drm/i915: [sparse] don't use variable size arrays
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
CommitLineData
54cf91dc
CW
1/*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29#include "drmP.h"
30#include "drm.h"
31#include "i915_drm.h"
32#include "i915_drv.h"
33#include "i915_trace.h"
34#include "intel_drv.h"
f45b5557 35#include <linux/dma_remapping.h>
54cf91dc
CW
36
37struct change_domains {
38 uint32_t invalidate_domains;
39 uint32_t flush_domains;
40 uint32_t flush_rings;
c59a333f 41 uint32_t flips;
54cf91dc
CW
42};
43
44/*
45 * Set the next domain for the specified object. This
46 * may not actually perform the necessary flushing/invaliding though,
47 * as that may want to be batched with other set_domain operations
48 *
49 * This is (we hope) the only really tricky part of gem. The goal
50 * is fairly simple -- track which caches hold bits of the object
51 * and make sure they remain coherent. A few concrete examples may
52 * help to explain how it works. For shorthand, we use the notation
53 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54 * a pair of read and write domain masks.
55 *
56 * Case 1: the batch buffer
57 *
58 * 1. Allocated
59 * 2. Written by CPU
60 * 3. Mapped to GTT
61 * 4. Read by GPU
62 * 5. Unmapped from GTT
63 * 6. Freed
64 *
65 * Let's take these a step at a time
66 *
67 * 1. Allocated
68 * Pages allocated from the kernel may still have
69 * cache contents, so we set them to (CPU, CPU) always.
70 * 2. Written by CPU (using pwrite)
71 * The pwrite function calls set_domain (CPU, CPU) and
72 * this function does nothing (as nothing changes)
73 * 3. Mapped by GTT
74 * This function asserts that the object is not
75 * currently in any GPU-based read or write domains
76 * 4. Read by GPU
77 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
78 * As write_domain is zero, this function adds in the
79 * current read domains (CPU+COMMAND, 0).
80 * flush_domains is set to CPU.
81 * invalidate_domains is set to COMMAND
82 * clflush is run to get data out of the CPU caches
83 * then i915_dev_set_domain calls i915_gem_flush to
84 * emit an MI_FLUSH and drm_agp_chipset_flush
85 * 5. Unmapped from GTT
86 * i915_gem_object_unbind calls set_domain (CPU, CPU)
87 * flush_domains and invalidate_domains end up both zero
88 * so no flushing/invalidating happens
89 * 6. Freed
90 * yay, done
91 *
92 * Case 2: The shared render buffer
93 *
94 * 1. Allocated
95 * 2. Mapped to GTT
96 * 3. Read/written by GPU
97 * 4. set_domain to (CPU,CPU)
98 * 5. Read/written by CPU
99 * 6. Read/written by GPU
100 *
101 * 1. Allocated
102 * Same as last example, (CPU, CPU)
103 * 2. Mapped to GTT
104 * Nothing changes (assertions find that it is not in the GPU)
105 * 3. Read/written by GPU
106 * execbuffer calls set_domain (RENDER, RENDER)
107 * flush_domains gets CPU
108 * invalidate_domains gets GPU
109 * clflush (obj)
110 * MI_FLUSH and drm_agp_chipset_flush
111 * 4. set_domain (CPU, CPU)
112 * flush_domains gets GPU
113 * invalidate_domains gets CPU
114 * wait_rendering (obj) to make sure all drawing is complete.
115 * This will include an MI_FLUSH to get the data from GPU
116 * to memory
117 * clflush (obj) to invalidate the CPU cache
118 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119 * 5. Read/written by CPU
120 * cache lines are loaded and dirtied
121 * 6. Read written by GPU
122 * Same as last GPU access
123 *
124 * Case 3: The constant buffer
125 *
126 * 1. Allocated
127 * 2. Written by CPU
128 * 3. Read by GPU
129 * 4. Updated (written) by CPU again
130 * 5. Read by GPU
131 *
132 * 1. Allocated
133 * (CPU, CPU)
134 * 2. Written by CPU
135 * (CPU, CPU)
136 * 3. Read by GPU
137 * (CPU+RENDER, 0)
138 * flush_domains = CPU
139 * invalidate_domains = RENDER
140 * clflush (obj)
141 * MI_FLUSH
142 * drm_agp_chipset_flush
143 * 4. Updated (written) by CPU again
144 * (CPU, CPU)
145 * flush_domains = 0 (no previous write domain)
146 * invalidate_domains = 0 (no new read domains)
147 * 5. Read by GPU
148 * (CPU+RENDER, 0)
149 * flush_domains = CPU
150 * invalidate_domains = RENDER
151 * clflush (obj)
152 * MI_FLUSH
153 * drm_agp_chipset_flush
154 */
155static void
156i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157 struct intel_ring_buffer *ring,
158 struct change_domains *cd)
159{
160 uint32_t invalidate_domains = 0, flush_domains = 0;
161
162 /*
163 * If the object isn't moving to a new write domain,
164 * let the object stay in multiple read domains
165 */
166 if (obj->base.pending_write_domain == 0)
167 obj->base.pending_read_domains |= obj->base.read_domains;
168
169 /*
170 * Flush the current write domain if
171 * the new read domains don't match. Invalidate
172 * any read domains which differ from the old
173 * write domain
174 */
175 if (obj->base.write_domain &&
176 (((obj->base.write_domain != obj->base.pending_read_domains ||
177 obj->ring != ring)) ||
178 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179 flush_domains |= obj->base.write_domain;
180 invalidate_domains |=
181 obj->base.pending_read_domains & ~obj->base.write_domain;
182 }
183 /*
184 * Invalidate any read caches which may have
185 * stale data. That is, any new read domains.
186 */
187 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189 i915_gem_clflush_object(obj);
190
c59a333f
CW
191 if (obj->base.pending_write_domain)
192 cd->flips |= atomic_read(&obj->pending_flip);
193
54cf91dc
CW
194 /* The actual obj->write_domain will be updated with
195 * pending_write_domain after we emit the accumulated flush for all
196 * of our domain changes in execbuffers (which clears objects'
197 * write_domains). So if we have a current write domain that we
198 * aren't changing, set pending_write_domain to that.
