
673a394b
EA
1574 unsigned long addr;
1575
1816f923
AG
1576 if (args->flags & ~(I915_MMAP_WC))
1577 return -EINVAL;
1578
568a58e5 1579 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1816f923
AG
1580 return -ENODEV;
1581
03ac0642
CW
1582 obj = i915_gem_object_lookup(file, args->handle);
1583 if (!obj)
bf79cb91 1584 return -ENOENT;
673a394b 1585
1286ff73
DV
1586 /* prime objects have no backing filp to GEM mmap
1587 * pages from.
1588 */
03ac0642 1589 if (!obj->base.filp) {
34911fd3 1590 i915_gem_object_put_unlocked(obj);
1286ff73
DV
1591 return -EINVAL;
1592 }
1593
03ac0642 1594 addr = vm_mmap(obj->base.filp, 0, args->size,
673a394b
EA
1595 PROT_READ | PROT_WRITE, MAP_SHARED,
1596 args->offset);
1816f923
AG
1597 if (args->flags & I915_MMAP_WC) {
1598 struct mm_struct *mm = current->mm;
1599 struct vm_area_struct *vma;
1600
80a89a5e 1601 if (down_write_killable(&mm->mmap_sem)) {
34911fd3 1602 i915_gem_object_put_unlocked(obj);
80a89a5e
MH
1603 return -EINTR;
1604 }
1816f923
AG
1605 vma = find_vma(mm, addr);
1606 if (vma)
1607 vma->vm_page_prot =
1608 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1609 else
1610 addr = -ENOMEM;
1611 up_write(&mm->mmap_sem);
aeecc969
CW
1612
1613 /* This may race, but that's ok, it only gets set */
03ac0642 1614 WRITE_ONCE(obj->has_wc_mmap, true);
1816f923 1615 }
34911fd3 1616 i915_gem_object_put_unlocked(obj);
673a394b
EA
1617 if (IS_ERR((void *)addr))
1618 return addr;
1619
1620 args->addr_ptr = (uint64_t) addr;
1621
1622 return 0;
1623}
1624
de151cf6
JB
1625/**
1626 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1627 * @vma: VMA in question
1628 * @vmf: fault info
de151cf6
JB
1629 *
1630 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1631 * from userspace. The fault handler takes care of binding the object to
1632 * the GTT (if needed), allocating and programming a fence register (again,
1633 * only if needed based on whether the old reg is still valid or the object
1634 * is tiled) and inserting a new PTE into the faulting process.
1635 *
1636 * Note that the faulting process may involve evicting existing objects
1637 * from the GTT and/or fence registers to make room. So performance may
1638 * suffer if the GTT working set is large or there are few fence registers
1639 * left.
1640 */
1641int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1642{
05394f39
CW
1643 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1644 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1645 struct drm_i915_private *dev_priv = to_i915(dev);
1646 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1647 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1648 pgoff_t page_offset;
1649 unsigned long pfn;
1650 int ret = 0;
0f973f27 1651 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1652
f65c9168
PZ
1653 intel_runtime_pm_get(dev_priv);
1654
de151cf6
JB
1655 /* We don't use vmf->pgoff since that has the fake offset */
1656 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1657 PAGE_SHIFT;
1658
d9bc7e9f
CW
1659 ret = i915_mutex_lock_interruptible(dev);
1660 if (ret)
1661 goto out;
a00b10c3 1662
db53a302
CW
1663 trace_i915_gem_object_fault(obj, page_offset, true, write);
1664
6e4930f6
CW
1665 /* Try to flush the object off the GPU first without holding the lock.
1666 * Upon reacquiring the lock, we will perform our sanity checks and then
1667 * repeat the flush holding the lock in the normal manner to catch cases
1668 * where we are gazumped.
1669 */
1670 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1671 if (ret)
1672 goto unlock;
1673
eb119bd6
CW
1674 /* Access to snoopable pages through the GTT is incoherent. */
1675 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1676 ret = -EFAULT;
eb119bd6
CW
1677 goto unlock;
1678 }
1679
c5ad54cf 1680 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1681 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1682 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1683 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1684
c5ad54cf
JL
1685 memset(&view, 0, sizeof(view));
1686 view.type = I915_GGTT_VIEW_PARTIAL;
1687 view.params.partial.offset = rounddown(page_offset, chunk_size);
1688 view.params.partial.size =
1689 min_t(unsigned int,
1690 chunk_size,
1691 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1692 view.params.partial.offset);
1693 }
1694
1695 /* Now pin it into the GTT if needed */
91b2db6f 1696 ret = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
c9839303
CW
1697 if (ret)
1698 goto unlock;
4a684a41 1699
c9839303
CW
1700 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1701 if (ret)
1702 goto unpin;
74898d7e 1703
06d98131 1704 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1705 if (ret)
c9839303 1706 goto unpin;
7d1c4804 1707
b90b91d8 1708 /* Finally, remap it using the new GTT offset */
72e96d64 1709 pfn = ggtt->mappable_base +
c5ad54cf 1710 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1711 pfn >>= PAGE_SHIFT;
de151cf6 1712
c5ad54cf
JL
1713 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1714 /* Overriding existing pages in partial view does not cause
1715 * us any trouble as TLBs are still valid because the fault
1716 * is due to userspace losing part of the mapping or never
1717 * having accessed it before (at this partials' range).
1718 */
1719 unsigned long base = vma->vm_start +
1720 (view.params.partial.offset << PAGE_SHIFT);
1721 unsigned int i;
b90b91d8 1722
c5ad54cf
JL
1723 for (i = 0; i < view.params.partial.size; i++) {
1724 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1725 if (ret)
1726 break;
1727 }
1728
1729 obj->fault_mappable = true;
c5ad54cf
JL
1730 } else {
1731 if (!obj->fault_mappable) {
1732 unsigned long size = min_t(unsigned long,
1733 vma->vm_end - vma->vm_start,
1734 obj->base.size);
1735 int i;
1736
1737 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1738 ret = vm_insert_pfn(vma,
1739 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1740 pfn + i);
1741 if (ret)
1742 break;
1743 }
1744
1745 obj->fault_mappable = true;
1746 } else
1747 ret = vm_insert_pfn(vma,
1748 (unsigned long)vmf->virtual_address,
1749 pfn + page_offset);
1750 }
c9839303 1751unpin:
c5ad54cf 1752 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1753unlock:
de151cf6 1754 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1755out:
de151cf6 1756 switch (ret) {
d9bc7e9f 1757 case -EIO:
2232f031
DV
1758 /*
1759 * We eat errors when the gpu is terminally wedged to avoid
1760 * userspace unduly crashing (gl has no provisions for mmaps to
1761 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1762 * and so needs to be reported.
1763 */
1764 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1765 ret = VM_FAULT_SIGBUS;
1766 break;
1767 }
045e769a 1768 case -EAGAIN:
571c608d
DV
1769 /*
1770 * EAGAIN means the gpu is hung and we'll wait for the error
1771 * handler to reset everything when re-faulting in
1772 * i915_mutex_lock_interruptible.
d9bc7e9f 1773 */
c715089f
CW
1774 case 0:
1775 case -ERESTARTSYS:
bed636ab 1776 case -EINTR:
e79e0fe3
DR
1777 case -EBUSY:
1778 /*
1779 * EBUSY is ok: this just means that another thread
1780 * already did the job.
1781 */
f65c9168
PZ
1782 ret = VM_FAULT_NOPAGE;
1783 break;
de151cf6 1784 case -ENOMEM:
f65c9168
PZ
1785 ret = VM_FAULT_OOM;
1786 break;
a7c2e1aa 1787 case -ENOSPC:
45d67817 1788 case -EFAULT:
f65c9168
PZ
1789 ret = VM_FAULT_SIGBUS;
1790 break;
de151cf6 1791 default:
a7c2e1aa 1792 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1793 ret = VM_FAULT_SIGBUS;
1794 break;
de151cf6 1795 }
f65c9168
PZ
1796
1797 intel_runtime_pm_put(dev_priv);
1798 return ret;
de151cf6
JB
1799}
1800
901782b2
CW
1801/**
1802 * i915_gem_release_mmap - remove physical page mappings
1803 * @obj: obj in question
1804 *
af901ca1 1805 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1806 * relinquish ownership of the pages back to the system.
1807 *
1808 * It is vital that we remove the page mapping if we have mapped a tiled
1809 * object through the GTT and then lose the fence register due to
1810 * resource pressure. Similarly if the object has been moved out of the
1811 * aperture, than pages mapped into userspace must be revoked. Removing the
1812 * mapping will then trigger a page fault on the next user access, allowing
1813 * fixup by i915_gem_fault().
1814 */
d05ca301 1815void
05394f39 1816i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1817{
349f2ccf
CW
1818 /* Serialisation between user GTT access and our code depends upon
1819 * revoking the CPU's PTE whilst the mutex is held. The next user
1820 * pagefault then has to wait until we release the mutex.
1821 */
1822 lockdep_assert_held(&obj->base.dev->struct_mutex);
1823
6299f992
CW
1824 if (!obj->fault_mappable)
1825 return;
901782b2 1826
6796cb16
DH
1827 drm_vma_node_unmap(&obj->base.vma_node,
1828 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1829
1830 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1831 * memory transactions from userspace before we return. The TLB
1832 * flushing implied above by changing the PTE above *should* be
1833 * sufficient, an extra barrier here just provides us with a bit
1834 * of paranoid documentation about our requirement to serialise
1835 * memory writes before touching registers / GSM.
1836 */
1837 wmb();
1838
6299f992 1839 obj->fault_mappable = false;
901782b2
CW
1840}
1841
eedd10f4
CW
1842void
1843i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1844{
1845 struct drm_i915_gem_object *obj;
1846
1847 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1848 i915_gem_release_mmap(obj);
1849}
1850
ad1a7d20
CW
1851/**
1852 * i915_gem_get_ggtt_size - return required global GTT size for an object
a9f1481f 1853 * @dev_priv: i915 device
ad1a7d20
CW
1854 * @size: object size
1855 * @tiling_mode: tiling mode
1856 *
1857 * Return the required global GTT size for an object, taking into account
1858 * potential fence register mapping.
1859 */
a9f1481f
CW
1860u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1861 u64 size, int tiling_mode)
92b88aeb 1862{
ad1a7d20 1863 u64 ggtt_size;
92b88aeb 1864
ad1a7d20
CW
1865 GEM_BUG_ON(size == 0);
1866
a9f1481f 1867 if (INTEL_GEN(dev_priv) >= 4 ||
e28f8711
CW
1868 tiling_mode == I915_TILING_NONE)
1869 return size;
92b88aeb
CW
1870
1871 /* Previous chips need a power-of-two fence region when tiling */
a9f1481f 1872 if (IS_GEN3(dev_priv))
ad1a7d20 1873 ggtt_size = 1024*1024;
92b88aeb 1874 else
ad1a7d20 1875 ggtt_size = 512*1024;
92b88aeb 1876
ad1a7d20
CW
1877 while (ggtt_size < size)
1878 ggtt_size <<= 1;
92b88aeb 1879
ad1a7d20 1880 return ggtt_size;
92b88aeb
CW
1881}
1882
de151cf6 1883/**
ad1a7d20 1884 * i915_gem_get_ggtt_alignment - return required global GTT alignment
a9f1481f 1885 * @dev_priv: i915 device
14bb2c11
TU
1886 * @size: object size
1887 * @tiling_mode: tiling mode
ad1a7d20 1888 * @fenced: is fenced alignment required or not
de151cf6 1889 *
ad1a7d20 1890 * Return the required global GTT alignment for an object, taking into account
5e783301 1891 * potential fence register mapping.
de151cf6 1892 */
a9f1481f 1893u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
ad1a7d20 1894 int tiling_mode, bool fenced)
de151cf6 1895{
ad1a7d20
CW
1896 GEM_BUG_ON(size == 0);
1897
de151cf6
JB
1898 /*
1899 * Minimum alignment is 4k (GTT page size), but might be greater
1900 * if a fence register is needed for the object.
1901 */
a9f1481f 1902 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
e28f8711 1903 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1904 return 4096;
1905
a00b10c3
CW
1906 /*
1907 * Previous chips need to be aligned to the size of the smallest
1908 * fence register that can contain the object.
1909 */
a9f1481f 1910 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
a00b10c3
CW
1911}
1912
d8cb5086
CW
1913static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1914{
fac5e23e 1915 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d8cb5086
CW
1916 int ret;
1917
da494d7c
DV
1918 dev_priv->mm.shrinker_no_lock_stealing = true;
1919
d8cb5086
CW
1920 ret = drm_gem_create_mmap_offset(&obj->base);
1921 if (ret != -ENOSPC)
da494d7c 1922 goto out;
d8cb5086
CW
1923
1924 /* Badly fragmented mmap space? The only way we can recover
1925 * space is by destroying unwanted objects. We can't randomly release
1926 * mmap_offsets as userspace expects them to be persistent for the
1927 * lifetime of the objects. The closest we can is to release the
1928 * offsets on purgeable objects by truncating it and marking it purged,
1929 * which prevents userspace from ever using that object again.
