drm/i915/ddi: use struct for ddi buf translation tables
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
1ae0d137 103static void chv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415{
416 struct drm_device *dev = crtc->dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, crtc, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
1b894b59
CW
426static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427 int refclk)
2c07245f 428{
b91ad0ec 429 struct drm_device *dev = crtc->dev;
2c07245f 430 const intel_limit_t *limit;
b91ad0ec
ZW
431
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 433 if (intel_is_dual_link_lvds(dev)) {
1b894b59 434 if (refclk == 100000)
b91ad0ec
ZW
435 limit = &intel_limits_ironlake_dual_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_dual_lvds;
438 } else {
1b894b59 439 if (refclk == 100000)
b91ad0ec
ZW
440 limit = &intel_limits_ironlake_single_lvds_100m;
441 else
442 limit = &intel_limits_ironlake_single_lvds;
443 }
c6bb3538 444 } else
b91ad0ec 445 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
446
447 return limit;
448}
449
044c7c41
ML
450static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451{
452 struct drm_device *dev = crtc->dev;
044c7c41
ML
453 const intel_limit_t *limit;
454
455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 456 if (intel_is_dual_link_lvds(dev))
e4b36699 457 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 458 else
e4b36699 459 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 462 limit = &intel_limits_g4x_hdmi;
044c7c41 463 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 464 limit = &intel_limits_g4x_sdvo;
044c7c41 465 } else /* The option is for other outputs */
e4b36699 466 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
467
468 return limit;
469}
470
1b894b59 471static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
472{
473 struct drm_device *dev = crtc->dev;
474 const intel_limit_t *limit;
475
bad720ff 476 if (HAS_PCH_SPLIT(dev))
1b894b59 477 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 478 else if (IS_G4X(dev)) {
044c7c41 479 limit = intel_g4x_limit(crtc);
f2b115e6 480 } else if (IS_PINEVIEW(dev)) {
2177832f 481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 482 limit = &intel_limits_pineview_lvds;
2177832f 483 else
f2b115e6 484 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
485 } else if (IS_CHERRYVIEW(dev)) {
486 limit = &intel_limits_chv;
a0c4da24 487 } else if (IS_VALLEYVIEW(dev)) {
dc730512 488 limit = &intel_limits_vlv;
a6c45cf0
CW
489 } else if (!IS_GEN2(dev)) {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491 limit = &intel_limits_i9xx_lvds;
492 else
493 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
494 } else {
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 496 limit = &intel_limits_i8xx_lvds;
5d536e28 497 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 498 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
499 else
500 limit = &intel_limits_i8xx_dac;
79e53945
JB
501 }
502 return limit;
503}
504
f2b115e6
AJ
505/* m1 is reserved as 0 in Pineview, n is a ring counter */
506static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 507{
2177832f
SL
508 clock->m = clock->m2 + 2;
509 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
510 if (WARN_ON(clock->n == 0 || clock->p == 0))
511 return;
fb03ac01
VS
512 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
514}
515
7429e9d4
DV
516static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517{
518 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519}
520
ac58c3f0 521static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 522{
7429e9d4 523 clock->m = i9xx_dpll_compute_m(clock);
79e53945 524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
529}
530
ef9348c8
CML
531static void chv_clock(int refclk, intel_clock_t *clock)
532{
533 clock->m = clock->m1 * clock->m2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
536 return;
537 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538 clock->n << 22);
539 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540}
541
7c04d1d9 542#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
543/**
544 * Returns whether the given set of divisors are valid for a given refclk with
545 * the given connectors.
546 */
547
1b894b59
CW
548static bool intel_PLL_is_valid(struct drm_device *dev,
549 const intel_limit_t *limit,
550 const intel_clock_t *clock)
79e53945 551{
f01b7962
VS
552 if (clock->n < limit->n.min || limit->n.max < clock->n)
553 INTELPllInvalid("n out of range\n");
79e53945 554 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 555 INTELPllInvalid("p1 out of range\n");
79e53945 556 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 557 INTELPllInvalid("m2 out of range\n");
79e53945 558 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 559 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
560
561 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562 if (clock->m1 <= clock->m2)
563 INTELPllInvalid("m1 <= m2\n");
564
565 if (!IS_VALLEYVIEW(dev)) {
566 if (clock->p < limit->p.min || limit->p.max < clock->p)
567 INTELPllInvalid("p out of range\n");
568 if (clock->m < limit->m.min || limit->m.max < clock->m)
569 INTELPllInvalid("m out of range\n");
570 }
571
79e53945 572 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 573 INTELPllInvalid("vco out of range\n");
79e53945
JB
574 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575 * connector, etc., rather than just a single range.
576 */
577 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 578 INTELPllInvalid("dot out of range\n");
79e53945
JB
579
580 return true;
581}
582
d4906093 583static bool
ee9300bb 584i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
585 int target, int refclk, intel_clock_t *match_clock,
586 intel_clock_t *best_clock)
79e53945
JB
587{
588 struct drm_device *dev = crtc->dev;
79e53945 589 intel_clock_t clock;
79e53945
JB
590 int err = target;
591
a210b028 592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 593 /*
a210b028
DV
594 * For LVDS just rely on its current settings for dual-channel.
595 * We haven't figured out how to reliably set up different
596 * single/dual channel state, if we even can.
79e53945 597 */
1974cad0 598 if (intel_is_dual_link_lvds(dev))
79e53945
JB
599 clock.p2 = limit->p2.p2_fast;
600 else
601 clock.p2 = limit->p2.p2_slow;
602 } else {
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
605 else
606 clock.p2 = limit->p2.p2_fast;
607 }
608
0206e353 609 memset(best_clock, 0, sizeof(*best_clock));
79e53945 610
42158660
ZY
611 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612 clock.m1++) {
613 for (clock.m2 = limit->m2.min;
614 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 615 if (clock.m2 >= clock.m1)
42158660
ZY
616 break;
617 for (clock.n = limit->n.min;
618 clock.n <= limit->n.max; clock.n++) {
619 for (clock.p1 = limit->p1.min;
620 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
621 int this_err;
622
ac58c3f0
DV
623 i9xx_clock(refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627 if (match_clock &&
628 clock.p != match_clock->p)
629 continue;
630
631 this_err = abs(clock.dot - target);
632 if (this_err < err) {
633 *best_clock = clock;
634 err = this_err;
635 }
636 }
637 }
638 }
639 }
640
641 return (err != target);
642}
643
644static bool
ee9300bb
DV
645pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646 int target, int refclk, intel_clock_t *match_clock,
647 intel_clock_t *best_clock)
79e53945
JB
648{
649 struct drm_device *dev = crtc->dev;
79e53945 650 intel_clock_t clock;
79e53945
JB
651 int err = target;
652
a210b028 653 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 654 /*
a210b028
DV
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
79e53945 658 */
1974cad0 659 if (intel_is_dual_link_lvds(dev))
79e53945
JB
660 clock.p2 = limit->p2.p2_fast;
661 else
662 clock.p2 = limit->p2.p2_slow;
663 } else {
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
666 else
667 clock.p2 = limit->p2.p2_fast;
668 }
669
0206e353 670 memset(best_clock, 0, sizeof(*best_clock));
79e53945 671
42158660
ZY
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673 clock.m1++) {
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
676 for (clock.n = limit->n.min;
677 clock.n <= limit->n.max; clock.n++) {
678 for (clock.p1 = limit->p1.min;
679 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
680 int this_err;
681
ac58c3f0 682 pineview_clock(refclk, &clock);
1b894b59
CW
683 if (!intel_PLL_is_valid(dev, limit,
684 &clock))
79e53945 685 continue;
cec2f356
SP
686 if (match_clock &&
687 clock.p != match_clock->p)
688 continue;
79e53945
JB
689
690 this_err = abs(clock.dot - target);
691 if (this_err < err) {
692 *best_clock = clock;
693 err = this_err;
694 }
695 }
696 }
697 }
698 }
699
700 return (err != target);
701}
702
d4906093 703static bool
ee9300bb
DV
704g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
d4906093
ML
707{
708 struct drm_device *dev = crtc->dev;
d4906093
ML
709 intel_clock_t clock;
710 int max_n;
711 bool found;
6ba770dc
AJ
712 /* approximately equals target * 0.00585 */
713 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
714 found = false;
715
716 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 717 if (intel_is_dual_link_lvds(dev))
d4906093
ML
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
f77f13e2 730 /* based on hardware requirement, prefer smaller n to precision */
d4906093 731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 732 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
ac58c3f0 741 i9xx_clock(refclk, &clock);
1b894b59
CW
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
d4906093 744 continue;
1b894b59
CW
745
746 this_err = abs(clock.dot - target);
d4906093
ML
747 if (this_err < err_most) {
748 *best_clock = clock;
749 err_most = this_err;
750 max_n = clock.n;
751 found = true;
752 }
753 }
754 }
755 }
756 }
2c07245f
ZW
757 return found;
758}
759
a0c4da24 760static bool
ee9300bb
DV
761vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
a0c4da24 764{
f01b7962 765 struct drm_device *dev = crtc->dev;
6b4bf1c4 766 intel_clock_t clock;
69e4f900 767 unsigned int bestppm = 1000000;
27e639bf
VS
768 /* min update 19.2 MHz */
769 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 770 bool found = false;
a0c4da24 771
6b4bf1c4
VS
772 target *= 5; /* fast clock */
773
774 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
775
776 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 778 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 779 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 780 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 781 clock.p = clock.p1 * clock.p2;
a0c4da24 782 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
784 unsigned int ppm, diff;
785
6b4bf1c4
VS
786 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787 refclk * clock.m1);
788
789 vlv_clock(refclk, &clock);
43b0ac53 790
f01b7962
VS
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
43b0ac53
VS
793 continue;
794
6b4bf1c4
VS
795 diff = abs(clock.dot - target);
796 ppm = div_u64(1000000ULL * diff, target);
797
798 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 799 bestppm = 0;
6b4bf1c4 800 *best_clock = clock;
49e497ef 801 found = true;
43b0ac53 802 }
6b4bf1c4 803
c686122c 804 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 805 bestppm = ppm;
6b4bf1c4 806 *best_clock = clock;
49e497ef 807 found = true;
a0c4da24
JB
808 }
809 }
810 }
811 }
812 }
a0c4da24 813
49e497ef 814 return found;
a0c4da24 815}
a4fc5ed6 816
ef9348c8
CML
817static bool
818chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819 int target, int refclk, intel_clock_t *match_clock,
820 intel_clock_t *best_clock)
821{
822 struct drm_device *dev = crtc->dev;
823 intel_clock_t clock;
824 uint64_t m2;
825 int found = false;
826
827 memset(best_clock, 0, sizeof(*best_clock));
828
829 /*
830 * Based on hardware doc, the n always set to 1, and m1 always
831 * set to 2. If requires to support 200Mhz refclk, we need to
832 * revisit this because n may not 1 anymore.
833 */
834 clock.n = 1, clock.m1 = 2;
835 target *= 5; /* fast clock */
836
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast;
839 clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842 clock.p = clock.p1 * clock.p2;
843
844 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845 clock.n) << 22, refclk * clock.m1);
846
847 if (m2 > INT_MAX/clock.m1)
848 continue;
849
850 clock.m2 = m2;
851
852 chv_clock(refclk, &clock);
853
854 if (!intel_PLL_is_valid(dev, limit, &clock))
855 continue;
856
857 /* based on hardware requirement, prefer bigger p
858 */
859 if (clock.p > best_clock->p) {
860 *best_clock = clock;
861 found = true;
862 }
863 }
864 }
865
866 return found;
867}
868
20ddf665
VS
869bool intel_crtc_active(struct drm_crtc *crtc)
870{
871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873 /* Be paranoid as we can arrive here with only partial
874 * state retrieved from the hardware during setup.
875 *
241bfc38 876 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
877 * as Haswell has gained clock readout/fastboot support.
878 *
66e514c1 879 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
880 * properly reconstruct framebuffers.
881 */
f4510a27 882 return intel_crtc->active && crtc->primary->fb &&
241bfc38 883 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
884}
885
a5c961d1
PZ
886enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887 enum pipe pipe)
888{
889 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
3b117c8f 892 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
893}
894
57e22f4a 895static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
896{
897 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 898 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
899
900 frame = I915_READ(frame_reg);
901
902 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
31e4b89a
DL
903 WARN(1, "vblank wait on pipe %c timed out\n",
904 pipe_name(pipe));
a928d536
PZ
905}
906
9d0498a2
JB
907/**
908 * intel_wait_for_vblank - wait for vblank on a given pipe
909 * @dev: drm device
910 * @pipe: pipe to wait for
911 *
912 * Wait for vblank to occur on a given pipe. Needed for various bits of
913 * mode setting code.
914 */
915void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 916{
9d0498a2 917 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 918 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 919
57e22f4a
VS
920 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
922 return;
923 }
924
300387c0
CW
925 /* Clear existing vblank status. Note this will clear any other
926 * sticky status fields as well.
927 *
928 * This races with i915_driver_irq_handler() with the result
929 * that either function could miss a vblank event. Here it is not
930 * fatal, as we will either wait upon the next vblank interrupt or
931 * timeout. Generally speaking intel_wait_for_vblank() is only
932 * called during modeset at which time the GPU should be idle and
933 * should *not* be performing page flips and thus not waiting on
934 * vblanks...
935 * Currently, the result of us stealing a vblank from the irq
936 * handler is that a single frame will be skipped during swapbuffers.
937 */
938 I915_WRITE(pipestat_reg,
939 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
940
9d0498a2 941 /* Wait for vblank interrupt bit to set */
481b6af3
CW
942 if (wait_for(I915_READ(pipestat_reg) &
943 PIPE_VBLANK_INTERRUPT_STATUS,
944 50))
31e4b89a
DL
945 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
946 pipe_name(pipe));
9d0498a2
JB
947}
948
fbf49ea2
VS
949static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
950{
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 reg = PIPEDSL(pipe);
953 u32 line1, line2;
954 u32 line_mask;
955
956 if (IS_GEN2(dev))
957 line_mask = DSL_LINEMASK_GEN2;
958 else
959 line_mask = DSL_LINEMASK_GEN3;
960
961 line1 = I915_READ(reg) & line_mask;
962 mdelay(5);
963 line2 = I915_READ(reg) & line_mask;
964
965 return line1 == line2;
966}
967
ab7ad7f6
KP
968/*
969 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
970 * @dev: drm device
971 * @pipe: pipe to wait for
972 *
973 * After disabling a pipe, we can't wait for vblank in the usual way,
974 * spinning on the vblank interrupt status bit, since we won't actually
975 * see an interrupt when the pipe is disabled.
976 *
ab7ad7f6
KP
977 * On Gen4 and above:
978 * wait for the pipe register state bit to turn off
979 *
980 * Otherwise:
981 * wait for the display line value to settle (it usually
982 * ends up stopping at the start of the next frame).
58e10eb9 983 *
9d0498a2 984 */
58e10eb9 985void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
986{
987 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
988 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
989 pipe);
ab7ad7f6
KP
990
991 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 992 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
993
994 /* Wait for the Pipe State to go off */
58e10eb9
CW
995 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
996 100))
284637d9 997 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 998 } else {
ab7ad7f6 999 /* Wait for the display line to settle */
fbf49ea2 1000 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1001 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1002 }
79e53945
JB
1003}
1004
b0ea7d37
DL
1005/*
1006 * ibx_digital_port_connected - is the specified port connected?
1007 * @dev_priv: i915 private structure
1008 * @port: the port to test
1009 *
1010 * Returns true if @port is connected, false otherwise.
1011 */
1012bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1013 struct intel_digital_port *port)
1014{
1015 u32 bit;
1016
c36346e3 1017 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1018 switch (port->port) {
c36346e3
DL
1019 case PORT_B:
1020 bit = SDE_PORTB_HOTPLUG;
1021 break;
1022 case PORT_C:
1023 bit = SDE_PORTC_HOTPLUG;
1024 break;
1025 case PORT_D:
1026 bit = SDE_PORTD_HOTPLUG;
1027 break;
1028 default:
1029 return true;
1030 }
1031 } else {
eba905b2 1032 switch (port->port) {
c36346e3
DL
1033 case PORT_B:
1034 bit = SDE_PORTB_HOTPLUG_CPT;
1035 break;
1036 case PORT_C:
1037 bit = SDE_PORTC_HOTPLUG_CPT;
1038 break;
1039 case PORT_D:
1040 bit = SDE_PORTD_HOTPLUG_CPT;
1041 break;
1042 default:
1043 return true;
1044 }
b0ea7d37
DL
1045 }
1046
1047 return I915_READ(SDEISR) & bit;
1048}
1049
b24e7179
JB
1050static const char *state_string(bool enabled)
1051{
1052 return enabled ? "on" : "off";
1053}
1054
1055/* Only for pre-ILK configs */
55607e8a
DV
1056void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
b24e7179
JB
1058{
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069}
b24e7179 1070
23538ef1
JN
1071/* XXX: the dsi pll is shared between MIPI DSI ports */
1072static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1073{
1074 u32 val;
1075 bool cur_state;
1076
1077 mutex_lock(&dev_priv->dpio_lock);
1078 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1079 mutex_unlock(&dev_priv->dpio_lock);
1080
1081 cur_state = val & DSI_PLL_VCO_EN;
1082 WARN(cur_state != state,
1083 "DSI PLL state assertion failure (expected %s, current %s)\n",
1084 state_string(state), state_string(cur_state));
1085}
1086#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1087#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1088
55607e8a 1089struct intel_shared_dpll *
e2b78267
DV
1090intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1091{
1092 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1093
a43f6e0f 1094 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1095 return NULL;
1096
a43f6e0f 1097 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1098}
1099
040484af 1100/* For ILK+ */
55607e8a
DV
1101void assert_shared_dpll(struct drm_i915_private *dev_priv,
1102 struct intel_shared_dpll *pll,
1103 bool state)
040484af 1104{
040484af 1105 bool cur_state;
5358901f 1106 struct intel_dpll_hw_state hw_state;
040484af 1107
92b27b08 1108 if (WARN (!pll,
46edb027 1109 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1110 return;
ee7b9f93 1111
5358901f 1112 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1113 WARN(cur_state != state,
5358901f
DV
1114 "%s assertion failure (expected %s, current %s)\n",
1115 pll->name, state_string(state), state_string(cur_state));
040484af 1116}
040484af
JB
1117
1118static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120{
1121 int reg;
1122 u32 val;
1123 bool cur_state;
ad80a810
PZ
1124 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1125 pipe);
040484af 1126
affa9354
PZ
1127 if (HAS_DDI(dev_priv->dev)) {
1128 /* DDI does not have a specific FDI_TX register */
ad80a810 1129 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1130 val = I915_READ(reg);
ad80a810 1131 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1132 } else {
1133 reg = FDI_TX_CTL(pipe);
1134 val = I915_READ(reg);
1135 cur_state = !!(val & FDI_TX_ENABLE);
1136 }
040484af
JB
1137 WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 state_string(state), state_string(cur_state));
1140}
1141#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146{
1147 int reg;
1148 u32 val;
1149 bool cur_state;
1150
d63fa0dc
PZ
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1154 WARN(cur_state != state,
1155 "FDI RX state assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1157}
1158#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1159#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160
1161static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1162 enum pipe pipe)
1163{
1164 int reg;
1165 u32 val;
1166
1167 /* ILK FDI PLL is always enabled */
3d13ef2e 1168 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1169 return;
1170
bf507ef7 1171 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1172 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1173 return;
1174
040484af
JB
1175 reg = FDI_TX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1178}
1179
55607e8a
DV
1180void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
040484af
JB
1182{
1183 int reg;
1184 u32 val;
55607e8a 1185 bool cur_state;
040484af
JB
1186
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
55607e8a
DV
1189 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190 WARN(cur_state != state,
1191 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192 state_string(state), state_string(cur_state));
040484af
JB
1193}
1194
ea0760cf
JB
1195static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1196 enum pipe pipe)
1197{
bedd4dba
JN
1198 struct drm_device *dev = dev_priv->dev;
1199 int pp_reg;
ea0760cf
JB
1200 u32 val;
1201 enum pipe panel_pipe = PIPE_A;
0de3b485 1202 bool locked = true;
ea0760cf 1203
bedd4dba
JN
1204 if (WARN_ON(HAS_DDI(dev)))
1205 return;
1206
1207 if (HAS_PCH_SPLIT(dev)) {
1208 u32 port_sel;
1209
ea0760cf 1210 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1211 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1212
1213 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1214 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1215 panel_pipe = PIPE_B;
1216 /* XXX: else fix for eDP */
1217 } else if (IS_VALLEYVIEW(dev)) {
1218 /* presumably write lock depends on pipe, not port select */
1219 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1220 panel_pipe = pipe;
ea0760cf
JB
1221 } else {
1222 pp_reg = PP_CONTROL;
bedd4dba
JN
1223 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1224 panel_pipe = PIPE_B;
ea0760cf
JB
1225 }
1226
1227 val = I915_READ(pp_reg);
1228 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1229 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1230 locked = false;
1231
ea0760cf
JB
1232 WARN(panel_pipe == pipe && locked,
1233 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1234 pipe_name(pipe));
ea0760cf
JB
1235}
1236
93ce0ba6
JN
1237static void assert_cursor(struct drm_i915_private *dev_priv,
1238 enum pipe pipe, bool state)
1239{
1240 struct drm_device *dev = dev_priv->dev;
1241 bool cur_state;
1242
d9d82081 1243 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1244 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1245 else
5efb3e28 1246 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1247
1248 WARN(cur_state != state,
1249 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1251}
1252#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1253#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1254
b840d907
JB
1255void assert_pipe(struct drm_i915_private *dev_priv,
1256 enum pipe pipe, bool state)
b24e7179
JB
1257{
1258 int reg;
1259 u32 val;
63d7bbe9 1260 bool cur_state;
702e7a56
PZ
1261 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1262 pipe);
b24e7179 1263
8e636784
DV
1264 /* if we need the pipe A quirk it must be always on */
1265 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1266 state = true;
1267
da7e29bd 1268 if (!intel_display_power_enabled(dev_priv,
b97186f0 1269 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1270 cur_state = false;
1271 } else {
1272 reg = PIPECONF(cpu_transcoder);
1273 val = I915_READ(reg);
1274 cur_state = !!(val & PIPECONF_ENABLE);
1275 }
1276
63d7bbe9
JB
1277 WARN(cur_state != state,
1278 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1279 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1280}
1281
931872fc
CW
1282static void assert_plane(struct drm_i915_private *dev_priv,
1283 enum plane plane, bool state)
b24e7179
JB
1284{
1285 int reg;
1286 u32 val;
931872fc 1287 bool cur_state;
b24e7179
JB
1288
1289 reg = DSPCNTR(plane);
1290 val = I915_READ(reg);
931872fc
CW
1291 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1292 WARN(cur_state != state,
1293 "plane %c assertion failure (expected %s, current %s)\n",
1294 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1295}
1296
931872fc
CW
1297#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1298#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1299
b24e7179
JB
1300static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1301 enum pipe pipe)
1302{
653e1026 1303 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1304 int reg, i;
1305 u32 val;
1306 int cur_pipe;
1307
653e1026
VS
1308 /* Primary planes are fixed to pipes on gen4+ */
1309 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1310 reg = DSPCNTR(pipe);
1311 val = I915_READ(reg);
83f26f16 1312 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1313 "plane %c assertion failure, should be disabled but not\n",
1314 plane_name(pipe));
19ec1358 1315 return;
28c05794 1316 }
19ec1358 1317
b24e7179 1318 /* Need to check both planes against the pipe */
055e393f 1319 for_each_pipe(dev_priv, i) {
b24e7179
JB
1320 reg = DSPCNTR(i);
1321 val = I915_READ(reg);
1322 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1323 DISPPLANE_SEL_PIPE_SHIFT;
1324 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1325 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1326 plane_name(i), pipe_name(pipe));
b24e7179
JB
1327 }
1328}
1329
19332d7a
JB
1330static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1331 enum pipe pipe)
1332{
20674eef 1333 struct drm_device *dev = dev_priv->dev;
1fe47785 1334 int reg, sprite;
19332d7a
JB
1335 u32 val;
1336
20674eef 1337 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1338 for_each_sprite(pipe, sprite) {
1339 reg = SPCNTR(pipe, sprite);
20674eef 1340 val = I915_READ(reg);
83f26f16 1341 WARN(val & SP_ENABLE,
20674eef 1342 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1343 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1344 }
1345 } else if (INTEL_INFO(dev)->gen >= 7) {
1346 reg = SPRCTL(pipe);
19332d7a 1347 val = I915_READ(reg);
83f26f16 1348 WARN(val & SPRITE_ENABLE,
06da8da2 1349 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1350 plane_name(pipe), pipe_name(pipe));
1351 } else if (INTEL_INFO(dev)->gen >= 5) {
1352 reg = DVSCNTR(pipe);
19332d7a 1353 val = I915_READ(reg);
83f26f16 1354 WARN(val & DVS_ENABLE,
06da8da2 1355 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1356 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1357 }
1358}
1359
89eff4be 1360static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1361{
1362 u32 val;
1363 bool enabled;
1364
89eff4be 1365 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1366
92f2584a
JB
1367 val = I915_READ(PCH_DREF_CONTROL);
1368 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1369 DREF_SUPERSPREAD_SOURCE_MASK));
1370 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1371}
1372
ab9412ba
DV
1373static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1374 enum pipe pipe)
92f2584a
JB
1375{
1376 int reg;
1377 u32 val;
1378 bool enabled;
1379
ab9412ba 1380 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1381 val = I915_READ(reg);
1382 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1383 WARN(enabled,
1384 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1385 pipe_name(pipe));
92f2584a
JB
1386}
1387
4e634389
KP
1388static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1389 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1390{
1391 if ((val & DP_PORT_EN) == 0)
1392 return false;
1393
1394 if (HAS_PCH_CPT(dev_priv->dev)) {
1395 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1396 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1397 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1398 return false;
44f37d1f
CML
1399 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1400 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1401 return false;
f0575e92
KP
1402 } else {
1403 if ((val & DP_PIPE_MASK) != (pipe << 30))
1404 return false;
1405 }
1406 return true;
1407}
1408
1519b995
KP
1409static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411{
dc0fa718 1412 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1413 return false;
1414
1415 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1416 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1417 return false;
44f37d1f
CML
1418 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1419 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1420 return false;
1519b995 1421 } else {
dc0fa718 1422 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1423 return false;
1424 }
1425 return true;
1426}
1427
1428static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1429 enum pipe pipe, u32 val)
1430{
1431 if ((val & LVDS_PORT_EN) == 0)
1432 return false;
1433
1434 if (HAS_PCH_CPT(dev_priv->dev)) {
1435 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1436 return false;
1437 } else {
1438 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1439 return false;
1440 }
1441 return true;
1442}
1443
1444static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1445 enum pipe pipe, u32 val)
1446{
1447 if ((val & ADPA_DAC_ENABLE) == 0)
1448 return false;
1449 if (HAS_PCH_CPT(dev_priv->dev)) {
1450 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1451 return false;
1452 } else {
1453 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1454 return false;
1455 }
1456 return true;
1457}
1458
291906f1 1459static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1460 enum pipe pipe, int reg, u32 port_sel)
291906f1 1461{
47a05eca 1462 u32 val = I915_READ(reg);
4e634389 1463 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1464 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1465 reg, pipe_name(pipe));
de9a35ab 1466
75c5da27
DV
1467 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1468 && (val & DP_PIPEB_SELECT),
de9a35ab 1469 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1470}
1471
1472static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1473 enum pipe pipe, int reg)
1474{
47a05eca 1475 u32 val = I915_READ(reg);
b70ad586 1476 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1477 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1478 reg, pipe_name(pipe));
de9a35ab 1479
dc0fa718 1480 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1481 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1482 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1483}
1484
1485static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1486 enum pipe pipe)
1487{
1488 int reg;
1489 u32 val;
291906f1 1490
f0575e92
KP
1491 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1492 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1493 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1494
1495 reg = PCH_ADPA;
1496 val = I915_READ(reg);
b70ad586 1497 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1498 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1499 pipe_name(pipe));
291906f1
JB
1500
1501 reg = PCH_LVDS;
1502 val = I915_READ(reg);
b70ad586 1503 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1504 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1505 pipe_name(pipe));
291906f1 1506
e2debe91
PZ
1507 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1508 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1509 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1510}
1511
40e9cf64
JB
1512static void intel_init_dpio(struct drm_device *dev)
1513{
1514 struct drm_i915_private *dev_priv = dev->dev_private;
1515
1516 if (!IS_VALLEYVIEW(dev))
1517 return;
1518
a09caddd
CML
1519 /*
1520 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1521 * CHV x1 PHY (DP/HDMI D)
1522 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1523 */
1524 if (IS_CHERRYVIEW(dev)) {
1525 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1526 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1527 } else {
1528 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1529 }
5382f5f3
JB
1530}
1531
426115cf 1532static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1533{
426115cf
DV
1534 struct drm_device *dev = crtc->base.dev;
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 int reg = DPLL(crtc->pipe);
1537 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1538
426115cf 1539 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1540
1541 /* No really, not for ILK+ */
1542 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1543
1544 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1545 if (IS_MOBILE(dev_priv->dev))
426115cf 1546 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1547
426115cf
DV
1548 I915_WRITE(reg, dpll);
1549 POSTING_READ(reg);
1550 udelay(150);
1551
1552 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1553 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1554
1555 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1556 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1557
1558 /* We do this three times for luck */
426115cf 1559 I915_WRITE(reg, dpll);
87442f73
DV
1560 POSTING_READ(reg);
1561 udelay(150); /* wait for warmup */
426115cf 1562 I915_WRITE(reg, dpll);
87442f73
DV
1563 POSTING_READ(reg);
1564 udelay(150); /* wait for warmup */
426115cf 1565 I915_WRITE(reg, dpll);
87442f73
DV
1566 POSTING_READ(reg);
1567 udelay(150); /* wait for warmup */
1568}
1569
9d556c99
CML
1570static void chv_enable_pll(struct intel_crtc *crtc)
1571{
1572 struct drm_device *dev = crtc->base.dev;
1573 struct drm_i915_private *dev_priv = dev->dev_private;
1574 int pipe = crtc->pipe;
1575 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1576 u32 tmp;
1577
1578 assert_pipe_disabled(dev_priv, crtc->pipe);
1579
1580 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1581
1582 mutex_lock(&dev_priv->dpio_lock);
1583
1584 /* Enable back the 10bit clock to display controller */
1585 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1586 tmp |= DPIO_DCLKP_EN;
1587 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1588
1589 /*
1590 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1591 */
1592 udelay(1);
1593
1594 /* Enable PLL */
a11b0703 1595 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1596
1597 /* Check PLL is locked */
a11b0703 1598 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1599 DRM_ERROR("PLL %d failed to lock\n", pipe);
1600
a11b0703
VS
1601 /* not sure when this should be written */
1602 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1603 POSTING_READ(DPLL_MD(pipe));
1604
9d556c99
CML
1605 mutex_unlock(&dev_priv->dpio_lock);
1606}
1607
66e3d5c0 1608static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1609{
66e3d5c0
DV
1610 struct drm_device *dev = crtc->base.dev;
1611 struct drm_i915_private *dev_priv = dev->dev_private;
1612 int reg = DPLL(crtc->pipe);
1613 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1614
66e3d5c0 1615 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1616
63d7bbe9 1617 /* No really, not for ILK+ */
3d13ef2e 1618 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1619
1620 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1621 if (IS_MOBILE(dev) && !IS_I830(dev))
1622 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1623
66e3d5c0
DV
1624 I915_WRITE(reg, dpll);
1625
1626 /* Wait for the clocks to stabilize. */
1627 POSTING_READ(reg);
1628 udelay(150);
1629
1630 if (INTEL_INFO(dev)->gen >= 4) {
1631 I915_WRITE(DPLL_MD(crtc->pipe),
1632 crtc->config.dpll_hw_state.dpll_md);
1633 } else {
1634 /* The pixel multiplier can only be updated once the
1635 * DPLL is enabled and the clocks are stable.
1636 *
1637 * So write it again.
1638 */
1639 I915_WRITE(reg, dpll);
1640 }
63d7bbe9
JB
1641
1642 /* We do this three times for luck */
66e3d5c0 1643 I915_WRITE(reg, dpll);
63d7bbe9
JB
1644 POSTING_READ(reg);
1645 udelay(150); /* wait for warmup */
66e3d5c0 1646 I915_WRITE(reg, dpll);
63d7bbe9
JB
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
66e3d5c0 1649 I915_WRITE(reg, dpll);
63d7bbe9
JB
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652}
1653
1654/**
50b44a44 1655 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1656 * @dev_priv: i915 private structure
1657 * @pipe: pipe PLL to disable
1658 *
1659 * Disable the PLL for @pipe, making sure the pipe is off first.
1660 *
1661 * Note! This is for pre-ILK only.
1662 */
50b44a44 1663static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1664{
63d7bbe9
JB
1665 /* Don't disable pipe A or pipe A PLLs if needed */
1666 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1667 return;
1668
1669 /* Make sure the pipe isn't still relying on us */
1670 assert_pipe_disabled(dev_priv, pipe);
1671
50b44a44
DV
1672 I915_WRITE(DPLL(pipe), 0);
1673 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1674}
1675
f6071166
JB
1676static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1677{
1678 u32 val = 0;
1679
1680 /* Make sure the pipe isn't still relying on us */
1681 assert_pipe_disabled(dev_priv, pipe);
1682
e5cbfbfb
ID
1683 /*
1684 * Leave integrated clock source and reference clock enabled for pipe B.
1685 * The latter is needed for VGA hotplug / manual detection.
1686 */
f6071166 1687 if (pipe == PIPE_B)
e5cbfbfb 1688 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1689 I915_WRITE(DPLL(pipe), val);
1690 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1691
1692}
1693
1694static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1695{
d752048d 1696 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1697 u32 val;
1698
a11b0703
VS
1699 /* Make sure the pipe isn't still relying on us */
1700 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1701
a11b0703 1702 /* Set PLL en = 0 */
d17ec4ce 1703 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1704 if (pipe != PIPE_A)
1705 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1706 I915_WRITE(DPLL(pipe), val);
1707 POSTING_READ(DPLL(pipe));
d752048d
VS
1708
1709 mutex_lock(&dev_priv->dpio_lock);
1710
1711 /* Disable 10bit clock to display controller */
1712 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1713 val &= ~DPIO_DCLKP_EN;
1714 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1715
61407f6d
VS
1716 /* disable left/right clock distribution */
1717 if (pipe != PIPE_B) {
1718 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1719 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1720 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1721 } else {
1722 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1723 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1724 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1725 }
1726
d752048d 1727 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1728}
1729
e4607fcf
CML
1730void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1731 struct intel_digital_port *dport)
89b667f8
JB
1732{
1733 u32 port_mask;
00fc31b7 1734 int dpll_reg;
89b667f8 1735
e4607fcf
CML
1736 switch (dport->port) {
1737 case PORT_B:
89b667f8 1738 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1739 dpll_reg = DPLL(0);
e4607fcf
CML
1740 break;
1741 case PORT_C:
89b667f8 1742 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1743 dpll_reg = DPLL(0);
1744 break;
1745 case PORT_D:
1746 port_mask = DPLL_PORTD_READY_MASK;
1747 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1748 break;
1749 default:
1750 BUG();
1751 }
89b667f8 1752
00fc31b7 1753 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1754 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1755 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1756}
1757
b14b1055
DV
1758static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1759{
1760 struct drm_device *dev = crtc->base.dev;
1761 struct drm_i915_private *dev_priv = dev->dev_private;
1762 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1763
be19f0ff
CW
1764 if (WARN_ON(pll == NULL))
1765 return;
1766
b14b1055
DV
1767 WARN_ON(!pll->refcount);
1768 if (pll->active == 0) {
1769 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1770 WARN_ON(pll->on);
1771 assert_shared_dpll_disabled(dev_priv, pll);
1772
1773 pll->mode_set(dev_priv, pll);
1774 }
1775}
1776
92f2584a 1777/**
85b3894f 1778 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1779 * @dev_priv: i915 private structure
1780 * @pipe: pipe PLL to enable
1781 *
1782 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1783 * drives the transcoder clock.
1784 */
85b3894f 1785static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1786{
3d13ef2e
DL
1787 struct drm_device *dev = crtc->base.dev;
1788 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1789 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1790
87a875bb 1791 if (WARN_ON(pll == NULL))
48da64a8
CW
1792 return;
1793
1794 if (WARN_ON(pll->refcount == 0))
1795 return;
ee7b9f93 1796
74dd6928 1797 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1798 pll->name, pll->active, pll->on,
e2b78267 1799 crtc->base.base.id);
92f2584a 1800
cdbd2316
DV
1801 if (pll->active++) {
1802 WARN_ON(!pll->on);
e9d6944e 1803 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1804 return;
1805 }
f4a091c7 1806 WARN_ON(pll->on);
ee7b9f93 1807
bd2bb1b9
PZ
1808 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1809
46edb027 1810 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1811 pll->enable(dev_priv, pll);
ee7b9f93 1812 pll->on = true;
92f2584a
JB
1813}
1814
f6daaec2 1815static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1816{
3d13ef2e
DL
1817 struct drm_device *dev = crtc->base.dev;
1818 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1819 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1820
92f2584a 1821 /* PCH only available on ILK+ */
3d13ef2e 1822 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1823 if (WARN_ON(pll == NULL))
ee7b9f93 1824 return;
92f2584a 1825
48da64a8
CW
1826 if (WARN_ON(pll->refcount == 0))
1827 return;
7a419866 1828
46edb027
DV
1829 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1830 pll->name, pll->active, pll->on,
e2b78267 1831 crtc->base.base.id);
7a419866 1832
48da64a8 1833 if (WARN_ON(pll->active == 0)) {
e9d6944e 1834 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1835 return;
1836 }
1837
e9d6944e 1838 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1839 WARN_ON(!pll->on);
cdbd2316 1840 if (--pll->active)
7a419866 1841 return;
ee7b9f93 1842
46edb027 1843 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1844 pll->disable(dev_priv, pll);
ee7b9f93 1845 pll->on = false;
bd2bb1b9
PZ
1846
1847 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1848}
1849
b8a4f404
PZ
1850static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1851 enum pipe pipe)
040484af 1852{
23670b32 1853 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1854 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1856 uint32_t reg, val, pipeconf_val;
040484af
JB
1857
1858 /* PCH only available on ILK+ */
3d13ef2e 1859 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1860
1861 /* Make sure PCH DPLL is enabled */
e72f9fbf 1862 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1863 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1864
1865 /* FDI must be feeding us bits for PCH ports */
1866 assert_fdi_tx_enabled(dev_priv, pipe);
1867 assert_fdi_rx_enabled(dev_priv, pipe);
1868
23670b32
DV
1869 if (HAS_PCH_CPT(dev)) {
1870 /* Workaround: Set the timing override bit before enabling the
1871 * pch transcoder. */
1872 reg = TRANS_CHICKEN2(pipe);
1873 val = I915_READ(reg);
1874 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1875 I915_WRITE(reg, val);
59c859d6 1876 }
23670b32 1877
ab9412ba 1878 reg = PCH_TRANSCONF(pipe);
040484af 1879 val = I915_READ(reg);
5f7f726d 1880 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1881
1882 if (HAS_PCH_IBX(dev_priv->dev)) {
1883 /*
1884 * make the BPC in transcoder be consistent with
1885 * that in pipeconf reg.
1886 */
dfd07d72
DV
1887 val &= ~PIPECONF_BPC_MASK;
1888 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1889 }
5f7f726d
PZ
1890
1891 val &= ~TRANS_INTERLACE_MASK;
1892 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1893 if (HAS_PCH_IBX(dev_priv->dev) &&
1894 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1895 val |= TRANS_LEGACY_INTERLACED_ILK;
1896 else
1897 val |= TRANS_INTERLACED;
5f7f726d
PZ
1898 else
1899 val |= TRANS_PROGRESSIVE;
1900
040484af
JB
1901 I915_WRITE(reg, val | TRANS_ENABLE);
1902 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1903 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1904}
1905
8fb033d7 1906static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1907 enum transcoder cpu_transcoder)
040484af 1908{
8fb033d7 1909 u32 val, pipeconf_val;
8fb033d7
PZ
1910
1911 /* PCH only available on ILK+ */
3d13ef2e 1912 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1913
8fb033d7 1914 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1915 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1916 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1917
223a6fdf
PZ
1918 /* Workaround: set timing override bit. */
1919 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1920 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1921 I915_WRITE(_TRANSA_CHICKEN2, val);
1922
25f3ef11 1923 val = TRANS_ENABLE;
937bb610 1924 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1925
9a76b1c6
PZ
1926 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1927 PIPECONF_INTERLACED_ILK)
a35f2679 1928 val |= TRANS_INTERLACED;
8fb033d7
PZ
1929 else
1930 val |= TRANS_PROGRESSIVE;
1931
ab9412ba
DV
1932 I915_WRITE(LPT_TRANSCONF, val);
1933 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1934 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1935}
1936
b8a4f404
PZ
1937static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1938 enum pipe pipe)
040484af 1939{
23670b32
DV
1940 struct drm_device *dev = dev_priv->dev;
1941 uint32_t reg, val;
040484af
JB
1942
1943 /* FDI relies on the transcoder */
1944 assert_fdi_tx_disabled(dev_priv, pipe);
1945 assert_fdi_rx_disabled(dev_priv, pipe);
1946
291906f1
JB
1947 /* Ports must be off as well */
1948 assert_pch_ports_disabled(dev_priv, pipe);
1949
ab9412ba 1950 reg = PCH_TRANSCONF(pipe);
040484af
JB
1951 val = I915_READ(reg);
1952 val &= ~TRANS_ENABLE;
1953 I915_WRITE(reg, val);
1954 /* wait for PCH transcoder off, transcoder state */
1955 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1956 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1957
1958 if (!HAS_PCH_IBX(dev)) {
1959 /* Workaround: Clear the timing override chicken bit again. */
1960 reg = TRANS_CHICKEN2(pipe);
1961 val = I915_READ(reg);
1962 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1963 I915_WRITE(reg, val);
1964 }
040484af
JB
1965}
1966
ab4d966c 1967static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1968{
8fb033d7
PZ
1969 u32 val;
1970
ab9412ba 1971 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1972 val &= ~TRANS_ENABLE;
ab9412ba 1973 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1974 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1975 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1976 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1977
1978 /* Workaround: clear timing override bit. */
1979 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1980 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1981 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1982}
1983
b24e7179 1984/**
309cfea8 1985 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1986 * @crtc: crtc responsible for the pipe
b24e7179 1987 *
0372264a 1988 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1989 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1990 */
e1fdc473 1991static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1992{
0372264a
PZ
1993 struct drm_device *dev = crtc->base.dev;
1994 struct drm_i915_private *dev_priv = dev->dev_private;
1995 enum pipe pipe = crtc->pipe;
702e7a56
PZ
1996 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1997 pipe);
1a240d4d 1998 enum pipe pch_transcoder;
b24e7179
JB
1999 int reg;
2000 u32 val;
2001
58c6eaa2 2002 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2003 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2004 assert_sprites_disabled(dev_priv, pipe);
2005
681e5811 2006 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2007 pch_transcoder = TRANSCODER_A;
2008 else
2009 pch_transcoder = pipe;
2010
b24e7179
JB
2011 /*
2012 * A pipe without a PLL won't actually be able to drive bits from
2013 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2014 * need the check.
