drm/i915: Remove mostly unused variable in intel_rotate_fb_obj_pages
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
CommitLineData
0260c420
BW
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
4d884705
DV
37struct drm_i915_file_private;
38
07749ef3
MT
39typedef uint32_t gen6_pte_t;
40typedef uint64_t gen8_pte_t;
41typedef uint64_t gen8_pde_t;
0260c420
BW
42
43#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44
07749ef3 45
0260c420
BW
46/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
48#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
49#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50#define GEN6_PTE_CACHE_LLC (2 << 1)
51#define GEN6_PTE_UNCACHED (1 << 1)
52#define GEN6_PTE_VALID (1 << 0)
53
07749ef3
MT
54#define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
55#define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
56#define I915_PDES 512
57#define I915_PDE_MASK (I915_PDES - 1)
678d96fb 58#define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
07749ef3
MT
59
60#define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
61#define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
0260c420 62#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
678d96fb 63#define GEN6_PDE_SHIFT 22
0260c420
BW
64#define GEN6_PDE_VALID (1 << 0)
65
66#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
67
68#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
69#define BYT_PTE_WRITEABLE (1 << 1)
70
71/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
72 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
73 */
74#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
75 (((bits) & 0x8) << (11 - 3)))
76#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
77#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
78#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
79#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
80#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
81#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
82#define HSW_PTE_UNCACHED (0)
83#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
84#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
85
86/* GEN8 legacy style address is defined as a 3 level page table:
87 * 31:30 | 29:21 | 20:12 | 11:0
88 * PDPE | PDE | PTE | offset
89 * The difference as compared to normal x86 3 level page table is the PDPEs are
90 * programmed via register.
91 */
92#define GEN8_PDPE_SHIFT 30
93#define GEN8_PDPE_MASK 0x3
94#define GEN8_PDE_SHIFT 21
95#define GEN8_PDE_MASK 0x1ff
96#define GEN8_PTE_SHIFT 12
97#define GEN8_PTE_MASK 0x1ff
76643600 98#define GEN8_LEGACY_PDPES 4
07749ef3 99#define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
0260c420
BW
100
101#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
102#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
103#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
104#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
105
ee0ce478 106#define CHV_PPAT_SNOOP (1<<6)
0260c420
BW
107#define GEN8_PPAT_AGE(x) (x<<4)
108#define GEN8_PPAT_LLCeLLC (3<<2)
109#define GEN8_PPAT_LLCELLC (2<<2)
110#define GEN8_PPAT_LLC (1<<2)
111#define GEN8_PPAT_WB (3<<0)
112#define GEN8_PPAT_WT (2<<0)
113#define GEN8_PPAT_WC (1<<0)
114#define GEN8_PPAT_UC (0<<0)
115#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
116#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
117
fe14d5f4
TU
118enum i915_ggtt_view_type {
119 I915_GGTT_VIEW_NORMAL = 0,
8bd7ef16
JL
120 I915_GGTT_VIEW_ROTATED,
121 I915_GGTT_VIEW_PARTIAL,
50470bb0
TU
122};
123
124struct intel_rotation_info {
125 unsigned int height;
126 unsigned int pitch;
127 uint32_t pixel_format;
128 uint64_t fb_modifier;
fe14d5f4
TU
129};
130
131struct i915_ggtt_view {
132 enum i915_ggtt_view_type type;
133
8bd7ef16
JL
134 union {
135 struct {
136 unsigned long offset;
137 unsigned int size;
138 } partial;
139 } params;
140
fe14d5f4 141 struct sg_table *pages;
50470bb0
TU
142
143 union {
144 struct intel_rotation_info rotation_info;
145 };
fe14d5f4
TU
146};
147
148extern const struct i915_ggtt_view i915_ggtt_view_normal;
9abc4648 149extern const struct i915_ggtt_view i915_ggtt_view_rotated;
fe14d5f4 150
0260c420 151enum i915_cache_level;
fe14d5f4 152
0260c420
BW
153/**
154 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
155 * VMA's presence cannot be guaranteed before binding, or after unbinding the
156 * object into/from the address space.
157 *
158 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
159 * will always be <= an objects lifetime. So object refcounting should cover us.