199 */
200 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201 obj->base.pending_write_domain = obj->base.write_domain;
202
203 cd->invalidate_domains |= invalidate_domains;
204 cd->flush_domains |= flush_domains;
205 if (flush_domains & I915_GEM_GPU_DOMAINS)
96154f2f 206 cd->flush_rings |= intel_ring_flag(obj->ring);
54cf91dc 207 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
96154f2f 208 cd->flush_rings |= intel_ring_flag(ring);
54cf91dc
CW
209}
210
67731b87
CW
211struct eb_objects {
212 int and;
213 struct hlist_head buckets[0];
214};
215
216static struct eb_objects *
217eb_create(int size)
218{
219 struct eb_objects *eb;
220 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221 while (count > size)
222 count >>= 1;
223 eb = kzalloc(count*sizeof(struct hlist_head) +
224 sizeof(struct eb_objects),
225 GFP_KERNEL);
226 if (eb == NULL)
227 return eb;
228
229 eb->and = count - 1;
230 return eb;
231}
232
233static void
234eb_reset(struct eb_objects *eb)
235{
236 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
237}
238
239static void
240eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241{
242 hlist_add_head(&obj->exec_node,
243 &eb->buckets[obj->exec_handle & eb->and]);
244}
245
246static struct drm_i915_gem_object *
247eb_get_object(struct eb_objects *eb, unsigned long handle)
248{
249 struct hlist_head *head;
250 struct hlist_node *node;
251 struct drm_i915_gem_object *obj;
252
253 head = &eb->buckets[handle & eb->and];
254 hlist_for_each(node, head) {
255 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256 if (obj->exec_handle == handle)
257 return obj;
258 }
259
260 return NULL;
261}
262
263static void
264eb_destroy(struct eb_objects *eb)
265{
266 kfree(eb);
267}
268
dabdfe02
CW
269static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
270{
271 return (obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
272 obj->cache_level != I915_CACHE_NONE);
273}
274
54cf91dc
CW
275static int
276i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
67731b87 277 struct eb_objects *eb,
54cf91dc
CW
278 struct drm_i915_gem_relocation_entry *reloc)
279{
280 struct drm_device *dev = obj->base.dev;
281 struct drm_gem_object *target_obj;
149c8407 282 struct drm_i915_gem_object *target_i915_obj;
54cf91dc
CW
283 uint32_t target_offset;
284 int ret = -EINVAL;
285
67731b87
CW
286 /* we've already hold a reference to all valid objects */
287 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
288 if (unlikely(target_obj == NULL))
54cf91dc
CW
289 return -ENOENT;
290
149c8407
DV
291 target_i915_obj = to_intel_bo(target_obj);
292 target_offset = target_i915_obj->gtt_offset;
54cf91dc 293
54cf91dc
CW
294 /* The target buffer should have appeared before us in the
295 * exec_object list, so it should have a GTT space bound by now.
296 */
b8f7ab17 297 if (unlikely(target_offset == 0)) {
ff240199 298 DRM_DEBUG("No GTT space found for object %d\n",
54cf91dc 299 reloc->target_handle);
67731b87 300 return ret;
54cf91dc
CW
301 }
302
303 /* Validate that the target is in a valid r/w GPU domain */
b8f7ab17 304 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
ff240199 305 DRM_DEBUG("reloc with multiple write domains: "
54cf91dc
CW
306 "obj %p target %d offset %d "
307 "read %08x write %08x",
308 obj, reloc->target_handle,
309 (int) reloc->offset,
310 reloc->read_domains,
311 reloc->write_domain);
67731b87 312 return ret;
54cf91dc 313 }
4ca4a250
DV
314 if (unlikely((reloc->write_domain | reloc->read_domains)
315 & ~I915_GEM_GPU_DOMAINS)) {
ff240199 316 DRM_DEBUG("reloc with read/write non-GPU domains: "
54cf91dc
CW
317 "obj %p target %d offset %d "
318 "read %08x write %08x",
319 obj, reloc->target_handle,
320 (int) reloc->offset,
321 reloc->read_domains,
322 reloc->write_domain);
67731b87 323 return ret;
54cf91dc 324 }
b8f7ab17
CW
325 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
326 reloc->write_domain != target_obj->pending_write_domain)) {
ff240199 327 DRM_DEBUG("Write domain conflict: "
54cf91dc
CW
328 "obj %p target %d offset %d "
329 "new %08x old %08x\n",
330 obj, reloc->target_handle,
331 (int) reloc->offset,
332 reloc->write_domain,
333 target_obj->pending_write_domain);
67731b87 334 return ret;
54cf91dc
CW
335 }
336
337 target_obj->pending_read_domains |= reloc->read_domains;
338 target_obj->pending_write_domain |= reloc->write_domain;
339
340 /* If the relocation already has the right value in it, no
341 * more work needs to be done.
