drm/i915/userptr: Flush cancellations before mmu-notifier invalidate returns
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_userptr.c
CommitLineData
5cc9ed4b
CW
1/*
2 * Copyright © 2012-2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
b588c92b
ML
25#include <drm/drmP.h>
26#include <drm/i915_drm.h>
5cc9ed4b
CW
27#include "i915_drv.h"
28#include "i915_trace.h"
29#include "intel_drv.h"
30#include <linux/mmu_context.h>
31#include <linux/mmu_notifier.h>
32#include <linux/mempolicy.h>
33#include <linux/swap.h>
34
ad46cb53
CW
35struct i915_mm_struct {
36 struct mm_struct *mm;
37 struct drm_device *dev;
38 struct i915_mmu_notifier *mn;
39 struct hlist_node node;
40 struct kref kref;
41 struct work_struct work;
42};
43
5cc9ed4b
CW
44#if defined(CONFIG_MMU_NOTIFIER)
45#include <linux/interval_tree.h>
46
47struct i915_mmu_notifier {
48 spinlock_t lock;
49 struct hlist_node node;
50 struct mmu_notifier mn;
51 struct rb_root objects;
393afc2c 52 struct workqueue_struct *wq;
5cc9ed4b
CW
53};
54
55struct i915_mmu_object {
ad46cb53 56 struct i915_mmu_notifier *mn;
768e159f 57 struct drm_i915_gem_object *obj;
5cc9ed4b 58 struct interval_tree_node it;
ec8b0dd5 59 struct list_head link;
380996aa 60 struct work_struct work;
768e159f 61 bool attached;
5cc9ed4b
CW
62};
63
393afc2c
CW
64static void wait_rendering(struct drm_i915_gem_object *obj)
65{
66 struct drm_device *dev = obj->base.dev;
67 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
68 unsigned reset_counter;
69 int i, n;
70
71 if (!obj->active)
72 return;
73
74 n = 0;
75 for (i = 0; i < I915_NUM_ENGINES; i++) {
76 struct drm_i915_gem_request *req;
77
78 req = obj->last_read_req[i];
79 if (req == NULL)
80 continue;
81
82 requests[n++] = i915_gem_request_reference(req);
83 }
84
85 reset_counter = atomic_read(&to_i915(dev)->gpu_error.reset_counter);
86 mutex_unlock(&dev->struct_mutex);
87
88 for (i = 0; i < n; i++)
89 __i915_wait_request(requests[i], reset_counter, false,
90 NULL, NULL);
91
92 mutex_lock(&dev->struct_mutex);
93
94 for (i = 0; i < n; i++)
95 i915_gem_request_unreference(requests[i]);
96}
97
768e159f 98static void cancel_userptr(struct work_struct *work)
ec8b0dd5 99{
380996aa
CW
100 struct i915_mmu_object *mo = container_of(work, typeof(*mo), work);
101 struct drm_i915_gem_object *obj = mo->obj;
ec8b0dd5 102 struct drm_device *dev = obj->base.dev;
ec8b0dd5
CW
103
104 mutex_lock(&dev->struct_mutex);
105 /* Cancel any active worker and force us to re-evaluate gup */
106 obj->userptr.work = NULL;
107
108 if (obj->pages != NULL) {
109 struct drm_i915_private *dev_priv = to_i915(dev);
110 struct i915_vma *vma, *tmp;
111 bool was_interruptible;
112
393afc2c
CW
113 wait_rendering(obj);
114
ec8b0dd5
CW
115 was_interruptible = dev_priv->mm.interruptible;
116 dev_priv->mm.interruptible = false;
117
1c7f4bca 118 list_for_each_entry_safe(vma, tmp, &obj->vma_list, obj_link) {
ec8b0dd5
CW
119 int ret = i915_vma_unbind(vma);
120 WARN_ON(ret && ret != -EIO);
121 }
122 WARN_ON(i915_gem_object_put_pages(obj));
123
124 dev_priv->mm.interruptible = was_interruptible;
125 }
126
ec8b0dd5
CW
127 drm_gem_object_unreference(&obj->base);
128 mutex_unlock(&dev->struct_mutex);
ec8b0dd5
CW
129}
130
768e159f 131static void add_object(struct i915_mmu_object *mo)
ec8b0dd5 132{
768e159f
CW
133 if (mo->attached)
134 return;
