drm/i915: add mappable to gem_object_bind tracepoint
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
5a0e3ad6 34#include <linux/slab.h>
673a394b 35#include <linux/swap.h>
79e53945 36#include <linux/pci.h>
f8f235e5 37#include <linux/intel-gtt.h>
673a394b 38
0108a3ed 39static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
ba3d8d74
DV
40
41static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
42 bool pipelined);
e47c68e9
EA
43static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
e47c68e9
EA
45static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
46 int write);
47static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
48 uint64_t offset,
49 uint64_t size);
50static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
2cf34d7b
CW
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
52 bool interruptible);
de151cf6 53static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
920afa77 54 unsigned alignment, bool mappable);
de151cf6 55static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
71acb5eb
DA
56static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
57 struct drm_i915_gem_pwrite *args,
58 struct drm_file *file_priv);
be72615b 59static void i915_gem_free_object_tail(struct drm_gem_object *obj);
673a394b 60
5cdf5881
CW
61static int
62i915_gem_object_get_pages(struct drm_gem_object *obj,
63 gfp_t gfpmask);
64
65static void
66i915_gem_object_put_pages(struct drm_gem_object *obj);
67
31169714
CW
68static LIST_HEAD(shrink_list);
69static DEFINE_SPINLOCK(shrink_list_lock);
70
73aa808f
CW
71/* some bookkeeping */
72static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
73 size_t size)
74{
75 dev_priv->mm.object_count++;
76 dev_priv->mm.object_memory += size;
77}
78
79static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
80 size_t size)
81{
82 dev_priv->mm.object_count--;
83 dev_priv->mm.object_memory -= size;
84}
85
86static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
87 size_t size)
88{
89 dev_priv->mm.gtt_count++;
90 dev_priv->mm.gtt_memory += size;
91}
92
93static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
94 size_t size)
95{
96 dev_priv->mm.gtt_count--;
97 dev_priv->mm.gtt_memory -= size;
98}
99
100static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
101 size_t size)
102{
103 dev_priv->mm.pin_count++;
104 dev_priv->mm.pin_memory += size;
105}
106
107static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
108 size_t size)
109{
110 dev_priv->mm.pin_count--;
111 dev_priv->mm.pin_memory -= size;
112}
113
30dbf0c0
CW
114int
115i915_gem_check_is_wedged(struct drm_device *dev)
116{
117 struct drm_i915_private *dev_priv = dev->dev_private;
118 struct completion *x = &dev_priv->error_completion;
119 unsigned long flags;
120 int ret;
121
122 if (!atomic_read(&dev_priv->mm.wedged))
123 return 0;
124
125 ret = wait_for_completion_interruptible(x);
126 if (ret)
127 return ret;
128
129 /* Success, we reset the GPU! */
130 if (!atomic_read(&dev_priv->mm.wedged))
131 return 0;
132
133 /* GPU is hung, bump the completion count to account for
134 * the token we just consumed so that we never hit zero and
135 * end up waiting upon a subsequent completion event that
136 * will never happen.
137 */
138 spin_lock_irqsave(&x->wait.lock, flags);
139 x->done++;
140 spin_unlock_irqrestore(&x->wait.lock, flags);
141 return -EIO;
142}
143
76c1dec1
CW
144static int i915_mutex_lock_interruptible(struct drm_device *dev)
145{
146 struct drm_i915_private *dev_priv = dev->dev_private;
147 int ret;
148
149 ret = i915_gem_check_is_wedged(dev);
150 if (ret)
151 return ret;
152
153 ret = mutex_lock_interruptible(&dev->struct_mutex);
154 if (ret)
155 return ret;
156
157 if (atomic_read(&dev_priv->mm.wedged)) {
158 mutex_unlock(&dev->struct_mutex);
159 return -EAGAIN;
160 }
161
23bc5982 162 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
163 return 0;
164}
30dbf0c0 165
7d1c4804
CW
166static inline bool
167i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
168{
169 return obj_priv->gtt_space &&
170 !obj_priv->active &&
171 obj_priv->pin_count == 0;
172}
173
73aa808f
CW
174int i915_gem_do_init(struct drm_device *dev,
175 unsigned long start,
53984635 176 unsigned long mappable_end,
79e53945 177 unsigned long end)
673a394b
EA
178{
179 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 180
79e53945
JB
181 if (start >= end ||
182 (start & (PAGE_SIZE - 1)) != 0 ||
183 (end & (PAGE_SIZE - 1)) != 0) {
673a394b
EA
184 return -EINVAL;
185 }
186
79e53945
JB
187 drm_mm_init(&dev_priv->mm.gtt_space, start,
188 end - start);
673a394b 189
73aa808f 190 dev_priv->mm.gtt_total = end - start;
53984635 191 dev_priv->mm.gtt_mappable_end = mappable_end;
79e53945
JB
192
193 return 0;
194}
673a394b 195
79e53945
JB
196int
197i915_gem_init_ioctl(struct drm_device *dev, void *data,
198 struct drm_file *file_priv)
199{
200 struct drm_i915_gem_init *args = data;
201 int ret;
202
203 mutex_lock(&dev->struct_mutex);
53984635 204 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
673a394b
EA
205 mutex_unlock(&dev->struct_mutex);
206
79e53945 207 return ret;
673a394b
EA
208}
209
5a125c3c
EA
210int
211i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
212 struct drm_file *file_priv)
213{
73aa808f 214 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 215 struct drm_i915_gem_get_aperture *args = data;
5a125c3c
EA
216
217 if (!(dev->driver->driver_features & DRIVER_GEM))
218 return -ENODEV;
219
73aa808f
CW
220 mutex_lock(&dev->struct_mutex);
221 args->aper_size = dev_priv->mm.gtt_total;
222 args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
223 mutex_unlock(&dev->struct_mutex);
5a125c3c
EA
224
225 return 0;
226}
227
673a394b
EA
228
229/**
230 * Creates a new mm object and returns a handle to it.
231 */
232int
233i915_gem_create_ioctl(struct drm_device *dev, void *data,
234 struct drm_file *file_priv)
235{
236 struct drm_i915_gem_create *args = data;
237 struct drm_gem_object *obj;
a1a2d1d3
PP
238 int ret;
239 u32 handle;
673a394b
EA
240
241 args->size = roundup(args->size, PAGE_SIZE);
242
243 /* Allocate the new object */
ac52bc56 244 obj = i915_gem_alloc_object(dev, args->size);
673a394b
EA
245 if (obj == NULL)
246 return -ENOMEM;
247
248 ret = drm_gem_handle_create(file_priv, obj, &handle);
1dfd9754 249 if (ret) {
202f2fef
CW
250 drm_gem_object_release(obj);
251 i915_gem_info_remove_obj(dev->dev_private, obj->size);
252 kfree(obj);
673a394b 253 return ret;
1dfd9754 254 }
673a394b 255
202f2fef
CW
256 /* drop reference from allocate - handle holds it now */
257 drm_gem_object_unreference(obj);
258 trace_i915_gem_object_create(obj);
259
1dfd9754 260 args->handle = handle;
673a394b
EA
261 return 0;
262}
263
16e809ac
DV
264static bool
265i915_gem_object_cpu_accessible(struct drm_i915_gem_object *obj)
266{
267 struct drm_device *dev = obj->base.dev;
268 drm_i915_private_t *dev_priv = dev->dev_private;
269
270 return obj->gtt_space == NULL ||
271 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
272}
273
eb01459f
EA
274static inline int
275fast_shmem_read(struct page **pages,
276 loff_t page_base, int page_offset,
277 char __user *data,
278 int length)
279{
b5e4feb6 280 char *vaddr;
4f27b75d 281 int ret;
eb01459f 282
3e4d3af5 283 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
4f27b75d 284 ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
3e4d3af5 285 kunmap_atomic(vaddr);
eb01459f 286
4f27b75d 287 return ret;
eb01459f
EA
288}
289
280b713b
EA
290static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
291{
292 drm_i915_private_t *dev_priv = obj->dev->dev_private;
23010e43 293 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
280b713b
EA
294
295 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
296 obj_priv->tiling_mode != I915_TILING_NONE;
297}
298
99a03df5 299static inline void
40123c1f
EA
300slow_shmem_copy(struct page *dst_page,
301 int dst_offset,
302 struct page *src_page,
303 int src_offset,
304 int length)
305{
306 char *dst_vaddr, *src_vaddr;
307
99a03df5
CW
308 dst_vaddr = kmap(dst_page);
309 src_vaddr = kmap(src_page);
40123c1f
EA
310
311 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
312
99a03df5
CW
313 kunmap(src_page);
314 kunmap(dst_page);
40123c1f
EA
315}
316
99a03df5 317static inline void
280b713b
EA
318slow_shmem_bit17_copy(struct page *gpu_page,
319 int gpu_offset,
320 struct page *cpu_page,
321 int cpu_offset,
322 int length,
323 int is_read)
324{
325 char *gpu_vaddr, *cpu_vaddr;
326
327 /* Use the unswizzled path if this page isn't affected. */
328 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
329 if (is_read)
330 return slow_shmem_copy(cpu_page, cpu_offset,
331 gpu_page, gpu_offset, length);
332 else
333 return slow_shmem_copy(gpu_page, gpu_offset,
334 cpu_page, cpu_offset, length);
335 }
336
99a03df5
CW
337 gpu_vaddr = kmap(gpu_page);
338 cpu_vaddr = kmap(cpu_page);
280b713b
EA
339
340 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
341 * XORing with the other bits (A9 for Y, A9 and A10 for X)
342 */
343 while (length > 0) {
344 int cacheline_end = ALIGN(gpu_offset + 1, 64);
345 int this_length = min(cacheline_end - gpu_offset, length);
346 int swizzled_gpu_offset = gpu_offset ^ 64;
347
348 if (is_read) {
349 memcpy(cpu_vaddr + cpu_offset,
350 gpu_vaddr + swizzled_gpu_offset,
351 this_length);
352 } else {
353 memcpy(gpu_vaddr + swizzled_gpu_offset,
354 cpu_vaddr + cpu_offset,
355 this_length);
356 }
357 cpu_offset += this_length;
358 gpu_offset += this_length;
359 length -= this_length;
360 }
361
99a03df5
CW
362 kunmap(cpu_page);
363 kunmap(gpu_page);
280b713b
EA
364}
365
eb01459f
EA
366/**
367 * This is the fast shmem pread path, which attempts to copy_from_user directly
368 * from the backing pages of the object to the user's address space. On a
369 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
370 */
371static int
372i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
373 struct drm_i915_gem_pread *args,
374 struct drm_file *file_priv)
375{
23010e43 376 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
377 ssize_t remain;
378 loff_t offset, page_base;
379 char __user *user_data;
380 int page_offset, page_length;
eb01459f
EA
381
382 user_data = (char __user *) (uintptr_t) args->data_ptr;
383 remain = args->size;
384
23010e43 385 obj_priv = to_intel_bo(obj);
eb01459f
EA
386 offset = args->offset;
387
388 while (remain > 0) {
389 /* Operation in this page
390 *
391 * page_base = page offset within aperture
392 * page_offset = offset within page
393 * page_length = bytes to copy for this page
394 */
395 page_base = (offset & ~(PAGE_SIZE-1));
396 page_offset = offset & (PAGE_SIZE-1);
397 page_length = remain;
398 if ((page_offset + remain) > PAGE_SIZE)
399 page_length = PAGE_SIZE - page_offset;
400
4f27b75d
CW
401 if (fast_shmem_read(obj_priv->pages,
402 page_base, page_offset,
403 user_data, page_length))
404 return -EFAULT;
eb01459f
EA
405
406 remain -= page_length;
407 user_data += page_length;
408 offset += page_length;
409 }
410
4f27b75d 411 return 0;
eb01459f
EA
412}
413
07f73f69
CW
414static int
415i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
416{
417 int ret;
418
4bdadb97 419 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
07f73f69
CW
420
421 /* If we've insufficient memory to map in the pages, attempt
422 * to make some space by throwing out some old buffers.
423 */
424 if (ret == -ENOMEM) {
425 struct drm_device *dev = obj->dev;
07f73f69 426
0108a3ed 427 ret = i915_gem_evict_something(dev, obj->size,
a6e0aa42
DV
428 i915_gem_get_gtt_alignment(obj),
429 false);
07f73f69
CW
430 if (ret)
431 return ret;
432
4bdadb97 433 ret = i915_gem_object_get_pages(obj, 0);
07f73f69
CW
434 }
435
436 return ret;
437}
438
eb01459f
EA
439/**
440 * This is the fallback shmem pread path, which allocates temporary storage
441 * in kernel space to copy_to_user into outside of the struct_mutex, so we
442 * can copy out of the object's backing pages while holding the struct mutex
443 * and not take page faults.
444 */
445static int
446i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
447 struct drm_i915_gem_pread *args,
448 struct drm_file *file_priv)
449{
23010e43 450 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
eb01459f
EA
451 struct mm_struct *mm = current->mm;
452 struct page **user_pages;
453 ssize_t remain;
454 loff_t offset, pinned_pages, i;
455 loff_t first_data_page, last_data_page, num_pages;
456 int shmem_page_index, shmem_page_offset;
457 int data_page_index, data_page_offset;
458 int page_length;
459 int ret;
460 uint64_t data_ptr = args->data_ptr;
280b713b 461 int do_bit17_swizzling;
eb01459f
EA
462
463 remain = args->size;
464
465 /* Pin the user pages containing the data. We can't fault while
466 * holding the struct mutex, yet we want to hold it while
467 * dereferencing the user data.
468 */
469 first_data_page = data_ptr / PAGE_SIZE;
470 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
471 num_pages = last_data_page - first_data_page + 1;
472
4f27b75d 473 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
eb01459f
EA
474 if (user_pages == NULL)
475 return -ENOMEM;
476
4f27b75d 477 mutex_unlock(&dev->struct_mutex);
eb01459f
EA
478 down_read(&mm->mmap_sem);
479 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
e5e9ecde 480 num_pages, 1, 0, user_pages, NULL);
eb01459f 481 up_read(&mm->mmap_sem);
4f27b75d 482 mutex_lock(&dev->struct_mutex);
eb01459f
EA
483 if (pinned_pages < num_pages) {
484 ret = -EFAULT;
4f27b75d 485 goto out;
eb01459f
EA
486 }
487
4f27b75d
CW
488 ret = i915_gem_object_set_cpu_read_domain_range(obj,
489 args->offset,
490 args->size);
07f73f69 491 if (ret)
4f27b75d 492 goto out;
eb01459f 493
4f27b75d 494 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 495
23010e43 496 obj_priv = to_intel_bo(obj);
eb01459f
EA
497 offset = args->offset;
498
499 while (remain > 0) {
500 /* Operation in this page
501 *
502 * shmem_page_index = page number within shmem file
503 * shmem_page_offset = offset within page in shmem file
504 * data_page_index = page number in get_user_pages return
505 * data_page_offset = offset with data_page_index page.
506 * page_length = bytes to copy for this page
507 */
508 shmem_page_index = offset / PAGE_SIZE;
509 shmem_page_offset = offset & ~PAGE_MASK;
510 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
511 data_page_offset = data_ptr & ~PAGE_MASK;
512
513 page_length = remain;
514 if ((shmem_page_offset + page_length) > PAGE_SIZE)
515 page_length = PAGE_SIZE - shmem_page_offset;
516 if ((data_page_offset + page_length) > PAGE_SIZE)
517 page_length = PAGE_SIZE - data_page_offset;
518
280b713b 519 if (do_bit17_swizzling) {
99a03df5 520 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b 521 shmem_page_offset,
99a03df5
CW
522 user_pages[data_page_index],
523 data_page_offset,
524 page_length,
525 1);
526 } else {
527 slow_shmem_copy(user_pages[data_page_index],
528 data_page_offset,
529 obj_priv->pages[shmem_page_index],
530 shmem_page_offset,
531 page_length);
280b713b 532 }
eb01459f
EA
533
534 remain -= page_length;
535 data_ptr += page_length;
536 offset += page_length;
537 }
538
4f27b75d 539out:
eb01459f
EA
540 for (i = 0; i < pinned_pages; i++) {
541 SetPageDirty(user_pages[i]);
542 page_cache_release(user_pages[i]);
543 }
8e7d2b2c 544 drm_free_large(user_pages);
eb01459f
EA
545
546 return ret;
547}
548
673a394b
EA
549/**
550 * Reads data from the object referenced by handle.
551 *
552 * On error, the contents of *data are undefined.
553 */
554int
555i915_gem_pread_ioctl(struct drm_device *dev, void *data,
556 struct drm_file *file_priv)
557{
558 struct drm_i915_gem_pread *args = data;
559 struct drm_gem_object *obj;
560 struct drm_i915_gem_object *obj_priv;
35b62a89 561 int ret = 0;
673a394b 562
4f27b75d 563 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 564 if (ret)
4f27b75d 565 return ret;
673a394b
EA
566
567 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
568 if (obj == NULL) {
569 ret = -ENOENT;
570 goto unlock;
4f27b75d 571 }
23010e43 572 obj_priv = to_intel_bo(obj);
673a394b 573
7dcd2499
CW
574 /* Bounds check source. */
575 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 576 ret = -EINVAL;
35b62a89 577 goto out;
ce9d419d
CW
578 }
579
35b62a89
CW
580 if (args->size == 0)
581 goto out;
582
ce9d419d
CW
583 if (!access_ok(VERIFY_WRITE,
584 (char __user *)(uintptr_t)args->data_ptr,
585 args->size)) {
586 ret = -EFAULT;
35b62a89 587 goto out;
673a394b
EA
588 }
589
b5e4feb6
CW
590 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
591 args->size);
592 if (ret) {
593 ret = -EFAULT;
594 goto out;
280b713b 595 }
673a394b 596
4f27b75d
CW
597 ret = i915_gem_object_get_pages_or_evict(obj);
598 if (ret)
599 goto out;
600
601 ret = i915_gem_object_set_cpu_read_domain_range(obj,
602 args->offset,
603 args->size);
604 if (ret)
605 goto out_put;
606
607 ret = -EFAULT;
608 if (!i915_gem_object_needs_bit17_swizzle(obj))
280b713b 609 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
4f27b75d
CW
610 if (ret == -EFAULT)
611 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
673a394b 612
4f27b75d
CW
613out_put:
614 i915_gem_object_put_pages(obj);
35b62a89 615out:
4f27b75d 616 drm_gem_object_unreference(obj);
1d7cfea1 617unlock:
4f27b75d 618 mutex_unlock(&dev->struct_mutex);
eb01459f 619 return ret;
673a394b
EA
620}
621
0839ccb8
KP
622/* This is the fast write path which cannot handle
623 * page faults in the source data
9b7530cc 624 */
0839ccb8
KP
625
626static inline int
627fast_user_write(struct io_mapping *mapping,
628 loff_t page_base, int page_offset,
629 char __user *user_data,
630 int length)
9b7530cc 631{
9b7530cc 632 char *vaddr_atomic;
0839ccb8 633 unsigned long unwritten;
9b7530cc 634
3e4d3af5 635 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
0839ccb8
KP
636 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
637 user_data, length);
3e4d3af5 638 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 639 return unwritten;
0839ccb8
KP
640}
641
642/* Here's the write path which can sleep for
643 * page faults
644 */
645
ab34c226 646static inline void
3de09aa3
EA
647slow_kernel_write(struct io_mapping *mapping,
648 loff_t gtt_base, int gtt_offset,
649 struct page *user_page, int user_offset,
650 int length)
0839ccb8 651{
ab34c226
CW
652 char __iomem *dst_vaddr;
653 char *src_vaddr;
0839ccb8 654
ab34c226
CW
655 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
656 src_vaddr = kmap(user_page);
657
658 memcpy_toio(dst_vaddr + gtt_offset,
659 src_vaddr + user_offset,
660 length);
661
662 kunmap(user_page);
663 io_mapping_unmap(dst_vaddr);
9b7530cc
LT
664}
665
40123c1f
EA
666static inline int
667fast_shmem_write(struct page **pages,
668 loff_t page_base, int page_offset,
669 char __user *data,
670 int length)
671{
b5e4feb6 672 char *vaddr;
fbd5a26d 673 int ret;
40123c1f 674
3e4d3af5 675 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
fbd5a26d 676 ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
3e4d3af5 677 kunmap_atomic(vaddr);
40123c1f 678
fbd5a26d 679 return ret;
40123c1f
EA
680}
681
3de09aa3
EA
682/**
683 * This is the fast pwrite path, where we copy the data directly from the
684 * user into the GTT, uncached.
685 */
673a394b 686static int
3de09aa3
EA
687i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
688 struct drm_i915_gem_pwrite *args,
689 struct drm_file *file_priv)
673a394b 690{
23010e43 691 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
0839ccb8 692 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b 693 ssize_t remain;
0839ccb8 694 loff_t offset, page_base;
673a394b 695 char __user *user_data;
0839ccb8 696 int page_offset, page_length;
673a394b
EA
697
698 user_data = (char __user *) (uintptr_t) args->data_ptr;
699 remain = args->size;
673a394b 700
23010e43 701 obj_priv = to_intel_bo(obj);
673a394b 702 offset = obj_priv->gtt_offset + args->offset;
673a394b
EA
703
704 while (remain > 0) {
705 /* Operation in this page
706 *
0839ccb8
KP
707 * page_base = page offset within aperture
708 * page_offset = offset within page
709 * page_length = bytes to copy for this page
673a394b 710 */
0839ccb8
KP
711 page_base = (offset & ~(PAGE_SIZE-1));
712 page_offset = offset & (PAGE_SIZE-1);
713 page_length = remain;
714 if ((page_offset + remain) > PAGE_SIZE)
715 page_length = PAGE_SIZE - page_offset;
716
0839ccb8 717 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
718 * source page isn't available. Return the error and we'll
719 * retry in the slow path.
0839ccb8 720 */
fbd5a26d
CW
721 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
722 page_offset, user_data, page_length))
723
724 return -EFAULT;
673a394b 725
0839ccb8
KP
726 remain -= page_length;
727 user_data += page_length;
728 offset += page_length;
673a394b 729 }
673a394b 730
fbd5a26d 731 return 0;
673a394b
EA
732}
733
3de09aa3
EA
734/**
735 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
736 * the memory and maps it using kmap_atomic for copying.
