drm/i915: Warn if drm_vblank_get() still works after drm_vblank_off()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void intel_dp_set_m_n(struct intel_crtc *crtc);
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab
DV
97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
0e32b39c
DA
104static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
105{
106 if (!connector->mst_port)
107 return connector->encoder;
108 else
109 return &connector->mst_port->mst_encoders[pipe]->base;
110}
111
79e53945 112typedef struct {
0206e353 113 int min, max;
79e53945
JB
114} intel_range_t;
115
116typedef struct {
0206e353
AJ
117 int dot_limit;
118 int p2_slow, p2_fast;
79e53945
JB
119} intel_p2_t;
120
d4906093
ML
121typedef struct intel_limit intel_limit_t;
122struct intel_limit {
0206e353
AJ
123 intel_range_t dot, vco, n, m, m1, m2, p, p1;
124 intel_p2_t p2;
d4906093 125};
79e53945 126
d2acd215
DV
127int
128intel_pch_rawclk(struct drm_device *dev)
129{
130 struct drm_i915_private *dev_priv = dev->dev_private;
131
132 WARN_ON(!HAS_PCH_SPLIT(dev));
133
134 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
135}
136
021357ac
CW
137static inline u32 /* units of 100MHz */
138intel_fdi_link_freq(struct drm_device *dev)
139{
8b99e68c
CW
140 if (IS_GEN5(dev)) {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
143 } else
144 return 27;
021357ac
CW
145}
146
5d536e28 147static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 148 .dot = { .min = 25000, .max = 350000 },
9c333719 149 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 150 .n = { .min = 2, .max = 16 },
0206e353
AJ
151 .m = { .min = 96, .max = 140 },
152 .m1 = { .min = 18, .max = 26 },
153 .m2 = { .min = 6, .max = 16 },
154 .p = { .min = 4, .max = 128 },
155 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
156 .p2 = { .dot_limit = 165000,
157 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
158};
159
5d536e28
DV
160static const intel_limit_t intel_limits_i8xx_dvo = {
161 .dot = { .min = 25000, .max = 350000 },
9c333719 162 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 163 .n = { .min = 2, .max = 16 },
5d536e28
DV
164 .m = { .min = 96, .max = 140 },
165 .m1 = { .min = 18, .max = 26 },
166 .m2 = { .min = 6, .max = 16 },
167 .p = { .min = 4, .max = 128 },
168 .p1 = { .min = 2, .max = 33 },
169 .p2 = { .dot_limit = 165000,
170 .p2_slow = 4, .p2_fast = 4 },
171};
172
e4b36699 173static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 174 .dot = { .min = 25000, .max = 350000 },
9c333719 175 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 176 .n = { .min = 2, .max = 16 },
0206e353
AJ
177 .m = { .min = 96, .max = 140 },
178 .m1 = { .min = 18, .max = 26 },
179 .m2 = { .min = 6, .max = 16 },
180 .p = { .min = 4, .max = 128 },
181 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 14, .p2_fast = 7 },
e4b36699 184};
273e27ca 185
e4b36699 186static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
187 .dot = { .min = 20000, .max = 400000 },
188 .vco = { .min = 1400000, .max = 2800000 },
189 .n = { .min = 1, .max = 6 },
190 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
191 .m1 = { .min = 8, .max = 18 },
192 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
193 .p = { .min = 5, .max = 80 },
194 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
195 .p2 = { .dot_limit = 200000,
196 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
197};
198
199static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
200 .dot = { .min = 20000, .max = 400000 },
201 .vco = { .min = 1400000, .max = 2800000 },
202 .n = { .min = 1, .max = 6 },
203 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
204 .m1 = { .min = 8, .max = 18 },
205 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
206 .p = { .min = 7, .max = 98 },
207 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
208 .p2 = { .dot_limit = 112000,
209 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
210};
211
273e27ca 212
e4b36699 213static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
214 .dot = { .min = 25000, .max = 270000 },
215 .vco = { .min = 1750000, .max = 3500000},
216 .n = { .min = 1, .max = 4 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 10, .max = 30 },
221 .p1 = { .min = 1, .max = 3},
222 .p2 = { .dot_limit = 270000,
223 .p2_slow = 10,
224 .p2_fast = 10
044c7c41 225 },
e4b36699
KP
226};
227
228static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
229 .dot = { .min = 22000, .max = 400000 },
230 .vco = { .min = 1750000, .max = 3500000},
231 .n = { .min = 1, .max = 4 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 16, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 5, .max = 80 },
236 .p1 = { .min = 1, .max = 8},
237 .p2 = { .dot_limit = 165000,
238 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
239};
240
241static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
242 .dot = { .min = 20000, .max = 115000 },
243 .vco = { .min = 1750000, .max = 3500000 },
244 .n = { .min = 1, .max = 3 },
245 .m = { .min = 104, .max = 138 },
246 .m1 = { .min = 17, .max = 23 },
247 .m2 = { .min = 5, .max = 11 },
248 .p = { .min = 28, .max = 112 },
249 .p1 = { .min = 2, .max = 8 },
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 14, .p2_fast = 14
044c7c41 252 },
e4b36699
KP
253};
254
255static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
256 .dot = { .min = 80000, .max = 224000 },
257 .vco = { .min = 1750000, .max = 3500000 },
258 .n = { .min = 1, .max = 3 },
259 .m = { .min = 104, .max = 138 },
260 .m1 = { .min = 17, .max = 23 },
261 .m2 = { .min = 5, .max = 11 },
262 .p = { .min = 14, .max = 42 },
263 .p1 = { .min = 2, .max = 6 },
264 .p2 = { .dot_limit = 0,
265 .p2_slow = 7, .p2_fast = 7
044c7c41 266 },
e4b36699
KP
267};
268
f2b115e6 269static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
270 .dot = { .min = 20000, .max = 400000},
271 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 272 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
273 .n = { .min = 3, .max = 6 },
274 .m = { .min = 2, .max = 256 },
273e27ca 275 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 5, .max = 80 },
279 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
280 .p2 = { .dot_limit = 200000,
281 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
282};
283
f2b115e6 284static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
285 .dot = { .min = 20000, .max = 400000 },
286 .vco = { .min = 1700000, .max = 3500000 },
287 .n = { .min = 3, .max = 6 },
288 .m = { .min = 2, .max = 256 },
289 .m1 = { .min = 0, .max = 0 },
290 .m2 = { .min = 0, .max = 254 },
291 .p = { .min = 7, .max = 112 },
292 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
293 .p2 = { .dot_limit = 112000,
294 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
295};
296
273e27ca
EA
297/* Ironlake / Sandybridge
298 *
299 * We calculate clock using (register_value + 2) for N/M1/M2, so here
300 * the range value for them is (actual_value - 2).
301 */
b91ad0ec 302static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 5 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
313};
314
b91ad0ec 315static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
316 .dot = { .min = 25000, .max = 350000 },
317 .vco = { .min = 1760000, .max = 3510000 },
318 .n = { .min = 1, .max = 3 },
319 .m = { .min = 79, .max = 118 },
320 .m1 = { .min = 12, .max = 22 },
321 .m2 = { .min = 5, .max = 9 },
322 .p = { .min = 28, .max = 112 },
323 .p1 = { .min = 2, .max = 8 },
324 .p2 = { .dot_limit = 225000,
325 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
326};
327
328static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
329 .dot = { .min = 25000, .max = 350000 },
330 .vco = { .min = 1760000, .max = 3510000 },
331 .n = { .min = 1, .max = 3 },
332 .m = { .min = 79, .max = 127 },
333 .m1 = { .min = 12, .max = 22 },
334 .m2 = { .min = 5, .max = 9 },
335 .p = { .min = 14, .max = 56 },
336 .p1 = { .min = 2, .max = 8 },
337 .p2 = { .dot_limit = 225000,
338 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
339};
340
273e27ca 341/* LVDS 100mhz refclk limits. */
b91ad0ec 342static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
343 .dot = { .min = 25000, .max = 350000 },
344 .vco = { .min = 1760000, .max = 3510000 },
345 .n = { .min = 1, .max = 2 },
346 .m = { .min = 79, .max = 126 },
347 .m1 = { .min = 12, .max = 22 },
348 .m2 = { .min = 5, .max = 9 },
349 .p = { .min = 28, .max = 112 },
0206e353 350 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
351 .p2 = { .dot_limit = 225000,
352 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
353};
354
355static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
356 .dot = { .min = 25000, .max = 350000 },
357 .vco = { .min = 1760000, .max = 3510000 },
358 .n = { .min = 1, .max = 3 },
359 .m = { .min = 79, .max = 126 },
360 .m1 = { .min = 12, .max = 22 },
361 .m2 = { .min = 5, .max = 9 },
362 .p = { .min = 14, .max = 42 },
0206e353 363 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
364 .p2 = { .dot_limit = 225000,
365 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
366};
367
dc730512 368static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
369 /*
370 * These are the data rate limits (measured in fast clocks)
371 * since those are the strictest limits we have. The fast
372 * clock and actual rate limits are more relaxed, so checking
373 * them would make no difference.
374 */
375 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 376 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 377 .n = { .min = 1, .max = 7 },
a0c4da24
JB
378 .m1 = { .min = 2, .max = 3 },
379 .m2 = { .min = 11, .max = 156 },
b99ab663 380 .p1 = { .min = 2, .max = 3 },
5fdc9c49 381 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
382};
383
ef9348c8
CML
384static const intel_limit_t intel_limits_chv = {
385 /*
386 * These are the data rate limits (measured in fast clocks)
387 * since those are the strictest limits we have. The fast
388 * clock and actual rate limits are more relaxed, so checking
389 * them would make no difference.
390 */
391 .dot = { .min = 25000 * 5, .max = 540000 * 5},
392 .vco = { .min = 4860000, .max = 6700000 },
393 .n = { .min = 1, .max = 1 },
394 .m1 = { .min = 2, .max = 2 },
395 .m2 = { .min = 24 << 22, .max = 175 << 22 },
396 .p1 = { .min = 2, .max = 4 },
397 .p2 = { .p2_slow = 1, .p2_fast = 14 },
398};
399
6b4bf1c4
VS
400static void vlv_clock(int refclk, intel_clock_t *clock)
401{
402 clock->m = clock->m1 * clock->m2;
403 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
404 if (WARN_ON(clock->n == 0 || clock->p == 0))
405 return;
fb03ac01
VS
406 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
407 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
408}
409
e0638cdf
PZ
410/**
411 * Returns whether any output on the specified pipe is of the specified type
412 */
413static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
414{
415 struct drm_device *dev = crtc->dev;
416 struct intel_encoder *encoder;
417
418 for_each_encoder_on_crtc(dev, crtc, encoder)
419 if (encoder->type == type)
420 return true;
421
422 return false;
423}
424
1b894b59
CW
425static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
426 int refclk)
2c07245f 427{
b91ad0ec 428 struct drm_device *dev = crtc->dev;
2c07245f 429 const intel_limit_t *limit;
b91ad0ec
ZW
430
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 432 if (intel_is_dual_link_lvds(dev)) {
1b894b59 433 if (refclk == 100000)
b91ad0ec
ZW
434 limit = &intel_limits_ironlake_dual_lvds_100m;
435 else
436 limit = &intel_limits_ironlake_dual_lvds;
437 } else {
1b894b59 438 if (refclk == 100000)
b91ad0ec
ZW
439 limit = &intel_limits_ironlake_single_lvds_100m;
440 else
441 limit = &intel_limits_ironlake_single_lvds;
442 }
c6bb3538 443 } else
b91ad0ec 444 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
445
446 return limit;
447}
448
044c7c41
ML
449static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
450{
451 struct drm_device *dev = crtc->dev;
044c7c41
ML
452 const intel_limit_t *limit;
453
454 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 455 if (intel_is_dual_link_lvds(dev))
e4b36699 456 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 457 else
e4b36699 458 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
459 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
460 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 461 limit = &intel_limits_g4x_hdmi;
044c7c41 462 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 463 limit = &intel_limits_g4x_sdvo;
044c7c41 464 } else /* The option is for other outputs */
e4b36699 465 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
466
467 return limit;
468}
469
1b894b59 470static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
471{
472 struct drm_device *dev = crtc->dev;
473 const intel_limit_t *limit;
474
bad720ff 475 if (HAS_PCH_SPLIT(dev))
1b894b59 476 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 477 else if (IS_G4X(dev)) {
044c7c41 478 limit = intel_g4x_limit(crtc);
f2b115e6 479 } else if (IS_PINEVIEW(dev)) {
2177832f 480 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 481 limit = &intel_limits_pineview_lvds;
2177832f 482 else
f2b115e6 483 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
484 } else if (IS_CHERRYVIEW(dev)) {
485 limit = &intel_limits_chv;
a0c4da24 486 } else if (IS_VALLEYVIEW(dev)) {
dc730512 487 limit = &intel_limits_vlv;
a6c45cf0
CW
488 } else if (!IS_GEN2(dev)) {
489 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
490 limit = &intel_limits_i9xx_lvds;
491 else
492 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
493 } else {
494 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 495 limit = &intel_limits_i8xx_lvds;
5d536e28 496 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 497 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
498 else
499 limit = &intel_limits_i8xx_dac;
79e53945
JB
500 }
501 return limit;
502}
503
f2b115e6
AJ
504/* m1 is reserved as 0 in Pineview, n is a ring counter */
505static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 506{
2177832f
SL
507 clock->m = clock->m2 + 2;
508 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
509 if (WARN_ON(clock->n == 0 || clock->p == 0))
510 return;
fb03ac01
VS
511 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
512 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
513}
514
7429e9d4
DV
515static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
516{
517 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
518}
519
ac58c3f0 520static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 521{
7429e9d4 522 clock->m = i9xx_dpll_compute_m(clock);
79e53945 523 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
524 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
525 return;
fb03ac01
VS
526 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
527 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
528}
529
ef9348c8
CML
530static void chv_clock(int refclk, intel_clock_t *clock)
531{
532 clock->m = clock->m1 * clock->m2;
533 clock->p = clock->p1 * clock->p2;
534 if (WARN_ON(clock->n == 0 || clock->p == 0))
535 return;
536 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
537 clock->n << 22);
538 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
539}
540
7c04d1d9 541#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
542/**
543 * Returns whether the given set of divisors are valid for a given refclk with
544 * the given connectors.
545 */
546
1b894b59
CW
547static bool intel_PLL_is_valid(struct drm_device *dev,
548 const intel_limit_t *limit,
549 const intel_clock_t *clock)
79e53945 550{
f01b7962
VS
551 if (clock->n < limit->n.min || limit->n.max < clock->n)
552 INTELPllInvalid("n out of range\n");
79e53945 553 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 554 INTELPllInvalid("p1 out of range\n");
79e53945 555 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 556 INTELPllInvalid("m2 out of range\n");
79e53945 557 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 558 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
559
560 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
561 if (clock->m1 <= clock->m2)
562 INTELPllInvalid("m1 <= m2\n");
563
564 if (!IS_VALLEYVIEW(dev)) {
565 if (clock->p < limit->p.min || limit->p.max < clock->p)
566 INTELPllInvalid("p out of range\n");
567 if (clock->m < limit->m.min || limit->m.max < clock->m)
568 INTELPllInvalid("m out of range\n");
569 }
570
79e53945 571 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 572 INTELPllInvalid("vco out of range\n");
79e53945
JB
573 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
574 * connector, etc., rather than just a single range.
575 */
576 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 577 INTELPllInvalid("dot out of range\n");
79e53945
JB
578
579 return true;
580}
581
d4906093 582static bool
ee9300bb 583i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
584 int target, int refclk, intel_clock_t *match_clock,
585 intel_clock_t *best_clock)
79e53945
JB
586{
587 struct drm_device *dev = crtc->dev;
79e53945 588 intel_clock_t clock;
79e53945
JB
589 int err = target;
590
a210b028 591 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 592 /*
a210b028
DV
593 * For LVDS just rely on its current settings for dual-channel.
594 * We haven't figured out how to reliably set up different
595 * single/dual channel state, if we even can.
79e53945 596 */
1974cad0 597 if (intel_is_dual_link_lvds(dev))
79e53945
JB
598 clock.p2 = limit->p2.p2_fast;
599 else
600 clock.p2 = limit->p2.p2_slow;
601 } else {
602 if (target < limit->p2.dot_limit)
603 clock.p2 = limit->p2.p2_slow;
604 else
605 clock.p2 = limit->p2.p2_fast;
606 }
607
0206e353 608 memset(best_clock, 0, sizeof(*best_clock));
79e53945 609
42158660
ZY
610 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
611 clock.m1++) {
612 for (clock.m2 = limit->m2.min;
613 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 614 if (clock.m2 >= clock.m1)
42158660
ZY
615 break;
616 for (clock.n = limit->n.min;
617 clock.n <= limit->n.max; clock.n++) {
618 for (clock.p1 = limit->p1.min;
619 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
620 int this_err;
621
ac58c3f0
DV
622 i9xx_clock(refclk, &clock);
623 if (!intel_PLL_is_valid(dev, limit,
624 &clock))
625 continue;
626 if (match_clock &&
627 clock.p != match_clock->p)
628 continue;
629
630 this_err = abs(clock.dot - target);
631 if (this_err < err) {
632 *best_clock = clock;
633 err = this_err;
634 }
635 }
636 }
637 }
638 }
639
640 return (err != target);
641}
642
643static bool
ee9300bb
DV
644pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *match_clock,
646 intel_clock_t *best_clock)
79e53945
JB
647{
648 struct drm_device *dev = crtc->dev;
79e53945 649 intel_clock_t clock;
79e53945
JB
650 int err = target;
651
a210b028 652 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 653 /*
a210b028
DV
654 * For LVDS just rely on its current settings for dual-channel.
655 * We haven't figured out how to reliably set up different
656 * single/dual channel state, if we even can.
79e53945 657 */
1974cad0 658 if (intel_is_dual_link_lvds(dev))
79e53945
JB
659 clock.p2 = limit->p2.p2_fast;
660 else
661 clock.p2 = limit->p2.p2_slow;
662 } else {
663 if (target < limit->p2.dot_limit)
664 clock.p2 = limit->p2.p2_slow;
665 else
666 clock.p2 = limit->p2.p2_fast;
667 }
668
0206e353 669 memset(best_clock, 0, sizeof(*best_clock));
79e53945 670
42158660
ZY
671 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
672 clock.m1++) {
673 for (clock.m2 = limit->m2.min;
674 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
675 for (clock.n = limit->n.min;
676 clock.n <= limit->n.max; clock.n++) {
677 for (clock.p1 = limit->p1.min;
678 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
679 int this_err;
680
ac58c3f0 681 pineview_clock(refclk, &clock);
1b894b59
CW
682 if (!intel_PLL_is_valid(dev, limit,
683 &clock))
79e53945 684 continue;
cec2f356
SP
685 if (match_clock &&
686 clock.p != match_clock->p)
687 continue;
79e53945
JB
688
689 this_err = abs(clock.dot - target);
690 if (this_err < err) {
691 *best_clock = clock;
692 err = this_err;
693 }
694 }
695 }
696 }
697 }
698
699 return (err != target);
700}
701
d4906093 702static bool
ee9300bb
DV
703g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
704 int target, int refclk, intel_clock_t *match_clock,
705 intel_clock_t *best_clock)
d4906093
ML
706{
707 struct drm_device *dev = crtc->dev;
d4906093
ML
708 intel_clock_t clock;
709 int max_n;
710 bool found;
6ba770dc
AJ
711 /* approximately equals target * 0.00585 */
712 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
713 found = false;
714
715 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 716 if (intel_is_dual_link_lvds(dev))
d4906093
ML
717 clock.p2 = limit->p2.p2_fast;
718 else
719 clock.p2 = limit->p2.p2_slow;
720 } else {
721 if (target < limit->p2.dot_limit)
722 clock.p2 = limit->p2.p2_slow;
723 else
724 clock.p2 = limit->p2.p2_fast;
725 }
726
727 memset(best_clock, 0, sizeof(*best_clock));
728 max_n = limit->n.max;
f77f13e2 729 /* based on hardware requirement, prefer smaller n to precision */
d4906093 730 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 731 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
732 for (clock.m1 = limit->m1.max;
733 clock.m1 >= limit->m1.min; clock.m1--) {
734 for (clock.m2 = limit->m2.max;
735 clock.m2 >= limit->m2.min; clock.m2--) {
736 for (clock.p1 = limit->p1.max;
737 clock.p1 >= limit->p1.min; clock.p1--) {
738 int this_err;
739
ac58c3f0 740 i9xx_clock(refclk, &clock);
1b894b59
CW
741 if (!intel_PLL_is_valid(dev, limit,
742 &clock))
d4906093 743 continue;
1b894b59
CW
744
745 this_err = abs(clock.dot - target);
d4906093
ML
746 if (this_err < err_most) {
747 *best_clock = clock;
748 err_most = this_err;
749 max_n = clock.n;
750 found = true;
751 }
752 }
753 }
754 }
755 }
2c07245f
ZW
756 return found;
757}
758
a0c4da24 759static bool
ee9300bb
DV
760vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
761 int target, int refclk, intel_clock_t *match_clock,
762 intel_clock_t *best_clock)
a0c4da24 763{
f01b7962 764 struct drm_device *dev = crtc->dev;
6b4bf1c4 765 intel_clock_t clock;
69e4f900 766 unsigned int bestppm = 1000000;
27e639bf
VS
767 /* min update 19.2 MHz */
768 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 769 bool found = false;
a0c4da24 770
6b4bf1c4
VS
771 target *= 5; /* fast clock */
772
773 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
774
775 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 777 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 778 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 779 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 780 clock.p = clock.p1 * clock.p2;
a0c4da24 781 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 782 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
783 unsigned int ppm, diff;
784
6b4bf1c4
VS
785 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
786 refclk * clock.m1);
787
788 vlv_clock(refclk, &clock);
43b0ac53 789
f01b7962
VS
790 if (!intel_PLL_is_valid(dev, limit,
791 &clock))
43b0ac53
VS
792 continue;
793
6b4bf1c4
VS
794 diff = abs(clock.dot - target);
795 ppm = div_u64(1000000ULL * diff, target);
796
797 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 798 bestppm = 0;
6b4bf1c4 799 *best_clock = clock;
49e497ef 800 found = true;
43b0ac53 801 }
6b4bf1c4 802
c686122c 803 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 804 bestppm = ppm;
6b4bf1c4 805 *best_clock = clock;
49e497ef 806 found = true;
a0c4da24
JB
807 }
808 }
809 }
810 }
811 }
a0c4da24 812
49e497ef 813 return found;
a0c4da24 814}
a4fc5ed6 815
ef9348c8
CML
816static bool
817chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
820{
821 struct drm_device *dev = crtc->dev;
822 intel_clock_t clock;
823 uint64_t m2;
824 int found = false;
825
826 memset(best_clock, 0, sizeof(*best_clock));
827
828 /*
829 * Based on hardware doc, the n always set to 1, and m1 always
830 * set to 2. If requires to support 200Mhz refclk, we need to
831 * revisit this because n may not 1 anymore.
832 */
833 clock.n = 1, clock.m1 = 2;
834 target *= 5; /* fast clock */
835
836 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
837 for (clock.p2 = limit->p2.p2_fast;
838 clock.p2 >= limit->p2.p2_slow;
839 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
840
841 clock.p = clock.p1 * clock.p2;
842
843 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
844 clock.n) << 22, refclk * clock.m1);
845
846 if (m2 > INT_MAX/clock.m1)
847 continue;
848
849 clock.m2 = m2;
850
851 chv_clock(refclk, &clock);
852
853 if (!intel_PLL_is_valid(dev, limit, &clock))
854 continue;
855
856 /* based on hardware requirement, prefer bigger p
857 */
858 if (clock.p > best_clock->p) {
859 *best_clock = clock;
860 found = true;
861 }
862 }
863 }
864
865 return found;
866}
867
20ddf665
VS
868bool intel_crtc_active(struct drm_crtc *crtc)
869{
870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
871
872 /* Be paranoid as we can arrive here with only partial
873 * state retrieved from the hardware during setup.
874 *
241bfc38 875 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
876 * as Haswell has gained clock readout/fastboot support.
877 *
66e514c1 878 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
879 * properly reconstruct framebuffers.
880 */
f4510a27 881 return intel_crtc->active && crtc->primary->fb &&
241bfc38 882 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
883}
884
a5c961d1
PZ
885enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886 enum pipe pipe)
887{
888 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
3b117c8f 891 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
892}
893
57e22f4a 894static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
895{
896 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 897 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
898
899 frame = I915_READ(frame_reg);
900
901 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 902 WARN(1, "vblank wait timed out\n");
a928d536
PZ
903}
904
9d0498a2
JB
905/**
906 * intel_wait_for_vblank - wait for vblank on a given pipe
907 * @dev: drm device
908 * @pipe: pipe to wait for
909 *
910 * Wait for vblank to occur on a given pipe. Needed for various bits of
911 * mode setting code.
912 */
913void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 914{
9d0498a2 915 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 916 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 917
57e22f4a
VS
918 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
919 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
920 return;
921 }
922
300387c0
CW
923 /* Clear existing vblank status. Note this will clear any other
924 * sticky status fields as well.
925 *
926 * This races with i915_driver_irq_handler() with the result
927 * that either function could miss a vblank event. Here it is not
928 * fatal, as we will either wait upon the next vblank interrupt or
929 * timeout. Generally speaking intel_wait_for_vblank() is only
930 * called during modeset at which time the GPU should be idle and
931 * should *not* be performing page flips and thus not waiting on
932 * vblanks...
933 * Currently, the result of us stealing a vblank from the irq
934 * handler is that a single frame will be skipped during swapbuffers.
935 */
936 I915_WRITE(pipestat_reg,
937 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
9d0498a2 939 /* Wait for vblank interrupt bit to set */
481b6af3
CW
940 if (wait_for(I915_READ(pipestat_reg) &
941 PIPE_VBLANK_INTERRUPT_STATUS,
942 50))
9d0498a2
JB
943 DRM_DEBUG_KMS("vblank wait timed out\n");
944}
945
fbf49ea2
VS
946static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
947{
948 struct drm_i915_private *dev_priv = dev->dev_private;
949 u32 reg = PIPEDSL(pipe);
950 u32 line1, line2;
951 u32 line_mask;
952
953 if (IS_GEN2(dev))
954 line_mask = DSL_LINEMASK_GEN2;
955 else
956 line_mask = DSL_LINEMASK_GEN3;
957
958 line1 = I915_READ(reg) & line_mask;
959 mdelay(5);
960 line2 = I915_READ(reg) & line_mask;
961
962 return line1 == line2;
963}
964
ab7ad7f6
KP
965/*
966 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
967 * @dev: drm device
968 * @pipe: pipe to wait for
969 *
970 * After disabling a pipe, we can't wait for vblank in the usual way,
971 * spinning on the vblank interrupt status bit, since we won't actually
972 * see an interrupt when the pipe is disabled.
973 *
ab7ad7f6
KP
974 * On Gen4 and above:
975 * wait for the pipe register state bit to turn off
976 *
977 * Otherwise:
978 * wait for the display line value to settle (it usually
979 * ends up stopping at the start of the next frame).
58e10eb9 980 *
9d0498a2 981 */
58e10eb9 982void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
983{
984 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
985 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
986 pipe);
ab7ad7f6
KP
987
988 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 989 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
990
991 /* Wait for the Pipe State to go off */
58e10eb9
CW
992 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
993 100))
284637d9 994 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 995 } else {
ab7ad7f6 996 /* Wait for the display line to settle */
fbf49ea2 997 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 998 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 999 }
79e53945
JB
1000}
1001
b0ea7d37
DL
1002/*
1003 * ibx_digital_port_connected - is the specified port connected?
1004 * @dev_priv: i915 private structure
1005 * @port: the port to test
1006 *
1007 * Returns true if @port is connected, false otherwise.
1008 */
1009bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1010 struct intel_digital_port *port)
1011{
1012 u32 bit;
1013
c36346e3 1014 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1015 switch (port->port) {
c36346e3
DL
1016 case PORT_B:
1017 bit = SDE_PORTB_HOTPLUG;
1018 break;
1019 case PORT_C:
1020 bit = SDE_PORTC_HOTPLUG;
1021 break;
1022 case PORT_D:
1023 bit = SDE_PORTD_HOTPLUG;
1024 break;
1025 default:
1026 return true;
1027 }
1028 } else {
eba905b2 1029 switch (port->port) {
c36346e3
DL
1030 case PORT_B:
1031 bit = SDE_PORTB_HOTPLUG_CPT;
1032 break;
1033 case PORT_C:
1034 bit = SDE_PORTC_HOTPLUG_CPT;
1035 break;
1036 case PORT_D:
1037 bit = SDE_PORTD_HOTPLUG_CPT;
1038 break;
1039 default:
1040 return true;
1041 }
b0ea7d37
DL
1042 }
1043
1044 return I915_READ(SDEISR) & bit;
1045}
1046
b24e7179
JB
1047static const char *state_string(bool enabled)
1048{
1049 return enabled ? "on" : "off";
1050}
1051
1052/* Only for pre-ILK configs */
55607e8a
DV
1053void assert_pll(struct drm_i915_private *dev_priv,
1054 enum pipe pipe, bool state)
b24e7179
JB
1055{
1056 int reg;
1057 u32 val;
1058 bool cur_state;
1059
1060 reg = DPLL(pipe);
1061 val = I915_READ(reg);
1062 cur_state = !!(val & DPLL_VCO_ENABLE);
1063 WARN(cur_state != state,
1064 "PLL state assertion failure (expected %s, current %s)\n",
1065 state_string(state), state_string(cur_state));
1066}
b24e7179 1067
23538ef1
JN
1068/* XXX: the dsi pll is shared between MIPI DSI ports */
1069static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1070{
1071 u32 val;
1072 bool cur_state;
1073
1074 mutex_lock(&dev_priv->dpio_lock);
1075 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1076 mutex_unlock(&dev_priv->dpio_lock);
1077
1078 cur_state = val & DSI_PLL_VCO_EN;
1079 WARN(cur_state != state,
1080 "DSI PLL state assertion failure (expected %s, current %s)\n",
1081 state_string(state), state_string(cur_state));
1082}
1083#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1084#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1085
55607e8a 1086struct intel_shared_dpll *
e2b78267
DV
1087intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1088{
1089 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1090
a43f6e0f 1091 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1092 return NULL;
1093
a43f6e0f 1094 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1095}
1096
040484af 1097/* For ILK+ */
55607e8a
DV
1098void assert_shared_dpll(struct drm_i915_private *dev_priv,
1099 struct intel_shared_dpll *pll,
1100 bool state)
040484af 1101{
040484af 1102 bool cur_state;
5358901f 1103 struct intel_dpll_hw_state hw_state;
040484af 1104
92b27b08 1105 if (WARN (!pll,
46edb027 1106 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1107 return;
ee7b9f93 1108
5358901f 1109 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1110 WARN(cur_state != state,
5358901f
DV
1111 "%s assertion failure (expected %s, current %s)\n",
1112 pll->name, state_string(state), state_string(cur_state));
040484af 1113}
040484af
JB
1114
1115static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1116 enum pipe pipe, bool state)
1117{
1118 int reg;
1119 u32 val;
1120 bool cur_state;
ad80a810
PZ
1121 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1122 pipe);
040484af 1123
affa9354
PZ
1124 if (HAS_DDI(dev_priv->dev)) {
1125 /* DDI does not have a specific FDI_TX register */
ad80a810 1126 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1127 val = I915_READ(reg);
ad80a810 1128 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1129 } else {
1130 reg = FDI_TX_CTL(pipe);
1131 val = I915_READ(reg);
1132 cur_state = !!(val & FDI_TX_ENABLE);
1133 }
040484af
JB
1134 WARN(cur_state != state,
1135 "FDI TX state assertion failure (expected %s, current %s)\n",
1136 state_string(state), state_string(cur_state));
1137}
1138#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1139#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1140
1141static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1142 enum pipe pipe, bool state)
1143{
1144 int reg;
1145 u32 val;
1146 bool cur_state;
1147
d63fa0dc
PZ
1148 reg = FDI_RX_CTL(pipe);
1149 val = I915_READ(reg);
1150 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1151 WARN(cur_state != state,
1152 "FDI RX state assertion failure (expected %s, current %s)\n",
1153 state_string(state), state_string(cur_state));
1154}
1155#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1156#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1157
1158static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1159 enum pipe pipe)
1160{
1161 int reg;
1162 u32 val;
1163
1164 /* ILK FDI PLL is always enabled */
3d13ef2e 1165 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1166 return;
1167
bf507ef7 1168 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1169 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1170 return;
1171
040484af
JB
1172 reg = FDI_TX_CTL(pipe);
1173 val = I915_READ(reg);
1174 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175}
1176
55607e8a
DV
1177void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
040484af
JB
1179{
1180 int reg;
1181 u32 val;
55607e8a 1182 bool cur_state;
040484af
JB
1183
1184 reg = FDI_RX_CTL(pipe);
1185 val = I915_READ(reg);
55607e8a
DV
1186 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1187 WARN(cur_state != state,
1188 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1189 state_string(state), state_string(cur_state));
040484af
JB
1190}
1191
ea0760cf
JB
1192static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1193 enum pipe pipe)
1194{
1195 int pp_reg, lvds_reg;
1196 u32 val;
1197 enum pipe panel_pipe = PIPE_A;
0de3b485 1198 bool locked = true;
ea0760cf
JB
1199
1200 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1201 pp_reg = PCH_PP_CONTROL;
1202 lvds_reg = PCH_LVDS;
1203 } else {
1204 pp_reg = PP_CONTROL;
1205 lvds_reg = LVDS;
1206 }
1207
1208 val = I915_READ(pp_reg);
1209 if (!(val & PANEL_POWER_ON) ||
1210 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1211 locked = false;
1212
1213 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1214 panel_pipe = PIPE_B;
1215
1216 WARN(panel_pipe == pipe && locked,
1217 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1218 pipe_name(pipe));
ea0760cf
JB
1219}
1220
93ce0ba6
JN
1221static void assert_cursor(struct drm_i915_private *dev_priv,
1222 enum pipe pipe, bool state)
1223{
1224 struct drm_device *dev = dev_priv->dev;
1225 bool cur_state;
1226
d9d82081 1227 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1228 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1229 else
5efb3e28 1230 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1231
1232 WARN(cur_state != state,
1233 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1234 pipe_name(pipe), state_string(state), state_string(cur_state));
1235}
1236#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1237#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1238
b840d907
JB
1239void assert_pipe(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, bool state)
b24e7179
JB
1241{
1242 int reg;
1243 u32 val;
63d7bbe9 1244 bool cur_state;
702e7a56
PZ
1245 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1246 pipe);
b24e7179 1247
8e636784
DV
1248 /* if we need the pipe A quirk it must be always on */
1249 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1250 state = true;
1251
da7e29bd 1252 if (!intel_display_power_enabled(dev_priv,
b97186f0 1253 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1254 cur_state = false;
1255 } else {
1256 reg = PIPECONF(cpu_transcoder);
1257 val = I915_READ(reg);
1258 cur_state = !!(val & PIPECONF_ENABLE);
1259 }
1260
63d7bbe9
JB
1261 WARN(cur_state != state,
1262 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1263 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1264}
1265
931872fc
CW
1266static void assert_plane(struct drm_i915_private *dev_priv,
1267 enum plane plane, bool state)
b24e7179
JB
1268{
1269 int reg;
1270 u32 val;
931872fc 1271 bool cur_state;
b24e7179
JB
1272
1273 reg = DSPCNTR(plane);
1274 val = I915_READ(reg);
931872fc
CW
1275 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1276 WARN(cur_state != state,
1277 "plane %c assertion failure (expected %s, current %s)\n",
1278 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1279}
1280
931872fc
CW
1281#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1282#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1283
b24e7179
JB
1284static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1285 enum pipe pipe)
1286{
653e1026 1287 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1288 int reg, i;
1289 u32 val;
1290 int cur_pipe;
1291
653e1026
VS
1292 /* Primary planes are fixed to pipes on gen4+ */
1293 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1294 reg = DSPCNTR(pipe);
1295 val = I915_READ(reg);
83f26f16 1296 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1297 "plane %c assertion failure, should be disabled but not\n",
1298 plane_name(pipe));
19ec1358 1299 return;
28c05794 1300 }
19ec1358 1301
b24e7179 1302 /* Need to check both planes against the pipe */
08e2a7de 1303 for_each_pipe(i) {
b24e7179
JB
1304 reg = DSPCNTR(i);
1305 val = I915_READ(reg);
1306 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1307 DISPPLANE_SEL_PIPE_SHIFT;
1308 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1309 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1310 plane_name(i), pipe_name(pipe));
b24e7179
JB
1311 }
1312}
1313
19332d7a
JB
1314static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1315 enum pipe pipe)
1316{
20674eef 1317 struct drm_device *dev = dev_priv->dev;
1fe47785 1318 int reg, sprite;
19332d7a
JB
1319 u32 val;
1320
20674eef 1321 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1322 for_each_sprite(pipe, sprite) {
1323 reg = SPCNTR(pipe, sprite);
20674eef 1324 val = I915_READ(reg);
83f26f16 1325 WARN(val & SP_ENABLE,
20674eef 1326 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1327 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1328 }
1329 } else if (INTEL_INFO(dev)->gen >= 7) {
1330 reg = SPRCTL(pipe);
19332d7a 1331 val = I915_READ(reg);
83f26f16 1332 WARN(val & SPRITE_ENABLE,
06da8da2 1333 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1334 plane_name(pipe), pipe_name(pipe));
1335 } else if (INTEL_INFO(dev)->gen >= 5) {
1336 reg = DVSCNTR(pipe);
19332d7a 1337 val = I915_READ(reg);
83f26f16 1338 WARN(val & DVS_ENABLE,
06da8da2 1339 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1340 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1341 }
1342}
1343
08c71e5e
VS
1344static void assert_vblank_disabled(struct drm_crtc *crtc)
1345{
1346 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1347 drm_crtc_vblank_put(crtc);
1348}
1349
89eff4be 1350static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1351{
1352 u32 val;
1353 bool enabled;
1354
89eff4be 1355 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1356
92f2584a
JB
1357 val = I915_READ(PCH_DREF_CONTROL);
1358 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1359 DREF_SUPERSPREAD_SOURCE_MASK));
1360 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1361}
1362
ab9412ba
DV
1363static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1364 enum pipe pipe)
92f2584a
JB
1365{
1366 int reg;
1367 u32 val;
1368 bool enabled;
1369
ab9412ba 1370 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1371 val = I915_READ(reg);
1372 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1373 WARN(enabled,
1374 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1375 pipe_name(pipe));
92f2584a
JB
1376}
1377
4e634389
KP
1378static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1379 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1380{
1381 if ((val & DP_PORT_EN) == 0)
1382 return false;
1383
1384 if (HAS_PCH_CPT(dev_priv->dev)) {
1385 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1386 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1387 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1388 return false;
44f37d1f
CML
1389 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1390 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1391 return false;
f0575e92
KP
1392 } else {
1393 if ((val & DP_PIPE_MASK) != (pipe << 30))
1394 return false;
1395 }
1396 return true;
1397}
1398
1519b995
KP
1399static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1400 enum pipe pipe, u32 val)
1401{
dc0fa718 1402 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1403 return false;
1404
1405 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1406 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1407 return false;
44f37d1f
CML
1408 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1409 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1410 return false;
1519b995 1411 } else {
dc0fa718 1412 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1413 return false;
1414 }
1415 return true;
1416}
1417
1418static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1419 enum pipe pipe, u32 val)
1420{
1421 if ((val & LVDS_PORT_EN) == 0)
1422 return false;
1423
1424 if (HAS_PCH_CPT(dev_priv->dev)) {
1425 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1426 return false;
1427 } else {
1428 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1429 return false;
1430 }
1431 return true;
1432}
1433
1434static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1435 enum pipe pipe, u32 val)
1436{
1437 if ((val & ADPA_DAC_ENABLE) == 0)
1438 return false;
1439 if (HAS_PCH_CPT(dev_priv->dev)) {
1440 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1441 return false;
1442 } else {
1443 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1444 return false;
1445 }
1446 return true;
1447}
1448
291906f1 1449static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1450 enum pipe pipe, int reg, u32 port_sel)
291906f1 1451{
47a05eca 1452 u32 val = I915_READ(reg);
4e634389 1453 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1454 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1455 reg, pipe_name(pipe));
de9a35ab 1456
75c5da27
DV
1457 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1458 && (val & DP_PIPEB_SELECT),
de9a35ab 1459 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1460}
1461
1462static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1463 enum pipe pipe, int reg)
1464{
47a05eca 1465 u32 val = I915_READ(reg);
b70ad586 1466 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1467 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1468 reg, pipe_name(pipe));
de9a35ab 1469
dc0fa718 1470 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1471 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1472 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1473}
1474
1475static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1476 enum pipe pipe)
1477{
1478 int reg;
1479 u32 val;
291906f1 1480
f0575e92
KP
1481 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1482 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1483 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1484
1485 reg = PCH_ADPA;
1486 val = I915_READ(reg);
b70ad586 1487 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1488 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1489 pipe_name(pipe));
291906f1
JB
1490
1491 reg = PCH_LVDS;
1492 val = I915_READ(reg);
b70ad586 1493 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1494 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1495 pipe_name(pipe));
291906f1 1496
e2debe91
PZ
1497 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1498 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1499 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1500}
1501
40e9cf64
JB
1502static void intel_init_dpio(struct drm_device *dev)
1503{
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506 if (!IS_VALLEYVIEW(dev))
1507 return;
1508
a09caddd
CML
1509 /*
1510 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1511 * CHV x1 PHY (DP/HDMI D)
1512 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1513 */
1514 if (IS_CHERRYVIEW(dev)) {
1515 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1516 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1517 } else {
1518 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1519 }
5382f5f3
JB
1520}
1521
1522static void intel_reset_dpio(struct drm_device *dev)
1523{
1524 struct drm_i915_private *dev_priv = dev->dev_private;
1525
076ed3b2
CML
1526 if (IS_CHERRYVIEW(dev)) {
1527 enum dpio_phy phy;
1528 u32 val;
1529
1530 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1531 /* Poll for phypwrgood signal */
1532 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1533 PHY_POWERGOOD(phy), 1))
1534 DRM_ERROR("Display PHY %d is not power up\n", phy);
1535
1536 /*
1537 * Deassert common lane reset for PHY.
1538 *
1539 * This should only be done on init and resume from S3
1540 * with both PLLs disabled, or we risk losing DPIO and
1541 * PLL synchronization.
1542 */
1543 val = I915_READ(DISPLAY_PHY_CONTROL);
1544 I915_WRITE(DISPLAY_PHY_CONTROL,
1545 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1546 }
076ed3b2 1547 }
40e9cf64
JB
1548}
1549
426115cf 1550static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1551{
426115cf
DV
1552 struct drm_device *dev = crtc->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 int reg = DPLL(crtc->pipe);
1555 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1556
426115cf 1557 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1558
1559 /* No really, not for ILK+ */
1560 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1561
1562 /* PLL is protected by panel, make sure we can write it */
1563 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1564 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1565
426115cf
DV
1566 I915_WRITE(reg, dpll);
1567 POSTING_READ(reg);
1568 udelay(150);
1569
1570 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1571 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1572
1573 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1574 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1575
1576 /* We do this three times for luck */
426115cf 1577 I915_WRITE(reg, dpll);
87442f73
DV
1578 POSTING_READ(reg);
1579 udelay(150); /* wait for warmup */
426115cf 1580 I915_WRITE(reg, dpll);
87442f73
DV
1581 POSTING_READ(reg);
1582 udelay(150); /* wait for warmup */
426115cf 1583 I915_WRITE(reg, dpll);
87442f73
DV
1584 POSTING_READ(reg);
1585 udelay(150); /* wait for warmup */
1586}
1587
9d556c99
CML
1588static void chv_enable_pll(struct intel_crtc *crtc)
1589{
1590 struct drm_device *dev = crtc->base.dev;
1591 struct drm_i915_private *dev_priv = dev->dev_private;
1592 int pipe = crtc->pipe;
1593 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1594 u32 tmp;
1595
1596 assert_pipe_disabled(dev_priv, crtc->pipe);
1597
1598 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1599
1600 mutex_lock(&dev_priv->dpio_lock);
1601
1602 /* Enable back the 10bit clock to display controller */
1603 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1604 tmp |= DPIO_DCLKP_EN;
1605 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1606
1607 /*
1608 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1609 */
1610 udelay(1);
1611
1612 /* Enable PLL */
a11b0703 1613 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1614
1615 /* Check PLL is locked */
a11b0703 1616 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1617 DRM_ERROR("PLL %d failed to lock\n", pipe);
1618
a11b0703
VS
1619 /* not sure when this should be written */
1620 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1621 POSTING_READ(DPLL_MD(pipe));
1622
9d556c99
CML
1623 mutex_unlock(&dev_priv->dpio_lock);
1624}
1625
66e3d5c0 1626static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1627{
66e3d5c0
DV
1628 struct drm_device *dev = crtc->base.dev;
1629 struct drm_i915_private *dev_priv = dev->dev_private;
1630 int reg = DPLL(crtc->pipe);
1631 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1632
66e3d5c0 1633 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1634
63d7bbe9 1635 /* No really, not for ILK+ */
3d13ef2e 1636 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1637
1638 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1639 if (IS_MOBILE(dev) && !IS_I830(dev))
1640 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1641
66e3d5c0
DV
1642 I915_WRITE(reg, dpll);
1643
1644 /* Wait for the clocks to stabilize. */
1645 POSTING_READ(reg);
1646 udelay(150);
1647
1648 if (INTEL_INFO(dev)->gen >= 4) {
1649 I915_WRITE(DPLL_MD(crtc->pipe),
1650 crtc->config.dpll_hw_state.dpll_md);
1651 } else {
1652 /* The pixel multiplier can only be updated once the
1653 * DPLL is enabled and the clocks are stable.
1654 *
1655 * So write it again.
1656 */
1657 I915_WRITE(reg, dpll);
1658 }
63d7bbe9
JB
1659
1660 /* We do this three times for luck */
66e3d5c0 1661 I915_WRITE(reg, dpll);
63d7bbe9
JB
1662 POSTING_READ(reg);
1663 udelay(150); /* wait for warmup */
66e3d5c0 1664 I915_WRITE(reg, dpll);
63d7bbe9
JB
1665 POSTING_READ(reg);
1666 udelay(150); /* wait for warmup */
66e3d5c0 1667 I915_WRITE(reg, dpll);
63d7bbe9
JB
1668 POSTING_READ(reg);
1669 udelay(150); /* wait for warmup */
1670}
1671
1672/**
50b44a44 1673 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1674 * @dev_priv: i915 private structure
1675 * @pipe: pipe PLL to disable
1676 *
1677 * Disable the PLL for @pipe, making sure the pipe is off first.
1678 *
1679 * Note! This is for pre-ILK only.
1680 */
50b44a44 1681static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1682{
63d7bbe9
JB
1683 /* Don't disable pipe A or pipe A PLLs if needed */
1684 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1685 return;
1686
1687 /* Make sure the pipe isn't still relying on us */
1688 assert_pipe_disabled(dev_priv, pipe);
1689
50b44a44
DV
1690 I915_WRITE(DPLL(pipe), 0);
1691 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1692}
1693
f6071166
JB
1694static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1695{
1696 u32 val = 0;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
e5cbfbfb
ID
1701 /*
1702 * Leave integrated clock source and reference clock enabled for pipe B.
1703 * The latter is needed for VGA hotplug / manual detection.
1704 */
f6071166 1705 if (pipe == PIPE_B)
e5cbfbfb 1706 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1707 I915_WRITE(DPLL(pipe), val);
1708 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1709
1710}
1711
1712static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713{
d752048d 1714 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1715 u32 val;
1716
a11b0703
VS
1717 /* Make sure the pipe isn't still relying on us */
1718 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1719
a11b0703
VS
1720 /* Set PLL en = 0 */
1721 val = DPLL_SSC_REF_CLOCK_CHV;
1722 if (pipe != PIPE_A)
1723 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
d752048d
VS
1726
1727 mutex_lock(&dev_priv->dpio_lock);
1728
1729 /* Disable 10bit clock to display controller */
1730 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1731 val &= ~DPIO_DCLKP_EN;
1732 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1733
61407f6d
VS
1734 /* disable left/right clock distribution */
1735 if (pipe != PIPE_B) {
1736 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1737 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1738 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1739 } else {
1740 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1741 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1742 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1743 }
1744
d752048d 1745 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1746}
1747
e4607fcf
CML
1748void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1749 struct intel_digital_port *dport)
89b667f8
JB
1750{
1751 u32 port_mask;
00fc31b7 1752 int dpll_reg;
89b667f8 1753
e4607fcf
CML
1754 switch (dport->port) {
1755 case PORT_B:
89b667f8 1756 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1757 dpll_reg = DPLL(0);
e4607fcf
CML
1758 break;
1759 case PORT_C:
89b667f8 1760 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1761 dpll_reg = DPLL(0);
1762 break;
1763 case PORT_D:
1764 port_mask = DPLL_PORTD_READY_MASK;
1765 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1766 break;
1767 default:
1768 BUG();
1769 }
89b667f8 1770
00fc31b7 1771 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1772 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1773 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1774}
1775
b14b1055
DV
1776static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1777{
1778 struct drm_device *dev = crtc->base.dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1781
be19f0ff
CW
1782 if (WARN_ON(pll == NULL))
1783 return;
1784
b14b1055
DV
1785 WARN_ON(!pll->refcount);
1786 if (pll->active == 0) {
1787 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1788 WARN_ON(pll->on);
1789 assert_shared_dpll_disabled(dev_priv, pll);
1790
1791 pll->mode_set(dev_priv, pll);
1792 }
1793}
1794
92f2584a 1795/**
85b3894f 1796 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1797 * @dev_priv: i915 private structure
1798 * @pipe: pipe PLL to enable
1799 *
1800 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1801 * drives the transcoder clock.