ec8b0dd5 135
768e159f
CW
136 interval_tree_insert(&mo->it, &mo->mn->objects);
137 mo->attached = true;
138}
139
140static void del_object(struct i915_mmu_object *mo)
141{
142 if (!mo->attached)
143 return;
144
145 interval_tree_remove(&mo->it, &mo->mn->objects);
146 mo->attached = false;
ec8b0dd5
CW
147}
148
5cc9ed4b
CW
149static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
150 struct mm_struct *mm,
151 unsigned long start,
152 unsigned long end)
153{
380996aa
CW
154 struct i915_mmu_notifier *mn =
155 container_of(_mn, struct i915_mmu_notifier, mn);
156 struct i915_mmu_object *mo;
768e159f
CW
157 struct interval_tree_node *it;
158 LIST_HEAD(cancelled);
159
160 if (RB_EMPTY_ROOT(&mn->objects))
161 return;
380996aa
CW
162
163 /* interval ranges are inclusive, but invalidate range is exclusive */
164 end--;
165
166 spin_lock(&mn->lock);
768e159f
CW
167 it = interval_tree_iter_first(&mn->objects, start, end);
168 while (it) {
169 /* The mmu_object is released late when destroying the
170 * GEM object so it is entirely possible to gain a
171 * reference on an object in the process of being freed
172 * since our serialisation is via the spinlock and not
173 * the struct_mutex - and consequently use it after it
174 * is freed and then double free it. To prevent that
175 * use-after-free we only acquire a reference on the
176 * object if it is not in the process of being destroyed.
177 */
178 mo = container_of(it, struct i915_mmu_object, it);
179 if (kref_get_unless_zero(&mo->obj->base.refcount))
393afc2c 180 queue_work(mn->wq, &mo->work);
5cc9ed4b 181
768e159f
CW
182 list_add(&mo->link, &cancelled);
183 it = interval_tree_iter_next(it, start, end);
5cc9ed4b 184 }
768e159f
CW
185 list_for_each_entry(mo, &cancelled, link)
186 del_object(mo);
380996aa 187 spin_unlock(&mn->lock);
393afc2c
CW
188
189 flush_workqueue(mn->wq);
5cc9ed4b
CW
190}
191
192static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
193 .invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
194};
195
196static struct i915_mmu_notifier *
ad46cb53 197i915_mmu_notifier_create(struct mm_struct *mm)
5cc9ed4b 198{
ad46cb53 199 struct i915_mmu_notifier *mn;
5cc9ed4b
CW
200 int ret;
201
ad46cb53
CW
202 mn = kmalloc(sizeof(*mn), GFP_KERNEL);
203 if (mn == NULL)
5cc9ed4b
CW
204 return ERR_PTR(-ENOMEM);
205
ad46cb53
CW
206 spin_lock_init(&mn->lock);
207 mn->mn.ops = &i915_gem_userptr_notifier;
208 mn->objects = RB_ROOT;
393afc2c
CW
209 mn->wq = alloc_workqueue("i915-userptr-release", WQ_UNBOUND, 0);
210 if (mn->wq == NULL) {
211 kfree(mn);
212 return ERR_PTR(-ENOMEM);
213 }
ad46cb53
CW
214
215 /* Protected by mmap_sem (write-lock) */
216 ret = __mmu_notifier_register(&mn->mn, mm);
5cc9ed4b 217 if (ret) {
393afc2c 218 destroy_workqueue(mn->wq);
ad46cb53 219 kfree(mn);
5cc9ed4b
CW
220 return ERR_PTR(ret);
221 }
222
ad46cb53 223 return mn;
5cc9ed4b
CW
224}
225
5cc9ed4b
CW
226static void
227i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
228{
ad46cb53 229 struct i915_mmu_object *mo;
5cc9ed4b 230
ad46cb53
CW
231 mo = obj->userptr.mmu_object;
232 if (mo == NULL)
5cc9ed4b
CW
233 return;
234
768e159f
CW
235 spin_lock(&mo->mn->lock);
236 del_object(mo);
237 spin_unlock(&mo->mn->lock);
ad46cb53
CW
238 kfree(mo);
239
240 obj->userptr.mmu_object = NULL;
241}
242
243static struct i915_mmu_notifier *