737 *
738 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
739 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
740 */
3043c60c 741static int
3de09aa3
EA
742i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file_priv)
673a394b 745{
23010e43 746 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3de09aa3
EA
747 drm_i915_private_t *dev_priv = dev->dev_private;
748 ssize_t remain;
749 loff_t gtt_page_base, offset;
750 loff_t first_data_page, last_data_page, num_pages;
751 loff_t pinned_pages, i;
752 struct page **user_pages;
753 struct mm_struct *mm = current->mm;
754 int gtt_page_offset, data_page_offset, data_page_index, page_length;
673a394b 755 int ret;
3de09aa3
EA
756 uint64_t data_ptr = args->data_ptr;
757
758 remain = args->size;
759
760 /* Pin the user pages containing the data. We can't fault while
761 * holding the struct mutex, and all of the pwrite implementations
762 * want to hold it while dereferencing the user data.
763 */
764 first_data_page = data_ptr / PAGE_SIZE;
765 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
766 num_pages = last_data_page - first_data_page + 1;
767
fbd5a26d 768 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
3de09aa3
EA
769 if (user_pages == NULL)
770 return -ENOMEM;
771
fbd5a26d 772 mutex_unlock(&dev->struct_mutex);
3de09aa3
EA
773 down_read(&mm->mmap_sem);
774 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
775 num_pages, 0, 0, user_pages, NULL);
776 up_read(&mm->mmap_sem);
fbd5a26d 777 mutex_lock(&dev->struct_mutex);
3de09aa3
EA
778 if (pinned_pages < num_pages) {
779 ret = -EFAULT;
780 goto out_unpin_pages;
781 }
673a394b 782
3de09aa3
EA
783 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
784 if (ret)
fbd5a26d 785 goto out_unpin_pages;
3de09aa3 786
23010e43 787 obj_priv = to_intel_bo(obj);
3de09aa3
EA
788 offset = obj_priv->gtt_offset + args->offset;
789
790 while (remain > 0) {
791 /* Operation in this page
792 *
793 * gtt_page_base = page offset within aperture
794 * gtt_page_offset = offset within page in aperture
795 * data_page_index = page number in get_user_pages return
796 * data_page_offset = offset with data_page_index page.
797 * page_length = bytes to copy for this page
798 */
799 gtt_page_base = offset & PAGE_MASK;
800 gtt_page_offset = offset & ~PAGE_MASK;
801 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
802 data_page_offset = data_ptr & ~PAGE_MASK;
803
804 page_length = remain;
805 if ((gtt_page_offset + page_length) > PAGE_SIZE)
806 page_length = PAGE_SIZE - gtt_page_offset;
807 if ((data_page_offset + page_length) > PAGE_SIZE)
808 page_length = PAGE_SIZE - data_page_offset;
809
ab34c226
CW
810 slow_kernel_write(dev_priv->mm.gtt_mapping,
811 gtt_page_base, gtt_page_offset,
812 user_pages[data_page_index],
813 data_page_offset,
814 page_length);
3de09aa3
EA
815
816 remain -= page_length;
817 offset += page_length;
818 data_ptr += page_length;
819 }
820
3de09aa3
EA
821out_unpin_pages:
822 for (i = 0; i < pinned_pages; i++)
823 page_cache_release(user_pages[i]);
8e7d2b2c 824 drm_free_large(user_pages);
3de09aa3
EA
825
826 return ret;
827}
828
40123c1f
EA
829/**
830 * This is the fast shmem pwrite path, which attempts to directly
831 * copy_from_user into the kmapped pages backing the object.
832 */
3043c60c 833static int
40123c1f
EA
834i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
835 struct drm_i915_gem_pwrite *args,
836 struct drm_file *file_priv)
673a394b 837{
23010e43 838 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
839 ssize_t remain;
840 loff_t offset, page_base;
841 char __user *user_data;
842 int page_offset, page_length;
40123c1f
EA
843
844 user_data = (char __user *) (uintptr_t) args->data_ptr;
845 remain = args->size;
673a394b 846
23010e43 847 obj_priv = to_intel_bo(obj);
40123c1f
EA
848 offset = args->offset;
849 obj_priv->dirty = 1;
850
851 while (remain > 0) {
852 /* Operation in this page
853 *
854 * page_base = page offset within aperture
855 * page_offset = offset within page
856 * page_length = bytes to copy for this page
857 */
858 page_base = (offset & ~(PAGE_SIZE-1));
859 page_offset = offset & (PAGE_SIZE-1);
860 page_length = remain;
861 if ((page_offset + remain) > PAGE_SIZE)
862 page_length = PAGE_SIZE - page_offset;
863
fbd5a26d 864 if (fast_shmem_write(obj_priv->pages,
40123c1f 865 page_base, page_offset,
fbd5a26d
CW
866 user_data, page_length))
867 return -EFAULT;
40123c1f
EA
868
869 remain -= page_length;
870 user_data += page_length;
871 offset += page_length;
872 }
873
fbd5a26d 874 return 0;
40123c1f
EA
875}
876
877/**
878 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
879 * the memory and maps it using kmap_atomic for copying.
880 *
881 * This avoids taking mmap_sem for faulting on the user's address while the
882 * struct_mutex is held.
883 */
884static int
885i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
886 struct drm_i915_gem_pwrite *args,
887 struct drm_file *file_priv)
888{
23010e43 889 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
40123c1f
EA
890 struct mm_struct *mm = current->mm;
891 struct page **user_pages;
892 ssize_t remain;
893 loff_t offset, pinned_pages, i;
894 loff_t first_data_page, last_data_page, num_pages;
895 int shmem_page_index, shmem_page_offset;
896 int data_page_index, data_page_offset;
897 int page_length;
898 int ret;
899 uint64_t data_ptr = args->data_ptr;
280b713b 900 int do_bit17_swizzling;
40123c1f
EA
901
902 remain = args->size;
903
904 /* Pin the user pages containing the data. We can't fault while
905 * holding the struct mutex, and all of the pwrite implementations
906 * want to hold it while dereferencing the user data.
907 */
908 first_data_page = data_ptr / PAGE_SIZE;
909 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
910 num_pages = last_data_page - first_data_page + 1;
911
4f27b75d 912 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
40123c1f
EA
913 if (user_pages == NULL)
914 return -ENOMEM;
915
fbd5a26d 916 mutex_unlock(&dev->struct_mutex);
40123c1f
EA
917 down_read(&mm->mmap_sem);
918 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
919 num_pages, 0, 0, user_pages, NULL);
920 up_read(&mm->mmap_sem);
fbd5a26d 921 mutex_lock(&dev->struct_mutex);
40123c1f
EA
922 if (pinned_pages < num_pages) {
923 ret = -EFAULT;
fbd5a26d 924 goto out;
673a394b
EA
925 }
926
fbd5a26d 927 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
07f73f69 928 if (ret)
fbd5a26d 929 goto out;
40123c1f 930
fbd5a26d 931 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 932
23010e43 933 obj_priv = to_intel_bo(obj);
673a394b 934 offset = args->offset;
40123c1f 935 obj_priv->dirty = 1;
673a394b 936
40123c1f
EA
937 while (remain > 0) {
938 /* Operation in this page
939 *
940 * shmem_page_index = page number within shmem file
941 * shmem_page_offset = offset within page in shmem file
942 * data_page_index = page number in get_user_pages return
943 * data_page_offset = offset with data_page_index page.
944 * page_length = bytes to copy for this page
945 */
946 shmem_page_index = offset / PAGE_SIZE;
947 shmem_page_offset = offset & ~PAGE_MASK;
948 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
949 data_page_offset = data_ptr & ~PAGE_MASK;
950
951 page_length = remain;
952 if ((shmem_page_offset + page_length) > PAGE_SIZE)
953 page_length = PAGE_SIZE - shmem_page_offset;
954 if ((data_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - data_page_offset;
956
280b713b 957 if (do_bit17_swizzling) {
99a03df5 958 slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
280b713b
EA
959 shmem_page_offset,
960 user_pages[data_page_index],
961 data_page_offset,
99a03df5
CW
962 page_length,
963 0);
964 } else {
965 slow_shmem_copy(obj_priv->pages[shmem_page_index],
966 shmem_page_offset,
967 user_pages[data_page_index],
968 data_page_offset,
969 page_length);
280b713b 970 }
40123c1f
EA
971
972 remain -= page_length;
973 data_ptr += page_length;
974 offset += page_length;
673a394b
EA
975 }
976
fbd5a26d 977out:
40123c1f
EA
978 for (i = 0; i < pinned_pages; i++)
979 page_cache_release(user_pages[i]);
8e7d2b2c 980 drm_free_large(user_pages);
673a394b 981
40123c1f 982 return ret;
673a394b
EA
983}
984
985/**
986 * Writes data to the object referenced by handle.
987 *
988 * On error, the contents of the buffer that were to be modified are undefined.
989 */
990int
991i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 992 struct drm_file *file)
673a394b
EA
993{
994 struct drm_i915_gem_pwrite *args = data;
995 struct drm_gem_object *obj;
996 struct drm_i915_gem_object *obj_priv;
997 int ret = 0;
998
fbd5a26d 999 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1000 if (ret)
fbd5a26d 1001 return ret;
1d7cfea1
CW
1002
1003 obj = drm_gem_object_lookup(dev, file, args->handle);
1004 if (obj == NULL) {
1005 ret = -ENOENT;
1006 goto unlock;
fbd5a26d 1007 }
23010e43 1008 obj_priv = to_intel_bo(obj);
673a394b 1009
fbd5a26d 1010
7dcd2499
CW
1011 /* Bounds check destination. */
1012 if (args->offset > obj->size || args->size > obj->size - args->offset) {
ce9d419d 1013 ret = -EINVAL;
35b62a89 1014 goto out;
ce9d419d
CW
1015 }
1016
35b62a89
CW
1017 if (args->size == 0)
1018 goto out;
1019
ce9d419d
CW
1020 if (!access_ok(VERIFY_READ,
1021 (char __user *)(uintptr_t)args->data_ptr,
1022 args->size)) {
1023 ret = -EFAULT;
35b62a89 1024 goto out;
673a394b
EA
1025 }
1026
b5e4feb6
CW
1027 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
1028 args->size);
1029 if (ret) {
1030 ret = -EFAULT;
1031 goto out;
673a394b
EA
1032 }
1033
1034 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1035 * it would end up going through the fenced access, and we'll get
1036 * different detiling behavior between reading and writing.
1037 * pread/pwrite currently are reading and writing from the CPU
1038 * perspective, requiring manual detiling by the client.
1039 */
71acb5eb 1040 if (obj_priv->phys_obj)
fbd5a26d 1041 ret = i915_gem_phys_pwrite(dev, obj, args, file);
71acb5eb 1042 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
5cdf5881 1043 obj_priv->gtt_space &&
9b8c4a0b 1044 obj->write_domain != I915_GEM_DOMAIN_CPU) {
920afa77 1045 ret = i915_gem_object_pin(obj, 0, true);
fbd5a26d
CW
1046 if (ret)
1047 goto out;
1048
1049 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1050 if (ret)
1051 goto out_unpin;
1052
1053 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1054 if (ret == -EFAULT)
1055 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1056
1057out_unpin:
1058 i915_gem_object_unpin(obj);
40123c1f 1059 } else {
fbd5a26d
CW
1060 ret = i915_gem_object_get_pages_or_evict(obj);
1061 if (ret)
1062 goto out;
673a394b 1063
fbd5a26d
CW
1064 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1065 if (ret)
1066 goto out_put;
673a394b 1067
fbd5a26d
CW
1068 ret = -EFAULT;
1069 if (!i915_gem_object_needs_bit17_swizzle(obj))
1070 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1071 if (ret == -EFAULT)
1072 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1073
1074out_put:
1075 i915_gem_object_put_pages(obj);
1076 }
673a394b 1077
35b62a89 1078out:
fbd5a26d 1079 drm_gem_object_unreference(obj);
1d7cfea1 1080unlock:
fbd5a26d 1081 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1082 return ret;
1083}
1084
1085/**
2ef7eeaa
EA
1086 * Called when user space prepares to use an object with the CPU, either
1087 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1088 */
1089int
1090i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1091 struct drm_file *file_priv)
1092{
a09ba7fa 1093 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b
EA
1094 struct drm_i915_gem_set_domain *args = data;
1095 struct drm_gem_object *obj;
652c393a 1096 struct drm_i915_gem_object *obj_priv;
2ef7eeaa
EA
1097 uint32_t read_domains = args->read_domains;
1098 uint32_t write_domain = args->write_domain;
673a394b
EA
1099 int ret;
1100
1101 if (!(dev->driver->driver_features & DRIVER_GEM))
1102 return -ENODEV;
1103
2ef7eeaa 1104 /* Only handle setting domains to types used by the CPU. */
21d509e3 1105 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1106 return -EINVAL;
1107
21d509e3 1108 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1109 return -EINVAL;
1110
1111 /* Having something in the write domain implies it's in the read
1112 * domain, and only that read domain. Enforce that in the request.
1113 */
1114 if (write_domain != 0 && read_domains != write_domain)
1115 return -EINVAL;
1116
76c1dec1 1117 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1118 if (ret)
76c1dec1 1119 return ret;
1d7cfea1 1120
673a394b 1121 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1d7cfea1
CW
1122 if (obj == NULL) {
1123 ret = -ENOENT;
1124 goto unlock;
76c1dec1 1125 }
23010e43 1126 obj_priv = to_intel_bo(obj);
673a394b 1127
652c393a
JB
1128 intel_mark_busy(dev, obj);
1129
2ef7eeaa
EA
1130 if (read_domains & I915_GEM_DOMAIN_GTT) {
1131 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392 1132
a09ba7fa
EA
1133 /* Update the LRU on the fence for the CPU access that's
1134 * about to occur.
1135 */
1136 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
1137 struct drm_i915_fence_reg *reg =
1138 &dev_priv->fence_regs[obj_priv->fence_reg];
1139 list_move_tail(&reg->lru_list,
a09ba7fa
EA
1140 &dev_priv->mm.fence_list);
1141 }
1142
02354392
EA
1143 /* Silently promote "you're not bound, there was nothing to do"
1144 * to success, since the client was just asking us to
1145 * make sure everything was done.
1146 */
1147 if (ret == -EINVAL)
1148 ret = 0;
2ef7eeaa 1149 } else {
e47c68e9 1150 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1151 }
1152
7d1c4804
CW
1153 /* Maintain LRU order of "inactive" objects */
1154 if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
69dc4987 1155 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1156
673a394b 1157 drm_gem_object_unreference(obj);
1d7cfea1 1158unlock:
673a394b
EA
1159 mutex_unlock(&dev->struct_mutex);
1160 return ret;
1161}
1162
1163/**
1164 * Called when user space has done writes to this buffer
1165 */
1166int
1167i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1168 struct drm_file *file_priv)
1169{
1170 struct drm_i915_gem_sw_finish *args = data;
1171 struct drm_gem_object *obj;
673a394b
EA
1172 int ret = 0;
1173
1174 if (!(dev->driver->driver_features & DRIVER_GEM))
1175 return -ENODEV;
1176
76c1dec1 1177 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1178 if (ret)
76c1dec1 1179 return ret;
1d7cfea1 1180
673a394b
EA
1181 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1182 if (obj == NULL) {
1d7cfea1
CW
1183 ret = -ENOENT;
1184 goto unlock;
673a394b
EA
1185 }
1186
673a394b 1187 /* Pinned buffers may be scanout, so flush the cache */
3d2a812a 1188 if (to_intel_bo(obj)->pin_count)
e47c68e9
EA
1189 i915_gem_object_flush_cpu_write_domain(obj);
1190
673a394b 1191 drm_gem_object_unreference(obj);
1d7cfea1 1192unlock:
673a394b
EA
1193 mutex_unlock(&dev->struct_mutex);
1194 return ret;
1195}
1196
1197/**
1198 * Maps the contents of an object, returning the address it is mapped
1199 * into.
1200 *
1201 * While the mapping holds a reference on the contents of the object, it doesn't
1202 * imply a ref on the object itself.
1203 */
1204int
1205i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1206 struct drm_file *file_priv)
1207{
1208 struct drm_i915_gem_mmap *args = data;
1209 struct drm_gem_object *obj;
1210 loff_t offset;
1211 unsigned long addr;
1212
1213 if (!(dev->driver->driver_features & DRIVER_GEM))
1214 return -ENODEV;
1215
1216 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1217 if (obj == NULL)
bf79cb91 1218 return -ENOENT;
673a394b
EA
1219
1220 offset = args->offset;
1221
1222 down_write(&current->mm->mmap_sem);
1223 addr = do_mmap(obj->filp, 0, args->size,
1224 PROT_READ | PROT_WRITE, MAP_SHARED,
1225 args->offset);
1226 up_write(&current->mm->mmap_sem);
bc9025bd 1227 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1228 if (IS_ERR((void *)addr))
1229 return addr;
1230
1231 args->addr_ptr = (uint64_t) addr;
1232
1233 return 0;
1234}
1235
de151cf6
JB
1236/**
1237 * i915_gem_fault - fault a page into the GTT
1238 * vma: VMA in question
1239 * vmf: fault info
1240 *
1241 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1242 * from userspace. The fault handler takes care of binding the object to
1243 * the GTT (if needed), allocating and programming a fence register (again,
1244 * only if needed based on whether the old reg is still valid or the object
1245 * is tiled) and inserting a new PTE into the faulting process.
1246 *
1247 * Note that the faulting process may involve evicting existing objects
1248 * from the GTT and/or fence registers to make room. So performance may
1249 * suffer if the GTT working set is large or there are few fence registers
1250 * left.
1251 */
1252int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1253{
1254 struct drm_gem_object *obj = vma->vm_private_data;
1255 struct drm_device *dev = obj->dev;
7d1c4804 1256 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1257 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1258 pgoff_t page_offset;
1259 unsigned long pfn;
1260 int ret = 0;
0f973f27 1261 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6
JB
1262
1263 /* We don't use vmf->pgoff since that has the fake offset */
1264 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1265 PAGE_SHIFT;
1266
1267 /* Now bind it into the GTT if needed */
1268 mutex_lock(&dev->struct_mutex);
16e809ac
DV
1269 if (!i915_gem_object_cpu_accessible(obj_priv))
1270 i915_gem_object_unbind(obj);
1271
de151cf6 1272 if (!obj_priv->gtt_space) {
920afa77 1273 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
c715089f
CW
1274 if (ret)
1275 goto unlock;
07f4f3e8 1276
07f4f3e8 1277 ret = i915_gem_object_set_to_gtt_domain(obj, write);
c715089f
CW
1278 if (ret)
1279 goto unlock;
de151cf6
JB
1280 }
1281
1282 /* Need a new fence register? */
a09ba7fa 1283 if (obj_priv->tiling_mode != I915_TILING_NONE) {
2cf34d7b 1284 ret = i915_gem_object_get_fence_reg(obj, true);
c715089f
CW
1285 if (ret)
1286 goto unlock;
d9ddcb96 1287 }
de151cf6 1288
7d1c4804 1289 if (i915_gem_object_is_inactive(obj_priv))
69dc4987 1290 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
7d1c4804 1291
de151cf6
JB
1292 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1293 page_offset;
1294
1295 /* Finally, remap it using the new GTT offset */
1296 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
c715089f 1297unlock:
de151cf6
JB
1298 mutex_unlock(&dev->struct_mutex);
1299
1300 switch (ret) {
c715089f
CW
1301 case 0:
1302 case -ERESTARTSYS:
1303 return VM_FAULT_NOPAGE;
de151cf6
JB
1304 case -ENOMEM:
1305 case -EAGAIN:
1306 return VM_FAULT_OOM;
de151cf6 1307 default:
c715089f 1308 return VM_FAULT_SIGBUS;
de151cf6
JB
1309 }
1310}
1311
1312/**
1313 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1314 * @obj: obj in question
1315 *
1316 * GEM memory mapping works by handing back to userspace a fake mmap offset
1317 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1318 * up the object based on the offset and sets up the various memory mapping
1319 * structures.
1320 *
1321 * This routine allocates and attaches a fake offset for @obj.
1322 */
1323static int
1324i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1325{
1326 struct drm_device *dev = obj->dev;
1327 struct drm_gem_mm *mm = dev->mm_private;
23010e43 1328 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 1329 struct drm_map_list *list;
f77d390c 1330 struct drm_local_map *map;
de151cf6
JB
1331 int ret = 0;
1332
1333 /* Set the object up for mmap'ing */
1334 list = &obj->map_list;
9a298b2a 1335 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
de151cf6
JB
1336 if (!list->map)
1337 return -ENOMEM;
1338
1339 map = list->map;
1340 map->type = _DRM_GEM;
1341 map->size = obj->size;
1342 map->handle = obj;
1343
1344 /* Get a DRM GEM mmap offset allocated... */
1345 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1346 obj->size / PAGE_SIZE, 0, 0);
1347 if (!list->file_offset_node) {
1348 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
9e0ae534 1349 ret = -ENOSPC;
de151cf6
JB
1350 goto out_free_list;
1351 }
1352
1353 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1354 obj->size / PAGE_SIZE, 0);
1355 if (!list->file_offset_node) {
1356 ret = -ENOMEM;
1357 goto out_free_list;
1358 }
1359
1360 list->hash.key = list->file_offset_node->start;
9e0ae534
CW
1361 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1362 if (ret) {
de151cf6
JB
1363 DRM_ERROR("failed to add to map hash\n");
1364 goto out_free_mm;
1365 }
1366
1367 /* By now we should be all set, any drm_mmap request on the offset
1368 * below will get to our mmap & fault handler */
1369 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1370
1371 return 0;
1372
1373out_free_mm:
1374 drm_mm_put_block(list->file_offset_node);
1375out_free_list:
9a298b2a 1376 kfree(list->map);
de151cf6
JB
1377
1378 return ret;
1379}
1380
901782b2
CW
1381/**
1382 * i915_gem_release_mmap - remove physical page mappings
1383 * @obj: obj in question
1384 *
af901ca1 1385 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1386 * relinquish ownership of the pages back to the system.
1387 *
1388 * It is vital that we remove the page mapping if we have mapped a tiled
1389 * object through the GTT and then lose the fence register due to
1390 * resource pressure. Similarly if the object has been moved out of the
1391 * aperture, than pages mapped into userspace must be revoked. Removing the
1392 * mapping will then trigger a page fault on the next user access, allowing
1393 * fixup by i915_gem_fault().