1930 */
21ab4e74
CW
1931 i915_gem_shrink(dev_priv,
1932 obj->base.size >> PAGE_SHIFT,
1933 I915_SHRINK_BOUND |
1934 I915_SHRINK_UNBOUND |
1935 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1936 ret = drm_gem_create_mmap_offset(&obj->base);
1937 if (ret != -ENOSPC)
da494d7c 1938 goto out;
d8cb5086
CW
1939
1940 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1941 ret = drm_gem_create_mmap_offset(&obj->base);
1942out:
1943 dev_priv->mm.shrinker_no_lock_stealing = false;
1944
1945 return ret;
d8cb5086
CW
1946}
1947
1948static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1949{
d8cb5086
CW
1950 drm_gem_free_mmap_offset(&obj->base);
1951}
1952
da6b51d0 1953int
ff72145b
DA
1954i915_gem_mmap_gtt(struct drm_file *file,
1955 struct drm_device *dev,
da6b51d0 1956 uint32_t handle,
ff72145b 1957 uint64_t *offset)
de151cf6 1958{
05394f39 1959 struct drm_i915_gem_object *obj;
de151cf6
JB
1960 int ret;
1961
76c1dec1 1962 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1963 if (ret)
76c1dec1 1964 return ret;
de151cf6 1965
03ac0642
CW
1966 obj = i915_gem_object_lookup(file, handle);
1967 if (!obj) {
1d7cfea1
CW
1968 ret = -ENOENT;
1969 goto unlock;
1970 }
de151cf6 1971
05394f39 1972 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1973 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1974 ret = -EFAULT;
1d7cfea1 1975 goto out;
ab18282d
CW
1976 }
1977
d8cb5086
CW
1978 ret = i915_gem_object_create_mmap_offset(obj);
1979 if (ret)
1980 goto out;
de151cf6 1981
0de23977 1982 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1983
1d7cfea1 1984out:
f8c417cd 1985 i915_gem_object_put(obj);
1d7cfea1 1986unlock:
de151cf6 1987 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1988 return ret;
de151cf6
JB
1989}
1990
ff72145b
DA
1991/**
1992 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1993 * @dev: DRM device
1994 * @data: GTT mapping ioctl data
1995 * @file: GEM object info
1996 *
1997 * Simply returns the fake offset to userspace so it can mmap it.
1998 * The mmap call will end up in drm_gem_mmap(), which will set things
1999 * up so we can get faults in the handler above.
2000 *
2001 * The fault handler will take care of binding the object into the GTT
2002 * (since it may have been evicted to make room for something), allocating
2003 * a fence register, and mapping the appropriate aperture address into
2004 * userspace.
2005 */
2006int
2007i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2008 struct drm_file *file)
2009{
2010 struct drm_i915_gem_mmap_gtt *args = data;
2011
da6b51d0 2012 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2013}
2014
225067ee
DV
2015/* Immediately discard the backing storage */
2016static void
2017i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2018{
4d6294bf 2019 i915_gem_object_free_mmap_offset(obj);
1286ff73 2020
4d6294bf
CW
2021 if (obj->base.filp == NULL)
2022 return;
e5281ccd 2023
225067ee
DV
2024 /* Our goal here is to return as much of the memory as
2025 * is possible back to the system as we are called from OOM.
2026 * To do this we must instruct the shmfs to drop all of its
2027 * backing pages, *now*.
2028 */
5537252b 2029 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2030 obj->madv = __I915_MADV_PURGED;
2031}
e5281ccd 2032
5537252b
CW
2033/* Try to discard unwanted pages */
2034static void
2035i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2036{
5537252b
CW
2037 struct address_space *mapping;
2038
2039 switch (obj->madv) {
2040 case I915_MADV_DONTNEED:
2041 i915_gem_object_truncate(obj);
2042 case __I915_MADV_PURGED:
2043 return;
2044 }
2045
2046 if (obj->base.filp == NULL)
2047 return;
2048
2049 mapping = file_inode(obj->base.filp)->i_mapping,
2050 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2051}
2052
5cdf5881 2053static void
05394f39 2054i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2055{
85d1225e
DG
2056 struct sgt_iter sgt_iter;
2057 struct page *page;
90797e6d 2058 int ret;
1286ff73 2059
05394f39 2060 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2061
6c085a72 2062 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2063 if (WARN_ON(ret)) {
6c085a72
CW
2064 /* In the event of a disaster, abandon all caches and
2065 * hope for the best.
2066 */
2c22569b 2067 i915_gem_clflush_object(obj, true);
6c085a72
CW
2068 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2069 }
2070
e2273302
ID
2071 i915_gem_gtt_finish_object(obj);
2072
6dacfd2f 2073 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2074 i915_gem_object_save_bit_17_swizzle(obj);
2075
05394f39
CW
2076 if (obj->madv == I915_MADV_DONTNEED)
2077 obj->dirty = 0;
3ef94daa 2078
85d1225e 2079 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2080 if (obj->dirty)
9da3da66 2081 set_page_dirty(page);
3ef94daa 2082
05394f39 2083 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2084 mark_page_accessed(page);
3ef94daa 2085
09cbfeaf 2086 put_page(page);
3ef94daa 2087 }
05394f39 2088 obj->dirty = 0;
673a394b 2089
9da3da66
CW
2090 sg_free_table(obj->pages);
2091 kfree(obj->pages);
37e680a1 2092}
6c085a72 2093
dd624afd 2094int
37e680a1
CW
2095i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2096{
2097 const struct drm_i915_gem_object_ops *ops = obj->ops;
2098
2f745ad3 2099 if (obj->pages == NULL)
37e680a1
CW
2100 return 0;
2101
a5570178
CW
2102 if (obj->pages_pin_count)
2103 return -EBUSY;
2104
15717de2 2105 GEM_BUG_ON(obj->bind_count);
3e123027 2106
a2165e31
CW
2107 /* ->put_pages might need to allocate memory for the bit17 swizzle
2108 * array, hence protect them from being reaped by removing them from gtt
2109 * lists early. */
35c20a60 2110 list_del(&obj->global_list);
a2165e31 2111
0a798eb9 2112 if (obj->mapping) {
fb8621d3
CW
2113 if (is_vmalloc_addr(obj->mapping))
2114 vunmap(obj->mapping);
2115 else
2116 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2117 obj->mapping = NULL;
2118 }
2119
37e680a1 2120 ops->put_pages(obj);
05394f39 2121 obj->pages = NULL;
37e680a1 2122
5537252b 2123 i915_gem_object_invalidate(obj);
6c085a72
CW
2124
2125 return 0;
2126}
2127
37e680a1 2128static int
6c085a72 2129i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2130{
fac5e23e 2131 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
e5281ccd
CW
2132 int page_count, i;
2133 struct address_space *mapping;
9da3da66
CW
2134 struct sg_table *st;
2135 struct scatterlist *sg;
85d1225e 2136 struct sgt_iter sgt_iter;
e5281ccd 2137 struct page *page;
90797e6d 2138 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2139 int ret;
6c085a72 2140 gfp_t gfp;
e5281ccd 2141
6c085a72
CW
2142 /* Assert that the object is not currently in any GPU domain. As it
2143 * wasn't in the GTT, there shouldn't be any way it could have been in
2144 * a GPU cache
2145 */
2146 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2147 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2148
9da3da66
CW
2149 st = kmalloc(sizeof(*st), GFP_KERNEL);
2150 if (st == NULL)
2151 return -ENOMEM;
2152
05394f39 2153 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2154 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2155 kfree(st);
e5281ccd 2156 return -ENOMEM;
9da3da66 2157 }
e5281ccd 2158
9da3da66
CW
2159 /* Get the list of pages out of our struct file. They'll be pinned
2160 * at this point until we release them.
2161 *
2162 * Fail silently without starting the shrinker
2163 */
496ad9aa 2164 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2165 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2166 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2167 sg = st->sgl;
2168 st->nents = 0;
2169 for (i = 0; i < page_count; i++) {
6c085a72
CW
2170 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2171 if (IS_ERR(page)) {
21ab4e74
CW
2172 i915_gem_shrink(dev_priv,
2173 page_count,
2174 I915_SHRINK_BOUND |
2175 I915_SHRINK_UNBOUND |
2176 I915_SHRINK_PURGEABLE);
6c085a72
CW
2177 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2178 }
2179 if (IS_ERR(page)) {
2180 /* We've tried hard to allocate the memory by reaping
2181 * our own buffer, now let the real VM do its job and
2182 * go down in flames if truly OOM.
2183 */
6c085a72 2184 i915_gem_shrink_all(dev_priv);
f461d1be 2185 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2186 if (IS_ERR(page)) {
2187 ret = PTR_ERR(page);
6c085a72 2188 goto err_pages;
e2273302 2189 }
6c085a72 2190 }
426729dc
KRW
2191#ifdef CONFIG_SWIOTLB
2192 if (swiotlb_nr_tbl()) {
2193 st->nents++;
2194 sg_set_page(sg, page, PAGE_SIZE, 0);
2195 sg = sg_next(sg);
2196 continue;
2197 }
2198#endif
90797e6d
ID
2199 if (!i || page_to_pfn(page) != last_pfn + 1) {
2200 if (i)
2201 sg = sg_next(sg);
2202 st->nents++;
2203 sg_set_page(sg, page, PAGE_SIZE, 0);
2204 } else {
2205 sg->length += PAGE_SIZE;
2206 }
2207 last_pfn = page_to_pfn(page);
3bbbe706
DV
2208
2209 /* Check that the i965g/gm workaround works. */
2210 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2211 }
426729dc
KRW
2212#ifdef CONFIG_SWIOTLB
2213 if (!swiotlb_nr_tbl())
2214#endif
2215 sg_mark_end(sg);
74ce6b6c
CW
2216 obj->pages = st;
2217
e2273302
ID
2218 ret = i915_gem_gtt_prepare_object(obj);
2219 if (ret)
2220 goto err_pages;
2221
6dacfd2f 2222 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2223 i915_gem_object_do_bit_17_swizzle(obj);
2224
656bfa3a
DV
2225 if (obj->tiling_mode != I915_TILING_NONE &&
2226 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2227 i915_gem_object_pin_pages(obj);
2228
e5281ccd
CW
2229 return 0;
2230
2231err_pages:
90797e6d 2232 sg_mark_end(sg);
85d1225e
DG
2233 for_each_sgt_page(page, sgt_iter, st)
2234 put_page(page);
9da3da66
CW
2235 sg_free_table(st);
2236 kfree(st);
0820baf3
CW
2237
2238 /* shmemfs first checks if there is enough memory to allocate the page
2239 * and reports ENOSPC should there be insufficient, along with the usual
2240 * ENOMEM for a genuine allocation failure.
2241 *
2242 * We use ENOSPC in our driver to mean that we have run out of aperture
2243 * space and so want to translate the error from shmemfs back to our
2244 * usual understanding of ENOMEM.
2245 */
e2273302
ID
2246 if (ret == -ENOSPC)
2247 ret = -ENOMEM;
2248
2249 return ret;
673a394b
EA
2250}
2251
37e680a1
CW
2252/* Ensure that the associated pages are gathered from the backing storage
2253 * and pinned into our object. i915_gem_object_get_pages() may be called
2254 * multiple times before they are released by a single call to
2255 * i915_gem_object_put_pages() - once the pages are no longer referenced
2256 * either as a result of memory pressure (reaping pages under the shrinker)
2257 * or as the object is itself released.
2258 */
2259int
2260i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2261{
fac5e23e 2262 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
37e680a1
CW
2263 const struct drm_i915_gem_object_ops *ops = obj->ops;
2264 int ret;
2265
2f745ad3 2266 if (obj->pages)
37e680a1
CW
2267 return 0;
2268
43e28f09 2269 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2270 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2271 return -EFAULT;
43e28f09
CW
2272 }
2273
a5570178
CW
2274 BUG_ON(obj->pages_pin_count);
2275
37e680a1
CW
2276 ret = ops->get_pages(obj);
2277 if (ret)
2278 return ret;
2279
35c20a60 2280 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2281
2282 obj->get_page.sg = obj->pages->sgl;
2283 obj->get_page.last = 0;
2284
37e680a1 2285 return 0;
673a394b
EA
2286}
2287
dd6034c6
DG
2288/* The 'mapping' part of i915_gem_object_pin_map() below */
2289static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2290{
2291 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2292 struct sg_table *sgt = obj->pages;
85d1225e
DG
2293 struct sgt_iter sgt_iter;
2294 struct page *page;
b338fa47
DG
2295 struct page *stack_pages[32];
2296 struct page **pages = stack_pages;
dd6034c6
DG
2297 unsigned long i = 0;
2298 void *addr;
2299
2300 /* A single page can always be kmapped */
2301 if (n_pages == 1)
2302 return kmap(sg_page(sgt->sgl));
2303
b338fa47
DG
2304 if (n_pages > ARRAY_SIZE(stack_pages)) {
2305 /* Too big for stack -- allocate temporary array instead */
2306 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2307 if (!pages)
2308 return NULL;
2309 }
dd6034c6 2310
85d1225e
DG
2311 for_each_sgt_page(page, sgt_iter, sgt)
2312 pages[i++] = page;
dd6034c6
DG
2313
2314 /* Check that we have the expected number of pages */
2315 GEM_BUG_ON(i != n_pages);
2316
2317 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2318
b338fa47
DG
2319 if (pages != stack_pages)
2320 drm_free_large(pages);
dd6034c6
DG
2321
2322 return addr;
2323}
2324
2325/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2326void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2327{
2328 int ret;
2329
2330 lockdep_assert_held(&obj->base.dev->struct_mutex);
2331
2332 ret = i915_gem_object_get_pages(obj);
2333 if (ret)
2334 return ERR_PTR(ret);
2335
2336 i915_gem_object_pin_pages(obj);
2337
dd6034c6
DG
2338 if (!obj->mapping) {
2339 obj->mapping = i915_gem_object_map(obj);
2340 if (!obj->mapping) {
0a798eb9
CW
2341 i915_gem_object_unpin_pages(obj);
2342 return ERR_PTR(-ENOMEM);
2343 }
2344 }
2345
2346 return obj->mapping;
2347}
2348
b4716185 2349static void
fa545cbf
CW
2350i915_gem_object_retire__write(struct i915_gem_active *active,
2351 struct drm_i915_gem_request *request)
e2d05a8b 2352{
fa545cbf
CW
2353 struct drm_i915_gem_object *obj =
2354 container_of(active, struct drm_i915_gem_object, last_write);
b4716185 2355
de152b62 2356 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2357}
2358
caea7476 2359static void
fa545cbf
CW
2360i915_gem_object_retire__read(struct i915_gem_active *active,
2361 struct drm_i915_gem_request *request)
ce44b0ea 2362{
fa545cbf
CW
2363 int idx = request->engine->id;
2364 struct drm_i915_gem_object *obj =
2365 container_of(active, struct drm_i915_gem_object, last_read[idx]);
ce44b0ea 2366
fa545cbf 2367 GEM_BUG_ON((obj->active & (1 << idx)) == 0);
b4716185 2368
7e21d648 2369 obj->active &= ~(1 << idx);
b4716185
CW
2370 if (obj->active)
2371 return;
caea7476 2372
6c246959
CW
2373 /* Bump our place on the bound list to keep it roughly in LRU order
2374 * so that we don't steal from recently used but inactive objects
2375 * (unless we are forced to ofc!)