2015 */
2016 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2017 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2018 assert_dsi_pll_enabled(dev_priv);
2019 else
2020 assert_pll_enabled(dev_priv, pipe);
040484af 2021 else {
30421c4f 2022 if (crtc->config.has_pch_encoder) {
040484af 2023 /* if driving the PCH, we need FDI enabled */
cc391bbb 2024 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2025 assert_fdi_tx_pll_enabled(dev_priv,
2026 (enum pipe) cpu_transcoder);
040484af
JB
2027 }
2028 /* FIXME: assert CPU port conditions for SNB+ */
2029 }
b24e7179 2030
702e7a56 2031 reg = PIPECONF(cpu_transcoder);
b24e7179 2032 val = I915_READ(reg);
7ad25d48
PZ
2033 if (val & PIPECONF_ENABLE) {
2034 WARN_ON(!(pipe == PIPE_A &&
2035 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2036 return;
7ad25d48 2037 }
00d70b15
CW
2038
2039 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2040 POSTING_READ(reg);
b24e7179
JB
2041}
2042
2043/**
309cfea8 2044 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2045 * @dev_priv: i915 private structure
2046 * @pipe: pipe to disable
2047 *
2048 * Disable @pipe, making sure that various hardware specific requirements
2049 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2050 *
2051 * @pipe should be %PIPE_A or %PIPE_B.
2052 *
2053 * Will wait until the pipe has shut down before returning.
2054 */
2055static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2056 enum pipe pipe)
2057{
702e7a56
PZ
2058 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2059 pipe);
b24e7179
JB
2060 int reg;
2061 u32 val;
2062
2063 /*
2064 * Make sure planes won't keep trying to pump pixels to us,
2065 * or we might hang the display.
2066 */
2067 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2068 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2069 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2070
2071 /* Don't disable pipe A or pipe A PLLs if needed */
2072 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2073 return;
2074
702e7a56 2075 reg = PIPECONF(cpu_transcoder);
b24e7179 2076 val = I915_READ(reg);
00d70b15
CW
2077 if ((val & PIPECONF_ENABLE) == 0)
2078 return;
2079
2080 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2081 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2082}
2083
d74362c9
KP
2084/*
2085 * Plane regs are double buffered, going from enabled->disabled needs a
2086 * trigger in order to latch. The display address reg provides this.
2087 */
1dba99f4
VS
2088void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2089 enum plane plane)
d74362c9 2090{
3d13ef2e
DL
2091 struct drm_device *dev = dev_priv->dev;
2092 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2093
2094 I915_WRITE(reg, I915_READ(reg));
2095 POSTING_READ(reg);
d74362c9
KP
2096}
2097
b24e7179 2098/**
262ca2b0 2099 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2100 * @plane: plane to be enabled
2101 * @crtc: crtc for the plane
b24e7179 2102 *
fdd508a6 2103 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2104 */
fdd508a6
VS
2105static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2106 struct drm_crtc *crtc)
b24e7179 2107{
fdd508a6
VS
2108 struct drm_device *dev = plane->dev;
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2111
2112 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2113 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2114
98ec7739
VS
2115 if (intel_crtc->primary_enabled)
2116 return;
0037f71c 2117
4c445e0e 2118 intel_crtc->primary_enabled = true;
939c2fe8 2119
fdd508a6
VS
2120 dev_priv->display.update_primary_plane(crtc, plane->fb,
2121 crtc->x, crtc->y);
33c3b0d1
VS
2122
2123 /*
2124 * BDW signals flip done immediately if the plane
2125 * is disabled, even if the plane enable is already
2126 * armed to occur at the next vblank :(
2127 */
2128 if (IS_BROADWELL(dev))
2129 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2130}
2131
b24e7179 2132/**
262ca2b0 2133 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2134 * @plane: plane to be disabled
2135 * @crtc: crtc for the plane
b24e7179 2136 *
fdd508a6 2137 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2138 */
fdd508a6
VS
2139static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2140 struct drm_crtc *crtc)
b24e7179 2141{
fdd508a6
VS
2142 struct drm_device *dev = plane->dev;
2143 struct drm_i915_private *dev_priv = dev->dev_private;
2144 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2145
2146 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2147
98ec7739
VS
2148 if (!intel_crtc->primary_enabled)
2149 return;
0037f71c 2150
4c445e0e 2151 intel_crtc->primary_enabled = false;
939c2fe8 2152
fdd508a6
VS
2153 dev_priv->display.update_primary_plane(crtc, plane->fb,
2154 crtc->x, crtc->y);
b24e7179
JB
2155}
2156
693db184
CW
2157static bool need_vtd_wa(struct drm_device *dev)
2158{
2159#ifdef CONFIG_INTEL_IOMMU
2160 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2161 return true;
2162#endif
2163 return false;
2164}
2165
a57ce0b2
JB
2166static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2167{
2168 int tile_height;
2169
2170 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2171 return ALIGN(height, tile_height);
2172}
2173
127bd2ac 2174int
48b956c5 2175intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2176 struct drm_i915_gem_object *obj,
a4872ba6 2177 struct intel_engine_cs *pipelined)
6b95a207 2178{
ce453d81 2179 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2180 u32 alignment;
2181 int ret;
2182
ebcdd39e
MR
2183 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2184
05394f39 2185 switch (obj->tiling_mode) {
6b95a207 2186 case I915_TILING_NONE:
534843da
CW
2187 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2188 alignment = 128 * 1024;
a6c45cf0 2189 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2190 alignment = 4 * 1024;
2191 else
2192 alignment = 64 * 1024;
6b95a207
KH
2193 break;
2194 case I915_TILING_X:
2195 /* pin() will align the object as required by fence */
2196 alignment = 0;
2197 break;
2198 case I915_TILING_Y:
80075d49 2199 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2200 return -EINVAL;
2201 default:
2202 BUG();
2203 }
2204
693db184
CW
2205 /* Note that the w/a also requires 64 PTE of padding following the
2206 * bo. We currently fill all unused PTE with the shadow page and so
2207 * we should always have valid PTE following the scanout preventing
2208 * the VT-d warning.
2209 */
2210 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2211 alignment = 256 * 1024;
2212
ce453d81 2213 dev_priv->mm.interruptible = false;
2da3b9b9 2214 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2215 if (ret)
ce453d81 2216 goto err_interruptible;
6b95a207
KH
2217
2218 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2219 * fence, whereas 965+ only requires a fence if using
2220 * framebuffer compression. For simplicity, we always install
2221 * a fence as the cost is not that onerous.
2222 */
06d98131 2223 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2224 if (ret)
2225 goto err_unpin;
1690e1eb 2226
9a5a53b3 2227 i915_gem_object_pin_fence(obj);
6b95a207 2228
ce453d81 2229 dev_priv->mm.interruptible = true;
6b95a207 2230 return 0;
48b956c5
CW
2231
2232err_unpin:
cc98b413 2233 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2234err_interruptible:
2235 dev_priv->mm.interruptible = true;
48b956c5 2236 return ret;
6b95a207
KH
2237}
2238
1690e1eb
CW
2239void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2240{
ebcdd39e
MR
2241 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2242
1690e1eb 2243 i915_gem_object_unpin_fence(obj);
cc98b413 2244 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2245}
2246
c2c75131
DV
2247/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2248 * is assumed to be a power-of-two. */
bc752862
CW
2249unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2250 unsigned int tiling_mode,
2251 unsigned int cpp,
2252 unsigned int pitch)
c2c75131 2253{
bc752862
CW
2254 if (tiling_mode != I915_TILING_NONE) {
2255 unsigned int tile_rows, tiles;
c2c75131 2256
bc752862
CW
2257 tile_rows = *y / 8;
2258 *y %= 8;
c2c75131 2259
bc752862
CW
2260 tiles = *x / (512/cpp);
2261 *x %= 512/cpp;
2262
2263 return tile_rows * pitch * 8 + tiles * 4096;
2264 } else {
2265 unsigned int offset;
2266
2267 offset = *y * pitch + *x * cpp;
2268 *y = 0;
2269 *x = (offset & 4095) / cpp;
2270 return offset & -4096;
2271 }
c2c75131
DV
2272}
2273
46f297fb
JB
2274int intel_format_to_fourcc(int format)
2275{
2276 switch (format) {
2277 case DISPPLANE_8BPP:
2278 return DRM_FORMAT_C8;
2279 case DISPPLANE_BGRX555:
2280 return DRM_FORMAT_XRGB1555;
2281 case DISPPLANE_BGRX565:
2282 return DRM_FORMAT_RGB565;
2283 default:
2284 case DISPPLANE_BGRX888:
2285 return DRM_FORMAT_XRGB8888;
2286 case DISPPLANE_RGBX888:
2287 return DRM_FORMAT_XBGR8888;
2288 case DISPPLANE_BGRX101010:
2289 return DRM_FORMAT_XRGB2101010;
2290 case DISPPLANE_RGBX101010:
2291 return DRM_FORMAT_XBGR2101010;
2292 }
2293}
2294
484b41dd 2295static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2296 struct intel_plane_config *plane_config)
2297{
2298 struct drm_device *dev = crtc->base.dev;
2299 struct drm_i915_gem_object *obj = NULL;
2300 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2301 u32 base = plane_config->base;
2302
ff2652ea
CW
2303 if (plane_config->size == 0)
2304 return false;
2305
46f297fb
JB
2306 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2307 plane_config->size);
2308 if (!obj)
484b41dd 2309 return false;
46f297fb
JB
2310
2311 if (plane_config->tiled) {
2312 obj->tiling_mode = I915_TILING_X;
66e514c1 2313 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2314 }
2315
66e514c1
DA
2316 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2317 mode_cmd.width = crtc->base.primary->fb->width;
2318 mode_cmd.height = crtc->base.primary->fb->height;
2319 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2320
2321 mutex_lock(&dev->struct_mutex);
2322
66e514c1 2323 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2324 &mode_cmd, obj)) {
46f297fb
JB
2325 DRM_DEBUG_KMS("intel fb init failed\n");
2326 goto out_unref_obj;
2327 }
2328
a071fa00 2329 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2330 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2331
2332 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2333 return true;
46f297fb
JB
2334
2335out_unref_obj:
2336 drm_gem_object_unreference(&obj->base);
2337 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2338 return false;
2339}
2340
2341static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2342 struct intel_plane_config *plane_config)
2343{
2344 struct drm_device *dev = intel_crtc->base.dev;
2345 struct drm_crtc *c;
2346 struct intel_crtc *i;
2ff8fde1 2347 struct drm_i915_gem_object *obj;
484b41dd 2348
66e514c1 2349 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2350 return;
2351
2352 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2353 return;
2354
66e514c1
DA
2355 kfree(intel_crtc->base.primary->fb);
2356 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2357
2358 /*
2359 * Failed to alloc the obj, check to see if we should share
2360 * an fb with another CRTC instead
2361 */
70e1e0ec 2362 for_each_crtc(dev, c) {
484b41dd
JB
2363 i = to_intel_crtc(c);
2364
2365 if (c == &intel_crtc->base)
2366 continue;
2367
2ff8fde1
MR
2368 if (!i->active)
2369 continue;
2370
2371 obj = intel_fb_obj(c->primary->fb);
2372 if (obj == NULL)
484b41dd
JB
2373 continue;
2374
2ff8fde1 2375 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2376 drm_framebuffer_reference(c->primary->fb);
2377 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2378 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2379 break;
2380 }
2381 }
46f297fb
JB
2382}
2383
29b9bde6
DV
2384static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2385 struct drm_framebuffer *fb,
2386 int x, int y)
81255565
JB
2387{
2388 struct drm_device *dev = crtc->dev;
2389 struct drm_i915_private *dev_priv = dev->dev_private;
2390 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2391 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2392 int plane = intel_crtc->plane;
e506a0c6 2393 unsigned long linear_offset;
81255565 2394 u32 dspcntr;
f45651ba 2395 u32 reg = DSPCNTR(plane);
48404c1e
SJ
2396 int pixel_size;
2397
2398 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
f45651ba 2399
fdd508a6
VS
2400 if (!intel_crtc->primary_enabled) {
2401 I915_WRITE(reg, 0);
2402 if (INTEL_INFO(dev)->gen >= 4)
2403 I915_WRITE(DSPSURF(plane), 0);
2404 else
2405 I915_WRITE(DSPADDR(plane), 0);
2406 POSTING_READ(reg);
2407 return;
2408 }
2409
f45651ba
VS
2410 dspcntr = DISPPLANE_GAMMA_ENABLE;
2411
fdd508a6 2412 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2413
2414 if (INTEL_INFO(dev)->gen < 4) {
2415 if (intel_crtc->pipe == PIPE_B)
2416 dspcntr |= DISPPLANE_SEL_PIPE_B;
2417
2418 /* pipesrc and dspsize control the size that is scaled from,
2419 * which should always be the user's requested size.
2420 */
2421 I915_WRITE(DSPSIZE(plane),
2422 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2423 (intel_crtc->config.pipe_src_w - 1));
2424 I915_WRITE(DSPPOS(plane), 0);
2425 }
81255565 2426
57779d06
VS
2427 switch (fb->pixel_format) {
2428 case DRM_FORMAT_C8:
81255565
JB
2429 dspcntr |= DISPPLANE_8BPP;
2430 break;
57779d06
VS
2431 case DRM_FORMAT_XRGB1555:
2432 case DRM_FORMAT_ARGB1555:
2433 dspcntr |= DISPPLANE_BGRX555;
81255565 2434 break;
57779d06
VS
2435 case DRM_FORMAT_RGB565:
2436 dspcntr |= DISPPLANE_BGRX565;
2437 break;
2438 case DRM_FORMAT_XRGB8888:
2439 case DRM_FORMAT_ARGB8888:
2440 dspcntr |= DISPPLANE_BGRX888;
2441 break;
2442 case DRM_FORMAT_XBGR8888:
2443 case DRM_FORMAT_ABGR8888:
2444 dspcntr |= DISPPLANE_RGBX888;
2445 break;
2446 case DRM_FORMAT_XRGB2101010:
2447 case DRM_FORMAT_ARGB2101010:
2448 dspcntr |= DISPPLANE_BGRX101010;
2449 break;
2450 case DRM_FORMAT_XBGR2101010:
2451 case DRM_FORMAT_ABGR2101010:
2452 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2453 break;
2454 default:
baba133a 2455 BUG();
81255565 2456 }
57779d06 2457
f45651ba
VS
2458 if (INTEL_INFO(dev)->gen >= 4 &&
2459 obj->tiling_mode != I915_TILING_NONE)
2460 dspcntr |= DISPPLANE_TILED;
81255565 2461
de1aa629
VS
2462 if (IS_G4X(dev))
2463 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2464
e506a0c6 2465 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2466
c2c75131
DV
2467 if (INTEL_INFO(dev)->gen >= 4) {
2468 intel_crtc->dspaddr_offset =
bc752862
CW
2469 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2470 fb->bits_per_pixel / 8,
2471 fb->pitches[0]);
c2c75131
DV
2472 linear_offset -= intel_crtc->dspaddr_offset;
2473 } else {
e506a0c6 2474 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2475 }
e506a0c6 2476
48404c1e
SJ
2477 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2478 dspcntr |= DISPPLANE_ROTATE_180;
2479
2480 x += (intel_crtc->config.pipe_src_w - 1);
2481 y += (intel_crtc->config.pipe_src_h - 1);
2482
2483 /* Finding the last pixel of the last line of the display
2484 data and adding to linear_offset*/
2485 linear_offset +=
2486 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2487 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2488 }
2489
2490 I915_WRITE(reg, dspcntr);
2491
f343c5f6
BW
2492 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2493 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2494 fb->pitches[0]);
01f2c773 2495 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2496 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2497 I915_WRITE(DSPSURF(plane),
2498 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2499 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2500 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2501 } else
f343c5f6 2502 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2503 POSTING_READ(reg);
17638cd6
JB
2504}
2505
29b9bde6
DV
2506static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2507 struct drm_framebuffer *fb,
2508 int x, int y)
17638cd6
JB
2509{
2510 struct drm_device *dev = crtc->dev;
2511 struct drm_i915_private *dev_priv = dev->dev_private;
2512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2513 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2514 int plane = intel_crtc->plane;
e506a0c6 2515 unsigned long linear_offset;
17638cd6 2516 u32 dspcntr;
f45651ba 2517 u32 reg = DSPCNTR(plane);
48404c1e
SJ
2518 int pixel_size;
2519
2520 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
f45651ba 2521
fdd508a6
VS
2522 if (!intel_crtc->primary_enabled) {
2523 I915_WRITE(reg, 0);
2524 I915_WRITE(DSPSURF(plane), 0);
2525 POSTING_READ(reg);
2526 return;
2527 }
2528
f45651ba
VS
2529 dspcntr = DISPPLANE_GAMMA_ENABLE;
2530
fdd508a6 2531 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2532
2533 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2534 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2535
57779d06
VS
2536 switch (fb->pixel_format) {
2537 case DRM_FORMAT_C8:
17638cd6
JB
2538 dspcntr |= DISPPLANE_8BPP;
2539 break;
57779d06
VS
2540 case DRM_FORMAT_RGB565:
2541 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2542 break;
57779d06
VS
2543 case DRM_FORMAT_XRGB8888:
2544 case DRM_FORMAT_ARGB8888:
2545 dspcntr |= DISPPLANE_BGRX888;
2546 break;
2547 case DRM_FORMAT_XBGR8888:
2548 case DRM_FORMAT_ABGR8888:
2549 dspcntr |= DISPPLANE_RGBX888;
2550 break;
2551 case DRM_FORMAT_XRGB2101010:
2552 case DRM_FORMAT_ARGB2101010:
2553 dspcntr |= DISPPLANE_BGRX101010;
2554 break;
2555 case DRM_FORMAT_XBGR2101010:
2556 case DRM_FORMAT_ABGR2101010:
2557 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2558 break;
2559 default:
baba133a 2560 BUG();
17638cd6
JB
2561 }
2562
2563 if (obj->tiling_mode != I915_TILING_NONE)
2564 dspcntr |= DISPPLANE_TILED;
17638cd6 2565
f45651ba 2566 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2567 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2568
e506a0c6 2569 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2570 intel_crtc->dspaddr_offset =
bc752862
CW
2571 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2572 fb->bits_per_pixel / 8,
2573 fb->pitches[0]);
c2c75131 2574 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2575 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2576 dspcntr |= DISPPLANE_ROTATE_180;
2577
2578 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2579 x += (intel_crtc->config.pipe_src_w - 1);
2580 y += (intel_crtc->config.pipe_src_h - 1);
2581
2582 /* Finding the last pixel of the last line of the display
2583 data and adding to linear_offset*/
2584 linear_offset +=
2585 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2586 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2587 }
2588 }
2589
2590 I915_WRITE(reg, dspcntr);
17638cd6 2591
f343c5f6
BW
2592 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2593 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2594 fb->pitches[0]);
01f2c773 2595 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2596 I915_WRITE(DSPSURF(plane),
2597 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2598 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2599 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2600 } else {
2601 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2602 I915_WRITE(DSPLINOFF(plane), linear_offset);
2603 }
17638cd6 2604 POSTING_READ(reg);
17638cd6
JB
2605}
2606
2607/* Assume fb object is pinned & idle & fenced and just update base pointers */
2608static int
2609intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2610 int x, int y, enum mode_set_atomic state)
2611{
2612 struct drm_device *dev = crtc->dev;
2613 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2614
6b8e6ed0
CW
2615 if (dev_priv->display.disable_fbc)
2616 dev_priv->display.disable_fbc(dev);
cc36513c 2617 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2618
29b9bde6
DV
2619 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2620
2621 return 0;
81255565
JB
2622}
2623
96a02917
VS
2624void intel_display_handle_reset(struct drm_device *dev)
2625{
2626 struct drm_i915_private *dev_priv = dev->dev_private;
2627 struct drm_crtc *crtc;
2628
2629 /*
2630 * Flips in the rings have been nuked by the reset,
2631 * so complete all pending flips so that user space
2632 * will get its events and not get stuck.
2633 *
2634 * Also update the base address of all primary
2635 * planes to the the last fb to make sure we're
2636 * showing the correct fb after a reset.
2637 *
2638 * Need to make two loops over the crtcs so that we
2639 * don't try to grab a crtc mutex before the
2640 * pending_flip_queue really got woken up.
2641 */
2642
70e1e0ec 2643 for_each_crtc(dev, crtc) {
96a02917
VS
2644 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2645 enum plane plane = intel_crtc->plane;
2646
2647 intel_prepare_page_flip(dev, plane);
2648 intel_finish_page_flip_plane(dev, plane);
2649 }
2650
70e1e0ec 2651 for_each_crtc(dev, crtc) {
96a02917
VS
2652 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2653
51fd371b 2654 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2655 /*
2656 * FIXME: Once we have proper support for primary planes (and
2657 * disabling them without disabling the entire crtc) allow again
66e514c1 2658 * a NULL crtc->primary->fb.
947fdaad 2659 */
f4510a27 2660 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2661 dev_priv->display.update_primary_plane(crtc,
66e514c1 2662 crtc->primary->fb,
262ca2b0
MR
2663 crtc->x,
2664 crtc->y);
51fd371b 2665 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2666 }
2667}
2668
14667a4b
CW
2669static int
2670intel_finish_fb(struct drm_framebuffer *old_fb)
2671{
2ff8fde1 2672 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2673 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2674 bool was_interruptible = dev_priv->mm.interruptible;
2675 int ret;
2676
14667a4b
CW
2677 /* Big Hammer, we also need to ensure that any pending
2678 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2679 * current scanout is retired before unpinning the old
2680 * framebuffer.
2681 *
2682 * This should only fail upon a hung GPU, in which case we
2683 * can safely continue.
2684 */
2685 dev_priv->mm.interruptible = false;
2686 ret = i915_gem_object_finish_gpu(obj);
2687 dev_priv->mm.interruptible = was_interruptible;
2688
2689 return ret;
2690}
2691
7d5e3799
CW
2692static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2693{
2694 struct drm_device *dev = crtc->dev;
2695 struct drm_i915_private *dev_priv = dev->dev_private;
2696 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2697 unsigned long flags;
2698 bool pending;
2699
2700 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2701 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2702 return false;
2703
2704 spin_lock_irqsave(&dev->event_lock, flags);
2705 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2706 spin_unlock_irqrestore(&dev->event_lock, flags);
2707
2708 return pending;
2709}
2710
5c3b82e2 2711static int
3c4fdcfb 2712intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2713 struct drm_framebuffer *fb)
79e53945
JB
2714{
2715 struct drm_device *dev = crtc->dev;
6b8e6ed0 2716 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2718 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2719 struct drm_framebuffer *old_fb = crtc->primary->fb;
2720 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2721 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2722 int ret;
79e53945 2723
7d5e3799
CW
2724 if (intel_crtc_has_pending_flip(crtc)) {
2725 DRM_ERROR("pipe is still busy with an old pageflip\n");
2726 return -EBUSY;
2727 }
2728
79e53945 2729 /* no fb bound */
94352cf9 2730 if (!fb) {
a5071c2f 2731 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2732 return 0;
2733 }
2734
7eb552ae 2735 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2736 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2737 plane_name(intel_crtc->plane),
2738 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2739 return -EINVAL;
79e53945
JB
2740 }
2741
5c3b82e2 2742 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2743 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2744 if (ret == 0)
91565c85 2745 i915_gem_track_fb(old_obj, obj,
a071fa00 2746 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2747 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2748 if (ret != 0) {
a5071c2f 2749 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2750 return ret;
2751 }
79e53945 2752
bb2043de
DL
2753 /*
2754 * Update pipe size and adjust fitter if needed: the reason for this is
2755 * that in compute_mode_changes we check the native mode (not the pfit
2756 * mode) to see if we can flip rather than do a full mode set. In the
2757 * fastboot case, we'll flip, but if we don't update the pipesrc and
2758 * pfit state, we'll end up with a big fb scanned out into the wrong
2759 * sized surface.
2760 *
2761 * To fix this properly, we need to hoist the checks up into
2762 * compute_mode_changes (or above), check the actual pfit state and
2763 * whether the platform allows pfit disable with pipe active, and only
2764 * then update the pipesrc and pfit state, even on the flip path.
2765 */
d330a953 2766 if (i915.fastboot) {
d7bf63f2
DL
2767 const struct drm_display_mode *adjusted_mode =
2768 &intel_crtc->config.adjusted_mode;
2769
4d6a3e63 2770 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2771 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2772 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2773 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2774 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2775 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2776 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2777 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2778 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2779 }
0637d60d
JB
2780 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2781 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2782 }
2783
29b9bde6 2784 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2785
f99d7069
DV
2786 if (intel_crtc->active)
2787 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2788
f4510a27 2789 crtc->primary->fb = fb;
6c4c86f5
DV
2790 crtc->x = x;
2791 crtc->y = y;
94352cf9 2792
b7f1de28 2793 if (old_fb) {
d7697eea
DV
2794 if (intel_crtc->active && old_fb != fb)
2795 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2796 mutex_lock(&dev->struct_mutex);
2ff8fde1 2797 intel_unpin_fb_obj(old_obj);
8ac36ec1 2798 mutex_unlock(&dev->struct_mutex);
b7f1de28 2799 }
652c393a 2800
8ac36ec1 2801 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2802 intel_update_fbc(dev);
5c3b82e2 2803 mutex_unlock(&dev->struct_mutex);
79e53945 2804
5c3b82e2 2805 return 0;
79e53945
JB
2806}
2807
5e84e1a4
ZW
2808static void intel_fdi_normal_train(struct drm_crtc *crtc)
2809{
2810 struct drm_device *dev = crtc->dev;
2811 struct drm_i915_private *dev_priv = dev->dev_private;
2812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2813 int pipe = intel_crtc->pipe;
2814 u32 reg, temp;
2815
2816 /* enable normal train */
2817 reg = FDI_TX_CTL(pipe);
2818 temp = I915_READ(reg);
61e499bf 2819 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2820 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2821 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2822 } else {
2823 temp &= ~FDI_LINK_TRAIN_NONE;
2824 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2825 }
5e84e1a4
ZW
2826 I915_WRITE(reg, temp);
2827
2828 reg = FDI_RX_CTL(pipe);
2829 temp = I915_READ(reg);
2830 if (HAS_PCH_CPT(dev)) {
2831 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2832 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2833 } else {
2834 temp &= ~FDI_LINK_TRAIN_NONE;
2835 temp |= FDI_LINK_TRAIN_NONE;
2836 }
2837 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2838
2839 /* wait one idle pattern time */
2840 POSTING_READ(reg);
2841 udelay(1000);
357555c0
JB
2842
2843 /* IVB wants error correction enabled */
2844 if (IS_IVYBRIDGE(dev))
2845 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2846 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2847}
2848
1fbc0d78 2849static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2850{
1fbc0d78
DV
2851 return crtc->base.enabled && crtc->active &&
2852 crtc->config.has_pch_encoder;
1e833f40
DV
2853}
2854
01a415fd
DV
2855static void ivb_modeset_global_resources(struct drm_device *dev)
2856{
2857 struct drm_i915_private *dev_priv = dev->dev_private;
2858 struct intel_crtc *pipe_B_crtc =
2859 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2860 struct intel_crtc *pipe_C_crtc =
2861 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2862 uint32_t temp;
2863
1e833f40
DV
2864 /*
2865 * When everything is off disable fdi C so that we could enable fdi B
2866 * with all lanes. Note that we don't care about enabled pipes without
2867 * an enabled pch encoder.
2868 */
2869 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2870 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2871 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2872 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2873
2874 temp = I915_READ(SOUTH_CHICKEN1);
2875 temp &= ~FDI_BC_BIFURCATION_SELECT;
2876 DRM_DEBUG_KMS("disabling fdi C rx\n");
2877 I915_WRITE(SOUTH_CHICKEN1, temp);
2878 }
2879}
2880
8db9d77b
ZW
2881/* The FDI link training functions for ILK/Ibexpeak. */
2882static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2883{
2884 struct drm_device *dev = crtc->dev;
2885 struct drm_i915_private *dev_priv = dev->dev_private;
2886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2887 int pipe = intel_crtc->pipe;
5eddb70b 2888 u32 reg, temp, tries;
8db9d77b 2889
1c8562f6 2890 /* FDI needs bits from pipe first */
0fc932b8 2891 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2892
e1a44743
AJ
2893 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2894 for train result */
5eddb70b
CW
2895 reg = FDI_RX_IMR(pipe);
2896 temp = I915_READ(reg);
e1a44743
AJ
2897 temp &= ~FDI_RX_SYMBOL_LOCK;
2898 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2899 I915_WRITE(reg, temp);
2900 I915_READ(reg);
e1a44743
AJ
2901 udelay(150);
2902
8db9d77b 2903 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2904 reg = FDI_TX_CTL(pipe);
2905 temp = I915_READ(reg);
627eb5a3
DV
2906 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2907 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2908 temp &= ~FDI_LINK_TRAIN_NONE;
2909 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2910 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2911
5eddb70b
CW
2912 reg = FDI_RX_CTL(pipe);
2913 temp = I915_READ(reg);
8db9d77b
ZW
2914 temp &= ~FDI_LINK_TRAIN_NONE;
2915 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2916 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2917
2918 POSTING_READ(reg);
8db9d77b
ZW
2919 udelay(150);
2920
5b2adf89 2921 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2922 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2923 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2924 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2925
5eddb70b 2926 reg = FDI_RX_IIR(pipe);
e1a44743 2927 for (tries = 0; tries < 5; tries++) {
5eddb70b 2928 temp = I915_READ(reg);
8db9d77b
ZW
2929 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2930
2931 if ((temp & FDI_RX_BIT_LOCK)) {
2932 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2933 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2934 break;
2935 }
8db9d77b 2936 }
e1a44743 2937 if (tries == 5)
5eddb70b 2938 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2939
2940 /* Train 2 */
5eddb70b
CW
2941 reg = FDI_TX_CTL(pipe);
2942 temp = I915_READ(reg);
8db9d77b
ZW
2943 temp &= ~FDI_LINK_TRAIN_NONE;
2944 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2945 I915_WRITE(reg, temp);
8db9d77b 2946
5eddb70b
CW
2947 reg = FDI_RX_CTL(pipe);
2948 temp = I915_READ(reg);
8db9d77b
ZW
2949 temp &= ~FDI_LINK_TRAIN_NONE;
2950 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2951 I915_WRITE(reg, temp);
8db9d77b 2952
5eddb70b
CW
2953 POSTING_READ(reg);
2954 udelay(150);
8db9d77b 2955
5eddb70b 2956 reg = FDI_RX_IIR(pipe);
e1a44743 2957 for (tries = 0; tries < 5; tries++) {
5eddb70b 2958 temp = I915_READ(reg);
8db9d77b
ZW
2959 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2960
2961 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2962 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2963 DRM_DEBUG_KMS("FDI train 2 done.\n");
2964 break;
2965 }
8db9d77b 2966 }
e1a44743 2967 if (tries == 5)
5eddb70b 2968 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2969
2970 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2971
8db9d77b
ZW
2972}
2973
0206e353 2974static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2975 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2976 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2977 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2978 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2979};
2980
2981/* The FDI link training functions for SNB/Cougarpoint. */
2982static void gen6_fdi_link_train(struct drm_crtc *crtc)
2983{
2984 struct drm_device *dev = crtc->dev;
2985 struct drm_i915_private *dev_priv = dev->dev_private;
2986 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2987 int pipe = intel_crtc->pipe;
fa37d39e 2988 u32 reg, temp, i, retry;
8db9d77b 2989
e1a44743
AJ
2990 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2991 for train result */
5eddb70b
CW
2992 reg = FDI_RX_IMR(pipe);
2993 temp = I915_READ(reg);
e1a44743
AJ
2994 temp &= ~FDI_RX_SYMBOL_LOCK;
2995 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2996 I915_WRITE(reg, temp);
2997
2998 POSTING_READ(reg);
e1a44743
AJ
2999 udelay(150);
3000
8db9d77b 3001 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3002 reg = FDI_TX_CTL(pipe);
3003 temp = I915_READ(reg);
627eb5a3
DV
3004 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3005 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3006 temp &= ~FDI_LINK_TRAIN_NONE;
3007 temp |= FDI_LINK_TRAIN_PATTERN_1;
3008 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3009 /* SNB-B */
3010 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3011 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3012
d74cf324
DV
3013 I915_WRITE(FDI_RX_MISC(pipe),
3014 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3015
5eddb70b
CW
3016 reg = FDI_RX_CTL(pipe);
3017 temp = I915_READ(reg);
8db9d77b
ZW
3018 if (HAS_PCH_CPT(dev)) {
3019 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3020 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3021 } else {
3022 temp &= ~FDI_LINK_TRAIN_NONE;
3023 temp |= FDI_LINK_TRAIN_PATTERN_1;
3024 }
5eddb70b
CW
3025 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3026
3027 POSTING_READ(reg);
8db9d77b
ZW
3028 udelay(150);
3029
0206e353 3030 for (i = 0; i < 4; i++) {
5eddb70b
CW
3031 reg = FDI_TX_CTL(pipe);
3032 temp = I915_READ(reg);
8db9d77b
ZW
3033 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3034 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3035 I915_WRITE(reg, temp);
3036
3037 POSTING_READ(reg);
8db9d77b
ZW
3038 udelay(500);
3039
fa37d39e
SP
3040 for (retry = 0; retry < 5; retry++) {
3041 reg = FDI_RX_IIR(pipe);
3042 temp = I915_READ(reg);
3043 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3044 if (temp & FDI_RX_BIT_LOCK) {
3045 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3046 DRM_DEBUG_KMS("FDI train 1 done.\n");
3047 break;
3048 }
3049 udelay(50);
8db9d77b 3050 }
fa37d39e
SP
3051 if (retry < 5)
3052 break;
8db9d77b
ZW
3053 }
3054 if (i == 4)
5eddb70b 3055 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3056
3057 /* Train 2 */
5eddb70b
CW
3058 reg = FDI_TX_CTL(pipe);
3059 temp = I915_READ(reg);
8db9d77b
ZW
3060 temp &= ~FDI_LINK_TRAIN_NONE;
3061 temp |= FDI_LINK_TRAIN_PATTERN_2;
3062 if (IS_GEN6(dev)) {
3063 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3064 /* SNB-B */
3065 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3066 }
5eddb70b 3067 I915_WRITE(reg, temp);
8db9d77b 3068
5eddb70b
CW
3069 reg = FDI_RX_CTL(pipe);
3070 temp = I915_READ(reg);
8db9d77b
ZW
3071 if (HAS_PCH_CPT(dev)) {
3072 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3073 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3074 } else {
3075 temp &= ~FDI_LINK_TRAIN_NONE;
3076 temp |= FDI_LINK_TRAIN_PATTERN_2;
3077 }
5eddb70b
CW
3078 I915_WRITE(reg, temp);
3079
3080 POSTING_READ(reg);
8db9d77b
ZW
3081 udelay(150);
3082
0206e353 3083 for (i = 0; i < 4; i++) {
5eddb70b
CW
3084 reg = FDI_TX_CTL(pipe);
3085 temp = I915_READ(reg);
8db9d77b
ZW
3086 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3087 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3088 I915_WRITE(reg, temp);
3089
3090 POSTING_READ(reg);
8db9d77b
ZW
3091 udelay(500);
3092
fa37d39e
SP
3093 for (retry = 0; retry < 5; retry++) {
3094 reg = FDI_RX_IIR(pipe);
3095 temp = I915_READ(reg);
3096 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3097 if (temp & FDI_RX_SYMBOL_LOCK) {
3098 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3099 DRM_DEBUG_KMS("FDI train 2 done.\n");
3100 break;
3101 }
3102 udelay(50);
8db9d77b 3103 }
fa37d39e
SP
3104 if (retry < 5)
3105 break;
8db9d77b
ZW
3106 }
3107 if (i == 4)
5eddb70b 3108 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3109
3110 DRM_DEBUG_KMS("FDI train done.\n");
3111}
3112
357555c0
JB
3113/* Manual link training for Ivy Bridge A0 parts */
3114static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3115{
3116 struct drm_device *dev = crtc->dev;
3117 struct drm_i915_private *dev_priv = dev->dev_private;
3118 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3119 int pipe = intel_crtc->pipe;
139ccd3f 3120 u32 reg, temp, i, j;
357555c0
JB
3121
3122 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3123 for train result */
3124 reg = FDI_RX_IMR(pipe);
3125 temp = I915_READ(reg);
3126 temp &= ~FDI_RX_SYMBOL_LOCK;
3127 temp &= ~FDI_RX_BIT_LOCK;
3128 I915_WRITE(reg, temp);
3129
3130 POSTING_READ(reg);
3131 udelay(150);
3132
01a415fd
DV
3133 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3134 I915_READ(FDI_RX_IIR(pipe)));
3135
139ccd3f
JB
3136 /* Try each vswing and preemphasis setting twice before moving on */
3137 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3138 /* disable first in case we need to retry */
3139 reg = FDI_TX_CTL(pipe);
3140 temp = I915_READ(reg);
3141 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3142 temp &= ~FDI_TX_ENABLE;
3143 I915_WRITE(reg, temp);
357555c0 3144
139ccd3f
JB
3145 reg = FDI_RX_CTL(pipe);
3146 temp = I915_READ(reg);
3147 temp &= ~FDI_LINK_TRAIN_AUTO;
3148 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3149 temp &= ~FDI_RX_ENABLE;
3150 I915_WRITE(reg, temp);
357555c0 3151
139ccd3f 3152 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3153 reg = FDI_TX_CTL(pipe);
3154 temp = I915_READ(reg);
139ccd3f
JB
3155 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3156 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3157 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3158 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3159 temp |= snb_b_fdi_train_param[j/2];
3160 temp |= FDI_COMPOSITE_SYNC;
3161 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3162
139ccd3f
JB
3163 I915_WRITE(FDI_RX_MISC(pipe),
3164 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3165
139ccd3f 3166 reg = FDI_RX_CTL(pipe);
357555c0 3167 temp = I915_READ(reg);
139ccd3f
JB
3168 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3169 temp |= FDI_COMPOSITE_SYNC;
3170 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3171
139ccd3f
JB
3172 POSTING_READ(reg);
3173 udelay(1); /* should be 0.5us */
357555c0 3174
139ccd3f
JB
3175 for (i = 0; i < 4; i++) {
3176 reg = FDI_RX_IIR(pipe);
3177 temp = I915_READ(reg);
3178 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3179
139ccd3f
JB
3180 if (temp & FDI_RX_BIT_LOCK ||
3181 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3182 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3183 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3184 i);
3185 break;
3186 }
3187 udelay(1); /* should be 0.5us */
3188 }
3189 if (i == 4) {
3190 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3191 continue;
3192 }
357555c0 3193
139ccd3f 3194 /* Train 2 */
357555c0
JB
3195 reg = FDI_TX_CTL(pipe);
3196 temp = I915_READ(reg);
139ccd3f
JB
3197 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3198 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3199 I915_WRITE(reg, temp);
3200
3201 reg = FDI_RX_CTL(pipe);
3202 temp = I915_READ(reg);
3203 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3204 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3205 I915_WRITE(reg, temp);
3206
3207 POSTING_READ(reg);
139ccd3f 3208 udelay(2); /* should be 1.5us */
357555c0 3209
139ccd3f
JB
3210 for (i = 0; i < 4; i++) {
3211 reg = FDI_RX_IIR(pipe);
3212 temp = I915_READ(reg);
3213 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3214
139ccd3f
JB
3215 if (temp & FDI_RX_SYMBOL_LOCK ||
3216 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3217 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3218 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3219 i);
3220 goto train_done;
3221 }
3222 udelay(2); /* should be 1.5us */
357555c0 3223 }
139ccd3f
JB
3224 if (i == 4)
3225 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3226 }
357555c0 3227
139ccd3f 3228train_done:
357555c0
JB
3229 DRM_DEBUG_KMS("FDI train done.\n");
3230}
3231
88cefb6c 3232static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3233{
88cefb6c 3234 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3235 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3236 int pipe = intel_crtc->pipe;
5eddb70b 3237 u32 reg, temp;
79e53945 3238
c64e311e 3239
c98e9dcf 3240 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3241 reg = FDI_RX_CTL(pipe);
3242 temp = I915_READ(reg);
627eb5a3
DV
3243 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3244 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3245 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3246 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3247
3248 POSTING_READ(reg);
c98e9dcf
JB
3249 udelay(200);
3250
3251 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3252 temp = I915_READ(reg);
3253 I915_WRITE(reg, temp | FDI_PCDCLK);
3254
3255 POSTING_READ(reg);
c98e9dcf
JB
3256 udelay(200);
3257
20749730
PZ
3258 /* Enable CPU FDI TX PLL, always on for Ironlake */
3259 reg = FDI_TX_CTL(pipe);
3260 temp = I915_READ(reg);
3261 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3262 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3263
20749730
PZ
3264 POSTING_READ(reg);
3265 udelay(100);
6be4a607 3266 }
0e23b99d
JB
3267}
3268
88cefb6c
DV
3269static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3270{
3271 struct drm_device *dev = intel_crtc->base.dev;
3272 struct drm_i915_private *dev_priv = dev->dev_private;
3273 int pipe = intel_crtc->pipe;
3274 u32 reg, temp;
3275
3276 /* Switch from PCDclk to Rawclk */
3277 reg = FDI_RX_CTL(pipe);
3278 temp = I915_READ(reg);
3279 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3280
3281 /* Disable CPU FDI TX PLL */
3282 reg = FDI_TX_CTL(pipe);
3283 temp = I915_READ(reg);
3284 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3285
3286 POSTING_READ(reg);
3287 udelay(100);
3288
3289 reg = FDI_RX_CTL(pipe);
3290 temp = I915_READ(reg);
3291 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3292
3293 /* Wait for the clocks to turn off. */
3294 POSTING_READ(reg);
3295 udelay(100);
3296}
3297
0fc932b8
JB
3298static void ironlake_fdi_disable(struct drm_crtc *crtc)
3299{
3300 struct drm_device *dev = crtc->dev;
3301 struct drm_i915_private *dev_priv = dev->dev_private;
3302 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3303 int pipe = intel_crtc->pipe;
3304 u32 reg, temp;
3305
3306 /* disable CPU FDI tx and PCH FDI rx */
3307 reg = FDI_TX_CTL(pipe);
3308 temp = I915_READ(reg);
3309 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3310 POSTING_READ(reg);
3311
3312 reg = FDI_RX_CTL(pipe);
3313 temp = I915_READ(reg);
3314 temp &= ~(0x7 << 16);
dfd07d72 3315 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3316 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3317
3318 POSTING_READ(reg);
3319 udelay(100);
3320
3321 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3322 if (HAS_PCH_IBX(dev))
6f06ce18 3323 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3324
3325 /* still set train pattern 1 */
3326 reg = FDI_TX_CTL(pipe);
3327 temp = I915_READ(reg);
3328 temp &= ~FDI_LINK_TRAIN_NONE;
3329 temp |= FDI_LINK_TRAIN_PATTERN_1;
3330 I915_WRITE(reg, temp);
3331
3332 reg = FDI_RX_CTL(pipe);
3333 temp = I915_READ(reg);
3334 if (HAS_PCH_CPT(dev)) {
3335 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3336 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3337 } else {
3338 temp &= ~FDI_LINK_TRAIN_NONE;
3339 temp |= FDI_LINK_TRAIN_PATTERN_1;
3340 }
3341 /* BPC in FDI rx is consistent with that in PIPECONF */
3342 temp &= ~(0x07 << 16);
dfd07d72 3343 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3344 I915_WRITE(reg, temp);
3345
3346 POSTING_READ(reg);
3347 udelay(100);
3348}
3349
5dce5b93
CW
3350bool intel_has_pending_fb_unpin(struct drm_device *dev)
3351{
3352 struct intel_crtc *crtc;
3353
3354 /* Note that we don't need to be called with mode_config.lock here
3355 * as our list of CRTC objects is static for the lifetime of the
3356 * device and so cannot disappear as we iterate. Similarly, we can
3357 * happily treat the predicates as racy, atomic checks as userspace
3358 * cannot claim and pin a new fb without at least acquring the
3359 * struct_mutex and so serialising with us.
