drm/i915: Ensure requests stick around during waits
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7 28#include <drm/drmP.h>
0de23977 29#include <drm/drm_vma_manager.h>
760285e7 30#include <drm/i915_drm.h>
673a394b 31#include "i915_drv.h"
1c5d22f7 32#include "i915_trace.h"
652c393a 33#include "intel_drv.h"
2cfcd32a 34#include <linux/oom.h>
5949eac4 35#include <linux/shmem_fs.h>
5a0e3ad6 36#include <linux/slab.h>
673a394b 37#include <linux/swap.h>
79e53945 38#include <linux/pci.h>
1286ff73 39#include <linux/dma-buf.h>
673a394b 40
05394f39 41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
2c22569b
CW
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
07fe0b12 44static __must_check int
23f54483
BW
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
c8725f3d
CW
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
61050808
CW
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
ceabbba5 56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
7dc19d5a 57 struct shrink_control *sc);
ceabbba5 58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
7dc19d5a 59 struct shrink_control *sc);
2cfcd32a
CW
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
d9973b43 63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
31169714 64
c76ce038
CW
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
2c22569b
CW
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
61050808
CW
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
5d82e3e6 87 obj->fence_dirty = false;
61050808
CW
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
73aa808f
CW
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
c20e8355 95 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
c20e8355 98 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
c20e8355 104 spin_lock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
c20e8355 107 spin_unlock(&dev_priv->mm.object_stat_lock);
73aa808f
CW
108}
109
21dd3734 110static int
33196ded 111i915_gem_wait_for_error(struct i915_gpu_error *error)
30dbf0c0 112{
30dbf0c0
CW
113 int ret;
114
7abb690a
DV
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
1f83fee0 117 if (EXIT_COND)
30dbf0c0
CW
118 return 0;
119
0a6759c6
DV
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
1f83fee0
DV
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
0a6759c6
DV
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
30dbf0c0 132 return ret;
0a6759c6 133 }
1f83fee0 134#undef EXIT_COND
30dbf0c0 135
21dd3734 136 return 0;
30dbf0c0
CW
137}
138
54cf91dc 139int i915_mutex_lock_interruptible(struct drm_device *dev)
76c1dec1 140{
33196ded 141 struct drm_i915_private *dev_priv = dev->dev_private;
76c1dec1
CW
142 int ret;
143
33196ded 144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
76c1dec1
CW
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
23bc5982 152 WARN_ON(i915_verify_lists(dev));
76c1dec1
CW
153 return 0;
154}
30dbf0c0 155
7d1c4804 156static inline bool
05394f39 157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
7d1c4804 158{
9843877d 159 return i915_gem_obj_bound_any(obj) && !obj->active;
7d1c4804
CW
160}
161
5a125c3c
EA
162int
163i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
05394f39 164 struct drm_file *file)
5a125c3c 165{
73aa808f 166 struct drm_i915_private *dev_priv = dev->dev_private;
5a125c3c 167 struct drm_i915_gem_get_aperture *args = data;
6299f992
CW
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
5a125c3c 170
6299f992 171 pinned = 0;
73aa808f 172 mutex_lock(&dev->struct_mutex);
35c20a60 173 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
d7f46fc4 174 if (i915_gem_obj_is_pinned(obj))
f343c5f6 175 pinned += i915_gem_obj_ggtt_size(obj);
73aa808f 176 mutex_unlock(&dev->struct_mutex);
5a125c3c 177
853ba5d2 178 args->aper_size = dev_priv->gtt.base.total;
0206e353 179 args->aper_available_size = args->aper_size - pinned;
6299f992 180
5a125c3c
EA
181 return 0;
182}
183
6a2c4232
CW
184static int
185i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
00731155 186{
6a2c4232
CW
187 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188 char *vaddr = obj->phys_handle->vaddr;
189 struct sg_table *st;
190 struct scatterlist *sg;
191 int i;
00731155 192
6a2c4232
CW
193 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194 return -EINVAL;
195
196 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197 struct page *page;
198 char *src;
199
200 page = shmem_read_mapping_page(mapping, i);
201 if (IS_ERR(page))
202 return PTR_ERR(page);
203
204 src = kmap_atomic(page);
205 memcpy(vaddr, src, PAGE_SIZE);
206 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207 kunmap_atomic(src);
208
209 page_cache_release(page);
210 vaddr += PAGE_SIZE;
211 }
212
213 i915_gem_chipset_flush(obj->base.dev);
214
215 st = kmalloc(sizeof(*st), GFP_KERNEL);
216 if (st == NULL)
217 return -ENOMEM;
218
219 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220 kfree(st);
221 return -ENOMEM;
222 }
223
224 sg = st->sgl;
225 sg->offset = 0;
226 sg->length = obj->base.size;
00731155 227
6a2c4232
CW
228 sg_dma_address(sg) = obj->phys_handle->busaddr;
229 sg_dma_len(sg) = obj->base.size;
230
231 obj->pages = st;
232 obj->has_dma_mapping = true;
233 return 0;
234}
235
236static void
237i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238{
239 int ret;
240
241 BUG_ON(obj->madv == __I915_MADV_PURGED);
00731155 242
6a2c4232
CW
243 ret = i915_gem_object_set_to_cpu_domain(obj, true);
244 if (ret) {
245 /* In the event of a disaster, abandon all caches and
246 * hope for the best.
247 */
248 WARN_ON(ret != -EIO);
249 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250 }
251
252 if (obj->madv == I915_MADV_DONTNEED)
253 obj->dirty = 0;
254
255 if (obj->dirty) {
00731155 256 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
6a2c4232 257 char *vaddr = obj->phys_handle->vaddr;
00731155
CW
258 int i;
259
260 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
6a2c4232
CW
261 struct page *page;
262 char *dst;
263
264 page = shmem_read_mapping_page(mapping, i);
265 if (IS_ERR(page))
266 continue;
267
268 dst = kmap_atomic(page);
269 drm_clflush_virt_range(vaddr, PAGE_SIZE);
270 memcpy(dst, vaddr, PAGE_SIZE);
271 kunmap_atomic(dst);
272
273 set_page_dirty(page);
274 if (obj->madv == I915_MADV_WILLNEED)
00731155 275 mark_page_accessed(page);
6a2c4232 276 page_cache_release(page);
00731155
CW
277 vaddr += PAGE_SIZE;
278 }
6a2c4232 279 obj->dirty = 0;
00731155
CW
280 }
281
6a2c4232
CW
282 sg_free_table(obj->pages);
283 kfree(obj->pages);
284
285 obj->has_dma_mapping = false;
286}
287
288static void
289i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290{
291 drm_pci_free(obj->base.dev, obj->phys_handle);
292}
293
294static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295 .get_pages = i915_gem_object_get_pages_phys,
296 .put_pages = i915_gem_object_put_pages_phys,
297 .release = i915_gem_object_release_phys,
298};
299
300static int
301drop_pages(struct drm_i915_gem_object *obj)
302{
303 struct i915_vma *vma, *next;
304 int ret;
305
306 drm_gem_object_reference(&obj->base);
307 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308 if (i915_vma_unbind(vma))
309 break;
310
311 ret = i915_gem_object_put_pages(obj);
312 drm_gem_object_unreference(&obj->base);
313
314 return ret;
00731155
CW
315}
316
317int
318i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319 int align)
320{
321 drm_dma_handle_t *phys;
6a2c4232 322 int ret;
00731155
CW
323
324 if (obj->phys_handle) {
325 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326 return -EBUSY;
327
328 return 0;
329 }
330
331 if (obj->madv != I915_MADV_WILLNEED)
332 return -EFAULT;
333
334 if (obj->base.filp == NULL)
335 return -EINVAL;
336
6a2c4232
CW
337 ret = drop_pages(obj);
338 if (ret)
339 return ret;
340
00731155
CW
341 /* create a new object */
342 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343 if (!phys)
344 return -ENOMEM;
345
00731155 346 obj->phys_handle = phys;
6a2c4232
CW
347 obj->ops = &i915_gem_phys_ops;
348
349 return i915_gem_object_get_pages(obj);
00731155
CW
350}
351
352static int
353i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354 struct drm_i915_gem_pwrite *args,
355 struct drm_file *file_priv)
356{
357 struct drm_device *dev = obj->base.dev;
358 void *vaddr = obj->phys_handle->vaddr + args->offset;
359 char __user *user_data = to_user_ptr(args->data_ptr);
6a2c4232
CW
360 int ret;
361
362 /* We manually control the domain here and pretend that it
363 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364 */
365 ret = i915_gem_object_wait_rendering(obj, false);
366 if (ret)
367 return ret;
00731155
CW
368
369 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370 unsigned long unwritten;
371
372 /* The physical object once assigned is fixed for the lifetime
373 * of the obj, so we can safely drop the lock and continue
374 * to access vaddr.
375 */
376 mutex_unlock(&dev->struct_mutex);
377 unwritten = copy_from_user(vaddr, user_data, args->size);
378 mutex_lock(&dev->struct_mutex);
379 if (unwritten)
380 return -EFAULT;
381 }
382
6a2c4232 383 drm_clflush_virt_range(vaddr, args->size);
00731155
CW
384 i915_gem_chipset_flush(dev);
385 return 0;
386}
387
42dcedd4
CW
388void *i915_gem_object_alloc(struct drm_device *dev)
389{
390 struct drm_i915_private *dev_priv = dev->dev_private;
fac15c10 391 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
42dcedd4
CW
392}
393
394void i915_gem_object_free(struct drm_i915_gem_object *obj)
395{
396 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397 kmem_cache_free(dev_priv->slab, obj);
398}
399
ff72145b
DA
400static int
401i915_gem_create(struct drm_file *file,
402 struct drm_device *dev,
403 uint64_t size,
355a7018 404 bool dumb,
ff72145b 405 uint32_t *handle_p)
673a394b 406{
05394f39 407 struct drm_i915_gem_object *obj;
a1a2d1d3
PP
408 int ret;
409 u32 handle;
673a394b 410
ff72145b 411 size = roundup(size, PAGE_SIZE);
8ffc0246
CW
412 if (size == 0)
413 return -EINVAL;
673a394b
EA
414
415 /* Allocate the new object */
ff72145b 416 obj = i915_gem_alloc_object(dev, size);
673a394b
EA
417 if (obj == NULL)
418 return -ENOMEM;
419
355a7018 420 obj->base.dumb = dumb;
05394f39 421 ret = drm_gem_handle_create(file, &obj->base, &handle);
202f2fef 422 /* drop reference from allocate - handle holds it now */
d861e338
DV
423 drm_gem_object_unreference_unlocked(&obj->base);
424 if (ret)
425 return ret;
202f2fef 426
ff72145b 427 *handle_p = handle;
673a394b
EA
428 return 0;
429}
430
ff72145b
DA
431int
432i915_gem_dumb_create(struct drm_file *file,
433 struct drm_device *dev,
434 struct drm_mode_create_dumb *args)
435{
436 /* have to work out size/pitch and return them */
de45eaf7 437 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
ff72145b
DA
438 args->size = args->pitch * args->height;
439 return i915_gem_create(file, dev,
355a7018 440 args->size, true, &args->handle);
ff72145b
DA
441}
442
ff72145b
DA
443/**
444 * Creates a new mm object and returns a handle to it.
445 */
446int
447i915_gem_create_ioctl(struct drm_device *dev, void *data,
448 struct drm_file *file)
449{
450 struct drm_i915_gem_create *args = data;
63ed2cb2 451
ff72145b 452 return i915_gem_create(file, dev,
355a7018 453 args->size, false, &args->handle);
ff72145b
DA
454}
455
8461d226
DV
456static inline int
457__copy_to_user_swizzled(char __user *cpu_vaddr,
458 const char *gpu_vaddr, int gpu_offset,
459 int length)
460{
461 int ret, cpu_offset = 0;
462
463 while (length > 0) {
464 int cacheline_end = ALIGN(gpu_offset + 1, 64);
465 int this_length = min(cacheline_end - gpu_offset, length);
466 int swizzled_gpu_offset = gpu_offset ^ 64;
467
468 ret = __copy_to_user(cpu_vaddr + cpu_offset,
469 gpu_vaddr + swizzled_gpu_offset,
470 this_length);
471 if (ret)
472 return ret + length;
473
474 cpu_offset += this_length;
475 gpu_offset += this_length;
476 length -= this_length;
477 }
478
479 return 0;
480}
481
8c59967c 482static inline int
4f0c7cfb
BW
483__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
484 const char __user *cpu_vaddr,
8c59967c
DV
485 int length)
486{
487 int ret, cpu_offset = 0;
488
489 while (length > 0) {
490 int cacheline_end = ALIGN(gpu_offset + 1, 64);
491 int this_length = min(cacheline_end - gpu_offset, length);
492 int swizzled_gpu_offset = gpu_offset ^ 64;
493
494 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
495 cpu_vaddr + cpu_offset,
496 this_length);
497 if (ret)
498 return ret + length;
499
500 cpu_offset += this_length;
501 gpu_offset += this_length;
502 length -= this_length;
503 }
504
505 return 0;
506}
507
4c914c0c
BV
508/*
509 * Pins the specified object's pages and synchronizes the object with
510 * GPU accesses. Sets needs_clflush to non-zero if the caller should
511 * flush the object from the CPU cache.
512 */
513int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
514 int *needs_clflush)
515{
516 int ret;
517
518 *needs_clflush = 0;
519
520 if (!obj->base.filp)
521 return -EINVAL;
522
523 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
524 /* If we're not in the cpu read domain, set ourself into the gtt
525 * read domain and manually flush cachelines (if required). This
526 * optimizes for the case when the gpu will dirty the data
527 * anyway again before the next pread happens. */
528 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
529 obj->cache_level);
530 ret = i915_gem_object_wait_rendering(obj, true);
531 if (ret)
532 return ret;
c8725f3d
CW
533
534 i915_gem_object_retire(obj);
4c914c0c
BV
535 }
536
537 ret = i915_gem_object_get_pages(obj);
538 if (ret)
539 return ret;
540
541 i915_gem_object_pin_pages(obj);
542
543 return ret;
544}
545
d174bd64
DV
546/* Per-page copy function for the shmem pread fastpath.
547 * Flushes invalid cachelines before reading the target if
548 * needs_clflush is set. */
eb01459f 549static int
d174bd64
DV
550shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
551 char __user *user_data,
552 bool page_do_bit17_swizzling, bool needs_clflush)
553{
554 char *vaddr;
555 int ret;
556
e7e58eb5 557 if (unlikely(page_do_bit17_swizzling))
d174bd64
DV
558 return -EINVAL;
559
560 vaddr = kmap_atomic(page);
561 if (needs_clflush)
562 drm_clflush_virt_range(vaddr + shmem_page_offset,
563 page_length);
564 ret = __copy_to_user_inatomic(user_data,
565 vaddr + shmem_page_offset,
566 page_length);
567 kunmap_atomic(vaddr);
568
f60d7f0c 569 return ret ? -EFAULT : 0;
d174bd64
DV
570}
571
23c18c71
DV
572static void
573shmem_clflush_swizzled_range(char *addr, unsigned long length,
574 bool swizzled)
575{
e7e58eb5 576 if (unlikely(swizzled)) {
23c18c71
DV
577 unsigned long start = (unsigned long) addr;
578 unsigned long end = (unsigned long) addr + length;
579
580 /* For swizzling simply ensure that we always flush both
581 * channels. Lame, but simple and it works. Swizzled
582 * pwrite/pread is far from a hotpath - current userspace
583 * doesn't use it at all. */
584 start = round_down(start, 128);
585 end = round_up(end, 128);
586
587 drm_clflush_virt_range((void *)start, end - start);
588 } else {
589 drm_clflush_virt_range(addr, length);
590 }
591
592}
593
d174bd64
DV
594/* Only difference to the fast-path function is that this can handle bit17
595 * and uses non-atomic copy and kmap functions. */
596static int
597shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
598 char __user *user_data,
599 bool page_do_bit17_swizzling, bool needs_clflush)
600{
601 char *vaddr;
602 int ret;
603
604 vaddr = kmap(page);
605 if (needs_clflush)
23c18c71
DV
606 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
607 page_length,
608 page_do_bit17_swizzling);
d174bd64
DV
609
610 if (page_do_bit17_swizzling)
611 ret = __copy_to_user_swizzled(user_data,
612 vaddr, shmem_page_offset,
613 page_length);
614 else
615 ret = __copy_to_user(user_data,
616 vaddr + shmem_page_offset,
617 page_length);
618 kunmap(page);
619
f60d7f0c 620 return ret ? - EFAULT : 0;
d174bd64
DV
621}
622
eb01459f 623static int
dbf7bff0
DV
624i915_gem_shmem_pread(struct drm_device *dev,
625 struct drm_i915_gem_object *obj,
626 struct drm_i915_gem_pread *args,
627 struct drm_file *file)
eb01459f 628{
8461d226 629 char __user *user_data;
eb01459f 630 ssize_t remain;
8461d226 631 loff_t offset;
eb2c0c81 632 int shmem_page_offset, page_length, ret = 0;
8461d226 633 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
96d79b52 634 int prefaulted = 0;
8489731c 635 int needs_clflush = 0;
67d5a50c 636 struct sg_page_iter sg_iter;
eb01459f 637
2bb4629a 638 user_data = to_user_ptr(args->data_ptr);
eb01459f
EA
639 remain = args->size;
640
8461d226 641 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
eb01459f 642
4c914c0c 643 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
f60d7f0c
CW
644 if (ret)
645 return ret;
646
8461d226 647 offset = args->offset;
eb01459f 648
67d5a50c
ID
649 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
650 offset >> PAGE_SHIFT) {
2db76d7c 651 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66
CW
652
653 if (remain <= 0)
654 break;
655
eb01459f
EA
656 /* Operation in this page
657 *
eb01459f 658 * shmem_page_offset = offset within page in shmem file
eb01459f
EA
659 * page_length = bytes to copy for this page
660 */
c8cbbb8b 661 shmem_page_offset = offset_in_page(offset);
eb01459f
EA
662 page_length = remain;
663 if ((shmem_page_offset + page_length) > PAGE_SIZE)
664 page_length = PAGE_SIZE - shmem_page_offset;
eb01459f 665
8461d226
DV
666 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
667 (page_to_phys(page) & (1 << 17)) != 0;
668
d174bd64
DV
669 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
670 user_data, page_do_bit17_swizzling,
671 needs_clflush);
672 if (ret == 0)
673 goto next_page;
dbf7bff0 674
dbf7bff0
DV
675 mutex_unlock(&dev->struct_mutex);
676
d330a953 677 if (likely(!i915.prefault_disable) && !prefaulted) {
f56f821f 678 ret = fault_in_multipages_writeable(user_data, remain);
96d79b52
DV
679 /* Userspace is tricking us, but we've already clobbered
680 * its pages with the prefault and promised to write the
681 * data up to the first fault. Hence ignore any errors
682 * and just continue. */
683 (void)ret;
684 prefaulted = 1;
685 }
eb01459f 686
d174bd64
DV
687 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
688 user_data, page_do_bit17_swizzling,
689 needs_clflush);
eb01459f 690
dbf7bff0 691 mutex_lock(&dev->struct_mutex);
f60d7f0c 692
f60d7f0c 693 if (ret)
8461d226 694 goto out;
8461d226 695
17793c9a 696next_page:
eb01459f 697 remain -= page_length;
8461d226 698 user_data += page_length;
eb01459f
EA
699 offset += page_length;
700 }
701
4f27b75d 702out:
f60d7f0c
CW
703 i915_gem_object_unpin_pages(obj);
704
eb01459f
EA
705 return ret;
706}
707
673a394b
EA
708/**
709 * Reads data from the object referenced by handle.
710 *
711 * On error, the contents of *data are undefined.
712 */
713int
714i915_gem_pread_ioctl(struct drm_device *dev, void *data,
05394f39 715 struct drm_file *file)
673a394b
EA
716{
717 struct drm_i915_gem_pread *args = data;
05394f39 718 struct drm_i915_gem_object *obj;
35b62a89 719 int ret = 0;
673a394b 720
51311d0a
CW
721 if (args->size == 0)
722 return 0;
723
724 if (!access_ok(VERIFY_WRITE,
2bb4629a 725 to_user_ptr(args->data_ptr),
51311d0a
CW
726 args->size))
727 return -EFAULT;
728
4f27b75d 729 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 730 if (ret)
4f27b75d 731 return ret;
673a394b 732
05394f39 733 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 734 if (&obj->base == NULL) {
1d7cfea1
CW
735 ret = -ENOENT;
736 goto unlock;
4f27b75d 737 }
673a394b 738
7dcd2499 739 /* Bounds check source. */
05394f39
CW
740 if (args->offset > obj->base.size ||
741 args->size > obj->base.size - args->offset) {
ce9d419d 742 ret = -EINVAL;
35b62a89 743 goto out;
ce9d419d
CW
744 }
745
1286ff73
DV
746 /* prime objects have no backing filp to GEM pread/pwrite
747 * pages from.
748 */
749 if (!obj->base.filp) {
750 ret = -EINVAL;
751 goto out;
752 }
753
db53a302
CW
754 trace_i915_gem_object_pread(obj, args->offset, args->size);
755
dbf7bff0 756 ret = i915_gem_shmem_pread(dev, obj, args, file);
673a394b 757
35b62a89 758out:
05394f39 759 drm_gem_object_unreference(&obj->base);
1d7cfea1 760unlock:
4f27b75d 761 mutex_unlock(&dev->struct_mutex);
eb01459f 762 return ret;
673a394b
EA
763}
764
0839ccb8
KP
765/* This is the fast write path which cannot handle
766 * page faults in the source data
9b7530cc 767 */
0839ccb8
KP
768
769static inline int
770fast_user_write(struct io_mapping *mapping,
771 loff_t page_base, int page_offset,
772 char __user *user_data,
773 int length)
9b7530cc 774{
4f0c7cfb
BW
775 void __iomem *vaddr_atomic;
776 void *vaddr;
0839ccb8 777 unsigned long unwritten;
9b7530cc 778
3e4d3af5 779 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
4f0c7cfb
BW
780 /* We can use the cpu mem copy function because this is X86. */
781 vaddr = (void __force*)vaddr_atomic + page_offset;
782 unwritten = __copy_from_user_inatomic_nocache(vaddr,
0839ccb8 783 user_data, length);
3e4d3af5 784 io_mapping_unmap_atomic(vaddr_atomic);
fbd5a26d 785 return unwritten;
0839ccb8
KP
786}
787
3de09aa3
EA
788/**
789 * This is the fast pwrite path, where we copy the data directly from the
790 * user into the GTT, uncached.
791 */
673a394b 792static int
05394f39
CW
793i915_gem_gtt_pwrite_fast(struct drm_device *dev,
794 struct drm_i915_gem_object *obj,
3de09aa3 795 struct drm_i915_gem_pwrite *args,
05394f39 796 struct drm_file *file)
673a394b 797{
3e31c6c0 798 struct drm_i915_private *dev_priv = dev->dev_private;
673a394b 799 ssize_t remain;
0839ccb8 800 loff_t offset, page_base;
673a394b 801 char __user *user_data;
935aaa69
DV
802 int page_offset, page_length, ret;
803
1ec9e26d 804 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
935aaa69
DV
805 if (ret)
806 goto out;
807
808 ret = i915_gem_object_set_to_gtt_domain(obj, true);
809 if (ret)
810 goto out_unpin;
811
812 ret = i915_gem_object_put_fence(obj);
813 if (ret)
814 goto out_unpin;
673a394b 815
2bb4629a 816 user_data = to_user_ptr(args->data_ptr);
673a394b 817 remain = args->size;
673a394b 818
f343c5f6 819 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
673a394b
EA
820
821 while (remain > 0) {
822 /* Operation in this page
823 *
0839ccb8
KP
824 * page_base = page offset within aperture
825 * page_offset = offset within page
826 * page_length = bytes to copy for this page
673a394b 827 */
c8cbbb8b
CW
828 page_base = offset & PAGE_MASK;
829 page_offset = offset_in_page(offset);
0839ccb8
KP
830 page_length = remain;
831 if ((page_offset + remain) > PAGE_SIZE)
832 page_length = PAGE_SIZE - page_offset;
833
0839ccb8 834 /* If we get a fault while copying data, then (presumably) our
3de09aa3
EA
835 * source page isn't available. Return the error and we'll
836 * retry in the slow path.
