Merge tag 'v3.7-rc2' into drm-intel-next-queued
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_tiling.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
760285e7
DH
28#include <linux/string.h>
29#include <linux/bitops.h>
30#include <drm/drmP.h>
31#include <drm/i915_drm.h>
673a394b
EA
32#include "i915_drv.h"
33
34/** @file i915_gem_tiling.c
35 *
36 * Support for managing tiling state of buffer objects.
37 *
38 * The idea behind tiling is to increase cache hit rates by rearranging
39 * pixel data so that a group of pixel accesses are in the same cacheline.
40 * Performance improvement from doing this on the back/depth buffer are on
41 * the order of 30%.
42 *
43 * Intel architectures make this somewhat more complicated, though, by
44 * adjustments made to addressing of data when the memory is in interleaved
45 * mode (matched pairs of DIMMS) to improve memory bandwidth.
46 * For interleaved memory, the CPU sends every sequential 64 bytes
47 * to an alternate memory channel so it can get the bandwidth from both.
48 *
49 * The GPU also rearranges its accesses for increased bandwidth to interleaved
50 * memory, and it matches what the CPU does for non-tiled. However, when tiled
51 * it does it a little differently, since one walks addresses not just in the
52 * X direction but also Y. So, along with alternating channels when bit
53 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
54 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
55 * are common to both the 915 and 965-class hardware.
56 *
57 * The CPU also sometimes XORs in higher bits as well, to improve
58 * bandwidth doing strided access like we do so frequently in graphics. This
59 * is called "Channel XOR Randomization" in the MCH documentation. The result
60 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
61 * decode.
62 *
63 * All of this bit 6 XORing has an effect on our memory management,
64 * as we need to make sure that the 3d driver can correctly address object
65 * contents.
66 *
67 * If we don't have interleaved memory, all tiling is safe and no swizzling is
68 * required.
69 *
70 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
71 * 17 is not just a page offset, so as we page an objet out and back in,
72 * individual pages in it will have different bit 17 addresses, resulting in
73 * each 64 bytes being swapped with its neighbor!
74 *
75 * Otherwise, if interleaved, we have to tell the 3d driver what the address
76 * swizzling it needs to do is, since it's writing with the CPU to the pages
77 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
78 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
79 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
80 * to match what the GPU expects.
81 */
82
83/**
84 * Detects bit 6 swizzling of address lookup between IGD access and CPU
85 * access through main memory.
86 */
87void
88i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
89{
90 drm_i915_private_t *dev_priv = dev->dev_private;
91 uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
92 uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
93
7f661341
JB
94 if (IS_VALLEYVIEW(dev)) {
95 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
96 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
97 } else if (INTEL_INFO(dev)->gen >= 6) {
f691e2f4
DV
98 uint32_t dimm_c0, dimm_c1;
99 dimm_c0 = I915_READ(MAD_DIMM_C0);
100 dimm_c1 = I915_READ(MAD_DIMM_C1);
101 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
102 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
103 /* Enable swizzling when the channels are populated with
104 * identically sized dimms. We don't need to check the 3rd
105 * channel because no cpu with gpu attached ships in that
106 * configuration. Also, swizzling only makes sense for 2
107 * channels anyway. */
108 if (dimm_c0 == dimm_c1) {
109 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
110 swizzle_y = I915_BIT_6_SWIZZLE_9;
111 } else {
112 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
113 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
114 }
acc83eb5 115 } else if (IS_GEN5(dev)) {
f2b115e6 116 /* On Ironlake whatever DRAM config, GPU always do
553bd149
ZW
117 * same swizzling setup.
118 */
119 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
120 swizzle_y = I915_BIT_6_SWIZZLE_9;
a6c45cf0 121 } else if (IS_GEN2(dev)) {
673a394b
EA
122 /* As far as we know, the 865 doesn't have these bit 6
123 * swizzling issues.
124 */
125 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
126 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
c9c4b6f6 127 } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
673a394b
EA
128 uint32_t dcc;
129
c9c4b6f6 130 /* On 9xx chipsets, channel interleave by the CPU is
568d9a8f
EA
131 * determined by DCC. For single-channel, neither the CPU
132 * nor the GPU do swizzling. For dual channel interleaved,
133 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
134 * 9 for Y tiled. The CPU's interleave is independent, and
135 * can be based on either bit 11 (haven't seen this yet) or
136 * bit 17 (common).
673a394b
EA
137 */
138 dcc = I915_READ(DCC);
139 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
140 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
141 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
142 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
143 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
144 break;
145 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
568d9a8f
EA
146 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
147 /* This is the base swizzling by the GPU for
148 * tiled buffers.
