drm/i915/guc: add enable_guc_loading parameter
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b 1/*
be6a0376 2 * Copyright © 2008-2015 Intel Corporation
673a394b
EA
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
eb82289a 32#include "i915_vgpu.h"
1c5d22f7 33#include "i915_trace.h"
652c393a 34#include "intel_drv.h"
0ccdacf6 35#include "intel_mocs.h"
5949eac4 36#include <linux/shmem_fs.h>
5a0e3ad6 37#include <linux/slab.h>
673a394b 38#include <linux/swap.h>
79e53945 39#include <linux/pci.h>
1286ff73 40#include <linux/dma-buf.h>
673a394b 41
05394f39 42static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
e62b59e4 43static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
c8725f3d 44static void
b4716185
CW
45i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46static void
47i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
61050808 48
c76ce038
CW
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53}
54
2c22569b
CW
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61}
62
73aa808f
CW
63/* some bookkeeping */
64static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66{
c20e8355 67 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
68 dev_priv->mm.object_count++;
69 dev_priv->mm.object_memory += size;
c20e8355 70 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
71}
72
73static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75{
c20e8355 76 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
c20e8355 79 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
80}
81
21dd3734 82static int
33196ded 83i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 84{
30dbf0c0
CW
85 int ret;
86
d98c52cf 87 if (!i915_reset_in_progress(error))
30dbf0c0
CW
88 return 0;
89
0a6759c6
DV
90 /*
91 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92 * userspace. If it takes that long something really bad is going on and
93 * we should simply try to bail out and fail as gracefully as possible.
94 */
1f83fee0 95 ret = wait_event_interruptible_timeout(error->reset_queue,
d98c52cf 96 !i915_reset_in_progress(error),
1f83fee0 97 10*HZ);
0a6759c6
DV
98 if (ret == 0) {
99 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100 return -EIO;
101 } else if (ret < 0) {
30dbf0c0 102 return ret;
d98c52cf
CW
103 } else {
104 return 0;
0a6759c6 105 }
30dbf0c0
CW
106}
107
54cf91dc 108int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 109{
33196ded 110 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
111 int ret;
112
33196ded 113 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
23bc5982 121 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
122 return 0;
123}
30dbf0c0 124
5a125c3c
EA
125int
126i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 127 struct drm_file *file)
5a125c3c 128{
72e96d64 129 struct drm_i915_private *dev_priv = to_i915(dev);
62106b4f 130 struct i915_ggtt *ggtt = &dev_priv->ggtt;
72e96d64 131 struct drm_i915_gem_get_aperture *args = data;
ca1543be 132 struct i915_vma *vma;
6299f992 133 size_t pinned;
5a125c3c 134
6299f992 135 pinned = 0;
73aa808f 136 mutex_lock(&dev->struct_mutex);
1c7f4bca 137 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
ca1543be
TU
138 if (vma->pin_count)
139 pinned += vma->node.size;
1c7f4bca 140 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
ca1543be
TU
141 if (vma->pin_count)
142 pinned += vma->node.size;
73aa808f 143 mutex_unlock(&dev->struct_mutex);
5a125c3c 144
72e96d64 145 args->aper_size = ggtt->base.total;
0206e353 146 args->aper_available_size = args->aper_size - pinned;
6299f992 147
5a125c3c
EA
148 return 0;
149}
150
6a2c4232
CW
151static int
152i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 153{
6a2c4232
CW
154 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 char *vaddr = obj->phys_handle->vaddr;
156 struct sg_table *st;
157 struct scatterlist *sg;
158 int i;
00731155 159
6a2c4232
CW
160 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 return -EINVAL;
162
163 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 struct page *page;
165 char *src;
166
167 page = shmem_read_mapping_page(mapping, i);
168 if (IS_ERR(page))
169 return PTR_ERR(page);
170
171 src = kmap_atomic(page);
172 memcpy(vaddr, src, PAGE_SIZE);
173 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 kunmap_atomic(src);
175
09cbfeaf 176 put_page(page);
6a2c4232
CW
177 vaddr += PAGE_SIZE;
178 }
179
c033666a 180 i915_gem_chipset_flush(to_i915(obj->base.dev));
6a2c4232
CW
181
182 st = kmalloc(sizeof(*st), GFP_KERNEL);
183 if (st == NULL)
184 return -ENOMEM;
185
186 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 kfree(st);
188 return -ENOMEM;
189 }
190
191 sg = st->sgl;
192 sg->offset = 0;
193 sg->length = obj->base.size;
00731155 194
6a2c4232
CW
195 sg_dma_address(sg) = obj->phys_handle->busaddr;
196 sg_dma_len(sg) = obj->base.size;
197
198 obj->pages = st;
6a2c4232
CW
199 return 0;
200}
201
202static void
203i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204{
205 int ret;
206
207 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 208
6a2c4232 209 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 210 if (WARN_ON(ret)) {
6a2c4232
CW
211 /* In the event of a disaster, abandon all caches and
212 * hope for the best.
213 */
6a2c4232
CW
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
00731155 221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 222 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
00731155 240 mark_page_accessed(page);
09cbfeaf 241 put_page(page);
00731155
CW
242 vaddr += PAGE_SIZE;
243 }
6a2c4232 244 obj->dirty = 0;
00731155
CW
245 }
246
6a2c4232
CW
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
6a2c4232
CW
249}
250
251static void
252i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253{
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255}
256
257static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261};
262
263static int
264drop_pages(struct drm_i915_gem_object *obj)
265{
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
1c7f4bca 270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
6a2c4232
CW
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
00731155
CW
278}
279
280int
281i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283{
284 drm_dma_handle_t *phys;
6a2c4232 285 int ret;
00731155
CW
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
6a2c4232
CW
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
00731155
CW
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
00731155 309 obj->phys_handle = phys;
6a2c4232
CW
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
00731155
CW
313}
314
315static int
316i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319{
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
322 char __user *user_data = to_user_ptr(args->data_ptr);
063e4e6b 323 int ret = 0;
6a2c4232
CW
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
00731155 331
77a0d1ca 332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
00731155
CW
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
063e4e6b
PZ
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
00731155
CW
347 }
348
6a2c4232 349 drm_clflush_virt_range(vaddr, args->size);
c033666a 350 i915_gem_chipset_flush(to_i915(dev));
063e4e6b
PZ
351
352out:
de152b62 353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
063e4e6b 354 return ret;
00731155
CW
355}
356
42dcedd4
CW
357void *i915_gem_object_alloc(struct drm_device *dev)
358{
359 struct drm_i915_private *dev_priv = dev->dev_private;
efab6d8d 360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
42dcedd4
CW
361}
362
363void i915_gem_object_free(struct drm_i915_gem_object *obj)
364{
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
efab6d8d 366 kmem_cache_free(dev_priv->objects, obj);
42dcedd4
CW
367}
368
ff72145b
DA
369static int
370i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
673a394b 374{
05394f39 375 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
376 int ret;
377 u32 handle;
673a394b 378
ff72145b 379 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
380 if (size == 0)
381 return -EINVAL;
673a394b
EA
382
383 /* Allocate the new object */
d37cd8a8 384 obj = i915_gem_object_create(dev, size);
fe3db79b
CW
385 if (IS_ERR(obj))
386 return PTR_ERR(obj);
673a394b 387
05394f39 388 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 389 /* drop reference from allocate - handle holds it now */
d861e338
DV
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
202f2fef 393
ff72145b 394 *handle_p = handle;
673a394b
EA
395 return 0;
396}
397
ff72145b
DA
398int
399i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402{
403 /* have to work out size/pitch and return them */
de45eaf7 404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
da6b51d0 407 args->size, &args->handle);
ff72145b
DA
408}
409
ff72145b
DA
410/**
411 * Creates a new mm object and returns a handle to it.
412 */
413int
414i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416{
417 struct drm_i915_gem_create *args = data;
63ed2cb2 418
ff72145b 419 return i915_gem_create(file, dev,
da6b51d0 420 args->size, &args->handle);
ff72145b
DA
421}
422
8461d226
DV
423static inline int
424__copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427{
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447}
448
8c59967c 449static inline int
4f0c7cfb
BW
450__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
8c59967c
DV
452 int length)
453{
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473}
474
4c914c0c
BV
475/*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482{
483 int ret;
484
485 *needs_clflush = 0;
486
1db6e2e7 487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
4c914c0c
BV
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509}
510
d174bd64
DV
511/* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
eb01459f 514static int
d174bd64
DV
515shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518{
519 char *vaddr;
520 int ret;
521
e7e58eb5 522 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
f60d7f0c 534 return ret ? -EFAULT : 0;
d174bd64
DV
535}
536
23c18c71
DV
537static void
538shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540{
e7e58eb5 541 if (unlikely(swizzled)) {
23c18c71
DV
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557}
558
d174bd64
DV
559/* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561static int
562shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565{
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
23c18c71
DV
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
d174bd64
DV
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
f60d7f0c 585 return ret ? - EFAULT : 0;
d174bd64
DV
586}
587
eb01459f 588static int
dbf7bff0
DV
589i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
eb01459f 593{
8461d226 594 char __user *user_data;
eb01459f 595 ssize_t remain;
8461d226 596 loff_t offset;
eb2c0c81 597 int shmem_page_offset, page_length, ret = 0;
8461d226 598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 599 int prefaulted = 0;
8489731c 600 int needs_clflush = 0;
67d5a50c 601 struct sg_page_iter sg_iter;
eb01459f 602
2bb4629a 603 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
604 remain = args->size;
605
8461d226 606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 607
4c914c0c 608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
609 if (ret)
610 return ret;
611
8461d226 612 offset = args->offset;
eb01459f 613
67d5a50c
ID
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
2db76d7c 616 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
617
618 if (remain <= 0)
619 break;
620
eb01459f
EA
621 /* Operation in this page
622 *
eb01459f 623 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
624 * page_length = bytes to copy for this page
625 */
c8cbbb8b 626 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 630
8461d226
DV
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
d174bd64
DV
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
dbf7bff0 639
dbf7bff0
DV
640 mutex_unlock(&dev->struct_mutex);
641
d330a953 642 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 643 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
eb01459f 651
d174bd64
DV
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
eb01459f 655
dbf7bff0 656 mutex_lock(&dev->struct_mutex);
f60d7f0c 657
f60d7f0c 658 if (ret)
8461d226 659 goto out;
8461d226 660
17793c9a 661next_page:
eb01459f 662 remain -= page_length;
8461d226 663 user_data += page_length;
eb01459f
EA
664 offset += page_length;
665 }
666
4f27b75d 667out:
f60d7f0c
CW
668 i915_gem_object_unpin_pages(obj);
669
eb01459f
EA
670 return ret;
671}
672
673a394b
EA
673/**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678int
679i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 680 struct drm_file *file)
673a394b
EA
681{
682 struct drm_i915_gem_pread *args = data;
05394f39 683 struct drm_i915_gem_object *obj;
35b62a89 684 int ret = 0;
673a394b 685
51311d0a
CW
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
2bb4629a 690 to_user_ptr(args->data_ptr),
51311d0a
CW
691 args->size))
692 return -EFAULT;
693
4f27b75d 694 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 695 if (ret)
4f27b75d 696 return ret;
673a394b 697
05394f39 698 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 699 if (&obj->base == NULL) {
1d7cfea1
CW
700 ret = -ENOENT;
701 goto unlock;
4f27b75d 702 }
673a394b 703
7dcd2499 704 /* Bounds check source. */
05394f39
CW
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
ce9d419d 707 ret = -EINVAL;
35b62a89 708 goto out;
ce9d419d
CW
709 }
710
1286ff73
DV
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
db53a302
CW
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
dbf7bff0 721 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 722
35b62a89 723out:
05394f39 724 drm_gem_object_unreference(&obj->base);
1d7cfea1 725unlock:
4f27b75d 726 mutex_unlock(&dev->struct_mutex);
eb01459f 727 return ret;
673a394b
EA
728}
729
0839ccb8
KP
730/* This is the fast write path which cannot handle
731 * page faults in the source data
9b7530cc 732 */
0839ccb8
KP
733
734static inline int
735fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
9b7530cc 739{
4f0c7cfb
BW
740 void __iomem *vaddr_atomic;
741 void *vaddr;
0839ccb8 742 unsigned long unwritten;
9b7530cc 743
3e4d3af5 744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 748 user_data, length);
3e4d3af5 749 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 750 return unwritten;
0839ccb8
KP
751}
752
3de09aa3
EA
753/**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
673a394b 757static int
05394f39
CW
758i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
3de09aa3 760 struct drm_i915_gem_pwrite *args,
05394f39 761 struct drm_file *file)
673a394b 762{
72e96d64
JL
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
673a394b 765 ssize_t remain;
0839ccb8 766 loff_t offset, page_base;
673a394b 767 char __user *user_data;
935aaa69
DV
768 int page_offset, page_length, ret;
769
1ec9e26d 770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
673a394b 781
2bb4629a 782 user_data = to_user_ptr(args->data_ptr);
673a394b 783 remain = args->size;
673a394b 784
f343c5f6 785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b 786
77a0d1ca 787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
063e4e6b 788
673a394b
EA
789 while (remain > 0) {
790 /* Operation in this page
791 *
0839ccb8
KP
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
673a394b 795 */
c8cbbb8b
CW
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
0839ccb8
KP
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
0839ccb8 802 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
0839ccb8 805 */
72e96d64 806 if (fast_user_write(ggtt->mappable, page_base,
935aaa69
DV
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
063e4e6b 809 goto out_flush;
935aaa69 810 }
673a394b 811
0839ccb8
KP
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
673a394b 815 }
673a394b 816
063e4e6b 817out_flush:
de152b62 818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
935aaa69 819out_unpin:
d7f46fc4 820 i915_gem_object_ggtt_unpin(obj);
935aaa69 821out:
3de09aa3 822 return ret;
673a394b
EA
823}
824
d174bd64
DV
825/* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
3043c60c 829static int
d174bd64
DV
830shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
673a394b 835{
d174bd64 836 char *vaddr;
673a394b 837 int ret;
3de09aa3 838
e7e58eb5 839 if (unlikely(page_do_bit17_swizzling))
d174bd64 840 return -EINVAL;
3de09aa3 841
d174bd64
DV
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
c2831a94
CW
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
d174bd64
DV
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
3de09aa3 852
755d2218 853 return ret ? -EFAULT : 0;
3de09aa3
EA
854}
855
d174bd64
DV
856/* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
3043c60c 858static int
d174bd64
DV
859shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
673a394b 864{
d174bd64
DV
865 char *vaddr;
866 int ret;
e5281ccd 867
d174bd64 868 vaddr = kmap(page);
e7e58eb5 869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
d174bd64
DV
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
875 user_data,
876 page_length);
d174bd64
DV
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
23c18c71
DV
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
d174bd64 885 kunmap(page);
40123c1f 886
755d2218 887 return ret ? -EFAULT : 0;
40123c1f
EA
888}
889
40123c1f 890static int
e244a443
DV
891i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
40123c1f 895{
40123c1f 896 ssize_t remain;
8c59967c
DV
897 loff_t offset;
898 char __user *user_data;
eb2c0c81 899 int shmem_page_offset, page_length, ret = 0;
8c59967c 900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 901 int hit_slowpath = 0;
58642885
DV
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
67d5a50c 904 struct sg_page_iter sg_iter;
40123c1f 905
2bb4629a 906 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
907 remain = args->size;
908
8c59967c 909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 910
58642885
DV
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
2c22569b 916 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
58642885 920 }
c76ce038
CW
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 926
755d2218
CW
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
77a0d1ca 931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
063e4e6b 932
755d2218
CW
933 i915_gem_object_pin_pages(obj);
934
673a394b 935 offset = args->offset;
05394f39 936 obj->dirty = 1;
673a394b 937
67d5a50c
ID
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
2db76d7c 940 struct page *page = sg_page_iter_page(&sg_iter);
58642885 941 int partial_cacheline_write;
e5281ccd 942
9da3da66
CW
943 if (remain <= 0)
944 break;
945
40123c1f
EA
946 /* Operation in this page
947 *
40123c1f 948 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
949 * page_length = bytes to copy for this page
950 */
c8cbbb8b 951 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 956
58642885
DV
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
8c59967c
DV
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
d174bd64
DV
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
e244a443
DV
973
974 hit_slowpath = 1;
e244a443 975 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
40123c1f 980
e244a443 981 mutex_lock(&dev->struct_mutex);
755d2218 982
755d2218 983 if (ret)
8c59967c 984 goto out;
8c59967c 985
17793c9a 986next_page:
40123c1f 987 remain -= page_length;
8c59967c 988 user_data += page_length;
40123c1f 989 offset += page_length;
673a394b
EA
990 }
991
fbd5a26d 992out:
755d2218
CW
993 i915_gem_object_unpin_pages(obj);
994
e244a443 995 if (hit_slowpath) {
8dcf015e
DV
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6 1003 if (i915_gem_clflush_object(obj, obj->pin_display))
ed75a55b 1004 needs_clflush_after = true;
e244a443 1005 }
8c59967c 1006 }
673a394b 1007
58642885 1008 if (needs_clflush_after)
c033666a 1009 i915_gem_chipset_flush(to_i915(dev));
ed75a55b
VS
1010 else
1011 obj->cache_dirty = true;
58642885 1012
de152b62 1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
40123c1f 1014 return ret;
673a394b
EA
1015}
1016
1017/**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022int
1023i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1024 struct drm_file *file)
673a394b 1025{
5d77d9c5 1026 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 1027 struct drm_i915_gem_pwrite *args = data;
05394f39 1028 struct drm_i915_gem_object *obj;
51311d0a
CW
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
2bb4629a 1035 to_user_ptr(args->data_ptr),
51311d0a
CW
1036 args->size))
1037 return -EFAULT;
1038
d330a953 1039 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1040 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
673a394b 1045
5d77d9c5
ID
1046 intel_runtime_pm_get(dev_priv);
1047
fbd5a26d 1048 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1049 if (ret)
5d77d9c5 1050 goto put_rpm;
1d7cfea1 1051
05394f39 1052 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1053 if (&obj->base == NULL) {
1d7cfea1
CW
1054 ret = -ENOENT;
1055 goto unlock;
fbd5a26d 1056 }
673a394b 1057
7dcd2499 1058 /* Bounds check destination. */
05394f39
CW
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
ce9d419d 1061 ret = -EINVAL;
35b62a89 1062 goto out;
ce9d419d
CW
1063 }
1064
1286ff73
DV
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
db53a302
CW
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
935aaa69 1075 ret = -EFAULT;
673a394b
EA
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
2c22569b
CW
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
fbd5a26d 1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1089 }
673a394b 1090
6a2c4232
CW
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
5c0480f2 1097
35b62a89 1098out:
05394f39 1099 drm_gem_object_unreference(&obj->base);
1d7cfea1 1100unlock:
fbd5a26d 1101 mutex_unlock(&dev->struct_mutex);
5d77d9c5
ID
1102put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
673a394b
EA
1105 return ret;
1106}
1107
f4457ae7
CW
1108static int
1109i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
b361237b 1110{
f4457ae7
CW
1111 if (__i915_terminally_wedged(reset_counter))
1112 return -EIO;
d98c52cf 1113
f4457ae7 1114 if (__i915_reset_in_progress(reset_counter)) {
b361237b
CW
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
d98c52cf 1120 return -EAGAIN;
b361237b
CW
1121 }
1122
1123 return 0;
1124}
1125
094f9a54
CW
1126static void fake_irq(unsigned long data)
1127{
1128 wake_up_process((struct task_struct *)data);
1129}
1130
1131static bool missed_irq(struct drm_i915_private *dev_priv,
0bc40be8 1132 struct intel_engine_cs *engine)
094f9a54 1133{
0bc40be8 1134 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
094f9a54
CW
1135}
1136
ca5b721e
CW
1137static unsigned long local_clock_us(unsigned *cpu)
1138{
1139 unsigned long t;
1140
1141 /* Cheaply and approximately convert from nanoseconds to microseconds.
1142 * The result and subsequent calculations are also defined in the same
1143 * approximate microseconds units. The principal source of timing
1144 * error here is from the simple truncation.
1145 *
1146 * Note that local_clock() is only defined wrt to the current CPU;
1147 * the comparisons are no longer valid if we switch CPUs. Instead of
1148 * blocking preemption for the entire busywait, we can detect the CPU
1149 * switch and use that as indicator of system load and a reason to
1150 * stop busywaiting, see busywait_stop().
1151 */
1152 *cpu = get_cpu();
1153 t = local_clock() >> 10;
1154 put_cpu();
1155
1156 return t;
1157}
1158
1159static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160{
1161 unsigned this_cpu;
1162
1163 if (time_after(local_clock_us(&this_cpu), timeout))
1164 return true;
1165
1166 return this_cpu != cpu;
1167}
1168
91b0c352 1169static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
b29c19b6 1170{
2def4ad9 1171 unsigned long timeout;
ca5b721e
CW
1172 unsigned cpu;
1173
1174 /* When waiting for high frequency requests, e.g. during synchronous
1175 * rendering split between the CPU and GPU, the finite amount of time
1176 * required to set up the irq and wait upon it limits the response
1177 * rate. By busywaiting on the request completion for a short while we
1178 * can service the high frequency waits as quick as possible. However,
1179 * if it is a slow request, we want to sleep as quickly as possible.
