drm/i915/execlists: Refactor common engine setup
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
0ccdacf6 35#include "intel_mocs.h"
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 44static void
b4716185
CW
45i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46static void
47i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61}
62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
c20e8355 67 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
68 dev_priv->mm.object_count++;
69 dev_priv->mm.object_memory += size;
c20e8355 70 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
71}
72
73static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
c20e8355 76 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
c20e8355 79 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
80}
81
21dd3734 82static int
33196ded 83i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 84{
30dbf0c0
CW
85 int ret;
86
d98c52cf 87 if (!i915_reset_in_progress(error))
30dbf0c0
CW
88 return 0;
89
0a6759c6
DV
90 /*
91 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92 * userspace. If it takes that long something really bad is going on and
93 * we should simply try to bail out and fail as gracefully as possible.
94 */
1f83fee0 95 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 96 !i915_reset_in_progress(error),
1f83fee0 97 10*HZ);
0a6759c6
DV
98 if (ret == 0) {
99 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100 return -EIO;
101 } else if (ret < 0) {
30dbf0c0 102 return ret;
d98c52cf
CW
103 } else {
104 return 0;
0a6759c6 105 }
30dbf0c0
CW
106}
107
54cf91dc 108int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 109{
33196ded 110 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
111 int ret;
112
33196ded 113 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
23bc5982 121 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
122 return 0;
123}
30dbf0c0 124
5a125c3c
EA
125int
126i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 127 struct drm_file *file)
5a125c3c 128{
72e96d64 129 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 130 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 131 struct drm_i915_gem_get_aperture *args = data;
ca1543be 132 struct i915_vma *vma;
6299f992 133 size_t pinned;
5a125c3c 134
6299f992 135 pinned = 0;
73aa808f 136 mutex_lock(&dev->struct_mutex);
1c7f4bca 137 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
138 if (vma->pin_count)
139 pinned += vma->node.size;
1c7f4bca 140 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
141 if (vma->pin_count)
142 pinned += vma->node.size;
73aa808f 143 mutex_unlock(&dev->struct_mutex);
5a125c3c 144
72e96d64 145 args->aper_size = ggtt->base.total;
0206e353 146 args->aper_available_size = args->aper_size - pinned;
6299f992 147
5a125c3c
EA
148 return 0;
149}
150
6a2c4232
CW
151static int
152i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 153{
6a2c4232
CW
154 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 char *vaddr = obj->phys_handle->vaddr;
156 struct sg_table *st;
157 struct scatterlist *sg;
158 int i;
00731155 159
6a2c4232
CW
160 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 return -EINVAL;
162
163 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 struct page *page;
165 char *src;
166
167 page = shmem_read_mapping_page(mapping, i);
168 if (IS_ERR(page))
169 return PTR_ERR(page);
170
171 src = kmap_atomic(page);
172 memcpy(vaddr, src, PAGE_SIZE);
173 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 kunmap_atomic(src);
175
09cbfeaf 176 put_page(page);
6a2c4232
CW
177 vaddr += PAGE_SIZE;
178 }
179
180 i915_gem_chipset_flush(obj->base.dev);
181
182 st = kmalloc(sizeof(*st), GFP_KERNEL);
183 if (st == NULL)
184 return -ENOMEM;
185
186 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 kfree(st);
188 return -ENOMEM;
189 }
190
191 sg = st->sgl;
192 sg->offset = 0;
193 sg->length = obj->base.size;
00731155 194
6a2c4232
CW
195 sg_dma_address(sg) = obj->phys_handle->busaddr;
196 sg_dma_len(sg) = obj->base.size;
197
198 obj->pages = st;
6a2c4232
CW
199 return 0;
200}
201
202static void
203i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204{
205 int ret;
206
207 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 208
6a2c4232 209 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 210 if (WARN_ON(ret)) {
6a2c4232
CW
211 /* In the event of a disaster, abandon all caches and
212 * hope for the best.
213 */
6a2c4232
CW
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
00731155 221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 222 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
00731155 240 mark_page_accessed(page);
09cbfeaf 241 put_page(page);
00731155
CW
242 vaddr += PAGE_SIZE;
243 }
6a2c4232 244 obj->dirty = 0;
00731155
CW
245 }
246
6a2c4232
CW
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
6a2c4232
CW
249}
250
251static void
252i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253{
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255}
256
257static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261};
262
263static int
264drop_pages(struct drm_i915_gem_object *obj)
265{
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
1c7f4bca 270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
00731155
CW
278}
279
280int
281i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283{
284 drm_dma_handle_t *phys;
6a2c4232 285 int ret;
00731155
CW
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
6a2c4232
CW
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
00731155
CW
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
00731155 309 obj->phys_handle = phys;
6a2c4232
CW
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
00731155
CW
313}
314
315static int
316i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319{
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
322 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 323 int ret = 0;
6a2c4232
CW
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
00731155 331
77a0d1ca 332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
00731155
CW
347 }
348
6a2c4232 349 drm_clflush_virt_range(vaddr, args->size);
00731155 350 i915_gem_chipset_flush(dev);
063e4e6b
PZ
351
352out:
de152b62 353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 354 return ret;
00731155
CW
355}
356
42dcedd4
CW
357void *i915_gem_object_alloc(struct drm_device *dev)
358{
359 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
361}
362
363void i915_gem_object_free(struct drm_i915_gem_object *obj)
364{
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 366 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
367}
368
ff72145b
DA
369static int
370i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
673a394b 374{
05394f39 375 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
376 int ret;
377 u32 handle;
673a394b 378
ff72145b 379 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
380 if (size == 0)
381 return -EINVAL;
673a394b
EA
382
383 /* Allocate the new object */
d37cd8a8 384 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
385 if (IS_ERR(obj))
386 return PTR_ERR(obj);
673a394b 387
05394f39 388 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 389 /* drop reference from allocate - handle holds it now */
d861e338
DV
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
202f2fef 393
ff72145b 394 *handle_p = handle;
673a394b
EA
395 return 0;
396}
397
ff72145b
DA
398int
399i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402{
403 /* have to work out size/pitch and return them */
de45eaf7 404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
da6b51d0 407 args->size, &args->handle);
ff72145b
DA
408}
409
ff72145b
DA
410/**
411 * Creates a new mm object and returns a handle to it.
412 */
413int
414i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416{
417 struct drm_i915_gem_create *args = data;
63ed2cb2 418
ff72145b 419 return i915_gem_create(file, dev,
da6b51d0 420 args->size, &args->handle);
ff72145b
DA
421}
422
8461d226
DV
423static inline int
424__copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427{
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447}
448
8c59967c 449static inline int
4f0c7cfb
BW
450__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
8c59967c
DV
452 int length)
453{
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473}
474
4c914c0c
BV
475/*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482{
483 int ret;
484
485 *needs_clflush = 0;
486
1db6e2e7 487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
4c914c0c
BV
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509}
510
d174bd64
DV
511/* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
eb01459f 514static int
d174bd64
DV
515shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518{
519 char *vaddr;
520 int ret;
521
e7e58eb5 522 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
f60d7f0c 534 return ret ? -EFAULT : 0;
d174bd64
DV
535}
536
23c18c71
DV
537static void
538shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540{
e7e58eb5 541 if (unlikely(swizzled)) {
23c18c71
DV
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557}
558
d174bd64
DV
559/* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561static int
562shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565{
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
23c18c71
DV
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
d174bd64
DV
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
f60d7f0c 585 return ret ? - EFAULT : 0;
d174bd64
DV
586}
587
eb01459f 588static int
dbf7bff0
DV
589i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
eb01459f 593{
8461d226 594 char __user *user_data;
eb01459f 595 ssize_t remain;
8461d226 596 loff_t offset;
eb2c0c81 597 int shmem_page_offset, page_length, ret = 0;
8461d226 598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 599 int prefaulted = 0;
8489731c 600 int needs_clflush = 0;
67d5a50c 601 struct sg_page_iter sg_iter;
eb01459f 602
2bb4629a 603 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
604 remain = args->size;
605
8461d226 606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 607
4c914c0c 608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
609 if (ret)
610 return ret;
611
8461d226 612 offset = args->offset;
eb01459f 613
67d5a50c
ID
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
2db76d7c 616 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
617
618 if (remain <= 0)
619 break;
620
eb01459f
EA
621 /* Operation in this page
622 *
eb01459f 623 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
624 * page_length = bytes to copy for this page
625 */
c8cbbb8b 626 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 630
8461d226
DV
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
d174bd64
DV
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
dbf7bff0 639
dbf7bff0
DV
640 mutex_unlock(&dev->struct_mutex);
641
d330a953 642 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 643 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
eb01459f 651
d174bd64
DV
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
eb01459f 655
dbf7bff0 656 mutex_lock(&dev->struct_mutex);
f60d7f0c 657
f60d7f0c 658 if (ret)
8461d226 659 goto out;
8461d226 660
17793c9a 661next_page:
eb01459f 662 remain -= page_length;
8461d226 663 user_data += page_length;
eb01459f
EA
664 offset += page_length;
665 }
666
4f27b75d 667out:
f60d7f0c
CW
668 i915_gem_object_unpin_pages(obj);
669
eb01459f
EA
670 return ret;
671}
672
673a394b
EA
673/**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678int
679i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 680 struct drm_file *file)
673a394b
EA
681{
682 struct drm_i915_gem_pread *args = data;
05394f39 683 struct drm_i915_gem_object *obj;
35b62a89 684 int ret = 0;
673a394b 685
51311d0a
CW
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
2bb4629a 690 to_user_ptr(args->data_ptr),
51311d0a
CW
691 args->size))
692 return -EFAULT;
693
4f27b75d 694 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 695 if (ret)
4f27b75d 696 return ret;
673a394b 697
05394f39 698 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 699 if (&obj->base == NULL) {
1d7cfea1
CW
700 ret = -ENOENT;
701 goto unlock;
4f27b75d 702 }
673a394b 703
7dcd2499 704 /* Bounds check source. */
05394f39
CW
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
ce9d419d 707 ret = -EINVAL;
35b62a89 708 goto out;
ce9d419d
CW
709 }
710
1286ff73
DV
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
db53a302
CW
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
dbf7bff0 721 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 722
35b62a89 723out:
05394f39 724 drm_gem_object_unreference(&obj->base);
1d7cfea1 725unlock:
4f27b75d 726 mutex_unlock(&dev->struct_mutex);
eb01459f 727 return ret;
673a394b
EA
728}
729
0839ccb8
KP
730/* This is the fast write path which cannot handle
731 * page faults in the source data
9b7530cc 732 */
0839ccb8
KP
733
734static inline int
735fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
9b7530cc 739{
4f0c7cfb
BW
740 void __iomem *vaddr_atomic;
741 void *vaddr;
0839ccb8 742 unsigned long unwritten;
9b7530cc 743
3e4d3af5 744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 748 user_data, length);
3e4d3af5 749 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 750 return unwritten;
0839ccb8
KP
751}
752
3de09aa3
EA
753/**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
673a394b 757static int
05394f39
CW
758i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
3de09aa3 760 struct drm_i915_gem_pwrite *args,
05394f39 761 struct drm_file *file)
673a394b 762{
72e96d64
JL
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
673a394b 765 ssize_t remain;
0839ccb8 766 loff_t offset, page_base;
673a394b 767 char __user *user_data;
935aaa69
DV
768 int page_offset, page_length, ret;
769
1ec9e26d 770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
673a394b 781
2bb4629a 782 user_data = to_user_ptr(args->data_ptr);
673a394b 783 remain = args->size;
673a394b 784
f343c5f6 785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 786
77a0d1ca 787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 788
673a394b
EA
789 while (remain > 0) {
790 /* Operation in this page
791 *
0839ccb8
KP
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
673a394b 795 */
c8cbbb8b
CW
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
0839ccb8
KP
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
0839ccb8 802 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
0839ccb8 805 */
72e96d64 806 if (fast_user_write(ggtt->mappable, page_base,
935aaa69
DV
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
063e4e6b 809 goto out_flush;
935aaa69 810 }
673a394b 811
0839ccb8
KP
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
673a394b 815 }
673a394b 816
063e4e6b 817out_flush:
de152b62 818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 819out_unpin:
d7f46fc4 820 i915_gem_object_ggtt_unpin(obj);
935aaa69 821out:
3de09aa3 822 return ret;
673a394b
EA
823}
824
d174bd64
DV
825/* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
3043c60c 829static int
d174bd64
DV
830shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
673a394b 835{
d174bd64 836 char *vaddr;
673a394b 837 int ret;
3de09aa3 838
e7e58eb5 839 if (unlikely(page_do_bit17_swizzling))
d174bd64 840 return -EINVAL;
3de09aa3 841
d174bd64
DV
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
c2831a94
CW
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
d174bd64
DV
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
3de09aa3 852
755d2218 853 return ret ? -EFAULT : 0;
3de09aa3
EA
854}
855
d174bd64
DV
856/* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
3043c60c 858static int
d174bd64
DV
859shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
673a394b 864{
d174bd64
DV
865 char *vaddr;
866 int ret;
e5281ccd 867
d174bd64 868 vaddr = kmap(page);
e7e58eb5 869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
d174bd64
DV
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
875 user_data,
876 page_length);
d174bd64
DV
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
23c18c71
DV
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
d174bd64 885 kunmap(page);
40123c1f 886
755d2218 887 return ret ? -EFAULT : 0;
40123c1f
EA
888}
889
40123c1f 890static int
e244a443
DV
891i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
40123c1f 895{
40123c1f 896 ssize_t remain;
8c59967c
DV
897 loff_t offset;
898 char __user *user_data;
eb2c0c81 899 int shmem_page_offset, page_length, ret = 0;
8c59967c 900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 901 int hit_slowpath = 0;
58642885
DV
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
67d5a50c 904 struct sg_page_iter sg_iter;
40123c1f 905
2bb4629a 906 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
907 remain = args->size;
908
8c59967c 909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 910
58642885
DV
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
2c22569b 916 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
58642885 920 }
c76ce038
CW
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 926
755d2218
CW
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
77a0d1ca 931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 932
755d2218
CW
933 i915_gem_object_pin_pages(obj);
934
673a394b 935 offset = args->offset;
05394f39 936 obj->dirty = 1;
673a394b 937
67d5a50c
ID
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
2db76d7c 940 struct page *page = sg_page_iter_page(&sg_iter);
58642885 941 int partial_cacheline_write;
e5281ccd 942
9da3da66
CW
943 if (remain <= 0)
944 break;
945
40123c1f
EA
946 /* Operation in this page
947 *
40123c1f 948 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
949 * page_length = bytes to copy for this page
950 */
c8cbbb8b 951 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 956
58642885
DV
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
8c59967c
DV
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
d174bd64
DV
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
e244a443
DV
973
974 hit_slowpath = 1;
e244a443 975 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
40123c1f 980
e244a443 981 mutex_lock(&dev->struct_mutex);
755d2218 982
755d2218 983 if (ret)
8c59967c 984 goto out;
8c59967c 985
17793c9a 986next_page:
40123c1f 987 remain -= page_length;
8c59967c 988 user_data += page_length;
40123c1f 989 offset += page_length;
673a394b
EA
990 }
991
fbd5a26d 992out:
755d2218
CW
993 i915_gem_object_unpin_pages(obj);
994
e244a443 995 if (hit_slowpath) {
8dcf015e
DV
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1003 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1004 needs_clflush_after = true;
e244a443 1005 }
8c59967c 1006 }
673a394b 1007
58642885 1008 if (needs_clflush_after)
e76e9aeb 1009 i915_gem_chipset_flush(dev);
ed75a55b
VS
1010 else
1011 obj->cache_dirty = true;
58642885 1012
de152b62 1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1014 return ret;
673a394b
EA
1015}
1016
1017/**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022int
1023i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1024 struct drm_file *file)
673a394b 1025{
5d77d9c5 1026 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1027 struct drm_i915_gem_pwrite *args = data;
05394f39 1028 struct drm_i915_gem_object *obj;
51311d0a
CW
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
2bb4629a 1035 to_user_ptr(args->data_ptr),
51311d0a
CW
1036 args->size))
1037 return -EFAULT;
1038
d330a953 1039 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1040 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
673a394b 1045
5d77d9c5
ID
1046 intel_runtime_pm_get(dev_priv);
1047
fbd5a26d 1048 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1049 if (ret)
5d77d9c5 1050 goto put_rpm;
1d7cfea1 1051
05394f39 1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1053 if (&obj->base == NULL) {
1d7cfea1
CW
1054 ret = -ENOENT;
1055 goto unlock;
fbd5a26d 1056 }
673a394b 1057
7dcd2499 1058 /* Bounds check destination. */
05394f39
CW
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
ce9d419d 1061 ret = -EINVAL;
35b62a89 1062 goto out;
ce9d419d
CW
1063 }
1064
1286ff73
DV
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
db53a302
CW
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
935aaa69 1075 ret = -EFAULT;
673a394b
EA
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
2c22569b
CW
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
fbd5a26d 1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1089 }
673a394b 1090
6a2c4232
CW
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
5c0480f2 1097
35b62a89 1098out:
05394f39 1099 drm_gem_object_unreference(&obj->base);
1d7cfea1 1100unlock:
fbd5a26d 1101 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1102put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
673a394b
EA
1105 return ret;
1106}
1107
f4457ae7
CW
1108static int
1109i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
b361237b 1110{
f4457ae7
CW
1111 if (__i915_terminally_wedged(reset_counter))
1112 return -EIO;
d98c52cf 1113
f4457ae7 1114 if (__i915_reset_in_progress(reset_counter)) {
b361237b
CW
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
d98c52cf 1120 return -EAGAIN;
b361237b
CW
1121 }
1122
1123 return 0;
1124}
1125
094f9a54
CW
1126static void fake_irq(unsigned long data)
1127{
1128 wake_up_process((struct task_struct *)data);
1129}
1130
1131static bool missed_irq(struct drm_i915_private *dev_priv,
0bc40be8 1132 struct intel_engine_cs *engine)
094f9a54 1133{
0bc40be8 1134 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
094f9a54
CW
1135}
1136
ca5b721e
CW
1137static unsigned long local_clock_us(unsigned *cpu)
1138{
1139 unsigned long t;
1140
1141 /* Cheaply and approximately convert from nanoseconds to microseconds.
1142 * The result and subsequent calculations are also defined in the same
1143 * approximate microseconds units. The principal source of timing
1144 * error here is from the simple truncation.
1145 *
1146 * Note that local_clock() is only defined wrt to the current CPU;
1147 * the comparisons are no longer valid if we switch CPUs. Instead of
1148 * blocking preemption for the entire busywait, we can detect the CPU
1149 * switch and use that as indicator of system load and a reason to
1150 * stop busywaiting, see busywait_stop().
1151 */
1152 *cpu = get_cpu();
1153 t = local_clock() >> 10;
1154 put_cpu();
1155
1156 return t;
1157}
1158
1159static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160{
1161 unsigned this_cpu;
1162
1163 if (time_after(local_clock_us(&this_cpu), timeout))
1164 return true;
1165
1166 return this_cpu != cpu;
1167}
1168
91b0c352 1169static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1170{
2def4ad9 1171 unsigned long timeout;
ca5b721e
CW
1172 unsigned cpu;
1173
1174 /* When waiting for high frequency requests, e.g. during synchronous
1175 * rendering split between the CPU and GPU, the finite amount of time
1176 * required to set up the irq and wait upon it limits the response
1177 * rate. By busywaiting on the request completion for a short while we
1178 * can service the high frequency waits as quick as possible. However,
1179 * if it is a slow request, we want to sleep as quickly as possible.