160 */
161struct i915_vma {
162 struct drm_mm_node node;
163 struct drm_i915_gem_object *obj;
164 struct i915_address_space *vm;
165
aff43766
TU
166 /** Flags and address space this VMA is bound to */
167#define GLOBAL_BIND (1<<0)
168#define LOCAL_BIND (1<<1)
aff43766
TU
169 unsigned int bound : 4;
170
fe14d5f4
TU
171 /**
172 * Support different GGTT views into the same object.
173 * This means there can be multiple VMA mappings per object and per VM.
174 * i915_ggtt_view_type is used to distinguish between those entries.
175 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
176 * assumed in GEM functions which take no ggtt view parameter.
177 */
178 struct i915_ggtt_view ggtt_view;
179
0260c420
BW
180 /** This object's place on the active/inactive lists */
181 struct list_head mm_list;
182
183 struct list_head vma_link; /* Link in the object's VMA list */
184
185 /** This vma's place in the batchbuffer or on the eviction list */
186 struct list_head exec_list;
187
188 /**
189 * Used for performing relocations during execbuffer insertion.
190 */
191 struct hlist_node exec_node;
192 unsigned long exec_handle;
193 struct drm_i915_gem_exec_object2 *exec_entry;
194
195 /**
196 * How many users have pinned this object in GTT space. The following
4feb7659
DV
197 * users can each hold at most one reference: pwrite/pread, execbuffer
198 * (objects are not allowed multiple times for the same batchbuffer),
199 * and the framebuffer code. When switching/pageflipping, the
200 * framebuffer code has at most two buffers pinned per crtc.
0260c420
BW
201 *
202 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
203 * bits with absolutely no headroom. So use 4 bits. */
204 unsigned int pin_count:4;
205#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
0260c420
BW
206};
207
ec565b3c 208struct i915_page_table {
d7b3de91 209 struct page *page;
7324cc04 210 dma_addr_t daddr;
678d96fb
BW
211
212 unsigned long *used_ptes;
d7b3de91
BW
213};
214
ec565b3c 215struct i915_page_directory {
d7b3de91 216 struct page *page; /* NULL for GEN6-GEN7 */
7324cc04
BW
217 union {
218 uint32_t pd_offset;
219 dma_addr_t daddr;
220 };
221
33c8819f 222 unsigned long *used_pdes;
ec565b3c 223 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
d7b3de91
BW
224};
225
ec565b3c 226struct i915_page_directory_pointer {
d7b3de91 227 /* struct page *page; */
33c8819f 228 DECLARE_BITMAP(used_pdpes, GEN8_LEGACY_PDPES);
ec565b3c 229 struct i915_page_directory *page_directory[GEN8_LEGACY_PDPES];
d7b3de91
BW
230};
231
0260c420
BW
232struct i915_address_space {
233 struct drm_mm mm;
234 struct drm_device *dev;
235 struct list_head global_link;
236 unsigned long start; /* Start offset always 0 for dri2 */
237 size_t total; /* size addr space maps (ex. 2GB for ggtt) */
238
239 struct {
240 dma_addr_t addr;
241 struct page *page;
242 } scratch;
243
244 /**
245 * List of objects currently involved in rendering.
246 *
247 * Includes buffers having the contents of their GPU caches
97b2a6a1 248 * flushed, not necessarily primitives. last_read_req
0260c420
BW
249 * represents when the rendering involved will be completed.
250 *
251 * A reference is held on the buffer while on this list.
252 */
253 struct list_head active_list;
254
255 /**
256 * LRU list of objects which are not in the ringbuffer and
257 * are ready to unbind, but are still in the GTT.
258 *
97b2a6a1 259 * last_read_req is NULL while an object is in this list.
0260c420
BW
260 *
261 * A reference is not held on the buffer while on this list,
262 * as merely being GTT-bound shouldn't prevent its being
263 * freed, and we'll pull it off the list in the free path.