1180 * The tradeoff between waiting and sleeping is roughly the time it
1181 * takes to sleep on a request, on the order of a microsecond.
1182 */
2def4ad9 1183
4a570db5 1184 if (req->engine->irq_refcount)
2def4ad9
CW
1185 return -EBUSY;
1186
821485dc
CW
1187 /* Only spin if we know the GPU is processing this request */
1188 if (!i915_gem_request_started(req, true))
1189 return -EAGAIN;
1190
ca5b721e 1191 timeout = local_clock_us(&cpu) + 5;
2def4ad9 1192 while (!need_resched()) {
eed29a5b 1193 if (i915_gem_request_completed(req, true))
2def4ad9
CW
1194 return 0;
1195
91b0c352
CW
1196 if (signal_pending_state(state, current))
1197 break;
1198
ca5b721e 1199 if (busywait_stop(timeout, cpu))
2def4ad9 1200 break;
b29c19b6 1201
2def4ad9
CW
1202 cpu_relax_lowlatency();
1203 }
821485dc 1204
eed29a5b 1205 if (i915_gem_request_completed(req, false))
2def4ad9
CW
1206 return 0;
1207
1208 return -EAGAIN;
b29c19b6
CW
1209}
1210
b361237b 1211/**
9c654818
JH
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
b361237b
CW
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
f69061be
DV
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
9c654818 1224 * Returns 0 if the request was found within the alloted time. Else returns the
b361237b
CW
1225 * errno with remaining time filled in timeout argument.
1226 */
9c654818 1227int __i915_wait_request(struct drm_i915_gem_request *req,
b29c19b6 1228 bool interruptible,
5ed0bdf2 1229 s64 *timeout,
2e1b8730 1230 struct intel_rps_client *rps)
b361237b 1231{
666796da 1232 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
c033666a 1233 struct drm_i915_private *dev_priv = req->i915;
168c3f21 1234 const bool irq_test_in_progress =
666796da 1235 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
91b0c352 1236 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
094f9a54 1237 DEFINE_WAIT(wait);
47e9766d 1238 unsigned long timeout_expire;
e0313db0 1239 s64 before = 0; /* Only to silence a compiler warning. */
b361237b
CW
1240 int ret;
1241
9df7575f 1242 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1243
b4716185
CW
1244 if (list_empty(&req->list))
1245 return 0;
1246
1b5a433a 1247 if (i915_gem_request_completed(req, true))
b361237b
CW
1248 return 0;
1249
bb6d1984
CW
1250 timeout_expire = 0;
1251 if (timeout) {
1252 if (WARN_ON(*timeout < 0))
1253 return -EINVAL;
1254
1255 if (*timeout == 0)
1256 return -ETIME;
1257
1258 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
e0313db0
TU
1259
1260 /*
1261 * Record current time in case interrupted by signal, or wedged.
1262 */
1263 before = ktime_get_raw_ns();
bb6d1984 1264 }
b361237b 1265
2e1b8730 1266 if (INTEL_INFO(dev_priv)->gen >= 6)
e61b9958 1267 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
b361237b 1268
74328ee5 1269 trace_i915_gem_request_wait_begin(req);
2def4ad9
CW
1270
1271 /* Optimistic spin for the next jiffie before touching IRQs */
91b0c352 1272 ret = __i915_spin_request(req, state);
2def4ad9
CW
1273 if (ret == 0)
1274 goto out;
1275
e2f80391 1276 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
2def4ad9
CW
1277 ret = -ENODEV;
1278 goto out;
1279 }
1280
094f9a54
CW
1281 for (;;) {
1282 struct timer_list timer;
b361237b 1283
e2f80391 1284 prepare_to_wait(&engine->irq_queue, &wait, state);
b361237b 1285
f69061be 1286 /* We need to check whether any gpu reset happened in between
f4457ae7
CW
1287 * the request being submitted and now. If a reset has occurred,
1288 * the request is effectively complete (we either are in the
1289 * process of or have discarded the rendering and completely
1290 * reset the GPU. The results of the request are lost and we
1291 * are free to continue on with the original operation.
1292 */
299259a3 1293 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
f4457ae7 1294 ret = 0;
094f9a54
CW
1295 break;
1296 }
f69061be 1297
1b5a433a 1298 if (i915_gem_request_completed(req, false)) {
094f9a54
CW
1299 ret = 0;
1300 break;
1301 }
b361237b 1302
91b0c352 1303 if (signal_pending_state(state, current)) {
094f9a54
CW
1304 ret = -ERESTARTSYS;
1305 break;
1306 }
1307
47e9766d 1308 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1309 ret = -ETIME;
1310 break;
1311 }
1312
1313 timer.function = NULL;
e2f80391 1314 if (timeout || missed_irq(dev_priv, engine)) {
47e9766d
MK
1315 unsigned long expire;
1316
094f9a54 1317 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
e2f80391 1318 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1319 mod_timer(&timer, expire);
1320 }
1321
5035c275 1322 io_schedule();
094f9a54 1323
094f9a54
CW
1324 if (timer.function) {
1325 del_singleshot_timer_sync(&timer);
1326 destroy_timer_on_stack(&timer);
1327 }
1328 }
168c3f21 1329 if (!irq_test_in_progress)
e2f80391 1330 engine->irq_put(engine);
094f9a54 1331
e2f80391 1332 finish_wait(&engine->irq_queue, &wait);
b361237b 1333
2def4ad9 1334out:
2def4ad9
CW
1335 trace_i915_gem_request_wait_end(req);
1336
b361237b 1337 if (timeout) {
e0313db0 1338 s64 tres = *timeout - (ktime_get_raw_ns() - before);
5ed0bdf2
TG
1339
1340 *timeout = tres < 0 ? 0 : tres;
9cca3068
DV
1341
1342 /*
1343 * Apparently ktime isn't accurate enough and occasionally has a
1344 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1345 * things up to make the test happy. We allow up to 1 jiffy.
1346 *
1347 * This is a regrssion from the timespec->ktime conversion.
1348 */
1349 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1350 *timeout = 0;
b361237b
CW
1351 }
1352
094f9a54 1353 return ret;
b361237b
CW
1354}
1355
fcfa423c
JH
1356int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1357 struct drm_file *file)
1358{
fcfa423c
JH
1359 struct drm_i915_file_private *file_priv;
1360
1361 WARN_ON(!req || !file || req->file_priv);
1362
1363 if (!req || !file)
1364 return -EINVAL;
1365
1366 if (req->file_priv)
1367 return -EINVAL;
1368
fcfa423c
JH
1369 file_priv = file->driver_priv;
1370
1371 spin_lock(&file_priv->mm.lock);
1372 req->file_priv = file_priv;
1373 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1374 spin_unlock(&file_priv->mm.lock);
1375
1376 req->pid = get_pid(task_pid(current));
1377
1378 return 0;
1379}
1380
b4716185
CW
1381static inline void
1382i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1383{
1384 struct drm_i915_file_private *file_priv = request->file_priv;
1385
1386 if (!file_priv)
1387 return;
1388
1389 spin_lock(&file_priv->mm.lock);
1390 list_del(&request->client_list);
1391 request->file_priv = NULL;
1392 spin_unlock(&file_priv->mm.lock);
fcfa423c
JH
1393
1394 put_pid(request->pid);
1395 request->pid = NULL;
b4716185
CW
1396}
1397
1398static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1399{
1400 trace_i915_gem_request_retire(request);
1401
1402 /* We know the GPU must have read the request to have
1403 * sent us the seqno + interrupt, so use the position
1404 * of tail of the request to update the last known position
1405 * of the GPU head.
1406 *
1407 * Note this requires that we are always called in request
1408 * completion order.
1409 */
1410 request->ringbuf->last_retired_head = request->postfix;
1411
1412 list_del_init(&request->list);
1413 i915_gem_request_remove_from_client(request);
1414
a16a4052 1415 if (request->previous_context) {
73db04cf 1416 if (i915.enable_execlists)
a16a4052
CW
1417 intel_lr_context_unpin(request->previous_context,
1418 request->engine);
73db04cf
CW
1419 }
1420
a16a4052 1421 i915_gem_context_unreference(request->ctx);
b4716185
CW
1422 i915_gem_request_unreference(request);
1423}
1424
1425static void
1426__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1427{
4a570db5 1428 struct intel_engine_cs *engine = req->engine;
b4716185
CW
1429 struct drm_i915_gem_request *tmp;
1430
c033666a 1431 lockdep_assert_held(&engine->i915->dev->struct_mutex);
b4716185
CW
1432
1433 if (list_empty(&req->list))
1434 return;
1435
1436 do {
1437 tmp = list_first_entry(&engine->request_list,
1438 typeof(*tmp), list);
1439
1440 i915_gem_request_retire(tmp);
1441 } while (tmp != req);
1442
1443 WARN_ON(i915_verify_lists(engine->dev));
1444}
1445
b361237b 1446/**
a4b3a571 1447 * Waits for a request to be signaled, and cleans up the
b361237b
CW
1448 * request and object lists appropriately for that event.
1449 */
1450int
a4b3a571 1451i915_wait_request(struct drm_i915_gem_request *req)
b361237b 1452{
791bee12 1453 struct drm_i915_private *dev_priv = req->i915;
a4b3a571 1454 bool interruptible;
b361237b
CW
1455 int ret;
1456
a4b3a571
DV
1457 interruptible = dev_priv->mm.interruptible;
1458
791bee12 1459 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
b361237b 1460
299259a3 1461 ret = __i915_wait_request(req, interruptible, NULL, NULL);
b4716185
CW
1462 if (ret)
1463 return ret;
d26e3af8 1464
e075a32f
CW
1465 /* If the GPU hung, we want to keep the requests to find the guilty. */
1466 if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1467 __i915_gem_request_retire__upto(req);
1468
d26e3af8
CW
1469 return 0;
1470}
1471
b361237b
CW
1472/**
1473 * Ensures that all rendering to the object has completed and the object is
1474 * safe to unbind from the GTT or access from the CPU.
1475 */
2e2f351d 1476int
b361237b
CW
1477i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1478 bool readonly)
1479{
b4716185 1480 int ret, i;
b361237b 1481
b4716185 1482 if (!obj->active)
b361237b
CW
1483 return 0;
1484
b4716185
CW
1485 if (readonly) {
1486 if (obj->last_write_req != NULL) {
1487 ret = i915_wait_request(obj->last_write_req);
1488 if (ret)
1489 return ret;
b361237b 1490
4a570db5 1491 i = obj->last_write_req->engine->id;
b4716185
CW
1492 if (obj->last_read_req[i] == obj->last_write_req)
1493 i915_gem_object_retire__read(obj, i);
1494 else
1495 i915_gem_object_retire__write(obj);
1496 }
1497 } else {
666796da 1498 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1499 if (obj->last_read_req[i] == NULL)
1500 continue;
1501
1502 ret = i915_wait_request(obj->last_read_req[i]);
1503 if (ret)
1504 return ret;
1505
1506 i915_gem_object_retire__read(obj, i);
1507 }
d501b1d2 1508 GEM_BUG_ON(obj->active);
b4716185
CW
1509 }
1510
1511 return 0;
1512}
1513
1514static void
1515i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1516 struct drm_i915_gem_request *req)
1517{
4a570db5 1518 int ring = req->engine->id;
b4716185
CW
1519
1520 if (obj->last_read_req[ring] == req)
1521 i915_gem_object_retire__read(obj, ring);
1522 else if (obj->last_write_req == req)
1523 i915_gem_object_retire__write(obj);
1524
e075a32f
CW
1525 if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1526 __i915_gem_request_retire__upto(req);
b361237b
CW
1527}
1528
3236f57a
CW
1529/* A nonblocking variant of the above wait. This is a highly dangerous routine
1530 * as the object state may change during this call.
1531 */
1532static __must_check int
1533i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
2e1b8730 1534 struct intel_rps_client *rps,
3236f57a
CW
1535 bool readonly)
1536{
1537 struct drm_device *dev = obj->base.dev;
1538 struct drm_i915_private *dev_priv = dev->dev_private;
666796da 1539 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
b4716185 1540 int ret, i, n = 0;
3236f57a
CW
1541
1542 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1543 BUG_ON(!dev_priv->mm.interruptible);
1544
b4716185 1545 if (!obj->active)
3236f57a
CW
1546 return 0;
1547
b4716185
CW
1548 if (readonly) {
1549 struct drm_i915_gem_request *req;
1550
1551 req = obj->last_write_req;
1552 if (req == NULL)
1553 return 0;
1554
b4716185
CW
1555 requests[n++] = i915_gem_request_reference(req);
1556 } else {
666796da 1557 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
1558 struct drm_i915_gem_request *req;
1559
1560 req = obj->last_read_req[i];
1561 if (req == NULL)
1562 continue;
1563
b4716185
CW
1564 requests[n++] = i915_gem_request_reference(req);
1565 }
1566 }
1567
3236f57a 1568 mutex_unlock(&dev->struct_mutex);
299259a3 1569 ret = 0;
b4716185 1570 for (i = 0; ret == 0 && i < n; i++)
299259a3 1571 ret = __i915_wait_request(requests[i], true, NULL, rps);
3236f57a
CW
1572 mutex_lock(&dev->struct_mutex);
1573
b4716185
CW
1574 for (i = 0; i < n; i++) {
1575 if (ret == 0)
1576 i915_gem_object_retire_request(obj, requests[i]);
1577 i915_gem_request_unreference(requests[i]);
1578 }
1579
1580 return ret;
3236f57a
CW
1581}
1582
2e1b8730
CW
1583static struct intel_rps_client *to_rps_client(struct drm_file *file)
1584{
1585 struct drm_i915_file_private *fpriv = file->driver_priv;
1586 return &fpriv->rps;
1587}
1588
673a394b 1589/**
2ef7eeaa
EA
1590 * Called when user space prepares to use an object with the CPU, either
1591 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1592 */
1593int
1594i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1595 struct drm_file *file)
673a394b
EA
1596{
1597 struct drm_i915_gem_set_domain *args = data;
05394f39 1598 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1599 uint32_t read_domains = args->read_domains;
1600 uint32_t write_domain = args->write_domain;
673a394b
EA
1601 int ret;
1602
2ef7eeaa 1603 /* Only handle setting domains to types used by the CPU. */
21d509e3 1604 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1605 return -EINVAL;
1606
21d509e3 1607 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1608 return -EINVAL;
1609
1610 /* Having something in the write domain implies it's in the read
1611 * domain, and only that read domain. Enforce that in the request.
1612 */
1613 if (write_domain != 0 && read_domains != write_domain)
1614 return -EINVAL;
1615
76c1dec1 1616 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1617 if (ret)
76c1dec1 1618 return ret;
1d7cfea1 1619
05394f39 1620 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1621 if (&obj->base == NULL) {
1d7cfea1
CW
1622 ret = -ENOENT;
1623 goto unlock;
76c1dec1 1624 }
673a394b 1625
3236f57a
CW
1626 /* Try to flush the object off the GPU without holding the lock.
1627 * We will repeat the flush holding the lock in the normal manner
1628 * to catch cases where we are gazumped.
1629 */
6e4930f6 1630 ret = i915_gem_object_wait_rendering__nonblocking(obj,
2e1b8730 1631 to_rps_client(file),
6e4930f6 1632 !write_domain);
3236f57a
CW
1633 if (ret)
1634 goto unref;
1635
43566ded 1636 if (read_domains & I915_GEM_DOMAIN_GTT)
2ef7eeaa 1637 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
43566ded 1638 else
e47c68e9 1639 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa 1640
031b698a
DV
1641 if (write_domain != 0)
1642 intel_fb_obj_invalidate(obj,
1643 write_domain == I915_GEM_DOMAIN_GTT ?
1644 ORIGIN_GTT : ORIGIN_CPU);
1645
3236f57a 1646unref:
05394f39 1647 drm_gem_object_unreference(&obj->base);
1d7cfea1 1648unlock:
673a394b
EA
1649 mutex_unlock(&dev->struct_mutex);
1650 return ret;
1651}
1652
1653/**
1654 * Called when user space has done writes to this buffer
1655 */
1656int
1657i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1658 struct drm_file *file)
673a394b
EA
1659{
1660 struct drm_i915_gem_sw_finish *args = data;
05394f39 1661 struct drm_i915_gem_object *obj;
673a394b
EA
1662 int ret = 0;
1663
76c1dec1 1664 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1665 if (ret)
76c1dec1 1666 return ret;
1d7cfea1 1667
05394f39 1668 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1669 if (&obj->base == NULL) {
1d7cfea1
CW
1670 ret = -ENOENT;
1671 goto unlock;
673a394b
EA
1672 }
1673
673a394b 1674 /* Pinned buffers may be scanout, so flush the cache */
2c22569b 1675 if (obj->pin_display)
e62b59e4 1676 i915_gem_object_flush_cpu_write_domain(obj);
e47c68e9 1677
05394f39 1678 drm_gem_object_unreference(&obj->base);
1d7cfea1 1679unlock:
673a394b
EA
1680 mutex_unlock(&dev->struct_mutex);
1681 return ret;
1682}
1683
1684/**
1685 * Maps the contents of an object, returning the address it is mapped
1686 * into.
1687 *
1688 * While the mapping holds a reference on the contents of the object, it doesn't
1689 * imply a ref on the object itself.
34367381
DV
1690 *
1691 * IMPORTANT:
1692 *
1693 * DRM driver writers who look a this function as an example for how to do GEM
1694 * mmap support, please don't implement mmap support like here. The modern way
1695 * to implement DRM mmap support is with an mmap offset ioctl (like
1696 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1697 * That way debug tooling like valgrind will understand what's going on, hiding
1698 * the mmap call in a driver private ioctl will break that. The i915 driver only
1699 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1700 */
1701int
1702i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1703 struct drm_file *file)
673a394b
EA
1704{
1705 struct drm_i915_gem_mmap *args = data;
1706 struct drm_gem_object *obj;
673a394b
EA
1707 unsigned long addr;
1708
1816f923
AG
1709 if (args->flags & ~(I915_MMAP_WC))
1710 return -EINVAL;
1711
1712 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1713 return -ENODEV;
1714
05394f39 1715 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1716 if (obj == NULL)
bf79cb91 1717 return -ENOENT;
673a394b 1718
1286ff73
DV
1719 /* prime objects have no backing filp to GEM mmap
1720 * pages from.
1721 */
1722 if (!obj->filp) {
1723 drm_gem_object_unreference_unlocked(obj);
1724 return -EINVAL;
1725 }
1726
6be5ceb0 1727 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1728 PROT_READ | PROT_WRITE, MAP_SHARED,
1729 args->offset);
1816f923
AG
1730 if (args->flags & I915_MMAP_WC) {
1731 struct mm_struct *mm = current->mm;
1732 struct vm_area_struct *vma;
1733
1734 down_write(&mm->mmap_sem);
1735 vma = find_vma(mm, addr);
1736 if (vma)
1737 vma->vm_page_prot =
1738 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1739 else
1740 addr = -ENOMEM;
1741 up_write(&mm->mmap_sem);
1742 }
bc9025bd 1743 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1744 if (IS_ERR((void *)addr))
1745 return addr;
1746
1747 args->addr_ptr = (uint64_t) addr;
1748
1749 return 0;
1750}
1751
de151cf6
JB
1752/**
1753 * i915_gem_fault - fault a page into the GTT
d9072a3e
GT
1754 * @vma: VMA in question
1755 * @vmf: fault info
de151cf6
JB
1756 *
1757 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1758 * from userspace. The fault handler takes care of binding the object to
1759 * the GTT (if needed), allocating and programming a fence register (again,
1760 * only if needed based on whether the old reg is still valid or the object
1761 * is tiled) and inserting a new PTE into the faulting process.
1762 *
1763 * Note that the faulting process may involve evicting existing objects
1764 * from the GTT and/or fence registers to make room. So performance may
1765 * suffer if the GTT working set is large or there are few fence registers
1766 * left.
1767 */
1768int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1769{
05394f39
CW
1770 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1771 struct drm_device *dev = obj->base.dev;
72e96d64
JL
1772 struct drm_i915_private *dev_priv = to_i915(dev);
1773 struct i915_ggtt *ggtt = &dev_priv->ggtt;
c5ad54cf 1774 struct i915_ggtt_view view = i915_ggtt_view_normal;
de151cf6
JB
1775 pgoff_t page_offset;
1776 unsigned long pfn;
1777 int ret = 0;
0f973f27 1778 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1779
f65c9168
PZ
1780 intel_runtime_pm_get(dev_priv);
1781
de151cf6
JB
1782 /* We don't use vmf->pgoff since that has the fake offset */
1783 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1784 PAGE_SHIFT;
1785
d9bc7e9f
CW
1786 ret = i915_mutex_lock_interruptible(dev);
1787 if (ret)
1788 goto out;
a00b10c3 1789
db53a302
CW
1790 trace_i915_gem_object_fault(obj, page_offset, true, write);
1791
6e4930f6
CW
1792 /* Try to flush the object off the GPU first without holding the lock.
1793 * Upon reacquiring the lock, we will perform our sanity checks and then
1794 * repeat the flush holding the lock in the normal manner to catch cases
1795 * where we are gazumped.