0839ccb8 837 */
5d4545ae 838 if (fast_user_write(dev_priv->gtt.mappable, page_base,
935aaa69
DV
839 page_offset, user_data, page_length)) {
840 ret = -EFAULT;
841 goto out_unpin;
842 }
673a394b 843
0839ccb8
KP
844 remain -= page_length;
845 user_data += page_length;
846 offset += page_length;
673a394b 847 }
673a394b 848
935aaa69 849out_unpin:
d7f46fc4 850 i915_gem_object_ggtt_unpin(obj);
935aaa69 851out:
3de09aa3 852 return ret;
673a394b
EA
853}
854
d174bd64
DV
855/* Per-page copy function for the shmem pwrite fastpath.
856 * Flushes invalid cachelines before writing to the target if
857 * needs_clflush_before is set and flushes out any written cachelines after
858 * writing if needs_clflush is set. */
3043c60c 859static int
d174bd64
DV
860shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
861 char __user *user_data,
862 bool page_do_bit17_swizzling,
863 bool needs_clflush_before,
864 bool needs_clflush_after)
673a394b 865{
d174bd64 866 char *vaddr;
673a394b 867 int ret;
3de09aa3 868
e7e58eb5 869 if (unlikely(page_do_bit17_swizzling))
d174bd64 870 return -EINVAL;
3de09aa3 871
d174bd64
DV
872 vaddr = kmap_atomic(page);
873 if (needs_clflush_before)
874 drm_clflush_virt_range(vaddr + shmem_page_offset,
875 page_length);
c2831a94
CW
876 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
877 user_data, page_length);
d174bd64
DV
878 if (needs_clflush_after)
879 drm_clflush_virt_range(vaddr + shmem_page_offset,
880 page_length);
881 kunmap_atomic(vaddr);
3de09aa3 882
755d2218 883 return ret ? -EFAULT : 0;
3de09aa3
EA
884}
885
d174bd64
DV
886/* Only difference to the fast-path function is that this can handle bit17
887 * and uses non-atomic copy and kmap functions. */
3043c60c 888static int
d174bd64
DV
889shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
890 char __user *user_data,
891 bool page_do_bit17_swizzling,
892 bool needs_clflush_before,
893 bool needs_clflush_after)
673a394b 894{
d174bd64
DV
895 char *vaddr;
896 int ret;
e5281ccd 897
d174bd64 898 vaddr = kmap(page);
e7e58eb5 899 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
23c18c71
DV
900 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
901 page_length,
902 page_do_bit17_swizzling);
d174bd64
DV
903 if (page_do_bit17_swizzling)
904 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
e5281ccd
CW
905 user_data,
906 page_length);
d174bd64
DV
907 else
908 ret = __copy_from_user(vaddr + shmem_page_offset,
909 user_data,
910 page_length);
911 if (needs_clflush_after)
23c18c71
DV
912 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
913 page_length,
914 page_do_bit17_swizzling);
d174bd64 915 kunmap(page);
40123c1f 916
755d2218 917 return ret ? -EFAULT : 0;
40123c1f
EA
918}
919
40123c1f 920static int
e244a443
DV
921i915_gem_shmem_pwrite(struct drm_device *dev,
922 struct drm_i915_gem_object *obj,
923 struct drm_i915_gem_pwrite *args,
924 struct drm_file *file)
40123c1f 925{
40123c1f 926 ssize_t remain;
8c59967c
DV
927 loff_t offset;
928 char __user *user_data;
eb2c0c81 929 int shmem_page_offset, page_length, ret = 0;
8c59967c 930 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
e244a443 931 int hit_slowpath = 0;
58642885
DV
932 int needs_clflush_after = 0;
933 int needs_clflush_before = 0;
67d5a50c 934 struct sg_page_iter sg_iter;
40123c1f 935
2bb4629a 936 user_data = to_user_ptr(args->data_ptr);
40123c1f
EA
937 remain = args->size;
938
8c59967c 939 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
40123c1f 940
58642885
DV
941 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
942 /* If we're not in the cpu write domain, set ourself into the gtt
943 * write domain and manually flush cachelines (if required). This
944 * optimizes for the case when the gpu will use the data
945 * right away and we therefore have to clflush anyway. */
2c22569b 946 needs_clflush_after = cpu_write_needs_clflush(obj);
23f54483
BW
947 ret = i915_gem_object_wait_rendering(obj, false);
948 if (ret)
949 return ret;
c8725f3d
CW
950
951 i915_gem_object_retire(obj);
58642885 952 }
c76ce038
CW
953 /* Same trick applies to invalidate partially written cachelines read
954 * before writing. */
955 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
956 needs_clflush_before =
957 !cpu_cache_is_coherent(dev, obj->cache_level);
58642885 958
755d2218
CW
959 ret = i915_gem_object_get_pages(obj);
960 if (ret)
961 return ret;
962
963 i915_gem_object_pin_pages(obj);
964
673a394b 965 offset = args->offset;
05394f39 966 obj->dirty = 1;
673a394b 967
67d5a50c
ID
968 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
969 offset >> PAGE_SHIFT) {
2db76d7c 970 struct page *page = sg_page_iter_page(&sg_iter);
58642885 971 int partial_cacheline_write;
e5281ccd 972
9da3da66
CW
973 if (remain <= 0)
974 break;
975
40123c1f
EA
976 /* Operation in this page
977 *
40123c1f 978 * shmem_page_offset = offset within page in shmem file
40123c1f
EA
979 * page_length = bytes to copy for this page
980 */
c8cbbb8b 981 shmem_page_offset = offset_in_page(offset);
40123c1f
EA
982
983 page_length = remain;
984 if ((shmem_page_offset + page_length) > PAGE_SIZE)
985 page_length = PAGE_SIZE - shmem_page_offset;
40123c1f 986
58642885
DV
987 /* If we don't overwrite a cacheline completely we need to be
988 * careful to have up-to-date data by first clflushing. Don't
989 * overcomplicate things and flush the entire patch. */
990 partial_cacheline_write = needs_clflush_before &&
991 ((shmem_page_offset | page_length)
992 & (boot_cpu_data.x86_clflush_size - 1));
993
8c59967c
DV
994 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
995 (page_to_phys(page) & (1 << 17)) != 0;
996
d174bd64
DV
997 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
998 user_data, page_do_bit17_swizzling,
999 partial_cacheline_write,
1000 needs_clflush_after);
1001 if (ret == 0)
1002 goto next_page;
e244a443
DV
1003
1004 hit_slowpath = 1;
e244a443 1005 mutex_unlock(&dev->struct_mutex);
d174bd64
DV
1006 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1007 user_data, page_do_bit17_swizzling,
1008 partial_cacheline_write,
1009 needs_clflush_after);
40123c1f 1010
e244a443 1011 mutex_lock(&dev->struct_mutex);
755d2218 1012
755d2218 1013 if (ret)
8c59967c 1014 goto out;
8c59967c 1015
17793c9a 1016next_page:
40123c1f 1017 remain -= page_length;
8c59967c 1018 user_data += page_length;
40123c1f 1019 offset += page_length;
673a394b
EA
1020 }
1021
fbd5a26d 1022out:
755d2218
CW
1023 i915_gem_object_unpin_pages(obj);
1024
e244a443 1025 if (hit_slowpath) {
8dcf015e
DV
1026 /*
1027 * Fixup: Flush cpu caches in case we didn't flush the dirty
1028 * cachelines in-line while writing and the object moved
1029 * out of the cpu write domain while we've dropped the lock.
1030 */
1031 if (!needs_clflush_after &&
1032 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
000433b6
CW
1033 if (i915_gem_clflush_object(obj, obj->pin_display))
1034 i915_gem_chipset_flush(dev);
e244a443 1035 }
8c59967c 1036 }
673a394b 1037
58642885 1038 if (needs_clflush_after)
e76e9aeb 1039 i915_gem_chipset_flush(dev);
58642885 1040
40123c1f 1041 return ret;
673a394b
EA
1042}
1043
1044/**
1045 * Writes data to the object referenced by handle.
1046 *
1047 * On error, the contents of the buffer that were to be modified are undefined.
1048 */
1049int
1050i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
fbd5a26d 1051 struct drm_file *file)
673a394b
EA
1052{
1053 struct drm_i915_gem_pwrite *args = data;
05394f39 1054 struct drm_i915_gem_object *obj;
51311d0a
CW
1055 int ret;
1056
1057 if (args->size == 0)
1058 return 0;
1059
1060 if (!access_ok(VERIFY_READ,
2bb4629a 1061 to_user_ptr(args->data_ptr),
51311d0a
CW
1062 args->size))
1063 return -EFAULT;
1064
d330a953 1065 if (likely(!i915.prefault_disable)) {
0b74b508
XZ
1066 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1067 args->size);
1068 if (ret)
1069 return -EFAULT;
1070 }
673a394b 1071
fbd5a26d 1072 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1073 if (ret)
fbd5a26d 1074 return ret;
1d7cfea1 1075
05394f39 1076 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1077 if (&obj->base == NULL) {
1d7cfea1
CW
1078 ret = -ENOENT;
1079 goto unlock;
fbd5a26d 1080 }
673a394b 1081
7dcd2499 1082 /* Bounds check destination. */
05394f39
CW
1083 if (args->offset > obj->base.size ||
1084 args->size > obj->base.size - args->offset) {
ce9d419d 1085 ret = -EINVAL;
35b62a89 1086 goto out;
ce9d419d
CW
1087 }
1088
1286ff73
DV
1089 /* prime objects have no backing filp to GEM pread/pwrite
1090 * pages from.
1091 */
1092 if (!obj->base.filp) {
1093 ret = -EINVAL;
1094 goto out;
1095 }
1096
db53a302
CW
1097 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1098
935aaa69 1099 ret = -EFAULT;
673a394b
EA
1100 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1101 * it would end up going through the fenced access, and we'll get
1102 * different detiling behavior between reading and writing.
1103 * pread/pwrite currently are reading and writing from the CPU
1104 * perspective, requiring manual detiling by the client.
1105 */
2c22569b
CW
1106 if (obj->tiling_mode == I915_TILING_NONE &&
1107 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1108 cpu_write_needs_clflush(obj)) {
fbd5a26d 1109 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
935aaa69
DV
1110 /* Note that the gtt paths might fail with non-page-backed user
1111 * pointers (e.g. gtt mappings when moving data between
1112 * textures). Fallback to the shmem path in that case. */
fbd5a26d 1113 }
673a394b 1114
6a2c4232
CW
1115 if (ret == -EFAULT || ret == -ENOSPC) {
1116 if (obj->phys_handle)
1117 ret = i915_gem_phys_pwrite(obj, args, file);
1118 else
1119 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1120 }
5c0480f2 1121
35b62a89 1122out:
05394f39 1123 drm_gem_object_unreference(&obj->base);
1d7cfea1 1124unlock:
fbd5a26d 1125 mutex_unlock(&dev->struct_mutex);
673a394b
EA
1126 return ret;
1127}
1128
b361237b 1129int
33196ded 1130i915_gem_check_wedge(struct i915_gpu_error *error,
b361237b
CW
1131 bool interruptible)
1132{
1f83fee0 1133 if (i915_reset_in_progress(error)) {
b361237b
CW
1134 /* Non-interruptible callers can't handle -EAGAIN, hence return
1135 * -EIO unconditionally for these. */
1136 if (!interruptible)
1137 return -EIO;
1138
1f83fee0
DV
1139 /* Recovery complete, but the reset failed ... */
1140 if (i915_terminally_wedged(error))
b361237b
CW
1141 return -EIO;
1142
6689c167
MA
1143 /*
1144 * Check if GPU Reset is in progress - we need intel_ring_begin
1145 * to work properly to reinit the hw state while the gpu is
1146 * still marked as reset-in-progress. Handle this with a flag.
1147 */
1148 if (!error->reload_in_reset)
1149 return -EAGAIN;
b361237b
CW
1150 }
1151
1152 return 0;
1153}
1154
1155/*
1156 * Compare seqno against outstanding lazy request. Emit a request if they are
1157 * equal.
1158 */
84c33a64 1159int
a4872ba6 1160i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
b361237b
CW
1161{
1162 int ret;
1163
1164 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1165
1166 ret = 0;
1823521d 1167 if (seqno == ring->outstanding_lazy_seqno)
0025c077 1168 ret = i915_add_request(ring, NULL);
b361237b
CW
1169
1170 return ret;
1171}
1172
094f9a54
CW
1173static void fake_irq(unsigned long data)
1174{
1175 wake_up_process((struct task_struct *)data);
1176}
1177
1178static bool missed_irq(struct drm_i915_private *dev_priv,
a4872ba6 1179 struct intel_engine_cs *ring)
094f9a54
CW
1180{
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182}
1183
b29c19b6
CW
1184static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1185{
1186 if (file_priv == NULL)
1187 return true;
1188
1189 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1190}
1191
b361237b 1192/**
16e9a21f 1193 * __i915_wait_seqno - wait until execution of seqno has finished
b361237b
CW
1194 * @ring: the ring expected to report seqno
1195 * @seqno: duh!
f69061be 1196 * @reset_counter: reset sequence associated with the given seqno
b361237b
CW
1197 * @interruptible: do an interruptible wait (normally yes)
1198 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1199 *
f69061be
DV
1200 * Note: It is of utmost importance that the passed in seqno and reset_counter
1201 * values have been read by the caller in an smp safe manner. Where read-side
1202 * locks are involved, it is sufficient to read the reset_counter before
1203 * unlocking the lock that protects the seqno. For lockless tricks, the
1204 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1205 * inserted.
1206 *
b361237b
CW
1207 * Returns 0 if the seqno was found within the alloted time. Else returns the
1208 * errno with remaining time filled in timeout argument.
1209 */
16e9a21f 1210int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
f69061be 1211 unsigned reset_counter,
b29c19b6 1212 bool interruptible,
5ed0bdf2 1213 s64 *timeout,
b29c19b6 1214 struct drm_i915_file_private *file_priv)
b361237b 1215{
3d13ef2e 1216 struct drm_device *dev = ring->dev;
3e31c6c0 1217 struct drm_i915_private *dev_priv = dev->dev_private;
168c3f21
MK
1218 const bool irq_test_in_progress =
1219 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
094f9a54 1220 DEFINE_WAIT(wait);
47e9766d 1221 unsigned long timeout_expire;
5ed0bdf2 1222 s64 before, now;
b361237b
CW
1223 int ret;
1224
9df7575f 1225 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
c67a470b 1226
b361237b
CW
1227 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1228 return 0;
1229
5ed0bdf2 1230 timeout_expire = timeout ? jiffies + nsecs_to_jiffies((u64)*timeout) : 0;
b361237b 1231
ec5cc0f9 1232 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
b29c19b6
CW
1233 gen6_rps_boost(dev_priv);
1234 if (file_priv)
1235 mod_delayed_work(dev_priv->wq,
1236 &file_priv->mm.idle_work,
1237 msecs_to_jiffies(100));
1238 }
1239
168c3f21 1240 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
b361237b
CW
1241 return -ENODEV;
1242
094f9a54
CW
1243 /* Record current time in case interrupted by signal, or wedged */
1244 trace_i915_gem_request_wait_begin(ring, seqno);
5ed0bdf2 1245 before = ktime_get_raw_ns();
094f9a54
CW
1246 for (;;) {
1247 struct timer_list timer;
b361237b 1248
094f9a54
CW
1249 prepare_to_wait(&ring->irq_queue, &wait,
1250 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
b361237b 1251
f69061be
DV
1252 /* We need to check whether any gpu reset happened in between
1253 * the caller grabbing the seqno and now ... */
094f9a54
CW
1254 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1255 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1256 * is truely gone. */
1257 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1258 if (ret == 0)
1259 ret = -EAGAIN;
1260 break;
1261 }
f69061be 1262
094f9a54
CW
1263 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1264 ret = 0;
1265 break;
1266 }
b361237b 1267
094f9a54
CW
1268 if (interruptible && signal_pending(current)) {
1269 ret = -ERESTARTSYS;
1270 break;
1271 }
1272
47e9766d 1273 if (timeout && time_after_eq(jiffies, timeout_expire)) {
094f9a54
CW
1274 ret = -ETIME;
1275 break;
1276 }
1277
1278 timer.function = NULL;
1279 if (timeout || missed_irq(dev_priv, ring)) {
47e9766d
MK
1280 unsigned long expire;
1281
094f9a54 1282 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
47e9766d 1283 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
094f9a54
CW
1284 mod_timer(&timer, expire);
1285 }
1286
5035c275 1287 io_schedule();
094f9a54 1288
094f9a54
CW
1289 if (timer.function) {
1290 del_singleshot_timer_sync(&timer);
1291 destroy_timer_on_stack(&timer);
1292 }
1293 }
5ed0bdf2 1294 now = ktime_get_raw_ns();
094f9a54 1295 trace_i915_gem_request_wait_end(ring, seqno);
b361237b 1296
168c3f21
MK
1297 if (!irq_test_in_progress)
1298 ring->irq_put(ring);
094f9a54
CW
1299
1300 finish_wait(&ring->irq_queue, &wait);
b361237b
CW
1301
1302 if (timeout) {
5ed0bdf2
TG
1303 s64 tres = *timeout - (now - before);
1304
1305 *timeout = tres < 0 ? 0 : tres;
b361237b
CW
1306 }
1307
094f9a54 1308 return ret;
b361237b
CW
1309}
1310
1311/**
1312 * Waits for a sequence number to be signaled, and cleans up the
1313 * request and object lists appropriately for that event.
1314 */
1315int
a4872ba6 1316i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
b361237b
CW
1317{
1318 struct drm_device *dev = ring->dev;
1319 struct drm_i915_private *dev_priv = dev->dev_private;
1320 bool interruptible = dev_priv->mm.interruptible;
16e9a21f 1321 unsigned reset_counter;
b361237b
CW
1322 int ret;
1323
1324 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1325 BUG_ON(seqno == 0);
1326
33196ded 1327 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
b361237b
CW
1328 if (ret)
1329 return ret;
1330
1331 ret = i915_gem_check_olr(ring, seqno);
1332 if (ret)
1333 return ret;
1334
16e9a21f
ACO
1335 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1336 return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1337 NULL, NULL);
b361237b
CW
1338}
1339
d26e3af8 1340static int
8e639549 1341i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
d26e3af8 1342{
c8725f3d
CW
1343 if (!obj->active)
1344 return 0;
d26e3af8
CW
1345
1346 /* Manually manage the write flush as we may have not yet
1347 * retired the buffer.
1348 *
97b2a6a1
JH
1349 * Note that the last_write_req is always the earlier of
1350 * the two (read/write) requests, so if we haved successfully waited,
d26e3af8
CW
1351 * we know we have passed the last write.
1352 */
97b2a6a1 1353 i915_gem_request_assign(&obj->last_write_req, NULL);
d26e3af8
CW
1354
1355 return 0;
1356}
1357
b361237b
CW
1358/**
1359 * Ensures that all rendering to the object has completed and the object is
1360 * safe to unbind from the GTT or access from the CPU.
1361 */
1362static __must_check int
1363i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1364 bool readonly)
1365{
97b2a6a1 1366 struct drm_i915_gem_request *req;
a4872ba6 1367 struct intel_engine_cs *ring = obj->ring;
b361237b
CW
1368 u32 seqno;
1369 int ret;
1370
97b2a6a1
JH
1371 req = readonly ? obj->last_write_req : obj->last_read_req;
1372 if (!req)
b361237b
CW
1373 return 0;
1374
97b2a6a1
JH
1375 seqno = i915_gem_request_get_seqno(req);
1376 WARN_ON(seqno == 0);
1377
b361237b
CW
1378 ret = i915_wait_seqno(ring, seqno);
1379 if (ret)
1380 return ret;
1381
8e639549 1382 return i915_gem_object_wait_rendering__tail(obj);
b361237b
CW
1383}
1384
3236f57a
CW
1385/* A nonblocking variant of the above wait. This is a highly dangerous routine
1386 * as the object state may change during this call.
1387 */
1388static __must_check int
1389i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
6e4930f6 1390 struct drm_i915_file_private *file_priv,
3236f57a
CW
1391 bool readonly)
1392{
97b2a6a1 1393 struct drm_i915_gem_request *req;
3236f57a
CW
1394 struct drm_device *dev = obj->base.dev;
1395 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 1396 struct intel_engine_cs *ring = obj->ring;
f69061be 1397 unsigned reset_counter;
3236f57a
CW
1398 u32 seqno;
1399 int ret;
1400
1401 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1402 BUG_ON(!dev_priv->mm.interruptible);
1403
97b2a6a1
JH
1404 req = readonly ? obj->last_write_req : obj->last_read_req;
1405 if (!req)
3236f57a
CW
1406 return 0;
1407
97b2a6a1
JH
1408 seqno = i915_gem_request_get_seqno(req);
1409 WARN_ON(seqno == 0);
1410
33196ded 1411 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
3236f57a
CW
1412 if (ret)
1413 return ret;
1414
1415 ret = i915_gem_check_olr(ring, seqno);
1416 if (ret)
1417 return ret;
1418
f69061be 1419 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 1420 i915_gem_request_reference(req);
3236f57a 1421 mutex_unlock(&dev->struct_mutex);
16e9a21f
ACO
1422 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1423 file_priv);
3236f57a 1424 mutex_lock(&dev->struct_mutex);
ff865885 1425 i915_gem_request_unreference(req);
d26e3af8
CW
1426 if (ret)
1427 return ret;
3236f57a 1428
8e639549 1429 return i915_gem_object_wait_rendering__tail(obj);
3236f57a
CW
1430}
1431
673a394b 1432/**
2ef7eeaa
EA
1433 * Called when user space prepares to use an object with the CPU, either
1434 * through the mmap ioctl's mapping or a GTT mapping.
673a394b
EA
1435 */
1436int
1437i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
05394f39 1438 struct drm_file *file)
673a394b
EA
1439{
1440 struct drm_i915_gem_set_domain *args = data;
05394f39 1441 struct drm_i915_gem_object *obj;
2ef7eeaa
EA
1442 uint32_t read_domains = args->read_domains;
1443 uint32_t write_domain = args->write_domain;
673a394b
EA
1444 int ret;
1445
2ef7eeaa 1446 /* Only handle setting domains to types used by the CPU. */
21d509e3 1447 if (write_domain & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1448 return -EINVAL;
1449
21d509e3 1450 if (read_domains & I915_GEM_GPU_DOMAINS)
2ef7eeaa
EA
1451 return -EINVAL;
1452
1453 /* Having something in the write domain implies it's in the read
1454 * domain, and only that read domain. Enforce that in the request.
1455 */
1456 if (write_domain != 0 && read_domains != write_domain)
1457 return -EINVAL;
1458
76c1dec1 1459 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1460 if (ret)
76c1dec1 1461 return ret;
1d7cfea1 1462
05394f39 1463 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1464 if (&obj->base == NULL) {
1d7cfea1
CW
1465 ret = -ENOENT;
1466 goto unlock;
76c1dec1 1467 }
673a394b 1468
3236f57a
CW
1469 /* Try to flush the object off the GPU without holding the lock.
1470 * We will repeat the flush holding the lock in the normal manner
1471 * to catch cases where we are gazumped.
1472 */
6e4930f6
CW
1473 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1474 file->driver_priv,
1475 !write_domain);
3236f57a
CW
1476 if (ret)
1477 goto unref;
1478
2ef7eeaa
EA
1479 if (read_domains & I915_GEM_DOMAIN_GTT) {
1480 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
02354392
EA
1481
1482 /* Silently promote "you're not bound, there was nothing to do"
1483 * to success, since the client was just asking us to
1484 * make sure everything was done.
