drm/i915/bdw: Free PPGTT struct
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
CommitLineData
76aaf220
DV
1/*
2 * Copyright © 2010 Daniel Vetter
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
0e46ce2e 25#include <linux/seq_file.h>
760285e7
DH
26#include <drm/drmP.h>
27#include <drm/i915_drm.h>
76aaf220
DV
28#include "i915_drv.h"
29#include "i915_trace.h"
30#include "intel_drv.h"
31
6670a5a5
BW
32#define GEN6_PPGTT_PD_ENTRIES 512
33#define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
d31eb10e 34typedef uint64_t gen8_gtt_pte_t;
37aca44a 35typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
6670a5a5 36
26b1ff35
BW
37/* PPGTT stuff */
38#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
0d8ff15e 39#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
26b1ff35
BW
40
41#define GEN6_PDE_VALID (1 << 0)
42/* gen6+ has bit 11-4 for physical addr bit 39-32 */
43#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
44
45#define GEN6_PTE_VALID (1 << 0)
46#define GEN6_PTE_UNCACHED (1 << 1)
47#define HSW_PTE_UNCACHED (0)
48#define GEN6_PTE_CACHE_LLC (2 << 1)
350ec881 49#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
26b1ff35 50#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
0d8ff15e
BW
51#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
52
53/* Cacheability Control is a 4-bit value. The low three bits are stored in *
54 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
55 */
56#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
57 (((bits) & 0x8) << (11 - 3)))
87a6b688 58#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
0d8ff15e 59#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
4d15c145 60#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
c51e9701 61#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
651d794f 62#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
c51e9701 63#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
26b1ff35 64
459108b8 65#define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
37aca44a
BW
66#define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
67#define GEN8_LEGACY_PDPS 4
68
fbe5d36e
BW
69#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
70#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
71#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
72#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
73
6f65e29a
BW
74static void ppgtt_bind_vma(struct i915_vma *vma,
75 enum i915_cache_level cache_level,
76 u32 flags);
77static void ppgtt_unbind_vma(struct i915_vma *vma);
eeb9488e 78static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
6f65e29a 79
94ec8f61
BW
80static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
81 enum i915_cache_level level,
82 bool valid)
83{
84 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
85 pte |= addr;
fbe5d36e
BW
86 if (level != I915_CACHE_NONE)
87 pte |= PPAT_CACHED_INDEX;
88 else
89 pte |= PPAT_UNCACHED_INDEX;
94ec8f61
BW
90 return pte;
91}
92
b1fe6673
BW
93static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
94 dma_addr_t addr,
95 enum i915_cache_level level)
96{
97 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
98 pde |= addr;
99 if (level != I915_CACHE_NONE)
100 pde |= PPAT_CACHED_PDE_INDEX;
101 else
102 pde |= PPAT_UNCACHED_INDEX;
103 return pde;
104}
105
350ec881 106static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
b35b380e
BW
107 enum i915_cache_level level,
108 bool valid)
54d12527 109{
b35b380e 110 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
54d12527 111 pte |= GEN6_PTE_ADDR_ENCODE(addr);
e7210c3c
BW
112
113 switch (level) {
350ec881
CW
114 case I915_CACHE_L3_LLC:
115 case I915_CACHE_LLC:
116 pte |= GEN6_PTE_CACHE_LLC;
117 break;
118 case I915_CACHE_NONE:
119 pte |= GEN6_PTE_UNCACHED;
120 break;
121 default:
122 WARN_ON(1);
123 }
124
125 return pte;
126}
127
128static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
b35b380e
BW
129 enum i915_cache_level level,
130 bool valid)
350ec881 131{
b35b380e 132 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
350ec881
CW
133 pte |= GEN6_PTE_ADDR_ENCODE(addr);
134
135 switch (level) {
136 case I915_CACHE_L3_LLC:
137 pte |= GEN7_PTE_CACHE_L3_LLC;
e7210c3c
BW
138 break;
139 case I915_CACHE_LLC:
140 pte |= GEN6_PTE_CACHE_LLC;
141 break;
142 case I915_CACHE_NONE:
9119708c 143 pte |= GEN6_PTE_UNCACHED;
e7210c3c
BW
144 break;
145 default:
350ec881 146 WARN_ON(1);
e7210c3c
BW
147 }
148
54d12527
BW
149 return pte;
150}
151
93c34e70
KG
152#define BYT_PTE_WRITEABLE (1 << 1)
153#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
154
80a74f7f 155static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
b35b380e
BW
156 enum i915_cache_level level,
157 bool valid)
93c34e70 158{
b35b380e 159 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
93c34e70
KG
160 pte |= GEN6_PTE_ADDR_ENCODE(addr);
161
162 /* Mark the page as writeable. Other platforms don't have a
163 * setting for read-only/writable, so this matches that behavior.
164 */
165 pte |= BYT_PTE_WRITEABLE;
166
167 if (level != I915_CACHE_NONE)
168 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
169
170 return pte;
171}
172
80a74f7f 173static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
b35b380e
BW
174 enum i915_cache_level level,
175 bool valid)
9119708c 176{
b35b380e 177 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
0d8ff15e 178 pte |= HSW_PTE_ADDR_ENCODE(addr);
9119708c
KG
179
180 if (level != I915_CACHE_NONE)
87a6b688 181 pte |= HSW_WB_LLC_AGE3;
9119708c
KG
182
183 return pte;
184}
185
4d15c145 186static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
b35b380e
BW
187 enum i915_cache_level level,
188 bool valid)
4d15c145 189{
b35b380e 190 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
4d15c145
BW
191 pte |= HSW_PTE_ADDR_ENCODE(addr);
192
651d794f
CW
193 switch (level) {
194 case I915_CACHE_NONE:
195 break;
196 case I915_CACHE_WT:
c51e9701 197 pte |= HSW_WT_ELLC_LLC_AGE3;
651d794f
CW
198 break;
199 default:
c51e9701 200 pte |= HSW_WB_ELLC_LLC_AGE3;
651d794f
CW
201 break;
202 }
4d15c145
BW
203
204 return pte;
205}
206
94e409c1
BW
207/* Broadwell Page Directory Pointer Descriptors */
208static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
e178f705 209 uint64_t val, bool synchronous)
94e409c1 210{
e178f705 211 struct drm_i915_private *dev_priv = ring->dev->dev_private;
94e409c1
BW
212 int ret;
213
214 BUG_ON(entry >= 4);
215
e178f705
BW
216 if (synchronous) {
217 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
218 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
219 return 0;
220 }
221
94e409c1
BW
222 ret = intel_ring_begin(ring, 6);
223 if (ret)
224 return ret;
225
226 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
227 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
228 intel_ring_emit(ring, (u32)(val >> 32));
229 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
230 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
231 intel_ring_emit(ring, (u32)(val));
232 intel_ring_advance(ring);
233
234 return 0;
235}
236
eeb9488e
BW
237static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
238 struct intel_ring_buffer *ring,
239 bool synchronous)
94e409c1 240{
eeb9488e 241 int i, ret;
94e409c1
BW
242
243 /* bit of a hack to find the actual last used pd */
244 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
245
94e409c1
BW
246 for (i = used_pd - 1; i >= 0; i--) {
247 dma_addr_t addr = ppgtt->pd_dma_addr[i];
eeb9488e
BW
248 ret = gen8_write_pdp(ring, i, addr, synchronous);
249 if (ret)
250 return ret;
94e409c1 251 }
d595bd4b 252
eeb9488e 253 return 0;
94e409c1
BW
254}
255
459108b8
BW
256static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
257 unsigned first_entry,
258 unsigned num_entries,
259 bool use_scratch)
260{
261 struct i915_hw_ppgtt *ppgtt =
262 container_of(vm, struct i915_hw_ppgtt, base);
263 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
264 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
265 unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
266 unsigned last_pte, i;
267
268 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
269 I915_CACHE_LLC, use_scratch);
270
271 while (num_entries) {
272 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
273
274 last_pte = first_pte + num_entries;
275 if (last_pte > GEN8_PTES_PER_PAGE)