1796 */
1797 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1798 if (ret)
1799 goto unlock;
1800
eb119bd6
CW
1801 /* Access to snoopable pages through the GTT is incoherent. */
1802 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1803 ret = -EFAULT;
eb119bd6
CW
1804 goto unlock;
1805 }
1806
c5ad54cf 1807 /* Use a partial view if the object is bigger than the aperture. */
72e96d64 1808 if (obj->base.size >= ggtt->mappable_end &&
e7ded2d7 1809 obj->tiling_mode == I915_TILING_NONE) {
c5ad54cf 1810 static const unsigned int chunk_size = 256; // 1 MiB
e7ded2d7 1811
c5ad54cf
JL
1812 memset(&view, 0, sizeof(view));
1813 view.type = I915_GGTT_VIEW_PARTIAL;
1814 view.params.partial.offset = rounddown(page_offset, chunk_size);
1815 view.params.partial.size =
1816 min_t(unsigned int,
1817 chunk_size,
1818 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1819 view.params.partial.offset);
1820 }
1821
1822 /* Now pin it into the GTT if needed */
1823 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
c9839303
CW
1824 if (ret)
1825 goto unlock;
4a684a41 1826
c9839303
CW
1827 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1828 if (ret)
1829 goto unpin;
74898d7e 1830
06d98131 1831 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1832 if (ret)
c9839303 1833 goto unpin;
7d1c4804 1834
b90b91d8 1835 /* Finally, remap it using the new GTT offset */
72e96d64 1836 pfn = ggtt->mappable_base +
c5ad54cf 1837 i915_gem_obj_ggtt_offset_view(obj, &view);
f343c5f6 1838 pfn >>= PAGE_SHIFT;
de151cf6 1839
c5ad54cf
JL
1840 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1841 /* Overriding existing pages in partial view does not cause
1842 * us any trouble as TLBs are still valid because the fault
1843 * is due to userspace losing part of the mapping or never
1844 * having accessed it before (at this partials' range).
1845 */
1846 unsigned long base = vma->vm_start +
1847 (view.params.partial.offset << PAGE_SHIFT);
1848 unsigned int i;
b90b91d8 1849
c5ad54cf
JL
1850 for (i = 0; i < view.params.partial.size; i++) {
1851 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
b90b91d8
CW
1852 if (ret)
1853 break;
1854 }
1855
1856 obj->fault_mappable = true;
c5ad54cf
JL
1857 } else {
1858 if (!obj->fault_mappable) {
1859 unsigned long size = min_t(unsigned long,
1860 vma->vm_end - vma->vm_start,
1861 obj->base.size);
1862 int i;
1863
1864 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1865 ret = vm_insert_pfn(vma,
1866 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1867 pfn + i);
1868 if (ret)
1869 break;
1870 }
1871
1872 obj->fault_mappable = true;
1873 } else
1874 ret = vm_insert_pfn(vma,
1875 (unsigned long)vmf->virtual_address,
1876 pfn + page_offset);
1877 }
c9839303 1878unpin:
c5ad54cf 1879 i915_gem_object_ggtt_unpin_view(obj, &view);
c715089f 1880unlock:
de151cf6 1881 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1882out:
de151cf6 1883 switch (ret) {
d9bc7e9f 1884 case -EIO:
2232f031
DV
1885 /*
1886 * We eat errors when the gpu is terminally wedged to avoid
1887 * userspace unduly crashing (gl has no provisions for mmaps to
1888 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1889 * and so needs to be reported.
1890 */
1891 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1892 ret = VM_FAULT_SIGBUS;
1893 break;
1894 }
045e769a 1895 case -EAGAIN:
571c608d
DV
1896 /*
1897 * EAGAIN means the gpu is hung and we'll wait for the error
1898 * handler to reset everything when re-faulting in
1899 * i915_mutex_lock_interruptible.
d9bc7e9f 1900 */
c715089f
CW
1901 case 0:
1902 case -ERESTARTSYS:
bed636ab 1903 case -EINTR:
e79e0fe3
DR
1904 case -EBUSY:
1905 /*
1906 * EBUSY is ok: this just means that another thread
1907 * already did the job.
1908 */
f65c9168
PZ
1909 ret = VM_FAULT_NOPAGE;
1910 break;
de151cf6 1911 case -ENOMEM:
f65c9168
PZ
1912 ret = VM_FAULT_OOM;
1913 break;
a7c2e1aa 1914 case -ENOSPC:
45d67817 1915 case -EFAULT:
f65c9168
PZ
1916 ret = VM_FAULT_SIGBUS;
1917 break;
de151cf6 1918 default:
a7c2e1aa 1919 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1920 ret = VM_FAULT_SIGBUS;
1921 break;
de151cf6 1922 }
f65c9168
PZ
1923
1924 intel_runtime_pm_put(dev_priv);
1925 return ret;
de151cf6
JB
1926}
1927
901782b2
CW
1928/**
1929 * i915_gem_release_mmap - remove physical page mappings
1930 * @obj: obj in question
1931 *
af901ca1 1932 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1933 * relinquish ownership of the pages back to the system.
1934 *
1935 * It is vital that we remove the page mapping if we have mapped a tiled
1936 * object through the GTT and then lose the fence register due to
1937 * resource pressure. Similarly if the object has been moved out of the
1938 * aperture, than pages mapped into userspace must be revoked. Removing the
1939 * mapping will then trigger a page fault on the next user access, allowing
1940 * fixup by i915_gem_fault().
1941 */
d05ca301 1942void
05394f39 1943i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1944{
349f2ccf
CW
1945 /* Serialisation between user GTT access and our code depends upon
1946 * revoking the CPU's PTE whilst the mutex is held. The next user
1947 * pagefault then has to wait until we release the mutex.
1948 */
1949 lockdep_assert_held(&obj->base.dev->struct_mutex);
1950
6299f992
CW
1951 if (!obj->fault_mappable)
1952 return;
901782b2 1953
6796cb16
DH
1954 drm_vma_node_unmap(&obj->base.vma_node,
1955 obj->base.dev->anon_inode->i_mapping);
349f2ccf
CW
1956
1957 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1958 * memory transactions from userspace before we return. The TLB
1959 * flushing implied above by changing the PTE above *should* be
1960 * sufficient, an extra barrier here just provides us with a bit
1961 * of paranoid documentation about our requirement to serialise
1962 * memory writes before touching registers / GSM.
1963 */
1964 wmb();
1965
6299f992 1966 obj->fault_mappable = false;
901782b2
CW
1967}
1968
eedd10f4
CW
1969void
1970i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1971{
1972 struct drm_i915_gem_object *obj;
1973
1974 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1975 i915_gem_release_mmap(obj);
1976}
1977
0fa87796 1978uint32_t
e28f8711 1979i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1980{
e28f8711 1981 uint32_t gtt_size;
92b88aeb
CW
1982
1983 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1984 tiling_mode == I915_TILING_NONE)
1985 return size;
92b88aeb
CW
1986
1987 /* Previous chips need a power-of-two fence region when tiling */
7e22dbbb 1988 if (IS_GEN3(dev))
e28f8711 1989 gtt_size = 1024*1024;
92b88aeb 1990 else
e28f8711 1991 gtt_size = 512*1024;
92b88aeb 1992
e28f8711
CW
1993 while (gtt_size < size)
1994 gtt_size <<= 1;
92b88aeb 1995
e28f8711 1996 return gtt_size;
92b88aeb
CW
1997}
1998
de151cf6
JB
1999/**
2000 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2001 * @obj: object to check
2002 *
2003 * Return the required GTT alignment for an object, taking into account
5e783301 2004 * potential fence register mapping.
de151cf6 2005 */
d865110c
ID
2006uint32_t
2007i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2008 int tiling_mode, bool fenced)
de151cf6 2009{
de151cf6
JB
2010 /*
2011 * Minimum alignment is 4k (GTT page size), but might be greater
2012 * if a fence register is needed for the object.
2013 */
d865110c 2014 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 2015 tiling_mode == I915_TILING_NONE)
de151cf6
JB
2016 return 4096;
2017
a00b10c3
CW
2018 /*
2019 * Previous chips need to be aligned to the size of the smallest
2020 * fence register that can contain the object.
2021 */
e28f8711 2022 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
2023}
2024
d8cb5086
CW
2025static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2026{
2027 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2028 int ret;
2029
da494d7c
DV
2030 dev_priv->mm.shrinker_no_lock_stealing = true;
2031
d8cb5086
CW
2032 ret = drm_gem_create_mmap_offset(&obj->base);
2033 if (ret != -ENOSPC)
da494d7c 2034 goto out;
d8cb5086
CW
2035
2036 /* Badly fragmented mmap space? The only way we can recover
2037 * space is by destroying unwanted objects. We can't randomly release
2038 * mmap_offsets as userspace expects them to be persistent for the
2039 * lifetime of the objects. The closest we can is to release the
2040 * offsets on purgeable objects by truncating it and marking it purged,
2041 * which prevents userspace from ever using that object again.
2042 */
21ab4e74
CW
2043 i915_gem_shrink(dev_priv,
2044 obj->base.size >> PAGE_SHIFT,
2045 I915_SHRINK_BOUND |
2046 I915_SHRINK_UNBOUND |
2047 I915_SHRINK_PURGEABLE);
d8cb5086
CW
2048 ret = drm_gem_create_mmap_offset(&obj->base);
2049 if (ret != -ENOSPC)
da494d7c 2050 goto out;
d8cb5086
CW
2051
2052 i915_gem_shrink_all(dev_priv);
da494d7c
DV
2053 ret = drm_gem_create_mmap_offset(&obj->base);
2054out:
2055 dev_priv->mm.shrinker_no_lock_stealing = false;
2056
2057 return ret;
d8cb5086
CW
2058}
2059
2060static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2061{
d8cb5086
CW
2062 drm_gem_free_mmap_offset(&obj->base);
2063}
2064
da6b51d0 2065int
ff72145b
DA
2066i915_gem_mmap_gtt(struct drm_file *file,
2067 struct drm_device *dev,
da6b51d0 2068 uint32_t handle,
ff72145b 2069 uint64_t *offset)
de151cf6 2070{
05394f39 2071 struct drm_i915_gem_object *obj;
de151cf6
JB
2072 int ret;
2073
76c1dec1 2074 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 2075 if (ret)
76c1dec1 2076 return ret;
de151cf6 2077
ff72145b 2078 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 2079 if (&obj->base == NULL) {
1d7cfea1
CW
2080 ret = -ENOENT;
2081 goto unlock;
2082 }
de151cf6 2083
05394f39 2084 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2085 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 2086 ret = -EFAULT;
1d7cfea1 2087 goto out;
ab18282d
CW
2088 }
2089
d8cb5086
CW
2090 ret = i915_gem_object_create_mmap_offset(obj);
2091 if (ret)
2092 goto out;
de151cf6 2093
0de23977 2094 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 2095
1d7cfea1 2096out:
05394f39 2097 drm_gem_object_unreference(&obj->base);
1d7cfea1 2098unlock:
de151cf6 2099 mutex_unlock(&dev->struct_mutex);
1d7cfea1 2100 return ret;
de151cf6
JB
2101}
2102
ff72145b
DA
2103/**
2104 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2105 * @dev: DRM device
2106 * @data: GTT mapping ioctl data
2107 * @file: GEM object info
2108 *
2109 * Simply returns the fake offset to userspace so it can mmap it.
2110 * The mmap call will end up in drm_gem_mmap(), which will set things
2111 * up so we can get faults in the handler above.
2112 *
2113 * The fault handler will take care of binding the object into the GTT
2114 * (since it may have been evicted to make room for something), allocating
2115 * a fence register, and mapping the appropriate aperture address into
2116 * userspace.
2117 */
2118int
2119i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2120 struct drm_file *file)
2121{
2122 struct drm_i915_gem_mmap_gtt *args = data;
2123
da6b51d0 2124 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
ff72145b
DA
2125}
2126
225067ee
DV
2127/* Immediately discard the backing storage */
2128static void
2129i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 2130{
4d6294bf 2131 i915_gem_object_free_mmap_offset(obj);
1286ff73 2132
4d6294bf
CW
2133 if (obj->base.filp == NULL)
2134 return;
e5281ccd 2135
225067ee
DV
2136 /* Our goal here is to return as much of the memory as
2137 * is possible back to the system as we are called from OOM.
2138 * To do this we must instruct the shmfs to drop all of its
2139 * backing pages, *now*.
2140 */
5537252b 2141 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
2142 obj->madv = __I915_MADV_PURGED;
2143}
e5281ccd 2144
5537252b
CW
2145/* Try to discard unwanted pages */
2146static void
2147i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 2148{
5537252b
CW
2149 struct address_space *mapping;
2150
2151 switch (obj->madv) {
2152 case I915_MADV_DONTNEED:
2153 i915_gem_object_truncate(obj);
2154 case __I915_MADV_PURGED:
2155 return;
2156 }
2157
2158 if (obj->base.filp == NULL)
2159 return;
2160
2161 mapping = file_inode(obj->base.filp)->i_mapping,
2162 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
2163}
2164
5cdf5881 2165static void
05394f39 2166i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 2167{
85d1225e
DG
2168 struct sgt_iter sgt_iter;
2169 struct page *page;
90797e6d 2170 int ret;
1286ff73 2171
05394f39 2172 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 2173
6c085a72 2174 ret = i915_gem_object_set_to_cpu_domain(obj, true);
f4457ae7 2175 if (WARN_ON(ret)) {
6c085a72
CW
2176 /* In the event of a disaster, abandon all caches and
2177 * hope for the best.
2178 */
2c22569b 2179 i915_gem_clflush_object(obj, true);
6c085a72
CW
2180 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2181 }
2182
e2273302
ID
2183 i915_gem_gtt_finish_object(obj);
2184
6dacfd2f 2185 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
2186 i915_gem_object_save_bit_17_swizzle(obj);
2187
05394f39
CW
2188 if (obj->madv == I915_MADV_DONTNEED)
2189 obj->dirty = 0;
3ef94daa 2190
85d1225e 2191 for_each_sgt_page(page, sgt_iter, obj->pages) {
05394f39 2192 if (obj->dirty)
9da3da66 2193 set_page_dirty(page);
3ef94daa 2194
05394f39 2195 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2196 mark_page_accessed(page);
3ef94daa 2197
09cbfeaf 2198 put_page(page);
3ef94daa 2199 }
05394f39 2200 obj->dirty = 0;
673a394b 2201
9da3da66
CW
2202 sg_free_table(obj->pages);
2203 kfree(obj->pages);
37e680a1 2204}
6c085a72 2205
dd624afd 2206int
37e680a1
CW
2207i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2208{
2209 const struct drm_i915_gem_object_ops *ops = obj->ops;
2210
2f745ad3 2211 if (obj->pages == NULL)
37e680a1
CW
2212 return 0;
2213
a5570178
CW
2214 if (obj->pages_pin_count)
2215 return -EBUSY;
2216
9843877d 2217 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2218
a2165e31
CW
2219 /* ->put_pages might need to allocate memory for the bit17 swizzle
2220 * array, hence protect them from being reaped by removing them from gtt
2221 * lists early. */
35c20a60 2222 list_del(&obj->global_list);
a2165e31 2223
0a798eb9 2224 if (obj->mapping) {
fb8621d3
CW
2225 if (is_vmalloc_addr(obj->mapping))
2226 vunmap(obj->mapping);
2227 else
2228 kunmap(kmap_to_page(obj->mapping));
0a798eb9
CW
2229 obj->mapping = NULL;
2230 }
2231
37e680a1 2232 ops->put_pages(obj);
05394f39 2233 obj->pages = NULL;
37e680a1 2234
5537252b 2235 i915_gem_object_invalidate(obj);
6c085a72
CW
2236
2237 return 0;
2238}
2239
37e680a1 2240static int
6c085a72 2241i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2242{
6c085a72 2243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2244 int page_count, i;
2245 struct address_space *mapping;
9da3da66
CW
2246 struct sg_table *st;
2247 struct scatterlist *sg;
85d1225e 2248 struct sgt_iter sgt_iter;
e5281ccd 2249 struct page *page;
90797e6d 2250 unsigned long last_pfn = 0; /* suppress gcc warning */
e2273302 2251 int ret;
6c085a72 2252 gfp_t gfp;
e5281ccd 2253
6c085a72
CW
2254 /* Assert that the object is not currently in any GPU domain. As it
2255 * wasn't in the GTT, there shouldn't be any way it could have been in
2256 * a GPU cache
2257 */
2258 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2259 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2260
9da3da66
CW
2261 st = kmalloc(sizeof(*st), GFP_KERNEL);
2262 if (st == NULL)
2263 return -ENOMEM;
2264
05394f39 2265 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2266 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2267 kfree(st);
e5281ccd 2268 return -ENOMEM;
9da3da66 2269 }
e5281ccd 2270
9da3da66
CW
2271 /* Get the list of pages out of our struct file. They'll be pinned
2272 * at this point until we release them.
2273 *
2274 * Fail silently without starting the shrinker
2275 */
496ad9aa 2276 mapping = file_inode(obj->base.filp)->i_mapping;
c62d2555 2277 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
d0164adc 2278 gfp |= __GFP_NORETRY | __GFP_NOWARN;
90797e6d
ID
2279 sg = st->sgl;
2280 st->nents = 0;
2281 for (i = 0; i < page_count; i++) {
6c085a72
CW
2282 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2283 if (IS_ERR(page)) {
21ab4e74
CW
2284 i915_gem_shrink(dev_priv,
2285 page_count,
2286 I915_SHRINK_BOUND |
2287 I915_SHRINK_UNBOUND |
2288 I915_SHRINK_PURGEABLE);
6c085a72
CW
2289 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2290 }
2291 if (IS_ERR(page)) {
2292 /* We've tried hard to allocate the memory by reaping
2293 * our own buffer, now let the real VM do its job and
2294 * go down in flames if truly OOM.
2295 */
6c085a72 2296 i915_gem_shrink_all(dev_priv);
f461d1be 2297 page = shmem_read_mapping_page(mapping, i);
e2273302
ID
2298 if (IS_ERR(page)) {
2299 ret = PTR_ERR(page);
6c085a72 2300 goto err_pages;
e2273302 2301 }
6c085a72 2302 }
426729dc
KRW
2303#ifdef CONFIG_SWIOTLB
2304 if (swiotlb_nr_tbl()) {
2305 st->nents++;
2306 sg_set_page(sg, page, PAGE_SIZE, 0);
2307 sg = sg_next(sg);
2308 continue;
2309 }
2310#endif
90797e6d
ID
2311 if (!i || page_to_pfn(page) != last_pfn + 1) {
2312 if (i)
2313 sg = sg_next(sg);
2314 st->nents++;
2315 sg_set_page(sg, page, PAGE_SIZE, 0);
2316 } else {
2317 sg->length += PAGE_SIZE;
2318 }
2319 last_pfn = page_to_pfn(page);
3bbbe706
DV
2320
2321 /* Check that the i965g/gm workaround works. */
2322 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2323 }
426729dc
KRW
2324#ifdef CONFIG_SWIOTLB
2325 if (!swiotlb_nr_tbl())
2326#endif
2327 sg_mark_end(sg);
74ce6b6c
CW
2328 obj->pages = st;
2329
e2273302
ID
2330 ret = i915_gem_gtt_prepare_object(obj);
2331 if (ret)
2332 goto err_pages;
2333
6dacfd2f 2334 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2335 i915_gem_object_do_bit_17_swizzle(obj);
2336
656bfa3a
DV
2337 if (obj->tiling_mode != I915_TILING_NONE &&
2338 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2339 i915_gem_object_pin_pages(obj);
2340
e5281ccd
CW
2341 return 0;
2342
2343err_pages:
90797e6d 2344 sg_mark_end(sg);
85d1225e
DG
2345 for_each_sgt_page(page, sgt_iter, st)
2346 put_page(page);
9da3da66
CW
2347 sg_free_table(st);
2348 kfree(st);
0820baf3
CW
2349
2350 /* shmemfs first checks if there is enough memory to allocate the page
2351 * and reports ENOSPC should there be insufficient, along with the usual
2352 * ENOMEM for a genuine allocation failure.
2353 *
2354 * We use ENOSPC in our driver to mean that we have run out of aperture
2355 * space and so want to translate the error from shmemfs back to our
2356 * usual understanding of ENOMEM.
2357 */
e2273302
ID
2358 if (ret == -ENOSPC)
2359 ret = -ENOMEM;
2360
2361 return ret;
673a394b
EA
2362}
2363
37e680a1
CW
2364/* Ensure that the associated pages are gathered from the backing storage
2365 * and pinned into our object. i915_gem_object_get_pages() may be called
2366 * multiple times before they are released by a single call to
2367 * i915_gem_object_put_pages() - once the pages are no longer referenced
2368 * either as a result of memory pressure (reaping pages under the shrinker)
2369 * or as the object is itself released.