244i915_mmu_notifier_find(struct i915_mm_struct *mm)
245{
e9681366
CW
246 struct i915_mmu_notifier *mn = mm->mn;
247
248 mn = mm->mn;
249 if (mn)
250 return mn;
251
252 down_write(&mm->mm->mmap_sem);
253 mutex_lock(&to_i915(mm->dev)->mm_lock);
254 if ((mn = mm->mn) == NULL) {
255 mn = i915_mmu_notifier_create(mm->mm);
256 if (!IS_ERR(mn))
257 mm->mn = mn;
ad46cb53 258 }
e9681366
CW
259 mutex_unlock(&to_i915(mm->dev)->mm_lock);
260 up_write(&mm->mm->mmap_sem);
261
262 return mn;
5cc9ed4b
CW
263}
264
265static int
266i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
267 unsigned flags)
268{
ad46cb53
CW
269 struct i915_mmu_notifier *mn;
270 struct i915_mmu_object *mo;
5cc9ed4b
CW
271
272 if (flags & I915_USERPTR_UNSYNCHRONIZED)
273 return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
274
ad46cb53
CW
275 if (WARN_ON(obj->userptr.mm == NULL))
276 return -EINVAL;
5cc9ed4b 277
ad46cb53
CW
278 mn = i915_mmu_notifier_find(obj->userptr.mm);
279 if (IS_ERR(mn))
280 return PTR_ERR(mn);
5cc9ed4b 281
ad46cb53
CW
282 mo = kzalloc(sizeof(*mo), GFP_KERNEL);
283 if (mo == NULL)
284 return -ENOMEM;
5cc9ed4b 285
ad46cb53 286 mo->mn = mn;
ad46cb53 287 mo->obj = obj;
768e159f
CW
288 mo->it.start = obj->userptr.ptr;
289 mo->it.last = obj->userptr.ptr + obj->base.size - 1;
290 INIT_WORK(&mo->work, cancel_userptr);
ad46cb53
CW
291
292 obj->userptr.mmu_object = mo;
5cc9ed4b 293 return 0;
ad46cb53
CW
294}
295
296static void
297i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
298 struct mm_struct *mm)
299{
300 if (mn == NULL)
301 return;
5cc9ed4b 302
ad46cb53 303 mmu_notifier_unregister(&mn->mn, mm);
393afc2c 304 destroy_workqueue(mn->wq);
5cc9ed4b 305 kfree(mn);
5cc9ed4b
CW
306}
307
308#else
309
310static void
311i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
312{
313}
314
315static int
316i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
317 unsigned flags)
318{
319 if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
320 return -ENODEV;
321
322 if (!capable(CAP_SYS_ADMIN))
323 return -EPERM;
324
325 return 0;
326}
ad46cb53
CW
327
328static void
329i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
330 struct mm_struct *mm)
331{
332}
333
5cc9ed4b
CW
334#endif
335
ad46cb53
CW
336static struct i915_mm_struct *
337__i915_mm_struct_find(struct drm_i915_private *dev_priv, struct mm_struct *real)
338{
339 struct i915_mm_struct *mm;
340
341 /* Protected by dev_priv->mm_lock */
342 hash_for_each_possible(dev_priv->mm_structs, mm, node, (unsigned long)real)
343 if (mm->mm == real)
344 return mm;
345
346 return NULL;
347}
348
349static int
350i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
351{
352 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
353 struct i915_mm_struct *mm;
354 int ret = 0;
355
356 /* During release of the GEM object we hold the struct_mutex. This
357 * precludes us from calling mmput() at that time as that may be
358 * the last reference and so call exit_mmap(). exit_mmap() will
359 * attempt to reap the vma, and if we were holding a GTT mmap
360 * would then call drm_gem_vm_close() and attempt to reacquire
361 * the struct mutex. So in order to avoid that recursion, we have
362 * to defer releasing the mm reference until after we drop the
363 * struct_mutex, i.e. we need to schedule a worker to do the clean
364 * up.