342 */
343 if (target_offset == reloc->presumed_offset)
67731b87 344 return 0;
54cf91dc
CW
345
346 /* Check that the relocation address is valid... */
b8f7ab17 347 if (unlikely(reloc->offset > obj->base.size - 4)) {
ff240199 348 DRM_DEBUG("Relocation beyond object bounds: "
54cf91dc
CW
349 "obj %p target %d offset %d size %d.\n",
350 obj, reloc->target_handle,
351 (int) reloc->offset,
352 (int) obj->base.size);
67731b87 353 return ret;
54cf91dc 354 }
b8f7ab17 355 if (unlikely(reloc->offset & 3)) {
ff240199 356 DRM_DEBUG("Relocation not 4-byte aligned: "
54cf91dc
CW
357 "obj %p target %d offset %d.\n",
358 obj, reloc->target_handle,
359 (int) reloc->offset);
67731b87 360 return ret;
54cf91dc
CW
361 }
362
dabdfe02
CW
363 /* We can't wait for rendering with pagefaults disabled */
364 if (obj->active && in_atomic())
365 return -EFAULT;
366
54cf91dc 367 reloc->delta += target_offset;
dabdfe02 368 if (use_cpu_reloc(obj)) {
54cf91dc
CW
369 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
370 char *vaddr;
371
dabdfe02
CW
372 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
373 if (ret)
374 return ret;
375
54cf91dc
CW
376 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
377 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
378 kunmap_atomic(vaddr);
379 } else {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 uint32_t __iomem *reloc_entry;
382 void __iomem *reloc_page;
383
384 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
385 if (ret)
67731b87 386 return ret;
54cf91dc
CW
387
388 /* Map the page containing the relocation we're going to perform. */
389 reloc->offset += obj->gtt_offset;
390 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
391 reloc->offset & PAGE_MASK);
392 reloc_entry = (uint32_t __iomem *)
393 (reloc_page + (reloc->offset & ~PAGE_MASK));
394 iowrite32(reloc->delta, reloc_entry);
395 io_mapping_unmap_atomic(reloc_page);
396 }
397
149c8407
DV
398 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
399 * pipe_control writes because the gpu doesn't properly redirect them
400 * through the ppgtt for non_secure batchbuffers. */
401 if (unlikely(IS_GEN6(dev) &&
402 reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
403 !target_i915_obj->has_global_gtt_mapping)) {
404 i915_gem_gtt_bind_object(target_i915_obj,
405 target_i915_obj->cache_level);
406 }
407
54cf91dc
CW
408 /* and update the user's relocation entry */
409 reloc->presumed_offset = target_offset;
410
67731b87 411 return 0;
54cf91dc
CW
412}
413
414static int
415i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
6fe4f140 416 struct eb_objects *eb)
54cf91dc 417{
1d83f442
CW
418#define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
419 struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
54cf91dc 420 struct drm_i915_gem_relocation_entry __user *user_relocs;
6fe4f140 421 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
1d83f442 422 int remain, ret;
54cf91dc
CW
423
424 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
54cf91dc 425
1d83f442
CW
426 remain = entry->relocation_count;
427 while (remain) {
428 struct drm_i915_gem_relocation_entry *r = stack_reloc;
429 int count = remain;
430 if (count > ARRAY_SIZE(stack_reloc))
431 count = ARRAY_SIZE(stack_reloc);
432 remain -= count;
433
434 if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0])))
54cf91dc
CW
435 return -EFAULT;
436
1d83f442
CW
437 do {
438 u64 offset = r->presumed_offset;
54cf91dc 439
1d83f442
CW
440 ret = i915_gem_execbuffer_relocate_entry(obj, eb, r);
441 if (ret)
442 return ret;
443
444 if (r->presumed_offset != offset &&
445 __copy_to_user_inatomic(&user_relocs->presumed_offset,
446 &r->presumed_offset,
447 sizeof(r->presumed_offset))) {
448 return -EFAULT;
449 }
450
451 user_relocs++;
452 r++;
453 } while (--count);
54cf91dc
CW
454 }
455
456 return 0;
1d83f442 457#undef N_RELOC
54cf91dc
CW
458}
459
460static int
461i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
67731b87 462 struct eb_objects *eb,
54cf91dc
CW
463 struct drm_i915_gem_relocation_entry *relocs)
464{
6fe4f140 465 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
54cf91dc
CW
466 int i, ret;
467
468 for (i = 0; i < entry->relocation_count; i++) {
6fe4f140 469 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
54cf91dc
CW
470 if (ret)
471 return ret;
472 }
473
474 return 0;
475}
476
477static int
478i915_gem_execbuffer_relocate(struct drm_device *dev,
67731b87 479 struct eb_objects *eb,
6fe4f140 480 struct list_head *objects)
54cf91dc 481{
432e58ed 482 struct drm_i915_gem_object *obj;
d4aeee77
CW
483 int ret = 0;
484
485 /* This is the fast path and we cannot handle a pagefault whilst
486 * holding the struct mutex lest the user pass in the relocations
487 * contained within a mmaped bo. For in such a case we, the page
488 * fault handler would call i915_gem_fault() and we would try to
489 * acquire the struct mutex again. Obviously this is bad and so
490 * lockdep complains vehemently.
491 */
492 pagefault_disable();
432e58ed 493 list_for_each_entry(obj, objects, exec_list) {
6fe4f140 494 ret = i915_gem_execbuffer_relocate_object(obj, eb);
54cf91dc 495 if (ret)
d4aeee77 496 break;
54cf91dc 497 }
d4aeee77 498 pagefault_enable();
54cf91dc 499
d4aeee77 500 return ret;
54cf91dc
CW
501}
502
1690e1eb
CW
503#define __EXEC_OBJECT_HAS_FENCE (1<<31)
504
dabdfe02
CW
505static int
506need_reloc_mappable(struct drm_i915_gem_object *obj)
507{
508 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
509 return entry->relocation_count && !use_cpu_reloc(obj);
510}
511
1690e1eb
CW
512static int
513pin_and_fence_object(struct drm_i915_gem_object *obj,
514 struct intel_ring_buffer *ring)
515{
516 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
517 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
518 bool need_fence, need_mappable;
519 int ret;
520
521 need_fence =
522 has_fenced_gpu_access &&
523 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
524 obj->tiling_mode != I915_TILING_NONE;
dabdfe02 525 need_mappable = need_fence || need_reloc_mappable(obj);
1690e1eb
CW
526
527 ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
528 if (ret)
529 return ret;
530
531 if (has_fenced_gpu_access) {
532 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
9a5a53b3
CW
533 ret = i915_gem_object_get_fence(obj, ring);
534 if (ret)
535 goto err_unpin;
1690e1eb 536
9a5a53b3 537 if (i915_gem_object_pin_fence(obj))
1690e1eb 538 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
9a5a53b3 539
7dd49065 540 obj->pending_fenced_gpu_access = true;
1690e1eb 541 }
1690e1eb
CW
542 }
543
544 entry->offset = obj->gtt_offset;
545 return 0;
546
547err_unpin:
548 i915_gem_object_unpin(obj);
549 return ret;
550}
551
54cf91dc 552static int
d9e86c0e 553i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
54cf91dc 554 struct drm_file *file,
6fe4f140 555 struct list_head *objects)
54cf91dc 556{
7bddb01f 557 drm_i915_private_t *dev_priv = ring->dev->dev_private;
432e58ed 558 struct drm_i915_gem_object *obj;
432e58ed 559 int ret, retry;
9b3826bf 560 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
6fe4f140
CW
561 struct list_head ordered_objects;
562
563 INIT_LIST_HEAD(&ordered_objects);
564 while (!list_empty(objects)) {
565 struct drm_i915_gem_exec_object2 *entry;
566 bool need_fence, need_mappable;
567
568 obj = list_first_entry(objects,
569 struct drm_i915_gem_object,
570 exec_list);
571 entry = obj->exec_entry;
572
573 need_fence =
574 has_fenced_gpu_access &&
575 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
576 obj->tiling_mode != I915_TILING_NONE;
dabdfe02 577 need_mappable = need_fence || need_reloc_mappable(obj);
6fe4f140
CW
578
579 if (need_mappable)
580 list_move(&obj->exec_list, &ordered_objects);
581 else
582 list_move_tail(&obj->exec_list, &ordered_objects);
595dad76
CW
583
584 obj->base.pending_read_domains = 0;
585 obj->base.pending_write_domain = 0;
6fe4f140
CW
586 }
587 list_splice(&ordered_objects, objects);
54cf91dc
CW
588
589 /* Attempt to pin all of the buffers into the GTT.