264 */
265 struct list_head inactive_list;
266
267 /* FIXME: Need a more generic return type */
07749ef3
MT
268 gen6_pte_t (*pte_encode)(dma_addr_t addr,
269 enum i915_cache_level level,
270 bool valid, u32 flags); /* Create a valid PTE */
f329f5f6
DV
271 /* flags for pte_encode */
272#define PTE_READ_ONLY (1<<0)
678d96fb
BW
273 int (*allocate_va_range)(struct i915_address_space *vm,
274 uint64_t start,
275 uint64_t length);
0260c420
BW
276 void (*clear_range)(struct i915_address_space *vm,
277 uint64_t start,
278 uint64_t length,
279 bool use_scratch);
280 void (*insert_entries)(struct i915_address_space *vm,
281 struct sg_table *st,
282 uint64_t start,
24f3a8cf 283 enum i915_cache_level cache_level, u32 flags);
0260c420 284 void (*cleanup)(struct i915_address_space *vm);
777dc5bb
DV
285 /** Unmap an object from an address space. This usually consists of
286 * setting the valid PTE entries to a reserved scratch page. */
287 void (*unbind_vma)(struct i915_vma *vma);
288 /* Map an object into an address space with the given cache flags. */
70b9f6f8
DV
289 int (*bind_vma)(struct i915_vma *vma,
290 enum i915_cache_level cache_level,
291 u32 flags);
0260c420
BW
292};
293
294/* The Graphics Translation Table is the way in which GEN hardware translates a
295 * Graphics Virtual Address into a Physical Address. In addition to the normal
296 * collateral associated with any va->pa translations GEN hardware also has a
297 * portion of the GTT which can be mapped by the CPU and remain both coherent
298 * and correct (in cases like swizzling). That region is referred to as GMADR in
299 * the spec.
300 */
301struct i915_gtt {
302 struct i915_address_space base;
303 size_t stolen_size; /* Total size of stolen memory */
304
305 unsigned long mappable_end; /* End offset that we can CPU map */
306 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
307 phys_addr_t mappable_base; /* PA of our GMADR */
308
309 /** "Graphics Stolen Memory" holds the global PTEs */
310 void __iomem *gsm;
311
312 bool do_idle_maps;
313
314 int mtrr;
315
316 /* global gtt ops */
317 int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
318 size_t *stolen, phys_addr_t *mappable_base,
319 unsigned long *mappable_end);
320};
321
322struct i915_hw_ppgtt {
323 struct i915_address_space base;
324 struct kref ref;
325 struct drm_mm_node node;
563222a7 326 unsigned long pd_dirty_rings;
d7b3de91 327 union {
ec565b3c
MT
328 struct i915_page_directory_pointer pdp;
329 struct i915_page_directory pd;
d7b3de91 330 };
0260c420 331
ec565b3c 332 struct i915_page_table *scratch_pt;
7cb6d7ac 333 struct i915_page_directory *scratch_pd;
4933d519 334
4d884705 335 struct drm_i915_file_private *file_priv;
0260c420 336
678d96fb
BW
337 gen6_pte_t __iomem *pd_addr;
338
0260c420
BW
339 int (*enable)(struct i915_hw_ppgtt *ppgtt);
340 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
e85b26dc 341 struct drm_i915_gem_request *req);
0260c420
BW
342 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
343};
344
678d96fb
BW
345/* For each pde iterates over every pde between from start until start + length.
346 * If start, and start+length are not perfectly divisible, the macro will round
347 * down, and up as needed. The macro modifies pde, start, and length. Dev is
348 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
349 * and length = 2G effectively iterates over every PDE in the system.
350 *
351 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
352 */
353#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
fdc454c1
MT
354 for (iter = gen6_pde_index(start); \
355 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
356 iter++, \
678d96fb
BW
357 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
358 temp = min_t(unsigned, temp, length), \
359 start += temp, length -= temp)
360
09942c65
MT
361#define gen6_for_all_pdes(pt, ppgtt, iter) \
362 for (iter = 0; \
363 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
364 iter++)
365
678d96fb
BW
366static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
367{
368 const uint32_t mask = NUM_PTE(pde_shift) - 1;
369
370 return (address >> PAGE_SHIFT) & mask;
371}
372
373/* Helper to counts the number of PTEs within the given length. This count
374 * does not cross a page table boundary, so the max value would be
375 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
376*/
377static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
378 uint32_t pde_shift)
379{
380 const uint64_t mask = ~((1 << pde_shift) - 1);
381 uint64_t end;
382
383 WARN_ON(length == 0);
384 WARN_ON(offset_in_page(addr|length));
385
386 end = addr + length;
387
388 if ((addr & mask) != (end & mask))
389 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
390
391 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
392}
393
394static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
395{
396 return (addr >> shift) & I915_PDE_MASK;
397}
398
399static inline uint32_t gen6_pte_index(uint32_t addr)
400{
401 return i915_pte_index(addr, GEN6_PDE_SHIFT);
402}
403
404static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
405{
406 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
407}
408
409static inline uint32_t gen6_pde_index(uint32_t addr)
410{
411 return i915_pde_index(addr, GEN6_PDE_SHIFT);
412}
413
9271d959
MT
414/* Equivalent to the gen6 version, For each pde iterates over every pde
415 * between from start until start + length. On gen8+ it simply iterates
416 * over every page directory entry in a page directory.