1180 * The tradeoff between waiting and sleeping is roughly the time it
1181 * takes to sleep on a request, on the order of a microsecond.
1182 */
2def4ad9 1183
4a570db5 1184 if (req->engine->irq_refcount)
2def4ad9
CW
1185 return -EBUSY;
1186
821485dc
CW
1187 /* Only spin if we know the GPU is processing this request */
1188 if (!i915_gem_request_started(req, true))
1189 return -EAGAIN;
1190
ca5b721e 1191 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1192 while (!need_resched()) {
eed29a5b 1193 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1194 return 0;
1195
91b0c352
CW
1196 if (signal_pending_state(state, current))
1197 break;
1198
ca5b721e 1199 if (busywait_stop(timeout, cpu))
2def4ad9 1200 break;
b29c19b6 1201
2def4ad9
CW
1202 cpu_relax_lowlatency();
1203 }
821485dc 1204
eed29a5b 1205 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1206 return 0;
1207
1208 return -EAGAIN;
b29c19b6
CW
1209}
1210
b361237b 1211/**
9c654818
JH
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
b361237b
CW
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
f69061be
DV
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
9c654818 1224 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1225 * errno with remaining time filled in timeout argument.
1226 */
9c654818 1227int __i915_wait_request(struct drm_i915_gem_request *req,
b29c19b6 1228 bool interruptible,
5ed0bdf2 1229 s64 *timeout,
2e1b8730 1230 struct intel_rps_client *rps)
b361237b 1231{
666796da 1232 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
e2f80391 1233 struct drm_device *dev = engine->dev;
3e31c6c0 1234 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21 1235 const bool irq_test_in_progress =
666796da 1236 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
91b0c352 1237 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1238 DEFINE_WAIT(wait);
47e9766d 1239 unsigned long timeout_expire;
e0313db0 1240 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1241 int ret;
1242
9df7575f 1243 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1244
b4716185
CW
1245 if (list_empty(&req->list))
1246 return 0;
1247
1b5a433a 1248 if (i915_gem_request_completed(req, true))
b361237b
CW
1249 return 0;
1250
bb6d1984
CW
1251 timeout_expire = 0;
1252 if (timeout) {
1253 if (WARN_ON(*timeout < 0))
1254 return -EINVAL;
1255
1256 if (*timeout == 0)
1257 return -ETIME;
1258
1259 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1260
1261 /*
1262 * Record current time in case interrupted by signal, or wedged.
1263 */
1264 before = ktime_get_raw_ns();
bb6d1984 1265 }
b361237b 1266
2e1b8730 1267 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1268 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1269
74328ee5 1270 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1271
1272 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1273 ret = __i915_spin_request(req, state);
2def4ad9
CW
1274 if (ret == 0)
1275 goto out;
1276
e2f80391 1277 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
2def4ad9
CW
1278 ret = -ENODEV;
1279 goto out;
1280 }
1281
094f9a54
CW
1282 for (;;) {
1283 struct timer_list timer;
b361237b 1284
e2f80391 1285 prepare_to_wait(&engine->irq_queue, &wait, state);
b361237b 1286
f69061be 1287 /* We need to check whether any gpu reset happened in between
f4457ae7
CW
1288 * the request being submitted and now. If a reset has occurred,
1289 * the request is effectively complete (we either are in the
1290 * process of or have discarded the rendering and completely
1291 * reset the GPU. The results of the request are lost and we
1292 * are free to continue on with the original operation.
1293 */
299259a3 1294 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
f4457ae7 1295 ret = 0;
094f9a54
CW
1296 break;
1297 }
f69061be 1298
1b5a433a 1299 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1300 ret = 0;
1301 break;
1302 }
b361237b 1303
91b0c352 1304 if (signal_pending_state(state, current)) {
094f9a54
CW
1305 ret = -ERESTARTSYS;
1306 break;
1307 }
1308
47e9766d 1309 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1310 ret = -ETIME;
1311 break;
1312 }
1313
1314 timer.function = NULL;
e2f80391 1315 if (timeout || missed_irq(dev_priv, engine)) {
47e9766d
MK
1316 unsigned long expire;
1317
094f9a54 1318 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
e2f80391 1319 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1320 mod_timer(&timer, expire);
1321 }
1322
5035c275 1323 io_schedule();
094f9a54 1324
094f9a54
CW
1325 if (timer.function) {
1326 del_singleshot_timer_sync(&timer);
1327 destroy_timer_on_stack(&timer);
1328 }
1329 }
168c3f21 1330 if (!irq_test_in_progress)
e2f80391 1331 engine->irq_put(engine);
094f9a54 1332
e2f80391 1333 finish_wait(&engine->irq_queue, &wait);
b361237b 1334
2def4ad9 1335out:
2def4ad9
CW
1336 trace_i915_gem_request_wait_end(req);
1337
b361237b 1338 if (timeout) {
e0313db0 1339 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1340
1341 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1342
1343 /*
1344 * Apparently ktime isn't accurate enough and occasionally has a
1345 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1346 * things up to make the test happy. We allow up to 1 jiffy.
1347 *
1348 * This is a regrssion from the timespec->ktime conversion.
1349 */
1350 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1351 *timeout = 0;
b361237b
CW
1352 }
1353
094f9a54 1354 return ret;
b361237b
CW
1355}
1356
fcfa423c
JH
1357int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1358 struct drm_file *file)
1359{
fcfa423c
JH
1360 struct drm_i915_file_private *file_priv;
1361
1362 WARN_ON(!req || !file || req->file_priv);
1363
1364 if (!req || !file)
1365 return -EINVAL;
1366
1367 if (req->file_priv)
1368 return -EINVAL;
1369
fcfa423c
JH
1370 file_priv = file->driver_priv;
1371
1372 spin_lock(&file_priv->mm.lock);
1373 req->file_priv = file_priv;
1374 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1375 spin_unlock(&file_priv->mm.lock);
1376
1377 req->pid = get_pid(task_pid(current));
1378
1379 return 0;
1380}
1381
b4716185
CW
1382static inline void
1383i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1384{
1385 struct drm_i915_file_private *file_priv = request->file_priv;
1386
1387 if (!file_priv)
1388 return;
1389
1390 spin_lock(&file_priv->mm.lock);
1391 list_del(&request->client_list);
1392 request->file_priv = NULL;
1393 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1394
1395 put_pid(request->pid);
1396 request->pid = NULL;
b4716185
CW
1397}
1398
1399static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1400{
1401 trace_i915_gem_request_retire(request);
1402
1403 /* We know the GPU must have read the request to have
1404 * sent us the seqno + interrupt, so use the position
1405 * of tail of the request to update the last known position
1406 * of the GPU head.
1407 *
1408 * Note this requires that we are always called in request
1409 * completion order.
1410 */
1411 request->ringbuf->last_retired_head = request->postfix;
1412
1413 list_del_init(&request->list);
1414 i915_gem_request_remove_from_client(request);
1415
a16a4052 1416 if (request->previous_context) {
73db04cf 1417 if (i915.enable_execlists)
a16a4052
CW
1418 intel_lr_context_unpin(request->previous_context,
1419 request->engine);
73db04cf
CW
1420 }
1421
a16a4052 1422 i915_gem_context_unreference(request->ctx);
b4716185
CW
1423 i915_gem_request_unreference(request);
1424}
1425
1426static void
1427__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1428{
4a570db5 1429 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1430 struct drm_i915_gem_request *tmp;
1431
1432 lockdep_assert_held(&engine->dev->struct_mutex);
1433
1434 if (list_empty(&req->list))
1435 return;
1436
1437 do {
1438 tmp = list_first_entry(&engine->request_list,
1439 typeof(*tmp), list);
1440
1441 i915_gem_request_retire(tmp);
1442 } while (tmp != req);
1443
1444 WARN_ON(i915_verify_lists(engine->dev));
1445}
1446
b361237b 1447/**
a4b3a571 1448 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1449 * request and object lists appropriately for that event.
1450 */
1451int
a4b3a571 1452i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1453{
791bee12 1454 struct drm_i915_private *dev_priv = req->i915;
a4b3a571 1455 bool interruptible;
b361237b
CW
1456 int ret;
1457
a4b3a571
DV
1458 interruptible = dev_priv->mm.interruptible;
1459
791bee12 1460 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
b361237b 1461
299259a3 1462 ret = __i915_wait_request(req, interruptible, NULL, NULL);
b4716185
CW
1463 if (ret)
1464 return ret;
d26e3af8 1465
b4716185 1466 __i915_gem_request_retire__upto(req);
d26e3af8
CW
1467 return 0;
1468}
1469
b361237b
CW
1470/**
1471 * Ensures that all rendering to the object has completed and the object is
1472 * safe to unbind from the GTT or access from the CPU.
1473 */
2e2f351d 1474int
b361237b
CW
1475i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1476 bool readonly)
1477{
b4716185 1478 int ret, i;
b361237b 1479
b4716185 1480 if (!obj->active)
b361237b
CW
1481 return 0;
1482
b4716185
CW
1483 if (readonly) {
1484 if (obj->last_write_req != NULL) {
1485 ret = i915_wait_request(obj->last_write_req);
1486 if (ret)
1487 return ret;
b361237b 1488
4a570db5 1489 i = obj->last_write_req->engine->id;
b4716185
CW
1490 if (obj->last_read_req[i] == obj->last_write_req)
1491 i915_gem_object_retire__read(obj, i);
1492 else
1493 i915_gem_object_retire__write(obj);
1494 }
1495 } else {
666796da 1496 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1497 if (obj->last_read_req[i] == NULL)
1498 continue;
1499
1500 ret = i915_wait_request(obj->last_read_req[i]);
1501 if (ret)
1502 return ret;
1503
1504 i915_gem_object_retire__read(obj, i);
1505 }
d501b1d2 1506 GEM_BUG_ON(obj->active);
b4716185
CW
1507 }
1508
1509 return 0;
1510}
1511
1512static void
1513i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1514 struct drm_i915_gem_request *req)
1515{
4a570db5 1516 int ring = req->engine->id;
b4716185
CW
1517
1518 if (obj->last_read_req[ring] == req)
1519 i915_gem_object_retire__read(obj, ring);
1520 else if (obj->last_write_req == req)
1521 i915_gem_object_retire__write(obj);
1522
1523 __i915_gem_request_retire__upto(req);
b361237b
CW
1524}
1525
3236f57a
CW
1526/* A nonblocking variant of the above wait. This is a highly dangerous routine
1527 * as the object state may change during this call.
1528 */
1529static __must_check int
1530i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1531 struct intel_rps_client *rps,
3236f57a
CW
1532 bool readonly)
1533{
1534 struct drm_device *dev = obj->base.dev;
1535 struct drm_i915_private *dev_priv = dev->dev_private;
666796da 1536 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185 1537 int ret, i, n = 0;
3236f57a
CW
1538
1539 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1540 BUG_ON(!dev_priv->mm.interruptible);
1541
b4716185 1542 if (!obj->active)
3236f57a
CW
1543 return 0;
1544
b4716185
CW
1545 if (readonly) {
1546 struct drm_i915_gem_request *req;
1547
1548 req = obj->last_write_req;
1549 if (req == NULL)
1550 return 0;
1551
b4716185
CW
1552 requests[n++] = i915_gem_request_reference(req);
1553 } else {
666796da 1554 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1555 struct drm_i915_gem_request *req;
1556
1557 req = obj->last_read_req[i];
1558 if (req == NULL)
1559 continue;
1560
b4716185
CW
1561 requests[n++] = i915_gem_request_reference(req);
1562 }
1563 }
1564
3236f57a 1565 mutex_unlock(&dev->struct_mutex);
299259a3 1566 ret = 0;
b4716185 1567 for (i = 0; ret == 0 && i < n; i++)
299259a3 1568 ret = __i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1569 mutex_lock(&dev->struct_mutex);
1570
b4716185
CW
1571 for (i = 0; i < n; i++) {
1572 if (ret == 0)
1573 i915_gem_object_retire_request(obj, requests[i]);
1574 i915_gem_request_unreference(requests[i]);
1575 }
1576
1577 return ret;
3236f57a
CW
1578}
1579
2e1b8730
CW
1580static struct intel_rps_client *to_rps_client(struct drm_file *file)
1581{
1582 struct drm_i915_file_private *fpriv = file->driver_priv;
1583 return &fpriv->rps;
1584}
1585
673a394b 1586/**
2ef7eeaa
EA
1587 * Called when user space prepares to use an object with the CPU, either
1588 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1589 */
1590int
1591i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1592 struct drm_file *file)
673a394b
EA
1593{
1594 struct drm_i915_gem_set_domain *args = data;
05394f39 1595 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1596 uint32_t read_domains = args->read_domains;
1597 uint32_t write_domain = args->write_domain;
673a394b
EA
1598 int ret;
1599
2ef7eeaa 1600 /* Only handle setting domains to types used by the CPU. */
21d509e3 1601 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1602 return -EINVAL;
1603
21d509e3 1604 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1605 return -EINVAL;
1606
1607 /* Having something in the write domain implies it's in the read
1608 * domain, and only that read domain. Enforce that in the request.
1609 */
1610 if (write_domain != 0 && read_domains != write_domain)
1611 return -EINVAL;
1612
76c1dec1 1613 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1614 if (ret)
76c1dec1 1615 return ret;
1d7cfea1 1616
05394f39 1617 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1618 if (&obj->base == NULL) {
1d7cfea1
CW
1619 ret = -ENOENT;
1620 goto unlock;
76c1dec1 1621 }
673a394b 1622
3236f57a
CW
1623 /* Try to flush the object off the GPU without holding the lock.
1624 * We will repeat the flush holding the lock in the normal manner
1625 * to catch cases where we are gazumped.
1626 */
6e4930f6 1627 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1628 to_rps_client(file),
6e4930f6 1629 !write_domain);
3236f57a
CW
1630 if (ret)
1631 goto unref;
1632
43566ded 1633 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1634 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1635 else
e47c68e9 1636 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1637
031b698a
DV
1638 if (write_domain != 0)
1639 intel_fb_obj_invalidate(obj,
1640 write_domain == I915_GEM_DOMAIN_GTT ?
1641 ORIGIN_GTT : ORIGIN_CPU);
1642
3236f57a 1643unref:
05394f39 1644 drm_gem_object_unreference(&obj->base);
1d7cfea1 1645unlock:
673a394b
EA
1646 mutex_unlock(&dev->struct_mutex);
1647 return ret;
1648}
1649
1650/**
1651 * Called when user space has done writes to this buffer
1652 */
1653int
1654i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1655 struct drm_file *file)
673a394b
EA
1656{
1657 struct drm_i915_gem_sw_finish *args = data;
05394f39 1658 struct drm_i915_gem_object *obj;
673a394b
EA
1659 int ret = 0;
1660
76c1dec1 1661 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1662 if (ret)
76c1dec1 1663 return ret;
1d7cfea1 1664
05394f39 1665 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1666 if (&obj->base == NULL) {
1d7cfea1
CW
1667 ret = -ENOENT;
1668 goto unlock;
673a394b
EA
1669 }
1670
673a394b 1671 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1672 if (obj->pin_display)
e62b59e4 1673 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1674
05394f39 1675 drm_gem_object_unreference(&obj->base);
1d7cfea1 1676unlock:
673a394b
EA
1677 mutex_unlock(&dev->struct_mutex);
1678 return ret;
1679}
1680
1681/**
1682 * Maps the contents of an object, returning the address it is mapped
1683 * into.
1684 *
1685 * While the mapping holds a reference on the contents of the object, it doesn't
1686 * imply a ref on the object itself.
34367381
DV
1687 *
1688 * IMPORTANT:
1689 *
1690 * DRM driver writers who look a this function as an example for how to do GEM
1691 * mmap support, please don't implement mmap support like here. The modern way
1692 * to implement DRM mmap support is with an mmap offset ioctl (like
1693 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1694 * That way debug tooling like valgrind will understand what's going on, hiding
1695 * the mmap call in a driver private ioctl will break that. The i915 driver only
1696 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1697 */
1698int
1699i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1700 struct drm_file *file)
673a394b
EA
1701{
1702 struct drm_i915_gem_mmap *args = data;
1703 struct drm_gem_object *obj;
673a394b
EA
1704 unsigned long addr;
1705
1816f923
AG
1706 if (args->flags & ~(I915_MMAP_WC))
1707 return -EINVAL;
1708
1709 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1710 return -ENODEV;
1711
05394f39 1712 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1713 if (obj == NULL)
bf79cb91 1714 return -ENOENT;
673a394b 1715
1286ff73
DV
1716 /* prime objects have no backing filp to GEM mmap
1717 * pages from.
1718 */
1719 if (!obj->filp) {
1720 drm_gem_object_unreference_unlocked(obj);
1721 return -EINVAL;
1722 }
1723
6be5ceb0 1724 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1725 PROT_READ | PROT_WRITE, MAP_SHARED,
1726 args->offset);
1816f923
AG
1727 if (args->flags & I915_MMAP_WC) {
1728 struct mm_struct *mm = current->mm;
1729 struct vm_area_struct *vma;
1730
1731 down_write(&mm->mmap_sem);
1732 vma = find_vma(mm, addr);
1733 if (vma)
1734 vma->vm_page_prot =
1735 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1736 else
1737 addr = -ENOMEM;
1738 up_write(&mm->mmap_sem);
1739 }
bc9025bd 1740 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1741 if (IS_ERR((void *)addr))
1742 return addr;
1743
1744 args->addr_ptr = (uint64_t) addr;
1745
1746 return 0;
1747}
1748
de151cf6
JB
1749/**
1750 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1751 * @vma: VMA in question
1752 * @vmf: fault info
de151cf6
JB
1753 *
1754 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1755 * from userspace. The fault handler takes care of binding the object to
1756 * the GTT (if needed), allocating and programming a fence register (again,
1757 * only if needed based on whether the old reg is still valid or the object
1758 * is tiled) and inserting a new PTE into the faulting process.
1759 *
1760 * Note that the faulting process may involve evicting existing objects
1761 * from the GTT and/or fence registers to make room. So performance may
1762 * suffer if the GTT working set is large or there are few fence registers
1763 * left.
1764 */
1765int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1766{
05394f39
CW
1767 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1768 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1769 struct drm_i915_private *dev_priv = to_i915(dev);
1770 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1771 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1772 pgoff_t page_offset;
1773 unsigned long pfn;
1774 int ret = 0;
0f973f27 1775 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1776
f65c9168
PZ
1777 intel_runtime_pm_get(dev_priv);
1778
de151cf6
JB
1779 /* We don't use vmf->pgoff since that has the fake offset */
1780 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1781 PAGE_SHIFT;
1782
d9bc7e9f
CW
1783 ret = i915_mutex_lock_interruptible(dev);
1784 if (ret)
1785 goto out;
a00b10c3 1786
db53a302
CW
1787 trace_i915_gem_object_fault(obj, page_offset, true, write);
1788
6e4930f6
CW
1789 /* Try to flush the object off the GPU first without holding the lock.
1790 * Upon reacquiring the lock, we will perform our sanity checks and then
1791 * repeat the flush holding the lock in the normal manner to catch cases
1792 * where we are gazumped.