1485 */
1486 if (ret == -EINVAL)
1487 ret = 0;
2ef7eeaa 1488 } else {
e47c68e9 1489 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
2ef7eeaa
EA
1490 }
1491
3236f57a 1492unref:
05394f39 1493 drm_gem_object_unreference(&obj->base);
1d7cfea1 1494unlock:
673a394b
EA
1495 mutex_unlock(&dev->struct_mutex);
1496 return ret;
1497}
1498
1499/**
1500 * Called when user space has done writes to this buffer
1501 */
1502int
1503i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
05394f39 1504 struct drm_file *file)
673a394b
EA
1505{
1506 struct drm_i915_gem_sw_finish *args = data;
05394f39 1507 struct drm_i915_gem_object *obj;
673a394b
EA
1508 int ret = 0;
1509
76c1dec1 1510 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1511 if (ret)
76c1dec1 1512 return ret;
1d7cfea1 1513
05394f39 1514 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 1515 if (&obj->base == NULL) {
1d7cfea1
CW
1516 ret = -ENOENT;
1517 goto unlock;
673a394b
EA
1518 }
1519
673a394b 1520 /* Pinned buffers may be scanout, so flush the cache */
2c22569b
CW
1521 if (obj->pin_display)
1522 i915_gem_object_flush_cpu_write_domain(obj, true);
e47c68e9 1523
05394f39 1524 drm_gem_object_unreference(&obj->base);
1d7cfea1 1525unlock:
673a394b
EA
1526 mutex_unlock(&dev->struct_mutex);
1527 return ret;
1528}
1529
1530/**
1531 * Maps the contents of an object, returning the address it is mapped
1532 * into.
1533 *
1534 * While the mapping holds a reference on the contents of the object, it doesn't
1535 * imply a ref on the object itself.
34367381
DV
1536 *
1537 * IMPORTANT:
1538 *
1539 * DRM driver writers who look a this function as an example for how to do GEM
1540 * mmap support, please don't implement mmap support like here. The modern way
1541 * to implement DRM mmap support is with an mmap offset ioctl (like
1542 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1543 * That way debug tooling like valgrind will understand what's going on, hiding
1544 * the mmap call in a driver private ioctl will break that. The i915 driver only
1545 * does cpu mmaps this way because we didn't know better.
673a394b
EA
1546 */
1547int
1548i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
05394f39 1549 struct drm_file *file)
673a394b
EA
1550{
1551 struct drm_i915_gem_mmap *args = data;
1552 struct drm_gem_object *obj;
673a394b
EA
1553 unsigned long addr;
1554
05394f39 1555 obj = drm_gem_object_lookup(dev, file, args->handle);
673a394b 1556 if (obj == NULL)
bf79cb91 1557 return -ENOENT;
673a394b 1558
1286ff73
DV
1559 /* prime objects have no backing filp to GEM mmap
1560 * pages from.
1561 */
1562 if (!obj->filp) {
1563 drm_gem_object_unreference_unlocked(obj);
1564 return -EINVAL;
1565 }
1566
6be5ceb0 1567 addr = vm_mmap(obj->filp, 0, args->size,
673a394b
EA
1568 PROT_READ | PROT_WRITE, MAP_SHARED,
1569 args->offset);
bc9025bd 1570 drm_gem_object_unreference_unlocked(obj);
673a394b
EA
1571 if (IS_ERR((void *)addr))
1572 return addr;
1573
1574 args->addr_ptr = (uint64_t) addr;
1575
1576 return 0;
1577}
1578
de151cf6
JB
1579/**
1580 * i915_gem_fault - fault a page into the GTT
1581 * vma: VMA in question
1582 * vmf: fault info
1583 *
1584 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1585 * from userspace. The fault handler takes care of binding the object to
1586 * the GTT (if needed), allocating and programming a fence register (again,
1587 * only if needed based on whether the old reg is still valid or the object
1588 * is tiled) and inserting a new PTE into the faulting process.
1589 *
1590 * Note that the faulting process may involve evicting existing objects
1591 * from the GTT and/or fence registers to make room. So performance may
1592 * suffer if the GTT working set is large or there are few fence registers
1593 * left.
1594 */
1595int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1596{
05394f39
CW
1597 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1598 struct drm_device *dev = obj->base.dev;
3e31c6c0 1599 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6
JB
1600 pgoff_t page_offset;
1601 unsigned long pfn;
1602 int ret = 0;
0f973f27 1603 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
de151cf6 1604
f65c9168
PZ
1605 intel_runtime_pm_get(dev_priv);
1606
de151cf6
JB
1607 /* We don't use vmf->pgoff since that has the fake offset */
1608 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1609 PAGE_SHIFT;
1610
d9bc7e9f
CW
1611 ret = i915_mutex_lock_interruptible(dev);
1612 if (ret)
1613 goto out;
a00b10c3 1614
db53a302
CW
1615 trace_i915_gem_object_fault(obj, page_offset, true, write);
1616
6e4930f6
CW
1617 /* Try to flush the object off the GPU first without holding the lock.
1618 * Upon reacquiring the lock, we will perform our sanity checks and then
1619 * repeat the flush holding the lock in the normal manner to catch cases
1620 * where we are gazumped.
1621 */
1622 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1623 if (ret)
1624 goto unlock;
1625
eb119bd6
CW
1626 /* Access to snoopable pages through the GTT is incoherent. */
1627 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
ddeff6ee 1628 ret = -EFAULT;
eb119bd6
CW
1629 goto unlock;
1630 }
1631
d9bc7e9f 1632 /* Now bind it into the GTT if needed */
1ec9e26d 1633 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
c9839303
CW
1634 if (ret)
1635 goto unlock;
4a684a41 1636
c9839303
CW
1637 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1638 if (ret)
1639 goto unpin;
74898d7e 1640
06d98131 1641 ret = i915_gem_object_get_fence(obj);
d9e86c0e 1642 if (ret)
c9839303 1643 goto unpin;
7d1c4804 1644
b90b91d8 1645 /* Finally, remap it using the new GTT offset */
f343c5f6
BW
1646 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1647 pfn >>= PAGE_SHIFT;
de151cf6 1648
b90b91d8 1649 if (!obj->fault_mappable) {
beff0d0f
VS
1650 unsigned long size = min_t(unsigned long,
1651 vma->vm_end - vma->vm_start,
1652 obj->base.size);
b90b91d8
CW
1653 int i;
1654
beff0d0f 1655 for (i = 0; i < size >> PAGE_SHIFT; i++) {
b90b91d8
CW
1656 ret = vm_insert_pfn(vma,
1657 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1658 pfn + i);
1659 if (ret)
1660 break;
1661 }
1662
1663 obj->fault_mappable = true;
1664 } else
1665 ret = vm_insert_pfn(vma,
1666 (unsigned long)vmf->virtual_address,
1667 pfn + page_offset);
c9839303 1668unpin:
d7f46fc4 1669 i915_gem_object_ggtt_unpin(obj);
c715089f 1670unlock:
de151cf6 1671 mutex_unlock(&dev->struct_mutex);
d9bc7e9f 1672out:
de151cf6 1673 switch (ret) {
d9bc7e9f 1674 case -EIO:
2232f031
DV
1675 /*
1676 * We eat errors when the gpu is terminally wedged to avoid
1677 * userspace unduly crashing (gl has no provisions for mmaps to
1678 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1679 * and so needs to be reported.
1680 */
1681 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
f65c9168
PZ
1682 ret = VM_FAULT_SIGBUS;
1683 break;
1684 }
045e769a 1685 case -EAGAIN:
571c608d
DV
1686 /*
1687 * EAGAIN means the gpu is hung and we'll wait for the error
1688 * handler to reset everything when re-faulting in
1689 * i915_mutex_lock_interruptible.
d9bc7e9f 1690 */
c715089f
CW
1691 case 0:
1692 case -ERESTARTSYS:
bed636ab 1693 case -EINTR:
e79e0fe3
DR
1694 case -EBUSY:
1695 /*
1696 * EBUSY is ok: this just means that another thread
1697 * already did the job.
1698 */
f65c9168
PZ
1699 ret = VM_FAULT_NOPAGE;
1700 break;
de151cf6 1701 case -ENOMEM:
f65c9168
PZ
1702 ret = VM_FAULT_OOM;
1703 break;
a7c2e1aa 1704 case -ENOSPC:
45d67817 1705 case -EFAULT:
f65c9168
PZ
1706 ret = VM_FAULT_SIGBUS;
1707 break;
de151cf6 1708 default:
a7c2e1aa 1709 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
f65c9168
PZ
1710 ret = VM_FAULT_SIGBUS;
1711 break;
de151cf6 1712 }
f65c9168
PZ
1713
1714 intel_runtime_pm_put(dev_priv);
1715 return ret;
de151cf6
JB
1716}
1717
901782b2
CW
1718/**
1719 * i915_gem_release_mmap - remove physical page mappings
1720 * @obj: obj in question
1721 *
af901ca1 1722 * Preserve the reservation of the mmapping with the DRM core code, but
901782b2
CW
1723 * relinquish ownership of the pages back to the system.
1724 *
1725 * It is vital that we remove the page mapping if we have mapped a tiled
1726 * object through the GTT and then lose the fence register due to
1727 * resource pressure. Similarly if the object has been moved out of the
1728 * aperture, than pages mapped into userspace must be revoked. Removing the
1729 * mapping will then trigger a page fault on the next user access, allowing
1730 * fixup by i915_gem_fault().
1731 */
d05ca301 1732void
05394f39 1733i915_gem_release_mmap(struct drm_i915_gem_object *obj)
901782b2 1734{
6299f992
CW
1735 if (!obj->fault_mappable)
1736 return;
901782b2 1737
6796cb16
DH
1738 drm_vma_node_unmap(&obj->base.vma_node,
1739 obj->base.dev->anon_inode->i_mapping);
6299f992 1740 obj->fault_mappable = false;
901782b2
CW
1741}
1742
eedd10f4
CW
1743void
1744i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1745{
1746 struct drm_i915_gem_object *obj;
1747
1748 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1749 i915_gem_release_mmap(obj);
1750}
1751
0fa87796 1752uint32_t
e28f8711 1753i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
92b88aeb 1754{
e28f8711 1755 uint32_t gtt_size;
92b88aeb
CW
1756
1757 if (INTEL_INFO(dev)->gen >= 4 ||
e28f8711
CW
1758 tiling_mode == I915_TILING_NONE)
1759 return size;
92b88aeb
CW
1760
1761 /* Previous chips need a power-of-two fence region when tiling */
1762 if (INTEL_INFO(dev)->gen == 3)
e28f8711 1763 gtt_size = 1024*1024;
92b88aeb 1764 else
e28f8711 1765 gtt_size = 512*1024;
92b88aeb 1766
e28f8711
CW
1767 while (gtt_size < size)
1768 gtt_size <<= 1;
92b88aeb 1769
e28f8711 1770 return gtt_size;
92b88aeb
CW
1771}
1772
de151cf6
JB
1773/**
1774 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1775 * @obj: object to check
1776 *
1777 * Return the required GTT alignment for an object, taking into account
5e783301 1778 * potential fence register mapping.
de151cf6 1779 */
d865110c
ID
1780uint32_t
1781i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1782 int tiling_mode, bool fenced)
de151cf6 1783{
de151cf6
JB
1784 /*
1785 * Minimum alignment is 4k (GTT page size), but might be greater
1786 * if a fence register is needed for the object.
1787 */
d865110c 1788 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
e28f8711 1789 tiling_mode == I915_TILING_NONE)
de151cf6
JB
1790 return 4096;
1791
a00b10c3
CW
1792 /*
1793 * Previous chips need to be aligned to the size of the smallest
1794 * fence register that can contain the object.
1795 */
e28f8711 1796 return i915_gem_get_gtt_size(dev, size, tiling_mode);
a00b10c3
CW
1797}
1798
d8cb5086
CW
1799static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1800{
1801 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1802 int ret;
1803
0de23977 1804 if (drm_vma_node_has_offset(&obj->base.vma_node))
d8cb5086
CW
1805 return 0;
1806
da494d7c
DV
1807 dev_priv->mm.shrinker_no_lock_stealing = true;
1808
d8cb5086
CW
1809 ret = drm_gem_create_mmap_offset(&obj->base);
1810 if (ret != -ENOSPC)
da494d7c 1811 goto out;
d8cb5086
CW
1812
1813 /* Badly fragmented mmap space? The only way we can recover
1814 * space is by destroying unwanted objects. We can't randomly release
1815 * mmap_offsets as userspace expects them to be persistent for the
1816 * lifetime of the objects. The closest we can is to release the
1817 * offsets on purgeable objects by truncating it and marking it purged,
1818 * which prevents userspace from ever using that object again.
1819 */
21ab4e74
CW
1820 i915_gem_shrink(dev_priv,
1821 obj->base.size >> PAGE_SHIFT,
1822 I915_SHRINK_BOUND |
1823 I915_SHRINK_UNBOUND |
1824 I915_SHRINK_PURGEABLE);
d8cb5086
CW
1825 ret = drm_gem_create_mmap_offset(&obj->base);
1826 if (ret != -ENOSPC)
da494d7c 1827 goto out;
d8cb5086
CW
1828
1829 i915_gem_shrink_all(dev_priv);
da494d7c
DV
1830 ret = drm_gem_create_mmap_offset(&obj->base);
1831out:
1832 dev_priv->mm.shrinker_no_lock_stealing = false;
1833
1834 return ret;
d8cb5086
CW
1835}
1836
1837static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1838{
d8cb5086
CW
1839 drm_gem_free_mmap_offset(&obj->base);
1840}
1841
355a7018 1842static int
ff72145b
DA
1843i915_gem_mmap_gtt(struct drm_file *file,
1844 struct drm_device *dev,
355a7018 1845 uint32_t handle, bool dumb,
ff72145b 1846 uint64_t *offset)
de151cf6 1847{
da761a6e 1848 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1849 struct drm_i915_gem_object *obj;
de151cf6
JB
1850 int ret;
1851
76c1dec1 1852 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 1853 if (ret)
76c1dec1 1854 return ret;
de151cf6 1855
ff72145b 1856 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 1857 if (&obj->base == NULL) {
1d7cfea1
CW
1858 ret = -ENOENT;
1859 goto unlock;
1860 }
de151cf6 1861
355a7018
TH
1862 /*
1863 * We don't allow dumb mmaps on objects created using another
1864 * interface.
1865 */
1866 WARN_ONCE(dumb && !(obj->base.dumb || obj->base.import_attach),
1867 "Illegal dumb map of accelerated buffer.\n");
1868
5d4545ae 1869 if (obj->base.size > dev_priv->gtt.mappable_end) {
da761a6e 1870 ret = -E2BIG;
ff56b0bc 1871 goto out;
da761a6e
CW
1872 }
1873
05394f39 1874 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 1875 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
8c99e57d 1876 ret = -EFAULT;
1d7cfea1 1877 goto out;
ab18282d
CW
1878 }
1879
d8cb5086
CW
1880 ret = i915_gem_object_create_mmap_offset(obj);
1881 if (ret)
1882 goto out;
de151cf6 1883
0de23977 1884 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
de151cf6 1885
1d7cfea1 1886out:
05394f39 1887 drm_gem_object_unreference(&obj->base);
1d7cfea1 1888unlock:
de151cf6 1889 mutex_unlock(&dev->struct_mutex);
1d7cfea1 1890 return ret;
de151cf6
JB
1891}
1892
355a7018
TH
1893int
1894i915_gem_dumb_map_offset(struct drm_file *file,
1895 struct drm_device *dev,
1896 uint32_t handle,
1897 uint64_t *offset)
1898{
1899 return i915_gem_mmap_gtt(file, dev, handle, true, offset);
1900}
1901
ff72145b
DA
1902/**
1903 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1904 * @dev: DRM device
1905 * @data: GTT mapping ioctl data
1906 * @file: GEM object info
1907 *
1908 * Simply returns the fake offset to userspace so it can mmap it.
1909 * The mmap call will end up in drm_gem_mmap(), which will set things
1910 * up so we can get faults in the handler above.
1911 *
1912 * The fault handler will take care of binding the object into the GTT
1913 * (since it may have been evicted to make room for something), allocating
1914 * a fence register, and mapping the appropriate aperture address into
1915 * userspace.
1916 */
1917int
1918i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1919 struct drm_file *file)
1920{
1921 struct drm_i915_gem_mmap_gtt *args = data;
1922
355a7018 1923 return i915_gem_mmap_gtt(file, dev, args->handle, false, &args->offset);
ff72145b
DA
1924}
1925
5537252b
CW
1926static inline int
1927i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1928{
1929 return obj->madv == I915_MADV_DONTNEED;
1930}
1931
225067ee
DV
1932/* Immediately discard the backing storage */
1933static void
1934i915_gem_object_truncate(struct drm_i915_gem_object *obj)
e5281ccd 1935{
4d6294bf 1936 i915_gem_object_free_mmap_offset(obj);
1286ff73 1937
4d6294bf
CW
1938 if (obj->base.filp == NULL)
1939 return;
e5281ccd 1940
225067ee
DV
1941 /* Our goal here is to return as much of the memory as
1942 * is possible back to the system as we are called from OOM.
1943 * To do this we must instruct the shmfs to drop all of its
1944 * backing pages, *now*.
1945 */
5537252b 1946 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
225067ee
DV
1947 obj->madv = __I915_MADV_PURGED;
1948}
e5281ccd 1949
5537252b
CW
1950/* Try to discard unwanted pages */
1951static void
1952i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
225067ee 1953{
5537252b
CW
1954 struct address_space *mapping;
1955
1956 switch (obj->madv) {
1957 case I915_MADV_DONTNEED:
1958 i915_gem_object_truncate(obj);
1959 case __I915_MADV_PURGED:
1960 return;
1961 }
1962
1963 if (obj->base.filp == NULL)
1964 return;
1965
1966 mapping = file_inode(obj->base.filp)->i_mapping,
1967 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
e5281ccd
CW
1968}
1969
5cdf5881 1970static void
05394f39 1971i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
673a394b 1972{
90797e6d
ID
1973 struct sg_page_iter sg_iter;
1974 int ret;
1286ff73 1975
05394f39 1976 BUG_ON(obj->madv == __I915_MADV_PURGED);
673a394b 1977
6c085a72
CW
1978 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1979 if (ret) {
1980 /* In the event of a disaster, abandon all caches and
1981 * hope for the best.
1982 */
1983 WARN_ON(ret != -EIO);
2c22569b 1984 i915_gem_clflush_object(obj, true);
6c085a72
CW
1985 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1986 }
1987
6dacfd2f 1988 if (i915_gem_object_needs_bit17_swizzle(obj))
280b713b
EA
1989 i915_gem_object_save_bit_17_swizzle(obj);
1990
05394f39
CW
1991 if (obj->madv == I915_MADV_DONTNEED)
1992 obj->dirty = 0;
3ef94daa 1993
90797e6d 1994 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2db76d7c 1995 struct page *page = sg_page_iter_page(&sg_iter);
9da3da66 1996
05394f39 1997 if (obj->dirty)
9da3da66 1998 set_page_dirty(page);
3ef94daa 1999
05394f39 2000 if (obj->madv == I915_MADV_WILLNEED)
9da3da66 2001 mark_page_accessed(page);
3ef94daa 2002
9da3da66 2003 page_cache_release(page);
3ef94daa 2004 }
05394f39 2005 obj->dirty = 0;
673a394b 2006
9da3da66
CW
2007 sg_free_table(obj->pages);
2008 kfree(obj->pages);
37e680a1 2009}
6c085a72 2010
dd624afd 2011int
37e680a1
CW
2012i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2013{
2014 const struct drm_i915_gem_object_ops *ops = obj->ops;
2015
2f745ad3 2016 if (obj->pages == NULL)
37e680a1
CW
2017 return 0;
2018
a5570178
CW
2019 if (obj->pages_pin_count)
2020 return -EBUSY;
2021
9843877d 2022 BUG_ON(i915_gem_obj_bound_any(obj));
3e123027 2023
a2165e31
CW
2024 /* ->put_pages might need to allocate memory for the bit17 swizzle
2025 * array, hence protect them from being reaped by removing them from gtt
2026 * lists early. */
35c20a60 2027 list_del(&obj->global_list);
a2165e31 2028
37e680a1 2029 ops->put_pages(obj);
05394f39 2030 obj->pages = NULL;
37e680a1 2031
5537252b 2032 i915_gem_object_invalidate(obj);
6c085a72
CW
2033
2034 return 0;
2035}
2036
21ab4e74
CW
2037unsigned long
2038i915_gem_shrink(struct drm_i915_private *dev_priv,
2039 long target, unsigned flags)
6c085a72 2040{
60a53727
CW
2041 const struct {
2042 struct list_head *list;
2043 unsigned int bit;
2044 } phases[] = {
2045 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2046 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2047 { NULL, 0 },
2048 }, *phase;
d9973b43 2049 unsigned long count = 0;
6c085a72 2050
57094f82 2051 /*
c8725f3d 2052 * As we may completely rewrite the (un)bound list whilst unbinding
57094f82
CW
2053 * (due to retiring requests) we have to strictly process only
2054 * one element of the list at the time, and recheck the list
2055 * on every iteration.
c8725f3d
CW
2056 *
2057 * In particular, we must hold a reference whilst removing the
2058 * object as we may end up waiting for and/or retiring the objects.
2059 * This might release the final reference (held by the active list)
2060 * and result in the object being freed from under us. This is
2061 * similar to the precautions the eviction code must take whilst
2062 * removing objects.
2063 *
2064 * Also note that although these lists do not hold a reference to
2065 * the object we can safely grab one here: The final object
2066 * unreferencing and the bound_list are both protected by the
2067 * dev->struct_mutex and so we won't ever be able to observe an
2068 * object on the bound_list with a reference count equals 0.
57094f82 2069 */
60a53727 2070 for (phase = phases; phase->list; phase++) {
21ab4e74 2071 struct list_head still_in_list;
c8725f3d 2072
60a53727
CW
2073 if ((flags & phase->bit) == 0)
2074 continue;
80dcfdbd 2075
21ab4e74 2076 INIT_LIST_HEAD(&still_in_list);
60a53727 2077 while (count < target && !list_empty(phase->list)) {
21ab4e74
CW
2078 struct drm_i915_gem_object *obj;
2079 struct i915_vma *vma, *v;
57094f82 2080
60a53727 2081 obj = list_first_entry(phase->list,
21ab4e74
CW
2082 typeof(*obj), global_list);
2083 list_move_tail(&obj->global_list, &still_in_list);
80dcfdbd 2084
60a53727
CW
2085 if (flags & I915_SHRINK_PURGEABLE &&
2086 !i915_gem_object_is_purgeable(obj))
21ab4e74 2087 continue;
57094f82 2088
21ab4e74 2089 drm_gem_object_reference(&obj->base);
80dcfdbd 2090
60a53727
CW
2091 /* For the unbound phase, this should be a no-op! */
2092 list_for_each_entry_safe(vma, v,
2093 &obj->vma_list, vma_link)
21ab4e74
CW
2094 if (i915_vma_unbind(vma))
2095 break;
57094f82 2096
21ab4e74
CW
2097 if (i915_gem_object_put_pages(obj) == 0)
2098 count += obj->base.size >> PAGE_SHIFT;
2099
2100 drm_gem_object_unreference(&obj->base);
2101 }
60a53727 2102 list_splice(&still_in_list, phase->list);
6c085a72
CW
2103 }
2104
2105 return count;
2106}
2107
d9973b43 2108static unsigned long
6c085a72
CW
2109i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2110{
6c085a72 2111 i915_gem_evict_everything(dev_priv->dev);
21ab4e74
CW
2112 return i915_gem_shrink(dev_priv, LONG_MAX,
2113 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
225067ee
DV
2114}
2115
37e680a1 2116static int
6c085a72 2117i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
e5281ccd 2118{
6c085a72 2119 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
e5281ccd
CW
2120 int page_count, i;
2121 struct address_space *mapping;
9da3da66
CW
2122 struct sg_table *st;
2123 struct scatterlist *sg;
90797e6d 2124 struct sg_page_iter sg_iter;
e5281ccd 2125 struct page *page;
90797e6d 2126 unsigned long last_pfn = 0; /* suppress gcc warning */
6c085a72 2127 gfp_t gfp;
e5281ccd 2128
6c085a72
CW
2129 /* Assert that the object is not currently in any GPU domain. As it
2130 * wasn't in the GTT, there shouldn't be any way it could have been in
2131 * a GPU cache
2132 */
2133 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2134 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2135
9da3da66
CW
2136 st = kmalloc(sizeof(*st), GFP_KERNEL);
2137 if (st == NULL)
2138 return -ENOMEM;
2139
05394f39 2140 page_count = obj->base.size / PAGE_SIZE;
9da3da66 2141 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
9da3da66 2142 kfree(st);
e5281ccd 2143 return -ENOMEM;
9da3da66 2144 }
e5281ccd 2145
9da3da66
CW
2146 /* Get the list of pages out of our struct file. They'll be pinned
2147 * at this point until we release them.