149 */
673a394b
EA
150 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
151 swizzle_y = I915_BIT_6_SWIZZLE_9;
568d9a8f
EA
152 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
153 /* Bit 11 swizzling by the CPU in addition. */
673a394b
EA
154 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
155 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
156 } else {
568d9a8f 157 /* Bit 17 swizzling by the CPU in addition. */
280b713b
EA
158 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
159 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
673a394b
EA
160 }
161 break;
162 }
163 if (dcc == 0xffffffff) {
164 DRM_ERROR("Couldn't read from MCHBAR. "
165 "Disabling tiling.\n");
166 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
167 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
168 }
169 } else {
170 /* The 965, G33, and newer, have a very flexible memory
171 * configuration. It will enable dual-channel mode
172 * (interleaving) on as much memory as it can, and the GPU
173 * will additionally sometimes enable different bit 6
174 * swizzling for tiled objects from the CPU.
175 *
176 * Here's what I found on the G965:
177 * slot fill memory size swizzling
178 * 0A 0B 1A 1B 1-ch 2-ch
179 * 512 0 0 0 512 0 O
180 * 512 0 512 0 16 1008 X
181 * 512 0 0 512 16 1008 X
182 * 0 512 0 512 16 1008 X
183 * 1024 1024 1024 0 2048 1024 O
184 *
185 * We could probably detect this based on either the DRB
186 * matching, which was the case for the swizzling required in
187 * the table above, or from the 1-ch value being less than
188 * the minimum size of a rank.
189 */
190 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
191 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
192 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
193 } else {
194 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
195 swizzle_y = I915_BIT_6_SWIZZLE_9;
196 }
197 }
198
199 dev_priv->mm.bit_6_swizzle_x = swizzle_x;
200 dev_priv->mm.bit_6_swizzle_y = swizzle_y;
201}
202
0f973f27 203/* Check pitch constriants for all chips & tiling formats */
a00b10c3 204static bool
0f973f27
JB
205i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
206{
0ee537ab 207 int tile_width;
0f973f27
JB
208
209 /* Linear is always fine */
210 if (tiling_mode == I915_TILING_NONE)
211 return true;
212
a6c45cf0 213 if (IS_GEN2(dev) ||
e76a16de 214 (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
0f973f27
JB
215 tile_width = 128;
216 else
217 tile_width = 512;
218
8d7773a3 219 /* check maximum stride & object size */
a6c45cf0 220 if (INTEL_INFO(dev)->gen >= 4) {
8d7773a3
DV
221 /* i965 stores the end address of the gtt mapping in the fence
222 * reg, so dont bother to check the size */
223 if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
224 return false;
a6c45cf0 225 } else {
c36a2a6d 226 if (stride > 8192)
8d7773a3 227 return false;
e76a16de 228
c36a2a6d
DV
229 if (IS_GEN3(dev)) {
230 if (size > I830_FENCE_MAX_SIZE_VAL << 20)
231 return false;
232 } else {
233 if (size > I830_FENCE_MAX_SIZE_VAL << 19)
234 return false;
235 }
8d7773a3
DV
236 }
237
0f973f27 238 /* 965+ just needs multiples of tile width */
a6c45cf0 239 if (INTEL_INFO(dev)->gen >= 4) {
0f973f27
JB
240 if (stride & (tile_width - 1))
241 return false;
242 return true;
243 }
244
245 /* Pre-965 needs power of two tile widths */
246 if (stride < tile_width)
247 return false;
248
249 if (stride & (stride - 1))
250 return false;
251
0f973f27
JB
252 return true;
253}
254
a00b10c3
CW
255/* Is the current GTT allocation valid for the change in tiling? */
256static bool
05394f39 257i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
52dc7d32 258{
a00b10c3 259 u32 size;
52dc7d32
CW
260
261 if (tiling_mode == I915_TILING_NONE)
262 return true;
263
05394f39 264 if (INTEL_INFO(obj->base.dev)->gen >= 4)
a6c45cf0
CW
265 return true;
266
05394f39
CW
267 if (INTEL_INFO(obj->base.dev)->gen == 3) {
268 if (obj->gtt_offset & ~I915_FENCE_START_MASK)
df153158
CW
269 return false;
270 } else {
05394f39 271 if (obj->gtt_offset & ~I830_FENCE_START_MASK)
df153158
CW
272 return false;
273 }
274
a00b10c3
CW
275 /*
276 * Previous chips need to be aligned to the size of the smallest
277 * fence register that can contain the object.