1394 */
d05ca301 1395void
901782b2
CW
1396i915_gem_release_mmap(struct drm_gem_object *obj)
1397{
1398 struct drm_device *dev = obj->dev;
23010e43 1399 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
901782b2
CW
1400
1401 if (dev->dev_mapping)
1402 unmap_mapping_range(dev->dev_mapping,
1403 obj_priv->mmap_offset, obj->size, 1);
1404}
1405
ab00b3e5
JB
1406static void
1407i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1408{
1409 struct drm_device *dev = obj->dev;
23010e43 1410 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ab00b3e5
JB
1411 struct drm_gem_mm *mm = dev->mm_private;
1412 struct drm_map_list *list;
1413
1414 list = &obj->map_list;
1415 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1416
1417 if (list->file_offset_node) {
1418 drm_mm_put_block(list->file_offset_node);
1419 list->file_offset_node = NULL;
1420 }
1421
1422 if (list->map) {
9a298b2a 1423 kfree(list->map);
ab00b3e5
JB
1424 list->map = NULL;
1425 }
1426
1427 obj_priv->mmap_offset = 0;
1428}
1429
de151cf6
JB
1430/**
1431 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1432 * @obj: object to check
1433 *
1434 * Return the required GTT alignment for an object, taking into account
1435 * potential fence register mapping if needed.
1436 */
1437static uint32_t
1438i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1439{
1440 struct drm_device *dev = obj->dev;
23010e43 1441 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
1442 int start, i;
1443
1444 /*
1445 * Minimum alignment is 4k (GTT page size), but might be greater
1446 * if a fence register is needed for the object.
1447 */
a6c45cf0 1448 if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
de151cf6
JB
1449 return 4096;
1450
1451 /*
1452 * Previous chips need to be aligned to the size of the smallest
1453 * fence register that can contain the object.
1454 */
a6c45cf0 1455 if (INTEL_INFO(dev)->gen == 3)
de151cf6
JB
1456 start = 1024*1024;
1457 else
1458 start = 512*1024;
1459
1460 for (i = start; i < obj->size; i <<= 1)
1461 ;
1462
1463 return i;
1464}
1465
1466/**
1467 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1468 * @dev: DRM device
1469 * @data: GTT mapping ioctl data
1470 * @file_priv: GEM object info
1471 *
1472 * Simply returns the fake offset to userspace so it can mmap it.
1473 * The mmap call will end up in drm_gem_mmap(), which will set things
1474 * up so we can get faults in the handler above.
1475 *
1476 * The fault handler will take care of binding the object into the GTT
1477 * (since it may have been evicted to make room for something), allocating
1478 * a fence register, and mapping the appropriate aperture address into
1479 * userspace.
1480 */
1481int
1482i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1483 struct drm_file *file_priv)
1484{
1485 struct drm_i915_gem_mmap_gtt *args = data;
de151cf6
JB
1486 struct drm_gem_object *obj;
1487 struct drm_i915_gem_object *obj_priv;
1488 int ret;
1489
1490 if (!(dev->driver->driver_features & DRIVER_GEM))
1491 return -ENODEV;
1492
76c1dec1 1493 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1494 if (ret)
76c1dec1 1495 return ret;
de151cf6 1496
1d7cfea1
CW
1497 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1498 if (obj == NULL) {
1499 ret = -ENOENT;
1500 goto unlock;
1501 }
23010e43 1502 obj_priv = to_intel_bo(obj);
de151cf6 1503
ab18282d
CW
1504 if (obj_priv->madv != I915_MADV_WILLNEED) {
1505 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1d7cfea1
CW
1506 ret = -EINVAL;
1507 goto out;
ab18282d
CW
1508 }
1509
de151cf6
JB
1510 if (!obj_priv->mmap_offset) {
1511 ret = i915_gem_create_mmap_offset(obj);
1d7cfea1
CW
1512 if (ret)
1513 goto out;
de151cf6
JB
1514 }
1515
1516 args->offset = obj_priv->mmap_offset;
1517
de151cf6
JB
1518 /*
1519 * Pull it into the GTT so that we have a page list (makes the
1520 * initial fault faster and any subsequent flushing possible).
1521 */
1522 if (!obj_priv->agp_mem) {
920afa77 1523 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1d7cfea1
CW
1524 if (ret)
1525 goto out;
de151cf6
JB
1526 }
1527
1d7cfea1 1528out:
de151cf6 1529 drm_gem_object_unreference(obj);
1d7cfea1 1530unlock:
de151cf6 1531 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1532 return ret;
de151cf6
JB
1533}
1534
5cdf5881 1535static void
856fa198 1536i915_gem_object_put_pages(struct drm_gem_object *obj)
673a394b 1537{
23010e43 1538 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
1539 int page_count = obj->size / PAGE_SIZE;
1540 int i;
1541
856fa198 1542 BUG_ON(obj_priv->pages_refcount == 0);
bb6baf76 1543 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
673a394b 1544
856fa198
EA
1545 if (--obj_priv->pages_refcount != 0)
1546 return;
673a394b 1547
280b713b
EA
1548 if (obj_priv->tiling_mode != I915_TILING_NONE)
1549 i915_gem_object_save_bit_17_swizzle(obj);
1550
3ef94daa 1551 if (obj_priv->madv == I915_MADV_DONTNEED)
13a05fd9 1552 obj_priv->dirty = 0;
3ef94daa
CW
1553
1554 for (i = 0; i < page_count; i++) {
3ef94daa
CW
1555 if (obj_priv->dirty)
1556 set_page_dirty(obj_priv->pages[i]);
1557
1558 if (obj_priv->madv == I915_MADV_WILLNEED)
856fa198 1559 mark_page_accessed(obj_priv->pages[i]);
3ef94daa
CW
1560
1561 page_cache_release(obj_priv->pages[i]);
1562 }
673a394b
EA
1563 obj_priv->dirty = 0;
1564
8e7d2b2c 1565 drm_free_large(obj_priv->pages);
856fa198 1566 obj_priv->pages = NULL;
673a394b
EA
1567}
1568
a56ba56c
CW
1569static uint32_t
1570i915_gem_next_request_seqno(struct drm_device *dev,
1571 struct intel_ring_buffer *ring)
1572{
1573 drm_i915_private_t *dev_priv = dev->dev_private;
1574
1575 ring->outstanding_lazy_request = true;
1576 return dev_priv->next_seqno;
1577}
1578
673a394b 1579static void
617dbe27 1580i915_gem_object_move_to_active(struct drm_gem_object *obj,
852835f3 1581 struct intel_ring_buffer *ring)
673a394b
EA
1582{
1583 struct drm_device *dev = obj->dev;
69dc4987 1584 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 1585 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
a56ba56c 1586 uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
617dbe27 1587
852835f3
ZN
1588 BUG_ON(ring == NULL);
1589 obj_priv->ring = ring;
673a394b
EA
1590
1591 /* Add a reference if we're newly entering the active list. */
1592 if (!obj_priv->active) {
1593 drm_gem_object_reference(obj);
1594 obj_priv->active = 1;
1595 }
e35a41de 1596
673a394b 1597 /* Move from whatever list we were on to the tail of execution. */
69dc4987
CW
1598 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
1599 list_move_tail(&obj_priv->ring_list, &ring->active_list);
ce44b0ea 1600 obj_priv->last_rendering_seqno = seqno;
673a394b
EA
1601}
1602
ce44b0ea
EA
1603static void
1604i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1605{
1606 struct drm_device *dev = obj->dev;
1607 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1608 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ce44b0ea
EA
1609
1610 BUG_ON(!obj_priv->active);
69dc4987
CW
1611 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
1612 list_del_init(&obj_priv->ring_list);
ce44b0ea
EA
1613 obj_priv->last_rendering_seqno = 0;
1614}
673a394b 1615
963b4836
CW
1616/* Immediately discard the backing storage */
1617static void
1618i915_gem_object_truncate(struct drm_gem_object *obj)
1619{
23010e43 1620 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
bb6baf76 1621 struct inode *inode;
963b4836 1622
ae9fed6b
CW
1623 /* Our goal here is to return as much of the memory as
1624 * is possible back to the system as we are called from OOM.
1625 * To do this we must instruct the shmfs to drop all of its
1626 * backing pages, *now*. Here we mirror the actions taken
1627 * when by shmem_delete_inode() to release the backing store.
1628 */
bb6baf76 1629 inode = obj->filp->f_path.dentry->d_inode;
ae9fed6b
CW
1630 truncate_inode_pages(inode->i_mapping, 0);
1631 if (inode->i_op->truncate_range)
1632 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
bb6baf76
CW
1633
1634 obj_priv->madv = __I915_MADV_PURGED;
963b4836
CW
1635}
1636
1637static inline int
1638i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1639{
1640 return obj_priv->madv == I915_MADV_DONTNEED;
1641}
1642
673a394b
EA
1643static void
1644i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1645{
1646 struct drm_device *dev = obj->dev;
1647 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 1648 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 1649
673a394b 1650 if (obj_priv->pin_count != 0)
69dc4987 1651 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
673a394b 1652 else
69dc4987
CW
1653 list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1654 list_del_init(&obj_priv->ring_list);
673a394b 1655
99fcb766
DV
1656 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1657
ce44b0ea 1658 obj_priv->last_rendering_seqno = 0;
852835f3 1659 obj_priv->ring = NULL;
673a394b
EA
1660 if (obj_priv->active) {
1661 obj_priv->active = 0;
1662 drm_gem_object_unreference(obj);
1663 }
23bc5982 1664 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1665}
1666
63560396
DV
1667static void
1668i915_gem_process_flushing_list(struct drm_device *dev,
8a1a49f9 1669 uint32_t flush_domains,
852835f3 1670 struct intel_ring_buffer *ring)
63560396
DV
1671{
1672 drm_i915_private_t *dev_priv = dev->dev_private;
1673 struct drm_i915_gem_object *obj_priv, *next;
1674
1675 list_for_each_entry_safe(obj_priv, next,
64193406 1676 &ring->gpu_write_list,
63560396 1677 gpu_write_list) {
a8089e84 1678 struct drm_gem_object *obj = &obj_priv->base;
63560396 1679
64193406 1680 if (obj->write_domain & flush_domains) {
63560396
DV
1681 uint32_t old_write_domain = obj->write_domain;
1682
1683 obj->write_domain = 0;
1684 list_del_init(&obj_priv->gpu_write_list);
617dbe27 1685 i915_gem_object_move_to_active(obj, ring);
63560396
DV
1686
1687 /* update the fence lru list */
007cc8ac
DV
1688 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1689 struct drm_i915_fence_reg *reg =
1690 &dev_priv->fence_regs[obj_priv->fence_reg];
1691 list_move_tail(&reg->lru_list,
63560396 1692 &dev_priv->mm.fence_list);
007cc8ac 1693 }
63560396
DV
1694
1695 trace_i915_gem_object_change_domain(obj,
1696 obj->read_domains,
1697 old_write_domain);
1698 }
1699 }
1700}
8187a2b7 1701
3cce469c 1702int
8a1a49f9 1703i915_add_request(struct drm_device *dev,
f787a5f5 1704 struct drm_file *file,
8dc5d147 1705 struct drm_i915_gem_request *request,
8a1a49f9 1706 struct intel_ring_buffer *ring)
673a394b
EA
1707{
1708 drm_i915_private_t *dev_priv = dev->dev_private;
f787a5f5 1709 struct drm_i915_file_private *file_priv = NULL;
673a394b
EA
1710 uint32_t seqno;
1711 int was_empty;
3cce469c
CW
1712 int ret;
1713
1714 BUG_ON(request == NULL);
673a394b 1715
f787a5f5
CW
1716 if (file != NULL)
1717 file_priv = file->driver_priv;
b962442e 1718
3cce469c
CW
1719 ret = ring->add_request(ring, &seqno);
1720 if (ret)
1721 return ret;
673a394b 1722
a56ba56c 1723 ring->outstanding_lazy_request = false;
673a394b
EA
1724
1725 request->seqno = seqno;
852835f3 1726 request->ring = ring;
673a394b 1727 request->emitted_jiffies = jiffies;
852835f3
ZN
1728 was_empty = list_empty(&ring->request_list);
1729 list_add_tail(&request->list, &ring->request_list);
1730
f787a5f5 1731 if (file_priv) {
1c25595f 1732 spin_lock(&file_priv->mm.lock);
f787a5f5 1733 request->file_priv = file_priv;
b962442e 1734 list_add_tail(&request->client_list,
f787a5f5 1735 &file_priv->mm.request_list);
1c25595f 1736 spin_unlock(&file_priv->mm.lock);
b962442e 1737 }
673a394b 1738
f65d9421 1739 if (!dev_priv->mm.suspended) {
b3b079db
CW
1740 mod_timer(&dev_priv->hangcheck_timer,
1741 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
f65d9421 1742 if (was_empty)
b3b079db
CW
1743 queue_delayed_work(dev_priv->wq,
1744 &dev_priv->mm.retire_work, HZ);
f65d9421 1745 }
3cce469c 1746 return 0;
673a394b
EA
1747}
1748
1749/**
1750 * Command execution barrier
1751 *
1752 * Ensures that all commands in the ring are finished
1753 * before signalling the CPU
1754 */
8a1a49f9 1755static void
852835f3 1756i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
673a394b 1757{
673a394b 1758 uint32_t flush_domains = 0;
673a394b
EA
1759
1760 /* The sampler always gets flushed on i965 (sigh) */
a6c45cf0 1761 if (INTEL_INFO(dev)->gen >= 4)
673a394b 1762 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
852835f3 1763
78501eac 1764 ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
673a394b
EA
1765}
1766
f787a5f5
CW
1767static inline void
1768i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 1769{
1c25595f 1770 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 1771
1c25595f
CW
1772 if (!file_priv)
1773 return;
1c5d22f7 1774
1c25595f
CW
1775 spin_lock(&file_priv->mm.lock);
1776 list_del(&request->client_list);
1777 request->file_priv = NULL;
1778 spin_unlock(&file_priv->mm.lock);
673a394b 1779}
673a394b 1780
dfaae392
CW
1781static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1782 struct intel_ring_buffer *ring)
9375e446 1783{
dfaae392
CW
1784 while (!list_empty(&ring->request_list)) {
1785 struct drm_i915_gem_request *request;
673a394b 1786
dfaae392
CW
1787 request = list_first_entry(&ring->request_list,
1788 struct drm_i915_gem_request,
1789 list);
de151cf6 1790
dfaae392 1791 list_del(&request->list);
f787a5f5 1792 i915_gem_request_remove_from_client(request);
dfaae392
CW
1793 kfree(request);
1794 }
673a394b 1795
dfaae392 1796 while (!list_empty(&ring->active_list)) {
9375e446
CW
1797 struct drm_i915_gem_object *obj_priv;
1798
dfaae392 1799 obj_priv = list_first_entry(&ring->active_list,
9375e446 1800 struct drm_i915_gem_object,
69dc4987 1801 ring_list);
9375e446
CW
1802
1803 obj_priv->base.write_domain = 0;
dfaae392 1804 list_del_init(&obj_priv->gpu_write_list);
9375e446 1805 i915_gem_object_move_to_inactive(&obj_priv->base);
673a394b
EA
1806 }
1807}
1808
069efc1d 1809void i915_gem_reset(struct drm_device *dev)
673a394b 1810{
77f01230
CW
1811 struct drm_i915_private *dev_priv = dev->dev_private;
1812 struct drm_i915_gem_object *obj_priv;
069efc1d 1813 int i;
673a394b 1814
dfaae392 1815 i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
87acb0a5 1816 i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
549f7365 1817 i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
dfaae392
CW
1818
1819 /* Remove anything from the flushing lists. The GPU cache is likely
1820 * to be lost on reset along with the data, so simply move the
1821 * lost bo to the inactive list.
1822 */
1823 while (!list_empty(&dev_priv->mm.flushing_list)) {
1824 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1825 struct drm_i915_gem_object,
69dc4987 1826 mm_list);
dfaae392
CW
1827
1828 obj_priv->base.write_domain = 0;
1829 list_del_init(&obj_priv->gpu_write_list);
1830 i915_gem_object_move_to_inactive(&obj_priv->base);
1831 }
1832
1833 /* Move everything out of the GPU domains to ensure we do any
1834 * necessary invalidation upon reuse.
1835 */
77f01230
CW
1836 list_for_each_entry(obj_priv,
1837 &dev_priv->mm.inactive_list,
69dc4987 1838 mm_list)
77f01230
CW
1839 {
1840 obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1841 }
069efc1d
CW
1842
1843 /* The fence registers are invalidated so clear them out */
1844 for (i = 0; i < 16; i++) {
1845 struct drm_i915_fence_reg *reg;
1846
1847 reg = &dev_priv->fence_regs[i];
1848 if (!reg->obj)
1849 continue;
1850
1851 i915_gem_clear_fence_reg(reg->obj);
1852 }
673a394b
EA
1853}
1854
1855/**
1856 * This function clears the request list as sequence numbers are passed.
1857 */
b09a1fec
CW
1858static void
1859i915_gem_retire_requests_ring(struct drm_device *dev,
1860 struct intel_ring_buffer *ring)
673a394b
EA
1861{
1862 drm_i915_private_t *dev_priv = dev->dev_private;
1863 uint32_t seqno;
1864
b84d5f0c
CW
1865 if (!ring->status_page.page_addr ||
1866 list_empty(&ring->request_list))
6c0594a3
KW
1867 return;
1868
23bc5982 1869 WARN_ON(i915_verify_lists(dev));
673a394b 1870
78501eac 1871 seqno = ring->get_seqno(ring);
852835f3 1872 while (!list_empty(&ring->request_list)) {
673a394b 1873 struct drm_i915_gem_request *request;
673a394b 1874
852835f3 1875 request = list_first_entry(&ring->request_list,
673a394b
EA
1876 struct drm_i915_gem_request,
1877 list);
673a394b 1878
dfaae392 1879 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
1880 break;
1881
1882 trace_i915_gem_request_retire(dev, request->seqno);
1883
1884 list_del(&request->list);
f787a5f5 1885 i915_gem_request_remove_from_client(request);
b84d5f0c
CW
1886 kfree(request);
1887 }
673a394b 1888
b84d5f0c
CW
1889 /* Move any buffers on the active list that are no longer referenced
1890 * by the ringbuffer to the flushing/inactive lists as appropriate.
1891 */
1892 while (!list_empty(&ring->active_list)) {
1893 struct drm_gem_object *obj;
1894 struct drm_i915_gem_object *obj_priv;
1895
1896 obj_priv = list_first_entry(&ring->active_list,
1897 struct drm_i915_gem_object,
69dc4987 1898 ring_list);
673a394b 1899
dfaae392 1900 if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
673a394b 1901 break;
b84d5f0c
CW
1902
1903 obj = &obj_priv->base;
b84d5f0c
CW
1904 if (obj->write_domain != 0)
1905 i915_gem_object_move_to_flushing(obj);
1906 else
1907 i915_gem_object_move_to_inactive(obj);
673a394b 1908 }
9d34e5db
CW
1909
1910 if (unlikely (dev_priv->trace_irq_seqno &&
1911 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
78501eac 1912 ring->user_irq_put(ring);
9d34e5db
CW
1913 dev_priv->trace_irq_seqno = 0;
1914 }
23bc5982
CW
1915
1916 WARN_ON(i915_verify_lists(dev));
673a394b
EA
1917}
1918
b09a1fec
CW
1919void
1920i915_gem_retire_requests(struct drm_device *dev)
1921{
1922 drm_i915_private_t *dev_priv = dev->dev_private;
1923
be72615b
CW
1924 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1925 struct drm_i915_gem_object *obj_priv, *tmp;
1926
1927 /* We must be careful that during unbind() we do not
1928 * accidentally infinitely recurse into retire requests.
1929 * Currently:
1930 * retire -> free -> unbind -> wait -> retire_ring
1931 */
1932 list_for_each_entry_safe(obj_priv, tmp,
1933 &dev_priv->mm.deferred_free_list,
69dc4987 1934 mm_list)
be72615b
CW
1935 i915_gem_free_object_tail(&obj_priv->base);
1936 }
1937
b09a1fec 1938 i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
87acb0a5 1939 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
549f7365 1940 i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
b09a1fec
CW
1941}
1942
75ef9da2 1943static void
673a394b
EA
1944i915_gem_retire_work_handler(struct work_struct *work)
1945{
1946 drm_i915_private_t *dev_priv;
1947 struct drm_device *dev;
1948
1949 dev_priv = container_of(work, drm_i915_private_t,
1950 mm.retire_work.work);
1951 dev = dev_priv->dev;
1952
891b48cf
CW
1953 /* Come back later if the device is busy... */
1954 if (!mutex_trylock(&dev->struct_mutex)) {
1955 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1956 return;
1957 }
1958
b09a1fec 1959 i915_gem_retire_requests(dev);
d1b851fc 1960
6dbe2772 1961 if (!dev_priv->mm.suspended &&
d1b851fc 1962 (!list_empty(&dev_priv->render_ring.request_list) ||
549f7365
CW
1963 !list_empty(&dev_priv->bsd_ring.request_list) ||
1964 !list_empty(&dev_priv->blt_ring.request_list)))
9c9fe1f8 1965 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
673a394b
EA
1966 mutex_unlock(&dev->struct_mutex);
1967}
1968
5a5a0c64 1969int
852835f3 1970i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
8a1a49f9 1971 bool interruptible, struct intel_ring_buffer *ring)
673a394b
EA
1972{
1973 drm_i915_private_t *dev_priv = dev->dev_private;
802c7eb6 1974 u32 ier;
673a394b
EA
1975 int ret = 0;
1976
1977 BUG_ON(seqno == 0);
1978
ba1234d1 1979 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0
CW
1980 return -EAGAIN;
1981
a56ba56c 1982 if (ring->outstanding_lazy_request) {
3cce469c
CW
1983 struct drm_i915_gem_request *request;
1984
1985 request = kzalloc(sizeof(*request), GFP_KERNEL);
1986 if (request == NULL)
e35a41de 1987 return -ENOMEM;
3cce469c
CW
1988
1989 ret = i915_add_request(dev, NULL, request, ring);
1990 if (ret) {
1991 kfree(request);
1992 return ret;
1993 }
1994
1995 seqno = request->seqno;
e35a41de 1996 }
a56ba56c 1997 BUG_ON(seqno == dev_priv->next_seqno);
ffed1d09 1998
78501eac 1999 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
bad720ff 2000 if (HAS_PCH_SPLIT(dev))
036a4a7d
ZW
2001 ier = I915_READ(DEIER) | I915_READ(GTIER);
2002 else
2003 ier = I915_READ(IER);
802c7eb6
JB
2004 if (!ier) {
2005 DRM_ERROR("something (likely vbetool) disabled "
2006 "interrupts, re-enabling\n");
2007 i915_driver_irq_preinstall(dev);
2008 i915_driver_irq_postinstall(dev);
2009 }
2010
1c5d22f7
CW
2011 trace_i915_gem_request_wait_begin(dev, seqno);
2012
b2223497 2013 ring->waiting_seqno = seqno;
78501eac 2014 ring->user_irq_get(ring);
48764bf4 2015 if (interruptible)
852835f3 2016 ret = wait_event_interruptible(ring->irq_queue,
78501eac 2017 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2018 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2019 else
852835f3 2020 wait_event(ring->irq_queue,
78501eac 2021 i915_seqno_passed(ring->get_seqno(ring), seqno)
852835f3 2022 || atomic_read(&dev_priv->mm.wedged));
48764bf4 2023
78501eac 2024 ring->user_irq_put(ring);
b2223497 2025 ring->waiting_seqno = 0;
1c5d22f7
CW
2026
2027 trace_i915_gem_request_wait_end(dev, seqno);
673a394b 2028 }
ba1234d1 2029 if (atomic_read(&dev_priv->mm.wedged))
30dbf0c0 2030 ret = -EAGAIN;
673a394b
EA
2031
2032 if (ret && ret != -ERESTARTSYS)
8bff917c 2033 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
78501eac 2034 __func__, ret, seqno, ring->get_seqno(ring),
8bff917c 2035 dev_priv->next_seqno);
673a394b
EA
2036
2037 /* Directly dispatch request retiring. While we have the work queue
2038 * to handle this, the waiter on a request often wants an associated
2039 * buffer to have made it to the inactive list, and we would need
2040 * a separate wait queue to handle that.