1793 */
1794 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1795 if (ret)
1796 goto unlock;
1797
eb119bd6
CW
1798 /* Access to snoopable pages through the GTT is incoherent. */
1799 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1800 ret = -EFAULT;
eb119bd6
CW
1801 goto unlock;
1802 }
1803
c5ad54cf 1804 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1805 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1806 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1807 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1808
c5ad54cf
JL
1809 memset(&view, 0, sizeof(view));
1810 view.type = I915_GGTT_VIEW_PARTIAL;
1811 view.params.partial.offset = rounddown(page_offset, chunk_size);
1812 view.params.partial.size =
1813 min_t(unsigned int,
1814 chunk_size,
1815 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1816 view.params.partial.offset);
1817 }
1818
1819 /* Now pin it into the GTT if needed */
1820 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1821 if (ret)
1822 goto unlock;
4a684a41 1823
c9839303
CW
1824 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1825 if (ret)
1826 goto unpin;
74898d7e 1827
06d98131 1828 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1829 if (ret)
c9839303 1830 goto unpin;
7d1c4804 1831
b90b91d8 1832 /* Finally, remap it using the new GTT offset */
72e96d64 1833 pfn = ggtt->mappable_base +
c5ad54cf 1834 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1835 pfn >>= PAGE_SHIFT;
de151cf6 1836
c5ad54cf
JL
1837 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1838 /* Overriding existing pages in partial view does not cause
1839 * us any trouble as TLBs are still valid because the fault
1840 * is due to userspace losing part of the mapping or never
1841 * having accessed it before (at this partials' range).
1842 */
1843 unsigned long base = vma->vm_start +
1844 (view.params.partial.offset << PAGE_SHIFT);
1845 unsigned int i;
b90b91d8 1846
c5ad54cf
JL
1847 for (i = 0; i < view.params.partial.size; i++) {
1848 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1849 if (ret)
1850 break;
1851 }
1852
1853 obj->fault_mappable = true;
c5ad54cf
JL
1854 } else {
1855 if (!obj->fault_mappable) {
1856 unsigned long size = min_t(unsigned long,
1857 vma->vm_end - vma->vm_start,
1858 obj->base.size);
1859 int i;
1860
1861 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1862 ret = vm_insert_pfn(vma,
1863 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1864 pfn + i);
1865 if (ret)
1866 break;
1867 }
1868
1869 obj->fault_mappable = true;
1870 } else
1871 ret = vm_insert_pfn(vma,
1872 (unsigned long)vmf->virtual_address,
1873 pfn + page_offset);
1874 }
c9839303 1875unpin:
c5ad54cf 1876 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1877unlock:
de151cf6 1878 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1879out:
de151cf6 1880 switch (ret) {
d9bc7e9f 1881 case -EIO:
2232f031
DV
1882 /*
1883 * We eat errors when the gpu is terminally wedged to avoid
1884 * userspace unduly crashing (gl has no provisions for mmaps to
1885 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1886 * and so needs to be reported.
1887 */
1888 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1889 ret = VM_FAULT_SIGBUS;
1890 break;
1891 }
045e769a 1892 case -EAGAIN:
571c608d
DV
1893 /*
1894 * EAGAIN means the gpu is hung and we'll wait for the error
1895 * handler to reset everything when re-faulting in
1896 * i915_mutex_lock_interruptible.
d9bc7e9f 1897 */
c715089f
CW
1898 case 0:
1899 case -ERESTARTSYS:
bed636ab 1900 case -EINTR:
e79e0fe3
DR
1901 case -EBUSY:
1902 /*
1903 * EBUSY is ok: this just means that another thread
1904 * already did the job.
1905 */
f65c9168
PZ
1906 ret = VM_FAULT_NOPAGE;
1907 break;
de151cf6 1908 case -ENOMEM:
f65c9168
PZ
1909 ret = VM_FAULT_OOM;
1910 break;
a7c2e1aa 1911 case -ENOSPC:
45d67817 1912 case -EFAULT:
f65c9168
PZ
1913 ret = VM_FAULT_SIGBUS;
1914 break;
de151cf6 1915 default:
a7c2e1aa 1916 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1917 ret = VM_FAULT_SIGBUS;
1918 break;
de151cf6 1919 }
f65c9168
PZ
1920
1921 intel_runtime_pm_put(dev_priv);
1922 return ret;
de151cf6
JB
1923}
1924
901782b2
CW
1925/**
1926 * i915_gem_release_mmap - remove physical page mappings
1927 * @obj: obj in question
1928 *
af901ca1 1929 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1930 * relinquish ownership of the pages back to the system.
1931 *
1932 * It is vital that we remove the page mapping if we have mapped a tiled
1933 * object through the GTT and then lose the fence register due to
1934 * resource pressure. Similarly if the object has been moved out of the
1935 * aperture, than pages mapped into userspace must be revoked. Removing the
1936 * mapping will then trigger a page fault on the next user access, allowing
1937 * fixup by i915_gem_fault().
1938 */
d05ca301 1939void
05394f39 1940i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1941{
349f2ccf
CW
1942 /* Serialisation between user GTT access and our code depends upon
1943 * revoking the CPU's PTE whilst the mutex is held. The next user
1944 * pagefault then has to wait until we release the mutex.
1945 */
1946 lockdep_assert_held(&obj->base.dev->struct_mutex);
1947
6299f992
CW
1948 if (!obj->fault_mappable)
1949 return;
901782b2 1950
6796cb16
DH
1951 drm_vma_node_unmap(&obj->base.vma_node,
1952 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1953
1954 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1955 * memory transactions from userspace before we return. The TLB
1956 * flushing implied above by changing the PTE above *should* be
1957 * sufficient, an extra barrier here just provides us with a bit
1958 * of paranoid documentation about our requirement to serialise
1959 * memory writes before touching registers / GSM.
1960 */
1961 wmb();
1962
6299f992 1963 obj->fault_mappable = false;
901782b2
CW
1964}
1965
eedd10f4
CW
1966void
1967i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1968{
1969 struct drm_i915_gem_object *obj;
1970
1971 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1972 i915_gem_release_mmap(obj);
1973}
1974
0fa87796 1975uint32_t
e28f8711 1976i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1977{
e28f8711 1978 uint32_t gtt_size;
92b88aeb
CW
1979
1980 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1981 tiling_mode == I915_TILING_NONE)
1982 return size;
92b88aeb
CW
1983
1984 /* Previous chips need a power-of-two fence region when tiling */
1985 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1986 gtt_size = 1024*1024;
92b88aeb 1987 else
e28f8711 1988 gtt_size = 512*1024;
92b88aeb 1989
e28f8711
CW
1990 while (gtt_size < size)
1991 gtt_size <<= 1;
92b88aeb 1992
e28f8711 1993 return gtt_size;
92b88aeb
CW
1994}
1995
de151cf6
JB
1996/**
1997 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1998 * @obj: object to check
1999 *
2000 * Return the required GTT alignment for an object, taking into account
5e783301 2001 * potential fence register mapping.
de151cf6 2002 */
d865110c
ID
2003uint32_t
2004i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2005 int tiling_mode, bool fenced)
de151cf6 2006{
de151cf6
JB
2007 /*
2008 * Minimum alignment is 4k (GTT page size), but might be greater
2009 * if a fence register is needed for the object.
2010 */
d865110c 2011 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2012 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2013 return 4096;
2014
a00b10c3
CW
2015 /*
2016 * Previous chips need to be aligned to the size of the smallest
2017 * fence register that can contain the object.
2018 */
e28f8711 2019 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2020}
2021
d8cb5086
CW
2022static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2023{
2024 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2025 int ret;
2026
0de23977 2027 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
2028 return 0;
2029
da494d7c
DV
2030 dev_priv->mm.shrinker_no_lock_stealing = true;
2031
d8cb5086
CW
2032 ret = drm_gem_create_mmap_offset(&obj->base);
2033 if (ret != -ENOSPC)
da494d7c 2034 goto out;
d8cb5086
CW
2035
2036 /* Badly fragmented mmap space? The only way we can recover
2037 * space is by destroying unwanted objects. We can't randomly release
2038 * mmap_offsets as userspace expects them to be persistent for the
2039 * lifetime of the objects. The closest we can is to release the
2040 * offsets on purgeable objects by truncating it and marking it purged,
2041 * which prevents userspace from ever using that object again.
2042 */
21ab4e74
CW
2043 i915_gem_shrink(dev_priv,
2044 obj->base.size >> PAGE_SHIFT,
2045 I915_SHRINK_BOUND |
2046 I915_SHRINK_UNBOUND |
2047 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2048 ret = drm_gem_create_mmap_offset(&obj->base);
2049 if (ret != -ENOSPC)
da494d7c 2050 goto out;
d8cb5086
CW
2051
2052 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2053 ret = drm_gem_create_mmap_offset(&obj->base);
2054out:
2055 dev_priv->mm.shrinker_no_lock_stealing = false;
2056
2057 return ret;
d8cb5086
CW
2058}
2059
2060static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2061{
d8cb5086
CW
2062 drm_gem_free_mmap_offset(&obj->base);
2063}
2064
da6b51d0 2065int
ff72145b
DA
2066i915_gem_mmap_gtt(struct drm_file *file,
2067 struct drm_device *dev,
da6b51d0 2068 uint32_t handle,
ff72145b 2069 uint64_t *offset)
de151cf6 2070{
05394f39 2071 struct drm_i915_gem_object *obj;
de151cf6
JB
2072 int ret;
2073
76c1dec1 2074 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2075 if (ret)
76c1dec1 2076 return ret;
de151cf6 2077
ff72145b 2078 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2079 if (&obj->base == NULL) {
1d7cfea1
CW
2080 ret = -ENOENT;
2081 goto unlock;
2082 }
de151cf6 2083
05394f39 2084 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2085 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2086 ret = -EFAULT;
1d7cfea1 2087 goto out;
ab18282d
CW
2088 }
2089
d8cb5086
CW
2090 ret = i915_gem_object_create_mmap_offset(obj);
2091 if (ret)
2092 goto out;
de151cf6 2093
0de23977 2094 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2095
1d7cfea1 2096out:
05394f39 2097 drm_gem_object_unreference(&obj->base);
1d7cfea1 2098unlock:
de151cf6 2099 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2100 return ret;
de151cf6
JB
2101}
2102
ff72145b
DA
2103/**
2104 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2105 * @dev: DRM device
2106 * @data: GTT mapping ioctl data
2107 * @file: GEM object info
2108 *
2109 * Simply returns the fake offset to userspace so it can mmap it.
2110 * The mmap call will end up in drm_gem_mmap(), which will set things
2111 * up so we can get faults in the handler above.
2112 *
2113 * The fault handler will take care of binding the object into the GTT
2114 * (since it may have been evicted to make room for something), allocating
2115 * a fence register, and mapping the appropriate aperture address into
2116 * userspace.
2117 */
2118int
2119i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2120 struct drm_file *file)
2121{
2122 struct drm_i915_gem_mmap_gtt *args = data;
2123
da6b51d0 2124 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2125}
2126
225067ee
DV
2127/* Immediately discard the backing storage */
2128static void
2129i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2130{
4d6294bf 2131 i915_gem_object_free_mmap_offset(obj);
1286ff73 2132
4d6294bf
CW
2133 if (obj->base.filp == NULL)
2134 return;
e5281ccd 2135
225067ee
DV
2136 /* Our goal here is to return as much of the memory as
2137 * is possible back to the system as we are called from OOM.
2138 * To do this we must instruct the shmfs to drop all of its
2139 * backing pages, *now*.
2140 */
5537252b 2141 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2142 obj->madv = __I915_MADV_PURGED;
2143}
e5281ccd 2144
5537252b
CW
2145/* Try to discard unwanted pages */
2146static void
2147i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2148{
5537252b
CW
2149 struct address_space *mapping;
2150
2151 switch (obj->madv) {
2152 case I915_MADV_DONTNEED:
2153 i915_gem_object_truncate(obj);
2154 case __I915_MADV_PURGED:
2155 return;
2156 }
2157
2158 if (obj->base.filp == NULL)
2159 return;
2160
2161 mapping = file_inode(obj->base.filp)->i_mapping,
2162 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2163}
2164
5cdf5881 2165static void
05394f39 2166i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2167{
90797e6d
ID
2168 struct sg_page_iter sg_iter;
2169 int ret;
1286ff73 2170
05394f39 2171 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2172
6c085a72 2173 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2174 if (WARN_ON(ret)) {
6c085a72
CW
2175 /* In the event of a disaster, abandon all caches and
2176 * hope for the best.
2177 */
2c22569b 2178 i915_gem_clflush_object(obj, true);
6c085a72
CW
2179 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2180 }
2181
e2273302
ID
2182 i915_gem_gtt_finish_object(obj);
2183
6dacfd2f 2184 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2185 i915_gem_object_save_bit_17_swizzle(obj);
2186
05394f39
CW
2187 if (obj->madv == I915_MADV_DONTNEED)
2188 obj->dirty = 0;
3ef94daa 2189
90797e6d 2190 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 2191 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 2192
05394f39 2193 if (obj->dirty)
9da3da66 2194 set_page_dirty(page);
3ef94daa 2195
05394f39 2196 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2197 mark_page_accessed(page);
3ef94daa 2198
09cbfeaf 2199 put_page(page);
3ef94daa 2200 }
05394f39 2201 obj->dirty = 0;
673a394b 2202
9da3da66
CW
2203 sg_free_table(obj->pages);
2204 kfree(obj->pages);
37e680a1 2205}
6c085a72 2206
dd624afd 2207int
37e680a1
CW
2208i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2209{
2210 const struct drm_i915_gem_object_ops *ops = obj->ops;
2211
2f745ad3 2212 if (obj->pages == NULL)
37e680a1
CW
2213 return 0;
2214
a5570178
CW
2215 if (obj->pages_pin_count)
2216 return -EBUSY;
2217
9843877d 2218 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2219
a2165e31
CW
2220 /* ->put_pages might need to allocate memory for the bit17 swizzle
2221 * array, hence protect them from being reaped by removing them from gtt
2222 * lists early. */
35c20a60 2223 list_del(&obj->global_list);
a2165e31 2224
0a798eb9 2225 if (obj->mapping) {
fb8621d3
CW
2226 if (is_vmalloc_addr(obj->mapping))
2227 vunmap(obj->mapping);
2228 else
2229 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2230 obj->mapping = NULL;
2231 }
2232
37e680a1 2233 ops->put_pages(obj);
05394f39 2234 obj->pages = NULL;
37e680a1 2235
5537252b 2236 i915_gem_object_invalidate(obj);
6c085a72
CW
2237
2238 return 0;
2239}
2240
37e680a1 2241static int
6c085a72 2242i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2243{
6c085a72 2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2245 int page_count, i;
2246 struct address_space *mapping;
9da3da66
CW
2247 struct sg_table *st;
2248 struct scatterlist *sg;
90797e6d 2249 struct sg_page_iter sg_iter;
e5281ccd 2250 struct page *page;
90797e6d 2251 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2252 int ret;
6c085a72 2253 gfp_t gfp;
e5281ccd 2254
6c085a72
CW
2255 /* Assert that the object is not currently in any GPU domain. As it
2256 * wasn't in the GTT, there shouldn't be any way it could have been in
2257 * a GPU cache
2258 */
2259 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
9da3da66
CW
2262 st = kmalloc(sizeof(*st), GFP_KERNEL);
2263 if (st == NULL)
2264 return -ENOMEM;
2265
05394f39 2266 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2267 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2268 kfree(st);
e5281ccd 2269 return -ENOMEM;
9da3da66 2270 }
e5281ccd 2271
9da3da66
CW
2272 /* Get the list of pages out of our struct file. They'll be pinned
2273 * at this point until we release them.
2274 *
2275 * Fail silently without starting the shrinker
2276 */
496ad9aa 2277 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2278 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2279 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2280 sg = st->sgl;
2281 st->nents = 0;
2282 for (i = 0; i < page_count; i++) {
6c085a72
CW
2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 if (IS_ERR(page)) {
21ab4e74
CW
2285 i915_gem_shrink(dev_priv,
2286 page_count,
2287 I915_SHRINK_BOUND |
2288 I915_SHRINK_UNBOUND |
2289 I915_SHRINK_PURGEABLE);
6c085a72
CW
2290 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 }
2292 if (IS_ERR(page)) {
2293 /* We've tried hard to allocate the memory by reaping
2294 * our own buffer, now let the real VM do its job and
2295 * go down in flames if truly OOM.
2296 */
6c085a72 2297 i915_gem_shrink_all(dev_priv);
f461d1be 2298 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2299 if (IS_ERR(page)) {
2300 ret = PTR_ERR(page);
6c085a72 2301 goto err_pages;
e2273302 2302 }
6c085a72 2303 }
426729dc
KRW
2304#ifdef CONFIG_SWIOTLB
2305 if (swiotlb_nr_tbl()) {
2306 st->nents++;
2307 sg_set_page(sg, page, PAGE_SIZE, 0);
2308 sg = sg_next(sg);
2309 continue;
2310 }
2311#endif
90797e6d
ID
2312 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313 if (i)
2314 sg = sg_next(sg);
2315 st->nents++;
2316 sg_set_page(sg, page, PAGE_SIZE, 0);
2317 } else {
2318 sg->length += PAGE_SIZE;
2319 }
2320 last_pfn = page_to_pfn(page);
3bbbe706
DV
2321
2322 /* Check that the i965g/gm workaround works. */
2323 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2324 }
426729dc
KRW
2325#ifdef CONFIG_SWIOTLB
2326 if (!swiotlb_nr_tbl())
2327#endif
2328 sg_mark_end(sg);
74ce6b6c
CW
2329 obj->pages = st;
2330
e2273302
ID
2331 ret = i915_gem_gtt_prepare_object(obj);
2332 if (ret)
2333 goto err_pages;
2334
6dacfd2f 2335 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2336 i915_gem_object_do_bit_17_swizzle(obj);
2337
656bfa3a
DV
2338 if (obj->tiling_mode != I915_TILING_NONE &&
2339 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340 i915_gem_object_pin_pages(obj);
2341
e5281ccd
CW
2342 return 0;
2343
2344err_pages:
90797e6d
ID
2345 sg_mark_end(sg);
2346 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
09cbfeaf 2347 put_page(sg_page_iter_page(&sg_iter));
9da3da66
CW
2348 sg_free_table(st);
2349 kfree(st);
0820baf3
CW
2350
2351 /* shmemfs first checks if there is enough memory to allocate the page
2352 * and reports ENOSPC should there be insufficient, along with the usual
2353 * ENOMEM for a genuine allocation failure.
2354 *
2355 * We use ENOSPC in our driver to mean that we have run out of aperture
2356 * space and so want to translate the error from shmemfs back to our
2357 * usual understanding of ENOMEM.
2358 */
e2273302
ID
2359 if (ret == -ENOSPC)
2360 ret = -ENOMEM;
2361
2362 return ret;
673a394b
EA
2363}
2364
37e680a1
CW
2365/* Ensure that the associated pages are gathered from the backing storage
2366 * and pinned into our object. i915_gem_object_get_pages() may be called
2367 * multiple times before they are released by a single call to
2368 * i915_gem_object_put_pages() - once the pages are no longer referenced
2369 * either as a result of memory pressure (reaping pages under the shrinker)
2370 * or as the object is itself released.