276 last_pte = GEN8_PTES_PER_PAGE;
277
278 pt_vaddr = kmap_atomic(page_table);
279
280 for (i = first_pte; i < last_pte; i++)
281 pt_vaddr[i] = scratch_pte;
282
283 kunmap_atomic(pt_vaddr);
284
285 num_entries -= last_pte - first_pte;
286 first_pte = 0;
287 act_pt++;
288 }
289}
290
9df15b49
BW
291static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
292 struct sg_table *pages,
293 unsigned first_entry,
294 enum i915_cache_level cache_level)
295{
296 struct i915_hw_ppgtt *ppgtt =
297 container_of(vm, struct i915_hw_ppgtt, base);
298 gen8_gtt_pte_t *pt_vaddr;
299 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
300 unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
301 struct sg_page_iter sg_iter;
302
6f1cc993 303 pt_vaddr = NULL;
9df15b49 304 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
6f1cc993
CW
305 if (pt_vaddr == NULL)
306 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
9df15b49 307
6f1cc993
CW
308 pt_vaddr[act_pte] =
309 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
310 cache_level, true);
9df15b49
BW
311 if (++act_pte == GEN8_PTES_PER_PAGE) {
312 kunmap_atomic(pt_vaddr);
6f1cc993 313 pt_vaddr = NULL;
9df15b49 314 act_pt++;
9df15b49 315 act_pte = 0;
9df15b49
BW
316 }
317 }
6f1cc993
CW
318 if (pt_vaddr)
319 kunmap_atomic(pt_vaddr);
9df15b49
BW
320}
321
b45a6715
BW
322static void gen8_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
323{
324 int i;
325
326 for (i = 0; i < ppgtt->num_pd_pages ; i++)
327 kfree(ppgtt->gen8_pt_dma_addr[i]);
328
329 __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
330 __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
331}
332
333static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
334{
335 int i, j;
336
337 for (i = 0; i < ppgtt->num_pd_pages; i++) {
338 /* TODO: In the future we'll support sparse mappings, so this
339 * will have to change. */
340 if (!ppgtt->pd_dma_addr[i])
341 continue;
342
343 pci_unmap_page(ppgtt->base.dev->pdev,
344 ppgtt->pd_dma_addr[i],
345 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
346
347 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
348 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
349 if (addr)
350 pci_unmap_page(ppgtt->base.dev->pdev,
351 addr,
352 PAGE_SIZE,
353 PCI_DMA_BIDIRECTIONAL);
354
355 }
356 }
357}
358
37aca44a
BW
359static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
360{
361 struct i915_hw_ppgtt *ppgtt =
362 container_of(vm, struct i915_hw_ppgtt, base);
37aca44a 363
7e0d96bc 364 list_del(&vm->global_link);
686e1f6f
BW
365 drm_mm_takedown(&vm->mm);
366
b45a6715
BW
367 gen8_ppgtt_unmap_pages(ppgtt);
368 gen8_ppgtt_free(ppgtt);
37aca44a
BW
369}
370
371/**
372 * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
373 * net effect resembling a 2-level page table in normal x86 terms. Each PDP
374 * represents 1GB of memory
375 * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
376 *
377 * TODO: Do something with the size parameter
378 **/
379static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
380{
381 struct page *pt_pages;
382 int i, j, ret = -ENOMEM;
383 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
384 const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
385
386 if (size % (1<<30))
387 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
388
389 /* FIXME: split allocation into smaller pieces. For now we only ever do
390 * this once, but with full PPGTT, the multiple contiguous allocations
391 * will be bad.
392 */
393 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
394 if (!ppgtt->pd_pages)
395 return -ENOMEM;
396
397 pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
398 if (!pt_pages) {
399 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
400 return -ENOMEM;
401 }
402
403 ppgtt->gen8_pt_pages = pt_pages;
404 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
405 ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
406 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
94e409c1 407 ppgtt->enable = gen8_ppgtt_enable;
eeb9488e 408 ppgtt->switch_mm = gen8_mm_switch;
459108b8 409 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
9df15b49 410 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
37aca44a 411 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
686e1f6f
BW
412 ppgtt->base.start = 0;
413 ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
37aca44a
BW
414
415 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
416
417 /*
418 * - Create a mapping for the page directories.
419 * - For each page directory:
420 * allocate space for page table mappings.
421 * map each page table
422 */
423 for (i = 0; i < max_pdp; i++) {
424 dma_addr_t temp;
425 temp = pci_map_page(ppgtt->base.dev->pdev,
426 &ppgtt->pd_pages[i], 0,
427 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
428 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
429 goto err_out;
430
431 ppgtt->pd_dma_addr[i] = temp;
432
433 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
434 if (!ppgtt->gen8_pt_dma_addr[i])
435 goto err_out;
436
437 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
438 struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
439 temp = pci_map_page(ppgtt->base.dev->pdev,
440 p, 0, PAGE_SIZE,
441 PCI_DMA_BIDIRECTIONAL);
442
443 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
444 goto err_out;
445
446 ppgtt->gen8_pt_dma_addr[i][j] = temp;
447 }
448 }
449
b1fe6673
BW
450 /* For now, the PPGTT helper functions all require that the PDEs are
451 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
452 * will never need to touch the PDEs again */
453 for (i = 0; i < max_pdp; i++) {
454 gen8_ppgtt_pde_t *pd_vaddr;
455 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
456 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
457 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
458 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
459 I915_CACHE_LLC);
460 }
461 kunmap_atomic(pd_vaddr);
462 }
463
459108b8
BW
464 ppgtt->base.clear_range(&ppgtt->base, 0,
465 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
466 true);
467
37aca44a
BW
468 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
469 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
470 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
471 ppgtt->num_pt_pages,
472 (ppgtt->num_pt_pages - num_pt_pages) +
473 size % (1<<30));
28cf5415 474 return 0;
37aca44a
BW
475
476err_out:
477 ppgtt->base.cleanup(&ppgtt->base);
478 return ret;
479}
480
87d60b63
BW
481static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
482{
483 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
484 struct i915_address_space *vm = &ppgtt->base;
485 gen6_gtt_pte_t __iomem *pd_addr;
486 gen6_gtt_pte_t scratch_pte;
487 uint32_t pd_entry;
488 int pte, pde;
489
490 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
491
492 pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
493 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
494
495 seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
496 ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
497 for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
498 u32 expected;
499 gen6_gtt_pte_t *pt_vaddr;
500 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
501 pd_entry = readl(pd_addr + pde);
502 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
503
504 if (pd_entry != expected)
505 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
506 pde,
507 pd_entry,
508 expected);
509 seq_printf(m, "\tPDE: %x\n", pd_entry);
510
511 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
512 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
513 unsigned long va =
514 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
515 (pte * PAGE_SIZE);
516 int i;
517 bool found = false;
518 for (i = 0; i < 4; i++)
519 if (pt_vaddr[pte + i] != scratch_pte)
520 found = true;
521 if (!found)
522 continue;
523
524 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
525 for (i = 0; i < 4; i++) {
526 if (pt_vaddr[pte + i] != scratch_pte)
527 seq_printf(m, " %08x", pt_vaddr[pte + i]);
528 else
529 seq_puts(m, " SCRATCH ");
530 }
531 seq_puts(m, "\n");
532 }
533 kunmap_atomic(pt_vaddr);
534 }
535}
536
3e302542 537static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
6197349b 538{