2148 *
2149 * Fail silently without starting the shrinker
2150 */
496ad9aa 2151 mapping = file_inode(obj->base.filp)->i_mapping;
6c085a72 2152 gfp = mapping_gfp_mask(mapping);
caf49191 2153 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
6c085a72 2154 gfp &= ~(__GFP_IO | __GFP_WAIT);
90797e6d
ID
2155 sg = st->sgl;
2156 st->nents = 0;
2157 for (i = 0; i < page_count; i++) {
6c085a72
CW
2158 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2159 if (IS_ERR(page)) {
21ab4e74
CW
2160 i915_gem_shrink(dev_priv,
2161 page_count,
2162 I915_SHRINK_BOUND |
2163 I915_SHRINK_UNBOUND |
2164 I915_SHRINK_PURGEABLE);
6c085a72
CW
2165 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2166 }
2167 if (IS_ERR(page)) {
2168 /* We've tried hard to allocate the memory by reaping
2169 * our own buffer, now let the real VM do its job and
2170 * go down in flames if truly OOM.
2171 */
6c085a72 2172 i915_gem_shrink_all(dev_priv);
f461d1be 2173 page = shmem_read_mapping_page(mapping, i);
6c085a72
CW
2174 if (IS_ERR(page))
2175 goto err_pages;
6c085a72 2176 }
426729dc
KRW
2177#ifdef CONFIG_SWIOTLB
2178 if (swiotlb_nr_tbl()) {
2179 st->nents++;
2180 sg_set_page(sg, page, PAGE_SIZE, 0);
2181 sg = sg_next(sg);
2182 continue;
2183 }
2184#endif
90797e6d
ID
2185 if (!i || page_to_pfn(page) != last_pfn + 1) {
2186 if (i)
2187 sg = sg_next(sg);
2188 st->nents++;
2189 sg_set_page(sg, page, PAGE_SIZE, 0);
2190 } else {
2191 sg->length += PAGE_SIZE;
2192 }
2193 last_pfn = page_to_pfn(page);
3bbbe706
DV
2194
2195 /* Check that the i965g/gm workaround works. */
2196 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
e5281ccd 2197 }
426729dc
KRW
2198#ifdef CONFIG_SWIOTLB
2199 if (!swiotlb_nr_tbl())
2200#endif
2201 sg_mark_end(sg);
74ce6b6c
CW
2202 obj->pages = st;
2203
6dacfd2f 2204 if (i915_gem_object_needs_bit17_swizzle(obj))
e5281ccd
CW
2205 i915_gem_object_do_bit_17_swizzle(obj);
2206
656bfa3a
DV
2207 if (obj->tiling_mode != I915_TILING_NONE &&
2208 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2209 i915_gem_object_pin_pages(obj);
2210
e5281ccd
CW
2211 return 0;
2212
2213err_pages:
90797e6d
ID
2214 sg_mark_end(sg);
2215 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2db76d7c 2216 page_cache_release(sg_page_iter_page(&sg_iter));
9da3da66
CW
2217 sg_free_table(st);
2218 kfree(st);
0820baf3
CW
2219
2220 /* shmemfs first checks if there is enough memory to allocate the page
2221 * and reports ENOSPC should there be insufficient, along with the usual
2222 * ENOMEM for a genuine allocation failure.
2223 *
2224 * We use ENOSPC in our driver to mean that we have run out of aperture
2225 * space and so want to translate the error from shmemfs back to our
2226 * usual understanding of ENOMEM.
2227 */
2228 if (PTR_ERR(page) == -ENOSPC)
2229 return -ENOMEM;
2230 else
2231 return PTR_ERR(page);
673a394b
EA
2232}
2233
37e680a1
CW
2234/* Ensure that the associated pages are gathered from the backing storage
2235 * and pinned into our object. i915_gem_object_get_pages() may be called
2236 * multiple times before they are released by a single call to
2237 * i915_gem_object_put_pages() - once the pages are no longer referenced
2238 * either as a result of memory pressure (reaping pages under the shrinker)
2239 * or as the object is itself released.
2240 */
2241int
2242i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2243{
2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 const struct drm_i915_gem_object_ops *ops = obj->ops;
2246 int ret;
2247
2f745ad3 2248 if (obj->pages)
37e680a1
CW
2249 return 0;
2250
43e28f09 2251 if (obj->madv != I915_MADV_WILLNEED) {
bd9b6a4e 2252 DRM_DEBUG("Attempting to obtain a purgeable object\n");
8c99e57d 2253 return -EFAULT;
43e28f09
CW
2254 }
2255
a5570178
CW
2256 BUG_ON(obj->pages_pin_count);
2257
37e680a1
CW
2258 ret = ops->get_pages(obj);
2259 if (ret)
2260 return ret;
2261
35c20a60 2262 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
37e680a1 2263 return 0;
673a394b
EA
2264}
2265
e2d05a8b 2266static void
05394f39 2267i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
a4872ba6 2268 struct intel_engine_cs *ring)
673a394b 2269{
97b2a6a1 2270 struct drm_i915_gem_request *req = intel_ring_get_request(ring);
617dbe27 2271
852835f3 2272 BUG_ON(ring == NULL);
97b2a6a1
JH
2273 if (obj->ring != ring && obj->last_write_req) {
2274 /* Keep the request relative to the current ring */
2275 i915_gem_request_assign(&obj->last_write_req, req);
02978ff5 2276 }
05394f39 2277 obj->ring = ring;
673a394b
EA
2278
2279 /* Add a reference if we're newly entering the active list. */
05394f39
CW
2280 if (!obj->active) {
2281 drm_gem_object_reference(&obj->base);
2282 obj->active = 1;
673a394b 2283 }
e35a41de 2284
05394f39 2285 list_move_tail(&obj->ring_list, &ring->active_list);
caea7476 2286
97b2a6a1 2287 i915_gem_request_assign(&obj->last_read_req, req);
caea7476
CW
2288}
2289
e2d05a8b 2290void i915_vma_move_to_active(struct i915_vma *vma,
a4872ba6 2291 struct intel_engine_cs *ring)
e2d05a8b
BW
2292{
2293 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2294 return i915_gem_object_move_to_active(vma->obj, ring);
2295}
2296
caea7476 2297static void
caea7476 2298i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
ce44b0ea 2299{
ca191b13 2300 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
feb822cf
BW
2301 struct i915_address_space *vm;
2302 struct i915_vma *vma;
ce44b0ea 2303
65ce3027 2304 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
05394f39 2305 BUG_ON(!obj->active);
caea7476 2306
feb822cf
BW
2307 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2308 vma = i915_gem_obj_to_vma(obj, vm);
2309 if (vma && !list_empty(&vma->mm_list))
2310 list_move_tail(&vma->mm_list, &vm->inactive_list);
2311 }
caea7476 2312
f99d7069
DV
2313 intel_fb_obj_flush(obj, true);
2314
65ce3027 2315 list_del_init(&obj->ring_list);
caea7476
CW
2316 obj->ring = NULL;
2317
97b2a6a1
JH
2318 i915_gem_request_assign(&obj->last_read_req, NULL);
2319 i915_gem_request_assign(&obj->last_write_req, NULL);
65ce3027
CW
2320 obj->base.write_domain = 0;
2321
97b2a6a1 2322 i915_gem_request_assign(&obj->last_fenced_req, NULL);
caea7476
CW
2323
2324 obj->active = 0;
2325 drm_gem_object_unreference(&obj->base);
2326
2327 WARN_ON(i915_verify_lists(dev));
ce44b0ea 2328}
673a394b 2329
c8725f3d
CW
2330static void
2331i915_gem_object_retire(struct drm_i915_gem_object *obj)
2332{
a4872ba6 2333 struct intel_engine_cs *ring = obj->ring;
c8725f3d
CW
2334
2335 if (ring == NULL)
2336 return;
2337
2338 if (i915_seqno_passed(ring->get_seqno(ring, true),
97b2a6a1 2339 i915_gem_request_get_seqno(obj->last_read_req)))
c8725f3d
CW
2340 i915_gem_object_move_to_inactive(obj);
2341}
2342
9d773091 2343static int
fca26bb4 2344i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
53d227f2 2345{
9d773091 2346 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2347 struct intel_engine_cs *ring;
9d773091 2348 int ret, i, j;
53d227f2 2349
107f27a5 2350 /* Carefully retire all requests without writing to the rings */
9d773091 2351 for_each_ring(ring, dev_priv, i) {
107f27a5
CW
2352 ret = intel_ring_idle(ring);
2353 if (ret)
2354 return ret;
9d773091 2355 }
9d773091 2356 i915_gem_retire_requests(dev);
107f27a5
CW
2357
2358 /* Finally reset hw state */
9d773091 2359 for_each_ring(ring, dev_priv, i) {
fca26bb4 2360 intel_ring_init_seqno(ring, seqno);
498d2ac1 2361
ebc348b2
BW
2362 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2363 ring->semaphore.sync_seqno[j] = 0;
9d773091 2364 }
53d227f2 2365
9d773091 2366 return 0;
53d227f2
DV
2367}
2368
fca26bb4
MK
2369int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2370{
2371 struct drm_i915_private *dev_priv = dev->dev_private;
2372 int ret;
2373
2374 if (seqno == 0)
2375 return -EINVAL;
2376
2377 /* HWS page needs to be set less than what we
2378 * will inject to ring
2379 */
2380 ret = i915_gem_init_seqno(dev, seqno - 1);
2381 if (ret)
2382 return ret;
2383
2384 /* Carefully set the last_seqno value so that wrap
2385 * detection still works
2386 */
2387 dev_priv->next_seqno = seqno;
2388 dev_priv->last_seqno = seqno - 1;
2389 if (dev_priv->last_seqno == 0)
2390 dev_priv->last_seqno--;
2391
2392 return 0;
2393}
2394
9d773091
CW
2395int
2396i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
53d227f2 2397{
9d773091
CW
2398 struct drm_i915_private *dev_priv = dev->dev_private;
2399
2400 /* reserve 0 for non-seqno */
2401 if (dev_priv->next_seqno == 0) {
fca26bb4 2402 int ret = i915_gem_init_seqno(dev, 0);
9d773091
CW
2403 if (ret)
2404 return ret;
53d227f2 2405
9d773091
CW
2406 dev_priv->next_seqno = 1;
2407 }
53d227f2 2408
f72b3435 2409 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
9d773091 2410 return 0;
53d227f2
DV
2411}
2412
a4872ba6 2413int __i915_add_request(struct intel_engine_cs *ring,
0025c077 2414 struct drm_file *file,
7d736f4f 2415 struct drm_i915_gem_object *obj,
0025c077 2416 u32 *out_seqno)
673a394b 2417{
3e31c6c0 2418 struct drm_i915_private *dev_priv = ring->dev->dev_private;
acb868d3 2419 struct drm_i915_gem_request *request;
48e29f55 2420 struct intel_ringbuffer *ringbuf;
7d736f4f 2421 u32 request_ring_position, request_start;
3cce469c
CW
2422 int ret;
2423
48e29f55
OM
2424 request = ring->preallocated_lazy_request;
2425 if (WARN_ON(request == NULL))
2426 return -ENOMEM;
2427
2428 if (i915.enable_execlists) {
2429 struct intel_context *ctx = request->ctx;
2430 ringbuf = ctx->engine[ring->id].ringbuf;
2431 } else
2432 ringbuf = ring->buffer;
2433
2434 request_start = intel_ring_get_tail(ringbuf);
cc889e0f
DV
2435 /*
2436 * Emit any outstanding flushes - execbuf can fail to emit the flush
2437 * after having emitted the batchbuffer command. Hence we need to fix
2438 * things up similar to emitting the lazy request. The difference here
2439 * is that the flush _must_ happen before the next request, no matter
2440 * what.
2441 */
48e29f55
OM
2442 if (i915.enable_execlists) {
2443 ret = logical_ring_flush_all_caches(ringbuf);
2444 if (ret)
2445 return ret;
2446 } else {
2447 ret = intel_ring_flush_all_caches(ring);
2448 if (ret)
2449 return ret;
2450 }
cc889e0f 2451
a71d8d94
CW
2452 /* Record the position of the start of the request so that
2453 * should we detect the updated seqno part-way through the
2454 * GPU processing the request, we never over-estimate the
2455 * position of the head.
2456 */
48e29f55 2457 request_ring_position = intel_ring_get_tail(ringbuf);
a71d8d94 2458
48e29f55
OM
2459 if (i915.enable_execlists) {
2460 ret = ring->emit_request(ringbuf);
2461 if (ret)
2462 return ret;
2463 } else {
2464 ret = ring->add_request(ring);
2465 if (ret)
2466 return ret;
2467 }
673a394b 2468
9d773091 2469 request->seqno = intel_ring_get_seqno(ring);
852835f3 2470 request->ring = ring;
7d736f4f 2471 request->head = request_start;
a71d8d94 2472 request->tail = request_ring_position;
7d736f4f
MK
2473
2474 /* Whilst this request exists, batch_obj will be on the
2475 * active_list, and so will hold the active reference. Only when this
2476 * request is retired will the the batch_obj be moved onto the
2477 * inactive_list and lose its active reference. Hence we do not need
2478 * to explicitly hold another reference here.
2479 */
9a7e0c2a 2480 request->batch_obj = obj;
0e50e96b 2481
48e29f55
OM
2482 if (!i915.enable_execlists) {
2483 /* Hold a reference to the current context so that we can inspect
2484 * it later in case a hangcheck error event fires.
2485 */
2486 request->ctx = ring->last_context;
2487 if (request->ctx)
2488 i915_gem_context_reference(request->ctx);
2489 }
0e50e96b 2490
673a394b 2491 request->emitted_jiffies = jiffies;
852835f3 2492 list_add_tail(&request->list, &ring->request_list);
3bb73aba 2493 request->file_priv = NULL;
852835f3 2494
db53a302
CW
2495 if (file) {
2496 struct drm_i915_file_private *file_priv = file->driver_priv;
2497
1c25595f 2498 spin_lock(&file_priv->mm.lock);
f787a5f5 2499 request->file_priv = file_priv;
b962442e 2500 list_add_tail(&request->client_list,
f787a5f5 2501 &file_priv->mm.request_list);
1c25595f 2502 spin_unlock(&file_priv->mm.lock);
b962442e 2503 }
673a394b 2504
9d773091 2505 trace_i915_gem_request_add(ring, request->seqno);
1823521d 2506 ring->outstanding_lazy_seqno = 0;
3c0e234c 2507 ring->preallocated_lazy_request = NULL;
db53a302 2508
87255483 2509 i915_queue_hangcheck(ring->dev);
10cd45b6 2510
87255483
DV
2511 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2512 queue_delayed_work(dev_priv->wq,
2513 &dev_priv->mm.retire_work,
2514 round_jiffies_up_relative(HZ));
2515 intel_mark_busy(dev_priv->dev);
cc889e0f 2516
acb868d3 2517 if (out_seqno)
9d773091 2518 *out_seqno = request->seqno;
3cce469c 2519 return 0;
673a394b
EA
2520}
2521
f787a5f5
CW
2522static inline void
2523i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
673a394b 2524{
1c25595f 2525 struct drm_i915_file_private *file_priv = request->file_priv;
673a394b 2526
1c25595f
CW
2527 if (!file_priv)
2528 return;
1c5d22f7 2529
1c25595f 2530 spin_lock(&file_priv->mm.lock);
b29c19b6
CW
2531 list_del(&request->client_list);
2532 request->file_priv = NULL;
1c25595f 2533 spin_unlock(&file_priv->mm.lock);
673a394b 2534}
673a394b 2535
939fd762 2536static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
273497e5 2537 const struct intel_context *ctx)
be62acb4 2538{
44e2c070 2539 unsigned long elapsed;
be62acb4 2540
44e2c070
MK
2541 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2542
2543 if (ctx->hang_stats.banned)
be62acb4
MK
2544 return true;
2545
2546 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
ccc7bed0 2547 if (!i915_gem_context_is_default(ctx)) {
3fac8978 2548 DRM_DEBUG("context hanging too fast, banning!\n");
ccc7bed0 2549 return true;
88b4aa87
MK
2550 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2551 if (i915_stop_ring_allow_warn(dev_priv))
2552 DRM_ERROR("gpu hanging too fast, banning!\n");
ccc7bed0 2553 return true;
3fac8978 2554 }
be62acb4
MK
2555 }
2556
2557 return false;
2558}
2559
939fd762 2560static void i915_set_reset_status(struct drm_i915_private *dev_priv,
273497e5 2561 struct intel_context *ctx,
b6b0fac0 2562 const bool guilty)
aa60c664 2563{
44e2c070
MK
2564 struct i915_ctx_hang_stats *hs;
2565
2566 if (WARN_ON(!ctx))
2567 return;
aa60c664 2568
44e2c070
MK
2569 hs = &ctx->hang_stats;
2570
2571 if (guilty) {
939fd762 2572 hs->banned = i915_context_is_banned(dev_priv, ctx);
44e2c070
MK
2573 hs->batch_active++;
2574 hs->guilty_ts = get_seconds();
2575 } else {
2576 hs->batch_pending++;
aa60c664
MK
2577 }
2578}
2579
0e50e96b
MK
2580static void i915_gem_free_request(struct drm_i915_gem_request *request)
2581{
2582 list_del(&request->list);
2583 i915_gem_request_remove_from_client(request);
2584
abfe262a
JH
2585 i915_gem_request_unreference(request);
2586}
2587
2588void i915_gem_request_free(struct kref *req_ref)
2589{
2590 struct drm_i915_gem_request *req = container_of(req_ref,
2591 typeof(*req), ref);
2592 struct intel_context *ctx = req->ctx;
2593
0794aed3
TD
2594 if (ctx) {
2595 if (i915.enable_execlists) {
abfe262a 2596 struct intel_engine_cs *ring = req->ring;
0e50e96b 2597
0794aed3
TD
2598 if (ctx != ring->default_context)
2599 intel_lr_context_unpin(ring, ctx);
2600 }
abfe262a 2601
dcb4c12a
OM
2602 i915_gem_context_unreference(ctx);
2603 }
abfe262a
JH
2604
2605 kfree(req);
0e50e96b
MK
2606}
2607
8d9fc7fd 2608struct drm_i915_gem_request *
a4872ba6 2609i915_gem_find_active_request(struct intel_engine_cs *ring)
9375e446 2610{
4db080f9 2611 struct drm_i915_gem_request *request;
8d9fc7fd
CW
2612 u32 completed_seqno;
2613
2614 completed_seqno = ring->get_seqno(ring, false);
4db080f9
CW
2615
2616 list_for_each_entry(request, &ring->request_list, list) {
2617 if (i915_seqno_passed(completed_seqno, request->seqno))
2618 continue;
aa60c664 2619
b6b0fac0 2620 return request;
4db080f9 2621 }
b6b0fac0
MK
2622
2623 return NULL;
2624}
2625
2626static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
a4872ba6 2627 struct intel_engine_cs *ring)
b6b0fac0
MK
2628{
2629 struct drm_i915_gem_request *request;
2630 bool ring_hung;
2631
8d9fc7fd 2632 request = i915_gem_find_active_request(ring);
b6b0fac0
MK
2633
2634 if (request == NULL)
2635 return;
2636
2637 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2638
939fd762 2639 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
b6b0fac0
MK
2640
2641 list_for_each_entry_continue(request, &ring->request_list, list)
939fd762 2642 i915_set_reset_status(dev_priv, request->ctx, false);
4db080f9 2643}
aa60c664 2644
4db080f9 2645static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
a4872ba6 2646 struct intel_engine_cs *ring)
4db080f9 2647{
dfaae392 2648 while (!list_empty(&ring->active_list)) {
05394f39 2649 struct drm_i915_gem_object *obj;
9375e446 2650
05394f39
CW
2651 obj = list_first_entry(&ring->active_list,
2652 struct drm_i915_gem_object,
2653 ring_list);
9375e446 2654
05394f39 2655 i915_gem_object_move_to_inactive(obj);
673a394b 2656 }
1d62beea 2657
dcb4c12a
OM
2658 /*
2659 * Clear the execlists queue up before freeing the requests, as those
2660 * are the ones that keep the context and ringbuffer backing objects
2661 * pinned in place.
2662 */
2663 while (!list_empty(&ring->execlist_queue)) {
2664 struct intel_ctx_submit_request *submit_req;
2665
2666 submit_req = list_first_entry(&ring->execlist_queue,
2667 struct intel_ctx_submit_request,
2668 execlist_link);
2669 list_del(&submit_req->execlist_link);
2670 intel_runtime_pm_put(dev_priv);
2671 i915_gem_context_unreference(submit_req->ctx);
2672 kfree(submit_req);
2673 }
2674
1d62beea
BW
2675 /*
2676 * We must free the requests after all the corresponding objects have
2677 * been moved off active lists. Which is the same order as the normal
2678 * retire_requests function does. This is important if object hold
2679 * implicit references on things like e.g. ppgtt address spaces through
2680 * the request.
2681 */
2682 while (!list_empty(&ring->request_list)) {
2683 struct drm_i915_gem_request *request;
2684
2685 request = list_first_entry(&ring->request_list,
2686 struct drm_i915_gem_request,
2687 list);
2688
2689 i915_gem_free_request(request);
2690 }
e3efda49
CW
2691
2692 /* These may not have been flush before the reset, do so now */
abfe262a 2693 i915_gem_request_assign(&ring->preallocated_lazy_request, NULL);
e3efda49 2694 ring->outstanding_lazy_seqno = 0;
673a394b
EA
2695}
2696
19b2dbde 2697void i915_gem_restore_fences(struct drm_device *dev)
312817a3
CW
2698{
2699 struct drm_i915_private *dev_priv = dev->dev_private;
2700 int i;
2701
4b9de737 2702 for (i = 0; i < dev_priv->num_fence_regs; i++) {
312817a3 2703 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
7d2cb39c 2704
94a335db
DV
2705 /*
2706 * Commit delayed tiling changes if we have an object still
2707 * attached to the fence, otherwise just clear the fence.
2708 */
2709 if (reg->obj) {
2710 i915_gem_object_update_fence(reg->obj, reg,
2711 reg->obj->tiling_mode);
2712 } else {
2713 i915_gem_write_fence(dev, i, NULL);
2714 }
312817a3
CW
2715 }
2716}
2717
069efc1d 2718void i915_gem_reset(struct drm_device *dev)
673a394b 2719{
77f01230 2720 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2721 struct intel_engine_cs *ring;
1ec14ad3 2722 int i;
673a394b 2723
4db080f9
CW
2724 /*
2725 * Before we free the objects from the requests, we need to inspect
2726 * them for finding the guilty party. As the requests only borrow
2727 * their reference to the objects, the inspection must be done first.
2728 */
2729 for_each_ring(ring, dev_priv, i)
2730 i915_gem_reset_ring_status(dev_priv, ring);
2731
b4519513 2732 for_each_ring(ring, dev_priv, i)
4db080f9 2733 i915_gem_reset_ring_cleanup(dev_priv, ring);
dfaae392 2734
acce9ffa
BW
2735 i915_gem_context_reset(dev);
2736
19b2dbde 2737 i915_gem_restore_fences(dev);
673a394b
EA
2738}
2739
2740/**
2741 * This function clears the request list as sequence numbers are passed.