365 */
366 mutex_lock(&dev_priv->mm_lock);
367 mm = __i915_mm_struct_find(dev_priv, current->mm);
368 if (mm == NULL) {
369 mm = kmalloc(sizeof(*mm), GFP_KERNEL);
370 if (mm == NULL) {
371 ret = -ENOMEM;
372 goto out;
373 }
374
375 kref_init(&mm->kref);
376 mm->dev = obj->base.dev;
377
378 mm->mm = current->mm;
379 atomic_inc(&current->mm->mm_count);
380
381 mm->mn = NULL;
382
383 /* Protected by dev_priv->mm_lock */
384 hash_add(dev_priv->mm_structs,
385 &mm->node, (unsigned long)mm->mm);
386 } else
387 kref_get(&mm->kref);
388
389 obj->userptr.mm = mm;
390out:
391 mutex_unlock(&dev_priv->mm_lock);
392 return ret;
393}
394
395static void
396__i915_mm_struct_free__worker(struct work_struct *work)
397{
398 struct i915_mm_struct *mm = container_of(work, typeof(*mm), work);
399 i915_mmu_notifier_free(mm->mn, mm->mm);
400 mmdrop(mm->mm);
401 kfree(mm);
402}
403
404static void
405__i915_mm_struct_free(struct kref *kref)
406{
407 struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
408
409 /* Protected by dev_priv->mm_lock */
410 hash_del(&mm->node);
411 mutex_unlock(&to_i915(mm->dev)->mm_lock);
412
413 INIT_WORK(&mm->work, __i915_mm_struct_free__worker);
414 schedule_work(&mm->work);
415}
416
417static void
418i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
419{
420 if (obj->userptr.mm == NULL)
421 return;
422
423 kref_put_mutex(&obj->userptr.mm->kref,
424 __i915_mm_struct_free,
425 &to_i915(obj->base.dev)->mm_lock);
426 obj->userptr.mm = NULL;
427}
428
5cc9ed4b
CW
429struct get_pages_work {
430 struct work_struct work;
431 struct drm_i915_gem_object *obj;
432 struct task_struct *task;
433};
434
5cc9ed4b
CW
435#if IS_ENABLED(CONFIG_SWIOTLB)
436#define swiotlb_active() swiotlb_nr_tbl()
437#else
438#define swiotlb_active() 0
439#endif
440
441static int
442st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
443{
444 struct scatterlist *sg;
445 int ret, n;
446
447 *st = kmalloc(sizeof(**st), GFP_KERNEL);
448 if (*st == NULL)
449 return -ENOMEM;
450
451 if (swiotlb_active()) {
452 ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
453 if (ret)
454 goto err;
455
456 for_each_sg((*st)->sgl, sg, num_pages, n)
457 sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
458 } else {
459 ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
460 0, num_pages << PAGE_SHIFT,
461 GFP_KERNEL);
462 if (ret)
463 goto err;
464 }
465
466 return 0;
467
468err:
469 kfree(*st);
470 *st = NULL;
471 return ret;
472}
473
e2273302
ID
474static int
475__i915_gem_userptr_set_pages(struct drm_i915_gem_object *obj,
476 struct page **pvec, int num_pages)
477{
478 int ret;
479
480 ret = st_set_pages(&obj->pages, pvec, num_pages);
481 if (ret)
482 return ret;
483
484 ret = i915_gem_gtt_prepare_object(obj);
485 if (ret) {
486 sg_free_table(obj->pages);
487 kfree(obj->pages);
488 obj->pages = NULL;
489 }
490
491 return ret;
492}
493
380996aa 494static int
e4b946bf
CW
495__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj,
496 bool value)
497{
380996aa
CW
498 int ret = 0;
499
e4b946bf
CW
500 /* During mm_invalidate_range we need to cancel any userptr that
501 * overlaps the range being invalidated. Doing so requires the
502 * struct_mutex, and that risks recursion. In order to cause
503 * recursion, the user must alias the userptr address space with
504 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
505 * to invalidate that mmaping, mm_invalidate_range is called with
506 * the userptr address *and* the struct_mutex held. To prevent that
507 * we set a flag under the i915_mmu_notifier spinlock to indicate
508 * whether this object is valid.
509 */
510#if defined(CONFIG_MMU_NOTIFIER)
511 if (obj->userptr.mmu_object == NULL)
380996aa 512 return 0;
e4b946bf
CW
513
514 spin_lock(&obj->userptr.mmu_object->mn->lock);
380996aa
CW
515 /* In order to serialise get_pages with an outstanding
516 * cancel_userptr, we must drop the struct_mutex and try again.