2370 */
2371int
2372i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2373{
2374 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2375 const struct drm_i915_gem_object_ops *ops = obj->ops;
2376 int ret;
2377
2f745ad3 2378 if (obj->pages)
37e680a1
CW
2379 return 0;
2380
43e28f09 2381 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2382 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2383 return -EFAULT;
43e28f09
CW
2384 }
2385
a5570178
CW
2386 BUG_ON(obj->pages_pin_count);
2387
37e680a1
CW
2388 ret = ops->get_pages(obj);
2389 if (ret)
2390 return ret;
2391
35c20a60 2392 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
ee286370
CW
2393
2394 obj->get_page.sg = obj->pages->sgl;
2395 obj->get_page.last = 0;
2396
37e680a1 2397 return 0;
673a394b
EA
2398}
2399
dd6034c6
DG
2400/* The 'mapping' part of i915_gem_object_pin_map() below */
2401static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2402{
2403 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2404 struct sg_table *sgt = obj->pages;
85d1225e
DG
2405 struct sgt_iter sgt_iter;
2406 struct page *page;
b338fa47
DG
2407 struct page *stack_pages[32];
2408 struct page **pages = stack_pages;
dd6034c6
DG
2409 unsigned long i = 0;
2410 void *addr;
2411
2412 /* A single page can always be kmapped */
2413 if (n_pages == 1)
2414 return kmap(sg_page(sgt->sgl));
2415
b338fa47
DG
2416 if (n_pages > ARRAY_SIZE(stack_pages)) {
2417 /* Too big for stack -- allocate temporary array instead */
2418 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2419 if (!pages)
2420 return NULL;
2421 }
dd6034c6 2422
85d1225e
DG
2423 for_each_sgt_page(page, sgt_iter, sgt)
2424 pages[i++] = page;
dd6034c6
DG
2425
2426 /* Check that we have the expected number of pages */
2427 GEM_BUG_ON(i != n_pages);
2428
2429 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2430
b338fa47
DG
2431 if (pages != stack_pages)
2432 drm_free_large(pages);
dd6034c6
DG
2433
2434 return addr;
2435}
2436
2437/* get, pin, and map the pages of the object into kernel space */
0a798eb9
CW
2438void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2439{
2440 int ret;
2441
2442 lockdep_assert_held(&obj->base.dev->struct_mutex);
2443
2444 ret = i915_gem_object_get_pages(obj);
2445 if (ret)
2446 return ERR_PTR(ret);
2447
2448 i915_gem_object_pin_pages(obj);
2449
dd6034c6
DG
2450 if (!obj->mapping) {
2451 obj->mapping = i915_gem_object_map(obj);
2452 if (!obj->mapping) {
0a798eb9
CW
2453 i915_gem_object_unpin_pages(obj);
2454 return ERR_PTR(-ENOMEM);
2455 }
2456 }
2457
2458 return obj->mapping;
2459}
2460
b4716185 2461void i915_vma_move_to_active(struct i915_vma *vma,
b2af0376 2462 struct drm_i915_gem_request *req)
673a394b 2463{
b4716185 2464 struct drm_i915_gem_object *obj = vma->obj;
e2f80391 2465 struct intel_engine_cs *engine;
b2af0376 2466
666796da 2467 engine = i915_gem_request_get_engine(req);
673a394b
EA
2468
2469 /* Add a reference if we're newly entering the active list. */
b4716185 2470 if (obj->active == 0)
05394f39 2471 drm_gem_object_reference(&obj->base);
666796da 2472 obj->active |= intel_engine_flag(engine);
e35a41de 2473
117897f4 2474 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
e2f80391 2475 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
caea7476 2476
1c7f4bca 2477 list_move_tail(&vma->vm_link, &vma->vm->active_list);
caea7476
CW
2478}
2479
b4716185
CW
2480static void
2481i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
e2d05a8b 2482{
d501b1d2
CW
2483 GEM_BUG_ON(obj->last_write_req == NULL);
2484 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
b4716185
CW
2485
2486 i915_gem_request_assign(&obj->last_write_req, NULL);
de152b62 2487 intel_fb_obj_flush(obj, true, ORIGIN_CS);
e2d05a8b
BW
2488}
2489
caea7476 2490static void
b4716185 2491i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
ce44b0ea 2492{
feb822cf 2493 struct i915_vma *vma;
ce44b0ea 2494
d501b1d2
CW
2495 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2496 GEM_BUG_ON(!(obj->active & (1 << ring)));
b4716185 2497
117897f4 2498 list_del_init(&obj->engine_list[ring]);
b4716185
CW
2499 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2500
4a570db5 2501 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
b4716185
CW
2502 i915_gem_object_retire__write(obj);
2503
2504 obj->active &= ~(1 << ring);
2505 if (obj->active)
2506 return;
caea7476 2507
6c246959
CW
2508 /* Bump our place on the bound list to keep it roughly in LRU order
2509 * so that we don't steal from recently used but inactive objects
2510 * (unless we are forced to ofc!)
2511 */
2512 list_move_tail(&obj->global_list,
2513 &to_i915(obj->base.dev)->mm.bound_list);
2514
1c7f4bca
CW
2515 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2516 if (!list_empty(&vma->vm_link))
2517 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
feb822cf 2518 }
caea7476 2519
97b2a6a1 2520 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476 2521 drm_gem_object_unreference(&obj->base);
c8725f3d
CW
2522}
2523
9d773091 2524static int
c033666a 2525i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
53d227f2 2526{
e2f80391 2527 struct intel_engine_cs *engine;
29dcb570 2528 int ret;
53d227f2 2529
107f27a5 2530 /* Carefully retire all requests without writing to the rings */
b4ac5afc 2531 for_each_engine(engine, dev_priv) {
666796da 2532 ret = intel_engine_idle(engine);
107f27a5
CW
2533 if (ret)
2534 return ret;
9d773091 2535 }
c033666a 2536 i915_gem_retire_requests(dev_priv);
107f27a5
CW
2537
2538 /* Finally reset hw state */
29dcb570 2539 for_each_engine(engine, dev_priv)
e2f80391 2540 intel_ring_init_seqno(engine, seqno);
498d2ac1 2541
9d773091 2542 return 0;
53d227f2
DV
2543}
2544
fca26bb4
MK
2545int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2546{
2547 struct drm_i915_private *dev_priv = dev->dev_private;
2548 int ret;
2549
2550 if (seqno == 0)
2551 return -EINVAL;
2552
2553 /* HWS page needs to be set less than what we
2554 * will inject to ring
2555 */
c033666a 2556 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
fca26bb4
MK
2557 if (ret)
2558 return ret;
2559
2560 /* Carefully set the last_seqno value so that wrap
2561 * detection still works
2562 */
2563 dev_priv->next_seqno = seqno;
2564 dev_priv->last_seqno = seqno - 1;
2565 if (dev_priv->last_seqno == 0)
2566 dev_priv->last_seqno--;
2567
2568 return 0;
2569}
2570
9d773091 2571int
c033666a 2572i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
53d227f2 2573{
9d773091
CW
2574 /* reserve 0 for non-seqno */
2575 if (dev_priv->next_seqno == 0) {
c033666a 2576 int ret = i915_gem_init_seqno(dev_priv, 0);
9d773091
CW
2577 if (ret)
2578 return ret;
53d227f2 2579
9d773091
CW
2580 dev_priv->next_seqno = 1;
2581 }
53d227f2 2582
f72b3435 2583 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2584 return 0;
53d227f2
DV
2585}
2586
bf7dc5b7
JH
2587/*
2588 * NB: This function is not allowed to fail. Doing so would mean the the
2589 * request is not being tracked for completion but the work itself is
2590 * going to happen on the hardware. This would be a Bad Thing(tm).
2591 */
75289874 2592void __i915_add_request(struct drm_i915_gem_request *request,
5b4a60c2
JH
2593 struct drm_i915_gem_object *obj,
2594 bool flush_caches)
673a394b 2595{
e2f80391 2596 struct intel_engine_cs *engine;
75289874 2597 struct drm_i915_private *dev_priv;
48e29f55 2598 struct intel_ringbuffer *ringbuf;
6d3d8274 2599 u32 request_start;
0251a963 2600 u32 reserved_tail;
3cce469c
CW
2601 int ret;
2602
48e29f55 2603 if (WARN_ON(request == NULL))
bf7dc5b7 2604 return;
48e29f55 2605
4a570db5 2606 engine = request->engine;
39dabecd 2607 dev_priv = request->i915;
75289874
JH
2608 ringbuf = request->ringbuf;
2609
29b1b415
JH
2610 /*
2611 * To ensure that this call will not fail, space for its emissions
2612 * should already have been reserved in the ring buffer. Let the ring
2613 * know that it is time to use that space up.
2614 */
48e29f55 2615 request_start = intel_ring_get_tail(ringbuf);
0251a963
CW
2616 reserved_tail = request->reserved_space;
2617 request->reserved_space = 0;
2618
cc889e0f
DV
2619 /*
2620 * Emit any outstanding flushes - execbuf can fail to emit the flush
2621 * after having emitted the batchbuffer command. Hence we need to fix
2622 * things up similar to emitting the lazy request. The difference here
2623 * is that the flush _must_ happen before the next request, no matter
2624 * what.
2625 */
5b4a60c2
JH
2626 if (flush_caches) {
2627 if (i915.enable_execlists)
4866d729 2628 ret = logical_ring_flush_all_caches(request);
5b4a60c2 2629 else
4866d729 2630 ret = intel_ring_flush_all_caches(request);
5b4a60c2
JH
2631 /* Not allowed to fail! */
2632 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2633 }
cc889e0f 2634
7c90b7de
CW
2635 trace_i915_gem_request_add(request);
2636
2637 request->head = request_start;
2638
2639 /* Whilst this request exists, batch_obj will be on the
2640 * active_list, and so will hold the active reference. Only when this
2641 * request is retired will the the batch_obj be moved onto the
2642 * inactive_list and lose its active reference. Hence we do not need
2643 * to explicitly hold another reference here.
2644 */
2645 request->batch_obj = obj;
2646
2647 /* Seal the request and mark it as pending execution. Note that
2648 * we may inspect this state, without holding any locks, during
2649 * hangcheck. Hence we apply the barrier to ensure that we do not
2650 * see a more recent value in the hws than we are tracking.
2651 */
2652 request->emitted_jiffies = jiffies;
2653 request->previous_seqno = engine->last_submitted_seqno;
2654 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2655 list_add_tail(&request->list, &engine->request_list);
2656
a71d8d94
CW
2657 /* Record the position of the start of the request so that
2658 * should we detect the updated seqno part-way through the
2659 * GPU processing the request, we never over-estimate the
2660 * position of the head.
2661 */
6d3d8274 2662 request->postfix = intel_ring_get_tail(ringbuf);
a71d8d94 2663
bf7dc5b7 2664 if (i915.enable_execlists)
e2f80391 2665 ret = engine->emit_request(request);
bf7dc5b7 2666 else {
e2f80391 2667 ret = engine->add_request(request);
53292cdb
MT
2668
2669 request->tail = intel_ring_get_tail(ringbuf);
48e29f55 2670 }
bf7dc5b7
JH
2671 /* Not allowed to fail! */
2672 WARN(ret, "emit|add_request failed: %d!\n", ret);
673a394b 2673
c033666a 2674 i915_queue_hangcheck(engine->i915);
10cd45b6 2675
87255483
DV
2676 queue_delayed_work(dev_priv->wq,
2677 &dev_priv->mm.retire_work,
2678 round_jiffies_up_relative(HZ));
7d993739 2679 intel_mark_busy(dev_priv);
cc889e0f 2680
29b1b415 2681 /* Sanity check that the reserved size was large enough. */
0251a963
CW
2682 ret = intel_ring_get_tail(ringbuf) - request_start;
2683 if (ret < 0)
2684 ret += ringbuf->size;
2685 WARN_ONCE(ret > reserved_tail,
2686 "Not enough space reserved (%d bytes) "
2687 "for adding the request (%d bytes)\n",
2688 reserved_tail, ret);
673a394b
EA
2689}
2690
939fd762 2691static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2692 const struct intel_context *ctx)
be62acb4 2693{
44e2c070 2694 unsigned long elapsed;
be62acb4 2695
44e2c070
MK
2696 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2697
2698 if (ctx->hang_stats.banned)
be62acb4
MK
2699 return true;
2700
676fa572
CW
2701 if (ctx->hang_stats.ban_period_seconds &&
2702 elapsed <= ctx->hang_stats.ban_period_seconds) {
ccc7bed0 2703 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2704 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2705 return true;
88b4aa87
MK
2706 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2707 if (i915_stop_ring_allow_warn(dev_priv))
2708 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2709 return true;
3fac8978 2710 }
be62acb4
MK
2711 }
2712
2713 return false;
2714}
2715
939fd762 2716static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2717 struct intel_context *ctx,
b6b0fac0 2718 const bool guilty)
aa60c664 2719{
44e2c070
MK
2720 struct i915_ctx_hang_stats *hs;
2721
2722 if (WARN_ON(!ctx))
2723 return;
aa60c664 2724
44e2c070
MK
2725 hs = &ctx->hang_stats;
2726
2727 if (guilty) {
939fd762 2728 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2729 hs->batch_active++;
2730 hs->guilty_ts = get_seconds();
2731 } else {
2732 hs->batch_pending++;
aa60c664
MK
2733 }
2734}
2735
abfe262a
JH
2736void i915_gem_request_free(struct kref *req_ref)
2737{
2738 struct drm_i915_gem_request *req = container_of(req_ref,
2739 typeof(*req), ref);
efab6d8d 2740 kmem_cache_free(req->i915->requests, req);
0e50e96b
MK
2741}
2742
26827088 2743static inline int
0bc40be8 2744__i915_gem_request_alloc(struct intel_engine_cs *engine,
26827088
DG
2745 struct intel_context *ctx,
2746 struct drm_i915_gem_request **req_out)
6689cb2b 2747{
c033666a 2748 struct drm_i915_private *dev_priv = engine->i915;
299259a3 2749 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
eed29a5b 2750 struct drm_i915_gem_request *req;
6689cb2b 2751 int ret;
6689cb2b 2752
217e46b5
JH
2753 if (!req_out)
2754 return -EINVAL;
2755
bccca494 2756 *req_out = NULL;
6689cb2b 2757
f4457ae7
CW
2758 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2759 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2760 * and restart.
2761 */
2762 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
299259a3
CW
2763 if (ret)
2764 return ret;
2765
eed29a5b
DV
2766 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2767 if (req == NULL)
6689cb2b
JH
2768 return -ENOMEM;
2769
c033666a 2770 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
9a0c1e27
CW
2771 if (ret)
2772 goto err;
6689cb2b 2773
40e895ce
JH
2774 kref_init(&req->ref);
2775 req->i915 = dev_priv;
4a570db5 2776 req->engine = engine;
299259a3 2777 req->reset_counter = reset_counter;
40e895ce
JH
2778 req->ctx = ctx;
2779 i915_gem_context_reference(req->ctx);
6689cb2b 2780
29b1b415
JH
2781 /*
2782 * Reserve space in the ring buffer for all the commands required to
2783 * eventually emit this request. This is to guarantee that the
2784 * i915_add_request() call can't fail. Note that the reserve may need
2785 * to be redone if the request is not actually submitted straight
2786 * away, e.g. because a GPU scheduler has deferred it.
29b1b415 2787 */
0251a963 2788 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
bfa01200
CW
2789
2790 if (i915.enable_execlists)
2791 ret = intel_logical_ring_alloc_request_extras(req);
2792 else
2793 ret = intel_ring_alloc_request_extras(req);
2794 if (ret)
2795 goto err_ctx;
29b1b415 2796
bccca494 2797 *req_out = req;
6689cb2b 2798 return 0;
9a0c1e27 2799
bfa01200
CW
2800err_ctx:
2801 i915_gem_context_unreference(ctx);
9a0c1e27
CW
2802err:
2803 kmem_cache_free(dev_priv->requests, req);
2804 return ret;
0e50e96b
MK
2805}
2806
26827088
DG
2807/**
2808 * i915_gem_request_alloc - allocate a request structure
2809 *
2810 * @engine: engine that we wish to issue the request on.
2811 * @ctx: context that the request will be associated with.
2812 * This can be NULL if the request is not directly related to
2813 * any specific user context, in which case this function will
2814 * choose an appropriate context to use.
2815 *
2816 * Returns a pointer to the allocated request if successful,
2817 * or an error code if not.
2818 */
2819struct drm_i915_gem_request *
2820i915_gem_request_alloc(struct intel_engine_cs *engine,
2821 struct intel_context *ctx)
2822{
2823 struct drm_i915_gem_request *req;
2824 int err;
2825
2826 if (ctx == NULL)
c033666a 2827 ctx = engine->i915->kernel_context;
26827088
DG
2828 err = __i915_gem_request_alloc(engine, ctx, &req);
2829 return err ? ERR_PTR(err) : req;
2830}
2831
8d9fc7fd 2832struct drm_i915_gem_request *
0bc40be8 2833i915_gem_find_active_request(struct intel_engine_cs *engine)
9375e446 2834{
4db080f9
CW
2835 struct drm_i915_gem_request *request;
2836
0bc40be8 2837 list_for_each_entry(request, &engine->request_list, list) {
1b5a433a 2838 if (i915_gem_request_completed(request, false))
4db080f9 2839 continue;
aa60c664 2840
b6b0fac0 2841 return request;
4db080f9 2842 }
b6b0fac0
MK
2843
2844 return NULL;
2845}
2846
666796da 2847static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
0bc40be8 2848 struct intel_engine_cs *engine)
b6b0fac0
MK
2849{
2850 struct drm_i915_gem_request *request;
2851 bool ring_hung;
2852
0bc40be8 2853 request = i915_gem_find_active_request(engine);
b6b0fac0
MK
2854
2855 if (request == NULL)
2856 return;
2857
0bc40be8 2858 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
b6b0fac0 2859
939fd762 2860 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0 2861
0bc40be8 2862 list_for_each_entry_continue(request, &engine->request_list, list)
939fd762 2863 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2864}
aa60c664 2865
666796da 2866static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
0bc40be8 2867 struct intel_engine_cs *engine)
4db080f9 2868{
608c1a52
CW
2869 struct intel_ringbuffer *buffer;
2870
0bc40be8 2871 while (!list_empty(&engine->active_list)) {
05394f39 2872 struct drm_i915_gem_object *obj;
9375e446 2873
0bc40be8 2874 obj = list_first_entry(&engine->active_list,
05394f39 2875 struct drm_i915_gem_object,
117897f4 2876 engine_list[engine->id]);
9375e446 2877
0bc40be8 2878 i915_gem_object_retire__read(obj, engine->id);
673a394b 2879 }
1d62beea 2880
dcb4c12a
OM
2881 /*
2882 * Clear the execlists queue up before freeing the requests, as those
2883 * are the ones that keep the context and ringbuffer backing objects
2884 * pinned in place.
2885 */
dcb4c12a 2886
7de1691a 2887 if (i915.enable_execlists) {
27af5eea
TU
2888 /* Ensure irq handler finishes or is cancelled. */
2889 tasklet_kill(&engine->irq_tasklet);
1197b4f2 2890
e39d42fa 2891 intel_execlists_cancel_requests(engine);
dcb4c12a
OM
2892 }
2893
1d62beea
BW
2894 /*
2895 * We must free the requests after all the corresponding objects have
2896 * been moved off active lists. Which is the same order as the normal
2897 * retire_requests function does. This is important if object hold
2898 * implicit references on things like e.g. ppgtt address spaces through
2899 * the request.
2900 */
0bc40be8 2901 while (!list_empty(&engine->request_list)) {
1d62beea
BW
2902 struct drm_i915_gem_request *request;
2903
0bc40be8 2904 request = list_first_entry(&engine->request_list,
1d62beea
BW
2905 struct drm_i915_gem_request,
2906 list);
2907
b4716185 2908 i915_gem_request_retire(request);
1d62beea 2909 }
608c1a52
CW
2910
2911 /* Having flushed all requests from all queues, we know that all
2912 * ringbuffers must now be empty. However, since we do not reclaim
2913 * all space when retiring the request (to prevent HEADs colliding
2914 * with rapid ringbuffer wraparound) the amount of available space
2915 * upon reset is less than when we start. Do one more pass over
2916 * all the ringbuffers to reset last_retired_head.
2917 */
0bc40be8 2918 list_for_each_entry(buffer, &engine->buffers, link) {
608c1a52
CW
2919 buffer->last_retired_head = buffer->tail;
2920 intel_ring_update_space(buffer);
2921 }
2ed53a94
CW
2922
2923 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
673a394b
EA
2924}
2925
069efc1d 2926void i915_gem_reset(struct drm_device *dev)
673a394b 2927{
77f01230 2928 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 2929 struct intel_engine_cs *engine;
673a394b 2930
4db080f9
CW
2931 /*
2932 * Before we free the objects from the requests, we need to inspect
2933 * them for finding the guilty party. As the requests only borrow
2934 * their reference to the objects, the inspection must be done first.
2935 */
b4ac5afc 2936 for_each_engine(engine, dev_priv)
666796da 2937 i915_gem_reset_engine_status(dev_priv, engine);
4db080f9 2938
b4ac5afc 2939 for_each_engine(engine, dev_priv)
666796da 2940 i915_gem_reset_engine_cleanup(dev_priv, engine);
dfaae392 2941
acce9ffa
BW
2942 i915_gem_context_reset(dev);
2943
19b2dbde 2944 i915_gem_restore_fences(dev);
b4716185
CW
2945
2946 WARN_ON(i915_verify_lists(dev));
673a394b
EA
2947}
2948
2949/**
2950 * This function clears the request list as sequence numbers are passed.