2742 */
1cf0ba14 2743void
a4872ba6 2744i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
673a394b 2745{
673a394b
EA
2746 uint32_t seqno;
2747
db53a302 2748 if (list_empty(&ring->request_list))
6c0594a3
KW
2749 return;
2750
db53a302 2751 WARN_ON(i915_verify_lists(ring->dev));
673a394b 2752
b2eadbc8 2753 seqno = ring->get_seqno(ring, true);
1ec14ad3 2754
e9103038
CW
2755 /* Move any buffers on the active list that are no longer referenced
2756 * by the ringbuffer to the flushing/inactive lists as appropriate,
2757 * before we free the context associated with the requests.
2758 */
2759 while (!list_empty(&ring->active_list)) {
2760 struct drm_i915_gem_object *obj;
2761
2762 obj = list_first_entry(&ring->active_list,
2763 struct drm_i915_gem_object,
2764 ring_list);
2765
97b2a6a1
JH
2766 if (!i915_seqno_passed(seqno,
2767 i915_gem_request_get_seqno(obj->last_read_req)))
e9103038
CW
2768 break;
2769
2770 i915_gem_object_move_to_inactive(obj);
2771 }
2772
2773
852835f3 2774 while (!list_empty(&ring->request_list)) {
673a394b 2775 struct drm_i915_gem_request *request;
48e29f55 2776 struct intel_ringbuffer *ringbuf;
673a394b 2777
852835f3 2778 request = list_first_entry(&ring->request_list,
673a394b
EA
2779 struct drm_i915_gem_request,
2780 list);
673a394b 2781
dfaae392 2782 if (!i915_seqno_passed(seqno, request->seqno))
b84d5f0c
CW
2783 break;
2784
db53a302 2785 trace_i915_gem_request_retire(ring, request->seqno);
48e29f55
OM
2786
2787 /* This is one of the few common intersection points
2788 * between legacy ringbuffer submission and execlists:
2789 * we need to tell them apart in order to find the correct
2790 * ringbuffer to which the request belongs to.
2791 */
2792 if (i915.enable_execlists) {
2793 struct intel_context *ctx = request->ctx;
2794 ringbuf = ctx->engine[ring->id].ringbuf;
2795 } else
2796 ringbuf = ring->buffer;
2797
a71d8d94
CW
2798 /* We know the GPU must have read the request to have
2799 * sent us the seqno + interrupt, so use the position
2800 * of tail of the request to update the last known position
2801 * of the GPU head.
2802 */
48e29f55 2803 ringbuf->last_retired_head = request->tail;
b84d5f0c 2804
0e50e96b 2805 i915_gem_free_request(request);
b84d5f0c 2806 }
673a394b 2807
db53a302
CW
2808 if (unlikely(ring->trace_irq_seqno &&
2809 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1ec14ad3 2810 ring->irq_put(ring);
db53a302 2811 ring->trace_irq_seqno = 0;
9d34e5db 2812 }
23bc5982 2813
db53a302 2814 WARN_ON(i915_verify_lists(ring->dev));
673a394b
EA
2815}
2816
b29c19b6 2817bool
b09a1fec
CW
2818i915_gem_retire_requests(struct drm_device *dev)
2819{
3e31c6c0 2820 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 2821 struct intel_engine_cs *ring;
b29c19b6 2822 bool idle = true;
1ec14ad3 2823 int i;
b09a1fec 2824
b29c19b6 2825 for_each_ring(ring, dev_priv, i) {
b4519513 2826 i915_gem_retire_requests_ring(ring);
b29c19b6 2827 idle &= list_empty(&ring->request_list);
c86ee3a9
TD
2828 if (i915.enable_execlists) {
2829 unsigned long flags;
2830
2831 spin_lock_irqsave(&ring->execlist_lock, flags);
2832 idle &= list_empty(&ring->execlist_queue);
2833 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2834
2835 intel_execlists_retire_requests(ring);
2836 }
b29c19b6
CW
2837 }
2838
2839 if (idle)
2840 mod_delayed_work(dev_priv->wq,
2841 &dev_priv->mm.idle_work,
2842 msecs_to_jiffies(100));
2843
2844 return idle;
b09a1fec
CW
2845}
2846
75ef9da2 2847static void
673a394b
EA
2848i915_gem_retire_work_handler(struct work_struct *work)
2849{
b29c19b6
CW
2850 struct drm_i915_private *dev_priv =
2851 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2852 struct drm_device *dev = dev_priv->dev;
0a58705b 2853 bool idle;
673a394b 2854
891b48cf 2855 /* Come back later if the device is busy... */
b29c19b6
CW
2856 idle = false;
2857 if (mutex_trylock(&dev->struct_mutex)) {
2858 idle = i915_gem_retire_requests(dev);
2859 mutex_unlock(&dev->struct_mutex);
673a394b 2860 }
b29c19b6 2861 if (!idle)
bcb45086
CW
2862 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2863 round_jiffies_up_relative(HZ));
b29c19b6 2864}
0a58705b 2865
b29c19b6
CW
2866static void
2867i915_gem_idle_work_handler(struct work_struct *work)
2868{
2869 struct drm_i915_private *dev_priv =
2870 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2871
2872 intel_mark_idle(dev_priv->dev);
673a394b
EA
2873}
2874
30dfebf3
DV
2875/**
2876 * Ensures that an object will eventually get non-busy by flushing any required
2877 * write domains, emitting any outstanding lazy request and retiring and
2878 * completed requests.
2879 */
2880static int
2881i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2882{
2883 int ret;
2884
2885 if (obj->active) {
97b2a6a1
JH
2886 ret = i915_gem_check_olr(obj->ring,
2887 i915_gem_request_get_seqno(obj->last_read_req));
30dfebf3
DV
2888 if (ret)
2889 return ret;
2890
30dfebf3
DV
2891 i915_gem_retire_requests_ring(obj->ring);
2892 }
2893
2894 return 0;
2895}
2896
23ba4fd0
BW
2897/**
2898 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2899 * @DRM_IOCTL_ARGS: standard ioctl arguments
2900 *
2901 * Returns 0 if successful, else an error is returned with the remaining time in
2902 * the timeout parameter.
2903 * -ETIME: object is still busy after timeout
2904 * -ERESTARTSYS: signal interrupted the wait
2905 * -ENONENT: object doesn't exist
2906 * Also possible, but rare:
2907 * -EAGAIN: GPU wedged
2908 * -ENOMEM: damn
2909 * -ENODEV: Internal IRQ fail
2910 * -E?: The add request failed
2911 *
2912 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2913 * non-zero timeout parameter the wait ioctl will wait for the given number of
2914 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2915 * without holding struct_mutex the object may become re-busied before this
2916 * function completes. A similar but shorter * race condition exists in the busy
2917 * ioctl
2918 */
2919int
2920i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2921{
3e31c6c0 2922 struct drm_i915_private *dev_priv = dev->dev_private;
23ba4fd0
BW
2923 struct drm_i915_gem_wait *args = data;
2924 struct drm_i915_gem_object *obj;
ff865885 2925 struct drm_i915_gem_request *req;
a4872ba6 2926 struct intel_engine_cs *ring = NULL;
f69061be 2927 unsigned reset_counter;
23ba4fd0
BW
2928 u32 seqno = 0;
2929 int ret = 0;
2930
11b5d511
DV
2931 if (args->flags != 0)
2932 return -EINVAL;
2933
23ba4fd0
BW
2934 ret = i915_mutex_lock_interruptible(dev);
2935 if (ret)
2936 return ret;
2937
2938 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2939 if (&obj->base == NULL) {
2940 mutex_unlock(&dev->struct_mutex);
2941 return -ENOENT;
2942 }
2943
30dfebf3
DV
2944 /* Need to make sure the object gets inactive eventually. */
2945 ret = i915_gem_object_flush_active(obj);
23ba4fd0
BW
2946 if (ret)
2947 goto out;
2948
97b2a6a1
JH
2949 if (!obj->active || !obj->last_read_req)
2950 goto out;
23ba4fd0 2951
ff865885
JH
2952 req = obj->last_read_req;
2953 seqno = i915_gem_request_get_seqno(req);
97b2a6a1
JH
2954 WARN_ON(seqno == 0);
2955 ring = obj->ring;
23ba4fd0 2956
23ba4fd0 2957 /* Do this after OLR check to make sure we make forward progress polling
5ed0bdf2 2958 * on this IOCTL with a timeout <=0 (like busy ioctl)
23ba4fd0 2959 */
5ed0bdf2 2960 if (args->timeout_ns <= 0) {
23ba4fd0
BW
2961 ret = -ETIME;
2962 goto out;
2963 }
2964
2965 drm_gem_object_unreference(&obj->base);
f69061be 2966 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885 2967 i915_gem_request_reference(req);
23ba4fd0
BW
2968 mutex_unlock(&dev->struct_mutex);
2969
ff865885
JH
2970 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, &args->timeout_ns,
2971 file->driver_priv);
2972 mutex_lock(&dev->struct_mutex);
2973 i915_gem_request_unreference(req);
2974 mutex_unlock(&dev->struct_mutex);
2975 return ret;
23ba4fd0
BW
2976
2977out:
2978 drm_gem_object_unreference(&obj->base);
2979 mutex_unlock(&dev->struct_mutex);
2980 return ret;
2981}
2982
5816d648
BW
2983/**
2984 * i915_gem_object_sync - sync an object to a ring.
2985 *
2986 * @obj: object which may be in use on another ring.
2987 * @to: ring we wish to use the object on. May be NULL.
2988 *
2989 * This code is meant to abstract object synchronization with the GPU.
2990 * Calling with NULL implies synchronizing the object with the CPU
2991 * rather than a particular GPU ring.
2992 *
2993 * Returns 0 if successful, else propagates up the lower layer error.
2994 */
2911a35b
BW
2995int
2996i915_gem_object_sync(struct drm_i915_gem_object *obj,
a4872ba6 2997 struct intel_engine_cs *to)
2911a35b 2998{
a4872ba6 2999 struct intel_engine_cs *from = obj->ring;
2911a35b
BW
3000 u32 seqno;
3001 int ret, idx;
3002
3003 if (from == NULL || to == from)
3004 return 0;
3005
5816d648 3006 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
0201f1ec 3007 return i915_gem_object_wait_rendering(obj, false);
2911a35b
BW
3008
3009 idx = intel_ring_sync_index(from, to);
3010
97b2a6a1 3011 seqno = i915_gem_request_get_seqno(obj->last_read_req);
ddd4dbc6
RV
3012 /* Optimization: Avoid semaphore sync when we are sure we already
3013 * waited for an object with higher seqno */
ebc348b2 3014 if (seqno <= from->semaphore.sync_seqno[idx])
2911a35b
BW
3015 return 0;
3016
b4aca010
BW
3017 ret = i915_gem_check_olr(obj->ring, seqno);
3018 if (ret)
3019 return ret;
2911a35b 3020
b52b89da 3021 trace_i915_gem_ring_sync_to(from, to, seqno);
ebc348b2 3022 ret = to->semaphore.sync_to(to, from, seqno);
e3a5a225 3023 if (!ret)
97b2a6a1 3024 /* We use last_read_req because sync_to()
7b01e260
MK
3025 * might have just caused seqno wrap under
3026 * the radar.
3027 */
97b2a6a1
JH
3028 from->semaphore.sync_seqno[idx] =
3029 i915_gem_request_get_seqno(obj->last_read_req);
2911a35b 3030
e3a5a225 3031 return ret;
2911a35b
BW
3032}
3033
b5ffc9bc
CW
3034static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3035{
3036 u32 old_write_domain, old_read_domains;
3037
b5ffc9bc
CW
3038 /* Force a pagefault for domain tracking on next user access */
3039 i915_gem_release_mmap(obj);
3040
b97c3d9c
KP
3041 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3042 return;
3043
97c809fd
CW
3044 /* Wait for any direct GTT access to complete */
3045 mb();
3046
b5ffc9bc
CW
3047 old_read_domains = obj->base.read_domains;
3048 old_write_domain = obj->base.write_domain;
3049
3050 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3051 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3052
3053 trace_i915_gem_object_change_domain(obj,
3054 old_read_domains,
3055 old_write_domain);
3056}
3057
07fe0b12 3058int i915_vma_unbind(struct i915_vma *vma)
673a394b 3059{
07fe0b12 3060 struct drm_i915_gem_object *obj = vma->obj;
3e31c6c0 3061 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
43e28f09 3062 int ret;
673a394b 3063
07fe0b12 3064 if (list_empty(&vma->vma_link))
673a394b
EA
3065 return 0;
3066
0ff501cb
DV
3067 if (!drm_mm_node_allocated(&vma->node)) {
3068 i915_gem_vma_destroy(vma);
0ff501cb
DV
3069 return 0;
3070 }
433544bd 3071
d7f46fc4 3072 if (vma->pin_count)
31d8d651 3073 return -EBUSY;
673a394b 3074
c4670ad0
CW
3075 BUG_ON(obj->pages == NULL);
3076
a8198eea 3077 ret = i915_gem_object_finish_gpu(obj);
1488fc08 3078 if (ret)
a8198eea
CW
3079 return ret;
3080 /* Continue on if we fail due to EIO, the GPU is hung so we
3081 * should be safe and we need to cleanup or else we might
3082 * cause memory corruption through use-after-free.
3083 */
3084
1d1ef21d
CW
3085 /* Throw away the active reference before moving to the unbound list */
3086 i915_gem_object_retire(obj);
3087
8b1bc9b4
DV
3088 if (i915_is_ggtt(vma->vm)) {
3089 i915_gem_object_finish_gtt(obj);
5323fd04 3090
8b1bc9b4
DV
3091 /* release the fence reg _after_ flushing */
3092 ret = i915_gem_object_put_fence(obj);
3093 if (ret)
3094 return ret;
3095 }
96b47b65 3096
07fe0b12 3097 trace_i915_vma_unbind(vma);
db53a302 3098
6f65e29a
BW
3099 vma->unbind_vma(vma);
3100
64bf9303 3101 list_del_init(&vma->mm_list);
5cacaac7 3102 if (i915_is_ggtt(vma->vm))
e6a84468 3103 obj->map_and_fenceable = false;
673a394b 3104
2f633156
BW
3105 drm_mm_remove_node(&vma->node);
3106 i915_gem_vma_destroy(vma);
3107
3108 /* Since the unbound list is global, only move to that list if
b93dab6e 3109 * no more VMAs exist. */
9490edb5
AR
3110 if (list_empty(&obj->vma_list)) {
3111 i915_gem_gtt_finish_object(obj);
2f633156 3112 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
9490edb5 3113 }
673a394b 3114
70903c3b
CW
3115 /* And finally now the object is completely decoupled from this vma,
3116 * we can drop its hold on the backing storage and allow it to be
3117 * reaped by the shrinker.
3118 */
3119 i915_gem_object_unpin_pages(obj);
3120
88241785 3121 return 0;
54cf91dc
CW
3122}
3123
b2da9fe5 3124int i915_gpu_idle(struct drm_device *dev)
4df2faf4 3125{
3e31c6c0 3126 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 3127 struct intel_engine_cs *ring;
1ec14ad3 3128 int ret, i;
4df2faf4 3129
4df2faf4 3130 /* Flush everything onto the inactive list. */
b4519513 3131 for_each_ring(ring, dev_priv, i) {
ecdb5fd8
TD
3132 if (!i915.enable_execlists) {
3133 ret = i915_switch_context(ring, ring->default_context);
3134 if (ret)
3135 return ret;
3136 }
b6c7488d 3137
3e960501 3138 ret = intel_ring_idle(ring);
1ec14ad3
CW
3139 if (ret)
3140 return ret;
3141 }
4df2faf4 3142
8a1a49f9 3143 return 0;
4df2faf4
DV
3144}
3145
9ce079e4
CW
3146static void i965_write_fence_reg(struct drm_device *dev, int reg,
3147 struct drm_i915_gem_object *obj)
de151cf6 3148{
3e31c6c0 3149 struct drm_i915_private *dev_priv = dev->dev_private;
56c844e5
ID
3150 int fence_reg;
3151 int fence_pitch_shift;
de151cf6 3152
56c844e5
ID
3153 if (INTEL_INFO(dev)->gen >= 6) {
3154 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3155 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3156 } else {
3157 fence_reg = FENCE_REG_965_0;
3158 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3159 }
3160
d18b9619
CW
3161 fence_reg += reg * 8;
3162
3163 /* To w/a incoherency with non-atomic 64-bit register updates,
3164 * we split the 64-bit update into two 32-bit writes. In order
3165 * for a partial fence not to be evaluated between writes, we
3166 * precede the update with write to turn off the fence register,
3167 * and only enable the fence as the last step.
3168 *
3169 * For extra levels of paranoia, we make sure each step lands
3170 * before applying the next step.
3171 */
3172 I915_WRITE(fence_reg, 0);
3173 POSTING_READ(fence_reg);
3174
9ce079e4 3175 if (obj) {
f343c5f6 3176 u32 size = i915_gem_obj_ggtt_size(obj);
d18b9619 3177 uint64_t val;
de151cf6 3178
f343c5f6 3179 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
9ce079e4 3180 0xfffff000) << 32;
f343c5f6 3181 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
56c844e5 3182 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
9ce079e4
CW
3183 if (obj->tiling_mode == I915_TILING_Y)
3184 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3185 val |= I965_FENCE_REG_VALID;
c6642782 3186
d18b9619
CW
3187 I915_WRITE(fence_reg + 4, val >> 32);
3188 POSTING_READ(fence_reg + 4);
3189
3190 I915_WRITE(fence_reg + 0, val);
3191 POSTING_READ(fence_reg);
3192 } else {
3193 I915_WRITE(fence_reg + 4, 0);
3194 POSTING_READ(fence_reg + 4);
3195 }
de151cf6
JB
3196}
3197
9ce079e4
CW
3198static void i915_write_fence_reg(struct drm_device *dev, int reg,
3199 struct drm_i915_gem_object *obj)
de151cf6 3200{
3e31c6c0 3201 struct drm_i915_private *dev_priv = dev->dev_private;
9ce079e4 3202 u32 val;
de151cf6 3203
9ce079e4 3204 if (obj) {
f343c5f6 3205 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4
CW
3206 int pitch_val;
3207 int tile_width;
c6642782 3208
f343c5f6 3209 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
9ce079e4 3210 (size & -size) != size ||
f343c5f6
BW
3211 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3212 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3213 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
c6642782 3214
9ce079e4
CW
3215 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3216 tile_width = 128;
3217 else
3218 tile_width = 512;
3219
3220 /* Note: pitch better be a power of two tile widths */
3221 pitch_val = obj->stride / tile_width;
3222 pitch_val = ffs(pitch_val) - 1;
3223
f343c5f6 3224 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3225 if (obj->tiling_mode == I915_TILING_Y)
3226 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3227 val |= I915_FENCE_SIZE_BITS(size);
3228 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3229 val |= I830_FENCE_REG_VALID;
3230 } else
3231 val = 0;
3232
3233 if (reg < 8)
3234 reg = FENCE_REG_830_0 + reg * 4;
3235 else
3236 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3237
3238 I915_WRITE(reg, val);
3239 POSTING_READ(reg);
de151cf6
JB
3240}
3241
9ce079e4
CW
3242static void i830_write_fence_reg(struct drm_device *dev, int reg,
3243 struct drm_i915_gem_object *obj)
de151cf6 3244{
3e31c6c0 3245 struct drm_i915_private *dev_priv = dev->dev_private;
de151cf6 3246 uint32_t val;
de151cf6 3247
9ce079e4 3248 if (obj) {
f343c5f6 3249 u32 size = i915_gem_obj_ggtt_size(obj);
9ce079e4 3250 uint32_t pitch_val;
de151cf6 3251
f343c5f6 3252 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
9ce079e4 3253 (size & -size) != size ||
f343c5f6
BW
3254 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3255 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3256 i915_gem_obj_ggtt_offset(obj), size);
e76a16de 3257
9ce079e4
CW
3258 pitch_val = obj->stride / 128;
3259 pitch_val = ffs(pitch_val) - 1;
de151cf6 3260
f343c5f6 3261 val = i915_gem_obj_ggtt_offset(obj);
9ce079e4
CW
3262 if (obj->tiling_mode == I915_TILING_Y)
3263 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3264 val |= I830_FENCE_SIZE_BITS(size);
3265 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3266 val |= I830_FENCE_REG_VALID;
3267 } else
3268 val = 0;
c6642782 3269
9ce079e4
CW
3270 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3271 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3272}
3273
d0a57789
CW
3274inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3275{
3276 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3277}
3278
9ce079e4
CW
3279static void i915_gem_write_fence(struct drm_device *dev, int reg,
3280 struct drm_i915_gem_object *obj)
3281{
d0a57789
CW
3282 struct drm_i915_private *dev_priv = dev->dev_private;
3283
3284 /* Ensure that all CPU reads are completed before installing a fence
3285 * and all writes before removing the fence.
3286 */
3287 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3288 mb();
3289
94a335db
DV
3290 WARN(obj && (!obj->stride || !obj->tiling_mode),
3291 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3292 obj->stride, obj->tiling_mode);
3293
9ce079e4 3294 switch (INTEL_INFO(dev)->gen) {
01209dd5 3295 case 9:
5ab31333 3296 case 8:
9ce079e4 3297 case 7:
56c844e5 3298 case 6:
9ce079e4
CW
3299 case 5:
3300 case 4: i965_write_fence_reg(dev, reg, obj); break;
3301 case 3: i915_write_fence_reg(dev, reg, obj); break;
3302 case 2: i830_write_fence_reg(dev, reg, obj); break;
7dbf9d6e 3303 default: BUG();
9ce079e4 3304 }
d0a57789
CW
3305
3306 /* And similarly be paranoid that no direct access to this region
3307 * is reordered to before the fence is installed.
3308 */
3309 if (i915_gem_object_needs_mb(obj))
3310 mb();
de151cf6
JB
3311}
3312
61050808
CW
3313static inline int fence_number(struct drm_i915_private *dev_priv,
3314 struct drm_i915_fence_reg *fence)
3315{
3316 return fence - dev_priv->fence_regs;
3317}
3318
3319static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3320 struct drm_i915_fence_reg *fence,
3321 bool enable)
3322{
2dc8aae0 3323 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
46a0b638
CW
3324 int reg = fence_number(dev_priv, fence);
3325
3326 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
61050808
CW
3327
3328 if (enable) {
46a0b638 3329 obj->fence_reg = reg;
61050808
CW
3330 fence->obj = obj;
3331 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3332 } else {
3333 obj->fence_reg = I915_FENCE_REG_NONE;
3334 fence->obj = NULL;
3335 list_del_init(&fence->lru_list);
3336 }
94a335db 3337 obj->fence_dirty = false;
61050808
CW
3338}
3339
d9e86c0e 3340static int
d0a57789 3341i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
d9e86c0e 3342{
97b2a6a1
JH
3343 if (obj->last_fenced_req) {
3344 int ret = i915_wait_seqno(obj->ring,
3345 i915_gem_request_get_seqno(obj->last_fenced_req));
18991845
CW
3346 if (ret)
3347 return ret;
d9e86c0e 3348
97b2a6a1 3349 i915_gem_request_assign(&obj->last_fenced_req, NULL);
d9e86c0e
CW
3350 }
3351
3352 return 0;
3353}
3354
3355int
3356i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3357{
61050808 3358 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
f9c513e9 3359 struct drm_i915_fence_reg *fence;
d9e86c0e
CW
3360 int ret;
3361
d0a57789 3362 ret = i915_gem_object_wait_fence(obj);
d9e86c0e
CW
3363 if (ret)
3364 return ret;
3365
61050808
CW
3366 if (obj->fence_reg == I915_FENCE_REG_NONE)
3367 return 0;
d9e86c0e 3368
f9c513e9
CW
3369 fence = &dev_priv->fence_regs[obj->fence_reg];
3370
aff10b30
DV
3371 if (WARN_ON(fence->pin_count))
3372 return -EBUSY;
3373
61050808 3374 i915_gem_object_fence_lost(obj);
f9c513e9 3375 i915_gem_object_update_fence(obj, fence, false);
d9e86c0e
CW
3376
3377 return 0;
3378}
3379
3380static struct drm_i915_fence_reg *
a360bb1a 3381i915_find_fence_reg(struct drm_device *dev)
ae3db24a 3382{
ae3db24a 3383 struct drm_i915_private *dev_priv = dev->dev_private;
8fe301ad 3384 struct drm_i915_fence_reg *reg, *avail;
d9e86c0e 3385 int i;
ae3db24a
DV
3386
3387 /* First try to find a free reg */
d9e86c0e 3388 avail = NULL;
ae3db24a
DV
3389 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3390 reg = &dev_priv->fence_regs[i];
3391 if (!reg->obj)
d9e86c0e 3392 return reg;
ae3db24a 3393
1690e1eb 3394 if (!reg->pin_count)
d9e86c0e 3395 avail = reg;
ae3db24a
DV
3396 }
3397
d9e86c0e 3398 if (avail == NULL)
5dce5b93 3399 goto deadlock;
ae3db24a
DV
3400
3401 /* None available, try to steal one or wait for a user to finish */
d9e86c0e 3402 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
1690e1eb 3403 if (reg->pin_count)
ae3db24a
DV
3404 continue;
3405
8fe301ad 3406 return reg;
ae3db24a
DV
3407 }
3408
5dce5b93
CW
3409deadlock:
3410 /* Wait for completion of pending flips which consume fences */
3411 if (intel_has_pending_fb_unpin(dev))
3412 return ERR_PTR(-EAGAIN);
3413
3414 return ERR_PTR(-EDEADLK);
ae3db24a
DV
3415}
3416
de151cf6 3417/**
9a5a53b3 3418 * i915_gem_object_get_fence - set up fencing for an object
de151cf6
JB
3419 * @obj: object to map through a fence reg
3420 *
3421 * When mapping objects through the GTT, userspace wants to be able to write
3422 * to them without having to worry about swizzling if the object is tiled.
de151cf6
JB
3423 * This function walks the fence regs looking for a free one for @obj,
3424 * stealing one if it can't find any.