3360 */
d3fcc808 3361 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3362 if (atomic_read(&crtc->unpin_work_count) == 0)
3363 continue;
3364
3365 if (crtc->unpin_work)
3366 intel_wait_for_vblank(dev, crtc->pipe);
3367
3368 return true;
3369 }
3370
3371 return false;
3372}
3373
46a55d30 3374void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3375{
0f91128d 3376 struct drm_device *dev = crtc->dev;
5bb61643 3377 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3378
2c10d571 3379 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
eed6d67d
DV
3380 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3381 !intel_crtc_has_pending_flip(crtc),
3382 60*HZ) == 0);
5bb61643 3383
975d568a
CW
3384 if (crtc->primary->fb) {
3385 mutex_lock(&dev->struct_mutex);
3386 intel_finish_fb(crtc->primary->fb);
3387 mutex_unlock(&dev->struct_mutex);
3388 }
e6c3a2a6
CW
3389}
3390
e615efe4
ED
3391/* Program iCLKIP clock to the desired frequency */
3392static void lpt_program_iclkip(struct drm_crtc *crtc)
3393{
3394 struct drm_device *dev = crtc->dev;
3395 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3396 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3397 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3398 u32 temp;
3399
09153000
DV
3400 mutex_lock(&dev_priv->dpio_lock);
3401
e615efe4
ED
3402 /* It is necessary to ungate the pixclk gate prior to programming
3403 * the divisors, and gate it back when it is done.
3404 */
3405 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3406
3407 /* Disable SSCCTL */
3408 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3409 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3410 SBI_SSCCTL_DISABLE,
3411 SBI_ICLK);
e615efe4
ED
3412
3413 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3414 if (clock == 20000) {
e615efe4
ED
3415 auxdiv = 1;
3416 divsel = 0x41;
3417 phaseinc = 0x20;
3418 } else {
3419 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3420 * but the adjusted_mode->crtc_clock in in KHz. To get the
3421 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3422 * convert the virtual clock precision to KHz here for higher
3423 * precision.
3424 */
3425 u32 iclk_virtual_root_freq = 172800 * 1000;
3426 u32 iclk_pi_range = 64;
3427 u32 desired_divisor, msb_divisor_value, pi_value;
3428
12d7ceed 3429 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3430 msb_divisor_value = desired_divisor / iclk_pi_range;
3431 pi_value = desired_divisor % iclk_pi_range;
3432
3433 auxdiv = 0;
3434 divsel = msb_divisor_value - 2;
3435 phaseinc = pi_value;
3436 }
3437
3438 /* This should not happen with any sane values */
3439 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3440 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3441 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3442 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3443
3444 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3445 clock,
e615efe4
ED
3446 auxdiv,
3447 divsel,
3448 phasedir,
3449 phaseinc);
3450
3451 /* Program SSCDIVINTPHASE6 */
988d6ee8 3452 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3453 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3454 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3455 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3456 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3457 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3458 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3459 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3460
3461 /* Program SSCAUXDIV */
988d6ee8 3462 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3463 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3464 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3465 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3466
3467 /* Enable modulator and associated divider */
988d6ee8 3468 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3469 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3470 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3471
3472 /* Wait for initialization time */
3473 udelay(24);
3474
3475 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3476
3477 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3478}
3479
275f01b2
DV
3480static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3481 enum pipe pch_transcoder)
3482{
3483 struct drm_device *dev = crtc->base.dev;
3484 struct drm_i915_private *dev_priv = dev->dev_private;
3485 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3486
3487 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3488 I915_READ(HTOTAL(cpu_transcoder)));
3489 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3490 I915_READ(HBLANK(cpu_transcoder)));
3491 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3492 I915_READ(HSYNC(cpu_transcoder)));
3493
3494 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3495 I915_READ(VTOTAL(cpu_transcoder)));
3496 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3497 I915_READ(VBLANK(cpu_transcoder)));
3498 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3499 I915_READ(VSYNC(cpu_transcoder)));
3500 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3501 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3502}
3503
1fbc0d78
DV
3504static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3505{
3506 struct drm_i915_private *dev_priv = dev->dev_private;
3507 uint32_t temp;
3508
3509 temp = I915_READ(SOUTH_CHICKEN1);
3510 if (temp & FDI_BC_BIFURCATION_SELECT)
3511 return;
3512
3513 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3514 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3515
3516 temp |= FDI_BC_BIFURCATION_SELECT;
3517 DRM_DEBUG_KMS("enabling fdi C rx\n");
3518 I915_WRITE(SOUTH_CHICKEN1, temp);
3519 POSTING_READ(SOUTH_CHICKEN1);
3520}
3521
3522static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3523{
3524 struct drm_device *dev = intel_crtc->base.dev;
3525 struct drm_i915_private *dev_priv = dev->dev_private;
3526
3527 switch (intel_crtc->pipe) {
3528 case PIPE_A:
3529 break;
3530 case PIPE_B:
3531 if (intel_crtc->config.fdi_lanes > 2)
3532 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3533 else
3534 cpt_enable_fdi_bc_bifurcation(dev);
3535
3536 break;
3537 case PIPE_C:
3538 cpt_enable_fdi_bc_bifurcation(dev);
3539
3540 break;
3541 default:
3542 BUG();
3543 }
3544}
3545
f67a559d
JB
3546/*
3547 * Enable PCH resources required for PCH ports:
3548 * - PCH PLLs
3549 * - FDI training & RX/TX
3550 * - update transcoder timings
3551 * - DP transcoding bits
3552 * - transcoder
3553 */
3554static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3555{
3556 struct drm_device *dev = crtc->dev;
3557 struct drm_i915_private *dev_priv = dev->dev_private;
3558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3559 int pipe = intel_crtc->pipe;
ee7b9f93 3560 u32 reg, temp;
2c07245f 3561
ab9412ba 3562 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3563
1fbc0d78
DV
3564 if (IS_IVYBRIDGE(dev))
3565 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3566
cd986abb
DV
3567 /* Write the TU size bits before fdi link training, so that error
3568 * detection works. */
3569 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3570 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3571
c98e9dcf 3572 /* For PCH output, training FDI link */
674cf967 3573 dev_priv->display.fdi_link_train(crtc);
2c07245f 3574
3ad8a208
DV
3575 /* We need to program the right clock selection before writing the pixel
3576 * mutliplier into the DPLL. */
303b81e0 3577 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3578 u32 sel;
4b645f14 3579
c98e9dcf 3580 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3581 temp |= TRANS_DPLL_ENABLE(pipe);
3582 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3583 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3584 temp |= sel;
3585 else
3586 temp &= ~sel;
c98e9dcf 3587 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3588 }
5eddb70b 3589
3ad8a208
DV
3590 /* XXX: pch pll's can be enabled any time before we enable the PCH
3591 * transcoder, and we actually should do this to not upset any PCH
3592 * transcoder that already use the clock when we share it.
3593 *
3594 * Note that enable_shared_dpll tries to do the right thing, but
3595 * get_shared_dpll unconditionally resets the pll - we need that to have
3596 * the right LVDS enable sequence. */
85b3894f 3597 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3598
d9b6cb56
JB
3599 /* set transcoder timing, panel must allow it */
3600 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3601 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3602
303b81e0 3603 intel_fdi_normal_train(crtc);
5e84e1a4 3604
c98e9dcf
JB
3605 /* For PCH DP, enable TRANS_DP_CTL */
3606 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3607 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3608 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3609 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3610 reg = TRANS_DP_CTL(pipe);
3611 temp = I915_READ(reg);
3612 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3613 TRANS_DP_SYNC_MASK |
3614 TRANS_DP_BPC_MASK);
5eddb70b
CW
3615 temp |= (TRANS_DP_OUTPUT_ENABLE |
3616 TRANS_DP_ENH_FRAMING);
9325c9f0 3617 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3618
3619 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3620 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3621 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3622 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3623
3624 switch (intel_trans_dp_port_sel(crtc)) {
3625 case PCH_DP_B:
5eddb70b 3626 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3627 break;
3628 case PCH_DP_C:
5eddb70b 3629 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3630 break;
3631 case PCH_DP_D:
5eddb70b 3632 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3633 break;
3634 default:
e95d41e1 3635 BUG();
32f9d658 3636 }
2c07245f 3637
5eddb70b 3638 I915_WRITE(reg, temp);
6be4a607 3639 }
b52eb4dc 3640
b8a4f404 3641 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3642}
3643
1507e5bd
PZ
3644static void lpt_pch_enable(struct drm_crtc *crtc)
3645{
3646 struct drm_device *dev = crtc->dev;
3647 struct drm_i915_private *dev_priv = dev->dev_private;
3648 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3649 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3650
ab9412ba 3651 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3652
8c52b5e8 3653 lpt_program_iclkip(crtc);
1507e5bd 3654
0540e488 3655 /* Set transcoder timing. */
275f01b2 3656 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3657
937bb610 3658 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3659}
3660
716c2e55 3661void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3662{
e2b78267 3663 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3664
3665 if (pll == NULL)
3666 return;
3667
3668 if (pll->refcount == 0) {
46edb027 3669 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3670 return;
3671 }
3672
f4a091c7
DV
3673 if (--pll->refcount == 0) {
3674 WARN_ON(pll->on);
3675 WARN_ON(pll->active);
3676 }
3677
a43f6e0f 3678 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3679}
3680
716c2e55 3681struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3682{
e2b78267
DV
3683 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3684 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3685 enum intel_dpll_id i;
ee7b9f93 3686
ee7b9f93 3687 if (pll) {
46edb027
DV
3688 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3689 crtc->base.base.id, pll->name);
e2b78267 3690 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3691 }
3692
98b6bd99
DV
3693 if (HAS_PCH_IBX(dev_priv->dev)) {
3694 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3695 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3696 pll = &dev_priv->shared_dplls[i];
98b6bd99 3697
46edb027
DV
3698 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3699 crtc->base.base.id, pll->name);
98b6bd99 3700
f2a69f44
DV
3701 WARN_ON(pll->refcount);
3702
98b6bd99
DV
3703 goto found;
3704 }
3705
e72f9fbf
DV
3706 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3707 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3708
3709 /* Only want to check enabled timings first */
3710 if (pll->refcount == 0)
3711 continue;
3712
b89a1d39
DV
3713 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3714 sizeof(pll->hw_state)) == 0) {
46edb027 3715 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3716 crtc->base.base.id,
46edb027 3717 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3718
3719 goto found;
3720 }
3721 }
3722
3723 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3724 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3725 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3726 if (pll->refcount == 0) {
46edb027
DV
3727 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3728 crtc->base.base.id, pll->name);
ee7b9f93
JB
3729 goto found;
3730 }
3731 }
3732
3733 return NULL;
3734
3735found:
f2a69f44
DV
3736 if (pll->refcount == 0)
3737 pll->hw_state = crtc->config.dpll_hw_state;
3738
a43f6e0f 3739 crtc->config.shared_dpll = i;
46edb027
DV
3740 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3741 pipe_name(crtc->pipe));
ee7b9f93 3742
cdbd2316 3743 pll->refcount++;
e04c7350 3744
ee7b9f93
JB
3745 return pll;
3746}
3747
a1520318 3748static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3749{
3750 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3751 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3752 u32 temp;
3753
3754 temp = I915_READ(dslreg);
3755 udelay(500);
3756 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3757 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3758 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3759 }
3760}
3761
b074cec8
JB
3762static void ironlake_pfit_enable(struct intel_crtc *crtc)
3763{
3764 struct drm_device *dev = crtc->base.dev;
3765 struct drm_i915_private *dev_priv = dev->dev_private;
3766 int pipe = crtc->pipe;
3767
fd4daa9c 3768 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3769 /* Force use of hard-coded filter coefficients
3770 * as some pre-programmed values are broken,
3771 * e.g. x201.
3772 */
3773 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3774 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3775 PF_PIPE_SEL_IVB(pipe));
3776 else
3777 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3778 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3779 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3780 }
3781}
3782
bb53d4ae
VS
3783static void intel_enable_planes(struct drm_crtc *crtc)
3784{
3785 struct drm_device *dev = crtc->dev;
3786 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3787 struct drm_plane *plane;
bb53d4ae
VS
3788 struct intel_plane *intel_plane;
3789
af2b653b
MR
3790 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3791 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3792 if (intel_plane->pipe == pipe)
3793 intel_plane_restore(&intel_plane->base);
af2b653b 3794 }
bb53d4ae
VS
3795}
3796
3797static void intel_disable_planes(struct drm_crtc *crtc)
3798{
3799 struct drm_device *dev = crtc->dev;
3800 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3801 struct drm_plane *plane;
bb53d4ae
VS
3802 struct intel_plane *intel_plane;
3803
af2b653b
MR
3804 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3805 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3806 if (intel_plane->pipe == pipe)
3807 intel_plane_disable(&intel_plane->base);
af2b653b 3808 }
bb53d4ae
VS
3809}
3810
20bc8673 3811void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3812{
cea165c3
VS
3813 struct drm_device *dev = crtc->base.dev;
3814 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3815
3816 if (!crtc->config.ips_enabled)
3817 return;
3818
cea165c3
VS
3819 /* We can only enable IPS after we enable a plane and wait for a vblank */
3820 intel_wait_for_vblank(dev, crtc->pipe);
3821
d77e4531 3822 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3823 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3824 mutex_lock(&dev_priv->rps.hw_lock);
3825 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3826 mutex_unlock(&dev_priv->rps.hw_lock);
3827 /* Quoting Art Runyan: "its not safe to expect any particular
3828 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3829 * mailbox." Moreover, the mailbox may return a bogus state,
3830 * so we need to just enable it and continue on.
2a114cc1
BW
3831 */
3832 } else {
3833 I915_WRITE(IPS_CTL, IPS_ENABLE);
3834 /* The bit only becomes 1 in the next vblank, so this wait here
3835 * is essentially intel_wait_for_vblank. If we don't have this
3836 * and don't wait for vblanks until the end of crtc_enable, then
3837 * the HW state readout code will complain that the expected
3838 * IPS_CTL value is not the one we read. */
3839 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3840 DRM_ERROR("Timed out waiting for IPS enable\n");
3841 }
d77e4531
PZ
3842}
3843
20bc8673 3844void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3845{
3846 struct drm_device *dev = crtc->base.dev;
3847 struct drm_i915_private *dev_priv = dev->dev_private;
3848
3849 if (!crtc->config.ips_enabled)
3850 return;
3851
3852 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3853 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3854 mutex_lock(&dev_priv->rps.hw_lock);
3855 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3856 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3857 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3858 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3859 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3860 } else {
2a114cc1 3861 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3862 POSTING_READ(IPS_CTL);
3863 }
d77e4531
PZ
3864
3865 /* We need to wait for a vblank before we can disable the plane. */
3866 intel_wait_for_vblank(dev, crtc->pipe);
3867}
3868
3869/** Loads the palette/gamma unit for the CRTC with the prepared values */
3870static void intel_crtc_load_lut(struct drm_crtc *crtc)
3871{
3872 struct drm_device *dev = crtc->dev;
3873 struct drm_i915_private *dev_priv = dev->dev_private;
3874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3875 enum pipe pipe = intel_crtc->pipe;
3876 int palreg = PALETTE(pipe);
3877 int i;
3878 bool reenable_ips = false;
3879
3880 /* The clocks have to be on to load the palette. */
3881 if (!crtc->enabled || !intel_crtc->active)
3882 return;
3883
3884 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3885 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3886 assert_dsi_pll_enabled(dev_priv);
3887 else
3888 assert_pll_enabled(dev_priv, pipe);
3889 }
3890
3891 /* use legacy palette for Ironlake */
7a1db49a 3892 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
3893 palreg = LGC_PALETTE(pipe);
3894
3895 /* Workaround : Do not read or write the pipe palette/gamma data while
3896 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3897 */
41e6fc4c 3898 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3899 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3900 GAMMA_MODE_MODE_SPLIT)) {
3901 hsw_disable_ips(intel_crtc);
3902 reenable_ips = true;
3903 }
3904
3905 for (i = 0; i < 256; i++) {
3906 I915_WRITE(palreg + 4 * i,
3907 (intel_crtc->lut_r[i] << 16) |
3908 (intel_crtc->lut_g[i] << 8) |
3909 intel_crtc->lut_b[i]);
3910 }
3911
3912 if (reenable_ips)
3913 hsw_enable_ips(intel_crtc);
3914}
3915
d3eedb1a
VS
3916static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3917{
3918 if (!enable && intel_crtc->overlay) {
3919 struct drm_device *dev = intel_crtc->base.dev;
3920 struct drm_i915_private *dev_priv = dev->dev_private;
3921
3922 mutex_lock(&dev->struct_mutex);
3923 dev_priv->mm.interruptible = false;
3924 (void) intel_overlay_switch_off(intel_crtc->overlay);
3925 dev_priv->mm.interruptible = true;
3926 mutex_unlock(&dev->struct_mutex);
3927 }
3928
3929 /* Let userspace switch the overlay on again. In most cases userspace
3930 * has to recompute where to put it anyway.
3931 */
3932}
3933
d3eedb1a 3934static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3935{
3936 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
3937 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3938 int pipe = intel_crtc->pipe;
a5c4d7bc 3939
f98551ae
VS
3940 drm_vblank_on(dev, pipe);
3941
fdd508a6 3942 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
3943 intel_enable_planes(crtc);
3944 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3945 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3946
3947 hsw_enable_ips(intel_crtc);
3948
3949 mutex_lock(&dev->struct_mutex);
3950 intel_update_fbc(dev);
3951 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3952
3953 /*
3954 * FIXME: Once we grow proper nuclear flip support out of this we need
3955 * to compute the mask of flip planes precisely. For the time being
3956 * consider this a flip from a NULL plane.
3957 */
3958 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3959}
3960
d3eedb1a 3961static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3962{
3963 struct drm_device *dev = crtc->dev;
3964 struct drm_i915_private *dev_priv = dev->dev_private;
3965 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3966 int pipe = intel_crtc->pipe;
3967 int plane = intel_crtc->plane;
3968
3969 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3970
3971 if (dev_priv->fbc.plane == plane)
3972 intel_disable_fbc(dev);
3973
3974 hsw_disable_ips(intel_crtc);
3975
d3eedb1a 3976 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3977 intel_crtc_update_cursor(crtc, false);
3978 intel_disable_planes(crtc);
fdd508a6 3979 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 3980
f99d7069
DV
3981 /*
3982 * FIXME: Once we grow proper nuclear flip support out of this we need
3983 * to compute the mask of flip planes precisely. For the time being
3984 * consider this a flip to a NULL plane.
3985 */
3986 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3987
f98551ae 3988 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3989}
3990
f67a559d
JB
3991static void ironlake_crtc_enable(struct drm_crtc *crtc)
3992{
3993 struct drm_device *dev = crtc->dev;
3994 struct drm_i915_private *dev_priv = dev->dev_private;
3995 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3996 struct intel_encoder *encoder;
f67a559d 3997 int pipe = intel_crtc->pipe;
f67a559d 3998
08a48469
DV
3999 WARN_ON(!crtc->enabled);
4000
f67a559d
JB
4001 if (intel_crtc->active)
4002 return;
4003
b14b1055
DV
4004 if (intel_crtc->config.has_pch_encoder)
4005 intel_prepare_shared_dpll(intel_crtc);
4006
29407aab
DV
4007 if (intel_crtc->config.has_dp_encoder)
4008 intel_dp_set_m_n(intel_crtc);
4009
4010 intel_set_pipe_timings(intel_crtc);
4011
4012 if (intel_crtc->config.has_pch_encoder) {
4013 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4014 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4015 }
4016
4017 ironlake_set_pipeconf(crtc);
4018
f67a559d 4019 intel_crtc->active = true;
8664281b
PZ
4020
4021 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4022 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4023
f6736a1a 4024 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4025 if (encoder->pre_enable)
4026 encoder->pre_enable(encoder);
f67a559d 4027
5bfe2ac0 4028 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4029 /* Note: FDI PLL enabling _must_ be done before we enable the
4030 * cpu pipes, hence this is separate from all the other fdi/pch
4031 * enabling. */
88cefb6c 4032 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4033 } else {
4034 assert_fdi_tx_disabled(dev_priv, pipe);
4035 assert_fdi_rx_disabled(dev_priv, pipe);
4036 }
f67a559d 4037
b074cec8 4038 ironlake_pfit_enable(intel_crtc);
f67a559d 4039
9c54c0dd
JB
4040 /*
4041 * On ILK+ LUT must be loaded before the pipe is running but with
4042 * clocks enabled
4043 */
4044 intel_crtc_load_lut(crtc);
4045
f37fcc2a 4046 intel_update_watermarks(crtc);
e1fdc473 4047 intel_enable_pipe(intel_crtc);
f67a559d 4048
5bfe2ac0 4049 if (intel_crtc->config.has_pch_encoder)
f67a559d 4050 ironlake_pch_enable(crtc);
c98e9dcf 4051
fa5c73b1
DV
4052 for_each_encoder_on_crtc(dev, crtc, encoder)
4053 encoder->enable(encoder);
61b77ddd
DV
4054
4055 if (HAS_PCH_CPT(dev))
a1520318 4056 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4057
d3eedb1a 4058 intel_crtc_enable_planes(crtc);
6be4a607
JB
4059}
4060
42db64ef
PZ
4061/* IPS only exists on ULT machines and is tied to pipe A. */
4062static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4063{
f5adf94e 4064 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4065}
4066
e4916946
PZ
4067/*
4068 * This implements the workaround described in the "notes" section of the mode
4069 * set sequence documentation. When going from no pipes or single pipe to
4070 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4071 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4072 */
4073static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4074{
4075 struct drm_device *dev = crtc->base.dev;
4076 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4077
4078 /* We want to get the other_active_crtc only if there's only 1 other
4079 * active crtc. */
d3fcc808 4080 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4081 if (!crtc_it->active || crtc_it == crtc)
4082 continue;
4083
4084 if (other_active_crtc)
4085 return;
4086
4087 other_active_crtc = crtc_it;
4088 }
4089 if (!other_active_crtc)
4090 return;
4091
4092 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4093 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4094}
4095
4f771f10
PZ
4096static void haswell_crtc_enable(struct drm_crtc *crtc)
4097{
4098 struct drm_device *dev = crtc->dev;
4099 struct drm_i915_private *dev_priv = dev->dev_private;
4100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4101 struct intel_encoder *encoder;
4102 int pipe = intel_crtc->pipe;
4f771f10
PZ
4103
4104 WARN_ON(!crtc->enabled);
4105
4106 if (intel_crtc->active)
4107 return;
4108
df8ad70c
DV
4109 if (intel_crtc_to_shared_dpll(intel_crtc))
4110 intel_enable_shared_dpll(intel_crtc);
4111
229fca97
DV
4112 if (intel_crtc->config.has_dp_encoder)
4113 intel_dp_set_m_n(intel_crtc);
4114
4115 intel_set_pipe_timings(intel_crtc);
4116
4117 if (intel_crtc->config.has_pch_encoder) {
4118 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4119 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4120 }
4121
4122 haswell_set_pipeconf(crtc);
4123
4124 intel_set_pipe_csc(crtc);
4125
4f771f10 4126 intel_crtc->active = true;
8664281b
PZ
4127
4128 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4129 for_each_encoder_on_crtc(dev, crtc, encoder)
4130 if (encoder->pre_enable)
4131 encoder->pre_enable(encoder);
4132
4fe9467d
ID
4133 if (intel_crtc->config.has_pch_encoder) {
4134 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4135 dev_priv->display.fdi_link_train(crtc);
4136 }
4137
1f544388 4138 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4139
b074cec8 4140 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4141
4142 /*
4143 * On ILK+ LUT must be loaded before the pipe is running but with
4144 * clocks enabled
4145 */
4146 intel_crtc_load_lut(crtc);
4147
1f544388 4148 intel_ddi_set_pipe_settings(crtc);
8228c251 4149 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4150
f37fcc2a 4151 intel_update_watermarks(crtc);
e1fdc473 4152 intel_enable_pipe(intel_crtc);
42db64ef 4153
5bfe2ac0 4154 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4155 lpt_pch_enable(crtc);
4f771f10 4156
0e32b39c
DA
4157 if (intel_crtc->config.dp_encoder_is_mst)
4158 intel_ddi_set_vc_payload_alloc(crtc, true);
4159
8807e55b 4160 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4161 encoder->enable(encoder);
8807e55b
JN
4162 intel_opregion_notify_encoder(encoder, true);
4163 }
4f771f10 4164
e4916946
PZ
4165 /* If we change the relative order between pipe/planes enabling, we need
4166 * to change the workaround. */
4167 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4168 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4169}
4170
3f8dce3a
DV
4171static void ironlake_pfit_disable(struct intel_crtc *crtc)
4172{
4173 struct drm_device *dev = crtc->base.dev;
4174 struct drm_i915_private *dev_priv = dev->dev_private;
4175 int pipe = crtc->pipe;
4176
4177 /* To avoid upsetting the power well on haswell only disable the pfit if
4178 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4179 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4180 I915_WRITE(PF_CTL(pipe), 0);
4181 I915_WRITE(PF_WIN_POS(pipe), 0);
4182 I915_WRITE(PF_WIN_SZ(pipe), 0);
4183 }
4184}
4185
6be4a607
JB
4186static void ironlake_crtc_disable(struct drm_crtc *crtc)
4187{
4188 struct drm_device *dev = crtc->dev;
4189 struct drm_i915_private *dev_priv = dev->dev_private;
4190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4191 struct intel_encoder *encoder;
6be4a607 4192 int pipe = intel_crtc->pipe;
5eddb70b 4193 u32 reg, temp;
b52eb4dc 4194
f7abfe8b
CW
4195 if (!intel_crtc->active)
4196 return;
4197
d3eedb1a 4198 intel_crtc_disable_planes(crtc);
a5c4d7bc 4199
ea9d758d
DV
4200 for_each_encoder_on_crtc(dev, crtc, encoder)
4201 encoder->disable(encoder);
4202
d925c59a
DV
4203 if (intel_crtc->config.has_pch_encoder)
4204 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4205
b24e7179 4206 intel_disable_pipe(dev_priv, pipe);
32f9d658 4207
0e32b39c
DA
4208 if (intel_crtc->config.dp_encoder_is_mst)
4209 intel_ddi_set_vc_payload_alloc(crtc, false);
4210
3f8dce3a 4211 ironlake_pfit_disable(intel_crtc);
2c07245f 4212
bf49ec8c
DV
4213 for_each_encoder_on_crtc(dev, crtc, encoder)
4214 if (encoder->post_disable)
4215 encoder->post_disable(encoder);
2c07245f 4216
d925c59a
DV
4217 if (intel_crtc->config.has_pch_encoder) {
4218 ironlake_fdi_disable(crtc);
913d8d11 4219
d925c59a
DV
4220 ironlake_disable_pch_transcoder(dev_priv, pipe);
4221 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4222
d925c59a
DV
4223 if (HAS_PCH_CPT(dev)) {
4224 /* disable TRANS_DP_CTL */
4225 reg = TRANS_DP_CTL(pipe);
4226 temp = I915_READ(reg);
4227 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4228 TRANS_DP_PORT_SEL_MASK);
4229 temp |= TRANS_DP_PORT_SEL_NONE;
4230 I915_WRITE(reg, temp);
4231
4232 /* disable DPLL_SEL */
4233 temp = I915_READ(PCH_DPLL_SEL);
11887397 4234 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4235 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4236 }
e3421a18 4237
d925c59a 4238 /* disable PCH DPLL */
e72f9fbf 4239 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4240
d925c59a
DV
4241 ironlake_fdi_pll_disable(intel_crtc);
4242 }
6b383a7f 4243
f7abfe8b 4244 intel_crtc->active = false;
46ba614c 4245 intel_update_watermarks(crtc);
d1ebd816
BW
4246
4247 mutex_lock(&dev->struct_mutex);
6b383a7f 4248 intel_update_fbc(dev);
d1ebd816 4249 mutex_unlock(&dev->struct_mutex);
6be4a607 4250}
1b3c7a47 4251
4f771f10 4252static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4253{
4f771f10
PZ
4254 struct drm_device *dev = crtc->dev;
4255 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4257 struct intel_encoder *encoder;
4258 int pipe = intel_crtc->pipe;
3b117c8f 4259 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4260
4f771f10
PZ
4261 if (!intel_crtc->active)
4262 return;
4263
d3eedb1a 4264 intel_crtc_disable_planes(crtc);
dda9a66a 4265
8807e55b
JN
4266 for_each_encoder_on_crtc(dev, crtc, encoder) {
4267 intel_opregion_notify_encoder(encoder, false);
4f771f10 4268 encoder->disable(encoder);
8807e55b 4269 }
4f771f10 4270
8664281b
PZ
4271 if (intel_crtc->config.has_pch_encoder)
4272 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4273 intel_disable_pipe(dev_priv, pipe);
4274
ad80a810 4275 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4276
3f8dce3a 4277 ironlake_pfit_disable(intel_crtc);
4f771f10 4278
1f544388 4279 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4280
88adfff1 4281 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4282 lpt_disable_pch_transcoder(dev_priv);
8664281b 4283 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4284 intel_ddi_fdi_disable(crtc);
83616634 4285 }
4f771f10 4286
97b040aa
ID
4287 for_each_encoder_on_crtc(dev, crtc, encoder)
4288 if (encoder->post_disable)
4289 encoder->post_disable(encoder);
4290
4f771f10 4291 intel_crtc->active = false;
46ba614c 4292 intel_update_watermarks(crtc);
4f771f10
PZ
4293
4294 mutex_lock(&dev->struct_mutex);
4295 intel_update_fbc(dev);
4296 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4297
4298 if (intel_crtc_to_shared_dpll(intel_crtc))
4299 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4300}
4301
ee7b9f93
JB
4302static void ironlake_crtc_off(struct drm_crtc *crtc)
4303{
4304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4305 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4306}
4307
6441ab5f 4308
2dd24552
JB
4309static void i9xx_pfit_enable(struct intel_crtc *crtc)
4310{
4311 struct drm_device *dev = crtc->base.dev;
4312 struct drm_i915_private *dev_priv = dev->dev_private;
4313 struct intel_crtc_config *pipe_config = &crtc->config;
4314
328d8e82 4315 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4316 return;
4317
2dd24552 4318 /*
c0b03411
DV
4319 * The panel fitter should only be adjusted whilst the pipe is disabled,
4320 * according to register description and PRM.
2dd24552 4321 */
c0b03411
DV
4322 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4323 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4324
b074cec8
JB
4325 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4326 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4327
4328 /* Border color in case we don't scale up to the full screen. Black by
4329 * default, change to something else for debugging. */
4330 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4331}
4332
d05410f9
DA
4333static enum intel_display_power_domain port_to_power_domain(enum port port)
4334{
4335 switch (port) {
4336 case PORT_A:
4337 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4338 case PORT_B:
4339 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4340 case PORT_C:
4341 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4342 case PORT_D:
4343 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4344 default:
4345 WARN_ON_ONCE(1);
4346 return POWER_DOMAIN_PORT_OTHER;
4347 }
4348}
4349
77d22dca
ID
4350#define for_each_power_domain(domain, mask) \
4351 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4352 if ((1 << (domain)) & (mask))
4353
319be8ae
ID
4354enum intel_display_power_domain
4355intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4356{
4357 struct drm_device *dev = intel_encoder->base.dev;
4358 struct intel_digital_port *intel_dig_port;
4359
4360 switch (intel_encoder->type) {
4361 case INTEL_OUTPUT_UNKNOWN:
4362 /* Only DDI platforms should ever use this output type */
4363 WARN_ON_ONCE(!HAS_DDI(dev));
4364 case INTEL_OUTPUT_DISPLAYPORT:
4365 case INTEL_OUTPUT_HDMI:
4366 case INTEL_OUTPUT_EDP:
4367 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4368 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4369 case INTEL_OUTPUT_DP_MST:
4370 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4371 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4372 case INTEL_OUTPUT_ANALOG:
4373 return POWER_DOMAIN_PORT_CRT;
4374 case INTEL_OUTPUT_DSI:
4375 return POWER_DOMAIN_PORT_DSI;
4376 default:
4377 return POWER_DOMAIN_PORT_OTHER;
4378 }
4379}
4380
4381static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4382{
319be8ae
ID
4383 struct drm_device *dev = crtc->dev;
4384 struct intel_encoder *intel_encoder;
4385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4386 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4387 unsigned long mask;
4388 enum transcoder transcoder;
4389
4390 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4391
4392 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4393 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4394 if (intel_crtc->config.pch_pfit.enabled ||
4395 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4396 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4397
319be8ae
ID
4398 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4399 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4400
77d22dca
ID
4401 return mask;
4402}
4403
4404void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4405 bool enable)
4406{
4407 if (dev_priv->power_domains.init_power_on == enable)
4408 return;
4409
4410 if (enable)
4411 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4412 else
4413 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4414
4415 dev_priv->power_domains.init_power_on = enable;
4416}
4417
4418static void modeset_update_crtc_power_domains(struct drm_device *dev)
4419{
4420 struct drm_i915_private *dev_priv = dev->dev_private;
4421 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4422 struct intel_crtc *crtc;
4423
4424 /*
4425 * First get all needed power domains, then put all unneeded, to avoid
4426 * any unnecessary toggling of the power wells.
4427 */
d3fcc808 4428 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4429 enum intel_display_power_domain domain;
4430
4431 if (!crtc->base.enabled)
4432 continue;
4433
319be8ae 4434 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4435
4436 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4437 intel_display_power_get(dev_priv, domain);
4438 }
4439
d3fcc808 4440 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4441 enum intel_display_power_domain domain;
4442
4443 for_each_power_domain(domain, crtc->enabled_power_domains)
4444 intel_display_power_put(dev_priv, domain);
4445
4446 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4447 }
4448
4449 intel_display_set_init_power(dev_priv, false);
4450}
4451
dfcab17e 4452/* returns HPLL frequency in kHz */
f8bf63fd 4453static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4454{
586f49dc 4455 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4456
586f49dc
JB
4457 /* Obtain SKU information */
4458 mutex_lock(&dev_priv->dpio_lock);
4459 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4460 CCK_FUSE_HPLL_FREQ_MASK;
4461 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4462
dfcab17e 4463 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4464}
4465
f8bf63fd
VS
4466static void vlv_update_cdclk(struct drm_device *dev)
4467{
4468 struct drm_i915_private *dev_priv = dev->dev_private;
4469
4470 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4471 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4472 dev_priv->vlv_cdclk_freq);
4473
4474 /*
4475 * Program the gmbus_freq based on the cdclk frequency.
4476 * BSpec erroneously claims we should aim for 4MHz, but
4477 * in fact 1MHz is the correct frequency.
4478 */
4479 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4480}
4481
30a970c6
JB
4482/* Adjust CDclk dividers to allow high res or save power if possible */
4483static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4484{
4485 struct drm_i915_private *dev_priv = dev->dev_private;
4486 u32 val, cmd;
4487
d197b7d3 4488 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4489
dfcab17e 4490 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4491 cmd = 2;
dfcab17e 4492 else if (cdclk == 266667)
30a970c6
JB
4493 cmd = 1;
4494 else
4495 cmd = 0;
4496
4497 mutex_lock(&dev_priv->rps.hw_lock);
4498 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4499 val &= ~DSPFREQGUAR_MASK;
4500 val |= (cmd << DSPFREQGUAR_SHIFT);
4501 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4502 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4503 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4504 50)) {
4505 DRM_ERROR("timed out waiting for CDclk change\n");
4506 }
4507 mutex_unlock(&dev_priv->rps.hw_lock);
4508
dfcab17e 4509 if (cdclk == 400000) {
30a970c6
JB
4510 u32 divider, vco;
4511
4512 vco = valleyview_get_vco(dev_priv);
dfcab17e 4513 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4514
4515 mutex_lock(&dev_priv->dpio_lock);
4516 /* adjust cdclk divider */
4517 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4518 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4519 val |= divider;
4520 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4521
4522 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4523 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4524 50))
4525 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4526 mutex_unlock(&dev_priv->dpio_lock);
4527 }
4528
4529 mutex_lock(&dev_priv->dpio_lock);
4530 /* adjust self-refresh exit latency value */
4531 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4532 val &= ~0x7f;
4533
4534 /*
4535 * For high bandwidth configs, we set a higher latency in the bunit
4536 * so that the core display fetch happens in time to avoid underruns.
4537 */
dfcab17e 4538 if (cdclk == 400000)
30a970c6
JB
4539 val |= 4500 / 250; /* 4.5 usec */
4540 else
4541 val |= 3000 / 250; /* 3.0 usec */
4542 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4543 mutex_unlock(&dev_priv->dpio_lock);
4544
f8bf63fd 4545 vlv_update_cdclk(dev);
30a970c6
JB
4546}
4547
383c5a6a
VS
4548static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4549{
4550 struct drm_i915_private *dev_priv = dev->dev_private;
4551 u32 val, cmd;
4552
4553 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4554
4555 switch (cdclk) {
4556 case 400000:
4557 cmd = 3;
4558 break;
4559 case 333333:
4560 case 320000:
4561 cmd = 2;
4562 break;
4563 case 266667:
4564 cmd = 1;
4565 break;
4566 case 200000:
4567 cmd = 0;
4568 break;
4569 default:
4570 WARN_ON(1);
4571 return;
4572 }
4573
4574 mutex_lock(&dev_priv->rps.hw_lock);
4575 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4576 val &= ~DSPFREQGUAR_MASK_CHV;
4577 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4578 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4579 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4580 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4581 50)) {
4582 DRM_ERROR("timed out waiting for CDclk change\n");
4583 }
4584 mutex_unlock(&dev_priv->rps.hw_lock);
4585
4586 vlv_update_cdclk(dev);
4587}
4588
30a970c6
JB
4589static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4590 int max_pixclk)
4591{
29dc7ef3
VS
4592 int vco = valleyview_get_vco(dev_priv);
4593 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4594
d49a340d
VS
4595 /* FIXME: Punit isn't quite ready yet */
4596 if (IS_CHERRYVIEW(dev_priv->dev))
4597 return 400000;
4598
30a970c6
JB
4599 /*
4600 * Really only a few cases to deal with, as only 4 CDclks are supported:
4601 * 200MHz
4602 * 267MHz
29dc7ef3 4603 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4604 * 400MHz
4605 * So we check to see whether we're above 90% of the lower bin and
4606 * adjust if needed.
e37c67a1
VS
4607 *
4608 * We seem to get an unstable or solid color picture at 200MHz.
4609 * Not sure what's wrong. For now use 200MHz only when all pipes
4610 * are off.
30a970c6 4611 */
29dc7ef3 4612 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4613 return 400000;
4614 else if (max_pixclk > 266667*9/10)
29dc7ef3 4615 return freq_320;
e37c67a1 4616 else if (max_pixclk > 0)
dfcab17e 4617 return 266667;
e37c67a1
VS
4618 else
4619 return 200000;
30a970c6
JB
4620}
4621
2f2d7aa1
VS
4622/* compute the max pixel clock for new configuration */
4623static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4624{
4625 struct drm_device *dev = dev_priv->dev;
4626 struct intel_crtc *intel_crtc;
4627 int max_pixclk = 0;
4628
d3fcc808 4629 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4630 if (intel_crtc->new_enabled)
30a970c6 4631 max_pixclk = max(max_pixclk,
2f2d7aa1 4632 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4633 }
4634
4635 return max_pixclk;
4636}
4637
4638static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4639 unsigned *prepare_pipes)
30a970c6
JB
4640{
4641 struct drm_i915_private *dev_priv = dev->dev_private;
4642 struct intel_crtc *intel_crtc;
2f2d7aa1 4643 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4644
d60c4473
ID
4645 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4646 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4647 return;
4648
2f2d7aa1 4649 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4650 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4651 if (intel_crtc->base.enabled)
4652 *prepare_pipes |= (1 << intel_crtc->pipe);
4653}
4654
4655static void valleyview_modeset_global_resources(struct drm_device *dev)
4656{
4657 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4658 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4659 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4660
383c5a6a
VS
4661 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4662 if (IS_CHERRYVIEW(dev))
4663 cherryview_set_cdclk(dev, req_cdclk);
4664 else
4665 valleyview_set_cdclk(dev, req_cdclk);
4666 }
4667
77961eb9 4668 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4669}
4670
89b667f8
JB
4671static void valleyview_crtc_enable(struct drm_crtc *crtc)
4672{
4673 struct drm_device *dev = crtc->dev;
89b667f8
JB
4674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4675 struct intel_encoder *encoder;
4676 int pipe = intel_crtc->pipe;
23538ef1 4677 bool is_dsi;
89b667f8
JB
4678
4679 WARN_ON(!crtc->enabled);
4680
4681 if (intel_crtc->active)
4682 return;
4683
8525a235
SK
4684 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4685
1ae0d137
VS
4686 if (!is_dsi) {
4687 if (IS_CHERRYVIEW(dev))
4688 chv_prepare_pll(intel_crtc);
4689 else
4690 vlv_prepare_pll(intel_crtc);
4691 }
bdd4b6a6 4692
5b18e57c
DV
4693 if (intel_crtc->config.has_dp_encoder)
4694 intel_dp_set_m_n(intel_crtc);
4695
4696 intel_set_pipe_timings(intel_crtc);
4697
5b18e57c
DV
4698 i9xx_set_pipeconf(intel_crtc);
4699
89b667f8 4700 intel_crtc->active = true;
89b667f8 4701
4a3436e8
VS
4702 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4703
89b667f8
JB
4704 for_each_encoder_on_crtc(dev, crtc, encoder)
4705 if (encoder->pre_pll_enable)
4706 encoder->pre_pll_enable(encoder);
4707
9d556c99
CML
4708 if (!is_dsi) {
4709 if (IS_CHERRYVIEW(dev))
4710 chv_enable_pll(intel_crtc);
4711 else
4712 vlv_enable_pll(intel_crtc);
4713 }
89b667f8
JB
4714
4715 for_each_encoder_on_crtc(dev, crtc, encoder)
4716 if (encoder->pre_enable)
4717 encoder->pre_enable(encoder);
4718
2dd24552
JB
4719 i9xx_pfit_enable(intel_crtc);
4720
63cbb074
VS
4721 intel_crtc_load_lut(crtc);
4722
f37fcc2a 4723 intel_update_watermarks(crtc);
e1fdc473 4724 intel_enable_pipe(intel_crtc);
be6a6f8e 4725
5004945f
JN
4726 for_each_encoder_on_crtc(dev, crtc, encoder)
4727 encoder->enable(encoder);
9ab0460b
VS
4728
4729 intel_crtc_enable_planes(crtc);
d40d9187 4730
56b80e1f
VS
4731 /* Underruns don't raise interrupts, so check manually. */
4732 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4733}
4734
f13c2ef3
DV
4735static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4736{
4737 struct drm_device *dev = crtc->base.dev;
4738 struct drm_i915_private *dev_priv = dev->dev_private;
4739
4740 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4741 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4742}
4743
0b8765c6 4744static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4745{
4746 struct drm_device *dev = crtc->dev;
79e53945 4747 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4748 struct intel_encoder *encoder;
79e53945 4749 int pipe = intel_crtc->pipe;
79e53945 4750
08a48469
DV
4751 WARN_ON(!crtc->enabled);
4752
f7abfe8b
CW
4753 if (intel_crtc->active)
4754 return;
4755
f13c2ef3
DV
4756 i9xx_set_pll_dividers(intel_crtc);
4757
5b18e57c
DV
4758 if (intel_crtc->config.has_dp_encoder)
4759 intel_dp_set_m_n(intel_crtc);
4760
4761 intel_set_pipe_timings(intel_crtc);
4762
5b18e57c
DV
4763 i9xx_set_pipeconf(intel_crtc);
4764
f7abfe8b 4765 intel_crtc->active = true;
6b383a7f 4766
4a3436e8
VS
4767 if (!IS_GEN2(dev))
4768 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4769
9d6d9f19
MK
4770 for_each_encoder_on_crtc(dev, crtc, encoder)
4771 if (encoder->pre_enable)
4772 encoder->pre_enable(encoder);
4773
f6736a1a
DV
4774 i9xx_enable_pll(intel_crtc);
4775
2dd24552
JB
4776 i9xx_pfit_enable(intel_crtc);
4777
63cbb074
VS
4778 intel_crtc_load_lut(crtc);
4779
f37fcc2a 4780 intel_update_watermarks(crtc);
e1fdc473 4781 intel_enable_pipe(intel_crtc);
be6a6f8e 4782
fa5c73b1
DV
4783 for_each_encoder_on_crtc(dev, crtc, encoder)
4784 encoder->enable(encoder);
9ab0460b
VS
4785
4786 intel_crtc_enable_planes(crtc);
d40d9187 4787
4a3436e8
VS
4788 /*
4789 * Gen2 reports pipe underruns whenever all planes are disabled.