590 * This is done in 3 phases:
591 *
592 * 1a. Unbind all objects that do not match the GTT constraints for
593 * the execbuffer (fenceable, mappable, alignment etc).
594 * 1b. Increment pin count for already bound objects.
595 * 2. Bind new objects.
596 * 3. Decrement pin count.
597 *
598 * This avoid unnecessary unbinding of later objects in order to makr
599 * room for the earlier objects *unless* we need to defragment.
600 */
601 retry = 0;
602 do {
603 ret = 0;
604
605 /* Unbind any ill-fitting objects or pin. */
432e58ed 606 list_for_each_entry(obj, objects, exec_list) {
6fe4f140 607 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
54cf91dc 608 bool need_fence, need_mappable;
1690e1eb 609
6fe4f140 610 if (!obj->gtt_space)
54cf91dc
CW
611 continue;
612
613 need_fence =
9b3826bf 614 has_fenced_gpu_access &&
54cf91dc
CW
615 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
616 obj->tiling_mode != I915_TILING_NONE;
dabdfe02 617 need_mappable = need_fence || need_reloc_mappable(obj);
54cf91dc
CW
618
619 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
620 (need_mappable && !obj->map_and_fenceable))
621 ret = i915_gem_object_unbind(obj);
622 else
1690e1eb 623 ret = pin_and_fence_object(obj, ring);
432e58ed 624 if (ret)
54cf91dc 625 goto err;
54cf91dc
CW
626 }
627
628 /* Bind fresh objects */
432e58ed 629 list_for_each_entry(obj, objects, exec_list) {
1690e1eb
CW
630 if (obj->gtt_space)
631 continue;
54cf91dc 632
1690e1eb
CW
633 ret = pin_and_fence_object(obj, ring);
634 if (ret) {
635 int ret_ignore;
636
637 /* This can potentially raise a harmless
638 * -EINVAL if we failed to bind in the above
639 * call. It cannot raise -EINTR since we know
640 * that the bo is freshly bound and so will
641 * not need to be flushed or waited upon.
642 */
643 ret_ignore = i915_gem_object_unbind(obj);
644 (void)ret_ignore;
645 WARN_ON(obj->gtt_space);
646 break;
54cf91dc 647 }
54cf91dc
CW
648 }
649
432e58ed
CW
650 /* Decrement pin count for bound objects */
651 list_for_each_entry(obj, objects, exec_list) {
1690e1eb
CW
652 struct drm_i915_gem_exec_object2 *entry;
653
654 if (!obj->gtt_space)
655 continue;
656
657 entry = obj->exec_entry;
658 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
659 i915_gem_object_unpin_fence(obj);
660 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
661 }
662
663 i915_gem_object_unpin(obj);
7bddb01f
DV
664
665 /* ... and ensure ppgtt mapping exist if needed. */
666 if (dev_priv->mm.aliasing_ppgtt && !obj->has_aliasing_ppgtt_mapping) {
667 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
668 obj, obj->cache_level);
669
670 obj->has_aliasing_ppgtt_mapping = 1;
671 }
54cf91dc
CW
672 }
673
674 if (ret != -ENOSPC || retry > 1)
675 return ret;
676
677 /* First attempt, just clear anything that is purgeable.
678 * Second attempt, clear the entire GTT.
679 */
d9e86c0e 680 ret = i915_gem_evict_everything(ring->dev, retry == 0);
54cf91dc
CW
681 if (ret)
682 return ret;
683
684 retry++;
685 } while (1);
432e58ed
CW
686
687err:
1690e1eb
CW
688 list_for_each_entry_continue_reverse(obj, objects, exec_list) {
689 struct drm_i915_gem_exec_object2 *entry;
690
691 if (!obj->gtt_space)
692 continue;
693
694 entry = obj->exec_entry;
695 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
696 i915_gem_object_unpin_fence(obj);
697 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
698 }
432e58ed 699
1690e1eb 700 i915_gem_object_unpin(obj);
432e58ed
CW
701 }
702
703 return ret;
54cf91dc
CW
704}
705
706static int
707i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
708 struct drm_file *file,
d9e86c0e 709 struct intel_ring_buffer *ring,
432e58ed 710 struct list_head *objects,
67731b87 711 struct eb_objects *eb,
432e58ed 712 struct drm_i915_gem_exec_object2 *exec,
54cf91dc
CW
713 int count)
714{
715 struct drm_i915_gem_relocation_entry *reloc;
432e58ed 716 struct drm_i915_gem_object *obj;
dd6864a4 717 int *reloc_offset;
54cf91dc
CW
718 int i, total, ret;
719
67731b87 720 /* We may process another execbuffer during the unlock... */
36cf1742 721 while (!list_empty(objects)) {
67731b87
CW
722 obj = list_first_entry(objects,
723 struct drm_i915_gem_object,
724 exec_list);
725 list_del_init(&obj->exec_list);
726 drm_gem_object_unreference(&obj->base);
727 }
728
54cf91dc
CW
729 mutex_unlock(&dev->struct_mutex);
730
731 total = 0;
732 for (i = 0; i < count; i++)
432e58ed 733 total += exec[i].relocation_count;
54cf91dc 734
dd6864a4 735 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
54cf91dc 736 reloc = drm_malloc_ab(total, sizeof(*reloc));
dd6864a4
CW
737 if (reloc == NULL || reloc_offset == NULL) {
738 drm_free_large(reloc);
739 drm_free_large(reloc_offset);
54cf91dc
CW
740 mutex_lock(&dev->struct_mutex);
741 return -ENOMEM;
742 }
743
744 total = 0;
745 for (i = 0; i < count; i++) {
746 struct drm_i915_gem_relocation_entry __user *user_relocs;
747
432e58ed 748 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
54cf91dc
CW
749
750 if (copy_from_user(reloc+total, user_relocs,
432e58ed 751 exec[i].relocation_count * sizeof(*reloc))) {
54cf91dc
CW
752 ret = -EFAULT;
753 mutex_lock(&dev->struct_mutex);
754 goto err;
755 }
756
dd6864a4 757 reloc_offset[i] = total;
432e58ed 758 total += exec[i].relocation_count;
54cf91dc
CW
759 }
760
761 ret = i915_mutex_lock_interruptible(dev);
762 if (ret) {
763 mutex_lock(&dev->struct_mutex);
764 goto err;
765 }
766
67731b87 767 /* reacquire the objects */
67731b87
CW
768 eb_reset(eb);
769 for (i = 0; i < count; i++) {
67731b87
CW
770 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
771 exec[i].handle));
c8725226 772 if (&obj->base == NULL) {
ff240199 773 DRM_DEBUG("Invalid object handle %d at index %d\n",
67731b87
CW
774 exec[i].handle, i);
775 ret = -ENOENT;
776 goto err;
777 }
778
779 list_add_tail(&obj->exec_list, objects);
780 obj->exec_handle = exec[i].handle;
6fe4f140 781 obj->exec_entry = &exec[i];
