drm/i915: Add helper functions to aid seqno -> request transition
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
CommitLineData
0260c420
BW
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
4d884705
DV
37struct drm_i915_file_private;
38
0260c420
BW
39typedef uint32_t gen6_gtt_pte_t;
40typedef uint64_t gen8_gtt_pte_t;
41typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
42
43#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44
45#define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
46/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
48#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
49#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50#define GEN6_PTE_CACHE_LLC (2 << 1)
51#define GEN6_PTE_UNCACHED (1 << 1)
52#define GEN6_PTE_VALID (1 << 0)
53
54#define GEN6_PPGTT_PD_ENTRIES 512
55#define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
56#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
57#define GEN6_PDE_VALID (1 << 0)
58
59#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
60
61#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
62#define BYT_PTE_WRITEABLE (1 << 1)
63
64/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
65 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
66 */
67#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
68 (((bits) & 0x8) << (11 - 3)))
69#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
70#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
71#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
72#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
73#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
74#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
75#define HSW_PTE_UNCACHED (0)
76#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
77#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
78
79/* GEN8 legacy style address is defined as a 3 level page table:
80 * 31:30 | 29:21 | 20:12 | 11:0
81 * PDPE | PDE | PTE | offset
82 * The difference as compared to normal x86 3 level page table is the PDPEs are
83 * programmed via register.
84 */
85#define GEN8_PDPE_SHIFT 30
86#define GEN8_PDPE_MASK 0x3
87#define GEN8_PDE_SHIFT 21
88#define GEN8_PDE_MASK 0x1ff
89#define GEN8_PTE_SHIFT 12
90#define GEN8_PTE_MASK 0x1ff
91#define GEN8_LEGACY_PDPS 4
92#define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
93#define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
94
95#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
96#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
97#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
98#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
99
ee0ce478 100#define CHV_PPAT_SNOOP (1<<6)
0260c420
BW
101#define GEN8_PPAT_AGE(x) (x<<4)
102#define GEN8_PPAT_LLCeLLC (3<<2)
103#define GEN8_PPAT_LLCELLC (2<<2)
104#define GEN8_PPAT_LLC (1<<2)
105#define GEN8_PPAT_WB (3<<0)
106#define GEN8_PPAT_WT (2<<0)
107#define GEN8_PPAT_WC (1<<0)
108#define GEN8_PPAT_UC (0<<0)
109#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
110#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
111
112enum i915_cache_level;
113/**
114 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
115 * VMA's presence cannot be guaranteed before binding, or after unbinding the
116 * object into/from the address space.
117 *
118 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
119 * will always be <= an objects lifetime. So object refcounting should cover us.
120 */
121struct i915_vma {
122 struct drm_mm_node node;
123 struct drm_i915_gem_object *obj;
124 struct i915_address_space *vm;
125
aff43766
TU
126 /** Flags and address space this VMA is bound to */
127#define GLOBAL_BIND (1<<0)
128#define LOCAL_BIND (1<<1)
129#define PTE_READ_ONLY (1<<2)
130 unsigned int bound : 4;
131
0260c420
BW
132 /** This object's place on the active/inactive lists */
133 struct list_head mm_list;
134
135 struct list_head vma_link; /* Link in the object's VMA list */
136
137 /** This vma's place in the batchbuffer or on the eviction list */
138 struct list_head exec_list;
139
140 /**
141 * Used for performing relocations during execbuffer insertion.
142 */
143 struct hlist_node exec_node;
144 unsigned long exec_handle;
145 struct drm_i915_gem_exec_object2 *exec_entry;
146
147 /**
148 * How many users have pinned this object in GTT space. The following
4feb7659
DV
149 * users can each hold at most one reference: pwrite/pread, execbuffer
150 * (objects are not allowed multiple times for the same batchbuffer),
151 * and the framebuffer code. When switching/pageflipping, the
152 * framebuffer code has at most two buffers pinned per crtc.
0260c420
BW
153 *
154 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
155 * bits with absolutely no headroom. So use 4 bits. */
156 unsigned int pin_count:4;
157#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
158
159 /** Unmap an object from an address space. This usually consists of
160 * setting the valid PTE entries to a reserved scratch page. */
161 void (*unbind_vma)(struct i915_vma *vma);
162 /* Map an object into an address space with the given cache flags. */
0260c420
BW
163 void (*bind_vma)(struct i915_vma *vma,
164 enum i915_cache_level cache_level,
165 u32 flags);
166};
167
168struct i915_address_space {
169 struct drm_mm mm;
170 struct drm_device *dev;
171 struct list_head global_link;
172 unsigned long start; /* Start offset always 0 for dri2 */
173 size_t total; /* size addr space maps (ex. 2GB for ggtt) */
174
175 struct {
176 dma_addr_t addr;
177 struct page *page;
178 } scratch;
179
180 /**
181 * List of objects currently involved in rendering.