517 */
768e159f
CW
518 if (!value)
519 del_object(obj->userptr.mmu_object);
520 else if (!work_pending(&obj->userptr.mmu_object->work))
521 add_object(obj->userptr.mmu_object);
380996aa
CW
522 else
523 ret = -EAGAIN;
e4b946bf
CW
524 spin_unlock(&obj->userptr.mmu_object->mn->lock);
525#endif
380996aa
CW
526
527 return ret;
e4b946bf
CW
528}
529
5cc9ed4b
CW
530static void
531__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
532{
533 struct get_pages_work *work = container_of(_work, typeof(*work), work);
534 struct drm_i915_gem_object *obj = work->obj;
535 struct drm_device *dev = obj->base.dev;
68d6c840 536 const int npages = obj->base.size >> PAGE_SHIFT;
5cc9ed4b
CW
537 struct page **pvec;
538 int pinned, ret;
539
540 ret = -ENOMEM;
541 pinned = 0;
542
f2a85e19 543 pvec = drm_malloc_gfp(npages, sizeof(struct page *), GFP_TEMPORARY);
5cc9ed4b 544 if (pvec != NULL) {
ad46cb53 545 struct mm_struct *mm = obj->userptr.mm->mm;
5cc9ed4b
CW
546
547 down_read(&mm->mmap_sem);
68d6c840 548 while (pinned < npages) {
1e987790
DH
549 ret = get_user_pages_remote(work->task, mm,
550 obj->userptr.ptr + pinned * PAGE_SIZE,
551 npages - pinned,
552 !obj->userptr.read_only, 0,
553 pvec + pinned, NULL);
5cc9ed4b
CW
554 if (ret < 0)
555 break;
556
557 pinned += ret;
558 }
559 up_read(&mm->mmap_sem);
560 }
561
562 mutex_lock(&dev->struct_mutex);
68d6c840
CW
563 if (obj->userptr.work == &work->work) {
564 if (pinned == npages) {
565 ret = __i915_gem_userptr_set_pages(obj, pvec, npages);
566 if (ret == 0) {
567 list_add_tail(&obj->global_list,
568 &to_i915(dev)->mm.unbound_list);
569 obj->get_page.sg = obj->pages->sgl;
570 obj->get_page.last = 0;
571 pinned = 0;
572 }
5cc9ed4b 573 }
68d6c840 574 obj->userptr.work = ERR_PTR(ret);
e4b946bf
CW
575 if (ret)
576 __i915_gem_userptr_set_active(obj, false);
5cc9ed4b
CW
577 }
578
5cc9ed4b
CW
579 obj->userptr.workers--;
580 drm_gem_object_unreference(&obj->base);
581 mutex_unlock(&dev->struct_mutex);
582
583 release_pages(pvec, pinned, 0);
584 drm_free_large(pvec);
585
586 put_task_struct(work->task);
587 kfree(work);
588}
589
e4b946bf
CW
590static int
591__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj,
592 bool *active)
593{
594 struct get_pages_work *work;
595
596 /* Spawn a worker so that we can acquire the
597 * user pages without holding our mutex. Access
598 * to the user pages requires mmap_sem, and we have
599 * a strict lock ordering of mmap_sem, struct_mutex -
600 * we already hold struct_mutex here and so cannot
601 * call gup without encountering a lock inversion.
602 *
603 * Userspace will keep on repeating the operation
604 * (thanks to EAGAIN) until either we hit the fast
605 * path or the worker completes. If the worker is
606 * cancelled or superseded, the task is still run
607 * but the results ignored. (This leads to
608 * complications that we may have a stray object
609 * refcount that we need to be wary of when
610 * checking for existing objects during creation.)
611 * If the worker encounters an error, it reports
612 * that error back to this function through
613 * obj->userptr.work = ERR_PTR.
614 */
615 if (obj->userptr.workers >= I915_GEM_USERPTR_MAX_WORKERS)
616 return -EAGAIN;
617
618 work = kmalloc(sizeof(*work), GFP_KERNEL);
619 if (work == NULL)
620 return -ENOMEM;
621
622 obj->userptr.work = &work->work;
623 obj->userptr.workers++;
624
625 work->obj = obj;
626 drm_gem_object_reference(&obj->base);
627
628 work->task = current;
629 get_task_struct(work->task);
630
631 INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
632 schedule_work(&work->work);
633
634 *active = true;
635 return -EAGAIN;
636}
637
5cc9ed4b
CW
638static int
639i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
640{
641 const int num_pages = obj->base.size >> PAGE_SHIFT;
642 struct page **pvec;
643 int pinned, ret;
e4b946bf 644 bool active;
5cc9ed4b
CW
645
646 /* If userspace should engineer that these pages are replaced in
647 * the vma between us binding this page into the GTT and completion
648 * of rendering... Their loss. If they change the mapping of their
649 * pages they need to create a new bo to point to the new vma.