67731b87
CW
782 eb_add_object(eb, obj);
783 }
784
6fe4f140 785 ret = i915_gem_execbuffer_reserve(ring, file, objects);
54cf91dc
CW
786 if (ret)
787 goto err;
788
432e58ed 789 list_for_each_entry(obj, objects, exec_list) {
dd6864a4 790 int offset = obj->exec_entry - exec;
67731b87 791 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
dd6864a4 792 reloc + reloc_offset[offset]);
54cf91dc
CW
793 if (ret)
794 goto err;
54cf91dc
CW
795 }
796
797 /* Leave the user relocations as are, this is the painfully slow path,
798 * and we want to avoid the complication of dropping the lock whilst
799 * having buffers reserved in the aperture and so causing spurious
800 * ENOSPC for random operations.
801 */
802
803err:
804 drm_free_large(reloc);
dd6864a4 805 drm_free_large(reloc_offset);
54cf91dc
CW
806 return ret;
807}
808
88241785 809static int
54cf91dc
CW
810i915_gem_execbuffer_flush(struct drm_device *dev,
811 uint32_t invalidate_domains,
812 uint32_t flush_domains,
813 uint32_t flush_rings)
814{
815 drm_i915_private_t *dev_priv = dev->dev_private;
88241785 816 int i, ret;
54cf91dc
CW
817
818 if (flush_domains & I915_GEM_DOMAIN_CPU)
819 intel_gtt_chipset_flush();
820
63256ec5
CW
821 if (flush_domains & I915_GEM_DOMAIN_GTT)
822 wmb();
823
54cf91dc 824 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
1ec14ad3 825 for (i = 0; i < I915_NUM_RINGS; i++)
88241785 826 if (flush_rings & (1 << i)) {
db53a302 827 ret = i915_gem_flush_ring(&dev_priv->ring[i],
88241785
CW
828 invalidate_domains,
829 flush_domains);
830 if (ret)
831 return ret;
832 }
54cf91dc 833 }
88241785
CW
834
835 return 0;
54cf91dc
CW
836}
837
c59a333f
CW
838static int
839i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
840{
841 u32 plane, flip_mask;
842 int ret;
843
844 /* Check for any pending flips. As we only maintain a flip queue depth
845 * of 1, we can simply insert a WAIT for the next display flip prior
846 * to executing the batch and avoid stalling the CPU.
847 */
848
849 for (plane = 0; flips >> plane; plane++) {
850 if (((flips >> plane) & 1) == 0)
851 continue;
852
853 if (plane)
854 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
855 else
856 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
857
858 ret = intel_ring_begin(ring, 2);
859 if (ret)
860 return ret;
861
862 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
863 intel_ring_emit(ring, MI_NOOP);
864 intel_ring_advance(ring);
865 }
866
867 return 0;
868}
869
870
54cf91dc 871static int
432e58ed
CW
872i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
873 struct list_head *objects)
54cf91dc 874{
432e58ed 875 struct drm_i915_gem_object *obj;
54cf91dc 876 struct change_domains cd;
432e58ed 877 int ret;
54cf91dc 878
c59a333f 879 memset(&cd, 0, sizeof(cd));
432e58ed
CW
880 list_for_each_entry(obj, objects, exec_list)
881 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
54cf91dc
CW
882
883 if (cd.invalidate_domains | cd.flush_domains) {
88241785
CW
884 ret = i915_gem_execbuffer_flush(ring->dev,
885 cd.invalidate_domains,
886 cd.flush_domains,
887 cd.flush_rings);
888 if (ret)
889 return ret;
54cf91dc
CW
890 }
891
c59a333f
CW
892 if (cd.flips) {
893 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
894 if (ret)
895 return ret;
896 }
897
432e58ed 898 list_for_each_entry(obj, objects, exec_list) {
2911a35b 899 ret = i915_gem_object_sync(obj, ring);
1ec14ad3
CW
900 if (ret)
901 return ret;
54cf91dc
CW
902 }
903
904 return 0;
905}
906
432e58ed
CW
907static bool
908i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
54cf91dc 909{
432e58ed 910 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
54cf91dc
CW
911}
912
913static int
914validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
915 int count)
916{
917 int i;
918
919 for (i = 0; i < count; i++) {
920 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
921 int length; /* limited by fault_in_pages_readable() */
922
923 /* First check for malicious input causing overflow */
924 if (exec[i].relocation_count >
925 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
926 return -EINVAL;
927
928 length = exec[i].relocation_count *
929 sizeof(struct drm_i915_gem_relocation_entry);
930 if (!access_ok(VERIFY_READ, ptr, length))
931 return -EFAULT;
932
933 /* we may also need to update the presumed offsets */
934 if (!access_ok(VERIFY_WRITE, ptr, length))
935 return -EFAULT;
936
f56f821f 937 if (fault_in_multipages_readable(ptr, length))
54cf91dc
CW
938 return -EFAULT;
939 }
940
941 return 0;
942}
943
432e58ed
CW
944static void
945i915_gem_execbuffer_move_to_active(struct list_head *objects,
1ec14ad3
CW
946 struct intel_ring_buffer *ring,
947 u32 seqno)
432e58ed
CW
948{
949 struct drm_i915_gem_object *obj;
950
951 list_for_each_entry(obj, objects, exec_list) {
db53a302
CW
952 u32 old_read = obj->base.read_domains;
953 u32 old_write = obj->base.write_domain;
954
955
432e58ed
CW
956 obj->base.read_domains = obj->base.pending_read_domains;
957 obj->base.write_domain = obj->base.pending_write_domain;
958 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
959
1ec14ad3 960 i915_gem_object_move_to_active(obj, ring, seqno);
432e58ed
CW
961 if (obj->base.write_domain) {
962 obj->dirty = 1;
87ca9c8a 963 obj->pending_gpu_write = true;
432e58ed
CW
964 list_move_tail(&obj->gpu_write_list,
965 &ring->gpu_write_list);
966 intel_mark_busy(ring->dev, obj);
967 }
968
db53a302 969 trace_i915_gem_object_change_domain(obj, old_read, old_write);
432e58ed
CW
970 }
971}
972
54cf91dc
CW
973static void
974i915_gem_execbuffer_retire_commands(struct drm_device *dev,
432e58ed 975 struct drm_file *file,
54cf91dc
CW
976 struct intel_ring_buffer *ring)
977{
432e58ed 978 struct drm_i915_gem_request *request;
b72f3acb 979 u32 invalidate;
54cf91dc 980
432e58ed
CW
981 /*
982 * Ensure that the commands in the batch buffer are
983 * finished before the interrupt fires.