853ba5d2 539 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
6197349b
BW
540 gen6_gtt_pte_t __iomem *pd_addr;
541 uint32_t pd_entry;
542 int i;
543
0a732870 544 WARN_ON(ppgtt->pd_offset & 0x3f);
6197349b
BW
545 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
546 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
547 for (i = 0; i < ppgtt->num_pd_entries; i++) {
548 dma_addr_t pt_addr;
549
550 pt_addr = ppgtt->pt_dma_addr[i];
551 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
552 pd_entry |= GEN6_PDE_VALID;
553
554 writel(pd_entry, pd_addr + i);
555 }
556 readl(pd_addr);
3e302542
BW
557}
558
b4a74e3a 559static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
3e302542 560{
b4a74e3a
BW
561 BUG_ON(ppgtt->pd_offset & 0x3f);
562
563 return (ppgtt->pd_offset / 64) << 16;
564}
565
90252e5c
BW
566static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
567 struct intel_ring_buffer *ring,
568 bool synchronous)
569{
570 struct drm_device *dev = ppgtt->base.dev;
571 struct drm_i915_private *dev_priv = dev->dev_private;
572 int ret;
573
574 /* If we're in reset, we can assume the GPU is sufficiently idle to
575 * manually frob these bits. Ideally we could use the ring functions,
576 * except our error handling makes it quite difficult (can't use
577 * intel_ring_begin, ring->flush, or intel_ring_advance)
578 *
579 * FIXME: We should try not to special case reset
580 */
581 if (synchronous ||
582 i915_reset_in_progress(&dev_priv->gpu_error)) {
583 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
584 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
585 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
586 POSTING_READ(RING_PP_DIR_BASE(ring));
587 return 0;
588 }
589
590 /* NB: TLBs must be flushed and invalidated before a switch */
591 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
592 if (ret)
593 return ret;
594
595 ret = intel_ring_begin(ring, 6);
596 if (ret)
597 return ret;
598
599 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
600 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
601 intel_ring_emit(ring, PP_DIR_DCLV_2G);
602 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
603 intel_ring_emit(ring, get_pd_offset(ppgtt));
604 intel_ring_emit(ring, MI_NOOP);
605 intel_ring_advance(ring);
606
607 return 0;
608}
609
48a10389
BW
610static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
611 struct intel_ring_buffer *ring,
612 bool synchronous)
613{
614 struct drm_device *dev = ppgtt->base.dev;
615 struct drm_i915_private *dev_priv = dev->dev_private;
616 int ret;
617
618 /* If we're in reset, we can assume the GPU is sufficiently idle to
619 * manually frob these bits. Ideally we could use the ring functions,
620 * except our error handling makes it quite difficult (can't use
621 * intel_ring_begin, ring->flush, or intel_ring_advance)
622 *
623 * FIXME: We should try not to special case reset
624 */
625 if (synchronous ||
626 i915_reset_in_progress(&dev_priv->gpu_error)) {
627 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
628 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
629 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
630 POSTING_READ(RING_PP_DIR_BASE(ring));
631 return 0;
632 }
633
634 /* NB: TLBs must be flushed and invalidated before a switch */
635 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
636 if (ret)
637 return ret;
638
639 ret = intel_ring_begin(ring, 6);
640 if (ret)
641 return ret;
642
643 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
644 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
645 intel_ring_emit(ring, PP_DIR_DCLV_2G);
646 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
647 intel_ring_emit(ring, get_pd_offset(ppgtt));
648 intel_ring_emit(ring, MI_NOOP);
649 intel_ring_advance(ring);
650
90252e5c
BW
651 /* XXX: RCS is the only one to auto invalidate the TLBs? */
652 if (ring->id != RCS) {
653 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
654 if (ret)
655 return ret;
656 }
657
48a10389
BW
658 return 0;
659}
660
eeb9488e
BW
661static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
662 struct intel_ring_buffer *ring,
663 bool synchronous)
664{
665 struct drm_device *dev = ppgtt->base.dev;
666 struct drm_i915_private *dev_priv = dev->dev_private;
667
48a10389
BW
668 if (!synchronous)
669 return 0;
670
eeb9488e
BW
671 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
672 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
673
674 POSTING_READ(RING_PP_DIR_DCLV(ring));
675
676 return 0;
677}
678
679static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
680{
681 struct drm_device *dev = ppgtt->base.dev;
682 struct drm_i915_private *dev_priv = dev->dev_private;
3e302542 683 struct intel_ring_buffer *ring;
eeb9488e 684 int j, ret;
3e302542 685
eeb9488e
BW
686 for_each_ring(ring, dev_priv, j) {
687 I915_WRITE(RING_MODE_GEN7(ring),
688 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3e302542 689
d2ff7192
BW
690 /* We promise to do a switch later with FULL PPGTT. If this is
691 * aliasing, this is the one and only switch we'll do */
692 if (USES_FULL_PPGTT(dev))
693 continue;
6197349b 694
eeb9488e
BW
695 ret = ppgtt->switch_mm(ppgtt, ring, true);
696 if (ret)
697 goto err_out;
698 }
6197349b 699
eeb9488e 700 return 0;
6197349b 701
eeb9488e
BW
702err_out:
703 for_each_ring(ring, dev_priv, j)
704 I915_WRITE(RING_MODE_GEN7(ring),
705 _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
706 return ret;
707}
6197349b 708
b4a74e3a 709static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
3e302542 710{
a3d67d23 711 struct drm_device *dev = ppgtt->base.dev;
3e302542 712 drm_i915_private_t *dev_priv = dev->dev_private;
3e302542 713 struct intel_ring_buffer *ring;
b4a74e3a 714 uint32_t ecochk, ecobits;
3e302542 715 int i;
6197349b 716
b4a74e3a
BW
717 ecobits = I915_READ(GAC_ECO_BITS);
718 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
a65c2fcd 719
b4a74e3a
BW
720 ecochk = I915_READ(GAM_ECOCHK);
721 if (IS_HASWELL(dev)) {
722 ecochk |= ECOCHK_PPGTT_WB_HSW;
723 } else {
724 ecochk |= ECOCHK_PPGTT_LLC_IVB;
725 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
726 }
727 I915_WRITE(GAM_ECOCHK, ecochk);
a65c2fcd 728
b4a74e3a 729 for_each_ring(ring, dev_priv, i) {
eeb9488e 730 int ret;
6197349b 731 /* GFX_MODE is per-ring on gen7+ */
b4a74e3a
BW
732 I915_WRITE(RING_MODE_GEN7(ring),
733 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
d2ff7192
BW
734
735 /* We promise to do a switch later with FULL PPGTT. If this is
736 * aliasing, this is the one and only switch we'll do */
737 if (USES_FULL_PPGTT(dev))
738 continue;
739
eeb9488e
BW
740 ret = ppgtt->switch_mm(ppgtt, ring, true);
741 if (ret)
742 return ret;
6197349b
BW
743 }
744
b4a74e3a
BW
745 return 0;
746}
6197349b 747
b4a74e3a
BW
748static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
749{
750 struct drm_device *dev = ppgtt->base.dev;
751 drm_i915_private_t *dev_priv = dev->dev_private;
752 struct intel_ring_buffer *ring;
753 uint32_t ecochk, gab_ctl, ecobits;
754 int i;
a65c2fcd 755
b4a74e3a
BW
756 ecobits = I915_READ(GAC_ECO_BITS);
757 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
758 ECOBITS_PPGTT_CACHE64B);
6197349b 759
b4a74e3a
BW
760 gab_ctl = I915_READ(GAB_CTL);
761 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
762
763 ecochk = I915_READ(GAM_ECOCHK);
764 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
765
766 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
6197349b 767
b4a74e3a 768 for_each_ring(ring, dev_priv, i) {
eeb9488e
BW
769 int ret = ppgtt->switch_mm(ppgtt, ring, true);
770 if (ret)
771 return ret;
6197349b 772 }
b4a74e3a 773
b7c36d25 774 return 0;
6197349b
BW
775}
776
1d2a314c 777/* PPGTT support for Sandybdrige/Gen6 and later */
853ba5d2 778static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1d2a314c 779 unsigned first_entry,
828c7908
BW
780 unsigned num_entries,
781 bool use_scratch)
1d2a314c 782{
853ba5d2
BW
783 struct i915_hw_ppgtt *ppgtt =
784 container_of(vm, struct i915_hw_ppgtt, base);
e7c2b58b 785 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
a15326a5 786 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
7bddb01f
DV
787 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
788 unsigned last_pte, i;
1d2a314c 789
b35b380e 790 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