4790 * So don't enable underrun reporting before at least some planes
4791 * are enabled.
4792 * FIXME: Need to fix the logic to work when we turn off all planes
4793 * but leave the pipe running.
4794 */
4795 if (IS_GEN2(dev))
4796 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4797
56b80e1f
VS
4798 /* Underruns don't raise interrupts, so check manually. */
4799 i9xx_check_fifo_underruns(dev);
0b8765c6 4800}
79e53945 4801
87476d63
DV
4802static void i9xx_pfit_disable(struct intel_crtc *crtc)
4803{
4804 struct drm_device *dev = crtc->base.dev;
4805 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4806
328d8e82
DV
4807 if (!crtc->config.gmch_pfit.control)
4808 return;
87476d63 4809
328d8e82 4810 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4811
328d8e82
DV
4812 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4813 I915_READ(PFIT_CONTROL));
4814 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4815}
4816
0b8765c6
JB
4817static void i9xx_crtc_disable(struct drm_crtc *crtc)
4818{
4819 struct drm_device *dev = crtc->dev;
4820 struct drm_i915_private *dev_priv = dev->dev_private;
4821 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4822 struct intel_encoder *encoder;
0b8765c6 4823 int pipe = intel_crtc->pipe;
ef9c3aee 4824
f7abfe8b
CW
4825 if (!intel_crtc->active)
4826 return;
4827
4a3436e8
VS
4828 /*
4829 * Gen2 reports pipe underruns whenever all planes are disabled.
4830 * So diasble underrun reporting before all the planes get disabled.
4831 * FIXME: Need to fix the logic to work when we turn off all planes
4832 * but leave the pipe running.
4833 */
4834 if (IS_GEN2(dev))
4835 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4836
564ed191
ID
4837 /*
4838 * Vblank time updates from the shadow to live plane control register
4839 * are blocked if the memory self-refresh mode is active at that
4840 * moment. So to make sure the plane gets truly disabled, disable
4841 * first the self-refresh mode. The self-refresh enable bit in turn
4842 * will be checked/applied by the HW only at the next frame start
4843 * event which is after the vblank start event, so we need to have a
4844 * wait-for-vblank between disabling the plane and the pipe.
4845 */
4846 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4847 intel_crtc_disable_planes(crtc);
4848
ea9d758d
DV
4849 for_each_encoder_on_crtc(dev, crtc, encoder)
4850 encoder->disable(encoder);
4851
6304cd91
VS
4852 /*
4853 * On gen2 planes are double buffered but the pipe isn't, so we must
4854 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4855 * We also need to wait on all gmch platforms because of the
4856 * self-refresh mode constraint explained above.
6304cd91 4857 */
564ed191 4858 intel_wait_for_vblank(dev, pipe);
6304cd91 4859
b24e7179 4860 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4861
87476d63 4862 i9xx_pfit_disable(intel_crtc);
24a1f16d 4863
89b667f8
JB
4864 for_each_encoder_on_crtc(dev, crtc, encoder)
4865 if (encoder->post_disable)
4866 encoder->post_disable(encoder);
4867
076ed3b2
CML
4868 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4869 if (IS_CHERRYVIEW(dev))
4870 chv_disable_pll(dev_priv, pipe);
4871 else if (IS_VALLEYVIEW(dev))
4872 vlv_disable_pll(dev_priv, pipe);
4873 else
4874 i9xx_disable_pll(dev_priv, pipe);
4875 }
0b8765c6 4876
4a3436e8
VS
4877 if (!IS_GEN2(dev))
4878 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4879
f7abfe8b 4880 intel_crtc->active = false;
46ba614c 4881 intel_update_watermarks(crtc);
f37fcc2a 4882
efa9624e 4883 mutex_lock(&dev->struct_mutex);
6b383a7f 4884 intel_update_fbc(dev);
efa9624e 4885 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4886}
4887
ee7b9f93
JB
4888static void i9xx_crtc_off(struct drm_crtc *crtc)
4889{
4890}
4891
976f8a20
DV
4892static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4893 bool enabled)
2c07245f
ZW
4894{
4895 struct drm_device *dev = crtc->dev;
4896 struct drm_i915_master_private *master_priv;
4897 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4898 int pipe = intel_crtc->pipe;
79e53945
JB
4899
4900 if (!dev->primary->master)
4901 return;
4902
4903 master_priv = dev->primary->master->driver_priv;
4904 if (!master_priv->sarea_priv)
4905 return;
4906
79e53945
JB
4907 switch (pipe) {
4908 case 0:
4909 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4910 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4911 break;
4912 case 1:
4913 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4914 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4915 break;
4916 default:
9db4a9c7 4917 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4918 break;
4919 }
79e53945
JB
4920}
4921
b04c5bd6
BF
4922/* Master function to enable/disable CRTC and corresponding power wells */
4923void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
4924{
4925 struct drm_device *dev = crtc->dev;
4926 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4927 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
4928 enum intel_display_power_domain domain;
4929 unsigned long domains;
976f8a20 4930
0e572fe7
DV
4931 if (enable) {
4932 if (!intel_crtc->active) {
e1e9fb84
DV
4933 domains = get_crtc_power_domains(crtc);
4934 for_each_power_domain(domain, domains)
4935 intel_display_power_get(dev_priv, domain);
4936 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
4937
4938 dev_priv->display.crtc_enable(crtc);
4939 }
4940 } else {
4941 if (intel_crtc->active) {
4942 dev_priv->display.crtc_disable(crtc);
4943
e1e9fb84
DV
4944 domains = intel_crtc->enabled_power_domains;
4945 for_each_power_domain(domain, domains)
4946 intel_display_power_put(dev_priv, domain);
4947 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
4948 }
4949 }
b04c5bd6
BF
4950}
4951
4952/**
4953 * Sets the power management mode of the pipe and plane.
4954 */
4955void intel_crtc_update_dpms(struct drm_crtc *crtc)
4956{
4957 struct drm_device *dev = crtc->dev;
4958 struct intel_encoder *intel_encoder;
4959 bool enable = false;
4960
4961 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4962 enable |= intel_encoder->connectors_active;
4963
4964 intel_crtc_control(crtc, enable);
976f8a20
DV
4965
4966 intel_crtc_update_sarea(crtc, enable);
4967}
4968
cdd59983
CW
4969static void intel_crtc_disable(struct drm_crtc *crtc)
4970{
cdd59983 4971 struct drm_device *dev = crtc->dev;
976f8a20 4972 struct drm_connector *connector;
ee7b9f93 4973 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4974 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4975 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4976
976f8a20
DV
4977 /* crtc should still be enabled when we disable it. */
4978 WARN_ON(!crtc->enabled);
4979
4980 dev_priv->display.crtc_disable(crtc);
4981 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4982 dev_priv->display.off(crtc);
4983
f4510a27 4984 if (crtc->primary->fb) {
cdd59983 4985 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4986 intel_unpin_fb_obj(old_obj);
4987 i915_gem_track_fb(old_obj, NULL,
4988 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4989 mutex_unlock(&dev->struct_mutex);
f4510a27 4990 crtc->primary->fb = NULL;
976f8a20
DV
4991 }
4992
4993 /* Update computed state. */
4994 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4995 if (!connector->encoder || !connector->encoder->crtc)
4996 continue;
4997
4998 if (connector->encoder->crtc != crtc)
4999 continue;
5000
5001 connector->dpms = DRM_MODE_DPMS_OFF;
5002 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5003 }
5004}
5005
ea5b213a 5006void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5007{
4ef69c7a 5008 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5009
ea5b213a
CW
5010 drm_encoder_cleanup(encoder);
5011 kfree(intel_encoder);
7e7d76c3
JB
5012}
5013
9237329d 5014/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5015 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5016 * state of the entire output pipe. */
9237329d 5017static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5018{
5ab432ef
DV
5019 if (mode == DRM_MODE_DPMS_ON) {
5020 encoder->connectors_active = true;
5021
b2cabb0e 5022 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5023 } else {
5024 encoder->connectors_active = false;
5025
b2cabb0e 5026 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5027 }
79e53945
JB
5028}
5029
0a91ca29
DV
5030/* Cross check the actual hw state with our own modeset state tracking (and it's
5031 * internal consistency). */
b980514c 5032static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5033{
0a91ca29
DV
5034 if (connector->get_hw_state(connector)) {
5035 struct intel_encoder *encoder = connector->encoder;
5036 struct drm_crtc *crtc;
5037 bool encoder_enabled;
5038 enum pipe pipe;
5039
5040 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5041 connector->base.base.id,
c23cc417 5042 connector->base.name);
0a91ca29 5043
0e32b39c
DA
5044 /* there is no real hw state for MST connectors */
5045 if (connector->mst_port)
5046 return;
5047
0a91ca29
DV
5048 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5049 "wrong connector dpms state\n");
5050 WARN(connector->base.encoder != &encoder->base,
5051 "active connector not linked to encoder\n");
0a91ca29 5052
36cd7444
DA
5053 if (encoder) {
5054 WARN(!encoder->connectors_active,
5055 "encoder->connectors_active not set\n");
5056
5057 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5058 WARN(!encoder_enabled, "encoder not enabled\n");
5059 if (WARN_ON(!encoder->base.crtc))
5060 return;
0a91ca29 5061
36cd7444 5062 crtc = encoder->base.crtc;
0a91ca29 5063
36cd7444
DA
5064 WARN(!crtc->enabled, "crtc not enabled\n");
5065 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5066 WARN(pipe != to_intel_crtc(crtc)->pipe,
5067 "encoder active on the wrong pipe\n");
5068 }
0a91ca29 5069 }
79e53945
JB
5070}
5071
5ab432ef
DV
5072/* Even simpler default implementation, if there's really no special case to
5073 * consider. */
5074void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5075{
5ab432ef
DV
5076 /* All the simple cases only support two dpms states. */
5077 if (mode != DRM_MODE_DPMS_ON)
5078 mode = DRM_MODE_DPMS_OFF;
d4270e57 5079
5ab432ef
DV
5080 if (mode == connector->dpms)
5081 return;
5082
5083 connector->dpms = mode;
5084
5085 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5086 if (connector->encoder)
5087 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5088
b980514c 5089 intel_modeset_check_state(connector->dev);
79e53945
JB
5090}
5091
f0947c37
DV
5092/* Simple connector->get_hw_state implementation for encoders that support only
5093 * one connector and no cloning and hence the encoder state determines the state
5094 * of the connector. */
5095bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5096{
24929352 5097 enum pipe pipe = 0;
f0947c37 5098 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5099
f0947c37 5100 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5101}
5102
1857e1da
DV
5103static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5104 struct intel_crtc_config *pipe_config)
5105{
5106 struct drm_i915_private *dev_priv = dev->dev_private;
5107 struct intel_crtc *pipe_B_crtc =
5108 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5109
5110 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5111 pipe_name(pipe), pipe_config->fdi_lanes);
5112 if (pipe_config->fdi_lanes > 4) {
5113 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5114 pipe_name(pipe), pipe_config->fdi_lanes);
5115 return false;
5116 }
5117
bafb6553 5118 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5119 if (pipe_config->fdi_lanes > 2) {
5120 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5121 pipe_config->fdi_lanes);
5122 return false;
5123 } else {
5124 return true;
5125 }
5126 }
5127
5128 if (INTEL_INFO(dev)->num_pipes == 2)
5129 return true;
5130
5131 /* Ivybridge 3 pipe is really complicated */
5132 switch (pipe) {
5133 case PIPE_A:
5134 return true;
5135 case PIPE_B:
5136 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5137 pipe_config->fdi_lanes > 2) {
5138 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5139 pipe_name(pipe), pipe_config->fdi_lanes);
5140 return false;
5141 }
5142 return true;
5143 case PIPE_C:
1e833f40 5144 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5145 pipe_B_crtc->config.fdi_lanes <= 2) {
5146 if (pipe_config->fdi_lanes > 2) {
5147 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5148 pipe_name(pipe), pipe_config->fdi_lanes);
5149 return false;
5150 }
5151 } else {
5152 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5153 return false;
5154 }
5155 return true;
5156 default:
5157 BUG();
5158 }
5159}
5160
e29c22c0
DV
5161#define RETRY 1
5162static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5163 struct intel_crtc_config *pipe_config)
877d48d5 5164{
1857e1da 5165 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5166 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5167 int lane, link_bw, fdi_dotclock;
e29c22c0 5168 bool setup_ok, needs_recompute = false;
877d48d5 5169
e29c22c0 5170retry:
877d48d5
DV
5171 /* FDI is a binary signal running at ~2.7GHz, encoding
5172 * each output octet as 10 bits. The actual frequency
5173 * is stored as a divider into a 100MHz clock, and the
5174 * mode pixel clock is stored in units of 1KHz.
5175 * Hence the bw of each lane in terms of the mode signal
5176 * is:
5177 */
5178 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5179
241bfc38 5180 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5181
2bd89a07 5182 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5183 pipe_config->pipe_bpp);
5184
5185 pipe_config->fdi_lanes = lane;
5186
2bd89a07 5187 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5188 link_bw, &pipe_config->fdi_m_n);
1857e1da 5189
e29c22c0
DV
5190 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5191 intel_crtc->pipe, pipe_config);
5192 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5193 pipe_config->pipe_bpp -= 2*3;
5194 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5195 pipe_config->pipe_bpp);
5196 needs_recompute = true;
5197 pipe_config->bw_constrained = true;
5198
5199 goto retry;
5200 }
5201
5202 if (needs_recompute)
5203 return RETRY;
5204
5205 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5206}
5207
42db64ef
PZ
5208static void hsw_compute_ips_config(struct intel_crtc *crtc,
5209 struct intel_crtc_config *pipe_config)
5210{
d330a953 5211 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5212 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5213 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5214}
5215
a43f6e0f 5216static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5217 struct intel_crtc_config *pipe_config)
79e53945 5218{
a43f6e0f 5219 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5220 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5221
ad3a4479 5222 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5223 if (INTEL_INFO(dev)->gen < 4) {
5224 struct drm_i915_private *dev_priv = dev->dev_private;
5225 int clock_limit =
5226 dev_priv->display.get_display_clock_speed(dev);
5227
5228 /*
5229 * Enable pixel doubling when the dot clock
5230 * is > 90% of the (display) core speed.
5231 *
b397c96b
VS
5232 * GDG double wide on either pipe,
5233 * otherwise pipe A only.
cf532bb2 5234 */
b397c96b 5235 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5236 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5237 clock_limit *= 2;
cf532bb2 5238 pipe_config->double_wide = true;
ad3a4479
VS
5239 }
5240
241bfc38 5241 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5242 return -EINVAL;
2c07245f 5243 }
89749350 5244
1d1d0e27
VS
5245 /*
5246 * Pipe horizontal size must be even in:
5247 * - DVO ganged mode
5248 * - LVDS dual channel mode
5249 * - Double wide pipe
5250 */
5251 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5252 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5253 pipe_config->pipe_src_w &= ~1;
5254
8693a824
DL
5255 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5256 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5257 */
5258 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5259 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5260 return -EINVAL;
44f46b42 5261
bd080ee5 5262 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5263 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5264 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5265 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5266 * for lvds. */
5267 pipe_config->pipe_bpp = 8*3;
5268 }
5269
f5adf94e 5270 if (HAS_IPS(dev))
a43f6e0f
DV
5271 hsw_compute_ips_config(crtc, pipe_config);
5272
12030431
DV
5273 /*
5274 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5275 * old clock survives for now.
5276 */
5277 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5278 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5279
877d48d5 5280 if (pipe_config->has_pch_encoder)
a43f6e0f 5281 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5282
e29c22c0 5283 return 0;
79e53945
JB
5284}
5285
25eb05fc
JB
5286static int valleyview_get_display_clock_speed(struct drm_device *dev)
5287{
d197b7d3
VS
5288 struct drm_i915_private *dev_priv = dev->dev_private;
5289 int vco = valleyview_get_vco(dev_priv);
5290 u32 val;
5291 int divider;
5292
d49a340d
VS
5293 /* FIXME: Punit isn't quite ready yet */
5294 if (IS_CHERRYVIEW(dev))
5295 return 400000;
5296
d197b7d3
VS
5297 mutex_lock(&dev_priv->dpio_lock);
5298 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5299 mutex_unlock(&dev_priv->dpio_lock);
5300
5301 divider = val & DISPLAY_FREQUENCY_VALUES;
5302
7d007f40
VS
5303 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5304 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5305 "cdclk change in progress\n");
5306
d197b7d3 5307 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5308}
5309
e70236a8
JB
5310static int i945_get_display_clock_speed(struct drm_device *dev)
5311{
5312 return 400000;
5313}
79e53945 5314
e70236a8 5315static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5316{
e70236a8
JB
5317 return 333000;
5318}
79e53945 5319
e70236a8
JB
5320static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5321{
5322 return 200000;
5323}
79e53945 5324
257a7ffc
DV
5325static int pnv_get_display_clock_speed(struct drm_device *dev)
5326{
5327 u16 gcfgc = 0;
5328
5329 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5330
5331 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5332 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5333 return 267000;
5334 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5335 return 333000;
5336 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5337 return 444000;
5338 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5339 return 200000;
5340 default:
5341 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5342 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5343 return 133000;
5344 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5345 return 167000;
5346 }
5347}
5348
e70236a8
JB
5349static int i915gm_get_display_clock_speed(struct drm_device *dev)
5350{
5351 u16 gcfgc = 0;
79e53945 5352
e70236a8
JB
5353 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5354
5355 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5356 return 133000;
5357 else {
5358 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5359 case GC_DISPLAY_CLOCK_333_MHZ:
5360 return 333000;
5361 default:
5362 case GC_DISPLAY_CLOCK_190_200_MHZ:
5363 return 190000;
79e53945 5364 }
e70236a8
JB
5365 }
5366}
5367
5368static int i865_get_display_clock_speed(struct drm_device *dev)
5369{
5370 return 266000;
5371}
5372
5373static int i855_get_display_clock_speed(struct drm_device *dev)
5374{
5375 u16 hpllcc = 0;
5376 /* Assume that the hardware is in the high speed state. This
5377 * should be the default.
5378 */
5379 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5380 case GC_CLOCK_133_200:
5381 case GC_CLOCK_100_200:
5382 return 200000;
5383 case GC_CLOCK_166_250:
5384 return 250000;
5385 case GC_CLOCK_100_133:
79e53945 5386 return 133000;
e70236a8 5387 }
79e53945 5388
e70236a8
JB
5389 /* Shouldn't happen */
5390 return 0;
5391}
79e53945 5392
e70236a8
JB
5393static int i830_get_display_clock_speed(struct drm_device *dev)
5394{
5395 return 133000;
79e53945
JB
5396}
5397
2c07245f 5398static void
a65851af 5399intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5400{
a65851af
VS
5401 while (*num > DATA_LINK_M_N_MASK ||
5402 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5403 *num >>= 1;
5404 *den >>= 1;
5405 }
5406}
5407
a65851af
VS
5408static void compute_m_n(unsigned int m, unsigned int n,
5409 uint32_t *ret_m, uint32_t *ret_n)
5410{
5411 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5412 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5413 intel_reduce_m_n_ratio(ret_m, ret_n);
5414}
5415
e69d0bc1
DV
5416void
5417intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5418 int pixel_clock, int link_clock,
5419 struct intel_link_m_n *m_n)
2c07245f 5420{
e69d0bc1 5421 m_n->tu = 64;
a65851af
VS
5422
5423 compute_m_n(bits_per_pixel * pixel_clock,
5424 link_clock * nlanes * 8,
5425 &m_n->gmch_m, &m_n->gmch_n);
5426
5427 compute_m_n(pixel_clock, link_clock,
5428 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5429}
5430
a7615030
CW
5431static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5432{
d330a953
JN
5433 if (i915.panel_use_ssc >= 0)
5434 return i915.panel_use_ssc != 0;
41aa3448 5435 return dev_priv->vbt.lvds_use_ssc
435793df 5436 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5437}
5438
c65d77d8
JB
5439static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5440{
5441 struct drm_device *dev = crtc->dev;
5442 struct drm_i915_private *dev_priv = dev->dev_private;
5443 int refclk;
5444
a0c4da24 5445 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5446 refclk = 100000;
a0c4da24 5447 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5448 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5449 refclk = dev_priv->vbt.lvds_ssc_freq;
5450 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5451 } else if (!IS_GEN2(dev)) {
5452 refclk = 96000;
5453 } else {
5454 refclk = 48000;
5455 }
5456
5457 return refclk;
5458}
5459
7429e9d4 5460static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5461{
7df00d7a 5462 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5463}
f47709a9 5464
7429e9d4
DV
5465static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5466{
5467 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5468}
5469
f47709a9 5470static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5471 intel_clock_t *reduced_clock)
5472{
f47709a9 5473 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5474 u32 fp, fp2 = 0;
5475
5476 if (IS_PINEVIEW(dev)) {
7429e9d4 5477 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5478 if (reduced_clock)
7429e9d4 5479 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5480 } else {
7429e9d4 5481 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5482 if (reduced_clock)
7429e9d4 5483 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5484 }
5485
8bcc2795 5486 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5487
f47709a9
DV
5488 crtc->lowfreq_avail = false;
5489 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5490 reduced_clock && i915.powersave) {
8bcc2795 5491 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5492 crtc->lowfreq_avail = true;
a7516a05 5493 } else {
8bcc2795 5494 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5495 }
5496}
5497
5e69f97f
CML
5498static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5499 pipe)
89b667f8
JB
5500{
5501 u32 reg_val;
5502
5503 /*
5504 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5505 * and set it to a reasonable value instead.
5506 */
ab3c759a 5507 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5508 reg_val &= 0xffffff00;
5509 reg_val |= 0x00000030;
ab3c759a 5510 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5511
ab3c759a 5512 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5513 reg_val &= 0x8cffffff;
5514 reg_val = 0x8c000000;
ab3c759a 5515 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5516
ab3c759a 5517 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5518 reg_val &= 0xffffff00;
ab3c759a 5519 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5520
ab3c759a 5521 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5522 reg_val &= 0x00ffffff;
5523 reg_val |= 0xb0000000;
ab3c759a 5524 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5525}
5526
b551842d
DV
5527static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5528 struct intel_link_m_n *m_n)
5529{
5530 struct drm_device *dev = crtc->base.dev;
5531 struct drm_i915_private *dev_priv = dev->dev_private;
5532 int pipe = crtc->pipe;
5533
e3b95f1e
DV
5534 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5535 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5536 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5537 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5538}
5539
5540static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5541 struct intel_link_m_n *m_n,
5542 struct intel_link_m_n *m2_n2)
b551842d
DV
5543{
5544 struct drm_device *dev = crtc->base.dev;
5545 struct drm_i915_private *dev_priv = dev->dev_private;
5546 int pipe = crtc->pipe;
5547 enum transcoder transcoder = crtc->config.cpu_transcoder;
5548
5549 if (INTEL_INFO(dev)->gen >= 5) {
5550 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5551 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5552 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5553 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5554 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5555 * for gen < 8) and if DRRS is supported (to make sure the
5556 * registers are not unnecessarily accessed).
5557 */
5558 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5559 crtc->config.has_drrs) {
5560 I915_WRITE(PIPE_DATA_M2(transcoder),
5561 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5562 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5563 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5564 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5565 }
b551842d 5566 } else {
e3b95f1e
DV
5567 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5568 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5569 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5570 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5571 }
5572}
5573
f769cd24 5574void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5575{
5576 if (crtc->config.has_pch_encoder)
5577 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5578 else
f769cd24
VK
5579 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5580 &crtc->config.dp_m2_n2);
03afc4a2
DV
5581}
5582
f47709a9 5583static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5584{
5585 u32 dpll, dpll_md;
5586
5587 /*
5588 * Enable DPIO clock input. We should never disable the reference
5589 * clock for pipe B, since VGA hotplug / manual detection depends
5590 * on it.
5591 */
5592 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5593 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5594 /* We should never disable this, set it here for state tracking */
5595 if (crtc->pipe == PIPE_B)
5596 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5597 dpll |= DPLL_VCO_ENABLE;
5598 crtc->config.dpll_hw_state.dpll = dpll;
5599
5600 dpll_md = (crtc->config.pixel_multiplier - 1)
5601 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5602 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5603}
5604
5605static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5606{
f47709a9 5607 struct drm_device *dev = crtc->base.dev;
a0c4da24 5608 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5609 int pipe = crtc->pipe;
bdd4b6a6 5610 u32 mdiv;
a0c4da24 5611 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5612 u32 coreclk, reg_val;
a0c4da24 5613
09153000
DV
5614 mutex_lock(&dev_priv->dpio_lock);
5615
f47709a9
DV
5616 bestn = crtc->config.dpll.n;
5617 bestm1 = crtc->config.dpll.m1;
5618 bestm2 = crtc->config.dpll.m2;
5619 bestp1 = crtc->config.dpll.p1;
5620 bestp2 = crtc->config.dpll.p2;
a0c4da24 5621
89b667f8
JB
5622 /* See eDP HDMI DPIO driver vbios notes doc */
5623
5624 /* PLL B needs special handling */
bdd4b6a6 5625 if (pipe == PIPE_B)
5e69f97f 5626 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5627
5628 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5629 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5630
5631 /* Disable target IRef on PLL */
ab3c759a 5632 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5633 reg_val &= 0x00ffffff;
ab3c759a 5634 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5635
5636 /* Disable fast lock */
ab3c759a 5637 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5638
5639 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5640 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5641 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5642 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5643 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5644
5645 /*
5646 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5647 * but we don't support that).
5648 * Note: don't use the DAC post divider as it seems unstable.
5649 */
5650 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5651 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5652
a0c4da24 5653 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5654 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5655
89b667f8 5656 /* Set HBR and RBR LPF coefficients */
ff9a6750 5657 if (crtc->config.port_clock == 162000 ||
99750bd4 5658 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5659 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5660 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5661 0x009f0003);
89b667f8 5662 else
ab3c759a 5663 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5664 0x00d0000f);
5665
5666 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5667 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5668 /* Use SSC source */
bdd4b6a6 5669 if (pipe == PIPE_A)
ab3c759a 5670 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5671 0x0df40000);
5672 else
ab3c759a 5673 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5674 0x0df70000);
5675 } else { /* HDMI or VGA */
5676 /* Use bend source */
bdd4b6a6 5677 if (pipe == PIPE_A)
ab3c759a 5678 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5679 0x0df70000);
5680 else
ab3c759a 5681 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5682 0x0df40000);
5683 }
a0c4da24 5684
ab3c759a 5685 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5686 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5687 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5688 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5689 coreclk |= 0x01000000;
ab3c759a 5690 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5691
ab3c759a 5692 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5693 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5694}
5695
9d556c99 5696static void chv_update_pll(struct intel_crtc *crtc)
1ae0d137
VS
5697{
5698 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5699 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5700 DPLL_VCO_ENABLE;
5701 if (crtc->pipe != PIPE_A)
5702 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5703
5704 crtc->config.dpll_hw_state.dpll_md =
5705 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5706}
5707
5708static void chv_prepare_pll(struct intel_crtc *crtc)
9d556c99
CML
5709{
5710 struct drm_device *dev = crtc->base.dev;
5711 struct drm_i915_private *dev_priv = dev->dev_private;
5712 int pipe = crtc->pipe;
5713 int dpll_reg = DPLL(crtc->pipe);
5714 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5715 u32 loopfilter, intcoeff;
9d556c99
CML
5716 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5717 int refclk;
5718
9d556c99
CML
5719 bestn = crtc->config.dpll.n;
5720 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5721 bestm1 = crtc->config.dpll.m1;
5722 bestm2 = crtc->config.dpll.m2 >> 22;
5723 bestp1 = crtc->config.dpll.p1;
5724 bestp2 = crtc->config.dpll.p2;
5725
5726 /*
5727 * Enable Refclk and SSC
5728 */
a11b0703
VS
5729 I915_WRITE(dpll_reg,
5730 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5731
5732 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5733
9d556c99
CML
5734 /* p1 and p2 divider */
5735 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5736 5 << DPIO_CHV_S1_DIV_SHIFT |
5737 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5738 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5739 1 << DPIO_CHV_K_DIV_SHIFT);
5740
5741 /* Feedback post-divider - m2 */
5742 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5743
5744 /* Feedback refclk divider - n and m1 */
5745 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5746 DPIO_CHV_M1_DIV_BY_2 |
5747 1 << DPIO_CHV_N_DIV_SHIFT);
5748
5749 /* M2 fraction division */
5750 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5751
5752 /* M2 fraction division enable */
5753 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5754 DPIO_CHV_FRAC_DIV_EN |
5755 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5756
5757 /* Loop filter */
5758 refclk = i9xx_get_refclk(&crtc->base, 0);
5759 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5760 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5761 if (refclk == 100000)
5762 intcoeff = 11;
5763 else if (refclk == 38400)
5764 intcoeff = 10;
5765 else
5766 intcoeff = 9;
5767 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5768 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5769
5770 /* AFC Recal */
5771 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5772 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5773 DPIO_AFC_RECAL);
5774
5775 mutex_unlock(&dev_priv->dpio_lock);
5776}
5777
f47709a9
DV
5778static void i9xx_update_pll(struct intel_crtc *crtc,
5779 intel_clock_t *reduced_clock,
eb1cbe48
DV
5780 int num_connectors)
5781{
f47709a9 5782 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5783 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5784 u32 dpll;
5785 bool is_sdvo;
f47709a9 5786 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5787
f47709a9 5788 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5789
f47709a9
DV
5790 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5791 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5792
5793 dpll = DPLL_VGA_MODE_DIS;
5794
f47709a9 5795 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5796 dpll |= DPLLB_MODE_LVDS;
5797 else
5798 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5799
ef1b460d 5800 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5801 dpll |= (crtc->config.pixel_multiplier - 1)
5802 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5803 }
198a037f
DV
5804
5805 if (is_sdvo)
4a33e48d 5806 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5807
f47709a9 5808 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5809 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5810
5811 /* compute bitmask from p1 value */
5812 if (IS_PINEVIEW(dev))
5813 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5814 else {
5815 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5816 if (IS_G4X(dev) && reduced_clock)
5817 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5818 }
5819 switch (clock->p2) {
5820 case 5:
5821 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5822 break;
5823 case 7:
5824 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5825 break;
5826 case 10:
5827 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5828 break;
5829 case 14:
5830 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5831 break;
5832 }
5833 if (INTEL_INFO(dev)->gen >= 4)
5834 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5835
09ede541 5836 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5837 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5838 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5839 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5840 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5841 else
5842 dpll |= PLL_REF_INPUT_DREFCLK;
5843
5844 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5845 crtc->config.dpll_hw_state.dpll = dpll;
5846
eb1cbe48 5847 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5848 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5849 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5850 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5851 }
5852}
5853
f47709a9 5854static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5855 intel_clock_t *reduced_clock,
eb1cbe48
DV
5856 int num_connectors)
5857{
f47709a9 5858 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5859 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5860 u32 dpll;
f47709a9 5861 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5862
f47709a9 5863 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5864
eb1cbe48
DV
5865 dpll = DPLL_VGA_MODE_DIS;
5866
f47709a9 5867 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5868 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5869 } else {
5870 if (clock->p1 == 2)
5871 dpll |= PLL_P1_DIVIDE_BY_TWO;
5872 else
5873 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5874 if (clock->p2 == 4)
5875 dpll |= PLL_P2_DIVIDE_BY_4;
5876 }
5877
4a33e48d
DV
5878 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5879 dpll |= DPLL_DVO_2X_MODE;
5880
f47709a9 5881 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5882 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5883 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5884 else
5885 dpll |= PLL_REF_INPUT_DREFCLK;
5886
5887 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5888 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5889}
5890
8a654f3b 5891static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5892{
5893 struct drm_device *dev = intel_crtc->base.dev;
5894 struct drm_i915_private *dev_priv = dev->dev_private;
5895 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5896 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5897 struct drm_display_mode *adjusted_mode =
5898 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5899 uint32_t crtc_vtotal, crtc_vblank_end;
5900 int vsyncshift = 0;
4d8a62ea
DV
5901
5902 /* We need to be careful not to changed the adjusted mode, for otherwise
5903 * the hw state checker will get angry at the mismatch. */
5904 crtc_vtotal = adjusted_mode->crtc_vtotal;
5905 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5906
609aeaca 5907 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5908 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5909 crtc_vtotal -= 1;
5910 crtc_vblank_end -= 1;
609aeaca
VS
5911
5912 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5913 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5914 else
5915 vsyncshift = adjusted_mode->crtc_hsync_start -
5916 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5917 if (vsyncshift < 0)
5918 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5919 }
5920
5921 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5922 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5923
fe2b8f9d 5924 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5925 (adjusted_mode->crtc_hdisplay - 1) |
5926 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5927 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5928 (adjusted_mode->crtc_hblank_start - 1) |
5929 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5930 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5931 (adjusted_mode->crtc_hsync_start - 1) |
5932 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5933
fe2b8f9d 5934 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5935 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5936 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5937 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5938 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5939 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5940 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5941 (adjusted_mode->crtc_vsync_start - 1) |
5942 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5943
b5e508d4
PZ
5944 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5945 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5946 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5947 * bits. */
5948 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5949 (pipe == PIPE_B || pipe == PIPE_C))
5950 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5951
b0e77b9c
PZ
5952 /* pipesrc controls the size that is scaled from, which should
5953 * always be the user's requested size.
5954 */
5955 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5956 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5957 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5958}
5959
1bd1bd80
DV
5960static void intel_get_pipe_timings(struct intel_crtc *crtc,
5961 struct intel_crtc_config *pipe_config)
5962{
5963 struct drm_device *dev = crtc->base.dev;
5964 struct drm_i915_private *dev_priv = dev->dev_private;
5965 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5966 uint32_t tmp;
5967
5968 tmp = I915_READ(HTOTAL(cpu_transcoder));
5969 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5970 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5971 tmp = I915_READ(HBLANK(cpu_transcoder));
5972 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5973 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5974 tmp = I915_READ(HSYNC(cpu_transcoder));
5975 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5976 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5977
5978 tmp = I915_READ(VTOTAL(cpu_transcoder));
5979 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5980 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5981 tmp = I915_READ(VBLANK(cpu_transcoder));
5982 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5983 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5984 tmp = I915_READ(VSYNC(cpu_transcoder));
5985 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5986 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5987
5988 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5989 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5990 pipe_config->adjusted_mode.crtc_vtotal += 1;
5991 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5992 }
5993
5994 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5995 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5996 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5997
5998 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5999 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6000}
6001
f6a83288
DV
6002void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6003 struct intel_crtc_config *pipe_config)
babea61d 6004{
f6a83288
DV
6005 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6006 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6007 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6008 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6009
f6a83288
DV
6010 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6011 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6012 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6013 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6014
f6a83288 6015 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6016
f6a83288
DV
6017 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6018 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6019}
6020
84b046f3
DV
6021static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6022{
6023 struct drm_device *dev = intel_crtc->base.dev;
6024 struct drm_i915_private *dev_priv = dev->dev_private;
6025 uint32_t pipeconf;
6026
9f11a9e4 6027 pipeconf = 0;
84b046f3 6028
67c72a12
DV
6029 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
6030 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
6031 pipeconf |= PIPECONF_ENABLE;
6032
cf532bb2
VS
6033 if (intel_crtc->config.double_wide)
6034 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6035
ff9ce46e
DV
6036 /* only g4x and later have fancy bpc/dither controls */
6037 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6038 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6039 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6040 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6041 PIPECONF_DITHER_TYPE_SP;
84b046f3 6042
ff9ce46e
DV
6043 switch (intel_crtc->config.pipe_bpp) {
6044 case 18:
6045 pipeconf |= PIPECONF_6BPC;
6046 break;
6047 case 24:
6048 pipeconf |= PIPECONF_8BPC;
6049 break;
6050 case 30:
6051 pipeconf |= PIPECONF_10BPC;
6052 break;
6053 default:
6054 /* Case prevented by intel_choose_pipe_bpp_dither. */
6055 BUG();
84b046f3
DV
6056 }
6057 }
6058
6059 if (HAS_PIPE_CXSR(dev)) {
6060 if (intel_crtc->lowfreq_avail) {
6061 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6062 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6063 } else {
6064 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6065 }
6066 }
6067
efc2cfff
VS
6068 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6069 if (INTEL_INFO(dev)->gen < 4 ||
6070 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6071 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6072 else
6073 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6074 } else
84b046f3
DV
6075 pipeconf |= PIPECONF_PROGRESSIVE;
6076
9f11a9e4
DV
6077 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6078 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6079
84b046f3
DV
6080 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6081 POSTING_READ(PIPECONF(intel_crtc->pipe));
6082}
6083
f564048e 6084static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6085 int x, int y,
94352cf9 6086 struct drm_framebuffer *fb)
79e53945
JB
6087{
6088 struct drm_device *dev = crtc->dev;
6089 struct drm_i915_private *dev_priv = dev->dev_private;
6090 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6091 int refclk, num_connectors = 0;
652c393a 6092 intel_clock_t clock, reduced_clock;
a16af721 6093 bool ok, has_reduced_clock = false;
e9fd1c02 6094 bool is_lvds = false, is_dsi = false;
5eddb70b 6095 struct intel_encoder *encoder;
d4906093 6096 const intel_limit_t *limit;
79e53945 6097
6c2b7c12 6098 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6099 switch (encoder->type) {
79e53945
JB
6100 case INTEL_OUTPUT_LVDS:
6101 is_lvds = true;
6102 break;
e9fd1c02
JN
6103 case INTEL_OUTPUT_DSI:
6104 is_dsi = true;
6105 break;
79e53945 6106 }
43565a06 6107
c751ce4f 6108 num_connectors++;
79e53945
JB
6109 }
6110
f2335330 6111 if (is_dsi)
5b18e57c 6112 return 0;
f2335330
JN
6113
6114 if (!intel_crtc->config.clock_set) {
6115 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6116
e9fd1c02
JN
6117 /*
6118 * Returns a set of divisors for the desired target clock with
6119 * the given refclk, or FALSE. The returned values represent
6120 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6121 * 2) / p1 / p2.
6122 */
6123 limit = intel_limit(crtc, refclk);
6124 ok = dev_priv->display.find_dpll(limit, crtc,
6125 intel_crtc->config.port_clock,
6126 refclk, NULL, &clock);
f2335330 6127 if (!ok) {
e9fd1c02
JN
6128 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6129 return -EINVAL;
6130 }
79e53945 6131
f2335330
JN
6132 if (is_lvds && dev_priv->lvds_downclock_avail) {
6133 /*
6134 * Ensure we match the reduced clock's P to the target
6135 * clock. If the clocks don't match, we can't switch
6136 * the display clock by using the FP0/FP1. In such case
6137 * we will disable the LVDS downclock feature.