984 *
985 * The sampler always gets flushed on i965 (sigh).
986 */
b72f3acb 987 invalidate = I915_GEM_DOMAIN_COMMAND;
54cf91dc 988 if (INTEL_INFO(dev)->gen >= 4)
b72f3acb
CW
989 invalidate |= I915_GEM_DOMAIN_SAMPLER;
990 if (ring->flush(ring, invalidate, 0)) {
db53a302 991 i915_gem_next_request_seqno(ring);
b72f3acb
CW
992 return;
993 }
54cf91dc 994
432e58ed
CW
995 /* Add a breadcrumb for the completion of the batch buffer */
996 request = kzalloc(sizeof(*request), GFP_KERNEL);
db53a302
CW
997 if (request == NULL || i915_add_request(ring, file, request)) {
998 i915_gem_next_request_seqno(ring);
432e58ed
CW
999 kfree(request);
1000 }
1001}
54cf91dc 1002
ae662d31
EA
1003static int
1004i915_reset_gen7_sol_offsets(struct drm_device *dev,
1005 struct intel_ring_buffer *ring)
1006{
1007 drm_i915_private_t *dev_priv = dev->dev_private;
1008 int ret, i;
1009
1010 if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1011 return 0;
1012
1013 ret = intel_ring_begin(ring, 4 * 3);
1014 if (ret)
1015 return ret;
1016
1017 for (i = 0; i < 4; i++) {
1018 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1019 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1020 intel_ring_emit(ring, 0);
1021 }
1022
1023 intel_ring_advance(ring);
1024
1025 return 0;
1026}
1027
54cf91dc
CW
1028static int
1029i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1030 struct drm_file *file,
1031 struct drm_i915_gem_execbuffer2 *args,
432e58ed 1032 struct drm_i915_gem_exec_object2 *exec)
54cf91dc
CW
1033{
1034 drm_i915_private_t *dev_priv = dev->dev_private;
432e58ed 1035 struct list_head objects;
67731b87 1036 struct eb_objects *eb;
54cf91dc
CW
1037 struct drm_i915_gem_object *batch_obj;
1038 struct drm_clip_rect *cliprects = NULL;
54cf91dc 1039 struct intel_ring_buffer *ring;
c4e7a414 1040 u32 exec_start, exec_len;
1ec14ad3 1041 u32 seqno;
84f9f938 1042 u32 mask;
72bfa19c 1043 int ret, mode, i;
54cf91dc 1044
432e58ed 1045 if (!i915_gem_check_execbuffer(args)) {
ff240199 1046 DRM_DEBUG("execbuf with invalid offset/length\n");
432e58ed
CW
1047 return -EINVAL;
1048 }
1049
1050 ret = validate_exec_list(exec, args->buffer_count);
54cf91dc
CW
1051 if (ret)
1052 return ret;
1053
54cf91dc
CW
1054 switch (args->flags & I915_EXEC_RING_MASK) {
1055 case I915_EXEC_DEFAULT:
1056 case I915_EXEC_RENDER:
1ec14ad3 1057 ring = &dev_priv->ring[RCS];
54cf91dc
CW
1058 break;
1059 case I915_EXEC_BSD:
1060 if (!HAS_BSD(dev)) {
ff240199 1061 DRM_DEBUG("execbuf with invalid ring (BSD)\n");
54cf91dc
CW
1062 return -EINVAL;
1063 }
1ec14ad3 1064 ring = &dev_priv->ring[VCS];
54cf91dc
CW
1065 break;
1066 case I915_EXEC_BLT:
1067 if (!HAS_BLT(dev)) {
ff240199 1068 DRM_DEBUG("execbuf with invalid ring (BLT)\n");
54cf91dc
CW
1069 return -EINVAL;
1070 }
1ec14ad3 1071 ring = &dev_priv->ring[BCS];
54cf91dc
CW
1072 break;
1073 default:
ff240199 1074 DRM_DEBUG("execbuf with unknown ring: %d\n",
54cf91dc
CW
1075 (int)(args->flags & I915_EXEC_RING_MASK));
1076 return -EINVAL;
1077 }
1078
72bfa19c 1079 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
84f9f938 1080 mask = I915_EXEC_CONSTANTS_MASK;
72bfa19c
CW
1081 switch (mode) {
1082 case I915_EXEC_CONSTANTS_REL_GENERAL:
1083 case I915_EXEC_CONSTANTS_ABSOLUTE:
1084 case I915_EXEC_CONSTANTS_REL_SURFACE:
1085 if (ring == &dev_priv->ring[RCS] &&
1086 mode != dev_priv->relative_constants_mode) {
1087 if (INTEL_INFO(dev)->gen < 4)
1088 return -EINVAL;
1089
1090 if (INTEL_INFO(dev)->gen > 5 &&
1091 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1092 return -EINVAL;
84f9f938
BW
1093
1094 /* The HW changed the meaning on this bit on gen6 */
1095 if (INTEL_INFO(dev)->gen >= 6)
1096 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
72bfa19c
CW
1097 }
1098 break;
1099 default:
ff240199 1100 DRM_DEBUG("execbuf with unknown constants: %d\n", mode);
72bfa19c
CW
1101 return -EINVAL;