1d2a314c 791
7bddb01f
DV
792 while (num_entries) {
793 last_pte = first_pte + num_entries;
794 if (last_pte > I915_PPGTT_PT_ENTRIES)
795 last_pte = I915_PPGTT_PT_ENTRIES;
796
a15326a5 797 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
1d2a314c 798
7bddb01f
DV
799 for (i = first_pte; i < last_pte; i++)
800 pt_vaddr[i] = scratch_pte;
1d2a314c
DV
801
802 kunmap_atomic(pt_vaddr);
1d2a314c 803
7bddb01f
DV
804 num_entries -= last_pte - first_pte;
805 first_pte = 0;
a15326a5 806 act_pt++;
7bddb01f 807 }
1d2a314c
DV
808}
809
853ba5d2 810static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
def886c3
DV
811 struct sg_table *pages,
812 unsigned first_entry,
813 enum i915_cache_level cache_level)
814{
853ba5d2
BW
815 struct i915_hw_ppgtt *ppgtt =
816 container_of(vm, struct i915_hw_ppgtt, base);
e7c2b58b 817 gen6_gtt_pte_t *pt_vaddr;
a15326a5 818 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
6e995e23
ID
819 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
820 struct sg_page_iter sg_iter;
821
cc79714f 822 pt_vaddr = NULL;
6e995e23 823 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
cc79714f
CW
824 if (pt_vaddr == NULL)
825 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
6e995e23 826
cc79714f
CW
827 pt_vaddr[act_pte] =
828 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
829 cache_level, true);
6e995e23
ID
830 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
831 kunmap_atomic(pt_vaddr);
cc79714f 832 pt_vaddr = NULL;
a15326a5 833 act_pt++;
6e995e23 834 act_pte = 0;
def886c3 835 }
def886c3 836 }
cc79714f
CW
837 if (pt_vaddr)
838 kunmap_atomic(pt_vaddr);
def886c3
DV
839}
840
853ba5d2 841static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1d2a314c 842{
853ba5d2
BW
843 struct i915_hw_ppgtt *ppgtt =
844 container_of(vm, struct i915_hw_ppgtt, base);
3440d265
DV
845 int i;
846
7e0d96bc 847 list_del(&vm->global_link);
93bd8649 848 drm_mm_takedown(&ppgtt->base.mm);
c8d4c0d6 849 drm_mm_remove_node(&ppgtt->node);
93bd8649 850
3440d265
DV
851 if (ppgtt->pt_dma_addr) {
852 for (i = 0; i < ppgtt->num_pd_entries; i++)
853ba5d2 853 pci_unmap_page(ppgtt->base.dev->pdev,
3440d265
DV
854 ppgtt->pt_dma_addr[i],
855 4096, PCI_DMA_BIDIRECTIONAL);
856 }
857
858 kfree(ppgtt->pt_dma_addr);
859 for (i = 0; i < ppgtt->num_pd_entries; i++)
860 __free_page(ppgtt->pt_pages[i]);
861 kfree(ppgtt->pt_pages);
3440d265
DV
862}
863
864static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
865{
c8d4c0d6
BW
866#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
867#define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
853ba5d2 868 struct drm_device *dev = ppgtt->base.dev;
1d2a314c 869 struct drm_i915_private *dev_priv = dev->dev_private;
e3cc1995 870 bool retried = false;
c8d4c0d6 871 int i, ret;
1d2a314c 872
c8d4c0d6
BW
873 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
874 * allocator works in address space sizes, so it's multiplied by page
875 * size. We allocate at the top of the GTT to avoid fragmentation.
876 */
877 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
e3cc1995 878alloc:
c8d4c0d6
BW
879 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
880 &ppgtt->node, GEN6_PD_SIZE,
881 GEN6_PD_ALIGN, 0,
882 0, dev_priv->gtt.base.total,
883 DRM_MM_SEARCH_DEFAULT);
e3cc1995
BW
884 if (ret == -ENOSPC && !retried) {
885 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
886 GEN6_PD_SIZE, GEN6_PD_ALIGN,
d47c3ea2 887 I915_CACHE_NONE, 0);
e3cc1995
BW
888 if (ret)
889 return ret;
890
891 retried = true;
892 goto alloc;
893 }
c8d4c0d6
BW
894
895 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
896 DRM_DEBUG("Forced to use aperture for PDEs\n");
1d2a314c 897
08c45263 898 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
6670a5a5 899 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
48a10389 900 if (IS_GEN6(dev)) {
b4a74e3a 901 ppgtt->enable = gen6_ppgtt_enable;
48a10389 902 ppgtt->switch_mm = gen6_mm_switch;
90252e5c
BW
903 } else if (IS_HASWELL(dev)) {
904 ppgtt->enable = gen7_ppgtt_enable;
905 ppgtt->switch_mm = hsw_mm_switch;
48a10389 906 } else if (IS_GEN7(dev)) {
b4a74e3a 907 ppgtt->enable = gen7_ppgtt_enable;
48a10389
BW
908 ppgtt->switch_mm = gen7_mm_switch;
909 } else
b4a74e3a 910 BUG();
853ba5d2
BW
911 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
912 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
913 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
914 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
686e1f6f
BW
915 ppgtt->base.start = 0;
916 ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
a1e22653 917 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1d2a314c 918 GFP_KERNEL);
c8d4c0d6
BW
919 if (!ppgtt->pt_pages) {
920 drm_mm_remove_node(&ppgtt->node);
3440d265 921 return -ENOMEM;
c8d4c0d6 922 }
1d2a314c
DV
923
924 for (i = 0; i < ppgtt->num_pd_entries; i++) {
925 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
926 if (!ppgtt->pt_pages[i])
927 goto err_pt_alloc;
928 }
929
a1e22653 930 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
8d2e6308
BW
931 GFP_KERNEL);
932 if (!ppgtt->pt_dma_addr)
933 goto err_pt_alloc;
1d2a314c 934
8d2e6308
BW
935 for (i = 0; i < ppgtt->num_pd_entries; i++) {
936 dma_addr_t pt_addr;
211c568b 937
8d2e6308
BW
938 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
939 PCI_DMA_BIDIRECTIONAL);
1d2a314c 940
8d2e6308
BW
941 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
942 ret = -EIO;
943 goto err_pd_pin;
1d2a314c 944
211c568b 945 }
8d2e6308 946 ppgtt->pt_dma_addr[i] = pt_addr;
1d2a314c 947 }
1d2a314c 948
853ba5d2 949 ppgtt->base.clear_range(&ppgtt->base, 0,
828c7908 950 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
87d60b63 951 ppgtt->debug_dump = gen6_dump_ppgtt;
1d2a314c 952
c8d4c0d6
BW
953 DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
954 ppgtt->node.size >> 20,
955 ppgtt->node.start / PAGE_SIZE);
956 ppgtt->pd_offset =
957 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1d2a314c 958
1d2a314c
DV
959 return 0;
960
961err_pd_pin:
962 if (ppgtt->pt_dma_addr) {
963 for (i--; i >= 0; i--)
964 pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
965 4096, PCI_DMA_BIDIRECTIONAL);
966 }
967err_pt_alloc:
968 kfree(ppgtt->pt_dma_addr);
969 for (i = 0; i < ppgtt->num_pd_entries; i++) {
970 if (ppgtt->pt_pages[i])
971 __free_page(ppgtt->pt_pages[i]);
972 }
973 kfree(ppgtt->pt_pages);
c8d4c0d6 974 drm_mm_remove_node(&ppgtt->node);
3440d265
DV
975
976 return ret;
977}
978
246cbfb5 979int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
3440d265
DV
980{
981 struct drm_i915_private *dev_priv = dev->dev_private;
d6660add 982 int ret = 0;
3440d265 983
853ba5d2 984 ppgtt->base.dev = dev;
3440d265 985
3ed124b2
BW
986 if (INTEL_INFO(dev)->gen < 8)
987 ret = gen6_ppgtt_init(ppgtt);
8fe6bd23 988 else if (IS_GEN8(dev))
37aca44a 989 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
3ed124b2
BW
990 else
991 BUG();
992
c7c48dfd 993 if (!ret) {
7e0d96bc 994 struct drm_i915_private *dev_priv = dev->dev_private;
c7c48dfd 995 kref_init(&ppgtt->ref);
93bd8649
BW
996 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
997 ppgtt->base.total);
7e0d96bc
BW
998 i915_init_vm(dev_priv, &ppgtt->base);
999 if (INTEL_INFO(dev)->gen < 8) {
9f273d48 1000 gen6_write_pdes(ppgtt);
7e0d96bc
BW
1001 DRM_DEBUG("Adding PPGTT at offset %x\n",
1002 ppgtt->pd_offset << 10);
1003 }
93bd8649 1004 }
1d2a314c
DV
1005
1006 return ret;
1007}
1008
7e0d96bc 1009static void
6f65e29a
BW
1010ppgtt_bind_vma(struct i915_vma *vma,
1011 enum i915_cache_level cache_level,
1012 u32 flags)
1d2a314c 1013{
6f65e29a 1014 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1d2a314c 1015
6f65e29a 1016 WARN_ON(flags);
1d2a314c 1017
6f65e29a 1018 vma->vm->insert_entries(vma->vm, vma->obj->pages, entry, cache_level);
1d2a314c
DV
1019}
1020
7e0d96bc 1021static void ppgtt_unbind_vma(struct i915_vma *vma)
7bddb01f 1022{
6f65e29a 1023 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
7bddb01f 1024
6f65e29a
BW
1025 vma->vm->clear_range(vma->vm,
1026 entry,
1027 vma->obj->base.size >> PAGE_SHIFT,
1028 true);
7bddb01f
DV
1029}
1030
a81cc00c
BW
1031extern int intel_iommu_gfx_mapped;
1032/* Certain Gen5 chipsets require require idling the GPU before
1033 * unmapping anything from the GTT when VT-d is enabled.