417 */
418#define gen8_for_each_pde(pt, pd, start, length, temp, iter) \
419 for (iter = gen8_pde_index(start); \
420 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
421 iter++, \
422 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start, \
423 temp = min(temp, length), \
424 start += temp, length -= temp)
425
426#define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter) \
427 for (iter = gen8_pdpe_index(start); \
428 pd = (pdp)->page_directory[iter], length > 0 && iter < GEN8_LEGACY_PDPES; \
429 iter++, \
430 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start, \
431 temp = min(temp, length), \
432 start += temp, length -= temp)
433
434/* Clamp length to the next page_directory boundary */
435static inline uint64_t gen8_clamp_pd(uint64_t start, uint64_t length)
436{
437 uint64_t next_pd = ALIGN(start + 1, 1 << GEN8_PDPE_SHIFT);
438
439 if (next_pd > (start + length))
440 return length;
441
442 return next_pd - start;
443}
444
445static inline uint32_t gen8_pte_index(uint64_t address)
446{
447 return i915_pte_index(address, GEN8_PDE_SHIFT);
448}
449
450static inline uint32_t gen8_pde_index(uint64_t address)
451{
452 return i915_pde_index(address, GEN8_PDE_SHIFT);
453}
454
455static inline uint32_t gen8_pdpe_index(uint64_t address)
456{
457 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
458}
459
460static inline uint32_t gen8_pml4e_index(uint64_t address)
461{
462 WARN_ON(1); /* For 64B */
463 return 0;
464}
465
33c8819f
MT
466static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
467{
468 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
469}
470
0260c420
BW
471int i915_gem_gtt_init(struct drm_device *dev);
472void i915_gem_init_global_gtt(struct drm_device *dev);
90d0a0e8 473void i915_global_gtt_cleanup(struct drm_device *dev);
0260c420 474
ee960be7
DV
475
476int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
82460d97 477int i915_ppgtt_init_hw(struct drm_device *dev);
b3dd6b96 478int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
ee960be7 479void i915_ppgtt_release(struct kref *kref);
4d884705
DV
480struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
481 struct drm_i915_file_private *fpriv);
ee960be7
DV
482static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
483{
484 if (ppgtt)
485 kref_get(&ppgtt->ref);
486}
487static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
488{
489 if (ppgtt)
490 kref_put(&ppgtt->ref, i915_ppgtt_release);
491}
0260c420
BW
492
493void i915_check_and_clear_faults(struct drm_device *dev);
494void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
495void i915_gem_restore_gtt_mappings(struct drm_device *dev);
496
497int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
498void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
499
9abc4648
JL
500static inline bool
501i915_ggtt_view_equal(const struct i915_ggtt_view *a,
502 const struct i915_ggtt_view *b)
503{
504 if (WARN_ON(!a || !b))
505 return false;
506
8bd7ef16
JL
507 if (a->type != b->type)
508 return false;
509 if (a->type == I915_GGTT_VIEW_PARTIAL)
510 return !memcmp(&a->params, &b->params, sizeof(a->params));
511 return true;
9abc4648
JL
512}
513
91e6711e
JL
514size_t
515i915_ggtt_view_size(struct drm_i915_gem_object *obj,
516 const struct i915_ggtt_view *view);
517
0260c420 518#endif
This page took 0.131565 seconds and 5 git commands to generate.