2951 */
1cf0ba14 2952void
0bc40be8 2953i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
673a394b 2954{
0bc40be8 2955 WARN_ON(i915_verify_lists(engine->dev));
673a394b 2956
832a3aad
CW
2957 /* Retire requests first as we use it above for the early return.
2958 * If we retire requests last, we may use a later seqno and so clear
2959 * the requests lists without clearing the active list, leading to
2960 * confusion.
e9103038 2961 */
0bc40be8 2962 while (!list_empty(&engine->request_list)) {
673a394b 2963 struct drm_i915_gem_request *request;
673a394b 2964
0bc40be8 2965 request = list_first_entry(&engine->request_list,
673a394b
EA
2966 struct drm_i915_gem_request,
2967 list);
673a394b 2968
1b5a433a 2969 if (!i915_gem_request_completed(request, true))
b84d5f0c
CW
2970 break;
2971
b4716185 2972 i915_gem_request_retire(request);
b84d5f0c 2973 }
673a394b 2974
832a3aad
CW
2975 /* Move any buffers on the active list that are no longer referenced
2976 * by the ringbuffer to the flushing/inactive lists as appropriate,
2977 * before we free the context associated with the requests.
2978 */
0bc40be8 2979 while (!list_empty(&engine->active_list)) {
832a3aad
CW
2980 struct drm_i915_gem_object *obj;
2981
0bc40be8
TU
2982 obj = list_first_entry(&engine->active_list,
2983 struct drm_i915_gem_object,
117897f4 2984 engine_list[engine->id]);
832a3aad 2985
0bc40be8 2986 if (!list_empty(&obj->last_read_req[engine->id]->list))
832a3aad
CW
2987 break;
2988
0bc40be8 2989 i915_gem_object_retire__read(obj, engine->id);
832a3aad
CW
2990 }
2991
0bc40be8
TU
2992 if (unlikely(engine->trace_irq_req &&
2993 i915_gem_request_completed(engine->trace_irq_req, true))) {
2994 engine->irq_put(engine);
2995 i915_gem_request_assign(&engine->trace_irq_req, NULL);
9d34e5db 2996 }
23bc5982 2997
0bc40be8 2998 WARN_ON(i915_verify_lists(engine->dev));
673a394b
EA
2999}
3000
b29c19b6 3001bool
c033666a 3002i915_gem_retire_requests(struct drm_i915_private *dev_priv)
b09a1fec 3003{
e2f80391 3004 struct intel_engine_cs *engine;
b29c19b6 3005 bool idle = true;
b09a1fec 3006
b4ac5afc 3007 for_each_engine(engine, dev_priv) {
e2f80391
TU
3008 i915_gem_retire_requests_ring(engine);
3009 idle &= list_empty(&engine->request_list);
c86ee3a9 3010 if (i915.enable_execlists) {
27af5eea 3011 spin_lock_bh(&engine->execlist_lock);
e2f80391 3012 idle &= list_empty(&engine->execlist_queue);
27af5eea 3013 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 3014 }
b29c19b6
CW
3015 }
3016
3017 if (idle)
3018 mod_delayed_work(dev_priv->wq,
3019 &dev_priv->mm.idle_work,
3020 msecs_to_jiffies(100));
3021
3022 return idle;
b09a1fec
CW
3023}
3024
75ef9da2 3025static void
673a394b
EA
3026i915_gem_retire_work_handler(struct work_struct *work)
3027{
b29c19b6
CW
3028 struct drm_i915_private *dev_priv =
3029 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3030 struct drm_device *dev = dev_priv->dev;
0a58705b 3031 bool idle;
673a394b 3032
891b48cf 3033 /* Come back later if the device is busy... */
b29c19b6
CW
3034 idle = false;
3035 if (mutex_trylock(&dev->struct_mutex)) {
c033666a 3036 idle = i915_gem_retire_requests(dev_priv);
b29c19b6 3037 mutex_unlock(&dev->struct_mutex);
673a394b 3038 }
b29c19b6 3039 if (!idle)
bcb45086
CW
3040 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3041 round_jiffies_up_relative(HZ));
b29c19b6 3042}
0a58705b 3043
b29c19b6
CW
3044static void
3045i915_gem_idle_work_handler(struct work_struct *work)
3046{
3047 struct drm_i915_private *dev_priv =
3048 container_of(work, typeof(*dev_priv), mm.idle_work.work);
35c94185 3049 struct drm_device *dev = dev_priv->dev;
b4ac5afc 3050 struct intel_engine_cs *engine;
b29c19b6 3051
b4ac5afc
DG
3052 for_each_engine(engine, dev_priv)
3053 if (!list_empty(&engine->request_list))
423795cb 3054 return;
35c94185 3055
30ecad77 3056 /* we probably should sync with hangcheck here, using cancel_work_sync.
b4ac5afc 3057 * Also locking seems to be fubar here, engine->request_list is protected
30ecad77
DV
3058 * by dev->struct_mutex. */
3059
7d993739 3060 intel_mark_idle(dev_priv);
35c94185
CW
3061
3062 if (mutex_trylock(&dev->struct_mutex)) {
b4ac5afc 3063 for_each_engine(engine, dev_priv)
e2f80391 3064 i915_gem_batch_pool_fini(&engine->batch_pool);
b29c19b6 3065
35c94185
CW
3066 mutex_unlock(&dev->struct_mutex);
3067 }
673a394b
EA
3068}
3069
30dfebf3
DV
3070/**
3071 * Ensures that an object will eventually get non-busy by flushing any required
3072 * write domains, emitting any outstanding lazy request and retiring and
3073 * completed requests.
3074 */
3075static int
3076i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3077{
a5ac0f90 3078 int i;
b4716185
CW
3079
3080 if (!obj->active)
3081 return 0;
30dfebf3 3082
666796da 3083 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185 3084 struct drm_i915_gem_request *req;
41c52415 3085
b4716185
CW
3086 req = obj->last_read_req[i];
3087 if (req == NULL)
3088 continue;
3089
e6db7469 3090 if (i915_gem_request_completed(req, true))
b4716185 3091 i915_gem_object_retire__read(obj, i);
30dfebf3
DV
3092 }
3093
3094 return 0;
3095}
3096
23ba4fd0
BW
3097/**
3098 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3099 * @DRM_IOCTL_ARGS: standard ioctl arguments
3100 *
3101 * Returns 0 if successful, else an error is returned with the remaining time in
3102 * the timeout parameter.
3103 * -ETIME: object is still busy after timeout
3104 * -ERESTARTSYS: signal interrupted the wait
3105 * -ENONENT: object doesn't exist
3106 * Also possible, but rare:
3107 * -EAGAIN: GPU wedged
3108 * -ENOMEM: damn
3109 * -ENODEV: Internal IRQ fail
3110 * -E?: The add request failed
3111 *
3112 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3113 * non-zero timeout parameter the wait ioctl will wait for the given number of
3114 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3115 * without holding struct_mutex the object may become re-busied before this
3116 * function completes. A similar but shorter * race condition exists in the busy
3117 * ioctl
3118 */
3119int
3120i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3121{
3122 struct drm_i915_gem_wait *args = data;
3123 struct drm_i915_gem_object *obj;
666796da 3124 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185
CW
3125 int i, n = 0;
3126 int ret;
23ba4fd0 3127
11b5d511
DV
3128 if (args->flags != 0)
3129 return -EINVAL;
3130
23ba4fd0
BW
3131 ret = i915_mutex_lock_interruptible(dev);
3132 if (ret)
3133 return ret;
3134
3135 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3136 if (&obj->base == NULL) {
3137 mutex_unlock(&dev->struct_mutex);
3138 return -ENOENT;
3139 }
3140
30dfebf3
DV
3141 /* Need to make sure the object gets inactive eventually. */
3142 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
3143 if (ret)
3144 goto out;
3145
b4716185 3146 if (!obj->active)
97b2a6a1 3147 goto out;
23ba4fd0 3148
23ba4fd0 3149 /* Do this after OLR check to make sure we make forward progress polling
762e4583 3150 * on this IOCTL with a timeout == 0 (like busy ioctl)
23ba4fd0 3151 */
762e4583 3152 if (args->timeout_ns == 0) {
23ba4fd0
BW
3153 ret = -ETIME;
3154 goto out;
3155 }
3156
3157 drm_gem_object_unreference(&obj->base);
b4716185 3158
666796da 3159 for (i = 0; i < I915_NUM_ENGINES; i++) {
b4716185
CW
3160 if (obj->last_read_req[i] == NULL)
3161 continue;
3162
3163 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3164 }
3165
23ba4fd0
BW
3166 mutex_unlock(&dev->struct_mutex);
3167
b4716185
CW
3168 for (i = 0; i < n; i++) {
3169 if (ret == 0)
299259a3 3170 ret = __i915_wait_request(req[i], true,
b4716185 3171 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
b6aa0873 3172 to_rps_client(file));
73db04cf 3173 i915_gem_request_unreference(req[i]);
b4716185 3174 }
ff865885 3175 return ret;
23ba4fd0
BW
3176
3177out:
3178 drm_gem_object_unreference(&obj->base);
3179 mutex_unlock(&dev->struct_mutex);
3180 return ret;
3181}
3182
b4716185
CW
3183static int
3184__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3185 struct intel_engine_cs *to,
91af127f
JH
3186 struct drm_i915_gem_request *from_req,
3187 struct drm_i915_gem_request **to_req)
b4716185
CW
3188{
3189 struct intel_engine_cs *from;
3190 int ret;
3191
666796da 3192 from = i915_gem_request_get_engine(from_req);
b4716185
CW
3193 if (to == from)
3194 return 0;
3195
91af127f 3196 if (i915_gem_request_completed(from_req, true))
b4716185
CW
3197 return 0;
3198
c033666a 3199 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
a6f766f3 3200 struct drm_i915_private *i915 = to_i915(obj->base.dev);
91af127f 3201 ret = __i915_wait_request(from_req,
a6f766f3
CW
3202 i915->mm.interruptible,
3203 NULL,
3204 &i915->rps.semaphores);
b4716185
CW
3205 if (ret)
3206 return ret;
3207
91af127f 3208 i915_gem_object_retire_request(obj, from_req);
b4716185
CW
3209 } else {
3210 int idx = intel_ring_sync_index(from, to);
91af127f
JH
3211 u32 seqno = i915_gem_request_get_seqno(from_req);
3212
3213 WARN_ON(!to_req);
b4716185
CW
3214
3215 if (seqno <= from->semaphore.sync_seqno[idx])
3216 return 0;
3217
91af127f 3218 if (*to_req == NULL) {
26827088
DG
3219 struct drm_i915_gem_request *req;
3220
3221 req = i915_gem_request_alloc(to, NULL);
3222 if (IS_ERR(req))
3223 return PTR_ERR(req);
3224
3225 *to_req = req;
91af127f
JH
3226 }
3227
599d924c
JH
3228 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3229 ret = to->semaphore.sync_to(*to_req, from, seqno);
b4716185
CW
3230 if (ret)
3231 return ret;
3232
3233 /* We use last_read_req because sync_to()
3234 * might have just caused seqno wrap under
3235 * the radar.
3236 */
3237 from->semaphore.sync_seqno[idx] =
3238 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3239 }
3240
3241 return 0;
3242}
3243
5816d648
BW
3244/**
3245 * i915_gem_object_sync - sync an object to a ring.
3246 *
3247 * @obj: object which may be in use on another ring.
3248 * @to: ring we wish to use the object on. May be NULL.
91af127f
JH
3249 * @to_req: request we wish to use the object for. See below.
3250 * This will be allocated and returned if a request is
3251 * required but not passed in.
5816d648
BW
3252 *
3253 * This code is meant to abstract object synchronization with the GPU.
3254 * Calling with NULL implies synchronizing the object with the CPU
b4716185 3255 * rather than a particular GPU ring. Conceptually we serialise writes
91af127f 3256 * between engines inside the GPU. We only allow one engine to write
b4716185
CW
3257 * into a buffer at any time, but multiple readers. To ensure each has
3258 * a coherent view of memory, we must:
3259 *
3260 * - If there is an outstanding write request to the object, the new
3261 * request must wait for it to complete (either CPU or in hw, requests
3262 * on the same ring will be naturally ordered).
3263 *
3264 * - If we are a write request (pending_write_domain is set), the new
3265 * request must wait for outstanding read requests to complete.
5816d648 3266 *
91af127f
JH
3267 * For CPU synchronisation (NULL to) no request is required. For syncing with
3268 * rings to_req must be non-NULL. However, a request does not have to be
3269 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3270 * request will be allocated automatically and returned through *to_req. Note
3271 * that it is not guaranteed that commands will be emitted (because the system
3272 * might already be idle). Hence there is no need to create a request that
3273 * might never have any work submitted. Note further that if a request is
3274 * returned in *to_req, it is the responsibility of the caller to submit
3275 * that request (after potentially adding more work to it).
3276 *
5816d648
BW
3277 * Returns 0 if successful, else propagates up the lower layer error.
3278 */
2911a35b
BW
3279int
3280i915_gem_object_sync(struct drm_i915_gem_object *obj,
91af127f
JH
3281 struct intel_engine_cs *to,
3282 struct drm_i915_gem_request **to_req)
2911a35b 3283{
b4716185 3284 const bool readonly = obj->base.pending_write_domain == 0;
666796da 3285 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
b4716185 3286 int ret, i, n;
41c52415 3287
b4716185 3288 if (!obj->active)
2911a35b
BW
3289 return 0;
3290
b4716185
CW
3291 if (to == NULL)
3292 return i915_gem_object_wait_rendering(obj, readonly);
2911a35b 3293
b4716185
CW
3294 n = 0;
3295 if (readonly) {
3296 if (obj->last_write_req)
3297 req[n++] = obj->last_write_req;
3298 } else {
666796da 3299 for (i = 0; i < I915_NUM_ENGINES; i++)
b4716185
CW
3300 if (obj->last_read_req[i])
3301 req[n++] = obj->last_read_req[i];
3302 }
3303 for (i = 0; i < n; i++) {
91af127f 3304 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
b4716185
CW
3305 if (ret)
3306 return ret;
3307 }
2911a35b 3308
b4716185 3309 return 0;
2911a35b
BW
3310}
3311
b5ffc9bc
CW
3312static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3313{
3314 u32 old_write_domain, old_read_domains;
3315
b5ffc9bc
CW
3316 /* Force a pagefault for domain tracking on next user access */
3317 i915_gem_release_mmap(obj);
3318
b97c3d9c
KP
3319 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3320 return;
3321
b5ffc9bc
CW
3322 old_read_domains = obj->base.read_domains;
3323 old_write_domain = obj->base.write_domain;
3324
3325 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3326 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3327
3328 trace_i915_gem_object_change_domain(obj,
3329 old_read_domains,
3330 old_write_domain);
3331}
3332
8ef8561f
CW
3333static void __i915_vma_iounmap(struct i915_vma *vma)
3334{
3335 GEM_BUG_ON(vma->pin_count);
3336
3337 if (vma->iomap == NULL)
3338 return;
3339
3340 io_mapping_unmap(vma->iomap);
3341 vma->iomap = NULL;
3342}
3343
e9f24d5f 3344static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
673a394b 3345{
07fe0b12 3346 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3347 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3348 int ret;
673a394b 3349
1c7f4bca 3350 if (list_empty(&vma->obj_link))
673a394b
EA
3351 return 0;
3352
0ff501cb
DV
3353 if (!drm_mm_node_allocated(&vma->node)) {
3354 i915_gem_vma_destroy(vma);
0ff501cb
DV
3355 return 0;
3356 }
433544bd 3357
d7f46fc4 3358 if (vma->pin_count)
31d8d651 3359 return -EBUSY;
673a394b 3360
c4670ad0
CW
3361 BUG_ON(obj->pages == NULL);
3362
e9f24d5f
TU
3363 if (wait) {
3364 ret = i915_gem_object_wait_rendering(obj, false);
3365 if (ret)
3366 return ret;
3367 }
a8198eea 3368
596c5923 3369 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
8b1bc9b4 3370 i915_gem_object_finish_gtt(obj);
5323fd04 3371
8b1bc9b4
DV
3372 /* release the fence reg _after_ flushing */
3373 ret = i915_gem_object_put_fence(obj);
3374 if (ret)
3375 return ret;
8ef8561f
CW
3376
3377 __i915_vma_iounmap(vma);
8b1bc9b4 3378 }
96b47b65 3379
07fe0b12 3380 trace_i915_vma_unbind(vma);
db53a302 3381
777dc5bb 3382 vma->vm->unbind_vma(vma);
5e562f1d 3383 vma->bound = 0;
6f65e29a 3384
1c7f4bca 3385 list_del_init(&vma->vm_link);
596c5923 3386 if (vma->is_ggtt) {
fe14d5f4
TU
3387 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3388 obj->map_and_fenceable = false;
3389 } else if (vma->ggtt_view.pages) {
3390 sg_free_table(vma->ggtt_view.pages);
3391 kfree(vma->ggtt_view.pages);
fe14d5f4 3392 }
016a65a3 3393 vma->ggtt_view.pages = NULL;
fe14d5f4 3394 }
673a394b 3395
2f633156
BW
3396 drm_mm_remove_node(&vma->node);
3397 i915_gem_vma_destroy(vma);
3398
3399 /* Since the unbound list is global, only move to that list if
b93dab6e 3400 * no more VMAs exist. */
e2273302 3401 if (list_empty(&obj->vma_list))
2f633156 3402 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
673a394b 3403
70903c3b
CW
3404 /* And finally now the object is completely decoupled from this vma,
3405 * we can drop its hold on the backing storage and allow it to be
3406 * reaped by the shrinker.
3407 */
3408 i915_gem_object_unpin_pages(obj);
3409
88241785 3410 return 0;
54cf91dc
CW
3411}
3412
e9f24d5f
TU
3413int i915_vma_unbind(struct i915_vma *vma)
3414{
3415 return __i915_vma_unbind(vma, true);
3416}
3417
3418int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3419{
3420 return __i915_vma_unbind(vma, false);
3421}
3422
b2da9fe5 3423int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3424{
3e31c6c0 3425 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 3426 struct intel_engine_cs *engine;
b4ac5afc 3427 int ret;
4df2faf4 3428
4df2faf4 3429 /* Flush everything onto the inactive list. */
b4ac5afc 3430 for_each_engine(engine, dev_priv) {
ecdb5fd8 3431 if (!i915.enable_execlists) {
73cfa865
JH
3432 struct drm_i915_gem_request *req;
3433
e2f80391 3434 req = i915_gem_request_alloc(engine, NULL);
26827088
DG
3435 if (IS_ERR(req))
3436 return PTR_ERR(req);
73cfa865 3437
ba01cc93 3438 ret = i915_switch_context(req);
75289874 3439 i915_add_request_no_flush(req);
aa9b7810
CW
3440 if (ret)
3441 return ret;
ecdb5fd8 3442 }
b6c7488d 3443
666796da 3444 ret = intel_engine_idle(engine);
1ec14ad3
CW
3445 if (ret)
3446 return ret;
3447 }
4df2faf4 3448
b4716185 3449 WARN_ON(i915_verify_lists(dev));
8a1a49f9 3450 return 0;
4df2faf4
DV
3451}
3452
4144f9b5 3453static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3454 unsigned long cache_level)
3455{
4144f9b5 3456 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3457 struct drm_mm_node *other;
3458
4144f9b5
CW
3459 /*
3460 * On some machines we have to be careful when putting differing types
3461 * of snoopable memory together to avoid the prefetcher crossing memory
3462 * domains and dying. During vm initialisation, we decide whether or not
3463 * these constraints apply and set the drm_mm.color_adjust
3464 * appropriately.
42d6ab48 3465 */
4144f9b5 3466 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3467 return true;
3468
c6cfb325 3469 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3470 return true;
3471
3472 if (list_empty(&gtt_space->node_list))
3473 return true;
3474
3475 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3476 if (other->allocated && !other->hole_follows && other->color != cache_level)
3477 return false;
3478
3479 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3480 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3481 return false;
3482
3483 return true;
3484}
3485
673a394b 3486/**
91e6711e
JL
3487 * Finds free space in the GTT aperture and binds the object or a view of it
3488 * there.