2376 */
b0decaf7
CW
2377 if (obj->bind_count)
2378 list_move_tail(&obj->global_list,
2379 &request->i915->mm.bound_list);
caea7476 2380
f8c417cd 2381 i915_gem_object_put(obj);
c8725f3d
CW
2382}
2383
7b4d3a16 2384static bool i915_context_is_banned(const struct i915_gem_context *ctx)
be62acb4 2385{
44e2c070 2386 unsigned long elapsed;
be62acb4 2387
44e2c070 2388 if (ctx->hang_stats.banned)
be62acb4
MK
2389 return true;
2390
7b4d3a16 2391 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
676fa572
CW
2392 if (ctx->hang_stats.ban_period_seconds &&
2393 elapsed <= ctx->hang_stats.ban_period_seconds) {
7b4d3a16
CW
2394 DRM_DEBUG("context hanging too fast, banning!\n");
2395 return true;
be62acb4
MK
2396 }
2397
2398 return false;
2399}
2400
7b4d3a16 2401static void i915_set_reset_status(struct i915_gem_context *ctx,
b6b0fac0 2402 const bool guilty)
aa60c664 2403{
7b4d3a16 2404 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
44e2c070
MK
2405
2406 if (guilty) {
7b4d3a16 2407 hs->banned = i915_context_is_banned(ctx);
44e2c070
MK
2408 hs->batch_active++;
2409 hs->guilty_ts = get_seconds();
2410 } else {
2411 hs->batch_pending++;
aa60c664
MK
2412 }
2413}
2414
8d9fc7fd 2415struct drm_i915_gem_request *
0bc40be8 2416i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2417{
4db080f9
CW
2418 struct drm_i915_gem_request *request;
2419
f69a02c9
CW
2420 /* We are called by the error capture and reset at a random
2421 * point in time. In particular, note that neither is crucially
2422 * ordered with an interrupt. After a hang, the GPU is dead and we
2423 * assume that no more writes can happen (we waited long enough for
2424 * all writes that were in transaction to be flushed) - adding an
2425 * extra delay for a recent interrupt is pointless. Hence, we do
2426 * not need an engine->irq_seqno_barrier() before the seqno reads.
2427 */
efdf7c06 2428 list_for_each_entry(request, &engine->request_list, link) {
f69a02c9 2429 if (i915_gem_request_completed(request))
4db080f9 2430 continue;
aa60c664 2431
b6b0fac0 2432 return request;
4db080f9 2433 }
b6b0fac0
MK
2434
2435 return NULL;
2436}
2437
7b4d3a16 2438static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
b6b0fac0
MK
2439{
2440 struct drm_i915_gem_request *request;
2441 bool ring_hung;
2442
0bc40be8 2443 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2444 if (request == NULL)
2445 return;
2446
0bc40be8 2447 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2448
7b4d3a16 2449 i915_set_reset_status(request->ctx, ring_hung);
efdf7c06 2450 list_for_each_entry_continue(request, &engine->request_list, link)
7b4d3a16 2451 i915_set_reset_status(request->ctx, false);
4db080f9 2452}
aa60c664 2453
7b4d3a16 2454static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
4db080f9 2455{
7e37f889 2456 struct intel_ring *ring;
608c1a52 2457
c4b0930b
CW
2458 /* Mark all pending requests as complete so that any concurrent
2459 * (lockless) lookup doesn't try and wait upon the request as we
2460 * reset it.
2461 */
7e37f889 2462 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
c4b0930b 2463
dcb4c12a
OM
2464 /*
2465 * Clear the execlists queue up before freeing the requests, as those
2466 * are the ones that keep the context and ringbuffer backing objects
2467 * pinned in place.
2468 */
dcb4c12a 2469
7de1691a 2470 if (i915.enable_execlists) {
27af5eea
TU
2471 /* Ensure irq handler finishes or is cancelled. */
2472 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2473
e39d42fa 2474 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2475 }
2476
1d62beea
BW
2477 /*
2478 * We must free the requests after all the corresponding objects have
2479 * been moved off active lists. Which is the same order as the normal
2480 * retire_requests function does. This is important if object hold
2481 * implicit references on things like e.g. ppgtt address spaces through
2482 * the request.
2483 */
05235c53 2484 if (!list_empty(&engine->request_list)) {
1d62beea
BW
2485 struct drm_i915_gem_request *request;
2486
05235c53
CW
2487 request = list_last_entry(&engine->request_list,
2488 struct drm_i915_gem_request,
efdf7c06 2489 link);
1d62beea 2490
05235c53 2491 i915_gem_request_retire_upto(request);
1d62beea 2492 }
608c1a52
CW
2493
2494 /* Having flushed all requests from all queues, we know that all
2495 * ringbuffers must now be empty. However, since we do not reclaim
2496 * all space when retiring the request (to prevent HEADs colliding
2497 * with rapid ringbuffer wraparound) the amount of available space
2498 * upon reset is less than when we start. Do one more pass over
2499 * all the ringbuffers to reset last_retired_head.
2500 */
7e37f889
CW
2501 list_for_each_entry(ring, &engine->buffers, link) {
2502 ring->last_retired_head = ring->tail;
2503 intel_ring_update_space(ring);
608c1a52 2504 }
2ed53a94 2505
b913b33c 2506 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
673a394b
EA
2507}
2508
069efc1d 2509void i915_gem_reset(struct drm_device *dev)
673a394b 2510{
fac5e23e 2511 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 2512 struct intel_engine_cs *engine;
673a394b 2513
4db080f9
CW
2514 /*
2515 * Before we free the objects from the requests, we need to inspect
2516 * them for finding the guilty party. As the requests only borrow
2517 * their reference to the objects, the inspection must be done first.
2518 */
b4ac5afc 2519 for_each_engine(engine, dev_priv)
7b4d3a16 2520 i915_gem_reset_engine_status(engine);
4db080f9 2521
b4ac5afc 2522 for_each_engine(engine, dev_priv)
7b4d3a16 2523 i915_gem_reset_engine_cleanup(engine);
b913b33c 2524 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
dfaae392 2525
acce9ffa
BW
2526 i915_gem_context_reset(dev);
2527
19b2dbde 2528 i915_gem_restore_fences(dev);
673a394b
EA
2529}
2530
75ef9da2 2531static void
673a394b
EA
2532i915_gem_retire_work_handler(struct work_struct *work)
2533{
b29c19b6 2534 struct drm_i915_private *dev_priv =
67d97da3 2535 container_of(work, typeof(*dev_priv), gt.retire_work.work);
91c8a326 2536 struct drm_device *dev = &dev_priv->drm;
673a394b 2537
891b48cf 2538 /* Come back later if the device is busy... */
b29c19b6 2539 if (mutex_trylock(&dev->struct_mutex)) {
67d97da3 2540 i915_gem_retire_requests(dev_priv);
b29c19b6 2541 mutex_unlock(&dev->struct_mutex);
673a394b 2542 }
67d97da3
CW
2543
2544 /* Keep the retire handler running until we are finally idle.
2545 * We do not need to do this test under locking as in the worst-case
2546 * we queue the retire worker once too often.
2547 */
c9615613
CW
2548 if (READ_ONCE(dev_priv->gt.awake)) {
2549 i915_queue_hangcheck(dev_priv);
67d97da3
CW
2550 queue_delayed_work(dev_priv->wq,
2551 &dev_priv->gt.retire_work,
bcb45086 2552 round_jiffies_up_relative(HZ));
c9615613 2553 }
b29c19b6 2554}
0a58705b 2555
b29c19b6
CW
2556static void
2557i915_gem_idle_work_handler(struct work_struct *work)
2558{
2559 struct drm_i915_private *dev_priv =
67d97da3 2560 container_of(work, typeof(*dev_priv), gt.idle_work.work);
91c8a326 2561 struct drm_device *dev = &dev_priv->drm;
b4ac5afc 2562 struct intel_engine_cs *engine;
67d97da3
CW
2563 unsigned int stuck_engines;
2564 bool rearm_hangcheck;
2565
2566 if (!READ_ONCE(dev_priv->gt.awake))
2567 return;
2568
2569 if (READ_ONCE(dev_priv->gt.active_engines))
2570 return;
2571
2572 rearm_hangcheck =
2573 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2574
2575 if (!mutex_trylock(&dev->struct_mutex)) {
2576 /* Currently busy, come back later */
2577 mod_delayed_work(dev_priv->wq,
2578 &dev_priv->gt.idle_work,
2579 msecs_to_jiffies(50));
2580 goto out_rearm;
2581 }
2582
2583 if (dev_priv->gt.active_engines)
2584 goto out_unlock;
b29c19b6 2585
b4ac5afc 2586 for_each_engine(engine, dev_priv)
67d97da3 2587 i915_gem_batch_pool_fini(&engine->batch_pool);
35c94185 2588
67d97da3
CW
2589 GEM_BUG_ON(!dev_priv->gt.awake);
2590 dev_priv->gt.awake = false;
2591 rearm_hangcheck = false;
30ecad77 2592
2529d570
CW
2593 /* As we have disabled hangcheck, we need to unstick any waiters still
2594 * hanging around. However, as we may be racing against the interrupt
2595 * handler or the waiters themselves, we skip enabling the fake-irq.
2596 */
67d97da3 2597 stuck_engines = intel_kick_waiters(dev_priv);
2529d570
CW
2598 if (unlikely(stuck_engines))
2599 DRM_DEBUG_DRIVER("kicked stuck waiters (%x)...missed irq?\n",
2600 stuck_engines);
35c94185 2601
67d97da3
CW
2602 if (INTEL_GEN(dev_priv) >= 6)
2603 gen6_rps_idle(dev_priv);
2604 intel_runtime_pm_put(dev_priv);
2605out_unlock:
2606 mutex_unlock(&dev->struct_mutex);
b29c19b6 2607
67d97da3
CW
2608out_rearm:
2609 if (rearm_hangcheck) {
2610 GEM_BUG_ON(!dev_priv->gt.awake);
2611 i915_queue_hangcheck(dev_priv);
35c94185 2612 }
673a394b
EA
2613}
2614
b1f788c6
CW
2615void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2616{
2617 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2618 struct drm_i915_file_private *fpriv = file->driver_priv;
2619 struct i915_vma *vma, *vn;
2620
2621 mutex_lock(&obj->base.dev->struct_mutex);
2622 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2623 if (vma->vm->file == fpriv)
2624 i915_vma_close(vma);
2625 mutex_unlock(&obj->base.dev->struct_mutex);
2626}
2627
23ba4fd0
BW
2628/**
2629 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
14bb2c11
TU
2630 * @dev: drm device pointer
2631 * @data: ioctl data blob
2632 * @file: drm file pointer
23ba4fd0
BW
2633 *
2634 * Returns 0 if successful, else an error is returned with the remaining time in
2635 * the timeout parameter.
2636 * -ETIME: object is still busy after timeout
2637 * -ERESTARTSYS: signal interrupted the wait
2638 * -ENONENT: object doesn't exist
2639 * Also possible, but rare:
2640 * -EAGAIN: GPU wedged
2641 * -ENOMEM: damn
2642 * -ENODEV: Internal IRQ fail
2643 * -E?: The add request failed
2644 *
2645 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2646 * non-zero timeout parameter the wait ioctl will wait for the given number of
2647 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2648 * without holding struct_mutex the object may become re-busied before this
2649 * function completes. A similar but shorter * race condition exists in the busy
2650 * ioctl
2651 */
2652int
2653i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2654{
2655 struct drm_i915_gem_wait *args = data;
2656 struct drm_i915_gem_object *obj;
27c01aae 2657 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185
CW
2658 int i, n = 0;
2659 int ret;
23ba4fd0 2660
11b5d511
DV
2661 if (args->flags != 0)
2662 return -EINVAL;
2663
23ba4fd0
BW
2664 ret = i915_mutex_lock_interruptible(dev);
2665 if (ret)
2666 return ret;
2667
03ac0642
CW
2668 obj = i915_gem_object_lookup(file, args->bo_handle);
2669 if (!obj) {
23ba4fd0
BW
2670 mutex_unlock(&dev->struct_mutex);
2671 return -ENOENT;
2672 }
2673
b4716185 2674 if (!obj->active)
97b2a6a1 2675 goto out;
23ba4fd0 2676
666796da 2677 for (i = 0; i < I915_NUM_ENGINES; i++) {
27c01aae 2678 struct drm_i915_gem_request *req;
b4716185 2679
d72d908b
CW
2680 req = i915_gem_active_get(&obj->last_read[i],
2681 &obj->base.dev->struct_mutex);
27c01aae
CW
2682 if (req)
2683 requests[n++] = req;
b4716185
CW
2684 }
2685
21c310f2
CW
2686out:
2687 i915_gem_object_put(obj);
23ba4fd0
BW
2688 mutex_unlock(&dev->struct_mutex);
2689
b4716185
CW
2690 for (i = 0; i < n; i++) {
2691 if (ret == 0)
776f3236
CW
2692 ret = i915_wait_request(requests[i], true,
2693 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2694 to_rps_client(file));
27c01aae 2695 i915_gem_request_put(requests[i]);
b4716185 2696 }
ff865885 2697 return ret;
23ba4fd0
BW
2698}
2699
b4716185 2700static int
fa545cbf 2701__i915_gem_object_sync(struct drm_i915_gem_request *to,
8e637178 2702 struct drm_i915_gem_request *from)
b4716185 2703{
b4716185
CW
2704 int ret;
2705
8e637178 2706 if (to->engine == from->engine)
b4716185
CW
2707 return 0;
2708
39df9190 2709 if (!i915.semaphores) {
776f3236
CW
2710 ret = i915_wait_request(from,
2711 from->i915->mm.interruptible,
2712 NULL,
2713 NO_WAITBOOST);
b4716185
CW
2714 if (ret)
2715 return ret;
b4716185 2716 } else {
8e637178 2717 int idx = intel_engine_sync_index(from->engine, to->engine);
ddf07be7 2718 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
b4716185
CW
2719 return 0;
2720
8e637178 2721 trace_i915_gem_ring_sync_to(to, from);
ddf07be7 2722 ret = to->engine->semaphore.sync_to(to, from);
b4716185
CW
2723 if (ret)
2724 return ret;
2725
ddf07be7 2726 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
b4716185
CW
2727 }
2728
2729 return 0;
2730}
2731
5816d648
BW
2732/**
2733 * i915_gem_object_sync - sync an object to a ring.