6138 */
6139 has_reduced_clock =
6140 dev_priv->display.find_dpll(limit, crtc,
6141 dev_priv->lvds_downclock,
6142 refclk, &clock,
6143 &reduced_clock);
6144 }
6145 /* Compat-code for transition, will disappear. */
f47709a9
DV
6146 intel_crtc->config.dpll.n = clock.n;
6147 intel_crtc->config.dpll.m1 = clock.m1;
6148 intel_crtc->config.dpll.m2 = clock.m2;
6149 intel_crtc->config.dpll.p1 = clock.p1;
6150 intel_crtc->config.dpll.p2 = clock.p2;
6151 }
7026d4ac 6152
e9fd1c02 6153 if (IS_GEN2(dev)) {
8a654f3b 6154 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6155 has_reduced_clock ? &reduced_clock : NULL,
6156 num_connectors);
9d556c99
CML
6157 } else if (IS_CHERRYVIEW(dev)) {
6158 chv_update_pll(intel_crtc);
e9fd1c02 6159 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6160 vlv_update_pll(intel_crtc);
e9fd1c02 6161 } else {
f47709a9 6162 i9xx_update_pll(intel_crtc,
eb1cbe48 6163 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6164 num_connectors);
e9fd1c02 6165 }
79e53945 6166
c8f7a0db 6167 return 0;
f564048e
EA
6168}
6169
2fa2fe9a
DV
6170static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6171 struct intel_crtc_config *pipe_config)
6172{
6173 struct drm_device *dev = crtc->base.dev;
6174 struct drm_i915_private *dev_priv = dev->dev_private;
6175 uint32_t tmp;
6176
dc9e7dec
VS
6177 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6178 return;
6179
2fa2fe9a 6180 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6181 if (!(tmp & PFIT_ENABLE))
6182 return;
2fa2fe9a 6183
06922821 6184 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6185 if (INTEL_INFO(dev)->gen < 4) {
6186 if (crtc->pipe != PIPE_B)
6187 return;
2fa2fe9a
DV
6188 } else {
6189 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6190 return;
6191 }
6192
06922821 6193 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6194 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6195 if (INTEL_INFO(dev)->gen < 5)
6196 pipe_config->gmch_pfit.lvds_border_bits =
6197 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6198}
6199
acbec814
JB
6200static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6201 struct intel_crtc_config *pipe_config)
6202{
6203 struct drm_device *dev = crtc->base.dev;
6204 struct drm_i915_private *dev_priv = dev->dev_private;
6205 int pipe = pipe_config->cpu_transcoder;
6206 intel_clock_t clock;
6207 u32 mdiv;
662c6ecb 6208 int refclk = 100000;
acbec814 6209
f573de5a
SK
6210 /* In case of MIPI DPLL will not even be used */
6211 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6212 return;
6213
acbec814 6214 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6215 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6216 mutex_unlock(&dev_priv->dpio_lock);
6217
6218 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6219 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6220 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6221 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6222 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6223
f646628b 6224 vlv_clock(refclk, &clock);
acbec814 6225
f646628b
VS
6226 /* clock.dot is the fast clock */
6227 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6228}
6229
1ad292b5
JB
6230static void i9xx_get_plane_config(struct intel_crtc *crtc,
6231 struct intel_plane_config *plane_config)
6232{
6233 struct drm_device *dev = crtc->base.dev;
6234 struct drm_i915_private *dev_priv = dev->dev_private;
6235 u32 val, base, offset;
6236 int pipe = crtc->pipe, plane = crtc->plane;
6237 int fourcc, pixel_format;
6238 int aligned_height;
6239
66e514c1
DA
6240 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6241 if (!crtc->base.primary->fb) {
1ad292b5
JB
6242 DRM_DEBUG_KMS("failed to alloc fb\n");
6243 return;
6244 }
6245
6246 val = I915_READ(DSPCNTR(plane));
6247
6248 if (INTEL_INFO(dev)->gen >= 4)
6249 if (val & DISPPLANE_TILED)
6250 plane_config->tiled = true;
6251
6252 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6253 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6254 crtc->base.primary->fb->pixel_format = fourcc;
6255 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6256 drm_format_plane_cpp(fourcc, 0) * 8;
6257
6258 if (INTEL_INFO(dev)->gen >= 4) {
6259 if (plane_config->tiled)
6260 offset = I915_READ(DSPTILEOFF(plane));
6261 else
6262 offset = I915_READ(DSPLINOFF(plane));
6263 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6264 } else {
6265 base = I915_READ(DSPADDR(plane));
6266 }
6267 plane_config->base = base;
6268
6269 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6270 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6271 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6272
6273 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6274 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6275
66e514c1 6276 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6277 plane_config->tiled);
6278
1267a26b
FF
6279 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6280 aligned_height);
1ad292b5
JB
6281
6282 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6283 pipe, plane, crtc->base.primary->fb->width,
6284 crtc->base.primary->fb->height,
6285 crtc->base.primary->fb->bits_per_pixel, base,
6286 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6287 plane_config->size);
6288
6289}
6290
70b23a98
VS
6291static void chv_crtc_clock_get(struct intel_crtc *crtc,
6292 struct intel_crtc_config *pipe_config)
6293{
6294 struct drm_device *dev = crtc->base.dev;
6295 struct drm_i915_private *dev_priv = dev->dev_private;
6296 int pipe = pipe_config->cpu_transcoder;
6297 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6298 intel_clock_t clock;
6299 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6300 int refclk = 100000;
6301
6302 mutex_lock(&dev_priv->dpio_lock);
6303 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6304 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6305 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6306 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6307 mutex_unlock(&dev_priv->dpio_lock);
6308
6309 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6310 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6311 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6312 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6313 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6314
6315 chv_clock(refclk, &clock);
6316
6317 /* clock.dot is the fast clock */
6318 pipe_config->port_clock = clock.dot / 5;
6319}
6320
0e8ffe1b
DV
6321static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6322 struct intel_crtc_config *pipe_config)
6323{
6324 struct drm_device *dev = crtc->base.dev;
6325 struct drm_i915_private *dev_priv = dev->dev_private;
6326 uint32_t tmp;
6327
b5482bd0
ID
6328 if (!intel_display_power_enabled(dev_priv,
6329 POWER_DOMAIN_PIPE(crtc->pipe)))
6330 return false;
6331
e143a21c 6332 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6333 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6334
0e8ffe1b
DV
6335 tmp = I915_READ(PIPECONF(crtc->pipe));
6336 if (!(tmp & PIPECONF_ENABLE))
6337 return false;
6338
42571aef
VS
6339 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6340 switch (tmp & PIPECONF_BPC_MASK) {
6341 case PIPECONF_6BPC:
6342 pipe_config->pipe_bpp = 18;
6343 break;
6344 case PIPECONF_8BPC:
6345 pipe_config->pipe_bpp = 24;
6346 break;
6347 case PIPECONF_10BPC:
6348 pipe_config->pipe_bpp = 30;
6349 break;
6350 default:
6351 break;
6352 }
6353 }
6354
b5a9fa09
DV
6355 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6356 pipe_config->limited_color_range = true;
6357
282740f7
VS
6358 if (INTEL_INFO(dev)->gen < 4)
6359 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6360
1bd1bd80
DV
6361 intel_get_pipe_timings(crtc, pipe_config);
6362
2fa2fe9a
DV
6363 i9xx_get_pfit_config(crtc, pipe_config);
6364
6c49f241
DV
6365 if (INTEL_INFO(dev)->gen >= 4) {
6366 tmp = I915_READ(DPLL_MD(crtc->pipe));
6367 pipe_config->pixel_multiplier =
6368 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6369 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6370 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6371 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6372 tmp = I915_READ(DPLL(crtc->pipe));
6373 pipe_config->pixel_multiplier =
6374 ((tmp & SDVO_MULTIPLIER_MASK)
6375 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6376 } else {
6377 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6378 * port and will be fixed up in the encoder->get_config
6379 * function. */
6380 pipe_config->pixel_multiplier = 1;
6381 }
8bcc2795
DV
6382 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6383 if (!IS_VALLEYVIEW(dev)) {
6384 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6385 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6386 } else {
6387 /* Mask out read-only status bits. */
6388 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6389 DPLL_PORTC_READY_MASK |
6390 DPLL_PORTB_READY_MASK);
8bcc2795 6391 }
6c49f241 6392
70b23a98
VS
6393 if (IS_CHERRYVIEW(dev))
6394 chv_crtc_clock_get(crtc, pipe_config);
6395 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6396 vlv_crtc_clock_get(crtc, pipe_config);
6397 else
6398 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6399
0e8ffe1b
DV
6400 return true;
6401}
6402
dde86e2d 6403static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6404{
6405 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6406 struct intel_encoder *encoder;
74cfd7ac 6407 u32 val, final;
13d83a67 6408 bool has_lvds = false;
199e5d79 6409 bool has_cpu_edp = false;
199e5d79 6410 bool has_panel = false;
99eb6a01
KP
6411 bool has_ck505 = false;
6412 bool can_ssc = false;
13d83a67
JB
6413
6414 /* We need to take the global config into account */
b2784e15 6415 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6416 switch (encoder->type) {
6417 case INTEL_OUTPUT_LVDS:
6418 has_panel = true;
6419 has_lvds = true;
6420 break;
6421 case INTEL_OUTPUT_EDP:
6422 has_panel = true;
2de6905f 6423 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6424 has_cpu_edp = true;
6425 break;
13d83a67
JB
6426 }
6427 }
6428
99eb6a01 6429 if (HAS_PCH_IBX(dev)) {
41aa3448 6430 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6431 can_ssc = has_ck505;
6432 } else {
6433 has_ck505 = false;
6434 can_ssc = true;
6435 }
6436
2de6905f
ID
6437 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6438 has_panel, has_lvds, has_ck505);
13d83a67
JB
6439
6440 /* Ironlake: try to setup display ref clock before DPLL
6441 * enabling. This is only under driver's control after
6442 * PCH B stepping, previous chipset stepping should be
6443 * ignoring this setting.
6444 */
74cfd7ac
CW
6445 val = I915_READ(PCH_DREF_CONTROL);
6446
6447 /* As we must carefully and slowly disable/enable each source in turn,
6448 * compute the final state we want first and check if we need to
6449 * make any changes at all.
6450 */
6451 final = val;
6452 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6453 if (has_ck505)
6454 final |= DREF_NONSPREAD_CK505_ENABLE;
6455 else
6456 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6457
6458 final &= ~DREF_SSC_SOURCE_MASK;
6459 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6460 final &= ~DREF_SSC1_ENABLE;
6461
6462 if (has_panel) {
6463 final |= DREF_SSC_SOURCE_ENABLE;
6464
6465 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6466 final |= DREF_SSC1_ENABLE;
6467
6468 if (has_cpu_edp) {
6469 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6470 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6471 else
6472 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6473 } else
6474 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6475 } else {
6476 final |= DREF_SSC_SOURCE_DISABLE;
6477 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6478 }
6479
6480 if (final == val)
6481 return;
6482
13d83a67 6483 /* Always enable nonspread source */
74cfd7ac 6484 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6485
99eb6a01 6486 if (has_ck505)
74cfd7ac 6487 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6488 else
74cfd7ac 6489 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6490
199e5d79 6491 if (has_panel) {
74cfd7ac
CW
6492 val &= ~DREF_SSC_SOURCE_MASK;
6493 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6494
199e5d79 6495 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6496 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6497 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6498 val |= DREF_SSC1_ENABLE;
e77166b5 6499 } else
74cfd7ac 6500 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6501
6502 /* Get SSC going before enabling the outputs */
74cfd7ac 6503 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6504 POSTING_READ(PCH_DREF_CONTROL);
6505 udelay(200);
6506
74cfd7ac 6507 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6508
6509 /* Enable CPU source on CPU attached eDP */
199e5d79 6510 if (has_cpu_edp) {
99eb6a01 6511 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6512 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6513 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6514 } else
74cfd7ac 6515 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6516 } else
74cfd7ac 6517 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6518
74cfd7ac 6519 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6520 POSTING_READ(PCH_DREF_CONTROL);
6521 udelay(200);
6522 } else {
6523 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6524
74cfd7ac 6525 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6526
6527 /* Turn off CPU output */
74cfd7ac 6528 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6529
74cfd7ac 6530 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6531 POSTING_READ(PCH_DREF_CONTROL);
6532 udelay(200);
6533
6534 /* Turn off the SSC source */
74cfd7ac
CW
6535 val &= ~DREF_SSC_SOURCE_MASK;
6536 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6537
6538 /* Turn off SSC1 */
74cfd7ac 6539 val &= ~DREF_SSC1_ENABLE;
199e5d79 6540
74cfd7ac 6541 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6542 POSTING_READ(PCH_DREF_CONTROL);
6543 udelay(200);
6544 }
74cfd7ac
CW
6545
6546 BUG_ON(val != final);
13d83a67
JB
6547}
6548
f31f2d55 6549static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6550{
f31f2d55 6551 uint32_t tmp;
dde86e2d 6552
0ff066a9
PZ
6553 tmp = I915_READ(SOUTH_CHICKEN2);
6554 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6555 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6556
0ff066a9
PZ
6557 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6558 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6559 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6560
0ff066a9
PZ
6561 tmp = I915_READ(SOUTH_CHICKEN2);
6562 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6563 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6564
0ff066a9
PZ
6565 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6566 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6567 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6568}
6569
6570/* WaMPhyProgramming:hsw */
6571static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6572{
6573 uint32_t tmp;
dde86e2d
PZ
6574
6575 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6576 tmp &= ~(0xFF << 24);
6577 tmp |= (0x12 << 24);
6578 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6579
dde86e2d
PZ
6580 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6581 tmp |= (1 << 11);
6582 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6583
6584 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6585 tmp |= (1 << 11);
6586 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6587
dde86e2d
PZ
6588 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6589 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6590 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6591
6592 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6593 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6594 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6595
0ff066a9
PZ
6596 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6597 tmp &= ~(7 << 13);
6598 tmp |= (5 << 13);
6599 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6600
0ff066a9
PZ
6601 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6602 tmp &= ~(7 << 13);
6603 tmp |= (5 << 13);
6604 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6605
6606 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6607 tmp &= ~0xFF;
6608 tmp |= 0x1C;
6609 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6610
6611 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6612 tmp &= ~0xFF;
6613 tmp |= 0x1C;
6614 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6615
6616 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6617 tmp &= ~(0xFF << 16);
6618 tmp |= (0x1C << 16);
6619 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6620
6621 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6622 tmp &= ~(0xFF << 16);
6623 tmp |= (0x1C << 16);
6624 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6625
0ff066a9
PZ
6626 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6627 tmp |= (1 << 27);
6628 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6629
0ff066a9
PZ
6630 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6631 tmp |= (1 << 27);
6632 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6633
0ff066a9
PZ
6634 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6635 tmp &= ~(0xF << 28);
6636 tmp |= (4 << 28);
6637 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6638
0ff066a9
PZ
6639 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6640 tmp &= ~(0xF << 28);
6641 tmp |= (4 << 28);
6642 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6643}
6644
2fa86a1f
PZ
6645/* Implements 3 different sequences from BSpec chapter "Display iCLK
6646 * Programming" based on the parameters passed:
6647 * - Sequence to enable CLKOUT_DP
6648 * - Sequence to enable CLKOUT_DP without spread
6649 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6650 */
6651static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6652 bool with_fdi)
f31f2d55
PZ
6653{
6654 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6655 uint32_t reg, tmp;
6656
6657 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6658 with_spread = true;
6659 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6660 with_fdi, "LP PCH doesn't have FDI\n"))
6661 with_fdi = false;
f31f2d55
PZ
6662
6663 mutex_lock(&dev_priv->dpio_lock);
6664
6665 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6666 tmp &= ~SBI_SSCCTL_DISABLE;
6667 tmp |= SBI_SSCCTL_PATHALT;
6668 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6669
6670 udelay(24);
6671
2fa86a1f
PZ
6672 if (with_spread) {
6673 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6674 tmp &= ~SBI_SSCCTL_PATHALT;
6675 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6676
2fa86a1f
PZ
6677 if (with_fdi) {
6678 lpt_reset_fdi_mphy(dev_priv);
6679 lpt_program_fdi_mphy(dev_priv);
6680 }
6681 }
dde86e2d 6682
2fa86a1f
PZ
6683 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6684 SBI_GEN0 : SBI_DBUFF0;
6685 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6686 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6687 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6688
6689 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6690}
6691
47701c3b
PZ
6692/* Sequence to disable CLKOUT_DP */
6693static void lpt_disable_clkout_dp(struct drm_device *dev)
6694{
6695 struct drm_i915_private *dev_priv = dev->dev_private;
6696 uint32_t reg, tmp;
6697
6698 mutex_lock(&dev_priv->dpio_lock);
6699
6700 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6701 SBI_GEN0 : SBI_DBUFF0;
6702 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6703 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6704 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6705
6706 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6707 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6708 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6709 tmp |= SBI_SSCCTL_PATHALT;
6710 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6711 udelay(32);
6712 }
6713 tmp |= SBI_SSCCTL_DISABLE;
6714 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6715 }
6716
6717 mutex_unlock(&dev_priv->dpio_lock);
6718}
6719
bf8fa3d3
PZ
6720static void lpt_init_pch_refclk(struct drm_device *dev)
6721{
bf8fa3d3
PZ
6722 struct intel_encoder *encoder;
6723 bool has_vga = false;
6724
b2784e15 6725 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
6726 switch (encoder->type) {
6727 case INTEL_OUTPUT_ANALOG:
6728 has_vga = true;
6729 break;
6730 }
6731 }
6732
47701c3b
PZ
6733 if (has_vga)
6734 lpt_enable_clkout_dp(dev, true, true);
6735 else
6736 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6737}
6738
dde86e2d
PZ
6739/*
6740 * Initialize reference clocks when the driver loads
6741 */
6742void intel_init_pch_refclk(struct drm_device *dev)
6743{
6744 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6745 ironlake_init_pch_refclk(dev);
6746 else if (HAS_PCH_LPT(dev))
6747 lpt_init_pch_refclk(dev);
6748}
6749
d9d444cb
JB
6750static int ironlake_get_refclk(struct drm_crtc *crtc)
6751{
6752 struct drm_device *dev = crtc->dev;
6753 struct drm_i915_private *dev_priv = dev->dev_private;
6754 struct intel_encoder *encoder;
d9d444cb
JB
6755 int num_connectors = 0;
6756 bool is_lvds = false;
6757
6c2b7c12 6758 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6759 switch (encoder->type) {
6760 case INTEL_OUTPUT_LVDS:
6761 is_lvds = true;
6762 break;
d9d444cb
JB
6763 }
6764 num_connectors++;
6765 }
6766
6767 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6768 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6769 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6770 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6771 }
6772
6773 return 120000;
6774}
6775
6ff93609 6776static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6777{
c8203565 6778 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6780 int pipe = intel_crtc->pipe;
c8203565
PZ
6781 uint32_t val;
6782
78114071 6783 val = 0;
c8203565 6784
965e0c48 6785 switch (intel_crtc->config.pipe_bpp) {
c8203565 6786 case 18:
dfd07d72 6787 val |= PIPECONF_6BPC;
c8203565
PZ
6788 break;
6789 case 24:
dfd07d72 6790 val |= PIPECONF_8BPC;
c8203565
PZ
6791 break;
6792 case 30:
dfd07d72 6793 val |= PIPECONF_10BPC;
c8203565
PZ
6794 break;
6795 case 36:
dfd07d72 6796 val |= PIPECONF_12BPC;
c8203565
PZ
6797 break;
6798 default:
cc769b62
PZ
6799 /* Case prevented by intel_choose_pipe_bpp_dither. */
6800 BUG();
c8203565
PZ
6801 }
6802
d8b32247 6803 if (intel_crtc->config.dither)
c8203565
PZ
6804 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6805
6ff93609 6806 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6807 val |= PIPECONF_INTERLACED_ILK;
6808 else
6809 val |= PIPECONF_PROGRESSIVE;
6810
50f3b016 6811 if (intel_crtc->config.limited_color_range)
3685a8f3 6812 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6813
c8203565
PZ
6814 I915_WRITE(PIPECONF(pipe), val);
6815 POSTING_READ(PIPECONF(pipe));
6816}
6817
86d3efce
VS
6818/*
6819 * Set up the pipe CSC unit.
6820 *
6821 * Currently only full range RGB to limited range RGB conversion
6822 * is supported, but eventually this should handle various
6823 * RGB<->YCbCr scenarios as well.
6824 */
50f3b016 6825static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6826{
6827 struct drm_device *dev = crtc->dev;
6828 struct drm_i915_private *dev_priv = dev->dev_private;
6829 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6830 int pipe = intel_crtc->pipe;
6831 uint16_t coeff = 0x7800; /* 1.0 */
6832
6833 /*
6834 * TODO: Check what kind of values actually come out of the pipe
6835 * with these coeff/postoff values and adjust to get the best
6836 * accuracy. Perhaps we even need to take the bpc value into
6837 * consideration.
6838 */
6839
50f3b016 6840 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6841 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6842
6843 /*
6844 * GY/GU and RY/RU should be the other way around according
6845 * to BSpec, but reality doesn't agree. Just set them up in
6846 * a way that results in the correct picture.
6847 */
6848 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6849 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6850
6851 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6852 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6853
6854 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6855 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6856
6857 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6858 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6859 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6860
6861 if (INTEL_INFO(dev)->gen > 6) {
6862 uint16_t postoff = 0;
6863
50f3b016 6864 if (intel_crtc->config.limited_color_range)
32cf0cb0 6865 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6866
6867 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6868 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6869 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6870
6871 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6872 } else {
6873 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6874
50f3b016 6875 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6876 mode |= CSC_BLACK_SCREEN_OFFSET;
6877
6878 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6879 }
6880}
6881
6ff93609 6882static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6883{
756f85cf
PZ
6884 struct drm_device *dev = crtc->dev;
6885 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6887 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6888 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6889 uint32_t val;
6890
3eff4faa 6891 val = 0;
ee2b0b38 6892
756f85cf 6893 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6894 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6895
6ff93609 6896 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6897 val |= PIPECONF_INTERLACED_ILK;
6898 else
6899 val |= PIPECONF_PROGRESSIVE;
6900
702e7a56
PZ
6901 I915_WRITE(PIPECONF(cpu_transcoder), val);
6902 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6903
6904 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6905 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6906
6907 if (IS_BROADWELL(dev)) {
6908 val = 0;
6909
6910 switch (intel_crtc->config.pipe_bpp) {
6911 case 18:
6912 val |= PIPEMISC_DITHER_6_BPC;
6913 break;
6914 case 24:
6915 val |= PIPEMISC_DITHER_8_BPC;
6916 break;
6917 case 30:
6918 val |= PIPEMISC_DITHER_10_BPC;
6919 break;
6920 case 36:
6921 val |= PIPEMISC_DITHER_12_BPC;
6922 break;
6923 default:
6924 /* Case prevented by pipe_config_set_bpp. */
6925 BUG();
6926 }
6927
6928 if (intel_crtc->config.dither)
6929 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6930
6931 I915_WRITE(PIPEMISC(pipe), val);
6932 }
ee2b0b38
PZ
6933}
6934
6591c6e4 6935static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6936 intel_clock_t *clock,
6937 bool *has_reduced_clock,
6938 intel_clock_t *reduced_clock)
6939{
6940 struct drm_device *dev = crtc->dev;
6941 struct drm_i915_private *dev_priv = dev->dev_private;
6942 struct intel_encoder *intel_encoder;
6943 int refclk;
d4906093 6944 const intel_limit_t *limit;
a16af721 6945 bool ret, is_lvds = false;
79e53945 6946
6591c6e4
PZ
6947 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6948 switch (intel_encoder->type) {
79e53945
JB
6949 case INTEL_OUTPUT_LVDS:
6950 is_lvds = true;
6951 break;
79e53945
JB
6952 }
6953 }
6954
d9d444cb 6955 refclk = ironlake_get_refclk(crtc);
79e53945 6956
d4906093
ML
6957 /*
6958 * Returns a set of divisors for the desired target clock with the given
6959 * refclk, or FALSE. The returned values represent the clock equation:
6960 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6961 */
1b894b59 6962 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6963 ret = dev_priv->display.find_dpll(limit, crtc,
6964 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6965 refclk, NULL, clock);
6591c6e4
PZ
6966 if (!ret)
6967 return false;
cda4b7d3 6968
ddc9003c 6969 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6970 /*
6971 * Ensure we match the reduced clock's P to the target clock.
6972 * If the clocks don't match, we can't switch the display clock
6973 * by using the FP0/FP1. In such case we will disable the LVDS
6974 * downclock feature.
6975 */
ee9300bb
DV
6976 *has_reduced_clock =
6977 dev_priv->display.find_dpll(limit, crtc,
6978 dev_priv->lvds_downclock,
6979 refclk, clock,
6980 reduced_clock);
652c393a 6981 }
61e9653f 6982
6591c6e4
PZ
6983 return true;
6984}
6985
d4b1931c
PZ
6986int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6987{
6988 /*
6989 * Account for spread spectrum to avoid
6990 * oversubscribing the link. Max center spread
6991 * is 2.5%; use 5% for safety's sake.
6992 */
6993 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6994 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6995}
6996
7429e9d4 6997static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6998{
7429e9d4 6999 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7000}
7001
de13a2e3 7002static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7003 u32 *fp,
9a7c7890 7004 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7005{
de13a2e3 7006 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7007 struct drm_device *dev = crtc->dev;
7008 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7009 struct intel_encoder *intel_encoder;
7010 uint32_t dpll;
6cc5f341 7011 int factor, num_connectors = 0;
09ede541 7012 bool is_lvds = false, is_sdvo = false;
79e53945 7013
de13a2e3
PZ
7014 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7015 switch (intel_encoder->type) {
79e53945
JB
7016 case INTEL_OUTPUT_LVDS:
7017 is_lvds = true;
7018 break;
7019 case INTEL_OUTPUT_SDVO:
7d57382e 7020 case INTEL_OUTPUT_HDMI:
79e53945 7021 is_sdvo = true;
79e53945 7022 break;
79e53945 7023 }
43565a06 7024
c751ce4f 7025 num_connectors++;
79e53945 7026 }
79e53945 7027
c1858123 7028 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7029 factor = 21;
7030 if (is_lvds) {
7031 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7032 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7033 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7034 factor = 25;
09ede541 7035 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 7036 factor = 20;
c1858123 7037
7429e9d4 7038 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7039 *fp |= FP_CB_TUNE;
2c07245f 7040
9a7c7890
DV
7041 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7042 *fp2 |= FP_CB_TUNE;
7043
5eddb70b 7044 dpll = 0;
2c07245f 7045
a07d6787
EA
7046 if (is_lvds)
7047 dpll |= DPLLB_MODE_LVDS;
7048 else
7049 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7050
ef1b460d
DV
7051 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7052 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7053
7054 if (is_sdvo)
4a33e48d 7055 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7056 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7057 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7058
a07d6787 7059 /* compute bitmask from p1 value */
7429e9d4 7060 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7061 /* also FPA1 */
7429e9d4 7062 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7063
7429e9d4 7064 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7065 case 5:
7066 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7067 break;
7068 case 7:
7069 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7070 break;
7071 case 10:
7072 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7073 break;
7074 case 14:
7075 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7076 break;
79e53945
JB
7077 }
7078
b4c09f3b 7079 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7080 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7081 else
7082 dpll |= PLL_REF_INPUT_DREFCLK;
7083
959e16d6 7084 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7085}
7086
7087static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7088 int x, int y,
7089 struct drm_framebuffer *fb)
7090{
7091 struct drm_device *dev = crtc->dev;
de13a2e3 7092 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7093 int num_connectors = 0;
7094 intel_clock_t clock, reduced_clock;
cbbab5bd 7095 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7096 bool ok, has_reduced_clock = false;
8b47047b 7097 bool is_lvds = false;
de13a2e3 7098 struct intel_encoder *encoder;
e2b78267 7099 struct intel_shared_dpll *pll;
de13a2e3
PZ
7100
7101 for_each_encoder_on_crtc(dev, crtc, encoder) {
7102 switch (encoder->type) {
7103 case INTEL_OUTPUT_LVDS:
7104 is_lvds = true;
7105 break;
de13a2e3
PZ
7106 }
7107
7108 num_connectors++;
a07d6787 7109 }
79e53945 7110
5dc5298b
PZ
7111 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7112 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7113
ff9a6750 7114 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7115 &has_reduced_clock, &reduced_clock);
ee9300bb 7116 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7117 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7118 return -EINVAL;
79e53945 7119 }
f47709a9
DV
7120 /* Compat-code for transition, will disappear. */
7121 if (!intel_crtc->config.clock_set) {
7122 intel_crtc->config.dpll.n = clock.n;
7123 intel_crtc->config.dpll.m1 = clock.m1;
7124 intel_crtc->config.dpll.m2 = clock.m2;
7125 intel_crtc->config.dpll.p1 = clock.p1;
7126 intel_crtc->config.dpll.p2 = clock.p2;
7127 }
79e53945 7128
5dc5298b 7129 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7130 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7131 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7132 if (has_reduced_clock)
7429e9d4 7133 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7134
7429e9d4 7135 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7136 &fp, &reduced_clock,
7137 has_reduced_clock ? &fp2 : NULL);
7138
959e16d6 7139 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7140 intel_crtc->config.dpll_hw_state.fp0 = fp;
7141 if (has_reduced_clock)
7142 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7143 else
7144 intel_crtc->config.dpll_hw_state.fp1 = fp;
7145
b89a1d39 7146 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7147 if (pll == NULL) {
84f44ce7 7148 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7149 pipe_name(intel_crtc->pipe));
4b645f14
JB
7150 return -EINVAL;
7151 }
ee7b9f93 7152 } else
e72f9fbf 7153 intel_put_shared_dpll(intel_crtc);
79e53945 7154
d330a953 7155 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7156 intel_crtc->lowfreq_avail = true;
7157 else
7158 intel_crtc->lowfreq_avail = false;
e2b78267 7159
c8f7a0db 7160 return 0;
79e53945
JB
7161}
7162
eb14cb74
VS
7163static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7164 struct intel_link_m_n *m_n)
7165{
7166 struct drm_device *dev = crtc->base.dev;
7167 struct drm_i915_private *dev_priv = dev->dev_private;
7168 enum pipe pipe = crtc->pipe;
7169
7170 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7171 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7172 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7173 & ~TU_SIZE_MASK;
7174 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7175 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7176 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7177}
7178
7179static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7180 enum transcoder transcoder,
b95af8be
VK
7181 struct intel_link_m_n *m_n,
7182 struct intel_link_m_n *m2_n2)
72419203
DV
7183{
7184 struct drm_device *dev = crtc->base.dev;
7185 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7186 enum pipe pipe = crtc->pipe;
72419203 7187
eb14cb74
VS
7188 if (INTEL_INFO(dev)->gen >= 5) {
7189 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7190 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7191 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7192 & ~TU_SIZE_MASK;
7193 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7194 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7195 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7196 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7197 * gen < 8) and if DRRS is supported (to make sure the
7198 * registers are not unnecessarily read).
7199 */
7200 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7201 crtc->config.has_drrs) {
7202 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7203 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7204 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7205 & ~TU_SIZE_MASK;
7206 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7207 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7208 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7209 }
eb14cb74
VS
7210 } else {
7211 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7212 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7213 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7214 & ~TU_SIZE_MASK;
7215 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7216 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7217 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7218 }
7219}
7220
7221void intel_dp_get_m_n(struct intel_crtc *crtc,
7222 struct intel_crtc_config *pipe_config)
7223{
7224 if (crtc->config.has_pch_encoder)
7225 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7226 else
7227 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7228 &pipe_config->dp_m_n,
7229 &pipe_config->dp_m2_n2);
eb14cb74 7230}
72419203 7231
eb14cb74
VS
7232static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7233 struct intel_crtc_config *pipe_config)
7234{
7235 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7236 &pipe_config->fdi_m_n, NULL);
72419203
DV
7237}
7238
2fa2fe9a
DV
7239static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7240 struct intel_crtc_config *pipe_config)
7241{
7242 struct drm_device *dev = crtc->base.dev;
7243 struct drm_i915_private *dev_priv = dev->dev_private;
7244 uint32_t tmp;
7245
7246 tmp = I915_READ(PF_CTL(crtc->pipe));
7247
7248 if (tmp & PF_ENABLE) {
fd4daa9c 7249 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7250 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7251 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7252
7253 /* We currently do not free assignements of panel fitters on
7254 * ivb/hsw (since we don't use the higher upscaling modes which
7255 * differentiates them) so just WARN about this case for now. */
7256 if (IS_GEN7(dev)) {
7257 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7258 PF_PIPE_SEL_IVB(crtc->pipe));
7259 }
2fa2fe9a 7260 }
79e53945
JB
7261}
7262
4c6baa59
JB
7263static void ironlake_get_plane_config(struct intel_crtc *crtc,
7264 struct intel_plane_config *plane_config)
7265{
7266 struct drm_device *dev = crtc->base.dev;
7267 struct drm_i915_private *dev_priv = dev->dev_private;
7268 u32 val, base, offset;
7269 int pipe = crtc->pipe, plane = crtc->plane;
7270 int fourcc, pixel_format;
7271 int aligned_height;
7272
66e514c1
DA
7273 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7274 if (!crtc->base.primary->fb) {
4c6baa59
JB
7275 DRM_DEBUG_KMS("failed to alloc fb\n");
7276 return;
7277 }
7278
7279 val = I915_READ(DSPCNTR(plane));
7280
7281 if (INTEL_INFO(dev)->gen >= 4)
7282 if (val & DISPPLANE_TILED)
7283 plane_config->tiled = true;
7284
7285 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7286 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7287 crtc->base.primary->fb->pixel_format = fourcc;
7288 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7289 drm_format_plane_cpp(fourcc, 0) * 8;
7290
7291 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7292 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7293 offset = I915_READ(DSPOFFSET(plane));
7294 } else {
7295 if (plane_config->tiled)
7296 offset = I915_READ(DSPTILEOFF(plane));
7297 else
7298 offset = I915_READ(DSPLINOFF(plane));
7299 }
7300 plane_config->base = base;
7301
7302 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7303 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7304 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7305
7306 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7307 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7308
66e514c1 7309 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7310 plane_config->tiled);
7311
1267a26b
FF
7312 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7313 aligned_height);
4c6baa59
JB
7314
7315 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7316 pipe, plane, crtc->base.primary->fb->width,
7317 crtc->base.primary->fb->height,
7318 crtc->base.primary->fb->bits_per_pixel, base,
7319 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7320 plane_config->size);
7321}
7322
0e8ffe1b
DV
7323static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7324 struct intel_crtc_config *pipe_config)
7325{
7326 struct drm_device *dev = crtc->base.dev;
7327 struct drm_i915_private *dev_priv = dev->dev_private;
7328 uint32_t tmp;
7329
930e8c9e
PZ
7330 if (!intel_display_power_enabled(dev_priv,
7331 POWER_DOMAIN_PIPE(crtc->pipe)))
7332 return false;
7333
e143a21c 7334 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7335 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7336
0e8ffe1b
DV
7337 tmp = I915_READ(PIPECONF(crtc->pipe));
7338 if (!(tmp & PIPECONF_ENABLE))
7339 return false;
7340
42571aef
VS
7341 switch (tmp & PIPECONF_BPC_MASK) {
7342 case PIPECONF_6BPC:
7343 pipe_config->pipe_bpp = 18;
7344 break;
7345 case PIPECONF_8BPC:
7346 pipe_config->pipe_bpp = 24;
7347 break;
7348 case PIPECONF_10BPC:
7349 pipe_config->pipe_bpp = 30;
7350 break;
7351 case PIPECONF_12BPC:
7352 pipe_config->pipe_bpp = 36;
7353 break;
7354 default:
7355 break;
7356 }
7357
b5a9fa09
DV
7358 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7359 pipe_config->limited_color_range = true;
7360
ab9412ba 7361 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7362 struct intel_shared_dpll *pll;
7363
88adfff1
DV
7364 pipe_config->has_pch_encoder = true;
7365
627eb5a3
DV
7366 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7367 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7368 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7369
7370 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7371
c0d43d62 7372 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7373 pipe_config->shared_dpll =
7374 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7375 } else {
7376 tmp = I915_READ(PCH_DPLL_SEL);
7377 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7378 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7379 else
7380 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7381 }
66e985c0
DV
7382
7383 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7384
7385 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7386 &pipe_config->dpll_hw_state));
c93f54cf
DV
7387
7388 tmp = pipe_config->dpll_hw_state.dpll;
7389 pipe_config->pixel_multiplier =
7390 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7391 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7392
7393 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7394 } else {
7395 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7396 }
7397
1bd1bd80
DV
7398 intel_get_pipe_timings(crtc, pipe_config);
7399
2fa2fe9a
DV
7400 ironlake_get_pfit_config(crtc, pipe_config);
7401
0e8ffe1b
DV
7402 return true;
7403}
7404
be256dc7
PZ
7405static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7406{
7407 struct drm_device *dev = dev_priv->dev;
be256dc7 7408 struct intel_crtc *crtc;
be256dc7 7409
d3fcc808 7410 for_each_intel_crtc(dev, crtc)
798183c5 7411 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7412 pipe_name(crtc->pipe));
7413
7414 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7415 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7416 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7417 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7418 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7419 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7420 "CPU PWM1 enabled\n");
c5107b87
PZ
7421 if (IS_HASWELL(dev))
7422 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7423 "CPU PWM2 enabled\n");
be256dc7
PZ
7424 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7425 "PCH PWM1 enabled\n");
7426 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7427 "Utility pin enabled\n");
7428 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7429
9926ada1
PZ
7430 /*
7431 * In theory we can still leave IRQs enabled, as long as only the HPD
7432 * interrupts remain enabled. We used to check for that, but since it's
7433 * gen-specific and since we only disable LCPLL after we fully disable
7434 * the interrupts, the check below should be enough.
7435 */
9df7575f 7436 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7437}
7438
9ccd5aeb
PZ
7439static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7440{
7441 struct drm_device *dev = dev_priv->dev;
7442
7443 if (IS_HASWELL(dev))
7444 return I915_READ(D_COMP_HSW);
7445 else
7446 return I915_READ(D_COMP_BDW);
7447}
7448
3c4c9b81
PZ
7449static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7450{
7451 struct drm_device *dev = dev_priv->dev;
7452
7453 if (IS_HASWELL(dev)) {
7454 mutex_lock(&dev_priv->rps.hw_lock);
7455 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7456 val))
f475dadf 7457 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7458 mutex_unlock(&dev_priv->rps.hw_lock);
7459 } else {
9ccd5aeb
PZ
7460 I915_WRITE(D_COMP_BDW, val);
7461 POSTING_READ(D_COMP_BDW);
3c4c9b81 7462 }
be256dc7
PZ
7463}
7464
7465/*
7466 * This function implements pieces of two sequences from BSpec:
7467 * - Sequence for display software to disable LCPLL
7468 * - Sequence for display software to allow package C8+
7469 * The steps implemented here are just the steps that actually touch the LCPLL
7470 * register. Callers should take care of disabling all the display engine
7471 * functions, doing the mode unset, fixing interrupts, etc.
7472 */
6ff58d53
PZ
7473static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7474 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7475{
7476 uint32_t val;
7477
7478 assert_can_disable_lcpll(dev_priv);
7479
7480 val = I915_READ(LCPLL_CTL);
7481
7482 if (switch_to_fclk) {
7483 val |= LCPLL_CD_SOURCE_FCLK;
7484 I915_WRITE(LCPLL_CTL, val);
7485
7486 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7487 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7488 DRM_ERROR("Switching to FCLK failed\n");
7489
7490 val = I915_READ(LCPLL_CTL);
7491 }
7492
7493 val |= LCPLL_PLL_DISABLE;
7494 I915_WRITE(LCPLL_CTL, val);
7495 POSTING_READ(LCPLL_CTL);
7496
7497 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7498 DRM_ERROR("LCPLL still locked\n");
7499
9ccd5aeb 7500 val = hsw_read_dcomp(dev_priv);
be256dc7 7501 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7502 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7503 ndelay(100);
7504
9ccd5aeb
PZ
7505 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7506 1))
be256dc7
PZ
7507 DRM_ERROR("D_COMP RCOMP still in progress\n");
7508
7509 if (allow_power_down) {
7510 val = I915_READ(LCPLL_CTL);
7511 val |= LCPLL_POWER_DOWN_ALLOW;
7512 I915_WRITE(LCPLL_CTL, val);
7513 POSTING_READ(LCPLL_CTL);
7514 }
7515}
7516
7517/*
7518 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7519 * source.
7520 */
6ff58d53 7521static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7522{
7523 uint32_t val;
a8a8bd54 7524 unsigned long irqflags;
be256dc7
PZ
7525
7526 val = I915_READ(LCPLL_CTL);
7527
7528 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7529 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7530 return;
7531
a8a8bd54
PZ
7532 /*
7533 * Make sure we're not on PC8 state before disabling PC8, otherwise
7534 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7535 *
7536 * The other problem is that hsw_restore_lcpll() is called as part of
7537 * the runtime PM resume sequence, so we can't just call
7538 * gen6_gt_force_wake_get() because that function calls
7539 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7540 * while we are on the resume sequence. So to solve this problem we have
7541 * to call special forcewake code that doesn't touch runtime PM and
7542 * doesn't enable the forcewake delayed work.
7543 */
7544 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7545 if (dev_priv->uncore.forcewake_count++ == 0)
7546 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7547 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7548
be256dc7
PZ
7549 if (val & LCPLL_POWER_DOWN_ALLOW) {
7550 val &= ~LCPLL_POWER_DOWN_ALLOW;
7551 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7552 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7553 }
7554
9ccd5aeb 7555 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7556 val |= D_COMP_COMP_FORCE;
7557 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7558 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7559
7560 val = I915_READ(LCPLL_CTL);
7561 val &= ~LCPLL_PLL_DISABLE;
7562 I915_WRITE(LCPLL_CTL, val);
7563
7564 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7565 DRM_ERROR("LCPLL not locked yet\n");
7566
7567 if (val & LCPLL_CD_SOURCE_FCLK) {
7568 val = I915_READ(LCPLL_CTL);
7569 val &= ~LCPLL_CD_SOURCE_FCLK;
7570 I915_WRITE(LCPLL_CTL, val);
7571
7572 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7573 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7574 DRM_ERROR("Switching back to LCPLL failed\n");
7575 }
215733fa 7576
a8a8bd54
PZ
7577 /* See the big comment above. */
7578 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7579 if (--dev_priv->uncore.forcewake_count == 0)
7580 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7581 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7582}
7583
765dab67
PZ
7584/*
7585 * Package states C8 and deeper are really deep PC states that can only be
7586 * reached when all the devices on the system allow it, so even if the graphics
7587 * device allows PC8+, it doesn't mean the system will actually get to these
7588 * states. Our driver only allows PC8+ when going into runtime PM.
7589 *
7590 * The requirements for PC8+ are that all the outputs are disabled, the power
7591 * well is disabled and most interrupts are disabled, and these are also
7592 * requirements for runtime PM. When these conditions are met, we manually do
7593 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7594 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7595 * hang the machine.
7596 *
7597 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7598 * the state of some registers, so when we come back from PC8+ we need to
7599 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7600 * need to take care of the registers kept by RC6. Notice that this happens even
7601 * if we don't put the device in PCI D3 state (which is what currently happens
7602 * because of the runtime PM support).
7603 *
7604 * For more, read "Display Sequences for Package C8" on the hardware
7605 * documentation.
7606 */
a14cb6fc 7607void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7608{
c67a470b
PZ
7609 struct drm_device *dev = dev_priv->dev;
7610 uint32_t val;
7611
c67a470b
PZ
7612 DRM_DEBUG_KMS("Enabling package C8+\n");
7613
c67a470b
PZ
7614 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7615 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7616 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7617 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7618 }
7619
7620 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7621 hsw_disable_lcpll(dev_priv, true, true);
7622}
7623
a14cb6fc 7624void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7625{
7626 struct drm_device *dev = dev_priv->dev;
7627 uint32_t val;
7628
c67a470b
PZ
7629 DRM_DEBUG_KMS("Disabling package C8+\n");
7630
7631 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7632 lpt_init_pch_refclk(dev);
7633
7634 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7635 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7636 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7637 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7638 }
7639
7640 intel_prepare_ddi(dev);
c67a470b
PZ
7641}
7642
9a952a0d
PZ
7643static void snb_modeset_global_resources(struct drm_device *dev)
7644{
7645 modeset_update_crtc_power_domains(dev);
7646}
7647
4f074129
ID
7648static void haswell_modeset_global_resources(struct drm_device *dev)
7649{
da723569 7650 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7651}
7652
09b4ddf9 7653static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7654 int x, int y,
7655 struct drm_framebuffer *fb)
7656{
09b4ddf9 7657 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7658
566b734a 7659 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7660 return -EINVAL;
716c2e55 7661
644cef34
DV
7662 intel_crtc->lowfreq_avail = false;
7663
c8f7a0db 7664 return 0;
79e53945
JB
7665}
7666
7d2c8175
DL
7667static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7668 enum port port,
7669 struct intel_crtc_config *pipe_config)
7670{
7671 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7672
7673 switch (pipe_config->ddi_pll_sel) {
7674 case PORT_CLK_SEL_WRPLL1:
7675 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7676 break;
7677 case PORT_CLK_SEL_WRPLL2:
7678 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7679 break;
7680 }
7681}
7682
26804afd
DV
7683static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7684 struct intel_crtc_config *pipe_config)
7685{
7686 struct drm_device *dev = crtc->base.dev;
7687 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7688 struct intel_shared_dpll *pll;
26804afd
DV
7689 enum port port;
7690 uint32_t tmp;
7691
7692 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7693
7694 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7695
7d2c8175 7696 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7697
d452c5b6
DV
7698 if (pipe_config->shared_dpll >= 0) {
7699 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7700
7701 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7702 &pipe_config->dpll_hw_state));
7703 }
7704
26804afd
DV
7705 /*
7706 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7707 * DDI E. So just check whether this pipe is wired to DDI E and whether
7708 * the PCH transcoder is on.