650 *
651 * However, that still leaves open the possibility of the vma
652 * being copied upon fork. Which falls under the same userspace
653 * synchronisation issue as a regular bo, except that this time
654 * the process may not be expecting that a particular piece of
655 * memory is tied to the GPU.
656 *
657 * Fortunately, we can hook into the mmu_notifier in order to
658 * discard the page references prior to anything nasty happening
659 * to the vma (discard or cloning) which should prevent the more
660 * egregious cases from causing harm.
661 */
e4b946bf
CW
662 if (IS_ERR(obj->userptr.work)) {
663 /* active flag will have been dropped already by the worker */
664 ret = PTR_ERR(obj->userptr.work);
665 obj->userptr.work = NULL;
666 return ret;
667 }
668 if (obj->userptr.work)
669 /* active flag should still be held for the pending work */
670 return -EAGAIN;
671
672 /* Let the mmu-notifier know that we have begun and need cancellation */
380996aa
CW
673 ret = __i915_gem_userptr_set_active(obj, true);
674 if (ret)
675 return ret;
5cc9ed4b
CW
676
677 pvec = NULL;
678 pinned = 0;
ad46cb53 679 if (obj->userptr.mm->mm == current->mm) {
f2a85e19
CW
680 pvec = drm_malloc_gfp(num_pages, sizeof(struct page *),
681 GFP_TEMPORARY);
5cc9ed4b 682 if (pvec == NULL) {
f2a85e19
CW
683 __i915_gem_userptr_set_active(obj, false);
684 return -ENOMEM;
5cc9ed4b
CW
685 }
686
687 pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
688 !obj->userptr.read_only, pvec);
689 }
e4b946bf
CW
690
691 active = false;
692 if (pinned < 0)
693 ret = pinned, pinned = 0;
694 else if (pinned < num_pages)
695 ret = __i915_gem_userptr_get_pages_schedule(obj, &active);
696 else
e2273302 697 ret = __i915_gem_userptr_set_pages(obj, pvec, num_pages);
e4b946bf
CW
698 if (ret) {
699 __i915_gem_userptr_set_active(obj, active);
700 release_pages(pvec, pinned, 0);
5cc9ed4b 701 }
5cc9ed4b
CW
702 drm_free_large(pvec);
703 return ret;
704}
705
706static void
707i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
708{
c479f438 709 struct sg_page_iter sg_iter;
5cc9ed4b
CW
710
711 BUG_ON(obj->userptr.work != NULL);
e4b946bf 712 __i915_gem_userptr_set_active(obj, false);
5cc9ed4b
CW
713
714 if (obj->madv != I915_MADV_WILLNEED)
715 obj->dirty = 0;
716
e2273302
ID
717 i915_gem_gtt_finish_object(obj);
718
c479f438
TU
719 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
720 struct page *page = sg_page_iter_page(&sg_iter);
5cc9ed4b
CW
721
722 if (obj->dirty)
723 set_page_dirty(page);
724
725 mark_page_accessed(page);
09cbfeaf 726 put_page(page);
5cc9ed4b
CW
727 }
728 obj->dirty = 0;
729
730 sg_free_table(obj->pages);
731 kfree(obj->pages);
732}
733
734static void
735i915_gem_userptr_release(struct drm_i915_gem_object *obj)
736{
737 i915_gem_userptr_release__mmu_notifier(obj);
ad46cb53 738 i915_gem_userptr_release__mm_struct(obj);
5cc9ed4b
CW
739}
740
741static int
742i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
743{
ad46cb53 744 if (obj->userptr.mmu_object)
5cc9ed4b
CW
745 return 0;
746
747 return i915_gem_userptr_init__mmu_notifier(obj, 0);
748}
749
750static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
de472664 751 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
5cc9ed4b
CW
752 .get_pages = i915_gem_userptr_get_pages,
753 .put_pages = i915_gem_userptr_put_pages,
de472664 754 .dmabuf_export = i915_gem_userptr_dmabuf_export,
5cc9ed4b
CW
755 .release = i915_gem_userptr_release,
756};
757
758/**
759 * Creates a new mm object that wraps some normal memory from the process
760 * context - user memory.
761 *
762 * We impose several restrictions upon the memory being mapped
763 * into the GPU.