2734 *
2735 * @obj: object which may be in use on another ring.
8e637178 2736 * @to: request we are wishing to use
5816d648
BW
2737 *
2738 * This code is meant to abstract object synchronization with the GPU.
8e637178
CW
2739 * Conceptually we serialise writes between engines inside the GPU.
2740 * We only allow one engine to write into a buffer at any time, but
2741 * multiple readers. To ensure each has a coherent view of memory, we must:
b4716185
CW
2742 *
2743 * - If there is an outstanding write request to the object, the new
2744 * request must wait for it to complete (either CPU or in hw, requests
2745 * on the same ring will be naturally ordered).
2746 *
2747 * - If we are a write request (pending_write_domain is set), the new
2748 * request must wait for outstanding read requests to complete.
5816d648
BW
2749 *
2750 * Returns 0 if successful, else propagates up the lower layer error.
2751 */
2911a35b
BW
2752int
2753i915_gem_object_sync(struct drm_i915_gem_object *obj,
8e637178 2754 struct drm_i915_gem_request *to)
2911a35b 2755{
8cac6f6c
CW
2756 struct i915_gem_active *active;
2757 unsigned long active_mask;
2758 int idx;
41c52415 2759
8cac6f6c 2760 lockdep_assert_held(&obj->base.dev->struct_mutex);
2911a35b 2761
8cac6f6c
CW
2762 active_mask = obj->active;
2763 if (!active_mask)
2764 return 0;
27c01aae 2765
8cac6f6c
CW
2766 if (obj->base.pending_write_domain) {
2767 active = obj->last_read;
b4716185 2768 } else {
8cac6f6c
CW
2769 active_mask = 1;
2770 active = &obj->last_write;
b4716185 2771 }
8cac6f6c
CW
2772
2773 for_each_active(active_mask, idx) {
2774 struct drm_i915_gem_request *request;
2775 int ret;
2776
2777 request = i915_gem_active_peek(&active[idx],
2778 &obj->base.dev->struct_mutex);
2779 if (!request)
2780 continue;
2781
fa545cbf 2782 ret = __i915_gem_object_sync(to, request);
b4716185
CW
2783 if (ret)
2784 return ret;
2785 }
2911a35b 2786
b4716185 2787 return 0;
2911a35b
BW
2788}
2789
b5ffc9bc
CW
2790static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2791{
2792 u32 old_write_domain, old_read_domains;
2793
b5ffc9bc
CW
2794 /* Force a pagefault for domain tracking on next user access */
2795 i915_gem_release_mmap(obj);
2796
b97c3d9c
KP
2797 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2798 return;
2799
b5ffc9bc
CW
2800 old_read_domains = obj->base.read_domains;
2801 old_write_domain = obj->base.write_domain;
2802
2803 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2804 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2805
2806 trace_i915_gem_object_change_domain(obj,
2807 old_read_domains,
2808 old_write_domain);
2809}
2810
8ef8561f
CW
2811static void __i915_vma_iounmap(struct i915_vma *vma)
2812{
20dfbde4 2813 GEM_BUG_ON(i915_vma_is_pinned(vma));
8ef8561f
CW
2814
2815 if (vma->iomap == NULL)
2816 return;
2817
2818 io_mapping_unmap(vma->iomap);
2819 vma->iomap = NULL;
2820}
2821
df0e9a28 2822int i915_vma_unbind(struct i915_vma *vma)
673a394b 2823{
07fe0b12 2824 struct drm_i915_gem_object *obj = vma->obj;
b0decaf7 2825 unsigned long active;
43e28f09 2826 int ret;
673a394b 2827
b0decaf7
CW
2828 /* First wait upon any activity as retiring the request may
2829 * have side-effects such as unpinning or even unbinding this vma.
2830 */
2831 active = i915_vma_get_active(vma);
df0e9a28 2832 if (active) {
b0decaf7
CW
2833 int idx;
2834
b1f788c6
CW
2835 /* When a closed VMA is retired, it is unbound - eek.
2836 * In order to prevent it from being recursively closed,
2837 * take a pin on the vma so that the second unbind is
2838 * aborted.
2839 */
20dfbde4 2840 __i915_vma_pin(vma);
b1f788c6 2841
b0decaf7
CW
2842 for_each_active(active, idx) {
2843 ret = i915_gem_active_retire(&vma->last_read[idx],
2844 &vma->vm->dev->struct_mutex);
2845 if (ret)
b1f788c6 2846 break;
b0decaf7
CW
2847 }
2848
20dfbde4 2849 __i915_vma_unpin(vma);
b1f788c6
CW
2850 if (ret)
2851 return ret;
2852
b0decaf7
CW
2853 GEM_BUG_ON(i915_vma_is_active(vma));
2854 }
2855
20dfbde4 2856 if (i915_vma_is_pinned(vma))
b0decaf7
CW
2857 return -EBUSY;
2858
b1f788c6
CW
2859 if (!drm_mm_node_allocated(&vma->node))
2860 goto destroy;
433544bd 2861
15717de2
CW
2862 GEM_BUG_ON(obj->bind_count == 0);
2863 GEM_BUG_ON(!obj->pages);
c4670ad0 2864
3272db53
CW
2865 if (i915_vma_is_ggtt(vma) &&
2866 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 2867 i915_gem_object_finish_gtt(obj);
5323fd04 2868
8b1bc9b4
DV
2869 /* release the fence reg _after_ flushing */
2870 ret = i915_gem_object_put_fence(obj);
2871 if (ret)
2872 return ret;
8ef8561f
CW
2873
2874 __i915_vma_iounmap(vma);
8b1bc9b4 2875 }
96b47b65 2876
50e046b6
CW
2877 if (likely(!vma->vm->closed)) {
2878 trace_i915_vma_unbind(vma);
2879 vma->vm->unbind_vma(vma);
2880 }
3272db53 2881 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
6f65e29a 2882
50e046b6
CW
2883 drm_mm_remove_node(&vma->node);
2884 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2885
3272db53 2886 if (i915_vma_is_ggtt(vma)) {
fe14d5f4
TU
2887 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
2888 obj->map_and_fenceable = false;
2889 } else if (vma->ggtt_view.pages) {
2890 sg_free_table(vma->ggtt_view.pages);
2891 kfree(vma->ggtt_view.pages);
fe14d5f4 2892 }
016a65a3 2893 vma->ggtt_view.pages = NULL;
fe14d5f4 2894 }
673a394b 2895
2f633156 2896 /* Since the unbound list is global, only move to that list if
b93dab6e 2897 * no more VMAs exist. */
15717de2
CW
2898 if (--obj->bind_count == 0)
2899 list_move_tail(&obj->global_list,
2900 &to_i915(obj->base.dev)->mm.unbound_list);
673a394b 2901
70903c3b
CW
2902 /* And finally now the object is completely decoupled from this vma,
2903 * we can drop its hold on the backing storage and allow it to be
2904 * reaped by the shrinker.
2905 */
2906 i915_gem_object_unpin_pages(obj);
2907
b1f788c6 2908destroy:
3272db53 2909 if (unlikely(i915_vma_is_closed(vma)))
b1f788c6
CW
2910 i915_vma_destroy(vma);
2911
88241785 2912 return 0;
54cf91dc
CW
2913}
2914
6e5a5beb 2915int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
4df2faf4 2916{
e2f80391 2917 struct intel_engine_cs *engine;
b4ac5afc 2918 int ret;
4df2faf4 2919
91c8a326 2920 lockdep_assert_held(&dev_priv->drm.struct_mutex);
6e5a5beb 2921
b4ac5afc 2922 for_each_engine(engine, dev_priv) {
62e63007
CW
2923 if (engine->last_context == NULL)
2924 continue;
2925
666796da 2926 ret = intel_engine_idle(engine);
1ec14ad3
CW
2927 if (ret)
2928 return ret;
2929 }
4df2faf4 2930
8a1a49f9 2931 return 0;
4df2faf4
DV
2932}
2933
4144f9b5 2934static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
2935 unsigned long cache_level)
2936{
4144f9b5 2937 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
2938 struct drm_mm_node *other;
2939
4144f9b5
CW
2940 /*
2941 * On some machines we have to be careful when putting differing types
2942 * of snoopable memory together to avoid the prefetcher crossing memory
2943 * domains and dying. During vm initialisation, we decide whether or not
2944 * these constraints apply and set the drm_mm.color_adjust
2945 * appropriately.
42d6ab48 2946 */
4144f9b5 2947 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
2948 return true;
2949
c6cfb325 2950 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
2951 return true;
2952
2953 if (list_empty(&gtt_space->node_list))
2954 return true;
2955
2956 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2957 if (other->allocated && !other->hole_follows && other->color != cache_level)
2958 return false;
2959
2960 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2961 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2962 return false;
2963
2964 return true;
2965}
2966
673a394b 2967/**
59bfa124
CW
2968 * i915_vma_insert - finds a slot for the vma in its address space
2969 * @vma: the vma
91b2db6f 2970 * @size: requested size in bytes (can be larger than the VMA)
59bfa124 2971 * @alignment: required alignment
14bb2c11 2972 * @flags: mask of PIN_* flags to use
59bfa124
CW
2973 *
2974 * First we try to allocate some free space that meets the requirements for
2975 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2976 * preferrably the oldest idle entry to make room for the new VMA.
2977 *
2978 * Returns:
2979 * 0 on success, negative error code otherwise.
673a394b 2980 */
59bfa124
CW
2981static int
2982i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
673a394b 2983{
59bfa124
CW
2984 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
2985 struct drm_i915_gem_object *obj = vma->obj;
de180033
CW
2986 u64 start, end;
2987 u64 min_alignment;
07f73f69 2988 int ret;
673a394b 2989
3272db53 2990 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
59bfa124 2991 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
de180033
CW
2992
2993 size = max(size, vma->size);
2994 if (flags & PIN_MAPPABLE)
2995 size = i915_gem_get_ggtt_size(dev_priv, size, obj->tiling_mode);
2996
2997 min_alignment =
2998 i915_gem_get_ggtt_alignment(dev_priv, size, obj->tiling_mode,
2999 flags & PIN_MAPPABLE);
3000 if (alignment == 0)
3001 alignment = min_alignment;
3002 if (alignment & (min_alignment - 1)) {
3003 DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
3004 alignment, min_alignment);
59bfa124 3005 return -EINVAL;
91e6711e 3006 }
a00b10c3 3007
101b506a 3008 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
de180033
CW
3009
3010 end = vma->vm->total;
101b506a 3011 if (flags & PIN_MAPPABLE)
91b2db6f 3012 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
101b506a 3013 if (flags & PIN_ZONE_4G)
48ea1e32 3014 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3015
91e6711e
JL
3016 /* If binding the object/GGTT view requires more space than the entire
3017 * aperture has, reject it early before evicting everything in a vain
3018 * attempt to find space.
654fc607 3019 */
91e6711e 3020 if (size > end) {
de180033 3021 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
91b2db6f 3022 size, obj->base.size,
1ec9e26d 3023 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3024 end);
59bfa124 3025 return -E2BIG;
654fc607
CW
3026 }
3027
37e680a1 3028 ret = i915_gem_object_get_pages(obj);
6c085a72 3029 if (ret)
59bfa124 3030 return ret;
6c085a72 3031
fbdda6fb
CW
3032 i915_gem_object_pin_pages(obj);
3033
506a8e87 3034 if (flags & PIN_OFFSET_FIXED) {
59bfa124 3035 u64 offset = flags & PIN_OFFSET_MASK;
de180033 3036 if (offset & (alignment - 1) || offset > end - size) {
506a8e87 3037 ret = -EINVAL;
de180033 3038 goto err_unpin;
506a8e87 3039 }
de180033 3040
506a8e87
CW
3041 vma->node.start = offset;
3042 vma->node.size = size;
3043 vma->node.color = obj->cache_level;
de180033 3044 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
506a8e87
CW
3045 if (ret) {
3046 ret = i915_gem_evict_for_vma(vma);
3047 if (ret == 0)
de180033
CW
3048 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3049 if (ret)
3050 goto err_unpin;
506a8e87 3051 }
101b506a 3052 } else {
de180033
CW
3053 u32 search_flag, alloc_flag;
3054
506a8e87
CW
3055 if (flags & PIN_HIGH) {
3056 search_flag = DRM_MM_SEARCH_BELOW;
3057 alloc_flag = DRM_MM_CREATE_TOP;
3058 } else {
3059 search_flag = DRM_MM_SEARCH_DEFAULT;
3060 alloc_flag = DRM_MM_CREATE_DEFAULT;
3061 }
101b506a 3062
954c4691
CW
3063 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3064 * so we know that we always have a minimum alignment of 4096.
3065 * The drm_mm range manager is optimised to return results
3066 * with zero alignment, so where possible use the optimal
3067 * path.
3068 */
3069 if (alignment <= 4096)
3070 alignment = 0;
3071
0a9ae0d7 3072search_free:
de180033
CW
3073 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3074 &vma->node,
506a8e87
CW
3075 size, alignment,
3076 obj->cache_level,
3077 start, end,
3078 search_flag,
3079 alloc_flag);
3080 if (ret) {
de180033 3081 ret = i915_gem_evict_something(vma->vm, size, alignment,
506a8e87
CW
3082 obj->cache_level,
3083 start, end,
3084 flags);
3085 if (ret == 0)
3086 goto search_free;
9731129c 3087
de180033 3088 goto err_unpin;
506a8e87 3089 }
673a394b 3090 }
37508589 3091 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
673a394b 3092
35c20a60 3093 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
de180033 3094 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
15717de2 3095 obj->bind_count++;
bf1a1092 3096
59bfa124 3097 return 0;
2f633156 3098
bc6bc15b 3099err_unpin:
2f633156 3100 i915_gem_object_unpin_pages(obj);
59bfa124 3101 return ret;
673a394b
EA
3102}
3103
000433b6 3104bool
2c22569b
CW
3105i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3106 bool force)
673a394b 3107{
673a394b
EA
3108 /* If we don't have a page list set up, then we're not pinned
3109 * to GPU, and we can ignore the cache flush because it'll happen
3110 * again at bind time.