2371 */
2372int
2373i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374{
2375 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376 const struct drm_i915_gem_object_ops *ops = obj->ops;
2377 int ret;
2378
2f745ad3 2379 if (obj->pages)
37e680a1
CW
2380 return 0;
2381
43e28f09 2382 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2383 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2384 return -EFAULT;
43e28f09
CW
2385 }
2386
a5570178
CW
2387 BUG_ON(obj->pages_pin_count);
2388
37e680a1
CW
2389 ret = ops->get_pages(obj);
2390 if (ret)
2391 return ret;
2392
35c20a60 2393 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2394
2395 obj->get_page.sg = obj->pages->sgl;
2396 obj->get_page.last = 0;
2397
37e680a1 2398 return 0;
673a394b
EA
2399}
2400
0a798eb9
CW
2401void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2402{
2403 int ret;
2404
2405 lockdep_assert_held(&obj->base.dev->struct_mutex);
2406
2407 ret = i915_gem_object_get_pages(obj);
2408 if (ret)
2409 return ERR_PTR(ret);
2410
2411 i915_gem_object_pin_pages(obj);
2412
2413 if (obj->mapping == NULL) {
0a798eb9 2414 struct page **pages;
0a798eb9 2415
fb8621d3
CW
2416 pages = NULL;
2417 if (obj->base.size == PAGE_SIZE)
2418 obj->mapping = kmap(sg_page(obj->pages->sgl));
2419 else
2420 pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2421 sizeof(*pages),
2422 GFP_TEMPORARY);
0a798eb9 2423 if (pages != NULL) {
fb8621d3
CW
2424 struct sg_page_iter sg_iter;
2425 int n;
2426
0a798eb9
CW
2427 n = 0;
2428 for_each_sg_page(obj->pages->sgl, &sg_iter,
2429 obj->pages->nents, 0)
2430 pages[n++] = sg_page_iter_page(&sg_iter);
2431
2432 obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2433 drm_free_large(pages);
2434 }
2435 if (obj->mapping == NULL) {
2436 i915_gem_object_unpin_pages(obj);
2437 return ERR_PTR(-ENOMEM);
2438 }
2439 }
2440
2441 return obj->mapping;
2442}
2443
b4716185 2444void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2445 struct drm_i915_gem_request *req)
673a394b 2446{
b4716185 2447 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2448 struct intel_engine_cs *engine;
b2af0376 2449
666796da 2450 engine = i915_gem_request_get_engine(req);
673a394b
EA
2451
2452 /* Add a reference if we're newly entering the active list. */
b4716185 2453 if (obj->active == 0)
05394f39 2454 drm_gem_object_reference(&obj->base);
666796da 2455 obj->active |= intel_engine_flag(engine);
e35a41de 2456
117897f4 2457 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2458 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2459
1c7f4bca 2460 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2461}
2462
b4716185
CW
2463static void
2464i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2465{
d501b1d2
CW
2466 GEM_BUG_ON(obj->last_write_req == NULL);
2467 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2468
2469 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2470 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2471}
2472
caea7476 2473static void
b4716185 2474i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2475{
feb822cf 2476 struct i915_vma *vma;
ce44b0ea 2477
d501b1d2
CW
2478 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2479 GEM_BUG_ON(!(obj->active & (1 << ring)));
b4716185 2480
117897f4 2481 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2482 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2483
4a570db5 2484 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2485 i915_gem_object_retire__write(obj);
2486
2487 obj->active &= ~(1 << ring);
2488 if (obj->active)
2489 return;
caea7476 2490
6c246959
CW
2491 /* Bump our place on the bound list to keep it roughly in LRU order
2492 * so that we don't steal from recently used but inactive objects
2493 * (unless we are forced to ofc!)
2494 */
2495 list_move_tail(&obj->global_list,
2496 &to_i915(obj->base.dev)->mm.bound_list);
2497
1c7f4bca
CW
2498 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2499 if (!list_empty(&vma->vm_link))
2500 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2501 }
caea7476 2502
97b2a6a1 2503 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2504 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2505}
2506
9d773091 2507static int
fca26bb4 2508i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2509{
9d773091 2510 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2511 struct intel_engine_cs *engine;
29dcb570 2512 int ret;
53d227f2 2513
107f27a5 2514 /* Carefully retire all requests without writing to the rings */
b4ac5afc 2515 for_each_engine(engine, dev_priv) {
666796da 2516 ret = intel_engine_idle(engine);
107f27a5
CW
2517 if (ret)
2518 return ret;
9d773091 2519 }
9d773091 2520 i915_gem_retire_requests(dev);
107f27a5
CW
2521
2522 /* Finally reset hw state */
29dcb570 2523 for_each_engine(engine, dev_priv)
e2f80391 2524 intel_ring_init_seqno(engine, seqno);
498d2ac1 2525
9d773091 2526 return 0;
53d227f2
DV
2527}
2528
fca26bb4
MK
2529int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2530{
2531 struct drm_i915_private *dev_priv = dev->dev_private;
2532 int ret;
2533
2534 if (seqno == 0)
2535 return -EINVAL;
2536
2537 /* HWS page needs to be set less than what we
2538 * will inject to ring
2539 */
2540 ret = i915_gem_init_seqno(dev, seqno - 1);
2541 if (ret)
2542 return ret;
2543
2544 /* Carefully set the last_seqno value so that wrap
2545 * detection still works
2546 */
2547 dev_priv->next_seqno = seqno;
2548 dev_priv->last_seqno = seqno - 1;
2549 if (dev_priv->last_seqno == 0)
2550 dev_priv->last_seqno--;
2551
2552 return 0;
2553}
2554
9d773091
CW
2555int
2556i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2557{
9d773091
CW
2558 struct drm_i915_private *dev_priv = dev->dev_private;
2559
2560 /* reserve 0 for non-seqno */
2561 if (dev_priv->next_seqno == 0) {
fca26bb4 2562 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2563 if (ret)
2564 return ret;
53d227f2 2565
9d773091
CW
2566 dev_priv->next_seqno = 1;
2567 }
53d227f2 2568
f72b3435 2569 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2570 return 0;
53d227f2
DV
2571}
2572
bf7dc5b7
JH
2573/*
2574 * NB: This function is not allowed to fail. Doing so would mean the the
2575 * request is not being tracked for completion but the work itself is
2576 * going to happen on the hardware. This would be a Bad Thing(tm).
2577 */
75289874 2578void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2579 struct drm_i915_gem_object *obj,
2580 bool flush_caches)
673a394b 2581{
e2f80391 2582 struct intel_engine_cs *engine;
75289874 2583 struct drm_i915_private *dev_priv;
48e29f55 2584 struct intel_ringbuffer *ringbuf;
6d3d8274 2585 u32 request_start;
0251a963 2586 u32 reserved_tail;
3cce469c
CW
2587 int ret;
2588
48e29f55 2589 if (WARN_ON(request == NULL))
bf7dc5b7 2590 return;
48e29f55 2591
4a570db5 2592 engine = request->engine;
39dabecd 2593 dev_priv = request->i915;
75289874
JH
2594 ringbuf = request->ringbuf;
2595
29b1b415
JH
2596 /*
2597 * To ensure that this call will not fail, space for its emissions
2598 * should already have been reserved in the ring buffer. Let the ring
2599 * know that it is time to use that space up.
2600 */
48e29f55 2601 request_start = intel_ring_get_tail(ringbuf);
0251a963
CW
2602 reserved_tail = request->reserved_space;
2603 request->reserved_space = 0;
2604
cc889e0f
DV
2605 /*
2606 * Emit any outstanding flushes - execbuf can fail to emit the flush
2607 * after having emitted the batchbuffer command. Hence we need to fix
2608 * things up similar to emitting the lazy request. The difference here
2609 * is that the flush _must_ happen before the next request, no matter
2610 * what.
2611 */
5b4a60c2
JH
2612 if (flush_caches) {
2613 if (i915.enable_execlists)
4866d729 2614 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2615 else
4866d729 2616 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2617 /* Not allowed to fail! */
2618 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2619 }
cc889e0f 2620
7c90b7de
CW
2621 trace_i915_gem_request_add(request);
2622
2623 request->head = request_start;
2624
2625 /* Whilst this request exists, batch_obj will be on the
2626 * active_list, and so will hold the active reference. Only when this
2627 * request is retired will the the batch_obj be moved onto the
2628 * inactive_list and lose its active reference. Hence we do not need
2629 * to explicitly hold another reference here.
2630 */
2631 request->batch_obj = obj;
2632
2633 /* Seal the request and mark it as pending execution. Note that
2634 * we may inspect this state, without holding any locks, during
2635 * hangcheck. Hence we apply the barrier to ensure that we do not
2636 * see a more recent value in the hws than we are tracking.
2637 */
2638 request->emitted_jiffies = jiffies;
2639 request->previous_seqno = engine->last_submitted_seqno;
2640 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2641 list_add_tail(&request->list, &engine->request_list);
2642
a71d8d94
CW
2643 /* Record the position of the start of the request so that
2644 * should we detect the updated seqno part-way through the
2645 * GPU processing the request, we never over-estimate the
2646 * position of the head.
2647 */
6d3d8274 2648 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2649
bf7dc5b7 2650 if (i915.enable_execlists)
e2f80391 2651 ret = engine->emit_request(request);
bf7dc5b7 2652 else {
e2f80391 2653 ret = engine->add_request(request);
53292cdb
MT
2654
2655 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2656 }
bf7dc5b7
JH
2657 /* Not allowed to fail! */
2658 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2659
e2f80391 2660 i915_queue_hangcheck(engine->dev);
10cd45b6 2661
87255483
DV
2662 queue_delayed_work(dev_priv->wq,
2663 &dev_priv->mm.retire_work,
2664 round_jiffies_up_relative(HZ));
7d993739 2665 intel_mark_busy(dev_priv);
cc889e0f 2666
29b1b415 2667 /* Sanity check that the reserved size was large enough. */
0251a963
CW
2668 ret = intel_ring_get_tail(ringbuf) - request_start;
2669 if (ret < 0)
2670 ret += ringbuf->size;
2671 WARN_ONCE(ret > reserved_tail,
2672 "Not enough space reserved (%d bytes) "
2673 "for adding the request (%d bytes)\n",
2674 reserved_tail, ret);
673a394b
EA
2675}
2676
939fd762 2677static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2678 const struct intel_context *ctx)
be62acb4 2679{
44e2c070 2680 unsigned long elapsed;
be62acb4 2681
44e2c070
MK
2682 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2683
2684 if (ctx->hang_stats.banned)
be62acb4
MK
2685 return true;
2686
676fa572
CW
2687 if (ctx->hang_stats.ban_period_seconds &&
2688 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2689 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2690 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2691 return true;
88b4aa87
MK
2692 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2693 if (i915_stop_ring_allow_warn(dev_priv))
2694 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2695 return true;
3fac8978 2696 }
be62acb4
MK
2697 }
2698
2699 return false;
2700}
2701
939fd762 2702static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2703 struct intel_context *ctx,
b6b0fac0 2704 const bool guilty)
aa60c664 2705{
44e2c070
MK
2706 struct i915_ctx_hang_stats *hs;
2707
2708 if (WARN_ON(!ctx))
2709 return;
aa60c664 2710
44e2c070
MK
2711 hs = &ctx->hang_stats;
2712
2713 if (guilty) {
939fd762 2714 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2715 hs->batch_active++;
2716 hs->guilty_ts = get_seconds();
2717 } else {
2718 hs->batch_pending++;
aa60c664
MK
2719 }
2720}
2721
abfe262a
JH
2722void i915_gem_request_free(struct kref *req_ref)
2723{
2724 struct drm_i915_gem_request *req = container_of(req_ref,
2725 typeof(*req), ref);
efab6d8d 2726 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2727}
2728
26827088 2729static inline int
0bc40be8 2730__i915_gem_request_alloc(struct intel_engine_cs *engine,
26827088
DG
2731 struct intel_context *ctx,
2732 struct drm_i915_gem_request **req_out)
6689cb2b 2733{
0bc40be8 2734 struct drm_i915_private *dev_priv = to_i915(engine->dev);
299259a3 2735 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
eed29a5b 2736 struct drm_i915_gem_request *req;
6689cb2b 2737 int ret;
6689cb2b 2738
217e46b5
JH
2739 if (!req_out)
2740 return -EINVAL;
2741
bccca494 2742 *req_out = NULL;
6689cb2b 2743
f4457ae7
CW
2744 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2745 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2746 * and restart.
2747 */
2748 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
299259a3
CW
2749 if (ret)
2750 return ret;
2751
eed29a5b
DV
2752 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2753 if (req == NULL)
6689cb2b
JH
2754 return -ENOMEM;
2755
0bc40be8 2756 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
9a0c1e27
CW
2757 if (ret)
2758 goto err;
6689cb2b 2759
40e895ce
JH
2760 kref_init(&req->ref);
2761 req->i915 = dev_priv;
4a570db5 2762 req->engine = engine;
299259a3 2763 req->reset_counter = reset_counter;
40e895ce
JH
2764 req->ctx = ctx;
2765 i915_gem_context_reference(req->ctx);
6689cb2b 2766
29b1b415
JH
2767 /*
2768 * Reserve space in the ring buffer for all the commands required to
2769 * eventually emit this request. This is to guarantee that the
2770 * i915_add_request() call can't fail. Note that the reserve may need
2771 * to be redone if the request is not actually submitted straight
2772 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2773 */
0251a963 2774 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
2775
2776 if (i915.enable_execlists)
2777 ret = intel_logical_ring_alloc_request_extras(req);
2778 else
2779 ret = intel_ring_alloc_request_extras(req);
2780 if (ret)
2781 goto err_ctx;
29b1b415 2782
bccca494 2783 *req_out = req;
6689cb2b 2784 return 0;
9a0c1e27 2785
bfa01200
CW
2786err_ctx:
2787 i915_gem_context_unreference(ctx);
9a0c1e27
CW
2788err:
2789 kmem_cache_free(dev_priv->requests, req);
2790 return ret;
0e50e96b
MK
2791}
2792
26827088
DG
2793/**
2794 * i915_gem_request_alloc - allocate a request structure
2795 *
2796 * @engine: engine that we wish to issue the request on.
2797 * @ctx: context that the request will be associated with.
2798 * This can be NULL if the request is not directly related to
2799 * any specific user context, in which case this function will
2800 * choose an appropriate context to use.
2801 *
2802 * Returns a pointer to the allocated request if successful,
2803 * or an error code if not.
2804 */
2805struct drm_i915_gem_request *
2806i915_gem_request_alloc(struct intel_engine_cs *engine,
2807 struct intel_context *ctx)
2808{
2809 struct drm_i915_gem_request *req;
2810 int err;
2811
2812 if (ctx == NULL)
ed54c1a1 2813 ctx = to_i915(engine->dev)->kernel_context;
26827088
DG
2814 err = __i915_gem_request_alloc(engine, ctx, &req);
2815 return err ? ERR_PTR(err) : req;
2816}
2817
8d9fc7fd 2818struct drm_i915_gem_request *
0bc40be8 2819i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2820{
4db080f9
CW
2821 struct drm_i915_gem_request *request;
2822
0bc40be8 2823 list_for_each_entry(request, &engine->request_list, list) {
1b5a433a 2824 if (i915_gem_request_completed(request, false))
4db080f9 2825 continue;
aa60c664 2826
b6b0fac0 2827 return request;
4db080f9 2828 }
b6b0fac0
MK
2829
2830 return NULL;
2831}
2832
666796da 2833static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
0bc40be8 2834 struct intel_engine_cs *engine)
b6b0fac0
MK
2835{
2836 struct drm_i915_gem_request *request;
2837 bool ring_hung;
2838
0bc40be8 2839 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2840
2841 if (request == NULL)
2842 return;
2843
0bc40be8 2844 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2845
939fd762 2846 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0 2847
0bc40be8 2848 list_for_each_entry_continue(request, &engine->request_list, list)
939fd762 2849 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2850}
aa60c664 2851
666796da 2852static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
0bc40be8 2853 struct intel_engine_cs *engine)
4db080f9 2854{
608c1a52
CW
2855 struct intel_ringbuffer *buffer;
2856
0bc40be8 2857 while (!list_empty(&engine->active_list)) {
05394f39 2858 struct drm_i915_gem_object *obj;
9375e446 2859
0bc40be8 2860 obj = list_first_entry(&engine->active_list,
05394f39 2861 struct drm_i915_gem_object,
117897f4 2862 engine_list[engine->id]);
9375e446 2863
0bc40be8 2864 i915_gem_object_retire__read(obj, engine->id);
673a394b 2865 }
1d62beea 2866
dcb4c12a
OM
2867 /*
2868 * Clear the execlists queue up before freeing the requests, as those
2869 * are the ones that keep the context and ringbuffer backing objects
2870 * pinned in place.
2871 */
dcb4c12a 2872
7de1691a 2873 if (i915.enable_execlists) {
27af5eea
TU
2874 /* Ensure irq handler finishes or is cancelled. */
2875 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2876
e39d42fa 2877 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2878 }
2879
1d62beea
BW
2880 /*
2881 * We must free the requests after all the corresponding objects have
2882 * been moved off active lists. Which is the same order as the normal
2883 * retire_requests function does. This is important if object hold
2884 * implicit references on things like e.g. ppgtt address spaces through
2885 * the request.
2886 */
0bc40be8 2887 while (!list_empty(&engine->request_list)) {
1d62beea
BW
2888 struct drm_i915_gem_request *request;
2889
0bc40be8 2890 request = list_first_entry(&engine->request_list,
1d62beea
BW
2891 struct drm_i915_gem_request,
2892 list);
2893
b4716185 2894 i915_gem_request_retire(request);
1d62beea 2895 }
608c1a52
CW
2896
2897 /* Having flushed all requests from all queues, we know that all
2898 * ringbuffers must now be empty. However, since we do not reclaim
2899 * all space when retiring the request (to prevent HEADs colliding
2900 * with rapid ringbuffer wraparound) the amount of available space
2901 * upon reset is less than when we start. Do one more pass over
2902 * all the ringbuffers to reset last_retired_head.
2903 */
0bc40be8 2904 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
2905 buffer->last_retired_head = buffer->tail;
2906 intel_ring_update_space(buffer);
2907 }
2ed53a94
CW
2908
2909 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
673a394b
EA
2910}
2911
069efc1d 2912void i915_gem_reset(struct drm_device *dev)
673a394b 2913{
77f01230 2914 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2915 struct intel_engine_cs *engine;
673a394b 2916
4db080f9
CW
2917 /*
2918 * Before we free the objects from the requests, we need to inspect
2919 * them for finding the guilty party. As the requests only borrow
2920 * their reference to the objects, the inspection must be done first.
2921 */
b4ac5afc 2922 for_each_engine(engine, dev_priv)
666796da 2923 i915_gem_reset_engine_status(dev_priv, engine);
4db080f9 2924
b4ac5afc 2925 for_each_engine(engine, dev_priv)
666796da 2926 i915_gem_reset_engine_cleanup(dev_priv, engine);
dfaae392 2927
acce9ffa
BW
2928 i915_gem_context_reset(dev);
2929
19b2dbde 2930 i915_gem_restore_fences(dev);
b4716185
CW
2931
2932 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2933}
2934
2935/**
2936 * This function clears the request list as sequence numbers are passed.