3425 *
3426 * It then sets up the reg based on the object's properties: address, pitch
3427 * and tiling format.
9a5a53b3
CW
3428 *
3429 * For an untiled surface, this removes any existing fence.
de151cf6 3430 */
8c4b8c3f 3431int
06d98131 3432i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
de151cf6 3433{
05394f39 3434 struct drm_device *dev = obj->base.dev;
79e53945 3435 struct drm_i915_private *dev_priv = dev->dev_private;
14415745 3436 bool enable = obj->tiling_mode != I915_TILING_NONE;
d9e86c0e 3437 struct drm_i915_fence_reg *reg;
ae3db24a 3438 int ret;
de151cf6 3439
14415745
CW
3440 /* Have we updated the tiling parameters upon the object and so
3441 * will need to serialise the write to the associated fence register?
3442 */
5d82e3e6 3443 if (obj->fence_dirty) {
d0a57789 3444 ret = i915_gem_object_wait_fence(obj);
14415745
CW
3445 if (ret)
3446 return ret;
3447 }
9a5a53b3 3448
d9e86c0e 3449 /* Just update our place in the LRU if our fence is getting reused. */
05394f39
CW
3450 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3451 reg = &dev_priv->fence_regs[obj->fence_reg];
5d82e3e6 3452 if (!obj->fence_dirty) {
14415745
CW
3453 list_move_tail(&reg->lru_list,
3454 &dev_priv->mm.fence_list);
3455 return 0;
3456 }
3457 } else if (enable) {
e6a84468
CW
3458 if (WARN_ON(!obj->map_and_fenceable))
3459 return -EINVAL;
3460
14415745 3461 reg = i915_find_fence_reg(dev);
5dce5b93
CW
3462 if (IS_ERR(reg))
3463 return PTR_ERR(reg);
d9e86c0e 3464
14415745
CW
3465 if (reg->obj) {
3466 struct drm_i915_gem_object *old = reg->obj;
3467
d0a57789 3468 ret = i915_gem_object_wait_fence(old);
29c5a587
CW
3469 if (ret)
3470 return ret;
3471
14415745 3472 i915_gem_object_fence_lost(old);
29c5a587 3473 }
14415745 3474 } else
a09ba7fa 3475 return 0;
a09ba7fa 3476
14415745 3477 i915_gem_object_update_fence(obj, reg, enable);
14415745 3478
9ce079e4 3479 return 0;
de151cf6
JB
3480}
3481
4144f9b5 3482static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
42d6ab48
CW
3483 unsigned long cache_level)
3484{
4144f9b5 3485 struct drm_mm_node *gtt_space = &vma->node;
42d6ab48
CW
3486 struct drm_mm_node *other;
3487
4144f9b5
CW
3488 /*
3489 * On some machines we have to be careful when putting differing types
3490 * of snoopable memory together to avoid the prefetcher crossing memory
3491 * domains and dying. During vm initialisation, we decide whether or not
3492 * these constraints apply and set the drm_mm.color_adjust
3493 * appropriately.
42d6ab48 3494 */
4144f9b5 3495 if (vma->vm->mm.color_adjust == NULL)
42d6ab48
CW
3496 return true;
3497
c6cfb325 3498 if (!drm_mm_node_allocated(gtt_space))
42d6ab48
CW
3499 return true;
3500
3501 if (list_empty(&gtt_space->node_list))
3502 return true;
3503
3504 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3505 if (other->allocated && !other->hole_follows && other->color != cache_level)
3506 return false;
3507
3508 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3509 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3510 return false;
3511
3512 return true;
3513}
3514
673a394b
EA
3515/**
3516 * Finds free space in the GTT aperture and binds the object there.
3517 */
262de145 3518static struct i915_vma *
07fe0b12
BW
3519i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3520 struct i915_address_space *vm,
3521 unsigned alignment,
d23db88c 3522 uint64_t flags)
673a394b 3523{
05394f39 3524 struct drm_device *dev = obj->base.dev;
3e31c6c0 3525 struct drm_i915_private *dev_priv = dev->dev_private;
5e783301 3526 u32 size, fence_size, fence_alignment, unfenced_alignment;
d23db88c
CW
3527 unsigned long start =
3528 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3529 unsigned long end =
1ec9e26d 3530 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
2f633156 3531 struct i915_vma *vma;
07f73f69 3532 int ret;
673a394b 3533
e28f8711
CW
3534 fence_size = i915_gem_get_gtt_size(dev,
3535 obj->base.size,
3536 obj->tiling_mode);
3537 fence_alignment = i915_gem_get_gtt_alignment(dev,
3538 obj->base.size,
d865110c 3539 obj->tiling_mode, true);
e28f8711 3540 unfenced_alignment =
d865110c 3541 i915_gem_get_gtt_alignment(dev,
1ec9e26d
DV
3542 obj->base.size,
3543 obj->tiling_mode, false);
a00b10c3 3544
673a394b 3545 if (alignment == 0)
1ec9e26d 3546 alignment = flags & PIN_MAPPABLE ? fence_alignment :
5e783301 3547 unfenced_alignment;
1ec9e26d 3548 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
bd9b6a4e 3549 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
262de145 3550 return ERR_PTR(-EINVAL);
673a394b
EA
3551 }
3552
1ec9e26d 3553 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
a00b10c3 3554
654fc607
CW
3555 /* If the object is bigger than the entire aperture, reject it early
3556 * before evicting everything in a vain attempt to find space.
3557 */
d23db88c
CW
3558 if (obj->base.size > end) {
3559 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
a36689cb 3560 obj->base.size,
1ec9e26d 3561 flags & PIN_MAPPABLE ? "mappable" : "total",
d23db88c 3562 end);
262de145 3563 return ERR_PTR(-E2BIG);
654fc607
CW
3564 }
3565
37e680a1 3566 ret = i915_gem_object_get_pages(obj);
6c085a72 3567 if (ret)
262de145 3568 return ERR_PTR(ret);
6c085a72 3569
fbdda6fb
CW
3570 i915_gem_object_pin_pages(obj);
3571
accfef2e 3572 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
262de145 3573 if (IS_ERR(vma))
bc6bc15b 3574 goto err_unpin;
2f633156 3575
0a9ae0d7 3576search_free:
07fe0b12 3577 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
0a9ae0d7 3578 size, alignment,
d23db88c
CW
3579 obj->cache_level,
3580 start, end,
62347f9e
LK
3581 DRM_MM_SEARCH_DEFAULT,
3582 DRM_MM_CREATE_DEFAULT);
dc9dd7a2 3583 if (ret) {
f6cd1f15 3584 ret = i915_gem_evict_something(dev, vm, size, alignment,
d23db88c
CW
3585 obj->cache_level,
3586 start, end,
3587 flags);
dc9dd7a2
CW
3588 if (ret == 0)
3589 goto search_free;
9731129c 3590
bc6bc15b 3591 goto err_free_vma;
673a394b 3592 }
4144f9b5 3593 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
2f633156 3594 ret = -EINVAL;
bc6bc15b 3595 goto err_remove_node;
673a394b
EA
3596 }
3597
74163907 3598 ret = i915_gem_gtt_prepare_object(obj);
2f633156 3599 if (ret)
bc6bc15b 3600 goto err_remove_node;
673a394b 3601
35c20a60 3602 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
ca191b13 3603 list_add_tail(&vma->mm_list, &vm->inactive_list);
bf1a1092 3604
1ec9e26d 3605 trace_i915_vma_bind(vma, flags);
8ea99c92 3606 vma->bind_vma(vma, obj->cache_level,
c826c449 3607 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
8ea99c92 3608
262de145 3609 return vma;
2f633156 3610
bc6bc15b 3611err_remove_node:
6286ef9b 3612 drm_mm_remove_node(&vma->node);
bc6bc15b 3613err_free_vma:
2f633156 3614 i915_gem_vma_destroy(vma);
262de145 3615 vma = ERR_PTR(ret);
bc6bc15b 3616err_unpin:
2f633156 3617 i915_gem_object_unpin_pages(obj);
262de145 3618 return vma;
673a394b
EA
3619}
3620
000433b6 3621bool
2c22569b
CW
3622i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3623 bool force)
673a394b 3624{
673a394b
EA
3625 /* If we don't have a page list set up, then we're not pinned
3626 * to GPU, and we can ignore the cache flush because it'll happen
3627 * again at bind time.
3628 */
05394f39 3629 if (obj->pages == NULL)
000433b6 3630 return false;
673a394b 3631
769ce464
ID
3632 /*
3633 * Stolen memory is always coherent with the GPU as it is explicitly
3634 * marked as wc by the system, or the system is cache-coherent.
3635 */
6a2c4232 3636 if (obj->stolen || obj->phys_handle)
000433b6 3637 return false;
769ce464 3638
9c23f7fc
CW
3639 /* If the GPU is snooping the contents of the CPU cache,
3640 * we do not need to manually clear the CPU cache lines. However,
3641 * the caches are only snooped when the render cache is
3642 * flushed/invalidated. As we always have to emit invalidations
3643 * and flushes when moving into and out of the RENDER domain, correct
3644 * snooping behaviour occurs naturally as the result of our domain
3645 * tracking.
3646 */
2c22569b 3647 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
000433b6 3648 return false;
9c23f7fc 3649
1c5d22f7 3650 trace_i915_gem_object_clflush(obj);
9da3da66 3651 drm_clflush_sg(obj->pages);
000433b6
CW
3652
3653 return true;
e47c68e9
EA
3654}
3655
3656/** Flushes the GTT write domain for the object if it's dirty. */
3657static void
05394f39 3658i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
e47c68e9 3659{
1c5d22f7
CW
3660 uint32_t old_write_domain;
3661
05394f39 3662 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
e47c68e9
EA
3663 return;
3664
63256ec5 3665 /* No actual flushing is required for the GTT write domain. Writes
e47c68e9
EA
3666 * to it immediately go to main memory as far as we know, so there's
3667 * no chipset flush. It also doesn't land in render cache.
63256ec5
CW
3668 *
3669 * However, we do have to enforce the order so that all writes through
3670 * the GTT land before any writes to the device, such as updates to
3671 * the GATT itself.
e47c68e9 3672 */
63256ec5
CW
3673 wmb();
3674
05394f39
CW
3675 old_write_domain = obj->base.write_domain;
3676 obj->base.write_domain = 0;
1c5d22f7 3677
f99d7069
DV
3678 intel_fb_obj_flush(obj, false);
3679
1c5d22f7 3680 trace_i915_gem_object_change_domain(obj,
05394f39 3681 obj->base.read_domains,
1c5d22f7 3682 old_write_domain);
e47c68e9
EA
3683}
3684
3685/** Flushes the CPU write domain for the object if it's dirty. */
3686static void
2c22569b
CW
3687i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3688 bool force)
e47c68e9 3689{
1c5d22f7 3690 uint32_t old_write_domain;
e47c68e9 3691
05394f39 3692 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
e47c68e9
EA
3693 return;
3694
000433b6
CW
3695 if (i915_gem_clflush_object(obj, force))
3696 i915_gem_chipset_flush(obj->base.dev);
3697
05394f39
CW
3698 old_write_domain = obj->base.write_domain;
3699 obj->base.write_domain = 0;
1c5d22f7 3700
f99d7069
DV
3701 intel_fb_obj_flush(obj, false);
3702
1c5d22f7 3703 trace_i915_gem_object_change_domain(obj,
05394f39 3704 obj->base.read_domains,
1c5d22f7 3705 old_write_domain);
e47c68e9
EA
3706}
3707
2ef7eeaa
EA
3708/**
3709 * Moves a single object to the GTT read, and possibly write domain.
3710 *
3711 * This function returns when the move is complete, including waiting on
3712 * flushes to occur.
3713 */
79e53945 3714int
2021746e 3715i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2ef7eeaa 3716{
3e31c6c0 3717 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
dc8cd1e7 3718 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
1c5d22f7 3719 uint32_t old_write_domain, old_read_domains;
e47c68e9 3720 int ret;
2ef7eeaa 3721
02354392 3722 /* Not valid to be called on unbound objects. */
dc8cd1e7 3723 if (vma == NULL)
02354392
EA
3724 return -EINVAL;
3725
8d7e3de1
CW
3726 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3727 return 0;
3728
0201f1ec 3729 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
3730 if (ret)
3731 return ret;
3732
c8725f3d 3733 i915_gem_object_retire(obj);
2c22569b 3734 i915_gem_object_flush_cpu_write_domain(obj, false);
1c5d22f7 3735
d0a57789
CW
3736 /* Serialise direct access to this object with the barriers for
3737 * coherent writes from the GPU, by effectively invalidating the
3738 * GTT domain upon first access.
3739 */
3740 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3741 mb();
3742
05394f39
CW
3743 old_write_domain = obj->base.write_domain;
3744 old_read_domains = obj->base.read_domains;
1c5d22f7 3745
e47c68e9
EA
3746 /* It should now be out of any other write domains, and we can update
3747 * the domain values for our changes.
3748 */
05394f39
CW
3749 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3750 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
e47c68e9 3751 if (write) {
05394f39
CW
3752 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3753 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3754 obj->dirty = 1;
2ef7eeaa
EA
3755 }
3756
f99d7069
DV
3757 if (write)
3758 intel_fb_obj_invalidate(obj, NULL);
3759
1c5d22f7
CW
3760 trace_i915_gem_object_change_domain(obj,
3761 old_read_domains,
3762 old_write_domain);
3763
8325a09d 3764 /* And bump the LRU for this access */
dc8cd1e7
CW
3765 if (i915_gem_object_is_inactive(obj))
3766 list_move_tail(&vma->mm_list,
3767 &dev_priv->gtt.base.inactive_list);
8325a09d 3768
e47c68e9
EA
3769 return 0;
3770}
3771
e4ffd173
CW
3772int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3773 enum i915_cache_level cache_level)
3774{
7bddb01f 3775 struct drm_device *dev = obj->base.dev;
df6f783a 3776 struct i915_vma *vma, *next;
e4ffd173
CW
3777 int ret;
3778
3779 if (obj->cache_level == cache_level)
3780 return 0;
3781
d7f46fc4 3782 if (i915_gem_obj_is_pinned(obj)) {
e4ffd173
CW
3783 DRM_DEBUG("can not change the cache level of pinned objects\n");
3784 return -EBUSY;
3785 }
3786
df6f783a 3787 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4144f9b5 3788 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
07fe0b12 3789 ret = i915_vma_unbind(vma);
3089c6f2
BW
3790 if (ret)
3791 return ret;
3089c6f2 3792 }
42d6ab48
CW
3793 }
3794
3089c6f2 3795 if (i915_gem_obj_bound_any(obj)) {
e4ffd173
CW
3796 ret = i915_gem_object_finish_gpu(obj);
3797 if (ret)
3798 return ret;
3799
3800 i915_gem_object_finish_gtt(obj);
3801
3802 /* Before SandyBridge, you could not use tiling or fence
3803 * registers with snooped memory, so relinquish any fences
3804 * currently pointing to our region in the aperture.
3805 */
42d6ab48 3806 if (INTEL_INFO(dev)->gen < 6) {
e4ffd173
CW
3807 ret = i915_gem_object_put_fence(obj);
3808 if (ret)
3809 return ret;
3810 }
3811
6f65e29a 3812 list_for_each_entry(vma, &obj->vma_list, vma_link)
8ea99c92
DV
3813 if (drm_mm_node_allocated(&vma->node))
3814 vma->bind_vma(vma, cache_level,
aff43766 3815 vma->bound & GLOBAL_BIND);
e4ffd173
CW
3816 }
3817
2c22569b
CW
3818 list_for_each_entry(vma, &obj->vma_list, vma_link)
3819 vma->node.color = cache_level;
3820 obj->cache_level = cache_level;
3821
3822 if (cpu_write_needs_clflush(obj)) {
e4ffd173
CW
3823 u32 old_read_domains, old_write_domain;
3824
3825 /* If we're coming from LLC cached, then we haven't
3826 * actually been tracking whether the data is in the
3827 * CPU cache or not, since we only allow one bit set
3828 * in obj->write_domain and have been skipping the clflushes.
3829 * Just set it to the CPU cache for now.
3830 */
c8725f3d 3831 i915_gem_object_retire(obj);
e4ffd173 3832 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
e4ffd173
CW
3833
3834 old_read_domains = obj->base.read_domains;
3835 old_write_domain = obj->base.write_domain;
3836
3837 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3838 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3839
3840 trace_i915_gem_object_change_domain(obj,
3841 old_read_domains,
3842 old_write_domain);
3843 }
3844
e4ffd173
CW
3845 return 0;
3846}
3847
199adf40
BW
3848int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3849 struct drm_file *file)
e6994aee 3850{
199adf40 3851 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3852 struct drm_i915_gem_object *obj;
3853 int ret;
3854
3855 ret = i915_mutex_lock_interruptible(dev);
3856 if (ret)
3857 return ret;
3858
3859 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3860 if (&obj->base == NULL) {
3861 ret = -ENOENT;
3862 goto unlock;
3863 }
3864
651d794f
CW
3865 switch (obj->cache_level) {
3866 case I915_CACHE_LLC:
3867 case I915_CACHE_L3_LLC:
3868 args->caching = I915_CACHING_CACHED;
3869 break;
3870
4257d3ba
CW
3871 case I915_CACHE_WT:
3872 args->caching = I915_CACHING_DISPLAY;
3873 break;
3874
651d794f
CW
3875 default:
3876 args->caching = I915_CACHING_NONE;
3877 break;
3878 }
e6994aee
CW
3879
3880 drm_gem_object_unreference(&obj->base);
3881unlock:
3882 mutex_unlock(&dev->struct_mutex);
3883 return ret;
3884}
3885
199adf40
BW
3886int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3887 struct drm_file *file)
e6994aee 3888{
199adf40 3889 struct drm_i915_gem_caching *args = data;
e6994aee
CW
3890 struct drm_i915_gem_object *obj;
3891 enum i915_cache_level level;
3892 int ret;
3893
199adf40
BW
3894 switch (args->caching) {
3895 case I915_CACHING_NONE:
e6994aee
CW
3896 level = I915_CACHE_NONE;
3897 break;
199adf40 3898 case I915_CACHING_CACHED:
e6994aee
CW
3899 level = I915_CACHE_LLC;
3900 break;
4257d3ba
CW
3901 case I915_CACHING_DISPLAY:
3902 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3903 break;
e6994aee
CW
3904 default:
3905 return -EINVAL;
3906 }
3907
3bc2913e
BW
3908 ret = i915_mutex_lock_interruptible(dev);
3909 if (ret)
3910 return ret;
3911
e6994aee
CW
3912 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3913 if (&obj->base == NULL) {
3914 ret = -ENOENT;
3915 goto unlock;
3916 }
3917
3918 ret = i915_gem_object_set_cache_level(obj, level);
3919
3920 drm_gem_object_unreference(&obj->base);
3921unlock:
3922 mutex_unlock(&dev->struct_mutex);
3923 return ret;
3924}
3925
cc98b413
CW
3926static bool is_pin_display(struct drm_i915_gem_object *obj)
3927{
19656430
OM
3928 struct i915_vma *vma;
3929
19656430
OM
3930 vma = i915_gem_obj_to_ggtt(obj);
3931 if (!vma)
3932 return false;
3933
4feb7659 3934 /* There are 2 sources that pin objects:
cc98b413
CW
3935 * 1. The display engine (scanouts, sprites, cursors);
3936 * 2. Reservations for execbuffer;
cc98b413
CW
3937 *
3938 * We can ignore reservations as we hold the struct_mutex and
4feb7659 3939 * are only called outside of the reservation path.
cc98b413 3940 */
4feb7659 3941 return vma->pin_count;
cc98b413
CW
3942}
3943
b9241ea3 3944/*
2da3b9b9
CW
3945 * Prepare buffer for display plane (scanout, cursors, etc).
3946 * Can be called from an uninterruptible phase (modesetting) and allows
3947 * any flushes to be pipelined (for pageflips).
b9241ea3
ZW
3948 */
3949int
2da3b9b9
CW
3950i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3951 u32 alignment,
a4872ba6 3952 struct intel_engine_cs *pipelined)
b9241ea3 3953{
2da3b9b9 3954 u32 old_read_domains, old_write_domain;
19656430 3955 bool was_pin_display;
b9241ea3
ZW
3956 int ret;
3957
0be73284 3958 if (pipelined != obj->ring) {
2911a35b
BW
3959 ret = i915_gem_object_sync(obj, pipelined);
3960 if (ret)
b9241ea3
ZW
3961 return ret;
3962 }
3963
cc98b413
CW
3964 /* Mark the pin_display early so that we account for the
3965 * display coherency whilst setting up the cache domains.
3966 */
19656430 3967 was_pin_display = obj->pin_display;
cc98b413
CW
3968 obj->pin_display = true;
3969
a7ef0640
EA
3970 /* The display engine is not coherent with the LLC cache on gen6. As
3971 * a result, we make sure that the pinning that is about to occur is
3972 * done with uncached PTEs. This is lowest common denominator for all
3973 * chipsets.
3974 *
3975 * However for gen6+, we could do better by using the GFDT bit instead
3976 * of uncaching, which would allow us to flush all the LLC-cached data
3977 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3978 */
651d794f
CW
3979 ret = i915_gem_object_set_cache_level(obj,
3980 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
a7ef0640 3981 if (ret)
cc98b413 3982 goto err_unpin_display;
a7ef0640 3983
2da3b9b9
CW
3984 /* As the user may map the buffer once pinned in the display plane
3985 * (e.g. libkms for the bootup splash), we have to ensure that we
3986 * always use map_and_fenceable for all scanout buffers.
3987 */
1ec9e26d 3988 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
2da3b9b9 3989 if (ret)
cc98b413 3990 goto err_unpin_display;
2da3b9b9 3991
2c22569b 3992 i915_gem_object_flush_cpu_write_domain(obj, true);
b118c1e3 3993
2da3b9b9 3994 old_write_domain = obj->base.write_domain;
05394f39 3995 old_read_domains = obj->base.read_domains;
2da3b9b9
CW
3996
3997 /* It should now be out of any other write domains, and we can update
3998 * the domain values for our changes.