278 */
05394f39 279 if (INTEL_INFO(obj->base.dev)->gen == 3)
a00b10c3
CW
280 size = 1024*1024;
281 else
282 size = 512*1024;
283
05394f39 284 while (size < obj->base.size)
a00b10c3
CW
285 size <<= 1;
286
05394f39 287 if (obj->gtt_space->size != size)
a6c45cf0
CW
288 return false;
289
05394f39 290 if (obj->gtt_offset & (size - 1))
df153158 291 return false;
52dc7d32
CW
292
293 return true;
294}
295
673a394b
EA
296/**
297 * Sets the tiling mode of an object, returning the required swizzling of
298 * bit 6 of addresses in the object.
299 */
300int
301i915_gem_set_tiling(struct drm_device *dev, void *data,
05394f39 302 struct drm_file *file)
673a394b
EA
303{
304 struct drm_i915_gem_set_tiling *args = data;
305 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 306 struct drm_i915_gem_object *obj;
47ae63e0 307 int ret = 0;
673a394b 308
05394f39 309 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 310 if (&obj->base == NULL)
bf79cb91 311 return -ENOENT;
673a394b 312
05394f39
CW
313 if (!i915_tiling_ok(dev,
314 args->stride, obj->base.size, args->tiling_mode)) {
315 drm_gem_object_unreference_unlocked(&obj->base);
0f973f27 316 return -EINVAL;
72daad40 317 }
0f973f27 318
05394f39
CW
319 if (obj->pin_count) {
320 drm_gem_object_unreference_unlocked(&obj->base);
31770bd4
DV
321 return -EBUSY;
322 }
323
673a394b 324 if (args->tiling_mode == I915_TILING_NONE) {
673a394b 325 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
52dc7d32 326 args->stride = 0;
673a394b
EA
327 } else {
328 if (args->tiling_mode == I915_TILING_X)
329 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
330 else
331 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
280b713b
EA
332
333 /* Hide bit 17 swizzling from the user. This prevents old Mesa
334 * from aborting the application on sw fallbacks to bit 17,
335 * and we use the pread/pwrite bit17 paths to swizzle for it.
336 * If there was a user that was relying on the swizzle
337 * information for drm_intel_bo_map()ed reads/writes this would
338 * break it, but we don't have any of those.
339 */
340 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
341 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
342 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
343 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
344
673a394b
EA
345 /* If we can't handle the swizzling, make it untiled. */
346 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
347 args->tiling_mode = I915_TILING_NONE;
348 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
52dc7d32 349 args->stride = 0;
673a394b
EA
350 }
351 }
0f973f27 352
52dc7d32 353 mutex_lock(&dev->struct_mutex);
05394f39
CW
354 if (args->tiling_mode != obj->tiling_mode ||
355 args->stride != obj->stride) {
52dc7d32
CW
356 /* We need to rebind the object if its current allocation
357 * no longer meets the alignment restrictions for its new
358 * tiling mode. Otherwise we can just leave it alone, but
1869b620
CW
359 * need to ensure that any fence register is updated before
360 * the next fenced (either through the GTT or by the BLT unit
361 * on older GPUs) access.
5d82e3e6
CW
362 *
363 * After updating the tiling parameters, we then flag whether
364 * we need to update an associated fence register. Note this
365 * has to also include the unfenced register the GPU uses
366 * whilst executing a fenced command for an untiled object.
0f973f27 367 */
fe305198 368
d9e86c0e
CW
369 obj->map_and_fenceable =
370 obj->gtt_space == NULL ||
371 (obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
372 i915_gem_object_fence_ok(obj, args->tiling_mode));
52dc7d32 373
467cffba
CW
374 /* Rebind if we need a change of alignment */
375 if (!obj->map_and_fenceable) {
376 u32 unfenced_alignment =
e28f8711
CW
377 i915_gem_get_unfenced_gtt_alignment(dev,
378 obj->base.size,
379 args->tiling_mode);
467cffba
CW
380 if (obj->gtt_offset & (unfenced_alignment - 1))
381 ret = i915_gem_object_unbind(obj);
382 }
383
384 if (ret == 0) {
5d82e3e6
CW
385 obj->fence_dirty =
386 obj->fenced_gpu_access ||
387 obj->fence_reg != I915_FENCE_REG_NONE;
388
467cffba
CW
389 obj->tiling_mode = args->tiling_mode;
390 obj->stride = args->stride;
1869b620
CW
391
392 /* Force the fence to be reacquired for GTT access */
393 i915_gem_release_mmap(obj);
467cffba 394 }
0f973f27 395 }
467cffba
CW
396 /* we have to maintain this existing ABI... */
397 args->stride = obj->stride;
398 args->tiling_mode = obj->tiling_mode;
05394f39 399 drm_gem_object_unreference(&obj->base);
d6873102 400 mutex_unlock(&dev->struct_mutex);
673a394b 401
467cffba 402 return ret;
673a394b
EA
403}
404
405/**
406 * Returns the current tiling mode and required bit 6 swizzling for the object.