3111 */
05394f39 3112 if (obj->pages == NULL)
000433b6 3113 return false;
673a394b 3114
769ce464
ID
3115 /*
3116 * Stolen memory is always coherent with the GPU as it is explicitly
3117 * marked as wc by the system, or the system is cache-coherent.
3118 */
6a2c4232 3119 if (obj->stolen || obj->phys_handle)
000433b6 3120 return false;
769ce464 3121
9c23f7fc
CW
3122 /* If the GPU is snooping the contents of the CPU cache,
3123 * we do not need to manually clear the CPU cache lines. However,
3124 * the caches are only snooped when the render cache is
3125 * flushed/invalidated. As we always have to emit invalidations
3126 * and flushes when moving into and out of the RENDER domain, correct
3127 * snooping behaviour occurs naturally as the result of our domain
3128 * tracking.
3129 */
0f71979a
CW
3130 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3131 obj->cache_dirty = true;
000433b6 3132 return false;
0f71979a 3133 }
9c23f7fc 3134
1c5d22f7 3135 trace_i915_gem_object_clflush(obj);
9da3da66 3136 drm_clflush_sg(obj->pages);
0f71979a 3137 obj->cache_dirty = false;
000433b6
CW
3138
3139 return true;
e47c68e9
EA
3140}
3141
3142/** Flushes the GTT write domain for the object if it's dirty. */
3143static void
05394f39 3144i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3145{
1c5d22f7
CW
3146 uint32_t old_write_domain;
3147
05394f39 3148 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3149 return;
3150
63256ec5 3151 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3152 * to it immediately go to main memory as far as we know, so there's
3153 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3154 *
3155 * However, we do have to enforce the order so that all writes through
3156 * the GTT land before any writes to the device, such as updates to
3157 * the GATT itself.
e47c68e9 3158 */
63256ec5
CW
3159 wmb();
3160
05394f39
CW
3161 old_write_domain = obj->base.write_domain;
3162 obj->base.write_domain = 0;
1c5d22f7 3163
de152b62 3164 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3165
1c5d22f7 3166 trace_i915_gem_object_change_domain(obj,
05394f39 3167 obj->base.read_domains,
1c5d22f7 3168 old_write_domain);
e47c68e9
EA
3169}
3170
3171/** Flushes the CPU write domain for the object if it's dirty. */
3172static void
e62b59e4 3173i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3174{
1c5d22f7 3175 uint32_t old_write_domain;
e47c68e9 3176
05394f39 3177 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3178 return;
3179
e62b59e4 3180 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3181 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3182
05394f39
CW
3183 old_write_domain = obj->base.write_domain;
3184 obj->base.write_domain = 0;
1c5d22f7 3185
de152b62 3186 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3187
1c5d22f7 3188 trace_i915_gem_object_change_domain(obj,
05394f39 3189 obj->base.read_domains,
1c5d22f7 3190 old_write_domain);
e47c68e9
EA
3191}
3192
2ef7eeaa
EA
3193/**
3194 * Moves a single object to the GTT read, and possibly write domain.
14bb2c11
TU
3195 * @obj: object to act on
3196 * @write: ask for write access or read only
2ef7eeaa
EA
3197 *
3198 * This function returns when the move is complete, including waiting on
3199 * flushes to occur.
3200 */
79e53945 3201int
2021746e 3202i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3203{
1c5d22f7 3204 uint32_t old_write_domain, old_read_domains;
43566ded 3205 struct i915_vma *vma;
e47c68e9 3206 int ret;
2ef7eeaa 3207
0201f1ec 3208 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3209 if (ret)
3210 return ret;
3211
c13d87ea
CW
3212 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3213 return 0;
3214
43566ded
CW
3215 /* Flush and acquire obj->pages so that we are coherent through
3216 * direct access in memory with previous cached writes through
3217 * shmemfs and that our cache domain tracking remains valid.
3218 * For example, if the obj->filp was moved to swap without us
3219 * being notified and releasing the pages, we would mistakenly
3220 * continue to assume that the obj remained out of the CPU cached
3221 * domain.
3222 */
3223 ret = i915_gem_object_get_pages(obj);
3224 if (ret)
3225 return ret;
3226
e62b59e4 3227 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3228
d0a57789
CW
3229 /* Serialise direct access to this object with the barriers for
3230 * coherent writes from the GPU, by effectively invalidating the
3231 * GTT domain upon first access.
3232 */
3233 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3234 mb();
3235
05394f39
CW
3236 old_write_domain = obj->base.write_domain;
3237 old_read_domains = obj->base.read_domains;
1c5d22f7 3238
e47c68e9
EA
3239 /* It should now be out of any other write domains, and we can update
3240 * the domain values for our changes.
3241 */
05394f39
CW
3242 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3243 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3244 if (write) {
05394f39
CW
3245 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3246 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3247 obj->dirty = 1;
2ef7eeaa
EA
3248 }
3249
1c5d22f7
CW
3250 trace_i915_gem_object_change_domain(obj,
3251 old_read_domains,
3252 old_write_domain);
3253
8325a09d 3254 /* And bump the LRU for this access */
43566ded 3255 vma = i915_gem_obj_to_ggtt(obj);
b0decaf7
CW
3256 if (vma &&
3257 drm_mm_node_allocated(&vma->node) &&
3258 !i915_vma_is_active(vma))
3259 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
8325a09d 3260
e47c68e9
EA
3261 return 0;
3262}
3263
ef55f92a
CW
3264/**
3265 * Changes the cache-level of an object across all VMA.
14bb2c11
TU
3266 * @obj: object to act on
3267 * @cache_level: new cache level to set for the object
ef55f92a
CW
3268 *
3269 * After this function returns, the object will be in the new cache-level
3270 * across all GTT and the contents of the backing storage will be coherent,
3271 * with respect to the new cache-level. In order to keep the backing storage
3272 * coherent for all users, we only allow a single cache level to be set
3273 * globally on the object and prevent it from being changed whilst the
3274 * hardware is reading from the object. That is if the object is currently
3275 * on the scanout it will be set to uncached (or equivalent display
3276 * cache coherency) and all non-MOCS GPU access will also be uncached so
3277 * that all direct access to the scanout remains coherent.
3278 */
e4ffd173
CW
3279int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3280 enum i915_cache_level cache_level)
3281{
aa653a68 3282 struct i915_vma *vma;
ed75a55b 3283 int ret = 0;
e4ffd173
CW
3284
3285 if (obj->cache_level == cache_level)
ed75a55b 3286 goto out;
e4ffd173 3287
ef55f92a
CW
3288 /* Inspect the list of currently bound VMA and unbind any that would
3289 * be invalid given the new cache-level. This is principally to
3290 * catch the issue of the CS prefetch crossing page boundaries and
3291 * reading an invalid PTE on older architectures.
3292 */
aa653a68
CW
3293restart:
3294 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3295 if (!drm_mm_node_allocated(&vma->node))
3296 continue;
3297
20dfbde4 3298 if (i915_vma_is_pinned(vma)) {
ef55f92a
CW
3299 DRM_DEBUG("can not change the cache level of pinned objects\n");
3300 return -EBUSY;
3301 }
3302
aa653a68
CW
3303 if (i915_gem_valid_gtt_space(vma, cache_level))
3304 continue;
3305
3306 ret = i915_vma_unbind(vma);
3307 if (ret)
3308 return ret;
3309
3310 /* As unbinding may affect other elements in the
3311 * obj->vma_list (due to side-effects from retiring
3312 * an active vma), play safe and restart the iterator.
3313 */
3314 goto restart;
42d6ab48
CW
3315 }
3316
ef55f92a
CW
3317 /* We can reuse the existing drm_mm nodes but need to change the
3318 * cache-level on the PTE. We could simply unbind them all and
3319 * rebind with the correct cache-level on next use. However since
3320 * we already have a valid slot, dma mapping, pages etc, we may as
3321 * rewrite the PTE in the belief that doing so tramples upon less
3322 * state and so involves less work.
3323 */
15717de2 3324 if (obj->bind_count) {
ef55f92a
CW
3325 /* Before we change the PTE, the GPU must not be accessing it.
3326 * If we wait upon the object, we know that all the bound
3327 * VMA are no longer active.
3328 */
2e2f351d 3329 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3330 if (ret)
3331 return ret;
3332
aa653a68 3333 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
ef55f92a
CW
3334 /* Access to snoopable pages through the GTT is
3335 * incoherent and on some machines causes a hard
3336 * lockup. Relinquish the CPU mmaping to force
3337 * userspace to refault in the pages and we can
3338 * then double check if the GTT mapping is still
3339 * valid for that pointer access.
3340 */
3341 i915_gem_release_mmap(obj);
3342
3343 /* As we no longer need a fence for GTT access,
3344 * we can relinquish it now (and so prevent having
3345 * to steal a fence from someone else on the next
3346 * fence request). Note GPU activity would have
3347 * dropped the fence as all snoopable access is
3348 * supposed to be linear.
3349 */
e4ffd173
CW
3350 ret = i915_gem_object_put_fence(obj);
3351 if (ret)
3352 return ret;
ef55f92a
CW
3353 } else {
3354 /* We either have incoherent backing store and
3355 * so no GTT access or the architecture is fully
3356 * coherent. In such cases, existing GTT mmaps
3357 * ignore the cache bit in the PTE and we can
3358 * rewrite it without confusing the GPU or having
3359 * to force userspace to fault back in its mmaps.
3360 */
e4ffd173
CW
3361 }
3362
1c7f4bca 3363 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3364 if (!drm_mm_node_allocated(&vma->node))
3365 continue;
3366
3367 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3368 if (ret)
3369 return ret;
3370 }
e4ffd173
CW
3371 }
3372
1c7f4bca 3373 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3374 vma->node.color = cache_level;
3375 obj->cache_level = cache_level;
3376
ed75a55b 3377out:
ef55f92a
CW
3378 /* Flush the dirty CPU caches to the backing storage so that the
3379 * object is now coherent at its new cache level (with respect
3380 * to the access domain).
3381 */
b50a5371 3382 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
0f71979a 3383 if (i915_gem_clflush_object(obj, true))
c033666a 3384 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3385 }
3386
e4ffd173
CW
3387 return 0;
3388}
3389
199adf40
BW
3390int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3391 struct drm_file *file)
e6994aee 3392{
199adf40 3393 struct drm_i915_gem_caching *args = data;
e6994aee 3394 struct drm_i915_gem_object *obj;
e6994aee 3395
03ac0642
CW
3396 obj = i915_gem_object_lookup(file, args->handle);
3397 if (!obj)
432be69d 3398 return -ENOENT;
e6994aee 3399
651d794f
CW
3400 switch (obj->cache_level) {
3401 case I915_CACHE_LLC:
3402 case I915_CACHE_L3_LLC:
3403 args->caching = I915_CACHING_CACHED;
3404 break;
3405
4257d3ba
CW
3406 case I915_CACHE_WT:
3407 args->caching = I915_CACHING_DISPLAY;
3408 break;
3409
651d794f
CW
3410 default:
3411 args->caching = I915_CACHING_NONE;
3412 break;
3413 }
e6994aee 3414
34911fd3 3415 i915_gem_object_put_unlocked(obj);
432be69d 3416 return 0;
e6994aee
CW
3417}
3418
199adf40
BW
3419int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3420 struct drm_file *file)
e6994aee 3421{
fac5e23e 3422 struct drm_i915_private *dev_priv = to_i915(dev);
199adf40 3423 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3424 struct drm_i915_gem_object *obj;
3425 enum i915_cache_level level;
3426 int ret;
3427
199adf40
BW
3428 switch (args->caching) {
3429 case I915_CACHING_NONE:
e6994aee
CW
3430 level = I915_CACHE_NONE;
3431 break;
199adf40 3432 case I915_CACHING_CACHED:
e5756c10
ID
3433 /*
3434 * Due to a HW issue on BXT A stepping, GPU stores via a
3435 * snooped mapping may leave stale data in a corresponding CPU
3436 * cacheline, whereas normally such cachelines would get
3437 * invalidated.
3438 */
ca377809 3439 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3440 return -ENODEV;
3441
e6994aee
CW
3442 level = I915_CACHE_LLC;
3443 break;
4257d3ba
CW
3444 case I915_CACHING_DISPLAY:
3445 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3446 break;
e6994aee
CW
3447 default:
3448 return -EINVAL;
3449 }
3450
fd0fe6ac
ID
3451 intel_runtime_pm_get(dev_priv);
3452
3bc2913e
BW
3453 ret = i915_mutex_lock_interruptible(dev);
3454 if (ret)
fd0fe6ac 3455 goto rpm_put;
3bc2913e 3456
03ac0642
CW
3457 obj = i915_gem_object_lookup(file, args->handle);
3458 if (!obj) {
e6994aee
CW
3459 ret = -ENOENT;
3460 goto unlock;
3461 }
3462
3463 ret = i915_gem_object_set_cache_level(obj, level);
3464
f8c417cd 3465 i915_gem_object_put(obj);
e6994aee
CW
3466unlock:
3467 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
3468rpm_put:
3469 intel_runtime_pm_put(dev_priv);
3470
e6994aee
CW
3471 return ret;
3472}
3473
b9241ea3 3474/*
2da3b9b9
CW
3475 * Prepare buffer for display plane (scanout, cursors, etc).
3476 * Can be called from an uninterruptible phase (modesetting) and allows
3477 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3478 */
3479int
2da3b9b9
CW
3480i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3481 u32 alignment,
e6617330 3482 const struct i915_ggtt_view *view)
b9241ea3 3483{
2da3b9b9 3484 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
3485 int ret;
3486
cc98b413
CW
3487 /* Mark the pin_display early so that we account for the
3488 * display coherency whilst setting up the cache domains.
3489 */
8a0c39b1 3490 obj->pin_display++;
cc98b413 3491
a7ef0640
EA
3492 /* The display engine is not coherent with the LLC cache on gen6. As
3493 * a result, we make sure that the pinning that is about to occur is
3494 * done with uncached PTEs. This is lowest common denominator for all
3495 * chipsets.