1802 */
85b3894f 1803static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1804{
3d13ef2e
DL
1805 struct drm_device *dev = crtc->base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1807 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1808
87a875bb 1809 if (WARN_ON(pll == NULL))
48da64a8
CW
1810 return;
1811
1812 if (WARN_ON(pll->refcount == 0))
1813 return;
ee7b9f93 1814
46edb027
DV
1815 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1816 pll->name, pll->active, pll->on,
e2b78267 1817 crtc->base.base.id);
92f2584a 1818
cdbd2316
DV
1819 if (pll->active++) {
1820 WARN_ON(!pll->on);
e9d6944e 1821 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1822 return;
1823 }
f4a091c7 1824 WARN_ON(pll->on);
ee7b9f93 1825
bd2bb1b9
PZ
1826 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1827
46edb027 1828 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1829 pll->enable(dev_priv, pll);
ee7b9f93 1830 pll->on = true;
92f2584a
JB
1831}
1832
716c2e55 1833void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1834{
3d13ef2e
DL
1835 struct drm_device *dev = crtc->base.dev;
1836 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1837 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1838
92f2584a 1839 /* PCH only available on ILK+ */
3d13ef2e 1840 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1841 if (WARN_ON(pll == NULL))
ee7b9f93 1842 return;
92f2584a 1843
48da64a8
CW
1844 if (WARN_ON(pll->refcount == 0))
1845 return;
7a419866 1846
46edb027
DV
1847 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1848 pll->name, pll->active, pll->on,
e2b78267 1849 crtc->base.base.id);
7a419866 1850
48da64a8 1851 if (WARN_ON(pll->active == 0)) {
e9d6944e 1852 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1853 return;
1854 }
1855
e9d6944e 1856 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1857 WARN_ON(!pll->on);
cdbd2316 1858 if (--pll->active)
7a419866 1859 return;
ee7b9f93 1860
46edb027 1861 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1862 pll->disable(dev_priv, pll);
ee7b9f93 1863 pll->on = false;
bd2bb1b9
PZ
1864
1865 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1866}
1867
b8a4f404
PZ
1868static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1869 enum pipe pipe)
040484af 1870{
23670b32 1871 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1872 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1874 uint32_t reg, val, pipeconf_val;
040484af
JB
1875
1876 /* PCH only available on ILK+ */
3d13ef2e 1877 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1878
1879 /* Make sure PCH DPLL is enabled */
e72f9fbf 1880 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1881 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1882
1883 /* FDI must be feeding us bits for PCH ports */
1884 assert_fdi_tx_enabled(dev_priv, pipe);
1885 assert_fdi_rx_enabled(dev_priv, pipe);
1886
23670b32
DV
1887 if (HAS_PCH_CPT(dev)) {
1888 /* Workaround: Set the timing override bit before enabling the
1889 * pch transcoder. */
1890 reg = TRANS_CHICKEN2(pipe);
1891 val = I915_READ(reg);
1892 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1893 I915_WRITE(reg, val);
59c859d6 1894 }
23670b32 1895
ab9412ba 1896 reg = PCH_TRANSCONF(pipe);
040484af 1897 val = I915_READ(reg);
5f7f726d 1898 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1899
1900 if (HAS_PCH_IBX(dev_priv->dev)) {
1901 /*
1902 * make the BPC in transcoder be consistent with
1903 * that in pipeconf reg.
1904 */
dfd07d72
DV
1905 val &= ~PIPECONF_BPC_MASK;
1906 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1907 }
5f7f726d
PZ
1908
1909 val &= ~TRANS_INTERLACE_MASK;
1910 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1911 if (HAS_PCH_IBX(dev_priv->dev) &&
1912 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1913 val |= TRANS_LEGACY_INTERLACED_ILK;
1914 else
1915 val |= TRANS_INTERLACED;
5f7f726d
PZ
1916 else
1917 val |= TRANS_PROGRESSIVE;
1918
040484af
JB
1919 I915_WRITE(reg, val | TRANS_ENABLE);
1920 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1921 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1922}
1923
8fb033d7 1924static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1925 enum transcoder cpu_transcoder)
040484af 1926{
8fb033d7 1927 u32 val, pipeconf_val;
8fb033d7
PZ
1928
1929 /* PCH only available on ILK+ */
3d13ef2e 1930 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1931
8fb033d7 1932 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1933 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1934 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1935
223a6fdf
PZ
1936 /* Workaround: set timing override bit. */
1937 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1938 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1939 I915_WRITE(_TRANSA_CHICKEN2, val);
1940
25f3ef11 1941 val = TRANS_ENABLE;
937bb610 1942 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1943
9a76b1c6
PZ
1944 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1945 PIPECONF_INTERLACED_ILK)
a35f2679 1946 val |= TRANS_INTERLACED;
8fb033d7
PZ
1947 else
1948 val |= TRANS_PROGRESSIVE;
1949
ab9412ba
DV
1950 I915_WRITE(LPT_TRANSCONF, val);
1951 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1952 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1953}
1954
b8a4f404
PZ
1955static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1956 enum pipe pipe)
040484af 1957{
23670b32
DV
1958 struct drm_device *dev = dev_priv->dev;
1959 uint32_t reg, val;
040484af
JB
1960
1961 /* FDI relies on the transcoder */
1962 assert_fdi_tx_disabled(dev_priv, pipe);
1963 assert_fdi_rx_disabled(dev_priv, pipe);
1964
291906f1
JB
1965 /* Ports must be off as well */
1966 assert_pch_ports_disabled(dev_priv, pipe);
1967
ab9412ba 1968 reg = PCH_TRANSCONF(pipe);
040484af
JB
1969 val = I915_READ(reg);
1970 val &= ~TRANS_ENABLE;
1971 I915_WRITE(reg, val);
1972 /* wait for PCH transcoder off, transcoder state */
1973 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1974 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1975
1976 if (!HAS_PCH_IBX(dev)) {
1977 /* Workaround: Clear the timing override chicken bit again. */
1978 reg = TRANS_CHICKEN2(pipe);
1979 val = I915_READ(reg);
1980 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1981 I915_WRITE(reg, val);
1982 }
040484af
JB
1983}
1984
ab4d966c 1985static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1986{
8fb033d7
PZ
1987 u32 val;
1988
ab9412ba 1989 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1990 val &= ~TRANS_ENABLE;
ab9412ba 1991 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1992 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1993 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1994 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1995
1996 /* Workaround: clear timing override bit. */
1997 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1998 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1999 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2000}
2001
b24e7179 2002/**
309cfea8 2003 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2004 * @crtc: crtc responsible for the pipe
b24e7179 2005 *
0372264a 2006 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2007 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2008 */
e1fdc473 2009static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2010{
0372264a
PZ
2011 struct drm_device *dev = crtc->base.dev;
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2014 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2015 pipe);
1a240d4d 2016 enum pipe pch_transcoder;
b24e7179
JB
2017 int reg;
2018 u32 val;
2019
58c6eaa2 2020 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2021 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2022 assert_sprites_disabled(dev_priv, pipe);
2023
681e5811 2024 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2025 pch_transcoder = TRANSCODER_A;
2026 else
2027 pch_transcoder = pipe;
2028
b24e7179
JB
2029 /*
2030 * A pipe without a PLL won't actually be able to drive bits from
2031 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2032 * need the check.
2033 */
2034 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2035 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2036 assert_dsi_pll_enabled(dev_priv);
2037 else
2038 assert_pll_enabled(dev_priv, pipe);
040484af 2039 else {
30421c4f 2040 if (crtc->config.has_pch_encoder) {
040484af 2041 /* if driving the PCH, we need FDI enabled */
cc391bbb 2042 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2043 assert_fdi_tx_pll_enabled(dev_priv,
2044 (enum pipe) cpu_transcoder);
040484af
JB
2045 }
2046 /* FIXME: assert CPU port conditions for SNB+ */
2047 }
b24e7179 2048
702e7a56 2049 reg = PIPECONF(cpu_transcoder);
b24e7179 2050 val = I915_READ(reg);
7ad25d48
PZ
2051 if (val & PIPECONF_ENABLE) {
2052 WARN_ON(!(pipe == PIPE_A &&
2053 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2054 return;
7ad25d48 2055 }
00d70b15
CW
2056
2057 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2058 POSTING_READ(reg);
b24e7179
JB
2059}
2060
2061/**
309cfea8 2062 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2063 * @dev_priv: i915 private structure
2064 * @pipe: pipe to disable
2065 *
2066 * Disable @pipe, making sure that various hardware specific requirements
2067 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2068 *
2069 * @pipe should be %PIPE_A or %PIPE_B.
2070 *
2071 * Will wait until the pipe has shut down before returning.
2072 */
2073static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2074 enum pipe pipe)
2075{
702e7a56
PZ
2076 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2077 pipe);
b24e7179
JB
2078 int reg;
2079 u32 val;
2080
2081 /*
2082 * Make sure planes won't keep trying to pump pixels to us,
2083 * or we might hang the display.
2084 */
2085 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2086 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2087 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2088
2089 /* Don't disable pipe A or pipe A PLLs if needed */
2090 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2091 return;
2092
702e7a56 2093 reg = PIPECONF(cpu_transcoder);
b24e7179 2094 val = I915_READ(reg);
00d70b15
CW
2095 if ((val & PIPECONF_ENABLE) == 0)
2096 return;
2097
2098 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2099 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2100}
2101
d74362c9
KP
2102/*
2103 * Plane regs are double buffered, going from enabled->disabled needs a
2104 * trigger in order to latch. The display address reg provides this.
2105 */
1dba99f4
VS
2106void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2107 enum plane plane)
d74362c9 2108{
3d13ef2e
DL
2109 struct drm_device *dev = dev_priv->dev;
2110 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2111
2112 I915_WRITE(reg, I915_READ(reg));
2113 POSTING_READ(reg);
d74362c9
KP
2114}
2115
b24e7179 2116/**
262ca2b0 2117 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2118 * @dev_priv: i915 private structure
2119 * @plane: plane to enable
2120 * @pipe: pipe being fed
2121 *
2122 * Enable @plane on @pipe, making sure that @pipe is running first.
2123 */
262ca2b0
MR
2124static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2125 enum plane plane, enum pipe pipe)
b24e7179 2126{
33c3b0d1 2127 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2128 struct intel_crtc *intel_crtc =
2129 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2130 int reg;
2131 u32 val;
2132
2133 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2134 assert_pipe_enabled(dev_priv, pipe);
2135
98ec7739
VS
2136 if (intel_crtc->primary_enabled)
2137 return;
0037f71c 2138
4c445e0e 2139 intel_crtc->primary_enabled = true;
939c2fe8 2140
b24e7179
JB
2141 reg = DSPCNTR(plane);
2142 val = I915_READ(reg);
10efa932 2143 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2144
2145 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2146 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2147
2148 /*
2149 * BDW signals flip done immediately if the plane
2150 * is disabled, even if the plane enable is already
2151 * armed to occur at the next vblank :(
2152 */
2153 if (IS_BROADWELL(dev))
2154 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2155}
2156
b24e7179 2157/**
262ca2b0 2158 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2159 * @dev_priv: i915 private structure
2160 * @plane: plane to disable
2161 * @pipe: pipe consuming the data
2162 *
2163 * Disable @plane; should be an independent operation.
2164 */
262ca2b0
MR
2165static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2166 enum plane plane, enum pipe pipe)
b24e7179 2167{
939c2fe8
VS
2168 struct intel_crtc *intel_crtc =
2169 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2170 int reg;
2171 u32 val;
2172
98ec7739
VS
2173 if (!intel_crtc->primary_enabled)
2174 return;
0037f71c 2175
4c445e0e 2176 intel_crtc->primary_enabled = false;
939c2fe8 2177
b24e7179
JB
2178 reg = DSPCNTR(plane);
2179 val = I915_READ(reg);
10efa932 2180 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2181
2182 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2183 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2184}
2185
693db184
CW
2186static bool need_vtd_wa(struct drm_device *dev)
2187{
2188#ifdef CONFIG_INTEL_IOMMU
2189 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2190 return true;
2191#endif
2192 return false;
2193}
2194
a57ce0b2
JB
2195static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2196{
2197 int tile_height;
2198
2199 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2200 return ALIGN(height, tile_height);
2201}
2202
127bd2ac 2203int
48b956c5 2204intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2205 struct drm_i915_gem_object *obj,
a4872ba6 2206 struct intel_engine_cs *pipelined)
6b95a207 2207{
ce453d81 2208 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2209 u32 alignment;
2210 int ret;
2211
ebcdd39e
MR
2212 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2213
05394f39 2214 switch (obj->tiling_mode) {
6b95a207 2215 case I915_TILING_NONE:
534843da
CW
2216 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2217 alignment = 128 * 1024;
a6c45cf0 2218 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2219 alignment = 4 * 1024;
2220 else
2221 alignment = 64 * 1024;
6b95a207
KH
2222 break;
2223 case I915_TILING_X:
2224 /* pin() will align the object as required by fence */
2225 alignment = 0;
2226 break;
2227 case I915_TILING_Y:
80075d49 2228 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2229 return -EINVAL;
2230 default:
2231 BUG();
2232 }
2233
693db184
CW
2234 /* Note that the w/a also requires 64 PTE of padding following the
2235 * bo. We currently fill all unused PTE with the shadow page and so
2236 * we should always have valid PTE following the scanout preventing
2237 * the VT-d warning.
2238 */
2239 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2240 alignment = 256 * 1024;
2241
ce453d81 2242 dev_priv->mm.interruptible = false;
2da3b9b9 2243 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2244 if (ret)
ce453d81 2245 goto err_interruptible;
6b95a207
KH
2246
2247 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2248 * fence, whereas 965+ only requires a fence if using
2249 * framebuffer compression. For simplicity, we always install
2250 * a fence as the cost is not that onerous.
2251 */
06d98131 2252 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2253 if (ret)
2254 goto err_unpin;
1690e1eb 2255
9a5a53b3 2256 i915_gem_object_pin_fence(obj);
6b95a207 2257
ce453d81 2258 dev_priv->mm.interruptible = true;
6b95a207 2259 return 0;
48b956c5
CW
2260
2261err_unpin:
cc98b413 2262 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2263err_interruptible:
2264 dev_priv->mm.interruptible = true;
48b956c5 2265 return ret;
6b95a207
KH
2266}
2267
1690e1eb
CW
2268void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2269{
ebcdd39e
MR
2270 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2271
1690e1eb 2272 i915_gem_object_unpin_fence(obj);
cc98b413 2273 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2274}
2275
c2c75131
DV
2276/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2277 * is assumed to be a power-of-two. */
bc752862
CW
2278unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2279 unsigned int tiling_mode,
2280 unsigned int cpp,
2281 unsigned int pitch)
c2c75131 2282{
bc752862
CW
2283 if (tiling_mode != I915_TILING_NONE) {
2284 unsigned int tile_rows, tiles;
c2c75131 2285
bc752862
CW
2286 tile_rows = *y / 8;
2287 *y %= 8;
c2c75131 2288
bc752862
CW
2289 tiles = *x / (512/cpp);
2290 *x %= 512/cpp;
2291
2292 return tile_rows * pitch * 8 + tiles * 4096;
2293 } else {
2294 unsigned int offset;
2295
2296 offset = *y * pitch + *x * cpp;
2297 *y = 0;
2298 *x = (offset & 4095) / cpp;
2299 return offset & -4096;
2300 }
c2c75131
DV
2301}
2302
46f297fb
JB
2303int intel_format_to_fourcc(int format)
2304{
2305 switch (format) {
2306 case DISPPLANE_8BPP:
2307 return DRM_FORMAT_C8;
2308 case DISPPLANE_BGRX555:
2309 return DRM_FORMAT_XRGB1555;
2310 case DISPPLANE_BGRX565:
2311 return DRM_FORMAT_RGB565;
2312 default:
2313 case DISPPLANE_BGRX888:
2314 return DRM_FORMAT_XRGB8888;
2315 case DISPPLANE_RGBX888:
2316 return DRM_FORMAT_XBGR8888;
2317 case DISPPLANE_BGRX101010:
2318 return DRM_FORMAT_XRGB2101010;
2319 case DISPPLANE_RGBX101010:
2320 return DRM_FORMAT_XBGR2101010;
2321 }
2322}
2323
484b41dd 2324static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2325 struct intel_plane_config *plane_config)
2326{
2327 struct drm_device *dev = crtc->base.dev;
2328 struct drm_i915_gem_object *obj = NULL;
2329 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2330 u32 base = plane_config->base;
2331
ff2652ea
CW
2332 if (plane_config->size == 0)
2333 return false;
2334
46f297fb
JB
2335 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2336 plane_config->size);
2337 if (!obj)
484b41dd 2338 return false;
46f297fb
JB
2339
2340 if (plane_config->tiled) {
2341 obj->tiling_mode = I915_TILING_X;
66e514c1 2342 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2343 }
2344
66e514c1
DA
2345 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2346 mode_cmd.width = crtc->base.primary->fb->width;
2347 mode_cmd.height = crtc->base.primary->fb->height;
2348 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2349
2350 mutex_lock(&dev->struct_mutex);
2351
66e514c1 2352 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2353 &mode_cmd, obj)) {
46f297fb
JB
2354 DRM_DEBUG_KMS("intel fb init failed\n");
2355 goto out_unref_obj;
2356 }
2357
a071fa00 2358 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2359 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2360
2361 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2362 return true;
46f297fb
JB
2363
2364out_unref_obj:
2365 drm_gem_object_unreference(&obj->base);
2366 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2367 return false;
2368}
2369
2370static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2371 struct intel_plane_config *plane_config)
2372{
2373 struct drm_device *dev = intel_crtc->base.dev;
2374 struct drm_crtc *c;
2375 struct intel_crtc *i;
2ff8fde1 2376 struct drm_i915_gem_object *obj;
484b41dd 2377
66e514c1 2378 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2379 return;
2380
2381 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2382 return;
2383
66e514c1
DA
2384 kfree(intel_crtc->base.primary->fb);
2385 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2386
2387 /*
2388 * Failed to alloc the obj, check to see if we should share
2389 * an fb with another CRTC instead
2390 */
70e1e0ec 2391 for_each_crtc(dev, c) {
484b41dd
JB
2392 i = to_intel_crtc(c);
2393
2394 if (c == &intel_crtc->base)
2395 continue;
2396
2ff8fde1
MR
2397 if (!i->active)
2398 continue;
2399
2400 obj = intel_fb_obj(c->primary->fb);
2401 if (obj == NULL)
484b41dd
JB
2402 continue;
2403
2ff8fde1 2404 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2405 drm_framebuffer_reference(c->primary->fb);
2406 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2407 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2408 break;
2409 }
2410 }
46f297fb
JB
2411}
2412
29b9bde6
DV
2413static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2414 struct drm_framebuffer *fb,
2415 int x, int y)
81255565
JB
2416{
2417 struct drm_device *dev = crtc->dev;
2418 struct drm_i915_private *dev_priv = dev->dev_private;
2419 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2420 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2421 int plane = intel_crtc->plane;
e506a0c6 2422 unsigned long linear_offset;
81255565 2423 u32 dspcntr;
5eddb70b 2424 u32 reg;
81255565 2425
5eddb70b
CW
2426 reg = DSPCNTR(plane);
2427 dspcntr = I915_READ(reg);
81255565
JB
2428 /* Mask out pixel format bits in case we change it */
2429 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2430 switch (fb->pixel_format) {
2431 case DRM_FORMAT_C8:
81255565
JB
2432 dspcntr |= DISPPLANE_8BPP;
2433 break;
57779d06
VS
2434 case DRM_FORMAT_XRGB1555:
2435 case DRM_FORMAT_ARGB1555:
2436 dspcntr |= DISPPLANE_BGRX555;
81255565 2437 break;
57779d06
VS
2438 case DRM_FORMAT_RGB565:
2439 dspcntr |= DISPPLANE_BGRX565;
2440 break;
2441 case DRM_FORMAT_XRGB8888:
2442 case DRM_FORMAT_ARGB8888:
2443 dspcntr |= DISPPLANE_BGRX888;
2444 break;
2445 case DRM_FORMAT_XBGR8888:
2446 case DRM_FORMAT_ABGR8888:
2447 dspcntr |= DISPPLANE_RGBX888;
2448 break;
2449 case DRM_FORMAT_XRGB2101010:
2450 case DRM_FORMAT_ARGB2101010:
2451 dspcntr |= DISPPLANE_BGRX101010;
2452 break;
2453 case DRM_FORMAT_XBGR2101010:
2454 case DRM_FORMAT_ABGR2101010:
2455 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2456 break;
2457 default:
baba133a 2458 BUG();
81255565 2459 }
57779d06 2460
a6c45cf0 2461 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2462 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2463 dspcntr |= DISPPLANE_TILED;
2464 else
2465 dspcntr &= ~DISPPLANE_TILED;
2466 }
2467
de1aa629
VS
2468 if (IS_G4X(dev))
2469 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2470
5eddb70b 2471 I915_WRITE(reg, dspcntr);
81255565 2472
e506a0c6 2473 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2474
c2c75131
DV
2475 if (INTEL_INFO(dev)->gen >= 4) {
2476 intel_crtc->dspaddr_offset =
bc752862
CW
2477 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2478 fb->bits_per_pixel / 8,
2479 fb->pitches[0]);
c2c75131
DV
2480 linear_offset -= intel_crtc->dspaddr_offset;
2481 } else {
e506a0c6 2482 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2483 }
e506a0c6 2484
f343c5f6
BW
2485 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2486 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2487 fb->pitches[0]);
01f2c773 2488 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2489 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2490 I915_WRITE(DSPSURF(plane),
2491 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2492 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2493 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2494 } else
f343c5f6 2495 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2496 POSTING_READ(reg);
17638cd6
JB
2497}
2498
29b9bde6
DV
2499static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2500 struct drm_framebuffer *fb,
2501 int x, int y)
17638cd6
JB
2502{
2503 struct drm_device *dev = crtc->dev;
2504 struct drm_i915_private *dev_priv = dev->dev_private;
2505 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2506 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2507 int plane = intel_crtc->plane;
e506a0c6 2508 unsigned long linear_offset;
17638cd6
JB
2509 u32 dspcntr;
2510 u32 reg;
2511
17638cd6
JB
2512 reg = DSPCNTR(plane);
2513 dspcntr = I915_READ(reg);
2514 /* Mask out pixel format bits in case we change it */
2515 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2516 switch (fb->pixel_format) {
2517 case DRM_FORMAT_C8:
17638cd6
JB
2518 dspcntr |= DISPPLANE_8BPP;
2519 break;
57779d06
VS
2520 case DRM_FORMAT_RGB565:
2521 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2522 break;
57779d06
VS
2523 case DRM_FORMAT_XRGB8888:
2524 case DRM_FORMAT_ARGB8888:
2525 dspcntr |= DISPPLANE_BGRX888;
2526 break;
2527 case DRM_FORMAT_XBGR8888:
2528 case DRM_FORMAT_ABGR8888:
2529 dspcntr |= DISPPLANE_RGBX888;
2530 break;
2531 case DRM_FORMAT_XRGB2101010:
2532 case DRM_FORMAT_ARGB2101010:
2533 dspcntr |= DISPPLANE_BGRX101010;
2534 break;
2535 case DRM_FORMAT_XBGR2101010:
2536 case DRM_FORMAT_ABGR2101010:
2537 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2538 break;
2539 default:
baba133a 2540 BUG();
17638cd6
JB
2541 }
2542
2543 if (obj->tiling_mode != I915_TILING_NONE)
2544 dspcntr |= DISPPLANE_TILED;
2545 else
2546 dspcntr &= ~DISPPLANE_TILED;
2547
b42c6009 2548 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2549 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2550 else
2551 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2552
2553 I915_WRITE(reg, dspcntr);
2554
e506a0c6 2555 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2556 intel_crtc->dspaddr_offset =
bc752862
CW
2557 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2558 fb->bits_per_pixel / 8,
2559 fb->pitches[0]);
c2c75131 2560 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2561
f343c5f6
BW
2562 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2563 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2564 fb->pitches[0]);
01f2c773 2565 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2566 I915_WRITE(DSPSURF(plane),
2567 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2568 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2569 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2570 } else {
2571 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2572 I915_WRITE(DSPLINOFF(plane), linear_offset);
2573 }
17638cd6 2574 POSTING_READ(reg);
17638cd6
JB
2575}
2576
2577/* Assume fb object is pinned & idle & fenced and just update base pointers */
2578static int
2579intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2580 int x, int y, enum mode_set_atomic state)
2581{
2582 struct drm_device *dev = crtc->dev;
2583 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2584
6b8e6ed0
CW
2585 if (dev_priv->display.disable_fbc)
2586 dev_priv->display.disable_fbc(dev);
cc36513c 2587 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2588
29b9bde6
DV
2589 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2590
2591 return 0;
81255565
JB
2592}
2593
96a02917
VS
2594void intel_display_handle_reset(struct drm_device *dev)
2595{
2596 struct drm_i915_private *dev_priv = dev->dev_private;
2597 struct drm_crtc *crtc;
2598
2599 /*
2600 * Flips in the rings have been nuked by the reset,
2601 * so complete all pending flips so that user space
2602 * will get its events and not get stuck.
2603 *
2604 * Also update the base address of all primary
2605 * planes to the the last fb to make sure we're
2606 * showing the correct fb after a reset.
2607 *
2608 * Need to make two loops over the crtcs so that we
2609 * don't try to grab a crtc mutex before the
2610 * pending_flip_queue really got woken up.
2611 */
2612
70e1e0ec 2613 for_each_crtc(dev, crtc) {
96a02917
VS
2614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2615 enum plane plane = intel_crtc->plane;
2616
2617 intel_prepare_page_flip(dev, plane);
2618 intel_finish_page_flip_plane(dev, plane);
2619 }
2620
70e1e0ec 2621 for_each_crtc(dev, crtc) {
96a02917
VS
2622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2623
51fd371b 2624 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2625 /*
2626 * FIXME: Once we have proper support for primary planes (and
2627 * disabling them without disabling the entire crtc) allow again
66e514c1 2628 * a NULL crtc->primary->fb.
947fdaad 2629 */
f4510a27 2630 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2631 dev_priv->display.update_primary_plane(crtc,
66e514c1 2632 crtc->primary->fb,
262ca2b0
MR
2633 crtc->x,
2634 crtc->y);
51fd371b 2635 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2636 }
2637}
2638
14667a4b
CW
2639static int
2640intel_finish_fb(struct drm_framebuffer *old_fb)
2641{
2ff8fde1 2642 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2643 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2644 bool was_interruptible = dev_priv->mm.interruptible;
2645 int ret;
2646
14667a4b
CW
2647 /* Big Hammer, we also need to ensure that any pending
2648 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2649 * current scanout is retired before unpinning the old
2650 * framebuffer.
2651 *
2652 * This should only fail upon a hung GPU, in which case we
2653 * can safely continue.
2654 */
2655 dev_priv->mm.interruptible = false;
2656 ret = i915_gem_object_finish_gpu(obj);
2657 dev_priv->mm.interruptible = was_interruptible;
2658
2659 return ret;
2660}
2661
7d5e3799
CW
2662static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2663{
2664 struct drm_device *dev = crtc->dev;
2665 struct drm_i915_private *dev_priv = dev->dev_private;
2666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2667 unsigned long flags;
2668 bool pending;
2669
2670 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2671 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2672 return false;
2673
2674 spin_lock_irqsave(&dev->event_lock, flags);
2675 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2676 spin_unlock_irqrestore(&dev->event_lock, flags);
2677
2678 return pending;
2679}
2680
5c3b82e2 2681static int
3c4fdcfb 2682intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2683 struct drm_framebuffer *fb)
79e53945
JB
2684{
2685 struct drm_device *dev = crtc->dev;
6b8e6ed0 2686 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2687 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2688 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2689 struct drm_framebuffer *old_fb = crtc->primary->fb;
2690 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2691 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2692 int ret;
79e53945 2693
7d5e3799
CW
2694 if (intel_crtc_has_pending_flip(crtc)) {
2695 DRM_ERROR("pipe is still busy with an old pageflip\n");
2696 return -EBUSY;
2697 }
2698
79e53945 2699 /* no fb bound */
94352cf9 2700 if (!fb) {
a5071c2f 2701 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2702 return 0;
2703 }
2704
7eb552ae 2705 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2706 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2707 plane_name(intel_crtc->plane),
2708 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2709 return -EINVAL;
79e53945
JB
2710 }
2711
5c3b82e2 2712 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2713 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2714 if (ret == 0)
91565c85 2715 i915_gem_track_fb(old_obj, obj,
a071fa00 2716 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2717 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2718 if (ret != 0) {
a5071c2f 2719 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2720 return ret;
2721 }
79e53945 2722
bb2043de
DL
2723 /*
2724 * Update pipe size and adjust fitter if needed: the reason for this is
2725 * that in compute_mode_changes we check the native mode (not the pfit
2726 * mode) to see if we can flip rather than do a full mode set. In the
2727 * fastboot case, we'll flip, but if we don't update the pipesrc and
2728 * pfit state, we'll end up with a big fb scanned out into the wrong
2729 * sized surface.
2730 *
2731 * To fix this properly, we need to hoist the checks up into
2732 * compute_mode_changes (or above), check the actual pfit state and
2733 * whether the platform allows pfit disable with pipe active, and only
2734 * then update the pipesrc and pfit state, even on the flip path.
2735 */
d330a953 2736 if (i915.fastboot) {
d7bf63f2
DL
2737 const struct drm_display_mode *adjusted_mode =
2738 &intel_crtc->config.adjusted_mode;
2739
4d6a3e63 2740 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2741 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2742 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2743 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2744 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2745 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2746 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2747 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2748 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2749 }
0637d60d
JB
2750 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2751 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2752 }
2753
29b9bde6 2754 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2755
f99d7069
DV
2756 if (intel_crtc->active)
2757 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2758
f4510a27 2759 crtc->primary->fb = fb;
6c4c86f5
DV
2760 crtc->x = x;
2761 crtc->y = y;
94352cf9 2762
b7f1de28 2763 if (old_fb) {
d7697eea
DV
2764 if (intel_crtc->active && old_fb != fb)
2765 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2766 mutex_lock(&dev->struct_mutex);
2ff8fde1 2767 intel_unpin_fb_obj(old_obj);
8ac36ec1 2768 mutex_unlock(&dev->struct_mutex);
b7f1de28 2769 }
652c393a 2770
8ac36ec1 2771 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2772 intel_update_fbc(dev);
5c3b82e2 2773 mutex_unlock(&dev->struct_mutex);
79e53945 2774
5c3b82e2 2775 return 0;
79e53945
JB
2776}
2777
5e84e1a4
ZW
2778static void intel_fdi_normal_train(struct drm_crtc *crtc)
2779{
2780 struct drm_device *dev = crtc->dev;
2781 struct drm_i915_private *dev_priv = dev->dev_private;
2782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2783 int pipe = intel_crtc->pipe;
2784 u32 reg, temp;
2785
2786 /* enable normal train */
2787 reg = FDI_TX_CTL(pipe);
2788 temp = I915_READ(reg);
61e499bf 2789 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2790 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2791 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2792 } else {
2793 temp &= ~FDI_LINK_TRAIN_NONE;
2794 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2795 }
5e84e1a4
ZW
2796 I915_WRITE(reg, temp);
2797
2798 reg = FDI_RX_CTL(pipe);
2799 temp = I915_READ(reg);
2800 if (HAS_PCH_CPT(dev)) {
2801 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2802 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2803 } else {
2804 temp &= ~FDI_LINK_TRAIN_NONE;
2805 temp |= FDI_LINK_TRAIN_NONE;
2806 }
2807 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2808
2809 /* wait one idle pattern time */
2810 POSTING_READ(reg);
2811 udelay(1000);
357555c0
JB
2812
2813 /* IVB wants error correction enabled */
2814 if (IS_IVYBRIDGE(dev))
2815 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2816 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2817}
2818
1fbc0d78 2819static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2820{
1fbc0d78
DV
2821 return crtc->base.enabled && crtc->active &&
2822 crtc->config.has_pch_encoder;
1e833f40
DV
2823}
2824
01a415fd
DV
2825static void ivb_modeset_global_resources(struct drm_device *dev)
2826{
2827 struct drm_i915_private *dev_priv = dev->dev_private;
2828 struct intel_crtc *pipe_B_crtc =
2829 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2830 struct intel_crtc *pipe_C_crtc =
2831 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2832 uint32_t temp;
2833
1e833f40
DV
2834 /*
2835 * When everything is off disable fdi C so that we could enable fdi B
2836 * with all lanes. Note that we don't care about enabled pipes without
2837 * an enabled pch encoder.
2838 */
2839 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2840 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2841 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2842 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2843
2844 temp = I915_READ(SOUTH_CHICKEN1);
2845 temp &= ~FDI_BC_BIFURCATION_SELECT;
2846 DRM_DEBUG_KMS("disabling fdi C rx\n");
2847 I915_WRITE(SOUTH_CHICKEN1, temp);
2848 }
2849}
2850
8db9d77b
ZW
2851/* The FDI link training functions for ILK/Ibexpeak. */
2852static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2853{
2854 struct drm_device *dev = crtc->dev;
2855 struct drm_i915_private *dev_priv = dev->dev_private;
2856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2857 int pipe = intel_crtc->pipe;
5eddb70b 2858 u32 reg, temp, tries;
8db9d77b 2859
1c8562f6 2860 /* FDI needs bits from pipe first */
0fc932b8 2861 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2862
e1a44743
AJ
2863 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2864 for train result */
5eddb70b
CW
2865 reg = FDI_RX_IMR(pipe);
2866 temp = I915_READ(reg);
e1a44743
AJ
2867 temp &= ~FDI_RX_SYMBOL_LOCK;
2868 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2869 I915_WRITE(reg, temp);
2870 I915_READ(reg);
e1a44743
AJ
2871 udelay(150);
2872
8db9d77b 2873 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2874 reg = FDI_TX_CTL(pipe);
2875 temp = I915_READ(reg);
627eb5a3
DV
2876 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2877 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2878 temp &= ~FDI_LINK_TRAIN_NONE;
2879 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2880 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2881
5eddb70b
CW
2882 reg = FDI_RX_CTL(pipe);
2883 temp = I915_READ(reg);
8db9d77b
ZW
2884 temp &= ~FDI_LINK_TRAIN_NONE;
2885 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2886 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2887
2888 POSTING_READ(reg);
8db9d77b
ZW
2889 udelay(150);
2890
5b2adf89 2891 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2892 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2893 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2894 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2895
5eddb70b 2896 reg = FDI_RX_IIR(pipe);
e1a44743 2897 for (tries = 0; tries < 5; tries++) {
5eddb70b 2898 temp = I915_READ(reg);
8db9d77b
ZW
2899 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2900
2901 if ((temp & FDI_RX_BIT_LOCK)) {
2902 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2903 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2904 break;
2905 }
8db9d77b 2906 }
e1a44743 2907 if (tries == 5)
5eddb70b 2908 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2909
2910 /* Train 2 */
5eddb70b
CW
2911 reg = FDI_TX_CTL(pipe);
2912 temp = I915_READ(reg);
8db9d77b
ZW
2913 temp &= ~FDI_LINK_TRAIN_NONE;
2914 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2915 I915_WRITE(reg, temp);
8db9d77b 2916
5eddb70b
CW
2917 reg = FDI_RX_CTL(pipe);
2918 temp = I915_READ(reg);
8db9d77b
ZW
2919 temp &= ~FDI_LINK_TRAIN_NONE;
2920 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2921 I915_WRITE(reg, temp);
8db9d77b 2922
5eddb70b
CW
2923 POSTING_READ(reg);
2924 udelay(150);
8db9d77b 2925
5eddb70b 2926 reg = FDI_RX_IIR(pipe);
e1a44743 2927 for (tries = 0; tries < 5; tries++) {
5eddb70b 2928 temp = I915_READ(reg);
8db9d77b
ZW
2929 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2930
2931 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2932 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2933 DRM_DEBUG_KMS("FDI train 2 done.\n");
2934 break;
2935 }
8db9d77b 2936 }
e1a44743 2937 if (tries == 5)
5eddb70b 2938 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2939
2940 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2941
8db9d77b
ZW
2942}
2943
0206e353 2944static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2945 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2946 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2947 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2948 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2949};
2950
2951/* The FDI link training functions for SNB/Cougarpoint. */
2952static void gen6_fdi_link_train(struct drm_crtc *crtc)
2953{
2954 struct drm_device *dev = crtc->dev;
2955 struct drm_i915_private *dev_priv = dev->dev_private;
2956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2957 int pipe = intel_crtc->pipe;
fa37d39e 2958 u32 reg, temp, i, retry;
8db9d77b 2959
e1a44743
AJ
2960 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2961 for train result */
5eddb70b
CW
2962 reg = FDI_RX_IMR(pipe);
2963 temp = I915_READ(reg);
e1a44743
AJ
2964 temp &= ~FDI_RX_SYMBOL_LOCK;
2965 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2966 I915_WRITE(reg, temp);
2967
2968 POSTING_READ(reg);
e1a44743
AJ
2969 udelay(150);
2970
8db9d77b 2971 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2972 reg = FDI_TX_CTL(pipe);
2973 temp = I915_READ(reg);
627eb5a3
DV
2974 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2975 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2976 temp &= ~FDI_LINK_TRAIN_NONE;
2977 temp |= FDI_LINK_TRAIN_PATTERN_1;
2978 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2979 /* SNB-B */
2980 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2981 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2982
d74cf324
DV
2983 I915_WRITE(FDI_RX_MISC(pipe),
2984 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2985
5eddb70b
CW
2986 reg = FDI_RX_CTL(pipe);
2987 temp = I915_READ(reg);
8db9d77b
ZW
2988 if (HAS_PCH_CPT(dev)) {
2989 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2990 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2991 } else {
2992 temp &= ~FDI_LINK_TRAIN_NONE;
2993 temp |= FDI_LINK_TRAIN_PATTERN_1;
2994 }
5eddb70b
CW
2995 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2996
2997 POSTING_READ(reg);
8db9d77b
ZW
2998 udelay(150);
2999
0206e353 3000 for (i = 0; i < 4; i++) {
5eddb70b
CW
3001 reg = FDI_TX_CTL(pipe);
3002 temp = I915_READ(reg);
8db9d77b
ZW
3003 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3004 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3005 I915_WRITE(reg, temp);
3006
3007 POSTING_READ(reg);
8db9d77b
ZW
3008 udelay(500);
3009
fa37d39e
SP
3010 for (retry = 0; retry < 5; retry++) {
3011 reg = FDI_RX_IIR(pipe);
3012 temp = I915_READ(reg);
3013 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3014 if (temp & FDI_RX_BIT_LOCK) {
3015 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3016 DRM_DEBUG_KMS("FDI train 1 done.\n");
3017 break;
3018 }
3019 udelay(50);
8db9d77b 3020 }
fa37d39e
SP
3021 if (retry < 5)
3022 break;
8db9d77b
ZW
3023 }
3024 if (i == 4)
5eddb70b 3025 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3026
3027 /* Train 2 */
5eddb70b
CW
3028 reg = FDI_TX_CTL(pipe);
3029 temp = I915_READ(reg);
8db9d77b
ZW
3030 temp &= ~FDI_LINK_TRAIN_NONE;
3031 temp |= FDI_LINK_TRAIN_PATTERN_2;
3032 if (IS_GEN6(dev)) {
3033 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3034 /* SNB-B */
3035 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3036 }
5eddb70b 3037 I915_WRITE(reg, temp);
8db9d77b 3038
5eddb70b
CW
3039 reg = FDI_RX_CTL(pipe);
3040 temp = I915_READ(reg);
8db9d77b
ZW
3041 if (HAS_PCH_CPT(dev)) {
3042 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3043 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3044 } else {
3045 temp &= ~FDI_LINK_TRAIN_NONE;
3046 temp |= FDI_LINK_TRAIN_PATTERN_2;
3047 }
5eddb70b
CW
3048 I915_WRITE(reg, temp);
3049
3050 POSTING_READ(reg);
8db9d77b
ZW
3051 udelay(150);
3052
0206e353 3053 for (i = 0; i < 4; i++) {
5eddb70b
CW
3054 reg = FDI_TX_CTL(pipe);
3055 temp = I915_READ(reg);
8db9d77b
ZW
3056 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3057 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3058 I915_WRITE(reg, temp);
3059
3060 POSTING_READ(reg);
8db9d77b
ZW
3061 udelay(500);
3062
fa37d39e
SP
3063 for (retry = 0; retry < 5; retry++) {
3064 reg = FDI_RX_IIR(pipe);
3065 temp = I915_READ(reg);
3066 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3067 if (temp & FDI_RX_SYMBOL_LOCK) {
3068 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3069 DRM_DEBUG_KMS("FDI train 2 done.\n");
3070 break;
3071 }
3072 udelay(50);
8db9d77b 3073 }
fa37d39e
SP
3074 if (retry < 5)
3075 break;
8db9d77b
ZW
3076 }
3077 if (i == 4)
5eddb70b 3078 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3079
3080 DRM_DEBUG_KMS("FDI train done.\n");
3081}
3082
357555c0
JB
3083/* Manual link training for Ivy Bridge A0 parts */
3084static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3085{
3086 struct drm_device *dev = crtc->dev;
3087 struct drm_i915_private *dev_priv = dev->dev_private;
3088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3089 int pipe = intel_crtc->pipe;
139ccd3f 3090 u32 reg, temp, i, j;
357555c0
JB
3091
3092 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3093 for train result */
3094 reg = FDI_RX_IMR(pipe);
3095 temp = I915_READ(reg);
3096 temp &= ~FDI_RX_SYMBOL_LOCK;
3097 temp &= ~FDI_RX_BIT_LOCK;
3098 I915_WRITE(reg, temp);
3099
3100 POSTING_READ(reg);
3101 udelay(150);
3102
01a415fd
DV
3103 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3104 I915_READ(FDI_RX_IIR(pipe)));
3105
139ccd3f
JB
3106 /* Try each vswing and preemphasis setting twice before moving on */
3107 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3108 /* disable first in case we need to retry */
3109 reg = FDI_TX_CTL(pipe);
3110 temp = I915_READ(reg);
3111 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3112 temp &= ~FDI_TX_ENABLE;
3113 I915_WRITE(reg, temp);
357555c0 3114
139ccd3f
JB
3115 reg = FDI_RX_CTL(pipe);
3116 temp = I915_READ(reg);
3117 temp &= ~FDI_LINK_TRAIN_AUTO;
3118 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3119 temp &= ~FDI_RX_ENABLE;
3120 I915_WRITE(reg, temp);
357555c0 3121
139ccd3f 3122 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3123 reg = FDI_TX_CTL(pipe);
3124 temp = I915_READ(reg);
139ccd3f
JB
3125 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3126 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3127 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3128 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3129 temp |= snb_b_fdi_train_param[j/2];
3130 temp |= FDI_COMPOSITE_SYNC;
3131 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3132
139ccd3f
JB
3133 I915_WRITE(FDI_RX_MISC(pipe),
3134 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3135
139ccd3f 3136 reg = FDI_RX_CTL(pipe);
357555c0 3137 temp = I915_READ(reg);
139ccd3f
JB
3138 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3139 temp |= FDI_COMPOSITE_SYNC;
3140 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3141
139ccd3f
JB
3142 POSTING_READ(reg);
3143 udelay(1); /* should be 0.5us */
357555c0 3144
139ccd3f
JB
3145 for (i = 0; i < 4; i++) {
3146 reg = FDI_RX_IIR(pipe);
3147 temp = I915_READ(reg);
3148 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3149
139ccd3f
JB
3150 if (temp & FDI_RX_BIT_LOCK ||
3151 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3152 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3153 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3154 i);
3155 break;
3156 }
3157 udelay(1); /* should be 0.5us */
3158 }
3159 if (i == 4) {
3160 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3161 continue;
3162 }
357555c0 3163
139ccd3f 3164 /* Train 2 */
357555c0
JB
3165 reg = FDI_TX_CTL(pipe);
3166 temp = I915_READ(reg);
139ccd3f
JB
3167 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3168 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3169 I915_WRITE(reg, temp);
3170
3171 reg = FDI_RX_CTL(pipe);
3172 temp = I915_READ(reg);
3173 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3174 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3175 I915_WRITE(reg, temp);
3176
3177 POSTING_READ(reg);
139ccd3f 3178 udelay(2); /* should be 1.5us */
357555c0 3179
139ccd3f
JB
3180 for (i = 0; i < 4; i++) {
3181 reg = FDI_RX_IIR(pipe);
3182 temp = I915_READ(reg);
3183 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3184
139ccd3f
JB
3185 if (temp & FDI_RX_SYMBOL_LOCK ||
3186 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3187 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3188 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3189 i);
3190 goto train_done;
3191 }
3192 udelay(2); /* should be 1.5us */
357555c0 3193 }
139ccd3f
JB
3194 if (i == 4)
3195 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3196 }
357555c0 3197
139ccd3f 3198train_done:
357555c0
JB
3199 DRM_DEBUG_KMS("FDI train done.\n");
3200}
3201
88cefb6c 3202static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3203{
88cefb6c 3204 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3205 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3206 int pipe = intel_crtc->pipe;
5eddb70b 3207 u32 reg, temp;
79e53945 3208
c64e311e 3209
c98e9dcf 3210 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3211 reg = FDI_RX_CTL(pipe);
3212 temp = I915_READ(reg);
627eb5a3
DV
3213 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3214 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3215 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3216 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3217
3218 POSTING_READ(reg);
c98e9dcf
JB
3219 udelay(200);
3220
3221 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3222 temp = I915_READ(reg);
3223 I915_WRITE(reg, temp | FDI_PCDCLK);
3224
3225 POSTING_READ(reg);
c98e9dcf
JB
3226 udelay(200);
3227
20749730
PZ
3228 /* Enable CPU FDI TX PLL, always on for Ironlake */
3229 reg = FDI_TX_CTL(pipe);
3230 temp = I915_READ(reg);
3231 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3232 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3233
20749730
PZ
3234 POSTING_READ(reg);
3235 udelay(100);
6be4a607 3236 }
0e23b99d
JB
3237}
3238
88cefb6c
DV
3239static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3240{
3241 struct drm_device *dev = intel_crtc->base.dev;
3242 struct drm_i915_private *dev_priv = dev->dev_private;
3243 int pipe = intel_crtc->pipe;
3244 u32 reg, temp;
3245
3246 /* Switch from PCDclk to Rawclk */
3247 reg = FDI_RX_CTL(pipe);
3248 temp = I915_READ(reg);
3249 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3250
3251 /* Disable CPU FDI TX PLL */
3252 reg = FDI_TX_CTL(pipe);
3253 temp = I915_READ(reg);
3254 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3255
3256 POSTING_READ(reg);
3257 udelay(100);
3258
3259 reg = FDI_RX_CTL(pipe);
3260 temp = I915_READ(reg);
3261 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3262
3263 /* Wait for the clocks to turn off. */
3264 POSTING_READ(reg);
3265 udelay(100);
3266}
3267
0fc932b8
JB
3268static void ironlake_fdi_disable(struct drm_crtc *crtc)
3269{
3270 struct drm_device *dev = crtc->dev;
3271 struct drm_i915_private *dev_priv = dev->dev_private;
3272 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3273 int pipe = intel_crtc->pipe;
3274 u32 reg, temp;
3275
3276 /* disable CPU FDI tx and PCH FDI rx */
3277 reg = FDI_TX_CTL(pipe);
3278 temp = I915_READ(reg);
3279 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3280 POSTING_READ(reg);
3281
3282 reg = FDI_RX_CTL(pipe);
3283 temp = I915_READ(reg);
3284 temp &= ~(0x7 << 16);
dfd07d72 3285 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3286 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3287
3288 POSTING_READ(reg);
3289 udelay(100);
3290
3291 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3292 if (HAS_PCH_IBX(dev))
6f06ce18 3293 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3294
3295 /* still set train pattern 1 */
3296 reg = FDI_TX_CTL(pipe);
3297 temp = I915_READ(reg);
3298 temp &= ~FDI_LINK_TRAIN_NONE;
3299 temp |= FDI_LINK_TRAIN_PATTERN_1;
3300 I915_WRITE(reg, temp);
3301
3302 reg = FDI_RX_CTL(pipe);
3303 temp = I915_READ(reg);
3304 if (HAS_PCH_CPT(dev)) {
3305 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3306 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3307 } else {
3308 temp &= ~FDI_LINK_TRAIN_NONE;
3309 temp |= FDI_LINK_TRAIN_PATTERN_1;
3310 }
3311 /* BPC in FDI rx is consistent with that in PIPECONF */
3312 temp &= ~(0x07 << 16);
dfd07d72 3313 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3314 I915_WRITE(reg, temp);
3315
3316 POSTING_READ(reg);
3317 udelay(100);
3318}
3319
5dce5b93
CW
3320bool intel_has_pending_fb_unpin(struct drm_device *dev)
3321{
3322 struct intel_crtc *crtc;
3323
3324 /* Note that we don't need to be called with mode_config.lock here
3325 * as our list of CRTC objects is static for the lifetime of the
3326 * device and so cannot disappear as we iterate. Similarly, we can
3327 * happily treat the predicates as racy, atomic checks as userspace
3328 * cannot claim and pin a new fb without at least acquring the
3329 * struct_mutex and so serialising with us.
3330 */
d3fcc808 3331 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3332 if (atomic_read(&crtc->unpin_work_count) == 0)
3333 continue;
3334
3335 if (crtc->unpin_work)
3336 intel_wait_for_vblank(dev, crtc->pipe);
3337
3338 return true;
3339 }
3340
3341 return false;
3342}
3343
46a55d30 3344void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3345{
0f91128d 3346 struct drm_device *dev = crtc->dev;
5bb61643 3347 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3348
f4510a27 3349 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3350 return;
3351
2c10d571
DV
3352 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3353
eed6d67d
DV
3354 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3355 !intel_crtc_has_pending_flip(crtc),
3356 60*HZ) == 0);
5bb61643 3357
0f91128d 3358 mutex_lock(&dev->struct_mutex);
f4510a27 3359 intel_finish_fb(crtc->primary->fb);
0f91128d 3360 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3361}
3362
e615efe4
ED
3363/* Program iCLKIP clock to the desired frequency */
3364static void lpt_program_iclkip(struct drm_crtc *crtc)
3365{
3366 struct drm_device *dev = crtc->dev;
3367 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3368 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3369 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3370 u32 temp;
3371
09153000
DV
3372 mutex_lock(&dev_priv->dpio_lock);
3373
e615efe4
ED
3374 /* It is necessary to ungate the pixclk gate prior to programming
3375 * the divisors, and gate it back when it is done.
3376 */
3377 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3378
3379 /* Disable SSCCTL */
3380 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3381 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3382 SBI_SSCCTL_DISABLE,
3383 SBI_ICLK);
e615efe4
ED
3384
3385 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3386 if (clock == 20000) {
e615efe4
ED
3387 auxdiv = 1;
3388 divsel = 0x41;
3389 phaseinc = 0x20;
3390 } else {
3391 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3392 * but the adjusted_mode->crtc_clock in in KHz. To get the
3393 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3394 * convert the virtual clock precision to KHz here for higher
3395 * precision.