2937 */
1cf0ba14 2938void
0bc40be8 2939i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 2940{
0bc40be8 2941 WARN_ON(i915_verify_lists(engine->dev));
673a394b 2942
832a3aad
CW
2943 /* Retire requests first as we use it above for the early return.
2944 * If we retire requests last, we may use a later seqno and so clear
2945 * the requests lists without clearing the active list, leading to
2946 * confusion.
e9103038 2947 */
0bc40be8 2948 while (!list_empty(&engine->request_list)) {
673a394b 2949 struct drm_i915_gem_request *request;
673a394b 2950
0bc40be8 2951 request = list_first_entry(&engine->request_list,
673a394b
EA
2952 struct drm_i915_gem_request,
2953 list);
673a394b 2954
1b5a433a 2955 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2956 break;
2957
b4716185 2958 i915_gem_request_retire(request);
b84d5f0c 2959 }
673a394b 2960
832a3aad
CW
2961 /* Move any buffers on the active list that are no longer referenced
2962 * by the ringbuffer to the flushing/inactive lists as appropriate,
2963 * before we free the context associated with the requests.
2964 */
0bc40be8 2965 while (!list_empty(&engine->active_list)) {
832a3aad
CW
2966 struct drm_i915_gem_object *obj;
2967
0bc40be8
TU
2968 obj = list_first_entry(&engine->active_list,
2969 struct drm_i915_gem_object,
117897f4 2970 engine_list[engine->id]);
832a3aad 2971
0bc40be8 2972 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
2973 break;
2974
0bc40be8 2975 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
2976 }
2977
0bc40be8
TU
2978 if (unlikely(engine->trace_irq_req &&
2979 i915_gem_request_completed(engine->trace_irq_req, true))) {
2980 engine->irq_put(engine);
2981 i915_gem_request_assign(&engine->trace_irq_req, NULL);
9d34e5db 2982 }
23bc5982 2983
0bc40be8 2984 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
2985}
2986
b29c19b6 2987bool
b09a1fec
CW
2988i915_gem_retire_requests(struct drm_device *dev)
2989{
3e31c6c0 2990 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2991 struct intel_engine_cs *engine;
b29c19b6 2992 bool idle = true;
b09a1fec 2993
b4ac5afc 2994 for_each_engine(engine, dev_priv) {
e2f80391
TU
2995 i915_gem_retire_requests_ring(engine);
2996 idle &= list_empty(&engine->request_list);
c86ee3a9 2997 if (i915.enable_execlists) {
27af5eea 2998 spin_lock_bh(&engine->execlist_lock);
e2f80391 2999 idle &= list_empty(&engine->execlist_queue);
27af5eea 3000 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 3001 }
b29c19b6
CW
3002 }
3003
3004 if (idle)
3005 mod_delayed_work(dev_priv->wq,
3006 &dev_priv->mm.idle_work,
3007 msecs_to_jiffies(100));
3008
3009 return idle;
b09a1fec
CW
3010}
3011
75ef9da2 3012static void
673a394b
EA
3013i915_gem_retire_work_handler(struct work_struct *work)
3014{
b29c19b6
CW
3015 struct drm_i915_private *dev_priv =
3016 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3017 struct drm_device *dev = dev_priv->dev;
0a58705b 3018 bool idle;
673a394b 3019
891b48cf 3020 /* Come back later if the device is busy... */
b29c19b6
CW
3021 idle = false;
3022 if (mutex_trylock(&dev->struct_mutex)) {
3023 idle = i915_gem_retire_requests(dev);
3024 mutex_unlock(&dev->struct_mutex);
673a394b 3025 }
b29c19b6 3026 if (!idle)
bcb45086
CW
3027 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3028 round_jiffies_up_relative(HZ));
b29c19b6 3029}
0a58705b 3030
b29c19b6
CW
3031static void
3032i915_gem_idle_work_handler(struct work_struct *work)
3033{
3034 struct drm_i915_private *dev_priv =
3035 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3036 struct drm_device *dev = dev_priv->dev;
b4ac5afc 3037 struct intel_engine_cs *engine;
b29c19b6 3038
b4ac5afc
DG
3039 for_each_engine(engine, dev_priv)
3040 if (!list_empty(&engine->request_list))
423795cb 3041 return;
35c94185 3042
30ecad77 3043 /* we probably should sync with hangcheck here, using cancel_work_sync.
b4ac5afc 3044 * Also locking seems to be fubar here, engine->request_list is protected
30ecad77
DV
3045 * by dev->struct_mutex. */
3046
7d993739 3047 intel_mark_idle(dev_priv);
35c94185
CW
3048
3049 if (mutex_trylock(&dev->struct_mutex)) {
b4ac5afc 3050 for_each_engine(engine, dev_priv)
e2f80391 3051 i915_gem_batch_pool_fini(&engine->batch_pool);
b29c19b6 3052
35c94185
CW
3053 mutex_unlock(&dev->struct_mutex);
3054 }
673a394b
EA
3055}
3056
30dfebf3
DV
3057/**
3058 * Ensures that an object will eventually get non-busy by flushing any required
3059 * write domains, emitting any outstanding lazy request and retiring and
3060 * completed requests.
3061 */
3062static int
3063i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3064{
a5ac0f90 3065 int i;
b4716185
CW
3066
3067 if (!obj->active)
3068 return 0;
30dfebf3 3069
666796da 3070 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3071 struct drm_i915_gem_request *req;
41c52415 3072
b4716185
CW
3073 req = obj->last_read_req[i];
3074 if (req == NULL)
3075 continue;
3076
3077 if (list_empty(&req->list))
3078 goto retire;
3079
b4716185
CW
3080 if (i915_gem_request_completed(req, true)) {
3081 __i915_gem_request_retire__upto(req);
3082retire:
3083 i915_gem_object_retire__read(obj, i);
3084 }
30dfebf3
DV
3085 }
3086
3087 return 0;
3088}
3089
23ba4fd0
BW
3090/**
3091 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3092 * @DRM_IOCTL_ARGS: standard ioctl arguments
3093 *
3094 * Returns 0 if successful, else an error is returned with the remaining time in
3095 * the timeout parameter.
3096 * -ETIME: object is still busy after timeout
3097 * -ERESTARTSYS: signal interrupted the wait
3098 * -ENONENT: object doesn't exist
3099 * Also possible, but rare:
3100 * -EAGAIN: GPU wedged
3101 * -ENOMEM: damn
3102 * -ENODEV: Internal IRQ fail
3103 * -E?: The add request failed
3104 *
3105 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3106 * non-zero timeout parameter the wait ioctl will wait for the given number of
3107 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3108 * without holding struct_mutex the object may become re-busied before this
3109 * function completes. A similar but shorter * race condition exists in the busy
3110 * ioctl
3111 */
3112int
3113i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3114{
3115 struct drm_i915_gem_wait *args = data;
3116 struct drm_i915_gem_object *obj;
666796da 3117 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185
CW
3118 int i, n = 0;
3119 int ret;
23ba4fd0 3120
11b5d511
DV
3121 if (args->flags != 0)
3122 return -EINVAL;
3123
23ba4fd0
BW
3124 ret = i915_mutex_lock_interruptible(dev);
3125 if (ret)
3126 return ret;
3127
3128 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3129 if (&obj->base == NULL) {
3130 mutex_unlock(&dev->struct_mutex);
3131 return -ENOENT;
3132 }
3133
30dfebf3
DV
3134 /* Need to make sure the object gets inactive eventually. */
3135 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3136 if (ret)
3137 goto out;
3138
b4716185 3139 if (!obj->active)
97b2a6a1 3140 goto out;
23ba4fd0 3141
23ba4fd0 3142 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3143 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3144 */
762e4583 3145 if (args->timeout_ns == 0) {
23ba4fd0
BW
3146 ret = -ETIME;
3147 goto out;
3148 }
3149
3150 drm_gem_object_unreference(&obj->base);
b4716185 3151
666796da 3152 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3153 if (obj->last_read_req[i] == NULL)
3154 continue;
3155
3156 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3157 }
3158
23ba4fd0
BW
3159 mutex_unlock(&dev->struct_mutex);
3160
b4716185
CW
3161 for (i = 0; i < n; i++) {
3162 if (ret == 0)
299259a3 3163 ret = __i915_wait_request(req[i], true,
b4716185 3164 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3165 to_rps_client(file));
73db04cf 3166 i915_gem_request_unreference(req[i]);
b4716185 3167 }
ff865885 3168 return ret;
23ba4fd0
BW
3169
3170out:
3171 drm_gem_object_unreference(&obj->base);
3172 mutex_unlock(&dev->struct_mutex);
3173 return ret;
3174}
3175
b4716185
CW
3176static int
3177__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3178 struct intel_engine_cs *to,
91af127f
JH
3179 struct drm_i915_gem_request *from_req,
3180 struct drm_i915_gem_request **to_req)
b4716185
CW
3181{
3182 struct intel_engine_cs *from;
3183 int ret;
3184
666796da 3185 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3186 if (to == from)
3187 return 0;
3188
91af127f 3189 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3190 return 0;
3191
b4716185 3192 if (!i915_semaphore_is_enabled(obj->base.dev)) {
a6f766f3 3193 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3194 ret = __i915_wait_request(from_req,
a6f766f3
CW
3195 i915->mm.interruptible,
3196 NULL,
3197 &i915->rps.semaphores);
b4716185
CW
3198 if (ret)
3199 return ret;
3200
91af127f 3201 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3202 } else {
3203 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3204 u32 seqno = i915_gem_request_get_seqno(from_req);
3205
3206 WARN_ON(!to_req);
b4716185
CW
3207
3208 if (seqno <= from->semaphore.sync_seqno[idx])
3209 return 0;
3210
91af127f 3211 if (*to_req == NULL) {
26827088
DG
3212 struct drm_i915_gem_request *req;
3213
3214 req = i915_gem_request_alloc(to, NULL);
3215 if (IS_ERR(req))
3216 return PTR_ERR(req);
3217
3218 *to_req = req;
91af127f
JH
3219 }
3220
599d924c
JH
3221 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3222 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3223 if (ret)
3224 return ret;
3225
3226 /* We use last_read_req because sync_to()
3227 * might have just caused seqno wrap under
3228 * the radar.
3229 */
3230 from->semaphore.sync_seqno[idx] =
3231 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3232 }
3233
3234 return 0;
3235}
3236
5816d648
BW
3237/**
3238 * i915_gem_object_sync - sync an object to a ring.
3239 *
3240 * @obj: object which may be in use on another ring.
3241 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3242 * @to_req: request we wish to use the object for. See below.
3243 * This will be allocated and returned if a request is
3244 * required but not passed in.
5816d648
BW
3245 *
3246 * This code is meant to abstract object synchronization with the GPU.
3247 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3248 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3249 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3250 * into a buffer at any time, but multiple readers. To ensure each has
3251 * a coherent view of memory, we must:
3252 *
3253 * - If there is an outstanding write request to the object, the new
3254 * request must wait for it to complete (either CPU or in hw, requests
3255 * on the same ring will be naturally ordered).
3256 *
3257 * - If we are a write request (pending_write_domain is set), the new
3258 * request must wait for outstanding read requests to complete.
5816d648 3259 *
91af127f
JH
3260 * For CPU synchronisation (NULL to) no request is required. For syncing with
3261 * rings to_req must be non-NULL. However, a request does not have to be
3262 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3263 * request will be allocated automatically and returned through *to_req. Note
3264 * that it is not guaranteed that commands will be emitted (because the system
3265 * might already be idle). Hence there is no need to create a request that
3266 * might never have any work submitted. Note further that if a request is
3267 * returned in *to_req, it is the responsibility of the caller to submit
3268 * that request (after potentially adding more work to it).
3269 *
5816d648
BW
3270 * Returns 0 if successful, else propagates up the lower layer error.
3271 */
2911a35b
BW
3272int
3273i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3274 struct intel_engine_cs *to,
3275 struct drm_i915_gem_request **to_req)
2911a35b 3276{
b4716185 3277 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3278 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3279 int ret, i, n;
41c52415 3280
b4716185 3281 if (!obj->active)
2911a35b
BW
3282 return 0;
3283
b4716185
CW
3284 if (to == NULL)
3285 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3286
b4716185
CW
3287 n = 0;
3288 if (readonly) {
3289 if (obj->last_write_req)
3290 req[n++] = obj->last_write_req;
3291 } else {
666796da 3292 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3293 if (obj->last_read_req[i])
3294 req[n++] = obj->last_read_req[i];
3295 }
3296 for (i = 0; i < n; i++) {
91af127f 3297 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3298 if (ret)
3299 return ret;
3300 }
2911a35b 3301
b4716185 3302 return 0;
2911a35b
BW
3303}
3304
b5ffc9bc
CW
3305static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3306{
3307 u32 old_write_domain, old_read_domains;
3308
b5ffc9bc
CW
3309 /* Force a pagefault for domain tracking on next user access */
3310 i915_gem_release_mmap(obj);
3311
b97c3d9c
KP
3312 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3313 return;
3314
b5ffc9bc
CW
3315 old_read_domains = obj->base.read_domains;
3316 old_write_domain = obj->base.write_domain;
3317
3318 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3319 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3320
3321 trace_i915_gem_object_change_domain(obj,
3322 old_read_domains,
3323 old_write_domain);
3324}
3325
8ef8561f
CW
3326static void __i915_vma_iounmap(struct i915_vma *vma)
3327{
3328 GEM_BUG_ON(vma->pin_count);
3329
3330 if (vma->iomap == NULL)
3331 return;
3332
3333 io_mapping_unmap(vma->iomap);
3334 vma->iomap = NULL;
3335}
3336
e9f24d5f 3337static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3338{
07fe0b12 3339 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3340 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3341 int ret;
673a394b 3342
1c7f4bca 3343 if (list_empty(&vma->obj_link))
673a394b
EA
3344 return 0;
3345
0ff501cb
DV
3346 if (!drm_mm_node_allocated(&vma->node)) {
3347 i915_gem_vma_destroy(vma);
0ff501cb
DV
3348 return 0;
3349 }
433544bd 3350
d7f46fc4 3351 if (vma->pin_count)
31d8d651 3352 return -EBUSY;
673a394b 3353
c4670ad0
CW
3354 BUG_ON(obj->pages == NULL);
3355
e9f24d5f
TU
3356 if (wait) {
3357 ret = i915_gem_object_wait_rendering(obj, false);
3358 if (ret)
3359 return ret;
3360 }
a8198eea 3361
596c5923 3362 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3363 i915_gem_object_finish_gtt(obj);
5323fd04 3364
8b1bc9b4
DV
3365 /* release the fence reg _after_ flushing */
3366 ret = i915_gem_object_put_fence(obj);
3367 if (ret)
3368 return ret;
8ef8561f
CW
3369
3370 __i915_vma_iounmap(vma);
8b1bc9b4 3371 }
96b47b65 3372
07fe0b12 3373 trace_i915_vma_unbind(vma);
db53a302 3374
777dc5bb 3375 vma->vm->unbind_vma(vma);
5e562f1d 3376 vma->bound = 0;
6f65e29a 3377
1c7f4bca 3378 list_del_init(&vma->vm_link);
596c5923 3379 if (vma->is_ggtt) {
fe14d5f4
TU
3380 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3381 obj->map_and_fenceable = false;
3382 } else if (vma->ggtt_view.pages) {
3383 sg_free_table(vma->ggtt_view.pages);
3384 kfree(vma->ggtt_view.pages);
fe14d5f4 3385 }
016a65a3 3386 vma->ggtt_view.pages = NULL;
fe14d5f4 3387 }
673a394b 3388
2f633156
BW
3389 drm_mm_remove_node(&vma->node);
3390 i915_gem_vma_destroy(vma);
3391
3392 /* Since the unbound list is global, only move to that list if
b93dab6e 3393 * no more VMAs exist. */
e2273302 3394 if (list_empty(&obj->vma_list))
2f633156 3395 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3396
70903c3b
CW
3397 /* And finally now the object is completely decoupled from this vma,
3398 * we can drop its hold on the backing storage and allow it to be
3399 * reaped by the shrinker.
3400 */
3401 i915_gem_object_unpin_pages(obj);
3402
88241785 3403 return 0;
54cf91dc
CW
3404}
3405
e9f24d5f
TU
3406int i915_vma_unbind(struct i915_vma *vma)
3407{
3408 return __i915_vma_unbind(vma, true);
3409}
3410
3411int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3412{
3413 return __i915_vma_unbind(vma, false);
3414}
3415
b2da9fe5 3416int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3417{
3e31c6c0 3418 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3419 struct intel_engine_cs *engine;
b4ac5afc 3420 int ret;
4df2faf4 3421
4df2faf4 3422 /* Flush everything onto the inactive list. */
b4ac5afc 3423 for_each_engine(engine, dev_priv) {
ecdb5fd8 3424 if (!i915.enable_execlists) {
73cfa865
JH
3425 struct drm_i915_gem_request *req;
3426
e2f80391 3427 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
3428 if (IS_ERR(req))
3429 return PTR_ERR(req);
73cfa865 3430
ba01cc93 3431 ret = i915_switch_context(req);
75289874 3432 i915_add_request_no_flush(req);
aa9b7810
CW
3433 if (ret)
3434 return ret;
ecdb5fd8 3435 }
b6c7488d 3436
666796da 3437 ret = intel_engine_idle(engine);
1ec14ad3
CW
3438 if (ret)
3439 return ret;
3440 }
4df2faf4 3441
b4716185 3442 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3443 return 0;
4df2faf4
DV
3444}
3445
4144f9b5 3446static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3447 unsigned long cache_level)
3448{
4144f9b5 3449 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3450 struct drm_mm_node *other;
3451
4144f9b5
CW
3452 /*
3453 * On some machines we have to be careful when putting differing types
3454 * of snoopable memory together to avoid the prefetcher crossing memory
3455 * domains and dying. During vm initialisation, we decide whether or not
3456 * these constraints apply and set the drm_mm.color_adjust
3457 * appropriately.
42d6ab48 3458 */
4144f9b5 3459 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3460 return true;
3461
c6cfb325 3462 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3463 return true;
3464
3465 if (list_empty(&gtt_space->node_list))
3466 return true;
3467
3468 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3469 if (other->allocated && !other->hole_follows && other->color != cache_level)
3470 return false;
3471
3472 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3473 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3474 return false;
3475
3476 return true;
3477}
3478
673a394b 3479/**
91e6711e
JL
3480 * Finds free space in the GTT aperture and binds the object or a view of it
3481 * there.