764 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
ec8b0dd5 765 * 2. It must be normal system memory, not a pointer into another map of IO
5cc9ed4b 766 * space (e.g. it must not be a GTT mmapping of another object).
ec8b0dd5 767 * 3. We only allow a bo as large as we could in theory map into the GTT,
5cc9ed4b 768 * that is we limit the size to the total size of the GTT.
ec8b0dd5 769 * 4. The bo is marked as being snoopable. The backing pages are left
5cc9ed4b
CW
770 * accessible directly by the CPU, but reads and writes by the GPU may
771 * incur the cost of a snoop (unless you have an LLC architecture).
772 *
773 * Synchronisation between multiple users and the GPU is left to userspace
774 * through the normal set-domain-ioctl. The kernel will enforce that the
775 * GPU relinquishes the VMA before it is returned back to the system
776 * i.e. upon free(), munmap() or process termination. However, the userspace
777 * malloc() library may not immediately relinquish the VMA after free() and
778 * instead reuse it whilst the GPU is still reading and writing to the VMA.
779 * Caveat emptor.
780 *
781 * Also note, that the object created here is not currently a "first class"
782 * object, in that several ioctls are banned. These are the CPU access
783 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
cc917ab4
CW
784 * direct access via your pointer rather than use those ioctls. Another
785 * restriction is that we do not allow userptr surfaces to be pinned to the
786 * hardware and so we reject any attempt to create a framebuffer out of a
787 * userptr.
5cc9ed4b
CW
788 *
789 * If you think this is a good interface to use to pass GPU memory between
790 * drivers, please use dma-buf instead. In fact, wherever possible use
791 * dma-buf instead.
792 */
793int
794i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
795{
5cc9ed4b
CW
796 struct drm_i915_gem_userptr *args = data;
797 struct drm_i915_gem_object *obj;
798 int ret;
799 u32 handle;
800
ca377809
TU
801 if (!HAS_LLC(dev) && !HAS_SNOOP(dev)) {
802 /* We cannot support coherent userptr objects on hw without
803 * LLC and broken snooping.
804 */
805 return -ENODEV;
806 }
807
5cc9ed4b
CW
808 if (args->flags & ~(I915_USERPTR_READ_ONLY |
809 I915_USERPTR_UNSYNCHRONIZED))
810 return -EINVAL;
811
812 if (offset_in_page(args->user_ptr | args->user_size))
813 return -EINVAL;
814
5cc9ed4b
CW
815 if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
816 (char __user *)(unsigned long)args->user_ptr, args->user_size))
817 return -EFAULT;
818
819 if (args->flags & I915_USERPTR_READ_ONLY) {
820 /* On almost all of the current hw, we cannot tell the GPU that a
821 * page is readonly, so this is just a placeholder in the uAPI.
822 */
823 return -ENODEV;
824 }
825
5cc9ed4b
CW
826 obj = i915_gem_object_alloc(dev);
827 if (obj == NULL)
828 return -ENOMEM;
829
830 drm_gem_private_object_init(dev, &obj->base, args->user_size);
831 i915_gem_object_init(obj, &i915_gem_userptr_ops);
832 obj->cache_level = I915_CACHE_LLC;
833 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
834 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
835
836 obj->userptr.ptr = args->user_ptr;
837 obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);
838
839 /* And keep a pointer to the current->mm for resolving the user pages
840 * at binding. This means that we need to hook into the mmu_notifier
841 * in order to detect if the mmu is destroyed.
842 */
ad46cb53
CW
843 ret = i915_gem_userptr_init__mm_struct(obj);
844 if (ret == 0)
5cc9ed4b
CW
845 ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
846 if (ret == 0)
847 ret = drm_gem_handle_create(file, &obj->base, &handle);
848
849 /* drop reference from allocate - handle holds it now */
850 drm_gem_object_unreference_unlocked(&obj->base);
851 if (ret)
852 return ret;
853
854 args->handle = handle;
855 return 0;
856}
857
858int
859i915_gem_init_userptr(struct drm_device *dev)
860{
5cc9ed4b 861 struct drm_i915_private *dev_priv = to_i915(dev);
ad46cb53
CW
862 mutex_init(&dev_priv->mm_lock);
863 hash_init(dev_priv->mm_structs);
5cc9ed4b
CW
864 return 0;
865}
This page took 0.158718 seconds and 5 git commands to generate.