3396 */
3397 u32 iclk_virtual_root_freq = 172800 * 1000;
3398 u32 iclk_pi_range = 64;
3399 u32 desired_divisor, msb_divisor_value, pi_value;
3400
12d7ceed 3401 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3402 msb_divisor_value = desired_divisor / iclk_pi_range;
3403 pi_value = desired_divisor % iclk_pi_range;
3404
3405 auxdiv = 0;
3406 divsel = msb_divisor_value - 2;
3407 phaseinc = pi_value;
3408 }
3409
3410 /* This should not happen with any sane values */
3411 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3412 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3413 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3414 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3415
3416 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3417 clock,
e615efe4
ED
3418 auxdiv,
3419 divsel,
3420 phasedir,
3421 phaseinc);
3422
3423 /* Program SSCDIVINTPHASE6 */
988d6ee8 3424 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3425 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3426 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3427 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3428 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3429 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3430 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3431 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3432
3433 /* Program SSCAUXDIV */
988d6ee8 3434 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3435 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3436 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3437 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3438
3439 /* Enable modulator and associated divider */
988d6ee8 3440 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3441 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3442 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3443
3444 /* Wait for initialization time */
3445 udelay(24);
3446
3447 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3448
3449 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3450}
3451
275f01b2
DV
3452static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3453 enum pipe pch_transcoder)
3454{
3455 struct drm_device *dev = crtc->base.dev;
3456 struct drm_i915_private *dev_priv = dev->dev_private;
3457 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3458
3459 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3460 I915_READ(HTOTAL(cpu_transcoder)));
3461 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3462 I915_READ(HBLANK(cpu_transcoder)));
3463 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3464 I915_READ(HSYNC(cpu_transcoder)));
3465
3466 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3467 I915_READ(VTOTAL(cpu_transcoder)));
3468 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3469 I915_READ(VBLANK(cpu_transcoder)));
3470 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3471 I915_READ(VSYNC(cpu_transcoder)));
3472 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3473 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3474}
3475
1fbc0d78
DV
3476static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3477{
3478 struct drm_i915_private *dev_priv = dev->dev_private;
3479 uint32_t temp;
3480
3481 temp = I915_READ(SOUTH_CHICKEN1);
3482 if (temp & FDI_BC_BIFURCATION_SELECT)
3483 return;
3484
3485 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3486 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3487
3488 temp |= FDI_BC_BIFURCATION_SELECT;
3489 DRM_DEBUG_KMS("enabling fdi C rx\n");
3490 I915_WRITE(SOUTH_CHICKEN1, temp);
3491 POSTING_READ(SOUTH_CHICKEN1);
3492}
3493
3494static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3495{
3496 struct drm_device *dev = intel_crtc->base.dev;
3497 struct drm_i915_private *dev_priv = dev->dev_private;
3498
3499 switch (intel_crtc->pipe) {
3500 case PIPE_A:
3501 break;
3502 case PIPE_B:
3503 if (intel_crtc->config.fdi_lanes > 2)
3504 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3505 else
3506 cpt_enable_fdi_bc_bifurcation(dev);
3507
3508 break;
3509 case PIPE_C:
3510 cpt_enable_fdi_bc_bifurcation(dev);
3511
3512 break;
3513 default:
3514 BUG();
3515 }
3516}
3517
f67a559d
JB
3518/*
3519 * Enable PCH resources required for PCH ports:
3520 * - PCH PLLs
3521 * - FDI training & RX/TX
3522 * - update transcoder timings
3523 * - DP transcoding bits
3524 * - transcoder
3525 */
3526static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3527{
3528 struct drm_device *dev = crtc->dev;
3529 struct drm_i915_private *dev_priv = dev->dev_private;
3530 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3531 int pipe = intel_crtc->pipe;
ee7b9f93 3532 u32 reg, temp;
2c07245f 3533
ab9412ba 3534 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3535
1fbc0d78
DV
3536 if (IS_IVYBRIDGE(dev))
3537 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3538
cd986abb
DV
3539 /* Write the TU size bits before fdi link training, so that error
3540 * detection works. */
3541 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3542 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3543
c98e9dcf 3544 /* For PCH output, training FDI link */
674cf967 3545 dev_priv->display.fdi_link_train(crtc);
2c07245f 3546
3ad8a208
DV
3547 /* We need to program the right clock selection before writing the pixel
3548 * mutliplier into the DPLL. */
303b81e0 3549 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3550 u32 sel;
4b645f14 3551
c98e9dcf 3552 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3553 temp |= TRANS_DPLL_ENABLE(pipe);
3554 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3555 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3556 temp |= sel;
3557 else
3558 temp &= ~sel;
c98e9dcf 3559 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3560 }
5eddb70b 3561
3ad8a208
DV
3562 /* XXX: pch pll's can be enabled any time before we enable the PCH
3563 * transcoder, and we actually should do this to not upset any PCH
3564 * transcoder that already use the clock when we share it.
3565 *
3566 * Note that enable_shared_dpll tries to do the right thing, but
3567 * get_shared_dpll unconditionally resets the pll - we need that to have
3568 * the right LVDS enable sequence. */
85b3894f 3569 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3570
d9b6cb56
JB
3571 /* set transcoder timing, panel must allow it */
3572 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3573 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3574
303b81e0 3575 intel_fdi_normal_train(crtc);
5e84e1a4 3576
c98e9dcf
JB
3577 /* For PCH DP, enable TRANS_DP_CTL */
3578 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3579 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3580 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3581 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3582 reg = TRANS_DP_CTL(pipe);
3583 temp = I915_READ(reg);
3584 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3585 TRANS_DP_SYNC_MASK |
3586 TRANS_DP_BPC_MASK);
5eddb70b
CW
3587 temp |= (TRANS_DP_OUTPUT_ENABLE |
3588 TRANS_DP_ENH_FRAMING);
9325c9f0 3589 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3590
3591 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3592 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3593 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3594 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3595
3596 switch (intel_trans_dp_port_sel(crtc)) {
3597 case PCH_DP_B:
5eddb70b 3598 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3599 break;
3600 case PCH_DP_C:
5eddb70b 3601 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3602 break;
3603 case PCH_DP_D:
5eddb70b 3604 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3605 break;
3606 default:
e95d41e1 3607 BUG();
32f9d658 3608 }
2c07245f 3609
5eddb70b 3610 I915_WRITE(reg, temp);
6be4a607 3611 }
b52eb4dc 3612
b8a4f404 3613 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3614}
3615
1507e5bd
PZ
3616static void lpt_pch_enable(struct drm_crtc *crtc)
3617{
3618 struct drm_device *dev = crtc->dev;
3619 struct drm_i915_private *dev_priv = dev->dev_private;
3620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3621 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3622
ab9412ba 3623 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3624
8c52b5e8 3625 lpt_program_iclkip(crtc);
1507e5bd 3626
0540e488 3627 /* Set transcoder timing. */
275f01b2 3628 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3629
937bb610 3630 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3631}
3632
716c2e55 3633void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3634{
e2b78267 3635 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3636
3637 if (pll == NULL)
3638 return;
3639
3640 if (pll->refcount == 0) {
46edb027 3641 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3642 return;
3643 }
3644
f4a091c7
DV
3645 if (--pll->refcount == 0) {
3646 WARN_ON(pll->on);
3647 WARN_ON(pll->active);
3648 }
3649
a43f6e0f 3650 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3651}
3652
716c2e55 3653struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3654{
e2b78267
DV
3655 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3656 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3657 enum intel_dpll_id i;
ee7b9f93 3658
ee7b9f93 3659 if (pll) {
46edb027
DV
3660 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3661 crtc->base.base.id, pll->name);
e2b78267 3662 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3663 }
3664
98b6bd99
DV
3665 if (HAS_PCH_IBX(dev_priv->dev)) {
3666 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3667 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3668 pll = &dev_priv->shared_dplls[i];
98b6bd99 3669
46edb027
DV
3670 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3671 crtc->base.base.id, pll->name);
98b6bd99 3672
f2a69f44
DV
3673 WARN_ON(pll->refcount);
3674
98b6bd99
DV
3675 goto found;
3676 }
3677
e72f9fbf
DV
3678 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3679 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3680
3681 /* Only want to check enabled timings first */
3682 if (pll->refcount == 0)
3683 continue;
3684
b89a1d39
DV
3685 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3686 sizeof(pll->hw_state)) == 0) {
46edb027 3687 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3688 crtc->base.base.id,
46edb027 3689 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3690
3691 goto found;
3692 }
3693 }
3694
3695 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3696 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3697 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3698 if (pll->refcount == 0) {
46edb027
DV
3699 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3700 crtc->base.base.id, pll->name);
ee7b9f93
JB
3701 goto found;
3702 }
3703 }
3704
3705 return NULL;
3706
3707found:
f2a69f44
DV
3708 if (pll->refcount == 0)
3709 pll->hw_state = crtc->config.dpll_hw_state;
3710
a43f6e0f 3711 crtc->config.shared_dpll = i;
46edb027
DV
3712 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3713 pipe_name(crtc->pipe));
ee7b9f93 3714
cdbd2316 3715 pll->refcount++;
e04c7350 3716
ee7b9f93
JB
3717 return pll;
3718}
3719
a1520318 3720static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3721{
3722 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3723 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3724 u32 temp;
3725
3726 temp = I915_READ(dslreg);
3727 udelay(500);
3728 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3729 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3730 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3731 }
3732}
3733
b074cec8
JB
3734static void ironlake_pfit_enable(struct intel_crtc *crtc)
3735{
3736 struct drm_device *dev = crtc->base.dev;
3737 struct drm_i915_private *dev_priv = dev->dev_private;
3738 int pipe = crtc->pipe;
3739
fd4daa9c 3740 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3741 /* Force use of hard-coded filter coefficients
3742 * as some pre-programmed values are broken,
3743 * e.g. x201.
3744 */
3745 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3746 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3747 PF_PIPE_SEL_IVB(pipe));
3748 else
3749 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3750 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3751 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3752 }
3753}
3754
bb53d4ae
VS
3755static void intel_enable_planes(struct drm_crtc *crtc)
3756{
3757 struct drm_device *dev = crtc->dev;
3758 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3759 struct drm_plane *plane;
bb53d4ae
VS
3760 struct intel_plane *intel_plane;
3761
af2b653b
MR
3762 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3763 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3764 if (intel_plane->pipe == pipe)
3765 intel_plane_restore(&intel_plane->base);
af2b653b 3766 }
bb53d4ae
VS
3767}
3768
3769static void intel_disable_planes(struct drm_crtc *crtc)
3770{
3771 struct drm_device *dev = crtc->dev;
3772 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3773 struct drm_plane *plane;
bb53d4ae
VS
3774 struct intel_plane *intel_plane;
3775
af2b653b
MR
3776 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3777 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3778 if (intel_plane->pipe == pipe)
3779 intel_plane_disable(&intel_plane->base);
af2b653b 3780 }
bb53d4ae
VS
3781}
3782
20bc8673 3783void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3784{
cea165c3
VS
3785 struct drm_device *dev = crtc->base.dev;
3786 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3787
3788 if (!crtc->config.ips_enabled)
3789 return;
3790
cea165c3
VS
3791 /* We can only enable IPS after we enable a plane and wait for a vblank */
3792 intel_wait_for_vblank(dev, crtc->pipe);
3793
d77e4531 3794 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3795 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3796 mutex_lock(&dev_priv->rps.hw_lock);
3797 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3798 mutex_unlock(&dev_priv->rps.hw_lock);
3799 /* Quoting Art Runyan: "its not safe to expect any particular
3800 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3801 * mailbox." Moreover, the mailbox may return a bogus state,
3802 * so we need to just enable it and continue on.
2a114cc1
BW
3803 */
3804 } else {
3805 I915_WRITE(IPS_CTL, IPS_ENABLE);
3806 /* The bit only becomes 1 in the next vblank, so this wait here
3807 * is essentially intel_wait_for_vblank. If we don't have this
3808 * and don't wait for vblanks until the end of crtc_enable, then
3809 * the HW state readout code will complain that the expected
3810 * IPS_CTL value is not the one we read. */
3811 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3812 DRM_ERROR("Timed out waiting for IPS enable\n");
3813 }
d77e4531
PZ
3814}
3815
20bc8673 3816void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3817{
3818 struct drm_device *dev = crtc->base.dev;
3819 struct drm_i915_private *dev_priv = dev->dev_private;
3820
3821 if (!crtc->config.ips_enabled)
3822 return;
3823
3824 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3825 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3826 mutex_lock(&dev_priv->rps.hw_lock);
3827 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3828 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3829 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3830 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3831 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3832 } else {
2a114cc1 3833 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3834 POSTING_READ(IPS_CTL);
3835 }
d77e4531
PZ
3836
3837 /* We need to wait for a vblank before we can disable the plane. */
3838 intel_wait_for_vblank(dev, crtc->pipe);
3839}
3840
3841/** Loads the palette/gamma unit for the CRTC with the prepared values */
3842static void intel_crtc_load_lut(struct drm_crtc *crtc)
3843{
3844 struct drm_device *dev = crtc->dev;
3845 struct drm_i915_private *dev_priv = dev->dev_private;
3846 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3847 enum pipe pipe = intel_crtc->pipe;
3848 int palreg = PALETTE(pipe);
3849 int i;
3850 bool reenable_ips = false;
3851
3852 /* The clocks have to be on to load the palette. */
3853 if (!crtc->enabled || !intel_crtc->active)
3854 return;
3855
3856 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3857 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3858 assert_dsi_pll_enabled(dev_priv);
3859 else
3860 assert_pll_enabled(dev_priv, pipe);
3861 }
3862
3863 /* use legacy palette for Ironlake */
7a1db49a 3864 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
3865 palreg = LGC_PALETTE(pipe);
3866
3867 /* Workaround : Do not read or write the pipe palette/gamma data while
3868 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3869 */
41e6fc4c 3870 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3871 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3872 GAMMA_MODE_MODE_SPLIT)) {
3873 hsw_disable_ips(intel_crtc);
3874 reenable_ips = true;
3875 }
3876
3877 for (i = 0; i < 256; i++) {
3878 I915_WRITE(palreg + 4 * i,
3879 (intel_crtc->lut_r[i] << 16) |
3880 (intel_crtc->lut_g[i] << 8) |
3881 intel_crtc->lut_b[i]);
3882 }
3883
3884 if (reenable_ips)
3885 hsw_enable_ips(intel_crtc);
3886}
3887
d3eedb1a
VS
3888static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3889{
3890 if (!enable && intel_crtc->overlay) {
3891 struct drm_device *dev = intel_crtc->base.dev;
3892 struct drm_i915_private *dev_priv = dev->dev_private;
3893
3894 mutex_lock(&dev->struct_mutex);
3895 dev_priv->mm.interruptible = false;
3896 (void) intel_overlay_switch_off(intel_crtc->overlay);
3897 dev_priv->mm.interruptible = true;
3898 mutex_unlock(&dev->struct_mutex);
3899 }
3900
3901 /* Let userspace switch the overlay on again. In most cases userspace
3902 * has to recompute where to put it anyway.
3903 */
3904}
3905
d3eedb1a 3906static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3907{
3908 struct drm_device *dev = crtc->dev;
3909 struct drm_i915_private *dev_priv = dev->dev_private;
3910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3911 int pipe = intel_crtc->pipe;
3912 int plane = intel_crtc->plane;
3913
08c71e5e
VS
3914 assert_vblank_disabled(crtc);
3915
f98551ae
VS
3916 drm_vblank_on(dev, pipe);
3917
a5c4d7bc
VS
3918 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3919 intel_enable_planes(crtc);
3920 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3921 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3922
3923 hsw_enable_ips(intel_crtc);
3924
3925 mutex_lock(&dev->struct_mutex);
3926 intel_update_fbc(dev);
3927 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3928
3929 /*
3930 * FIXME: Once we grow proper nuclear flip support out of this we need
3931 * to compute the mask of flip planes precisely. For the time being
3932 * consider this a flip from a NULL plane.
3933 */
3934 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3935}
3936
d3eedb1a 3937static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3938{
3939 struct drm_device *dev = crtc->dev;
3940 struct drm_i915_private *dev_priv = dev->dev_private;
3941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3942 int pipe = intel_crtc->pipe;
3943 int plane = intel_crtc->plane;
3944
3945 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3946
3947 if (dev_priv->fbc.plane == plane)
3948 intel_disable_fbc(dev);
3949
3950 hsw_disable_ips(intel_crtc);
3951
d3eedb1a 3952 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3953 intel_crtc_update_cursor(crtc, false);
3954 intel_disable_planes(crtc);
3955 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3956
f99d7069
DV
3957 /*
3958 * FIXME: Once we grow proper nuclear flip support out of this we need
3959 * to compute the mask of flip planes precisely. For the time being
3960 * consider this a flip to a NULL plane.
3961 */
3962 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3963
f98551ae 3964 drm_vblank_off(dev, pipe);
08c71e5e
VS
3965
3966 assert_vblank_disabled(crtc);
a5c4d7bc
VS
3967}
3968
f67a559d
JB
3969static void ironlake_crtc_enable(struct drm_crtc *crtc)
3970{
3971 struct drm_device *dev = crtc->dev;
3972 struct drm_i915_private *dev_priv = dev->dev_private;
3973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3974 struct intel_encoder *encoder;
f67a559d 3975 int pipe = intel_crtc->pipe;
29407aab 3976 enum plane plane = intel_crtc->plane;
f67a559d 3977
08a48469
DV
3978 WARN_ON(!crtc->enabled);
3979
f67a559d
JB
3980 if (intel_crtc->active)
3981 return;
3982
b14b1055
DV
3983 if (intel_crtc->config.has_pch_encoder)
3984 intel_prepare_shared_dpll(intel_crtc);
3985
29407aab
DV
3986 if (intel_crtc->config.has_dp_encoder)
3987 intel_dp_set_m_n(intel_crtc);
3988
3989 intel_set_pipe_timings(intel_crtc);
3990
3991 if (intel_crtc->config.has_pch_encoder) {
3992 intel_cpu_transcoder_set_m_n(intel_crtc,
3993 &intel_crtc->config.fdi_m_n);
3994 }
3995
3996 ironlake_set_pipeconf(crtc);
3997
3998 /* Set up the display plane register */
3999 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
4000 POSTING_READ(DSPCNTR(plane));
4001
4002 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4003 crtc->x, crtc->y);
4004
f67a559d 4005 intel_crtc->active = true;
8664281b
PZ
4006
4007 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4008 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4009
f6736a1a 4010 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4011 if (encoder->pre_enable)
4012 encoder->pre_enable(encoder);
f67a559d 4013
5bfe2ac0 4014 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4015 /* Note: FDI PLL enabling _must_ be done before we enable the
4016 * cpu pipes, hence this is separate from all the other fdi/pch
4017 * enabling. */
88cefb6c 4018 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4019 } else {
4020 assert_fdi_tx_disabled(dev_priv, pipe);
4021 assert_fdi_rx_disabled(dev_priv, pipe);
4022 }
f67a559d 4023
b074cec8 4024 ironlake_pfit_enable(intel_crtc);
f67a559d 4025
9c54c0dd
JB
4026 /*
4027 * On ILK+ LUT must be loaded before the pipe is running but with
4028 * clocks enabled
4029 */
4030 intel_crtc_load_lut(crtc);
4031
f37fcc2a 4032 intel_update_watermarks(crtc);
e1fdc473 4033 intel_enable_pipe(intel_crtc);
f67a559d 4034
5bfe2ac0 4035 if (intel_crtc->config.has_pch_encoder)
f67a559d 4036 ironlake_pch_enable(crtc);
c98e9dcf 4037
fa5c73b1
DV
4038 for_each_encoder_on_crtc(dev, crtc, encoder)
4039 encoder->enable(encoder);
61b77ddd
DV
4040
4041 if (HAS_PCH_CPT(dev))
a1520318 4042 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4043
d3eedb1a 4044 intel_crtc_enable_planes(crtc);
6be4a607
JB
4045}
4046
42db64ef
PZ
4047/* IPS only exists on ULT machines and is tied to pipe A. */
4048static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4049{
f5adf94e 4050 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4051}
4052
e4916946
PZ
4053/*
4054 * This implements the workaround described in the "notes" section of the mode
4055 * set sequence documentation. When going from no pipes or single pipe to
4056 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4057 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4058 */
4059static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4060{
4061 struct drm_device *dev = crtc->base.dev;
4062 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4063
4064 /* We want to get the other_active_crtc only if there's only 1 other
4065 * active crtc. */
d3fcc808 4066 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4067 if (!crtc_it->active || crtc_it == crtc)
4068 continue;
4069
4070 if (other_active_crtc)
4071 return;
4072
4073 other_active_crtc = crtc_it;
4074 }
4075 if (!other_active_crtc)
4076 return;
4077
4078 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4079 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4080}
4081
4f771f10
PZ
4082static void haswell_crtc_enable(struct drm_crtc *crtc)
4083{
4084 struct drm_device *dev = crtc->dev;
4085 struct drm_i915_private *dev_priv = dev->dev_private;
4086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4087 struct intel_encoder *encoder;
4088 int pipe = intel_crtc->pipe;
229fca97 4089 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4090
4091 WARN_ON(!crtc->enabled);
4092
4093 if (intel_crtc->active)
4094 return;
4095
df8ad70c
DV
4096 if (intel_crtc_to_shared_dpll(intel_crtc))
4097 intel_enable_shared_dpll(intel_crtc);
4098
229fca97
DV
4099 if (intel_crtc->config.has_dp_encoder)
4100 intel_dp_set_m_n(intel_crtc);
4101
4102 intel_set_pipe_timings(intel_crtc);
4103
4104 if (intel_crtc->config.has_pch_encoder) {
4105 intel_cpu_transcoder_set_m_n(intel_crtc,
4106 &intel_crtc->config.fdi_m_n);
4107 }
4108
4109 haswell_set_pipeconf(crtc);
4110
4111 intel_set_pipe_csc(crtc);
4112
4113 /* Set up the display plane register */
4114 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4115 POSTING_READ(DSPCNTR(plane));
4116
4117 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4118 crtc->x, crtc->y);
4119
4f771f10 4120 intel_crtc->active = true;
8664281b
PZ
4121
4122 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4123 for_each_encoder_on_crtc(dev, crtc, encoder)
4124 if (encoder->pre_enable)
4125 encoder->pre_enable(encoder);
4126
4fe9467d
ID
4127 if (intel_crtc->config.has_pch_encoder) {
4128 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4129 dev_priv->display.fdi_link_train(crtc);
4130 }
4131
1f544388 4132 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4133
b074cec8 4134 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4135
4136 /*
4137 * On ILK+ LUT must be loaded before the pipe is running but with
4138 * clocks enabled
4139 */
4140 intel_crtc_load_lut(crtc);
4141
1f544388 4142 intel_ddi_set_pipe_settings(crtc);
8228c251 4143 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4144
f37fcc2a 4145 intel_update_watermarks(crtc);
e1fdc473 4146 intel_enable_pipe(intel_crtc);
42db64ef 4147
5bfe2ac0 4148 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4149 lpt_pch_enable(crtc);
4f771f10 4150
0e32b39c
DA
4151 if (intel_crtc->config.dp_encoder_is_mst)
4152 intel_ddi_set_vc_payload_alloc(crtc, true);
4153
8807e55b 4154 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4155 encoder->enable(encoder);
8807e55b
JN
4156 intel_opregion_notify_encoder(encoder, true);
4157 }
4f771f10 4158
e4916946
PZ
4159 /* If we change the relative order between pipe/planes enabling, we need
4160 * to change the workaround. */
4161 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4162 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4163}
4164
3f8dce3a
DV
4165static void ironlake_pfit_disable(struct intel_crtc *crtc)
4166{
4167 struct drm_device *dev = crtc->base.dev;
4168 struct drm_i915_private *dev_priv = dev->dev_private;
4169 int pipe = crtc->pipe;
4170
4171 /* To avoid upsetting the power well on haswell only disable the pfit if
4172 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4173 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4174 I915_WRITE(PF_CTL(pipe), 0);
4175 I915_WRITE(PF_WIN_POS(pipe), 0);
4176 I915_WRITE(PF_WIN_SZ(pipe), 0);
4177 }
4178}
4179
6be4a607
JB
4180static void ironlake_crtc_disable(struct drm_crtc *crtc)
4181{
4182 struct drm_device *dev = crtc->dev;
4183 struct drm_i915_private *dev_priv = dev->dev_private;
4184 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4185 struct intel_encoder *encoder;
6be4a607 4186 int pipe = intel_crtc->pipe;
5eddb70b 4187 u32 reg, temp;
b52eb4dc 4188
f7abfe8b
CW
4189 if (!intel_crtc->active)
4190 return;
4191
d3eedb1a 4192 intel_crtc_disable_planes(crtc);
a5c4d7bc 4193
ea9d758d
DV
4194 for_each_encoder_on_crtc(dev, crtc, encoder)
4195 encoder->disable(encoder);
4196
d925c59a
DV
4197 if (intel_crtc->config.has_pch_encoder)
4198 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4199
b24e7179 4200 intel_disable_pipe(dev_priv, pipe);
32f9d658 4201
0e32b39c
DA
4202 if (intel_crtc->config.dp_encoder_is_mst)
4203 intel_ddi_set_vc_payload_alloc(crtc, false);
4204
3f8dce3a 4205 ironlake_pfit_disable(intel_crtc);
2c07245f 4206
bf49ec8c
DV
4207 for_each_encoder_on_crtc(dev, crtc, encoder)
4208 if (encoder->post_disable)
4209 encoder->post_disable(encoder);
2c07245f 4210
d925c59a
DV
4211 if (intel_crtc->config.has_pch_encoder) {
4212 ironlake_fdi_disable(crtc);
913d8d11 4213
d925c59a
DV
4214 ironlake_disable_pch_transcoder(dev_priv, pipe);
4215 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4216
d925c59a
DV
4217 if (HAS_PCH_CPT(dev)) {
4218 /* disable TRANS_DP_CTL */
4219 reg = TRANS_DP_CTL(pipe);
4220 temp = I915_READ(reg);
4221 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4222 TRANS_DP_PORT_SEL_MASK);
4223 temp |= TRANS_DP_PORT_SEL_NONE;
4224 I915_WRITE(reg, temp);
4225
4226 /* disable DPLL_SEL */
4227 temp = I915_READ(PCH_DPLL_SEL);
11887397 4228 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4229 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4230 }
e3421a18 4231
d925c59a 4232 /* disable PCH DPLL */
e72f9fbf 4233 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4234
d925c59a
DV
4235 ironlake_fdi_pll_disable(intel_crtc);
4236 }
6b383a7f 4237
f7abfe8b 4238 intel_crtc->active = false;
46ba614c 4239 intel_update_watermarks(crtc);
d1ebd816
BW
4240
4241 mutex_lock(&dev->struct_mutex);
6b383a7f 4242 intel_update_fbc(dev);
d1ebd816 4243 mutex_unlock(&dev->struct_mutex);
6be4a607 4244}
1b3c7a47 4245
4f771f10 4246static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4247{
4f771f10
PZ
4248 struct drm_device *dev = crtc->dev;
4249 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4251 struct intel_encoder *encoder;
4252 int pipe = intel_crtc->pipe;
3b117c8f 4253 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4254
4f771f10
PZ
4255 if (!intel_crtc->active)
4256 return;
4257
d3eedb1a 4258 intel_crtc_disable_planes(crtc);
dda9a66a 4259
8807e55b
JN
4260 for_each_encoder_on_crtc(dev, crtc, encoder) {
4261 intel_opregion_notify_encoder(encoder, false);
4f771f10 4262 encoder->disable(encoder);
8807e55b 4263 }
4f771f10 4264
8664281b
PZ
4265 if (intel_crtc->config.has_pch_encoder)
4266 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4267 intel_disable_pipe(dev_priv, pipe);
4268
ad80a810 4269 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4270
3f8dce3a 4271 ironlake_pfit_disable(intel_crtc);
4f771f10 4272
1f544388 4273 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4274
88adfff1 4275 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4276 lpt_disable_pch_transcoder(dev_priv);
8664281b 4277 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4278 intel_ddi_fdi_disable(crtc);
83616634 4279 }
4f771f10 4280
97b040aa
ID
4281 for_each_encoder_on_crtc(dev, crtc, encoder)
4282 if (encoder->post_disable)
4283 encoder->post_disable(encoder);
4284
4f771f10 4285 intel_crtc->active = false;
46ba614c 4286 intel_update_watermarks(crtc);
4f771f10
PZ
4287
4288 mutex_lock(&dev->struct_mutex);
4289 intel_update_fbc(dev);
4290 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4291
4292 if (intel_crtc_to_shared_dpll(intel_crtc))
4293 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4294}
4295
ee7b9f93
JB
4296static void ironlake_crtc_off(struct drm_crtc *crtc)
4297{
4298 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4299 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4300}
4301
6441ab5f 4302
2dd24552
JB
4303static void i9xx_pfit_enable(struct intel_crtc *crtc)
4304{
4305 struct drm_device *dev = crtc->base.dev;
4306 struct drm_i915_private *dev_priv = dev->dev_private;
4307 struct intel_crtc_config *pipe_config = &crtc->config;
4308
328d8e82 4309 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4310 return;
4311
2dd24552 4312 /*
c0b03411
DV
4313 * The panel fitter should only be adjusted whilst the pipe is disabled,
4314 * according to register description and PRM.
2dd24552 4315 */
c0b03411
DV
4316 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4317 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4318
b074cec8
JB
4319 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4320 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4321
4322 /* Border color in case we don't scale up to the full screen. Black by
4323 * default, change to something else for debugging. */
4324 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4325}
4326
d05410f9
DA
4327static enum intel_display_power_domain port_to_power_domain(enum port port)
4328{
4329 switch (port) {
4330 case PORT_A:
4331 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4332 case PORT_B:
4333 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4334 case PORT_C:
4335 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4336 case PORT_D:
4337 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4338 default:
4339 WARN_ON_ONCE(1);
4340 return POWER_DOMAIN_PORT_OTHER;
4341 }
4342}
4343
77d22dca
ID
4344#define for_each_power_domain(domain, mask) \
4345 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4346 if ((1 << (domain)) & (mask))
4347
319be8ae
ID
4348enum intel_display_power_domain
4349intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4350{
4351 struct drm_device *dev = intel_encoder->base.dev;
4352 struct intel_digital_port *intel_dig_port;
4353
4354 switch (intel_encoder->type) {
4355 case INTEL_OUTPUT_UNKNOWN:
4356 /* Only DDI platforms should ever use this output type */
4357 WARN_ON_ONCE(!HAS_DDI(dev));
4358 case INTEL_OUTPUT_DISPLAYPORT:
4359 case INTEL_OUTPUT_HDMI:
4360 case INTEL_OUTPUT_EDP:
4361 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4362 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4363 case INTEL_OUTPUT_DP_MST:
4364 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4365 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4366 case INTEL_OUTPUT_ANALOG:
4367 return POWER_DOMAIN_PORT_CRT;
4368 case INTEL_OUTPUT_DSI:
4369 return POWER_DOMAIN_PORT_DSI;
4370 default:
4371 return POWER_DOMAIN_PORT_OTHER;
4372 }
4373}
4374
4375static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4376{
319be8ae
ID
4377 struct drm_device *dev = crtc->dev;
4378 struct intel_encoder *intel_encoder;
4379 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4380 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4381 unsigned long mask;
4382 enum transcoder transcoder;
4383
4384 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4385
4386 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4387 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4388 if (intel_crtc->config.pch_pfit.enabled ||
4389 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4390 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4391
319be8ae
ID
4392 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4393 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4394
77d22dca
ID
4395 return mask;
4396}
4397
4398void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4399 bool enable)
4400{
4401 if (dev_priv->power_domains.init_power_on == enable)
4402 return;
4403
4404 if (enable)
4405 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4406 else
4407 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4408
4409 dev_priv->power_domains.init_power_on = enable;
4410}
4411
4412static void modeset_update_crtc_power_domains(struct drm_device *dev)
4413{
4414 struct drm_i915_private *dev_priv = dev->dev_private;
4415 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4416 struct intel_crtc *crtc;
4417
4418 /*
4419 * First get all needed power domains, then put all unneeded, to avoid
4420 * any unnecessary toggling of the power wells.
4421 */
d3fcc808 4422 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4423 enum intel_display_power_domain domain;
4424
4425 if (!crtc->base.enabled)
4426 continue;
4427
319be8ae 4428 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4429
4430 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4431 intel_display_power_get(dev_priv, domain);
4432 }
4433
d3fcc808 4434 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4435 enum intel_display_power_domain domain;
4436
4437 for_each_power_domain(domain, crtc->enabled_power_domains)
4438 intel_display_power_put(dev_priv, domain);
4439
4440 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4441 }
4442
4443 intel_display_set_init_power(dev_priv, false);
4444}
4445
dfcab17e 4446/* returns HPLL frequency in kHz */
f8bf63fd 4447static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4448{
586f49dc 4449 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4450
586f49dc
JB
4451 /* Obtain SKU information */
4452 mutex_lock(&dev_priv->dpio_lock);
4453 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4454 CCK_FUSE_HPLL_FREQ_MASK;
4455 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4456
dfcab17e 4457 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4458}
4459
f8bf63fd
VS
4460static void vlv_update_cdclk(struct drm_device *dev)
4461{
4462 struct drm_i915_private *dev_priv = dev->dev_private;
4463
4464 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4465 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4466 dev_priv->vlv_cdclk_freq);
4467
4468 /*
4469 * Program the gmbus_freq based on the cdclk frequency.
4470 * BSpec erroneously claims we should aim for 4MHz, but
4471 * in fact 1MHz is the correct frequency.
4472 */
4473 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4474}
4475
30a970c6
JB
4476/* Adjust CDclk dividers to allow high res or save power if possible */
4477static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4478{
4479 struct drm_i915_private *dev_priv = dev->dev_private;
4480 u32 val, cmd;
4481
d197b7d3 4482 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4483
dfcab17e 4484 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4485 cmd = 2;
dfcab17e 4486 else if (cdclk == 266667)
30a970c6
JB
4487 cmd = 1;
4488 else
4489 cmd = 0;
4490
4491 mutex_lock(&dev_priv->rps.hw_lock);
4492 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4493 val &= ~DSPFREQGUAR_MASK;
4494 val |= (cmd << DSPFREQGUAR_SHIFT);
4495 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4496 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4497 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4498 50)) {
4499 DRM_ERROR("timed out waiting for CDclk change\n");
4500 }
4501 mutex_unlock(&dev_priv->rps.hw_lock);
4502
dfcab17e 4503 if (cdclk == 400000) {
30a970c6
JB
4504 u32 divider, vco;
4505
4506 vco = valleyview_get_vco(dev_priv);
dfcab17e 4507 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4508
4509 mutex_lock(&dev_priv->dpio_lock);
4510 /* adjust cdclk divider */
4511 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4512 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4513 val |= divider;
4514 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4515
4516 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4517 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4518 50))
4519 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4520 mutex_unlock(&dev_priv->dpio_lock);
4521 }
4522
4523 mutex_lock(&dev_priv->dpio_lock);
4524 /* adjust self-refresh exit latency value */
4525 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4526 val &= ~0x7f;
4527
4528 /*
4529 * For high bandwidth configs, we set a higher latency in the bunit
4530 * so that the core display fetch happens in time to avoid underruns.
4531 */
dfcab17e 4532 if (cdclk == 400000)
30a970c6
JB
4533 val |= 4500 / 250; /* 4.5 usec */
4534 else
4535 val |= 3000 / 250; /* 3.0 usec */
4536 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4537 mutex_unlock(&dev_priv->dpio_lock);
4538
f8bf63fd 4539 vlv_update_cdclk(dev);
30a970c6
JB
4540}
4541
30a970c6
JB
4542static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4543 int max_pixclk)
4544{
29dc7ef3
VS
4545 int vco = valleyview_get_vco(dev_priv);
4546 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4547
30a970c6
JB
4548 /*
4549 * Really only a few cases to deal with, as only 4 CDclks are supported:
4550 * 200MHz
4551 * 267MHz
29dc7ef3 4552 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4553 * 400MHz
4554 * So we check to see whether we're above 90% of the lower bin and
4555 * adjust if needed.
e37c67a1
VS
4556 *
4557 * We seem to get an unstable or solid color picture at 200MHz.
4558 * Not sure what's wrong. For now use 200MHz only when all pipes
4559 * are off.
30a970c6 4560 */
29dc7ef3 4561 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4562 return 400000;
4563 else if (max_pixclk > 266667*9/10)
29dc7ef3 4564 return freq_320;
e37c67a1 4565 else if (max_pixclk > 0)
dfcab17e 4566 return 266667;
e37c67a1
VS
4567 else
4568 return 200000;
30a970c6
JB
4569}
4570
2f2d7aa1
VS
4571/* compute the max pixel clock for new configuration */
4572static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4573{
4574 struct drm_device *dev = dev_priv->dev;
4575 struct intel_crtc *intel_crtc;
4576 int max_pixclk = 0;
4577
d3fcc808 4578 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4579 if (intel_crtc->new_enabled)
30a970c6 4580 max_pixclk = max(max_pixclk,
2f2d7aa1 4581 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4582 }
4583
4584 return max_pixclk;
4585}
4586
4587static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4588 unsigned *prepare_pipes)
30a970c6
JB
4589{
4590 struct drm_i915_private *dev_priv = dev->dev_private;
4591 struct intel_crtc *intel_crtc;
2f2d7aa1 4592 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4593
d60c4473
ID
4594 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4595 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4596 return;
4597
2f2d7aa1 4598 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4599 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4600 if (intel_crtc->base.enabled)
4601 *prepare_pipes |= (1 << intel_crtc->pipe);
4602}
4603
4604static void valleyview_modeset_global_resources(struct drm_device *dev)
4605{
4606 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4607 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4608 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4609
d60c4473 4610 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4611 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4612 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4613}
4614
89b667f8
JB
4615static void valleyview_crtc_enable(struct drm_crtc *crtc)
4616{
4617 struct drm_device *dev = crtc->dev;
5b18e57c 4618 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4619 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4620 struct intel_encoder *encoder;
4621 int pipe = intel_crtc->pipe;
5b18e57c 4622 int plane = intel_crtc->plane;
23538ef1 4623 bool is_dsi;
5b18e57c 4624 u32 dspcntr;
89b667f8
JB
4625
4626 WARN_ON(!crtc->enabled);
4627
4628 if (intel_crtc->active)
4629 return;
4630
8525a235
SK
4631 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4632
4633 if (!is_dsi && !IS_CHERRYVIEW(dev))
4634 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4635
5b18e57c
DV
4636 /* Set up the display plane register */
4637 dspcntr = DISPPLANE_GAMMA_ENABLE;
4638
4639 if (intel_crtc->config.has_dp_encoder)
4640 intel_dp_set_m_n(intel_crtc);
4641
4642 intel_set_pipe_timings(intel_crtc);
4643
4644 /* pipesrc and dspsize control the size that is scaled from,
4645 * which should always be the user's requested size.
4646 */
4647 I915_WRITE(DSPSIZE(plane),
4648 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4649 (intel_crtc->config.pipe_src_w - 1));
4650 I915_WRITE(DSPPOS(plane), 0);
4651
4652 i9xx_set_pipeconf(intel_crtc);
4653
4654 I915_WRITE(DSPCNTR(plane), dspcntr);
4655 POSTING_READ(DSPCNTR(plane));
4656
4657 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4658 crtc->x, crtc->y);
4659
89b667f8 4660 intel_crtc->active = true;
89b667f8 4661
4a3436e8
VS
4662 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4663
89b667f8
JB
4664 for_each_encoder_on_crtc(dev, crtc, encoder)
4665 if (encoder->pre_pll_enable)
4666 encoder->pre_pll_enable(encoder);
4667
9d556c99
CML
4668 if (!is_dsi) {
4669 if (IS_CHERRYVIEW(dev))
4670 chv_enable_pll(intel_crtc);
4671 else
4672 vlv_enable_pll(intel_crtc);
4673 }
89b667f8
JB
4674
4675 for_each_encoder_on_crtc(dev, crtc, encoder)
4676 if (encoder->pre_enable)
4677 encoder->pre_enable(encoder);
4678
2dd24552
JB
4679 i9xx_pfit_enable(intel_crtc);
4680
63cbb074
VS
4681 intel_crtc_load_lut(crtc);
4682
f37fcc2a 4683 intel_update_watermarks(crtc);
e1fdc473 4684 intel_enable_pipe(intel_crtc);
be6a6f8e 4685
5004945f
JN
4686 for_each_encoder_on_crtc(dev, crtc, encoder)
4687 encoder->enable(encoder);
9ab0460b
VS
4688
4689 intel_crtc_enable_planes(crtc);
d40d9187 4690
56b80e1f
VS
4691 /* Underruns don't raise interrupts, so check manually. */
4692 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4693}
4694
f13c2ef3
DV
4695static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4696{
4697 struct drm_device *dev = crtc->base.dev;
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699
4700 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4701 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4702}
4703
0b8765c6 4704static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4705{
4706 struct drm_device *dev = crtc->dev;
5b18e57c 4707 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4709 struct intel_encoder *encoder;
79e53945 4710 int pipe = intel_crtc->pipe;
5b18e57c
DV
4711 int plane = intel_crtc->plane;
4712 u32 dspcntr;
79e53945 4713
08a48469
DV
4714 WARN_ON(!crtc->enabled);
4715
f7abfe8b
CW
4716 if (intel_crtc->active)
4717 return;
4718
f13c2ef3
DV
4719 i9xx_set_pll_dividers(intel_crtc);
4720
5b18e57c
DV
4721 /* Set up the display plane register */
4722 dspcntr = DISPPLANE_GAMMA_ENABLE;
4723
4724 if (pipe == 0)
4725 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4726 else
4727 dspcntr |= DISPPLANE_SEL_PIPE_B;
4728
4729 if (intel_crtc->config.has_dp_encoder)
4730 intel_dp_set_m_n(intel_crtc);
4731
4732 intel_set_pipe_timings(intel_crtc);
4733
4734 /* pipesrc and dspsize control the size that is scaled from,
4735 * which should always be the user's requested size.
4736 */
4737 I915_WRITE(DSPSIZE(plane),
4738 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4739 (intel_crtc->config.pipe_src_w - 1));
4740 I915_WRITE(DSPPOS(plane), 0);
4741
4742 i9xx_set_pipeconf(intel_crtc);
4743
4744 I915_WRITE(DSPCNTR(plane), dspcntr);
4745 POSTING_READ(DSPCNTR(plane));
4746
4747 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4748 crtc->x, crtc->y);
4749
f7abfe8b 4750 intel_crtc->active = true;
6b383a7f 4751
4a3436e8
VS
4752 if (!IS_GEN2(dev))
4753 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4754
9d6d9f19
MK
4755 for_each_encoder_on_crtc(dev, crtc, encoder)
4756 if (encoder->pre_enable)
4757 encoder->pre_enable(encoder);
4758
f6736a1a
DV
4759 i9xx_enable_pll(intel_crtc);
4760
2dd24552
JB
4761 i9xx_pfit_enable(intel_crtc);
4762
63cbb074
VS
4763 intel_crtc_load_lut(crtc);
4764
f37fcc2a 4765 intel_update_watermarks(crtc);
e1fdc473 4766 intel_enable_pipe(intel_crtc);
be6a6f8e 4767
fa5c73b1
DV
4768 for_each_encoder_on_crtc(dev, crtc, encoder)
4769 encoder->enable(encoder);
9ab0460b
VS
4770
4771 intel_crtc_enable_planes(crtc);
d40d9187 4772
4a3436e8
VS
4773 /*
4774 * Gen2 reports pipe underruns whenever all planes are disabled.
4775 * So don't enable underrun reporting before at least some planes
4776 * are enabled.
4777 * FIXME: Need to fix the logic to work when we turn off all planes
4778 * but leave the pipe running.
4779 */
4780 if (IS_GEN2(dev))
4781 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4782
56b80e1f
VS
4783 /* Underruns don't raise interrupts, so check manually. */
4784 i9xx_check_fifo_underruns(dev);
0b8765c6 4785}
79e53945 4786
87476d63
DV
4787static void i9xx_pfit_disable(struct intel_crtc *crtc)
4788{
4789 struct drm_device *dev = crtc->base.dev;
4790 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4791
328d8e82
DV
4792 if (!crtc->config.gmch_pfit.control)
4793 return;
87476d63 4794
328d8e82 4795 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4796
328d8e82
DV
4797 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4798 I915_READ(PFIT_CONTROL));
4799 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4800}
4801
0b8765c6
JB
4802static void i9xx_crtc_disable(struct drm_crtc *crtc)
4803{
4804 struct drm_device *dev = crtc->dev;
4805 struct drm_i915_private *dev_priv = dev->dev_private;
4806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4807 struct intel_encoder *encoder;
0b8765c6 4808 int pipe = intel_crtc->pipe;
ef9c3aee 4809
f7abfe8b
CW
4810 if (!intel_crtc->active)
4811 return;
4812
4a3436e8
VS
4813 /*
4814 * Gen2 reports pipe underruns whenever all planes are disabled.
4815 * So diasble underrun reporting before all the planes get disabled.
4816 * FIXME: Need to fix the logic to work when we turn off all planes
4817 * but leave the pipe running.
4818 */
4819 if (IS_GEN2(dev))
4820 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4821
564ed191
ID
4822 /*
4823 * Vblank time updates from the shadow to live plane control register
4824 * are blocked if the memory self-refresh mode is active at that
4825 * moment. So to make sure the plane gets truly disabled, disable
4826 * first the self-refresh mode. The self-refresh enable bit in turn
4827 * will be checked/applied by the HW only at the next frame start
4828 * event which is after the vblank start event, so we need to have a
4829 * wait-for-vblank between disabling the plane and the pipe.
4830 */
4831 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4832 intel_crtc_disable_planes(crtc);
4833
ea9d758d
DV
4834 for_each_encoder_on_crtc(dev, crtc, encoder)
4835 encoder->disable(encoder);
4836
6304cd91
VS
4837 /*
4838 * On gen2 planes are double buffered but the pipe isn't, so we must
4839 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4840 * We also need to wait on all gmch platforms because of the
4841 * self-refresh mode constraint explained above.
6304cd91 4842 */
564ed191 4843 intel_wait_for_vblank(dev, pipe);
6304cd91 4844
b24e7179 4845 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4846
87476d63 4847 i9xx_pfit_disable(intel_crtc);
24a1f16d 4848
89b667f8
JB
4849 for_each_encoder_on_crtc(dev, crtc, encoder)
4850 if (encoder->post_disable)
4851 encoder->post_disable(encoder);
4852
076ed3b2
CML
4853 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4854 if (IS_CHERRYVIEW(dev))
4855 chv_disable_pll(dev_priv, pipe);
4856 else if (IS_VALLEYVIEW(dev))
4857 vlv_disable_pll(dev_priv, pipe);
4858 else
4859 i9xx_disable_pll(dev_priv, pipe);
4860 }
0b8765c6 4861
4a3436e8
VS
4862 if (!IS_GEN2(dev))
4863 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4864
f7abfe8b 4865 intel_crtc->active = false;
46ba614c 4866 intel_update_watermarks(crtc);
f37fcc2a 4867
efa9624e 4868 mutex_lock(&dev->struct_mutex);
6b383a7f 4869 intel_update_fbc(dev);
efa9624e 4870 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4871}
4872
ee7b9f93
JB
4873static void i9xx_crtc_off(struct drm_crtc *crtc)
4874{
4875}
4876
976f8a20
DV
4877static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4878 bool enabled)
2c07245f
ZW
4879{
4880 struct drm_device *dev = crtc->dev;
4881 struct drm_i915_master_private *master_priv;
4882 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4883 int pipe = intel_crtc->pipe;
79e53945
JB
4884
4885 if (!dev->primary->master)
4886 return;
4887
4888 master_priv = dev->primary->master->driver_priv;
4889 if (!master_priv->sarea_priv)
4890 return;
4891
79e53945
JB
4892 switch (pipe) {
4893 case 0:
4894 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4895 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4896 break;
4897 case 1:
4898 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4899 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4900 break;
4901 default:
9db4a9c7 4902 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4903 break;
4904 }
79e53945
JB
4905}
4906
b04c5bd6
BF
4907/* Master function to enable/disable CRTC and corresponding power wells */
4908void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
4909{
4910 struct drm_device *dev = crtc->dev;
4911 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4912 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
4913 enum intel_display_power_domain domain;
4914 unsigned long domains;
976f8a20 4915
0e572fe7
DV
4916 if (enable) {
4917 if (!intel_crtc->active) {
e1e9fb84
DV
4918 domains = get_crtc_power_domains(crtc);
4919 for_each_power_domain(domain, domains)
4920 intel_display_power_get(dev_priv, domain);
4921 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
4922
4923 dev_priv->display.crtc_enable(crtc);
4924 }
4925 } else {
4926 if (intel_crtc->active) {
4927 dev_priv->display.crtc_disable(crtc);
4928
e1e9fb84
DV
4929 domains = intel_crtc->enabled_power_domains;
4930 for_each_power_domain(domain, domains)
4931 intel_display_power_put(dev_priv, domain);
4932 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
4933 }
4934 }
b04c5bd6
BF
4935}
4936
4937/**
4938 * Sets the power management mode of the pipe and plane.