3999 */
e5f1d962 4000 obj->base.write_domain = 0;
05394f39 4001 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
b9241ea3
ZW
4002
4003 trace_i915_gem_object_change_domain(obj,
4004 old_read_domains,
2da3b9b9 4005 old_write_domain);
b9241ea3
ZW
4006
4007 return 0;
cc98b413
CW
4008
4009err_unpin_display:
19656430
OM
4010 WARN_ON(was_pin_display != is_pin_display(obj));
4011 obj->pin_display = was_pin_display;
cc98b413
CW
4012 return ret;
4013}
4014
4015void
4016i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4017{
d7f46fc4 4018 i915_gem_object_ggtt_unpin(obj);
cc98b413 4019 obj->pin_display = is_pin_display(obj);
b9241ea3
ZW
4020}
4021
85345517 4022int
a8198eea 4023i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
85345517 4024{
88241785
CW
4025 int ret;
4026
a8198eea 4027 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
85345517
CW
4028 return 0;
4029
0201f1ec 4030 ret = i915_gem_object_wait_rendering(obj, false);
c501ae7f
CW
4031 if (ret)
4032 return ret;
4033
a8198eea
CW
4034 /* Ensure that we invalidate the GPU's caches and TLBs. */
4035 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
c501ae7f 4036 return 0;
85345517
CW
4037}
4038
e47c68e9
EA
4039/**
4040 * Moves a single object to the CPU read, and possibly write domain.
4041 *
4042 * This function returns when the move is complete, including waiting on
4043 * flushes to occur.
4044 */
dabdfe02 4045int
919926ae 4046i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
e47c68e9 4047{
1c5d22f7 4048 uint32_t old_write_domain, old_read_domains;
e47c68e9
EA
4049 int ret;
4050
8d7e3de1
CW
4051 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4052 return 0;
4053
0201f1ec 4054 ret = i915_gem_object_wait_rendering(obj, !write);
88241785
CW
4055 if (ret)
4056 return ret;
4057
c8725f3d 4058 i915_gem_object_retire(obj);
e47c68e9 4059 i915_gem_object_flush_gtt_write_domain(obj);
2ef7eeaa 4060
05394f39
CW
4061 old_write_domain = obj->base.write_domain;
4062 old_read_domains = obj->base.read_domains;
1c5d22f7 4063
e47c68e9 4064 /* Flush the CPU cache if it's still invalid. */
05394f39 4065 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2c22569b 4066 i915_gem_clflush_object(obj, false);
2ef7eeaa 4067
05394f39 4068 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
2ef7eeaa
EA
4069 }
4070
4071 /* It should now be out of any other write domains, and we can update
4072 * the domain values for our changes.
4073 */
05394f39 4074 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
e47c68e9
EA
4075
4076 /* If we're writing through the CPU, then the GPU read domains will
4077 * need to be invalidated at next use.
4078 */
4079 if (write) {
05394f39
CW
4080 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4081 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
e47c68e9 4082 }
2ef7eeaa 4083
f99d7069
DV
4084 if (write)
4085 intel_fb_obj_invalidate(obj, NULL);
4086
1c5d22f7
CW
4087 trace_i915_gem_object_change_domain(obj,
4088 old_read_domains,
4089 old_write_domain);
4090
2ef7eeaa
EA
4091 return 0;
4092}
4093
673a394b
EA
4094/* Throttle our rendering by waiting until the ring has completed our requests
4095 * emitted over 20 msec ago.
4096 *
b962442e
EA
4097 * Note that if we were to use the current jiffies each time around the loop,
4098 * we wouldn't escape the function with any frames outstanding if the time to
4099 * render a frame was over 20ms.
4100 *
673a394b
EA
4101 * This should get us reasonable parallelism between CPU and GPU but also
4102 * relatively low latency when blocking on a particular request to finish.
4103 */
40a5f0de 4104static int
f787a5f5 4105i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
40a5f0de 4106{
f787a5f5
CW
4107 struct drm_i915_private *dev_priv = dev->dev_private;
4108 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 4109 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
54fb2411 4110 struct drm_i915_gem_request *request, *target = NULL;
f69061be 4111 unsigned reset_counter;
f787a5f5 4112 int ret;
93533c29 4113
308887aa
DV
4114 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4115 if (ret)
4116 return ret;
4117
4118 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4119 if (ret)
4120 return ret;
e110e8d6 4121
1c25595f 4122 spin_lock(&file_priv->mm.lock);
f787a5f5 4123 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
b962442e
EA
4124 if (time_after_eq(request->emitted_jiffies, recent_enough))
4125 break;
40a5f0de 4126
54fb2411 4127 target = request;
b962442e 4128 }
f69061be 4129 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
ff865885
JH
4130 if (target)
4131 i915_gem_request_reference(target);
1c25595f 4132 spin_unlock(&file_priv->mm.lock);
40a5f0de 4133
54fb2411 4134 if (target == NULL)
f787a5f5 4135 return 0;
2bc43b5c 4136
54fb2411
JH
4137 ret = __i915_wait_seqno(i915_gem_request_get_ring(target),
4138 i915_gem_request_get_seqno(target),
4139 reset_counter, true, NULL, NULL);
f787a5f5
CW
4140 if (ret == 0)
4141 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
40a5f0de 4142
ff865885
JH
4143 mutex_lock(&dev->struct_mutex);
4144 i915_gem_request_unreference(target);
4145 mutex_unlock(&dev->struct_mutex);
4146
40a5f0de
EA
4147 return ret;
4148}
4149
d23db88c
CW
4150static bool
4151i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4152{
4153 struct drm_i915_gem_object *obj = vma->obj;
4154
4155 if (alignment &&
4156 vma->node.start & (alignment - 1))
4157 return true;
4158
4159 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4160 return true;
4161
4162 if (flags & PIN_OFFSET_BIAS &&
4163 vma->node.start < (flags & PIN_OFFSET_MASK))
4164 return true;
4165
4166 return false;
4167}
4168
673a394b 4169int
05394f39 4170i915_gem_object_pin(struct drm_i915_gem_object *obj,
c37e2204 4171 struct i915_address_space *vm,
05394f39 4172 uint32_t alignment,
d23db88c 4173 uint64_t flags)
673a394b 4174{
6e7186af 4175 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
07fe0b12 4176 struct i915_vma *vma;
ef79e17c 4177 unsigned bound;
673a394b
EA
4178 int ret;
4179
6e7186af
BW
4180 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4181 return -ENODEV;
4182
bf3d149b 4183 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
1ec9e26d 4184 return -EINVAL;
07fe0b12 4185
c826c449
CW
4186 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4187 return -EINVAL;
4188
07fe0b12 4189 vma = i915_gem_obj_to_vma(obj, vm);
07fe0b12 4190 if (vma) {
d7f46fc4
BW
4191 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4192 return -EBUSY;
4193
d23db88c 4194 if (i915_vma_misplaced(vma, alignment, flags)) {
d7f46fc4 4195 WARN(vma->pin_count,
ae7d49d8 4196 "bo is already pinned with incorrect alignment:"
f343c5f6 4197 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
75e9e915 4198 " obj->map_and_fenceable=%d\n",
07fe0b12 4199 i915_gem_obj_offset(obj, vm), alignment,
d23db88c 4200 !!(flags & PIN_MAPPABLE),
05394f39 4201 obj->map_and_fenceable);
07fe0b12 4202 ret = i915_vma_unbind(vma);
ac0c6b5a
CW
4203 if (ret)
4204 return ret;
8ea99c92
DV
4205
4206 vma = NULL;
ac0c6b5a
CW
4207 }
4208 }
4209
ef79e17c 4210 bound = vma ? vma->bound : 0;
8ea99c92 4211 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
262de145
DV
4212 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4213 if (IS_ERR(vma))
4214 return PTR_ERR(vma);
22c344e9 4215 }
76446cac 4216
aff43766 4217 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
8ea99c92 4218 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
74898d7e 4219
ef79e17c
CW
4220 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4221 bool mappable, fenceable;
4222 u32 fence_size, fence_alignment;
4223
4224 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4225 obj->base.size,
4226 obj->tiling_mode);
4227 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4228 obj->base.size,
4229 obj->tiling_mode,
4230 true);
4231
4232 fenceable = (vma->node.size == fence_size &&
4233 (vma->node.start & (fence_alignment - 1)) == 0);
4234
4235 mappable = (vma->node.start + obj->base.size <=
4236 dev_priv->gtt.mappable_end);
4237
4238 obj->map_and_fenceable = mappable && fenceable;
4239 }
4240
4241 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4242
8ea99c92 4243 vma->pin_count++;
1ec9e26d
DV
4244 if (flags & PIN_MAPPABLE)
4245 obj->pin_mappable |= true;
673a394b
EA
4246
4247 return 0;
4248}
4249
4250void
d7f46fc4 4251i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
673a394b 4252{
d7f46fc4 4253 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
673a394b 4254
d7f46fc4
BW
4255 BUG_ON(!vma);
4256 BUG_ON(vma->pin_count == 0);
4257 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4258
4259 if (--vma->pin_count == 0)
6299f992 4260 obj->pin_mappable = false;
673a394b
EA
4261}
4262
d8ffa60b
DV
4263bool
4264i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4265{
4266 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4267 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4268 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4269
4270 WARN_ON(!ggtt_vma ||
4271 dev_priv->fence_regs[obj->fence_reg].pin_count >
4272 ggtt_vma->pin_count);
4273 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4274 return true;
4275 } else
4276 return false;
4277}
4278
4279void
4280i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4281{
4282 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4283 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4284 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4285 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4286 }
4287}
4288
673a394b
EA
4289int
4290i915_gem_busy_ioctl(struct drm_device *dev, void *data,
05394f39 4291 struct drm_file *file)
673a394b
EA
4292{
4293 struct drm_i915_gem_busy *args = data;
05394f39 4294 struct drm_i915_gem_object *obj;
30dbf0c0
CW
4295 int ret;
4296
76c1dec1 4297 ret = i915_mutex_lock_interruptible(dev);
1d7cfea1 4298 if (ret)
76c1dec1 4299 return ret;
673a394b 4300
05394f39 4301 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 4302 if (&obj->base == NULL) {
1d7cfea1
CW
4303 ret = -ENOENT;
4304 goto unlock;
673a394b 4305 }
d1b851fc 4306
0be555b6
CW
4307 /* Count all active objects as busy, even if they are currently not used
4308 * by the gpu. Users of this interface expect objects to eventually
4309 * become non-busy without any further actions, therefore emit any
4310 * necessary flushes here.
c4de0a5d 4311 */
30dfebf3 4312 ret = i915_gem_object_flush_active(obj);
0be555b6 4313
30dfebf3 4314 args->busy = obj->active;
e9808edd
CW
4315 if (obj->ring) {
4316 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4317 args->busy |= intel_ring_flag(obj->ring) << 16;
4318 }
673a394b 4319
05394f39 4320 drm_gem_object_unreference(&obj->base);
1d7cfea1 4321unlock:
673a394b 4322 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4323 return ret;
673a394b
EA
4324}
4325
4326int
4327i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4328 struct drm_file *file_priv)
4329{
0206e353 4330 return i915_gem_ring_throttle(dev, file_priv);
673a394b
EA
4331}
4332
3ef94daa
CW
4333int
4334i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4335 struct drm_file *file_priv)
4336{
656bfa3a 4337 struct drm_i915_private *dev_priv = dev->dev_private;
3ef94daa 4338 struct drm_i915_gem_madvise *args = data;
05394f39 4339 struct drm_i915_gem_object *obj;
76c1dec1 4340 int ret;
3ef94daa
CW
4341
4342 switch (args->madv) {
4343 case I915_MADV_DONTNEED:
4344 case I915_MADV_WILLNEED:
4345 break;
4346 default:
4347 return -EINVAL;
4348 }
4349
1d7cfea1
CW
4350 ret = i915_mutex_lock_interruptible(dev);
4351 if (ret)
4352 return ret;
4353
05394f39 4354 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
c8725226 4355 if (&obj->base == NULL) {
1d7cfea1
CW
4356 ret = -ENOENT;
4357 goto unlock;
3ef94daa 4358 }
3ef94daa 4359
d7f46fc4 4360 if (i915_gem_obj_is_pinned(obj)) {
1d7cfea1
CW
4361 ret = -EINVAL;
4362 goto out;
3ef94daa
CW
4363 }
4364
656bfa3a
DV
4365 if (obj->pages &&
4366 obj->tiling_mode != I915_TILING_NONE &&
4367 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4368 if (obj->madv == I915_MADV_WILLNEED)
4369 i915_gem_object_unpin_pages(obj);
4370 if (args->madv == I915_MADV_WILLNEED)
4371 i915_gem_object_pin_pages(obj);
4372 }
4373
05394f39
CW
4374 if (obj->madv != __I915_MADV_PURGED)
4375 obj->madv = args->madv;
3ef94daa 4376
6c085a72
CW
4377 /* if the object is no longer attached, discard its backing storage */
4378 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
2d7ef395
CW
4379 i915_gem_object_truncate(obj);
4380
05394f39 4381 args->retained = obj->madv != __I915_MADV_PURGED;
bb6baf76 4382
1d7cfea1 4383out:
05394f39 4384 drm_gem_object_unreference(&obj->base);
1d7cfea1 4385unlock:
3ef94daa 4386 mutex_unlock(&dev->struct_mutex);
1d7cfea1 4387 return ret;
3ef94daa
CW
4388}
4389
37e680a1
CW
4390void i915_gem_object_init(struct drm_i915_gem_object *obj,
4391 const struct drm_i915_gem_object_ops *ops)
0327d6ba 4392{
35c20a60 4393 INIT_LIST_HEAD(&obj->global_list);
0327d6ba 4394 INIT_LIST_HEAD(&obj->ring_list);
b25cb2f8 4395 INIT_LIST_HEAD(&obj->obj_exec_link);
2f633156 4396 INIT_LIST_HEAD(&obj->vma_list);
0327d6ba 4397
37e680a1
CW
4398 obj->ops = ops;
4399
0327d6ba
CW
4400 obj->fence_reg = I915_FENCE_REG_NONE;
4401 obj->madv = I915_MADV_WILLNEED;
0327d6ba
CW
4402
4403 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4404}
4405
37e680a1
CW
4406static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4407 .get_pages = i915_gem_object_get_pages_gtt,
4408 .put_pages = i915_gem_object_put_pages_gtt,
4409};
4410
05394f39
CW
4411struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4412 size_t size)
ac52bc56 4413{
c397b908 4414 struct drm_i915_gem_object *obj;
5949eac4 4415 struct address_space *mapping;
1a240d4d 4416 gfp_t mask;
ac52bc56 4417
42dcedd4 4418 obj = i915_gem_object_alloc(dev);
c397b908
DV
4419 if (obj == NULL)
4420 return NULL;
673a394b 4421
c397b908 4422 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
42dcedd4 4423 i915_gem_object_free(obj);
c397b908
DV
4424 return NULL;
4425 }
673a394b 4426
bed1ea95
CW
4427 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4428 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4429 /* 965gm cannot relocate objects above 4GiB. */
4430 mask &= ~__GFP_HIGHMEM;
4431 mask |= __GFP_DMA32;
4432 }
4433
496ad9aa 4434 mapping = file_inode(obj->base.filp)->i_mapping;
bed1ea95 4435 mapping_set_gfp_mask(mapping, mask);
5949eac4 4436
37e680a1 4437 i915_gem_object_init(obj, &i915_gem_object_ops);
73aa808f 4438
c397b908
DV
4439 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4440 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
673a394b 4441
3d29b842
ED
4442 if (HAS_LLC(dev)) {
4443 /* On some devices, we can have the GPU use the LLC (the CPU
a1871112
EA
4444 * cache) for about a 10% performance improvement
4445 * compared to uncached. Graphics requests other than
4446 * display scanout are coherent with the CPU in
4447 * accessing this cache. This means in this mode we
4448 * don't need to clflush on the CPU side, and on the
4449 * GPU side we only need to flush internal caches to
4450 * get data visible to the CPU.
4451 *
4452 * However, we maintain the display planes as UC, and so
4453 * need to rebind when first used as such.
4454 */
4455 obj->cache_level = I915_CACHE_LLC;
4456 } else
4457 obj->cache_level = I915_CACHE_NONE;
4458
d861e338
DV
4459 trace_i915_gem_object_create(obj);
4460
05394f39 4461 return obj;
c397b908
DV
4462}
4463
340fbd8c
CW
4464static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4465{
4466 /* If we are the last user of the backing storage (be it shmemfs
4467 * pages or stolen etc), we know that the pages are going to be
4468 * immediately released. In this case, we can then skip copying
4469 * back the contents from the GPU.
4470 */
4471
4472 if (obj->madv != I915_MADV_WILLNEED)
4473 return false;
4474
4475 if (obj->base.filp == NULL)
4476 return true;
4477
4478 /* At first glance, this looks racy, but then again so would be
4479 * userspace racing mmap against close. However, the first external
4480 * reference to the filp can only be obtained through the
4481 * i915_gem_mmap_ioctl() which safeguards us against the user
4482 * acquiring such a reference whilst we are in the middle of
4483 * freeing the object.
4484 */
4485 return atomic_long_read(&obj->base.filp->f_count) == 1;
4486}
4487
1488fc08 4488void i915_gem_free_object(struct drm_gem_object *gem_obj)
673a394b 4489{
1488fc08 4490 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
05394f39 4491 struct drm_device *dev = obj->base.dev;
3e31c6c0 4492 struct drm_i915_private *dev_priv = dev->dev_private;
07fe0b12 4493 struct i915_vma *vma, *next;
673a394b 4494
f65c9168
PZ
4495 intel_runtime_pm_get(dev_priv);
4496
26e12f89
CW
4497 trace_i915_gem_object_destroy(obj);
4498
07fe0b12 4499 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
d7f46fc4
BW
4500 int ret;
4501
4502 vma->pin_count = 0;
4503 ret = i915_vma_unbind(vma);
07fe0b12
BW
4504 if (WARN_ON(ret == -ERESTARTSYS)) {
4505 bool was_interruptible;
1488fc08 4506
07fe0b12
BW
4507 was_interruptible = dev_priv->mm.interruptible;
4508 dev_priv->mm.interruptible = false;
1488fc08 4509
07fe0b12 4510 WARN_ON(i915_vma_unbind(vma));
1488fc08 4511
07fe0b12
BW
4512 dev_priv->mm.interruptible = was_interruptible;
4513 }
1488fc08
CW
4514 }
4515
1d64ae71
BW
4516 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4517 * before progressing. */
4518 if (obj->stolen)
4519 i915_gem_object_unpin_pages(obj);
4520
a071fa00
DV
4521 WARN_ON(obj->frontbuffer_bits);
4522
656bfa3a
DV
4523 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4524 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4525 obj->tiling_mode != I915_TILING_NONE)
4526 i915_gem_object_unpin_pages(obj);
4527
401c29f6
BW
4528 if (WARN_ON(obj->pages_pin_count))
4529 obj->pages_pin_count = 0;
340fbd8c 4530 if (discard_backing_storage(obj))
5537252b 4531 obj->madv = I915_MADV_DONTNEED;
37e680a1 4532 i915_gem_object_put_pages(obj);
d8cb5086 4533 i915_gem_object_free_mmap_offset(obj);
de151cf6 4534
9da3da66
CW
4535 BUG_ON(obj->pages);
4536
2f745ad3
CW
4537 if (obj->base.import_attach)
4538 drm_prime_gem_destroy(&obj->base, NULL);
de151cf6 4539
5cc9ed4b
CW
4540 if (obj->ops->release)
4541 obj->ops->release(obj);
4542
05394f39
CW
4543 drm_gem_object_release(&obj->base);
4544 i915_gem_info_remove_obj(dev_priv, obj->base.size);
c397b908 4545
05394f39 4546 kfree(obj->bit_17);
42dcedd4 4547 i915_gem_object_free(obj);
f65c9168
PZ
4548
4549 intel_runtime_pm_put(dev_priv);
673a394b
EA
4550}
4551
e656a6cb 4552struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2f633156 4553 struct i915_address_space *vm)
e656a6cb
DV
4554{
4555 struct i915_vma *vma;
4556 list_for_each_entry(vma, &obj->vma_list, vma_link)
4557 if (vma->vm == vm)
4558 return vma;
4559
4560 return NULL;
4561}
4562
2f633156
BW
4563void i915_gem_vma_destroy(struct i915_vma *vma)
4564{
b9d06dd9 4565 struct i915_address_space *vm = NULL;
2f633156 4566 WARN_ON(vma->node.allocated);
aaa05667
CW
4567
4568 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4569 if (!list_empty(&vma->exec_list))
4570 return;
4571
b9d06dd9 4572 vm = vma->vm;
b9d06dd9 4573
841cd773
DV
4574 if (!i915_is_ggtt(vm))
4575 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
b9d06dd9 4576
8b9c2b94 4577 list_del(&vma->vma_link);
b93dab6e 4578
2f633156
BW
4579 kfree(vma);
4580}
4581
e3efda49
CW
4582static void
4583i915_gem_stop_ringbuffers(struct drm_device *dev)
4584{
4585 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4586 struct intel_engine_cs *ring;
e3efda49
CW
4587 int i;
4588
4589 for_each_ring(ring, dev_priv, i)
a83014d3 4590 dev_priv->gt.stop_ring(ring);
e3efda49
CW
4591}
4592
29105ccc 4593int
45c5f202 4594i915_gem_suspend(struct drm_device *dev)
29105ccc 4595{
3e31c6c0 4596 struct drm_i915_private *dev_priv = dev->dev_private;
45c5f202 4597 int ret = 0;
28dfe52a 4598
45c5f202 4599 mutex_lock(&dev->struct_mutex);
b2da9fe5 4600 ret = i915_gpu_idle(dev);
f7403347 4601 if (ret)
45c5f202 4602 goto err;
f7403347 4603
b2da9fe5 4604 i915_gem_retire_requests(dev);
673a394b 4605
29105ccc 4606 /* Under UMS, be paranoid and evict. */
a39d7efc 4607 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6c085a72 4608 i915_gem_evict_everything(dev);
29105ccc 4609
e3efda49 4610 i915_gem_stop_ringbuffers(dev);
45c5f202
CW
4611 mutex_unlock(&dev->struct_mutex);
4612
4613 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
29105ccc 4614 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
274fa1c1 4615 flush_delayed_work(&dev_priv->mm.idle_work);
29105ccc 4616
bdcf120b
CW
4617 /* Assert that we sucessfully flushed all the work and
4618 * reset the GPU back to its idle, low power state.
4619 */
4620 WARN_ON(dev_priv->mm.busy);
4621
673a394b 4622 return 0;
45c5f202
CW
4623
4624err:
4625 mutex_unlock(&dev->struct_mutex);
4626 return ret;
673a394b
EA
4627}
4628
a4872ba6 4629int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
b9524a1e 4630{
c3787e2e 4631 struct drm_device *dev = ring->dev;
3e31c6c0 4632 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6
BW
4633 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4634 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
c3787e2e 4635 int i, ret;
b9524a1e 4636
040d2baa 4637 if (!HAS_L3_DPF(dev) || !remap_info)
c3787e2e 4638 return 0;
b9524a1e 4639
c3787e2e
BW
4640 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4641 if (ret)
4642 return ret;
b9524a1e 4643
c3787e2e
BW
4644 /*
4645 * Note: We do not worry about the concurrent register cacheline hang
4646 * here because no other code should access these registers other than
4647 * at initialization time.