1102 }
1103
54cf91dc 1104 if (args->buffer_count < 1) {
ff240199 1105 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
54cf91dc
CW
1106 return -EINVAL;
1107 }
54cf91dc
CW
1108
1109 if (args->num_cliprects != 0) {
1ec14ad3 1110 if (ring != &dev_priv->ring[RCS]) {
ff240199 1111 DRM_DEBUG("clip rectangles are only valid with the render ring\n");
c4e7a414
CW
1112 return -EINVAL;
1113 }
1114
432e58ed 1115 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
54cf91dc
CW
1116 GFP_KERNEL);
1117 if (cliprects == NULL) {
1118 ret = -ENOMEM;
1119 goto pre_mutex_err;
1120 }
1121
432e58ed
CW
1122 if (copy_from_user(cliprects,
1123 (struct drm_clip_rect __user *)(uintptr_t)
1124 args->cliprects_ptr,
1125 sizeof(*cliprects)*args->num_cliprects)) {
54cf91dc
CW
1126 ret = -EFAULT;
1127 goto pre_mutex_err;
1128 }
1129 }
1130
54cf91dc
CW
1131 ret = i915_mutex_lock_interruptible(dev);
1132 if (ret)
1133 goto pre_mutex_err;
1134
1135 if (dev_priv->mm.suspended) {
1136 mutex_unlock(&dev->struct_mutex);
1137 ret = -EBUSY;
1138 goto pre_mutex_err;
1139 }
1140
67731b87
CW
1141 eb = eb_create(args->buffer_count);
1142 if (eb == NULL) {
1143 mutex_unlock(&dev->struct_mutex);
1144 ret = -ENOMEM;
1145 goto pre_mutex_err;
1146 }
1147
54cf91dc 1148 /* Look up object handles */
432e58ed 1149 INIT_LIST_HEAD(&objects);
54cf91dc
CW
1150 for (i = 0; i < args->buffer_count; i++) {
1151 struct drm_i915_gem_object *obj;
1152
432e58ed
CW
1153 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1154 exec[i].handle));
c8725226 1155 if (&obj->base == NULL) {
ff240199 1156 DRM_DEBUG("Invalid object handle %d at index %d\n",
432e58ed 1157 exec[i].handle, i);
54cf91dc 1158 /* prevent error path from reading uninitialized data */
54cf91dc
CW
1159 ret = -ENOENT;
1160 goto err;
1161 }
54cf91dc 1162
432e58ed 1163 if (!list_empty(&obj->exec_list)) {
ff240199 1164 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
432e58ed 1165 obj, exec[i].handle, i);
54cf91dc
CW
1166 ret = -EINVAL;
1167 goto err;
1168 }
432e58ed
CW
1169
1170 list_add_tail(&obj->exec_list, &objects);
67731b87 1171 obj->exec_handle = exec[i].handle;
6fe4f140 1172 obj->exec_entry = &exec[i];
67731b87 1173 eb_add_object(eb, obj);
54cf91dc
CW
1174 }
1175
6fe4f140
CW
1176 /* take note of the batch buffer before we might reorder the lists */
1177 batch_obj = list_entry(objects.prev,
1178 struct drm_i915_gem_object,
1179 exec_list);
1180
54cf91dc 1181 /* Move the objects en-masse into the GTT, evicting if necessary. */
6fe4f140 1182 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
54cf91dc
CW
1183 if (ret)
1184 goto err;
1185
1186 /* The objects are in their final locations, apply the relocations. */
6fe4f140 1187 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
54cf91dc
CW
1188 if (ret) {
1189 if (ret == -EFAULT) {
d9e86c0e 1190 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
67731b87
CW
1191 &objects, eb,
1192 exec,
54cf91dc
CW
1193 args->buffer_count);
1194 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1195 }
1196 if (ret)
1197 goto err;
1198 }
1199
1200 /* Set the pending read domains for the batch buffer to COMMAND */
54cf91dc 1201 if (batch_obj->base.pending_write_domain) {
ff240199 1202 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
54cf91dc
CW
1203 ret = -EINVAL;
1204 goto err;
1205 }
1206 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1207
432e58ed
CW
1208 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1209 if (ret)
54cf91dc 1210 goto err;
54cf91dc 1211
db53a302 1212 seqno = i915_gem_next_request_seqno(ring);
076e2c0e 1213 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1ec14ad3
CW
1214 if (seqno < ring->sync_seqno[i]) {
1215 /* The GPU can not handle its semaphore value wrapping,
1216 * so every billion or so execbuffers, we need to stall
1217 * the GPU in order to reset the counters.