4939 */
4940void intel_crtc_update_dpms(struct drm_crtc *crtc)
4941{
4942 struct drm_device *dev = crtc->dev;
4943 struct intel_encoder *intel_encoder;
4944 bool enable = false;
4945
4946 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4947 enable |= intel_encoder->connectors_active;
4948
4949 intel_crtc_control(crtc, enable);
976f8a20
DV
4950
4951 intel_crtc_update_sarea(crtc, enable);
4952}
4953
cdd59983
CW
4954static void intel_crtc_disable(struct drm_crtc *crtc)
4955{
cdd59983 4956 struct drm_device *dev = crtc->dev;
976f8a20 4957 struct drm_connector *connector;
ee7b9f93 4958 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4959 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4960 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4961
976f8a20
DV
4962 /* crtc should still be enabled when we disable it. */
4963 WARN_ON(!crtc->enabled);
4964
4965 dev_priv->display.crtc_disable(crtc);
4966 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4967 dev_priv->display.off(crtc);
4968
f4510a27 4969 if (crtc->primary->fb) {
cdd59983 4970 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4971 intel_unpin_fb_obj(old_obj);
4972 i915_gem_track_fb(old_obj, NULL,
4973 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4974 mutex_unlock(&dev->struct_mutex);
f4510a27 4975 crtc->primary->fb = NULL;
976f8a20
DV
4976 }
4977
4978 /* Update computed state. */
4979 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4980 if (!connector->encoder || !connector->encoder->crtc)
4981 continue;
4982
4983 if (connector->encoder->crtc != crtc)
4984 continue;
4985
4986 connector->dpms = DRM_MODE_DPMS_OFF;
4987 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4988 }
4989}
4990
ea5b213a 4991void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 4992{
4ef69c7a 4993 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 4994
ea5b213a
CW
4995 drm_encoder_cleanup(encoder);
4996 kfree(intel_encoder);
7e7d76c3
JB
4997}
4998
9237329d 4999/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5000 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5001 * state of the entire output pipe. */
9237329d 5002static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5003{
5ab432ef
DV
5004 if (mode == DRM_MODE_DPMS_ON) {
5005 encoder->connectors_active = true;
5006
b2cabb0e 5007 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5008 } else {
5009 encoder->connectors_active = false;
5010
b2cabb0e 5011 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5012 }
79e53945
JB
5013}
5014
0a91ca29
DV
5015/* Cross check the actual hw state with our own modeset state tracking (and it's
5016 * internal consistency). */
b980514c 5017static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5018{
0a91ca29
DV
5019 if (connector->get_hw_state(connector)) {
5020 struct intel_encoder *encoder = connector->encoder;
5021 struct drm_crtc *crtc;
5022 bool encoder_enabled;
5023 enum pipe pipe;
5024
5025 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5026 connector->base.base.id,
c23cc417 5027 connector->base.name);
0a91ca29 5028
0e32b39c
DA
5029 /* there is no real hw state for MST connectors */
5030 if (connector->mst_port)
5031 return;
5032
0a91ca29
DV
5033 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5034 "wrong connector dpms state\n");
5035 WARN(connector->base.encoder != &encoder->base,
5036 "active connector not linked to encoder\n");
0a91ca29 5037
36cd7444
DA
5038 if (encoder) {
5039 WARN(!encoder->connectors_active,
5040 "encoder->connectors_active not set\n");
5041
5042 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5043 WARN(!encoder_enabled, "encoder not enabled\n");
5044 if (WARN_ON(!encoder->base.crtc))
5045 return;
0a91ca29 5046
36cd7444 5047 crtc = encoder->base.crtc;
0a91ca29 5048
36cd7444
DA
5049 WARN(!crtc->enabled, "crtc not enabled\n");
5050 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5051 WARN(pipe != to_intel_crtc(crtc)->pipe,
5052 "encoder active on the wrong pipe\n");
5053 }
0a91ca29 5054 }
79e53945
JB
5055}
5056
5ab432ef
DV
5057/* Even simpler default implementation, if there's really no special case to
5058 * consider. */
5059void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5060{
5ab432ef
DV
5061 /* All the simple cases only support two dpms states. */
5062 if (mode != DRM_MODE_DPMS_ON)
5063 mode = DRM_MODE_DPMS_OFF;
d4270e57 5064
5ab432ef
DV
5065 if (mode == connector->dpms)
5066 return;
5067
5068 connector->dpms = mode;
5069
5070 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5071 if (connector->encoder)
5072 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5073
b980514c 5074 intel_modeset_check_state(connector->dev);
79e53945
JB
5075}
5076
f0947c37
DV
5077/* Simple connector->get_hw_state implementation for encoders that support only
5078 * one connector and no cloning and hence the encoder state determines the state
5079 * of the connector. */
5080bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5081{
24929352 5082 enum pipe pipe = 0;
f0947c37 5083 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5084
f0947c37 5085 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5086}
5087
1857e1da
DV
5088static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5089 struct intel_crtc_config *pipe_config)
5090{
5091 struct drm_i915_private *dev_priv = dev->dev_private;
5092 struct intel_crtc *pipe_B_crtc =
5093 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5094
5095 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5096 pipe_name(pipe), pipe_config->fdi_lanes);
5097 if (pipe_config->fdi_lanes > 4) {
5098 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5099 pipe_name(pipe), pipe_config->fdi_lanes);
5100 return false;
5101 }
5102
bafb6553 5103 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5104 if (pipe_config->fdi_lanes > 2) {
5105 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5106 pipe_config->fdi_lanes);
5107 return false;
5108 } else {
5109 return true;
5110 }
5111 }
5112
5113 if (INTEL_INFO(dev)->num_pipes == 2)
5114 return true;
5115
5116 /* Ivybridge 3 pipe is really complicated */
5117 switch (pipe) {
5118 case PIPE_A:
5119 return true;
5120 case PIPE_B:
5121 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5122 pipe_config->fdi_lanes > 2) {
5123 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5124 pipe_name(pipe), pipe_config->fdi_lanes);
5125 return false;
5126 }
5127 return true;
5128 case PIPE_C:
1e833f40 5129 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5130 pipe_B_crtc->config.fdi_lanes <= 2) {
5131 if (pipe_config->fdi_lanes > 2) {
5132 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5133 pipe_name(pipe), pipe_config->fdi_lanes);
5134 return false;
5135 }
5136 } else {
5137 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5138 return false;
5139 }
5140 return true;
5141 default:
5142 BUG();
5143 }
5144}
5145
e29c22c0
DV
5146#define RETRY 1
5147static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5148 struct intel_crtc_config *pipe_config)
877d48d5 5149{
1857e1da 5150 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5151 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5152 int lane, link_bw, fdi_dotclock;
e29c22c0 5153 bool setup_ok, needs_recompute = false;
877d48d5 5154
e29c22c0 5155retry:
877d48d5
DV
5156 /* FDI is a binary signal running at ~2.7GHz, encoding
5157 * each output octet as 10 bits. The actual frequency
5158 * is stored as a divider into a 100MHz clock, and the
5159 * mode pixel clock is stored in units of 1KHz.
5160 * Hence the bw of each lane in terms of the mode signal
5161 * is:
5162 */
5163 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5164
241bfc38 5165 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5166
2bd89a07 5167 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5168 pipe_config->pipe_bpp);
5169
5170 pipe_config->fdi_lanes = lane;
5171
2bd89a07 5172 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5173 link_bw, &pipe_config->fdi_m_n);
1857e1da 5174
e29c22c0
DV
5175 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5176 intel_crtc->pipe, pipe_config);
5177 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5178 pipe_config->pipe_bpp -= 2*3;
5179 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5180 pipe_config->pipe_bpp);
5181 needs_recompute = true;
5182 pipe_config->bw_constrained = true;
5183
5184 goto retry;
5185 }
5186
5187 if (needs_recompute)
5188 return RETRY;
5189
5190 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5191}
5192
42db64ef
PZ
5193static void hsw_compute_ips_config(struct intel_crtc *crtc,
5194 struct intel_crtc_config *pipe_config)
5195{
d330a953 5196 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5197 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5198 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5199}
5200
a43f6e0f 5201static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5202 struct intel_crtc_config *pipe_config)
79e53945 5203{
a43f6e0f 5204 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5205 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5206
ad3a4479 5207 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5208 if (INTEL_INFO(dev)->gen < 4) {
5209 struct drm_i915_private *dev_priv = dev->dev_private;
5210 int clock_limit =
5211 dev_priv->display.get_display_clock_speed(dev);
5212
5213 /*
5214 * Enable pixel doubling when the dot clock
5215 * is > 90% of the (display) core speed.
5216 *
b397c96b
VS
5217 * GDG double wide on either pipe,
5218 * otherwise pipe A only.
cf532bb2 5219 */
b397c96b 5220 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5221 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5222 clock_limit *= 2;
cf532bb2 5223 pipe_config->double_wide = true;
ad3a4479
VS
5224 }
5225
241bfc38 5226 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5227 return -EINVAL;
2c07245f 5228 }
89749350 5229
1d1d0e27
VS
5230 /*
5231 * Pipe horizontal size must be even in:
5232 * - DVO ganged mode
5233 * - LVDS dual channel mode
5234 * - Double wide pipe
5235 */
5236 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5237 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5238 pipe_config->pipe_src_w &= ~1;
5239
8693a824
DL
5240 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5241 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5242 */
5243 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5244 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5245 return -EINVAL;
44f46b42 5246
bd080ee5 5247 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5248 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5249 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5250 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5251 * for lvds. */
5252 pipe_config->pipe_bpp = 8*3;
5253 }
5254
f5adf94e 5255 if (HAS_IPS(dev))
a43f6e0f
DV
5256 hsw_compute_ips_config(crtc, pipe_config);
5257
12030431
DV
5258 /*
5259 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5260 * old clock survives for now.
5261 */
5262 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5263 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5264
877d48d5 5265 if (pipe_config->has_pch_encoder)
a43f6e0f 5266 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5267
e29c22c0 5268 return 0;
79e53945
JB
5269}
5270
25eb05fc
JB
5271static int valleyview_get_display_clock_speed(struct drm_device *dev)
5272{
d197b7d3
VS
5273 struct drm_i915_private *dev_priv = dev->dev_private;
5274 int vco = valleyview_get_vco(dev_priv);
5275 u32 val;
5276 int divider;
5277
5278 mutex_lock(&dev_priv->dpio_lock);
5279 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5280 mutex_unlock(&dev_priv->dpio_lock);
5281
5282 divider = val & DISPLAY_FREQUENCY_VALUES;
5283
7d007f40
VS
5284 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5285 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5286 "cdclk change in progress\n");
5287
d197b7d3 5288 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5289}
5290
e70236a8
JB
5291static int i945_get_display_clock_speed(struct drm_device *dev)
5292{
5293 return 400000;
5294}
79e53945 5295
e70236a8 5296static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5297{
e70236a8
JB
5298 return 333000;
5299}
79e53945 5300
e70236a8
JB
5301static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5302{
5303 return 200000;
5304}
79e53945 5305
257a7ffc
DV
5306static int pnv_get_display_clock_speed(struct drm_device *dev)
5307{
5308 u16 gcfgc = 0;
5309
5310 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5311
5312 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5313 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5314 return 267000;
5315 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5316 return 333000;
5317 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5318 return 444000;
5319 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5320 return 200000;
5321 default:
5322 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5323 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5324 return 133000;
5325 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5326 return 167000;
5327 }
5328}
5329
e70236a8
JB
5330static int i915gm_get_display_clock_speed(struct drm_device *dev)
5331{
5332 u16 gcfgc = 0;
79e53945 5333
e70236a8
JB
5334 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5335
5336 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5337 return 133000;
5338 else {
5339 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5340 case GC_DISPLAY_CLOCK_333_MHZ:
5341 return 333000;
5342 default:
5343 case GC_DISPLAY_CLOCK_190_200_MHZ:
5344 return 190000;
79e53945 5345 }
e70236a8
JB
5346 }
5347}
5348
5349static int i865_get_display_clock_speed(struct drm_device *dev)
5350{
5351 return 266000;
5352}
5353
5354static int i855_get_display_clock_speed(struct drm_device *dev)
5355{
5356 u16 hpllcc = 0;
5357 /* Assume that the hardware is in the high speed state. This
5358 * should be the default.
5359 */
5360 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5361 case GC_CLOCK_133_200:
5362 case GC_CLOCK_100_200:
5363 return 200000;
5364 case GC_CLOCK_166_250:
5365 return 250000;
5366 case GC_CLOCK_100_133:
79e53945 5367 return 133000;
e70236a8 5368 }
79e53945 5369
e70236a8
JB
5370 /* Shouldn't happen */
5371 return 0;
5372}
79e53945 5373
e70236a8
JB
5374static int i830_get_display_clock_speed(struct drm_device *dev)
5375{
5376 return 133000;
79e53945
JB
5377}
5378
2c07245f 5379static void
a65851af 5380intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5381{
a65851af
VS
5382 while (*num > DATA_LINK_M_N_MASK ||
5383 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5384 *num >>= 1;
5385 *den >>= 1;
5386 }
5387}
5388
a65851af
VS
5389static void compute_m_n(unsigned int m, unsigned int n,
5390 uint32_t *ret_m, uint32_t *ret_n)
5391{
5392 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5393 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5394 intel_reduce_m_n_ratio(ret_m, ret_n);
5395}
5396
e69d0bc1
DV
5397void
5398intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5399 int pixel_clock, int link_clock,
5400 struct intel_link_m_n *m_n)
2c07245f 5401{
e69d0bc1 5402 m_n->tu = 64;
a65851af
VS
5403
5404 compute_m_n(bits_per_pixel * pixel_clock,
5405 link_clock * nlanes * 8,
5406 &m_n->gmch_m, &m_n->gmch_n);
5407
5408 compute_m_n(pixel_clock, link_clock,
5409 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5410}
5411
a7615030
CW
5412static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5413{
d330a953
JN
5414 if (i915.panel_use_ssc >= 0)
5415 return i915.panel_use_ssc != 0;
41aa3448 5416 return dev_priv->vbt.lvds_use_ssc
435793df 5417 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5418}
5419
c65d77d8
JB
5420static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5421{
5422 struct drm_device *dev = crtc->dev;
5423 struct drm_i915_private *dev_priv = dev->dev_private;
5424 int refclk;
5425
a0c4da24 5426 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5427 refclk = 100000;
a0c4da24 5428 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5429 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5430 refclk = dev_priv->vbt.lvds_ssc_freq;
5431 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5432 } else if (!IS_GEN2(dev)) {
5433 refclk = 96000;
5434 } else {
5435 refclk = 48000;
5436 }
5437
5438 return refclk;
5439}
5440
7429e9d4 5441static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5442{
7df00d7a 5443 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5444}
f47709a9 5445
7429e9d4
DV
5446static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5447{
5448 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5449}
5450
f47709a9 5451static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5452 intel_clock_t *reduced_clock)
5453{
f47709a9 5454 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5455 u32 fp, fp2 = 0;
5456
5457 if (IS_PINEVIEW(dev)) {
7429e9d4 5458 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5459 if (reduced_clock)
7429e9d4 5460 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5461 } else {
7429e9d4 5462 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5463 if (reduced_clock)
7429e9d4 5464 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5465 }
5466
8bcc2795 5467 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5468
f47709a9
DV
5469 crtc->lowfreq_avail = false;
5470 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5471 reduced_clock && i915.powersave) {
8bcc2795 5472 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5473 crtc->lowfreq_avail = true;
a7516a05 5474 } else {
8bcc2795 5475 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5476 }
5477}
5478
5e69f97f
CML
5479static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5480 pipe)
89b667f8
JB
5481{
5482 u32 reg_val;
5483
5484 /*
5485 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5486 * and set it to a reasonable value instead.
5487 */
ab3c759a 5488 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5489 reg_val &= 0xffffff00;
5490 reg_val |= 0x00000030;
ab3c759a 5491 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5492
ab3c759a 5493 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5494 reg_val &= 0x8cffffff;
5495 reg_val = 0x8c000000;
ab3c759a 5496 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5497
ab3c759a 5498 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5499 reg_val &= 0xffffff00;
ab3c759a 5500 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5501
ab3c759a 5502 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5503 reg_val &= 0x00ffffff;
5504 reg_val |= 0xb0000000;
ab3c759a 5505 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5506}
5507
b551842d
DV
5508static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5509 struct intel_link_m_n *m_n)
5510{
5511 struct drm_device *dev = crtc->base.dev;
5512 struct drm_i915_private *dev_priv = dev->dev_private;
5513 int pipe = crtc->pipe;
5514
e3b95f1e
DV
5515 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5516 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5517 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5518 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5519}
5520
5521static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5522 struct intel_link_m_n *m_n)
5523{
5524 struct drm_device *dev = crtc->base.dev;
5525 struct drm_i915_private *dev_priv = dev->dev_private;
5526 int pipe = crtc->pipe;
5527 enum transcoder transcoder = crtc->config.cpu_transcoder;
5528
5529 if (INTEL_INFO(dev)->gen >= 5) {
5530 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5531 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5532 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5533 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5534 } else {
e3b95f1e
DV
5535 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5536 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5537 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5538 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5539 }
5540}
5541
03afc4a2
DV
5542static void intel_dp_set_m_n(struct intel_crtc *crtc)
5543{
5544 if (crtc->config.has_pch_encoder)
5545 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5546 else
5547 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5548}
5549
f47709a9 5550static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5551{
5552 u32 dpll, dpll_md;
5553
5554 /*
5555 * Enable DPIO clock input. We should never disable the reference
5556 * clock for pipe B, since VGA hotplug / manual detection depends
5557 * on it.
5558 */
5559 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5560 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5561 /* We should never disable this, set it here for state tracking */
5562 if (crtc->pipe == PIPE_B)
5563 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5564 dpll |= DPLL_VCO_ENABLE;
5565 crtc->config.dpll_hw_state.dpll = dpll;
5566
5567 dpll_md = (crtc->config.pixel_multiplier - 1)
5568 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5569 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5570}
5571
5572static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5573{
f47709a9 5574 struct drm_device *dev = crtc->base.dev;
a0c4da24 5575 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5576 int pipe = crtc->pipe;
bdd4b6a6 5577 u32 mdiv;
a0c4da24 5578 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5579 u32 coreclk, reg_val;
a0c4da24 5580
09153000
DV
5581 mutex_lock(&dev_priv->dpio_lock);
5582
f47709a9
DV
5583 bestn = crtc->config.dpll.n;
5584 bestm1 = crtc->config.dpll.m1;
5585 bestm2 = crtc->config.dpll.m2;
5586 bestp1 = crtc->config.dpll.p1;
5587 bestp2 = crtc->config.dpll.p2;
a0c4da24 5588
89b667f8
JB
5589 /* See eDP HDMI DPIO driver vbios notes doc */
5590
5591 /* PLL B needs special handling */
bdd4b6a6 5592 if (pipe == PIPE_B)
5e69f97f 5593 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5594
5595 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5596 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5597
5598 /* Disable target IRef on PLL */
ab3c759a 5599 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5600 reg_val &= 0x00ffffff;
ab3c759a 5601 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5602
5603 /* Disable fast lock */
ab3c759a 5604 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5605
5606 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5607 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5608 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5609 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5610 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5611
5612 /*
5613 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5614 * but we don't support that).
5615 * Note: don't use the DAC post divider as it seems unstable.
5616 */
5617 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5618 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5619
a0c4da24 5620 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5621 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5622
89b667f8 5623 /* Set HBR and RBR LPF coefficients */
ff9a6750 5624 if (crtc->config.port_clock == 162000 ||
99750bd4 5625 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5626 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5627 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5628 0x009f0003);
89b667f8 5629 else
ab3c759a 5630 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5631 0x00d0000f);
5632
5633 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5634 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5635 /* Use SSC source */
bdd4b6a6 5636 if (pipe == PIPE_A)
ab3c759a 5637 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5638 0x0df40000);
5639 else
ab3c759a 5640 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5641 0x0df70000);
5642 } else { /* HDMI or VGA */
5643 /* Use bend source */
bdd4b6a6 5644 if (pipe == PIPE_A)
ab3c759a 5645 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5646 0x0df70000);
5647 else
ab3c759a 5648 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5649 0x0df40000);
5650 }
a0c4da24 5651
ab3c759a 5652 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5653 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5654 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5655 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5656 coreclk |= 0x01000000;
ab3c759a 5657 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5658
ab3c759a 5659 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5660 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5661}
5662
9d556c99
CML
5663static void chv_update_pll(struct intel_crtc *crtc)
5664{
5665 struct drm_device *dev = crtc->base.dev;
5666 struct drm_i915_private *dev_priv = dev->dev_private;
5667 int pipe = crtc->pipe;
5668 int dpll_reg = DPLL(crtc->pipe);
5669 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5670 u32 loopfilter, intcoeff;
9d556c99
CML
5671 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5672 int refclk;
5673
a11b0703
VS
5674 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5675 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5676 DPLL_VCO_ENABLE;
5677 if (pipe != PIPE_A)
5678 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5679
5680 crtc->config.dpll_hw_state.dpll_md =
5681 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5682
5683 bestn = crtc->config.dpll.n;
5684 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5685 bestm1 = crtc->config.dpll.m1;
5686 bestm2 = crtc->config.dpll.m2 >> 22;
5687 bestp1 = crtc->config.dpll.p1;
5688 bestp2 = crtc->config.dpll.p2;
5689
5690 /*
5691 * Enable Refclk and SSC
5692 */
a11b0703
VS
5693 I915_WRITE(dpll_reg,
5694 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5695
5696 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5697
9d556c99
CML
5698 /* p1 and p2 divider */
5699 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5700 5 << DPIO_CHV_S1_DIV_SHIFT |
5701 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5702 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5703 1 << DPIO_CHV_K_DIV_SHIFT);
5704
5705 /* Feedback post-divider - m2 */
5706 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5707
5708 /* Feedback refclk divider - n and m1 */
5709 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5710 DPIO_CHV_M1_DIV_BY_2 |
5711 1 << DPIO_CHV_N_DIV_SHIFT);
5712
5713 /* M2 fraction division */
5714 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5715
5716 /* M2 fraction division enable */
5717 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5718 DPIO_CHV_FRAC_DIV_EN |
5719 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5720
5721 /* Loop filter */
5722 refclk = i9xx_get_refclk(&crtc->base, 0);
5723 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5724 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5725 if (refclk == 100000)
5726 intcoeff = 11;
5727 else if (refclk == 38400)
5728 intcoeff = 10;
5729 else
5730 intcoeff = 9;
5731 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5732 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5733
5734 /* AFC Recal */
5735 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5736 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5737 DPIO_AFC_RECAL);
5738
5739 mutex_unlock(&dev_priv->dpio_lock);
5740}
5741
f47709a9
DV
5742static void i9xx_update_pll(struct intel_crtc *crtc,
5743 intel_clock_t *reduced_clock,
eb1cbe48
DV
5744 int num_connectors)
5745{
f47709a9 5746 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5747 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5748 u32 dpll;
5749 bool is_sdvo;
f47709a9 5750 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5751
f47709a9 5752 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5753
f47709a9
DV
5754 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5755 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5756
5757 dpll = DPLL_VGA_MODE_DIS;
5758
f47709a9 5759 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5760 dpll |= DPLLB_MODE_LVDS;
5761 else
5762 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5763
ef1b460d 5764 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5765 dpll |= (crtc->config.pixel_multiplier - 1)
5766 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5767 }
198a037f
DV
5768
5769 if (is_sdvo)
4a33e48d 5770 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5771
f47709a9 5772 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5773 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5774
5775 /* compute bitmask from p1 value */
5776 if (IS_PINEVIEW(dev))
5777 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5778 else {
5779 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5780 if (IS_G4X(dev) && reduced_clock)
5781 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5782 }
5783 switch (clock->p2) {
5784 case 5:
5785 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5786 break;
5787 case 7:
5788 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5789 break;
5790 case 10:
5791 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5792 break;
5793 case 14:
5794 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5795 break;
5796 }
5797 if (INTEL_INFO(dev)->gen >= 4)
5798 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5799
09ede541 5800 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5801 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5802 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5803 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5804 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5805 else
5806 dpll |= PLL_REF_INPUT_DREFCLK;
5807
5808 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5809 crtc->config.dpll_hw_state.dpll = dpll;
5810
eb1cbe48 5811 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5812 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5813 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5814 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5815 }
5816}
5817
f47709a9 5818static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5819 intel_clock_t *reduced_clock,
eb1cbe48
DV
5820 int num_connectors)
5821{
f47709a9 5822 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5823 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5824 u32 dpll;
f47709a9 5825 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5826
f47709a9 5827 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5828
eb1cbe48
DV
5829 dpll = DPLL_VGA_MODE_DIS;
5830
f47709a9 5831 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5832 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5833 } else {
5834 if (clock->p1 == 2)
5835 dpll |= PLL_P1_DIVIDE_BY_TWO;
5836 else
5837 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5838 if (clock->p2 == 4)
5839 dpll |= PLL_P2_DIVIDE_BY_4;
5840 }
5841
4a33e48d
DV
5842 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5843 dpll |= DPLL_DVO_2X_MODE;
5844
f47709a9 5845 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5846 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5847 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5848 else
5849 dpll |= PLL_REF_INPUT_DREFCLK;
5850
5851 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5852 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5853}
5854
8a654f3b 5855static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5856{
5857 struct drm_device *dev = intel_crtc->base.dev;
5858 struct drm_i915_private *dev_priv = dev->dev_private;
5859 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5860 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5861 struct drm_display_mode *adjusted_mode =
5862 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5863 uint32_t crtc_vtotal, crtc_vblank_end;
5864 int vsyncshift = 0;
4d8a62ea
DV
5865
5866 /* We need to be careful not to changed the adjusted mode, for otherwise
5867 * the hw state checker will get angry at the mismatch. */
5868 crtc_vtotal = adjusted_mode->crtc_vtotal;
5869 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5870
609aeaca 5871 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5872 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5873 crtc_vtotal -= 1;
5874 crtc_vblank_end -= 1;
609aeaca
VS
5875
5876 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5877 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5878 else
5879 vsyncshift = adjusted_mode->crtc_hsync_start -
5880 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5881 if (vsyncshift < 0)
5882 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5883 }
5884
5885 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5886 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5887
fe2b8f9d 5888 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5889 (adjusted_mode->crtc_hdisplay - 1) |
5890 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5891 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5892 (adjusted_mode->crtc_hblank_start - 1) |
5893 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5894 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5895 (adjusted_mode->crtc_hsync_start - 1) |
5896 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5897
fe2b8f9d 5898 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5899 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5900 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5901 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5902 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5903 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5904 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5905 (adjusted_mode->crtc_vsync_start - 1) |
5906 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5907
b5e508d4
PZ
5908 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5909 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5910 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5911 * bits. */
5912 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5913 (pipe == PIPE_B || pipe == PIPE_C))
5914 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5915
b0e77b9c
PZ
5916 /* pipesrc controls the size that is scaled from, which should
5917 * always be the user's requested size.
5918 */
5919 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5920 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5921 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5922}
5923
1bd1bd80
DV
5924static void intel_get_pipe_timings(struct intel_crtc *crtc,
5925 struct intel_crtc_config *pipe_config)
5926{
5927 struct drm_device *dev = crtc->base.dev;
5928 struct drm_i915_private *dev_priv = dev->dev_private;
5929 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5930 uint32_t tmp;
5931
5932 tmp = I915_READ(HTOTAL(cpu_transcoder));
5933 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5934 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5935 tmp = I915_READ(HBLANK(cpu_transcoder));
5936 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5937 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5938 tmp = I915_READ(HSYNC(cpu_transcoder));
5939 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5940 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5941
5942 tmp = I915_READ(VTOTAL(cpu_transcoder));
5943 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5944 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5945 tmp = I915_READ(VBLANK(cpu_transcoder));
5946 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5947 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5948 tmp = I915_READ(VSYNC(cpu_transcoder));
5949 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5950 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5951
5952 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5953 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5954 pipe_config->adjusted_mode.crtc_vtotal += 1;
5955 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5956 }
5957
5958 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5959 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5960 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5961
5962 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5963 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5964}
5965
f6a83288
DV
5966void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5967 struct intel_crtc_config *pipe_config)
babea61d 5968{
f6a83288
DV
5969 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5970 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5971 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5972 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5973
f6a83288
DV
5974 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5975 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5976 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5977 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5978
f6a83288 5979 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5980
f6a83288
DV
5981 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5982 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5983}
5984
84b046f3
DV
5985static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5986{
5987 struct drm_device *dev = intel_crtc->base.dev;
5988 struct drm_i915_private *dev_priv = dev->dev_private;
5989 uint32_t pipeconf;
5990
9f11a9e4 5991 pipeconf = 0;
84b046f3 5992
67c72a12
DV
5993 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5994 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5995 pipeconf |= PIPECONF_ENABLE;
5996
cf532bb2
VS
5997 if (intel_crtc->config.double_wide)
5998 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5999
ff9ce46e
DV
6000 /* only g4x and later have fancy bpc/dither controls */
6001 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6002 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6003 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6004 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6005 PIPECONF_DITHER_TYPE_SP;
84b046f3 6006
ff9ce46e
DV
6007 switch (intel_crtc->config.pipe_bpp) {
6008 case 18:
6009 pipeconf |= PIPECONF_6BPC;
6010 break;
6011 case 24:
6012 pipeconf |= PIPECONF_8BPC;
6013 break;
6014 case 30:
6015 pipeconf |= PIPECONF_10BPC;
6016 break;
6017 default:
6018 /* Case prevented by intel_choose_pipe_bpp_dither. */
6019 BUG();
84b046f3
DV
6020 }
6021 }
6022
6023 if (HAS_PIPE_CXSR(dev)) {
6024 if (intel_crtc->lowfreq_avail) {
6025 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6026 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6027 } else {
6028 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6029 }
6030 }
6031
efc2cfff
VS
6032 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6033 if (INTEL_INFO(dev)->gen < 4 ||
6034 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6035 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6036 else
6037 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6038 } else
84b046f3
DV
6039 pipeconf |= PIPECONF_PROGRESSIVE;
6040
9f11a9e4
DV
6041 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6042 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6043
84b046f3
DV
6044 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6045 POSTING_READ(PIPECONF(intel_crtc->pipe));
6046}
6047
f564048e 6048static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6049 int x, int y,
94352cf9 6050 struct drm_framebuffer *fb)
79e53945
JB
6051{
6052 struct drm_device *dev = crtc->dev;
6053 struct drm_i915_private *dev_priv = dev->dev_private;
6054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6055 int refclk, num_connectors = 0;
652c393a 6056 intel_clock_t clock, reduced_clock;
a16af721 6057 bool ok, has_reduced_clock = false;
e9fd1c02 6058 bool is_lvds = false, is_dsi = false;
5eddb70b 6059 struct intel_encoder *encoder;
d4906093 6060 const intel_limit_t *limit;
79e53945 6061
6c2b7c12 6062 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6063 switch (encoder->type) {
79e53945
JB
6064 case INTEL_OUTPUT_LVDS:
6065 is_lvds = true;
6066 break;
e9fd1c02
JN
6067 case INTEL_OUTPUT_DSI:
6068 is_dsi = true;
6069 break;
79e53945 6070 }
43565a06 6071
c751ce4f 6072 num_connectors++;
79e53945
JB
6073 }
6074
f2335330 6075 if (is_dsi)
5b18e57c 6076 return 0;
f2335330
JN
6077
6078 if (!intel_crtc->config.clock_set) {
6079 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6080
e9fd1c02
JN
6081 /*
6082 * Returns a set of divisors for the desired target clock with
6083 * the given refclk, or FALSE. The returned values represent
6084 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6085 * 2) / p1 / p2.
6086 */
6087 limit = intel_limit(crtc, refclk);
6088 ok = dev_priv->display.find_dpll(limit, crtc,
6089 intel_crtc->config.port_clock,
6090 refclk, NULL, &clock);
f2335330 6091 if (!ok) {
e9fd1c02
JN
6092 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6093 return -EINVAL;
6094 }
79e53945 6095
f2335330
JN
6096 if (is_lvds && dev_priv->lvds_downclock_avail) {
6097 /*
6098 * Ensure we match the reduced clock's P to the target
6099 * clock. If the clocks don't match, we can't switch
6100 * the display clock by using the FP0/FP1. In such case
6101 * we will disable the LVDS downclock feature.
6102 */
6103 has_reduced_clock =
6104 dev_priv->display.find_dpll(limit, crtc,
6105 dev_priv->lvds_downclock,
6106 refclk, &clock,
6107 &reduced_clock);
6108 }
6109 /* Compat-code for transition, will disappear. */
f47709a9
DV
6110 intel_crtc->config.dpll.n = clock.n;
6111 intel_crtc->config.dpll.m1 = clock.m1;
6112 intel_crtc->config.dpll.m2 = clock.m2;
6113 intel_crtc->config.dpll.p1 = clock.p1;
6114 intel_crtc->config.dpll.p2 = clock.p2;
6115 }
7026d4ac 6116
e9fd1c02 6117 if (IS_GEN2(dev)) {
8a654f3b 6118 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6119 has_reduced_clock ? &reduced_clock : NULL,
6120 num_connectors);
9d556c99
CML
6121 } else if (IS_CHERRYVIEW(dev)) {
6122 chv_update_pll(intel_crtc);
e9fd1c02 6123 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6124 vlv_update_pll(intel_crtc);
e9fd1c02 6125 } else {
f47709a9 6126 i9xx_update_pll(intel_crtc,
eb1cbe48 6127 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6128 num_connectors);
e9fd1c02 6129 }
79e53945 6130
c8f7a0db 6131 return 0;
f564048e
EA
6132}
6133
2fa2fe9a
DV
6134static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6135 struct intel_crtc_config *pipe_config)
6136{
6137 struct drm_device *dev = crtc->base.dev;
6138 struct drm_i915_private *dev_priv = dev->dev_private;
6139 uint32_t tmp;
6140
dc9e7dec
VS
6141 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6142 return;
6143
2fa2fe9a 6144 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6145 if (!(tmp & PFIT_ENABLE))
6146 return;
2fa2fe9a 6147
06922821 6148 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6149 if (INTEL_INFO(dev)->gen < 4) {
6150 if (crtc->pipe != PIPE_B)
6151 return;
2fa2fe9a
DV
6152 } else {
6153 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6154 return;
6155 }
6156
06922821 6157 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6158 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6159 if (INTEL_INFO(dev)->gen < 5)
6160 pipe_config->gmch_pfit.lvds_border_bits =
6161 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6162}
6163
acbec814
JB
6164static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6165 struct intel_crtc_config *pipe_config)
6166{
6167 struct drm_device *dev = crtc->base.dev;
6168 struct drm_i915_private *dev_priv = dev->dev_private;
6169 int pipe = pipe_config->cpu_transcoder;
6170 intel_clock_t clock;
6171 u32 mdiv;
662c6ecb 6172 int refclk = 100000;
acbec814
JB
6173
6174 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6175 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6176 mutex_unlock(&dev_priv->dpio_lock);
6177
6178 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6179 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6180 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6181 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6182 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6183
f646628b 6184 vlv_clock(refclk, &clock);
acbec814 6185
f646628b
VS
6186 /* clock.dot is the fast clock */
6187 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6188}
6189
1ad292b5
JB
6190static void i9xx_get_plane_config(struct intel_crtc *crtc,
6191 struct intel_plane_config *plane_config)
6192{
6193 struct drm_device *dev = crtc->base.dev;
6194 struct drm_i915_private *dev_priv = dev->dev_private;
6195 u32 val, base, offset;
6196 int pipe = crtc->pipe, plane = crtc->plane;
6197 int fourcc, pixel_format;
6198 int aligned_height;
6199
66e514c1
DA
6200 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6201 if (!crtc->base.primary->fb) {
1ad292b5
JB
6202 DRM_DEBUG_KMS("failed to alloc fb\n");
6203 return;
6204 }
6205
6206 val = I915_READ(DSPCNTR(plane));
6207
6208 if (INTEL_INFO(dev)->gen >= 4)
6209 if (val & DISPPLANE_TILED)
6210 plane_config->tiled = true;
6211
6212 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6213 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6214 crtc->base.primary->fb->pixel_format = fourcc;
6215 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6216 drm_format_plane_cpp(fourcc, 0) * 8;
6217
6218 if (INTEL_INFO(dev)->gen >= 4) {
6219 if (plane_config->tiled)
6220 offset = I915_READ(DSPTILEOFF(plane));
6221 else
6222 offset = I915_READ(DSPLINOFF(plane));
6223 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6224 } else {
6225 base = I915_READ(DSPADDR(plane));
6226 }
6227 plane_config->base = base;
6228
6229 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6230 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6231 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6232
6233 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 6234 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
1ad292b5 6235
66e514c1 6236 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6237 plane_config->tiled);
6238
1267a26b
FF
6239 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6240 aligned_height);
1ad292b5
JB
6241
6242 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6243 pipe, plane, crtc->base.primary->fb->width,
6244 crtc->base.primary->fb->height,
6245 crtc->base.primary->fb->bits_per_pixel, base,
6246 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6247 plane_config->size);
6248
6249}
6250
70b23a98
VS
6251static void chv_crtc_clock_get(struct intel_crtc *crtc,
6252 struct intel_crtc_config *pipe_config)
6253{
6254 struct drm_device *dev = crtc->base.dev;
6255 struct drm_i915_private *dev_priv = dev->dev_private;
6256 int pipe = pipe_config->cpu_transcoder;
6257 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6258 intel_clock_t clock;
6259 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6260 int refclk = 100000;
6261
6262 mutex_lock(&dev_priv->dpio_lock);
6263 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6264 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6265 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6266 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6267 mutex_unlock(&dev_priv->dpio_lock);
6268
6269 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6270 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6271 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6272 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6273 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6274
6275 chv_clock(refclk, &clock);
6276
6277 /* clock.dot is the fast clock */
6278 pipe_config->port_clock = clock.dot / 5;
6279}
6280
0e8ffe1b
DV
6281static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6282 struct intel_crtc_config *pipe_config)
6283{
6284 struct drm_device *dev = crtc->base.dev;
6285 struct drm_i915_private *dev_priv = dev->dev_private;
6286 uint32_t tmp;
6287
b5482bd0
ID
6288 if (!intel_display_power_enabled(dev_priv,
6289 POWER_DOMAIN_PIPE(crtc->pipe)))
6290 return false;
6291
e143a21c 6292 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6293 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6294
0e8ffe1b
DV
6295 tmp = I915_READ(PIPECONF(crtc->pipe));
6296 if (!(tmp & PIPECONF_ENABLE))
6297 return false;
6298
42571aef
VS
6299 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6300 switch (tmp & PIPECONF_BPC_MASK) {
6301 case PIPECONF_6BPC:
6302 pipe_config->pipe_bpp = 18;
6303 break;
6304 case PIPECONF_8BPC:
6305 pipe_config->pipe_bpp = 24;
6306 break;
6307 case PIPECONF_10BPC:
6308 pipe_config->pipe_bpp = 30;
6309 break;
6310 default:
6311 break;
6312 }
6313 }
6314
b5a9fa09
DV
6315 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6316 pipe_config->limited_color_range = true;
6317
282740f7
VS
6318 if (INTEL_INFO(dev)->gen < 4)
6319 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6320
1bd1bd80
DV
6321 intel_get_pipe_timings(crtc, pipe_config);
6322
2fa2fe9a
DV
6323 i9xx_get_pfit_config(crtc, pipe_config);
6324
6c49f241
DV
6325 if (INTEL_INFO(dev)->gen >= 4) {
6326 tmp = I915_READ(DPLL_MD(crtc->pipe));
6327 pipe_config->pixel_multiplier =
6328 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6329 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6330 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6331 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6332 tmp = I915_READ(DPLL(crtc->pipe));
6333 pipe_config->pixel_multiplier =
6334 ((tmp & SDVO_MULTIPLIER_MASK)
6335 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6336 } else {
6337 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6338 * port and will be fixed up in the encoder->get_config
6339 * function. */
6340 pipe_config->pixel_multiplier = 1;
6341 }
8bcc2795
DV
6342 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6343 if (!IS_VALLEYVIEW(dev)) {
6344 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6345 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6346 } else {
6347 /* Mask out read-only status bits. */
6348 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6349 DPLL_PORTC_READY_MASK |
6350 DPLL_PORTB_READY_MASK);
8bcc2795 6351 }
6c49f241 6352
70b23a98
VS
6353 if (IS_CHERRYVIEW(dev))
6354 chv_crtc_clock_get(crtc, pipe_config);
6355 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6356 vlv_crtc_clock_get(crtc, pipe_config);
6357 else
6358 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6359
0e8ffe1b
DV
6360 return true;
6361}
6362
dde86e2d 6363static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6364{
6365 struct drm_i915_private *dev_priv = dev->dev_private;
6366 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6367 struct intel_encoder *encoder;
74cfd7ac 6368 u32 val, final;
13d83a67 6369 bool has_lvds = false;
199e5d79 6370 bool has_cpu_edp = false;
199e5d79 6371 bool has_panel = false;
99eb6a01
KP
6372 bool has_ck505 = false;
6373 bool can_ssc = false;
13d83a67
JB
6374
6375 /* We need to take the global config into account */
199e5d79
KP
6376 list_for_each_entry(encoder, &mode_config->encoder_list,
6377 base.head) {
6378 switch (encoder->type) {
6379 case INTEL_OUTPUT_LVDS:
6380 has_panel = true;
6381 has_lvds = true;
6382 break;
6383 case INTEL_OUTPUT_EDP:
6384 has_panel = true;
2de6905f 6385 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6386 has_cpu_edp = true;
6387 break;
13d83a67
JB
6388 }
6389 }
6390
99eb6a01 6391 if (HAS_PCH_IBX(dev)) {
41aa3448 6392 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6393 can_ssc = has_ck505;
6394 } else {
6395 has_ck505 = false;
6396 can_ssc = true;
6397 }
6398
2de6905f
ID
6399 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6400 has_panel, has_lvds, has_ck505);
13d83a67
JB
6401
6402 /* Ironlake: try to setup display ref clock before DPLL
6403 * enabling. This is only under driver's control after
6404 * PCH B stepping, previous chipset stepping should be
6405 * ignoring this setting.
6406 */
74cfd7ac
CW
6407 val = I915_READ(PCH_DREF_CONTROL);
6408
6409 /* As we must carefully and slowly disable/enable each source in turn,
6410 * compute the final state we want first and check if we need to
6411 * make any changes at all.
6412 */
6413 final = val;
6414 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6415 if (has_ck505)
6416 final |= DREF_NONSPREAD_CK505_ENABLE;
6417 else
6418 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6419
6420 final &= ~DREF_SSC_SOURCE_MASK;
6421 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6422 final &= ~DREF_SSC1_ENABLE;
6423
6424 if (has_panel) {
6425 final |= DREF_SSC_SOURCE_ENABLE;
6426
6427 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6428 final |= DREF_SSC1_ENABLE;
6429
6430 if (has_cpu_edp) {
6431 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6432 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6433 else
6434 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6435 } else
6436 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6437 } else {
6438 final |= DREF_SSC_SOURCE_DISABLE;
6439 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6440 }
6441
6442 if (final == val)
6443 return;
6444
13d83a67 6445 /* Always enable nonspread source */
74cfd7ac 6446 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6447
99eb6a01 6448 if (has_ck505)
74cfd7ac 6449 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6450 else
74cfd7ac 6451 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6452
199e5d79 6453 if (has_panel) {
74cfd7ac
CW
6454 val &= ~DREF_SSC_SOURCE_MASK;
6455 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6456
199e5d79 6457 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6458 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6459 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6460 val |= DREF_SSC1_ENABLE;
e77166b5 6461 } else
74cfd7ac 6462 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6463
6464 /* Get SSC going before enabling the outputs */
74cfd7ac 6465 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6466 POSTING_READ(PCH_DREF_CONTROL);
6467 udelay(200);
6468
74cfd7ac 6469 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6470
6471 /* Enable CPU source on CPU attached eDP */
199e5d79 6472 if (has_cpu_edp) {
99eb6a01 6473 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6474 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6475 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6476 } else
74cfd7ac 6477 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6478 } else
74cfd7ac 6479 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6480
74cfd7ac 6481 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6482 POSTING_READ(PCH_DREF_CONTROL);
6483 udelay(200);
6484 } else {
6485 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6486
74cfd7ac 6487 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6488
6489 /* Turn off CPU output */
74cfd7ac 6490 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6491
74cfd7ac 6492 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6493 POSTING_READ(PCH_DREF_CONTROL);
6494 udelay(200);
6495
6496 /* Turn off the SSC source */
74cfd7ac
CW
6497 val &= ~DREF_SSC_SOURCE_MASK;
6498 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6499
6500 /* Turn off SSC1 */
74cfd7ac 6501 val &= ~DREF_SSC1_ENABLE;
199e5d79 6502
74cfd7ac 6503 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6504 POSTING_READ(PCH_DREF_CONTROL);
6505 udelay(200);
6506 }
74cfd7ac
CW
6507
6508 BUG_ON(val != final);
13d83a67
JB
6509}
6510
f31f2d55 6511static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6512{
f31f2d55 6513 uint32_t tmp;
dde86e2d 6514
0ff066a9
PZ
6515 tmp = I915_READ(SOUTH_CHICKEN2);
6516 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6517 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6518
0ff066a9
PZ
6519 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6520 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6521 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6522
0ff066a9
PZ
6523 tmp = I915_READ(SOUTH_CHICKEN2);
6524 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6525 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6526
0ff066a9
PZ
6527 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6528 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6529 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6530}
6531
6532/* WaMPhyProgramming:hsw */
6533static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6534{
6535 uint32_t tmp;
dde86e2d
PZ
6536
6537 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6538 tmp &= ~(0xFF << 24);
6539 tmp |= (0x12 << 24);
6540 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6541
dde86e2d
PZ
6542 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6543 tmp |= (1 << 11);
6544 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6545
6546 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6547 tmp |= (1 << 11);
6548 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6549
dde86e2d
PZ
6550 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6551 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6552 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6553
6554 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6555 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6556 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6557
0ff066a9
PZ
6558 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6559 tmp &= ~(7 << 13);
6560 tmp |= (5 << 13);
6561 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6562
0ff066a9
PZ
6563 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6564 tmp &= ~(7 << 13);
6565 tmp |= (5 << 13);
6566 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6567
6568 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6569 tmp &= ~0xFF;
6570 tmp |= 0x1C;
6571 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6572
6573 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6574 tmp &= ~0xFF;
6575 tmp |= 0x1C;
6576 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6577
6578 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6579 tmp &= ~(0xFF << 16);
6580 tmp |= (0x1C << 16);
6581 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6582
6583 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6584 tmp &= ~(0xFF << 16);
6585 tmp |= (0x1C << 16);
6586 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6587
0ff066a9
PZ
6588 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6589 tmp |= (1 << 27);
6590 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6591
0ff066a9
PZ
6592 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6593 tmp |= (1 << 27);
6594 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6595
0ff066a9
PZ
6596 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6597 tmp &= ~(0xF << 28);
6598 tmp |= (4 << 28);
6599 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6600
0ff066a9
PZ
6601 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6602 tmp &= ~(0xF << 28);
6603 tmp |= (4 << 28);
6604 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6605}
6606
2fa86a1f
PZ
6607/* Implements 3 different sequences from BSpec chapter "Display iCLK
6608 * Programming" based on the parameters passed:
6609 * - Sequence to enable CLKOUT_DP
6610 * - Sequence to enable CLKOUT_DP without spread
6611 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6612 */
6613static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6614 bool with_fdi)
f31f2d55
PZ
6615{
6616 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6617 uint32_t reg, tmp;
6618
6619 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6620 with_spread = true;
6621 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6622 with_fdi, "LP PCH doesn't have FDI\n"))
6623 with_fdi = false;
f31f2d55
PZ
6624
6625 mutex_lock(&dev_priv->dpio_lock);
6626
6627 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6628 tmp &= ~SBI_SSCCTL_DISABLE;
6629 tmp |= SBI_SSCCTL_PATHALT;
6630 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6631
6632 udelay(24);
6633
2fa86a1f
PZ
6634 if (with_spread) {
6635 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6636 tmp &= ~SBI_SSCCTL_PATHALT;
6637 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6638
2fa86a1f
PZ
6639 if (with_fdi) {
6640 lpt_reset_fdi_mphy(dev_priv);
6641 lpt_program_fdi_mphy(dev_priv);
6642 }
6643 }
dde86e2d 6644
2fa86a1f
PZ
6645 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6646 SBI_GEN0 : SBI_DBUFF0;
6647 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6648 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6649 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6650
6651 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6652}
6653
47701c3b
PZ
6654/* Sequence to disable CLKOUT_DP */
6655static void lpt_disable_clkout_dp(struct drm_device *dev)
6656{
6657 struct drm_i915_private *dev_priv = dev->dev_private;
6658 uint32_t reg, tmp;
6659
6660 mutex_lock(&dev_priv->dpio_lock);
6661
6662 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6663 SBI_GEN0 : SBI_DBUFF0;
6664 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6665 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6666 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6667
6668 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6669 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6670 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6671 tmp |= SBI_SSCCTL_PATHALT;
6672 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6673 udelay(32);
6674 }
6675 tmp |= SBI_SSCCTL_DISABLE;
6676 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6677 }
6678
6679 mutex_unlock(&dev_priv->dpio_lock);
6680}
6681
bf8fa3d3
PZ
6682static void lpt_init_pch_refclk(struct drm_device *dev)
6683{
6684 struct drm_mode_config *mode_config = &dev->mode_config;
6685 struct intel_encoder *encoder;
6686 bool has_vga = false;
6687
6688 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6689 switch (encoder->type) {
6690 case INTEL_OUTPUT_ANALOG:
6691 has_vga = true;
6692 break;
6693 }
6694 }
6695
47701c3b
PZ
6696 if (has_vga)
6697 lpt_enable_clkout_dp(dev, true, true);
6698 else
6699 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6700}
6701
dde86e2d
PZ
6702/*
6703 * Initialize reference clocks when the driver loads
6704 */
6705void intel_init_pch_refclk(struct drm_device *dev)
6706{
6707 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6708 ironlake_init_pch_refclk(dev);
6709 else if (HAS_PCH_LPT(dev))
6710 lpt_init_pch_refclk(dev);
6711}
6712
d9d444cb
JB
6713static int ironlake_get_refclk(struct drm_crtc *crtc)
6714{
6715 struct drm_device *dev = crtc->dev;
6716 struct drm_i915_private *dev_priv = dev->dev_private;
6717 struct intel_encoder *encoder;
d9d444cb
JB
6718 int num_connectors = 0;
6719 bool is_lvds = false;
6720
6c2b7c12 6721 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6722 switch (encoder->type) {
6723 case INTEL_OUTPUT_LVDS:
6724 is_lvds = true;
6725 break;
d9d444cb
JB
6726 }
6727 num_connectors++;
6728 }
6729
6730 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6731 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6732 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6733 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6734 }
6735
6736 return 120000;
6737}
6738
6ff93609 6739static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6740{
c8203565 6741 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6743 int pipe = intel_crtc->pipe;
c8203565
PZ
6744 uint32_t val;
6745
78114071 6746 val = 0;
c8203565 6747
965e0c48 6748 switch (intel_crtc->config.pipe_bpp) {
c8203565 6749 case 18:
dfd07d72 6750 val |= PIPECONF_6BPC;
c8203565
PZ
6751 break;
6752 case 24:
dfd07d72 6753 val |= PIPECONF_8BPC;
c8203565
PZ
6754 break;
6755 case 30:
dfd07d72 6756 val |= PIPECONF_10BPC;
c8203565
PZ
6757 break;
6758 case 36:
dfd07d72 6759 val |= PIPECONF_12BPC;
c8203565
PZ
6760 break;
6761 default:
cc769b62
PZ
6762 /* Case prevented by intel_choose_pipe_bpp_dither. */
6763 BUG();
c8203565
PZ
6764 }
6765
d8b32247 6766 if (intel_crtc->config.dither)
c8203565
PZ
6767 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6768
6ff93609 6769 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6770 val |= PIPECONF_INTERLACED_ILK;
6771 else
6772 val |= PIPECONF_PROGRESSIVE;
6773
50f3b016 6774 if (intel_crtc->config.limited_color_range)
3685a8f3 6775 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6776
c8203565
PZ
6777 I915_WRITE(PIPECONF(pipe), val);
6778 POSTING_READ(PIPECONF(pipe));
6779}
6780
86d3efce
VS
6781/*
6782 * Set up the pipe CSC unit.
6783 *
6784 * Currently only full range RGB to limited range RGB conversion
6785 * is supported, but eventually this should handle various
6786 * RGB<->YCbCr scenarios as well.