673a394b 3482 */
262de145 3483static struct i915_vma *
07fe0b12
BW
3484i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3485 struct i915_address_space *vm,
ec7adb6e 3486 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3487 unsigned alignment,
ec7adb6e 3488 uint64_t flags)
673a394b 3489{
05394f39 3490 struct drm_device *dev = obj->base.dev;
72e96d64
JL
3491 struct drm_i915_private *dev_priv = to_i915(dev);
3492 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 3493 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3494 u32 search_flag, alloc_flag;
3495 u64 start, end;
65bd342f 3496 u64 size, fence_size;
2f633156 3497 struct i915_vma *vma;
07f73f69 3498 int ret;
673a394b 3499
91e6711e
JL
3500 if (i915_is_ggtt(vm)) {
3501 u32 view_size;
3502
3503 if (WARN_ON(!ggtt_view))
3504 return ERR_PTR(-EINVAL);
ec7adb6e 3505
91e6711e
JL
3506 view_size = i915_ggtt_view_size(obj, ggtt_view);
3507
3508 fence_size = i915_gem_get_gtt_size(dev,
3509 view_size,
3510 obj->tiling_mode);
3511 fence_alignment = i915_gem_get_gtt_alignment(dev,
3512 view_size,
3513 obj->tiling_mode,
3514 true);
3515 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3516 view_size,
3517 obj->tiling_mode,
3518 false);
3519 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3520 } else {
3521 fence_size = i915_gem_get_gtt_size(dev,
3522 obj->base.size,
3523 obj->tiling_mode);
3524 fence_alignment = i915_gem_get_gtt_alignment(dev,
3525 obj->base.size,
3526 obj->tiling_mode,
3527 true);
3528 unfenced_alignment =
3529 i915_gem_get_gtt_alignment(dev,
3530 obj->base.size,
3531 obj->tiling_mode,
3532 false);
3533 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3534 }
a00b10c3 3535
101b506a
MT
3536 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3537 end = vm->total;
3538 if (flags & PIN_MAPPABLE)
72e96d64 3539 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3540 if (flags & PIN_ZONE_4G)
48ea1e32 3541 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3542
673a394b 3543 if (alignment == 0)
1ec9e26d 3544 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3545 unfenced_alignment;
1ec9e26d 3546 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3547 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3548 ggtt_view ? ggtt_view->type : 0,
3549 alignment);
262de145 3550 return ERR_PTR(-EINVAL);
673a394b
EA
3551 }
3552
91e6711e
JL
3553 /* If binding the object/GGTT view requires more space than the entire
3554 * aperture has, reject it early before evicting everything in a vain
3555 * attempt to find space.
654fc607 3556 */
91e6711e 3557 if (size > end) {
65bd342f 3558 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3559 ggtt_view ? ggtt_view->type : 0,
3560 size,
1ec9e26d 3561 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3562 end);
262de145 3563 return ERR_PTR(-E2BIG);
654fc607
CW
3564 }
3565
37e680a1 3566 ret = i915_gem_object_get_pages(obj);
6c085a72 3567 if (ret)
262de145 3568 return ERR_PTR(ret);
6c085a72 3569
fbdda6fb
CW
3570 i915_gem_object_pin_pages(obj);
3571
ec7adb6e
JL
3572 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3573 i915_gem_obj_lookup_or_create_vma(obj, vm);
3574
262de145 3575 if (IS_ERR(vma))
bc6bc15b 3576 goto err_unpin;
2f633156 3577
506a8e87
CW
3578 if (flags & PIN_OFFSET_FIXED) {
3579 uint64_t offset = flags & PIN_OFFSET_MASK;
3580
3581 if (offset & (alignment - 1) || offset + size > end) {
3582 ret = -EINVAL;
3583 goto err_free_vma;
3584 }
3585 vma->node.start = offset;
3586 vma->node.size = size;
3587 vma->node.color = obj->cache_level;
3588 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3589 if (ret) {
3590 ret = i915_gem_evict_for_vma(vma);
3591 if (ret == 0)
3592 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3593 }
3594 if (ret)
3595 goto err_free_vma;
101b506a 3596 } else {
506a8e87
CW
3597 if (flags & PIN_HIGH) {
3598 search_flag = DRM_MM_SEARCH_BELOW;
3599 alloc_flag = DRM_MM_CREATE_TOP;
3600 } else {
3601 search_flag = DRM_MM_SEARCH_DEFAULT;
3602 alloc_flag = DRM_MM_CREATE_DEFAULT;
3603 }
101b506a 3604
0a9ae0d7 3605search_free:
506a8e87
CW
3606 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3607 size, alignment,
3608 obj->cache_level,
3609 start, end,
3610 search_flag,
3611 alloc_flag);
3612 if (ret) {
3613 ret = i915_gem_evict_something(dev, vm, size, alignment,
3614 obj->cache_level,
3615 start, end,
3616 flags);
3617 if (ret == 0)
3618 goto search_free;
9731129c 3619
506a8e87
CW
3620 goto err_free_vma;
3621 }
673a394b 3622 }
4144f9b5 3623 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3624 ret = -EINVAL;
bc6bc15b 3625 goto err_remove_node;
673a394b
EA
3626 }
3627
fe14d5f4 3628 trace_i915_vma_bind(vma, flags);
0875546c 3629 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3630 if (ret)
e2273302 3631 goto err_remove_node;
fe14d5f4 3632
35c20a60 3633 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3634 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3635
262de145 3636 return vma;
2f633156 3637
bc6bc15b 3638err_remove_node:
6286ef9b 3639 drm_mm_remove_node(&vma->node);
bc6bc15b 3640err_free_vma:
2f633156 3641 i915_gem_vma_destroy(vma);
262de145 3642 vma = ERR_PTR(ret);
bc6bc15b 3643err_unpin:
2f633156 3644 i915_gem_object_unpin_pages(obj);
262de145 3645 return vma;
673a394b
EA
3646}
3647
000433b6 3648bool
2c22569b
CW
3649i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3650 bool force)
673a394b 3651{
673a394b
EA
3652 /* If we don't have a page list set up, then we're not pinned
3653 * to GPU, and we can ignore the cache flush because it'll happen
3654 * again at bind time.
3655 */
05394f39 3656 if (obj->pages == NULL)
000433b6 3657 return false;
673a394b 3658
769ce464
ID
3659 /*
3660 * Stolen memory is always coherent with the GPU as it is explicitly
3661 * marked as wc by the system, or the system is cache-coherent.
3662 */
6a2c4232 3663 if (obj->stolen || obj->phys_handle)
000433b6 3664 return false;
769ce464 3665
9c23f7fc
CW
3666 /* If the GPU is snooping the contents of the CPU cache,
3667 * we do not need to manually clear the CPU cache lines. However,
3668 * the caches are only snooped when the render cache is
3669 * flushed/invalidated. As we always have to emit invalidations
3670 * and flushes when moving into and out of the RENDER domain, correct
3671 * snooping behaviour occurs naturally as the result of our domain
3672 * tracking.
3673 */
0f71979a
CW
3674 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3675 obj->cache_dirty = true;
000433b6 3676 return false;
0f71979a 3677 }
9c23f7fc 3678
1c5d22f7 3679 trace_i915_gem_object_clflush(obj);
9da3da66 3680 drm_clflush_sg(obj->pages);
0f71979a 3681 obj->cache_dirty = false;
000433b6
CW
3682
3683 return true;
e47c68e9
EA
3684}
3685
3686/** Flushes the GTT write domain for the object if it's dirty. */
3687static void
05394f39 3688i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3689{
1c5d22f7
CW
3690 uint32_t old_write_domain;
3691
05394f39 3692 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3693 return;
3694
63256ec5 3695 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3696 * to it immediately go to main memory as far as we know, so there's
3697 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3698 *
3699 * However, we do have to enforce the order so that all writes through
3700 * the GTT land before any writes to the device, such as updates to
3701 * the GATT itself.
e47c68e9 3702 */
63256ec5
CW
3703 wmb();
3704
05394f39
CW
3705 old_write_domain = obj->base.write_domain;
3706 obj->base.write_domain = 0;
1c5d22f7 3707
de152b62 3708 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3709
1c5d22f7 3710 trace_i915_gem_object_change_domain(obj,
05394f39 3711 obj->base.read_domains,
1c5d22f7 3712 old_write_domain);
e47c68e9
EA
3713}
3714
3715/** Flushes the CPU write domain for the object if it's dirty. */
3716static void
e62b59e4 3717i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3718{
1c5d22f7 3719 uint32_t old_write_domain;
e47c68e9 3720
05394f39 3721 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3722 return;
3723
e62b59e4 3724 if (i915_gem_clflush_object(obj, obj->pin_display))
000433b6
CW
3725 i915_gem_chipset_flush(obj->base.dev);
3726
05394f39
CW
3727 old_write_domain = obj->base.write_domain;
3728 obj->base.write_domain = 0;
1c5d22f7 3729
de152b62 3730 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3731
1c5d22f7 3732 trace_i915_gem_object_change_domain(obj,
05394f39 3733 obj->base.read_domains,
1c5d22f7 3734 old_write_domain);
e47c68e9
EA
3735}
3736
2ef7eeaa
EA
3737/**
3738 * Moves a single object to the GTT read, and possibly write domain.
3739 *
3740 * This function returns when the move is complete, including waiting on
3741 * flushes to occur.
3742 */
79e53945 3743int
2021746e 3744i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3745{
72e96d64
JL
3746 struct drm_device *dev = obj->base.dev;
3747 struct drm_i915_private *dev_priv = to_i915(dev);
3748 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1c5d22f7 3749 uint32_t old_write_domain, old_read_domains;
43566ded 3750 struct i915_vma *vma;
e47c68e9 3751 int ret;
2ef7eeaa 3752
8d7e3de1
CW
3753 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3754 return 0;
3755
0201f1ec 3756 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3757 if (ret)
3758 return ret;
3759
43566ded
CW
3760 /* Flush and acquire obj->pages so that we are coherent through
3761 * direct access in memory with previous cached writes through
3762 * shmemfs and that our cache domain tracking remains valid.
3763 * For example, if the obj->filp was moved to swap without us
3764 * being notified and releasing the pages, we would mistakenly
3765 * continue to assume that the obj remained out of the CPU cached
3766 * domain.
3767 */
3768 ret = i915_gem_object_get_pages(obj);
3769 if (ret)
3770 return ret;
3771
e62b59e4 3772 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3773
d0a57789
CW
3774 /* Serialise direct access to this object with the barriers for
3775 * coherent writes from the GPU, by effectively invalidating the
3776 * GTT domain upon first access.
3777 */
3778 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3779 mb();
3780
05394f39
CW
3781 old_write_domain = obj->base.write_domain;
3782 old_read_domains = obj->base.read_domains;
1c5d22f7 3783
e47c68e9
EA
3784 /* It should now be out of any other write domains, and we can update
3785 * the domain values for our changes.
3786 */
05394f39
CW
3787 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3788 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3789 if (write) {
05394f39
CW
3790 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3791 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3792 obj->dirty = 1;
2ef7eeaa
EA
3793 }
3794
1c5d22f7
CW
3795 trace_i915_gem_object_change_domain(obj,
3796 old_read_domains,
3797 old_write_domain);
3798
8325a09d 3799 /* And bump the LRU for this access */
43566ded
CW
3800 vma = i915_gem_obj_to_ggtt(obj);
3801 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 3802 list_move_tail(&vma->vm_link,
72e96d64 3803 &ggtt->base.inactive_list);
8325a09d 3804
e47c68e9
EA
3805 return 0;
3806}
3807
ef55f92a
CW
3808/**
3809 * Changes the cache-level of an object across all VMA.
3810 *
3811 * After this function returns, the object will be in the new cache-level
3812 * across all GTT and the contents of the backing storage will be coherent,
3813 * with respect to the new cache-level. In order to keep the backing storage
3814 * coherent for all users, we only allow a single cache level to be set
3815 * globally on the object and prevent it from being changed whilst the
3816 * hardware is reading from the object. That is if the object is currently
3817 * on the scanout it will be set to uncached (or equivalent display
3818 * cache coherency) and all non-MOCS GPU access will also be uncached so
3819 * that all direct access to the scanout remains coherent.
3820 */
e4ffd173
CW
3821int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3822 enum i915_cache_level cache_level)
3823{
7bddb01f 3824 struct drm_device *dev = obj->base.dev;
df6f783a 3825 struct i915_vma *vma, *next;
ef55f92a 3826 bool bound = false;
ed75a55b 3827 int ret = 0;
e4ffd173
CW
3828
3829 if (obj->cache_level == cache_level)
ed75a55b 3830 goto out;
e4ffd173 3831
ef55f92a
CW
3832 /* Inspect the list of currently bound VMA and unbind any that would
3833 * be invalid given the new cache-level. This is principally to
3834 * catch the issue of the CS prefetch crossing page boundaries and
3835 * reading an invalid PTE on older architectures.
3836 */
1c7f4bca 3837 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
3838 if (!drm_mm_node_allocated(&vma->node))
3839 continue;
3840
3841 if (vma->pin_count) {
3842 DRM_DEBUG("can not change the cache level of pinned objects\n");
3843 return -EBUSY;
3844 }
3845
4144f9b5 3846 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3847 ret = i915_vma_unbind(vma);
3089c6f2
BW
3848 if (ret)
3849 return ret;
ef55f92a
CW
3850 } else
3851 bound = true;
42d6ab48
CW
3852 }
3853
ef55f92a
CW
3854 /* We can reuse the existing drm_mm nodes but need to change the
3855 * cache-level on the PTE. We could simply unbind them all and
3856 * rebind with the correct cache-level on next use. However since
3857 * we already have a valid slot, dma mapping, pages etc, we may as
3858 * rewrite the PTE in the belief that doing so tramples upon less
3859 * state and so involves less work.
3860 */
3861 if (bound) {
3862 /* Before we change the PTE, the GPU must not be accessing it.
3863 * If we wait upon the object, we know that all the bound
3864 * VMA are no longer active.
3865 */
2e2f351d 3866 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3867 if (ret)
3868 return ret;
3869
ef55f92a
CW
3870 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3871 /* Access to snoopable pages through the GTT is
3872 * incoherent and on some machines causes a hard
3873 * lockup. Relinquish the CPU mmaping to force
3874 * userspace to refault in the pages and we can
3875 * then double check if the GTT mapping is still
3876 * valid for that pointer access.
3877 */
3878 i915_gem_release_mmap(obj);
3879
3880 /* As we no longer need a fence for GTT access,
3881 * we can relinquish it now (and so prevent having
3882 * to steal a fence from someone else on the next
3883 * fence request). Note GPU activity would have
3884 * dropped the fence as all snoopable access is
3885 * supposed to be linear.
3886 */
e4ffd173
CW
3887 ret = i915_gem_object_put_fence(obj);
3888 if (ret)
3889 return ret;
ef55f92a
CW
3890 } else {
3891 /* We either have incoherent backing store and
3892 * so no GTT access or the architecture is fully
3893 * coherent. In such cases, existing GTT mmaps
3894 * ignore the cache bit in the PTE and we can
3895 * rewrite it without confusing the GPU or having
3896 * to force userspace to fault back in its mmaps.
3897 */
e4ffd173
CW
3898 }
3899
1c7f4bca 3900 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3901 if (!drm_mm_node_allocated(&vma->node))
3902 continue;
3903
3904 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3905 if (ret)
3906 return ret;
3907 }
e4ffd173
CW
3908 }
3909
1c7f4bca 3910 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3911 vma->node.color = cache_level;
3912 obj->cache_level = cache_level;
3913
ed75a55b 3914out:
ef55f92a
CW
3915 /* Flush the dirty CPU caches to the backing storage so that the
3916 * object is now coherent at its new cache level (with respect
3917 * to the access domain).
3918 */
0f71979a
CW
3919 if (obj->cache_dirty &&
3920 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3921 cpu_write_needs_clflush(obj)) {
3922 if (i915_gem_clflush_object(obj, true))
3923 i915_gem_chipset_flush(obj->base.dev);
e4ffd173
CW
3924 }
3925
e4ffd173
CW
3926 return 0;
3927}
3928
199adf40
BW
3929int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3930 struct drm_file *file)
e6994aee 3931{
199adf40 3932 struct drm_i915_gem_caching *args = data;
e6994aee 3933 struct drm_i915_gem_object *obj;
e6994aee
CW
3934
3935 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3936 if (&obj->base == NULL)
3937 return -ENOENT;
e6994aee 3938
651d794f
CW
3939 switch (obj->cache_level) {
3940 case I915_CACHE_LLC:
3941 case I915_CACHE_L3_LLC:
3942 args->caching = I915_CACHING_CACHED;
3943 break;
3944
4257d3ba
CW
3945 case I915_CACHE_WT:
3946 args->caching = I915_CACHING_DISPLAY;
3947 break;
3948
651d794f
CW
3949 default:
3950 args->caching = I915_CACHING_NONE;
3951 break;
3952 }
e6994aee 3953
432be69d
CW
3954 drm_gem_object_unreference_unlocked(&obj->base);
3955 return 0;
e6994aee
CW
3956}
3957
199adf40
BW
3958int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3959 struct drm_file *file)
e6994aee 3960{
fd0fe6ac 3961 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3962 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3963 struct drm_i915_gem_object *obj;
3964 enum i915_cache_level level;
3965 int ret;
3966
199adf40
BW
3967 switch (args->caching) {
3968 case I915_CACHING_NONE:
e6994aee
CW
3969 level = I915_CACHE_NONE;
3970 break;
199adf40 3971 case I915_CACHING_CACHED:
e5756c10
ID
3972 /*
3973 * Due to a HW issue on BXT A stepping, GPU stores via a
3974 * snooped mapping may leave stale data in a corresponding CPU
3975 * cacheline, whereas normally such cachelines would get
3976 * invalidated.
3977 */
ca377809 3978 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3979 return -ENODEV;
3980
e6994aee
CW
3981 level = I915_CACHE_LLC;
3982 break;
4257d3ba
CW
3983 case I915_CACHING_DISPLAY:
3984 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3985 break;
e6994aee
CW
3986 default:
3987 return -EINVAL;
3988 }
3989
fd0fe6ac
ID
3990 intel_runtime_pm_get(dev_priv);
3991
3bc2913e
BW
3992 ret = i915_mutex_lock_interruptible(dev);
3993 if (ret)
fd0fe6ac 3994 goto rpm_put;
3bc2913e 3995
e6994aee
CW
3996 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3997 if (&obj->base == NULL) {
3998 ret = -ENOENT;
3999 goto unlock;
4000 }
4001
4002 ret = i915_gem_object_set_cache_level(obj, level);
4003
4004 drm_gem_object_unreference(&obj->base);
4005unlock:
4006 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
4007rpm_put:
4008 intel_runtime_pm_put(dev_priv);
4009
e6994aee
CW
4010 return ret;
4011}
4012
b9241ea3 4013/*
2da3b9b9
CW
4014 * Prepare buffer for display plane (scanout, cursors, etc).
4015 * Can be called from an uninterruptible phase (modesetting) and allows
4016 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4017 */
4018int
2da3b9b9
CW
4019i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4020 u32 alignment,
e6617330 4021 const struct i915_ggtt_view *view)
b9241ea3 4022{
2da3b9b9 4023 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4024 int ret;
4025
cc98b413
CW
4026 /* Mark the pin_display early so that we account for the
4027 * display coherency whilst setting up the cache domains.
4028 */
8a0c39b1 4029 obj->pin_display++;
cc98b413 4030
a7ef0640
EA
4031 /* The display engine is not coherent with the LLC cache on gen6. As
4032 * a result, we make sure that the pinning that is about to occur is
4033 * done with uncached PTEs. This is lowest common denominator for all
4034 * chipsets.
4035 *
4036 * However for gen6+, we could do better by using the GFDT bit instead
4037 * of uncaching, which would allow us to flush all the LLC-cached data
4038 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4039 */
651d794f
CW
4040 ret = i915_gem_object_set_cache_level(obj,
4041 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4042 if (ret)
cc98b413 4043 goto err_unpin_display;
a7ef0640 4044
2da3b9b9
CW
4045 /* As the user may map the buffer once pinned in the display plane
4046 * (e.g. libkms for the bootup splash), we have to ensure that we
4047 * always use map_and_fenceable for all scanout buffers.