3496 *
3497 * However for gen6+, we could do better by using the GFDT bit instead
3498 * of uncaching, which would allow us to flush all the LLC-cached data
3499 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3500 */
651d794f
CW
3501 ret = i915_gem_object_set_cache_level(obj,
3502 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3503 if (ret)
cc98b413 3504 goto err_unpin_display;
a7ef0640 3505
2da3b9b9
CW
3506 /* As the user may map the buffer once pinned in the display plane
3507 * (e.g. libkms for the bootup splash), we have to ensure that we
3508 * always use map_and_fenceable for all scanout buffers.
3509 */
91b2db6f 3510 ret = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
50470bb0
TU
3511 view->type == I915_GGTT_VIEW_NORMAL ?
3512 PIN_MAPPABLE : 0);
2da3b9b9 3513 if (ret)
cc98b413 3514 goto err_unpin_display;
2da3b9b9 3515
e62b59e4 3516 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 3517
2da3b9b9 3518 old_write_domain = obj->base.write_domain;
05394f39 3519 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3520
3521 /* It should now be out of any other write domains, and we can update
3522 * the domain values for our changes.
3523 */
e5f1d962 3524 obj->base.write_domain = 0;
05394f39 3525 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
3526
3527 trace_i915_gem_object_change_domain(obj,
3528 old_read_domains,
2da3b9b9 3529 old_write_domain);
b9241ea3
ZW
3530
3531 return 0;
cc98b413
CW
3532
3533err_unpin_display:
8a0c39b1 3534 obj->pin_display--;
cc98b413
CW
3535 return ret;
3536}
3537
3538void
e6617330
TU
3539i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3540 const struct i915_ggtt_view *view)
cc98b413 3541{
8a0c39b1
TU
3542 if (WARN_ON(obj->pin_display == 0))
3543 return;
3544
e6617330
TU
3545 i915_gem_object_ggtt_unpin_view(obj, view);
3546
8a0c39b1 3547 obj->pin_display--;
b9241ea3
ZW
3548}
3549
e47c68e9
EA
3550/**
3551 * Moves a single object to the CPU read, and possibly write domain.
14bb2c11
TU
3552 * @obj: object to act on
3553 * @write: requesting write or read-only access
e47c68e9
EA
3554 *
3555 * This function returns when the move is complete, including waiting on
3556 * flushes to occur.
3557 */
dabdfe02 3558int
919926ae 3559i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 3560{
1c5d22f7 3561 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
3562 int ret;
3563
0201f1ec 3564 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3565 if (ret)
3566 return ret;
3567
c13d87ea
CW
3568 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3569 return 0;
3570
e47c68e9 3571 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 3572
05394f39
CW
3573 old_write_domain = obj->base.write_domain;
3574 old_read_domains = obj->base.read_domains;
1c5d22f7 3575
e47c68e9 3576 /* Flush the CPU cache if it's still invalid. */
05394f39 3577 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 3578 i915_gem_clflush_object(obj, false);
2ef7eeaa 3579
05394f39 3580 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
3581 }
3582
3583 /* It should now be out of any other write domains, and we can update
3584 * the domain values for our changes.
3585 */
05394f39 3586 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
3587
3588 /* If we're writing through the CPU, then the GPU read domains will
3589 * need to be invalidated at next use.
3590 */
3591 if (write) {
05394f39
CW
3592 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3593 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 3594 }
2ef7eeaa 3595
1c5d22f7
CW
3596 trace_i915_gem_object_change_domain(obj,
3597 old_read_domains,
3598 old_write_domain);
3599
2ef7eeaa
EA
3600 return 0;
3601}
3602
673a394b
EA
3603/* Throttle our rendering by waiting until the ring has completed our requests
3604 * emitted over 20 msec ago.
3605 *
b962442e
EA
3606 * Note that if we were to use the current jiffies each time around the loop,
3607 * we wouldn't escape the function with any frames outstanding if the time to
3608 * render a frame was over 20ms.
3609 *
673a394b
EA
3610 * This should get us reasonable parallelism between CPU and GPU but also
3611 * relatively low latency when blocking on a particular request to finish.
3612 */
40a5f0de 3613static int
f787a5f5 3614i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3615{
fac5e23e 3616 struct drm_i915_private *dev_priv = to_i915(dev);
f787a5f5 3617 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 3618 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 3619 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 3620 int ret;
93533c29 3621
308887aa
DV
3622 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3623 if (ret)
3624 return ret;
3625
f4457ae7
CW
3626 /* ABI: return -EIO if already wedged */
3627 if (i915_terminally_wedged(&dev_priv->gpu_error))
3628 return -EIO;
e110e8d6 3629
1c25595f 3630 spin_lock(&file_priv->mm.lock);
f787a5f5 3631 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3632 if (time_after_eq(request->emitted_jiffies, recent_enough))
3633 break;
40a5f0de 3634
fcfa423c
JH
3635 /*
3636 * Note that the request might not have been submitted yet.
3637 * In which case emitted_jiffies will be zero.
3638 */
3639 if (!request->emitted_jiffies)
3640 continue;
3641
54fb2411 3642 target = request;
b962442e 3643 }
ff865885 3644 if (target)
e8a261ea 3645 i915_gem_request_get(target);
1c25595f 3646 spin_unlock(&file_priv->mm.lock);
40a5f0de 3647
54fb2411 3648 if (target == NULL)
f787a5f5 3649 return 0;
2bc43b5c 3650
776f3236 3651 ret = i915_wait_request(target, true, NULL, NULL);
e8a261ea 3652 i915_gem_request_put(target);
ff865885 3653
40a5f0de
EA
3654 return ret;
3655}
3656
d23db88c 3657static bool
91b2db6f 3658i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
d23db88c
CW
3659{
3660 struct drm_i915_gem_object *obj = vma->obj;
3661
59bfa124
CW
3662 if (!drm_mm_node_allocated(&vma->node))
3663 return false;
3664
91b2db6f
CW
3665 if (vma->node.size < size)
3666 return true;
3667
3668 if (alignment && vma->node.start & (alignment - 1))
d23db88c
CW
3669 return true;
3670
3671 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3672 return true;
3673
3674 if (flags & PIN_OFFSET_BIAS &&
3675 vma->node.start < (flags & PIN_OFFSET_MASK))
3676 return true;
3677
506a8e87
CW
3678 if (flags & PIN_OFFSET_FIXED &&
3679 vma->node.start != (flags & PIN_OFFSET_MASK))
3680 return true;
3681
d23db88c
CW
3682 return false;
3683}
3684
d0710abb
CW
3685void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3686{
3687 struct drm_i915_gem_object *obj = vma->obj;
a9f1481f 3688 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
d0710abb
CW
3689 bool mappable, fenceable;
3690 u32 fence_size, fence_alignment;
3691
a9f1481f 3692 fence_size = i915_gem_get_ggtt_size(dev_priv,
ad1a7d20
CW
3693 obj->base.size,
3694 obj->tiling_mode);
a9f1481f 3695 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
ad1a7d20
CW
3696 obj->base.size,
3697 obj->tiling_mode,
3698 true);
d0710abb
CW
3699
3700 fenceable = (vma->node.size == fence_size &&
3701 (vma->node.start & (fence_alignment - 1)) == 0);
3702
3703 mappable = (vma->node.start + fence_size <=
a9f1481f 3704 dev_priv->ggtt.mappable_end);
d0710abb
CW
3705
3706 obj->map_and_fenceable = mappable && fenceable;
3707}
3708
305bc234
CW
3709int __i915_vma_do_pin(struct i915_vma *vma,
3710 u64 size, u64 alignment, u64 flags)
673a394b 3711{
305bc234 3712 unsigned int bound = vma->flags;
673a394b
EA
3713 int ret;
3714
59bfa124 3715 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3272db53 3716 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
d7f46fc4 3717
305bc234
CW
3718 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3719 ret = -EBUSY;
3720 goto err;
3721 }
ac0c6b5a 3722
de895082 3723 if ((bound & I915_VMA_BIND_MASK) == 0) {
59bfa124
CW
3724 ret = i915_vma_insert(vma, size, alignment, flags);
3725 if (ret)
3726 goto err;
fe14d5f4 3727 }
74898d7e 3728
59bfa124 3729 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3b16525c 3730 if (ret)
59bfa124 3731 goto err;
3b16525c 3732
3272db53 3733 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
d0710abb 3734 __i915_vma_set_map_and_fenceable(vma);
ef79e17c 3735
3b16525c 3736 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
673a394b 3737 return 0;
673a394b 3738
59bfa124
CW
3739err:
3740 __i915_vma_unpin(vma);
3741 return ret;
ec7adb6e
JL
3742}
3743
3744int
3745i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3746 const struct i915_ggtt_view *view,
91b2db6f 3747 u64 size,
2ffffd0f
CW
3748 u64 alignment,
3749 u64 flags)
ec7adb6e 3750{
59bfa124
CW
3751 struct i915_vma *vma;
3752 int ret;
72e96d64 3753
de895082
CW
3754 if (!view)
3755 view = &i915_ggtt_view_normal;
ec7adb6e 3756
59bfa124
CW
3757 vma = i915_gem_obj_lookup_or_create_ggtt_vma(obj, view);
3758 if (IS_ERR(vma))
3759 return PTR_ERR(vma);
3760
3761 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3762 if (flags & PIN_NONBLOCK &&
3763 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3764 return -ENOSPC;
3765
3766 WARN(i915_vma_is_pinned(vma),
3767 "bo is already pinned in ggtt with incorrect alignment:"
3768 " offset=%08x %08x, req.alignment=%llx, req.map_and_fenceable=%d,"
3769 " obj->map_and_fenceable=%d\n",
3770 upper_32_bits(vma->node.start),
3771 lower_32_bits(vma->node.start),
3772 alignment,
3773 !!(flags & PIN_MAPPABLE),
3774 obj->map_and_fenceable);
3775 ret = i915_vma_unbind(vma);
3776 if (ret)
3777 return ret;
3778 }
3779
3780 return i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
3781}
3782
673a394b 3783void
e6617330
TU
3784i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3785 const struct i915_ggtt_view *view)
673a394b 3786{
de895082 3787 i915_vma_unpin(i915_gem_obj_to_ggtt_view(obj, view));
673a394b
EA
3788}
3789
673a394b
EA
3790int
3791i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 3792 struct drm_file *file)
673a394b
EA
3793{
3794 struct drm_i915_gem_busy *args = data;
05394f39 3795 struct drm_i915_gem_object *obj;
30dbf0c0
CW
3796 int ret;
3797
76c1dec1 3798 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 3799 if (ret)
76c1dec1 3800 return ret;
673a394b 3801
03ac0642
CW
3802 obj = i915_gem_object_lookup(file, args->handle);
3803 if (!obj) {
1d7cfea1
CW
3804 ret = -ENOENT;
3805 goto unlock;
673a394b 3806 }
d1b851fc 3807
0be555b6
CW
3808 /* Count all active objects as busy, even if they are currently not used
3809 * by the gpu. Users of this interface expect objects to eventually
21c310f2 3810 * become non-busy without any further actions.
c4de0a5d 3811 */
426960be
CW
3812 args->busy = 0;
3813 if (obj->active) {
27c01aae 3814 struct drm_i915_gem_request *req;
426960be
CW
3815 int i;
3816
666796da 3817 for (i = 0; i < I915_NUM_ENGINES; i++) {
d72d908b
CW
3818 req = i915_gem_active_peek(&obj->last_read[i],
3819 &obj->base.dev->struct_mutex);
426960be 3820 if (req)
4a570db5 3821 args->busy |= 1 << (16 + req->engine->exec_id);
426960be 3822 }
d72d908b
CW
3823 req = i915_gem_active_peek(&obj->last_write,
3824 &obj->base.dev->struct_mutex);
27c01aae
CW
3825 if (req)
3826 args->busy |= req->engine->exec_id;
426960be 3827 }
673a394b 3828
f8c417cd 3829 i915_gem_object_put(obj);
1d7cfea1 3830unlock:
673a394b 3831 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3832 return ret;
673a394b
EA
3833}
3834
3835int
3836i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3837 struct drm_file *file_priv)
3838{
0206e353 3839 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
3840}
3841
3ef94daa
CW
3842int
3843i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3844 struct drm_file *file_priv)
3845{
fac5e23e 3846 struct drm_i915_private *dev_priv = to_i915(dev);
3ef94daa 3847 struct drm_i915_gem_madvise *args = data;
05394f39 3848 struct drm_i915_gem_object *obj;
76c1dec1 3849 int ret;
3ef94daa
CW
3850
3851 switch (args->madv) {
3852 case I915_MADV_DONTNEED:
3853 case I915_MADV_WILLNEED:
3854 break;
3855 default:
3856 return -EINVAL;
3857 }
3858
1d7cfea1
CW
3859 ret = i915_mutex_lock_interruptible(dev);
3860 if (ret)
3861 return ret;
3862
03ac0642
CW
3863 obj = i915_gem_object_lookup(file_priv, args->handle);
3864 if (!obj) {
1d7cfea1
CW
3865 ret = -ENOENT;
3866 goto unlock;
3ef94daa 3867 }
3ef94daa 3868
d7f46fc4 3869 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
3870 ret = -EINVAL;
3871 goto out;
3ef94daa
CW
3872 }
3873
656bfa3a
DV
3874 if (obj->pages &&
3875 obj->tiling_mode != I915_TILING_NONE &&
3876 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3877 if (obj->madv == I915_MADV_WILLNEED)
3878 i915_gem_object_unpin_pages(obj);
3879 if (args->madv == I915_MADV_WILLNEED)
3880 i915_gem_object_pin_pages(obj);
3881 }
3882
05394f39
CW
3883 if (obj->madv != __I915_MADV_PURGED)
3884 obj->madv = args->madv;
3ef94daa 3885
6c085a72 3886 /* if the object is no longer attached, discard its backing storage */
be6a0376 3887 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
3888 i915_gem_object_truncate(obj);
3889
05394f39 3890 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 3891
1d7cfea1 3892out:
f8c417cd 3893 i915_gem_object_put(obj);
1d7cfea1 3894unlock:
3ef94daa 3895 mutex_unlock(&dev->struct_mutex);
1d7cfea1 3896 return ret;
3ef94daa
CW
3897}
3898
37e680a1
CW
3899void i915_gem_object_init(struct drm_i915_gem_object *obj,
3900 const struct drm_i915_gem_object_ops *ops)
0327d6ba 3901{
b4716185
CW
3902 int i;
3903
35c20a60 3904 INIT_LIST_HEAD(&obj->global_list);
666796da 3905 for (i = 0; i < I915_NUM_ENGINES; i++)
fa545cbf
CW
3906 init_request_active(&obj->last_read[i],
3907 i915_gem_object_retire__read);
3908 init_request_active(&obj->last_write,
3909 i915_gem_object_retire__write);
3910 init_request_active(&obj->last_fence, NULL);
b25cb2f8 3911 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 3912 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 3913 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 3914
37e680a1
CW
3915 obj->ops = ops;
3916
0327d6ba
CW
3917 obj->fence_reg = I915_FENCE_REG_NONE;
3918 obj->madv = I915_MADV_WILLNEED;
0327d6ba 3919
f19ec8cb 3920 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
0327d6ba
CW
3921}
3922
37e680a1 3923static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 3924 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
3925 .get_pages = i915_gem_object_get_pages_gtt,
3926 .put_pages = i915_gem_object_put_pages_gtt,
3927};
3928
d37cd8a8 3929struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 3930 size_t size)
ac52bc56 3931{
c397b908 3932 struct drm_i915_gem_object *obj;
5949eac4 3933 struct address_space *mapping;
1a240d4d 3934 gfp_t mask;
fe3db79b 3935 int ret;
ac52bc56 3936
42dcedd4 3937 obj = i915_gem_object_alloc(dev);
c397b908 3938 if (obj == NULL)
fe3db79b 3939 return ERR_PTR(-ENOMEM);
673a394b 3940
fe3db79b
CW
3941 ret = drm_gem_object_init(dev, &obj->base, size);
3942 if (ret)
3943 goto fail;
673a394b 3944
bed1ea95
CW
3945 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3946 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3947 /* 965gm cannot relocate objects above 4GiB. */
3948 mask &= ~__GFP_HIGHMEM;
3949 mask |= __GFP_DMA32;
3950 }
3951
496ad9aa 3952 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 3953 mapping_set_gfp_mask(mapping, mask);
5949eac4 3954
37e680a1 3955 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 3956
c397b908
DV
3957 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3958 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 3959
3d29b842
ED
3960 if (HAS_LLC(dev)) {
3961 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
3962 * cache) for about a 10% performance improvement
3963 * compared to uncached. Graphics requests other than
3964 * display scanout are coherent with the CPU in
3965 * accessing this cache. This means in this mode we
3966 * don't need to clflush on the CPU side, and on the
3967 * GPU side we only need to flush internal caches to
3968 * get data visible to the CPU.