7709 */
7710 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7711 pipe_config->has_pch_encoder = true;
7712
7713 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7714 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7715 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7716
7717 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7718 }
7719}
7720
0e8ffe1b
DV
7721static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7722 struct intel_crtc_config *pipe_config)
7723{
7724 struct drm_device *dev = crtc->base.dev;
7725 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7726 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7727 uint32_t tmp;
7728
b5482bd0
ID
7729 if (!intel_display_power_enabled(dev_priv,
7730 POWER_DOMAIN_PIPE(crtc->pipe)))
7731 return false;
7732
e143a21c 7733 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7734 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7735
eccb140b
DV
7736 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7737 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7738 enum pipe trans_edp_pipe;
7739 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7740 default:
7741 WARN(1, "unknown pipe linked to edp transcoder\n");
7742 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7743 case TRANS_DDI_EDP_INPUT_A_ON:
7744 trans_edp_pipe = PIPE_A;
7745 break;
7746 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7747 trans_edp_pipe = PIPE_B;
7748 break;
7749 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7750 trans_edp_pipe = PIPE_C;
7751 break;
7752 }
7753
7754 if (trans_edp_pipe == crtc->pipe)
7755 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7756 }
7757
da7e29bd 7758 if (!intel_display_power_enabled(dev_priv,
eccb140b 7759 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7760 return false;
7761
eccb140b 7762 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7763 if (!(tmp & PIPECONF_ENABLE))
7764 return false;
7765
26804afd 7766 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7767
1bd1bd80
DV
7768 intel_get_pipe_timings(crtc, pipe_config);
7769
2fa2fe9a 7770 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7771 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7772 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7773
e59150dc
JB
7774 if (IS_HASWELL(dev))
7775 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7776 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7777
6c49f241
DV
7778 pipe_config->pixel_multiplier = 1;
7779
0e8ffe1b
DV
7780 return true;
7781}
7782
1a91510d
JN
7783static struct {
7784 int clock;
7785 u32 config;
7786} hdmi_audio_clock[] = {
7787 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7788 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7789 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7790 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7791 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7792 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7793 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7794 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7795 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7796 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7797};
7798
7799/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7800static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7801{
7802 int i;
7803
7804 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7805 if (mode->clock == hdmi_audio_clock[i].clock)
7806 break;
7807 }
7808
7809 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7810 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7811 i = 1;
7812 }
7813
7814 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7815 hdmi_audio_clock[i].clock,
7816 hdmi_audio_clock[i].config);
7817
7818 return hdmi_audio_clock[i].config;
7819}
7820
3a9627f4
WF
7821static bool intel_eld_uptodate(struct drm_connector *connector,
7822 int reg_eldv, uint32_t bits_eldv,
7823 int reg_elda, uint32_t bits_elda,
7824 int reg_edid)
7825{
7826 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7827 uint8_t *eld = connector->eld;
7828 uint32_t i;
7829
7830 i = I915_READ(reg_eldv);
7831 i &= bits_eldv;
7832
7833 if (!eld[0])
7834 return !i;
7835
7836 if (!i)
7837 return false;
7838
7839 i = I915_READ(reg_elda);
7840 i &= ~bits_elda;
7841 I915_WRITE(reg_elda, i);
7842
7843 for (i = 0; i < eld[2]; i++)
7844 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7845 return false;
7846
7847 return true;
7848}
7849
e0dac65e 7850static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7851 struct drm_crtc *crtc,
7852 struct drm_display_mode *mode)
e0dac65e
WF
7853{
7854 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7855 uint8_t *eld = connector->eld;
7856 uint32_t eldv;
7857 uint32_t len;
7858 uint32_t i;
7859
7860 i = I915_READ(G4X_AUD_VID_DID);
7861
7862 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7863 eldv = G4X_ELDV_DEVCL_DEVBLC;
7864 else
7865 eldv = G4X_ELDV_DEVCTG;
7866
3a9627f4
WF
7867 if (intel_eld_uptodate(connector,
7868 G4X_AUD_CNTL_ST, eldv,
7869 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7870 G4X_HDMIW_HDMIEDID))
7871 return;
7872
e0dac65e
WF
7873 i = I915_READ(G4X_AUD_CNTL_ST);
7874 i &= ~(eldv | G4X_ELD_ADDR);
7875 len = (i >> 9) & 0x1f; /* ELD buffer size */
7876 I915_WRITE(G4X_AUD_CNTL_ST, i);
7877
7878 if (!eld[0])
7879 return;
7880
7881 len = min_t(uint8_t, eld[2], len);
7882 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7883 for (i = 0; i < len; i++)
7884 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7885
7886 i = I915_READ(G4X_AUD_CNTL_ST);
7887 i |= eldv;
7888 I915_WRITE(G4X_AUD_CNTL_ST, i);
7889}
7890
83358c85 7891static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7892 struct drm_crtc *crtc,
7893 struct drm_display_mode *mode)
83358c85
WX
7894{
7895 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7896 uint8_t *eld = connector->eld;
83358c85
WX
7897 uint32_t eldv;
7898 uint32_t i;
7899 int len;
7900 int pipe = to_intel_crtc(crtc)->pipe;
7901 int tmp;
7902
7903 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7904 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7905 int aud_config = HSW_AUD_CFG(pipe);
7906 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7907
83358c85
WX
7908 /* Audio output enable */
7909 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7910 tmp = I915_READ(aud_cntrl_st2);
7911 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7912 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7913 POSTING_READ(aud_cntrl_st2);
83358c85 7914
c7905792 7915 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7916
7917 /* Set ELD valid state */
7918 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7919 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7920 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7921 I915_WRITE(aud_cntrl_st2, tmp);
7922 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7923 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7924
7925 /* Enable HDMI mode */
7926 tmp = I915_READ(aud_config);
7e7cb34f 7927 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7928 /* clear N_programing_enable and N_value_index */
7929 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7930 I915_WRITE(aud_config, tmp);
7931
7932 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7933
7934 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7935
7936 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7937 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7938 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7939 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7940 } else {
7941 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7942 }
83358c85
WX
7943
7944 if (intel_eld_uptodate(connector,
7945 aud_cntrl_st2, eldv,
7946 aud_cntl_st, IBX_ELD_ADDRESS,
7947 hdmiw_hdmiedid))
7948 return;
7949
7950 i = I915_READ(aud_cntrl_st2);
7951 i &= ~eldv;
7952 I915_WRITE(aud_cntrl_st2, i);
7953
7954 if (!eld[0])
7955 return;
7956
7957 i = I915_READ(aud_cntl_st);
7958 i &= ~IBX_ELD_ADDRESS;
7959 I915_WRITE(aud_cntl_st, i);
7960 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7961 DRM_DEBUG_DRIVER("port num:%d\n", i);
7962
7963 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7964 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7965 for (i = 0; i < len; i++)
7966 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7967
7968 i = I915_READ(aud_cntrl_st2);
7969 i |= eldv;
7970 I915_WRITE(aud_cntrl_st2, i);
7971
7972}
7973
e0dac65e 7974static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7975 struct drm_crtc *crtc,
7976 struct drm_display_mode *mode)
e0dac65e
WF
7977{
7978 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7979 uint8_t *eld = connector->eld;
7980 uint32_t eldv;
7981 uint32_t i;
7982 int len;
7983 int hdmiw_hdmiedid;
b6daa025 7984 int aud_config;
e0dac65e
WF
7985 int aud_cntl_st;
7986 int aud_cntrl_st2;
9b138a83 7987 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7988
b3f33cbf 7989 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7990 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7991 aud_config = IBX_AUD_CFG(pipe);
7992 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7993 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7994 } else if (IS_VALLEYVIEW(connector->dev)) {
7995 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7996 aud_config = VLV_AUD_CFG(pipe);
7997 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7998 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7999 } else {
9b138a83
WX
8000 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8001 aud_config = CPT_AUD_CFG(pipe);
8002 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 8003 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
8004 }
8005
9b138a83 8006 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 8007
9ca2fe73
ML
8008 if (IS_VALLEYVIEW(connector->dev)) {
8009 struct intel_encoder *intel_encoder;
8010 struct intel_digital_port *intel_dig_port;
8011
8012 intel_encoder = intel_attached_encoder(connector);
8013 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8014 i = intel_dig_port->port;
8015 } else {
8016 i = I915_READ(aud_cntl_st);
8017 i = (i >> 29) & DIP_PORT_SEL_MASK;
8018 /* DIP_Port_Select, 0x1 = PortB */
8019 }
8020
e0dac65e
WF
8021 if (!i) {
8022 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8023 /* operate blindly on all ports */
1202b4c6
WF
8024 eldv = IBX_ELD_VALIDB;
8025 eldv |= IBX_ELD_VALIDB << 4;
8026 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 8027 } else {
2582a850 8028 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 8029 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
8030 }
8031
3a9627f4
WF
8032 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8033 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8034 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 8035 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8036 } else {
8037 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8038 }
e0dac65e 8039
3a9627f4
WF
8040 if (intel_eld_uptodate(connector,
8041 aud_cntrl_st2, eldv,
8042 aud_cntl_st, IBX_ELD_ADDRESS,
8043 hdmiw_hdmiedid))
8044 return;
8045
e0dac65e
WF
8046 i = I915_READ(aud_cntrl_st2);
8047 i &= ~eldv;
8048 I915_WRITE(aud_cntrl_st2, i);
8049
8050 if (!eld[0])
8051 return;
8052
e0dac65e 8053 i = I915_READ(aud_cntl_st);
1202b4c6 8054 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
8055 I915_WRITE(aud_cntl_st, i);
8056
8057 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8058 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8059 for (i = 0; i < len; i++)
8060 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8061
8062 i = I915_READ(aud_cntrl_st2);
8063 i |= eldv;
8064 I915_WRITE(aud_cntrl_st2, i);
8065}
8066
8067void intel_write_eld(struct drm_encoder *encoder,
8068 struct drm_display_mode *mode)
8069{
8070 struct drm_crtc *crtc = encoder->crtc;
8071 struct drm_connector *connector;
8072 struct drm_device *dev = encoder->dev;
8073 struct drm_i915_private *dev_priv = dev->dev_private;
8074
8075 connector = drm_select_eld(encoder, mode);
8076 if (!connector)
8077 return;
8078
8079 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8080 connector->base.id,
c23cc417 8081 connector->name,
e0dac65e 8082 connector->encoder->base.id,
8e329a03 8083 connector->encoder->name);
e0dac65e
WF
8084
8085 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8086
8087 if (dev_priv->display.write_eld)
34427052 8088 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8089}
8090
560b85bb
CW
8091static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8092{
8093 struct drm_device *dev = crtc->dev;
8094 struct drm_i915_private *dev_priv = dev->dev_private;
8095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8096 uint32_t cntl = 0, size = 0;
560b85bb 8097
dc41c154
VS
8098 if (base) {
8099 unsigned int width = intel_crtc->cursor_width;
8100 unsigned int height = intel_crtc->cursor_height;
8101 unsigned int stride = roundup_pow_of_two(width) * 4;
8102
8103 switch (stride) {
8104 default:
8105 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8106 width, stride);
8107 stride = 256;
8108 /* fallthrough */
8109 case 256:
8110 case 512:
8111 case 1024:
8112 case 2048:
8113 break;
4b0e333e
CW
8114 }
8115
dc41c154
VS
8116 cntl |= CURSOR_ENABLE |
8117 CURSOR_GAMMA_ENABLE |
8118 CURSOR_FORMAT_ARGB |
8119 CURSOR_STRIDE(stride);
8120
8121 size = (height << 12) | width;
4b0e333e 8122 }
560b85bb 8123
dc41c154
VS
8124 if (intel_crtc->cursor_cntl != 0 &&
8125 (intel_crtc->cursor_base != base ||
8126 intel_crtc->cursor_size != size ||
8127 intel_crtc->cursor_cntl != cntl)) {
8128 /* On these chipsets we can only modify the base/size/stride
8129 * whilst the cursor is disabled.
8130 */
8131 I915_WRITE(_CURACNTR, 0);
4b0e333e 8132 POSTING_READ(_CURACNTR);
dc41c154 8133 intel_crtc->cursor_cntl = 0;
4b0e333e 8134 }
560b85bb 8135
dc41c154 8136 if (intel_crtc->cursor_base != base)
9db4a9c7 8137 I915_WRITE(_CURABASE, base);
4726e0b0 8138
dc41c154
VS
8139 if (intel_crtc->cursor_size != size) {
8140 I915_WRITE(CURSIZE, size);
8141 intel_crtc->cursor_size = size;
4b0e333e 8142 }
560b85bb 8143
4b0e333e 8144 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8145 I915_WRITE(_CURACNTR, cntl);
8146 POSTING_READ(_CURACNTR);
4b0e333e 8147 intel_crtc->cursor_cntl = cntl;
560b85bb 8148 }
560b85bb
CW
8149}
8150
560b85bb 8151static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8152{
8153 struct drm_device *dev = crtc->dev;
8154 struct drm_i915_private *dev_priv = dev->dev_private;
8155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8156 int pipe = intel_crtc->pipe;
4b0e333e
CW
8157 uint32_t cntl;
8158
8159 cntl = 0;
8160 if (base) {
8161 cntl = MCURSOR_GAMMA_ENABLE;
8162 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8163 case 64:
8164 cntl |= CURSOR_MODE_64_ARGB_AX;
8165 break;
8166 case 128:
8167 cntl |= CURSOR_MODE_128_ARGB_AX;
8168 break;
8169 case 256:
8170 cntl |= CURSOR_MODE_256_ARGB_AX;
8171 break;
8172 default:
8173 WARN_ON(1);
8174 return;
65a21cd6 8175 }
4b0e333e 8176 cntl |= pipe << 28; /* Connect to correct pipe */
4b0e333e
CW
8177 }
8178 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8179 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8180
4b0e333e
CW
8181 if (intel_crtc->cursor_cntl != cntl) {
8182 I915_WRITE(CURCNTR(pipe), cntl);
8183 POSTING_READ(CURCNTR(pipe));
8184 intel_crtc->cursor_cntl = cntl;
65a21cd6 8185 }
4b0e333e 8186
65a21cd6 8187 /* and commit changes on next vblank */
5efb3e28
VS
8188 I915_WRITE(CURBASE(pipe), base);
8189 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8190}
8191
cda4b7d3 8192/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8193static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8194 bool on)
cda4b7d3
CW
8195{
8196 struct drm_device *dev = crtc->dev;
8197 struct drm_i915_private *dev_priv = dev->dev_private;
8198 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8199 int pipe = intel_crtc->pipe;
3d7d6510
MR
8200 int x = crtc->cursor_x;
8201 int y = crtc->cursor_y;
d6e4db15 8202 u32 base = 0, pos = 0;
cda4b7d3 8203
d6e4db15 8204 if (on)
cda4b7d3 8205 base = intel_crtc->cursor_addr;
cda4b7d3 8206
d6e4db15
VS
8207 if (x >= intel_crtc->config.pipe_src_w)
8208 base = 0;
8209
8210 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8211 base = 0;
8212
8213 if (x < 0) {
efc9064e 8214 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8215 base = 0;
8216
8217 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8218 x = -x;
8219 }
8220 pos |= x << CURSOR_X_SHIFT;
8221
8222 if (y < 0) {
efc9064e 8223 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8224 base = 0;
8225
8226 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8227 y = -y;
8228 }
8229 pos |= y << CURSOR_Y_SHIFT;
8230
4b0e333e 8231 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8232 return;
8233
5efb3e28
VS
8234 I915_WRITE(CURPOS(pipe), pos);
8235
8ac54669 8236 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8237 i845_update_cursor(crtc, base);
8238 else
8239 i9xx_update_cursor(crtc, base);
4b0e333e 8240 intel_crtc->cursor_base = base;
cda4b7d3
CW
8241}
8242
dc41c154
VS
8243static bool cursor_size_ok(struct drm_device *dev,
8244 uint32_t width, uint32_t height)
8245{
8246 if (width == 0 || height == 0)
8247 return false;
8248
8249 /*
8250 * 845g/865g are special in that they are only limited by
8251 * the width of their cursors, the height is arbitrary up to
8252 * the precision of the register. Everything else requires
8253 * square cursors, limited to a few power-of-two sizes.
8254 */
8255 if (IS_845G(dev) || IS_I865G(dev)) {
8256 if ((width & 63) != 0)
8257 return false;
8258
8259 if (width > (IS_845G(dev) ? 64 : 512))
8260 return false;
8261
8262 if (height > 1023)
8263 return false;
8264 } else {
8265 switch (width | height) {
8266 case 256:
8267 case 128:
8268 if (IS_GEN2(dev))
8269 return false;
8270 case 64:
8271 break;
8272 default:
8273 return false;
8274 }
8275 }
8276
8277 return true;
8278}
8279
e3287951
MR
8280/*
8281 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8282 *
8283 * Note that the object's reference will be consumed if the update fails. If
8284 * the update succeeds, the reference of the old object (if any) will be
8285 * consumed.
8286 */
8287static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8288 struct drm_i915_gem_object *obj,
8289 uint32_t width, uint32_t height)
79e53945
JB
8290{
8291 struct drm_device *dev = crtc->dev;
79e53945 8292 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8293 enum pipe pipe = intel_crtc->pipe;
dc41c154 8294 unsigned old_width, stride;
cda4b7d3 8295 uint32_t addr;
3f8bc370 8296 int ret;
79e53945 8297
79e53945 8298 /* if we want to turn off the cursor ignore width and height */
e3287951 8299 if (!obj) {
28c97730 8300 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8301 addr = 0;
05394f39 8302 obj = NULL;
5004417d 8303 mutex_lock(&dev->struct_mutex);
3f8bc370 8304 goto finish;
79e53945
JB
8305 }
8306
4726e0b0 8307 /* Check for which cursor types we support */
dc41c154 8308 if (!cursor_size_ok(dev, width, height)) {
4726e0b0 8309 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8310 return -EINVAL;
8311 }
8312
dc41c154
VS
8313 stride = roundup_pow_of_two(width) * 4;
8314 if (obj->base.size < stride * height) {
e3287951 8315 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8316 ret = -ENOMEM;
8317 goto fail;
79e53945
JB
8318 }
8319
71acb5eb 8320 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8321 mutex_lock(&dev->struct_mutex);
3d13ef2e 8322 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8323 unsigned alignment;
8324
d9e86c0e 8325 if (obj->tiling_mode) {
3b25b31f 8326 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8327 ret = -EINVAL;
8328 goto fail_locked;
8329 }
8330
693db184
CW
8331 /* Note that the w/a also requires 2 PTE of padding following
8332 * the bo. We currently fill all unused PTE with the shadow
8333 * page and so we should always have valid PTE following the
8334 * cursor preventing the VT-d warning.
8335 */
8336 alignment = 0;
8337 if (need_vtd_wa(dev))
8338 alignment = 64*1024;
8339
8340 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8341 if (ret) {
3b25b31f 8342 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8343 goto fail_locked;
e7b526bb
CW
8344 }
8345
d9e86c0e
CW
8346 ret = i915_gem_object_put_fence(obj);
8347 if (ret) {
3b25b31f 8348 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8349 goto fail_unpin;
8350 }
8351
f343c5f6 8352 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8353 } else {
6eeefaf3 8354 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8355 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8356 if (ret) {
3b25b31f 8357 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8358 goto fail_locked;
71acb5eb 8359 }
00731155 8360 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8361 }
8362
3f8bc370 8363 finish:
3f8bc370 8364 if (intel_crtc->cursor_bo) {
00731155 8365 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8366 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8367 }
80824003 8368
a071fa00
DV
8369 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8370 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8371 mutex_unlock(&dev->struct_mutex);
3f8bc370 8372
64f962e3
CW
8373 old_width = intel_crtc->cursor_width;
8374
3f8bc370 8375 intel_crtc->cursor_addr = addr;
05394f39 8376 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8377 intel_crtc->cursor_width = width;
8378 intel_crtc->cursor_height = height;
8379
64f962e3
CW
8380 if (intel_crtc->active) {
8381 if (old_width != width)
8382 intel_update_watermarks(crtc);
f2f5f771 8383 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8384 }
3f8bc370 8385
f99d7069
DV
8386 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8387
79e53945 8388 return 0;
e7b526bb 8389fail_unpin:
cc98b413 8390 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8391fail_locked:
34b8686e 8392 mutex_unlock(&dev->struct_mutex);
bc9025bd 8393fail:
05394f39 8394 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8395 return ret;
79e53945
JB
8396}
8397
79e53945 8398static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8399 u16 *blue, uint32_t start, uint32_t size)
79e53945 8400{
7203425a 8401 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8403
7203425a 8404 for (i = start; i < end; i++) {
79e53945
JB
8405 intel_crtc->lut_r[i] = red[i] >> 8;
8406 intel_crtc->lut_g[i] = green[i] >> 8;
8407 intel_crtc->lut_b[i] = blue[i] >> 8;
8408 }
8409
8410 intel_crtc_load_lut(crtc);
8411}
8412
79e53945
JB
8413/* VESA 640x480x72Hz mode to set on the pipe */
8414static struct drm_display_mode load_detect_mode = {
8415 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8416 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8417};
8418
a8bb6818
DV
8419struct drm_framebuffer *
8420__intel_framebuffer_create(struct drm_device *dev,
8421 struct drm_mode_fb_cmd2 *mode_cmd,
8422 struct drm_i915_gem_object *obj)
d2dff872
CW
8423{
8424 struct intel_framebuffer *intel_fb;
8425 int ret;
8426
8427 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8428 if (!intel_fb) {
8429 drm_gem_object_unreference_unlocked(&obj->base);
8430 return ERR_PTR(-ENOMEM);
8431 }
8432
8433 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8434 if (ret)
8435 goto err;
d2dff872
CW
8436
8437 return &intel_fb->base;
dd4916c5
DV
8438err:
8439 drm_gem_object_unreference_unlocked(&obj->base);
8440 kfree(intel_fb);
8441
8442 return ERR_PTR(ret);
d2dff872
CW
8443}
8444
b5ea642a 8445static struct drm_framebuffer *
a8bb6818
DV
8446intel_framebuffer_create(struct drm_device *dev,
8447 struct drm_mode_fb_cmd2 *mode_cmd,
8448 struct drm_i915_gem_object *obj)
8449{
8450 struct drm_framebuffer *fb;
8451 int ret;
8452
8453 ret = i915_mutex_lock_interruptible(dev);
8454 if (ret)
8455 return ERR_PTR(ret);
8456 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8457 mutex_unlock(&dev->struct_mutex);
8458
8459 return fb;
8460}
8461
d2dff872
CW
8462static u32
8463intel_framebuffer_pitch_for_width(int width, int bpp)
8464{
8465 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8466 return ALIGN(pitch, 64);
8467}
8468
8469static u32
8470intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8471{
8472 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8473 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8474}
8475
8476static struct drm_framebuffer *
8477intel_framebuffer_create_for_mode(struct drm_device *dev,
8478 struct drm_display_mode *mode,
8479 int depth, int bpp)
8480{
8481 struct drm_i915_gem_object *obj;
0fed39bd 8482 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8483
8484 obj = i915_gem_alloc_object(dev,
8485 intel_framebuffer_size_for_mode(mode, bpp));
8486 if (obj == NULL)
8487 return ERR_PTR(-ENOMEM);
8488
8489 mode_cmd.width = mode->hdisplay;
8490 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8491 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8492 bpp);
5ca0c34a 8493 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8494
8495 return intel_framebuffer_create(dev, &mode_cmd, obj);
8496}
8497
8498static struct drm_framebuffer *
8499mode_fits_in_fbdev(struct drm_device *dev,
8500 struct drm_display_mode *mode)
8501{
4520f53a 8502#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8503 struct drm_i915_private *dev_priv = dev->dev_private;
8504 struct drm_i915_gem_object *obj;
8505 struct drm_framebuffer *fb;
8506
4c0e5528 8507 if (!dev_priv->fbdev)
d2dff872
CW
8508 return NULL;
8509
4c0e5528 8510 if (!dev_priv->fbdev->fb)
d2dff872
CW
8511 return NULL;
8512
4c0e5528
DV
8513 obj = dev_priv->fbdev->fb->obj;
8514 BUG_ON(!obj);
8515
8bcd4553 8516 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8517 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8518 fb->bits_per_pixel))
d2dff872
CW
8519 return NULL;
8520
01f2c773 8521 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8522 return NULL;
8523
8524 return fb;
4520f53a
DV
8525#else
8526 return NULL;
8527#endif
d2dff872
CW
8528}
8529
d2434ab7 8530bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8531 struct drm_display_mode *mode,
51fd371b
RC
8532 struct intel_load_detect_pipe *old,
8533 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8534{
8535 struct intel_crtc *intel_crtc;
d2434ab7
DV
8536 struct intel_encoder *intel_encoder =
8537 intel_attached_encoder(connector);
79e53945 8538 struct drm_crtc *possible_crtc;
4ef69c7a 8539 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8540 struct drm_crtc *crtc = NULL;
8541 struct drm_device *dev = encoder->dev;
94352cf9 8542 struct drm_framebuffer *fb;
51fd371b
RC
8543 struct drm_mode_config *config = &dev->mode_config;
8544 int ret, i = -1;
79e53945 8545
d2dff872 8546 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8547 connector->base.id, connector->name,
8e329a03 8548 encoder->base.id, encoder->name);
d2dff872 8549
51fd371b
RC
8550retry:
8551 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8552 if (ret)
8553 goto fail_unlock;
6e9f798d 8554
79e53945
JB
8555 /*
8556 * Algorithm gets a little messy:
7a5e4805 8557 *
79e53945
JB
8558 * - if the connector already has an assigned crtc, use it (but make
8559 * sure it's on first)
7a5e4805 8560 *
79e53945
JB
8561 * - try to find the first unused crtc that can drive this connector,
8562 * and use that if we find one
79e53945
JB
8563 */
8564
8565 /* See if we already have a CRTC for this connector */
8566 if (encoder->crtc) {
8567 crtc = encoder->crtc;
8261b191 8568
51fd371b
RC
8569 ret = drm_modeset_lock(&crtc->mutex, ctx);
8570 if (ret)
8571 goto fail_unlock;
7b24056b 8572
24218aac 8573 old->dpms_mode = connector->dpms;
8261b191
CW
8574 old->load_detect_temp = false;
8575
8576 /* Make sure the crtc and connector are running */
24218aac
DV
8577 if (connector->dpms != DRM_MODE_DPMS_ON)
8578 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8579
7173188d 8580 return true;
79e53945
JB
8581 }
8582
8583 /* Find an unused one (if possible) */
70e1e0ec 8584 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8585 i++;
8586 if (!(encoder->possible_crtcs & (1 << i)))
8587 continue;
a459249c
VS
8588 if (possible_crtc->enabled)
8589 continue;
8590 /* This can occur when applying the pipe A quirk on resume. */
8591 if (to_intel_crtc(possible_crtc)->new_enabled)
8592 continue;
8593
8594 crtc = possible_crtc;
8595 break;
79e53945
JB
8596 }
8597
8598 /*
8599 * If we didn't find an unused CRTC, don't use any.
8600 */
8601 if (!crtc) {
7173188d 8602 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8603 goto fail_unlock;
79e53945
JB
8604 }
8605
51fd371b
RC
8606 ret = drm_modeset_lock(&crtc->mutex, ctx);
8607 if (ret)
8608 goto fail_unlock;
fc303101
DV
8609 intel_encoder->new_crtc = to_intel_crtc(crtc);
8610 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8611
8612 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8613 intel_crtc->new_enabled = true;
8614 intel_crtc->new_config = &intel_crtc->config;
24218aac 8615 old->dpms_mode = connector->dpms;
8261b191 8616 old->load_detect_temp = true;
d2dff872 8617 old->release_fb = NULL;
79e53945 8618
6492711d
CW
8619 if (!mode)
8620 mode = &load_detect_mode;
79e53945 8621
d2dff872
CW
8622 /* We need a framebuffer large enough to accommodate all accesses
8623 * that the plane may generate whilst we perform load detection.
8624 * We can not rely on the fbcon either being present (we get called
8625 * during its initialisation to detect all boot displays, or it may
8626 * not even exist) or that it is large enough to satisfy the
8627 * requested mode.
8628 */
94352cf9
DV
8629 fb = mode_fits_in_fbdev(dev, mode);
8630 if (fb == NULL) {
d2dff872 8631 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8632 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8633 old->release_fb = fb;
d2dff872
CW
8634 } else
8635 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8636 if (IS_ERR(fb)) {
d2dff872 8637 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8638 goto fail;
79e53945 8639 }
79e53945 8640
c0c36b94 8641 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8642 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8643 if (old->release_fb)
8644 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8645 goto fail;
79e53945 8646 }
7173188d 8647
79e53945 8648 /* let the connector get through one full cycle before testing */
9d0498a2 8649 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8650 return true;
412b61d8
VS
8651
8652 fail:
8653 intel_crtc->new_enabled = crtc->enabled;
8654 if (intel_crtc->new_enabled)
8655 intel_crtc->new_config = &intel_crtc->config;
8656 else
8657 intel_crtc->new_config = NULL;
51fd371b
RC
8658fail_unlock:
8659 if (ret == -EDEADLK) {
8660 drm_modeset_backoff(ctx);
8661 goto retry;
8662 }
8663
412b61d8 8664 return false;
79e53945
JB
8665}
8666
d2434ab7 8667void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8668 struct intel_load_detect_pipe *old)
79e53945 8669{
d2434ab7
DV
8670 struct intel_encoder *intel_encoder =
8671 intel_attached_encoder(connector);
4ef69c7a 8672 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8673 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8674 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8675
d2dff872 8676 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8677 connector->base.id, connector->name,
8e329a03 8678 encoder->base.id, encoder->name);
d2dff872 8679
8261b191 8680 if (old->load_detect_temp) {
fc303101
DV
8681 to_intel_connector(connector)->new_encoder = NULL;
8682 intel_encoder->new_crtc = NULL;
412b61d8
VS
8683 intel_crtc->new_enabled = false;
8684 intel_crtc->new_config = NULL;
fc303101 8685 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8686
36206361
DV
8687 if (old->release_fb) {
8688 drm_framebuffer_unregister_private(old->release_fb);
8689 drm_framebuffer_unreference(old->release_fb);
8690 }
d2dff872 8691
0622a53c 8692 return;
79e53945
JB
8693 }
8694
c751ce4f 8695 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8696 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8697 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8698}
8699
da4a1efa
VS
8700static int i9xx_pll_refclk(struct drm_device *dev,
8701 const struct intel_crtc_config *pipe_config)
8702{
8703 struct drm_i915_private *dev_priv = dev->dev_private;
8704 u32 dpll = pipe_config->dpll_hw_state.dpll;
8705
8706 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8707 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8708 else if (HAS_PCH_SPLIT(dev))
8709 return 120000;
8710 else if (!IS_GEN2(dev))
8711 return 96000;
8712 else
8713 return 48000;
8714}
8715
79e53945 8716/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8717static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8718 struct intel_crtc_config *pipe_config)
79e53945 8719{
f1f644dc 8720 struct drm_device *dev = crtc->base.dev;
79e53945 8721 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8722 int pipe = pipe_config->cpu_transcoder;
293623f7 8723 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8724 u32 fp;
8725 intel_clock_t clock;
da4a1efa 8726 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8727
8728 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8729 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8730 else
293623f7 8731 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8732
8733 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8734 if (IS_PINEVIEW(dev)) {
8735 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8736 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8737 } else {
8738 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8739 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8740 }
8741
a6c45cf0 8742 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8743 if (IS_PINEVIEW(dev))
8744 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8745 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8746 else
8747 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8748 DPLL_FPA01_P1_POST_DIV_SHIFT);
8749
8750 switch (dpll & DPLL_MODE_MASK) {
8751 case DPLLB_MODE_DAC_SERIAL:
8752 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8753 5 : 10;
8754 break;
8755 case DPLLB_MODE_LVDS:
8756 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8757 7 : 14;
8758 break;
8759 default:
28c97730 8760 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8761 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8762 return;
79e53945
JB
8763 }
8764
ac58c3f0 8765 if (IS_PINEVIEW(dev))
da4a1efa 8766 pineview_clock(refclk, &clock);
ac58c3f0 8767 else
da4a1efa 8768 i9xx_clock(refclk, &clock);
79e53945 8769 } else {
0fb58223 8770 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8771 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8772
8773 if (is_lvds) {
8774 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8775 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8776
8777 if (lvds & LVDS_CLKB_POWER_UP)
8778 clock.p2 = 7;
8779 else
8780 clock.p2 = 14;
79e53945
JB
8781 } else {
8782 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8783 clock.p1 = 2;
8784 else {
8785 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8786 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8787 }
8788 if (dpll & PLL_P2_DIVIDE_BY_4)
8789 clock.p2 = 4;
8790 else
8791 clock.p2 = 2;
79e53945 8792 }
da4a1efa
VS
8793
8794 i9xx_clock(refclk, &clock);
79e53945
JB
8795 }
8796
18442d08
VS
8797 /*
8798 * This value includes pixel_multiplier. We will use
241bfc38 8799 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8800 * encoder's get_config() function.
8801 */
8802 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8803}
8804
6878da05
VS
8805int intel_dotclock_calculate(int link_freq,
8806 const struct intel_link_m_n *m_n)
f1f644dc 8807{
f1f644dc
JB
8808 /*
8809 * The calculation for the data clock is:
1041a02f 8810 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8811 * But we want to avoid losing precison if possible, so:
1041a02f 8812 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8813 *
8814 * and the link clock is simpler:
1041a02f 8815 * link_clock = (m * link_clock) / n
f1f644dc
JB
8816 */
8817
6878da05
VS
8818 if (!m_n->link_n)
8819 return 0;
f1f644dc 8820
6878da05
VS
8821 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8822}
f1f644dc 8823
18442d08
VS
8824static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8825 struct intel_crtc_config *pipe_config)
6878da05
VS
8826{
8827 struct drm_device *dev = crtc->base.dev;
79e53945 8828
18442d08
VS
8829 /* read out port_clock from the DPLL */
8830 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8831
f1f644dc 8832 /*
18442d08 8833 * This value does not include pixel_multiplier.
241bfc38 8834 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8835 * agree once we know their relationship in the encoder's
8836 * get_config() function.
79e53945 8837 */
241bfc38 8838 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8839 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8840 &pipe_config->fdi_m_n);
79e53945
JB
8841}
8842
8843/** Returns the currently programmed mode of the given pipe. */
8844struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8845 struct drm_crtc *crtc)
8846{
548f245b 8847 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8849 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8850 struct drm_display_mode *mode;
f1f644dc 8851 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8852 int htot = I915_READ(HTOTAL(cpu_transcoder));
8853 int hsync = I915_READ(HSYNC(cpu_transcoder));
8854 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8855 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8856 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8857
8858 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8859 if (!mode)
8860 return NULL;
8861
f1f644dc
JB
8862 /*
8863 * Construct a pipe_config sufficient for getting the clock info
8864 * back out of crtc_clock_get.
8865 *
8866 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8867 * to use a real value here instead.
8868 */
293623f7 8869 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8870 pipe_config.pixel_multiplier = 1;
293623f7
VS
8871 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8872 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8873 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8874 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8875
773ae034 8876 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8877 mode->hdisplay = (htot & 0xffff) + 1;
8878 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8879 mode->hsync_start = (hsync & 0xffff) + 1;
8880 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8881 mode->vdisplay = (vtot & 0xffff) + 1;
8882 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8883 mode->vsync_start = (vsync & 0xffff) + 1;
8884 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8885
8886 drm_mode_set_name(mode);
79e53945
JB
8887
8888 return mode;
8889}
8890
cc36513c
DV
8891static void intel_increase_pllclock(struct drm_device *dev,
8892 enum pipe pipe)
652c393a 8893{
fbee40df 8894 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8895 int dpll_reg = DPLL(pipe);
8896 int dpll;
652c393a 8897
baff296c 8898 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8899 return;
8900
8901 if (!dev_priv->lvds_downclock_avail)
8902 return;
8903
dbdc6479 8904 dpll = I915_READ(dpll_reg);
652c393a 8905 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8906 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8907
8ac5a6d5 8908 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8909
8910 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8911 I915_WRITE(dpll_reg, dpll);
9d0498a2 8912 intel_wait_for_vblank(dev, pipe);
dbdc6479 8913
652c393a
JB
8914 dpll = I915_READ(dpll_reg);
8915 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8916 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8917 }
652c393a
JB
8918}
8919
8920static void intel_decrease_pllclock(struct drm_crtc *crtc)
8921{
8922 struct drm_device *dev = crtc->dev;
fbee40df 8923 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8924 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8925
baff296c 8926 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8927 return;
8928
8929 if (!dev_priv->lvds_downclock_avail)
8930 return;
8931
8932 /*
8933 * Since this is called by a timer, we should never get here in
8934 * the manual case.
8935 */
8936 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8937 int pipe = intel_crtc->pipe;
8938 int dpll_reg = DPLL(pipe);
8939 int dpll;
f6e5b160 8940
44d98a61 8941 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8942
8ac5a6d5 8943 assert_panel_unlocked(dev_priv, pipe);
652c393a 8944
dc257cf1 8945 dpll = I915_READ(dpll_reg);
652c393a
JB
8946 dpll |= DISPLAY_RATE_SELECT_FPA1;
8947 I915_WRITE(dpll_reg, dpll);
9d0498a2 8948 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8949 dpll = I915_READ(dpll_reg);
8950 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8951 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8952 }
8953
8954}
8955
f047e395
CW
8956void intel_mark_busy(struct drm_device *dev)
8957{
c67a470b
PZ
8958 struct drm_i915_private *dev_priv = dev->dev_private;
8959
f62a0076
CW
8960 if (dev_priv->mm.busy)
8961 return;
8962
43694d69 8963 intel_runtime_pm_get(dev_priv);
c67a470b 8964 i915_update_gfx_val(dev_priv);
f62a0076 8965 dev_priv->mm.busy = true;
f047e395
CW
8966}
8967
8968void intel_mark_idle(struct drm_device *dev)
652c393a 8969{
c67a470b 8970 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8971 struct drm_crtc *crtc;
652c393a 8972
f62a0076
CW
8973 if (!dev_priv->mm.busy)
8974 return;
8975
8976 dev_priv->mm.busy = false;
8977
d330a953 8978 if (!i915.powersave)
bb4cdd53 8979 goto out;
652c393a 8980
70e1e0ec 8981 for_each_crtc(dev, crtc) {
f4510a27 8982 if (!crtc->primary->fb)
652c393a
JB
8983 continue;
8984
725a5b54 8985 intel_decrease_pllclock(crtc);
652c393a 8986 }
b29c19b6 8987
3d13ef2e 8988 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8989 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8990
8991out:
43694d69 8992 intel_runtime_pm_put(dev_priv);
652c393a
JB
8993}
8994
7c8f8a70 8995
f99d7069
DV
8996/**
8997 * intel_mark_fb_busy - mark given planes as busy
8998 * @dev: DRM device
8999 * @frontbuffer_bits: bits for the affected planes
9000 * @ring: optional ring for asynchronous commands
9001 *
9002 * This function gets called every time the screen contents change. It can be
9003 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9004 */
9005static void intel_mark_fb_busy(struct drm_device *dev,
9006 unsigned frontbuffer_bits,
9007 struct intel_engine_cs *ring)
652c393a 9008{
055e393f 9009 struct drm_i915_private *dev_priv = dev->dev_private;
cc36513c 9010 enum pipe pipe;
652c393a 9011
d330a953 9012 if (!i915.powersave)
acb87dfb
CW
9013 return;
9014
055e393f 9015 for_each_pipe(dev_priv, pipe) {
f99d7069 9016 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
9017 continue;
9018
cc36513c 9019 intel_increase_pllclock(dev, pipe);
c65355bb
CW
9020 if (ring && intel_fbc_enabled(dev))
9021 ring->fbc_dirty = true;
652c393a
JB
9022 }
9023}
9024
f99d7069
DV
9025/**
9026 * intel_fb_obj_invalidate - invalidate frontbuffer object
9027 * @obj: GEM object to invalidate
9028 * @ring: set for asynchronous rendering
9029 *
9030 * This function gets called every time rendering on the given object starts and
9031 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9032 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9033 * until the rendering completes or a flip on this frontbuffer plane is
9034 * scheduled.
9035 */
9036void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9037 struct intel_engine_cs *ring)
9038{
9039 struct drm_device *dev = obj->base.dev;
9040 struct drm_i915_private *dev_priv = dev->dev_private;
9041
9042 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9043
9044 if (!obj->frontbuffer_bits)
9045 return;
9046
9047 if (ring) {
9048 mutex_lock(&dev_priv->fb_tracking.lock);
9049 dev_priv->fb_tracking.busy_bits
9050 |= obj->frontbuffer_bits;
9051 dev_priv->fb_tracking.flip_bits
9052 &= ~obj->frontbuffer_bits;
9053 mutex_unlock(&dev_priv->fb_tracking.lock);
9054 }
9055
9056 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9057
9ca15301 9058 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
9059}
9060
9061/**
9062 * intel_frontbuffer_flush - flush frontbuffer
9063 * @dev: DRM device
9064 * @frontbuffer_bits: frontbuffer plane tracking bits
9065 *
9066 * This function gets called every time rendering on the given planes has
9067 * completed and frontbuffer caching can be started again. Flushes will get
9068 * delayed if they're blocked by some oustanding asynchronous rendering.
9069 *
9070 * Can be called without any locks held.
9071 */
9072void intel_frontbuffer_flush(struct drm_device *dev,
9073 unsigned frontbuffer_bits)
9074{
9075 struct drm_i915_private *dev_priv = dev->dev_private;
9076
9077 /* Delay flushing when rings are still busy.*/
9078 mutex_lock(&dev_priv->fb_tracking.lock);
9079 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9080 mutex_unlock(&dev_priv->fb_tracking.lock);
9081
9082 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9083
9ca15301 9084 intel_edp_psr_flush(dev, frontbuffer_bits);
f99d7069
DV
9085}
9086
9087/**
9088 * intel_fb_obj_flush - flush frontbuffer object
9089 * @obj: GEM object to flush
9090 * @retire: set when retiring asynchronous rendering
9091 *
9092 * This function gets called every time rendering on the given object has
9093 * completed and frontbuffer caching can be started again. If @retire is true
9094 * then any delayed flushes will be unblocked.
9095 */
9096void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9097 bool retire)
9098{
9099 struct drm_device *dev = obj->base.dev;
9100 struct drm_i915_private *dev_priv = dev->dev_private;
9101 unsigned frontbuffer_bits;
9102
9103 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9104
9105 if (!obj->frontbuffer_bits)
9106 return;
9107
9108 frontbuffer_bits = obj->frontbuffer_bits;
9109
9110 if (retire) {
9111 mutex_lock(&dev_priv->fb_tracking.lock);
9112 /* Filter out new bits since rendering started. */
9113 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9114
9115 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9116 mutex_unlock(&dev_priv->fb_tracking.lock);
9117 }
9118
9119 intel_frontbuffer_flush(dev, frontbuffer_bits);
9120}
9121
9122/**
9123 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9124 * @dev: DRM device
9125 * @frontbuffer_bits: frontbuffer plane tracking bits
9126 *
9127 * This function gets called after scheduling a flip on @obj. The actual
9128 * frontbuffer flushing will be delayed until completion is signalled with
9129 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9130 * flush will be cancelled.
9131 *
9132 * Can be called without any locks held.
9133 */
9134void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9135 unsigned frontbuffer_bits)
9136{
9137 struct drm_i915_private *dev_priv = dev->dev_private;
9138
9139 mutex_lock(&dev_priv->fb_tracking.lock);
9140 dev_priv->fb_tracking.flip_bits
9141 |= frontbuffer_bits;
9142 mutex_unlock(&dev_priv->fb_tracking.lock);
9143}
9144
9145/**
9146 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9147 * @dev: DRM device
9148 * @frontbuffer_bits: frontbuffer plane tracking bits
9149 *
9150 * This function gets called after the flip has been latched and will complete
9151 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9152 *
9153 * Can be called without any locks held.