1034 */
1035static inline bool needs_idle_maps(struct drm_device *dev)
1036{
1037#ifdef CONFIG_INTEL_IOMMU
1038 /* Query intel_iommu to see if we need the workaround. Presumably that
1039 * was loaded first.
1040 */
1041 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1042 return true;
1043#endif
1044 return false;
1045}
1046
5c042287
BW
1047static bool do_idling(struct drm_i915_private *dev_priv)
1048{
1049 bool ret = dev_priv->mm.interruptible;
1050
a81cc00c 1051 if (unlikely(dev_priv->gtt.do_idle_maps)) {
5c042287 1052 dev_priv->mm.interruptible = false;
b2da9fe5 1053 if (i915_gpu_idle(dev_priv->dev)) {
5c042287
BW
1054 DRM_ERROR("Couldn't idle GPU\n");
1055 /* Wait a bit, in hopes it avoids the hang */
1056 udelay(10);
1057 }
1058 }
1059
1060 return ret;
1061}
1062
1063static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1064{
a81cc00c 1065 if (unlikely(dev_priv->gtt.do_idle_maps))
5c042287
BW
1066 dev_priv->mm.interruptible = interruptible;
1067}
1068
828c7908
BW
1069void i915_check_and_clear_faults(struct drm_device *dev)
1070{
1071 struct drm_i915_private *dev_priv = dev->dev_private;
1072 struct intel_ring_buffer *ring;
1073 int i;
1074
1075 if (INTEL_INFO(dev)->gen < 6)
1076 return;
1077
1078 for_each_ring(ring, dev_priv, i) {
1079 u32 fault_reg;
1080 fault_reg = I915_READ(RING_FAULT_REG(ring));
1081 if (fault_reg & RING_FAULT_VALID) {
1082 DRM_DEBUG_DRIVER("Unexpected fault\n"
1083 "\tAddr: 0x%08lx\\n"
1084 "\tAddress space: %s\n"
1085 "\tSource ID: %d\n"
1086 "\tType: %d\n",
1087 fault_reg & PAGE_MASK,
1088 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1089 RING_FAULT_SRCID(fault_reg),
1090 RING_FAULT_FAULT_TYPE(fault_reg));
1091 I915_WRITE(RING_FAULT_REG(ring),
1092 fault_reg & ~RING_FAULT_VALID);
1093 }
1094 }
1095 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1096}
1097
1098void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1099{
1100 struct drm_i915_private *dev_priv = dev->dev_private;
1101
1102 /* Don't bother messing with faults pre GEN6 as we have little
1103 * documentation supporting that it's a good idea.
1104 */
1105 if (INTEL_INFO(dev)->gen < 6)
1106 return;
1107
1108 i915_check_and_clear_faults(dev);
1109
1110 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1111 dev_priv->gtt.base.start / PAGE_SIZE,
1112 dev_priv->gtt.base.total / PAGE_SIZE,
1113 false);
1114}
1115
76aaf220
DV
1116void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1117{
1118 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 1119 struct drm_i915_gem_object *obj;
80da2161 1120 struct i915_address_space *vm;
76aaf220 1121
828c7908
BW
1122 i915_check_and_clear_faults(dev);
1123
bee4a186 1124 /* First fill our portion of the GTT with scratch pages */
853ba5d2
BW
1125 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1126 dev_priv->gtt.base.start / PAGE_SIZE,
828c7908
BW
1127 dev_priv->gtt.base.total / PAGE_SIZE,
1128 true);
bee4a186 1129
35c20a60 1130 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
6f65e29a
BW
1131 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1132 &dev_priv->gtt.base);
1133 if (!vma)
1134 continue;
1135
2c22569b 1136 i915_gem_clflush_object(obj, obj->pin_display);
6f65e29a
BW
1137 /* The bind_vma code tries to be smart about tracking mappings.
1138 * Unfortunately above, we've just wiped out the mappings
1139 * without telling our object about it. So we need to fake it.
1140 */
1141 obj->has_global_gtt_mapping = 0;
1142 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
76aaf220
DV
1143 }
1144
80da2161
BW
1145
1146 if (INTEL_INFO(dev)->gen >= 8)
1147 return;
1148
1149 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1150 /* TODO: Perhaps it shouldn't be gen6 specific */
1151 if (i915_is_ggtt(vm)) {
1152 if (dev_priv->mm.aliasing_ppgtt)
1153 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1154 continue;
1155 }
1156
1157 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
76aaf220
DV
1158 }
1159
e76e9aeb 1160 i915_gem_chipset_flush(dev);
76aaf220 1161}
7c2e6fdf 1162
74163907 1163int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
7c2e6fdf 1164{
9da3da66 1165 if (obj->has_dma_mapping)
74163907 1166 return 0;
9da3da66
CW
1167
1168 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1169 obj->pages->sgl, obj->pages->nents,
1170 PCI_DMA_BIDIRECTIONAL))
1171 return -ENOSPC;
1172
1173 return 0;
7c2e6fdf
DV
1174}
1175
94ec8f61
BW
1176static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1177{
1178#ifdef writeq
1179 writeq(pte, addr);
1180#else
1181 iowrite32((u32)pte, addr);
1182 iowrite32(pte >> 32, addr + 4);
1183#endif
1184}
1185
1186static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1187 struct sg_table *st,
1188 unsigned int first_entry,
1189 enum i915_cache_level level)
1190{
1191 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1192 gen8_gtt_pte_t __iomem *gtt_entries =
1193 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1194 int i = 0;
1195 struct sg_page_iter sg_iter;
1196 dma_addr_t addr;
1197
1198 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1199 addr = sg_dma_address(sg_iter.sg) +
1200 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1201 gen8_set_pte(&gtt_entries[i],
1202 gen8_pte_encode(addr, level, true));
1203 i++;
1204 }
1205
1206 /*
1207 * XXX: This serves as a posting read to make sure that the PTE has
1208 * actually been updated. There is some concern that even though
1209 * registers and PTEs are within the same BAR that they are potentially
1210 * of NUMA access patterns. Therefore, even with the way we assume
1211 * hardware should work, we must keep this posting read for paranoia.