3969 *
3970 * However, we maintain the display planes as UC, and so
3971 * need to rebind when first used as such.
3972 */
3973 obj->cache_level = I915_CACHE_LLC;
3974 } else
3975 obj->cache_level = I915_CACHE_NONE;
3976
d861e338
DV
3977 trace_i915_gem_object_create(obj);
3978
05394f39 3979 return obj;
fe3db79b
CW
3980
3981fail:
3982 i915_gem_object_free(obj);
3983
3984 return ERR_PTR(ret);
c397b908
DV
3985}
3986
340fbd8c
CW
3987static bool discard_backing_storage(struct drm_i915_gem_object *obj)
3988{
3989 /* If we are the last user of the backing storage (be it shmemfs
3990 * pages or stolen etc), we know that the pages are going to be
3991 * immediately released. In this case, we can then skip copying
3992 * back the contents from the GPU.
3993 */
3994
3995 if (obj->madv != I915_MADV_WILLNEED)
3996 return false;
3997
3998 if (obj->base.filp == NULL)
3999 return true;
4000
4001 /* At first glance, this looks racy, but then again so would be
4002 * userspace racing mmap against close. However, the first external
4003 * reference to the filp can only be obtained through the
4004 * i915_gem_mmap_ioctl() which safeguards us against the user
4005 * acquiring such a reference whilst we are in the middle of
4006 * freeing the object.
4007 */
4008 return atomic_long_read(&obj->base.filp->f_count) == 1;
4009}
4010
1488fc08 4011void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4012{
1488fc08 4013 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4014 struct drm_device *dev = obj->base.dev;
fac5e23e 4015 struct drm_i915_private *dev_priv = to_i915(dev);
07fe0b12 4016 struct i915_vma *vma, *next;
673a394b 4017
f65c9168
PZ
4018 intel_runtime_pm_get(dev_priv);
4019
26e12f89
CW
4020 trace_i915_gem_object_destroy(obj);
4021
b1f788c6
CW
4022 /* All file-owned VMA should have been released by this point through
4023 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4024 * However, the object may also be bound into the global GTT (e.g.
4025 * older GPUs without per-process support, or for direct access through
4026 * the GTT either for the user or for scanout). Those VMA still need to
4027 * unbound now.
4028 */
1c7f4bca 4029 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3272db53 4030 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
b1f788c6 4031 GEM_BUG_ON(i915_vma_is_active(vma));
3272db53 4032 vma->flags &= ~I915_VMA_PIN_MASK;
b1f788c6 4033 i915_vma_close(vma);
1488fc08 4034 }
15717de2 4035 GEM_BUG_ON(obj->bind_count);
1488fc08 4036
1d64ae71
BW
4037 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4038 * before progressing. */
4039 if (obj->stolen)
4040 i915_gem_object_unpin_pages(obj);
4041
a071fa00
DV
4042 WARN_ON(obj->frontbuffer_bits);
4043
656bfa3a
DV
4044 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4045 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4046 obj->tiling_mode != I915_TILING_NONE)
4047 i915_gem_object_unpin_pages(obj);
4048
401c29f6
BW
4049 if (WARN_ON(obj->pages_pin_count))
4050 obj->pages_pin_count = 0;
340fbd8c 4051 if (discard_backing_storage(obj))
5537252b 4052 obj->madv = I915_MADV_DONTNEED;
37e680a1 4053 i915_gem_object_put_pages(obj);
de151cf6 4054
9da3da66
CW
4055 BUG_ON(obj->pages);
4056
2f745ad3
CW
4057 if (obj->base.import_attach)
4058 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4059
5cc9ed4b
CW
4060 if (obj->ops->release)
4061 obj->ops->release(obj);
4062
05394f39
CW
4063 drm_gem_object_release(&obj->base);
4064 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4065
05394f39 4066 kfree(obj->bit_17);
42dcedd4 4067 i915_gem_object_free(obj);
f65c9168
PZ
4068
4069 intel_runtime_pm_put(dev_priv);
673a394b
EA
4070}
4071
ec7adb6e
JL
4072struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4073 struct i915_address_space *vm)
e656a6cb
DV
4074{
4075 struct i915_vma *vma;
1c7f4bca 4076 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4077 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4078 vma->vm == vm)
e656a6cb 4079 return vma;
ec7adb6e
JL
4080 }
4081 return NULL;
4082}
4083
4084struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4085 const struct i915_ggtt_view *view)
4086{
ec7adb6e 4087 struct i915_vma *vma;
e656a6cb 4088
598b9ec8 4089 GEM_BUG_ON(!view);
ec7adb6e 4090
1c7f4bca 4091 list_for_each_entry(vma, &obj->vma_list, obj_link)
3272db53
CW
4092 if (i915_vma_is_ggtt(vma) &&
4093 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4094 return vma;
e656a6cb
DV
4095 return NULL;
4096}
4097
e3efda49 4098static void
117897f4 4099i915_gem_stop_engines(struct drm_device *dev)
e3efda49 4100{
fac5e23e 4101 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4102 struct intel_engine_cs *engine;
e3efda49 4103
b4ac5afc 4104 for_each_engine(engine, dev_priv)
117897f4 4105 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4106}
4107
29105ccc 4108int
45c5f202 4109i915_gem_suspend(struct drm_device *dev)
29105ccc 4110{
fac5e23e 4111 struct drm_i915_private *dev_priv = to_i915(dev);
45c5f202 4112 int ret = 0;
28dfe52a 4113
54b4f68f
CW
4114 intel_suspend_gt_powersave(dev_priv);
4115
45c5f202 4116 mutex_lock(&dev->struct_mutex);
5ab57c70
CW
4117
4118 /* We have to flush all the executing contexts to main memory so
4119 * that they can saved in the hibernation image. To ensure the last
4120 * context image is coherent, we have to switch away from it. That
4121 * leaves the dev_priv->kernel_context still active when
4122 * we actually suspend, and its image in memory may not match the GPU
4123 * state. Fortunately, the kernel_context is disposable and we do
4124 * not rely on its state.
4125 */
4126 ret = i915_gem_switch_to_kernel_context(dev_priv);
4127 if (ret)
4128 goto err;
4129
6e5a5beb 4130 ret = i915_gem_wait_for_idle(dev_priv);
f7403347 4131 if (ret)
45c5f202 4132 goto err;
f7403347 4133
c033666a 4134 i915_gem_retire_requests(dev_priv);
673a394b 4135
5ab57c70
CW
4136 /* Note that rather than stopping the engines, all we have to do
4137 * is assert that every RING_HEAD == RING_TAIL (all execution complete)
4138 * and similar for all logical context images (to ensure they are
4139 * all ready for hibernation).
4140 */
117897f4 4141 i915_gem_stop_engines(dev);
b2e862d0 4142 i915_gem_context_lost(dev_priv);
45c5f202
CW
4143 mutex_unlock(&dev->struct_mutex);
4144
737b1506 4145 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
67d97da3
CW
4146 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4147 flush_delayed_work(&dev_priv->gt.idle_work);
29105ccc 4148
bdcf120b
CW
4149 /* Assert that we sucessfully flushed all the work and
4150 * reset the GPU back to its idle, low power state.
4151 */
67d97da3 4152 WARN_ON(dev_priv->gt.awake);
bdcf120b 4153
673a394b 4154 return 0;
45c5f202
CW
4155
4156err:
4157 mutex_unlock(&dev->struct_mutex);
4158 return ret;
673a394b
EA
4159}
4160
5ab57c70
CW
4161void i915_gem_resume(struct drm_device *dev)
4162{
4163 struct drm_i915_private *dev_priv = to_i915(dev);
4164
4165 mutex_lock(&dev->struct_mutex);
4166 i915_gem_restore_gtt_mappings(dev);
4167
4168 /* As we didn't flush the kernel context before suspend, we cannot
4169 * guarantee that the context image is complete. So let's just reset
4170 * it and start again.
4171 */
4172 if (i915.enable_execlists)
4173 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4174
4175 mutex_unlock(&dev->struct_mutex);
4176}
4177
f691e2f4
DV
4178void i915_gem_init_swizzling(struct drm_device *dev)
4179{
fac5e23e 4180 struct drm_i915_private *dev_priv = to_i915(dev);
f691e2f4 4181
11782b02 4182 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4183 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4184 return;
4185
4186 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4187 DISP_TILE_SURFACE_SWIZZLING);
4188
11782b02
DV
4189 if (IS_GEN5(dev))
4190 return;
4191
f691e2f4
DV
4192 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4193 if (IS_GEN6(dev))
6b26c86d 4194 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4195 else if (IS_GEN7(dev))
6b26c86d 4196 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4197 else if (IS_GEN8(dev))
4198 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4199 else
4200 BUG();
f691e2f4 4201}
e21af88d 4202
81e7f200
VS
4203static void init_unused_ring(struct drm_device *dev, u32 base)
4204{
fac5e23e 4205 struct drm_i915_private *dev_priv = to_i915(dev);
81e7f200
VS
4206
4207 I915_WRITE(RING_CTL(base), 0);
4208 I915_WRITE(RING_HEAD(base), 0);
4209 I915_WRITE(RING_TAIL(base), 0);
4210 I915_WRITE(RING_START(base), 0);
4211}
4212
4213static void init_unused_rings(struct drm_device *dev)
4214{
4215 if (IS_I830(dev)) {
4216 init_unused_ring(dev, PRB1_BASE);
4217 init_unused_ring(dev, SRB0_BASE);
4218 init_unused_ring(dev, SRB1_BASE);
4219 init_unused_ring(dev, SRB2_BASE);
4220 init_unused_ring(dev, SRB3_BASE);
4221 } else if (IS_GEN2(dev)) {
4222 init_unused_ring(dev, SRB0_BASE);
4223 init_unused_ring(dev, SRB1_BASE);
4224 } else if (IS_GEN3(dev)) {
4225 init_unused_ring(dev, PRB1_BASE);
4226 init_unused_ring(dev, PRB2_BASE);
4227 }
4228}
4229
4fc7c971
BW
4230int
4231i915_gem_init_hw(struct drm_device *dev)
4232{
fac5e23e 4233 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4234 struct intel_engine_cs *engine;
d200cda6 4235 int ret;
4fc7c971 4236
5e4f5189
CW
4237 /* Double layer security blanket, see i915_gem_init() */
4238 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4239
3accaf7e 4240 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4241 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4242
0bf21347
VS
4243 if (IS_HASWELL(dev))
4244 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4245 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4246
88a2b2a3 4247 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4248 if (IS_IVYBRIDGE(dev)) {
4249 u32 temp = I915_READ(GEN7_MSG_CTL);
4250 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4251 I915_WRITE(GEN7_MSG_CTL, temp);
4252 } else if (INTEL_INFO(dev)->gen >= 7) {
4253 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4254 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4255 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4256 }
88a2b2a3
BW
4257 }
4258
4fc7c971
BW
4259 i915_gem_init_swizzling(dev);
4260
d5abdfda
DV
4261 /*
4262 * At least 830 can leave some of the unused rings
4263 * "active" (ie. head != tail) after resume which
4264 * will prevent c3 entry. Makes sure all unused rings
4265 * are totally idle.