4048 */
50470bb0
TU
4049 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4050 view->type == I915_GGTT_VIEW_NORMAL ?
4051 PIN_MAPPABLE : 0);
2da3b9b9 4052 if (ret)
cc98b413 4053 goto err_unpin_display;
2da3b9b9 4054
e62b59e4 4055 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4056
2da3b9b9 4057 old_write_domain = obj->base.write_domain;
05394f39 4058 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4059
4060 /* It should now be out of any other write domains, and we can update
4061 * the domain values for our changes.
4062 */
e5f1d962 4063 obj->base.write_domain = 0;
05394f39 4064 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4065
4066 trace_i915_gem_object_change_domain(obj,
4067 old_read_domains,
2da3b9b9 4068 old_write_domain);
b9241ea3
ZW
4069
4070 return 0;
cc98b413
CW
4071
4072err_unpin_display:
8a0c39b1 4073 obj->pin_display--;
cc98b413
CW
4074 return ret;
4075}
4076
4077void
e6617330
TU
4078i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4079 const struct i915_ggtt_view *view)
cc98b413 4080{
8a0c39b1
TU
4081 if (WARN_ON(obj->pin_display == 0))
4082 return;
4083
e6617330
TU
4084 i915_gem_object_ggtt_unpin_view(obj, view);
4085
8a0c39b1 4086 obj->pin_display--;
b9241ea3
ZW
4087}
4088
e47c68e9
EA
4089/**
4090 * Moves a single object to the CPU read, and possibly write domain.
4091 *
4092 * This function returns when the move is complete, including waiting on
4093 * flushes to occur.
4094 */
dabdfe02 4095int
919926ae 4096i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4097{
1c5d22f7 4098 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4099 int ret;
4100
8d7e3de1
CW
4101 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4102 return 0;
4103
0201f1ec 4104 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4105 if (ret)
4106 return ret;
4107
e47c68e9 4108 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4109
05394f39
CW
4110 old_write_domain = obj->base.write_domain;
4111 old_read_domains = obj->base.read_domains;
1c5d22f7 4112
e47c68e9 4113 /* Flush the CPU cache if it's still invalid. */
05394f39 4114 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4115 i915_gem_clflush_object(obj, false);
2ef7eeaa 4116
05394f39 4117 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4118 }
4119
4120 /* It should now be out of any other write domains, and we can update
4121 * the domain values for our changes.
4122 */
05394f39 4123 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4124
4125 /* If we're writing through the CPU, then the GPU read domains will
4126 * need to be invalidated at next use.
4127 */
4128 if (write) {
05394f39
CW
4129 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4130 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4131 }
2ef7eeaa 4132
1c5d22f7
CW
4133 trace_i915_gem_object_change_domain(obj,
4134 old_read_domains,
4135 old_write_domain);
4136
2ef7eeaa
EA
4137 return 0;
4138}
4139
673a394b
EA
4140/* Throttle our rendering by waiting until the ring has completed our requests
4141 * emitted over 20 msec ago.
4142 *
b962442e
EA
4143 * Note that if we were to use the current jiffies each time around the loop,
4144 * we wouldn't escape the function with any frames outstanding if the time to
4145 * render a frame was over 20ms.
4146 *
673a394b
EA
4147 * This should get us reasonable parallelism between CPU and GPU but also
4148 * relatively low latency when blocking on a particular request to finish.
4149 */
40a5f0de 4150static int
f787a5f5 4151i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4152{
f787a5f5
CW
4153 struct drm_i915_private *dev_priv = dev->dev_private;
4154 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4155 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4156 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 4157 int ret;
93533c29 4158
308887aa
DV
4159 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4160 if (ret)
4161 return ret;
4162
f4457ae7
CW
4163 /* ABI: return -EIO if already wedged */
4164 if (i915_terminally_wedged(&dev_priv->gpu_error))
4165 return -EIO;
e110e8d6 4166
1c25595f 4167 spin_lock(&file_priv->mm.lock);
f787a5f5 4168 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4169 if (time_after_eq(request->emitted_jiffies, recent_enough))
4170 break;
40a5f0de 4171
fcfa423c
JH
4172 /*
4173 * Note that the request might not have been submitted yet.
4174 * In which case emitted_jiffies will be zero.
4175 */
4176 if (!request->emitted_jiffies)
4177 continue;
4178
54fb2411 4179 target = request;
b962442e 4180 }
ff865885
JH
4181 if (target)
4182 i915_gem_request_reference(target);
1c25595f 4183 spin_unlock(&file_priv->mm.lock);
40a5f0de 4184
54fb2411 4185 if (target == NULL)
f787a5f5 4186 return 0;
2bc43b5c 4187
299259a3 4188 ret = __i915_wait_request(target, true, NULL, NULL);
f787a5f5
CW
4189 if (ret == 0)
4190 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4191
73db04cf 4192 i915_gem_request_unreference(target);
ff865885 4193
40a5f0de
EA
4194 return ret;
4195}
4196
d23db88c
CW
4197static bool
4198i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4199{
4200 struct drm_i915_gem_object *obj = vma->obj;
4201
4202 if (alignment &&
4203 vma->node.start & (alignment - 1))
4204 return true;
4205
4206 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4207 return true;
4208
4209 if (flags & PIN_OFFSET_BIAS &&
4210 vma->node.start < (flags & PIN_OFFSET_MASK))
4211 return true;
4212
506a8e87
CW
4213 if (flags & PIN_OFFSET_FIXED &&
4214 vma->node.start != (flags & PIN_OFFSET_MASK))
4215 return true;
4216
d23db88c
CW
4217 return false;
4218}
4219
d0710abb
CW
4220void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4221{
4222 struct drm_i915_gem_object *obj = vma->obj;
4223 bool mappable, fenceable;
4224 u32 fence_size, fence_alignment;
4225
4226 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4227 obj->base.size,
4228 obj->tiling_mode);
4229 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4230 obj->base.size,
4231 obj->tiling_mode,
4232 true);
4233
4234 fenceable = (vma->node.size == fence_size &&
4235 (vma->node.start & (fence_alignment - 1)) == 0);
4236
4237 mappable = (vma->node.start + fence_size <=
62106b4f 4238 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4239
4240 obj->map_and_fenceable = mappable && fenceable;
4241}
4242
ec7adb6e
JL
4243static int
4244i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4245 struct i915_address_space *vm,
4246 const struct i915_ggtt_view *ggtt_view,
4247 uint32_t alignment,
4248 uint64_t flags)
673a394b 4249{
6e7186af 4250 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4251 struct i915_vma *vma;
ef79e17c 4252 unsigned bound;
673a394b
EA
4253 int ret;
4254
6e7186af
BW
4255 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4256 return -ENODEV;
4257
bf3d149b 4258 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4259 return -EINVAL;
07fe0b12 4260
c826c449
CW
4261 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4262 return -EINVAL;
4263
ec7adb6e
JL
4264 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4265 return -EINVAL;
4266
4267 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4268 i915_gem_obj_to_vma(obj, vm);
4269
07fe0b12 4270 if (vma) {
d7f46fc4
BW
4271 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4272 return -EBUSY;
4273
d23db88c 4274 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4275 WARN(vma->pin_count,
ec7adb6e 4276 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4277 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4278 " obj->map_and_fenceable=%d\n",
ec7adb6e 4279 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4280 upper_32_bits(vma->node.start),
4281 lower_32_bits(vma->node.start),
fe14d5f4 4282 alignment,
d23db88c 4283 !!(flags & PIN_MAPPABLE),
05394f39 4284 obj->map_and_fenceable);
07fe0b12 4285 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4286 if (ret)
4287 return ret;
8ea99c92
DV
4288
4289 vma = NULL;
ac0c6b5a
CW
4290 }
4291 }
4292
ef79e17c 4293 bound = vma ? vma->bound : 0;
8ea99c92 4294 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4295 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4296 flags);
262de145
DV
4297 if (IS_ERR(vma))
4298 return PTR_ERR(vma);
0875546c
DV
4299 } else {
4300 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4301 if (ret)
4302 return ret;
4303 }
74898d7e 4304
91e6711e
JL
4305 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4306 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4307 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4308 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4309 }
ef79e17c 4310
8ea99c92 4311 vma->pin_count++;
673a394b
EA
4312 return 0;
4313}
4314
ec7adb6e
JL
4315int
4316i915_gem_object_pin(struct drm_i915_gem_object *obj,
4317 struct i915_address_space *vm,
4318 uint32_t alignment,
4319 uint64_t flags)
4320{
4321 return i915_gem_object_do_pin(obj, vm,
4322 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4323 alignment, flags);
4324}
4325
4326int
4327i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4328 const struct i915_ggtt_view *view,
4329 uint32_t alignment,
4330 uint64_t flags)
4331{
72e96d64
JL
4332 struct drm_device *dev = obj->base.dev;
4333 struct drm_i915_private *dev_priv = to_i915(dev);
4334 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4335
ade7daa1 4336 BUG_ON(!view);
ec7adb6e 4337
72e96d64 4338 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 4339 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4340}
4341
673a394b 4342void
e6617330
TU
4343i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4344 const struct i915_ggtt_view *view)
673a394b 4345{
e6617330 4346 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4347
e6617330 4348 WARN_ON(vma->pin_count == 0);
9abc4648 4349 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4350
30154650 4351 --vma->pin_count;
673a394b
EA
4352}
4353
673a394b
EA
4354int
4355i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4356 struct drm_file *file)
673a394b
EA
4357{
4358 struct drm_i915_gem_busy *args = data;
05394f39 4359 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4360 int ret;
4361
76c1dec1 4362 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4363 if (ret)
76c1dec1 4364 return ret;
673a394b 4365
05394f39 4366 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4367 if (&obj->base == NULL) {
1d7cfea1
CW
4368 ret = -ENOENT;
4369 goto unlock;
673a394b 4370 }
d1b851fc 4371
0be555b6
CW
4372 /* Count all active objects as busy, even if they are currently not used
4373 * by the gpu. Users of this interface expect objects to eventually
4374 * become non-busy without any further actions, therefore emit any
4375 * necessary flushes here.
c4de0a5d 4376 */
30dfebf3 4377 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4378 if (ret)
4379 goto unref;
0be555b6 4380
426960be
CW
4381 args->busy = 0;
4382 if (obj->active) {
4383 int i;
4384
666796da 4385 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4386 struct drm_i915_gem_request *req;
4387
4388 req = obj->last_read_req[i];
4389 if (req)
4a570db5 4390 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4391 }
4392 if (obj->last_write_req)
4a570db5 4393 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4394 }
673a394b 4395
b4716185 4396unref:
05394f39 4397 drm_gem_object_unreference(&obj->base);
1d7cfea1 4398unlock:
673a394b 4399 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4400 return ret;
673a394b
EA
4401}
4402
4403int
4404i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4405 struct drm_file *file_priv)
4406{
0206e353 4407 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4408}
4409
3ef94daa
CW
4410int
4411i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4412 struct drm_file *file_priv)
4413{
656bfa3a 4414 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4415 struct drm_i915_gem_madvise *args = data;
05394f39 4416 struct drm_i915_gem_object *obj;
76c1dec1 4417 int ret;
3ef94daa
CW
4418
4419 switch (args->madv) {
4420 case I915_MADV_DONTNEED:
4421 case I915_MADV_WILLNEED:
4422 break;
4423 default:
4424 return -EINVAL;
4425 }
4426
1d7cfea1
CW
4427 ret = i915_mutex_lock_interruptible(dev);
4428 if (ret)
4429 return ret;
4430
05394f39 4431 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4432 if (&obj->base == NULL) {
1d7cfea1
CW
4433 ret = -ENOENT;
4434 goto unlock;
3ef94daa 4435 }
3ef94daa 4436
d7f46fc4 4437 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4438 ret = -EINVAL;
4439 goto out;
3ef94daa
CW
4440 }
4441
656bfa3a
DV
4442 if (obj->pages &&
4443 obj->tiling_mode != I915_TILING_NONE &&
4444 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4445 if (obj->madv == I915_MADV_WILLNEED)
4446 i915_gem_object_unpin_pages(obj);
4447 if (args->madv == I915_MADV_WILLNEED)
4448 i915_gem_object_pin_pages(obj);
4449 }
4450
05394f39
CW
4451 if (obj->madv != __I915_MADV_PURGED)
4452 obj->madv = args->madv;
3ef94daa 4453
6c085a72 4454 /* if the object is no longer attached, discard its backing storage */
be6a0376 4455 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4456 i915_gem_object_truncate(obj);
4457
05394f39 4458 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4459
1d7cfea1 4460out:
05394f39 4461 drm_gem_object_unreference(&obj->base);
1d7cfea1 4462unlock:
3ef94daa 4463 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4464 return ret;
3ef94daa
CW
4465}
4466
37e680a1
CW
4467void i915_gem_object_init(struct drm_i915_gem_object *obj,
4468 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4469{
b4716185
CW
4470 int i;
4471
35c20a60 4472 INIT_LIST_HEAD(&obj->global_list);
666796da 4473 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4474 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4475 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4476 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4477 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4478
37e680a1
CW
4479 obj->ops = ops;
4480
0327d6ba
CW
4481 obj->fence_reg = I915_FENCE_REG_NONE;
4482 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4483
4484 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4485}
4486
37e680a1 4487static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4488 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4489 .get_pages = i915_gem_object_get_pages_gtt,
4490 .put_pages = i915_gem_object_put_pages_gtt,
4491};
4492
d37cd8a8 4493struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4494 size_t size)
ac52bc56 4495{
c397b908 4496 struct drm_i915_gem_object *obj;
5949eac4 4497 struct address_space *mapping;
1a240d4d 4498 gfp_t mask;
fe3db79b 4499 int ret;
ac52bc56 4500
42dcedd4 4501 obj = i915_gem_object_alloc(dev);
c397b908 4502 if (obj == NULL)
fe3db79b 4503 return ERR_PTR(-ENOMEM);
673a394b 4504
fe3db79b
CW
4505 ret = drm_gem_object_init(dev, &obj->base, size);
4506 if (ret)
4507 goto fail;
673a394b 4508
bed1ea95
CW
4509 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4510 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4511 /* 965gm cannot relocate objects above 4GiB. */
4512 mask &= ~__GFP_HIGHMEM;
4513 mask |= __GFP_DMA32;
4514 }
4515
496ad9aa 4516 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4517 mapping_set_gfp_mask(mapping, mask);
5949eac4 4518
37e680a1 4519 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4520
c397b908
DV
4521 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4522 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4523
3d29b842
ED
4524 if (HAS_LLC(dev)) {
4525 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4526 * cache) for about a 10% performance improvement
4527 * compared to uncached. Graphics requests other than
4528 * display scanout are coherent with the CPU in
4529 * accessing this cache. This means in this mode we
4530 * don't need to clflush on the CPU side, and on the
4531 * GPU side we only need to flush internal caches to
4532 * get data visible to the CPU.
4533 *
4534 * However, we maintain the display planes as UC, and so
4535 * need to rebind when first used as such.
4536 */
4537 obj->cache_level = I915_CACHE_LLC;
4538 } else
4539 obj->cache_level = I915_CACHE_NONE;
4540
d861e338
DV
4541 trace_i915_gem_object_create(obj);
4542
05394f39 4543 return obj;
fe3db79b
CW
4544
4545fail:
4546 i915_gem_object_free(obj);
4547
4548 return ERR_PTR(ret);
c397b908
DV
4549}
4550
340fbd8c
CW
4551static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4552{
4553 /* If we are the last user of the backing storage (be it shmemfs
4554 * pages or stolen etc), we know that the pages are going to be
4555 * immediately released. In this case, we can then skip copying
4556 * back the contents from the GPU.
4557 */
4558
4559 if (obj->madv != I915_MADV_WILLNEED)
4560 return false;
4561
4562 if (obj->base.filp == NULL)
4563 return true;
4564
4565 /* At first glance, this looks racy, but then again so would be
4566 * userspace racing mmap against close. However, the first external
4567 * reference to the filp can only be obtained through the
4568 * i915_gem_mmap_ioctl() which safeguards us against the user
4569 * acquiring such a reference whilst we are in the middle of
4570 * freeing the object.
4571 */
4572 return atomic_long_read(&obj->base.filp->f_count) == 1;
4573}
4574
1488fc08 4575void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4576{
1488fc08 4577 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4578 struct drm_device *dev = obj->base.dev;
3e31c6c0 4579 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4580 struct i915_vma *vma, *next;
673a394b 4581
f65c9168
PZ
4582 intel_runtime_pm_get(dev_priv);
4583
26e12f89
CW
4584 trace_i915_gem_object_destroy(obj);
4585
1c7f4bca 4586 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4587 int ret;
4588
4589 vma->pin_count = 0;
4590 ret = i915_vma_unbind(vma);
07fe0b12
BW
4591 if (WARN_ON(ret == -ERESTARTSYS)) {
4592 bool was_interruptible;
1488fc08 4593
07fe0b12
BW
4594 was_interruptible = dev_priv->mm.interruptible;
4595 dev_priv->mm.interruptible = false;
1488fc08 4596
07fe0b12 4597 WARN_ON(i915_vma_unbind(vma));
1488fc08 4598
07fe0b12
BW
4599 dev_priv->mm.interruptible = was_interruptible;
4600 }
1488fc08
CW
4601 }
4602
1d64ae71
BW
4603 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4604 * before progressing. */
4605 if (obj->stolen)
4606 i915_gem_object_unpin_pages(obj);
4607
a071fa00
DV
4608 WARN_ON(obj->frontbuffer_bits);
4609
656bfa3a
DV
4610 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4611 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4612 obj->tiling_mode != I915_TILING_NONE)
4613 i915_gem_object_unpin_pages(obj);
4614
401c29f6
BW
4615 if (WARN_ON(obj->pages_pin_count))
4616 obj->pages_pin_count = 0;
340fbd8c 4617 if (discard_backing_storage(obj))
5537252b 4618 obj->madv = I915_MADV_DONTNEED;
37e680a1 4619 i915_gem_object_put_pages(obj);
d8cb5086 4620 i915_gem_object_free_mmap_offset(obj);
de151cf6 4621
9da3da66
CW
4622 BUG_ON(obj->pages);
4623
2f745ad3
CW
4624 if (obj->base.import_attach)
4625 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4626
5cc9ed4b
CW
4627 if (obj->ops->release)
4628 obj->ops->release(obj);
4629
05394f39
CW
4630 drm_gem_object_release(&obj->base);
4631 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4632
05394f39 4633 kfree(obj->bit_17);
42dcedd4 4634 i915_gem_object_free(obj);
f65c9168
PZ
4635
4636 intel_runtime_pm_put(dev_priv);
673a394b
EA
4637}
4638
ec7adb6e
JL
4639struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4640 struct i915_address_space *vm)
e656a6cb
DV
4641{
4642 struct i915_vma *vma;
1c7f4bca 4643 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4644 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4645 vma->vm == vm)
e656a6cb 4646 return vma;
ec7adb6e
JL
4647 }
4648 return NULL;
4649}
4650
4651struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4652 const struct i915_ggtt_view *view)
4653{
ec7adb6e 4654 struct i915_vma *vma;
e656a6cb 4655
598b9ec8 4656 GEM_BUG_ON(!view);
ec7adb6e 4657
1c7f4bca 4658 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4659 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4660 return vma;
e656a6cb
DV
4661 return NULL;
4662}
4663
2f633156
BW
4664void i915_gem_vma_destroy(struct i915_vma *vma)
4665{
4666 WARN_ON(vma->node.allocated);
aaa05667
CW
4667
4668 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4669 if (!list_empty(&vma->exec_list))
4670 return;
4671
596c5923
CW
4672 if (!vma->is_ggtt)
4673 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4674
1c7f4bca 4675 list_del(&vma->obj_link);
b93dab6e 4676
e20d2ab7 4677 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4678}
4679
e3efda49 4680static void
117897f4 4681i915_gem_stop_engines(struct drm_device *dev)
e3efda49
CW
4682{
4683 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4684 struct intel_engine_cs *engine;
e3efda49 4685
b4ac5afc 4686 for_each_engine(engine, dev_priv)
117897f4 4687 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4688}
4689
29105ccc 4690int
45c5f202 4691i915_gem_suspend(struct drm_device *dev)
29105ccc 4692{
3e31c6c0 4693 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4694 int ret = 0;
28dfe52a 4695
45c5f202 4696 mutex_lock(&dev->struct_mutex);
b2da9fe5 4697 ret = i915_gpu_idle(dev);
f7403347 4698 if (ret)
45c5f202 4699 goto err;
f7403347 4700
b2da9fe5 4701 i915_gem_retire_requests(dev);
673a394b 4702
117897f4 4703 i915_gem_stop_engines(dev);
b2e862d0 4704 i915_gem_context_lost(dev_priv);
45c5f202
CW
4705 mutex_unlock(&dev->struct_mutex);
4706
737b1506 4707 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4708 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4709 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4710
bdcf120b
CW
4711 /* Assert that we sucessfully flushed all the work and
4712 * reset the GPU back to its idle, low power state.