1212 */
1213 if (i != 0)
1214 WARN_ON(readq(&gtt_entries[i-1])
1215 != gen8_pte_encode(addr, level, true));
1216
94ec8f61
BW
1217 /* This next bit makes the above posting read even more important. We
1218 * want to flush the TLBs only after we're certain all the PTE updates
1219 * have finished.
1220 */
1221 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1222 POSTING_READ(GFX_FLSH_CNTL_GEN6);
94ec8f61
BW
1223}
1224
e76e9aeb
BW
1225/*
1226 * Binds an object into the global gtt with the specified cache level. The object
1227 * will be accessible to the GPU via commands whose operands reference offsets
1228 * within the global GTT as well as accessible by the GPU through the GMADR
1229 * mapped BAR (dev_priv->mm.gtt->gtt).
1230 */
853ba5d2 1231static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
7faf1ab2
DV
1232 struct sg_table *st,
1233 unsigned int first_entry,
1234 enum i915_cache_level level)
e76e9aeb 1235{
853ba5d2 1236 struct drm_i915_private *dev_priv = vm->dev->dev_private;
e7c2b58b
BW
1237 gen6_gtt_pte_t __iomem *gtt_entries =
1238 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
6e995e23
ID
1239 int i = 0;
1240 struct sg_page_iter sg_iter;
e76e9aeb
BW
1241 dma_addr_t addr;
1242
6e995e23 1243 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2db76d7c 1244 addr = sg_page_iter_dma_address(&sg_iter);
b35b380e 1245 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
6e995e23 1246 i++;
e76e9aeb
BW
1247 }
1248
e76e9aeb
BW
1249 /* XXX: This serves as a posting read to make sure that the PTE has
1250 * actually been updated. There is some concern that even though
1251 * registers and PTEs are within the same BAR that they are potentially
1252 * of NUMA access patterns. Therefore, even with the way we assume
1253 * hardware should work, we must keep this posting read for paranoia.
1254 */
1255 if (i != 0)
853ba5d2 1256 WARN_ON(readl(&gtt_entries[i-1]) !=
b35b380e 1257 vm->pte_encode(addr, level, true));
0f9b91c7
BW
1258
1259 /* This next bit makes the above posting read even more important. We
1260 * want to flush the TLBs only after we're certain all the PTE updates
1261 * have finished.
1262 */
1263 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1264 POSTING_READ(GFX_FLSH_CNTL_GEN6);
e76e9aeb
BW
1265}
1266
94ec8f61
BW
1267static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1268 unsigned int first_entry,
1269 unsigned int num_entries,
1270 bool use_scratch)
1271{
1272 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1273 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1274 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1275 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1276 int i;
1277
1278 if (WARN(num_entries > max_entries,
1279 "First entry = %d; Num entries = %d (max=%d)\n",
1280 first_entry, num_entries, max_entries))
1281 num_entries = max_entries;
1282
1283 scratch_pte = gen8_pte_encode(vm->scratch.addr,
1284 I915_CACHE_LLC,
1285 use_scratch);
1286 for (i = 0; i < num_entries; i++)
1287 gen8_set_pte(&gtt_base[i], scratch_pte);
1288 readl(gtt_base);
1289}
1290
853ba5d2 1291static void gen6_ggtt_clear_range(struct i915_address_space *vm,
7faf1ab2 1292 unsigned int first_entry,
828c7908
BW
1293 unsigned int num_entries,
1294 bool use_scratch)
7faf1ab2 1295{
853ba5d2 1296 struct drm_i915_private *dev_priv = vm->dev->dev_private;
e7c2b58b
BW
1297 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1298 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
a54c0c27 1299 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
7faf1ab2
DV
1300 int i;
1301
1302 if (WARN(num_entries > max_entries,
1303 "First entry = %d; Num entries = %d (max=%d)\n",
1304 first_entry, num_entries, max_entries))
1305 num_entries = max_entries;
1306
828c7908
BW
1307 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1308
7faf1ab2
DV
1309 for (i = 0; i < num_entries; i++)
1310 iowrite32(scratch_pte, &gtt_base[i]);
1311 readl(gtt_base);
1312}
1313
6f65e29a
BW
1314
1315static void i915_ggtt_bind_vma(struct i915_vma *vma,
1316 enum i915_cache_level cache_level,
1317 u32 unused)
7faf1ab2 1318{
6f65e29a 1319 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
7faf1ab2
DV
1320 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1321 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1322
6f65e29a
BW
1323 BUG_ON(!i915_is_ggtt(vma->vm));
1324 intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1325 vma->obj->has_global_gtt_mapping = 1;
7faf1ab2
DV
1326}
1327
853ba5d2 1328static void i915_ggtt_clear_range(struct i915_address_space *vm,
7faf1ab2 1329 unsigned int first_entry,
828c7908
BW
1330 unsigned int num_entries,
1331 bool unused)
7faf1ab2
DV
1332{
1333 intel_gtt_clear_range(first_entry, num_entries);
1334}
1335
6f65e29a
BW
1336static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1337{
1338 const unsigned int first = vma->node.start >> PAGE_SHIFT;
1339 const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
7faf1ab2 1340
6f65e29a
BW
1341 BUG_ON(!i915_is_ggtt(vma->vm));
1342 vma->obj->has_global_gtt_mapping = 0;
1343 intel_gtt_clear_range(first, size);
1344}
7faf1ab2 1345
6f65e29a
BW
1346static void ggtt_bind_vma(struct i915_vma *vma,
1347 enum i915_cache_level cache_level,
1348 u32 flags)
d5bd1449 1349{
6f65e29a 1350 struct drm_device *dev = vma->vm->dev;
7faf1ab2 1351 struct drm_i915_private *dev_priv = dev->dev_private;
6f65e29a
BW
1352 struct drm_i915_gem_object *obj = vma->obj;
1353 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
7faf1ab2 1354
6f65e29a
BW
1355 /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1356 * or we have a global mapping already but the cacheability flags have
1357 * changed, set the global PTEs.
1358 *
1359 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1360 * instead if none of the above hold true.
1361 *
1362 * NB: A global mapping should only be needed for special regions like
1363 * "gtt mappable", SNB errata, or if specified via special execbuf
1364 * flags. At all other times, the GPU will use the aliasing PPGTT.
1365 */
1366 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1367 if (!obj->has_global_gtt_mapping ||
1368 (cache_level != obj->cache_level)) {
1369 vma->vm->insert_entries(vma->vm, obj->pages, entry,
1370 cache_level);
1371 obj->has_global_gtt_mapping = 1;
1372 }
1373 }
d5bd1449 1374
6f65e29a
BW
1375 if (dev_priv->mm.aliasing_ppgtt &&
1376 (!obj->has_aliasing_ppgtt_mapping ||
1377 (cache_level != obj->cache_level))) {
1378 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1379 appgtt->base.insert_entries(&appgtt->base,
1380 vma->obj->pages, entry, cache_level);
1381 vma->obj->has_aliasing_ppgtt_mapping = 1;
1382 }
d5bd1449
CW
1383}
1384
6f65e29a 1385static void ggtt_unbind_vma(struct i915_vma *vma)
74163907 1386{
6f65e29a 1387 struct drm_device *dev = vma->vm->dev;
7faf1ab2 1388 struct drm_i915_private *dev_priv = dev->dev_private;
6f65e29a
BW
1389 struct drm_i915_gem_object *obj = vma->obj;
1390 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1391
1392 if (obj->has_global_gtt_mapping) {
1393 vma->vm->clear_range(vma->vm, entry,
1394 vma->obj->base.size >> PAGE_SHIFT,
1395 true);
1396 obj->has_global_gtt_mapping = 0;
1397 }
74898d7e 1398
6f65e29a
BW
1399 if (obj->has_aliasing_ppgtt_mapping) {
1400 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1401 appgtt->base.clear_range(&appgtt->base,
1402 entry,
1403 obj->base.size >> PAGE_SHIFT,
1404 true);
1405 obj->has_aliasing_ppgtt_mapping = 0;
1406 }
74163907
DV
1407}
1408
1409void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
7c2e6fdf 1410{
5c042287
BW
1411 struct drm_device *dev = obj->base.dev;
1412 struct drm_i915_private *dev_priv = dev->dev_private;
1413 bool interruptible;
1414
1415 interruptible = do_idling(dev_priv);
1416
9da3da66
CW
1417 if (!obj->has_dma_mapping)
1418 dma_unmap_sg(&dev->pdev->dev,
1419 obj->pages->sgl, obj->pages->nents,
1420 PCI_DMA_BIDIRECTIONAL);
5c042287
BW
1421
1422 undo_idling(dev_priv, interruptible);
7c2e6fdf 1423}
644ec02b 1424
42d6ab48
CW
1425static void i915_gtt_color_adjust(struct drm_mm_node *node,
1426 unsigned long color,
1427 unsigned long *start,
1428 unsigned long *end)
1429{
1430 if (node->color != color)
1431 *start += 4096;
1432
1433 if (!list_empty(&node->node_list)) {
1434 node = list_entry(node->node_list.next,
1435 struct drm_mm_node,
1436 node_list);
1437 if (node->allocated && node->color != color)
1438 *end -= 4096;
1439 }
1440}
fbe5d36e 1441
d7e5008f
BW
1442void i915_gem_setup_global_gtt(struct drm_device *dev,
1443 unsigned long start,
1444 unsigned long mappable_end,
1445 unsigned long end)
644ec02b 1446{
e78891ca
BW
1447 /* Let GEM Manage all of the aperture.