2041 */
2042 if (ret == 0)
b09a1fec 2043 i915_gem_retire_requests_ring(dev, ring);
673a394b
EA
2044
2045 return ret;
2046}
2047
48764bf4
DV
2048/**
2049 * Waits for a sequence number to be signaled, and cleans up the
2050 * request and object lists appropriately for that event.
2051 */
2052static int
852835f3 2053i915_wait_request(struct drm_device *dev, uint32_t seqno,
a56ba56c 2054 struct intel_ring_buffer *ring)
48764bf4 2055{
852835f3 2056 return i915_do_wait_request(dev, seqno, 1, ring);
48764bf4
DV
2057}
2058
20f0cd55 2059static void
9220434a 2060i915_gem_flush_ring(struct drm_device *dev,
c78ec30b 2061 struct drm_file *file_priv,
9220434a
CW
2062 struct intel_ring_buffer *ring,
2063 uint32_t invalidate_domains,
2064 uint32_t flush_domains)
2065{
78501eac 2066 ring->flush(ring, invalidate_domains, flush_domains);
9220434a
CW
2067 i915_gem_process_flushing_list(dev, flush_domains, ring);
2068}
2069
8187a2b7
ZN
2070static void
2071i915_gem_flush(struct drm_device *dev,
c78ec30b 2072 struct drm_file *file_priv,
8187a2b7 2073 uint32_t invalidate_domains,
9220434a
CW
2074 uint32_t flush_domains,
2075 uint32_t flush_rings)
8187a2b7
ZN
2076{
2077 drm_i915_private_t *dev_priv = dev->dev_private;
8bff917c 2078
8187a2b7
ZN
2079 if (flush_domains & I915_GEM_DOMAIN_CPU)
2080 drm_agp_chipset_flush(dev);
8bff917c 2081
9220434a
CW
2082 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
2083 if (flush_rings & RING_RENDER)
c78ec30b 2084 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2085 &dev_priv->render_ring,
2086 invalidate_domains, flush_domains);
2087 if (flush_rings & RING_BSD)
c78ec30b 2088 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
2089 &dev_priv->bsd_ring,
2090 invalidate_domains, flush_domains);
549f7365
CW
2091 if (flush_rings & RING_BLT)
2092 i915_gem_flush_ring(dev, file_priv,
2093 &dev_priv->blt_ring,
2094 invalidate_domains, flush_domains);
9220434a 2095 }
8187a2b7
ZN
2096}
2097
673a394b
EA
2098/**
2099 * Ensures that all rendering to the object has completed and the object is
2100 * safe to unbind from the GTT or access from the CPU.
2101 */
2102static int
2cf34d7b
CW
2103i915_gem_object_wait_rendering(struct drm_gem_object *obj,
2104 bool interruptible)
673a394b
EA
2105{
2106 struct drm_device *dev = obj->dev;
23010e43 2107 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2108 int ret;
2109
e47c68e9
EA
2110 /* This function only exists to support waiting for existing rendering,
2111 * not for emitting required flushes.
673a394b 2112 */
e47c68e9 2113 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
673a394b
EA
2114
2115 /* If there is rendering queued on the buffer being evicted, wait for
2116 * it.
2117 */
2118 if (obj_priv->active) {
2cf34d7b
CW
2119 ret = i915_do_wait_request(dev,
2120 obj_priv->last_rendering_seqno,
2121 interruptible,
2122 obj_priv->ring);
2123 if (ret)
673a394b
EA
2124 return ret;
2125 }
2126
2127 return 0;
2128}
2129
2130/**
2131 * Unbinds an object from the GTT aperture.
2132 */
0f973f27 2133int
673a394b
EA
2134i915_gem_object_unbind(struct drm_gem_object *obj)
2135{
2136 struct drm_device *dev = obj->dev;
73aa808f 2137 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2138 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2139 int ret = 0;
2140
673a394b
EA
2141 if (obj_priv->gtt_space == NULL)
2142 return 0;
2143
2144 if (obj_priv->pin_count != 0) {
2145 DRM_ERROR("Attempting to unbind pinned buffer\n");
2146 return -EINVAL;
2147 }
2148
5323fd04
EA
2149 /* blow away mappings if mapped through GTT */
2150 i915_gem_release_mmap(obj);
2151
673a394b
EA
2152 /* Move the object to the CPU domain to ensure that
2153 * any possible CPU writes while it's not in the GTT
2154 * are flushed when we go to remap it. This will
2155 * also ensure that all pending GPU writes are finished
2156 * before we unbind.
2157 */
e47c68e9 2158 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
8dc1775d 2159 if (ret == -ERESTARTSYS)
673a394b 2160 return ret;
8dc1775d
CW
2161 /* Continue on if we fail due to EIO, the GPU is hung so we
2162 * should be safe and we need to cleanup or else we might
2163 * cause memory corruption through use-after-free.
2164 */
812ed492
CW
2165 if (ret) {
2166 i915_gem_clflush_object(obj);
2167 obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
2168 }
673a394b 2169
96b47b65
DV
2170 /* release the fence reg _after_ flushing */
2171 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2172 i915_gem_clear_fence_reg(obj);
2173
73aa808f
CW
2174 drm_unbind_agp(obj_priv->agp_mem);
2175 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
673a394b 2176
856fa198 2177 i915_gem_object_put_pages(obj);
a32808c0 2178 BUG_ON(obj_priv->pages_refcount);
673a394b 2179
73aa808f 2180 i915_gem_info_remove_gtt(dev_priv, obj->size);
69dc4987 2181 list_del_init(&obj_priv->mm_list);
673a394b 2182
73aa808f
CW
2183 drm_mm_put_block(obj_priv->gtt_space);
2184 obj_priv->gtt_space = NULL;
9af90d19 2185 obj_priv->gtt_offset = 0;
673a394b 2186
963b4836
CW
2187 if (i915_gem_object_is_purgeable(obj_priv))
2188 i915_gem_object_truncate(obj);
2189
1c5d22f7
CW
2190 trace_i915_gem_object_unbind(obj);
2191
8dc1775d 2192 return ret;
673a394b
EA
2193}
2194
a56ba56c
CW
2195static int i915_ring_idle(struct drm_device *dev,
2196 struct intel_ring_buffer *ring)
2197{
64193406
CW
2198 if (list_empty(&ring->gpu_write_list))
2199 return 0;
2200
a56ba56c
CW
2201 i915_gem_flush_ring(dev, NULL, ring,
2202 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2203 return i915_wait_request(dev,
2204 i915_gem_next_request_seqno(dev, ring),
2205 ring);
2206}
2207
b47eb4a2 2208int
4df2faf4
DV
2209i915_gpu_idle(struct drm_device *dev)
2210{
2211 drm_i915_private_t *dev_priv = dev->dev_private;
2212 bool lists_empty;
852835f3 2213 int ret;
4df2faf4 2214
d1b851fc
ZN
2215 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2216 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
2217 list_empty(&dev_priv->bsd_ring.active_list) &&
2218 list_empty(&dev_priv->blt_ring.active_list));
4df2faf4
DV
2219 if (lists_empty)
2220 return 0;
2221
2222 /* Flush everything onto the inactive list. */
a56ba56c 2223 ret = i915_ring_idle(dev, &dev_priv->render_ring);
8a1a49f9
DV
2224 if (ret)
2225 return ret;
d1b851fc 2226
87acb0a5
CW
2227 ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2228 if (ret)
2229 return ret;
d1b851fc 2230
549f7365
CW
2231 ret = i915_ring_idle(dev, &dev_priv->blt_ring);
2232 if (ret)
2233 return ret;
4df2faf4 2234
8a1a49f9 2235 return 0;
4df2faf4
DV
2236}
2237
5cdf5881 2238static int
4bdadb97
CW
2239i915_gem_object_get_pages(struct drm_gem_object *obj,
2240 gfp_t gfpmask)
673a394b 2241{
23010e43 2242 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2243 int page_count, i;
2244 struct address_space *mapping;
2245 struct inode *inode;
2246 struct page *page;
673a394b 2247
778c3544
DV
2248 BUG_ON(obj_priv->pages_refcount
2249 == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2250
856fa198 2251 if (obj_priv->pages_refcount++ != 0)
673a394b
EA
2252 return 0;
2253
2254 /* Get the list of pages out of our struct file. They'll be pinned
2255 * at this point until we release them.
2256 */
2257 page_count = obj->size / PAGE_SIZE;
856fa198 2258 BUG_ON(obj_priv->pages != NULL);
8e7d2b2c 2259 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
856fa198 2260 if (obj_priv->pages == NULL) {
856fa198 2261 obj_priv->pages_refcount--;
673a394b
EA
2262 return -ENOMEM;
2263 }
2264
2265 inode = obj->filp->f_path.dentry->d_inode;
2266 mapping = inode->i_mapping;
2267 for (i = 0; i < page_count; i++) {
4bdadb97 2268 page = read_cache_page_gfp(mapping, i,
985b823b 2269 GFP_HIGHUSER |
4bdadb97 2270 __GFP_COLD |
cd9f040d 2271 __GFP_RECLAIMABLE |
4bdadb97 2272 gfpmask);
1f2b1013
CW
2273 if (IS_ERR(page))
2274 goto err_pages;
2275
856fa198 2276 obj_priv->pages[i] = page;
673a394b 2277 }
280b713b
EA
2278
2279 if (obj_priv->tiling_mode != I915_TILING_NONE)
2280 i915_gem_object_do_bit_17_swizzle(obj);
2281
673a394b 2282 return 0;
1f2b1013
CW
2283
2284err_pages:
2285 while (i--)
2286 page_cache_release(obj_priv->pages[i]);
2287
2288 drm_free_large(obj_priv->pages);
2289 obj_priv->pages = NULL;
2290 obj_priv->pages_refcount--;
2291 return PTR_ERR(page);
673a394b
EA
2292}
2293
4e901fdc
EA
2294static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2295{
2296 struct drm_gem_object *obj = reg->obj;
2297 struct drm_device *dev = obj->dev;
2298 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2299 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4e901fdc
EA
2300 int regnum = obj_priv->fence_reg;
2301 uint64_t val;
2302
2303 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2304 0xfffff000) << 32;
2305 val |= obj_priv->gtt_offset & 0xfffff000;
2306 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2307 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2308
2309 if (obj_priv->tiling_mode == I915_TILING_Y)
2310 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2311 val |= I965_FENCE_REG_VALID;
2312
2313 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2314}
2315
de151cf6
JB
2316static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2317{
2318 struct drm_gem_object *obj = reg->obj;
2319 struct drm_device *dev = obj->dev;
2320 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2321 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2322 int regnum = obj_priv->fence_reg;
2323 uint64_t val;
2324
2325 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2326 0xfffff000) << 32;
2327 val |= obj_priv->gtt_offset & 0xfffff000;
2328 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2329 if (obj_priv->tiling_mode == I915_TILING_Y)
2330 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2331 val |= I965_FENCE_REG_VALID;
2332
2333 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2334}
2335
2336static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2337{
2338 struct drm_gem_object *obj = reg->obj;
2339 struct drm_device *dev = obj->dev;
2340 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2341 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2342 int regnum = obj_priv->fence_reg;
0f973f27 2343 int tile_width;
dc529a4f 2344 uint32_t fence_reg, val;
de151cf6
JB
2345 uint32_t pitch_val;
2346
2347 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2348 (obj_priv->gtt_offset & (obj->size - 1))) {
f06da264 2349 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
0f973f27 2350 __func__, obj_priv->gtt_offset, obj->size);
de151cf6
JB
2351 return;
2352 }
2353
0f973f27
JB
2354 if (obj_priv->tiling_mode == I915_TILING_Y &&
2355 HAS_128_BYTE_Y_TILING(dev))
2356 tile_width = 128;
de151cf6 2357 else
0f973f27
JB
2358 tile_width = 512;
2359
2360 /* Note: pitch better be a power of two tile widths */
2361 pitch_val = obj_priv->stride / tile_width;
2362 pitch_val = ffs(pitch_val) - 1;
de151cf6 2363
c36a2a6d
DV
2364 if (obj_priv->tiling_mode == I915_TILING_Y &&
2365 HAS_128_BYTE_Y_TILING(dev))
2366 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2367 else
2368 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2369
de151cf6
JB
2370 val = obj_priv->gtt_offset;
2371 if (obj_priv->tiling_mode == I915_TILING_Y)
2372 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2373 val |= I915_FENCE_SIZE_BITS(obj->size);
2374 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2375 val |= I830_FENCE_REG_VALID;
2376
dc529a4f
EA
2377 if (regnum < 8)
2378 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2379 else
2380 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2381 I915_WRITE(fence_reg, val);
de151cf6
JB
2382}
2383
2384static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2385{
2386 struct drm_gem_object *obj = reg->obj;
2387 struct drm_device *dev = obj->dev;
2388 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2389 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6
JB
2390 int regnum = obj_priv->fence_reg;
2391 uint32_t val;
2392 uint32_t pitch_val;
8d7773a3 2393 uint32_t fence_size_bits;
de151cf6 2394
8d7773a3 2395 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
de151cf6 2396 (obj_priv->gtt_offset & (obj->size - 1))) {
8d7773a3 2397 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
0f973f27 2398 __func__, obj_priv->gtt_offset);
de151cf6
JB
2399 return;
2400 }
2401
e76a16de
EA
2402 pitch_val = obj_priv->stride / 128;
2403 pitch_val = ffs(pitch_val) - 1;
2404 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2405
de151cf6
JB
2406 val = obj_priv->gtt_offset;
2407 if (obj_priv->tiling_mode == I915_TILING_Y)
2408 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
8d7773a3
DV
2409 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2410 WARN_ON(fence_size_bits & ~0x00000f00);
2411 val |= fence_size_bits;
de151cf6
JB
2412 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2413 val |= I830_FENCE_REG_VALID;
2414
2415 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
de151cf6
JB
2416}
2417
2cf34d7b
CW
2418static int i915_find_fence_reg(struct drm_device *dev,
2419 bool interruptible)
ae3db24a
DV
2420{
2421 struct drm_i915_fence_reg *reg = NULL;
2422 struct drm_i915_gem_object *obj_priv = NULL;
2423 struct drm_i915_private *dev_priv = dev->dev_private;
2424 struct drm_gem_object *obj = NULL;
2425 int i, avail, ret;
2426
2427 /* First try to find a free reg */
2428 avail = 0;
2429 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2430 reg = &dev_priv->fence_regs[i];
2431 if (!reg->obj)
2432 return i;
2433
23010e43 2434 obj_priv = to_intel_bo(reg->obj);
ae3db24a
DV
2435 if (!obj_priv->pin_count)
2436 avail++;
2437 }
2438
2439 if (avail == 0)
2440 return -ENOSPC;
2441
2442 /* None available, try to steal one or wait for a user to finish */
2443 i = I915_FENCE_REG_NONE;
007cc8ac
DV
2444 list_for_each_entry(reg, &dev_priv->mm.fence_list,
2445 lru_list) {
2446 obj = reg->obj;
2447 obj_priv = to_intel_bo(obj);
ae3db24a
DV
2448
2449 if (obj_priv->pin_count)
2450 continue;
2451
2452 /* found one! */
2453 i = obj_priv->fence_reg;
2454 break;
2455 }
2456
2457 BUG_ON(i == I915_FENCE_REG_NONE);
2458
2459 /* We only have a reference on obj from the active list. put_fence_reg
2460 * might drop that one, causing a use-after-free in it. So hold a
2461 * private reference to obj like the other callers of put_fence_reg
2462 * (set_tiling ioctl) do. */
2463 drm_gem_object_reference(obj);
2cf34d7b 2464 ret = i915_gem_object_put_fence_reg(obj, interruptible);
ae3db24a
DV
2465 drm_gem_object_unreference(obj);
2466 if (ret != 0)
2467 return ret;
2468
2469 return i;
2470}
2471
de151cf6
JB
2472/**
2473 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2474 * @obj: object to map through a fence reg
2475 *
2476 * When mapping objects through the GTT, userspace wants to be able to write
2477 * to them without having to worry about swizzling if the object is tiled.
2478 *
2479 * This function walks the fence regs looking for a free one for @obj,
2480 * stealing one if it can't find any.
2481 *
2482 * It then sets up the reg based on the object's properties: address, pitch
2483 * and tiling format.
2484 */
8c4b8c3f 2485int
2cf34d7b
CW
2486i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
2487 bool interruptible)
de151cf6
JB
2488{
2489 struct drm_device *dev = obj->dev;
79e53945 2490 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2491 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
de151cf6 2492 struct drm_i915_fence_reg *reg = NULL;
ae3db24a 2493 int ret;
de151cf6 2494
a09ba7fa
EA
2495 /* Just update our place in the LRU if our fence is getting used. */
2496 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
007cc8ac
DV
2497 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2498 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa
EA
2499 return 0;
2500 }
2501
de151cf6
JB
2502 switch (obj_priv->tiling_mode) {
2503 case I915_TILING_NONE:
2504 WARN(1, "allocating a fence for non-tiled object?\n");
2505 break;
2506 case I915_TILING_X:
0f973f27
JB
2507 if (!obj_priv->stride)
2508 return -EINVAL;
2509 WARN((obj_priv->stride & (512 - 1)),
2510 "object 0x%08x is X tiled but has non-512B pitch\n",
2511 obj_priv->gtt_offset);
de151cf6
JB
2512 break;
2513 case I915_TILING_Y:
0f973f27
JB
2514 if (!obj_priv->stride)
2515 return -EINVAL;
2516 WARN((obj_priv->stride & (128 - 1)),
2517 "object 0x%08x is Y tiled but has non-128B pitch\n",
2518 obj_priv->gtt_offset);
de151cf6
JB
2519 break;
2520 }
2521
2cf34d7b 2522 ret = i915_find_fence_reg(dev, interruptible);
ae3db24a
DV
2523 if (ret < 0)
2524 return ret;
de151cf6 2525
ae3db24a
DV
2526 obj_priv->fence_reg = ret;
2527 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
007cc8ac 2528 list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
a09ba7fa 2529
de151cf6
JB
2530 reg->obj = obj;
2531
e259befd
CW
2532 switch (INTEL_INFO(dev)->gen) {
2533 case 6:
4e901fdc 2534 sandybridge_write_fence_reg(reg);
e259befd
CW
2535 break;
2536 case 5:
2537 case 4:
de151cf6 2538 i965_write_fence_reg(reg);
e259befd
CW
2539 break;
2540 case 3:
de151cf6 2541 i915_write_fence_reg(reg);
e259befd
CW
2542 break;
2543 case 2:
de151cf6 2544 i830_write_fence_reg(reg);
e259befd
CW
2545 break;
2546 }
d9ddcb96 2547
ae3db24a
DV
2548 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2549 obj_priv->tiling_mode);
1c5d22f7 2550
d9ddcb96 2551 return 0;
de151cf6
JB
2552}
2553
2554/**
2555 * i915_gem_clear_fence_reg - clear out fence register info
2556 * @obj: object to clear
2557 *
2558 * Zeroes out the fence register itself and clears out the associated
2559 * data structures in dev_priv and obj_priv.
2560 */
2561static void
2562i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2563{
2564 struct drm_device *dev = obj->dev;
79e53945 2565 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2566 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
007cc8ac
DV
2567 struct drm_i915_fence_reg *reg =
2568 &dev_priv->fence_regs[obj_priv->fence_reg];
e259befd 2569 uint32_t fence_reg;
de151cf6 2570
e259befd
CW
2571 switch (INTEL_INFO(dev)->gen) {
2572 case 6:
4e901fdc
EA
2573 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2574 (obj_priv->fence_reg * 8), 0);
e259befd
CW
2575 break;
2576 case 5:
2577 case 4:
de151cf6 2578 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
e259befd
CW
2579 break;
2580 case 3:
9b74f734 2581 if (obj_priv->fence_reg >= 8)
e259befd 2582 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
dc529a4f 2583 else
e259befd
CW
2584 case 2:
2585 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
dc529a4f
EA
2586
2587 I915_WRITE(fence_reg, 0);
e259befd 2588 break;
dc529a4f 2589 }
de151cf6 2590
007cc8ac 2591 reg->obj = NULL;
de151cf6 2592 obj_priv->fence_reg = I915_FENCE_REG_NONE;
007cc8ac 2593 list_del_init(&reg->lru_list);
de151cf6
JB
2594}
2595
52dc7d32
CW
2596/**
2597 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2598 * to the buffer to finish, and then resets the fence register.
2599 * @obj: tiled object holding a fence register.
2cf34d7b 2600 * @bool: whether the wait upon the fence is interruptible
52dc7d32
CW
2601 *
2602 * Zeroes out the fence register itself and clears out the associated
2603 * data structures in dev_priv and obj_priv.
2604 */
2605int
2cf34d7b
CW
2606i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
2607 bool interruptible)
52dc7d32
CW
2608{
2609 struct drm_device *dev = obj->dev;
53640e1d 2610 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 2611 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
53640e1d 2612 struct drm_i915_fence_reg *reg;
52dc7d32
CW
2613
2614 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2615 return 0;
2616
10ae9bd2
DV
2617 /* If we've changed tiling, GTT-mappings of the object
2618 * need to re-fault to ensure that the correct fence register
2619 * setup is in place.
2620 */
2621 i915_gem_release_mmap(obj);
2622
52dc7d32
CW
2623 /* On the i915, GPU access to tiled buffers is via a fence,
2624 * therefore we must wait for any outstanding access to complete
2625 * before clearing the fence.