6787 */
50f3b016 6788static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6789{
6790 struct drm_device *dev = crtc->dev;
6791 struct drm_i915_private *dev_priv = dev->dev_private;
6792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6793 int pipe = intel_crtc->pipe;
6794 uint16_t coeff = 0x7800; /* 1.0 */
6795
6796 /*
6797 * TODO: Check what kind of values actually come out of the pipe
6798 * with these coeff/postoff values and adjust to get the best
6799 * accuracy. Perhaps we even need to take the bpc value into
6800 * consideration.
6801 */
6802
50f3b016 6803 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6804 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6805
6806 /*
6807 * GY/GU and RY/RU should be the other way around according
6808 * to BSpec, but reality doesn't agree. Just set them up in
6809 * a way that results in the correct picture.
6810 */
6811 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6812 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6813
6814 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6815 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6816
6817 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6818 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6819
6820 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6821 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6822 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6823
6824 if (INTEL_INFO(dev)->gen > 6) {
6825 uint16_t postoff = 0;
6826
50f3b016 6827 if (intel_crtc->config.limited_color_range)
32cf0cb0 6828 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6829
6830 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6831 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6832 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6833
6834 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6835 } else {
6836 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6837
50f3b016 6838 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6839 mode |= CSC_BLACK_SCREEN_OFFSET;
6840
6841 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6842 }
6843}
6844
6ff93609 6845static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6846{
756f85cf
PZ
6847 struct drm_device *dev = crtc->dev;
6848 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6850 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6851 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6852 uint32_t val;
6853
3eff4faa 6854 val = 0;
ee2b0b38 6855
756f85cf 6856 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6857 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6858
6ff93609 6859 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6860 val |= PIPECONF_INTERLACED_ILK;
6861 else
6862 val |= PIPECONF_PROGRESSIVE;
6863
702e7a56
PZ
6864 I915_WRITE(PIPECONF(cpu_transcoder), val);
6865 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6866
6867 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6868 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6869
6870 if (IS_BROADWELL(dev)) {
6871 val = 0;
6872
6873 switch (intel_crtc->config.pipe_bpp) {
6874 case 18:
6875 val |= PIPEMISC_DITHER_6_BPC;
6876 break;
6877 case 24:
6878 val |= PIPEMISC_DITHER_8_BPC;
6879 break;
6880 case 30:
6881 val |= PIPEMISC_DITHER_10_BPC;
6882 break;
6883 case 36:
6884 val |= PIPEMISC_DITHER_12_BPC;
6885 break;
6886 default:
6887 /* Case prevented by pipe_config_set_bpp. */
6888 BUG();
6889 }
6890
6891 if (intel_crtc->config.dither)
6892 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6893
6894 I915_WRITE(PIPEMISC(pipe), val);
6895 }
ee2b0b38
PZ
6896}
6897
6591c6e4 6898static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6899 intel_clock_t *clock,
6900 bool *has_reduced_clock,
6901 intel_clock_t *reduced_clock)
6902{
6903 struct drm_device *dev = crtc->dev;
6904 struct drm_i915_private *dev_priv = dev->dev_private;
6905 struct intel_encoder *intel_encoder;
6906 int refclk;
d4906093 6907 const intel_limit_t *limit;
a16af721 6908 bool ret, is_lvds = false;
79e53945 6909
6591c6e4
PZ
6910 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6911 switch (intel_encoder->type) {
79e53945
JB
6912 case INTEL_OUTPUT_LVDS:
6913 is_lvds = true;
6914 break;
79e53945
JB
6915 }
6916 }
6917
d9d444cb 6918 refclk = ironlake_get_refclk(crtc);
79e53945 6919
d4906093
ML
6920 /*
6921 * Returns a set of divisors for the desired target clock with the given
6922 * refclk, or FALSE. The returned values represent the clock equation:
6923 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6924 */
1b894b59 6925 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6926 ret = dev_priv->display.find_dpll(limit, crtc,
6927 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6928 refclk, NULL, clock);
6591c6e4
PZ
6929 if (!ret)
6930 return false;
cda4b7d3 6931
ddc9003c 6932 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6933 /*
6934 * Ensure we match the reduced clock's P to the target clock.
6935 * If the clocks don't match, we can't switch the display clock
6936 * by using the FP0/FP1. In such case we will disable the LVDS
6937 * downclock feature.
6938 */
ee9300bb
DV
6939 *has_reduced_clock =
6940 dev_priv->display.find_dpll(limit, crtc,
6941 dev_priv->lvds_downclock,
6942 refclk, clock,
6943 reduced_clock);
652c393a 6944 }
61e9653f 6945
6591c6e4
PZ
6946 return true;
6947}
6948
d4b1931c
PZ
6949int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6950{
6951 /*
6952 * Account for spread spectrum to avoid
6953 * oversubscribing the link. Max center spread
6954 * is 2.5%; use 5% for safety's sake.
6955 */
6956 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6957 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6958}
6959
7429e9d4 6960static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6961{
7429e9d4 6962 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6963}
6964
de13a2e3 6965static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6966 u32 *fp,
9a7c7890 6967 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6968{
de13a2e3 6969 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6970 struct drm_device *dev = crtc->dev;
6971 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6972 struct intel_encoder *intel_encoder;
6973 uint32_t dpll;
6cc5f341 6974 int factor, num_connectors = 0;
09ede541 6975 bool is_lvds = false, is_sdvo = false;
79e53945 6976
de13a2e3
PZ
6977 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6978 switch (intel_encoder->type) {
79e53945
JB
6979 case INTEL_OUTPUT_LVDS:
6980 is_lvds = true;
6981 break;
6982 case INTEL_OUTPUT_SDVO:
7d57382e 6983 case INTEL_OUTPUT_HDMI:
79e53945 6984 is_sdvo = true;
79e53945 6985 break;
79e53945 6986 }
43565a06 6987
c751ce4f 6988 num_connectors++;
79e53945 6989 }
79e53945 6990
c1858123 6991 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6992 factor = 21;
6993 if (is_lvds) {
6994 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6995 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6996 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6997 factor = 25;
09ede541 6998 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6999 factor = 20;
c1858123 7000
7429e9d4 7001 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7002 *fp |= FP_CB_TUNE;
2c07245f 7003
9a7c7890
DV
7004 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7005 *fp2 |= FP_CB_TUNE;
7006
5eddb70b 7007 dpll = 0;
2c07245f 7008
a07d6787
EA
7009 if (is_lvds)
7010 dpll |= DPLLB_MODE_LVDS;
7011 else
7012 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7013
ef1b460d
DV
7014 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7015 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7016
7017 if (is_sdvo)
4a33e48d 7018 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7019 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7020 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7021
a07d6787 7022 /* compute bitmask from p1 value */
7429e9d4 7023 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7024 /* also FPA1 */
7429e9d4 7025 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7026
7429e9d4 7027 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7028 case 5:
7029 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7030 break;
7031 case 7:
7032 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7033 break;
7034 case 10:
7035 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7036 break;
7037 case 14:
7038 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7039 break;
79e53945
JB
7040 }
7041
b4c09f3b 7042 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7043 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7044 else
7045 dpll |= PLL_REF_INPUT_DREFCLK;
7046
959e16d6 7047 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7048}
7049
7050static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7051 int x, int y,
7052 struct drm_framebuffer *fb)
7053{
7054 struct drm_device *dev = crtc->dev;
de13a2e3 7055 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7056 int num_connectors = 0;
7057 intel_clock_t clock, reduced_clock;
cbbab5bd 7058 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7059 bool ok, has_reduced_clock = false;
8b47047b 7060 bool is_lvds = false;
de13a2e3 7061 struct intel_encoder *encoder;
e2b78267 7062 struct intel_shared_dpll *pll;
de13a2e3
PZ
7063
7064 for_each_encoder_on_crtc(dev, crtc, encoder) {
7065 switch (encoder->type) {
7066 case INTEL_OUTPUT_LVDS:
7067 is_lvds = true;
7068 break;
de13a2e3
PZ
7069 }
7070
7071 num_connectors++;
a07d6787 7072 }
79e53945 7073
5dc5298b
PZ
7074 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7075 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7076
ff9a6750 7077 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7078 &has_reduced_clock, &reduced_clock);
ee9300bb 7079 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7080 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7081 return -EINVAL;
79e53945 7082 }
f47709a9
DV
7083 /* Compat-code for transition, will disappear. */
7084 if (!intel_crtc->config.clock_set) {
7085 intel_crtc->config.dpll.n = clock.n;
7086 intel_crtc->config.dpll.m1 = clock.m1;
7087 intel_crtc->config.dpll.m2 = clock.m2;
7088 intel_crtc->config.dpll.p1 = clock.p1;
7089 intel_crtc->config.dpll.p2 = clock.p2;
7090 }
79e53945 7091
5dc5298b 7092 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7093 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7094 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7095 if (has_reduced_clock)
7429e9d4 7096 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7097
7429e9d4 7098 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7099 &fp, &reduced_clock,
7100 has_reduced_clock ? &fp2 : NULL);
7101
959e16d6 7102 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7103 intel_crtc->config.dpll_hw_state.fp0 = fp;
7104 if (has_reduced_clock)
7105 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7106 else
7107 intel_crtc->config.dpll_hw_state.fp1 = fp;
7108
b89a1d39 7109 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7110 if (pll == NULL) {
84f44ce7 7111 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7112 pipe_name(intel_crtc->pipe));
4b645f14
JB
7113 return -EINVAL;
7114 }
ee7b9f93 7115 } else
e72f9fbf 7116 intel_put_shared_dpll(intel_crtc);
79e53945 7117
d330a953 7118 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7119 intel_crtc->lowfreq_avail = true;
7120 else
7121 intel_crtc->lowfreq_avail = false;
e2b78267 7122
c8f7a0db 7123 return 0;
79e53945
JB
7124}
7125
eb14cb74
VS
7126static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7127 struct intel_link_m_n *m_n)
7128{
7129 struct drm_device *dev = crtc->base.dev;
7130 struct drm_i915_private *dev_priv = dev->dev_private;
7131 enum pipe pipe = crtc->pipe;
7132
7133 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7134 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7135 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7136 & ~TU_SIZE_MASK;
7137 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7138 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7139 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7140}
7141
7142static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7143 enum transcoder transcoder,
7144 struct intel_link_m_n *m_n)
72419203
DV
7145{
7146 struct drm_device *dev = crtc->base.dev;
7147 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7148 enum pipe pipe = crtc->pipe;
72419203 7149
eb14cb74
VS
7150 if (INTEL_INFO(dev)->gen >= 5) {
7151 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7152 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7153 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7154 & ~TU_SIZE_MASK;
7155 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7156 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7157 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7158 } else {
7159 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7160 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7161 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7162 & ~TU_SIZE_MASK;
7163 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7164 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7165 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7166 }
7167}
7168
7169void intel_dp_get_m_n(struct intel_crtc *crtc,
7170 struct intel_crtc_config *pipe_config)
7171{
7172 if (crtc->config.has_pch_encoder)
7173 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7174 else
7175 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7176 &pipe_config->dp_m_n);
7177}
72419203 7178
eb14cb74
VS
7179static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7180 struct intel_crtc_config *pipe_config)
7181{
7182 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7183 &pipe_config->fdi_m_n);
72419203
DV
7184}
7185
2fa2fe9a
DV
7186static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7187 struct intel_crtc_config *pipe_config)
7188{
7189 struct drm_device *dev = crtc->base.dev;
7190 struct drm_i915_private *dev_priv = dev->dev_private;
7191 uint32_t tmp;
7192
7193 tmp = I915_READ(PF_CTL(crtc->pipe));
7194
7195 if (tmp & PF_ENABLE) {
fd4daa9c 7196 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7197 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7198 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7199
7200 /* We currently do not free assignements of panel fitters on
7201 * ivb/hsw (since we don't use the higher upscaling modes which
7202 * differentiates them) so just WARN about this case for now. */
7203 if (IS_GEN7(dev)) {
7204 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7205 PF_PIPE_SEL_IVB(crtc->pipe));
7206 }
2fa2fe9a 7207 }
79e53945
JB
7208}
7209
4c6baa59
JB
7210static void ironlake_get_plane_config(struct intel_crtc *crtc,
7211 struct intel_plane_config *plane_config)
7212{
7213 struct drm_device *dev = crtc->base.dev;
7214 struct drm_i915_private *dev_priv = dev->dev_private;
7215 u32 val, base, offset;
7216 int pipe = crtc->pipe, plane = crtc->plane;
7217 int fourcc, pixel_format;
7218 int aligned_height;
7219
66e514c1
DA
7220 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7221 if (!crtc->base.primary->fb) {
4c6baa59
JB
7222 DRM_DEBUG_KMS("failed to alloc fb\n");
7223 return;
7224 }
7225
7226 val = I915_READ(DSPCNTR(plane));
7227
7228 if (INTEL_INFO(dev)->gen >= 4)
7229 if (val & DISPPLANE_TILED)
7230 plane_config->tiled = true;
7231
7232 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7233 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7234 crtc->base.primary->fb->pixel_format = fourcc;
7235 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7236 drm_format_plane_cpp(fourcc, 0) * 8;
7237
7238 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7239 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7240 offset = I915_READ(DSPOFFSET(plane));
7241 } else {
7242 if (plane_config->tiled)
7243 offset = I915_READ(DSPTILEOFF(plane));
7244 else
7245 offset = I915_READ(DSPLINOFF(plane));
7246 }
7247 plane_config->base = base;
7248
7249 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7250 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7251 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7252
7253 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 7254 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
4c6baa59 7255
66e514c1 7256 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7257 plane_config->tiled);
7258
1267a26b
FF
7259 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7260 aligned_height);
4c6baa59
JB
7261
7262 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7263 pipe, plane, crtc->base.primary->fb->width,
7264 crtc->base.primary->fb->height,
7265 crtc->base.primary->fb->bits_per_pixel, base,
7266 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7267 plane_config->size);
7268}
7269
0e8ffe1b
DV
7270static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7271 struct intel_crtc_config *pipe_config)
7272{
7273 struct drm_device *dev = crtc->base.dev;
7274 struct drm_i915_private *dev_priv = dev->dev_private;
7275 uint32_t tmp;
7276
930e8c9e
PZ
7277 if (!intel_display_power_enabled(dev_priv,
7278 POWER_DOMAIN_PIPE(crtc->pipe)))
7279 return false;
7280
e143a21c 7281 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7282 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7283
0e8ffe1b
DV
7284 tmp = I915_READ(PIPECONF(crtc->pipe));
7285 if (!(tmp & PIPECONF_ENABLE))
7286 return false;
7287
42571aef
VS
7288 switch (tmp & PIPECONF_BPC_MASK) {
7289 case PIPECONF_6BPC:
7290 pipe_config->pipe_bpp = 18;
7291 break;
7292 case PIPECONF_8BPC:
7293 pipe_config->pipe_bpp = 24;
7294 break;
7295 case PIPECONF_10BPC:
7296 pipe_config->pipe_bpp = 30;
7297 break;
7298 case PIPECONF_12BPC:
7299 pipe_config->pipe_bpp = 36;
7300 break;
7301 default:
7302 break;
7303 }
7304
b5a9fa09
DV
7305 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7306 pipe_config->limited_color_range = true;
7307
ab9412ba 7308 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7309 struct intel_shared_dpll *pll;
7310
88adfff1
DV
7311 pipe_config->has_pch_encoder = true;
7312
627eb5a3
DV
7313 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7314 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7315 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7316
7317 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7318
c0d43d62 7319 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7320 pipe_config->shared_dpll =
7321 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7322 } else {
7323 tmp = I915_READ(PCH_DPLL_SEL);
7324 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7325 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7326 else
7327 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7328 }
66e985c0
DV
7329
7330 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7331
7332 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7333 &pipe_config->dpll_hw_state));
c93f54cf
DV
7334
7335 tmp = pipe_config->dpll_hw_state.dpll;
7336 pipe_config->pixel_multiplier =
7337 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7338 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7339
7340 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7341 } else {
7342 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7343 }
7344
1bd1bd80
DV
7345 intel_get_pipe_timings(crtc, pipe_config);
7346
2fa2fe9a
DV
7347 ironlake_get_pfit_config(crtc, pipe_config);
7348
0e8ffe1b
DV
7349 return true;
7350}
7351
be256dc7
PZ
7352static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7353{
7354 struct drm_device *dev = dev_priv->dev;
be256dc7 7355 struct intel_crtc *crtc;
be256dc7 7356
d3fcc808 7357 for_each_intel_crtc(dev, crtc)
798183c5 7358 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7359 pipe_name(crtc->pipe));
7360
7361 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7362 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7363 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7364 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7365 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7366 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7367 "CPU PWM1 enabled\n");
c5107b87
PZ
7368 if (IS_HASWELL(dev))
7369 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7370 "CPU PWM2 enabled\n");
be256dc7
PZ
7371 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7372 "PCH PWM1 enabled\n");
7373 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7374 "Utility pin enabled\n");
7375 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7376
9926ada1
PZ
7377 /*
7378 * In theory we can still leave IRQs enabled, as long as only the HPD
7379 * interrupts remain enabled. We used to check for that, but since it's
7380 * gen-specific and since we only disable LCPLL after we fully disable
7381 * the interrupts, the check below should be enough.
7382 */
9df7575f 7383 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7384}
7385
9ccd5aeb
PZ
7386static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7387{
7388 struct drm_device *dev = dev_priv->dev;
7389
7390 if (IS_HASWELL(dev))
7391 return I915_READ(D_COMP_HSW);
7392 else
7393 return I915_READ(D_COMP_BDW);
7394}
7395
3c4c9b81
PZ
7396static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7397{
7398 struct drm_device *dev = dev_priv->dev;
7399
7400 if (IS_HASWELL(dev)) {
7401 mutex_lock(&dev_priv->rps.hw_lock);
7402 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7403 val))
f475dadf 7404 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7405 mutex_unlock(&dev_priv->rps.hw_lock);
7406 } else {
9ccd5aeb
PZ
7407 I915_WRITE(D_COMP_BDW, val);
7408 POSTING_READ(D_COMP_BDW);
3c4c9b81 7409 }
be256dc7
PZ
7410}
7411
7412/*
7413 * This function implements pieces of two sequences from BSpec:
7414 * - Sequence for display software to disable LCPLL
7415 * - Sequence for display software to allow package C8+
7416 * The steps implemented here are just the steps that actually touch the LCPLL
7417 * register. Callers should take care of disabling all the display engine
7418 * functions, doing the mode unset, fixing interrupts, etc.
7419 */
6ff58d53
PZ
7420static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7421 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7422{
7423 uint32_t val;
7424
7425 assert_can_disable_lcpll(dev_priv);
7426
7427 val = I915_READ(LCPLL_CTL);
7428
7429 if (switch_to_fclk) {
7430 val |= LCPLL_CD_SOURCE_FCLK;
7431 I915_WRITE(LCPLL_CTL, val);
7432
7433 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7434 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7435 DRM_ERROR("Switching to FCLK failed\n");
7436
7437 val = I915_READ(LCPLL_CTL);
7438 }
7439
7440 val |= LCPLL_PLL_DISABLE;
7441 I915_WRITE(LCPLL_CTL, val);
7442 POSTING_READ(LCPLL_CTL);
7443
7444 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7445 DRM_ERROR("LCPLL still locked\n");
7446
9ccd5aeb 7447 val = hsw_read_dcomp(dev_priv);
be256dc7 7448 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7449 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7450 ndelay(100);
7451
9ccd5aeb
PZ
7452 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7453 1))
be256dc7
PZ
7454 DRM_ERROR("D_COMP RCOMP still in progress\n");
7455
7456 if (allow_power_down) {
7457 val = I915_READ(LCPLL_CTL);
7458 val |= LCPLL_POWER_DOWN_ALLOW;
7459 I915_WRITE(LCPLL_CTL, val);
7460 POSTING_READ(LCPLL_CTL);
7461 }
7462}
7463
7464/*
7465 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7466 * source.
7467 */
6ff58d53 7468static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7469{
7470 uint32_t val;
a8a8bd54 7471 unsigned long irqflags;
be256dc7
PZ
7472
7473 val = I915_READ(LCPLL_CTL);
7474
7475 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7476 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7477 return;
7478
a8a8bd54
PZ
7479 /*
7480 * Make sure we're not on PC8 state before disabling PC8, otherwise
7481 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7482 *
7483 * The other problem is that hsw_restore_lcpll() is called as part of
7484 * the runtime PM resume sequence, so we can't just call
7485 * gen6_gt_force_wake_get() because that function calls
7486 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7487 * while we are on the resume sequence. So to solve this problem we have
7488 * to call special forcewake code that doesn't touch runtime PM and
7489 * doesn't enable the forcewake delayed work.
7490 */
7491 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7492 if (dev_priv->uncore.forcewake_count++ == 0)
7493 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7494 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7495
be256dc7
PZ
7496 if (val & LCPLL_POWER_DOWN_ALLOW) {
7497 val &= ~LCPLL_POWER_DOWN_ALLOW;
7498 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7499 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7500 }
7501
9ccd5aeb 7502 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7503 val |= D_COMP_COMP_FORCE;
7504 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7505 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7506
7507 val = I915_READ(LCPLL_CTL);
7508 val &= ~LCPLL_PLL_DISABLE;
7509 I915_WRITE(LCPLL_CTL, val);
7510
7511 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7512 DRM_ERROR("LCPLL not locked yet\n");
7513
7514 if (val & LCPLL_CD_SOURCE_FCLK) {
7515 val = I915_READ(LCPLL_CTL);
7516 val &= ~LCPLL_CD_SOURCE_FCLK;
7517 I915_WRITE(LCPLL_CTL, val);
7518
7519 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7520 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7521 DRM_ERROR("Switching back to LCPLL failed\n");
7522 }
215733fa 7523
a8a8bd54
PZ
7524 /* See the big comment above. */
7525 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7526 if (--dev_priv->uncore.forcewake_count == 0)
7527 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7528 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7529}
7530
765dab67
PZ
7531/*
7532 * Package states C8 and deeper are really deep PC states that can only be
7533 * reached when all the devices on the system allow it, so even if the graphics
7534 * device allows PC8+, it doesn't mean the system will actually get to these
7535 * states. Our driver only allows PC8+ when going into runtime PM.
7536 *
7537 * The requirements for PC8+ are that all the outputs are disabled, the power
7538 * well is disabled and most interrupts are disabled, and these are also
7539 * requirements for runtime PM. When these conditions are met, we manually do
7540 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7541 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7542 * hang the machine.
7543 *
7544 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7545 * the state of some registers, so when we come back from PC8+ we need to
7546 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7547 * need to take care of the registers kept by RC6. Notice that this happens even
7548 * if we don't put the device in PCI D3 state (which is what currently happens
7549 * because of the runtime PM support).
7550 *
7551 * For more, read "Display Sequences for Package C8" on the hardware
7552 * documentation.
7553 */
a14cb6fc 7554void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7555{
c67a470b
PZ
7556 struct drm_device *dev = dev_priv->dev;
7557 uint32_t val;
7558
c67a470b
PZ
7559 DRM_DEBUG_KMS("Enabling package C8+\n");
7560
c67a470b
PZ
7561 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7562 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7563 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7564 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7565 }
7566
7567 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7568 hsw_disable_lcpll(dev_priv, true, true);
7569}
7570
a14cb6fc 7571void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7572{
7573 struct drm_device *dev = dev_priv->dev;
7574 uint32_t val;
7575
c67a470b
PZ
7576 DRM_DEBUG_KMS("Disabling package C8+\n");
7577
7578 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7579 lpt_init_pch_refclk(dev);
7580
7581 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7582 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7583 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7584 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7585 }
7586
7587 intel_prepare_ddi(dev);
c67a470b
PZ
7588}
7589
9a952a0d
PZ
7590static void snb_modeset_global_resources(struct drm_device *dev)
7591{
7592 modeset_update_crtc_power_domains(dev);
7593}
7594
4f074129
ID
7595static void haswell_modeset_global_resources(struct drm_device *dev)
7596{
da723569 7597 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7598}
7599
09b4ddf9 7600static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7601 int x, int y,
7602 struct drm_framebuffer *fb)
7603{
09b4ddf9 7604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7605
566b734a 7606 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7607 return -EINVAL;
716c2e55 7608
644cef34
DV
7609 intel_crtc->lowfreq_avail = false;
7610
c8f7a0db 7611 return 0;
79e53945
JB
7612}
7613
26804afd
DV
7614static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7615 struct intel_crtc_config *pipe_config)
7616{
7617 struct drm_device *dev = crtc->base.dev;
7618 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7619 struct intel_shared_dpll *pll;
26804afd
DV
7620 enum port port;
7621 uint32_t tmp;
7622
7623 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7624
7625 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7626
7627 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9cd86933
DV
7628
7629 switch (pipe_config->ddi_pll_sel) {
7630 case PORT_CLK_SEL_WRPLL1:
7631 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7632 break;
7633 case PORT_CLK_SEL_WRPLL2:
7634 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7635 break;
7636 }
7637
d452c5b6
DV
7638 if (pipe_config->shared_dpll >= 0) {
7639 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7640
7641 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7642 &pipe_config->dpll_hw_state));
7643 }
7644
26804afd
DV
7645 /*
7646 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7647 * DDI E. So just check whether this pipe is wired to DDI E and whether
7648 * the PCH transcoder is on.
7649 */
7650 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7651 pipe_config->has_pch_encoder = true;
7652
7653 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7654 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7655 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7656
7657 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7658 }
7659}
7660
0e8ffe1b
DV
7661static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7662 struct intel_crtc_config *pipe_config)
7663{
7664 struct drm_device *dev = crtc->base.dev;
7665 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7666 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7667 uint32_t tmp;
7668
b5482bd0
ID
7669 if (!intel_display_power_enabled(dev_priv,
7670 POWER_DOMAIN_PIPE(crtc->pipe)))
7671 return false;
7672
e143a21c 7673 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7674 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7675
eccb140b
DV
7676 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7677 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7678 enum pipe trans_edp_pipe;
7679 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7680 default:
7681 WARN(1, "unknown pipe linked to edp transcoder\n");
7682 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7683 case TRANS_DDI_EDP_INPUT_A_ON:
7684 trans_edp_pipe = PIPE_A;
7685 break;
7686 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7687 trans_edp_pipe = PIPE_B;
7688 break;
7689 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7690 trans_edp_pipe = PIPE_C;
7691 break;
7692 }
7693
7694 if (trans_edp_pipe == crtc->pipe)
7695 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7696 }
7697
da7e29bd 7698 if (!intel_display_power_enabled(dev_priv,
eccb140b 7699 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7700 return false;
7701
eccb140b 7702 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7703 if (!(tmp & PIPECONF_ENABLE))
7704 return false;
7705
26804afd 7706 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7707
1bd1bd80
DV
7708 intel_get_pipe_timings(crtc, pipe_config);
7709
2fa2fe9a 7710 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7711 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7712 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7713
e59150dc
JB
7714 if (IS_HASWELL(dev))
7715 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7716 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7717
6c49f241
DV
7718 pipe_config->pixel_multiplier = 1;
7719
0e8ffe1b
DV
7720 return true;
7721}
7722
1a91510d
JN
7723static struct {
7724 int clock;
7725 u32 config;
7726} hdmi_audio_clock[] = {
7727 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7728 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7729 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7730 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7731 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7732 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7733 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7734 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7735 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7736 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7737};
7738
7739/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7740static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7741{
7742 int i;
7743
7744 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7745 if (mode->clock == hdmi_audio_clock[i].clock)
7746 break;
7747 }
7748
7749 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7750 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7751 i = 1;
7752 }
7753
7754 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7755 hdmi_audio_clock[i].clock,
7756 hdmi_audio_clock[i].config);
7757
7758 return hdmi_audio_clock[i].config;
7759}
7760
3a9627f4
WF
7761static bool intel_eld_uptodate(struct drm_connector *connector,
7762 int reg_eldv, uint32_t bits_eldv,
7763 int reg_elda, uint32_t bits_elda,
7764 int reg_edid)
7765{
7766 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7767 uint8_t *eld = connector->eld;
7768 uint32_t i;
7769
7770 i = I915_READ(reg_eldv);
7771 i &= bits_eldv;
7772
7773 if (!eld[0])
7774 return !i;
7775
7776 if (!i)
7777 return false;
7778
7779 i = I915_READ(reg_elda);
7780 i &= ~bits_elda;
7781 I915_WRITE(reg_elda, i);
7782
7783 for (i = 0; i < eld[2]; i++)
7784 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7785 return false;
7786
7787 return true;
7788}
7789
e0dac65e 7790static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7791 struct drm_crtc *crtc,
7792 struct drm_display_mode *mode)
e0dac65e
WF
7793{
7794 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7795 uint8_t *eld = connector->eld;
7796 uint32_t eldv;
7797 uint32_t len;
7798 uint32_t i;
7799
7800 i = I915_READ(G4X_AUD_VID_DID);
7801
7802 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7803 eldv = G4X_ELDV_DEVCL_DEVBLC;
7804 else
7805 eldv = G4X_ELDV_DEVCTG;
7806
3a9627f4
WF
7807 if (intel_eld_uptodate(connector,
7808 G4X_AUD_CNTL_ST, eldv,
7809 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7810 G4X_HDMIW_HDMIEDID))
7811 return;
7812
e0dac65e
WF
7813 i = I915_READ(G4X_AUD_CNTL_ST);
7814 i &= ~(eldv | G4X_ELD_ADDR);
7815 len = (i >> 9) & 0x1f; /* ELD buffer size */
7816 I915_WRITE(G4X_AUD_CNTL_ST, i);
7817
7818 if (!eld[0])
7819 return;
7820
7821 len = min_t(uint8_t, eld[2], len);
7822 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7823 for (i = 0; i < len; i++)
7824 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7825
7826 i = I915_READ(G4X_AUD_CNTL_ST);
7827 i |= eldv;
7828 I915_WRITE(G4X_AUD_CNTL_ST, i);
7829}
7830
83358c85 7831static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7832 struct drm_crtc *crtc,
7833 struct drm_display_mode *mode)
83358c85
WX
7834{
7835 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7836 uint8_t *eld = connector->eld;
83358c85
WX
7837 uint32_t eldv;
7838 uint32_t i;
7839 int len;
7840 int pipe = to_intel_crtc(crtc)->pipe;
7841 int tmp;
7842
7843 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7844 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7845 int aud_config = HSW_AUD_CFG(pipe);
7846 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7847
83358c85
WX
7848 /* Audio output enable */
7849 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7850 tmp = I915_READ(aud_cntrl_st2);
7851 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7852 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7853 POSTING_READ(aud_cntrl_st2);
83358c85 7854
c7905792 7855 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7856
7857 /* Set ELD valid state */
7858 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7859 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7860 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7861 I915_WRITE(aud_cntrl_st2, tmp);
7862 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7863 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7864
7865 /* Enable HDMI mode */
7866 tmp = I915_READ(aud_config);
7e7cb34f 7867 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7868 /* clear N_programing_enable and N_value_index */
7869 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7870 I915_WRITE(aud_config, tmp);
7871
7872 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7873
7874 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7875
7876 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7877 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7878 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7879 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7880 } else {
7881 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7882 }
83358c85
WX
7883
7884 if (intel_eld_uptodate(connector,
7885 aud_cntrl_st2, eldv,
7886 aud_cntl_st, IBX_ELD_ADDRESS,
7887 hdmiw_hdmiedid))
7888 return;
7889
7890 i = I915_READ(aud_cntrl_st2);
7891 i &= ~eldv;
7892 I915_WRITE(aud_cntrl_st2, i);
7893
7894 if (!eld[0])
7895 return;
7896
7897 i = I915_READ(aud_cntl_st);
7898 i &= ~IBX_ELD_ADDRESS;
7899 I915_WRITE(aud_cntl_st, i);
7900 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7901 DRM_DEBUG_DRIVER("port num:%d\n", i);
7902
7903 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7904 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7905 for (i = 0; i < len; i++)
7906 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7907
7908 i = I915_READ(aud_cntrl_st2);
7909 i |= eldv;
7910 I915_WRITE(aud_cntrl_st2, i);
7911
7912}
7913
e0dac65e 7914static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7915 struct drm_crtc *crtc,
7916 struct drm_display_mode *mode)
e0dac65e
WF
7917{
7918 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7919 uint8_t *eld = connector->eld;
7920 uint32_t eldv;
7921 uint32_t i;
7922 int len;
7923 int hdmiw_hdmiedid;
b6daa025 7924 int aud_config;
e0dac65e
WF
7925 int aud_cntl_st;
7926 int aud_cntrl_st2;
9b138a83 7927 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7928
b3f33cbf 7929 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7930 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7931 aud_config = IBX_AUD_CFG(pipe);
7932 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7933 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7934 } else if (IS_VALLEYVIEW(connector->dev)) {
7935 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7936 aud_config = VLV_AUD_CFG(pipe);
7937 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7938 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7939 } else {
9b138a83
WX
7940 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7941 aud_config = CPT_AUD_CFG(pipe);
7942 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7943 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7944 }
7945
9b138a83 7946 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7947
9ca2fe73
ML
7948 if (IS_VALLEYVIEW(connector->dev)) {
7949 struct intel_encoder *intel_encoder;
7950 struct intel_digital_port *intel_dig_port;
7951
7952 intel_encoder = intel_attached_encoder(connector);
7953 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7954 i = intel_dig_port->port;
7955 } else {
7956 i = I915_READ(aud_cntl_st);
7957 i = (i >> 29) & DIP_PORT_SEL_MASK;
7958 /* DIP_Port_Select, 0x1 = PortB */
7959 }
7960
e0dac65e
WF
7961 if (!i) {
7962 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7963 /* operate blindly on all ports */
1202b4c6
WF
7964 eldv = IBX_ELD_VALIDB;
7965 eldv |= IBX_ELD_VALIDB << 4;
7966 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7967 } else {
2582a850 7968 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7969 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7970 }
7971
3a9627f4
WF
7972 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7973 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7974 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7975 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7976 } else {
7977 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7978 }
e0dac65e 7979
3a9627f4
WF
7980 if (intel_eld_uptodate(connector,
7981 aud_cntrl_st2, eldv,
7982 aud_cntl_st, IBX_ELD_ADDRESS,
7983 hdmiw_hdmiedid))
7984 return;
7985
e0dac65e
WF
7986 i = I915_READ(aud_cntrl_st2);
7987 i &= ~eldv;
7988 I915_WRITE(aud_cntrl_st2, i);
7989
7990 if (!eld[0])
7991 return;
7992
e0dac65e 7993 i = I915_READ(aud_cntl_st);
1202b4c6 7994 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7995 I915_WRITE(aud_cntl_st, i);
7996
7997 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7998 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7999 for (i = 0; i < len; i++)
8000 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8001
8002 i = I915_READ(aud_cntrl_st2);
8003 i |= eldv;
8004 I915_WRITE(aud_cntrl_st2, i);
8005}
8006
8007void intel_write_eld(struct drm_encoder *encoder,
8008 struct drm_display_mode *mode)
8009{
8010 struct drm_crtc *crtc = encoder->crtc;
8011 struct drm_connector *connector;
8012 struct drm_device *dev = encoder->dev;
8013 struct drm_i915_private *dev_priv = dev->dev_private;
8014
8015 connector = drm_select_eld(encoder, mode);
8016 if (!connector)
8017 return;
8018
8019 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8020 connector->base.id,
c23cc417 8021 connector->name,
e0dac65e 8022 connector->encoder->base.id,
8e329a03 8023 connector->encoder->name);
e0dac65e
WF
8024
8025 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8026
8027 if (dev_priv->display.write_eld)
34427052 8028 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8029}
8030
560b85bb
CW
8031static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8032{
8033 struct drm_device *dev = crtc->dev;
8034 struct drm_i915_private *dev_priv = dev->dev_private;
8035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 8036 uint32_t cntl;
560b85bb 8037
4b0e333e 8038 if (base != intel_crtc->cursor_base) {
560b85bb
CW
8039 /* On these chipsets we can only modify the base whilst
8040 * the cursor is disabled.
8041 */
4b0e333e
CW
8042 if (intel_crtc->cursor_cntl) {
8043 I915_WRITE(_CURACNTR, 0);
8044 POSTING_READ(_CURACNTR);
8045 intel_crtc->cursor_cntl = 0;
8046 }
8047
9db4a9c7 8048 I915_WRITE(_CURABASE, base);
4b0e333e
CW
8049 POSTING_READ(_CURABASE);
8050 }
560b85bb 8051
4b0e333e
CW
8052 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8053 cntl = 0;
8054 if (base)
8055 cntl = (CURSOR_ENABLE |
560b85bb 8056 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
8057 CURSOR_FORMAT_ARGB);
8058 if (intel_crtc->cursor_cntl != cntl) {
8059 I915_WRITE(_CURACNTR, cntl);
8060 POSTING_READ(_CURACNTR);
8061 intel_crtc->cursor_cntl = cntl;
8062 }
560b85bb
CW
8063}
8064
8065static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8066{
8067 struct drm_device *dev = crtc->dev;
8068 struct drm_i915_private *dev_priv = dev->dev_private;
8069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8070 int pipe = intel_crtc->pipe;
4b0e333e 8071 uint32_t cntl;
4726e0b0 8072
4b0e333e
CW
8073 cntl = 0;
8074 if (base) {
8075 cntl = MCURSOR_GAMMA_ENABLE;
8076 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8077 case 64:
8078 cntl |= CURSOR_MODE_64_ARGB_AX;
8079 break;
8080 case 128:
8081 cntl |= CURSOR_MODE_128_ARGB_AX;
8082 break;
8083 case 256:
8084 cntl |= CURSOR_MODE_256_ARGB_AX;
8085 break;
8086 default:
8087 WARN_ON(1);
8088 return;
560b85bb 8089 }
4b0e333e
CW
8090 cntl |= pipe << 28; /* Connect to correct pipe */
8091 }
8092 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8093 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8094 POSTING_READ(CURCNTR(pipe));
8095 intel_crtc->cursor_cntl = cntl;
560b85bb 8096 }
4b0e333e 8097
560b85bb 8098 /* and commit changes on next vblank */
9db4a9c7 8099 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8100 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8101}
8102
65a21cd6
JB
8103static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8104{
8105 struct drm_device *dev = crtc->dev;
8106 struct drm_i915_private *dev_priv = dev->dev_private;
8107 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8108 int pipe = intel_crtc->pipe;
4b0e333e
CW
8109 uint32_t cntl;
8110
8111 cntl = 0;
8112 if (base) {
8113 cntl = MCURSOR_GAMMA_ENABLE;
8114 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8115 case 64:
8116 cntl |= CURSOR_MODE_64_ARGB_AX;
8117 break;
8118 case 128:
8119 cntl |= CURSOR_MODE_128_ARGB_AX;
8120 break;
8121 case 256:
8122 cntl |= CURSOR_MODE_256_ARGB_AX;
8123 break;
8124 default:
8125 WARN_ON(1);
8126 return;
65a21cd6 8127 }
4b0e333e
CW
8128 }
8129 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8130 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8131
4b0e333e
CW
8132 if (intel_crtc->cursor_cntl != cntl) {
8133 I915_WRITE(CURCNTR(pipe), cntl);
8134 POSTING_READ(CURCNTR(pipe));
8135 intel_crtc->cursor_cntl = cntl;
65a21cd6 8136 }
4b0e333e 8137
65a21cd6 8138 /* and commit changes on next vblank */
5efb3e28
VS
8139 I915_WRITE(CURBASE(pipe), base);
8140 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8141}
8142
cda4b7d3 8143/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8144static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8145 bool on)
cda4b7d3
CW
8146{
8147 struct drm_device *dev = crtc->dev;
8148 struct drm_i915_private *dev_priv = dev->dev_private;
8149 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8150 int pipe = intel_crtc->pipe;
3d7d6510
MR
8151 int x = crtc->cursor_x;
8152 int y = crtc->cursor_y;
d6e4db15 8153 u32 base = 0, pos = 0;
cda4b7d3 8154
d6e4db15 8155 if (on)
cda4b7d3 8156 base = intel_crtc->cursor_addr;
cda4b7d3 8157
d6e4db15
VS
8158 if (x >= intel_crtc->config.pipe_src_w)
8159 base = 0;
8160
8161 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8162 base = 0;
8163
8164 if (x < 0) {
efc9064e 8165 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8166 base = 0;
8167
8168 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8169 x = -x;
8170 }
8171 pos |= x << CURSOR_X_SHIFT;
8172
8173 if (y < 0) {
efc9064e 8174 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8175 base = 0;
8176
8177 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8178 y = -y;
8179 }
8180 pos |= y << CURSOR_Y_SHIFT;
8181
4b0e333e 8182 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8183 return;
8184
5efb3e28
VS
8185 I915_WRITE(CURPOS(pipe), pos);
8186
8187 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8188 ivb_update_cursor(crtc, base);
5efb3e28
VS
8189 else if (IS_845G(dev) || IS_I865G(dev))
8190 i845_update_cursor(crtc, base);
8191 else
8192 i9xx_update_cursor(crtc, base);
4b0e333e 8193 intel_crtc->cursor_base = base;
cda4b7d3
CW
8194}
8195
e3287951
MR
8196/*
8197 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8198 *
8199 * Note that the object's reference will be consumed if the update fails. If
8200 * the update succeeds, the reference of the old object (if any) will be
8201 * consumed.
8202 */
8203static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8204 struct drm_i915_gem_object *obj,
8205 uint32_t width, uint32_t height)
79e53945
JB
8206{
8207 struct drm_device *dev = crtc->dev;
8208 struct drm_i915_private *dev_priv = dev->dev_private;
8209 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8210 enum pipe pipe = intel_crtc->pipe;
64f962e3 8211 unsigned old_width;
cda4b7d3 8212 uint32_t addr;
3f8bc370 8213 int ret;
79e53945 8214
79e53945 8215 /* if we want to turn off the cursor ignore width and height */
e3287951 8216 if (!obj) {
28c97730 8217 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8218 addr = 0;
05394f39 8219 obj = NULL;
5004417d 8220 mutex_lock(&dev->struct_mutex);
3f8bc370 8221 goto finish;
79e53945
JB
8222 }
8223
4726e0b0
SK
8224 /* Check for which cursor types we support */
8225 if (!((width == 64 && height == 64) ||
8226 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8227 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8228 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8229 return -EINVAL;
8230 }
8231
05394f39 8232 if (obj->base.size < width * height * 4) {
e3287951 8233 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8234 ret = -ENOMEM;
8235 goto fail;
79e53945
JB
8236 }
8237
71acb5eb 8238 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8239 mutex_lock(&dev->struct_mutex);
3d13ef2e 8240 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8241 unsigned alignment;
8242
d9e86c0e 8243 if (obj->tiling_mode) {
3b25b31f 8244 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8245 ret = -EINVAL;
8246 goto fail_locked;
8247 }
8248
693db184
CW
8249 /* Note that the w/a also requires 2 PTE of padding following
8250 * the bo. We currently fill all unused PTE with the shadow
8251 * page and so we should always have valid PTE following the
8252 * cursor preventing the VT-d warning.
8253 */
8254 alignment = 0;
8255 if (need_vtd_wa(dev))
8256 alignment = 64*1024;
8257
8258 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8259 if (ret) {
3b25b31f 8260 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8261 goto fail_locked;
e7b526bb
CW
8262 }
8263
d9e86c0e
CW
8264 ret = i915_gem_object_put_fence(obj);
8265 if (ret) {
3b25b31f 8266 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8267 goto fail_unpin;
8268 }
8269
f343c5f6 8270 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8271 } else {
6eeefaf3 8272 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8273 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8274 if (ret) {
3b25b31f 8275 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8276 goto fail_locked;
71acb5eb 8277 }
00731155 8278 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8279 }
8280
a6c45cf0 8281 if (IS_GEN2(dev))
14b60391
JB
8282 I915_WRITE(CURSIZE, (height << 12) | width);
8283
3f8bc370 8284 finish:
3f8bc370 8285 if (intel_crtc->cursor_bo) {
00731155 8286 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8287 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8288 }
80824003 8289
a071fa00
DV
8290 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8291 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8292 mutex_unlock(&dev->struct_mutex);
3f8bc370 8293
64f962e3
CW
8294 old_width = intel_crtc->cursor_width;
8295
3f8bc370 8296 intel_crtc->cursor_addr = addr;
05394f39 8297 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8298 intel_crtc->cursor_width = width;
8299 intel_crtc->cursor_height = height;
8300
64f962e3
CW
8301 if (intel_crtc->active) {
8302 if (old_width != width)
8303 intel_update_watermarks(crtc);
f2f5f771 8304 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8305 }
3f8bc370 8306
f99d7069
DV
8307 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8308
79e53945 8309 return 0;
e7b526bb 8310fail_unpin:
cc98b413 8311 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8312fail_locked:
34b8686e 8313 mutex_unlock(&dev->struct_mutex);
bc9025bd 8314fail:
05394f39 8315 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8316 return ret;
79e53945
JB
8317}
8318
79e53945 8319static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8320 u16 *blue, uint32_t start, uint32_t size)
79e53945 8321{
7203425a 8322 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8324
7203425a 8325 for (i = start; i < end; i++) {
79e53945
JB
8326 intel_crtc->lut_r[i] = red[i] >> 8;
8327 intel_crtc->lut_g[i] = green[i] >> 8;
8328 intel_crtc->lut_b[i] = blue[i] >> 8;
8329 }
8330
8331 intel_crtc_load_lut(crtc);
8332}
8333
79e53945
JB
8334/* VESA 640x480x72Hz mode to set on the pipe */
8335static struct drm_display_mode load_detect_mode = {
8336 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8337 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8338};
8339
a8bb6818
DV
8340struct drm_framebuffer *
8341__intel_framebuffer_create(struct drm_device *dev,
8342 struct drm_mode_fb_cmd2 *mode_cmd,
8343 struct drm_i915_gem_object *obj)
d2dff872
CW
8344{
8345 struct intel_framebuffer *intel_fb;
8346 int ret;
8347
8348 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8349 if (!intel_fb) {
8350 drm_gem_object_unreference_unlocked(&obj->base);
8351 return ERR_PTR(-ENOMEM);
8352 }
8353
8354 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8355 if (ret)
8356 goto err;
d2dff872
CW
8357
8358 return &intel_fb->base;
dd4916c5
DV
8359err:
8360 drm_gem_object_unreference_unlocked(&obj->base);
8361 kfree(intel_fb);
8362
8363 return ERR_PTR(ret);
d2dff872
CW
8364}
8365
b5ea642a 8366static struct drm_framebuffer *
a8bb6818
DV
8367intel_framebuffer_create(struct drm_device *dev,
8368 struct drm_mode_fb_cmd2 *mode_cmd,
8369 struct drm_i915_gem_object *obj)
8370{
8371 struct drm_framebuffer *fb;
8372 int ret;
8373
8374 ret = i915_mutex_lock_interruptible(dev);
8375 if (ret)
8376 return ERR_PTR(ret);
8377 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8378 mutex_unlock(&dev->struct_mutex);
8379
8380 return fb;
8381}
8382
d2dff872
CW
8383static u32
8384intel_framebuffer_pitch_for_width(int width, int bpp)
8385{
8386 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8387 return ALIGN(pitch, 64);
8388}
8389
8390static u32
8391intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8392{
8393 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8394 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8395}
8396
8397static struct drm_framebuffer *
8398intel_framebuffer_create_for_mode(struct drm_device *dev,
8399 struct drm_display_mode *mode,
8400 int depth, int bpp)
8401{
8402 struct drm_i915_gem_object *obj;
0fed39bd 8403 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8404
8405 obj = i915_gem_alloc_object(dev,
8406 intel_framebuffer_size_for_mode(mode, bpp));
8407 if (obj == NULL)
8408 return ERR_PTR(-ENOMEM);
8409
8410 mode_cmd.width = mode->hdisplay;
8411 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8412 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8413 bpp);
5ca0c34a 8414 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8415
8416 return intel_framebuffer_create(dev, &mode_cmd, obj);
8417}
8418
8419static struct drm_framebuffer *
8420mode_fits_in_fbdev(struct drm_device *dev,
8421 struct drm_display_mode *mode)
8422{
4520f53a 8423#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8424 struct drm_i915_private *dev_priv = dev->dev_private;
8425 struct drm_i915_gem_object *obj;
8426 struct drm_framebuffer *fb;
8427
4c0e5528 8428 if (!dev_priv->fbdev)
d2dff872
CW
8429 return NULL;
8430
4c0e5528 8431 if (!dev_priv->fbdev->fb)
d2dff872
CW
8432 return NULL;
8433
4c0e5528
DV
8434 obj = dev_priv->fbdev->fb->obj;
8435 BUG_ON(!obj);
8436
8bcd4553 8437 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8438 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8439 fb->bits_per_pixel))
d2dff872
CW
8440 return NULL;
8441
01f2c773 8442 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8443 return NULL;
8444
8445 return fb;
4520f53a
DV
8446#else
8447 return NULL;
8448#endif
d2dff872
CW
8449}
8450
d2434ab7 8451bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8452 struct drm_display_mode *mode,
51fd371b
RC
8453 struct intel_load_detect_pipe *old,
8454 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8455{
8456 struct intel_crtc *intel_crtc;
d2434ab7
DV
8457 struct intel_encoder *intel_encoder =
8458 intel_attached_encoder(connector);
79e53945 8459 struct drm_crtc *possible_crtc;
4ef69c7a 8460 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8461 struct drm_crtc *crtc = NULL;
8462 struct drm_device *dev = encoder->dev;
94352cf9 8463 struct drm_framebuffer *fb;
51fd371b
RC
8464 struct drm_mode_config *config = &dev->mode_config;
8465 int ret, i = -1;
79e53945 8466
d2dff872 8467 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8468 connector->base.id, connector->name,
8e329a03 8469 encoder->base.id, encoder->name);
d2dff872 8470
51fd371b
RC
8471 drm_modeset_acquire_init(ctx, 0);
8472
8473retry:
8474 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8475 if (ret)
8476 goto fail_unlock;
6e9f798d 8477
79e53945
JB
8478 /*
8479 * Algorithm gets a little messy:
7a5e4805 8480 *
79e53945
JB
8481 * - if the connector already has an assigned crtc, use it (but make
8482 * sure it's on first)
7a5e4805 8483 *
79e53945
JB
8484 * - try to find the first unused crtc that can drive this connector,
8485 * and use that if we find one
79e53945
JB
8486 */
8487
8488 /* See if we already have a CRTC for this connector */
8489 if (encoder->crtc) {
8490 crtc = encoder->crtc;
8261b191 8491
51fd371b
RC
8492 ret = drm_modeset_lock(&crtc->mutex, ctx);
8493 if (ret)
8494 goto fail_unlock;
7b24056b 8495
24218aac 8496 old->dpms_mode = connector->dpms;
8261b191
CW
8497 old->load_detect_temp = false;
8498
8499 /* Make sure the crtc and connector are running */
24218aac
DV
8500 if (connector->dpms != DRM_MODE_DPMS_ON)
8501 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8502
7173188d 8503 return true;
79e53945
JB
8504 }
8505
8506 /* Find an unused one (if possible) */
70e1e0ec 8507 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8508 i++;
8509 if (!(encoder->possible_crtcs & (1 << i)))
8510 continue;
8511 if (!possible_crtc->enabled) {
8512 crtc = possible_crtc;
8513 break;
8514 }
79e53945
JB
8515 }
8516
8517 /*
8518 * If we didn't find an unused CRTC, don't use any.