182 *
183 * Includes buffers having the contents of their GPU caches
184 * flushed, not necessarily primitives. last_rendering_seqno
185 * represents when the rendering involved will be completed.
186 *
187 * A reference is held on the buffer while on this list.
188 */
189 struct list_head active_list;
190
191 /**
192 * LRU list of objects which are not in the ringbuffer and
193 * are ready to unbind, but are still in the GTT.
194 *
195 * last_rendering_seqno is 0 while an object is in this list.
196 *
197 * A reference is not held on the buffer while on this list,
198 * as merely being GTT-bound shouldn't prevent its being
199 * freed, and we'll pull it off the list in the free path.
200 */
201 struct list_head inactive_list;
202
203 /* FIXME: Need a more generic return type */
204 gen6_gtt_pte_t (*pte_encode)(dma_addr_t addr,
205 enum i915_cache_level level,
24f3a8cf 206 bool valid, u32 flags); /* Create a valid PTE */
0260c420
BW
207 void (*clear_range)(struct i915_address_space *vm,
208 uint64_t start,
209 uint64_t length,
210 bool use_scratch);
211 void (*insert_entries)(struct i915_address_space *vm,
212 struct sg_table *st,
213 uint64_t start,
24f3a8cf 214 enum i915_cache_level cache_level, u32 flags);
0260c420
BW
215 void (*cleanup)(struct i915_address_space *vm);
216};
217
218/* The Graphics Translation Table is the way in which GEN hardware translates a
219 * Graphics Virtual Address into a Physical Address. In addition to the normal
220 * collateral associated with any va->pa translations GEN hardware also has a
221 * portion of the GTT which can be mapped by the CPU and remain both coherent
222 * and correct (in cases like swizzling). That region is referred to as GMADR in
223 * the spec.
224 */
225struct i915_gtt {
226 struct i915_address_space base;
227 size_t stolen_size; /* Total size of stolen memory */
228
229 unsigned long mappable_end; /* End offset that we can CPU map */
230 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
231 phys_addr_t mappable_base; /* PA of our GMADR */
232
233 /** "Graphics Stolen Memory" holds the global PTEs */
234 void __iomem *gsm;
235
236 bool do_idle_maps;
237
238 int mtrr;
239
240 /* global gtt ops */
241 int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
242 size_t *stolen, phys_addr_t *mappable_base,
243 unsigned long *mappable_end);
244};
245
246struct i915_hw_ppgtt {
247 struct i915_address_space base;
248 struct kref ref;
249 struct drm_mm_node node;
250 unsigned num_pd_entries;
251 unsigned num_pd_pages; /* gen8+ */
252 union {
253 struct page **pt_pages;
254 struct page **gen8_pt_pages[GEN8_LEGACY_PDPS];
255 };
256 struct page *pd_pages;
257 union {
258 uint32_t pd_offset;
259 dma_addr_t pd_dma_addr[GEN8_LEGACY_PDPS];
260 };
261 union {
262 dma_addr_t *pt_dma_addr;
263 dma_addr_t *gen8_pt_dma_addr[4];
264 };
265
4d884705 266 struct drm_i915_file_private *file_priv;
0260c420
BW
267
268 int (*enable)(struct i915_hw_ppgtt *ppgtt);
269 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
6689c167 270 struct intel_engine_cs *ring);
0260c420
BW
271 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
272};
273
274int i915_gem_gtt_init(struct drm_device *dev);
275void i915_gem_init_global_gtt(struct drm_device *dev);
90d0a0e8 276void i915_global_gtt_cleanup(struct drm_device *dev);
0260c420 277
ee960be7
DV
278
279int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
82460d97 280int i915_ppgtt_init_hw(struct drm_device *dev);
ee960be7 281void i915_ppgtt_release(struct kref *kref);
4d884705
DV
282struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
283 struct drm_i915_file_private *fpriv);
ee960be7
DV
284static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
285{
286 if (ppgtt)
287 kref_get(&ppgtt->ref);
288}
289static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
290{
291 if (ppgtt)
292 kref_put(&ppgtt->ref, i915_ppgtt_release);
293}
0260c420
BW
294
295void i915_check_and_clear_faults(struct drm_device *dev);
296void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
297void i915_gem_restore_gtt_mappings(struct drm_device *dev);
298
299int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
300void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
301
302#endif
This page took 0.086193 seconds and 5 git commands to generate.