1218 */
b93f9cf1 1219 ret = i915_gpu_idle(dev, true);
1ec14ad3
CW
1220 if (ret)
1221 goto err;
1222
1223 BUG_ON(ring->sync_seqno[i]);
1224 }
1225 }
1226
e2971bda
BW
1227 if (ring == &dev_priv->ring[RCS] &&
1228 mode != dev_priv->relative_constants_mode) {
1229 ret = intel_ring_begin(ring, 4);
1230 if (ret)
1231 goto err;
1232
1233 intel_ring_emit(ring, MI_NOOP);
1234 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1235 intel_ring_emit(ring, INSTPM);
84f9f938 1236 intel_ring_emit(ring, mask << 16 | mode);
e2971bda
BW
1237 intel_ring_advance(ring);
1238
1239 dev_priv->relative_constants_mode = mode;
1240 }
1241
ae662d31
EA
1242 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1243 ret = i915_reset_gen7_sol_offsets(dev, ring);
1244 if (ret)
1245 goto err;
1246 }
1247
db53a302
CW
1248 trace_i915_gem_ring_dispatch(ring, seqno);
1249
c4e7a414
CW
1250 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1251 exec_len = args->batch_len;
1252 if (cliprects) {
1253 for (i = 0; i < args->num_cliprects; i++) {
1254 ret = i915_emit_box(dev, &cliprects[i],
1255 args->DR1, args->DR4);
1256 if (ret)
1257 goto err;
1258
1259 ret = ring->dispatch_execbuffer(ring,
1260 exec_start, exec_len);
1261 if (ret)
1262 goto err;
1263 }
1264 } else {
1265 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1266 if (ret)
1267 goto err;
1268 }
54cf91dc 1269
1ec14ad3 1270 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
432e58ed 1271 i915_gem_execbuffer_retire_commands(dev, file, ring);
54cf91dc
CW
1272
1273err:
67731b87 1274 eb_destroy(eb);
432e58ed
CW
1275 while (!list_empty(&objects)) {
1276 struct drm_i915_gem_object *obj;
1277
1278 obj = list_first_entry(&objects,
1279 struct drm_i915_gem_object,
1280 exec_list);
1281 list_del_init(&obj->exec_list);
1282 drm_gem_object_unreference(&obj->base);
54cf91dc
CW
1283 }
1284
1285 mutex_unlock(&dev->struct_mutex);
1286
1287pre_mutex_err:
54cf91dc 1288 kfree(cliprects);
54cf91dc
CW
1289 return ret;
1290}
1291
1292/*
1293 * Legacy execbuffer just creates an exec2 list from the original exec object
1294 * list array and passes it to the real function.
1295 */
1296int
1297i915_gem_execbuffer(struct drm_device *dev, void *data,
1298 struct drm_file *file)
1299{
1300 struct drm_i915_gem_execbuffer *args = data;
1301 struct drm_i915_gem_execbuffer2 exec2;
1302 struct drm_i915_gem_exec_object *exec_list = NULL;
1303 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1304 int ret, i;
1305
54cf91dc 1306 if (args->buffer_count < 1) {
ff240199 1307 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
54cf91dc
CW
1308 return -EINVAL;
1309 }
1310
1311 /* Copy in the exec list from userland */
1312 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1313 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1314 if (exec_list == NULL || exec2_list == NULL) {
ff240199 1315 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc
CW
1316 args->buffer_count);
1317 drm_free_large(exec_list);
1318 drm_free_large(exec2_list);
1319 return -ENOMEM;
1320 }
1321 ret = copy_from_user(exec_list,
1322 (struct drm_i915_relocation_entry __user *)
1323 (uintptr_t) args->buffers_ptr,
1324 sizeof(*exec_list) * args->buffer_count);
1325 if (ret != 0) {
ff240199 1326 DRM_DEBUG("copy %d exec entries failed %d\n",
54cf91dc
CW
1327 args->buffer_count, ret);
1328 drm_free_large(exec_list);
1329 drm_free_large(exec2_list);
1330 return -EFAULT;
1331 }
1332
1333 for (i = 0; i < args->buffer_count; i++) {
1334 exec2_list[i].handle = exec_list[i].handle;
1335 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1336 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1337 exec2_list[i].alignment = exec_list[i].alignment;
1338 exec2_list[i].offset = exec_list[i].offset;
1339 if (INTEL_INFO(dev)->gen < 4)
1340 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1341 else
1342 exec2_list[i].flags = 0;
1343 }
1344
1345 exec2.buffers_ptr = args->buffers_ptr;
1346 exec2.buffer_count = args->buffer_count;
1347 exec2.batch_start_offset = args->batch_start_offset;
1348 exec2.batch_len = args->batch_len;
1349 exec2.DR1 = args->DR1;
1350 exec2.DR4 = args->DR4;
1351 exec2.num_cliprects = args->num_cliprects;
1352 exec2.cliprects_ptr = args->cliprects_ptr;
1353 exec2.flags = I915_EXEC_RENDER;
1354
1355 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1356 if (!ret) {
1357 /* Copy the new buffer offsets back to the user's exec list. */
1358 for (i = 0; i < args->buffer_count; i++)
1359 exec_list[i].offset = exec2_list[i].offset;
1360 /* ... and back out to userspace */
1361 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1362 (uintptr_t) args->buffers_ptr,
1363 exec_list,
1364 sizeof(*exec_list) * args->buffer_count);
1365 if (ret) {
1366 ret = -EFAULT;
ff240199 1367 DRM_DEBUG("failed to copy %d exec entries "
54cf91dc
CW
1368 "back to user (%d)\n",
1369 args->buffer_count, ret);
1370 }
1371 }
1372
1373 drm_free_large(exec_list);
1374 drm_free_large(exec2_list);
1375 return ret;
1376}
1377
1378int
1379i915_gem_execbuffer2(struct drm_device *dev, void *data,
1380 struct drm_file *file)
1381{
1382 struct drm_i915_gem_execbuffer2 *args = data;
1383 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1384 int ret;
1385
54cf91dc 1386 if (args->buffer_count < 1) {
ff240199 1387 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
54cf91dc
CW
1388 return -EINVAL;
1389 }
1390
8408c282
CW
1391 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1392 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1393 if (exec2_list == NULL)
1394 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1395 args->buffer_count);
54cf91dc 1396 if (exec2_list == NULL) {
ff240199 1397 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
54cf91dc
CW
1398 args->buffer_count);
1399 return -ENOMEM;
1400 }
1401 ret = copy_from_user(exec2_list,
1402 (struct drm_i915_relocation_entry __user *)
1403 (uintptr_t) args->buffers_ptr,
1404 sizeof(*exec2_list) * args->buffer_count);
1405 if (ret != 0) {
ff240199 1406 DRM_DEBUG("copy %d exec entries failed %d\n",
54cf91dc
CW
1407 args->buffer_count, ret);
1408 drm_free_large(exec2_list);
1409 return -EFAULT;
1410 }
1411
1412 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1413 if (!ret) {
1414 /* Copy the new buffer offsets back to the user's exec list. */
1415 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1416 (uintptr_t) args->buffers_ptr,
1417 exec2_list,
1418 sizeof(*exec2_list) * args->buffer_count);
1419 if (ret) {
1420 ret = -EFAULT;
ff240199 1421 DRM_DEBUG("failed to copy %d exec entries "
54cf91dc
CW
1422 "back to user (%d)\n",
1423 args->buffer_count, ret);
1424 }
1425 }
1426
1427 drm_free_large(exec2_list);
1428 return ret;
1429}
This page took 0.179793 seconds and 5 git commands to generate.