8519 */
8520 if (!crtc) {
7173188d 8521 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8522 goto fail_unlock;
79e53945
JB
8523 }
8524
51fd371b
RC
8525 ret = drm_modeset_lock(&crtc->mutex, ctx);
8526 if (ret)
8527 goto fail_unlock;
fc303101
DV
8528 intel_encoder->new_crtc = to_intel_crtc(crtc);
8529 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8530
8531 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8532 intel_crtc->new_enabled = true;
8533 intel_crtc->new_config = &intel_crtc->config;
24218aac 8534 old->dpms_mode = connector->dpms;
8261b191 8535 old->load_detect_temp = true;
d2dff872 8536 old->release_fb = NULL;
79e53945 8537
6492711d
CW
8538 if (!mode)
8539 mode = &load_detect_mode;
79e53945 8540
d2dff872
CW
8541 /* We need a framebuffer large enough to accommodate all accesses
8542 * that the plane may generate whilst we perform load detection.
8543 * We can not rely on the fbcon either being present (we get called
8544 * during its initialisation to detect all boot displays, or it may
8545 * not even exist) or that it is large enough to satisfy the
8546 * requested mode.
8547 */
94352cf9
DV
8548 fb = mode_fits_in_fbdev(dev, mode);
8549 if (fb == NULL) {
d2dff872 8550 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8551 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8552 old->release_fb = fb;
d2dff872
CW
8553 } else
8554 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8555 if (IS_ERR(fb)) {
d2dff872 8556 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8557 goto fail;
79e53945 8558 }
79e53945 8559
c0c36b94 8560 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8561 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8562 if (old->release_fb)
8563 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8564 goto fail;
79e53945 8565 }
7173188d 8566
79e53945 8567 /* let the connector get through one full cycle before testing */
9d0498a2 8568 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8569 return true;
412b61d8
VS
8570
8571 fail:
8572 intel_crtc->new_enabled = crtc->enabled;
8573 if (intel_crtc->new_enabled)
8574 intel_crtc->new_config = &intel_crtc->config;
8575 else
8576 intel_crtc->new_config = NULL;
51fd371b
RC
8577fail_unlock:
8578 if (ret == -EDEADLK) {
8579 drm_modeset_backoff(ctx);
8580 goto retry;
8581 }
8582
8583 drm_modeset_drop_locks(ctx);
8584 drm_modeset_acquire_fini(ctx);
6e9f798d 8585
412b61d8 8586 return false;
79e53945
JB
8587}
8588
d2434ab7 8589void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8590 struct intel_load_detect_pipe *old,
8591 struct drm_modeset_acquire_ctx *ctx)
79e53945 8592{
d2434ab7
DV
8593 struct intel_encoder *intel_encoder =
8594 intel_attached_encoder(connector);
4ef69c7a 8595 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8596 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8597 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8598
d2dff872 8599 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8600 connector->base.id, connector->name,
8e329a03 8601 encoder->base.id, encoder->name);
d2dff872 8602
8261b191 8603 if (old->load_detect_temp) {
fc303101
DV
8604 to_intel_connector(connector)->new_encoder = NULL;
8605 intel_encoder->new_crtc = NULL;
412b61d8
VS
8606 intel_crtc->new_enabled = false;
8607 intel_crtc->new_config = NULL;
fc303101 8608 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8609
36206361
DV
8610 if (old->release_fb) {
8611 drm_framebuffer_unregister_private(old->release_fb);
8612 drm_framebuffer_unreference(old->release_fb);
8613 }
d2dff872 8614
51fd371b 8615 goto unlock;
0622a53c 8616 return;
79e53945
JB
8617 }
8618
c751ce4f 8619 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8620 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8621 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8622
51fd371b
RC
8623unlock:
8624 drm_modeset_drop_locks(ctx);
8625 drm_modeset_acquire_fini(ctx);
79e53945
JB
8626}
8627
da4a1efa
VS
8628static int i9xx_pll_refclk(struct drm_device *dev,
8629 const struct intel_crtc_config *pipe_config)
8630{
8631 struct drm_i915_private *dev_priv = dev->dev_private;
8632 u32 dpll = pipe_config->dpll_hw_state.dpll;
8633
8634 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8635 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8636 else if (HAS_PCH_SPLIT(dev))
8637 return 120000;
8638 else if (!IS_GEN2(dev))
8639 return 96000;
8640 else
8641 return 48000;
8642}
8643
79e53945 8644/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8645static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8646 struct intel_crtc_config *pipe_config)
79e53945 8647{
f1f644dc 8648 struct drm_device *dev = crtc->base.dev;
79e53945 8649 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8650 int pipe = pipe_config->cpu_transcoder;
293623f7 8651 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8652 u32 fp;
8653 intel_clock_t clock;
da4a1efa 8654 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8655
8656 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8657 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8658 else
293623f7 8659 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8660
8661 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8662 if (IS_PINEVIEW(dev)) {
8663 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8664 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8665 } else {
8666 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8667 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8668 }
8669
a6c45cf0 8670 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8671 if (IS_PINEVIEW(dev))
8672 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8673 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8674 else
8675 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8676 DPLL_FPA01_P1_POST_DIV_SHIFT);
8677
8678 switch (dpll & DPLL_MODE_MASK) {
8679 case DPLLB_MODE_DAC_SERIAL:
8680 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8681 5 : 10;
8682 break;
8683 case DPLLB_MODE_LVDS:
8684 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8685 7 : 14;
8686 break;
8687 default:
28c97730 8688 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8689 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8690 return;
79e53945
JB
8691 }
8692
ac58c3f0 8693 if (IS_PINEVIEW(dev))
da4a1efa 8694 pineview_clock(refclk, &clock);
ac58c3f0 8695 else
da4a1efa 8696 i9xx_clock(refclk, &clock);
79e53945 8697 } else {
0fb58223 8698 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8699 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8700
8701 if (is_lvds) {
8702 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8703 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8704
8705 if (lvds & LVDS_CLKB_POWER_UP)
8706 clock.p2 = 7;
8707 else
8708 clock.p2 = 14;
79e53945
JB
8709 } else {
8710 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8711 clock.p1 = 2;
8712 else {
8713 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8714 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8715 }
8716 if (dpll & PLL_P2_DIVIDE_BY_4)
8717 clock.p2 = 4;
8718 else
8719 clock.p2 = 2;
79e53945 8720 }
da4a1efa
VS
8721
8722 i9xx_clock(refclk, &clock);
79e53945
JB
8723 }
8724
18442d08
VS
8725 /*
8726 * This value includes pixel_multiplier. We will use
241bfc38 8727 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8728 * encoder's get_config() function.
8729 */
8730 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8731}
8732
6878da05
VS
8733int intel_dotclock_calculate(int link_freq,
8734 const struct intel_link_m_n *m_n)
f1f644dc 8735{
f1f644dc
JB
8736 /*
8737 * The calculation for the data clock is:
1041a02f 8738 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8739 * But we want to avoid losing precison if possible, so:
1041a02f 8740 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8741 *
8742 * and the link clock is simpler:
1041a02f 8743 * link_clock = (m * link_clock) / n
f1f644dc
JB
8744 */
8745
6878da05
VS
8746 if (!m_n->link_n)
8747 return 0;
f1f644dc 8748
6878da05
VS
8749 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8750}
f1f644dc 8751
18442d08
VS
8752static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8753 struct intel_crtc_config *pipe_config)
6878da05
VS
8754{
8755 struct drm_device *dev = crtc->base.dev;
79e53945 8756
18442d08
VS
8757 /* read out port_clock from the DPLL */
8758 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8759
f1f644dc 8760 /*
18442d08 8761 * This value does not include pixel_multiplier.
241bfc38 8762 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8763 * agree once we know their relationship in the encoder's
8764 * get_config() function.
79e53945 8765 */
241bfc38 8766 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8767 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8768 &pipe_config->fdi_m_n);
79e53945
JB
8769}
8770
8771/** Returns the currently programmed mode of the given pipe. */
8772struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8773 struct drm_crtc *crtc)
8774{
548f245b 8775 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8777 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8778 struct drm_display_mode *mode;
f1f644dc 8779 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8780 int htot = I915_READ(HTOTAL(cpu_transcoder));
8781 int hsync = I915_READ(HSYNC(cpu_transcoder));
8782 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8783 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8784 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8785
8786 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8787 if (!mode)
8788 return NULL;
8789
f1f644dc
JB
8790 /*
8791 * Construct a pipe_config sufficient for getting the clock info
8792 * back out of crtc_clock_get.
8793 *
8794 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8795 * to use a real value here instead.
8796 */
293623f7 8797 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8798 pipe_config.pixel_multiplier = 1;
293623f7
VS
8799 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8800 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8801 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8802 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8803
773ae034 8804 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8805 mode->hdisplay = (htot & 0xffff) + 1;
8806 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8807 mode->hsync_start = (hsync & 0xffff) + 1;
8808 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8809 mode->vdisplay = (vtot & 0xffff) + 1;
8810 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8811 mode->vsync_start = (vsync & 0xffff) + 1;
8812 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8813
8814 drm_mode_set_name(mode);
79e53945
JB
8815
8816 return mode;
8817}
8818
cc36513c
DV
8819static void intel_increase_pllclock(struct drm_device *dev,
8820 enum pipe pipe)
652c393a 8821{
fbee40df 8822 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8823 int dpll_reg = DPLL(pipe);
8824 int dpll;
652c393a 8825
baff296c 8826 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8827 return;
8828
8829 if (!dev_priv->lvds_downclock_avail)
8830 return;
8831
dbdc6479 8832 dpll = I915_READ(dpll_reg);
652c393a 8833 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8834 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8835
8ac5a6d5 8836 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8837
8838 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8839 I915_WRITE(dpll_reg, dpll);
9d0498a2 8840 intel_wait_for_vblank(dev, pipe);
dbdc6479 8841
652c393a
JB
8842 dpll = I915_READ(dpll_reg);
8843 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8844 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8845 }
652c393a
JB
8846}
8847
8848static void intel_decrease_pllclock(struct drm_crtc *crtc)
8849{
8850 struct drm_device *dev = crtc->dev;
fbee40df 8851 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8853
baff296c 8854 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8855 return;
8856
8857 if (!dev_priv->lvds_downclock_avail)
8858 return;
8859
8860 /*
8861 * Since this is called by a timer, we should never get here in
8862 * the manual case.
8863 */
8864 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8865 int pipe = intel_crtc->pipe;
8866 int dpll_reg = DPLL(pipe);
8867 int dpll;
f6e5b160 8868
44d98a61 8869 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8870
8ac5a6d5 8871 assert_panel_unlocked(dev_priv, pipe);
652c393a 8872
dc257cf1 8873 dpll = I915_READ(dpll_reg);
652c393a
JB
8874 dpll |= DISPLAY_RATE_SELECT_FPA1;
8875 I915_WRITE(dpll_reg, dpll);
9d0498a2 8876 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8877 dpll = I915_READ(dpll_reg);
8878 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8879 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8880 }
8881
8882}
8883
f047e395
CW
8884void intel_mark_busy(struct drm_device *dev)
8885{
c67a470b
PZ
8886 struct drm_i915_private *dev_priv = dev->dev_private;
8887
f62a0076
CW
8888 if (dev_priv->mm.busy)
8889 return;
8890
43694d69 8891 intel_runtime_pm_get(dev_priv);
c67a470b 8892 i915_update_gfx_val(dev_priv);
f62a0076 8893 dev_priv->mm.busy = true;
f047e395
CW
8894}
8895
8896void intel_mark_idle(struct drm_device *dev)
652c393a 8897{
c67a470b 8898 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8899 struct drm_crtc *crtc;
652c393a 8900
f62a0076
CW
8901 if (!dev_priv->mm.busy)
8902 return;
8903
8904 dev_priv->mm.busy = false;
8905
d330a953 8906 if (!i915.powersave)
bb4cdd53 8907 goto out;
652c393a 8908
70e1e0ec 8909 for_each_crtc(dev, crtc) {
f4510a27 8910 if (!crtc->primary->fb)
652c393a
JB
8911 continue;
8912
725a5b54 8913 intel_decrease_pllclock(crtc);
652c393a 8914 }
b29c19b6 8915
3d13ef2e 8916 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8917 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8918
8919out:
43694d69 8920 intel_runtime_pm_put(dev_priv);
652c393a
JB
8921}
8922
7c8f8a70 8923
f99d7069
DV
8924/**
8925 * intel_mark_fb_busy - mark given planes as busy
8926 * @dev: DRM device
8927 * @frontbuffer_bits: bits for the affected planes
8928 * @ring: optional ring for asynchronous commands
8929 *
8930 * This function gets called every time the screen contents change. It can be
8931 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8932 */
8933static void intel_mark_fb_busy(struct drm_device *dev,
8934 unsigned frontbuffer_bits,
8935 struct intel_engine_cs *ring)
652c393a 8936{
cc36513c 8937 enum pipe pipe;
652c393a 8938
d330a953 8939 if (!i915.powersave)
acb87dfb
CW
8940 return;
8941
cc36513c 8942 for_each_pipe(pipe) {
f99d7069 8943 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8944 continue;
8945
cc36513c 8946 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8947 if (ring && intel_fbc_enabled(dev))
8948 ring->fbc_dirty = true;
652c393a
JB
8949 }
8950}
8951
f99d7069
DV
8952/**
8953 * intel_fb_obj_invalidate - invalidate frontbuffer object
8954 * @obj: GEM object to invalidate
8955 * @ring: set for asynchronous rendering
8956 *
8957 * This function gets called every time rendering on the given object starts and
8958 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8959 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8960 * until the rendering completes or a flip on this frontbuffer plane is
8961 * scheduled.
8962 */
8963void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8964 struct intel_engine_cs *ring)
8965{
8966 struct drm_device *dev = obj->base.dev;
8967 struct drm_i915_private *dev_priv = dev->dev_private;
8968
8969 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8970
8971 if (!obj->frontbuffer_bits)
8972 return;
8973
8974 if (ring) {
8975 mutex_lock(&dev_priv->fb_tracking.lock);
8976 dev_priv->fb_tracking.busy_bits
8977 |= obj->frontbuffer_bits;
8978 dev_priv->fb_tracking.flip_bits
8979 &= ~obj->frontbuffer_bits;
8980 mutex_unlock(&dev_priv->fb_tracking.lock);
8981 }
8982
8983 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8984
9ca15301 8985 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
8986}
8987
8988/**
8989 * intel_frontbuffer_flush - flush frontbuffer
8990 * @dev: DRM device
8991 * @frontbuffer_bits: frontbuffer plane tracking bits
8992 *
8993 * This function gets called every time rendering on the given planes has
8994 * completed and frontbuffer caching can be started again. Flushes will get
8995 * delayed if they're blocked by some oustanding asynchronous rendering.
8996 *
8997 * Can be called without any locks held.
8998 */
8999void intel_frontbuffer_flush(struct drm_device *dev,
9000 unsigned frontbuffer_bits)
9001{
9002 struct drm_i915_private *dev_priv = dev->dev_private;
9003
9004 /* Delay flushing when rings are still busy.*/
9005 mutex_lock(&dev_priv->fb_tracking.lock);
9006 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9007 mutex_unlock(&dev_priv->fb_tracking.lock);
9008
9009 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9010
9ca15301 9011 intel_edp_psr_flush(dev, frontbuffer_bits);
f99d7069
DV
9012}
9013
9014/**
9015 * intel_fb_obj_flush - flush frontbuffer object
9016 * @obj: GEM object to flush
9017 * @retire: set when retiring asynchronous rendering
9018 *
9019 * This function gets called every time rendering on the given object has
9020 * completed and frontbuffer caching can be started again. If @retire is true
9021 * then any delayed flushes will be unblocked.
9022 */
9023void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9024 bool retire)
9025{
9026 struct drm_device *dev = obj->base.dev;
9027 struct drm_i915_private *dev_priv = dev->dev_private;
9028 unsigned frontbuffer_bits;
9029
9030 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9031
9032 if (!obj->frontbuffer_bits)
9033 return;
9034
9035 frontbuffer_bits = obj->frontbuffer_bits;
9036
9037 if (retire) {
9038 mutex_lock(&dev_priv->fb_tracking.lock);
9039 /* Filter out new bits since rendering started. */
9040 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9041
9042 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9043 mutex_unlock(&dev_priv->fb_tracking.lock);
9044 }
9045
9046 intel_frontbuffer_flush(dev, frontbuffer_bits);
9047}
9048
9049/**
9050 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9051 * @dev: DRM device
9052 * @frontbuffer_bits: frontbuffer plane tracking bits
9053 *
9054 * This function gets called after scheduling a flip on @obj. The actual
9055 * frontbuffer flushing will be delayed until completion is signalled with
9056 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9057 * flush will be cancelled.
9058 *
9059 * Can be called without any locks held.
9060 */
9061void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9062 unsigned frontbuffer_bits)
9063{
9064 struct drm_i915_private *dev_priv = dev->dev_private;
9065
9066 mutex_lock(&dev_priv->fb_tracking.lock);
9067 dev_priv->fb_tracking.flip_bits
9068 |= frontbuffer_bits;
9069 mutex_unlock(&dev_priv->fb_tracking.lock);
9070}
9071
9072/**
9073 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9074 * @dev: DRM device
9075 * @frontbuffer_bits: frontbuffer plane tracking bits
9076 *
9077 * This function gets called after the flip has been latched and will complete
9078 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9079 *
9080 * Can be called without any locks held.
9081 */
9082void intel_frontbuffer_flip_complete(struct drm_device *dev,
9083 unsigned frontbuffer_bits)
9084{
9085 struct drm_i915_private *dev_priv = dev->dev_private;
9086
9087 mutex_lock(&dev_priv->fb_tracking.lock);
9088 /* Mask any cancelled flips. */
9089 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9090 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9091 mutex_unlock(&dev_priv->fb_tracking.lock);
9092
9093 intel_frontbuffer_flush(dev, frontbuffer_bits);
9094}
9095
79e53945
JB
9096static void intel_crtc_destroy(struct drm_crtc *crtc)
9097{
9098 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9099 struct drm_device *dev = crtc->dev;
9100 struct intel_unpin_work *work;
9101 unsigned long flags;
9102
9103 spin_lock_irqsave(&dev->event_lock, flags);
9104 work = intel_crtc->unpin_work;
9105 intel_crtc->unpin_work = NULL;
9106 spin_unlock_irqrestore(&dev->event_lock, flags);
9107
9108 if (work) {
9109 cancel_work_sync(&work->work);
9110 kfree(work);
9111 }
79e53945
JB
9112
9113 drm_crtc_cleanup(crtc);
67e77c5a 9114
79e53945
JB
9115 kfree(intel_crtc);
9116}
9117
6b95a207
KH
9118static void intel_unpin_work_fn(struct work_struct *__work)
9119{
9120 struct intel_unpin_work *work =
9121 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9122 struct drm_device *dev = work->crtc->dev;
f99d7069 9123 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9124
b4a98e57 9125 mutex_lock(&dev->struct_mutex);
1690e1eb 9126 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9127 drm_gem_object_unreference(&work->pending_flip_obj->base);
9128 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9129
b4a98e57
CW
9130 intel_update_fbc(dev);
9131 mutex_unlock(&dev->struct_mutex);
9132
f99d7069
DV
9133 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9134
b4a98e57
CW
9135 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9136 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9137
6b95a207
KH
9138 kfree(work);
9139}
9140
1afe3e9d 9141static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9142 struct drm_crtc *crtc)
6b95a207 9143{
fbee40df 9144 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9145 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9146 struct intel_unpin_work *work;
6b95a207
KH
9147 unsigned long flags;
9148
9149 /* Ignore early vblank irqs */
9150 if (intel_crtc == NULL)
9151 return;
9152
9153 spin_lock_irqsave(&dev->event_lock, flags);
9154 work = intel_crtc->unpin_work;
e7d841ca
CW
9155
9156 /* Ensure we don't miss a work->pending update ... */
9157 smp_rmb();
9158
9159 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9160 spin_unlock_irqrestore(&dev->event_lock, flags);
9161 return;
9162 }
9163
e7d841ca
CW
9164 /* and that the unpin work is consistent wrt ->pending. */
9165 smp_rmb();
9166
6b95a207 9167 intel_crtc->unpin_work = NULL;
6b95a207 9168
45a066eb
RC
9169 if (work->event)
9170 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9171
87b6b101 9172 drm_crtc_vblank_put(crtc);
0af7e4df 9173
6b95a207
KH
9174 spin_unlock_irqrestore(&dev->event_lock, flags);
9175
2c10d571 9176 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9177
9178 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9179
9180 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9181}
9182
1afe3e9d
JB
9183void intel_finish_page_flip(struct drm_device *dev, int pipe)
9184{
fbee40df 9185 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9186 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9187
49b14a5c 9188 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9189}
9190
9191void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9192{
fbee40df 9193 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9194 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9195
49b14a5c 9196 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9197}
9198
75f7f3ec
VS
9199/* Is 'a' after or equal to 'b'? */
9200static bool g4x_flip_count_after_eq(u32 a, u32 b)
9201{
9202 return !((a - b) & 0x80000000);
9203}
9204
9205static bool page_flip_finished(struct intel_crtc *crtc)
9206{
9207 struct drm_device *dev = crtc->base.dev;
9208 struct drm_i915_private *dev_priv = dev->dev_private;
9209
9210 /*
9211 * The relevant registers doen't exist on pre-ctg.
9212 * As the flip done interrupt doesn't trigger for mmio
9213 * flips on gmch platforms, a flip count check isn't
9214 * really needed there. But since ctg has the registers,
9215 * include it in the check anyway.
9216 */
9217 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9218 return true;
9219
9220 /*
9221 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9222 * used the same base address. In that case the mmio flip might
9223 * have completed, but the CS hasn't even executed the flip yet.
9224 *
9225 * A flip count check isn't enough as the CS might have updated
9226 * the base address just after start of vblank, but before we
9227 * managed to process the interrupt. This means we'd complete the
9228 * CS flip too soon.
9229 *
9230 * Combining both checks should get us a good enough result. It may
9231 * still happen that the CS flip has been executed, but has not
9232 * yet actually completed. But in case the base address is the same
9233 * anyway, we don't really care.
9234 */
9235 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9236 crtc->unpin_work->gtt_offset &&
9237 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9238 crtc->unpin_work->flip_count);
9239}
9240
6b95a207
KH
9241void intel_prepare_page_flip(struct drm_device *dev, int plane)
9242{
fbee40df 9243 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9244 struct intel_crtc *intel_crtc =
9245 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9246 unsigned long flags;
9247
e7d841ca
CW
9248 /* NB: An MMIO update of the plane base pointer will also
9249 * generate a page-flip completion irq, i.e. every modeset
9250 * is also accompanied by a spurious intel_prepare_page_flip().
9251 */
6b95a207 9252 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9253 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9254 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9255 spin_unlock_irqrestore(&dev->event_lock, flags);
9256}
9257
eba905b2 9258static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9259{
9260 /* Ensure that the work item is consistent when activating it ... */
9261 smp_wmb();
9262 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9263 /* and that it is marked active as soon as the irq could fire. */
9264 smp_wmb();
9265}
9266
8c9f3aaf
JB
9267static int intel_gen2_queue_flip(struct drm_device *dev,
9268 struct drm_crtc *crtc,
9269 struct drm_framebuffer *fb,
ed8d1975 9270 struct drm_i915_gem_object *obj,
a4872ba6 9271 struct intel_engine_cs *ring,
ed8d1975 9272 uint32_t flags)
8c9f3aaf 9273{
8c9f3aaf 9274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9275 u32 flip_mask;
9276 int ret;
9277
6d90c952 9278 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9279 if (ret)
4fa62c89 9280 return ret;
8c9f3aaf
JB
9281
9282 /* Can't queue multiple flips, so wait for the previous
9283 * one to finish before executing the next.
9284 */
9285 if (intel_crtc->plane)
9286 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9287 else
9288 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9289 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9290 intel_ring_emit(ring, MI_NOOP);
9291 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9292 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9293 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9294 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9295 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9296
9297 intel_mark_page_flip_active(intel_crtc);
09246732 9298 __intel_ring_advance(ring);
83d4092b 9299 return 0;
8c9f3aaf
JB
9300}
9301
9302static int intel_gen3_queue_flip(struct drm_device *dev,
9303 struct drm_crtc *crtc,
9304 struct drm_framebuffer *fb,
ed8d1975 9305 struct drm_i915_gem_object *obj,
a4872ba6 9306 struct intel_engine_cs *ring,
ed8d1975 9307 uint32_t flags)
8c9f3aaf 9308{
8c9f3aaf 9309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9310 u32 flip_mask;
9311 int ret;
9312
6d90c952 9313 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9314 if (ret)
4fa62c89 9315 return ret;
8c9f3aaf
JB
9316
9317 if (intel_crtc->plane)
9318 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9319 else
9320 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9321 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9322 intel_ring_emit(ring, MI_NOOP);
9323 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9324 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9325 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9326 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9327 intel_ring_emit(ring, MI_NOOP);
9328
e7d841ca 9329 intel_mark_page_flip_active(intel_crtc);
09246732 9330 __intel_ring_advance(ring);
83d4092b 9331 return 0;
8c9f3aaf
JB
9332}
9333
9334static int intel_gen4_queue_flip(struct drm_device *dev,
9335 struct drm_crtc *crtc,
9336 struct drm_framebuffer *fb,
ed8d1975 9337 struct drm_i915_gem_object *obj,
a4872ba6 9338 struct intel_engine_cs *ring,
ed8d1975 9339 uint32_t flags)
8c9f3aaf
JB
9340{
9341 struct drm_i915_private *dev_priv = dev->dev_private;
9342 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9343 uint32_t pf, pipesrc;
9344 int ret;
9345
6d90c952 9346 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9347 if (ret)
4fa62c89 9348 return ret;
8c9f3aaf
JB
9349
9350 /* i965+ uses the linear or tiled offsets from the
9351 * Display Registers (which do not change across a page-flip)
9352 * so we need only reprogram the base address.
9353 */
6d90c952
DV
9354 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9355 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9356 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9357 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9358 obj->tiling_mode);
8c9f3aaf
JB
9359
9360 /* XXX Enabling the panel-fitter across page-flip is so far
9361 * untested on non-native modes, so ignore it for now.
9362 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9363 */
9364 pf = 0;
9365 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9366 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9367
9368 intel_mark_page_flip_active(intel_crtc);
09246732 9369 __intel_ring_advance(ring);
83d4092b 9370 return 0;
8c9f3aaf
JB
9371}
9372
9373static int intel_gen6_queue_flip(struct drm_device *dev,
9374 struct drm_crtc *crtc,
9375 struct drm_framebuffer *fb,
ed8d1975 9376 struct drm_i915_gem_object *obj,
a4872ba6 9377 struct intel_engine_cs *ring,
ed8d1975 9378 uint32_t flags)
8c9f3aaf
JB
9379{
9380 struct drm_i915_private *dev_priv = dev->dev_private;
9381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9382 uint32_t pf, pipesrc;
9383 int ret;
9384
6d90c952 9385 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9386 if (ret)
4fa62c89 9387 return ret;
8c9f3aaf 9388
6d90c952
DV
9389 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9390 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9391 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9392 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9393
dc257cf1
DV
9394 /* Contrary to the suggestions in the documentation,
9395 * "Enable Panel Fitter" does not seem to be required when page
9396 * flipping with a non-native mode, and worse causes a normal
9397 * modeset to fail.
9398 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9399 */
9400 pf = 0;
8c9f3aaf 9401 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9402 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9403
9404 intel_mark_page_flip_active(intel_crtc);
09246732 9405 __intel_ring_advance(ring);
83d4092b 9406 return 0;
8c9f3aaf
JB
9407}
9408
7c9017e5
JB
9409static int intel_gen7_queue_flip(struct drm_device *dev,
9410 struct drm_crtc *crtc,
9411 struct drm_framebuffer *fb,
ed8d1975 9412 struct drm_i915_gem_object *obj,
a4872ba6 9413 struct intel_engine_cs *ring,
ed8d1975 9414 uint32_t flags)
7c9017e5 9415{
7c9017e5 9416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9417 uint32_t plane_bit = 0;
ffe74d75
CW
9418 int len, ret;
9419
eba905b2 9420 switch (intel_crtc->plane) {
cb05d8de
DV
9421 case PLANE_A:
9422 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9423 break;
9424 case PLANE_B:
9425 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9426 break;
9427 case PLANE_C:
9428 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9429 break;
9430 default:
9431 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9432 return -ENODEV;
cb05d8de
DV
9433 }
9434
ffe74d75 9435 len = 4;
f476828a 9436 if (ring->id == RCS) {
ffe74d75 9437 len += 6;
f476828a
DL
9438 /*
9439 * On Gen 8, SRM is now taking an extra dword to accommodate
9440 * 48bits addresses, and we need a NOOP for the batch size to
9441 * stay even.
9442 */
9443 if (IS_GEN8(dev))
9444 len += 2;
9445 }
ffe74d75 9446
f66fab8e
VS
9447 /*
9448 * BSpec MI_DISPLAY_FLIP for IVB:
9449 * "The full packet must be contained within the same cache line."
9450 *
9451 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9452 * cacheline, if we ever start emitting more commands before
9453 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9454 * then do the cacheline alignment, and finally emit the
9455 * MI_DISPLAY_FLIP.
9456 */
9457 ret = intel_ring_cacheline_align(ring);
9458 if (ret)
4fa62c89 9459 return ret;
f66fab8e 9460
ffe74d75 9461 ret = intel_ring_begin(ring, len);
7c9017e5 9462 if (ret)
4fa62c89 9463 return ret;
7c9017e5 9464
ffe74d75
CW
9465 /* Unmask the flip-done completion message. Note that the bspec says that
9466 * we should do this for both the BCS and RCS, and that we must not unmask
9467 * more than one flip event at any time (or ensure that one flip message
9468 * can be sent by waiting for flip-done prior to queueing new flips).
9469 * Experimentation says that BCS works despite DERRMR masking all
9470 * flip-done completion events and that unmasking all planes at once
9471 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9472 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9473 */
9474 if (ring->id == RCS) {
9475 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9476 intel_ring_emit(ring, DERRMR);
9477 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9478 DERRMR_PIPEB_PRI_FLIP_DONE |
9479 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9480 if (IS_GEN8(dev))
9481 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9482 MI_SRM_LRM_GLOBAL_GTT);
9483 else
9484 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9485 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9486 intel_ring_emit(ring, DERRMR);
9487 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9488 if (IS_GEN8(dev)) {
9489 intel_ring_emit(ring, 0);
9490 intel_ring_emit(ring, MI_NOOP);
9491 }
ffe74d75
CW
9492 }
9493
cb05d8de 9494 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9495 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9496 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9497 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9498
9499 intel_mark_page_flip_active(intel_crtc);
09246732 9500 __intel_ring_advance(ring);
83d4092b 9501 return 0;
7c9017e5
JB
9502}
9503
84c33a64
SG
9504static bool use_mmio_flip(struct intel_engine_cs *ring,
9505 struct drm_i915_gem_object *obj)
9506{
9507 /*
9508 * This is not being used for older platforms, because
9509 * non-availability of flip done interrupt forces us to use
9510 * CS flips. Older platforms derive flip done using some clever
9511 * tricks involving the flip_pending status bits and vblank irqs.
9512 * So using MMIO flips there would disrupt this mechanism.
9513 */
9514
8e09bf83
CW
9515 if (ring == NULL)
9516 return true;
9517
84c33a64
SG
9518 if (INTEL_INFO(ring->dev)->gen < 5)
9519 return false;
9520
9521 if (i915.use_mmio_flip < 0)
9522 return false;
9523 else if (i915.use_mmio_flip > 0)
9524 return true;
9525 else
9526 return ring != obj->ring;
9527}
9528
9529static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9530{
9531 struct drm_device *dev = intel_crtc->base.dev;
9532 struct drm_i915_private *dev_priv = dev->dev_private;
9533 struct intel_framebuffer *intel_fb =
9534 to_intel_framebuffer(intel_crtc->base.primary->fb);
9535 struct drm_i915_gem_object *obj = intel_fb->obj;
9536 u32 dspcntr;
9537 u32 reg;
9538
9539 intel_mark_page_flip_active(intel_crtc);
9540
9541 reg = DSPCNTR(intel_crtc->plane);
9542 dspcntr = I915_READ(reg);
9543
9544 if (INTEL_INFO(dev)->gen >= 4) {
9545 if (obj->tiling_mode != I915_TILING_NONE)
9546 dspcntr |= DISPPLANE_TILED;
9547 else
9548 dspcntr &= ~DISPPLANE_TILED;
9549 }
9550 I915_WRITE(reg, dspcntr);
9551
9552 I915_WRITE(DSPSURF(intel_crtc->plane),
9553 intel_crtc->unpin_work->gtt_offset);
9554 POSTING_READ(DSPSURF(intel_crtc->plane));
9555}
9556
9557static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9558{
9559 struct intel_engine_cs *ring;
9560 int ret;
9561
9562 lockdep_assert_held(&obj->base.dev->struct_mutex);
9563
9564 if (!obj->last_write_seqno)
9565 return 0;
9566
9567 ring = obj->ring;
9568
9569 if (i915_seqno_passed(ring->get_seqno(ring, true),
9570 obj->last_write_seqno))
9571 return 0;
9572
9573 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9574 if (ret)
9575 return ret;
9576
9577 if (WARN_ON(!ring->irq_get(ring)))
9578 return 0;
9579
9580 return 1;
9581}
9582
9583void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9584{
9585 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9586 struct intel_crtc *intel_crtc;
9587 unsigned long irq_flags;
9588 u32 seqno;
9589
9590 seqno = ring->get_seqno(ring, false);
9591
9592 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9593 for_each_intel_crtc(ring->dev, intel_crtc) {
9594 struct intel_mmio_flip *mmio_flip;
9595
9596 mmio_flip = &intel_crtc->mmio_flip;
9597 if (mmio_flip->seqno == 0)
9598 continue;
9599
9600 if (ring->id != mmio_flip->ring_id)
9601 continue;
9602
9603 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9604 intel_do_mmio_flip(intel_crtc);
9605 mmio_flip->seqno = 0;
9606 ring->irq_put(ring);
9607 }
9608 }
9609 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9610}
9611
9612static int intel_queue_mmio_flip(struct drm_device *dev,
9613 struct drm_crtc *crtc,
9614 struct drm_framebuffer *fb,
9615 struct drm_i915_gem_object *obj,
9616 struct intel_engine_cs *ring,
9617 uint32_t flags)
9618{
9619 struct drm_i915_private *dev_priv = dev->dev_private;
9620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9621 unsigned long irq_flags;
9622 int ret;
9623
9624 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9625 return -EBUSY;
9626
9627 ret = intel_postpone_flip(obj);
9628 if (ret < 0)
9629 return ret;
9630 if (ret == 0) {
9631 intel_do_mmio_flip(intel_crtc);
9632 return 0;
9633 }
9634
9635 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9636 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9637 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9638 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9639
9640 /*
9641 * Double check to catch cases where irq fired before
9642 * mmio flip data was ready
9643 */
9644 intel_notify_mmio_flip(obj->ring);
9645 return 0;
9646}
9647
8c9f3aaf
JB
9648static int intel_default_queue_flip(struct drm_device *dev,
9649 struct drm_crtc *crtc,
9650 struct drm_framebuffer *fb,
ed8d1975 9651 struct drm_i915_gem_object *obj,
a4872ba6 9652 struct intel_engine_cs *ring,
ed8d1975 9653 uint32_t flags)
8c9f3aaf
JB
9654{
9655 return -ENODEV;
9656}
9657
6b95a207
KH
9658static int intel_crtc_page_flip(struct drm_crtc *crtc,
9659 struct drm_framebuffer *fb,
ed8d1975
KP
9660 struct drm_pending_vblank_event *event,
9661 uint32_t page_flip_flags)
6b95a207
KH
9662{
9663 struct drm_device *dev = crtc->dev;
9664 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9665 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9666 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9667 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9668 enum pipe pipe = intel_crtc->pipe;
6b95a207 9669 struct intel_unpin_work *work;
a4872ba6 9670 struct intel_engine_cs *ring;
8c9f3aaf 9671 unsigned long flags;
52e68630 9672 int ret;
6b95a207 9673
2ff8fde1
MR
9674 /*
9675 * drm_mode_page_flip_ioctl() should already catch this, but double
9676 * check to be safe. In the future we may enable pageflipping from
9677 * a disabled primary plane.
9678 */
9679 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9680 return -EBUSY;
9681
e6a595d2 9682 /* Can't change pixel format via MI display flips. */
f4510a27 9683 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9684 return -EINVAL;
9685
9686 /*
9687 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9688 * Note that pitch changes could also affect these register.
9689 */
9690 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9691 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9692 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9693 return -EINVAL;
9694
f900db47
CW
9695 if (i915_terminally_wedged(&dev_priv->gpu_error))
9696 goto out_hang;
9697
b14c5679 9698 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9699 if (work == NULL)
9700 return -ENOMEM;
9701
6b95a207 9702 work->event = event;
b4a98e57 9703 work->crtc = crtc;
2ff8fde1 9704 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9705 INIT_WORK(&work->work, intel_unpin_work_fn);
9706
87b6b101 9707 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9708 if (ret)
9709 goto free_work;
9710
6b95a207
KH
9711 /* We borrow the event spin lock for protecting unpin_work */
9712 spin_lock_irqsave(&dev->event_lock, flags);
9713 if (intel_crtc->unpin_work) {
9714 spin_unlock_irqrestore(&dev->event_lock, flags);
9715 kfree(work);
87b6b101 9716 drm_crtc_vblank_put(crtc);
468f0b44
CW
9717
9718 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9719 return -EBUSY;
9720 }
9721 intel_crtc->unpin_work = work;
9722 spin_unlock_irqrestore(&dev->event_lock, flags);
9723
b4a98e57
CW
9724 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9725 flush_workqueue(dev_priv->wq);
9726
79158103
CW
9727 ret = i915_mutex_lock_interruptible(dev);
9728 if (ret)
9729 goto cleanup;
6b95a207 9730
75dfca80 9731 /* Reference the objects for the scheduled work. */
05394f39
CW
9732 drm_gem_object_reference(&work->old_fb_obj->base);
9733 drm_gem_object_reference(&obj->base);
6b95a207 9734
f4510a27 9735 crtc->primary->fb = fb;
96b099fd 9736
e1f99ce6 9737 work->pending_flip_obj = obj;
e1f99ce6 9738
4e5359cd
SF
9739 work->enable_stall_check = true;
9740
b4a98e57 9741 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9742 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9743
75f7f3ec 9744 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9745 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9746
4fa62c89
VS
9747 if (IS_VALLEYVIEW(dev)) {
9748 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9749 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9750 /* vlv: DISPLAY_FLIP fails to change tiling */
9751 ring = NULL;
2a92d5bc
CW
9752 } else if (IS_IVYBRIDGE(dev)) {
9753 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9754 } else if (INTEL_INFO(dev)->gen >= 7) {
9755 ring = obj->ring;
9756 if (ring == NULL || ring->id != RCS)
9757 ring = &dev_priv->ring[BCS];
9758 } else {
9759 ring = &dev_priv->ring[RCS];
9760 }
9761
9762 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9763 if (ret)
9764 goto cleanup_pending;
6b95a207 9765
4fa62c89
VS
9766 work->gtt_offset =
9767 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9768
84c33a64
SG
9769 if (use_mmio_flip(ring, obj))
9770 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9771 page_flip_flags);
9772 else
9773 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9774 page_flip_flags);
4fa62c89
VS
9775 if (ret)
9776 goto cleanup_unpin;
9777
a071fa00
DV
9778 i915_gem_track_fb(work->old_fb_obj, obj,
9779 INTEL_FRONTBUFFER_PRIMARY(pipe));
9780
7782de3b 9781 intel_disable_fbc(dev);
f99d7069 9782 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9783 mutex_unlock(&dev->struct_mutex);
9784
e5510fac
JB
9785 trace_i915_flip_request(intel_crtc->plane, obj);
9786
6b95a207 9787 return 0;
96b099fd 9788
4fa62c89
VS
9789cleanup_unpin:
9790 intel_unpin_fb_obj(obj);
8c9f3aaf 9791cleanup_pending:
b4a98e57 9792 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9793 crtc->primary->fb = old_fb;
05394f39
CW
9794 drm_gem_object_unreference(&work->old_fb_obj->base);
9795 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9796 mutex_unlock(&dev->struct_mutex);
9797
79158103 9798cleanup:
96b099fd
CW
9799 spin_lock_irqsave(&dev->event_lock, flags);
9800 intel_crtc->unpin_work = NULL;
9801 spin_unlock_irqrestore(&dev->event_lock, flags);
9802
87b6b101 9803 drm_crtc_vblank_put(crtc);
7317c75e 9804free_work:
96b099fd
CW
9805 kfree(work);
9806
f900db47
CW
9807 if (ret == -EIO) {
9808out_hang:
9809 intel_crtc_wait_for_pending_flips(crtc);
9810 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9811 if (ret == 0 && event)
a071fa00 9812 drm_send_vblank_event(dev, pipe, event);
f900db47 9813 }
96b099fd 9814 return ret;
6b95a207
KH
9815}
9816
f6e5b160 9817static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9818 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9819 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9820};
9821
9a935856
DV
9822/**
9823 * intel_modeset_update_staged_output_state
9824 *
9825 * Updates the staged output configuration state, e.g. after we've read out the
9826 * current hw state.
9827 */
9828static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9829{
7668851f 9830 struct intel_crtc *crtc;
9a935856
DV
9831 struct intel_encoder *encoder;
9832 struct intel_connector *connector;
f6e5b160 9833
9a935856
DV
9834 list_for_each_entry(connector, &dev->mode_config.connector_list,
9835 base.head) {
9836 connector->new_encoder =
9837 to_intel_encoder(connector->base.encoder);
9838 }
f6e5b160 9839
9a935856
DV
9840 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9841 base.head) {
9842 encoder->new_crtc =
9843 to_intel_crtc(encoder->base.crtc);
9844 }
7668851f 9845
d3fcc808 9846 for_each_intel_crtc(dev, crtc) {
7668851f 9847 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9848
9849 if (crtc->new_enabled)
9850 crtc->new_config = &crtc->config;
9851 else
9852 crtc->new_config = NULL;
7668851f 9853 }
f6e5b160
CW
9854}
9855
9a935856
DV
9856/**
9857 * intel_modeset_commit_output_state
9858 *
9859 * This function copies the stage display pipe configuration to the real one.
9860 */
9861static void intel_modeset_commit_output_state(struct drm_device *dev)
9862{
7668851f 9863 struct intel_crtc *crtc;
9a935856
DV
9864 struct intel_encoder *encoder;
9865 struct intel_connector *connector;
f6e5b160 9866
9a935856
DV
9867 list_for_each_entry(connector, &dev->mode_config.connector_list,
9868 base.head) {
9869 connector->base.encoder = &connector->new_encoder->base;
9870 }
f6e5b160 9871
9a935856
DV
9872 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9873 base.head) {
9874 encoder->base.crtc = &encoder->new_crtc->base;
9875 }
7668851f 9876
d3fcc808 9877 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9878 crtc->base.enabled = crtc->new_enabled;
9879 }
9a935856
DV
9880}
9881
050f7aeb 9882static void
eba905b2 9883connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9884 struct intel_crtc_config *pipe_config)
9885{
9886 int bpp = pipe_config->pipe_bpp;
9887
9888 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9889 connector->base.base.id,
c23cc417 9890 connector->base.name);
050f7aeb
DV
9891
9892 /* Don't use an invalid EDID bpc value */
9893 if (connector->base.display_info.bpc &&
9894 connector->base.display_info.bpc * 3 < bpp) {
9895 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9896 bpp, connector->base.display_info.bpc*3);
9897 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9898 }
9899
9900 /* Clamp bpp to 8 on screens without EDID 1.4 */
9901 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9902 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9903 bpp);
9904 pipe_config->pipe_bpp = 24;
9905 }
9906}
9907
4e53c2e0 9908static int
050f7aeb
DV
9909compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9910 struct drm_framebuffer *fb,
9911 struct intel_crtc_config *pipe_config)
4e53c2e0 9912{
050f7aeb
DV
9913 struct drm_device *dev = crtc->base.dev;
9914 struct intel_connector *connector;
4e53c2e0
DV
9915 int bpp;
9916
d42264b1
DV
9917 switch (fb->pixel_format) {
9918 case DRM_FORMAT_C8:
4e53c2e0
DV
9919 bpp = 8*3; /* since we go through a colormap */
9920 break;
d42264b1
DV
9921 case DRM_FORMAT_XRGB1555:
9922 case DRM_FORMAT_ARGB1555:
9923 /* checked in intel_framebuffer_init already */
9924 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9925 return -EINVAL;
9926 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9927 bpp = 6*3; /* min is 18bpp */
9928 break;
d42264b1
DV
9929 case DRM_FORMAT_XBGR8888:
9930 case DRM_FORMAT_ABGR8888:
9931 /* checked in intel_framebuffer_init already */
9932 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9933 return -EINVAL;
9934 case DRM_FORMAT_XRGB8888:
9935 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9936 bpp = 8*3;
9937 break;
d42264b1
DV
9938 case DRM_FORMAT_XRGB2101010:
9939 case DRM_FORMAT_ARGB2101010:
9940 case DRM_FORMAT_XBGR2101010:
9941 case DRM_FORMAT_ABGR2101010:
9942 /* checked in intel_framebuffer_init already */
9943 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9944 return -EINVAL;
4e53c2e0
DV
9945 bpp = 10*3;
9946 break;
baba133a 9947 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9948 default:
9949 DRM_DEBUG_KMS("unsupported depth\n");
9950 return -EINVAL;
9951 }
9952
4e53c2e0
DV
9953 pipe_config->pipe_bpp = bpp;
9954
9955 /* Clamp display bpp to EDID value */
9956 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9957 base.head) {
1b829e05
DV
9958 if (!connector->new_encoder ||
9959 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9960 continue;
9961
050f7aeb 9962 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9963 }
9964
9965 return bpp;
9966}
9967
644db711
DV
9968static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9969{
9970 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9971 "type: 0x%x flags: 0x%x\n",
1342830c 9972 mode->crtc_clock,
644db711
DV
9973 mode->crtc_hdisplay, mode->crtc_hsync_start,
9974 mode->crtc_hsync_end, mode->crtc_htotal,
9975 mode->crtc_vdisplay, mode->crtc_vsync_start,
9976 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9977}
9978
c0b03411
DV
9979static void intel_dump_pipe_config(struct intel_crtc *crtc,
9980 struct intel_crtc_config *pipe_config,
9981 const char *context)
9982{
9983 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9984 context, pipe_name(crtc->pipe));
9985
9986 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9987 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9988 pipe_config->pipe_bpp, pipe_config->dither);
9989 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9990 pipe_config->has_pch_encoder,
9991 pipe_config->fdi_lanes,
9992 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9993 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9994 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9995 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9996 pipe_config->has_dp_encoder,
9997 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9998 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9999 pipe_config->dp_m_n.tu);
c0b03411
DV
10000 DRM_DEBUG_KMS("requested mode:\n");
10001 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10002 DRM_DEBUG_KMS("adjusted mode:\n");
10003 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10004 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10005 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10006 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10007 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10008 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10009 pipe_config->gmch_pfit.control,
10010 pipe_config->gmch_pfit.pgm_ratios,
10011 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10012 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10013 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10014 pipe_config->pch_pfit.size,
10015 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10016 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10017 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10018}
10019
bc079e8b
VS
10020static bool encoders_cloneable(const struct intel_encoder *a,
10021 const struct intel_encoder *b)
accfc0c5 10022{
bc079e8b
VS
10023 /* masks could be asymmetric, so check both ways */
10024 return a == b || (a->cloneable & (1 << b->type) &&
10025 b->cloneable & (1 << a->type));
10026}
10027
10028static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10029 struct intel_encoder *encoder)
10030{
10031 struct drm_device *dev = crtc->base.dev;
10032 struct intel_encoder *source_encoder;
10033
10034 list_for_each_entry(source_encoder,
10035 &dev->mode_config.encoder_list, base.head) {
10036 if (source_encoder->new_crtc != crtc)
10037 continue;
10038
10039 if (!encoders_cloneable(encoder, source_encoder))
10040 return false;
10041 }
10042
10043 return true;
10044}
10045
10046static bool check_encoder_cloning(struct intel_crtc *crtc)
10047{
10048 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10049 struct intel_encoder *encoder;
10050
bc079e8b
VS
10051 list_for_each_entry(encoder,
10052 &dev->mode_config.encoder_list, base.head) {
10053 if (encoder->new_crtc != crtc)
accfc0c5
DV
10054 continue;
10055
bc079e8b
VS
10056 if (!check_single_encoder_cloning(crtc, encoder))
10057 return false;
accfc0c5
DV
10058 }
10059
bc079e8b 10060 return true;
accfc0c5
DV
10061}
10062
b8cecdf5
DV
10063static struct intel_crtc_config *
10064intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10065 struct drm_framebuffer *fb,
b8cecdf5 10066 struct drm_display_mode *mode)
ee7b9f93 10067{
7758a113 10068 struct drm_device *dev = crtc->dev;
7758a113 10069 struct intel_encoder *encoder;
b8cecdf5 10070 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10071 int plane_bpp, ret = -EINVAL;
10072 bool retry = true;
ee7b9f93 10073
bc079e8b 10074 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10075 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10076 return ERR_PTR(-EINVAL);
10077 }
10078
b8cecdf5
DV
10079 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10080 if (!pipe_config)
7758a113
DV
10081 return ERR_PTR(-ENOMEM);
10082
b8cecdf5
DV
10083 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10084 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10085
e143a21c
DV
10086 pipe_config->cpu_transcoder =
10087 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10088 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10089
2960bc9c
ID
10090 /*
10091 * Sanitize sync polarity flags based on requested ones. If neither
10092 * positive or negative polarity is requested, treat this as meaning
10093 * negative polarity.
10094 */
10095 if (!(pipe_config->adjusted_mode.flags &
10096 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10097 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10098
10099 if (!(pipe_config->adjusted_mode.flags &
10100 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10101 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10102
050f7aeb
DV
10103 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10104 * plane pixel format and any sink constraints into account. Returns the
10105 * source plane bpp so that dithering can be selected on mismatches
10106 * after encoders and crtc also have had their say. */
10107 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10108 fb, pipe_config);
4e53c2e0
DV
10109 if (plane_bpp < 0)
10110 goto fail;
10111
e41a56be
VS
10112 /*
10113 * Determine the real pipe dimensions. Note that stereo modes can
10114 * increase the actual pipe size due to the frame doubling and
10115 * insertion of additional space for blanks between the frame. This
10116 * is stored in the crtc timings. We use the requested mode to do this
10117 * computation to clearly distinguish it from the adjusted mode, which
10118 * can be changed by the connectors in the below retry loop.