2626 */
53640e1d
CW
2627 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2628 if (reg->gpu) {
52dc7d32
CW
2629 int ret;
2630
2cf34d7b 2631 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
0bc23aad 2632 if (ret)
2dafb1e0
CW
2633 return ret;
2634
2cf34d7b 2635 ret = i915_gem_object_wait_rendering(obj, interruptible);
0bc23aad 2636 if (ret)
52dc7d32 2637 return ret;
53640e1d
CW
2638
2639 reg->gpu = false;
52dc7d32
CW
2640 }
2641
4a726612 2642 i915_gem_object_flush_gtt_write_domain(obj);
0bc23aad 2643 i915_gem_clear_fence_reg(obj);
52dc7d32
CW
2644
2645 return 0;
2646}
2647
673a394b
EA
2648/**
2649 * Finds free space in the GTT aperture and binds the object there.
2650 */
2651static int
920afa77
DV
2652i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
2653 unsigned alignment,
2654 bool mappable)
673a394b
EA
2655{
2656 struct drm_device *dev = obj->dev;
2657 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 2658 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 2659 struct drm_mm_node *free_space;
4bdadb97 2660 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
07f73f69 2661 int ret;
673a394b 2662
bb6baf76 2663 if (obj_priv->madv != I915_MADV_WILLNEED) {
3ef94daa
CW
2664 DRM_ERROR("Attempting to bind a purgeable object\n");
2665 return -EINVAL;
2666 }
2667
673a394b 2668 if (alignment == 0)
0f973f27 2669 alignment = i915_gem_get_gtt_alignment(obj);
8d7773a3 2670 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
673a394b
EA
2671 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2672 return -EINVAL;
2673 }
2674
654fc607
CW
2675 /* If the object is bigger than the entire aperture, reject it early
2676 * before evicting everything in a vain attempt to find space.
2677 */
920afa77
DV
2678 if (obj->size >
2679 (mappable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
654fc607
CW
2680 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2681 return -E2BIG;
2682 }
2683
673a394b 2684 search_free:
920afa77
DV
2685 if (mappable)
2686 free_space =
2687 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2688 obj->size, alignment, 0,
2689 dev_priv->mm.gtt_mappable_end,
2690 0);
2691 else
2692 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2693 obj->size, alignment, 0);
2694
2695 if (free_space != NULL) {
2696 if (mappable)
2697 obj_priv->gtt_space =
2698 drm_mm_get_block_range_generic(free_space,
2699 obj->size,
2700 alignment, 0,
2701 dev_priv->mm.gtt_mappable_end,
2702 0);
2703 else
2704 obj_priv->gtt_space =
2705 drm_mm_get_block(free_space, obj->size,
2706 alignment);
2707 }
673a394b
EA
2708 if (obj_priv->gtt_space == NULL) {
2709 /* If the gtt is empty and we're still having trouble
2710 * fitting our object in, we're out of memory.
2711 */
920afa77
DV
2712 ret = i915_gem_evict_something(dev, obj->size, alignment,
2713 mappable);
9731129c 2714 if (ret)
673a394b 2715 return ret;
9731129c 2716
673a394b
EA
2717 goto search_free;
2718 }
2719
4bdadb97 2720 ret = i915_gem_object_get_pages(obj, gfpmask);
673a394b
EA
2721 if (ret) {
2722 drm_mm_put_block(obj_priv->gtt_space);
2723 obj_priv->gtt_space = NULL;
07f73f69
CW
2724
2725 if (ret == -ENOMEM) {
2726 /* first try to clear up some space from the GTT */
0108a3ed 2727 ret = i915_gem_evict_something(dev, obj->size,
920afa77 2728 alignment, mappable);
07f73f69 2729 if (ret) {
07f73f69 2730 /* now try to shrink everyone else */
4bdadb97
CW
2731 if (gfpmask) {
2732 gfpmask = 0;
2733 goto search_free;
07f73f69
CW
2734 }
2735
2736 return ret;
2737 }
2738
2739 goto search_free;
2740 }
2741
673a394b
EA
2742 return ret;
2743 }
2744
673a394b
EA
2745 /* Create an AGP memory structure pointing at our pages, and bind it
2746 * into the GTT.
2747 */
2748 obj_priv->agp_mem = drm_agp_bind_pages(dev,
856fa198 2749 obj_priv->pages,
07f73f69 2750 obj->size >> PAGE_SHIFT,
9af90d19 2751 obj_priv->gtt_space->start,
ba1eb1d8 2752 obj_priv->agp_type);
673a394b 2753 if (obj_priv->agp_mem == NULL) {
856fa198 2754 i915_gem_object_put_pages(obj);
673a394b
EA
2755 drm_mm_put_block(obj_priv->gtt_space);
2756 obj_priv->gtt_space = NULL;
07f73f69 2757
920afa77
DV
2758 ret = i915_gem_evict_something(dev, obj->size, alignment,
2759 mappable);
9731129c 2760 if (ret)
07f73f69 2761 return ret;
07f73f69
CW
2762
2763 goto search_free;
673a394b 2764 }
673a394b 2765
bf1a1092 2766 /* keep track of bounds object by adding it to the inactive list */
69dc4987 2767 list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
73aa808f 2768 i915_gem_info_add_gtt(dev_priv, obj->size);
bf1a1092 2769
673a394b
EA
2770 /* Assert that the object is not currently in any GPU domain. As it
2771 * wasn't in the GTT, there shouldn't be any way it could have been in
2772 * a GPU cache
2773 */
21d509e3
CW
2774 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2775 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
673a394b 2776
9af90d19 2777 obj_priv->gtt_offset = obj_priv->gtt_space->start;
ec57d260 2778 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, mappable);
1c5d22f7 2779
673a394b
EA
2780 return 0;
2781}
2782
2783void
2784i915_gem_clflush_object(struct drm_gem_object *obj)
2785{
23010e43 2786 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
2787
2788 /* If we don't have a page list set up, then we're not pinned
2789 * to GPU, and we can ignore the cache flush because it'll happen
2790 * again at bind time.
2791 */
856fa198 2792 if (obj_priv->pages == NULL)
673a394b
EA
2793 return;
2794
1c5d22f7 2795 trace_i915_gem_object_clflush(obj);
cfa16a0d 2796
856fa198 2797 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
673a394b
EA
2798}
2799
e47c68e9 2800/** Flushes any GPU write domain for the object if it's dirty. */
2dafb1e0 2801static int
ba3d8d74
DV
2802i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
2803 bool pipelined)
e47c68e9
EA
2804{
2805 struct drm_device *dev = obj->dev;
1c5d22f7 2806 uint32_t old_write_domain;
e47c68e9
EA
2807
2808 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2dafb1e0 2809 return 0;
e47c68e9
EA
2810
2811 /* Queue the GPU write cache flushing we need. */
1c5d22f7 2812 old_write_domain = obj->write_domain;
c78ec30b 2813 i915_gem_flush_ring(dev, NULL,
9220434a
CW
2814 to_intel_bo(obj)->ring,
2815 0, obj->write_domain);
48b956c5 2816 BUG_ON(obj->write_domain);
1c5d22f7
CW
2817
2818 trace_i915_gem_object_change_domain(obj,
2819 obj->read_domains,
2820 old_write_domain);
ba3d8d74
DV
2821
2822 if (pipelined)
2823 return 0;
2824
2cf34d7b 2825 return i915_gem_object_wait_rendering(obj, true);
e47c68e9
EA
2826}
2827
2828/** Flushes the GTT write domain for the object if it's dirty. */
2829static void
2830i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2831{
1c5d22f7
CW
2832 uint32_t old_write_domain;
2833
e47c68e9
EA
2834 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2835 return;
2836
2837 /* No actual flushing is required for the GTT write domain. Writes
2838 * to it immediately go to main memory as far as we know, so there's
2839 * no chipset flush. It also doesn't land in render cache.
2840 */
1c5d22f7 2841 old_write_domain = obj->write_domain;
e47c68e9 2842 obj->write_domain = 0;
1c5d22f7
CW
2843
2844 trace_i915_gem_object_change_domain(obj,
2845 obj->read_domains,
2846 old_write_domain);
e47c68e9
EA
2847}
2848
2849/** Flushes the CPU write domain for the object if it's dirty. */
2850static void
2851i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2852{
2853 struct drm_device *dev = obj->dev;
1c5d22f7 2854 uint32_t old_write_domain;
e47c68e9
EA
2855
2856 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2857 return;
2858
2859 i915_gem_clflush_object(obj);
2860 drm_agp_chipset_flush(dev);
1c5d22f7 2861 old_write_domain = obj->write_domain;
e47c68e9 2862 obj->write_domain = 0;
1c5d22f7
CW
2863
2864 trace_i915_gem_object_change_domain(obj,
2865 obj->read_domains,
2866 old_write_domain);
e47c68e9
EA
2867}
2868
2ef7eeaa
EA
2869/**
2870 * Moves a single object to the GTT read, and possibly write domain.
2871 *
2872 * This function returns when the move is complete, including waiting on
2873 * flushes to occur.
2874 */
79e53945 2875int
2ef7eeaa
EA
2876i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2877{
23010e43 2878 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 2879 uint32_t old_write_domain, old_read_domains;
e47c68e9 2880 int ret;
2ef7eeaa 2881
02354392
EA
2882 /* Not valid to be called on unbound objects. */
2883 if (obj_priv->gtt_space == NULL)
2884 return -EINVAL;
2885
ba3d8d74 2886 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2dafb1e0
CW
2887 if (ret != 0)
2888 return ret;
2889
7213342d 2890 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 2891
ba3d8d74 2892 if (write) {
2cf34d7b 2893 ret = i915_gem_object_wait_rendering(obj, true);
ba3d8d74
DV
2894 if (ret)
2895 return ret;
ba3d8d74 2896 }
e47c68e9 2897
1c5d22f7
CW
2898 old_write_domain = obj->write_domain;
2899 old_read_domains = obj->read_domains;
2900
e47c68e9
EA
2901 /* It should now be out of any other write domains, and we can update
2902 * the domain values for our changes.
2903 */
2904 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2905 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2906 if (write) {
7213342d 2907 obj->read_domains = I915_GEM_DOMAIN_GTT;
e47c68e9
EA
2908 obj->write_domain = I915_GEM_DOMAIN_GTT;
2909 obj_priv->dirty = 1;
2ef7eeaa
EA
2910 }
2911
1c5d22f7
CW
2912 trace_i915_gem_object_change_domain(obj,
2913 old_read_domains,
2914 old_write_domain);
2915
e47c68e9
EA
2916 return 0;
2917}
2918
b9241ea3
ZW
2919/*
2920 * Prepare buffer for display plane. Use uninterruptible for possible flush
2921 * wait, as in modesetting process we're not supposed to be interrupted.
2922 */
2923int
48b956c5
CW
2924i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
2925 bool pipelined)
b9241ea3 2926{
23010e43 2927 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
ba3d8d74 2928 uint32_t old_read_domains;
b9241ea3
ZW
2929 int ret;
2930
2931 /* Not valid to be called on unbound objects. */
2932 if (obj_priv->gtt_space == NULL)
2933 return -EINVAL;
2934
ced270fa 2935 ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2dafb1e0
CW
2936 if (ret)
2937 return ret;
b9241ea3 2938
ced270fa
CW
2939 /* Currently, we are always called from an non-interruptible context. */
2940 if (!pipelined) {
2941 ret = i915_gem_object_wait_rendering(obj, false);
2942 if (ret)
b9241ea3
ZW
2943 return ret;
2944 }
2945
b118c1e3
CW
2946 i915_gem_object_flush_cpu_write_domain(obj);
2947
b9241ea3 2948 old_read_domains = obj->read_domains;
c78ec30b 2949 obj->read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
2950
2951 trace_i915_gem_object_change_domain(obj,
2952 old_read_domains,
ba3d8d74 2953 obj->write_domain);
b9241ea3
ZW
2954
2955 return 0;
2956}
2957
e47c68e9
EA
2958/**
2959 * Moves a single object to the CPU read, and possibly write domain.
2960 *
2961 * This function returns when the move is complete, including waiting on
2962 * flushes to occur.
2963 */
2964static int
2965i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2966{
1c5d22f7 2967 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
2968 int ret;
2969
ba3d8d74 2970 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9
EA
2971 if (ret != 0)
2972 return ret;
2ef7eeaa 2973
e47c68e9 2974 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 2975
e47c68e9
EA
2976 /* If we have a partially-valid cache of the object in the CPU,
2977 * finish invalidating it and free the per-page flags.
2ef7eeaa 2978 */
e47c68e9 2979 i915_gem_object_set_to_full_cpu_read_domain(obj);
2ef7eeaa 2980
7213342d 2981 if (write) {
2cf34d7b 2982 ret = i915_gem_object_wait_rendering(obj, true);
7213342d
CW
2983 if (ret)
2984 return ret;
2985 }
2986
1c5d22f7
CW
2987 old_write_domain = obj->write_domain;
2988 old_read_domains = obj->read_domains;
2989
e47c68e9
EA
2990 /* Flush the CPU cache if it's still invalid. */
2991 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2ef7eeaa 2992 i915_gem_clflush_object(obj);
2ef7eeaa 2993
e47c68e9 2994 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
2995 }
2996
2997 /* It should now be out of any other write domains, and we can update
2998 * the domain values for our changes.
2999 */
e47c68e9
EA
3000 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3001
3002 /* If we're writing through the CPU, then the GPU read domains will
3003 * need to be invalidated at next use.
3004 */
3005 if (write) {
c78ec30b 3006 obj->read_domains = I915_GEM_DOMAIN_CPU;
e47c68e9
EA
3007 obj->write_domain = I915_GEM_DOMAIN_CPU;
3008 }
2ef7eeaa 3009
1c5d22f7
CW
3010 trace_i915_gem_object_change_domain(obj,
3011 old_read_domains,
3012 old_write_domain);
3013
2ef7eeaa
EA
3014 return 0;
3015}
3016
673a394b
EA
3017/*
3018 * Set the next domain for the specified object. This
3019 * may not actually perform the necessary flushing/invaliding though,
3020 * as that may want to be batched with other set_domain operations
3021 *
3022 * This is (we hope) the only really tricky part of gem. The goal
3023 * is fairly simple -- track which caches hold bits of the object
3024 * and make sure they remain coherent. A few concrete examples may
3025 * help to explain how it works. For shorthand, we use the notation
3026 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3027 * a pair of read and write domain masks.
3028 *
3029 * Case 1: the batch buffer
3030 *
3031 * 1. Allocated
3032 * 2. Written by CPU
3033 * 3. Mapped to GTT
3034 * 4. Read by GPU
3035 * 5. Unmapped from GTT
3036 * 6. Freed
3037 *
3038 * Let's take these a step at a time
3039 *
3040 * 1. Allocated
3041 * Pages allocated from the kernel may still have
3042 * cache contents, so we set them to (CPU, CPU) always.
3043 * 2. Written by CPU (using pwrite)
3044 * The pwrite function calls set_domain (CPU, CPU) and
3045 * this function does nothing (as nothing changes)
3046 * 3. Mapped by GTT
3047 * This function asserts that the object is not
3048 * currently in any GPU-based read or write domains
3049 * 4. Read by GPU
3050 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3051 * As write_domain is zero, this function adds in the
3052 * current read domains (CPU+COMMAND, 0).
3053 * flush_domains is set to CPU.
3054 * invalidate_domains is set to COMMAND
3055 * clflush is run to get data out of the CPU caches
3056 * then i915_dev_set_domain calls i915_gem_flush to
3057 * emit an MI_FLUSH and drm_agp_chipset_flush
3058 * 5. Unmapped from GTT
3059 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3060 * flush_domains and invalidate_domains end up both zero
3061 * so no flushing/invalidating happens
3062 * 6. Freed
3063 * yay, done
3064 *
3065 * Case 2: The shared render buffer
3066 *
3067 * 1. Allocated
3068 * 2. Mapped to GTT
3069 * 3. Read/written by GPU
3070 * 4. set_domain to (CPU,CPU)
3071 * 5. Read/written by CPU
3072 * 6. Read/written by GPU
3073 *
3074 * 1. Allocated
3075 * Same as last example, (CPU, CPU)
3076 * 2. Mapped to GTT
3077 * Nothing changes (assertions find that it is not in the GPU)
3078 * 3. Read/written by GPU
3079 * execbuffer calls set_domain (RENDER, RENDER)
3080 * flush_domains gets CPU
3081 * invalidate_domains gets GPU
3082 * clflush (obj)
3083 * MI_FLUSH and drm_agp_chipset_flush
3084 * 4. set_domain (CPU, CPU)
3085 * flush_domains gets GPU
3086 * invalidate_domains gets CPU
3087 * wait_rendering (obj) to make sure all drawing is complete.
3088 * This will include an MI_FLUSH to get the data from GPU
3089 * to memory
3090 * clflush (obj) to invalidate the CPU cache
3091 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3092 * 5. Read/written by CPU
3093 * cache lines are loaded and dirtied
3094 * 6. Read written by GPU
3095 * Same as last GPU access
3096 *
3097 * Case 3: The constant buffer
3098 *
3099 * 1. Allocated
3100 * 2. Written by CPU
3101 * 3. Read by GPU
3102 * 4. Updated (written) by CPU again
3103 * 5. Read by GPU
3104 *
3105 * 1. Allocated
3106 * (CPU, CPU)
3107 * 2. Written by CPU
3108 * (CPU, CPU)
3109 * 3. Read by GPU
3110 * (CPU+RENDER, 0)
3111 * flush_domains = CPU
3112 * invalidate_domains = RENDER
3113 * clflush (obj)
3114 * MI_FLUSH
3115 * drm_agp_chipset_flush
3116 * 4. Updated (written) by CPU again
3117 * (CPU, CPU)
3118 * flush_domains = 0 (no previous write domain)
3119 * invalidate_domains = 0 (no new read domains)
3120 * 5. Read by GPU
3121 * (CPU+RENDER, 0)
3122 * flush_domains = CPU
3123 * invalidate_domains = RENDER
3124 * clflush (obj)
3125 * MI_FLUSH
3126 * drm_agp_chipset_flush
3127 */
c0d90829 3128static void
b6651458
CW
3129i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3130 struct intel_ring_buffer *ring)
673a394b
EA
3131{
3132 struct drm_device *dev = obj->dev;
9220434a 3133 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 3134 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
3135 uint32_t invalidate_domains = 0;
3136 uint32_t flush_domains = 0;
652c393a 3137
673a394b
EA
3138 /*
3139 * If the object isn't moving to a new write domain,
3140 * let the object stay in multiple read domains
3141 */
8b0e378a
EA
3142 if (obj->pending_write_domain == 0)
3143 obj->pending_read_domains |= obj->read_domains;
673a394b
EA
3144
3145 /*
3146 * Flush the current write domain if
3147 * the new read domains don't match. Invalidate
3148 * any read domains which differ from the old
3149 * write domain
3150 */
8b0e378a
EA
3151 if (obj->write_domain &&
3152 obj->write_domain != obj->pending_read_domains) {
673a394b 3153 flush_domains |= obj->write_domain;
8b0e378a
EA
3154 invalidate_domains |=
3155 obj->pending_read_domains & ~obj->write_domain;
673a394b
EA
3156 }
3157 /*
3158 * Invalidate any read caches which may have
3159 * stale data. That is, any new read domains.
3160 */
8b0e378a 3161 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3d2a812a 3162 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
673a394b 3163 i915_gem_clflush_object(obj);
673a394b 3164
efbeed96
EA
3165 /* The actual obj->write_domain will be updated with
3166 * pending_write_domain after we emit the accumulated flush for all
3167 * of our domain changes in execbuffers (which clears objects'
3168 * write_domains). So if we have a current write domain that we
3169 * aren't changing, set pending_write_domain to that.
3170 */
3171 if (flush_domains == 0 && obj->pending_write_domain == 0)
3172 obj->pending_write_domain = obj->write_domain;
673a394b
EA
3173
3174 dev->invalidate_domains |= invalidate_domains;
3175 dev->flush_domains |= flush_domains;
b6651458 3176 if (flush_domains & I915_GEM_GPU_DOMAINS)
9220434a 3177 dev_priv->mm.flush_rings |= obj_priv->ring->id;
b6651458
CW
3178 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3179 dev_priv->mm.flush_rings |= ring->id;
673a394b
EA
3180}
3181
3182/**
e47c68e9 3183 * Moves the object from a partially CPU read to a full one.
673a394b 3184 *
e47c68e9
EA
3185 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3186 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
673a394b 3187 */
e47c68e9
EA
3188static void
3189i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
673a394b 3190{
23010e43 3191 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 3192
e47c68e9
EA
3193 if (!obj_priv->page_cpu_valid)
3194 return;
3195
3196 /* If we're partially in the CPU read domain, finish moving it in.
3197 */
3198 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3199 int i;
3200
3201 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3202 if (obj_priv->page_cpu_valid[i])
3203 continue;
856fa198 3204 drm_clflush_pages(obj_priv->pages + i, 1);
e47c68e9 3205 }
e47c68e9
EA
3206 }
3207
3208 /* Free the page_cpu_valid mappings which are now stale, whether
3209 * or not we've got I915_GEM_DOMAIN_CPU.
3210 */
9a298b2a 3211 kfree(obj_priv->page_cpu_valid);
e47c68e9
EA
3212 obj_priv->page_cpu_valid = NULL;
3213}
3214
3215/**
3216 * Set the CPU read domain on a range of the object.
3217 *
3218 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3219 * not entirely valid. The page_cpu_valid member of the object flags which
3220 * pages have been flushed, and will be respected by
3221 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3222 * of the whole object.
3223 *
3224 * This function returns when the move is complete, including waiting on
3225 * flushes to occur.
3226 */
3227static int
3228i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3229 uint64_t offset, uint64_t size)
3230{
23010e43 3231 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1c5d22f7 3232 uint32_t old_read_domains;
e47c68e9 3233 int i, ret;
673a394b 3234
e47c68e9
EA
3235 if (offset == 0 && size == obj->size)
3236 return i915_gem_object_set_to_cpu_domain(obj, 0);
673a394b 3237
ba3d8d74 3238 ret = i915_gem_object_flush_gpu_write_domain(obj, false);
e47c68e9 3239 if (ret != 0)
6a47baa6 3240 return ret;
e47c68e9
EA
3241 i915_gem_object_flush_gtt_write_domain(obj);
3242
3243 /* If we're already fully in the CPU read domain, we're done. */
3244 if (obj_priv->page_cpu_valid == NULL &&
3245 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3246 return 0;
673a394b 3247
e47c68e9
EA
3248 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3249 * newly adding I915_GEM_DOMAIN_CPU
3250 */
673a394b 3251 if (obj_priv->page_cpu_valid == NULL) {
9a298b2a
EA
3252 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3253 GFP_KERNEL);
e47c68e9
EA
3254 if (obj_priv->page_cpu_valid == NULL)
3255 return -ENOMEM;
3256 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3257 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
673a394b
EA
3258
3259 /* Flush the cache on any pages that are still invalid from the CPU's
3260 * perspective.