4266 */
4267 init_unused_rings(dev);
4268
ed54c1a1 4269 BUG_ON(!dev_priv->kernel_context);
90638cc1 4270
4ad2fd88
JH
4271 ret = i915_ppgtt_init_hw(dev);
4272 if (ret) {
4273 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4274 goto out;
4275 }
4276
4277 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4278 for_each_engine(engine, dev_priv) {
e2f80391 4279 ret = engine->init_hw(engine);
35a57ffb 4280 if (ret)
5e4f5189 4281 goto out;
35a57ffb 4282 }
99433931 4283
0ccdacf6
PA
4284 intel_mocs_init_l3cc_table(dev);
4285
33a732f4 4286 /* We can't enable contexts until all firmware is loaded */
e556f7c1
DG
4287 ret = intel_guc_setup(dev);
4288 if (ret)
4289 goto out;
33a732f4 4290
5e4f5189
CW
4291out:
4292 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4293 return ret;
8187a2b7
ZN
4294}
4295
39df9190
CW
4296bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4297{
4298 if (INTEL_INFO(dev_priv)->gen < 6)
4299 return false;
4300
4301 /* TODO: make semaphores and Execlists play nicely together */
4302 if (i915.enable_execlists)
4303 return false;
4304
4305 if (value >= 0)
4306 return value;
4307
4308#ifdef CONFIG_INTEL_IOMMU
4309 /* Enable semaphores on SNB when IO remapping is off */
4310 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4311 return false;
4312#endif
4313
4314 return true;
4315}
4316
1070a42b
CW
4317int i915_gem_init(struct drm_device *dev)
4318{
fac5e23e 4319 struct drm_i915_private *dev_priv = to_i915(dev);
1070a42b
CW
4320 int ret;
4321
1070a42b 4322 mutex_lock(&dev->struct_mutex);
d62b4892 4323
a83014d3 4324 if (!i915.enable_execlists) {
7e37f889
CW
4325 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4326 dev_priv->gt.stop_engine = intel_engine_stop;
454afebd 4327 } else {
117897f4
TU
4328 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4329 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4330 }
4331
5e4f5189
CW
4332 /* This is just a security blanket to placate dragons.
4333 * On some systems, we very sporadically observe that the first TLBs
4334 * used by the CS may be stale, despite us poking the TLB reset. If
4335 * we hold the forcewake during initialisation these problems
4336 * just magically go away.
4337 */
4338 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4339
72778cb2 4340 i915_gem_init_userptr(dev_priv);
f6b9d5ca
CW
4341
4342 ret = i915_gem_init_ggtt(dev_priv);
4343 if (ret)
4344 goto out_unlock;
d62b4892 4345
2fa48d8d 4346 ret = i915_gem_context_init(dev);
7bcc3777
JN
4347 if (ret)
4348 goto out_unlock;
2fa48d8d 4349
8b3e2d36 4350 ret = intel_engines_init(dev);
35a57ffb 4351 if (ret)
7bcc3777 4352 goto out_unlock;
2fa48d8d 4353
1070a42b 4354 ret = i915_gem_init_hw(dev);
60990320 4355 if (ret == -EIO) {
7e21d648 4356 /* Allow engine initialisation to fail by marking the GPU as
60990320
CW
4357 * wedged. But we only want to do this where the GPU is angry,
4358 * for all other failure, such as an allocation failure, bail.
4359 */
4360 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4361 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4362 ret = 0;
1070a42b 4363 }
7bcc3777
JN
4364
4365out_unlock:
5e4f5189 4366 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4367 mutex_unlock(&dev->struct_mutex);
1070a42b 4368
60990320 4369 return ret;
1070a42b
CW
4370}
4371
8187a2b7 4372void
117897f4 4373i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4374{
fac5e23e 4375 struct drm_i915_private *dev_priv = to_i915(dev);
e2f80391 4376 struct intel_engine_cs *engine;
8187a2b7 4377
b4ac5afc 4378 for_each_engine(engine, dev_priv)
117897f4 4379 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4380}
4381
64193406 4382static void
666796da 4383init_engine_lists(struct intel_engine_cs *engine)
64193406 4384{
0bc40be8 4385 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4386}
4387
40ae4e16
ID
4388void
4389i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4390{
91c8a326 4391 struct drm_device *dev = &dev_priv->drm;
40ae4e16
ID
4392
4393 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4394 !IS_CHERRYVIEW(dev_priv))
4395 dev_priv->num_fence_regs = 32;
4396 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4397 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4398 dev_priv->num_fence_regs = 16;
4399 else
4400 dev_priv->num_fence_regs = 8;
4401
c033666a 4402 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4403 dev_priv->num_fence_regs =
4404 I915_READ(vgtif_reg(avail_rs.fence_num));
4405
4406 /* Initialize fence registers to zero */
4407 i915_gem_restore_fences(dev);
4408
4409 i915_gem_detect_bit_6_swizzle(dev);
4410}
4411
673a394b 4412void
d64aa096 4413i915_gem_load_init(struct drm_device *dev)
673a394b 4414{
fac5e23e 4415 struct drm_i915_private *dev_priv = to_i915(dev);
42dcedd4
CW
4416 int i;
4417
efab6d8d 4418 dev_priv->objects =
42dcedd4
CW
4419 kmem_cache_create("i915_gem_object",
4420 sizeof(struct drm_i915_gem_object), 0,
4421 SLAB_HWCACHE_ALIGN,
4422 NULL);
e20d2ab7
CW
4423 dev_priv->vmas =
4424 kmem_cache_create("i915_gem_vma",
4425 sizeof(struct i915_vma), 0,
4426 SLAB_HWCACHE_ALIGN,
4427 NULL);
efab6d8d
CW
4428 dev_priv->requests =
4429 kmem_cache_create("i915_gem_request",
4430 sizeof(struct drm_i915_gem_request), 0,
4431 SLAB_HWCACHE_ALIGN,
4432 NULL);
673a394b 4433
a33afea5 4434 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4435 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4436 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4437 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
4438 for (i = 0; i < I915_NUM_ENGINES; i++)
4439 init_engine_lists(&dev_priv->engine[i]);
4b9de737 4440 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4441 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
67d97da3 4442 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
673a394b 4443 i915_gem_retire_work_handler);
67d97da3 4444 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
b29c19b6 4445 i915_gem_idle_work_handler);
1f15b76f 4446 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
1f83fee0 4447 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4448
72bfa19c
CW
4449 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4450
19b2dbde 4451 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 4452
6b95a207 4453 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4454
ce453d81
CW
4455 dev_priv->mm.interruptible = true;
4456
f99d7069 4457 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 4458}
71acb5eb 4459
d64aa096
ID
4460void i915_gem_load_cleanup(struct drm_device *dev)
4461{
4462 struct drm_i915_private *dev_priv = to_i915(dev);
4463
4464 kmem_cache_destroy(dev_priv->requests);
4465 kmem_cache_destroy(dev_priv->vmas);
4466 kmem_cache_destroy(dev_priv->objects);
4467}
4468
461fb99c
CW
4469int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4470{
4471 struct drm_i915_gem_object *obj;
4472
4473 /* Called just before we write the hibernation image.
4474 *
4475 * We need to update the domain tracking to reflect that the CPU
4476 * will be accessing all the pages to create and restore from the
4477 * hibernation, and so upon restoration those pages will be in the
4478 * CPU domain.
4479 *
4480 * To make sure the hibernation image contains the latest state,
4481 * we update that state just before writing out the image.
4482 */
4483
4484 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4485 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4486 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4487 }
4488
4489 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4490 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4491 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4492 }
4493
4494 return 0;
4495}
4496
f787a5f5 4497void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4498{
f787a5f5 4499 struct drm_i915_file_private *file_priv = file->driver_priv;
15f7bbc7 4500 struct drm_i915_gem_request *request;
b962442e
EA
4501
4502 /* Clean up our request list when the client is going away, so that
4503 * later retire_requests won't dereference our soon-to-be-gone
4504 * file_priv.
4505 */
1c25595f 4506 spin_lock(&file_priv->mm.lock);
15f7bbc7 4507 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
f787a5f5 4508 request->file_priv = NULL;
1c25595f 4509 spin_unlock(&file_priv->mm.lock);
b29c19b6 4510
2e1b8730 4511 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 4512 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 4513 list_del(&file_priv->rps.link);
8d3afd7d 4514 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 4515 }
b29c19b6
CW
4516}
4517
4518int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4519{
4520 struct drm_i915_file_private *file_priv;
e422b888 4521 int ret;
b29c19b6
CW
4522
4523 DRM_DEBUG_DRIVER("\n");
4524
4525 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4526 if (!file_priv)
4527 return -ENOMEM;
4528
4529 file->driver_priv = file_priv;
f19ec8cb 4530 file_priv->dev_priv = to_i915(dev);
ab0e7ff9 4531 file_priv->file = file;
2e1b8730 4532 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
4533
4534 spin_lock_init(&file_priv->mm.lock);
4535 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 4536
c80ff16e 4537 file_priv->bsd_engine = -1;
de1add36 4538
e422b888
BW
4539 ret = i915_gem_context_open(dev, file);
4540 if (ret)
4541 kfree(file_priv);
b29c19b6 4542
e422b888 4543 return ret;
b29c19b6
CW
4544}
4545
b680c37a
DV
4546/**
4547 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
4548 * @old: current GEM buffer for the frontbuffer slots
4549 * @new: new GEM buffer for the frontbuffer slots
4550 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
4551 *
4552 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4553 * from @old and setting them in @new. Both @old and @new can be NULL.
4554 */
a071fa00
DV
4555void i915_gem_track_fb(struct drm_i915_gem_object *old,
4556 struct drm_i915_gem_object *new,
4557 unsigned frontbuffer_bits)
4558{
4559 if (old) {
4560 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4561 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4562 old->frontbuffer_bits &= ~frontbuffer_bits;
4563 }
4564
4565 if (new) {
4566 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4567 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4568 new->frontbuffer_bits |= frontbuffer_bits;
4569 }
4570}
4571
a70a3148 4572/* All the new VM stuff */
088e0df4
MT
4573u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4574 struct i915_address_space *vm)
a70a3148 4575{
fac5e23e 4576 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
a70a3148
BW
4577 struct i915_vma *vma;
4578
896ab1a5 4579 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 4580
1c7f4bca 4581 list_for_each_entry(vma, &o->vma_list, obj_link) {
3272db53 4582 if (i915_vma_is_ggtt(vma) &&
ec7adb6e
JL
4583 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4584 continue;
4585 if (vma->vm == vm)
a70a3148 4586 return vma->node.start;
a70a3148 4587 }
ec7adb6e 4588
f25748ea
DV
4589 WARN(1, "%s vma for this object not found.\n",
4590 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
4591 return -1;
4592}
4593
088e0df4
MT
4594u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
4595 const struct i915_ggtt_view *view)
a70a3148
BW
4596{
4597 struct i915_vma *vma;
4598
1c7f4bca 4599 list_for_each_entry(vma, &o->vma_list, obj_link)
3272db53
CW
4600 if (i915_vma_is_ggtt(vma) &&
4601 i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
4602 return vma->node.start;
4603
5678ad73 4604 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
4605 return -1;
4606}
4607
4608bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4609 struct i915_address_space *vm)
4610{
4611 struct i915_vma *vma;
4612
1c7f4bca 4613 list_for_each_entry(vma, &o->vma_list, obj_link) {
3272db53 4614 if (i915_vma_is_ggtt(vma) &&
ec7adb6e
JL
4615 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4616 continue;
4617 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4618 return true;
4619 }
4620
4621 return false;
4622}
4623
4624bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 4625 const struct i915_ggtt_view *view)
ec7adb6e 4626{
ec7adb6e
JL
4627 struct i915_vma *vma;
4628
1c7f4bca 4629 list_for_each_entry(vma, &o->vma_list, obj_link)
3272db53 4630 if (i915_vma_is_ggtt(vma) &&
9abc4648 4631 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 4632 drm_mm_node_allocated(&vma->node))
a70a3148
BW
4633 return true;
4634
4635 return false;
4636}
4637
8da32727 4638unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 4639{
a70a3148
BW
4640 struct i915_vma *vma;
4641
8da32727 4642 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 4643
1c7f4bca 4644 list_for_each_entry(vma, &o->vma_list, obj_link) {
3272db53 4645 if (i915_vma_is_ggtt(vma) &&
8da32727 4646 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 4647 return vma->node.size;
ec7adb6e 4648 }
8da32727 4649
a70a3148
BW
4650 return 0;
4651}
4652
ec7adb6e 4653bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
4654{
4655 struct i915_vma *vma;
1c7f4bca 4656 list_for_each_entry(vma, &obj->vma_list, obj_link)
20dfbde4 4657 if (i915_vma_is_pinned(vma))
ec7adb6e 4658 return true;
a6631ae1 4659
ec7adb6e 4660 return false;
5c2abbea 4661}
ea70299d 4662
033908ae
DG
4663/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4664struct page *
4665i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4666{
4667 struct page *page;
4668
4669 /* Only default objects have per-page dirty tracking */
b9bcd14a 4670 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
033908ae
DG
4671 return NULL;
4672
4673 page = i915_gem_object_get_page(obj, n);
4674 set_page_dirty(page);
4675 return page;
4676}
4677
ea70299d
DG
4678/* Allocate a new GEM object and fill it with the supplied data */
4679struct drm_i915_gem_object *
4680i915_gem_object_create_from_data(struct drm_device *dev,
4681 const void *data, size_t size)
4682{
4683 struct drm_i915_gem_object *obj;
4684 struct sg_table *sg;
4685 size_t bytes;
4686 int ret;
4687
d37cd8a8 4688 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 4689 if (IS_ERR(obj))
ea70299d
DG
4690 return obj;
4691
4692 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4693 if (ret)
4694 goto fail;
4695
4696 ret = i915_gem_object_get_pages(obj);
4697 if (ret)
4698 goto fail;
4699
4700 i915_gem_object_pin_pages(obj);
4701 sg = obj->pages;
4702 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 4703 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
4704 i915_gem_object_unpin_pages(obj);
4705
4706 if (WARN_ON(bytes != size)) {
4707 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4708 ret = -EFAULT;
4709 goto fail;
4710 }
4711
4712 return obj;
4713
4714fail:
f8c417cd 4715 i915_gem_object_put(obj);
ea70299d
DG
4716 return ERR_PTR(ret);
4717}
This page took 1.561445 seconds and 5 git commands to generate.