10119 */
10120 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10121 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10122 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10123
e29c22c0 10124encoder_retry:
ef1b460d 10125 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10126 pipe_config->port_clock = 0;
ef1b460d 10127 pipe_config->pixel_multiplier = 1;
ff9a6750 10128
135c81b8 10129 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10130 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10131
7758a113
DV
10132 /* Pass our mode to the connectors and the CRTC to give them a chance to
10133 * adjust it according to limitations or connector properties, and also
10134 * a chance to reject the mode entirely.
47f1c6c9 10135 */
7758a113
DV
10136 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10137 base.head) {
47f1c6c9 10138
7758a113
DV
10139 if (&encoder->new_crtc->base != crtc)
10140 continue;
7ae89233 10141
efea6e8e
DV
10142 if (!(encoder->compute_config(encoder, pipe_config))) {
10143 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10144 goto fail;
10145 }
ee7b9f93 10146 }
47f1c6c9 10147
ff9a6750
DV
10148 /* Set default port clock if not overwritten by the encoder. Needs to be
10149 * done afterwards in case the encoder adjusts the mode. */
10150 if (!pipe_config->port_clock)
241bfc38
DL
10151 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10152 * pipe_config->pixel_multiplier;
ff9a6750 10153
a43f6e0f 10154 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10155 if (ret < 0) {
7758a113
DV
10156 DRM_DEBUG_KMS("CRTC fixup failed\n");
10157 goto fail;
ee7b9f93 10158 }
e29c22c0
DV
10159
10160 if (ret == RETRY) {
10161 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10162 ret = -EINVAL;
10163 goto fail;
10164 }
10165
10166 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10167 retry = false;
10168 goto encoder_retry;
10169 }
10170
4e53c2e0
DV
10171 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10172 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10173 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10174
b8cecdf5 10175 return pipe_config;
7758a113 10176fail:
b8cecdf5 10177 kfree(pipe_config);
e29c22c0 10178 return ERR_PTR(ret);
ee7b9f93 10179}
47f1c6c9 10180
e2e1ed41
DV
10181/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10182 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10183static void
10184intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10185 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10186{
10187 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10188 struct drm_device *dev = crtc->dev;
10189 struct intel_encoder *encoder;
10190 struct intel_connector *connector;
10191 struct drm_crtc *tmp_crtc;
79e53945 10192
e2e1ed41 10193 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10194
e2e1ed41
DV
10195 /* Check which crtcs have changed outputs connected to them, these need
10196 * to be part of the prepare_pipes mask. We don't (yet) support global
10197 * modeset across multiple crtcs, so modeset_pipes will only have one
10198 * bit set at most. */
10199 list_for_each_entry(connector, &dev->mode_config.connector_list,
10200 base.head) {
10201 if (connector->base.encoder == &connector->new_encoder->base)
10202 continue;
79e53945 10203
e2e1ed41
DV
10204 if (connector->base.encoder) {
10205 tmp_crtc = connector->base.encoder->crtc;
10206
10207 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10208 }
10209
10210 if (connector->new_encoder)
10211 *prepare_pipes |=
10212 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10213 }
10214
e2e1ed41
DV
10215 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10216 base.head) {
10217 if (encoder->base.crtc == &encoder->new_crtc->base)
10218 continue;
10219
10220 if (encoder->base.crtc) {
10221 tmp_crtc = encoder->base.crtc;
10222
10223 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10224 }
10225
10226 if (encoder->new_crtc)
10227 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10228 }
10229
7668851f 10230 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10231 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10232 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10233 continue;
7e7d76c3 10234
7668851f 10235 if (!intel_crtc->new_enabled)
e2e1ed41 10236 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10237 else
10238 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10239 }
10240
e2e1ed41
DV
10241
10242 /* set_mode is also used to update properties on life display pipes. */
10243 intel_crtc = to_intel_crtc(crtc);
7668851f 10244 if (intel_crtc->new_enabled)
e2e1ed41
DV
10245 *prepare_pipes |= 1 << intel_crtc->pipe;
10246
b6c5164d
DV
10247 /*
10248 * For simplicity do a full modeset on any pipe where the output routing
10249 * changed. We could be more clever, but that would require us to be
10250 * more careful with calling the relevant encoder->mode_set functions.
10251 */
e2e1ed41
DV
10252 if (*prepare_pipes)
10253 *modeset_pipes = *prepare_pipes;
10254
10255 /* ... and mask these out. */
10256 *modeset_pipes &= ~(*disable_pipes);
10257 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10258
10259 /*
10260 * HACK: We don't (yet) fully support global modesets. intel_set_config
10261 * obies this rule, but the modeset restore mode of
10262 * intel_modeset_setup_hw_state does not.
10263 */
10264 *modeset_pipes &= 1 << intel_crtc->pipe;
10265 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10266
10267 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10268 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10269}
79e53945 10270
ea9d758d 10271static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10272{
ea9d758d 10273 struct drm_encoder *encoder;
f6e5b160 10274 struct drm_device *dev = crtc->dev;
f6e5b160 10275
ea9d758d
DV
10276 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10277 if (encoder->crtc == crtc)
10278 return true;
10279
10280 return false;
10281}
10282
10283static void
10284intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10285{
10286 struct intel_encoder *intel_encoder;
10287 struct intel_crtc *intel_crtc;
10288 struct drm_connector *connector;
10289
10290 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10291 base.head) {
10292 if (!intel_encoder->base.crtc)
10293 continue;
10294
10295 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10296
10297 if (prepare_pipes & (1 << intel_crtc->pipe))
10298 intel_encoder->connectors_active = false;
10299 }
10300
10301 intel_modeset_commit_output_state(dev);
10302
7668851f 10303 /* Double check state. */
d3fcc808 10304 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10305 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10306 WARN_ON(intel_crtc->new_config &&
10307 intel_crtc->new_config != &intel_crtc->config);
10308 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10309 }
10310
10311 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10312 if (!connector->encoder || !connector->encoder->crtc)
10313 continue;
10314
10315 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10316
10317 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10318 struct drm_property *dpms_property =
10319 dev->mode_config.dpms_property;
10320
ea9d758d 10321 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10322 drm_object_property_set_value(&connector->base,
68d34720
DV
10323 dpms_property,
10324 DRM_MODE_DPMS_ON);
ea9d758d
DV
10325
10326 intel_encoder = to_intel_encoder(connector->encoder);
10327 intel_encoder->connectors_active = true;
10328 }
10329 }
10330
10331}
10332
3bd26263 10333static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10334{
3bd26263 10335 int diff;
f1f644dc
JB
10336
10337 if (clock1 == clock2)
10338 return true;
10339
10340 if (!clock1 || !clock2)
10341 return false;
10342
10343 diff = abs(clock1 - clock2);
10344
10345 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10346 return true;
10347
10348 return false;
10349}
10350
25c5b266
DV
10351#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10352 list_for_each_entry((intel_crtc), \
10353 &(dev)->mode_config.crtc_list, \
10354 base.head) \
0973f18f 10355 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10356
0e8ffe1b 10357static bool
2fa2fe9a
DV
10358intel_pipe_config_compare(struct drm_device *dev,
10359 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10360 struct intel_crtc_config *pipe_config)
10361{
66e985c0
DV
10362#define PIPE_CONF_CHECK_X(name) \
10363 if (current_config->name != pipe_config->name) { \
10364 DRM_ERROR("mismatch in " #name " " \
10365 "(expected 0x%08x, found 0x%08x)\n", \
10366 current_config->name, \
10367 pipe_config->name); \
10368 return false; \
10369 }
10370
08a24034
DV
10371#define PIPE_CONF_CHECK_I(name) \
10372 if (current_config->name != pipe_config->name) { \
10373 DRM_ERROR("mismatch in " #name " " \
10374 "(expected %i, found %i)\n", \
10375 current_config->name, \
10376 pipe_config->name); \
10377 return false; \
88adfff1
DV
10378 }
10379
1bd1bd80
DV
10380#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10381 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10382 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10383 "(expected %i, found %i)\n", \
10384 current_config->name & (mask), \
10385 pipe_config->name & (mask)); \
10386 return false; \
10387 }
10388
5e550656
VS
10389#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10390 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10391 DRM_ERROR("mismatch in " #name " " \
10392 "(expected %i, found %i)\n", \
10393 current_config->name, \
10394 pipe_config->name); \
10395 return false; \
10396 }
10397
bb760063
DV
10398#define PIPE_CONF_QUIRK(quirk) \
10399 ((current_config->quirks | pipe_config->quirks) & (quirk))
10400
eccb140b
DV
10401 PIPE_CONF_CHECK_I(cpu_transcoder);
10402
08a24034
DV
10403 PIPE_CONF_CHECK_I(has_pch_encoder);
10404 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10405 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10406 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10407 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10408 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10409 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10410
eb14cb74
VS
10411 PIPE_CONF_CHECK_I(has_dp_encoder);
10412 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10413 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10414 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10415 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10416 PIPE_CONF_CHECK_I(dp_m_n.tu);
10417
1bd1bd80
DV
10418 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10419 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10420 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10421 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10422 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10423 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10424
10425 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10426 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10427 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10428 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10429 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10430 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10431
c93f54cf 10432 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10433 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10434 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10435 IS_VALLEYVIEW(dev))
10436 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10437
9ed109a7
DV
10438 PIPE_CONF_CHECK_I(has_audio);
10439
1bd1bd80
DV
10440 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10441 DRM_MODE_FLAG_INTERLACE);
10442
bb760063
DV
10443 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10444 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10445 DRM_MODE_FLAG_PHSYNC);
10446 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10447 DRM_MODE_FLAG_NHSYNC);
10448 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10449 DRM_MODE_FLAG_PVSYNC);
10450 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10451 DRM_MODE_FLAG_NVSYNC);
10452 }
045ac3b5 10453
37327abd
VS
10454 PIPE_CONF_CHECK_I(pipe_src_w);
10455 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10456
9953599b
DV
10457 /*
10458 * FIXME: BIOS likes to set up a cloned config with lvds+external
10459 * screen. Since we don't yet re-compute the pipe config when moving
10460 * just the lvds port away to another pipe the sw tracking won't match.
10461 *
10462 * Proper atomic modesets with recomputed global state will fix this.
10463 * Until then just don't check gmch state for inherited modes.
10464 */
10465 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10466 PIPE_CONF_CHECK_I(gmch_pfit.control);
10467 /* pfit ratios are autocomputed by the hw on gen4+ */
10468 if (INTEL_INFO(dev)->gen < 4)
10469 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10470 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10471 }
10472
fd4daa9c
CW
10473 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10474 if (current_config->pch_pfit.enabled) {
10475 PIPE_CONF_CHECK_I(pch_pfit.pos);
10476 PIPE_CONF_CHECK_I(pch_pfit.size);
10477 }
2fa2fe9a 10478
e59150dc
JB
10479 /* BDW+ don't expose a synchronous way to read the state */
10480 if (IS_HASWELL(dev))
10481 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10482
282740f7
VS
10483 PIPE_CONF_CHECK_I(double_wide);
10484
26804afd
DV
10485 PIPE_CONF_CHECK_X(ddi_pll_sel);
10486
c0d43d62 10487 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10488 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10489 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10490 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10491 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10492 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10493
42571aef
VS
10494 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10495 PIPE_CONF_CHECK_I(pipe_bpp);
10496
a9a7e98a
JB
10497 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10498 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10499
66e985c0 10500#undef PIPE_CONF_CHECK_X
08a24034 10501#undef PIPE_CONF_CHECK_I
1bd1bd80 10502#undef PIPE_CONF_CHECK_FLAGS
5e550656 10503#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10504#undef PIPE_CONF_QUIRK
88adfff1 10505
0e8ffe1b
DV
10506 return true;
10507}
10508
91d1b4bd
DV
10509static void
10510check_connector_state(struct drm_device *dev)
8af6cf88 10511{
8af6cf88
DV
10512 struct intel_connector *connector;
10513
10514 list_for_each_entry(connector, &dev->mode_config.connector_list,
10515 base.head) {
10516 /* This also checks the encoder/connector hw state with the
10517 * ->get_hw_state callbacks. */
10518 intel_connector_check_state(connector);
10519
10520 WARN(&connector->new_encoder->base != connector->base.encoder,
10521 "connector's staged encoder doesn't match current encoder\n");
10522 }
91d1b4bd
DV
10523}
10524
10525static void
10526check_encoder_state(struct drm_device *dev)
10527{
10528 struct intel_encoder *encoder;
10529 struct intel_connector *connector;
8af6cf88
DV
10530
10531 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10532 base.head) {
10533 bool enabled = false;
10534 bool active = false;
10535 enum pipe pipe, tracked_pipe;
10536
10537 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10538 encoder->base.base.id,
8e329a03 10539 encoder->base.name);
8af6cf88
DV
10540
10541 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10542 "encoder's stage crtc doesn't match current crtc\n");
10543 WARN(encoder->connectors_active && !encoder->base.crtc,
10544 "encoder's active_connectors set, but no crtc\n");
10545
10546 list_for_each_entry(connector, &dev->mode_config.connector_list,
10547 base.head) {
10548 if (connector->base.encoder != &encoder->base)
10549 continue;
10550 enabled = true;
10551 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10552 active = true;
10553 }
0e32b39c
DA
10554 /*
10555 * for MST connectors if we unplug the connector is gone
10556 * away but the encoder is still connected to a crtc
10557 * until a modeset happens in response to the hotplug.
10558 */
10559 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10560 continue;
10561
8af6cf88
DV
10562 WARN(!!encoder->base.crtc != enabled,
10563 "encoder's enabled state mismatch "
10564 "(expected %i, found %i)\n",
10565 !!encoder->base.crtc, enabled);
10566 WARN(active && !encoder->base.crtc,
10567 "active encoder with no crtc\n");
10568
10569 WARN(encoder->connectors_active != active,
10570 "encoder's computed active state doesn't match tracked active state "
10571 "(expected %i, found %i)\n", active, encoder->connectors_active);
10572
10573 active = encoder->get_hw_state(encoder, &pipe);
10574 WARN(active != encoder->connectors_active,
10575 "encoder's hw state doesn't match sw tracking "
10576 "(expected %i, found %i)\n",
10577 encoder->connectors_active, active);
10578
10579 if (!encoder->base.crtc)
10580 continue;
10581
10582 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10583 WARN(active && pipe != tracked_pipe,
10584 "active encoder's pipe doesn't match"
10585 "(expected %i, found %i)\n",
10586 tracked_pipe, pipe);
10587
10588 }
91d1b4bd
DV
10589}
10590
10591static void
10592check_crtc_state(struct drm_device *dev)
10593{
fbee40df 10594 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10595 struct intel_crtc *crtc;
10596 struct intel_encoder *encoder;
10597 struct intel_crtc_config pipe_config;
8af6cf88 10598
d3fcc808 10599 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10600 bool enabled = false;
10601 bool active = false;
10602
045ac3b5
JB
10603 memset(&pipe_config, 0, sizeof(pipe_config));
10604
8af6cf88
DV
10605 DRM_DEBUG_KMS("[CRTC:%d]\n",
10606 crtc->base.base.id);
10607
10608 WARN(crtc->active && !crtc->base.enabled,
10609 "active crtc, but not enabled in sw tracking\n");
10610
10611 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10612 base.head) {
10613 if (encoder->base.crtc != &crtc->base)
10614 continue;
10615 enabled = true;
10616 if (encoder->connectors_active)
10617 active = true;
10618 }
6c49f241 10619
8af6cf88
DV
10620 WARN(active != crtc->active,
10621 "crtc's computed active state doesn't match tracked active state "
10622 "(expected %i, found %i)\n", active, crtc->active);
10623 WARN(enabled != crtc->base.enabled,
10624 "crtc's computed enabled state doesn't match tracked enabled state "
10625 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10626
0e8ffe1b
DV
10627 active = dev_priv->display.get_pipe_config(crtc,
10628 &pipe_config);
d62cf62a
DV
10629
10630 /* hw state is inconsistent with the pipe A quirk */
10631 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10632 active = crtc->active;
10633
6c49f241
DV
10634 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10635 base.head) {
3eaba51c 10636 enum pipe pipe;
6c49f241
DV
10637 if (encoder->base.crtc != &crtc->base)
10638 continue;
1d37b689 10639 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10640 encoder->get_config(encoder, &pipe_config);
10641 }
10642
0e8ffe1b
DV
10643 WARN(crtc->active != active,
10644 "crtc active state doesn't match with hw state "
10645 "(expected %i, found %i)\n", crtc->active, active);
10646
c0b03411
DV
10647 if (active &&
10648 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10649 WARN(1, "pipe state doesn't match!\n");
10650 intel_dump_pipe_config(crtc, &pipe_config,
10651 "[hw state]");
10652 intel_dump_pipe_config(crtc, &crtc->config,
10653 "[sw state]");
10654 }
8af6cf88
DV
10655 }
10656}
10657
91d1b4bd
DV
10658static void
10659check_shared_dpll_state(struct drm_device *dev)
10660{
fbee40df 10661 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10662 struct intel_crtc *crtc;
10663 struct intel_dpll_hw_state dpll_hw_state;
10664 int i;
5358901f
DV
10665
10666 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10667 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10668 int enabled_crtcs = 0, active_crtcs = 0;
10669 bool active;
10670
10671 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10672
10673 DRM_DEBUG_KMS("%s\n", pll->name);
10674
10675 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10676
10677 WARN(pll->active > pll->refcount,
10678 "more active pll users than references: %i vs %i\n",
10679 pll->active, pll->refcount);
10680 WARN(pll->active && !pll->on,
10681 "pll in active use but not on in sw tracking\n");
35c95375
DV
10682 WARN(pll->on && !pll->active,
10683 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10684 WARN(pll->on != active,
10685 "pll on state mismatch (expected %i, found %i)\n",
10686 pll->on, active);
10687
d3fcc808 10688 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10689 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10690 enabled_crtcs++;
10691 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10692 active_crtcs++;
10693 }
10694 WARN(pll->active != active_crtcs,
10695 "pll active crtcs mismatch (expected %i, found %i)\n",
10696 pll->active, active_crtcs);
10697 WARN(pll->refcount != enabled_crtcs,
10698 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10699 pll->refcount, enabled_crtcs);
66e985c0
DV
10700
10701 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10702 sizeof(dpll_hw_state)),
10703 "pll hw state mismatch\n");
5358901f 10704 }
8af6cf88
DV
10705}
10706
91d1b4bd
DV
10707void
10708intel_modeset_check_state(struct drm_device *dev)
10709{
10710 check_connector_state(dev);
10711 check_encoder_state(dev);
10712 check_crtc_state(dev);
10713 check_shared_dpll_state(dev);
10714}
10715
18442d08
VS
10716void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10717 int dotclock)
10718{
10719 /*
10720 * FDI already provided one idea for the dotclock.
10721 * Yell if the encoder disagrees.
10722 */
241bfc38 10723 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10724 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10725 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10726}
10727
80715b2f
VS
10728static void update_scanline_offset(struct intel_crtc *crtc)
10729{
10730 struct drm_device *dev = crtc->base.dev;
10731
10732 /*
10733 * The scanline counter increments at the leading edge of hsync.
10734 *
10735 * On most platforms it starts counting from vtotal-1 on the
10736 * first active line. That means the scanline counter value is
10737 * always one less than what we would expect. Ie. just after
10738 * start of vblank, which also occurs at start of hsync (on the
10739 * last active line), the scanline counter will read vblank_start-1.
10740 *
10741 * On gen2 the scanline counter starts counting from 1 instead
10742 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10743 * to keep the value positive), instead of adding one.
10744 *
10745 * On HSW+ the behaviour of the scanline counter depends on the output
10746 * type. For DP ports it behaves like most other platforms, but on HDMI
10747 * there's an extra 1 line difference. So we need to add two instead of
10748 * one to the value.
10749 */
10750 if (IS_GEN2(dev)) {
10751 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10752 int vtotal;
10753
10754 vtotal = mode->crtc_vtotal;
10755 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10756 vtotal /= 2;
10757
10758 crtc->scanline_offset = vtotal - 1;
10759 } else if (HAS_DDI(dev) &&
10760 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10761 crtc->scanline_offset = 2;
10762 } else
10763 crtc->scanline_offset = 1;
10764}
10765
f30da187
DV
10766static int __intel_set_mode(struct drm_crtc *crtc,
10767 struct drm_display_mode *mode,
10768 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10769{
10770 struct drm_device *dev = crtc->dev;
fbee40df 10771 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10772 struct drm_display_mode *saved_mode;
b8cecdf5 10773 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10774 struct intel_crtc *intel_crtc;
10775 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10776 int ret = 0;
a6778b3c 10777
4b4b9238 10778 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10779 if (!saved_mode)
10780 return -ENOMEM;
a6778b3c 10781
e2e1ed41 10782 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10783 &prepare_pipes, &disable_pipes);
10784
3ac18232 10785 *saved_mode = crtc->mode;
a6778b3c 10786
25c5b266
DV
10787 /* Hack: Because we don't (yet) support global modeset on multiple
10788 * crtcs, we don't keep track of the new mode for more than one crtc.
10789 * Hence simply check whether any bit is set in modeset_pipes in all the
10790 * pieces of code that are not yet converted to deal with mutliple crtcs
10791 * changing their mode at the same time. */
25c5b266 10792 if (modeset_pipes) {
4e53c2e0 10793 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10794 if (IS_ERR(pipe_config)) {
10795 ret = PTR_ERR(pipe_config);
10796 pipe_config = NULL;
10797
3ac18232 10798 goto out;
25c5b266 10799 }
c0b03411
DV
10800 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10801 "[modeset]");
50741abc 10802 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10803 }
a6778b3c 10804
30a970c6
JB
10805 /*
10806 * See if the config requires any additional preparation, e.g.
10807 * to adjust global state with pipes off. We need to do this
10808 * here so we can get the modeset_pipe updated config for the new
10809 * mode set on this crtc. For other crtcs we need to use the
10810 * adjusted_mode bits in the crtc directly.
10811 */
c164f833 10812 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10813 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10814
c164f833
VS
10815 /* may have added more to prepare_pipes than we should */
10816 prepare_pipes &= ~disable_pipes;
10817 }
10818
460da916
DV
10819 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10820 intel_crtc_disable(&intel_crtc->base);
10821
ea9d758d
DV
10822 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10823 if (intel_crtc->base.enabled)
10824 dev_priv->display.crtc_disable(&intel_crtc->base);
10825 }
a6778b3c 10826
6c4c86f5
DV
10827 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10828 * to set it here already despite that we pass it down the callchain.
f6e5b160 10829 */
b8cecdf5 10830 if (modeset_pipes) {
25c5b266 10831 crtc->mode = *mode;
b8cecdf5
DV
10832 /* mode_set/enable/disable functions rely on a correct pipe
10833 * config. */
10834 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10835 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10836
10837 /*
10838 * Calculate and store various constants which
10839 * are later needed by vblank and swap-completion
10840 * timestamping. They are derived from true hwmode.
10841 */
10842 drm_calc_timestamping_constants(crtc,
10843 &pipe_config->adjusted_mode);
b8cecdf5 10844 }
7758a113 10845
ea9d758d
DV
10846 /* Only after disabling all output pipelines that will be changed can we
10847 * update the the output configuration. */
10848 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10849
47fab737
DV
10850 if (dev_priv->display.modeset_global_resources)
10851 dev_priv->display.modeset_global_resources(dev);
10852
a6778b3c
DV
10853 /* Set up the DPLL and any encoders state that needs to adjust or depend
10854 * on the DPLL.
f6e5b160 10855 */
25c5b266 10856 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10857 struct drm_framebuffer *old_fb = crtc->primary->fb;
10858 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10859 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10860
10861 mutex_lock(&dev->struct_mutex);
10862 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10863 obj,
4c10794f
DV
10864 NULL);
10865 if (ret != 0) {
10866 DRM_ERROR("pin & fence failed\n");
10867 mutex_unlock(&dev->struct_mutex);
10868 goto done;
10869 }
2ff8fde1 10870 if (old_fb)
a071fa00 10871 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10872 i915_gem_track_fb(old_obj, obj,
10873 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10874 mutex_unlock(&dev->struct_mutex);
10875
10876 crtc->primary->fb = fb;
10877 crtc->x = x;
10878 crtc->y = y;
10879
4271b753
DV
10880 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10881 x, y, fb);
c0c36b94
CW
10882 if (ret)
10883 goto done;
a6778b3c
DV
10884 }
10885
10886 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10887 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10888 update_scanline_offset(intel_crtc);
10889
25c5b266 10890 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10891 }
a6778b3c 10892
a6778b3c
DV
10893 /* FIXME: add subpixel order */
10894done:
4b4b9238 10895 if (ret && crtc->enabled)
3ac18232 10896 crtc->mode = *saved_mode;
a6778b3c 10897
3ac18232 10898out:
b8cecdf5 10899 kfree(pipe_config);
3ac18232 10900 kfree(saved_mode);
a6778b3c 10901 return ret;
f6e5b160
CW
10902}
10903
e7457a9a
DL
10904static int intel_set_mode(struct drm_crtc *crtc,
10905 struct drm_display_mode *mode,
10906 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10907{
10908 int ret;
10909
10910 ret = __intel_set_mode(crtc, mode, x, y, fb);
10911
10912 if (ret == 0)
10913 intel_modeset_check_state(crtc->dev);
10914
10915 return ret;
10916}
10917
c0c36b94
CW
10918void intel_crtc_restore_mode(struct drm_crtc *crtc)
10919{
f4510a27 10920 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10921}
10922
25c5b266
DV
10923#undef for_each_intel_crtc_masked
10924
d9e55608
DV
10925static void intel_set_config_free(struct intel_set_config *config)
10926{
10927 if (!config)
10928 return;
10929
1aa4b628
DV
10930 kfree(config->save_connector_encoders);
10931 kfree(config->save_encoder_crtcs);
7668851f 10932 kfree(config->save_crtc_enabled);
d9e55608
DV
10933 kfree(config);
10934}
10935
85f9eb71
DV
10936static int intel_set_config_save_state(struct drm_device *dev,
10937 struct intel_set_config *config)
10938{
7668851f 10939 struct drm_crtc *crtc;
85f9eb71
DV
10940 struct drm_encoder *encoder;
10941 struct drm_connector *connector;
10942 int count;
10943
7668851f
VS
10944 config->save_crtc_enabled =
10945 kcalloc(dev->mode_config.num_crtc,
10946 sizeof(bool), GFP_KERNEL);
10947 if (!config->save_crtc_enabled)
10948 return -ENOMEM;
10949
1aa4b628
DV
10950 config->save_encoder_crtcs =
10951 kcalloc(dev->mode_config.num_encoder,
10952 sizeof(struct drm_crtc *), GFP_KERNEL);
10953 if (!config->save_encoder_crtcs)
85f9eb71
DV
10954 return -ENOMEM;
10955
1aa4b628
DV
10956 config->save_connector_encoders =
10957 kcalloc(dev->mode_config.num_connector,
10958 sizeof(struct drm_encoder *), GFP_KERNEL);
10959 if (!config->save_connector_encoders)
85f9eb71
DV
10960 return -ENOMEM;
10961
10962 /* Copy data. Note that driver private data is not affected.
10963 * Should anything bad happen only the expected state is
10964 * restored, not the drivers personal bookkeeping.
10965 */
7668851f 10966 count = 0;
70e1e0ec 10967 for_each_crtc(dev, crtc) {
7668851f
VS
10968 config->save_crtc_enabled[count++] = crtc->enabled;
10969 }
10970
85f9eb71
DV
10971 count = 0;
10972 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10973 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10974 }
10975
10976 count = 0;
10977 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10978 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10979 }
10980
10981 return 0;
10982}
10983
10984static void intel_set_config_restore_state(struct drm_device *dev,
10985 struct intel_set_config *config)
10986{
7668851f 10987 struct intel_crtc *crtc;
9a935856
DV
10988 struct intel_encoder *encoder;
10989 struct intel_connector *connector;
85f9eb71
DV
10990 int count;
10991
7668851f 10992 count = 0;
d3fcc808 10993 for_each_intel_crtc(dev, crtc) {
7668851f 10994 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10995
10996 if (crtc->new_enabled)
10997 crtc->new_config = &crtc->config;
10998 else
10999 crtc->new_config = NULL;
7668851f
VS
11000 }
11001
85f9eb71 11002 count = 0;
9a935856
DV
11003 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11004 encoder->new_crtc =
11005 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11006 }
11007
11008 count = 0;
9a935856
DV
11009 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11010 connector->new_encoder =
11011 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11012 }
11013}
11014
e3de42b6 11015static bool
2e57f47d 11016is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11017{
11018 int i;
11019
2e57f47d
CW
11020 if (set->num_connectors == 0)
11021 return false;
11022
11023 if (WARN_ON(set->connectors == NULL))
11024 return false;
11025
11026 for (i = 0; i < set->num_connectors; i++)
11027 if (set->connectors[i]->encoder &&
11028 set->connectors[i]->encoder->crtc == set->crtc &&
11029 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11030 return true;
11031
11032 return false;
11033}
11034
5e2b584e
DV
11035static void
11036intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11037 struct intel_set_config *config)
11038{
11039
11040 /* We should be able to check here if the fb has the same properties
11041 * and then just flip_or_move it */
2e57f47d
CW
11042 if (is_crtc_connector_off(set)) {
11043 config->mode_changed = true;
f4510a27 11044 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11045 /*
11046 * If we have no fb, we can only flip as long as the crtc is
11047 * active, otherwise we need a full mode set. The crtc may
11048 * be active if we've only disabled the primary plane, or
11049 * in fastboot situations.
11050 */
f4510a27 11051 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11052 struct intel_crtc *intel_crtc =
11053 to_intel_crtc(set->crtc);
11054
3b150f08 11055 if (intel_crtc->active) {
319d9827
JB
11056 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11057 config->fb_changed = true;
11058 } else {
11059 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11060 config->mode_changed = true;
11061 }
5e2b584e
DV
11062 } else if (set->fb == NULL) {
11063 config->mode_changed = true;
72f4901e 11064 } else if (set->fb->pixel_format !=
f4510a27 11065 set->crtc->primary->fb->pixel_format) {
5e2b584e 11066 config->mode_changed = true;
e3de42b6 11067 } else {
5e2b584e 11068 config->fb_changed = true;
e3de42b6 11069 }
5e2b584e
DV
11070 }
11071
835c5873 11072 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11073 config->fb_changed = true;
11074
11075 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11076 DRM_DEBUG_KMS("modes are different, full mode set\n");
11077 drm_mode_debug_printmodeline(&set->crtc->mode);
11078 drm_mode_debug_printmodeline(set->mode);
11079 config->mode_changed = true;
11080 }
a1d95703
CW
11081
11082 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11083 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11084}
11085
2e431051 11086static int
9a935856
DV
11087intel_modeset_stage_output_state(struct drm_device *dev,
11088 struct drm_mode_set *set,
11089 struct intel_set_config *config)
50f56119 11090{
9a935856
DV
11091 struct intel_connector *connector;
11092 struct intel_encoder *encoder;
7668851f 11093 struct intel_crtc *crtc;
f3f08572 11094 int ro;
50f56119 11095
9abdda74 11096 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11097 * of connectors. For paranoia, double-check this. */
11098 WARN_ON(!set->fb && (set->num_connectors != 0));
11099 WARN_ON(set->fb && (set->num_connectors == 0));
11100
9a935856
DV
11101 list_for_each_entry(connector, &dev->mode_config.connector_list,
11102 base.head) {
11103 /* Otherwise traverse passed in connector list and get encoders
11104 * for them. */
50f56119 11105 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11106 if (set->connectors[ro] == &connector->base) {
0e32b39c 11107 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11108 break;
11109 }
11110 }
11111
9a935856
DV
11112 /* If we disable the crtc, disable all its connectors. Also, if
11113 * the connector is on the changing crtc but not on the new
11114 * connector list, disable it. */
11115 if ((!set->fb || ro == set->num_connectors) &&
11116 connector->base.encoder &&
11117 connector->base.encoder->crtc == set->crtc) {
11118 connector->new_encoder = NULL;
11119
11120 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11121 connector->base.base.id,
c23cc417 11122 connector->base.name);
9a935856
DV
11123 }
11124
11125
11126 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11127 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11128 config->mode_changed = true;
50f56119
DV
11129 }
11130 }
9a935856 11131 /* connector->new_encoder is now updated for all connectors. */
50f56119 11132
9a935856 11133 /* Update crtc of enabled connectors. */
9a935856
DV
11134 list_for_each_entry(connector, &dev->mode_config.connector_list,
11135 base.head) {
7668851f
VS
11136 struct drm_crtc *new_crtc;
11137
9a935856 11138 if (!connector->new_encoder)
50f56119
DV
11139 continue;
11140
9a935856 11141 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11142
11143 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11144 if (set->connectors[ro] == &connector->base)
50f56119
DV
11145 new_crtc = set->crtc;
11146 }
11147
11148 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11149 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11150 new_crtc)) {
5e2b584e 11151 return -EINVAL;
50f56119 11152 }
0e32b39c 11153 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11154
11155 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11156 connector->base.base.id,
c23cc417 11157 connector->base.name,
9a935856
DV
11158 new_crtc->base.id);
11159 }
11160
11161 /* Check for any encoders that needs to be disabled. */
11162 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11163 base.head) {
5a65f358 11164 int num_connectors = 0;
9a935856
DV
11165 list_for_each_entry(connector,
11166 &dev->mode_config.connector_list,
11167 base.head) {
11168 if (connector->new_encoder == encoder) {
11169 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11170 num_connectors++;
9a935856
DV
11171 }
11172 }
5a65f358
PZ
11173
11174 if (num_connectors == 0)
11175 encoder->new_crtc = NULL;
11176 else if (num_connectors > 1)
11177 return -EINVAL;
11178
9a935856
DV
11179 /* Only now check for crtc changes so we don't miss encoders
11180 * that will be disabled. */
11181 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11182 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11183 config->mode_changed = true;
50f56119
DV
11184 }
11185 }
9a935856 11186 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11187 list_for_each_entry(connector, &dev->mode_config.connector_list,
11188 base.head) {
11189 if (connector->new_encoder)
11190 if (connector->new_encoder != connector->encoder)
11191 connector->encoder = connector->new_encoder;
11192 }
d3fcc808 11193 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11194 crtc->new_enabled = false;
11195
11196 list_for_each_entry(encoder,
11197 &dev->mode_config.encoder_list,
11198 base.head) {
11199 if (encoder->new_crtc == crtc) {
11200 crtc->new_enabled = true;
11201 break;
11202 }
11203 }
11204
11205 if (crtc->new_enabled != crtc->base.enabled) {
11206 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11207 crtc->new_enabled ? "en" : "dis");
11208 config->mode_changed = true;
11209 }
7bd0a8e7
VS
11210
11211 if (crtc->new_enabled)
11212 crtc->new_config = &crtc->config;
11213 else
11214 crtc->new_config = NULL;
7668851f
VS
11215 }
11216
2e431051
DV
11217 return 0;
11218}
11219
7d00a1f5
VS
11220static void disable_crtc_nofb(struct intel_crtc *crtc)
11221{
11222 struct drm_device *dev = crtc->base.dev;
11223 struct intel_encoder *encoder;
11224 struct intel_connector *connector;
11225
11226 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11227 pipe_name(crtc->pipe));
11228
11229 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11230 if (connector->new_encoder &&
11231 connector->new_encoder->new_crtc == crtc)
11232 connector->new_encoder = NULL;
11233 }
11234
11235 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11236 if (encoder->new_crtc == crtc)
11237 encoder->new_crtc = NULL;
11238 }
11239
11240 crtc->new_enabled = false;
7bd0a8e7 11241 crtc->new_config = NULL;
7d00a1f5
VS
11242}
11243
2e431051
DV
11244static int intel_crtc_set_config(struct drm_mode_set *set)
11245{
11246 struct drm_device *dev;
2e431051
DV
11247 struct drm_mode_set save_set;
11248 struct intel_set_config *config;
11249 int ret;
2e431051 11250
8d3e375e
DV
11251 BUG_ON(!set);
11252 BUG_ON(!set->crtc);
11253 BUG_ON(!set->crtc->helper_private);
2e431051 11254
7e53f3a4
DV
11255 /* Enforce sane interface api - has been abused by the fb helper. */
11256 BUG_ON(!set->mode && set->fb);
11257 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11258
2e431051
DV
11259 if (set->fb) {
11260 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11261 set->crtc->base.id, set->fb->base.id,
11262 (int)set->num_connectors, set->x, set->y);
11263 } else {
11264 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11265 }
11266
11267 dev = set->crtc->dev;
11268
11269 ret = -ENOMEM;
11270 config = kzalloc(sizeof(*config), GFP_KERNEL);
11271 if (!config)
11272 goto out_config;
11273
11274 ret = intel_set_config_save_state(dev, config);
11275 if (ret)
11276 goto out_config;
11277
11278 save_set.crtc = set->crtc;
11279 save_set.mode = &set->crtc->mode;
11280 save_set.x = set->crtc->x;
11281 save_set.y = set->crtc->y;
f4510a27 11282 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11283
11284 /* Compute whether we need a full modeset, only an fb base update or no
11285 * change at all. In the future we might also check whether only the
11286 * mode changed, e.g. for LVDS where we only change the panel fitter in
11287 * such cases. */
11288 intel_set_config_compute_mode_changes(set, config);
11289
9a935856 11290 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11291 if (ret)
11292 goto fail;
11293
5e2b584e 11294 if (config->mode_changed) {
c0c36b94
CW
11295 ret = intel_set_mode(set->crtc, set->mode,
11296 set->x, set->y, set->fb);
5e2b584e 11297 } else if (config->fb_changed) {
3b150f08
MR
11298 struct drm_i915_private *dev_priv = dev->dev_private;
11299 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11300
4878cae2
VS
11301 intel_crtc_wait_for_pending_flips(set->crtc);
11302
4f660f49 11303 ret = intel_pipe_set_base(set->crtc,
94352cf9 11304 set->x, set->y, set->fb);
3b150f08
MR
11305
11306 /*
11307 * We need to make sure the primary plane is re-enabled if it
11308 * has previously been turned off.
11309 */
11310 if (!intel_crtc->primary_enabled && ret == 0) {
11311 WARN_ON(!intel_crtc->active);
11312 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11313 intel_crtc->pipe);
11314 }
11315
7ca51a3a
JB
11316 /*
11317 * In the fastboot case this may be our only check of the
11318 * state after boot. It would be better to only do it on
11319 * the first update, but we don't have a nice way of doing that
11320 * (and really, set_config isn't used much for high freq page
11321 * flipping, so increasing its cost here shouldn't be a big
11322 * deal).
11323 */
d330a953 11324 if (i915.fastboot && ret == 0)
7ca51a3a 11325 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11326 }
11327
2d05eae1 11328 if (ret) {
bf67dfeb
DV
11329 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11330 set->crtc->base.id, ret);
50f56119 11331fail:
2d05eae1 11332 intel_set_config_restore_state(dev, config);
50f56119 11333
7d00a1f5
VS
11334 /*
11335 * HACK: if the pipe was on, but we didn't have a framebuffer,
11336 * force the pipe off to avoid oopsing in the modeset code
11337 * due to fb==NULL. This should only happen during boot since
11338 * we don't yet reconstruct the FB from the hardware state.
11339 */
11340 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11341 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11342
2d05eae1
CW
11343 /* Try to restore the config */
11344 if (config->mode_changed &&
11345 intel_set_mode(save_set.crtc, save_set.mode,
11346 save_set.x, save_set.y, save_set.fb))
11347 DRM_ERROR("failed to restore config after modeset failure\n");
11348 }
50f56119 11349
d9e55608
DV
11350out_config:
11351 intel_set_config_free(config);
50f56119
DV
11352 return ret;
11353}
f6e5b160
CW
11354
11355static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11356 .gamma_set = intel_crtc_gamma_set,
50f56119 11357 .set_config = intel_crtc_set_config,
f6e5b160
CW
11358 .destroy = intel_crtc_destroy,
11359 .page_flip = intel_crtc_page_flip,
11360};
11361
5358901f
DV
11362static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11363 struct intel_shared_dpll *pll,
11364 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11365{
5358901f 11366 uint32_t val;
ee7b9f93 11367
bd2bb1b9
PZ
11368 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11369 return false;
11370
5358901f 11371 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11372 hw_state->dpll = val;
11373 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11374 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11375
11376 return val & DPLL_VCO_ENABLE;
11377}
11378
15bdd4cf
DV
11379static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11380 struct intel_shared_dpll *pll)
11381{
11382 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11383 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11384}
11385
e7b903d2
DV
11386static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11387 struct intel_shared_dpll *pll)
11388{
e7b903d2 11389 /* PCH refclock must be enabled first */
89eff4be 11390 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11391
15bdd4cf
DV
11392 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11393
11394 /* Wait for the clocks to stabilize. */
11395 POSTING_READ(PCH_DPLL(pll->id));
11396 udelay(150);
11397
11398 /* The pixel multiplier can only be updated once the
11399 * DPLL is enabled and the clocks are stable.
11400 *
11401 * So write it again.
11402 */
11403 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11404 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11405 udelay(200);
11406}
11407
11408static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11409 struct intel_shared_dpll *pll)
11410{
11411 struct drm_device *dev = dev_priv->dev;
11412 struct intel_crtc *crtc;
e7b903d2
DV
11413
11414 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11415 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11416 if (intel_crtc_to_shared_dpll(crtc) == pll)
11417 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11418 }
11419
15bdd4cf
DV
11420 I915_WRITE(PCH_DPLL(pll->id), 0);
11421 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11422 udelay(200);
11423}
11424
46edb027
DV
11425static char *ibx_pch_dpll_names[] = {
11426 "PCH DPLL A",
11427 "PCH DPLL B",
11428};
11429
7c74ade1 11430static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11431{
e7b903d2 11432 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11433 int i;
11434
7c74ade1 11435 dev_priv->num_shared_dpll = 2;
ee7b9f93 11436
e72f9fbf 11437 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11438 dev_priv->shared_dplls[i].id = i;
11439 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11440 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11441 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11442 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11443 dev_priv->shared_dplls[i].get_hw_state =
11444 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11445 }
11446}
11447
7c74ade1
DV
11448static void intel_shared_dpll_init(struct drm_device *dev)
11449{
e7b903d2 11450 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11451
9cd86933
DV
11452 if (HAS_DDI(dev))
11453 intel_ddi_pll_init(dev);
11454 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11455 ibx_pch_dpll_init(dev);
11456 else
11457 dev_priv->num_shared_dpll = 0;
11458
11459 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11460}
11461
465c120c
MR
11462static int
11463intel_primary_plane_disable(struct drm_plane *plane)
11464{
11465 struct drm_device *dev = plane->dev;
11466 struct drm_i915_private *dev_priv = dev->dev_private;
11467 struct intel_plane *intel_plane = to_intel_plane(plane);
11468 struct intel_crtc *intel_crtc;
11469
11470 if (!plane->fb)
11471 return 0;
11472
11473 BUG_ON(!plane->crtc);
11474
11475 intel_crtc = to_intel_crtc(plane->crtc);
11476
11477 /*
11478 * Even though we checked plane->fb above, it's still possible that
11479 * the primary plane has been implicitly disabled because the crtc
11480 * coordinates given weren't visible, or because we detected
11481 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11482 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11483 * In either case, we need to unpin the FB and let the fb pointer get
11484 * updated, but otherwise we don't need to touch the hardware.
11485 */
11486 if (!intel_crtc->primary_enabled)
11487 goto disable_unpin;
11488
11489 intel_crtc_wait_for_pending_flips(plane->crtc);
11490 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11491 intel_plane->pipe);
465c120c 11492disable_unpin:
4c34574f 11493 mutex_lock(&dev->struct_mutex);
2ff8fde1 11494 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11495 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11496 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11497 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11498 plane->fb = NULL;
11499
11500 return 0;
11501}
11502
11503static int
11504intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11505 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11506 unsigned int crtc_w, unsigned int crtc_h,
11507 uint32_t src_x, uint32_t src_y,
11508 uint32_t src_w, uint32_t src_h)
11509{
11510 struct drm_device *dev = crtc->dev;
11511 struct drm_i915_private *dev_priv = dev->dev_private;
11512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11513 struct intel_plane *intel_plane = to_intel_plane(plane);
2ff8fde1
MR
11514 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11515 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11516 struct drm_rect dest = {
11517 /* integer pixels */
11518 .x1 = crtc_x,
11519 .y1 = crtc_y,
11520 .x2 = crtc_x + crtc_w,
11521 .y2 = crtc_y + crtc_h,
11522 };
11523 struct drm_rect src = {
11524 /* 16.16 fixed point */
11525 .x1 = src_x,
11526 .y1 = src_y,
11527 .x2 = src_x + src_w,
11528 .y2 = src_y + src_h,
11529 };
11530 const struct drm_rect clip = {
11531 /* integer pixels */
11532 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11533 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11534 };
11535 bool visible;
11536 int ret;
11537
11538 ret = drm_plane_helper_check_update(plane, crtc, fb,
11539 &src, &dest, &clip,
11540 DRM_PLANE_HELPER_NO_SCALING,
11541 DRM_PLANE_HELPER_NO_SCALING,
11542 false, true, &visible);
11543
11544 if (ret)
11545 return ret;
11546
11547 /*
11548 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11549 * updating the fb pointer, and returning without touching the
11550 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11551 * turn on the display with all planes setup as desired.
11552 */
11553 if (!crtc->enabled) {
4c34574f
MR
11554 mutex_lock(&dev->struct_mutex);
11555
465c120c
MR
11556 /*
11557 * If we already called setplane while the crtc was disabled,
11558 * we may have an fb pinned; unpin it.
11559 */
11560 if (plane->fb)
a071fa00
DV
11561 intel_unpin_fb_obj(old_obj);
11562
11563 i915_gem_track_fb(old_obj, obj,
11564 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11565
11566 /* Pin and return without programming hardware */
4c34574f
MR
11567 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11568 mutex_unlock(&dev->struct_mutex);
11569
11570 return ret;
465c120c
MR
11571 }
11572
11573 intel_crtc_wait_for_pending_flips(crtc);
11574
11575 /*
11576 * If clipping results in a non-visible primary plane, we'll disable
11577 * the primary plane. Note that this is a bit different than what
11578 * happens if userspace explicitly disables the plane by passing fb=0
11579 * because plane->fb still gets set and pinned.
11580 */
11581 if (!visible) {
4c34574f
MR
11582 mutex_lock(&dev->struct_mutex);
11583
465c120c
MR
11584 /*
11585 * Try to pin the new fb first so that we can bail out if we
11586 * fail.