3261 */
e47c68e9
EA
3262 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3263 i++) {
673a394b
EA
3264 if (obj_priv->page_cpu_valid[i])
3265 continue;
3266
856fa198 3267 drm_clflush_pages(obj_priv->pages + i, 1);
673a394b
EA
3268
3269 obj_priv->page_cpu_valid[i] = 1;
3270 }
3271
e47c68e9
EA
3272 /* It should now be out of any other write domains, and we can update
3273 * the domain values for our changes.
3274 */
3275 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3276
1c5d22f7 3277 old_read_domains = obj->read_domains;
e47c68e9
EA
3278 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3279
1c5d22f7
CW
3280 trace_i915_gem_object_change_domain(obj,
3281 old_read_domains,
3282 obj->write_domain);
3283
673a394b
EA
3284 return 0;
3285}
3286
673a394b
EA
3287/**
3288 * Pin an object to the GTT and evaluate the relocations landing in it.
3289 */
3290static int
9af90d19
CW
3291i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
3292 struct drm_file *file_priv,
3293 struct drm_i915_gem_exec_object2 *entry)
673a394b 3294{
9af90d19 3295 struct drm_device *dev = obj->base.dev;
0839ccb8 3296 drm_i915_private_t *dev_priv = dev->dev_private;
2549d6c2 3297 struct drm_i915_gem_relocation_entry __user *user_relocs;
9af90d19
CW
3298 struct drm_gem_object *target_obj = NULL;
3299 uint32_t target_handle = 0;
3300 int i, ret = 0;
673a394b 3301
2549d6c2 3302 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
673a394b 3303 for (i = 0; i < entry->relocation_count; i++) {
2549d6c2 3304 struct drm_i915_gem_relocation_entry reloc;
9af90d19 3305 uint32_t target_offset;
673a394b 3306
9af90d19
CW
3307 if (__copy_from_user_inatomic(&reloc,
3308 user_relocs+i,
3309 sizeof(reloc))) {
3310 ret = -EFAULT;
3311 break;
76446cac 3312 }
76446cac 3313
9af90d19
CW
3314 if (reloc.target_handle != target_handle) {
3315 drm_gem_object_unreference(target_obj);
673a394b 3316
9af90d19
CW
3317 target_obj = drm_gem_object_lookup(dev, file_priv,
3318 reloc.target_handle);
3319 if (target_obj == NULL) {
3320 ret = -ENOENT;
3321 break;
3322 }
3323
3324 target_handle = reloc.target_handle;
673a394b 3325 }
9af90d19 3326 target_offset = to_intel_bo(target_obj)->gtt_offset;
673a394b 3327
8542a0bb
CW
3328#if WATCH_RELOC
3329 DRM_INFO("%s: obj %p offset %08x target %d "
3330 "read %08x write %08x gtt %08x "
3331 "presumed %08x delta %08x\n",
3332 __func__,
3333 obj,
2549d6c2
CW
3334 (int) reloc.offset,
3335 (int) reloc.target_handle,
3336 (int) reloc.read_domains,
3337 (int) reloc.write_domain,
9af90d19 3338 (int) target_offset,
2549d6c2
CW
3339 (int) reloc.presumed_offset,
3340 reloc.delta);
8542a0bb
CW
3341#endif
3342
673a394b
EA
3343 /* The target buffer should have appeared before us in the
3344 * exec_object list, so it should have a GTT space bound by now.
3345 */
9af90d19 3346 if (target_offset == 0) {
673a394b 3347 DRM_ERROR("No GTT space found for object %d\n",
2549d6c2 3348 reloc.target_handle);
9af90d19
CW
3349 ret = -EINVAL;
3350 break;
673a394b
EA
3351 }
3352
8542a0bb 3353 /* Validate that the target is in a valid r/w GPU domain */
2549d6c2 3354 if (reloc.write_domain & (reloc.write_domain - 1)) {
16edd550
DV
3355 DRM_ERROR("reloc with multiple write domains: "
3356 "obj %p target %d offset %d "
3357 "read %08x write %08x",
2549d6c2
CW
3358 obj, reloc.target_handle,
3359 (int) reloc.offset,
3360 reloc.read_domains,
3361 reloc.write_domain);
9af90d19
CW
3362 ret = -EINVAL;
3363 break;
16edd550 3364 }
2549d6c2
CW
3365 if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
3366 reloc.read_domains & I915_GEM_DOMAIN_CPU) {
e47c68e9
EA
3367 DRM_ERROR("reloc with read/write CPU domains: "
3368 "obj %p target %d offset %d "
3369 "read %08x write %08x",
2549d6c2
CW
3370 obj, reloc.target_handle,
3371 (int) reloc.offset,
3372 reloc.read_domains,
3373 reloc.write_domain);
9af90d19
CW
3374 ret = -EINVAL;
3375 break;
e47c68e9 3376 }
2549d6c2
CW
3377 if (reloc.write_domain && target_obj->pending_write_domain &&
3378 reloc.write_domain != target_obj->pending_write_domain) {
673a394b
EA
3379 DRM_ERROR("Write domain conflict: "
3380 "obj %p target %d offset %d "
3381 "new %08x old %08x\n",
2549d6c2
CW
3382 obj, reloc.target_handle,
3383 (int) reloc.offset,
3384 reloc.write_domain,
673a394b 3385 target_obj->pending_write_domain);
9af90d19
CW
3386 ret = -EINVAL;
3387 break;
673a394b
EA
3388 }
3389
2549d6c2 3390 target_obj->pending_read_domains |= reloc.read_domains;
878a3c37 3391 target_obj->pending_write_domain |= reloc.write_domain;
673a394b
EA
3392
3393 /* If the relocation already has the right value in it, no
3394 * more work needs to be done.
3395 */
9af90d19 3396 if (target_offset == reloc.presumed_offset)
673a394b 3397 continue;
673a394b 3398
8542a0bb 3399 /* Check that the relocation address is valid... */
9af90d19 3400 if (reloc.offset > obj->base.size - 4) {
8542a0bb
CW
3401 DRM_ERROR("Relocation beyond object bounds: "
3402 "obj %p target %d offset %d size %d.\n",
2549d6c2 3403 obj, reloc.target_handle,
9af90d19
CW
3404 (int) reloc.offset, (int) obj->base.size);
3405 ret = -EINVAL;
3406 break;
8542a0bb 3407 }
2549d6c2 3408 if (reloc.offset & 3) {
8542a0bb
CW
3409 DRM_ERROR("Relocation not 4-byte aligned: "
3410 "obj %p target %d offset %d.\n",
2549d6c2
CW
3411 obj, reloc.target_handle,
3412 (int) reloc.offset);
9af90d19
CW
3413 ret = -EINVAL;
3414 break;
8542a0bb
CW
3415 }
3416
3417 /* and points to somewhere within the target object. */
2549d6c2 3418 if (reloc.delta >= target_obj->size) {
8542a0bb
CW
3419 DRM_ERROR("Relocation beyond target object bounds: "
3420 "obj %p target %d delta %d size %d.\n",
2549d6c2
CW
3421 obj, reloc.target_handle,
3422 (int) reloc.delta, (int) target_obj->size);
9af90d19
CW
3423 ret = -EINVAL;
3424 break;
673a394b
EA
3425 }
3426
9af90d19
CW
3427 reloc.delta += target_offset;
3428 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
f0c43d9b
CW
3429 uint32_t page_offset = reloc.offset & ~PAGE_MASK;
3430 char *vaddr;
673a394b 3431
c48c43e4 3432 vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
f0c43d9b 3433 *(uint32_t *)(vaddr + page_offset) = reloc.delta;
c48c43e4 3434 kunmap_atomic(vaddr);
f0c43d9b
CW
3435 } else {
3436 uint32_t __iomem *reloc_entry;
3437 void __iomem *reloc_page;
b962442e 3438
9af90d19
CW
3439 ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
3440 if (ret)
3441 break;
b962442e 3442
f0c43d9b 3443 /* Map the page containing the relocation we're going to perform. */
9af90d19 3444 reloc.offset += obj->gtt_offset;
f0c43d9b 3445 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
c48c43e4 3446 reloc.offset & PAGE_MASK);
f0c43d9b
CW
3447 reloc_entry = (uint32_t __iomem *)
3448 (reloc_page + (reloc.offset & ~PAGE_MASK));
3449 iowrite32(reloc.delta, reloc_entry);
c48c43e4 3450 io_mapping_unmap_atomic(reloc_page);
f0c43d9b 3451 }
b962442e 3452
b5dc608c
CW
3453 /* and update the user's relocation entry */
3454 reloc.presumed_offset = target_offset;
3455 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3456 &reloc.presumed_offset,
3457 sizeof(reloc.presumed_offset))) {
3458 ret = -EFAULT;
3459 break;
3460 }
b962442e 3461 }
b962442e 3462
9af90d19 3463 drm_gem_object_unreference(target_obj);
673a394b
EA
3464 return ret;
3465}
3466
40a5f0de 3467static int
9af90d19
CW
3468i915_gem_execbuffer_pin(struct drm_device *dev,
3469 struct drm_file *file,
3470 struct drm_gem_object **object_list,
3471 struct drm_i915_gem_exec_object2 *exec_list,
3472 int count)
40a5f0de 3473{
9af90d19
CW
3474 struct drm_i915_private *dev_priv = dev->dev_private;
3475 int ret, i, retry;
40a5f0de 3476
9af90d19
CW
3477 /* attempt to pin all of the buffers into the GTT */
3478 for (retry = 0; retry < 2; retry++) {
3479 ret = 0;
3480 for (i = 0; i < count; i++) {
3481 struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
16e809ac 3482 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
9af90d19
CW
3483 bool need_fence =
3484 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3485 obj->tiling_mode != I915_TILING_NONE;
3486
16e809ac
DV
3487 /* g33/pnv can't fence buffers in the unmappable part */
3488 bool need_mappable =
3489 entry->relocation_count ? true : need_fence;
3490
9af90d19
CW
3491 /* Check fence reg constraints and rebind if necessary */
3492 if (need_fence &&
3493 !i915_gem_object_fence_offset_ok(&obj->base,
3494 obj->tiling_mode)) {
3495 ret = i915_gem_object_unbind(&obj->base);
3496 if (ret)
3497 break;
3498 }
40a5f0de 3499
920afa77 3500 ret = i915_gem_object_pin(&obj->base,
16e809ac
DV
3501 entry->alignment,
3502 need_mappable);
9af90d19
CW
3503 if (ret)
3504 break;
40a5f0de 3505
9af90d19
CW
3506 /*
3507 * Pre-965 chips need a fence register set up in order
3508 * to properly handle blits to/from tiled surfaces.
3509 */
3510 if (need_fence) {
3511 ret = i915_gem_object_get_fence_reg(&obj->base, true);
3512 if (ret) {
3513 i915_gem_object_unpin(&obj->base);
3514 break;
3515 }
40a5f0de 3516
9af90d19
CW
3517 dev_priv->fence_regs[obj->fence_reg].gpu = true;
3518 }
40a5f0de 3519
9af90d19 3520 entry->offset = obj->gtt_offset;
40a5f0de
EA
3521 }
3522
9af90d19
CW
3523 while (i--)
3524 i915_gem_object_unpin(object_list[i]);
3525
3526 if (ret == 0)
3527 break;
673a394b 3528
9af90d19
CW
3529 if (ret != -ENOSPC || retry)
3530 return ret;
3531
3532 ret = i915_gem_evict_everything(dev);
3533 if (ret)
3534 return ret;
40a5f0de
EA
3535 }
3536
2bc43b5c 3537 return 0;
40a5f0de
EA
3538}
3539
673a394b
EA
3540/* Throttle our rendering by waiting until the ring has completed our requests
3541 * emitted over 20 msec ago.
3542 *
b962442e
EA
3543 * Note that if we were to use the current jiffies each time around the loop,
3544 * we wouldn't escape the function with any frames outstanding if the time to
3545 * render a frame was over 20ms.
3546 *
673a394b
EA
3547 * This should get us reasonable parallelism between CPU and GPU but also
3548 * relatively low latency when blocking on a particular request to finish.
3549 */
40a5f0de 3550static int
f787a5f5 3551i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 3552{
f787a5f5
CW
3553 struct drm_i915_private *dev_priv = dev->dev_private;
3554 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 3555 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
f787a5f5
CW
3556 struct drm_i915_gem_request *request;
3557 struct intel_ring_buffer *ring = NULL;
3558 u32 seqno = 0;
3559 int ret;
93533c29 3560
1c25595f 3561 spin_lock(&file_priv->mm.lock);
f787a5f5 3562 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
3563 if (time_after_eq(request->emitted_jiffies, recent_enough))
3564 break;
40a5f0de 3565
f787a5f5
CW
3566 ring = request->ring;
3567 seqno = request->seqno;
b962442e 3568 }
1c25595f 3569 spin_unlock(&file_priv->mm.lock);
40a5f0de 3570
f787a5f5
CW
3571 if (seqno == 0)
3572 return 0;
2bc43b5c 3573
f787a5f5 3574 ret = 0;
78501eac 3575 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
f787a5f5
CW
3576 /* And wait for the seqno passing without holding any locks and
3577 * causing extra latency for others. This is safe as the irq
3578 * generation is designed to be run atomically and so is
3579 * lockless.
3580 */
78501eac 3581 ring->user_irq_get(ring);
f787a5f5 3582 ret = wait_event_interruptible(ring->irq_queue,
78501eac 3583 i915_seqno_passed(ring->get_seqno(ring), seqno)
f787a5f5 3584 || atomic_read(&dev_priv->mm.wedged));
78501eac 3585 ring->user_irq_put(ring);
40a5f0de 3586
f787a5f5
CW
3587 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3588 ret = -EIO;
40a5f0de
EA
3589 }
3590
f787a5f5
CW
3591 if (ret == 0)
3592 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de
EA
3593
3594 return ret;
3595}
3596
83d60795 3597static int
2549d6c2
CW
3598i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
3599 uint64_t exec_offset)
83d60795
CW
3600{
3601 uint32_t exec_start, exec_len;
3602
3603 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3604 exec_len = (uint32_t) exec->batch_len;
3605
3606 if ((exec_start | exec_len) & 0x7)
3607 return -EINVAL;
3608
3609 if (!exec_start)
3610 return -EINVAL;
3611
3612 return 0;
3613}
3614
6b95a207 3615static int
2549d6c2
CW
3616validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
3617 int count)
6b95a207 3618{
2549d6c2 3619 int i;
6b95a207 3620
2549d6c2
CW
3621 for (i = 0; i < count; i++) {
3622 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3623 size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
6b95a207 3624
2549d6c2
CW
3625 if (!access_ok(VERIFY_READ, ptr, length))
3626 return -EFAULT;
40a5f0de 3627
b5dc608c
CW
3628 /* we may also need to update the presumed offsets */
3629 if (!access_ok(VERIFY_WRITE, ptr, length))
3630 return -EFAULT;
3631
2549d6c2
CW
3632 if (fault_in_pages_readable(ptr, length))
3633 return -EFAULT;
6b95a207 3634 }
6b95a207 3635
83d60795 3636 return 0;
6b95a207
KH
3637}
3638
8dc5d147 3639static int
76446cac 3640i915_gem_do_execbuffer(struct drm_device *dev, void *data,
9af90d19 3641 struct drm_file *file,
76446cac
JB
3642 struct drm_i915_gem_execbuffer2 *args,
3643 struct drm_i915_gem_exec_object2 *exec_list)
673a394b
EA
3644{
3645 drm_i915_private_t *dev_priv = dev->dev_private;
673a394b
EA
3646 struct drm_gem_object **object_list = NULL;
3647 struct drm_gem_object *batch_obj;
201361a5 3648 struct drm_clip_rect *cliprects = NULL;
8dc5d147 3649 struct drm_i915_gem_request *request = NULL;
9af90d19 3650 int ret, i, flips;
673a394b 3651 uint64_t exec_offset;
673a394b 3652
852835f3
ZN
3653 struct intel_ring_buffer *ring = NULL;
3654
30dbf0c0
CW
3655 ret = i915_gem_check_is_wedged(dev);
3656 if (ret)
3657 return ret;
3658
2549d6c2
CW
3659 ret = validate_exec_list(exec_list, args->buffer_count);
3660 if (ret)
3661 return ret;
3662
673a394b
EA
3663#if WATCH_EXEC
3664 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3665 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3666#endif
549f7365
CW
3667 switch (args->flags & I915_EXEC_RING_MASK) {
3668 case I915_EXEC_DEFAULT:
3669 case I915_EXEC_RENDER:
3670 ring = &dev_priv->render_ring;
3671 break;
3672 case I915_EXEC_BSD:
d1b851fc 3673 if (!HAS_BSD(dev)) {
549f7365 3674 DRM_ERROR("execbuf with invalid ring (BSD)\n");
d1b851fc
ZN
3675 return -EINVAL;
3676 }
3677 ring = &dev_priv->bsd_ring;
549f7365
CW
3678 break;
3679 case I915_EXEC_BLT:
3680 if (!HAS_BLT(dev)) {
3681 DRM_ERROR("execbuf with invalid ring (BLT)\n");
3682 return -EINVAL;
3683 }
3684 ring = &dev_priv->blt_ring;
3685 break;
3686 default:
3687 DRM_ERROR("execbuf with unknown ring: %d\n",
3688 (int)(args->flags & I915_EXEC_RING_MASK));
3689 return -EINVAL;
d1b851fc
ZN
3690 }
3691
4f481ed2
EA
3692 if (args->buffer_count < 1) {
3693 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3694 return -EINVAL;
3695 }
c8e0f93a 3696 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
76446cac
JB
3697 if (object_list == NULL) {
3698 DRM_ERROR("Failed to allocate object list for %d buffers\n",
673a394b
EA
3699 args->buffer_count);
3700 ret = -ENOMEM;
3701 goto pre_mutex_err;
3702 }
673a394b 3703
201361a5 3704 if (args->num_cliprects != 0) {
9a298b2a
EA
3705 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3706 GFP_KERNEL);
a40e8d31
OA
3707 if (cliprects == NULL) {
3708 ret = -ENOMEM;
201361a5 3709 goto pre_mutex_err;
a40e8d31 3710 }
201361a5
EA
3711
3712 ret = copy_from_user(cliprects,
3713 (struct drm_clip_rect __user *)
3714 (uintptr_t) args->cliprects_ptr,
3715 sizeof(*cliprects) * args->num_cliprects);
3716 if (ret != 0) {
3717 DRM_ERROR("copy %d cliprects failed: %d\n",
3718 args->num_cliprects, ret);
c877cdce 3719 ret = -EFAULT;
201361a5
EA
3720 goto pre_mutex_err;
3721 }
3722 }
3723
8dc5d147
CW
3724 request = kzalloc(sizeof(*request), GFP_KERNEL);
3725 if (request == NULL) {
3726 ret = -ENOMEM;
40a5f0de 3727 goto pre_mutex_err;
8dc5d147 3728 }
40a5f0de 3729
76c1dec1
CW
3730 ret = i915_mutex_lock_interruptible(dev);
3731 if (ret)
a198bc80 3732 goto pre_mutex_err;
673a394b
EA
3733
3734 if (dev_priv->mm.suspended) {
673a394b 3735 mutex_unlock(&dev->struct_mutex);
a198bc80
CW
3736 ret = -EBUSY;
3737 goto pre_mutex_err;
673a394b
EA
3738 }
3739
ac94a962 3740 /* Look up object handles */
673a394b 3741 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3742 struct drm_i915_gem_object *obj_priv;
3743
9af90d19 3744 object_list[i] = drm_gem_object_lookup(dev, file,
673a394b
EA
3745 exec_list[i].handle);
3746 if (object_list[i] == NULL) {
3747 DRM_ERROR("Invalid object handle %d at index %d\n",
3748 exec_list[i].handle, i);
0ce907f8
CW
3749 /* prevent error path from reading uninitialized data */
3750 args->buffer_count = i + 1;
bf79cb91 3751 ret = -ENOENT;
673a394b
EA
3752 goto err;
3753 }
b70d11da 3754
23010e43 3755 obj_priv = to_intel_bo(object_list[i]);
b70d11da
KH
3756 if (obj_priv->in_execbuffer) {
3757 DRM_ERROR("Object %p appears more than once in object list\n",
3758 object_list[i]);
0ce907f8
CW
3759 /* prevent error path from reading uninitialized data */
3760 args->buffer_count = i + 1;
bf79cb91 3761 ret = -EINVAL;
b70d11da
KH
3762 goto err;
3763 }
3764 obj_priv->in_execbuffer = true;
ac94a962 3765 }
673a394b 3766
9af90d19
CW
3767 /* Move the objects en-masse into the GTT, evicting if necessary. */
3768 ret = i915_gem_execbuffer_pin(dev, file,
3769 object_list, exec_list,
3770 args->buffer_count);
3771 if (ret)
3772 goto err;
ac94a962 3773
9af90d19
CW
3774 /* The objects are in their final locations, apply the relocations. */
3775 for (i = 0; i < args->buffer_count; i++) {
3776 struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3777 obj->base.pending_read_domains = 0;
3778 obj->base.pending_write_domain = 0;
3779 ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
3780 if (ret)
ac94a962 3781 goto err;
673a394b
EA
3782 }
3783
3784 /* Set the pending read domains for the batch buffer to COMMAND */
3785 batch_obj = object_list[args->buffer_count-1];
5f26a2c7
CW
3786 if (batch_obj->pending_write_domain) {
3787 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3788 ret = -EINVAL;
3789 goto err;
3790 }
3791 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
673a394b 3792
9af90d19
CW
3793 /* Sanity check the batch buffer */
3794 exec_offset = to_intel_bo(batch_obj)->gtt_offset;
3795 ret = i915_gem_check_execbuffer(args, exec_offset);
83d60795
CW
3796 if (ret != 0) {
3797 DRM_ERROR("execbuf with invalid offset/length\n");
3798 goto err;
3799 }
3800
646f0f6e
KP
3801 /* Zero the global flush/invalidate flags. These
3802 * will be modified as new domains are computed
3803 * for each object
3804 */
3805 dev->invalidate_domains = 0;
3806 dev->flush_domains = 0;
9220434a 3807 dev_priv->mm.flush_rings = 0;
7e318e18
CW
3808 for (i = 0; i < args->buffer_count; i++)
3809 i915_gem_object_set_to_gpu_domain(object_list[i], ring);
673a394b 3810
646f0f6e
KP
3811 if (dev->invalidate_domains | dev->flush_domains) {
3812#if WATCH_EXEC
3813 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3814 __func__,
3815 dev->invalidate_domains,
3816 dev->flush_domains);
3817#endif
9af90d19 3818 i915_gem_flush(dev, file,
646f0f6e 3819 dev->invalidate_domains,
9220434a
CW
3820 dev->flush_domains,
3821 dev_priv->mm.flush_rings);
646f0f6e 3822 }
673a394b 3823
673a394b
EA
3824#if WATCH_COHERENCY
3825 for (i = 0; i < args->buffer_count; i++) {
3826 i915_gem_object_check_coherency(object_list[i],
3827 exec_list[i].handle);
3828 }
3829#endif
3830
673a394b 3831#if WATCH_EXEC
6911a9b8 3832 i915_gem_dump_object(batch_obj,
673a394b
EA
3833 args->batch_len,
3834 __func__,
3835 ~0);
3836#endif
3837
e59f2bac
CW
3838 /* Check for any pending flips. As we only maintain a flip queue depth
3839 * of 1, we can simply insert a WAIT for the next display flip prior
3840 * to executing the batch and avoid stalling the CPU.