9154 */
9155void intel_frontbuffer_flip_complete(struct drm_device *dev,
9156 unsigned frontbuffer_bits)
9157{
9158 struct drm_i915_private *dev_priv = dev->dev_private;
9159
9160 mutex_lock(&dev_priv->fb_tracking.lock);
9161 /* Mask any cancelled flips. */
9162 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9163 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9164 mutex_unlock(&dev_priv->fb_tracking.lock);
9165
9166 intel_frontbuffer_flush(dev, frontbuffer_bits);
9167}
9168
79e53945
JB
9169static void intel_crtc_destroy(struct drm_crtc *crtc)
9170{
9171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9172 struct drm_device *dev = crtc->dev;
9173 struct intel_unpin_work *work;
9174 unsigned long flags;
9175
9176 spin_lock_irqsave(&dev->event_lock, flags);
9177 work = intel_crtc->unpin_work;
9178 intel_crtc->unpin_work = NULL;
9179 spin_unlock_irqrestore(&dev->event_lock, flags);
9180
9181 if (work) {
9182 cancel_work_sync(&work->work);
9183 kfree(work);
9184 }
79e53945
JB
9185
9186 drm_crtc_cleanup(crtc);
67e77c5a 9187
79e53945
JB
9188 kfree(intel_crtc);
9189}
9190
6b95a207
KH
9191static void intel_unpin_work_fn(struct work_struct *__work)
9192{
9193 struct intel_unpin_work *work =
9194 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9195 struct drm_device *dev = work->crtc->dev;
f99d7069 9196 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9197
b4a98e57 9198 mutex_lock(&dev->struct_mutex);
1690e1eb 9199 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9200 drm_gem_object_unreference(&work->pending_flip_obj->base);
9201 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9202
b4a98e57
CW
9203 intel_update_fbc(dev);
9204 mutex_unlock(&dev->struct_mutex);
9205
f99d7069
DV
9206 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9207
b4a98e57
CW
9208 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9209 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9210
6b95a207
KH
9211 kfree(work);
9212}
9213
1afe3e9d 9214static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9215 struct drm_crtc *crtc)
6b95a207 9216{
fbee40df 9217 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9218 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9219 struct intel_unpin_work *work;
6b95a207
KH
9220 unsigned long flags;
9221
9222 /* Ignore early vblank irqs */
9223 if (intel_crtc == NULL)
9224 return;
9225
9226 spin_lock_irqsave(&dev->event_lock, flags);
9227 work = intel_crtc->unpin_work;
e7d841ca
CW
9228
9229 /* Ensure we don't miss a work->pending update ... */
9230 smp_rmb();
9231
9232 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9233 spin_unlock_irqrestore(&dev->event_lock, flags);
9234 return;
9235 }
9236
e7d841ca
CW
9237 /* and that the unpin work is consistent wrt ->pending. */
9238 smp_rmb();
9239
6b95a207 9240 intel_crtc->unpin_work = NULL;
6b95a207 9241
45a066eb
RC
9242 if (work->event)
9243 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9244
87b6b101 9245 drm_crtc_vblank_put(crtc);
0af7e4df 9246
6b95a207
KH
9247 spin_unlock_irqrestore(&dev->event_lock, flags);
9248
2c10d571 9249 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9250
9251 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9252
9253 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9254}
9255
1afe3e9d
JB
9256void intel_finish_page_flip(struct drm_device *dev, int pipe)
9257{
fbee40df 9258 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9259 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9260
49b14a5c 9261 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9262}
9263
9264void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9265{
fbee40df 9266 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9267 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9268
49b14a5c 9269 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9270}
9271
75f7f3ec
VS
9272/* Is 'a' after or equal to 'b'? */
9273static bool g4x_flip_count_after_eq(u32 a, u32 b)
9274{
9275 return !((a - b) & 0x80000000);
9276}
9277
9278static bool page_flip_finished(struct intel_crtc *crtc)
9279{
9280 struct drm_device *dev = crtc->base.dev;
9281 struct drm_i915_private *dev_priv = dev->dev_private;
9282
9283 /*
9284 * The relevant registers doen't exist on pre-ctg.
9285 * As the flip done interrupt doesn't trigger for mmio
9286 * flips on gmch platforms, a flip count check isn't
9287 * really needed there. But since ctg has the registers,
9288 * include it in the check anyway.
9289 */
9290 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9291 return true;
9292
9293 /*
9294 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9295 * used the same base address. In that case the mmio flip might
9296 * have completed, but the CS hasn't even executed the flip yet.
9297 *
9298 * A flip count check isn't enough as the CS might have updated
9299 * the base address just after start of vblank, but before we
9300 * managed to process the interrupt. This means we'd complete the
9301 * CS flip too soon.
9302 *
9303 * Combining both checks should get us a good enough result. It may
9304 * still happen that the CS flip has been executed, but has not
9305 * yet actually completed. But in case the base address is the same
9306 * anyway, we don't really care.
9307 */
9308 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9309 crtc->unpin_work->gtt_offset &&
9310 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9311 crtc->unpin_work->flip_count);
9312}
9313
6b95a207
KH
9314void intel_prepare_page_flip(struct drm_device *dev, int plane)
9315{
fbee40df 9316 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9317 struct intel_crtc *intel_crtc =
9318 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9319 unsigned long flags;
9320
e7d841ca
CW
9321 /* NB: An MMIO update of the plane base pointer will also
9322 * generate a page-flip completion irq, i.e. every modeset
9323 * is also accompanied by a spurious intel_prepare_page_flip().
9324 */
6b95a207 9325 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9326 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9327 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9328 spin_unlock_irqrestore(&dev->event_lock, flags);
9329}
9330
eba905b2 9331static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9332{
9333 /* Ensure that the work item is consistent when activating it ... */
9334 smp_wmb();
9335 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9336 /* and that it is marked active as soon as the irq could fire. */
9337 smp_wmb();
9338}
9339
8c9f3aaf
JB
9340static int intel_gen2_queue_flip(struct drm_device *dev,
9341 struct drm_crtc *crtc,
9342 struct drm_framebuffer *fb,
ed8d1975 9343 struct drm_i915_gem_object *obj,
a4872ba6 9344 struct intel_engine_cs *ring,
ed8d1975 9345 uint32_t flags)
8c9f3aaf 9346{
8c9f3aaf 9347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9348 u32 flip_mask;
9349 int ret;
9350
6d90c952 9351 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9352 if (ret)
4fa62c89 9353 return ret;
8c9f3aaf
JB
9354
9355 /* Can't queue multiple flips, so wait for the previous
9356 * one to finish before executing the next.
9357 */
9358 if (intel_crtc->plane)
9359 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9360 else
9361 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9362 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9363 intel_ring_emit(ring, MI_NOOP);
9364 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9365 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9366 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9367 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9368 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9369
9370 intel_mark_page_flip_active(intel_crtc);
09246732 9371 __intel_ring_advance(ring);
83d4092b 9372 return 0;
8c9f3aaf
JB
9373}
9374
9375static int intel_gen3_queue_flip(struct drm_device *dev,
9376 struct drm_crtc *crtc,
9377 struct drm_framebuffer *fb,
ed8d1975 9378 struct drm_i915_gem_object *obj,
a4872ba6 9379 struct intel_engine_cs *ring,
ed8d1975 9380 uint32_t flags)
8c9f3aaf 9381{
8c9f3aaf 9382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9383 u32 flip_mask;
9384 int ret;
9385
6d90c952 9386 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9387 if (ret)
4fa62c89 9388 return ret;
8c9f3aaf
JB
9389
9390 if (intel_crtc->plane)
9391 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9392 else
9393 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9394 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9395 intel_ring_emit(ring, MI_NOOP);
9396 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9397 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9398 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9399 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9400 intel_ring_emit(ring, MI_NOOP);
9401
e7d841ca 9402 intel_mark_page_flip_active(intel_crtc);
09246732 9403 __intel_ring_advance(ring);
83d4092b 9404 return 0;
8c9f3aaf
JB
9405}
9406
9407static int intel_gen4_queue_flip(struct drm_device *dev,
9408 struct drm_crtc *crtc,
9409 struct drm_framebuffer *fb,
ed8d1975 9410 struct drm_i915_gem_object *obj,
a4872ba6 9411 struct intel_engine_cs *ring,
ed8d1975 9412 uint32_t flags)
8c9f3aaf
JB
9413{
9414 struct drm_i915_private *dev_priv = dev->dev_private;
9415 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9416 uint32_t pf, pipesrc;
9417 int ret;
9418
6d90c952 9419 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9420 if (ret)
4fa62c89 9421 return ret;
8c9f3aaf
JB
9422
9423 /* i965+ uses the linear or tiled offsets from the
9424 * Display Registers (which do not change across a page-flip)
9425 * so we need only reprogram the base address.
9426 */
6d90c952
DV
9427 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9428 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9429 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9430 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9431 obj->tiling_mode);
8c9f3aaf
JB
9432
9433 /* XXX Enabling the panel-fitter across page-flip is so far
9434 * untested on non-native modes, so ignore it for now.
9435 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9436 */
9437 pf = 0;
9438 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9439 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9440
9441 intel_mark_page_flip_active(intel_crtc);
09246732 9442 __intel_ring_advance(ring);
83d4092b 9443 return 0;
8c9f3aaf
JB
9444}
9445
9446static int intel_gen6_queue_flip(struct drm_device *dev,
9447 struct drm_crtc *crtc,
9448 struct drm_framebuffer *fb,
ed8d1975 9449 struct drm_i915_gem_object *obj,
a4872ba6 9450 struct intel_engine_cs *ring,
ed8d1975 9451 uint32_t flags)
8c9f3aaf
JB
9452{
9453 struct drm_i915_private *dev_priv = dev->dev_private;
9454 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9455 uint32_t pf, pipesrc;
9456 int ret;
9457
6d90c952 9458 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9459 if (ret)
4fa62c89 9460 return ret;
8c9f3aaf 9461
6d90c952
DV
9462 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9463 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9464 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9465 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9466
dc257cf1
DV
9467 /* Contrary to the suggestions in the documentation,
9468 * "Enable Panel Fitter" does not seem to be required when page
9469 * flipping with a non-native mode, and worse causes a normal
9470 * modeset to fail.
9471 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9472 */
9473 pf = 0;
8c9f3aaf 9474 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9475 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9476
9477 intel_mark_page_flip_active(intel_crtc);
09246732 9478 __intel_ring_advance(ring);
83d4092b 9479 return 0;
8c9f3aaf
JB
9480}
9481
7c9017e5
JB
9482static int intel_gen7_queue_flip(struct drm_device *dev,
9483 struct drm_crtc *crtc,
9484 struct drm_framebuffer *fb,
ed8d1975 9485 struct drm_i915_gem_object *obj,
a4872ba6 9486 struct intel_engine_cs *ring,
ed8d1975 9487 uint32_t flags)
7c9017e5 9488{
7c9017e5 9489 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9490 uint32_t plane_bit = 0;
ffe74d75
CW
9491 int len, ret;
9492
eba905b2 9493 switch (intel_crtc->plane) {
cb05d8de
DV
9494 case PLANE_A:
9495 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9496 break;
9497 case PLANE_B:
9498 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9499 break;
9500 case PLANE_C:
9501 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9502 break;
9503 default:
9504 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9505 return -ENODEV;
cb05d8de
DV
9506 }
9507
ffe74d75 9508 len = 4;
f476828a 9509 if (ring->id == RCS) {
ffe74d75 9510 len += 6;
f476828a
DL
9511 /*
9512 * On Gen 8, SRM is now taking an extra dword to accommodate
9513 * 48bits addresses, and we need a NOOP for the batch size to
9514 * stay even.
9515 */
9516 if (IS_GEN8(dev))
9517 len += 2;
9518 }
ffe74d75 9519
f66fab8e
VS
9520 /*
9521 * BSpec MI_DISPLAY_FLIP for IVB:
9522 * "The full packet must be contained within the same cache line."
9523 *
9524 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9525 * cacheline, if we ever start emitting more commands before
9526 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9527 * then do the cacheline alignment, and finally emit the
9528 * MI_DISPLAY_FLIP.
9529 */
9530 ret = intel_ring_cacheline_align(ring);
9531 if (ret)
4fa62c89 9532 return ret;
f66fab8e 9533
ffe74d75 9534 ret = intel_ring_begin(ring, len);
7c9017e5 9535 if (ret)
4fa62c89 9536 return ret;
7c9017e5 9537
ffe74d75
CW
9538 /* Unmask the flip-done completion message. Note that the bspec says that
9539 * we should do this for both the BCS and RCS, and that we must not unmask
9540 * more than one flip event at any time (or ensure that one flip message
9541 * can be sent by waiting for flip-done prior to queueing new flips).
9542 * Experimentation says that BCS works despite DERRMR masking all
9543 * flip-done completion events and that unmasking all planes at once
9544 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9545 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9546 */
9547 if (ring->id == RCS) {
9548 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9549 intel_ring_emit(ring, DERRMR);
9550 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9551 DERRMR_PIPEB_PRI_FLIP_DONE |
9552 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9553 if (IS_GEN8(dev))
9554 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9555 MI_SRM_LRM_GLOBAL_GTT);
9556 else
9557 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9558 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9559 intel_ring_emit(ring, DERRMR);
9560 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9561 if (IS_GEN8(dev)) {
9562 intel_ring_emit(ring, 0);
9563 intel_ring_emit(ring, MI_NOOP);
9564 }
ffe74d75
CW
9565 }
9566
cb05d8de 9567 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9568 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9569 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9570 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9571
9572 intel_mark_page_flip_active(intel_crtc);
09246732 9573 __intel_ring_advance(ring);
83d4092b 9574 return 0;
7c9017e5
JB
9575}
9576
84c33a64
SG
9577static bool use_mmio_flip(struct intel_engine_cs *ring,
9578 struct drm_i915_gem_object *obj)
9579{
9580 /*
9581 * This is not being used for older platforms, because
9582 * non-availability of flip done interrupt forces us to use
9583 * CS flips. Older platforms derive flip done using some clever
9584 * tricks involving the flip_pending status bits and vblank irqs.
9585 * So using MMIO flips there would disrupt this mechanism.
9586 */
9587
8e09bf83
CW
9588 if (ring == NULL)
9589 return true;
9590
84c33a64
SG
9591 if (INTEL_INFO(ring->dev)->gen < 5)
9592 return false;
9593
9594 if (i915.use_mmio_flip < 0)
9595 return false;
9596 else if (i915.use_mmio_flip > 0)
9597 return true;
14bf993e
OM
9598 else if (i915.enable_execlists)
9599 return true;
84c33a64
SG
9600 else
9601 return ring != obj->ring;
9602}
9603
9604static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9605{
9606 struct drm_device *dev = intel_crtc->base.dev;
9607 struct drm_i915_private *dev_priv = dev->dev_private;
9608 struct intel_framebuffer *intel_fb =
9609 to_intel_framebuffer(intel_crtc->base.primary->fb);
9610 struct drm_i915_gem_object *obj = intel_fb->obj;
9611 u32 dspcntr;
9612 u32 reg;
9613
9614 intel_mark_page_flip_active(intel_crtc);
9615
9616 reg = DSPCNTR(intel_crtc->plane);
9617 dspcntr = I915_READ(reg);
9618
9619 if (INTEL_INFO(dev)->gen >= 4) {
9620 if (obj->tiling_mode != I915_TILING_NONE)
9621 dspcntr |= DISPPLANE_TILED;
9622 else
9623 dspcntr &= ~DISPPLANE_TILED;
9624 }
9625 I915_WRITE(reg, dspcntr);
9626
9627 I915_WRITE(DSPSURF(intel_crtc->plane),
9628 intel_crtc->unpin_work->gtt_offset);
9629 POSTING_READ(DSPSURF(intel_crtc->plane));
9630}
9631
9632static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9633{
9634 struct intel_engine_cs *ring;
9635 int ret;
9636
9637 lockdep_assert_held(&obj->base.dev->struct_mutex);
9638
9639 if (!obj->last_write_seqno)
9640 return 0;
9641
9642 ring = obj->ring;
9643
9644 if (i915_seqno_passed(ring->get_seqno(ring, true),
9645 obj->last_write_seqno))
9646 return 0;
9647
9648 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9649 if (ret)
9650 return ret;
9651
9652 if (WARN_ON(!ring->irq_get(ring)))
9653 return 0;
9654
9655 return 1;
9656}
9657
9658void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9659{
9660 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9661 struct intel_crtc *intel_crtc;
9662 unsigned long irq_flags;
9663 u32 seqno;
9664
9665 seqno = ring->get_seqno(ring, false);
9666
9667 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9668 for_each_intel_crtc(ring->dev, intel_crtc) {
9669 struct intel_mmio_flip *mmio_flip;
9670
9671 mmio_flip = &intel_crtc->mmio_flip;
9672 if (mmio_flip->seqno == 0)
9673 continue;
9674
9675 if (ring->id != mmio_flip->ring_id)
9676 continue;
9677
9678 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9679 intel_do_mmio_flip(intel_crtc);
9680 mmio_flip->seqno = 0;
9681 ring->irq_put(ring);
9682 }
9683 }
9684 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9685}
9686
9687static int intel_queue_mmio_flip(struct drm_device *dev,
9688 struct drm_crtc *crtc,
9689 struct drm_framebuffer *fb,
9690 struct drm_i915_gem_object *obj,
9691 struct intel_engine_cs *ring,
9692 uint32_t flags)
9693{
9694 struct drm_i915_private *dev_priv = dev->dev_private;
9695 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9696 unsigned long irq_flags;
9697 int ret;
9698
9699 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9700 return -EBUSY;
9701
9702 ret = intel_postpone_flip(obj);
9703 if (ret < 0)
9704 return ret;
9705 if (ret == 0) {
9706 intel_do_mmio_flip(intel_crtc);
9707 return 0;
9708 }
9709
9710 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9711 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9712 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9713 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9714
9715 /*
9716 * Double check to catch cases where irq fired before
9717 * mmio flip data was ready
9718 */
9719 intel_notify_mmio_flip(obj->ring);
9720 return 0;
9721}
9722
8c9f3aaf
JB
9723static int intel_default_queue_flip(struct drm_device *dev,
9724 struct drm_crtc *crtc,
9725 struct drm_framebuffer *fb,
ed8d1975 9726 struct drm_i915_gem_object *obj,
a4872ba6 9727 struct intel_engine_cs *ring,
ed8d1975 9728 uint32_t flags)
8c9f3aaf
JB
9729{
9730 return -ENODEV;
9731}
9732
6b95a207
KH
9733static int intel_crtc_page_flip(struct drm_crtc *crtc,
9734 struct drm_framebuffer *fb,
ed8d1975
KP
9735 struct drm_pending_vblank_event *event,
9736 uint32_t page_flip_flags)
6b95a207
KH
9737{
9738 struct drm_device *dev = crtc->dev;
9739 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9740 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9741 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9742 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9743 enum pipe pipe = intel_crtc->pipe;
6b95a207 9744 struct intel_unpin_work *work;
a4872ba6 9745 struct intel_engine_cs *ring;
8c9f3aaf 9746 unsigned long flags;
52e68630 9747 int ret;
6b95a207 9748
2ff8fde1
MR
9749 /*
9750 * drm_mode_page_flip_ioctl() should already catch this, but double
9751 * check to be safe. In the future we may enable pageflipping from
9752 * a disabled primary plane.
9753 */
9754 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9755 return -EBUSY;
9756
e6a595d2 9757 /* Can't change pixel format via MI display flips. */
f4510a27 9758 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9759 return -EINVAL;
9760
9761 /*
9762 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9763 * Note that pitch changes could also affect these register.
9764 */
9765 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9766 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9767 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9768 return -EINVAL;
9769
f900db47
CW
9770 if (i915_terminally_wedged(&dev_priv->gpu_error))
9771 goto out_hang;
9772
b14c5679 9773 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9774 if (work == NULL)
9775 return -ENOMEM;
9776
6b95a207 9777 work->event = event;
b4a98e57 9778 work->crtc = crtc;
2ff8fde1 9779 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9780 INIT_WORK(&work->work, intel_unpin_work_fn);
9781
87b6b101 9782 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9783 if (ret)
9784 goto free_work;
9785
6b95a207
KH
9786 /* We borrow the event spin lock for protecting unpin_work */
9787 spin_lock_irqsave(&dev->event_lock, flags);
9788 if (intel_crtc->unpin_work) {
9789 spin_unlock_irqrestore(&dev->event_lock, flags);
9790 kfree(work);
87b6b101 9791 drm_crtc_vblank_put(crtc);
468f0b44
CW
9792
9793 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9794 return -EBUSY;
9795 }
9796 intel_crtc->unpin_work = work;
9797 spin_unlock_irqrestore(&dev->event_lock, flags);
9798
b4a98e57
CW
9799 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9800 flush_workqueue(dev_priv->wq);
9801
79158103
CW
9802 ret = i915_mutex_lock_interruptible(dev);
9803 if (ret)
9804 goto cleanup;
6b95a207 9805
75dfca80 9806 /* Reference the objects for the scheduled work. */
05394f39
CW
9807 drm_gem_object_reference(&work->old_fb_obj->base);
9808 drm_gem_object_reference(&obj->base);
6b95a207 9809
f4510a27 9810 crtc->primary->fb = fb;
96b099fd 9811
e1f99ce6 9812 work->pending_flip_obj = obj;
e1f99ce6 9813
4e5359cd
SF
9814 work->enable_stall_check = true;
9815
b4a98e57 9816 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9817 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9818
75f7f3ec 9819 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9820 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9821
4fa62c89
VS
9822 if (IS_VALLEYVIEW(dev)) {
9823 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9824 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9825 /* vlv: DISPLAY_FLIP fails to change tiling */
9826 ring = NULL;
2a92d5bc
CW
9827 } else if (IS_IVYBRIDGE(dev)) {
9828 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9829 } else if (INTEL_INFO(dev)->gen >= 7) {
9830 ring = obj->ring;
9831 if (ring == NULL || ring->id != RCS)
9832 ring = &dev_priv->ring[BCS];
9833 } else {
9834 ring = &dev_priv->ring[RCS];
9835 }
9836
9837 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9838 if (ret)
9839 goto cleanup_pending;
6b95a207 9840
4fa62c89
VS
9841 work->gtt_offset =
9842 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9843
84c33a64
SG
9844 if (use_mmio_flip(ring, obj))
9845 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9846 page_flip_flags);
9847 else
9848 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9849 page_flip_flags);
4fa62c89
VS
9850 if (ret)
9851 goto cleanup_unpin;
9852
a071fa00
DV
9853 i915_gem_track_fb(work->old_fb_obj, obj,
9854 INTEL_FRONTBUFFER_PRIMARY(pipe));
9855
7782de3b 9856 intel_disable_fbc(dev);
f99d7069 9857 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9858 mutex_unlock(&dev->struct_mutex);
9859
e5510fac
JB
9860 trace_i915_flip_request(intel_crtc->plane, obj);
9861
6b95a207 9862 return 0;
96b099fd 9863
4fa62c89
VS
9864cleanup_unpin:
9865 intel_unpin_fb_obj(obj);
8c9f3aaf 9866cleanup_pending:
b4a98e57 9867 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9868 crtc->primary->fb = old_fb;
05394f39
CW
9869 drm_gem_object_unreference(&work->old_fb_obj->base);
9870 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9871 mutex_unlock(&dev->struct_mutex);
9872
79158103 9873cleanup:
96b099fd
CW
9874 spin_lock_irqsave(&dev->event_lock, flags);
9875 intel_crtc->unpin_work = NULL;
9876 spin_unlock_irqrestore(&dev->event_lock, flags);
9877
87b6b101 9878 drm_crtc_vblank_put(crtc);
7317c75e 9879free_work:
96b099fd
CW
9880 kfree(work);
9881
f900db47
CW
9882 if (ret == -EIO) {
9883out_hang:
9884 intel_crtc_wait_for_pending_flips(crtc);
9885 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9886 if (ret == 0 && event)
a071fa00 9887 drm_send_vblank_event(dev, pipe, event);
f900db47 9888 }
96b099fd 9889 return ret;
6b95a207
KH
9890}
9891
f6e5b160 9892static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9893 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9894 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9895};
9896
9a935856
DV
9897/**
9898 * intel_modeset_update_staged_output_state
9899 *
9900 * Updates the staged output configuration state, e.g. after we've read out the
9901 * current hw state.
9902 */
9903static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9904{
7668851f 9905 struct intel_crtc *crtc;
9a935856
DV
9906 struct intel_encoder *encoder;
9907 struct intel_connector *connector;
f6e5b160 9908
9a935856
DV
9909 list_for_each_entry(connector, &dev->mode_config.connector_list,
9910 base.head) {
9911 connector->new_encoder =
9912 to_intel_encoder(connector->base.encoder);
9913 }
f6e5b160 9914
b2784e15 9915 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9916 encoder->new_crtc =
9917 to_intel_crtc(encoder->base.crtc);
9918 }
7668851f 9919
d3fcc808 9920 for_each_intel_crtc(dev, crtc) {
7668851f 9921 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9922
9923 if (crtc->new_enabled)
9924 crtc->new_config = &crtc->config;
9925 else
9926 crtc->new_config = NULL;
7668851f 9927 }
f6e5b160
CW
9928}
9929
9a935856
DV
9930/**
9931 * intel_modeset_commit_output_state
9932 *
9933 * This function copies the stage display pipe configuration to the real one.
9934 */
9935static void intel_modeset_commit_output_state(struct drm_device *dev)
9936{
7668851f 9937 struct intel_crtc *crtc;
9a935856
DV
9938 struct intel_encoder *encoder;
9939 struct intel_connector *connector;
f6e5b160 9940
9a935856
DV
9941 list_for_each_entry(connector, &dev->mode_config.connector_list,
9942 base.head) {
9943 connector->base.encoder = &connector->new_encoder->base;
9944 }
f6e5b160 9945
b2784e15 9946 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9947 encoder->base.crtc = &encoder->new_crtc->base;
9948 }
7668851f 9949
d3fcc808 9950 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9951 crtc->base.enabled = crtc->new_enabled;
9952 }
9a935856
DV
9953}
9954
050f7aeb 9955static void
eba905b2 9956connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9957 struct intel_crtc_config *pipe_config)
9958{
9959 int bpp = pipe_config->pipe_bpp;
9960
9961 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9962 connector->base.base.id,
c23cc417 9963 connector->base.name);
050f7aeb
DV
9964
9965 /* Don't use an invalid EDID bpc value */
9966 if (connector->base.display_info.bpc &&
9967 connector->base.display_info.bpc * 3 < bpp) {
9968 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9969 bpp, connector->base.display_info.bpc*3);
9970 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9971 }
9972
9973 /* Clamp bpp to 8 on screens without EDID 1.4 */
9974 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9975 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9976 bpp);
9977 pipe_config->pipe_bpp = 24;
9978 }
9979}
9980
4e53c2e0 9981static int
050f7aeb
DV
9982compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9983 struct drm_framebuffer *fb,
9984 struct intel_crtc_config *pipe_config)
4e53c2e0 9985{
050f7aeb
DV
9986 struct drm_device *dev = crtc->base.dev;
9987 struct intel_connector *connector;
4e53c2e0
DV
9988 int bpp;
9989
d42264b1
DV
9990 switch (fb->pixel_format) {
9991 case DRM_FORMAT_C8:
4e53c2e0
DV
9992 bpp = 8*3; /* since we go through a colormap */
9993 break;
d42264b1
DV
9994 case DRM_FORMAT_XRGB1555:
9995 case DRM_FORMAT_ARGB1555:
9996 /* checked in intel_framebuffer_init already */
9997 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9998 return -EINVAL;
9999 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10000 bpp = 6*3; /* min is 18bpp */
10001 break;
d42264b1
DV
10002 case DRM_FORMAT_XBGR8888:
10003 case DRM_FORMAT_ABGR8888:
10004 /* checked in intel_framebuffer_init already */
10005 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10006 return -EINVAL;
10007 case DRM_FORMAT_XRGB8888:
10008 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10009 bpp = 8*3;
10010 break;
d42264b1
DV
10011 case DRM_FORMAT_XRGB2101010:
10012 case DRM_FORMAT_ARGB2101010:
10013 case DRM_FORMAT_XBGR2101010:
10014 case DRM_FORMAT_ABGR2101010:
10015 /* checked in intel_framebuffer_init already */
10016 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10017 return -EINVAL;
4e53c2e0
DV
10018 bpp = 10*3;
10019 break;
baba133a 10020 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10021 default:
10022 DRM_DEBUG_KMS("unsupported depth\n");
10023 return -EINVAL;
10024 }
10025
4e53c2e0
DV
10026 pipe_config->pipe_bpp = bpp;
10027
10028 /* Clamp display bpp to EDID value */
10029 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10030 base.head) {
1b829e05
DV
10031 if (!connector->new_encoder ||
10032 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10033 continue;
10034
050f7aeb 10035 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10036 }
10037
10038 return bpp;
10039}
10040
644db711
DV
10041static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10042{
10043 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10044 "type: 0x%x flags: 0x%x\n",
1342830c 10045 mode->crtc_clock,
644db711
DV
10046 mode->crtc_hdisplay, mode->crtc_hsync_start,
10047 mode->crtc_hsync_end, mode->crtc_htotal,
10048 mode->crtc_vdisplay, mode->crtc_vsync_start,
10049 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10050}
10051
c0b03411
DV
10052static void intel_dump_pipe_config(struct intel_crtc *crtc,
10053 struct intel_crtc_config *pipe_config,
10054 const char *context)
10055{
10056 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10057 context, pipe_name(crtc->pipe));
10058
10059 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10060 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10061 pipe_config->pipe_bpp, pipe_config->dither);
10062 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10063 pipe_config->has_pch_encoder,
10064 pipe_config->fdi_lanes,
10065 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10066 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10067 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10068 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10069 pipe_config->has_dp_encoder,
10070 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10071 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10072 pipe_config->dp_m_n.tu);
b95af8be
VK
10073
10074 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10075 pipe_config->has_dp_encoder,
10076 pipe_config->dp_m2_n2.gmch_m,
10077 pipe_config->dp_m2_n2.gmch_n,
10078 pipe_config->dp_m2_n2.link_m,
10079 pipe_config->dp_m2_n2.link_n,
10080 pipe_config->dp_m2_n2.tu);
10081
c0b03411
DV
10082 DRM_DEBUG_KMS("requested mode:\n");
10083 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10084 DRM_DEBUG_KMS("adjusted mode:\n");
10085 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10086 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10087 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10088 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10089 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10090 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10091 pipe_config->gmch_pfit.control,
10092 pipe_config->gmch_pfit.pgm_ratios,
10093 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10094 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10095 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10096 pipe_config->pch_pfit.size,
10097 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10098 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10099 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10100}
10101
bc079e8b
VS
10102static bool encoders_cloneable(const struct intel_encoder *a,
10103 const struct intel_encoder *b)
accfc0c5 10104{
bc079e8b
VS
10105 /* masks could be asymmetric, so check both ways */
10106 return a == b || (a->cloneable & (1 << b->type) &&
10107 b->cloneable & (1 << a->type));
10108}
10109
10110static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10111 struct intel_encoder *encoder)
10112{
10113 struct drm_device *dev = crtc->base.dev;
10114 struct intel_encoder *source_encoder;
10115
b2784e15 10116 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10117 if (source_encoder->new_crtc != crtc)
10118 continue;
10119
10120 if (!encoders_cloneable(encoder, source_encoder))
10121 return false;
10122 }
10123
10124 return true;
10125}
10126
10127static bool check_encoder_cloning(struct intel_crtc *crtc)
10128{
10129 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10130 struct intel_encoder *encoder;
10131
b2784e15 10132 for_each_intel_encoder(dev, encoder) {
bc079e8b 10133 if (encoder->new_crtc != crtc)
accfc0c5
DV
10134 continue;
10135
bc079e8b
VS
10136 if (!check_single_encoder_cloning(crtc, encoder))
10137 return false;
accfc0c5
DV
10138 }
10139
bc079e8b 10140 return true;
accfc0c5
DV
10141}
10142
b8cecdf5
DV
10143static struct intel_crtc_config *
10144intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10145 struct drm_framebuffer *fb,
b8cecdf5 10146 struct drm_display_mode *mode)
ee7b9f93 10147{
7758a113 10148 struct drm_device *dev = crtc->dev;
7758a113 10149 struct intel_encoder *encoder;
b8cecdf5 10150 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10151 int plane_bpp, ret = -EINVAL;
10152 bool retry = true;
ee7b9f93 10153
bc079e8b 10154 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10155 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10156 return ERR_PTR(-EINVAL);
10157 }
10158
b8cecdf5
DV
10159 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10160 if (!pipe_config)
7758a113
DV
10161 return ERR_PTR(-ENOMEM);
10162
b8cecdf5
DV
10163 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10164 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10165
e143a21c
DV
10166 pipe_config->cpu_transcoder =
10167 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10168 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10169
2960bc9c
ID
10170 /*
10171 * Sanitize sync polarity flags based on requested ones. If neither
10172 * positive or negative polarity is requested, treat this as meaning
10173 * negative polarity.
10174 */
10175 if (!(pipe_config->adjusted_mode.flags &
10176 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10177 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10178
10179 if (!(pipe_config->adjusted_mode.flags &
10180 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10181 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10182
050f7aeb
DV
10183 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10184 * plane pixel format and any sink constraints into account. Returns the
10185 * source plane bpp so that dithering can be selected on mismatches
10186 * after encoders and crtc also have had their say. */
10187 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10188 fb, pipe_config);
4e53c2e0
DV
10189 if (plane_bpp < 0)
10190 goto fail;
10191
e41a56be
VS
10192 /*
10193 * Determine the real pipe dimensions. Note that stereo modes can
10194 * increase the actual pipe size due to the frame doubling and
10195 * insertion of additional space for blanks between the frame. This
10196 * is stored in the crtc timings. We use the requested mode to do this
10197 * computation to clearly distinguish it from the adjusted mode, which
10198 * can be changed by the connectors in the below retry loop.
10199 */
10200 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10201 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10202 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10203
e29c22c0 10204encoder_retry:
ef1b460d 10205 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10206 pipe_config->port_clock = 0;
ef1b460d 10207 pipe_config->pixel_multiplier = 1;
ff9a6750 10208
135c81b8 10209 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10210 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10211
7758a113
DV
10212 /* Pass our mode to the connectors and the CRTC to give them a chance to
10213 * adjust it according to limitations or connector properties, and also
10214 * a chance to reject the mode entirely.
47f1c6c9 10215 */
b2784e15 10216 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10217
7758a113
DV
10218 if (&encoder->new_crtc->base != crtc)
10219 continue;
7ae89233 10220
efea6e8e
DV
10221 if (!(encoder->compute_config(encoder, pipe_config))) {
10222 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10223 goto fail;
10224 }
ee7b9f93 10225 }
47f1c6c9 10226
ff9a6750
DV
10227 /* Set default port clock if not overwritten by the encoder. Needs to be
10228 * done afterwards in case the encoder adjusts the mode. */
10229 if (!pipe_config->port_clock)
241bfc38
DL
10230 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10231 * pipe_config->pixel_multiplier;
ff9a6750 10232
a43f6e0f 10233 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10234 if (ret < 0) {
7758a113
DV
10235 DRM_DEBUG_KMS("CRTC fixup failed\n");
10236 goto fail;
ee7b9f93 10237 }
e29c22c0
DV
10238
10239 if (ret == RETRY) {
10240 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10241 ret = -EINVAL;
10242 goto fail;
10243 }
10244
10245 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10246 retry = false;
10247 goto encoder_retry;
10248 }
10249
4e53c2e0
DV
10250 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10251 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10252 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10253
b8cecdf5 10254 return pipe_config;
7758a113 10255fail:
b8cecdf5 10256 kfree(pipe_config);
e29c22c0 10257 return ERR_PTR(ret);
ee7b9f93 10258}
47f1c6c9 10259
e2e1ed41
DV
10260/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10261 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10262static void
10263intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10264 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10265{
10266 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10267 struct drm_device *dev = crtc->dev;
10268 struct intel_encoder *encoder;
10269 struct intel_connector *connector;
10270 struct drm_crtc *tmp_crtc;
79e53945 10271
e2e1ed41 10272 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10273
e2e1ed41
DV
10274 /* Check which crtcs have changed outputs connected to them, these need
10275 * to be part of the prepare_pipes mask. We don't (yet) support global
10276 * modeset across multiple crtcs, so modeset_pipes will only have one
10277 * bit set at most. */
10278 list_for_each_entry(connector, &dev->mode_config.connector_list,
10279 base.head) {
10280 if (connector->base.encoder == &connector->new_encoder->base)
10281 continue;
79e53945 10282
e2e1ed41
DV
10283 if (connector->base.encoder) {
10284 tmp_crtc = connector->base.encoder->crtc;
10285
10286 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10287 }
10288
10289 if (connector->new_encoder)
10290 *prepare_pipes |=
10291 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10292 }
10293
b2784e15 10294 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10295 if (encoder->base.crtc == &encoder->new_crtc->base)
10296 continue;
10297
10298 if (encoder->base.crtc) {
10299 tmp_crtc = encoder->base.crtc;
10300
10301 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10302 }
10303
10304 if (encoder->new_crtc)
10305 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10306 }
10307
7668851f 10308 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10309 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10310 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10311 continue;
7e7d76c3 10312
7668851f 10313 if (!intel_crtc->new_enabled)
e2e1ed41 10314 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10315 else
10316 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10317 }
10318
e2e1ed41
DV
10319
10320 /* set_mode is also used to update properties on life display pipes. */
10321 intel_crtc = to_intel_crtc(crtc);
7668851f 10322 if (intel_crtc->new_enabled)
e2e1ed41
DV
10323 *prepare_pipes |= 1 << intel_crtc->pipe;
10324
b6c5164d
DV
10325 /*
10326 * For simplicity do a full modeset on any pipe where the output routing
10327 * changed. We could be more clever, but that would require us to be
10328 * more careful with calling the relevant encoder->mode_set functions.
10329 */
e2e1ed41
DV
10330 if (*prepare_pipes)
10331 *modeset_pipes = *prepare_pipes;
10332
10333 /* ... and mask these out. */
10334 *modeset_pipes &= ~(*disable_pipes);
10335 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10336
10337 /*
10338 * HACK: We don't (yet) fully support global modesets. intel_set_config
10339 * obies this rule, but the modeset restore mode of
10340 * intel_modeset_setup_hw_state does not.
10341 */
10342 *modeset_pipes &= 1 << intel_crtc->pipe;
10343 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10344
10345 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10346 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10347}
79e53945 10348
ea9d758d 10349static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10350{
ea9d758d 10351 struct drm_encoder *encoder;
f6e5b160 10352 struct drm_device *dev = crtc->dev;
f6e5b160 10353
ea9d758d
DV
10354 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10355 if (encoder->crtc == crtc)
10356 return true;
10357
10358 return false;
10359}
10360
10361static void
10362intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10363{
10364 struct intel_encoder *intel_encoder;
10365 struct intel_crtc *intel_crtc;
10366 struct drm_connector *connector;
10367
b2784e15 10368 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10369 if (!intel_encoder->base.crtc)
10370 continue;
10371
10372 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10373
10374 if (prepare_pipes & (1 << intel_crtc->pipe))
10375 intel_encoder->connectors_active = false;
10376 }
10377
10378 intel_modeset_commit_output_state(dev);
10379
7668851f 10380 /* Double check state. */
d3fcc808 10381 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10382 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10383 WARN_ON(intel_crtc->new_config &&
10384 intel_crtc->new_config != &intel_crtc->config);
10385 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10386 }
10387
10388 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10389 if (!connector->encoder || !connector->encoder->crtc)
10390 continue;
10391
10392 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10393
10394 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10395 struct drm_property *dpms_property =
10396 dev->mode_config.dpms_property;
10397
ea9d758d 10398 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10399 drm_object_property_set_value(&connector->base,
68d34720
DV
10400 dpms_property,
10401 DRM_MODE_DPMS_ON);
ea9d758d
DV
10402
10403 intel_encoder = to_intel_encoder(connector->encoder);
10404 intel_encoder->connectors_active = true;
10405 }
10406 }
10407
10408}
10409
3bd26263 10410static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10411{
3bd26263 10412 int diff;
f1f644dc
JB
10413
10414 if (clock1 == clock2)
10415 return true;
10416
10417 if (!clock1 || !clock2)
10418 return false;
10419
10420 diff = abs(clock1 - clock2);
10421
10422 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10423 return true;
10424
10425 return false;
10426}
10427
25c5b266
DV
10428#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10429 list_for_each_entry((intel_crtc), \
10430 &(dev)->mode_config.crtc_list, \
10431 base.head) \
0973f18f 10432 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10433
0e8ffe1b 10434static bool
2fa2fe9a
DV
10435intel_pipe_config_compare(struct drm_device *dev,
10436 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10437 struct intel_crtc_config *pipe_config)
10438{
66e985c0
DV
10439#define PIPE_CONF_CHECK_X(name) \
10440 if (current_config->name != pipe_config->name) { \
10441 DRM_ERROR("mismatch in " #name " " \
10442 "(expected 0x%08x, found 0x%08x)\n", \
10443 current_config->name, \
10444 pipe_config->name); \
10445 return false; \
10446 }
10447
08a24034
DV
10448#define PIPE_CONF_CHECK_I(name) \
10449 if (current_config->name != pipe_config->name) { \
10450 DRM_ERROR("mismatch in " #name " " \
10451 "(expected %i, found %i)\n", \
10452 current_config->name, \
10453 pipe_config->name); \
10454 return false; \
88adfff1
DV
10455 }
10456
b95af8be
VK
10457/* This is required for BDW+ where there is only one set of registers for
10458 * switching between high and low RR.
10459 * This macro can be used whenever a comparison has to be made between one
10460 * hw state and multiple sw state variables.
10461 */
10462#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10463 if ((current_config->name != pipe_config->name) && \
10464 (current_config->alt_name != pipe_config->name)) { \
10465 DRM_ERROR("mismatch in " #name " " \
10466 "(expected %i or %i, found %i)\n", \
10467 current_config->name, \
10468 current_config->alt_name, \
10469 pipe_config->name); \
10470 return false; \
10471 }
10472
1bd1bd80
DV
10473#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10474 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10475 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10476 "(expected %i, found %i)\n", \
10477 current_config->name & (mask), \
10478 pipe_config->name & (mask)); \
10479 return false; \
10480 }
10481
5e550656
VS
10482#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10483 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10484 DRM_ERROR("mismatch in " #name " " \
10485 "(expected %i, found %i)\n", \
10486 current_config->name, \
10487 pipe_config->name); \
10488 return false; \
10489 }
10490
bb760063
DV
10491#define PIPE_CONF_QUIRK(quirk) \
10492 ((current_config->quirks | pipe_config->quirks) & (quirk))
10493
eccb140b
DV
10494 PIPE_CONF_CHECK_I(cpu_transcoder);
10495
08a24034
DV
10496 PIPE_CONF_CHECK_I(has_pch_encoder);
10497 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10498 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10499 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10500 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10501 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10502 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10503
eb14cb74 10504 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10505
10506 if (INTEL_INFO(dev)->gen < 8) {
10507 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10508 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10509 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10510 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10511 PIPE_CONF_CHECK_I(dp_m_n.tu);
10512
10513 if (current_config->has_drrs) {
10514 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10515 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10516 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10517 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10518 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10519 }
10520 } else {
10521 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10522 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10523 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10524 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10525 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10526 }
eb14cb74 10527
1bd1bd80
DV
10528 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10529 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10530 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10531 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10532 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10533 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10534
10535 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10536 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10537 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10538 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10539 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10540 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10541
c93f54cf 10542 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10543 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10544 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10545 IS_VALLEYVIEW(dev))
10546 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10547
9ed109a7
DV
10548 PIPE_CONF_CHECK_I(has_audio);
10549
1bd1bd80
DV
10550 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10551 DRM_MODE_FLAG_INTERLACE);
10552
bb760063
DV
10553 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10554 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10555 DRM_MODE_FLAG_PHSYNC);
10556 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10557 DRM_MODE_FLAG_NHSYNC);
10558 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10559 DRM_MODE_FLAG_PVSYNC);
10560 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10561 DRM_MODE_FLAG_NVSYNC);
10562 }
045ac3b5 10563
37327abd
VS
10564 PIPE_CONF_CHECK_I(pipe_src_w);
10565 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10566
9953599b
DV
10567 /*
10568 * FIXME: BIOS likes to set up a cloned config with lvds+external
10569 * screen. Since we don't yet re-compute the pipe config when moving
10570 * just the lvds port away to another pipe the sw tracking won't match.