4713 */
4714 WARN_ON(dev_priv->mm.busy);
4715
673a394b 4716 return 0;
45c5f202
CW
4717
4718err:
4719 mutex_unlock(&dev->struct_mutex);
4720 return ret;
673a394b
EA
4721}
4722
f691e2f4
DV
4723void i915_gem_init_swizzling(struct drm_device *dev)
4724{
3e31c6c0 4725 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4726
11782b02 4727 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4728 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4729 return;
4730
4731 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4732 DISP_TILE_SURFACE_SWIZZLING);
4733
11782b02
DV
4734 if (IS_GEN5(dev))
4735 return;
4736
f691e2f4
DV
4737 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4738 if (IS_GEN6(dev))
6b26c86d 4739 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4740 else if (IS_GEN7(dev))
6b26c86d 4741 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4742 else if (IS_GEN8(dev))
4743 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4744 else
4745 BUG();
f691e2f4 4746}
e21af88d 4747
81e7f200
VS
4748static void init_unused_ring(struct drm_device *dev, u32 base)
4749{
4750 struct drm_i915_private *dev_priv = dev->dev_private;
4751
4752 I915_WRITE(RING_CTL(base), 0);
4753 I915_WRITE(RING_HEAD(base), 0);
4754 I915_WRITE(RING_TAIL(base), 0);
4755 I915_WRITE(RING_START(base), 0);
4756}
4757
4758static void init_unused_rings(struct drm_device *dev)
4759{
4760 if (IS_I830(dev)) {
4761 init_unused_ring(dev, PRB1_BASE);
4762 init_unused_ring(dev, SRB0_BASE);
4763 init_unused_ring(dev, SRB1_BASE);
4764 init_unused_ring(dev, SRB2_BASE);
4765 init_unused_ring(dev, SRB3_BASE);
4766 } else if (IS_GEN2(dev)) {
4767 init_unused_ring(dev, SRB0_BASE);
4768 init_unused_ring(dev, SRB1_BASE);
4769 } else if (IS_GEN3(dev)) {
4770 init_unused_ring(dev, PRB1_BASE);
4771 init_unused_ring(dev, PRB2_BASE);
4772 }
4773}
4774
117897f4 4775int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 4776{
4fc7c971 4777 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4778 int ret;
68f95ba9 4779
5c1143bb 4780 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4781 if (ret)
b6913e4b 4782 return ret;
68f95ba9
CW
4783
4784 if (HAS_BSD(dev)) {
5c1143bb 4785 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4786 if (ret)
4787 goto cleanup_render_ring;
d1b851fc 4788 }
68f95ba9 4789
d39398f5 4790 if (HAS_BLT(dev)) {
549f7365
CW
4791 ret = intel_init_blt_ring_buffer(dev);
4792 if (ret)
4793 goto cleanup_bsd_ring;
4794 }
4795
9a8a2213
BW
4796 if (HAS_VEBOX(dev)) {
4797 ret = intel_init_vebox_ring_buffer(dev);
4798 if (ret)
4799 goto cleanup_blt_ring;
4800 }
4801
845f74a7
ZY
4802 if (HAS_BSD2(dev)) {
4803 ret = intel_init_bsd2_ring_buffer(dev);
4804 if (ret)
4805 goto cleanup_vebox_ring;
4806 }
9a8a2213 4807
4fc7c971
BW
4808 return 0;
4809
9a8a2213 4810cleanup_vebox_ring:
117897f4 4811 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 4812cleanup_blt_ring:
117897f4 4813 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 4814cleanup_bsd_ring:
117897f4 4815 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 4816cleanup_render_ring:
117897f4 4817 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
4818
4819 return ret;
4820}
4821
4822int
4823i915_gem_init_hw(struct drm_device *dev)
4824{
3e31c6c0 4825 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4826 struct intel_engine_cs *engine;
d200cda6 4827 int ret;
4fc7c971
BW
4828
4829 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4830 return -EIO;
4831
5e4f5189
CW
4832 /* Double layer security blanket, see i915_gem_init() */
4833 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4834
3accaf7e 4835 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4836 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4837
0bf21347
VS
4838 if (IS_HASWELL(dev))
4839 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4840 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4841
88a2b2a3 4842 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4843 if (IS_IVYBRIDGE(dev)) {
4844 u32 temp = I915_READ(GEN7_MSG_CTL);
4845 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4846 I915_WRITE(GEN7_MSG_CTL, temp);
4847 } else if (INTEL_INFO(dev)->gen >= 7) {
4848 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4849 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4850 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4851 }
88a2b2a3
BW
4852 }
4853
4fc7c971
BW
4854 i915_gem_init_swizzling(dev);
4855
d5abdfda
DV
4856 /*
4857 * At least 830 can leave some of the unused rings
4858 * "active" (ie. head != tail) after resume which
4859 * will prevent c3 entry. Makes sure all unused rings
4860 * are totally idle.
4861 */
4862 init_unused_rings(dev);
4863
ed54c1a1 4864 BUG_ON(!dev_priv->kernel_context);
90638cc1 4865
4ad2fd88
JH
4866 ret = i915_ppgtt_init_hw(dev);
4867 if (ret) {
4868 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4869 goto out;
4870 }
4871
4872 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4873 for_each_engine(engine, dev_priv) {
e2f80391 4874 ret = engine->init_hw(engine);
35a57ffb 4875 if (ret)
5e4f5189 4876 goto out;
35a57ffb 4877 }
99433931 4878
0ccdacf6
PA
4879 intel_mocs_init_l3cc_table(dev);
4880
33a732f4 4881 /* We can't enable contexts until all firmware is loaded */
87bcdd2e
JB
4882 if (HAS_GUC_UCODE(dev)) {
4883 ret = intel_guc_ucode_load(dev);
4884 if (ret) {
9f9e539f
DV
4885 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4886 ret = -EIO;
4887 goto out;
87bcdd2e 4888 }
33a732f4
AD
4889 }
4890
e84fe803
NH
4891 /*
4892 * Increment the next seqno by 0x100 so we have a visible break
4893 * on re-initialisation
4894 */
4895 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
e21af88d 4896
5e4f5189
CW
4897out:
4898 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4899 return ret;
8187a2b7
ZN
4900}
4901
1070a42b
CW
4902int i915_gem_init(struct drm_device *dev)
4903{
4904 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4905 int ret;
4906
1070a42b 4907 mutex_lock(&dev->struct_mutex);
d62b4892 4908
a83014d3 4909 if (!i915.enable_execlists) {
f3dc74c0 4910 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
4911 dev_priv->gt.init_engines = i915_gem_init_engines;
4912 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4913 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 4914 } else {
f3dc74c0 4915 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
4916 dev_priv->gt.init_engines = intel_logical_rings_init;
4917 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4918 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4919 }
4920
5e4f5189
CW
4921 /* This is just a security blanket to placate dragons.
4922 * On some systems, we very sporadically observe that the first TLBs
4923 * used by the CS may be stale, despite us poking the TLB reset. If
4924 * we hold the forcewake during initialisation these problems
4925 * just magically go away.
4926 */
4927 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4928
6c5566a8 4929 ret = i915_gem_init_userptr(dev);
7bcc3777
JN
4930 if (ret)
4931 goto out_unlock;
6c5566a8 4932
d85489d3 4933 i915_gem_init_ggtt(dev);
d62b4892 4934
2fa48d8d 4935 ret = i915_gem_context_init(dev);
7bcc3777
JN
4936 if (ret)
4937 goto out_unlock;
2fa48d8d 4938
117897f4 4939 ret = dev_priv->gt.init_engines(dev);
35a57ffb 4940 if (ret)
7bcc3777 4941 goto out_unlock;
2fa48d8d 4942
1070a42b 4943 ret = i915_gem_init_hw(dev);
60990320
CW
4944 if (ret == -EIO) {
4945 /* Allow ring initialisation to fail by marking the GPU as
4946 * wedged. But we only want to do this where the GPU is angry,
4947 * for all other failure, such as an allocation failure, bail.
4948 */
4949 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4950 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4951 ret = 0;
1070a42b 4952 }
7bcc3777
JN
4953
4954out_unlock:
5e4f5189 4955 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4956 mutex_unlock(&dev->struct_mutex);
1070a42b 4957
60990320 4958 return ret;
1070a42b
CW
4959}
4960
8187a2b7 4961void
117897f4 4962i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4963{
3e31c6c0 4964 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4965 struct intel_engine_cs *engine;
8187a2b7 4966
b4ac5afc 4967 for_each_engine(engine, dev_priv)
117897f4 4968 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4969}
4970
64193406 4971static void
666796da 4972init_engine_lists(struct intel_engine_cs *engine)
64193406 4973{
0bc40be8
TU
4974 INIT_LIST_HEAD(&engine->active_list);
4975 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4976}
4977
40ae4e16
ID
4978void
4979i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4980{
4981 struct drm_device *dev = dev_priv->dev;
4982
4983 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4984 !IS_CHERRYVIEW(dev_priv))
4985 dev_priv->num_fence_regs = 32;
4986 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4987 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4988 dev_priv->num_fence_regs = 16;
4989 else
4990 dev_priv->num_fence_regs = 8;
4991
4992 if (intel_vgpu_active(dev))
4993 dev_priv->num_fence_regs =
4994 I915_READ(vgtif_reg(avail_rs.fence_num));
4995
4996 /* Initialize fence registers to zero */
4997 i915_gem_restore_fences(dev);
4998
4999 i915_gem_detect_bit_6_swizzle(dev);
5000}
5001
673a394b 5002void
d64aa096 5003i915_gem_load_init(struct drm_device *dev)
673a394b 5004{
3e31c6c0 5005 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5006 int i;
5007
efab6d8d 5008 dev_priv->objects =
42dcedd4
CW
5009 kmem_cache_create("i915_gem_object",
5010 sizeof(struct drm_i915_gem_object), 0,
5011 SLAB_HWCACHE_ALIGN,
5012 NULL);
e20d2ab7
CW
5013 dev_priv->vmas =
5014 kmem_cache_create("i915_gem_vma",
5015 sizeof(struct i915_vma), 0,
5016 SLAB_HWCACHE_ALIGN,
5017 NULL);
efab6d8d
CW
5018 dev_priv->requests =
5019 kmem_cache_create("i915_gem_request",
5020 sizeof(struct drm_i915_gem_request), 0,
5021 SLAB_HWCACHE_ALIGN,
5022 NULL);
673a394b 5023
fc8c067e 5024 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5025 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5026 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5027 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5028 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5029 for (i = 0; i < I915_NUM_ENGINES; i++)
5030 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5031 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5032 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5033 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5034 i915_gem_retire_work_handler);
b29c19b6
CW
5035 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5036 i915_gem_idle_work_handler);
1f83fee0 5037 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5038
72bfa19c
CW
5039 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5040
e84fe803
NH
5041 /*
5042 * Set initial sequence number for requests.
5043 * Using this number allows the wraparound to happen early,
5044 * catching any obvious problems.
5045 */
5046 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5047 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5048
19b2dbde 5049 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5050
6b95a207 5051 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5052
ce453d81
CW
5053 dev_priv->mm.interruptible = true;
5054
f99d7069 5055 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5056}
71acb5eb 5057
d64aa096
ID
5058void i915_gem_load_cleanup(struct drm_device *dev)
5059{
5060 struct drm_i915_private *dev_priv = to_i915(dev);
5061
5062 kmem_cache_destroy(dev_priv->requests);
5063 kmem_cache_destroy(dev_priv->vmas);
5064 kmem_cache_destroy(dev_priv->objects);
5065}
5066
f787a5f5 5067void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5068{
f787a5f5 5069 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5070
5071 /* Clean up our request list when the client is going away, so that
5072 * later retire_requests won't dereference our soon-to-be-gone
5073 * file_priv.
5074 */
1c25595f 5075 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5076 while (!list_empty(&file_priv->mm.request_list)) {
5077 struct drm_i915_gem_request *request;
5078
5079 request = list_first_entry(&file_priv->mm.request_list,
5080 struct drm_i915_gem_request,
5081 client_list);
5082 list_del(&request->client_list);
5083 request->file_priv = NULL;
5084 }
1c25595f 5085 spin_unlock(&file_priv->mm.lock);
b29c19b6 5086
2e1b8730 5087 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5088 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5089 list_del(&file_priv->rps.link);
8d3afd7d 5090 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5091 }
b29c19b6
CW
5092}
5093
5094int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5095{
5096 struct drm_i915_file_private *file_priv;
e422b888 5097 int ret;
b29c19b6
CW
5098
5099 DRM_DEBUG_DRIVER("\n");
5100
5101 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5102 if (!file_priv)
5103 return -ENOMEM;
5104
5105 file->driver_priv = file_priv;
5106 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5107 file_priv->file = file;
2e1b8730 5108 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5109
5110 spin_lock_init(&file_priv->mm.lock);
5111 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5112
de1add36
TU
5113 file_priv->bsd_ring = -1;
5114
e422b888
BW
5115 ret = i915_gem_context_open(dev, file);
5116 if (ret)
5117 kfree(file_priv);
b29c19b6 5118
e422b888 5119 return ret;
b29c19b6
CW
5120}
5121
b680c37a
DV
5122/**
5123 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5124 * @old: current GEM buffer for the frontbuffer slots
5125 * @new: new GEM buffer for the frontbuffer slots
5126 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5127 *
5128 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5129 * from @old and setting them in @new. Both @old and @new can be NULL.
5130 */
a071fa00
DV
5131void i915_gem_track_fb(struct drm_i915_gem_object *old,
5132 struct drm_i915_gem_object *new,
5133 unsigned frontbuffer_bits)
5134{
5135 if (old) {
5136 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5137 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5138 old->frontbuffer_bits &= ~frontbuffer_bits;
5139 }
5140
5141 if (new) {
5142 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5143 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5144 new->frontbuffer_bits |= frontbuffer_bits;
5145 }
5146}
5147
a70a3148 5148/* All the new VM stuff */
088e0df4
MT
5149u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5150 struct i915_address_space *vm)
a70a3148
BW
5151{
5152 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5153 struct i915_vma *vma;
5154
896ab1a5 5155 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5156
1c7f4bca 5157 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5158 if (vma->is_ggtt &&
ec7adb6e
JL
5159 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5160 continue;
5161 if (vma->vm == vm)
a70a3148 5162 return vma->node.start;
a70a3148 5163 }
ec7adb6e 5164
f25748ea
DV
5165 WARN(1, "%s vma for this object not found.\n",
5166 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5167 return -1;
5168}
5169
088e0df4
MT
5170u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5171 const struct i915_ggtt_view *view)
a70a3148
BW
5172{
5173 struct i915_vma *vma;
5174
1c7f4bca 5175 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 5176 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5177 return vma->node.start;
5178
5678ad73 5179 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5180 return -1;
5181}
5182
5183bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5184 struct i915_address_space *vm)
5185{
5186 struct i915_vma *vma;
5187
1c7f4bca 5188 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5189 if (vma->is_ggtt &&
ec7adb6e
JL
5190 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5191 continue;
5192 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5193 return true;
5194 }
5195
5196 return false;
5197}
5198
5199bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5200 const struct i915_ggtt_view *view)
ec7adb6e 5201{
ec7adb6e
JL
5202 struct i915_vma *vma;
5203
1c7f4bca 5204 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 5205 if (vma->is_ggtt &&
9abc4648 5206 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5207 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5208 return true;
5209
5210 return false;
5211}
5212
5213bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5214{
5a1d5eb0 5215 struct i915_vma *vma;
a70a3148 5216
1c7f4bca 5217 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5218 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5219 return true;
5220
5221 return false;
5222}
5223
8da32727 5224unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 5225{
a70a3148
BW
5226 struct i915_vma *vma;
5227
8da32727 5228 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 5229
1c7f4bca 5230 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5231 if (vma->is_ggtt &&
8da32727 5232 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 5233 return vma->node.size;
ec7adb6e 5234 }
8da32727 5235
a70a3148
BW
5236 return 0;
5237}
5238
ec7adb6e 5239bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5240{
5241 struct i915_vma *vma;
1c7f4bca 5242 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5243 if (vma->pin_count > 0)
5244 return true;
a6631ae1 5245
ec7adb6e 5246 return false;
5c2abbea 5247}
ea70299d 5248
033908ae
DG
5249/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5250struct page *
5251i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5252{
5253 struct page *page;
5254
5255 /* Only default objects have per-page dirty tracking */
de472664 5256 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
033908ae
DG
5257 return NULL;
5258
5259 page = i915_gem_object_get_page(obj, n);
5260 set_page_dirty(page);
5261 return page;
5262}
5263
ea70299d
DG
5264/* Allocate a new GEM object and fill it with the supplied data */
5265struct drm_i915_gem_object *
5266i915_gem_object_create_from_data(struct drm_device *dev,
5267 const void *data, size_t size)
5268{
5269 struct drm_i915_gem_object *obj;
5270 struct sg_table *sg;
5271 size_t bytes;
5272 int ret;
5273
d37cd8a8 5274 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 5275 if (IS_ERR(obj))
ea70299d
DG
5276 return obj;
5277
5278 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5279 if (ret)
5280 goto fail;
5281
5282 ret = i915_gem_object_get_pages(obj);
5283 if (ret)
5284 goto fail;
5285
5286 i915_gem_object_pin_pages(obj);
5287 sg = obj->pages;
5288 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5289 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5290 i915_gem_object_unpin_pages(obj);
5291
5292 if (WARN_ON(bytes != size)) {
5293 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5294 ret = -EFAULT;
5295 goto fail;
5296 }
5297
5298 return obj;
5299
5300fail:
5301 drm_gem_object_unreference(&obj->base);
5302 return ERR_PTR(ret);
5303}
This page took 1.297187 seconds and 5 git commands to generate.