3841 */
3842 flips = 0;
3843 for (i = 0; i < args->buffer_count; i++) {
3844 if (object_list[i]->write_domain)
3845 flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
3846 }
3847 if (flips) {
3848 int plane, flip_mask;
3849
3850 for (plane = 0; flips >> plane; plane++) {
3851 if (((flips >> plane) & 1) == 0)
3852 continue;
3853
3854 if (plane)
3855 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
3856 else
3857 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
3858
e1f99ce6
CW
3859 ret = intel_ring_begin(ring, 2);
3860 if (ret)
3861 goto err;
3862
78501eac
CW
3863 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
3864 intel_ring_emit(ring, MI_NOOP);
3865 intel_ring_advance(ring);
e59f2bac
CW
3866 }
3867 }
3868
673a394b 3869 /* Exec the batchbuffer */
78501eac 3870 ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
673a394b
EA
3871 if (ret) {
3872 DRM_ERROR("dispatch failed %d\n", ret);
3873 goto err;
3874 }
3875
673a394b
EA
3876 for (i = 0; i < args->buffer_count; i++) {
3877 struct drm_gem_object *obj = object_list[i];
673a394b 3878
7e318e18
CW
3879 obj->read_domains = obj->pending_read_domains;
3880 obj->write_domain = obj->pending_write_domain;
3881
617dbe27 3882 i915_gem_object_move_to_active(obj, ring);
7e318e18
CW
3883 if (obj->write_domain) {
3884 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3885 obj_priv->dirty = 1;
3886 list_move_tail(&obj_priv->gpu_write_list,
64193406 3887 &ring->gpu_write_list);
7e318e18
CW
3888 intel_mark_busy(dev, obj);
3889 }
3890
3891 trace_i915_gem_object_change_domain(obj,
3892 obj->read_domains,
3893 obj->write_domain);
673a394b 3894 }
673a394b 3895
7e318e18
CW
3896 /*
3897 * Ensure that the commands in the batch buffer are
3898 * finished before the interrupt fires
3899 */
3900 i915_retire_commands(dev, ring);
3901
3cce469c
CW
3902 if (i915_add_request(dev, file, request, ring))
3903 ring->outstanding_lazy_request = true;
3904 else
3905 request = NULL;
673a394b 3906
673a394b 3907err:
b70d11da 3908 for (i = 0; i < args->buffer_count; i++) {
7e318e18
CW
3909 if (object_list[i] == NULL)
3910 break;
3911
3912 to_intel_bo(object_list[i])->in_execbuffer = false;
aad87dff 3913 drm_gem_object_unreference(object_list[i]);
b70d11da 3914 }
673a394b 3915
673a394b
EA
3916 mutex_unlock(&dev->struct_mutex);
3917
93533c29 3918pre_mutex_err:
8e7d2b2c 3919 drm_free_large(object_list);
9a298b2a 3920 kfree(cliprects);
8dc5d147 3921 kfree(request);
673a394b
EA
3922
3923 return ret;
3924}
3925
76446cac
JB
3926/*
3927 * Legacy execbuffer just creates an exec2 list from the original exec object
3928 * list array and passes it to the real function.
3929 */
3930int
3931i915_gem_execbuffer(struct drm_device *dev, void *data,
3932 struct drm_file *file_priv)
3933{
3934 struct drm_i915_gem_execbuffer *args = data;
3935 struct drm_i915_gem_execbuffer2 exec2;
3936 struct drm_i915_gem_exec_object *exec_list = NULL;
3937 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3938 int ret, i;
3939
3940#if WATCH_EXEC
3941 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3942 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3943#endif
3944
3945 if (args->buffer_count < 1) {
3946 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3947 return -EINVAL;
3948 }
3949
3950 /* Copy in the exec list from userland */
3951 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3952 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3953 if (exec_list == NULL || exec2_list == NULL) {
3954 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3955 args->buffer_count);
3956 drm_free_large(exec_list);
3957 drm_free_large(exec2_list);
3958 return -ENOMEM;
3959 }
3960 ret = copy_from_user(exec_list,
3961 (struct drm_i915_relocation_entry __user *)
3962 (uintptr_t) args->buffers_ptr,
3963 sizeof(*exec_list) * args->buffer_count);
3964 if (ret != 0) {
3965 DRM_ERROR("copy %d exec entries failed %d\n",
3966 args->buffer_count, ret);
3967 drm_free_large(exec_list);
3968 drm_free_large(exec2_list);
3969 return -EFAULT;
3970 }
3971
3972 for (i = 0; i < args->buffer_count; i++) {
3973 exec2_list[i].handle = exec_list[i].handle;
3974 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3975 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3976 exec2_list[i].alignment = exec_list[i].alignment;
3977 exec2_list[i].offset = exec_list[i].offset;
a6c45cf0 3978 if (INTEL_INFO(dev)->gen < 4)
76446cac
JB
3979 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3980 else
3981 exec2_list[i].flags = 0;
3982 }
3983
3984 exec2.buffers_ptr = args->buffers_ptr;
3985 exec2.buffer_count = args->buffer_count;
3986 exec2.batch_start_offset = args->batch_start_offset;
3987 exec2.batch_len = args->batch_len;
3988 exec2.DR1 = args->DR1;
3989 exec2.DR4 = args->DR4;
3990 exec2.num_cliprects = args->num_cliprects;
3991 exec2.cliprects_ptr = args->cliprects_ptr;
852835f3 3992 exec2.flags = I915_EXEC_RENDER;
76446cac
JB
3993
3994 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3995 if (!ret) {
3996 /* Copy the new buffer offsets back to the user's exec list. */
3997 for (i = 0; i < args->buffer_count; i++)
3998 exec_list[i].offset = exec2_list[i].offset;
3999 /* ... and back out to userspace */
4000 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4001 (uintptr_t) args->buffers_ptr,
4002 exec_list,
4003 sizeof(*exec_list) * args->buffer_count);
4004 if (ret) {
4005 ret = -EFAULT;
4006 DRM_ERROR("failed to copy %d exec entries "
4007 "back to user (%d)\n",
4008 args->buffer_count, ret);
4009 }
76446cac
JB
4010 }
4011
4012 drm_free_large(exec_list);
4013 drm_free_large(exec2_list);
4014 return ret;
4015}
4016
4017int
4018i915_gem_execbuffer2(struct drm_device *dev, void *data,
4019 struct drm_file *file_priv)
4020{
4021 struct drm_i915_gem_execbuffer2 *args = data;
4022 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4023 int ret;
4024
4025#if WATCH_EXEC
4026 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4027 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4028#endif
4029
4030 if (args->buffer_count < 1) {
4031 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4032 return -EINVAL;
4033 }
4034
4035 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4036 if (exec2_list == NULL) {
4037 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4038 args->buffer_count);
4039 return -ENOMEM;
4040 }
4041 ret = copy_from_user(exec2_list,
4042 (struct drm_i915_relocation_entry __user *)
4043 (uintptr_t) args->buffers_ptr,
4044 sizeof(*exec2_list) * args->buffer_count);
4045 if (ret != 0) {
4046 DRM_ERROR("copy %d exec entries failed %d\n",
4047 args->buffer_count, ret);
4048 drm_free_large(exec2_list);
4049 return -EFAULT;
4050 }
4051
4052 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4053 if (!ret) {
4054 /* Copy the new buffer offsets back to the user's exec list. */
4055 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4056 (uintptr_t) args->buffers_ptr,
4057 exec2_list,
4058 sizeof(*exec2_list) * args->buffer_count);
4059 if (ret) {
4060 ret = -EFAULT;
4061 DRM_ERROR("failed to copy %d exec entries "
4062 "back to user (%d)\n",
4063 args->buffer_count, ret);
4064 }
4065 }
4066
4067 drm_free_large(exec2_list);
4068 return ret;
4069}
4070
673a394b 4071int
920afa77
DV
4072i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4073 bool mappable)
673a394b
EA
4074{
4075 struct drm_device *dev = obj->dev;
f13d3f73 4076 struct drm_i915_private *dev_priv = dev->dev_private;
23010e43 4077 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b
EA
4078 int ret;
4079
778c3544 4080 BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
23bc5982 4081 WARN_ON(i915_verify_lists(dev));
ac0c6b5a
CW
4082
4083 if (obj_priv->gtt_space != NULL) {
4084 if (alignment == 0)
4085 alignment = i915_gem_get_gtt_alignment(obj);
16e809ac
DV
4086 if (obj_priv->gtt_offset & (alignment - 1) ||
4087 (mappable && !i915_gem_object_cpu_accessible(obj_priv))) {
ae7d49d8
CW
4088 WARN(obj_priv->pin_count,
4089 "bo is already pinned with incorrect alignment:"
4090 " offset=%x, req.alignment=%x\n",
4091 obj_priv->gtt_offset, alignment);
ac0c6b5a
CW
4092 ret = i915_gem_object_unbind(obj);
4093 if (ret)
4094 return ret;
4095 }
4096 }
4097
673a394b 4098 if (obj_priv->gtt_space == NULL) {
920afa77 4099 ret = i915_gem_object_bind_to_gtt(obj, alignment, mappable);
9731129c 4100 if (ret)
673a394b 4101 return ret;
22c344e9 4102 }
76446cac 4103
673a394b
EA
4104 obj_priv->pin_count++;
4105
4106 /* If the object is not active and not pending a flush,
4107 * remove it from the inactive list
4108 */
4109 if (obj_priv->pin_count == 1) {
73aa808f 4110 i915_gem_info_add_pin(dev_priv, obj->size);
f13d3f73 4111 if (!obj_priv->active)
69dc4987 4112 list_move_tail(&obj_priv->mm_list,
f13d3f73 4113 &dev_priv->mm.pinned_list);
673a394b 4114 }
673a394b 4115
23bc5982 4116 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4117 return 0;
4118}
4119
4120void
4121i915_gem_object_unpin(struct drm_gem_object *obj)
4122{
4123 struct drm_device *dev = obj->dev;
4124 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4125 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
673a394b 4126
23bc5982 4127 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4128 obj_priv->pin_count--;
4129 BUG_ON(obj_priv->pin_count < 0);
4130 BUG_ON(obj_priv->gtt_space == NULL);
4131
4132 /* If the object is no longer pinned, and is
4133 * neither active nor being flushed, then stick it on
4134 * the inactive list
4135 */
4136 if (obj_priv->pin_count == 0) {
f13d3f73 4137 if (!obj_priv->active)
69dc4987 4138 list_move_tail(&obj_priv->mm_list,
673a394b 4139 &dev_priv->mm.inactive_list);
73aa808f 4140 i915_gem_info_remove_pin(dev_priv, obj->size);
673a394b 4141 }
23bc5982 4142 WARN_ON(i915_verify_lists(dev));
673a394b
EA
4143}
4144
4145int
4146i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4147 struct drm_file *file_priv)
4148{
4149 struct drm_i915_gem_pin *args = data;
4150 struct drm_gem_object *obj;
4151 struct drm_i915_gem_object *obj_priv;
4152 int ret;
4153
1d7cfea1
CW
4154 ret = i915_mutex_lock_interruptible(dev);
4155 if (ret)
4156 return ret;
673a394b
EA
4157
4158 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4159 if (obj == NULL) {
1d7cfea1
CW
4160 ret = -ENOENT;
4161 goto unlock;
673a394b 4162 }
23010e43 4163 obj_priv = to_intel_bo(obj);
673a394b 4164
bb6baf76
CW
4165 if (obj_priv->madv != I915_MADV_WILLNEED) {
4166 DRM_ERROR("Attempting to pin a purgeable buffer\n");
1d7cfea1
CW
4167 ret = -EINVAL;
4168 goto out;
3ef94daa
CW
4169 }
4170
79e53945
JB
4171 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4172 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4173 args->handle);
1d7cfea1
CW
4174 ret = -EINVAL;
4175 goto out;
79e53945
JB
4176 }
4177
4178 obj_priv->user_pin_count++;
4179 obj_priv->pin_filp = file_priv;
4180 if (obj_priv->user_pin_count == 1) {
920afa77 4181 ret = i915_gem_object_pin(obj, args->alignment, true);
1d7cfea1
CW
4182 if (ret)
4183 goto out;
673a394b
EA
4184 }
4185
4186 /* XXX - flush the CPU caches for pinned objects
4187 * as the X server doesn't manage domains yet
4188 */
e47c68e9 4189 i915_gem_object_flush_cpu_write_domain(obj);
673a394b 4190 args->offset = obj_priv->gtt_offset;
1d7cfea1 4191out:
673a394b 4192 drm_gem_object_unreference(obj);
1d7cfea1 4193unlock:
673a394b 4194 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4195 return ret;
673a394b
EA
4196}
4197
4198int
4199i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4200 struct drm_file *file_priv)
4201{
4202 struct drm_i915_gem_pin *args = data;
4203 struct drm_gem_object *obj;
79e53945 4204 struct drm_i915_gem_object *obj_priv;
76c1dec1 4205 int ret;
673a394b 4206
1d7cfea1
CW
4207 ret = i915_mutex_lock_interruptible(dev);
4208 if (ret)
4209 return ret;
673a394b
EA
4210
4211 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4212 if (obj == NULL) {
1d7cfea1
CW
4213 ret = -ENOENT;
4214 goto unlock;
673a394b 4215 }
23010e43 4216 obj_priv = to_intel_bo(obj);
76c1dec1 4217
79e53945
JB
4218 if (obj_priv->pin_filp != file_priv) {
4219 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4220 args->handle);
1d7cfea1
CW
4221 ret = -EINVAL;
4222 goto out;
79e53945
JB
4223 }
4224 obj_priv->user_pin_count--;
4225 if (obj_priv->user_pin_count == 0) {
4226 obj_priv->pin_filp = NULL;
4227 i915_gem_object_unpin(obj);
4228 }
673a394b 4229
1d7cfea1 4230out:
673a394b 4231 drm_gem_object_unreference(obj);
1d7cfea1 4232unlock:
673a394b 4233 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4234 return ret;
673a394b
EA
4235}
4236
4237int
4238i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4239 struct drm_file *file_priv)
4240{
4241 struct drm_i915_gem_busy *args = data;
4242 struct drm_gem_object *obj;
4243 struct drm_i915_gem_object *obj_priv;
30dbf0c0
CW
4244 int ret;
4245
76c1dec1 4246 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4247 if (ret)
76c1dec1 4248 return ret;
673a394b 4249
673a394b
EA
4250 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4251 if (obj == NULL) {
1d7cfea1
CW
4252 ret = -ENOENT;
4253 goto unlock;
673a394b 4254 }
1d7cfea1 4255 obj_priv = to_intel_bo(obj);
d1b851fc 4256
0be555b6
CW
4257 /* Count all active objects as busy, even if they are currently not used
4258 * by the gpu. Users of this interface expect objects to eventually
4259 * become non-busy without any further actions, therefore emit any
4260 * necessary flushes here.
c4de0a5d 4261 */
0be555b6
CW
4262 args->busy = obj_priv->active;
4263 if (args->busy) {
4264 /* Unconditionally flush objects, even when the gpu still uses this
4265 * object. Userspace calling this function indicates that it wants to
4266 * use this buffer rather sooner than later, so issuing the required
4267 * flush earlier is beneficial.
4268 */
c78ec30b
CW
4269 if (obj->write_domain & I915_GEM_GPU_DOMAINS)
4270 i915_gem_flush_ring(dev, file_priv,
9220434a
CW
4271 obj_priv->ring,
4272 0, obj->write_domain);
0be555b6
CW
4273
4274 /* Update the active list for the hardware's current position.
4275 * Otherwise this only updates on a delayed timer or when irqs
4276 * are actually unmasked, and our working set ends up being
4277 * larger than required.
4278 */
4279 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4280
4281 args->busy = obj_priv->active;
4282 }
673a394b
EA
4283
4284 drm_gem_object_unreference(obj);
1d7cfea1 4285unlock:
673a394b 4286 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4287 return ret;
673a394b
EA
4288}
4289
4290int
4291i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4292 struct drm_file *file_priv)
4293{
4294 return i915_gem_ring_throttle(dev, file_priv);
4295}
4296
3ef94daa
CW
4297int
4298i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4299 struct drm_file *file_priv)
4300{
4301 struct drm_i915_gem_madvise *args = data;
4302 struct drm_gem_object *obj;
4303 struct drm_i915_gem_object *obj_priv;
76c1dec1 4304 int ret;
3ef94daa
CW
4305
4306 switch (args->madv) {
4307 case I915_MADV_DONTNEED:
4308 case I915_MADV_WILLNEED:
4309 break;
4310 default:
4311 return -EINVAL;
4312 }
4313
1d7cfea1
CW
4314 ret = i915_mutex_lock_interruptible(dev);
4315 if (ret)
4316 return ret;
4317
3ef94daa
CW
4318 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4319 if (obj == NULL) {
1d7cfea1
CW
4320 ret = -ENOENT;
4321 goto unlock;
3ef94daa 4322 }
23010e43 4323 obj_priv = to_intel_bo(obj);
3ef94daa
CW
4324
4325 if (obj_priv->pin_count) {
1d7cfea1
CW
4326 ret = -EINVAL;
4327 goto out;
3ef94daa
CW
4328 }
4329
bb6baf76
CW
4330 if (obj_priv->madv != __I915_MADV_PURGED)
4331 obj_priv->madv = args->madv;
3ef94daa 4332
2d7ef395
CW
4333 /* if the object is no longer bound, discard its backing storage */
4334 if (i915_gem_object_is_purgeable(obj_priv) &&
4335 obj_priv->gtt_space == NULL)
4336 i915_gem_object_truncate(obj);
4337
bb6baf76
CW
4338 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4339
1d7cfea1 4340out:
3ef94daa 4341 drm_gem_object_unreference(obj);
1d7cfea1 4342unlock:
3ef94daa 4343 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4344 return ret;
3ef94daa
CW
4345}
4346
ac52bc56
DV
4347struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4348 size_t size)
4349{
73aa808f 4350 struct drm_i915_private *dev_priv = dev->dev_private;
c397b908 4351 struct drm_i915_gem_object *obj;
ac52bc56 4352
c397b908
DV
4353 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4354 if (obj == NULL)
4355 return NULL;
673a394b 4356
c397b908
DV
4357 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4358 kfree(obj);
4359 return NULL;
4360 }
673a394b 4361
73aa808f
CW
4362 i915_gem_info_add_obj(dev_priv, size);
4363
c397b908
DV
4364 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4365 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4366
c397b908 4367 obj->agp_type = AGP_USER_MEMORY;
62b8b215 4368 obj->base.driver_private = NULL;
c397b908 4369 obj->fence_reg = I915_FENCE_REG_NONE;
69dc4987
CW
4370 INIT_LIST_HEAD(&obj->mm_list);
4371 INIT_LIST_HEAD(&obj->ring_list);
c397b908 4372 INIT_LIST_HEAD(&obj->gpu_write_list);
c397b908 4373 obj->madv = I915_MADV_WILLNEED;
de151cf6 4374
c397b908
DV
4375 return &obj->base;
4376}
4377
4378int i915_gem_init_object(struct drm_gem_object *obj)
4379{
4380 BUG();
de151cf6 4381
673a394b
EA
4382 return 0;
4383}
4384
be72615b 4385static void i915_gem_free_object_tail(struct drm_gem_object *obj)
673a394b 4386{
de151cf6 4387 struct drm_device *dev = obj->dev;
be72615b 4388 drm_i915_private_t *dev_priv = dev->dev_private;
23010e43 4389 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
be72615b 4390 int ret;
673a394b 4391
be72615b
CW
4392 ret = i915_gem_object_unbind(obj);
4393 if (ret == -ERESTARTSYS) {
69dc4987 4394 list_move(&obj_priv->mm_list,
be72615b
CW
4395 &dev_priv->mm.deferred_free_list);
4396 return;
4397 }
673a394b 4398
7e616158
CW
4399 if (obj_priv->mmap_offset)
4400 i915_gem_free_mmap_offset(obj);
de151cf6 4401
c397b908 4402 drm_gem_object_release(obj);
73aa808f 4403 i915_gem_info_remove_obj(dev_priv, obj->size);
c397b908 4404
9a298b2a 4405 kfree(obj_priv->page_cpu_valid);
280b713b 4406 kfree(obj_priv->bit_17);
c397b908 4407 kfree(obj_priv);
673a394b
EA
4408}
4409
be72615b
CW
4410void i915_gem_free_object(struct drm_gem_object *obj)
4411{
4412 struct drm_device *dev = obj->dev;
4413 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4414
4415 trace_i915_gem_object_destroy(obj);
4416
4417 while (obj_priv->pin_count > 0)
4418 i915_gem_object_unpin(obj);
4419
4420 if (obj_priv->phys_obj)
4421 i915_gem_detach_phys_object(dev, obj);
4422
4423 i915_gem_free_object_tail(obj);
4424}
4425
29105ccc
CW
4426int
4427i915_gem_idle(struct drm_device *dev)
4428{
4429 drm_i915_private_t *dev_priv = dev->dev_private;
4430 int ret;
28dfe52a 4431
29105ccc 4432 mutex_lock(&dev->struct_mutex);
1c5d22f7 4433
87acb0a5 4434 if (dev_priv->mm.suspended) {
29105ccc
CW
4435 mutex_unlock(&dev->struct_mutex);
4436 return 0;
28dfe52a
EA
4437 }
4438
29105ccc 4439 ret = i915_gpu_idle(dev);
6dbe2772
KP
4440 if (ret) {
4441 mutex_unlock(&dev->struct_mutex);
673a394b 4442 return ret;
6dbe2772 4443 }
673a394b 4444
29105ccc
CW
4445 /* Under UMS, be paranoid and evict. */
4446 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
b47eb4a2 4447 ret = i915_gem_evict_inactive(dev);
29105ccc
CW
4448 if (ret) {
4449 mutex_unlock(&dev->struct_mutex);
4450 return ret;
4451 }
4452 }
4453
4454 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4455 * We need to replace this with a semaphore, or something.