673a394b 3489 */
262de145 3490static struct i915_vma *
07fe0b12
BW
3491i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3492 struct i915_address_space *vm,
ec7adb6e 3493 const struct i915_ggtt_view *ggtt_view,
07fe0b12 3494 unsigned alignment,
ec7adb6e 3495 uint64_t flags)
673a394b 3496{
05394f39 3497 struct drm_device *dev = obj->base.dev;
72e96d64
JL
3498 struct drm_i915_private *dev_priv = to_i915(dev);
3499 struct i915_ggtt *ggtt = &dev_priv->ggtt;
65bd342f 3500 u32 fence_alignment, unfenced_alignment;
101b506a
MT
3501 u32 search_flag, alloc_flag;
3502 u64 start, end;
65bd342f 3503 u64 size, fence_size;
2f633156 3504 struct i915_vma *vma;
07f73f69 3505 int ret;
673a394b 3506
91e6711e
JL
3507 if (i915_is_ggtt(vm)) {
3508 u32 view_size;
3509
3510 if (WARN_ON(!ggtt_view))
3511 return ERR_PTR(-EINVAL);
ec7adb6e 3512
91e6711e
JL
3513 view_size = i915_ggtt_view_size(obj, ggtt_view);
3514
3515 fence_size = i915_gem_get_gtt_size(dev,
3516 view_size,
3517 obj->tiling_mode);
3518 fence_alignment = i915_gem_get_gtt_alignment(dev,
3519 view_size,
3520 obj->tiling_mode,
3521 true);
3522 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3523 view_size,
3524 obj->tiling_mode,
3525 false);
3526 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3527 } else {
3528 fence_size = i915_gem_get_gtt_size(dev,
3529 obj->base.size,
3530 obj->tiling_mode);
3531 fence_alignment = i915_gem_get_gtt_alignment(dev,
3532 obj->base.size,
3533 obj->tiling_mode,
3534 true);
3535 unfenced_alignment =
3536 i915_gem_get_gtt_alignment(dev,
3537 obj->base.size,
3538 obj->tiling_mode,
3539 false);
3540 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3541 }
a00b10c3 3542
101b506a
MT
3543 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3544 end = vm->total;
3545 if (flags & PIN_MAPPABLE)
72e96d64 3546 end = min_t(u64, end, ggtt->mappable_end);
101b506a 3547 if (flags & PIN_ZONE_4G)
48ea1e32 3548 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
101b506a 3549
673a394b 3550 if (alignment == 0)
1ec9e26d 3551 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3552 unfenced_alignment;
1ec9e26d 3553 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
91e6711e
JL
3554 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3555 ggtt_view ? ggtt_view->type : 0,
3556 alignment);
262de145 3557 return ERR_PTR(-EINVAL);
673a394b
EA
3558 }
3559
91e6711e
JL
3560 /* If binding the object/GGTT view requires more space than the entire
3561 * aperture has, reject it early before evicting everything in a vain
3562 * attempt to find space.
654fc607 3563 */
91e6711e 3564 if (size > end) {
65bd342f 3565 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
91e6711e
JL
3566 ggtt_view ? ggtt_view->type : 0,
3567 size,
1ec9e26d 3568 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3569 end);
262de145 3570 return ERR_PTR(-E2BIG);
654fc607
CW
3571 }
3572
37e680a1 3573 ret = i915_gem_object_get_pages(obj);
6c085a72 3574 if (ret)
262de145 3575 return ERR_PTR(ret);
6c085a72 3576
fbdda6fb
CW
3577 i915_gem_object_pin_pages(obj);
3578
ec7adb6e
JL
3579 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3580 i915_gem_obj_lookup_or_create_vma(obj, vm);
3581
262de145 3582 if (IS_ERR(vma))
bc6bc15b 3583 goto err_unpin;
2f633156 3584
506a8e87
CW
3585 if (flags & PIN_OFFSET_FIXED) {
3586 uint64_t offset = flags & PIN_OFFSET_MASK;
3587
3588 if (offset & (alignment - 1) || offset + size > end) {
3589 ret = -EINVAL;
3590 goto err_free_vma;
3591 }
3592 vma->node.start = offset;
3593 vma->node.size = size;
3594 vma->node.color = obj->cache_level;
3595 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3596 if (ret) {
3597 ret = i915_gem_evict_for_vma(vma);
3598 if (ret == 0)
3599 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3600 }
3601 if (ret)
3602 goto err_free_vma;
101b506a 3603 } else {
506a8e87
CW
3604 if (flags & PIN_HIGH) {
3605 search_flag = DRM_MM_SEARCH_BELOW;
3606 alloc_flag = DRM_MM_CREATE_TOP;
3607 } else {
3608 search_flag = DRM_MM_SEARCH_DEFAULT;
3609 alloc_flag = DRM_MM_CREATE_DEFAULT;
3610 }
101b506a 3611
0a9ae0d7 3612search_free:
506a8e87
CW
3613 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3614 size, alignment,
3615 obj->cache_level,
3616 start, end,
3617 search_flag,
3618 alloc_flag);
3619 if (ret) {
3620 ret = i915_gem_evict_something(dev, vm, size, alignment,
3621 obj->cache_level,
3622 start, end,
3623 flags);
3624 if (ret == 0)
3625 goto search_free;
9731129c 3626
506a8e87
CW
3627 goto err_free_vma;
3628 }
673a394b 3629 }
4144f9b5 3630 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3631 ret = -EINVAL;
bc6bc15b 3632 goto err_remove_node;
673a394b
EA
3633 }
3634
fe14d5f4 3635 trace_i915_vma_bind(vma, flags);
0875546c 3636 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4 3637 if (ret)
e2273302 3638 goto err_remove_node;
fe14d5f4 3639
35c20a60 3640 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
1c7f4bca 3641 list_add_tail(&vma->vm_link, &vm->inactive_list);
bf1a1092 3642
262de145 3643 return vma;
2f633156 3644
bc6bc15b 3645err_remove_node:
6286ef9b 3646 drm_mm_remove_node(&vma->node);
bc6bc15b 3647err_free_vma:
2f633156 3648 i915_gem_vma_destroy(vma);
262de145 3649 vma = ERR_PTR(ret);
bc6bc15b 3650err_unpin:
2f633156 3651 i915_gem_object_unpin_pages(obj);
262de145 3652 return vma;
673a394b
EA
3653}
3654
000433b6 3655bool
2c22569b
CW
3656i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3657 bool force)
673a394b 3658{
673a394b
EA
3659 /* If we don't have a page list set up, then we're not pinned
3660 * to GPU, and we can ignore the cache flush because it'll happen
3661 * again at bind time.
3662 */
05394f39 3663 if (obj->pages == NULL)
000433b6 3664 return false;
673a394b 3665
769ce464
ID
3666 /*
3667 * Stolen memory is always coherent with the GPU as it is explicitly
3668 * marked as wc by the system, or the system is cache-coherent.
3669 */
6a2c4232 3670 if (obj->stolen || obj->phys_handle)
000433b6 3671 return false;
769ce464 3672
9c23f7fc
CW
3673 /* If the GPU is snooping the contents of the CPU cache,
3674 * we do not need to manually clear the CPU cache lines. However,
3675 * the caches are only snooped when the render cache is
3676 * flushed/invalidated. As we always have to emit invalidations
3677 * and flushes when moving into and out of the RENDER domain, correct
3678 * snooping behaviour occurs naturally as the result of our domain
3679 * tracking.
3680 */
0f71979a
CW
3681 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3682 obj->cache_dirty = true;
000433b6 3683 return false;
0f71979a 3684 }
9c23f7fc 3685
1c5d22f7 3686 trace_i915_gem_object_clflush(obj);
9da3da66 3687 drm_clflush_sg(obj->pages);
0f71979a 3688 obj->cache_dirty = false;
000433b6
CW
3689
3690 return true;
e47c68e9
EA
3691}
3692
3693/** Flushes the GTT write domain for the object if it's dirty. */
3694static void
05394f39 3695i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3696{
1c5d22f7
CW
3697 uint32_t old_write_domain;
3698
05394f39 3699 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3700 return;
3701
63256ec5 3702 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3703 * to it immediately go to main memory as far as we know, so there's
3704 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3705 *
3706 * However, we do have to enforce the order so that all writes through
3707 * the GTT land before any writes to the device, such as updates to
3708 * the GATT itself.
e47c68e9 3709 */
63256ec5
CW
3710 wmb();
3711
05394f39
CW
3712 old_write_domain = obj->base.write_domain;
3713 obj->base.write_domain = 0;
1c5d22f7 3714
de152b62 3715 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
f99d7069 3716
1c5d22f7 3717 trace_i915_gem_object_change_domain(obj,
05394f39 3718 obj->base.read_domains,
1c5d22f7 3719 old_write_domain);
e47c68e9
EA
3720}
3721
3722/** Flushes the CPU write domain for the object if it's dirty. */
3723static void
e62b59e4 3724i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3725{
1c5d22f7 3726 uint32_t old_write_domain;
e47c68e9 3727
05394f39 3728 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3729 return;
3730
e62b59e4 3731 if (i915_gem_clflush_object(obj, obj->pin_display))
c033666a 3732 i915_gem_chipset_flush(to_i915(obj->base.dev));
000433b6 3733
05394f39
CW
3734 old_write_domain = obj->base.write_domain;
3735 obj->base.write_domain = 0;
1c5d22f7 3736
de152b62 3737 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
f99d7069 3738
1c5d22f7 3739 trace_i915_gem_object_change_domain(obj,
05394f39 3740 obj->base.read_domains,
1c5d22f7 3741 old_write_domain);
e47c68e9
EA
3742}
3743
2ef7eeaa
EA
3744/**
3745 * Moves a single object to the GTT read, and possibly write domain.
3746 *
3747 * This function returns when the move is complete, including waiting on
3748 * flushes to occur.
3749 */
79e53945 3750int
2021746e 3751i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3752{
72e96d64
JL
3753 struct drm_device *dev = obj->base.dev;
3754 struct drm_i915_private *dev_priv = to_i915(dev);
3755 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1c5d22f7 3756 uint32_t old_write_domain, old_read_domains;
43566ded 3757 struct i915_vma *vma;
e47c68e9 3758 int ret;
2ef7eeaa 3759
8d7e3de1
CW
3760 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3761 return 0;
3762
0201f1ec 3763 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3764 if (ret)
3765 return ret;
3766
43566ded
CW
3767 /* Flush and acquire obj->pages so that we are coherent through
3768 * direct access in memory with previous cached writes through
3769 * shmemfs and that our cache domain tracking remains valid.
3770 * For example, if the obj->filp was moved to swap without us
3771 * being notified and releasing the pages, we would mistakenly
3772 * continue to assume that the obj remained out of the CPU cached
3773 * domain.
3774 */
3775 ret = i915_gem_object_get_pages(obj);
3776 if (ret)
3777 return ret;
3778
e62b59e4 3779 i915_gem_object_flush_cpu_write_domain(obj);
1c5d22f7 3780
d0a57789
CW
3781 /* Serialise direct access to this object with the barriers for
3782 * coherent writes from the GPU, by effectively invalidating the
3783 * GTT domain upon first access.
3784 */
3785 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3786 mb();
3787
05394f39
CW
3788 old_write_domain = obj->base.write_domain;
3789 old_read_domains = obj->base.read_domains;
1c5d22f7 3790
e47c68e9
EA
3791 /* It should now be out of any other write domains, and we can update
3792 * the domain values for our changes.
3793 */
05394f39
CW
3794 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3795 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3796 if (write) {
05394f39
CW
3797 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3798 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3799 obj->dirty = 1;
2ef7eeaa
EA
3800 }
3801
1c5d22f7
CW
3802 trace_i915_gem_object_change_domain(obj,
3803 old_read_domains,
3804 old_write_domain);
3805
8325a09d 3806 /* And bump the LRU for this access */
43566ded
CW
3807 vma = i915_gem_obj_to_ggtt(obj);
3808 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
1c7f4bca 3809 list_move_tail(&vma->vm_link,
72e96d64 3810 &ggtt->base.inactive_list);
8325a09d 3811
e47c68e9
EA
3812 return 0;
3813}
3814
ef55f92a
CW
3815/**
3816 * Changes the cache-level of an object across all VMA.
3817 *
3818 * After this function returns, the object will be in the new cache-level
3819 * across all GTT and the contents of the backing storage will be coherent,
3820 * with respect to the new cache-level. In order to keep the backing storage
3821 * coherent for all users, we only allow a single cache level to be set
3822 * globally on the object and prevent it from being changed whilst the
3823 * hardware is reading from the object. That is if the object is currently
3824 * on the scanout it will be set to uncached (or equivalent display
3825 * cache coherency) and all non-MOCS GPU access will also be uncached so
3826 * that all direct access to the scanout remains coherent.
3827 */
e4ffd173
CW
3828int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3829 enum i915_cache_level cache_level)
3830{
7bddb01f 3831 struct drm_device *dev = obj->base.dev;
df6f783a 3832 struct i915_vma *vma, *next;
ef55f92a 3833 bool bound = false;
ed75a55b 3834 int ret = 0;
e4ffd173
CW
3835
3836 if (obj->cache_level == cache_level)
ed75a55b 3837 goto out;
e4ffd173 3838
ef55f92a
CW
3839 /* Inspect the list of currently bound VMA and unbind any that would
3840 * be invalid given the new cache-level. This is principally to
3841 * catch the issue of the CS prefetch crossing page boundaries and
3842 * reading an invalid PTE on older architectures.
3843 */
1c7f4bca 3844 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
ef55f92a
CW
3845 if (!drm_mm_node_allocated(&vma->node))
3846 continue;
3847
3848 if (vma->pin_count) {
3849 DRM_DEBUG("can not change the cache level of pinned objects\n");
3850 return -EBUSY;
3851 }
3852
4144f9b5 3853 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3854 ret = i915_vma_unbind(vma);
3089c6f2
BW
3855 if (ret)
3856 return ret;
ef55f92a
CW
3857 } else
3858 bound = true;
42d6ab48
CW
3859 }
3860
ef55f92a
CW
3861 /* We can reuse the existing drm_mm nodes but need to change the
3862 * cache-level on the PTE. We could simply unbind them all and
3863 * rebind with the correct cache-level on next use. However since
3864 * we already have a valid slot, dma mapping, pages etc, we may as
3865 * rewrite the PTE in the belief that doing so tramples upon less
3866 * state and so involves less work.
3867 */
3868 if (bound) {
3869 /* Before we change the PTE, the GPU must not be accessing it.
3870 * If we wait upon the object, we know that all the bound
3871 * VMA are no longer active.
3872 */
2e2f351d 3873 ret = i915_gem_object_wait_rendering(obj, false);
e4ffd173
CW
3874 if (ret)
3875 return ret;
3876
ef55f92a
CW
3877 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3878 /* Access to snoopable pages through the GTT is
3879 * incoherent and on some machines causes a hard
3880 * lockup. Relinquish the CPU mmaping to force
3881 * userspace to refault in the pages and we can
3882 * then double check if the GTT mapping is still
3883 * valid for that pointer access.
3884 */
3885 i915_gem_release_mmap(obj);
3886
3887 /* As we no longer need a fence for GTT access,
3888 * we can relinquish it now (and so prevent having
3889 * to steal a fence from someone else on the next
3890 * fence request). Note GPU activity would have
3891 * dropped the fence as all snoopable access is
3892 * supposed to be linear.
3893 */
e4ffd173
CW
3894 ret = i915_gem_object_put_fence(obj);
3895 if (ret)
3896 return ret;
ef55f92a
CW
3897 } else {
3898 /* We either have incoherent backing store and
3899 * so no GTT access or the architecture is fully
3900 * coherent. In such cases, existing GTT mmaps
3901 * ignore the cache bit in the PTE and we can
3902 * rewrite it without confusing the GPU or having
3903 * to force userspace to fault back in its mmaps.
3904 */
e4ffd173
CW
3905 }
3906
1c7f4bca 3907 list_for_each_entry(vma, &obj->vma_list, obj_link) {
ef55f92a
CW
3908 if (!drm_mm_node_allocated(&vma->node))
3909 continue;
3910
3911 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3912 if (ret)
3913 return ret;
3914 }
e4ffd173
CW
3915 }
3916
1c7f4bca 3917 list_for_each_entry(vma, &obj->vma_list, obj_link)
2c22569b
CW
3918 vma->node.color = cache_level;
3919 obj->cache_level = cache_level;
3920
ed75a55b 3921out:
ef55f92a
CW
3922 /* Flush the dirty CPU caches to the backing storage so that the
3923 * object is now coherent at its new cache level (with respect
3924 * to the access domain).
3925 */
0f71979a
CW
3926 if (obj->cache_dirty &&
3927 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3928 cpu_write_needs_clflush(obj)) {
3929 if (i915_gem_clflush_object(obj, true))
c033666a 3930 i915_gem_chipset_flush(to_i915(obj->base.dev));
e4ffd173
CW
3931 }
3932
e4ffd173
CW
3933 return 0;
3934}
3935
199adf40
BW
3936int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3937 struct drm_file *file)
e6994aee 3938{
199adf40 3939 struct drm_i915_gem_caching *args = data;
e6994aee 3940 struct drm_i915_gem_object *obj;
e6994aee
CW
3941
3942 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
432be69d
CW
3943 if (&obj->base == NULL)
3944 return -ENOENT;
e6994aee 3945
651d794f
CW
3946 switch (obj->cache_level) {
3947 case I915_CACHE_LLC:
3948 case I915_CACHE_L3_LLC:
3949 args->caching = I915_CACHING_CACHED;
3950 break;
3951
4257d3ba
CW
3952 case I915_CACHE_WT:
3953 args->caching = I915_CACHING_DISPLAY;
3954 break;
3955
651d794f
CW
3956 default:
3957 args->caching = I915_CACHING_NONE;
3958 break;
3959 }
e6994aee 3960
432be69d
CW
3961 drm_gem_object_unreference_unlocked(&obj->base);
3962 return 0;
e6994aee
CW
3963}
3964
199adf40
BW
3965int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3966 struct drm_file *file)
e6994aee 3967{
fd0fe6ac 3968 struct drm_i915_private *dev_priv = dev->dev_private;
199adf40 3969 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3970 struct drm_i915_gem_object *obj;
3971 enum i915_cache_level level;
3972 int ret;
3973
199adf40
BW
3974 switch (args->caching) {
3975 case I915_CACHING_NONE:
e6994aee
CW
3976 level = I915_CACHE_NONE;
3977 break;
199adf40 3978 case I915_CACHING_CACHED:
e5756c10
ID
3979 /*
3980 * Due to a HW issue on BXT A stepping, GPU stores via a
3981 * snooped mapping may leave stale data in a corresponding CPU
3982 * cacheline, whereas normally such cachelines would get
3983 * invalidated.
3984 */
ca377809 3985 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
e5756c10
ID
3986 return -ENODEV;
3987
e6994aee
CW
3988 level = I915_CACHE_LLC;
3989 break;
4257d3ba
CW
3990 case I915_CACHING_DISPLAY:
3991 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3992 break;
e6994aee
CW
3993 default:
3994 return -EINVAL;
3995 }
3996
fd0fe6ac
ID
3997 intel_runtime_pm_get(dev_priv);
3998
3bc2913e
BW
3999 ret = i915_mutex_lock_interruptible(dev);
4000 if (ret)
fd0fe6ac 4001 goto rpm_put;
3bc2913e 4002
e6994aee
CW
4003 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4004 if (&obj->base == NULL) {
4005 ret = -ENOENT;
4006 goto unlock;
4007 }
4008
4009 ret = i915_gem_object_set_cache_level(obj, level);
4010
4011 drm_gem_object_unreference(&obj->base);
4012unlock:
4013 mutex_unlock(&dev->struct_mutex);
fd0fe6ac
ID
4014rpm_put:
4015 intel_runtime_pm_put(dev_priv);
4016
e6994aee
CW
4017 return ret;
4018}
4019
b9241ea3 4020/*
2da3b9b9
CW
4021 * Prepare buffer for display plane (scanout, cursors, etc).
4022 * Can be called from an uninterruptible phase (modesetting) and allows
4023 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
4024 */
4025int
2da3b9b9
CW
4026i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4027 u32 alignment,
e6617330 4028 const struct i915_ggtt_view *view)
b9241ea3 4029{
2da3b9b9 4030 u32 old_read_domains, old_write_domain;
b9241ea3
ZW
4031 int ret;
4032
cc98b413
CW
4033 /* Mark the pin_display early so that we account for the
4034 * display coherency whilst setting up the cache domains.
4035 */
8a0c39b1 4036 obj->pin_display++;
cc98b413 4037
a7ef0640
EA
4038 /* The display engine is not coherent with the LLC cache on gen6. As
4039 * a result, we make sure that the pinning that is about to occur is
4040 * done with uncached PTEs. This is lowest common denominator for all
4041 * chipsets.
4042 *
4043 * However for gen6+, we could do better by using the GFDT bit instead
4044 * of uncaching, which would allow us to flush all the LLC-cached data
4045 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4046 */
651d794f
CW
4047 ret = i915_gem_object_set_cache_level(obj,
4048 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 4049 if (ret)
cc98b413 4050 goto err_unpin_display;
a7ef0640 4051
2da3b9b9
CW
4052 /* As the user may map the buffer once pinned in the display plane
4053 * (e.g. libkms for the bootup splash), we have to ensure that we
4054 * always use map_and_fenceable for all scanout buffers.
4055 */
50470bb0
TU
4056 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4057 view->type == I915_GGTT_VIEW_NORMAL ?
4058 PIN_MAPPABLE : 0);
2da3b9b9 4059 if (ret)
cc98b413 4060 goto err_unpin_display;
2da3b9b9 4061
e62b59e4 4062 i915_gem_object_flush_cpu_write_domain(obj);
b118c1e3 4063
2da3b9b9 4064 old_write_domain = obj->base.write_domain;
05394f39 4065 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
4066
4067 /* It should now be out of any other write domains, and we can update
4068 * the domain values for our changes.