407 */
408int
409i915_gem_get_tiling(struct drm_device *dev, void *data,
05394f39 410 struct drm_file *file)
673a394b
EA
411{
412 struct drm_i915_gem_get_tiling *args = data;
413 drm_i915_private_t *dev_priv = dev->dev_private;
05394f39 414 struct drm_i915_gem_object *obj;
673a394b 415
05394f39 416 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
c8725226 417 if (&obj->base == NULL)
bf79cb91 418 return -ENOENT;
673a394b
EA
419
420 mutex_lock(&dev->struct_mutex);
421
05394f39
CW
422 args->tiling_mode = obj->tiling_mode;
423 switch (obj->tiling_mode) {
673a394b
EA
424 case I915_TILING_X:
425 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
426 break;
427 case I915_TILING_Y:
428 args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
429 break;
430 case I915_TILING_NONE:
431 args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
432 break;
433 default:
434 DRM_ERROR("unknown tiling mode\n");
435 }
436
280b713b
EA
437 /* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
438 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
439 args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
440 if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
441 args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
442
05394f39 443 drm_gem_object_unreference(&obj->base);
d6873102 444 mutex_unlock(&dev->struct_mutex);
673a394b
EA
445
446 return 0;
447}
280b713b
EA
448
449/**
450 * Swap every 64 bytes of this page around, to account for it having a new
451 * bit 17 of its physical address and therefore being interpreted differently
452 * by the GPU.
453 */
dd2575ff 454static void
280b713b
EA
455i915_gem_swizzle_page(struct page *page)
456{
dd2575ff 457 char temp[64];
280b713b
EA
458 char *vaddr;
459 int i;
280b713b
EA
460
461 vaddr = kmap(page);
280b713b
EA
462
463 for (i = 0; i < PAGE_SIZE; i += 128) {
464 memcpy(temp, &vaddr[i], 64);
465 memcpy(&vaddr[i], &vaddr[i + 64], 64);
466 memcpy(&vaddr[i + 64], temp, 64);
467 }
468
469 kunmap(page);
280b713b
EA
470}
471
472void
05394f39 473i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
280b713b 474{
9da3da66 475 struct scatterlist *sg;
05394f39 476 int page_count = obj->base.size >> PAGE_SHIFT;
280b713b
EA
477 int i;
478
05394f39 479 if (obj->bit_17 == NULL)
280b713b
EA
480 return;
481
9da3da66
CW
482 for_each_sg(obj->pages->sgl, sg, page_count, i) {
483 struct page *page = sg_page(sg);
484 char new_bit_17 = page_to_phys(page) >> 17;
280b713b 485 if ((new_bit_17 & 0x1) !=
05394f39 486 (test_bit(i, obj->bit_17) != 0)) {
9da3da66
CW
487 i915_gem_swizzle_page(page);
488 set_page_dirty(page);
280b713b
EA
489 }
490 }
491}
492
493void
05394f39 494i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
280b713b 495{
9da3da66 496 struct scatterlist *sg;
05394f39 497 int page_count = obj->base.size >> PAGE_SHIFT;
280b713b
EA
498 int i;
499
05394f39
CW
500 if (obj->bit_17 == NULL) {
501 obj->bit_17 = kmalloc(BITS_TO_LONGS(page_count) *
280b713b 502 sizeof(long), GFP_KERNEL);
05394f39 503 if (obj->bit_17 == NULL) {
280b713b
EA
504 DRM_ERROR("Failed to allocate memory for bit 17 "
505 "record\n");
506 return;
507 }
508 }
509
9da3da66
CW
510 for_each_sg(obj->pages->sgl, sg, page_count, i) {
511 struct page *page = sg_page(sg);
512 if (page_to_phys(page) & (1 << 17))
05394f39 513 __set_bit(i, obj->bit_17);
280b713b 514 else
05394f39 515 __clear_bit(i, obj->bit_17);
280b713b
EA
516 }
517}
This page took 0.340243 seconds and 5 git commands to generate.