11587 */
11588 if (plane->fb != fb) {
a071fa00 11589 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11590 if (ret) {
11591 mutex_unlock(&dev->struct_mutex);
465c120c 11592 return ret;
4c34574f 11593 }
465c120c
MR
11594 }
11595
a071fa00
DV
11596 i915_gem_track_fb(old_obj, obj,
11597 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11598
465c120c
MR
11599 if (intel_crtc->primary_enabled)
11600 intel_disable_primary_hw_plane(dev_priv,
11601 intel_plane->plane,
11602 intel_plane->pipe);
11603
11604
11605 if (plane->fb != fb)
11606 if (plane->fb)
a071fa00 11607 intel_unpin_fb_obj(old_obj);
465c120c 11608
4c34574f
MR
11609 mutex_unlock(&dev->struct_mutex);
11610
465c120c
MR
11611 return 0;
11612 }
11613
11614 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11615 if (ret)
11616 return ret;
11617
11618 if (!intel_crtc->primary_enabled)
11619 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11620 intel_crtc->pipe);
11621
11622 return 0;
11623}
11624
3d7d6510
MR
11625/* Common destruction function for both primary and cursor planes */
11626static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11627{
11628 struct intel_plane *intel_plane = to_intel_plane(plane);
11629 drm_plane_cleanup(plane);
11630 kfree(intel_plane);
11631}
11632
11633static const struct drm_plane_funcs intel_primary_plane_funcs = {
11634 .update_plane = intel_primary_plane_setplane,
11635 .disable_plane = intel_primary_plane_disable,
3d7d6510 11636 .destroy = intel_plane_destroy,
465c120c
MR
11637};
11638
11639static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11640 int pipe)
11641{
11642 struct intel_plane *primary;
11643 const uint32_t *intel_primary_formats;
11644 int num_formats;
11645
11646 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11647 if (primary == NULL)
11648 return NULL;
11649
11650 primary->can_scale = false;
11651 primary->max_downscale = 1;
11652 primary->pipe = pipe;
11653 primary->plane = pipe;
11654 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11655 primary->plane = !pipe;
11656
11657 if (INTEL_INFO(dev)->gen <= 3) {
11658 intel_primary_formats = intel_primary_formats_gen2;
11659 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11660 } else {
11661 intel_primary_formats = intel_primary_formats_gen4;
11662 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11663 }
11664
11665 drm_universal_plane_init(dev, &primary->base, 0,
11666 &intel_primary_plane_funcs,
11667 intel_primary_formats, num_formats,
11668 DRM_PLANE_TYPE_PRIMARY);
11669 return &primary->base;
11670}
11671
3d7d6510
MR
11672static int
11673intel_cursor_plane_disable(struct drm_plane *plane)
11674{
11675 if (!plane->fb)
11676 return 0;
11677
11678 BUG_ON(!plane->crtc);
11679
11680 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11681}
11682
11683static int
11684intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11685 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11686 unsigned int crtc_w, unsigned int crtc_h,
11687 uint32_t src_x, uint32_t src_y,
11688 uint32_t src_w, uint32_t src_h)
11689{
11690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11691 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11692 struct drm_i915_gem_object *obj = intel_fb->obj;
11693 struct drm_rect dest = {
11694 /* integer pixels */
11695 .x1 = crtc_x,
11696 .y1 = crtc_y,
11697 .x2 = crtc_x + crtc_w,
11698 .y2 = crtc_y + crtc_h,
11699 };
11700 struct drm_rect src = {
11701 /* 16.16 fixed point */
11702 .x1 = src_x,
11703 .y1 = src_y,
11704 .x2 = src_x + src_w,
11705 .y2 = src_y + src_h,
11706 };
11707 const struct drm_rect clip = {
11708 /* integer pixels */
11709 .x2 = intel_crtc->config.pipe_src_w,
11710 .y2 = intel_crtc->config.pipe_src_h,
11711 };
11712 bool visible;
11713 int ret;
11714
11715 ret = drm_plane_helper_check_update(plane, crtc, fb,
11716 &src, &dest, &clip,
11717 DRM_PLANE_HELPER_NO_SCALING,
11718 DRM_PLANE_HELPER_NO_SCALING,
11719 true, true, &visible);
11720 if (ret)
11721 return ret;
11722
11723 crtc->cursor_x = crtc_x;
11724 crtc->cursor_y = crtc_y;
11725 if (fb != crtc->cursor->fb) {
11726 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11727 } else {
11728 intel_crtc_update_cursor(crtc, visible);
11729 return 0;
11730 }
11731}
11732static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11733 .update_plane = intel_cursor_plane_update,
11734 .disable_plane = intel_cursor_plane_disable,
11735 .destroy = intel_plane_destroy,
11736};
11737
11738static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11739 int pipe)
11740{
11741 struct intel_plane *cursor;
11742
11743 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11744 if (cursor == NULL)
11745 return NULL;
11746
11747 cursor->can_scale = false;
11748 cursor->max_downscale = 1;
11749 cursor->pipe = pipe;
11750 cursor->plane = pipe;
11751
11752 drm_universal_plane_init(dev, &cursor->base, 0,
11753 &intel_cursor_plane_funcs,
11754 intel_cursor_formats,
11755 ARRAY_SIZE(intel_cursor_formats),
11756 DRM_PLANE_TYPE_CURSOR);
11757 return &cursor->base;
11758}
11759
b358d0a6 11760static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11761{
fbee40df 11762 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11763 struct intel_crtc *intel_crtc;
3d7d6510
MR
11764 struct drm_plane *primary = NULL;
11765 struct drm_plane *cursor = NULL;
465c120c 11766 int i, ret;
79e53945 11767
955382f3 11768 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11769 if (intel_crtc == NULL)
11770 return;
11771
465c120c 11772 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11773 if (!primary)
11774 goto fail;
11775
11776 cursor = intel_cursor_plane_create(dev, pipe);
11777 if (!cursor)
11778 goto fail;
11779
465c120c 11780 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11781 cursor, &intel_crtc_funcs);
11782 if (ret)
11783 goto fail;
79e53945
JB
11784
11785 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11786 for (i = 0; i < 256; i++) {
11787 intel_crtc->lut_r[i] = i;
11788 intel_crtc->lut_g[i] = i;
11789 intel_crtc->lut_b[i] = i;
11790 }
11791
1f1c2e24
VS
11792 /*
11793 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11794 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11795 */
80824003
JB
11796 intel_crtc->pipe = pipe;
11797 intel_crtc->plane = pipe;
3a77c4c4 11798 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11799 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11800 intel_crtc->plane = !pipe;
80824003
JB
11801 }
11802
4b0e333e
CW
11803 intel_crtc->cursor_base = ~0;
11804 intel_crtc->cursor_cntl = ~0;
11805
8d7849db
VS
11806 init_waitqueue_head(&intel_crtc->vbl_wait);
11807
22fd0fab
JB
11808 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11809 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11810 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11811 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11812
79e53945 11813 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11814
11815 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11816 return;
11817
11818fail:
11819 if (primary)
11820 drm_plane_cleanup(primary);
11821 if (cursor)
11822 drm_plane_cleanup(cursor);
11823 kfree(intel_crtc);
79e53945
JB
11824}
11825
752aa88a
JB
11826enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11827{
11828 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11829 struct drm_device *dev = connector->base.dev;
752aa88a 11830
51fd371b 11831 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11832
11833 if (!encoder)
11834 return INVALID_PIPE;
11835
11836 return to_intel_crtc(encoder->crtc)->pipe;
11837}
11838
08d7b3d1 11839int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11840 struct drm_file *file)
08d7b3d1 11841{
08d7b3d1 11842 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 11843 struct drm_crtc *drmmode_crtc;
c05422d5 11844 struct intel_crtc *crtc;
08d7b3d1 11845
1cff8f6b
DV
11846 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11847 return -ENODEV;
08d7b3d1 11848
7707e653 11849 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 11850
7707e653 11851 if (!drmmode_crtc) {
08d7b3d1 11852 DRM_ERROR("no such CRTC id\n");
3f2c2057 11853 return -ENOENT;
08d7b3d1
CW
11854 }
11855
7707e653 11856 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 11857 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11858
c05422d5 11859 return 0;
08d7b3d1
CW
11860}
11861
66a9278e 11862static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11863{
66a9278e
DV
11864 struct drm_device *dev = encoder->base.dev;
11865 struct intel_encoder *source_encoder;
79e53945 11866 int index_mask = 0;
79e53945
JB
11867 int entry = 0;
11868
66a9278e
DV
11869 list_for_each_entry(source_encoder,
11870 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11871 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11872 index_mask |= (1 << entry);
11873
79e53945
JB
11874 entry++;
11875 }
4ef69c7a 11876
79e53945
JB
11877 return index_mask;
11878}
11879
4d302442
CW
11880static bool has_edp_a(struct drm_device *dev)
11881{
11882 struct drm_i915_private *dev_priv = dev->dev_private;
11883
11884 if (!IS_MOBILE(dev))
11885 return false;
11886
11887 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11888 return false;
11889
e3589908 11890 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11891 return false;
11892
11893 return true;
11894}
11895
ba0fbca4
DL
11896const char *intel_output_name(int output)
11897{
11898 static const char *names[] = {
11899 [INTEL_OUTPUT_UNUSED] = "Unused",
11900 [INTEL_OUTPUT_ANALOG] = "Analog",
11901 [INTEL_OUTPUT_DVO] = "DVO",
11902 [INTEL_OUTPUT_SDVO] = "SDVO",
11903 [INTEL_OUTPUT_LVDS] = "LVDS",
11904 [INTEL_OUTPUT_TVOUT] = "TV",
11905 [INTEL_OUTPUT_HDMI] = "HDMI",
11906 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11907 [INTEL_OUTPUT_EDP] = "eDP",
11908 [INTEL_OUTPUT_DSI] = "DSI",
11909 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11910 };
11911
11912 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11913 return "Invalid";
11914
11915 return names[output];
11916}
11917
84b4e042
JB
11918static bool intel_crt_present(struct drm_device *dev)
11919{
11920 struct drm_i915_private *dev_priv = dev->dev_private;
11921
11922 if (IS_ULT(dev))
11923 return false;
11924
11925 if (IS_CHERRYVIEW(dev))
11926 return false;
11927
11928 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11929 return false;
11930
11931 return true;
11932}
11933
79e53945
JB
11934static void intel_setup_outputs(struct drm_device *dev)
11935{
725e30ad 11936 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11937 struct intel_encoder *encoder;
cb0953d7 11938 bool dpd_is_edp = false;
79e53945 11939
c9093354 11940 intel_lvds_init(dev);
79e53945 11941
84b4e042 11942 if (intel_crt_present(dev))
79935fca 11943 intel_crt_init(dev);
cb0953d7 11944
affa9354 11945 if (HAS_DDI(dev)) {
0e72a5b5
ED
11946 int found;
11947
11948 /* Haswell uses DDI functions to detect digital outputs */
11949 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11950 /* DDI A only supports eDP */
11951 if (found)
11952 intel_ddi_init(dev, PORT_A);
11953
11954 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11955 * register */
11956 found = I915_READ(SFUSE_STRAP);
11957
11958 if (found & SFUSE_STRAP_DDIB_DETECTED)
11959 intel_ddi_init(dev, PORT_B);
11960 if (found & SFUSE_STRAP_DDIC_DETECTED)
11961 intel_ddi_init(dev, PORT_C);
11962 if (found & SFUSE_STRAP_DDID_DETECTED)
11963 intel_ddi_init(dev, PORT_D);
11964 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 11965 int found;
5d8a7752 11966 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
11967
11968 if (has_edp_a(dev))
11969 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 11970
dc0fa718 11971 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 11972 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 11973 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 11974 if (!found)
e2debe91 11975 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 11976 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 11977 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
11978 }
11979
dc0fa718 11980 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 11981 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 11982
dc0fa718 11983 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 11984 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 11985
5eb08b69 11986 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 11987 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 11988
270b3042 11989 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 11990 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 11991 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
11992 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11993 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11994 PORT_B);
11995 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11996 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11997 }
11998
6f6005a5
JB
11999 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12000 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12001 PORT_C);
12002 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12003 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12004 }
19c03924 12005
9418c1f1
VS
12006 if (IS_CHERRYVIEW(dev)) {
12007 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12008 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12009 PORT_D);
12010 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12011 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12012 }
12013 }
12014
3cfca973 12015 intel_dsi_init(dev);
103a196f 12016 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12017 bool found = false;
7d57382e 12018
e2debe91 12019 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12020 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12021 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12022 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12023 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12024 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12025 }
27185ae1 12026
e7281eab 12027 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12028 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12029 }
13520b05
KH
12030
12031 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12032
e2debe91 12033 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12034 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12035 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12036 }
27185ae1 12037
e2debe91 12038 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12039
b01f2c3a
JB
12040 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12041 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12042 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12043 }
e7281eab 12044 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12045 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12046 }
27185ae1 12047
b01f2c3a 12048 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12049 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12050 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12051 } else if (IS_GEN2(dev))
79e53945
JB
12052 intel_dvo_init(dev);
12053
103a196f 12054 if (SUPPORTS_TV(dev))
79e53945
JB
12055 intel_tv_init(dev);
12056
7c8f8a70
RV
12057 intel_edp_psr_init(dev);
12058
4ef69c7a
CW
12059 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
12060 encoder->base.possible_crtcs = encoder->crtc_mask;
12061 encoder->base.possible_clones =
66a9278e 12062 intel_encoder_clones(encoder);
79e53945 12063 }
47356eb6 12064
dde86e2d 12065 intel_init_pch_refclk(dev);
270b3042
DV
12066
12067 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12068}
12069
12070static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12071{
60a5ca01 12072 struct drm_device *dev = fb->dev;
79e53945 12073 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12074
ef2d633e 12075 drm_framebuffer_cleanup(fb);
60a5ca01 12076 mutex_lock(&dev->struct_mutex);
ef2d633e 12077 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12078 drm_gem_object_unreference(&intel_fb->obj->base);
12079 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12080 kfree(intel_fb);
12081}
12082
12083static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12084 struct drm_file *file,
79e53945
JB
12085 unsigned int *handle)
12086{
12087 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12088 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12089
05394f39 12090 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12091}
12092
12093static const struct drm_framebuffer_funcs intel_fb_funcs = {
12094 .destroy = intel_user_framebuffer_destroy,
12095 .create_handle = intel_user_framebuffer_create_handle,
12096};
12097
b5ea642a
DV
12098static int intel_framebuffer_init(struct drm_device *dev,
12099 struct intel_framebuffer *intel_fb,
12100 struct drm_mode_fb_cmd2 *mode_cmd,
12101 struct drm_i915_gem_object *obj)
79e53945 12102{
a57ce0b2 12103 int aligned_height;
a35cdaa0 12104 int pitch_limit;
79e53945
JB
12105 int ret;
12106
dd4916c5
DV
12107 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12108
c16ed4be
CW
12109 if (obj->tiling_mode == I915_TILING_Y) {
12110 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12111 return -EINVAL;
c16ed4be 12112 }
57cd6508 12113
c16ed4be
CW
12114 if (mode_cmd->pitches[0] & 63) {
12115 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12116 mode_cmd->pitches[0]);
57cd6508 12117 return -EINVAL;
c16ed4be 12118 }
57cd6508 12119
a35cdaa0
CW
12120 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12121 pitch_limit = 32*1024;
12122 } else if (INTEL_INFO(dev)->gen >= 4) {
12123 if (obj->tiling_mode)
12124 pitch_limit = 16*1024;
12125 else
12126 pitch_limit = 32*1024;
12127 } else if (INTEL_INFO(dev)->gen >= 3) {
12128 if (obj->tiling_mode)
12129 pitch_limit = 8*1024;
12130 else
12131 pitch_limit = 16*1024;
12132 } else
12133 /* XXX DSPC is limited to 4k tiled */
12134 pitch_limit = 8*1024;
12135
12136 if (mode_cmd->pitches[0] > pitch_limit) {
12137 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12138 obj->tiling_mode ? "tiled" : "linear",
12139 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12140 return -EINVAL;
c16ed4be 12141 }
5d7bd705
VS
12142
12143 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12144 mode_cmd->pitches[0] != obj->stride) {
12145 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12146 mode_cmd->pitches[0], obj->stride);
5d7bd705 12147 return -EINVAL;
c16ed4be 12148 }
5d7bd705 12149
57779d06 12150 /* Reject formats not supported by any plane early. */
308e5bcb 12151 switch (mode_cmd->pixel_format) {
57779d06 12152 case DRM_FORMAT_C8:
04b3924d
VS
12153 case DRM_FORMAT_RGB565:
12154 case DRM_FORMAT_XRGB8888:
12155 case DRM_FORMAT_ARGB8888:
57779d06
VS
12156 break;
12157 case DRM_FORMAT_XRGB1555:
12158 case DRM_FORMAT_ARGB1555:
c16ed4be 12159 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12160 DRM_DEBUG("unsupported pixel format: %s\n",
12161 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12162 return -EINVAL;
c16ed4be 12163 }
57779d06
VS
12164 break;
12165 case DRM_FORMAT_XBGR8888:
12166 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12167 case DRM_FORMAT_XRGB2101010:
12168 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12169 case DRM_FORMAT_XBGR2101010:
12170 case DRM_FORMAT_ABGR2101010:
c16ed4be 12171 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12172 DRM_DEBUG("unsupported pixel format: %s\n",
12173 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12174 return -EINVAL;
c16ed4be 12175 }
b5626747 12176 break;
04b3924d
VS
12177 case DRM_FORMAT_YUYV:
12178 case DRM_FORMAT_UYVY:
12179 case DRM_FORMAT_YVYU:
12180 case DRM_FORMAT_VYUY:
c16ed4be 12181 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12182 DRM_DEBUG("unsupported pixel format: %s\n",
12183 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12184 return -EINVAL;
c16ed4be 12185 }
57cd6508
CW
12186 break;
12187 default:
4ee62c76
VS
12188 DRM_DEBUG("unsupported pixel format: %s\n",
12189 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12190 return -EINVAL;
12191 }
12192
90f9a336
VS
12193 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12194 if (mode_cmd->offsets[0] != 0)
12195 return -EINVAL;
12196
a57ce0b2
JB
12197 aligned_height = intel_align_height(dev, mode_cmd->height,
12198 obj->tiling_mode);
53155c0a
DV
12199 /* FIXME drm helper for size checks (especially planar formats)? */
12200 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12201 return -EINVAL;
12202
c7d73f6a
DV
12203 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12204 intel_fb->obj = obj;
80075d49 12205 intel_fb->obj->framebuffer_references++;
c7d73f6a 12206
79e53945
JB
12207 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12208 if (ret) {
12209 DRM_ERROR("framebuffer init failed %d\n", ret);
12210 return ret;
12211 }
12212
79e53945
JB
12213 return 0;
12214}
12215
79e53945
JB
12216static struct drm_framebuffer *
12217intel_user_framebuffer_create(struct drm_device *dev,
12218 struct drm_file *filp,
308e5bcb 12219 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12220{
05394f39 12221 struct drm_i915_gem_object *obj;
79e53945 12222
308e5bcb
JB
12223 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12224 mode_cmd->handles[0]));
c8725226 12225 if (&obj->base == NULL)
cce13ff7 12226 return ERR_PTR(-ENOENT);
79e53945 12227
d2dff872 12228 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12229}
12230
4520f53a 12231#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12232static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12233{
12234}
12235#endif
12236
79e53945 12237static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12238 .fb_create = intel_user_framebuffer_create,
0632fef6 12239 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12240};
12241
e70236a8
JB
12242/* Set up chip specific display functions */
12243static void intel_init_display(struct drm_device *dev)
12244{
12245 struct drm_i915_private *dev_priv = dev->dev_private;
12246
ee9300bb
DV
12247 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12248 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12249 else if (IS_CHERRYVIEW(dev))
12250 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12251 else if (IS_VALLEYVIEW(dev))
12252 dev_priv->display.find_dpll = vlv_find_best_dpll;
12253 else if (IS_PINEVIEW(dev))
12254 dev_priv->display.find_dpll = pnv_find_best_dpll;
12255 else
12256 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12257
affa9354 12258 if (HAS_DDI(dev)) {
0e8ffe1b 12259 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12260 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12261 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12262 dev_priv->display.crtc_enable = haswell_crtc_enable;
12263 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12264 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12265 dev_priv->display.update_primary_plane =
12266 ironlake_update_primary_plane;
09b4ddf9 12267 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12268 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12269 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12270 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12271 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12272 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12273 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12274 dev_priv->display.update_primary_plane =
12275 ironlake_update_primary_plane;
89b667f8
JB
12276 } else if (IS_VALLEYVIEW(dev)) {
12277 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12278 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12279 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12280 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12281 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12282 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12283 dev_priv->display.update_primary_plane =
12284 i9xx_update_primary_plane;
f564048e 12285 } else {
0e8ffe1b 12286 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12287 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12288 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12289 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12290 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12291 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12292 dev_priv->display.update_primary_plane =
12293 i9xx_update_primary_plane;
f564048e 12294 }
e70236a8 12295
e70236a8 12296 /* Returns the core display clock speed */
25eb05fc
JB
12297 if (IS_VALLEYVIEW(dev))
12298 dev_priv->display.get_display_clock_speed =
12299 valleyview_get_display_clock_speed;
12300 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12301 dev_priv->display.get_display_clock_speed =
12302 i945_get_display_clock_speed;
12303 else if (IS_I915G(dev))
12304 dev_priv->display.get_display_clock_speed =
12305 i915_get_display_clock_speed;
257a7ffc 12306 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12307 dev_priv->display.get_display_clock_speed =
12308 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12309 else if (IS_PINEVIEW(dev))
12310 dev_priv->display.get_display_clock_speed =
12311 pnv_get_display_clock_speed;
e70236a8
JB
12312 else if (IS_I915GM(dev))
12313 dev_priv->display.get_display_clock_speed =
12314 i915gm_get_display_clock_speed;
12315 else if (IS_I865G(dev))
12316 dev_priv->display.get_display_clock_speed =
12317 i865_get_display_clock_speed;
f0f8a9ce 12318 else if (IS_I85X(dev))
e70236a8
JB
12319 dev_priv->display.get_display_clock_speed =
12320 i855_get_display_clock_speed;
12321 else /* 852, 830 */
12322 dev_priv->display.get_display_clock_speed =
12323 i830_get_display_clock_speed;
12324
7f8a8569 12325 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12326 if (IS_GEN5(dev)) {
674cf967 12327 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12328 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12329 } else if (IS_GEN6(dev)) {
674cf967 12330 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12331 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12332 dev_priv->display.modeset_global_resources =
12333 snb_modeset_global_resources;
357555c0
JB
12334 } else if (IS_IVYBRIDGE(dev)) {
12335 /* FIXME: detect B0+ stepping and use auto training */
12336 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12337 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12338 dev_priv->display.modeset_global_resources =
12339 ivb_modeset_global_resources;
4e0bbc31 12340 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12341 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12342 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12343 dev_priv->display.modeset_global_resources =
12344 haswell_modeset_global_resources;
a0e63c22 12345 }
6067aaea 12346 } else if (IS_G4X(dev)) {
e0dac65e 12347 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12348 } else if (IS_VALLEYVIEW(dev)) {
12349 dev_priv->display.modeset_global_resources =
12350 valleyview_modeset_global_resources;
9ca2fe73 12351 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12352 }
8c9f3aaf
JB
12353
12354 /* Default just returns -ENODEV to indicate unsupported */
12355 dev_priv->display.queue_flip = intel_default_queue_flip;
12356
12357 switch (INTEL_INFO(dev)->gen) {
12358 case 2:
12359 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12360 break;
12361
12362 case 3:
12363 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12364 break;
12365
12366 case 4:
12367 case 5:
12368 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12369 break;
12370
12371 case 6:
12372 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12373 break;
7c9017e5 12374 case 7:
4e0bbc31 12375 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12376 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12377 break;
8c9f3aaf 12378 }
7bd688cd
JN
12379
12380 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12381}
12382
b690e96c
JB
12383/*
12384 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12385 * resume, or other times. This quirk makes sure that's the case for
12386 * affected systems.
12387 */
0206e353 12388static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12389{
12390 struct drm_i915_private *dev_priv = dev->dev_private;
12391
12392 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12393 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12394}
12395
435793df
KP
12396/*
12397 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12398 */
12399static void quirk_ssc_force_disable(struct drm_device *dev)
12400{
12401 struct drm_i915_private *dev_priv = dev->dev_private;
12402 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12403 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12404}
12405
4dca20ef 12406/*
5a15ab5b
CE
12407 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12408 * brightness value
4dca20ef
CE
12409 */
12410static void quirk_invert_brightness(struct drm_device *dev)
12411{
12412 struct drm_i915_private *dev_priv = dev->dev_private;
12413 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12414 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12415}
12416
9c72cc6f
SD
12417/* Some VBT's incorrectly indicate no backlight is present */
12418static void quirk_backlight_present(struct drm_device *dev)
12419{
12420 struct drm_i915_private *dev_priv = dev->dev_private;
12421 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12422 DRM_INFO("applying backlight present quirk\n");
12423}
12424
b690e96c
JB
12425struct intel_quirk {
12426 int device;
12427 int subsystem_vendor;
12428 int subsystem_device;
12429 void (*hook)(struct drm_device *dev);
12430};
12431
5f85f176
EE
12432/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12433struct intel_dmi_quirk {
12434 void (*hook)(struct drm_device *dev);
12435 const struct dmi_system_id (*dmi_id_list)[];
12436};
12437
12438static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12439{
12440 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12441 return 1;
12442}
12443
12444static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12445 {
12446 .dmi_id_list = &(const struct dmi_system_id[]) {
12447 {
12448 .callback = intel_dmi_reverse_brightness,
12449 .ident = "NCR Corporation",
12450 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12451 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12452 },
12453 },
12454 { } /* terminating entry */
12455 },
12456 .hook = quirk_invert_brightness,
12457 },
12458};
12459
c43b5634 12460static struct intel_quirk intel_quirks[] = {
b690e96c 12461 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12462 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12463
b690e96c
JB
12464 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12465 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12466
b690e96c
JB
12467 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12468 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12469
435793df
KP
12470 /* Lenovo U160 cannot use SSC on LVDS */
12471 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12472
12473 /* Sony Vaio Y cannot use SSC on LVDS */
12474 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12475
be505f64
AH
12476 /* Acer Aspire 5734Z must invert backlight brightness */
12477 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12478
12479 /* Acer/eMachines G725 */
12480 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12481
12482 /* Acer/eMachines e725 */
12483 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12484
12485 /* Acer/Packard Bell NCL20 */
12486 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12487
12488 /* Acer Aspire 4736Z */
12489 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12490
12491 /* Acer Aspire 5336 */
12492 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12493
12494 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12495 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c
SD
12496
12497 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12498 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12499
12500 /* HP Chromebook 14 (Celeron 2955U) */
12501 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12502};
12503
12504static void intel_init_quirks(struct drm_device *dev)
12505{
12506 struct pci_dev *d = dev->pdev;
12507 int i;
12508
12509 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12510 struct intel_quirk *q = &intel_quirks[i];
12511
12512 if (d->device == q->device &&
12513 (d->subsystem_vendor == q->subsystem_vendor ||
12514 q->subsystem_vendor == PCI_ANY_ID) &&
12515 (d->subsystem_device == q->subsystem_device ||
12516 q->subsystem_device == PCI_ANY_ID))
12517 q->hook(dev);
12518 }
5f85f176
EE
12519 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12520 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12521 intel_dmi_quirks[i].hook(dev);
12522 }
b690e96c
JB
12523}
12524
9cce37f4
JB
12525/* Disable the VGA plane that we never use */
12526static void i915_disable_vga(struct drm_device *dev)
12527{
12528 struct drm_i915_private *dev_priv = dev->dev_private;
12529 u8 sr1;
766aa1c4 12530 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12531
2b37c616 12532 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12533 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12534 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12535 sr1 = inb(VGA_SR_DATA);
12536 outb(sr1 | 1<<5, VGA_SR_DATA);
12537 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12538 udelay(300);
12539
12540 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12541 POSTING_READ(vga_reg);
12542}
12543
f817586c
DV
12544void intel_modeset_init_hw(struct drm_device *dev)
12545{
a8f78b58
ED
12546 intel_prepare_ddi(dev);
12547
f8bf63fd
VS
12548 if (IS_VALLEYVIEW(dev))
12549 vlv_update_cdclk(dev);
12550
f817586c
DV
12551 intel_init_clock_gating(dev);
12552
5382f5f3 12553 intel_reset_dpio(dev);
40e9cf64 12554
8090c6b9 12555 intel_enable_gt_powersave(dev);
f817586c
DV
12556}
12557
7d708ee4
ID
12558void intel_modeset_suspend_hw(struct drm_device *dev)
12559{
12560 intel_suspend_hw(dev);
12561}
12562
79e53945
JB
12563void intel_modeset_init(struct drm_device *dev)
12564{
652c393a 12565 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12566 int sprite, ret;
8cc87b75 12567 enum pipe pipe;
46f297fb 12568 struct intel_crtc *crtc;
79e53945
JB
12569
12570 drm_mode_config_init(dev);
12571
12572 dev->mode_config.min_width = 0;
12573 dev->mode_config.min_height = 0;
12574
019d96cb
DA
12575 dev->mode_config.preferred_depth = 24;
12576 dev->mode_config.prefer_shadow = 1;
12577
e6ecefaa 12578 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12579
b690e96c
JB
12580 intel_init_quirks(dev);
12581
1fa61106
ED
12582 intel_init_pm(dev);
12583
e3c74757
BW
12584 if (INTEL_INFO(dev)->num_pipes == 0)
12585 return;
12586
e70236a8
JB
12587 intel_init_display(dev);
12588
a6c45cf0
CW
12589 if (IS_GEN2(dev)) {
12590 dev->mode_config.max_width = 2048;
12591 dev->mode_config.max_height = 2048;
12592 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12593 dev->mode_config.max_width = 4096;
12594 dev->mode_config.max_height = 4096;
79e53945 12595 } else {
a6c45cf0
CW
12596 dev->mode_config.max_width = 8192;
12597 dev->mode_config.max_height = 8192;
79e53945 12598 }
068be561
DL
12599
12600 if (IS_GEN2(dev)) {
12601 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12602 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12603 } else {
12604 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12605 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12606 }
12607
5d4545ae 12608 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12609
28c97730 12610 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12611 INTEL_INFO(dev)->num_pipes,
12612 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12613
8cc87b75
DL
12614 for_each_pipe(pipe) {
12615 intel_crtc_init(dev, pipe);
1fe47785
DL
12616 for_each_sprite(pipe, sprite) {
12617 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12618 if (ret)
06da8da2 12619 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12620 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12621 }
79e53945
JB
12622 }
12623
f42bb70d 12624 intel_init_dpio(dev);
5382f5f3 12625 intel_reset_dpio(dev);
f42bb70d 12626
e72f9fbf 12627 intel_shared_dpll_init(dev);
ee7b9f93 12628
9cce37f4
JB
12629 /* Just disable it once at startup */
12630 i915_disable_vga(dev);
79e53945 12631 intel_setup_outputs(dev);
11be49eb
CW
12632
12633 /* Just in case the BIOS is doing something questionable. */
12634 intel_disable_fbc(dev);
fa9fa083 12635
6e9f798d 12636 drm_modeset_lock_all(dev);
fa9fa083 12637 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12638 drm_modeset_unlock_all(dev);
46f297fb 12639
d3fcc808 12640 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12641 if (!crtc->active)
12642 continue;
12643
46f297fb 12644 /*
46f297fb
JB
12645 * Note that reserving the BIOS fb up front prevents us
12646 * from stuffing other stolen allocations like the ring
12647 * on top. This prevents some ugliness at boot time, and
12648 * can even allow for smooth boot transitions if the BIOS
12649 * fb is large enough for the active pipe configuration.
12650 */
12651 if (dev_priv->display.get_plane_config) {
12652 dev_priv->display.get_plane_config(crtc,
12653 &crtc->plane_config);
12654 /*
12655 * If the fb is shared between multiple heads, we'll
12656 * just get the first one.
12657 */
484b41dd 12658 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12659 }
46f297fb 12660 }
2c7111db
CW
12661}
12662
7fad798e
DV
12663static void intel_enable_pipe_a(struct drm_device *dev)
12664{
12665 struct intel_connector *connector;
12666 struct drm_connector *crt = NULL;
12667 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12668 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12669
12670 /* We can't just switch on the pipe A, we need to set things up with a
12671 * proper mode and output configuration. As a gross hack, enable pipe A
12672 * by enabling the load detect pipe once. */
12673 list_for_each_entry(connector,
12674 &dev->mode_config.connector_list,
12675 base.head) {
12676 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12677 crt = &connector->base;
12678 break;
12679 }
12680 }
12681
12682 if (!crt)
12683 return;
12684
51fd371b
RC
12685 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12686 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12687
652c393a 12688
7fad798e
DV
12689}
12690
fa555837
DV
12691static bool
12692intel_check_plane_mapping(struct intel_crtc *crtc)
12693{
7eb552ae
BW
12694 struct drm_device *dev = crtc->base.dev;
12695 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12696 u32 reg, val;
12697
7eb552ae 12698 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12699 return true;
12700
12701 reg = DSPCNTR(!crtc->plane);
12702 val = I915_READ(reg);
12703
12704 if ((val & DISPLAY_PLANE_ENABLE) &&
12705 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12706 return false;
12707
12708 return true;
12709}
12710
24929352
DV
12711static void intel_sanitize_crtc(struct intel_crtc *crtc)
12712{
12713 struct drm_device *dev = crtc->base.dev;
12714 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12715 u32 reg;
24929352 12716
24929352 12717 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12718 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12719 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12720
d3eaf884
VS
12721 /* restore vblank interrupts to correct state */
12722 if (crtc->active)
12723 drm_vblank_on(dev, crtc->pipe);
12724 else
12725 drm_vblank_off(dev, crtc->pipe);
12726
24929352 12727 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12728 * disable the crtc (and hence change the state) if it is wrong. Note
12729 * that gen4+ has a fixed plane -> pipe mapping. */
12730 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12731 struct intel_connector *connector;
12732 bool plane;
12733
24929352
DV
12734 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12735 crtc->base.base.id);
12736
12737 /* Pipe has the wrong plane attached and the plane is active.
12738 * Temporarily change the plane mapping and disable everything
12739 * ... */
12740 plane = crtc->plane;
12741 crtc->plane = !plane;
9c8958bc 12742 crtc->primary_enabled = true;
24929352
DV
12743 dev_priv->display.crtc_disable(&crtc->base);
12744 crtc->plane = plane;
12745
12746 /* ... and break all links. */
12747 list_for_each_entry(connector, &dev->mode_config.connector_list,
12748 base.head) {
12749 if (connector->encoder->base.crtc != &crtc->base)
12750 continue;
12751
7f1950fb
EE
12752 connector->base.dpms = DRM_MODE_DPMS_OFF;
12753 connector->base.encoder = NULL;
24929352 12754 }
7f1950fb
EE
12755 /* multiple connectors may have the same encoder:
12756 * handle them and break crtc link separately */
12757 list_for_each_entry(connector, &dev->mode_config.connector_list,
12758 base.head)
12759 if (connector->encoder->base.crtc == &crtc->base) {
12760 connector->encoder->base.crtc = NULL;
12761 connector->encoder->connectors_active = false;
12762 }
24929352
DV
12763
12764 WARN_ON(crtc->active);
12765 crtc->base.enabled = false;
12766 }
24929352 12767
7fad798e
DV
12768 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12769 crtc->pipe == PIPE_A && !crtc->active) {
12770 /* BIOS forgot to enable pipe A, this mostly happens after
12771 * resume. Force-enable the pipe to fix this, the update_dpms
12772 * call below we restore the pipe to the right state, but leave
12773 * the required bits on. */
12774 intel_enable_pipe_a(dev);
12775 }
12776
24929352
DV
12777 /* Adjust the state of the output pipe according to whether we
12778 * have active connectors/encoders. */
12779 intel_crtc_update_dpms(&crtc->base);
12780
12781 if (crtc->active != crtc->base.enabled) {
12782 struct intel_encoder *encoder;
12783
12784 /* This can happen either due to bugs in the get_hw_state
12785 * functions or because the pipe is force-enabled due to the
12786 * pipe A quirk. */
12787 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12788 crtc->base.base.id,
12789 crtc->base.enabled ? "enabled" : "disabled",
12790 crtc->active ? "enabled" : "disabled");
12791
12792 crtc->base.enabled = crtc->active;
12793
12794 /* Because we only establish the connector -> encoder ->
12795 * crtc links if something is active, this means the
12796 * crtc is now deactivated. Break the links. connector
12797 * -> encoder links are only establish when things are
12798 * actually up, hence no need to break them. */
12799 WARN_ON(crtc->active);
12800
12801 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12802 WARN_ON(encoder->connectors_active);
12803 encoder->base.crtc = NULL;
12804 }
12805 }
c5ab3bc0
DV
12806
12807 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12808 /*
12809 * We start out with underrun reporting disabled to avoid races.
12810 * For correct bookkeeping mark this on active crtcs.
12811 *
c5ab3bc0
DV
12812 * Also on gmch platforms we dont have any hardware bits to
12813 * disable the underrun reporting. Which means we need to start
12814 * out with underrun reporting disabled also on inactive pipes,
12815 * since otherwise we'll complain about the garbage we read when
12816 * e.g. coming up after runtime pm.
12817 *
4cc31489
DV
12818 * No protection against concurrent access is required - at
12819 * worst a fifo underrun happens which also sets this to false.
12820 */
12821 crtc->cpu_fifo_underrun_disabled = true;
12822 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12823
12824 update_scanline_offset(crtc);
4cc31489 12825 }
24929352
DV
12826}
12827
12828static void intel_sanitize_encoder(struct intel_encoder *encoder)
12829{
12830 struct intel_connector *connector;
12831 struct drm_device *dev = encoder->base.dev;
12832
12833 /* We need to check both for a crtc link (meaning that the
12834 * encoder is active and trying to read from a pipe) and the
12835 * pipe itself being active. */
12836 bool has_active_crtc = encoder->base.crtc &&
12837 to_intel_crtc(encoder->base.crtc)->active;
12838
12839 if (encoder->connectors_active && !has_active_crtc) {
12840 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12841 encoder->base.base.id,
8e329a03 12842 encoder->base.name);
24929352
DV
12843
12844 /* Connector is active, but has no active pipe. This is
12845 * fallout from our resume register restoring. Disable
12846 * the encoder manually again. */
12847 if (encoder->base.crtc) {
12848 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12849 encoder->base.base.id,
8e329a03 12850 encoder->base.name);
24929352 12851 encoder->disable(encoder);
a62d1497
VS
12852 if (encoder->post_disable)
12853 encoder->post_disable(encoder);
24929352 12854 }
7f1950fb
EE
12855 encoder->base.crtc = NULL;
12856 encoder->connectors_active = false;
24929352
DV
12857
12858 /* Inconsistent output/port/pipe state happens presumably due to
12859 * a bug in one of the get_hw_state functions. Or someplace else
12860 * in our code, like the register restore mess on resume. Clamp
12861 * things to off as a safer default. */
12862 list_for_each_entry(connector,
12863 &dev->mode_config.connector_list,
12864 base.head) {
12865 if (connector->encoder != encoder)
12866 continue;
7f1950fb
EE
12867 connector->base.dpms = DRM_MODE_DPMS_OFF;
12868 connector->base.encoder = NULL;
24929352
DV
12869 }
12870 }
12871 /* Enabled encoders without active connectors will be fixed in
12872 * the crtc fixup. */
12873}
12874
04098753 12875void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12876{
12877 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12878 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12879
04098753
ID
12880 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12881 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12882 i915_disable_vga(dev);
12883 }
12884}
12885
12886void i915_redisable_vga(struct drm_device *dev)
12887{
12888 struct drm_i915_private *dev_priv = dev->dev_private;
12889
8dc8a27c
PZ
12890 /* This function can be called both from intel_modeset_setup_hw_state or
12891 * at a very early point in our resume sequence, where the power well
12892 * structures are not yet restored. Since this function is at a very
12893 * paranoid "someone might have enabled VGA while we were not looking"
12894 * level, just check if the power well is enabled instead of trying to
12895 * follow the "don't touch the power well if we don't need it" policy
12896 * the rest of the driver uses. */
04098753 12897 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12898 return;
12899
04098753 12900 i915_redisable_vga_power_on(dev);
0fde901f
KM
12901}
12902
98ec7739
VS
12903static bool primary_get_hw_state(struct intel_crtc *crtc)
12904{
12905 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12906
12907 if (!crtc->active)
12908 return false;
12909
12910 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12911}
12912
30e984df 12913static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12914{
12915 struct drm_i915_private *dev_priv = dev->dev_private;
12916 enum pipe pipe;
24929352
DV
12917 struct intel_crtc *crtc;
12918 struct intel_encoder *encoder;
12919 struct intel_connector *connector;
5358901f 12920 int i;
24929352 12921
d3fcc808 12922 for_each_intel_crtc(dev, crtc) {
88adfff1 12923 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12924
9953599b
DV
12925 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12926
0e8ffe1b
DV
12927 crtc->active = dev_priv->display.get_pipe_config(crtc,
12928 &crtc->config);
24929352
DV
12929
12930 crtc->base.enabled = crtc->active;
98ec7739 12931 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12932
12933 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12934 crtc->base.base.id,
12935 crtc->active ? "enabled" : "disabled");
12936 }
12937
5358901f
DV
12938 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12939 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12940
12941 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12942 pll->active = 0;
d3fcc808 12943 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12944 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12945 pll->active++;
12946 }
12947 pll->refcount = pll->active;
12948
35c95375
DV
12949 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12950 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
12951
12952 if (pll->refcount)
12953 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
12954 }
12955
24929352
DV
12956 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12957 base.head) {
12958 pipe = 0;
12959
12960 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12961 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12962 encoder->base.crtc = &crtc->base;
1d37b689 12963 encoder->get_config(encoder, &crtc->config);
24929352
DV
12964 } else {
12965 encoder->base.crtc = NULL;
12966 }
12967
12968 encoder->connectors_active = false;
6f2bcceb 12969 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 12970 encoder->base.base.id,
8e329a03 12971 encoder->base.name,
24929352 12972 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 12973 pipe_name(pipe));
24929352
DV
12974 }
12975
12976 list_for_each_entry(connector, &dev->mode_config.connector_list,
12977 base.head) {
12978 if (connector->get_hw_state(connector)) {
12979 connector->base.dpms = DRM_MODE_DPMS_ON;
12980 connector->encoder->connectors_active = true;
12981 connector->base.encoder = &connector->encoder->base;
12982 } else {
12983 connector->base.dpms = DRM_MODE_DPMS_OFF;
12984 connector->base.encoder = NULL;
12985 }
12986 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12987 connector->base.base.id,
c23cc417 12988 connector->base.name,
24929352
DV
12989 connector->base.encoder ? "enabled" : "disabled");
12990 }
30e984df
DV
12991}
12992
12993/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12994 * and i915 state tracking structures. */
12995void intel_modeset_setup_hw_state(struct drm_device *dev,
12996 bool force_restore)
12997{
12998 struct drm_i915_private *dev_priv = dev->dev_private;
12999 enum pipe pipe;
30e984df
DV
13000 struct intel_crtc *crtc;
13001 struct intel_encoder *encoder;
35c95375 13002 int i;
30e984df
DV
13003
13004 intel_modeset_readout_hw_state(dev);
24929352 13005
babea61d
JB
13006 /*
13007 * Now that we have the config, copy it to each CRTC struct
13008 * Note that this could go away if we move to using crtc_config
13009 * checking everywhere.
13010 */
d3fcc808 13011 for_each_intel_crtc(dev, crtc) {
d330a953 13012 if (crtc->active && i915.fastboot) {
f6a83288 13013 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13014 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13015 crtc->base.base.id);
13016 drm_mode_debug_printmodeline(&crtc->base.mode);
13017 }
13018 }
13019
24929352
DV
13020 /* HW state is read out, now we need to sanitize this mess. */
13021 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
13022 base.head) {
13023 intel_sanitize_encoder(encoder);
13024 }
13025
13026 for_each_pipe(pipe) {
13027 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13028 intel_sanitize_crtc(crtc);
c0b03411 13029 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13030 }
9a935856 13031
35c95375
DV
13032 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13033 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13034
13035 if (!pll->on || pll->active)
13036 continue;
13037
13038 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13039
13040 pll->disable(dev_priv, pll);
13041 pll->on = false;
13042 }
13043
96f90c54 13044 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13045 ilk_wm_get_hw_state(dev);
13046
45e2b5f6 13047 if (force_restore) {
7d0bc1ea
VS
13048 i915_redisable_vga(dev);
13049
f30da187
DV
13050 /*
13051 * We need to use raw interfaces for restoring state to avoid
13052 * checking (bogus) intermediate states.
13053 */
45e2b5f6 13054 for_each_pipe(pipe) {
b5644d05
JB
13055 struct drm_crtc *crtc =
13056 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13057
13058 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13059 crtc->primary->fb);
45e2b5f6
DV
13060 }
13061 } else {
13062 intel_modeset_update_staged_output_state(dev);
13063 }
8af6cf88
DV
13064
13065 intel_modeset_check_state(dev);
2c7111db
CW
13066}
13067
13068void intel_modeset_gem_init(struct drm_device *dev)
13069{
484b41dd 13070 struct drm_crtc *c;
2ff8fde1 13071 struct drm_i915_gem_object *obj;
484b41dd 13072
ae48434c
ID
13073 mutex_lock(&dev->struct_mutex);
13074 intel_init_gt_powersave(dev);
13075 mutex_unlock(&dev->struct_mutex);
13076
1833b134 13077 intel_modeset_init_hw(dev);
02e792fb
DV
13078
13079 intel_setup_overlay(dev);
484b41dd
JB
13080
13081 /*
13082 * Make sure any fbs we allocated at startup are properly
13083 * pinned & fenced. When we do the allocation it's too early
13084 * for this.
13085 */
13086 mutex_lock(&dev->struct_mutex);
70e1e0ec 13087 for_each_crtc(dev, c) {
2ff8fde1
MR
13088 obj = intel_fb_obj(c->primary->fb);
13089 if (obj == NULL)
484b41dd
JB
13090 continue;
13091
2ff8fde1 13092 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13093 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13094 to_intel_crtc(c)->pipe);
66e514c1
DA
13095 drm_framebuffer_unreference(c->primary->fb);
13096 c->primary->fb = NULL;
484b41dd
JB
13097 }
13098 }
13099 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13100}
13101
4932e2c3
ID
13102void intel_connector_unregister(struct intel_connector *intel_connector)
13103{
13104 struct drm_connector *connector = &intel_connector->base;
13105
13106 intel_panel_destroy_backlight(connector);
34ea3d38 13107 drm_connector_unregister(connector);
4932e2c3
ID
13108}
13109
79e53945
JB
13110void intel_modeset_cleanup(struct drm_device *dev)
13111{
652c393a 13112 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13113 struct drm_connector *connector;
652c393a 13114
fd0c0642
DV
13115 /*
13116 * Interrupts and polling as the first thing to avoid creating havoc.
13117 * Too much stuff here (turning of rps, connectors, ...) would
13118 * experience fancy races otherwise.
13119 */
13120 drm_irq_uninstall(dev);
13121 cancel_work_sync(&dev_priv->hotplug_work);
eb21b92b
JB
13122 dev_priv->pm._irqs_disabled = true;
13123
fd0c0642
DV
13124 /*
13125 * Due to the hpd irq storm handling the hotplug work can re-arm the
13126 * poll handlers. Hence disable polling after hpd handling is shut down.
13127 */
f87ea761 13128 drm_kms_helper_poll_fini(dev);
fd0c0642 13129
652c393a
JB
13130 mutex_lock(&dev->struct_mutex);
13131
723bfd70
JB
13132 intel_unregister_dsm_handler();
13133
973d04f9 13134 intel_disable_fbc(dev);
e70236a8 13135
8090c6b9 13136 intel_disable_gt_powersave(dev);
0cdab21f 13137
930ebb46
DV
13138 ironlake_teardown_rc6(dev);
13139
69341a5e
KH
13140 mutex_unlock(&dev->struct_mutex);
13141
1630fe75
CW
13142 /* flush any delayed tasks or pending work */
13143 flush_scheduled_work();
13144
db31af1d
JN
13145 /* destroy the backlight and sysfs files before encoders/connectors */
13146 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13147 struct intel_connector *intel_connector;
13148
13149 intel_connector = to_intel_connector(connector);
13150 intel_connector->unregister(intel_connector);
db31af1d 13151 }
d9255d57 13152
79e53945 13153 drm_mode_config_cleanup(dev);
4d7bb011
DV
13154
13155 intel_cleanup_overlay(dev);
ae48434c
ID
13156
13157 mutex_lock(&dev->struct_mutex);
13158 intel_cleanup_gt_powersave(dev);
13159 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13160}
13161
f1c79df3
ZW
13162/*
13163 * Return which encoder is currently attached for connector.
13164 */
df0e9248 13165struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13166{
df0e9248
CW
13167 return &intel_attached_encoder(connector)->base;
13168}
f1c79df3 13169
df0e9248
CW
13170void intel_connector_attach_encoder(struct intel_connector *connector,
13171 struct intel_encoder *encoder)
13172{
13173 connector->encoder = encoder;
13174 drm_mode_connector_attach_encoder(&connector->base,
13175 &encoder->base);
79e53945 13176}
28d52043
DA
13177
13178/*
13179 * set vga decode state - true == enable VGA decode
13180 */
13181int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13182{
13183 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13184 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13185 u16 gmch_ctrl;
13186
75fa041d
CW
13187 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13188 DRM_ERROR("failed to read control word\n");
13189 return -EIO;
13190 }
13191
c0cc8a55
CW
13192 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13193 return 0;
13194
28d52043
DA
13195 if (state)
13196 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13197 else
13198 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13199
13200 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13201 DRM_ERROR("failed to write control word\n");
13202 return -EIO;
13203 }
13204
28d52043
DA
13205 return 0;
13206}
c4a1d9e4 13207
c4a1d9e4 13208struct intel_display_error_state {
ff57f1b0
PZ
13209
13210 u32 power_well_driver;
13211
63b66e5b
CW
13212 int num_transcoders;
13213
c4a1d9e4
CW
13214 struct intel_cursor_error_state {
13215 u32 control;
13216 u32 position;
13217 u32 base;
13218 u32 size;
52331309 13219 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13220
13221 struct intel_pipe_error_state {
ddf9c536 13222 bool power_domain_on;
c4a1d9e4 13223 u32 source;
f301b1e1 13224 u32 stat;
52331309 13225 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13226
13227 struct intel_plane_error_state {
13228 u32 control;
13229 u32 stride;
13230 u32 size;
13231 u32 pos;
13232 u32 addr;
13233 u32 surface;
13234 u32 tile_offset;
52331309 13235 } plane[I915_MAX_PIPES];
63b66e5b
CW
13236
13237 struct intel_transcoder_error_state {
ddf9c536 13238 bool power_domain_on;
63b66e5b
CW
13239 enum transcoder cpu_transcoder;
13240
13241 u32 conf;
13242
13243 u32 htotal;
13244 u32 hblank;
13245 u32 hsync;
13246 u32 vtotal;
13247 u32 vblank;
13248 u32 vsync;
13249 } transcoder[4];
c4a1d9e4
CW
13250};
13251
13252struct intel_display_error_state *
13253intel_display_capture_error_state(struct drm_device *dev)
13254{
fbee40df 13255 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13256 struct intel_display_error_state *error;
63b66e5b
CW
13257 int transcoders[] = {
13258 TRANSCODER_A,
13259 TRANSCODER_B,
13260 TRANSCODER_C,
13261 TRANSCODER_EDP,
13262 };
c4a1d9e4
CW
13263 int i;
13264
63b66e5b
CW
13265 if (INTEL_INFO(dev)->num_pipes == 0)
13266 return NULL;
13267
9d1cb914 13268 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13269 if (error == NULL)
13270 return NULL;
13271
190be112 13272 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13273 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13274
52331309 13275 for_each_pipe(i) {
ddf9c536 13276 error->pipe[i].power_domain_on =
bfafe93a
ID
13277 intel_display_power_enabled_unlocked(dev_priv,
13278 POWER_DOMAIN_PIPE(i));
ddf9c536 13279 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13280 continue;
13281
5efb3e28
VS
13282 error->cursor[i].control = I915_READ(CURCNTR(i));
13283 error->cursor[i].position = I915_READ(CURPOS(i));
13284 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13285
13286 error->plane[i].control = I915_READ(DSPCNTR(i));
13287 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13288 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13289 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13290 error->plane[i].pos = I915_READ(DSPPOS(i));
13291 }
ca291363
PZ
13292 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13293 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13294 if (INTEL_INFO(dev)->gen >= 4) {
13295 error->plane[i].surface = I915_READ(DSPSURF(i));
13296 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13297 }
13298
c4a1d9e4 13299 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13300
3abfce77 13301 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13302 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13303 }
13304
13305 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13306 if (HAS_DDI(dev_priv->dev))
13307 error->num_transcoders++; /* Account for eDP. */
13308
13309 for (i = 0; i < error->num_transcoders; i++) {
13310 enum transcoder cpu_transcoder = transcoders[i];
13311
ddf9c536 13312 error->transcoder[i].power_domain_on =
bfafe93a 13313 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13314 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13315 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13316 continue;
13317
63b66e5b
CW
13318 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13319
13320 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13321 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13322 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13323 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13324 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13325 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13326 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13327 }
13328
13329 return error;
13330}
13331
edc3d884
MK
13332#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13333
c4a1d9e4 13334void
edc3d884 13335intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13336 struct drm_device *dev,
13337 struct intel_display_error_state *error)
13338{
13339 int i;
13340
63b66e5b
CW
13341 if (!error)
13342 return;
13343
edc3d884 13344 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13345 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13346 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13347 error->power_well_driver);
52331309 13348 for_each_pipe(i) {
edc3d884 13349 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13350 err_printf(m, " Power: %s\n",
13351 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13352 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13353 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13354
13355 err_printf(m, "Plane [%d]:\n", i);
13356 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13357 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13358 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13359 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13360 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13361 }
4b71a570 13362 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13363 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13364 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13365 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13366 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13367 }
13368
edc3d884
MK
13369 err_printf(m, "Cursor [%d]:\n", i);
13370 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13371 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13372 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13373 }
63b66e5b
CW
13374
13375 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13376 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13377 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13378 err_printf(m, " Power: %s\n",
13379 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13380 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13381 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13382 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13383 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13384 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13385 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13386 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13387 }
c4a1d9e4 13388}
This page took 2.865361 seconds and 5 git commands to generate.