4648 */
b9524a1e 4649 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
c3787e2e
BW
4650 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4651 intel_ring_emit(ring, reg_base + i);
4652 intel_ring_emit(ring, remap_info[i/4]);
b9524a1e
BW
4653 }
4654
c3787e2e 4655 intel_ring_advance(ring);
b9524a1e 4656
c3787e2e 4657 return ret;
b9524a1e
BW
4658}
4659
f691e2f4
DV
4660void i915_gem_init_swizzling(struct drm_device *dev)
4661{
3e31c6c0 4662 struct drm_i915_private *dev_priv = dev->dev_private;
f691e2f4 4663
11782b02 4664 if (INTEL_INFO(dev)->gen < 5 ||
f691e2f4
DV
4665 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4666 return;
4667
4668 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4669 DISP_TILE_SURFACE_SWIZZLING);
4670
11782b02
DV
4671 if (IS_GEN5(dev))
4672 return;
4673
f691e2f4
DV
4674 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4675 if (IS_GEN6(dev))
6b26c86d 4676 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
8782e26c 4677 else if (IS_GEN7(dev))
6b26c86d 4678 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
31a5336e
BW
4679 else if (IS_GEN8(dev))
4680 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
8782e26c
BW
4681 else
4682 BUG();
f691e2f4 4683}
e21af88d 4684
67b1b571
CW
4685static bool
4686intel_enable_blt(struct drm_device *dev)
4687{
4688 if (!HAS_BLT(dev))
4689 return false;
4690
4691 /* The blitter was dysfunctional on early prototypes */
4692 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4693 DRM_INFO("BLT not supported on this pre-production hardware;"
4694 " graphics performance will be degraded.\n");
4695 return false;
4696 }
4697
4698 return true;
4699}
4700
81e7f200
VS
4701static void init_unused_ring(struct drm_device *dev, u32 base)
4702{
4703 struct drm_i915_private *dev_priv = dev->dev_private;
4704
4705 I915_WRITE(RING_CTL(base), 0);
4706 I915_WRITE(RING_HEAD(base), 0);
4707 I915_WRITE(RING_TAIL(base), 0);
4708 I915_WRITE(RING_START(base), 0);
4709}
4710
4711static void init_unused_rings(struct drm_device *dev)
4712{
4713 if (IS_I830(dev)) {
4714 init_unused_ring(dev, PRB1_BASE);
4715 init_unused_ring(dev, SRB0_BASE);
4716 init_unused_ring(dev, SRB1_BASE);
4717 init_unused_ring(dev, SRB2_BASE);
4718 init_unused_ring(dev, SRB3_BASE);
4719 } else if (IS_GEN2(dev)) {
4720 init_unused_ring(dev, SRB0_BASE);
4721 init_unused_ring(dev, SRB1_BASE);
4722 } else if (IS_GEN3(dev)) {
4723 init_unused_ring(dev, PRB1_BASE);
4724 init_unused_ring(dev, PRB2_BASE);
4725 }
4726}
4727
a83014d3 4728int i915_gem_init_rings(struct drm_device *dev)
8187a2b7 4729{
4fc7c971 4730 struct drm_i915_private *dev_priv = dev->dev_private;
8187a2b7 4731 int ret;
68f95ba9 4732
81e7f200
VS
4733 /*
4734 * At least 830 can leave some of the unused rings
4735 * "active" (ie. head != tail) after resume which
4736 * will prevent c3 entry. Makes sure all unused rings
4737 * are totally idle.
4738 */
4739 init_unused_rings(dev);
4740
5c1143bb 4741 ret = intel_init_render_ring_buffer(dev);
68f95ba9 4742 if (ret)
b6913e4b 4743 return ret;
68f95ba9
CW
4744
4745 if (HAS_BSD(dev)) {
5c1143bb 4746 ret = intel_init_bsd_ring_buffer(dev);
68f95ba9
CW
4747 if (ret)
4748 goto cleanup_render_ring;
d1b851fc 4749 }
68f95ba9 4750
67b1b571 4751 if (intel_enable_blt(dev)) {
549f7365
CW
4752 ret = intel_init_blt_ring_buffer(dev);
4753 if (ret)
4754 goto cleanup_bsd_ring;
4755 }
4756
9a8a2213
BW
4757 if (HAS_VEBOX(dev)) {
4758 ret = intel_init_vebox_ring_buffer(dev);
4759 if (ret)
4760 goto cleanup_blt_ring;
4761 }
4762
845f74a7
ZY
4763 if (HAS_BSD2(dev)) {
4764 ret = intel_init_bsd2_ring_buffer(dev);
4765 if (ret)
4766 goto cleanup_vebox_ring;
4767 }
9a8a2213 4768
99433931 4769 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4fc7c971 4770 if (ret)
845f74a7 4771 goto cleanup_bsd2_ring;
4fc7c971
BW
4772
4773 return 0;
4774
845f74a7
ZY
4775cleanup_bsd2_ring:
4776 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
9a8a2213
BW
4777cleanup_vebox_ring:
4778 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4fc7c971
BW
4779cleanup_blt_ring:
4780 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4781cleanup_bsd_ring:
4782 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4783cleanup_render_ring:
4784 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4785
4786 return ret;
4787}
4788
4789int
4790i915_gem_init_hw(struct drm_device *dev)
4791{
3e31c6c0 4792 struct drm_i915_private *dev_priv = dev->dev_private;
35a85ac6 4793 int ret, i;
4fc7c971
BW
4794
4795 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4796 return -EIO;
4797
59124506 4798 if (dev_priv->ellc_size)
05e21cc4 4799 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4fc7c971 4800
0bf21347
VS
4801 if (IS_HASWELL(dev))
4802 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4803 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
9435373e 4804
88a2b2a3 4805 if (HAS_PCH_NOP(dev)) {
6ba844b0
DV
4806 if (IS_IVYBRIDGE(dev)) {
4807 u32 temp = I915_READ(GEN7_MSG_CTL);
4808 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4809 I915_WRITE(GEN7_MSG_CTL, temp);
4810 } else if (INTEL_INFO(dev)->gen >= 7) {
4811 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4812 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4813 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4814 }
88a2b2a3
BW
4815 }
4816
4fc7c971
BW
4817 i915_gem_init_swizzling(dev);
4818
a83014d3 4819 ret = dev_priv->gt.init_rings(dev);
99433931
MK
4820 if (ret)
4821 return ret;
4822
c3787e2e
BW
4823 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4824 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4825
254f965c 4826 /*
2fa48d8d
BW
4827 * XXX: Contexts should only be initialized once. Doing a switch to the
4828 * default context switch however is something we'd like to do after
4829 * reset or thaw (the latter may not actually be necessary for HW, but
4830 * goes with our code better). Context switching requires rings (for
4831 * the do_switch), but before enabling PPGTT. So don't move this.
254f965c 4832 */
2fa48d8d 4833 ret = i915_gem_context_enable(dev_priv);
60990320 4834 if (ret && ret != -EIO) {
2fa48d8d 4835 DRM_ERROR("Context enable failed %d\n", ret);
60990320 4836 i915_gem_cleanup_ringbuffer(dev);
82460d97
DV
4837
4838 return ret;
4839 }
4840
4841 ret = i915_ppgtt_init_hw(dev);
4842 if (ret && ret != -EIO) {
4843 DRM_ERROR("PPGTT enable failed %d\n", ret);
4844 i915_gem_cleanup_ringbuffer(dev);
b7c36d25 4845 }
e21af88d 4846
2fa48d8d 4847 return ret;
8187a2b7
ZN
4848}
4849
1070a42b
CW
4850int i915_gem_init(struct drm_device *dev)
4851{
4852 struct drm_i915_private *dev_priv = dev->dev_private;
1070a42b
CW
4853 int ret;
4854
127f1003
OM
4855 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4856 i915.enable_execlists);
4857
1070a42b 4858 mutex_lock(&dev->struct_mutex);
d62b4892
JB
4859
4860 if (IS_VALLEYVIEW(dev)) {
4861 /* VLVA0 (potential hack), BIOS isn't actually waking us */
981a5aea
ID
4862 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4863 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4864 VLV_GTLC_ALLOWWAKEACK), 10))
d62b4892
JB
4865 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4866 }
4867
a83014d3
OM
4868 if (!i915.enable_execlists) {
4869 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4870 dev_priv->gt.init_rings = i915_gem_init_rings;
4871 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4872 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
454afebd
OM
4873 } else {
4874 dev_priv->gt.do_execbuf = intel_execlists_submission;
4875 dev_priv->gt.init_rings = intel_logical_rings_init;
4876 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4877 dev_priv->gt.stop_ring = intel_logical_ring_stop;
a83014d3
OM
4878 }
4879
6c5566a8
DV
4880 ret = i915_gem_init_userptr(dev);
4881 if (ret) {
4882 mutex_unlock(&dev->struct_mutex);
4883 return ret;
4884 }
4885
d7e5008f 4886 i915_gem_init_global_gtt(dev);
d62b4892 4887
2fa48d8d 4888 ret = i915_gem_context_init(dev);
e3848694
MK
4889 if (ret) {
4890 mutex_unlock(&dev->struct_mutex);
2fa48d8d 4891 return ret;
e3848694 4892 }
2fa48d8d 4893
1070a42b 4894 ret = i915_gem_init_hw(dev);
60990320
CW
4895 if (ret == -EIO) {
4896 /* Allow ring initialisation to fail by marking the GPU as
4897 * wedged. But we only want to do this where the GPU is angry,
4898 * for all other failure, such as an allocation failure, bail.
4899 */
4900 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4901 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4902 ret = 0;
1070a42b 4903 }
60990320 4904 mutex_unlock(&dev->struct_mutex);
1070a42b 4905
60990320 4906 return ret;
1070a42b
CW
4907}
4908
8187a2b7
ZN
4909void
4910i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4911{
3e31c6c0 4912 struct drm_i915_private *dev_priv = dev->dev_private;
a4872ba6 4913 struct intel_engine_cs *ring;
1ec14ad3 4914 int i;
8187a2b7 4915
b4519513 4916 for_each_ring(ring, dev_priv, i)
a83014d3 4917 dev_priv->gt.cleanup_ring(ring);
8187a2b7
ZN
4918}
4919
64193406 4920static void
a4872ba6 4921init_ring_lists(struct intel_engine_cs *ring)
64193406
CW
4922{
4923 INIT_LIST_HEAD(&ring->active_list);
4924 INIT_LIST_HEAD(&ring->request_list);
64193406
CW
4925}
4926
7e0d96bc
BW
4927void i915_init_vm(struct drm_i915_private *dev_priv,
4928 struct i915_address_space *vm)
fc8c067e 4929{
7e0d96bc
BW
4930 if (!i915_is_ggtt(vm))
4931 drm_mm_init(&vm->mm, vm->start, vm->total);
fc8c067e
BW
4932 vm->dev = dev_priv->dev;
4933 INIT_LIST_HEAD(&vm->active_list);
4934 INIT_LIST_HEAD(&vm->inactive_list);
4935 INIT_LIST_HEAD(&vm->global_link);
f72d21ed 4936 list_add_tail(&vm->global_link, &dev_priv->vm_list);
fc8c067e
BW
4937}
4938
673a394b
EA
4939void
4940i915_gem_load(struct drm_device *dev)
4941{
3e31c6c0 4942 struct drm_i915_private *dev_priv = dev->dev_private;
42dcedd4
CW
4943 int i;
4944
4945 dev_priv->slab =
4946 kmem_cache_create("i915_gem_object",
4947 sizeof(struct drm_i915_gem_object), 0,
4948 SLAB_HWCACHE_ALIGN,
4949 NULL);
673a394b 4950
fc8c067e
BW
4951 INIT_LIST_HEAD(&dev_priv->vm_list);
4952 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4953
a33afea5 4954 INIT_LIST_HEAD(&dev_priv->context_list);
6c085a72
CW
4955 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4956 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
a09ba7fa 4957 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1ec14ad3
CW
4958 for (i = 0; i < I915_NUM_RINGS; i++)
4959 init_ring_lists(&dev_priv->ring[i]);
4b9de737 4960 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
007cc8ac 4961 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
673a394b
EA
4962 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4963 i915_gem_retire_work_handler);
b29c19b6
CW
4964 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4965 i915_gem_idle_work_handler);
1f83fee0 4966 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
31169714 4967
94400120 4968 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
dbb42748 4969 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
50743298
DV
4970 I915_WRITE(MI_ARB_STATE,
4971 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
94400120
DA
4972 }
4973
72bfa19c
CW
4974 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4975
de151cf6 4976 /* Old X drivers will take 0-2 for front, back, depth buffers */
b397c836
EA
4977 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4978 dev_priv->fence_reg_start = 3;
de151cf6 4979
42b5aeab
VS
4980 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4981 dev_priv->num_fence_regs = 32;
4982 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
de151cf6
JB
4983 dev_priv->num_fence_regs = 16;
4984 else
4985 dev_priv->num_fence_regs = 8;
4986
b5aa8a0f 4987 /* Initialize fence registers to zero */
19b2dbde
CW
4988 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4989 i915_gem_restore_fences(dev);
10ed13e4 4990
673a394b 4991 i915_gem_detect_bit_6_swizzle(dev);
6b95a207 4992 init_waitqueue_head(&dev_priv->pending_flip_queue);
17250b71 4993
ce453d81
CW
4994 dev_priv->mm.interruptible = true;
4995
ceabbba5
CW
4996 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4997 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4998 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4999 register_shrinker(&dev_priv->mm.shrinker);
2cfcd32a
CW
5000
5001 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5002 register_oom_notifier(&dev_priv->mm.oom_notifier);
f99d7069
DV
5003
5004 mutex_init(&dev_priv->fb_tracking.lock);
673a394b 5005}
71acb5eb 5006
f787a5f5 5007void i915_gem_release(struct drm_device *dev, struct drm_file *file)
b962442e 5008{
f787a5f5 5009 struct drm_i915_file_private *file_priv = file->driver_priv;
b962442e 5010
b29c19b6
CW
5011 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5012
b962442e
EA
5013 /* Clean up our request list when the client is going away, so that
5014 * later retire_requests won't dereference our soon-to-be-gone
5015 * file_priv.
5016 */
1c25595f 5017 spin_lock(&file_priv->mm.lock);
f787a5f5
CW
5018 while (!list_empty(&file_priv->mm.request_list)) {
5019 struct drm_i915_gem_request *request;
5020
5021 request = list_first_entry(&file_priv->mm.request_list,
5022 struct drm_i915_gem_request,
5023 client_list);
5024 list_del(&request->client_list);
5025 request->file_priv = NULL;
5026 }
1c25595f 5027 spin_unlock(&file_priv->mm.lock);
b962442e 5028}
31169714 5029
b29c19b6
CW
5030static void
5031i915_gem_file_idle_work_handler(struct work_struct *work)
5032{
5033 struct drm_i915_file_private *file_priv =
5034 container_of(work, typeof(*file_priv), mm.idle_work.work);
5035
5036 atomic_set(&file_priv->rps_wait_boost, false);
5037}
5038
5039int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5040{
5041 struct drm_i915_file_private *file_priv;
e422b888 5042 int ret;
b29c19b6
CW
5043
5044 DRM_DEBUG_DRIVER("\n");
5045
5046 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5047 if (!file_priv)
5048 return -ENOMEM;
5049
5050 file->driver_priv = file_priv;
5051 file_priv->dev_priv = dev->dev_private;
ab0e7ff9 5052 file_priv->file = file;
b29c19b6
CW
5053
5054 spin_lock_init(&file_priv->mm.lock);
5055 INIT_LIST_HEAD(&file_priv->mm.request_list);
5056 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5057 i915_gem_file_idle_work_handler);
5058
e422b888
BW
5059 ret = i915_gem_context_open(dev, file);
5060 if (ret)
5061 kfree(file_priv);
b29c19b6 5062
e422b888 5063 return ret;
b29c19b6
CW
5064}
5065
b680c37a
DV
5066/**
5067 * i915_gem_track_fb - update frontbuffer tracking
5068 * old: current GEM buffer for the frontbuffer slots
5069 * new: new GEM buffer for the frontbuffer slots
5070 * frontbuffer_bits: bitmask of frontbuffer slots
5071 *
5072 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5073 * from @old and setting them in @new. Both @old and @new can be NULL.
5074 */
a071fa00
DV
5075void i915_gem_track_fb(struct drm_i915_gem_object *old,
5076 struct drm_i915_gem_object *new,
5077 unsigned frontbuffer_bits)
5078{
5079 if (old) {
5080 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5081 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5082 old->frontbuffer_bits &= ~frontbuffer_bits;
5083 }
5084
5085 if (new) {
5086 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5087 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5088 new->frontbuffer_bits |= frontbuffer_bits;
5089 }
5090}
5091
5774506f
CW
5092static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5093{
5094 if (!mutex_is_locked(mutex))
5095 return false;
5096
5097#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5098 return mutex->owner == task;
5099#else
5100 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5101 return false;
5102#endif
5103}
5104
b453c4db
CW
5105static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5106{
5107 if (!mutex_trylock(&dev->struct_mutex)) {
5108 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5109 return false;
5110
5111 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5112 return false;
5113
5114 *unlock = false;
5115 } else
5116 *unlock = true;
5117
5118 return true;
5119}
5120
ceabbba5
CW
5121static int num_vma_bound(struct drm_i915_gem_object *obj)
5122{
5123 struct i915_vma *vma;
5124 int count = 0;
5125
5126 list_for_each_entry(vma, &obj->vma_list, vma_link)
5127 if (drm_mm_node_allocated(&vma->node))
5128 count++;
5129
5130 return count;
5131}
5132
7dc19d5a 5133static unsigned long
ceabbba5 5134i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
31169714 5135{
17250b71 5136 struct drm_i915_private *dev_priv =
ceabbba5 5137 container_of(shrinker, struct drm_i915_private, mm.shrinker);
17250b71 5138 struct drm_device *dev = dev_priv->dev;
6c085a72 5139 struct drm_i915_gem_object *obj;
7dc19d5a 5140 unsigned long count;
b453c4db 5141 bool unlock;
17250b71 5142
b453c4db
CW
5143 if (!i915_gem_shrinker_lock(dev, &unlock))
5144 return 0;
31169714 5145
7dc19d5a 5146 count = 0;
35c20a60 5147 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
a5570178 5148 if (obj->pages_pin_count == 0)
7dc19d5a 5149 count += obj->base.size >> PAGE_SHIFT;
fcb4a578
BW
5150
5151 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
ceabbba5
CW
5152 if (!i915_gem_obj_is_pinned(obj) &&
5153 obj->pages_pin_count == num_vma_bound(obj))
7dc19d5a 5154 count += obj->base.size >> PAGE_SHIFT;
fcb4a578 5155 }
17250b71 5156
5774506f
CW
5157 if (unlock)
5158 mutex_unlock(&dev->struct_mutex);
d9973b43 5159
7dc19d5a 5160 return count;
31169714 5161}
a70a3148
BW
5162
5163/* All the new VM stuff */
5164unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5165 struct i915_address_space *vm)
5166{
5167 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5168 struct i915_vma *vma;
5169
896ab1a5 5170 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148 5171
a70a3148
BW
5172 list_for_each_entry(vma, &o->vma_list, vma_link) {
5173 if (vma->vm == vm)
5174 return vma->node.start;
5175
5176 }
f25748ea
DV
5177 WARN(1, "%s vma for this object not found.\n",
5178 i915_is_ggtt(vm) ? "global" : "ppgtt");
a70a3148
BW
5179 return -1;
5180}
5181
5182bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5183 struct i915_address_space *vm)
5184{
5185 struct i915_vma *vma;
5186
5187 list_for_each_entry(vma, &o->vma_list, vma_link)
8b9c2b94 5188 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
a70a3148
BW
5189 return true;
5190
5191 return false;
5192}
5193
5194bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5195{
5a1d5eb0 5196 struct i915_vma *vma;
a70a3148 5197
5a1d5eb0
CW
5198 list_for_each_entry(vma, &o->vma_list, vma_link)
5199 if (drm_mm_node_allocated(&vma->node))
a70a3148
BW
5200 return true;
5201
5202 return false;
5203}
5204
5205unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5206 struct i915_address_space *vm)
5207{
5208 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5209 struct i915_vma *vma;
5210
896ab1a5 5211 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
a70a3148
BW
5212
5213 BUG_ON(list_empty(&o->vma_list));
5214
5215 list_for_each_entry(vma, &o->vma_list, vma_link)
5216 if (vma->vm == vm)
5217 return vma->node.size;
5218
5219 return 0;
5220}
5221
7dc19d5a 5222static unsigned long
ceabbba5 5223i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
7dc19d5a
DC
5224{
5225 struct drm_i915_private *dev_priv =
ceabbba5 5226 container_of(shrinker, struct drm_i915_private, mm.shrinker);
7dc19d5a 5227 struct drm_device *dev = dev_priv->dev;
7dc19d5a 5228 unsigned long freed;
b453c4db 5229 bool unlock;
7dc19d5a 5230
b453c4db
CW
5231 if (!i915_gem_shrinker_lock(dev, &unlock))
5232 return SHRINK_STOP;
7dc19d5a 5233
21ab4e74
CW
5234 freed = i915_gem_shrink(dev_priv,
5235 sc->nr_to_scan,
5236 I915_SHRINK_BOUND |
5237 I915_SHRINK_UNBOUND |
5238 I915_SHRINK_PURGEABLE);
d9973b43 5239 if (freed < sc->nr_to_scan)
21ab4e74
CW
5240 freed += i915_gem_shrink(dev_priv,
5241 sc->nr_to_scan - freed,
5242 I915_SHRINK_BOUND |
5243 I915_SHRINK_UNBOUND);
7dc19d5a
DC
5244 if (unlock)
5245 mutex_unlock(&dev->struct_mutex);
d9973b43 5246
7dc19d5a
DC
5247 return freed;
5248}
5c2abbea 5249
2cfcd32a
CW
5250static int
5251i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5252{
5253 struct drm_i915_private *dev_priv =
5254 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5255 struct drm_device *dev = dev_priv->dev;
5256 struct drm_i915_gem_object *obj;
5257 unsigned long timeout = msecs_to_jiffies(5000) + 1;
005445c5 5258 unsigned long pinned, bound, unbound, freed_pages;
2cfcd32a
CW
5259 bool was_interruptible;
5260 bool unlock;
5261
a1db2fa7 5262 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
2cfcd32a 5263 schedule_timeout_killable(1);
a1db2fa7
CW
5264 if (fatal_signal_pending(current))
5265 return NOTIFY_DONE;
5266 }
2cfcd32a
CW
5267 if (timeout == 0) {
5268 pr_err("Unable to purge GPU memory due lock contention.\n");
5269 return NOTIFY_DONE;
5270 }
5271
5272 was_interruptible = dev_priv->mm.interruptible;
5273 dev_priv->mm.interruptible = false;
5274
005445c5 5275 freed_pages = i915_gem_shrink_all(dev_priv);
2cfcd32a
CW
5276
5277 dev_priv->mm.interruptible = was_interruptible;
5278
5279 /* Because we may be allocating inside our own driver, we cannot
5280 * assert that there are no objects with pinned pages that are not
5281 * being pointed to by hardware.
5282 */
5283 unbound = bound = pinned = 0;
5284 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5285 if (!obj->base.filp) /* not backed by a freeable object */
5286 continue;
5287
5288 if (obj->pages_pin_count)
5289 pinned += obj->base.size;
5290 else
5291 unbound += obj->base.size;
5292 }
5293 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5294 if (!obj->base.filp)
5295 continue;
5296
5297 if (obj->pages_pin_count)
5298 pinned += obj->base.size;
5299 else
5300 bound += obj->base.size;
5301 }
5302
5303 if (unlock)
5304 mutex_unlock(&dev->struct_mutex);
5305
bb9059d3
CW
5306 if (freed_pages || unbound || bound)
5307 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5308 freed_pages << PAGE_SHIFT, pinned);
2cfcd32a
CW
5309 if (unbound || bound)
5310 pr_err("%lu and %lu bytes still available in the "
5311 "bound and unbound GPU page lists.\n",
5312 bound, unbound);
5313
005445c5 5314 *(unsigned long *)ptr += freed_pages;
2cfcd32a
CW
5315 return NOTIFY_DONE;
5316}
5317
5c2abbea
BW
5318struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5319{
5320 struct i915_vma *vma;
5321
5c2abbea 5322 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5dc383b0 5323 if (vma->vm != i915_obj_to_ggtt(obj))
5c2abbea
BW
5324 return NULL;
5325
5326 return vma;
5327}
This page took 1.090596 seconds and 5 git commands to generate.