1448 *
1449 * However, leave one page at the end still bound to the scratch page.
1450 * There are a number of places where the hardware apparently prefetches
1451 * past the end of the object, and we've seen multiple hangs with the
1452 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1453 * aperture. One page should be enough to keep any prefetching inside
1454 * of the aperture.
1455 */
40d74980
BW
1456 struct drm_i915_private *dev_priv = dev->dev_private;
1457 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
ed2f3452
CW
1458 struct drm_mm_node *entry;
1459 struct drm_i915_gem_object *obj;
1460 unsigned long hole_start, hole_end;
644ec02b 1461
35451cb6
BW
1462 BUG_ON(mappable_end > end);
1463
ed2f3452 1464 /* Subtract the guard page ... */
40d74980 1465 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
42d6ab48 1466 if (!HAS_LLC(dev))
93bd8649 1467 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
644ec02b 1468
ed2f3452 1469 /* Mark any preallocated objects as occupied */
35c20a60 1470 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
40d74980 1471 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
b3a070cc 1472 int ret;
edd41a87 1473 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
c6cfb325
BW
1474 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1475
1476 WARN_ON(i915_gem_obj_ggtt_bound(obj));
40d74980 1477 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
c6cfb325 1478 if (ret)
b3a070cc 1479 DRM_DEBUG_KMS("Reservation failed\n");
ed2f3452
CW
1480 obj->has_global_gtt_mapping = 1;
1481 }
1482
853ba5d2
BW
1483 dev_priv->gtt.base.start = start;
1484 dev_priv->gtt.base.total = end - start;
644ec02b 1485
ed2f3452 1486 /* Clear any non-preallocated blocks */
40d74980 1487 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
853ba5d2 1488 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
ed2f3452
CW
1489 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1490 hole_start, hole_end);
828c7908 1491 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
ed2f3452
CW
1492 }
1493
1494 /* And finally clear the reserved guard page */
828c7908 1495 ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
e76e9aeb
BW
1496}
1497
d7e5008f
BW
1498void i915_gem_init_global_gtt(struct drm_device *dev)
1499{
1500 struct drm_i915_private *dev_priv = dev->dev_private;
1501 unsigned long gtt_size, mappable_size;
d7e5008f 1502
853ba5d2 1503 gtt_size = dev_priv->gtt.base.total;
93d18799 1504 mappable_size = dev_priv->gtt.mappable_end;
d7e5008f 1505
e78891ca 1506 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
e76e9aeb
BW
1507}
1508
1509static int setup_scratch_page(struct drm_device *dev)
1510{
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 struct page *page;
1513 dma_addr_t dma_addr;
1514
1515 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1516 if (page == NULL)
1517 return -ENOMEM;
1518 get_page(page);
1519 set_pages_uc(page, 1);
1520
1521#ifdef CONFIG_INTEL_IOMMU
1522 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1523 PCI_DMA_BIDIRECTIONAL);
1524 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1525 return -EINVAL;
1526#else
1527 dma_addr = page_to_phys(page);
1528#endif
853ba5d2
BW
1529 dev_priv->gtt.base.scratch.page = page;
1530 dev_priv->gtt.base.scratch.addr = dma_addr;
e76e9aeb
BW
1531
1532 return 0;
1533}
1534
1535static void teardown_scratch_page(struct drm_device *dev)
1536{
1537 struct drm_i915_private *dev_priv = dev->dev_private;
853ba5d2
BW
1538 struct page *page = dev_priv->gtt.base.scratch.page;
1539
1540 set_pages_wb(page, 1);
1541 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
e76e9aeb 1542 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
853ba5d2
BW
1543 put_page(page);
1544 __free_page(page);
e76e9aeb
BW
1545}
1546
1547static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1548{
1549 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1550 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1551 return snb_gmch_ctl << 20;
1552}
1553
9459d252
BW
1554static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1555{
1556 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1557 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1558 if (bdw_gmch_ctl)
1559 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3a2ffb65 1560 if (bdw_gmch_ctl > 4) {
d330a953 1561 WARN_ON(!i915.preliminary_hw_support);
3a2ffb65
BW
1562 return 4<<20;
1563 }
1564
9459d252
BW
1565 return bdw_gmch_ctl << 20;
1566}
1567
baa09f5f 1568static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
e76e9aeb
BW
1569{
1570 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1571 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1572 return snb_gmch_ctl << 25; /* 32 MB units */
1573}
1574
9459d252
BW
1575static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1576{
1577 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1578 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1579 return bdw_gmch_ctl << 25; /* 32 MB units */
1580}
1581
63340133
BW
1582static int ggtt_probe_common(struct drm_device *dev,
1583 size_t gtt_size)
1584{
1585 struct drm_i915_private *dev_priv = dev->dev_private;
1586 phys_addr_t gtt_bus_addr;
1587 int ret;
1588
1589 /* For Modern GENs the PTEs and register space are split in the BAR */
1590 gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1591 (pci_resource_len(dev->pdev, 0) / 2);
1592
1593 dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1594 if (!dev_priv->gtt.gsm) {
1595 DRM_ERROR("Failed to map the gtt page table\n");
1596 return -ENOMEM;
1597 }
1598
1599 ret = setup_scratch_page(dev);
1600 if (ret) {
1601 DRM_ERROR("Scratch setup failed\n");
1602 /* iounmap will also get called at remove, but meh */
1603 iounmap(dev_priv->gtt.gsm);
1604 }
1605
1606 return ret;
1607}
1608
fbe5d36e
BW
1609/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1610 * bits. When using advanced contexts each context stores its own PAT, but
1611 * writing this data shouldn't be harmful even in those cases. */
1612static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1613{
1614#define GEN8_PPAT_UC (0<<0)
1615#define GEN8_PPAT_WC (1<<0)
1616#define GEN8_PPAT_WT (2<<0)
1617#define GEN8_PPAT_WB (3<<0)
1618#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1619/* FIXME(BDW): Bspec is completely confused about cache control bits. */
1620#define GEN8_PPAT_LLC (1<<2)
1621#define GEN8_PPAT_LLCELLC (2<<2)
1622#define GEN8_PPAT_LLCeLLC (3<<2)
1623#define GEN8_PPAT_AGE(x) (x<<4)
1624#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1625 uint64_t pat;
1626
1627 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1628 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1629 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1630 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1631 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1632 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1633 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1634 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1635
1636 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1637 * write would work. */
1638 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1639 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1640}
1641
63340133
BW
1642static int gen8_gmch_probe(struct drm_device *dev,
1643 size_t *gtt_total,
1644 size_t *stolen,
1645 phys_addr_t *mappable_base,
1646 unsigned long *mappable_end)
1647{
1648 struct drm_i915_private *dev_priv = dev->dev_private;
1649 unsigned int gtt_size;
1650 u16 snb_gmch_ctl;
1651 int ret;
1652
1653 /* TODO: We're not aware of mappable constraints on gen8 yet */
1654 *mappable_base = pci_resource_start(dev->pdev, 2);
1655 *mappable_end = pci_resource_len(dev->pdev, 2);
1656
1657 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1658 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1659
1660 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1661
1662 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1663
1664 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
d31eb10e 1665 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
63340133 1666
fbe5d36e
BW
1667 gen8_setup_private_ppat(dev_priv);
1668
63340133
BW
1669 ret = ggtt_probe_common(dev, gtt_size);
1670
94ec8f61
BW
1671 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1672 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
63340133
BW
1673
1674 return ret;
1675}
1676
baa09f5f
BW
1677static int gen6_gmch_probe(struct drm_device *dev,
1678 size_t *gtt_total,
41907ddc
BW
1679 size_t *stolen,
1680 phys_addr_t *mappable_base,
1681 unsigned long *mappable_end)
e76e9aeb
BW
1682{
1683 struct drm_i915_private *dev_priv = dev->dev_private;
baa09f5f 1684 unsigned int gtt_size;
e76e9aeb 1685 u16 snb_gmch_ctl;
e76e9aeb
BW
1686 int ret;
1687
41907ddc
BW
1688 *mappable_base = pci_resource_start(dev->pdev, 2);
1689 *mappable_end = pci_resource_len(dev->pdev, 2);
1690
baa09f5f
BW
1691 /* 64/512MB is the current min/max we actually know of, but this is just
1692 * a coarse sanity check.