4069 */
e5f1d962 4070 obj->base.write_domain = 0;
05394f39 4071 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4072
4073 trace_i915_gem_object_change_domain(obj,
4074 old_read_domains,
2da3b9b9 4075 old_write_domain);
b9241ea3
ZW
4076
4077 return 0;
cc98b413
CW
4078
4079err_unpin_display:
8a0c39b1 4080 obj->pin_display--;
cc98b413
CW
4081 return ret;
4082}
4083
4084void
e6617330
TU
4085i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4086 const struct i915_ggtt_view *view)
cc98b413 4087{
8a0c39b1
TU
4088 if (WARN_ON(obj->pin_display == 0))
4089 return;
4090
e6617330
TU
4091 i915_gem_object_ggtt_unpin_view(obj, view);
4092
8a0c39b1 4093 obj->pin_display--;
b9241ea3
ZW
4094}
4095
e47c68e9
EA
4096/**
4097 * Moves a single object to the CPU read, and possibly write domain.
4098 *
4099 * This function returns when the move is complete, including waiting on
4100 * flushes to occur.
4101 */
dabdfe02 4102int
919926ae 4103i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4104{
1c5d22f7 4105 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4106 int ret;
4107
8d7e3de1
CW
4108 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4109 return 0;
4110
0201f1ec 4111 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4112 if (ret)
4113 return ret;
4114
e47c68e9 4115 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4116
05394f39
CW
4117 old_write_domain = obj->base.write_domain;
4118 old_read_domains = obj->base.read_domains;
1c5d22f7 4119
e47c68e9 4120 /* Flush the CPU cache if it's still invalid. */
05394f39 4121 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4122 i915_gem_clflush_object(obj, false);
2ef7eeaa 4123
05394f39 4124 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4125 }
4126
4127 /* It should now be out of any other write domains, and we can update
4128 * the domain values for our changes.
4129 */
05394f39 4130 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4131
4132 /* If we're writing through the CPU, then the GPU read domains will
4133 * need to be invalidated at next use.
4134 */
4135 if (write) {
05394f39
CW
4136 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4137 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4138 }
2ef7eeaa 4139
1c5d22f7
CW
4140 trace_i915_gem_object_change_domain(obj,
4141 old_read_domains,
4142 old_write_domain);
4143
2ef7eeaa
EA
4144 return 0;
4145}
4146
673a394b
EA
4147/* Throttle our rendering by waiting until the ring has completed our requests
4148 * emitted over 20 msec ago.
4149 *
b962442e
EA
4150 * Note that if we were to use the current jiffies each time around the loop,
4151 * we wouldn't escape the function with any frames outstanding if the time to
4152 * render a frame was over 20ms.
4153 *
673a394b
EA
4154 * This should get us reasonable parallelism between CPU and GPU but also
4155 * relatively low latency when blocking on a particular request to finish.
4156 */
40a5f0de 4157static int
f787a5f5 4158i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4159{
f787a5f5
CW
4160 struct drm_i915_private *dev_priv = dev->dev_private;
4161 struct drm_i915_file_private *file_priv = file->driver_priv;
d0bc54f2 4162 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
54fb2411 4163 struct drm_i915_gem_request *request, *target = NULL;
f787a5f5 4164 int ret;
93533c29 4165
308887aa
DV
4166 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4167 if (ret)
4168 return ret;
4169
f4457ae7
CW
4170 /* ABI: return -EIO if already wedged */
4171 if (i915_terminally_wedged(&dev_priv->gpu_error))
4172 return -EIO;
e110e8d6 4173
1c25595f 4174 spin_lock(&file_priv->mm.lock);
f787a5f5 4175 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4176 if (time_after_eq(request->emitted_jiffies, recent_enough))
4177 break;
40a5f0de 4178
fcfa423c
JH
4179 /*
4180 * Note that the request might not have been submitted yet.
4181 * In which case emitted_jiffies will be zero.
4182 */
4183 if (!request->emitted_jiffies)
4184 continue;
4185
54fb2411 4186 target = request;
b962442e 4187 }
ff865885
JH
4188 if (target)
4189 i915_gem_request_reference(target);
1c25595f 4190 spin_unlock(&file_priv->mm.lock);
40a5f0de 4191
54fb2411 4192 if (target == NULL)
f787a5f5 4193 return 0;
2bc43b5c 4194
299259a3 4195 ret = __i915_wait_request(target, true, NULL, NULL);
f787a5f5
CW
4196 if (ret == 0)
4197 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4198
73db04cf 4199 i915_gem_request_unreference(target);
ff865885 4200
40a5f0de
EA
4201 return ret;
4202}
4203
d23db88c
CW
4204static bool
4205i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4206{
4207 struct drm_i915_gem_object *obj = vma->obj;
4208
4209 if (alignment &&
4210 vma->node.start & (alignment - 1))
4211 return true;
4212
4213 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4214 return true;
4215
4216 if (flags & PIN_OFFSET_BIAS &&
4217 vma->node.start < (flags & PIN_OFFSET_MASK))
4218 return true;
4219
506a8e87
CW
4220 if (flags & PIN_OFFSET_FIXED &&
4221 vma->node.start != (flags & PIN_OFFSET_MASK))
4222 return true;
4223
d23db88c
CW
4224 return false;
4225}
4226
d0710abb
CW
4227void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4228{
4229 struct drm_i915_gem_object *obj = vma->obj;
4230 bool mappable, fenceable;
4231 u32 fence_size, fence_alignment;
4232
4233 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4234 obj->base.size,
4235 obj->tiling_mode);
4236 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4237 obj->base.size,
4238 obj->tiling_mode,
4239 true);
4240
4241 fenceable = (vma->node.size == fence_size &&
4242 (vma->node.start & (fence_alignment - 1)) == 0);
4243
4244 mappable = (vma->node.start + fence_size <=
62106b4f 4245 to_i915(obj->base.dev)->ggtt.mappable_end);
d0710abb
CW
4246
4247 obj->map_and_fenceable = mappable && fenceable;
4248}
4249
ec7adb6e
JL
4250static int
4251i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4252 struct i915_address_space *vm,
4253 const struct i915_ggtt_view *ggtt_view,
4254 uint32_t alignment,
4255 uint64_t flags)
673a394b 4256{
6e7186af 4257 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4258 struct i915_vma *vma;
ef79e17c 4259 unsigned bound;
673a394b
EA
4260 int ret;
4261
6e7186af
BW
4262 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4263 return -ENODEV;
4264
bf3d149b 4265 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4266 return -EINVAL;
07fe0b12 4267
c826c449
CW
4268 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4269 return -EINVAL;
4270
ec7adb6e
JL
4271 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4272 return -EINVAL;
4273
4274 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4275 i915_gem_obj_to_vma(obj, vm);
4276
07fe0b12 4277 if (vma) {
d7f46fc4
BW
4278 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4279 return -EBUSY;
4280
d23db88c 4281 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4282 WARN(vma->pin_count,
ec7adb6e 4283 "bo is already pinned in %s with incorrect alignment:"
088e0df4 4284 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4285 " obj->map_and_fenceable=%d\n",
ec7adb6e 4286 ggtt_view ? "ggtt" : "ppgtt",
088e0df4
MT
4287 upper_32_bits(vma->node.start),
4288 lower_32_bits(vma->node.start),
fe14d5f4 4289 alignment,
d23db88c 4290 !!(flags & PIN_MAPPABLE),
05394f39 4291 obj->map_and_fenceable);
07fe0b12 4292 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4293 if (ret)
4294 return ret;
8ea99c92
DV
4295
4296 vma = NULL;
ac0c6b5a
CW
4297 }
4298 }
4299
ef79e17c 4300 bound = vma ? vma->bound : 0;
8ea99c92 4301 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
ec7adb6e
JL
4302 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4303 flags);
262de145
DV
4304 if (IS_ERR(vma))
4305 return PTR_ERR(vma);
0875546c
DV
4306 } else {
4307 ret = i915_vma_bind(vma, obj->cache_level, flags);
fe14d5f4
TU
4308 if (ret)
4309 return ret;
4310 }
74898d7e 4311
91e6711e
JL
4312 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4313 (bound ^ vma->bound) & GLOBAL_BIND) {
d0710abb 4314 __i915_vma_set_map_and_fenceable(vma);
91e6711e
JL
4315 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4316 }
ef79e17c 4317
8ea99c92 4318 vma->pin_count++;
673a394b
EA
4319 return 0;
4320}
4321
ec7adb6e
JL
4322int
4323i915_gem_object_pin(struct drm_i915_gem_object *obj,
4324 struct i915_address_space *vm,
4325 uint32_t alignment,
4326 uint64_t flags)
4327{
4328 return i915_gem_object_do_pin(obj, vm,
4329 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4330 alignment, flags);
4331}
4332
4333int
4334i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4335 const struct i915_ggtt_view *view,
4336 uint32_t alignment,
4337 uint64_t flags)
4338{
72e96d64
JL
4339 struct drm_device *dev = obj->base.dev;
4340 struct drm_i915_private *dev_priv = to_i915(dev);
4341 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4342
ade7daa1 4343 BUG_ON(!view);
ec7adb6e 4344
72e96d64 4345 return i915_gem_object_do_pin(obj, &ggtt->base, view,
6fafab76 4346 alignment, flags | PIN_GLOBAL);
ec7adb6e
JL
4347}
4348
673a394b 4349void
e6617330
TU
4350i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4351 const struct i915_ggtt_view *view)
673a394b 4352{
e6617330 4353 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
673a394b 4354
e6617330 4355 WARN_ON(vma->pin_count == 0);
9abc4648 4356 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
d7f46fc4 4357
30154650 4358 --vma->pin_count;
673a394b
EA
4359}
4360
673a394b
EA
4361int
4362i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4363 struct drm_file *file)
673a394b
EA
4364{
4365 struct drm_i915_gem_busy *args = data;
05394f39 4366 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4367 int ret;
4368
76c1dec1 4369 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4370 if (ret)
76c1dec1 4371 return ret;
673a394b 4372
05394f39 4373 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4374 if (&obj->base == NULL) {
1d7cfea1
CW
4375 ret = -ENOENT;
4376 goto unlock;
673a394b 4377 }
d1b851fc 4378
0be555b6
CW
4379 /* Count all active objects as busy, even if they are currently not used
4380 * by the gpu. Users of this interface expect objects to eventually
4381 * become non-busy without any further actions, therefore emit any
4382 * necessary flushes here.
c4de0a5d 4383 */
30dfebf3 4384 ret = i915_gem_object_flush_active(obj);
b4716185
CW
4385 if (ret)
4386 goto unref;
0be555b6 4387
426960be
CW
4388 args->busy = 0;
4389 if (obj->active) {
4390 int i;
4391
666796da 4392 for (i = 0; i < I915_NUM_ENGINES; i++) {
426960be
CW
4393 struct drm_i915_gem_request *req;
4394
4395 req = obj->last_read_req[i];
4396 if (req)
4a570db5 4397 args->busy |= 1 << (16 + req->engine->exec_id);
426960be
CW
4398 }
4399 if (obj->last_write_req)
4a570db5 4400 args->busy |= obj->last_write_req->engine->exec_id;
426960be 4401 }
673a394b 4402
b4716185 4403unref:
05394f39 4404 drm_gem_object_unreference(&obj->base);
1d7cfea1 4405unlock:
673a394b 4406 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4407 return ret;
673a394b
EA
4408}
4409
4410int
4411i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4412 struct drm_file *file_priv)
4413{
0206e353 4414 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4415}
4416
3ef94daa
CW
4417int
4418i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4419 struct drm_file *file_priv)
4420{
656bfa3a 4421 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4422 struct drm_i915_gem_madvise *args = data;
05394f39 4423 struct drm_i915_gem_object *obj;
76c1dec1 4424 int ret;
3ef94daa
CW
4425
4426 switch (args->madv) {
4427 case I915_MADV_DONTNEED:
4428 case I915_MADV_WILLNEED:
4429 break;
4430 default:
4431 return -EINVAL;
4432 }
4433
1d7cfea1
CW
4434 ret = i915_mutex_lock_interruptible(dev);
4435 if (ret)
4436 return ret;
4437
05394f39 4438 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4439 if (&obj->base == NULL) {
1d7cfea1
CW
4440 ret = -ENOENT;
4441 goto unlock;
3ef94daa 4442 }
3ef94daa 4443
d7f46fc4 4444 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4445 ret = -EINVAL;
4446 goto out;
3ef94daa
CW
4447 }
4448
656bfa3a
DV
4449 if (obj->pages &&
4450 obj->tiling_mode != I915_TILING_NONE &&
4451 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4452 if (obj->madv == I915_MADV_WILLNEED)
4453 i915_gem_object_unpin_pages(obj);
4454 if (args->madv == I915_MADV_WILLNEED)
4455 i915_gem_object_pin_pages(obj);
4456 }
4457
05394f39
CW
4458 if (obj->madv != __I915_MADV_PURGED)
4459 obj->madv = args->madv;
3ef94daa 4460
6c085a72 4461 /* if the object is no longer attached, discard its backing storage */
be6a0376 4462 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
2d7ef395
CW
4463 i915_gem_object_truncate(obj);
4464
05394f39 4465 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4466
1d7cfea1 4467out:
05394f39 4468 drm_gem_object_unreference(&obj->base);
1d7cfea1 4469unlock:
3ef94daa 4470 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4471 return ret;
3ef94daa
CW
4472}
4473
37e680a1
CW
4474void i915_gem_object_init(struct drm_i915_gem_object *obj,
4475 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4476{
b4716185
CW
4477 int i;
4478
35c20a60 4479 INIT_LIST_HEAD(&obj->global_list);
666796da 4480 for (i = 0; i < I915_NUM_ENGINES; i++)
117897f4 4481 INIT_LIST_HEAD(&obj->engine_list[i]);
b25cb2f8 4482 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4483 INIT_LIST_HEAD(&obj->vma_list);
8d9d5744 4484 INIT_LIST_HEAD(&obj->batch_pool_link);
0327d6ba 4485
37e680a1
CW
4486 obj->ops = ops;
4487
0327d6ba
CW
4488 obj->fence_reg = I915_FENCE_REG_NONE;
4489 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4490
4491 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4492}
4493
37e680a1 4494static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
de472664 4495 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
37e680a1
CW
4496 .get_pages = i915_gem_object_get_pages_gtt,
4497 .put_pages = i915_gem_object_put_pages_gtt,
4498};
4499
d37cd8a8 4500struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
05394f39 4501 size_t size)
ac52bc56 4502{
c397b908 4503 struct drm_i915_gem_object *obj;
5949eac4 4504 struct address_space *mapping;
1a240d4d 4505 gfp_t mask;
fe3db79b 4506 int ret;
ac52bc56 4507
42dcedd4 4508 obj = i915_gem_object_alloc(dev);
c397b908 4509 if (obj == NULL)
fe3db79b 4510 return ERR_PTR(-ENOMEM);
673a394b 4511
fe3db79b
CW
4512 ret = drm_gem_object_init(dev, &obj->base, size);
4513 if (ret)
4514 goto fail;
673a394b 4515
bed1ea95
CW
4516 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4517 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4518 /* 965gm cannot relocate objects above 4GiB. */
4519 mask &= ~__GFP_HIGHMEM;
4520 mask |= __GFP_DMA32;
4521 }
4522
496ad9aa 4523 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4524 mapping_set_gfp_mask(mapping, mask);
5949eac4 4525
37e680a1 4526 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4527
c397b908
DV
4528 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4529 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4530
3d29b842
ED
4531 if (HAS_LLC(dev)) {
4532 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4533 * cache) for about a 10% performance improvement
4534 * compared to uncached. Graphics requests other than
4535 * display scanout are coherent with the CPU in
4536 * accessing this cache. This means in this mode we
4537 * don't need to clflush on the CPU side, and on the
4538 * GPU side we only need to flush internal caches to
4539 * get data visible to the CPU.
4540 *
4541 * However, we maintain the display planes as UC, and so
4542 * need to rebind when first used as such.
4543 */
4544 obj->cache_level = I915_CACHE_LLC;
4545 } else
4546 obj->cache_level = I915_CACHE_NONE;
4547
d861e338
DV
4548 trace_i915_gem_object_create(obj);
4549
05394f39 4550 return obj;
fe3db79b
CW
4551
4552fail:
4553 i915_gem_object_free(obj);
4554
4555 return ERR_PTR(ret);
c397b908
DV
4556}
4557
340fbd8c
CW
4558static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4559{
4560 /* If we are the last user of the backing storage (be it shmemfs
4561 * pages or stolen etc), we know that the pages are going to be
4562 * immediately released. In this case, we can then skip copying
4563 * back the contents from the GPU.
4564 */
4565
4566 if (obj->madv != I915_MADV_WILLNEED)
4567 return false;
4568
4569 if (obj->base.filp == NULL)
4570 return true;
4571
4572 /* At first glance, this looks racy, but then again so would be
4573 * userspace racing mmap against close. However, the first external
4574 * reference to the filp can only be obtained through the
4575 * i915_gem_mmap_ioctl() which safeguards us against the user
4576 * acquiring such a reference whilst we are in the middle of
4577 * freeing the object.
4578 */
4579 return atomic_long_read(&obj->base.filp->f_count) == 1;
4580}
4581
1488fc08 4582void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4583{
1488fc08 4584 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4585 struct drm_device *dev = obj->base.dev;
3e31c6c0 4586 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4587 struct i915_vma *vma, *next;
673a394b 4588
f65c9168
PZ
4589 intel_runtime_pm_get(dev_priv);
4590
26e12f89
CW
4591 trace_i915_gem_object_destroy(obj);
4592
1c7f4bca 4593 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
d7f46fc4
BW
4594 int ret;
4595
4596 vma->pin_count = 0;
4597 ret = i915_vma_unbind(vma);
07fe0b12
BW
4598 if (WARN_ON(ret == -ERESTARTSYS)) {
4599 bool was_interruptible;
1488fc08 4600
07fe0b12
BW
4601 was_interruptible = dev_priv->mm.interruptible;
4602 dev_priv->mm.interruptible = false;
1488fc08 4603
07fe0b12 4604 WARN_ON(i915_vma_unbind(vma));
1488fc08 4605
07fe0b12
BW
4606 dev_priv->mm.interruptible = was_interruptible;
4607 }
1488fc08
CW
4608 }
4609
1d64ae71
BW
4610 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4611 * before progressing. */
4612 if (obj->stolen)
4613 i915_gem_object_unpin_pages(obj);
4614
a071fa00
DV
4615 WARN_ON(obj->frontbuffer_bits);
4616
656bfa3a
DV
4617 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4618 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4619 obj->tiling_mode != I915_TILING_NONE)
4620 i915_gem_object_unpin_pages(obj);
4621
401c29f6
BW
4622 if (WARN_ON(obj->pages_pin_count))
4623 obj->pages_pin_count = 0;
340fbd8c 4624 if (discard_backing_storage(obj))
5537252b 4625 obj->madv = I915_MADV_DONTNEED;
37e680a1 4626 i915_gem_object_put_pages(obj);
d8cb5086 4627 i915_gem_object_free_mmap_offset(obj);
de151cf6 4628
9da3da66
CW
4629 BUG_ON(obj->pages);
4630
2f745ad3
CW
4631 if (obj->base.import_attach)
4632 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4633
5cc9ed4b
CW
4634 if (obj->ops->release)
4635 obj->ops->release(obj);
4636
05394f39
CW
4637 drm_gem_object_release(&obj->base);
4638 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4639
05394f39 4640 kfree(obj->bit_17);
42dcedd4 4641 i915_gem_object_free(obj);
f65c9168
PZ
4642
4643 intel_runtime_pm_put(dev_priv);
673a394b
EA
4644}
4645
ec7adb6e
JL
4646struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4647 struct i915_address_space *vm)
e656a6cb
DV
4648{
4649 struct i915_vma *vma;
1c7f4bca 4650 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1b683729
TU
4651 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4652 vma->vm == vm)
e656a6cb 4653 return vma;
ec7adb6e
JL
4654 }
4655 return NULL;
4656}
4657
4658struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4659 const struct i915_ggtt_view *view)
4660{
ec7adb6e 4661 struct i915_vma *vma;
e656a6cb 4662
598b9ec8 4663 GEM_BUG_ON(!view);
ec7adb6e 4664
1c7f4bca 4665 list_for_each_entry(vma, &obj->vma_list, obj_link)
598b9ec8 4666 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e 4667 return vma;
e656a6cb
DV
4668 return NULL;
4669}
4670
2f633156
BW
4671void i915_gem_vma_destroy(struct i915_vma *vma)
4672{
4673 WARN_ON(vma->node.allocated);
aaa05667
CW
4674
4675 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4676 if (!list_empty(&vma->exec_list))
4677 return;
4678
596c5923
CW
4679 if (!vma->is_ggtt)
4680 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
b9d06dd9 4681
1c7f4bca 4682 list_del(&vma->obj_link);
b93dab6e 4683
e20d2ab7 4684 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
2f633156
BW
4685}
4686
e3efda49 4687static void
117897f4 4688i915_gem_stop_engines(struct drm_device *dev)
e3efda49
CW
4689{
4690 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4691 struct intel_engine_cs *engine;
e3efda49 4692
b4ac5afc 4693 for_each_engine(engine, dev_priv)
117897f4 4694 dev_priv->gt.stop_engine(engine);
e3efda49
CW
4695}
4696
29105ccc 4697int
45c5f202 4698i915_gem_suspend(struct drm_device *dev)
29105ccc 4699{
3e31c6c0 4700 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4701 int ret = 0;
28dfe52a 4702
45c5f202 4703 mutex_lock(&dev->struct_mutex);
b2da9fe5 4704 ret = i915_gpu_idle(dev);
f7403347 4705 if (ret)
45c5f202 4706 goto err;
f7403347 4707
c033666a 4708 i915_gem_retire_requests(dev_priv);
673a394b 4709
117897f4 4710 i915_gem_stop_engines(dev);
b2e862d0 4711 i915_gem_context_lost(dev_priv);
45c5f202
CW
4712 mutex_unlock(&dev->struct_mutex);
4713
737b1506 4714 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
29105ccc 4715 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4716 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4717
bdcf120b
CW
4718 /* Assert that we sucessfully flushed all the work and
4719 * reset the GPU back to its idle, low power state.