4456 * And not confound mm.suspended!
4457 */
4458 dev_priv->mm.suspended = 1;
bc0c7f14 4459 del_timer_sync(&dev_priv->hangcheck_timer);
29105ccc
CW
4460
4461 i915_kernel_lost_context(dev);
6dbe2772 4462 i915_gem_cleanup_ringbuffer(dev);
29105ccc 4463
6dbe2772
KP
4464 mutex_unlock(&dev->struct_mutex);
4465
29105ccc
CW
4466 /* Cancel the retire work handler, which should be idle now. */
4467 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4468
673a394b
EA
4469 return 0;
4470}
4471
e552eb70
JB
4472/*
4473 * 965+ support PIPE_CONTROL commands, which provide finer grained control
4474 * over cache flushing.
4475 */
8187a2b7 4476static int
e552eb70
JB
4477i915_gem_init_pipe_control(struct drm_device *dev)
4478{
4479 drm_i915_private_t *dev_priv = dev->dev_private;
4480 struct drm_gem_object *obj;
4481 struct drm_i915_gem_object *obj_priv;
4482 int ret;
4483
34dc4d44 4484 obj = i915_gem_alloc_object(dev, 4096);
e552eb70
JB
4485 if (obj == NULL) {
4486 DRM_ERROR("Failed to allocate seqno page\n");
4487 ret = -ENOMEM;
4488 goto err;
4489 }
4490 obj_priv = to_intel_bo(obj);
4491 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4492
920afa77 4493 ret = i915_gem_object_pin(obj, 4096, true);
e552eb70
JB
4494 if (ret)
4495 goto err_unref;
4496
4497 dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4498 dev_priv->seqno_page = kmap(obj_priv->pages[0]);
4499 if (dev_priv->seqno_page == NULL)
4500 goto err_unpin;
4501
4502 dev_priv->seqno_obj = obj;
4503 memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4504
4505 return 0;
4506
4507err_unpin:
4508 i915_gem_object_unpin(obj);
4509err_unref:
4510 drm_gem_object_unreference(obj);
4511err:
4512 return ret;
4513}
4514
8187a2b7
ZN
4515
4516static void
e552eb70
JB
4517i915_gem_cleanup_pipe_control(struct drm_device *dev)
4518{
4519 drm_i915_private_t *dev_priv = dev->dev_private;
4520 struct drm_gem_object *obj;
4521 struct drm_i915_gem_object *obj_priv;
4522
4523 obj = dev_priv->seqno_obj;
4524 obj_priv = to_intel_bo(obj);
4525 kunmap(obj_priv->pages[0]);
4526 i915_gem_object_unpin(obj);
4527 drm_gem_object_unreference(obj);
4528 dev_priv->seqno_obj = NULL;
4529
4530 dev_priv->seqno_page = NULL;
673a394b
EA
4531}
4532
8187a2b7
ZN
4533int
4534i915_gem_init_ringbuffer(struct drm_device *dev)
4535{
4536 drm_i915_private_t *dev_priv = dev->dev_private;
4537 int ret;
68f95ba9 4538
8187a2b7
ZN
4539 if (HAS_PIPE_CONTROL(dev)) {
4540 ret = i915_gem_init_pipe_control(dev);
4541 if (ret)
4542 return ret;
4543 }
68f95ba9 4544
5c1143bb 4545 ret = intel_init_render_ring_buffer(dev);
68f95ba9
CW
4546 if (ret)
4547 goto cleanup_pipe_control;
4548
4549 if (HAS_BSD(dev)) {
5c1143bb 4550 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4551 if (ret)
4552 goto cleanup_render_ring;
d1b851fc 4553 }
68f95ba9 4554
549f7365
CW
4555 if (HAS_BLT(dev)) {
4556 ret = intel_init_blt_ring_buffer(dev);
4557 if (ret)
4558 goto cleanup_bsd_ring;
4559 }
4560
6f392d54
CW
4561 dev_priv->next_seqno = 1;
4562
68f95ba9
CW
4563 return 0;
4564
549f7365 4565cleanup_bsd_ring:
78501eac 4566 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
68f95ba9 4567cleanup_render_ring:
78501eac 4568 intel_cleanup_ring_buffer(&dev_priv->render_ring);
68f95ba9
CW
4569cleanup_pipe_control:
4570 if (HAS_PIPE_CONTROL(dev))
4571 i915_gem_cleanup_pipe_control(dev);
8187a2b7
ZN
4572 return ret;
4573}
4574
4575void
4576i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4577{
4578 drm_i915_private_t *dev_priv = dev->dev_private;
4579
78501eac
CW
4580 intel_cleanup_ring_buffer(&dev_priv->render_ring);
4581 intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4582 intel_cleanup_ring_buffer(&dev_priv->blt_ring);
8187a2b7
ZN
4583 if (HAS_PIPE_CONTROL(dev))
4584 i915_gem_cleanup_pipe_control(dev);
4585}
4586
673a394b
EA
4587int
4588i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4589 struct drm_file *file_priv)
4590{
4591 drm_i915_private_t *dev_priv = dev->dev_private;
4592 int ret;
4593
79e53945
JB
4594 if (drm_core_check_feature(dev, DRIVER_MODESET))
4595 return 0;
4596
ba1234d1 4597 if (atomic_read(&dev_priv->mm.wedged)) {
673a394b 4598 DRM_ERROR("Reenabling wedged hardware, good luck\n");
ba1234d1 4599 atomic_set(&dev_priv->mm.wedged, 0);
673a394b
EA
4600 }
4601
673a394b 4602 mutex_lock(&dev->struct_mutex);
9bb2d6f9
EA
4603 dev_priv->mm.suspended = 0;
4604
4605 ret = i915_gem_init_ringbuffer(dev);
d816f6ac
WF
4606 if (ret != 0) {
4607 mutex_unlock(&dev->struct_mutex);
9bb2d6f9 4608 return ret;
d816f6ac 4609 }
9bb2d6f9 4610
69dc4987 4611 BUG_ON(!list_empty(&dev_priv->mm.active_list));
852835f3 4612 BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
87acb0a5 4613 BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
549f7365 4614 BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
673a394b
EA
4615 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4616 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
852835f3 4617 BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
87acb0a5 4618 BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
549f7365 4619 BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
673a394b 4620 mutex_unlock(&dev->struct_mutex);
dbb19d30 4621
5f35308b
CW
4622 ret = drm_irq_install(dev);
4623 if (ret)
4624 goto cleanup_ringbuffer;
dbb19d30 4625
673a394b 4626 return 0;
5f35308b
CW
4627
4628cleanup_ringbuffer:
4629 mutex_lock(&dev->struct_mutex);
4630 i915_gem_cleanup_ringbuffer(dev);
4631 dev_priv->mm.suspended = 1;
4632 mutex_unlock(&dev->struct_mutex);
4633
4634 return ret;
673a394b
EA
4635}
4636
4637int
4638i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4639 struct drm_file *file_priv)
4640{
79e53945
JB
4641 if (drm_core_check_feature(dev, DRIVER_MODESET))
4642 return 0;
4643
dbb19d30 4644 drm_irq_uninstall(dev);
e6890f6f 4645 return i915_gem_idle(dev);
673a394b
EA
4646}
4647
4648void
4649i915_gem_lastclose(struct drm_device *dev)
4650{
4651 int ret;
673a394b 4652
e806b495
EA
4653 if (drm_core_check_feature(dev, DRIVER_MODESET))
4654 return;
4655
6dbe2772
KP
4656 ret = i915_gem_idle(dev);
4657 if (ret)
4658 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
4659}
4660
64193406
CW
4661static void
4662init_ring_lists(struct intel_ring_buffer *ring)
4663{
4664 INIT_LIST_HEAD(&ring->active_list);
4665 INIT_LIST_HEAD(&ring->request_list);
4666 INIT_LIST_HEAD(&ring->gpu_write_list);
4667}
4668
673a394b
EA
4669void
4670i915_gem_load(struct drm_device *dev)
4671{
b5aa8a0f 4672 int i;
673a394b
EA
4673 drm_i915_private_t *dev_priv = dev->dev_private;
4674
69dc4987 4675 INIT_LIST_HEAD(&dev_priv->mm.active_list);
673a394b
EA
4676 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4677 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
f13d3f73 4678 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
a09ba7fa 4679 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
be72615b 4680 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
64193406
CW
4681 init_ring_lists(&dev_priv->render_ring);
4682 init_ring_lists(&dev_priv->bsd_ring);
4683 init_ring_lists(&dev_priv->blt_ring);
007cc8ac
DV
4684 for (i = 0; i < 16; i++)
4685 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4686 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4687 i915_gem_retire_work_handler);
30dbf0c0 4688 init_completion(&dev_priv->error_completion);
31169714
CW
4689 spin_lock(&shrink_list_lock);
4690 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4691 spin_unlock(&shrink_list_lock);
4692
94400120
DA
4693 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4694 if (IS_GEN3(dev)) {
4695 u32 tmp = I915_READ(MI_ARB_STATE);
4696 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4697 /* arb state is a masked write, so set bit + bit in mask */
4698 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4699 I915_WRITE(MI_ARB_STATE, tmp);
4700 }
4701 }
4702
de151cf6 4703 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4704 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4705 dev_priv->fence_reg_start = 3;
de151cf6 4706
a6c45cf0 4707 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4708 dev_priv->num_fence_regs = 16;
4709 else
4710 dev_priv->num_fence_regs = 8;
4711
b5aa8a0f 4712 /* Initialize fence registers to zero */
a6c45cf0
CW
4713 switch (INTEL_INFO(dev)->gen) {
4714 case 6:
4715 for (i = 0; i < 16; i++)
4716 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
4717 break;
4718 case 5:
4719 case 4:
b5aa8a0f
GH
4720 for (i = 0; i < 16; i++)
4721 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
a6c45cf0
CW
4722 break;
4723 case 3:
b5aa8a0f
GH
4724 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4725 for (i = 0; i < 8; i++)
4726 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
a6c45cf0
CW
4727 case 2:
4728 for (i = 0; i < 8; i++)
4729 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4730 break;
b5aa8a0f 4731 }
673a394b 4732 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4733 init_waitqueue_head(&dev_priv->pending_flip_queue);
673a394b 4734}
71acb5eb
DA
4735
4736/*
4737 * Create a physically contiguous memory object for this object
4738 * e.g. for cursor + overlay regs
4739 */
995b6762
CW
4740static int i915_gem_init_phys_object(struct drm_device *dev,
4741 int id, int size, int align)
71acb5eb
DA
4742{
4743 drm_i915_private_t *dev_priv = dev->dev_private;
4744 struct drm_i915_gem_phys_object *phys_obj;
4745 int ret;
4746
4747 if (dev_priv->mm.phys_objs[id - 1] || !size)
4748 return 0;
4749
9a298b2a 4750 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
71acb5eb
DA
4751 if (!phys_obj)
4752 return -ENOMEM;
4753
4754 phys_obj->id = id;
4755
6eeefaf3 4756 phys_obj->handle = drm_pci_alloc(dev, size, align);
71acb5eb
DA
4757 if (!phys_obj->handle) {
4758 ret = -ENOMEM;
4759 goto kfree_obj;
4760 }
4761#ifdef CONFIG_X86
4762 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4763#endif
4764
4765 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4766
4767 return 0;
4768kfree_obj:
9a298b2a 4769 kfree(phys_obj);
71acb5eb
DA
4770 return ret;
4771}
4772
995b6762 4773static void i915_gem_free_phys_object(struct drm_device *dev, int id)
71acb5eb
DA
4774{
4775 drm_i915_private_t *dev_priv = dev->dev_private;
4776 struct drm_i915_gem_phys_object *phys_obj;
4777
4778 if (!dev_priv->mm.phys_objs[id - 1])
4779 return;
4780
4781 phys_obj = dev_priv->mm.phys_objs[id - 1];
4782 if (phys_obj->cur_obj) {
4783 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4784 }
4785
4786#ifdef CONFIG_X86
4787 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4788#endif
4789 drm_pci_free(dev, phys_obj->handle);
4790 kfree(phys_obj);
4791 dev_priv->mm.phys_objs[id - 1] = NULL;
4792}
4793
4794void i915_gem_free_all_phys_object(struct drm_device *dev)
4795{
4796 int i;
4797
260883c8 4798 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
71acb5eb
DA
4799 i915_gem_free_phys_object(dev, i);
4800}
4801
4802void i915_gem_detach_phys_object(struct drm_device *dev,
4803 struct drm_gem_object *obj)
4804{
4805 struct drm_i915_gem_object *obj_priv;
4806 int i;
4807 int ret;
4808 int page_count;
4809
23010e43 4810 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4811 if (!obj_priv->phys_obj)
4812 return;
4813
4bdadb97 4814 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4815 if (ret)
4816 goto out;
4817
4818 page_count = obj->size / PAGE_SIZE;
4819
4820 for (i = 0; i < page_count; i++) {
3e4d3af5 4821 char *dst = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4822 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4823
4824 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4825 kunmap_atomic(dst);
71acb5eb 4826 }
856fa198 4827 drm_clflush_pages(obj_priv->pages, page_count);
71acb5eb 4828 drm_agp_chipset_flush(dev);
d78b47b9
CW
4829
4830 i915_gem_object_put_pages(obj);
71acb5eb
DA
4831out:
4832 obj_priv->phys_obj->cur_obj = NULL;
4833 obj_priv->phys_obj = NULL;
4834}
4835
4836int
4837i915_gem_attach_phys_object(struct drm_device *dev,
6eeefaf3
CW
4838 struct drm_gem_object *obj,
4839 int id,
4840 int align)
71acb5eb
DA
4841{
4842 drm_i915_private_t *dev_priv = dev->dev_private;
4843 struct drm_i915_gem_object *obj_priv;
4844 int ret = 0;
4845 int page_count;
4846 int i;
4847
4848 if (id > I915_MAX_PHYS_OBJECT)
4849 return -EINVAL;
4850
23010e43 4851 obj_priv = to_intel_bo(obj);
71acb5eb
DA
4852
4853 if (obj_priv->phys_obj) {
4854 if (obj_priv->phys_obj->id == id)
4855 return 0;
4856 i915_gem_detach_phys_object(dev, obj);
4857 }
4858
71acb5eb
DA
4859 /* create a new object */
4860 if (!dev_priv->mm.phys_objs[id - 1]) {
4861 ret = i915_gem_init_phys_object(dev, id,
6eeefaf3 4862 obj->size, align);
71acb5eb 4863 if (ret) {
aeb565df 4864 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
71acb5eb
DA
4865 goto out;
4866 }
4867 }
4868
4869 /* bind to the object */
4870 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4871 obj_priv->phys_obj->cur_obj = obj;
4872
4bdadb97 4873 ret = i915_gem_object_get_pages(obj, 0);
71acb5eb
DA
4874 if (ret) {
4875 DRM_ERROR("failed to get page list\n");
4876 goto out;
4877 }
4878
4879 page_count = obj->size / PAGE_SIZE;
4880
4881 for (i = 0; i < page_count; i++) {
3e4d3af5 4882 char *src = kmap_atomic(obj_priv->pages[i]);
71acb5eb
DA
4883 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4884
4885 memcpy(dst, src, PAGE_SIZE);
3e4d3af5 4886 kunmap_atomic(src);
71acb5eb
DA
4887 }
4888
d78b47b9
CW
4889 i915_gem_object_put_pages(obj);
4890
71acb5eb
DA
4891 return 0;
4892out:
4893 return ret;
4894}
4895
4896static int
4897i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4898 struct drm_i915_gem_pwrite *args,
4899 struct drm_file *file_priv)
4900{
23010e43 4901 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
71acb5eb
DA
4902 void *obj_addr;
4903 int ret;
4904 char __user *user_data;
4905
4906 user_data = (char __user *) (uintptr_t) args->data_ptr;
4907 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4908
44d98a61 4909 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
71acb5eb
DA
4910 ret = copy_from_user(obj_addr, user_data, args->size);
4911 if (ret)
4912 return -EFAULT;
4913
4914 drm_agp_chipset_flush(dev);
4915 return 0;
4916}
b962442e 4917
f787a5f5 4918void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 4919{
f787a5f5 4920 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
4921
4922 /* Clean up our request list when the client is going away, so that
4923 * later retire_requests won't dereference our soon-to-be-gone
4924 * file_priv.
4925 */
1c25595f 4926 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
4927 while (!list_empty(&file_priv->mm.request_list)) {
4928 struct drm_i915_gem_request *request;
4929
4930 request = list_first_entry(&file_priv->mm.request_list,
4931 struct drm_i915_gem_request,
4932 client_list);
4933 list_del(&request->client_list);
4934 request->file_priv = NULL;
4935 }
1c25595f 4936 spin_unlock(&file_priv->mm.lock);
b962442e 4937}
31169714 4938
1637ef41
CW
4939static int
4940i915_gpu_is_active(struct drm_device *dev)
4941{
4942 drm_i915_private_t *dev_priv = dev->dev_private;
4943 int lists_empty;
4944
1637ef41 4945 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
87acb0a5 4946 list_empty(&dev_priv->render_ring.active_list) &&
549f7365
CW
4947 list_empty(&dev_priv->bsd_ring.active_list) &&
4948 list_empty(&dev_priv->blt_ring.active_list);
1637ef41
CW
4949
4950 return !lists_empty;
4951}
4952
31169714 4953static int
7f8275d0 4954i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
31169714
CW
4955{
4956 drm_i915_private_t *dev_priv, *next_dev;
4957 struct drm_i915_gem_object *obj_priv, *next_obj;
4958 int cnt = 0;
4959 int would_deadlock = 1;
4960
4961 /* "fast-path" to count number of available objects */
4962 if (nr_to_scan == 0) {
4963 spin_lock(&shrink_list_lock);
4964 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4965 struct drm_device *dev = dev_priv->dev;
4966
4967 if (mutex_trylock(&dev->struct_mutex)) {
4968 list_for_each_entry(obj_priv,
4969 &dev_priv->mm.inactive_list,
69dc4987 4970 mm_list)
31169714
CW
4971 cnt++;
4972 mutex_unlock(&dev->struct_mutex);
4973 }
4974 }
4975 spin_unlock(&shrink_list_lock);
4976
4977 return (cnt / 100) * sysctl_vfs_cache_pressure;
4978 }
4979
4980 spin_lock(&shrink_list_lock);
4981
1637ef41 4982rescan:
31169714
CW
4983 /* first scan for clean buffers */
4984 list_for_each_entry_safe(dev_priv, next_dev,
4985 &shrink_list, mm.shrink_list) {
4986 struct drm_device *dev = dev_priv->dev;
4987
4988 if (! mutex_trylock(&dev->struct_mutex))
4989 continue;
4990
4991 spin_unlock(&shrink_list_lock);
b09a1fec 4992 i915_gem_retire_requests(dev);
31169714
CW
4993
4994 list_for_each_entry_safe(obj_priv, next_obj,
4995 &dev_priv->mm.inactive_list,
69dc4987 4996 mm_list) {
31169714 4997 if (i915_gem_object_is_purgeable(obj_priv)) {
a8089e84 4998 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
4999 if (--nr_to_scan <= 0)
5000 break;
5001 }
5002 }
5003
5004 spin_lock(&shrink_list_lock);
5005 mutex_unlock(&dev->struct_mutex);
5006
963b4836
CW
5007 would_deadlock = 0;
5008
31169714
CW
5009 if (nr_to_scan <= 0)
5010 break;
5011 }
5012
5013 /* second pass, evict/count anything still on the inactive list */
5014 list_for_each_entry_safe(dev_priv, next_dev,
5015 &shrink_list, mm.shrink_list) {
5016 struct drm_device *dev = dev_priv->dev;
5017
5018 if (! mutex_trylock(&dev->struct_mutex))
5019 continue;
5020
5021 spin_unlock(&shrink_list_lock);
5022
5023 list_for_each_entry_safe(obj_priv, next_obj,
5024 &dev_priv->mm.inactive_list,
69dc4987 5025 mm_list) {
31169714 5026 if (nr_to_scan > 0) {
a8089e84 5027 i915_gem_object_unbind(&obj_priv->base);
31169714
CW
5028 nr_to_scan--;
5029 } else
5030 cnt++;
5031 }
5032
5033 spin_lock(&shrink_list_lock);
5034 mutex_unlock(&dev->struct_mutex);
5035
5036 would_deadlock = 0;
5037 }
5038
1637ef41
CW
5039 if (nr_to_scan) {
5040 int active = 0;
5041
5042 /*
5043 * We are desperate for pages, so as a last resort, wait
5044 * for the GPU to finish and discard whatever we can.
5045 * This has a dramatic impact to reduce the number of
5046 * OOM-killer events whilst running the GPU aggressively.
5047 */
5048 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5049 struct drm_device *dev = dev_priv->dev;
5050
5051 if (!mutex_trylock(&dev->struct_mutex))
5052 continue;
5053
5054 spin_unlock(&shrink_list_lock);
5055
5056 if (i915_gpu_is_active(dev)) {
5057 i915_gpu_idle(dev);
5058 active++;
5059 }
5060
5061 spin_lock(&shrink_list_lock);
5062 mutex_unlock(&dev->struct_mutex);
5063 }
5064
5065 if (active)
5066 goto rescan;
5067 }
5068
31169714
CW
5069 spin_unlock(&shrink_list_lock);
5070
5071 if (would_deadlock)
5072 return -1;
5073 else if (cnt > 0)
5074 return (cnt / 100) * sysctl_vfs_cache_pressure;
5075 else
5076 return 0;
5077}
5078
5079static struct shrinker shrinker = {
5080 .shrink = i915_gem_shrink,
5081 .seeks = DEFAULT_SEEKS,
5082};
5083
5084__init void
5085i915_gem_shrinker_init(void)
5086{
5087 register_shrinker(&shrinker);
5088}
5089
5090__exit void
5091i915_gem_shrinker_exit(void)
5092{
5093 unregister_shrinker(&shrinker);
5094}
This page took 0.589284 seconds and 5 git commands to generate.