e76e9aeb 1693 */
41907ddc 1694 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
baa09f5f
BW
1695 DRM_ERROR("Unknown GMADR size (%lx)\n",
1696 dev_priv->gtt.mappable_end);
1697 return -ENXIO;
e76e9aeb
BW
1698 }
1699
e76e9aeb
BW
1700 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1701 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
e76e9aeb 1702 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
e76e9aeb 1703
c4ae25ec 1704 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
a93e4161 1705
63340133
BW
1706 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1707 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
e76e9aeb 1708
63340133 1709 ret = ggtt_probe_common(dev, gtt_size);
e76e9aeb 1710
853ba5d2
BW
1711 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1712 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
7faf1ab2 1713
e76e9aeb
BW
1714 return ret;
1715}
1716
853ba5d2 1717static void gen6_gmch_remove(struct i915_address_space *vm)
e76e9aeb 1718{
853ba5d2
BW
1719
1720 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
5ed16782
BW
1721
1722 drm_mm_takedown(&vm->mm);
853ba5d2
BW
1723 iounmap(gtt->gsm);
1724 teardown_scratch_page(vm->dev);
644ec02b 1725}
baa09f5f
BW
1726
1727static int i915_gmch_probe(struct drm_device *dev,
1728 size_t *gtt_total,
41907ddc
BW
1729 size_t *stolen,
1730 phys_addr_t *mappable_base,
1731 unsigned long *mappable_end)
baa09f5f
BW
1732{
1733 struct drm_i915_private *dev_priv = dev->dev_private;
1734 int ret;
1735
baa09f5f
BW
1736 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1737 if (!ret) {
1738 DRM_ERROR("failed to set up gmch\n");
1739 return -EIO;
1740 }
1741
41907ddc 1742 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
baa09f5f
BW
1743
1744 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
853ba5d2 1745 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
baa09f5f 1746
c0a7f818
CW
1747 if (unlikely(dev_priv->gtt.do_idle_maps))
1748 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
1749
baa09f5f
BW
1750 return 0;
1751}
1752
853ba5d2 1753static void i915_gmch_remove(struct i915_address_space *vm)
baa09f5f
BW
1754{
1755 intel_gmch_remove();
1756}
1757
1758int i915_gem_gtt_init(struct drm_device *dev)
1759{
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 struct i915_gtt *gtt = &dev_priv->gtt;
baa09f5f
BW
1762 int ret;
1763
baa09f5f 1764 if (INTEL_INFO(dev)->gen <= 5) {
b2f21b4d 1765 gtt->gtt_probe = i915_gmch_probe;
853ba5d2 1766 gtt->base.cleanup = i915_gmch_remove;
63340133 1767 } else if (INTEL_INFO(dev)->gen < 8) {
b2f21b4d 1768 gtt->gtt_probe = gen6_gmch_probe;
853ba5d2 1769 gtt->base.cleanup = gen6_gmch_remove;
4d15c145 1770 if (IS_HASWELL(dev) && dev_priv->ellc_size)
853ba5d2 1771 gtt->base.pte_encode = iris_pte_encode;
4d15c145 1772 else if (IS_HASWELL(dev))
853ba5d2 1773 gtt->base.pte_encode = hsw_pte_encode;
b2f21b4d 1774 else if (IS_VALLEYVIEW(dev))
853ba5d2 1775 gtt->base.pte_encode = byt_pte_encode;
350ec881
CW
1776 else if (INTEL_INFO(dev)->gen >= 7)
1777 gtt->base.pte_encode = ivb_pte_encode;
b2f21b4d 1778 else
350ec881 1779 gtt->base.pte_encode = snb_pte_encode;
63340133
BW
1780 } else {
1781 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1782 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
baa09f5f
BW
1783 }
1784
853ba5d2 1785 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
b2f21b4d 1786 &gtt->mappable_base, &gtt->mappable_end);
a54c0c27 1787 if (ret)
baa09f5f 1788 return ret;
baa09f5f 1789
853ba5d2
BW
1790 gtt->base.dev = dev;
1791
baa09f5f 1792 /* GMADR is the PCI mmio aperture into the global GTT. */
853ba5d2
BW
1793 DRM_INFO("Memory usable by graphics device = %zdM\n",
1794 gtt->base.total >> 20);
b2f21b4d
BW
1795 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1796 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
baa09f5f
BW
1797
1798 return 0;
1799}
6f65e29a
BW
1800
1801static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
1802 struct i915_address_space *vm)
1803{
1804 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1805 if (vma == NULL)
1806 return ERR_PTR(-ENOMEM);
1807
1808 INIT_LIST_HEAD(&vma->vma_link);
1809 INIT_LIST_HEAD(&vma->mm_list);
1810 INIT_LIST_HEAD(&vma->exec_list);
1811 vma->vm = vm;
1812 vma->obj = obj;
1813
1814 switch (INTEL_INFO(vm->dev)->gen) {
1815 case 8:
1816 case 7:
1817 case 6:
7e0d96bc
BW
1818 if (i915_is_ggtt(vm)) {
1819 vma->unbind_vma = ggtt_unbind_vma;
1820 vma->bind_vma = ggtt_bind_vma;
1821 } else {
1822 vma->unbind_vma = ppgtt_unbind_vma;
1823 vma->bind_vma = ppgtt_bind_vma;
1824 }
6f65e29a
BW
1825 break;
1826 case 5:
1827 case 4:
1828 case 3:
1829 case 2:
1830 BUG_ON(!i915_is_ggtt(vm));
1831 vma->unbind_vma = i915_ggtt_unbind_vma;
1832 vma->bind_vma = i915_ggtt_bind_vma;
1833 break;
1834 default:
1835 BUG();
1836 }
1837
1838 /* Keep GGTT vmas first to make debug easier */
1839 if (i915_is_ggtt(vm))
1840 list_add(&vma->vma_link, &obj->vma_list);
1841 else
1842 list_add_tail(&vma->vma_link, &obj->vma_list);
1843
1844 return vma;
1845}
1846
1847struct i915_vma *
1848i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
1849 struct i915_address_space *vm)
1850{
1851 struct i915_vma *vma;
1852
1853 vma = i915_gem_obj_to_vma(obj, vm);
1854 if (!vma)
1855 vma = __i915_gem_vma_create(obj, vm);
1856
1857 return vma;
1858}
This page took 0.341414 seconds and 5 git commands to generate.