4720 */
4721 WARN_ON(dev_priv->mm.busy);
4722
673a394b 4723 return 0;
45c5f202
CW
4724
4725err:
4726 mutex_unlock(&dev->struct_mutex);
4727 return ret;
673a394b
EA
4728}
4729
f691e2f4
DV
4730void i915_gem_init_swizzling(struct drm_device *dev)
4731{
3e31c6c0 4732 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4733
11782b02 4734 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4735 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4736 return;
4737
4738 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4739 DISP_TILE_SURFACE_SWIZZLING);
4740
11782b02
DV
4741 if (IS_GEN5(dev))
4742 return;
4743
f691e2f4
DV
4744 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4745 if (IS_GEN6(dev))
6b26c86d 4746 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4747 else if (IS_GEN7(dev))
6b26c86d 4748 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4749 else if (IS_GEN8(dev))
4750 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4751 else
4752 BUG();
f691e2f4 4753}
e21af88d 4754
81e7f200
VS
4755static void init_unused_ring(struct drm_device *dev, u32 base)
4756{
4757 struct drm_i915_private *dev_priv = dev->dev_private;
4758
4759 I915_WRITE(RING_CTL(base), 0);
4760 I915_WRITE(RING_HEAD(base), 0);
4761 I915_WRITE(RING_TAIL(base), 0);
4762 I915_WRITE(RING_START(base), 0);
4763}
4764
4765static void init_unused_rings(struct drm_device *dev)
4766{
4767 if (IS_I830(dev)) {
4768 init_unused_ring(dev, PRB1_BASE);
4769 init_unused_ring(dev, SRB0_BASE);
4770 init_unused_ring(dev, SRB1_BASE);
4771 init_unused_ring(dev, SRB2_BASE);
4772 init_unused_ring(dev, SRB3_BASE);
4773 } else if (IS_GEN2(dev)) {
4774 init_unused_ring(dev, SRB0_BASE);
4775 init_unused_ring(dev, SRB1_BASE);
4776 } else if (IS_GEN3(dev)) {
4777 init_unused_ring(dev, PRB1_BASE);
4778 init_unused_ring(dev, PRB2_BASE);
4779 }
4780}
4781
117897f4 4782int i915_gem_init_engines(struct drm_device *dev)
8187a2b7 4783{
4fc7c971 4784 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4785 int ret;
68f95ba9 4786
5c1143bb 4787 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4788 if (ret)
b6913e4b 4789 return ret;
68f95ba9
CW
4790
4791 if (HAS_BSD(dev)) {
5c1143bb 4792 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4793 if (ret)
4794 goto cleanup_render_ring;
d1b851fc 4795 }
68f95ba9 4796
d39398f5 4797 if (HAS_BLT(dev)) {
549f7365
CW
4798 ret = intel_init_blt_ring_buffer(dev);
4799 if (ret)
4800 goto cleanup_bsd_ring;
4801 }
4802
9a8a2213
BW
4803 if (HAS_VEBOX(dev)) {
4804 ret = intel_init_vebox_ring_buffer(dev);
4805 if (ret)
4806 goto cleanup_blt_ring;
4807 }
4808
845f74a7
ZY
4809 if (HAS_BSD2(dev)) {
4810 ret = intel_init_bsd2_ring_buffer(dev);
4811 if (ret)
4812 goto cleanup_vebox_ring;
4813 }
9a8a2213 4814
4fc7c971
BW
4815 return 0;
4816
9a8a2213 4817cleanup_vebox_ring:
117897f4 4818 intel_cleanup_engine(&dev_priv->engine[VECS]);
4fc7c971 4819cleanup_blt_ring:
117897f4 4820 intel_cleanup_engine(&dev_priv->engine[BCS]);
4fc7c971 4821cleanup_bsd_ring:
117897f4 4822 intel_cleanup_engine(&dev_priv->engine[VCS]);
4fc7c971 4823cleanup_render_ring:
117897f4 4824 intel_cleanup_engine(&dev_priv->engine[RCS]);
4fc7c971
BW
4825
4826 return ret;
4827}
4828
4829int
4830i915_gem_init_hw(struct drm_device *dev)
4831{
3e31c6c0 4832 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4833 struct intel_engine_cs *engine;
d200cda6 4834 int ret;
4fc7c971 4835
5e4f5189
CW
4836 /* Double layer security blanket, see i915_gem_init() */
4837 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4838
3accaf7e 4839 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
05e21cc4 4840 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4841
0bf21347
VS
4842 if (IS_HASWELL(dev))
4843 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4844 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4845
88a2b2a3 4846 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4847 if (IS_IVYBRIDGE(dev)) {
4848 u32 temp = I915_READ(GEN7_MSG_CTL);
4849 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4850 I915_WRITE(GEN7_MSG_CTL, temp);
4851 } else if (INTEL_INFO(dev)->gen >= 7) {
4852 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4853 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4854 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4855 }
88a2b2a3
BW
4856 }
4857
4fc7c971
BW
4858 i915_gem_init_swizzling(dev);
4859
d5abdfda
DV
4860 /*
4861 * At least 830 can leave some of the unused rings
4862 * "active" (ie. head != tail) after resume which
4863 * will prevent c3 entry. Makes sure all unused rings
4864 * are totally idle.
4865 */
4866 init_unused_rings(dev);
4867
ed54c1a1 4868 BUG_ON(!dev_priv->kernel_context);
90638cc1 4869
4ad2fd88
JH
4870 ret = i915_ppgtt_init_hw(dev);
4871 if (ret) {
4872 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4873 goto out;
4874 }
4875
4876 /* Need to do basic initialisation of all rings first: */
b4ac5afc 4877 for_each_engine(engine, dev_priv) {
e2f80391 4878 ret = engine->init_hw(engine);
35a57ffb 4879 if (ret)
5e4f5189 4880 goto out;
35a57ffb 4881 }
99433931 4882
0ccdacf6
PA
4883 intel_mocs_init_l3cc_table(dev);
4884
33a732f4 4885 /* We can't enable contexts until all firmware is loaded */
1a3d1898 4886 if (HAS_GUC(dev)) {
f09d675f 4887 ret = intel_guc_setup(dev);
fce91f22 4888 if (ret)
9f9e539f 4889 goto out;
33a732f4
AD
4890 }
4891
e84fe803
NH
4892 /*
4893 * Increment the next seqno by 0x100 so we have a visible break
4894 * on re-initialisation
4895 */
4896 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
e21af88d 4897
5e4f5189
CW
4898out:
4899 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2fa48d8d 4900 return ret;
8187a2b7
ZN
4901}
4902
1070a42b
CW
4903int i915_gem_init(struct drm_device *dev)
4904{
4905 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4906 int ret;
4907
1070a42b 4908 mutex_lock(&dev->struct_mutex);
d62b4892 4909
a83014d3 4910 if (!i915.enable_execlists) {
f3dc74c0 4911 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
117897f4
TU
4912 dev_priv->gt.init_engines = i915_gem_init_engines;
4913 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4914 dev_priv->gt.stop_engine = intel_stop_engine;
454afebd 4915 } else {
f3dc74c0 4916 dev_priv->gt.execbuf_submit = intel_execlists_submission;
117897f4
TU
4917 dev_priv->gt.init_engines = intel_logical_rings_init;
4918 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4919 dev_priv->gt.stop_engine = intel_logical_ring_stop;
a83014d3
OM
4920 }
4921
5e4f5189
CW
4922 /* This is just a security blanket to placate dragons.
4923 * On some systems, we very sporadically observe that the first TLBs
4924 * used by the CS may be stale, despite us poking the TLB reset. If
4925 * we hold the forcewake during initialisation these problems
4926 * just magically go away.
4927 */
4928 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4929
72778cb2 4930 i915_gem_init_userptr(dev_priv);
d85489d3 4931 i915_gem_init_ggtt(dev);
d62b4892 4932
2fa48d8d 4933 ret = i915_gem_context_init(dev);
7bcc3777
JN
4934 if (ret)
4935 goto out_unlock;
2fa48d8d 4936
117897f4 4937 ret = dev_priv->gt.init_engines(dev);
35a57ffb 4938 if (ret)
7bcc3777 4939 goto out_unlock;
2fa48d8d 4940
1070a42b 4941 ret = i915_gem_init_hw(dev);
60990320
CW
4942 if (ret == -EIO) {
4943 /* Allow ring initialisation to fail by marking the GPU as
4944 * wedged. But we only want to do this where the GPU is angry,
4945 * for all other failure, such as an allocation failure, bail.
4946 */
4947 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
805de8f4 4948 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
60990320 4949 ret = 0;
1070a42b 4950 }
7bcc3777
JN
4951
4952out_unlock:
5e4f5189 4953 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
60990320 4954 mutex_unlock(&dev->struct_mutex);
1070a42b 4955
60990320 4956 return ret;
1070a42b
CW
4957}
4958
8187a2b7 4959void
117897f4 4960i915_gem_cleanup_engines(struct drm_device *dev)
8187a2b7 4961{
3e31c6c0 4962 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 4963 struct intel_engine_cs *engine;
8187a2b7 4964
b4ac5afc 4965 for_each_engine(engine, dev_priv)
117897f4 4966 dev_priv->gt.cleanup_engine(engine);
8187a2b7
ZN
4967}
4968
64193406 4969static void
666796da 4970init_engine_lists(struct intel_engine_cs *engine)
64193406 4971{
0bc40be8
TU
4972 INIT_LIST_HEAD(&engine->active_list);
4973 INIT_LIST_HEAD(&engine->request_list);
64193406
CW
4974}
4975
40ae4e16
ID
4976void
4977i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4978{
4979 struct drm_device *dev = dev_priv->dev;
4980
4981 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4982 !IS_CHERRYVIEW(dev_priv))
4983 dev_priv->num_fence_regs = 32;
4984 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4985 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4986 dev_priv->num_fence_regs = 16;
4987 else
4988 dev_priv->num_fence_regs = 8;
4989
c033666a 4990 if (intel_vgpu_active(dev_priv))
40ae4e16
ID
4991 dev_priv->num_fence_regs =
4992 I915_READ(vgtif_reg(avail_rs.fence_num));
4993
4994 /* Initialize fence registers to zero */
4995 i915_gem_restore_fences(dev);
4996
4997 i915_gem_detect_bit_6_swizzle(dev);
4998}
4999
673a394b 5000void
d64aa096 5001i915_gem_load_init(struct drm_device *dev)
673a394b 5002{
3e31c6c0 5003 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
5004 int i;
5005
efab6d8d 5006 dev_priv->objects =
42dcedd4
CW
5007 kmem_cache_create("i915_gem_object",
5008 sizeof(struct drm_i915_gem_object), 0,
5009 SLAB_HWCACHE_ALIGN,
5010 NULL);
e20d2ab7
CW
5011 dev_priv->vmas =
5012 kmem_cache_create("i915_gem_vma",
5013 sizeof(struct i915_vma), 0,
5014 SLAB_HWCACHE_ALIGN,
5015 NULL);
efab6d8d
CW
5016 dev_priv->requests =
5017 kmem_cache_create("i915_gem_request",
5018 sizeof(struct drm_i915_gem_request), 0,
5019 SLAB_HWCACHE_ALIGN,
5020 NULL);
673a394b 5021
fc8c067e 5022 INIT_LIST_HEAD(&dev_priv->vm_list);
a33afea5 5023 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
5024 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5025 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 5026 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
666796da
TU
5027 for (i = 0; i < I915_NUM_ENGINES; i++)
5028 init_engine_lists(&dev_priv->engine[i]);
4b9de737 5029 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 5030 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
5031 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5032 i915_gem_retire_work_handler);
b29c19b6
CW
5033 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5034 i915_gem_idle_work_handler);
1f83fee0 5035 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 5036
72bfa19c
CW
5037 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5038
e84fe803
NH
5039 /*
5040 * Set initial sequence number for requests.
5041 * Using this number allows the wraparound to happen early,
5042 * catching any obvious problems.
5043 */
5044 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5045 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5046
19b2dbde 5047 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
10ed13e4 5048
6b95a207 5049 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 5050
ce453d81
CW
5051 dev_priv->mm.interruptible = true;
5052
f99d7069 5053 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5054}
71acb5eb 5055
d64aa096
ID
5056void i915_gem_load_cleanup(struct drm_device *dev)
5057{
5058 struct drm_i915_private *dev_priv = to_i915(dev);
5059
5060 kmem_cache_destroy(dev_priv->requests);
5061 kmem_cache_destroy(dev_priv->vmas);
5062 kmem_cache_destroy(dev_priv->objects);
5063}
5064
461fb99c
CW
5065int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5066{
5067 struct drm_i915_gem_object *obj;
5068
5069 /* Called just before we write the hibernation image.
5070 *
5071 * We need to update the domain tracking to reflect that the CPU
5072 * will be accessing all the pages to create and restore from the
5073 * hibernation, and so upon restoration those pages will be in the
5074 * CPU domain.
5075 *
5076 * To make sure the hibernation image contains the latest state,
5077 * we update that state just before writing out the image.
5078 */
5079
5080 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5081 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5082 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5083 }
5084
5085 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5086 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5087 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5088 }
5089
5090 return 0;
5091}
5092
f787a5f5 5093void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5094{
f787a5f5 5095 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e
EA
5096
5097 /* Clean up our request list when the client is going away, so that
5098 * later retire_requests won't dereference our soon-to-be-gone
5099 * file_priv.
5100 */
1c25595f 5101 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5102 while (!list_empty(&file_priv->mm.request_list)) {
5103 struct drm_i915_gem_request *request;
5104
5105 request = list_first_entry(&file_priv->mm.request_list,
5106 struct drm_i915_gem_request,
5107 client_list);
5108 list_del(&request->client_list);
5109 request->file_priv = NULL;
5110 }
1c25595f 5111 spin_unlock(&file_priv->mm.lock);
b29c19b6 5112
2e1b8730 5113 if (!list_empty(&file_priv->rps.link)) {
8d3afd7d 5114 spin_lock(&to_i915(dev)->rps.client_lock);
2e1b8730 5115 list_del(&file_priv->rps.link);
8d3afd7d 5116 spin_unlock(&to_i915(dev)->rps.client_lock);
1854d5ca 5117 }
b29c19b6
CW
5118}
5119
5120int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5121{
5122 struct drm_i915_file_private *file_priv;
e422b888 5123 int ret;
b29c19b6
CW
5124
5125 DRM_DEBUG_DRIVER("\n");
5126
5127 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5128 if (!file_priv)
5129 return -ENOMEM;
5130
5131 file->driver_priv = file_priv;
5132 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5133 file_priv->file = file;
2e1b8730 5134 INIT_LIST_HEAD(&file_priv->rps.link);
b29c19b6
CW
5135
5136 spin_lock_init(&file_priv->mm.lock);
5137 INIT_LIST_HEAD(&file_priv->mm.request_list);
b29c19b6 5138
de1add36
TU
5139 file_priv->bsd_ring = -1;
5140
e422b888
BW
5141 ret = i915_gem_context_open(dev, file);
5142 if (ret)
5143 kfree(file_priv);
b29c19b6 5144
e422b888 5145 return ret;
b29c19b6
CW
5146}
5147
b680c37a
DV
5148/**
5149 * i915_gem_track_fb - update frontbuffer tracking
d9072a3e
GT
5150 * @old: current GEM buffer for the frontbuffer slots
5151 * @new: new GEM buffer for the frontbuffer slots
5152 * @frontbuffer_bits: bitmask of frontbuffer slots
b680c37a
DV
5153 *
5154 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5155 * from @old and setting them in @new. Both @old and @new can be NULL.
5156 */
a071fa00
DV
5157void i915_gem_track_fb(struct drm_i915_gem_object *old,
5158 struct drm_i915_gem_object *new,
5159 unsigned frontbuffer_bits)
5160{
5161 if (old) {
5162 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5163 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5164 old->frontbuffer_bits &= ~frontbuffer_bits;
5165 }
5166
5167 if (new) {
5168 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5169 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5170 new->frontbuffer_bits |= frontbuffer_bits;
5171 }
5172}
5173
a70a3148 5174/* All the new VM stuff */
088e0df4
MT
5175u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5176 struct i915_address_space *vm)
a70a3148
BW
5177{
5178 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5179 struct i915_vma *vma;
5180
896ab1a5 5181 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5182
1c7f4bca 5183 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5184 if (vma->is_ggtt &&
ec7adb6e
JL
5185 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5186 continue;
5187 if (vma->vm == vm)
a70a3148 5188 return vma->node.start;
a70a3148 5189 }
ec7adb6e 5190
f25748ea
DV
5191 WARN(1, "%s vma for this object not found.\n",
5192 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5193 return -1;
5194}
5195
088e0df4
MT
5196u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5197 const struct i915_ggtt_view *view)
a70a3148
BW
5198{
5199 struct i915_vma *vma;
5200
1c7f4bca 5201 list_for_each_entry(vma, &o->vma_list, obj_link)
8aac2220 5202 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
ec7adb6e
JL
5203 return vma->node.start;
5204
5678ad73 5205 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
ec7adb6e
JL
5206 return -1;
5207}
5208
5209bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5210 struct i915_address_space *vm)
5211{
5212 struct i915_vma *vma;
5213
1c7f4bca 5214 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5215 if (vma->is_ggtt &&
ec7adb6e
JL
5216 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5217 continue;
5218 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5219 return true;
5220 }
5221
5222 return false;
5223}
5224
5225bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
9abc4648 5226 const struct i915_ggtt_view *view)
ec7adb6e 5227{
ec7adb6e
JL
5228 struct i915_vma *vma;
5229
1c7f4bca 5230 list_for_each_entry(vma, &o->vma_list, obj_link)
ff5ec22d 5231 if (vma->is_ggtt &&
9abc4648 5232 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
fe14d5f4 5233 drm_mm_node_allocated(&vma->node))
a70a3148
BW
5234 return true;
5235
5236 return false;
5237}
5238
5239bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5240{
5a1d5eb0 5241 struct i915_vma *vma;
a70a3148 5242
1c7f4bca 5243 list_for_each_entry(vma, &o->vma_list, obj_link)
5a1d5eb0 5244 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5245 return true;
5246
5247 return false;
5248}
5249
8da32727 5250unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
a70a3148 5251{
a70a3148
BW
5252 struct i915_vma *vma;
5253
8da32727 5254 GEM_BUG_ON(list_empty(&o->vma_list));
a70a3148 5255
1c7f4bca 5256 list_for_each_entry(vma, &o->vma_list, obj_link) {
596c5923 5257 if (vma->is_ggtt &&
8da32727 5258 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
a70a3148 5259 return vma->node.size;
ec7adb6e 5260 }
8da32727 5261
a70a3148
BW
5262 return 0;
5263}
5264
ec7adb6e 5265bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5c2abbea
BW
5266{
5267 struct i915_vma *vma;
1c7f4bca 5268 list_for_each_entry(vma, &obj->vma_list, obj_link)
ec7adb6e
JL
5269 if (vma->pin_count > 0)
5270 return true;
a6631ae1 5271
ec7adb6e 5272 return false;
5c2abbea 5273}
ea70299d 5274
033908ae
DG
5275/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5276struct page *
5277i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5278{
5279 struct page *page;
5280
5281 /* Only default objects have per-page dirty tracking */
de472664 5282 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
033908ae
DG
5283 return NULL;
5284
5285 page = i915_gem_object_get_page(obj, n);
5286 set_page_dirty(page);
5287 return page;
5288}
5289
ea70299d
DG
5290/* Allocate a new GEM object and fill it with the supplied data */
5291struct drm_i915_gem_object *
5292i915_gem_object_create_from_data(struct drm_device *dev,
5293 const void *data, size_t size)
5294{
5295 struct drm_i915_gem_object *obj;
5296 struct sg_table *sg;
5297 size_t bytes;
5298 int ret;
5299
d37cd8a8 5300 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
fe3db79b 5301 if (IS_ERR(obj))
ea70299d
DG
5302 return obj;
5303
5304 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5305 if (ret)
5306 goto fail;
5307
5308 ret = i915_gem_object_get_pages(obj);
5309 if (ret)
5310 goto fail;
5311
5312 i915_gem_object_pin_pages(obj);
5313 sg = obj->pages;
5314 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
9e7d18c0 5315 obj->dirty = 1; /* Backing store is now out of date */
ea70299d
DG
5316 i915_gem_object_unpin_pages(obj);
5317
5318 if (WARN_ON(bytes != size)) {
5319 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5320 ret = -EFAULT;
5321 goto fail;
5322 }
5323
5324 return obj;
5325
5326fail:
5327 drm_gem_object_unreference(&obj->base);
5328 return ERR_PTR(ret);
5329}
This page took 1.285982 seconds and 5 git commands to generate.