10571 *
10572 * Proper atomic modesets with recomputed global state will fix this.
10573 * Until then just don't check gmch state for inherited modes.
10574 */
10575 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10576 PIPE_CONF_CHECK_I(gmch_pfit.control);
10577 /* pfit ratios are autocomputed by the hw on gen4+ */
10578 if (INTEL_INFO(dev)->gen < 4)
10579 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10580 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10581 }
10582
fd4daa9c
CW
10583 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10584 if (current_config->pch_pfit.enabled) {
10585 PIPE_CONF_CHECK_I(pch_pfit.pos);
10586 PIPE_CONF_CHECK_I(pch_pfit.size);
10587 }
2fa2fe9a 10588
e59150dc
JB
10589 /* BDW+ don't expose a synchronous way to read the state */
10590 if (IS_HASWELL(dev))
10591 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10592
282740f7
VS
10593 PIPE_CONF_CHECK_I(double_wide);
10594
26804afd
DV
10595 PIPE_CONF_CHECK_X(ddi_pll_sel);
10596
c0d43d62 10597 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10598 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10599 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10600 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10601 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10602 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10603
42571aef
VS
10604 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10605 PIPE_CONF_CHECK_I(pipe_bpp);
10606
a9a7e98a
JB
10607 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10608 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10609
66e985c0 10610#undef PIPE_CONF_CHECK_X
08a24034 10611#undef PIPE_CONF_CHECK_I
b95af8be 10612#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10613#undef PIPE_CONF_CHECK_FLAGS
5e550656 10614#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10615#undef PIPE_CONF_QUIRK
88adfff1 10616
0e8ffe1b
DV
10617 return true;
10618}
10619
91d1b4bd
DV
10620static void
10621check_connector_state(struct drm_device *dev)
8af6cf88 10622{
8af6cf88
DV
10623 struct intel_connector *connector;
10624
10625 list_for_each_entry(connector, &dev->mode_config.connector_list,
10626 base.head) {
10627 /* This also checks the encoder/connector hw state with the
10628 * ->get_hw_state callbacks. */
10629 intel_connector_check_state(connector);
10630
10631 WARN(&connector->new_encoder->base != connector->base.encoder,
10632 "connector's staged encoder doesn't match current encoder\n");
10633 }
91d1b4bd
DV
10634}
10635
10636static void
10637check_encoder_state(struct drm_device *dev)
10638{
10639 struct intel_encoder *encoder;
10640 struct intel_connector *connector;
8af6cf88 10641
b2784e15 10642 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10643 bool enabled = false;
10644 bool active = false;
10645 enum pipe pipe, tracked_pipe;
10646
10647 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10648 encoder->base.base.id,
8e329a03 10649 encoder->base.name);
8af6cf88
DV
10650
10651 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10652 "encoder's stage crtc doesn't match current crtc\n");
10653 WARN(encoder->connectors_active && !encoder->base.crtc,
10654 "encoder's active_connectors set, but no crtc\n");
10655
10656 list_for_each_entry(connector, &dev->mode_config.connector_list,
10657 base.head) {
10658 if (connector->base.encoder != &encoder->base)
10659 continue;
10660 enabled = true;
10661 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10662 active = true;
10663 }
0e32b39c
DA
10664 /*
10665 * for MST connectors if we unplug the connector is gone
10666 * away but the encoder is still connected to a crtc
10667 * until a modeset happens in response to the hotplug.
10668 */
10669 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10670 continue;
10671
8af6cf88
DV
10672 WARN(!!encoder->base.crtc != enabled,
10673 "encoder's enabled state mismatch "
10674 "(expected %i, found %i)\n",
10675 !!encoder->base.crtc, enabled);
10676 WARN(active && !encoder->base.crtc,
10677 "active encoder with no crtc\n");
10678
10679 WARN(encoder->connectors_active != active,
10680 "encoder's computed active state doesn't match tracked active state "
10681 "(expected %i, found %i)\n", active, encoder->connectors_active);
10682
10683 active = encoder->get_hw_state(encoder, &pipe);
10684 WARN(active != encoder->connectors_active,
10685 "encoder's hw state doesn't match sw tracking "
10686 "(expected %i, found %i)\n",
10687 encoder->connectors_active, active);
10688
10689 if (!encoder->base.crtc)
10690 continue;
10691
10692 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10693 WARN(active && pipe != tracked_pipe,
10694 "active encoder's pipe doesn't match"
10695 "(expected %i, found %i)\n",
10696 tracked_pipe, pipe);
10697
10698 }
91d1b4bd
DV
10699}
10700
10701static void
10702check_crtc_state(struct drm_device *dev)
10703{
fbee40df 10704 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10705 struct intel_crtc *crtc;
10706 struct intel_encoder *encoder;
10707 struct intel_crtc_config pipe_config;
8af6cf88 10708
d3fcc808 10709 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10710 bool enabled = false;
10711 bool active = false;
10712
045ac3b5
JB
10713 memset(&pipe_config, 0, sizeof(pipe_config));
10714
8af6cf88
DV
10715 DRM_DEBUG_KMS("[CRTC:%d]\n",
10716 crtc->base.base.id);
10717
10718 WARN(crtc->active && !crtc->base.enabled,
10719 "active crtc, but not enabled in sw tracking\n");
10720
b2784e15 10721 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10722 if (encoder->base.crtc != &crtc->base)
10723 continue;
10724 enabled = true;
10725 if (encoder->connectors_active)
10726 active = true;
10727 }
6c49f241 10728
8af6cf88
DV
10729 WARN(active != crtc->active,
10730 "crtc's computed active state doesn't match tracked active state "
10731 "(expected %i, found %i)\n", active, crtc->active);
10732 WARN(enabled != crtc->base.enabled,
10733 "crtc's computed enabled state doesn't match tracked enabled state "
10734 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10735
0e8ffe1b
DV
10736 active = dev_priv->display.get_pipe_config(crtc,
10737 &pipe_config);
d62cf62a
DV
10738
10739 /* hw state is inconsistent with the pipe A quirk */
10740 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10741 active = crtc->active;
10742
b2784e15 10743 for_each_intel_encoder(dev, encoder) {
3eaba51c 10744 enum pipe pipe;
6c49f241
DV
10745 if (encoder->base.crtc != &crtc->base)
10746 continue;
1d37b689 10747 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10748 encoder->get_config(encoder, &pipe_config);
10749 }
10750
0e8ffe1b
DV
10751 WARN(crtc->active != active,
10752 "crtc active state doesn't match with hw state "
10753 "(expected %i, found %i)\n", crtc->active, active);
10754
c0b03411
DV
10755 if (active &&
10756 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10757 WARN(1, "pipe state doesn't match!\n");
10758 intel_dump_pipe_config(crtc, &pipe_config,
10759 "[hw state]");
10760 intel_dump_pipe_config(crtc, &crtc->config,
10761 "[sw state]");
10762 }
8af6cf88
DV
10763 }
10764}
10765
91d1b4bd
DV
10766static void
10767check_shared_dpll_state(struct drm_device *dev)
10768{
fbee40df 10769 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10770 struct intel_crtc *crtc;
10771 struct intel_dpll_hw_state dpll_hw_state;
10772 int i;
5358901f
DV
10773
10774 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10775 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10776 int enabled_crtcs = 0, active_crtcs = 0;
10777 bool active;
10778
10779 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10780
10781 DRM_DEBUG_KMS("%s\n", pll->name);
10782
10783 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10784
10785 WARN(pll->active > pll->refcount,
10786 "more active pll users than references: %i vs %i\n",
10787 pll->active, pll->refcount);
10788 WARN(pll->active && !pll->on,
10789 "pll in active use but not on in sw tracking\n");
35c95375
DV
10790 WARN(pll->on && !pll->active,
10791 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10792 WARN(pll->on != active,
10793 "pll on state mismatch (expected %i, found %i)\n",
10794 pll->on, active);
10795
d3fcc808 10796 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10797 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10798 enabled_crtcs++;
10799 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10800 active_crtcs++;
10801 }
10802 WARN(pll->active != active_crtcs,
10803 "pll active crtcs mismatch (expected %i, found %i)\n",
10804 pll->active, active_crtcs);
10805 WARN(pll->refcount != enabled_crtcs,
10806 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10807 pll->refcount, enabled_crtcs);
66e985c0
DV
10808
10809 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10810 sizeof(dpll_hw_state)),
10811 "pll hw state mismatch\n");
5358901f 10812 }
8af6cf88
DV
10813}
10814
91d1b4bd
DV
10815void
10816intel_modeset_check_state(struct drm_device *dev)
10817{
10818 check_connector_state(dev);
10819 check_encoder_state(dev);
10820 check_crtc_state(dev);
10821 check_shared_dpll_state(dev);
10822}
10823
18442d08
VS
10824void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10825 int dotclock)
10826{
10827 /*
10828 * FDI already provided one idea for the dotclock.
10829 * Yell if the encoder disagrees.
10830 */
241bfc38 10831 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10832 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10833 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10834}
10835
80715b2f
VS
10836static void update_scanline_offset(struct intel_crtc *crtc)
10837{
10838 struct drm_device *dev = crtc->base.dev;
10839
10840 /*
10841 * The scanline counter increments at the leading edge of hsync.
10842 *
10843 * On most platforms it starts counting from vtotal-1 on the
10844 * first active line. That means the scanline counter value is
10845 * always one less than what we would expect. Ie. just after
10846 * start of vblank, which also occurs at start of hsync (on the
10847 * last active line), the scanline counter will read vblank_start-1.
10848 *
10849 * On gen2 the scanline counter starts counting from 1 instead
10850 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10851 * to keep the value positive), instead of adding one.
10852 *
10853 * On HSW+ the behaviour of the scanline counter depends on the output
10854 * type. For DP ports it behaves like most other platforms, but on HDMI
10855 * there's an extra 1 line difference. So we need to add two instead of
10856 * one to the value.
10857 */
10858 if (IS_GEN2(dev)) {
10859 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10860 int vtotal;
10861
10862 vtotal = mode->crtc_vtotal;
10863 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10864 vtotal /= 2;
10865
10866 crtc->scanline_offset = vtotal - 1;
10867 } else if (HAS_DDI(dev) &&
10868 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10869 crtc->scanline_offset = 2;
10870 } else
10871 crtc->scanline_offset = 1;
10872}
10873
f30da187
DV
10874static int __intel_set_mode(struct drm_crtc *crtc,
10875 struct drm_display_mode *mode,
10876 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10877{
10878 struct drm_device *dev = crtc->dev;
fbee40df 10879 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10880 struct drm_display_mode *saved_mode;
b8cecdf5 10881 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10882 struct intel_crtc *intel_crtc;
10883 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10884 int ret = 0;
a6778b3c 10885
4b4b9238 10886 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10887 if (!saved_mode)
10888 return -ENOMEM;
a6778b3c 10889
e2e1ed41 10890 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10891 &prepare_pipes, &disable_pipes);
10892
3ac18232 10893 *saved_mode = crtc->mode;
a6778b3c 10894
25c5b266
DV
10895 /* Hack: Because we don't (yet) support global modeset on multiple
10896 * crtcs, we don't keep track of the new mode for more than one crtc.
10897 * Hence simply check whether any bit is set in modeset_pipes in all the
10898 * pieces of code that are not yet converted to deal with mutliple crtcs
10899 * changing their mode at the same time. */
25c5b266 10900 if (modeset_pipes) {
4e53c2e0 10901 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10902 if (IS_ERR(pipe_config)) {
10903 ret = PTR_ERR(pipe_config);
10904 pipe_config = NULL;
10905
3ac18232 10906 goto out;
25c5b266 10907 }
c0b03411
DV
10908 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10909 "[modeset]");
50741abc 10910 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10911 }
a6778b3c 10912
30a970c6
JB
10913 /*
10914 * See if the config requires any additional preparation, e.g.
10915 * to adjust global state with pipes off. We need to do this
10916 * here so we can get the modeset_pipe updated config for the new
10917 * mode set on this crtc. For other crtcs we need to use the
10918 * adjusted_mode bits in the crtc directly.
10919 */
c164f833 10920 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10921 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10922
c164f833
VS
10923 /* may have added more to prepare_pipes than we should */
10924 prepare_pipes &= ~disable_pipes;
10925 }
10926
460da916
DV
10927 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10928 intel_crtc_disable(&intel_crtc->base);
10929
ea9d758d
DV
10930 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10931 if (intel_crtc->base.enabled)
10932 dev_priv->display.crtc_disable(&intel_crtc->base);
10933 }
a6778b3c 10934
6c4c86f5
DV
10935 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10936 * to set it here already despite that we pass it down the callchain.
f6e5b160 10937 */
b8cecdf5 10938 if (modeset_pipes) {
25c5b266 10939 crtc->mode = *mode;
b8cecdf5
DV
10940 /* mode_set/enable/disable functions rely on a correct pipe
10941 * config. */
10942 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10943 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10944
10945 /*
10946 * Calculate and store various constants which
10947 * are later needed by vblank and swap-completion
10948 * timestamping. They are derived from true hwmode.
10949 */
10950 drm_calc_timestamping_constants(crtc,
10951 &pipe_config->adjusted_mode);
b8cecdf5 10952 }
7758a113 10953
ea9d758d
DV
10954 /* Only after disabling all output pipelines that will be changed can we
10955 * update the the output configuration. */
10956 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10957
47fab737
DV
10958 if (dev_priv->display.modeset_global_resources)
10959 dev_priv->display.modeset_global_resources(dev);
10960
a6778b3c
DV
10961 /* Set up the DPLL and any encoders state that needs to adjust or depend
10962 * on the DPLL.
f6e5b160 10963 */
25c5b266 10964 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10965 struct drm_framebuffer *old_fb = crtc->primary->fb;
10966 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10967 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10968
10969 mutex_lock(&dev->struct_mutex);
10970 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10971 obj,
4c10794f
DV
10972 NULL);
10973 if (ret != 0) {
10974 DRM_ERROR("pin & fence failed\n");
10975 mutex_unlock(&dev->struct_mutex);
10976 goto done;
10977 }
2ff8fde1 10978 if (old_fb)
a071fa00 10979 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10980 i915_gem_track_fb(old_obj, obj,
10981 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10982 mutex_unlock(&dev->struct_mutex);
10983
10984 crtc->primary->fb = fb;
10985 crtc->x = x;
10986 crtc->y = y;
10987
4271b753
DV
10988 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10989 x, y, fb);
c0c36b94
CW
10990 if (ret)
10991 goto done;
a6778b3c
DV
10992 }
10993
10994 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10995 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10996 update_scanline_offset(intel_crtc);
10997
25c5b266 10998 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10999 }
a6778b3c 11000
a6778b3c
DV
11001 /* FIXME: add subpixel order */
11002done:
4b4b9238 11003 if (ret && crtc->enabled)
3ac18232 11004 crtc->mode = *saved_mode;
a6778b3c 11005
3ac18232 11006out:
b8cecdf5 11007 kfree(pipe_config);
3ac18232 11008 kfree(saved_mode);
a6778b3c 11009 return ret;
f6e5b160
CW
11010}
11011
e7457a9a
DL
11012static int intel_set_mode(struct drm_crtc *crtc,
11013 struct drm_display_mode *mode,
11014 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
11015{
11016 int ret;
11017
11018 ret = __intel_set_mode(crtc, mode, x, y, fb);
11019
11020 if (ret == 0)
11021 intel_modeset_check_state(crtc->dev);
11022
11023 return ret;
11024}
11025
c0c36b94
CW
11026void intel_crtc_restore_mode(struct drm_crtc *crtc)
11027{
f4510a27 11028 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11029}
11030
25c5b266
DV
11031#undef for_each_intel_crtc_masked
11032
d9e55608
DV
11033static void intel_set_config_free(struct intel_set_config *config)
11034{
11035 if (!config)
11036 return;
11037
1aa4b628
DV
11038 kfree(config->save_connector_encoders);
11039 kfree(config->save_encoder_crtcs);
7668851f 11040 kfree(config->save_crtc_enabled);
d9e55608
DV
11041 kfree(config);
11042}
11043
85f9eb71
DV
11044static int intel_set_config_save_state(struct drm_device *dev,
11045 struct intel_set_config *config)
11046{
7668851f 11047 struct drm_crtc *crtc;
85f9eb71
DV
11048 struct drm_encoder *encoder;
11049 struct drm_connector *connector;
11050 int count;
11051
7668851f
VS
11052 config->save_crtc_enabled =
11053 kcalloc(dev->mode_config.num_crtc,
11054 sizeof(bool), GFP_KERNEL);
11055 if (!config->save_crtc_enabled)
11056 return -ENOMEM;
11057
1aa4b628
DV
11058 config->save_encoder_crtcs =
11059 kcalloc(dev->mode_config.num_encoder,
11060 sizeof(struct drm_crtc *), GFP_KERNEL);
11061 if (!config->save_encoder_crtcs)
85f9eb71
DV
11062 return -ENOMEM;
11063
1aa4b628
DV
11064 config->save_connector_encoders =
11065 kcalloc(dev->mode_config.num_connector,
11066 sizeof(struct drm_encoder *), GFP_KERNEL);
11067 if (!config->save_connector_encoders)
85f9eb71
DV
11068 return -ENOMEM;
11069
11070 /* Copy data. Note that driver private data is not affected.
11071 * Should anything bad happen only the expected state is
11072 * restored, not the drivers personal bookkeeping.
11073 */
7668851f 11074 count = 0;
70e1e0ec 11075 for_each_crtc(dev, crtc) {
7668851f
VS
11076 config->save_crtc_enabled[count++] = crtc->enabled;
11077 }
11078
85f9eb71
DV
11079 count = 0;
11080 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11081 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11082 }
11083
11084 count = 0;
11085 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11086 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11087 }
11088
11089 return 0;
11090}
11091
11092static void intel_set_config_restore_state(struct drm_device *dev,
11093 struct intel_set_config *config)
11094{
7668851f 11095 struct intel_crtc *crtc;
9a935856
DV
11096 struct intel_encoder *encoder;
11097 struct intel_connector *connector;
85f9eb71
DV
11098 int count;
11099
7668851f 11100 count = 0;
d3fcc808 11101 for_each_intel_crtc(dev, crtc) {
7668851f 11102 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11103
11104 if (crtc->new_enabled)
11105 crtc->new_config = &crtc->config;
11106 else
11107 crtc->new_config = NULL;
7668851f
VS
11108 }
11109
85f9eb71 11110 count = 0;
b2784e15 11111 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11112 encoder->new_crtc =
11113 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11114 }
11115
11116 count = 0;
9a935856
DV
11117 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11118 connector->new_encoder =
11119 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11120 }
11121}
11122
e3de42b6 11123static bool
2e57f47d 11124is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11125{
11126 int i;
11127
2e57f47d
CW
11128 if (set->num_connectors == 0)
11129 return false;
11130
11131 if (WARN_ON(set->connectors == NULL))
11132 return false;
11133
11134 for (i = 0; i < set->num_connectors; i++)
11135 if (set->connectors[i]->encoder &&
11136 set->connectors[i]->encoder->crtc == set->crtc &&
11137 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11138 return true;
11139
11140 return false;
11141}
11142
5e2b584e
DV
11143static void
11144intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11145 struct intel_set_config *config)
11146{
11147
11148 /* We should be able to check here if the fb has the same properties
11149 * and then just flip_or_move it */
2e57f47d
CW
11150 if (is_crtc_connector_off(set)) {
11151 config->mode_changed = true;
f4510a27 11152 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11153 /*
11154 * If we have no fb, we can only flip as long as the crtc is
11155 * active, otherwise we need a full mode set. The crtc may
11156 * be active if we've only disabled the primary plane, or
11157 * in fastboot situations.
11158 */
f4510a27 11159 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11160 struct intel_crtc *intel_crtc =
11161 to_intel_crtc(set->crtc);
11162
3b150f08 11163 if (intel_crtc->active) {
319d9827
JB
11164 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11165 config->fb_changed = true;
11166 } else {
11167 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11168 config->mode_changed = true;
11169 }
5e2b584e
DV
11170 } else if (set->fb == NULL) {
11171 config->mode_changed = true;
72f4901e 11172 } else if (set->fb->pixel_format !=
f4510a27 11173 set->crtc->primary->fb->pixel_format) {
5e2b584e 11174 config->mode_changed = true;
e3de42b6 11175 } else {
5e2b584e 11176 config->fb_changed = true;
e3de42b6 11177 }
5e2b584e
DV
11178 }
11179
835c5873 11180 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11181 config->fb_changed = true;
11182
11183 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11184 DRM_DEBUG_KMS("modes are different, full mode set\n");
11185 drm_mode_debug_printmodeline(&set->crtc->mode);
11186 drm_mode_debug_printmodeline(set->mode);
11187 config->mode_changed = true;
11188 }
a1d95703
CW
11189
11190 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11191 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11192}
11193
2e431051 11194static int
9a935856
DV
11195intel_modeset_stage_output_state(struct drm_device *dev,
11196 struct drm_mode_set *set,
11197 struct intel_set_config *config)
50f56119 11198{
9a935856
DV
11199 struct intel_connector *connector;
11200 struct intel_encoder *encoder;
7668851f 11201 struct intel_crtc *crtc;
f3f08572 11202 int ro;
50f56119 11203
9abdda74 11204 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11205 * of connectors. For paranoia, double-check this. */
11206 WARN_ON(!set->fb && (set->num_connectors != 0));
11207 WARN_ON(set->fb && (set->num_connectors == 0));
11208
9a935856
DV
11209 list_for_each_entry(connector, &dev->mode_config.connector_list,
11210 base.head) {
11211 /* Otherwise traverse passed in connector list and get encoders
11212 * for them. */
50f56119 11213 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11214 if (set->connectors[ro] == &connector->base) {
0e32b39c 11215 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11216 break;
11217 }
11218 }
11219
9a935856
DV
11220 /* If we disable the crtc, disable all its connectors. Also, if
11221 * the connector is on the changing crtc but not on the new
11222 * connector list, disable it. */
11223 if ((!set->fb || ro == set->num_connectors) &&
11224 connector->base.encoder &&
11225 connector->base.encoder->crtc == set->crtc) {
11226 connector->new_encoder = NULL;
11227
11228 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11229 connector->base.base.id,
c23cc417 11230 connector->base.name);
9a935856
DV
11231 }
11232
11233
11234 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11235 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11236 config->mode_changed = true;
50f56119
DV
11237 }
11238 }
9a935856 11239 /* connector->new_encoder is now updated for all connectors. */
50f56119 11240
9a935856 11241 /* Update crtc of enabled connectors. */
9a935856
DV
11242 list_for_each_entry(connector, &dev->mode_config.connector_list,
11243 base.head) {
7668851f
VS
11244 struct drm_crtc *new_crtc;
11245
9a935856 11246 if (!connector->new_encoder)
50f56119
DV
11247 continue;
11248
9a935856 11249 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11250
11251 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11252 if (set->connectors[ro] == &connector->base)
50f56119
DV
11253 new_crtc = set->crtc;
11254 }
11255
11256 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11257 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11258 new_crtc)) {
5e2b584e 11259 return -EINVAL;
50f56119 11260 }
0e32b39c 11261 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11262
11263 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11264 connector->base.base.id,
c23cc417 11265 connector->base.name,
9a935856
DV
11266 new_crtc->base.id);
11267 }
11268
11269 /* Check for any encoders that needs to be disabled. */
b2784e15 11270 for_each_intel_encoder(dev, encoder) {
5a65f358 11271 int num_connectors = 0;
9a935856
DV
11272 list_for_each_entry(connector,
11273 &dev->mode_config.connector_list,
11274 base.head) {
11275 if (connector->new_encoder == encoder) {
11276 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11277 num_connectors++;
9a935856
DV
11278 }
11279 }
5a65f358
PZ
11280
11281 if (num_connectors == 0)
11282 encoder->new_crtc = NULL;
11283 else if (num_connectors > 1)
11284 return -EINVAL;
11285
9a935856
DV
11286 /* Only now check for crtc changes so we don't miss encoders
11287 * that will be disabled. */
11288 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11289 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11290 config->mode_changed = true;
50f56119
DV
11291 }
11292 }
9a935856 11293 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11294 list_for_each_entry(connector, &dev->mode_config.connector_list,
11295 base.head) {
11296 if (connector->new_encoder)
11297 if (connector->new_encoder != connector->encoder)
11298 connector->encoder = connector->new_encoder;
11299 }
d3fcc808 11300 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11301 crtc->new_enabled = false;
11302
b2784e15 11303 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11304 if (encoder->new_crtc == crtc) {
11305 crtc->new_enabled = true;
11306 break;
11307 }
11308 }
11309
11310 if (crtc->new_enabled != crtc->base.enabled) {
11311 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11312 crtc->new_enabled ? "en" : "dis");
11313 config->mode_changed = true;
11314 }
7bd0a8e7
VS
11315
11316 if (crtc->new_enabled)
11317 crtc->new_config = &crtc->config;
11318 else
11319 crtc->new_config = NULL;
7668851f
VS
11320 }
11321
2e431051
DV
11322 return 0;
11323}
11324
7d00a1f5
VS
11325static void disable_crtc_nofb(struct intel_crtc *crtc)
11326{
11327 struct drm_device *dev = crtc->base.dev;
11328 struct intel_encoder *encoder;
11329 struct intel_connector *connector;
11330
11331 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11332 pipe_name(crtc->pipe));
11333
11334 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11335 if (connector->new_encoder &&
11336 connector->new_encoder->new_crtc == crtc)
11337 connector->new_encoder = NULL;
11338 }
11339
b2784e15 11340 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11341 if (encoder->new_crtc == crtc)
11342 encoder->new_crtc = NULL;
11343 }
11344
11345 crtc->new_enabled = false;
7bd0a8e7 11346 crtc->new_config = NULL;
7d00a1f5
VS
11347}
11348
2e431051
DV
11349static int intel_crtc_set_config(struct drm_mode_set *set)
11350{
11351 struct drm_device *dev;
2e431051
DV
11352 struct drm_mode_set save_set;
11353 struct intel_set_config *config;
11354 int ret;
2e431051 11355
8d3e375e
DV
11356 BUG_ON(!set);
11357 BUG_ON(!set->crtc);
11358 BUG_ON(!set->crtc->helper_private);
2e431051 11359
7e53f3a4
DV
11360 /* Enforce sane interface api - has been abused by the fb helper. */
11361 BUG_ON(!set->mode && set->fb);
11362 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11363
2e431051
DV
11364 if (set->fb) {
11365 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11366 set->crtc->base.id, set->fb->base.id,
11367 (int)set->num_connectors, set->x, set->y);
11368 } else {
11369 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11370 }
11371
11372 dev = set->crtc->dev;
11373
11374 ret = -ENOMEM;
11375 config = kzalloc(sizeof(*config), GFP_KERNEL);
11376 if (!config)
11377 goto out_config;
11378
11379 ret = intel_set_config_save_state(dev, config);
11380 if (ret)
11381 goto out_config;
11382
11383 save_set.crtc = set->crtc;
11384 save_set.mode = &set->crtc->mode;
11385 save_set.x = set->crtc->x;
11386 save_set.y = set->crtc->y;
f4510a27 11387 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11388
11389 /* Compute whether we need a full modeset, only an fb base update or no
11390 * change at all. In the future we might also check whether only the
11391 * mode changed, e.g. for LVDS where we only change the panel fitter in
11392 * such cases. */
11393 intel_set_config_compute_mode_changes(set, config);
11394
9a935856 11395 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11396 if (ret)
11397 goto fail;
11398
5e2b584e 11399 if (config->mode_changed) {
c0c36b94
CW
11400 ret = intel_set_mode(set->crtc, set->mode,
11401 set->x, set->y, set->fb);
5e2b584e 11402 } else if (config->fb_changed) {
3b150f08
MR
11403 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11404
4878cae2
VS
11405 intel_crtc_wait_for_pending_flips(set->crtc);
11406
4f660f49 11407 ret = intel_pipe_set_base(set->crtc,
94352cf9 11408 set->x, set->y, set->fb);
3b150f08
MR
11409
11410 /*
11411 * We need to make sure the primary plane is re-enabled if it
11412 * has previously been turned off.
11413 */
11414 if (!intel_crtc->primary_enabled && ret == 0) {
11415 WARN_ON(!intel_crtc->active);
fdd508a6 11416 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11417 }
11418
7ca51a3a
JB
11419 /*
11420 * In the fastboot case this may be our only check of the
11421 * state after boot. It would be better to only do it on
11422 * the first update, but we don't have a nice way of doing that
11423 * (and really, set_config isn't used much for high freq page
11424 * flipping, so increasing its cost here shouldn't be a big
11425 * deal).
11426 */
d330a953 11427 if (i915.fastboot && ret == 0)
7ca51a3a 11428 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11429 }
11430
2d05eae1 11431 if (ret) {
bf67dfeb
DV
11432 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11433 set->crtc->base.id, ret);
50f56119 11434fail:
2d05eae1 11435 intel_set_config_restore_state(dev, config);
50f56119 11436
7d00a1f5
VS
11437 /*
11438 * HACK: if the pipe was on, but we didn't have a framebuffer,
11439 * force the pipe off to avoid oopsing in the modeset code
11440 * due to fb==NULL. This should only happen during boot since
11441 * we don't yet reconstruct the FB from the hardware state.
11442 */
11443 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11444 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11445
2d05eae1
CW
11446 /* Try to restore the config */
11447 if (config->mode_changed &&
11448 intel_set_mode(save_set.crtc, save_set.mode,
11449 save_set.x, save_set.y, save_set.fb))
11450 DRM_ERROR("failed to restore config after modeset failure\n");
11451 }
50f56119 11452
d9e55608
DV
11453out_config:
11454 intel_set_config_free(config);
50f56119
DV
11455 return ret;
11456}
f6e5b160
CW
11457
11458static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11459 .gamma_set = intel_crtc_gamma_set,
50f56119 11460 .set_config = intel_crtc_set_config,
f6e5b160
CW
11461 .destroy = intel_crtc_destroy,
11462 .page_flip = intel_crtc_page_flip,
11463};
11464
5358901f
DV
11465static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11466 struct intel_shared_dpll *pll,
11467 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11468{
5358901f 11469 uint32_t val;
ee7b9f93 11470
bd2bb1b9
PZ
11471 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11472 return false;
11473
5358901f 11474 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11475 hw_state->dpll = val;
11476 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11477 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11478
11479 return val & DPLL_VCO_ENABLE;
11480}
11481
15bdd4cf
DV
11482static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11483 struct intel_shared_dpll *pll)
11484{
11485 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11486 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11487}
11488
e7b903d2
DV
11489static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11490 struct intel_shared_dpll *pll)
11491{
e7b903d2 11492 /* PCH refclock must be enabled first */
89eff4be 11493 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11494
15bdd4cf
DV
11495 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11496
11497 /* Wait for the clocks to stabilize. */
11498 POSTING_READ(PCH_DPLL(pll->id));
11499 udelay(150);
11500
11501 /* The pixel multiplier can only be updated once the
11502 * DPLL is enabled and the clocks are stable.
11503 *
11504 * So write it again.
11505 */
11506 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11507 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11508 udelay(200);
11509}
11510
11511static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11512 struct intel_shared_dpll *pll)
11513{
11514 struct drm_device *dev = dev_priv->dev;
11515 struct intel_crtc *crtc;
e7b903d2
DV
11516
11517 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11518 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11519 if (intel_crtc_to_shared_dpll(crtc) == pll)
11520 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11521 }
11522
15bdd4cf
DV
11523 I915_WRITE(PCH_DPLL(pll->id), 0);
11524 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11525 udelay(200);
11526}
11527
46edb027
DV
11528static char *ibx_pch_dpll_names[] = {
11529 "PCH DPLL A",
11530 "PCH DPLL B",
11531};
11532
7c74ade1 11533static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11534{
e7b903d2 11535 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11536 int i;
11537
7c74ade1 11538 dev_priv->num_shared_dpll = 2;
ee7b9f93 11539
e72f9fbf 11540 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11541 dev_priv->shared_dplls[i].id = i;
11542 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11543 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11544 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11545 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11546 dev_priv->shared_dplls[i].get_hw_state =
11547 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11548 }
11549}
11550
7c74ade1
DV
11551static void intel_shared_dpll_init(struct drm_device *dev)
11552{
e7b903d2 11553 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11554
9cd86933
DV
11555 if (HAS_DDI(dev))
11556 intel_ddi_pll_init(dev);
11557 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11558 ibx_pch_dpll_init(dev);
11559 else
11560 dev_priv->num_shared_dpll = 0;
11561
11562 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11563}
11564
465c120c
MR
11565static int
11566intel_primary_plane_disable(struct drm_plane *plane)
11567{
11568 struct drm_device *dev = plane->dev;
465c120c
MR
11569 struct intel_crtc *intel_crtc;
11570
11571 if (!plane->fb)
11572 return 0;
11573
11574 BUG_ON(!plane->crtc);
11575
11576 intel_crtc = to_intel_crtc(plane->crtc);
11577
11578 /*
11579 * Even though we checked plane->fb above, it's still possible that
11580 * the primary plane has been implicitly disabled because the crtc
11581 * coordinates given weren't visible, or because we detected
11582 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11583 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11584 * In either case, we need to unpin the FB and let the fb pointer get
11585 * updated, but otherwise we don't need to touch the hardware.
11586 */
11587 if (!intel_crtc->primary_enabled)
11588 goto disable_unpin;
11589
11590 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11591 intel_disable_primary_hw_plane(plane, plane->crtc);
11592
465c120c 11593disable_unpin:
4c34574f 11594 mutex_lock(&dev->struct_mutex);
2ff8fde1 11595 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11596 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11597 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11598 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11599 plane->fb = NULL;
11600
11601 return 0;
11602}
11603
11604static int
11605intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11606 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11607 unsigned int crtc_w, unsigned int crtc_h,
11608 uint32_t src_x, uint32_t src_y,
11609 uint32_t src_w, uint32_t src_h)
11610{
11611 struct drm_device *dev = crtc->dev;
48404c1e 11612 struct drm_i915_private *dev_priv = dev->dev_private;
465c120c 11613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1
MR
11614 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11615 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11616 struct drm_rect dest = {
11617 /* integer pixels */
11618 .x1 = crtc_x,
11619 .y1 = crtc_y,
11620 .x2 = crtc_x + crtc_w,
11621 .y2 = crtc_y + crtc_h,
11622 };
11623 struct drm_rect src = {
11624 /* 16.16 fixed point */
11625 .x1 = src_x,
11626 .y1 = src_y,
11627 .x2 = src_x + src_w,
11628 .y2 = src_y + src_h,
11629 };
11630 const struct drm_rect clip = {
11631 /* integer pixels */
11632 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11633 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11634 };
ce54d85a
SJ
11635 const struct {
11636 int crtc_x, crtc_y;
11637 unsigned int crtc_w, crtc_h;
11638 uint32_t src_x, src_y, src_w, src_h;
11639 } orig = {
11640 .crtc_x = crtc_x,
11641 .crtc_y = crtc_y,
11642 .crtc_w = crtc_w,
11643 .crtc_h = crtc_h,
11644 .src_x = src_x,
11645 .src_y = src_y,
11646 .src_w = src_w,
11647 .src_h = src_h,
11648 };
11649 struct intel_plane *intel_plane = to_intel_plane(plane);
465c120c
MR
11650 bool visible;
11651 int ret;
11652
11653 ret = drm_plane_helper_check_update(plane, crtc, fb,
11654 &src, &dest, &clip,
11655 DRM_PLANE_HELPER_NO_SCALING,
11656 DRM_PLANE_HELPER_NO_SCALING,
11657 false, true, &visible);
11658
11659 if (ret)
11660 return ret;
11661
11662 /*
11663 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11664 * updating the fb pointer, and returning without touching the
11665 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11666 * turn on the display with all planes setup as desired.
11667 */
11668 if (!crtc->enabled) {
4c34574f
MR
11669 mutex_lock(&dev->struct_mutex);
11670
465c120c
MR
11671 /*
11672 * If we already called setplane while the crtc was disabled,
11673 * we may have an fb pinned; unpin it.
11674 */
11675 if (plane->fb)
a071fa00
DV
11676 intel_unpin_fb_obj(old_obj);
11677
11678 i915_gem_track_fb(old_obj, obj,
11679 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11680
11681 /* Pin and return without programming hardware */
4c34574f
MR
11682 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11683 mutex_unlock(&dev->struct_mutex);
11684
11685 return ret;
465c120c
MR
11686 }
11687
11688 intel_crtc_wait_for_pending_flips(crtc);
11689
11690 /*
11691 * If clipping results in a non-visible primary plane, we'll disable
11692 * the primary plane. Note that this is a bit different than what
11693 * happens if userspace explicitly disables the plane by passing fb=0
11694 * because plane->fb still gets set and pinned.
11695 */
11696 if (!visible) {
4c34574f
MR
11697 mutex_lock(&dev->struct_mutex);
11698
465c120c
MR
11699 /*
11700 * Try to pin the new fb first so that we can bail out if we
11701 * fail.
11702 */
11703 if (plane->fb != fb) {
a071fa00 11704 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11705 if (ret) {
11706 mutex_unlock(&dev->struct_mutex);
465c120c 11707 return ret;
4c34574f 11708 }
465c120c
MR
11709 }
11710
a071fa00
DV
11711 i915_gem_track_fb(old_obj, obj,
11712 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11713
465c120c 11714 if (intel_crtc->primary_enabled)
fdd508a6 11715 intel_disable_primary_hw_plane(plane, crtc);
465c120c
MR
11716
11717
11718 if (plane->fb != fb)
11719 if (plane->fb)
a071fa00 11720 intel_unpin_fb_obj(old_obj);
465c120c 11721
4c34574f
MR
11722 mutex_unlock(&dev->struct_mutex);
11723
ce54d85a 11724 } else {
48404c1e
SJ
11725 if (intel_crtc && intel_crtc->active &&
11726 intel_crtc->primary_enabled) {
11727 /*
11728 * FBC does not work on some platforms for rotated
11729 * planes, so disable it when rotation is not 0 and
11730 * update it when rotation is set back to 0.
11731 *
11732 * FIXME: This is redundant with the fbc update done in
11733 * the primary plane enable function except that that
11734 * one is done too late. We eventually need to unify
11735 * this.
11736 */
11737 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11738 dev_priv->fbc.plane == intel_crtc->plane &&
11739 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11740 intel_disable_fbc(dev);
11741 }
11742 }
ce54d85a
SJ
11743 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11744 if (ret)
11745 return ret;
465c120c 11746
ce54d85a
SJ
11747 if (!intel_crtc->primary_enabled)
11748 intel_enable_primary_hw_plane(plane, crtc);
11749 }
465c120c 11750
ce54d85a
SJ
11751 intel_plane->crtc_x = orig.crtc_x;
11752 intel_plane->crtc_y = orig.crtc_y;
11753 intel_plane->crtc_w = orig.crtc_w;
11754 intel_plane->crtc_h = orig.crtc_h;
11755 intel_plane->src_x = orig.src_x;
11756 intel_plane->src_y = orig.src_y;
11757 intel_plane->src_w = orig.src_w;
11758 intel_plane->src_h = orig.src_h;
11759 intel_plane->obj = obj;
465c120c
MR
11760
11761 return 0;
11762}
11763
3d7d6510
MR
11764/* Common destruction function for both primary and cursor planes */
11765static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11766{
11767 struct intel_plane *intel_plane = to_intel_plane(plane);
11768 drm_plane_cleanup(plane);
11769 kfree(intel_plane);
11770}
11771
11772static const struct drm_plane_funcs intel_primary_plane_funcs = {
11773 .update_plane = intel_primary_plane_setplane,
11774 .disable_plane = intel_primary_plane_disable,
3d7d6510 11775 .destroy = intel_plane_destroy,
48404c1e 11776 .set_property = intel_plane_set_property
465c120c
MR
11777};
11778
11779static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11780 int pipe)
11781{
11782 struct intel_plane *primary;
11783 const uint32_t *intel_primary_formats;
11784 int num_formats;
11785
11786 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11787 if (primary == NULL)
11788 return NULL;
11789
11790 primary->can_scale = false;
11791 primary->max_downscale = 1;
11792 primary->pipe = pipe;
11793 primary->plane = pipe;
48404c1e 11794 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
11795 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11796 primary->plane = !pipe;
11797
11798 if (INTEL_INFO(dev)->gen <= 3) {
11799 intel_primary_formats = intel_primary_formats_gen2;
11800 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11801 } else {
11802 intel_primary_formats = intel_primary_formats_gen4;
11803 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11804 }
11805
11806 drm_universal_plane_init(dev, &primary->base, 0,
11807 &intel_primary_plane_funcs,
11808 intel_primary_formats, num_formats,
11809 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
11810
11811 if (INTEL_INFO(dev)->gen >= 4) {
11812 if (!dev->mode_config.rotation_property)
11813 dev->mode_config.rotation_property =
11814 drm_mode_create_rotation_property(dev,
11815 BIT(DRM_ROTATE_0) |
11816 BIT(DRM_ROTATE_180));
11817 if (dev->mode_config.rotation_property)
11818 drm_object_attach_property(&primary->base.base,
11819 dev->mode_config.rotation_property,
11820 primary->rotation);
11821 }
11822
465c120c
MR
11823 return &primary->base;
11824}
11825
3d7d6510
MR
11826static int
11827intel_cursor_plane_disable(struct drm_plane *plane)
11828{
11829 if (!plane->fb)
11830 return 0;
11831
11832 BUG_ON(!plane->crtc);
11833
11834 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11835}
11836
11837static int
11838intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11839 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11840 unsigned int crtc_w, unsigned int crtc_h,
11841 uint32_t src_x, uint32_t src_y,
11842 uint32_t src_w, uint32_t src_h)
11843{
11844 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11845 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11846 struct drm_i915_gem_object *obj = intel_fb->obj;
11847 struct drm_rect dest = {
11848 /* integer pixels */
11849 .x1 = crtc_x,
11850 .y1 = crtc_y,
11851 .x2 = crtc_x + crtc_w,
11852 .y2 = crtc_y + crtc_h,
11853 };
11854 struct drm_rect src = {
11855 /* 16.16 fixed point */
11856 .x1 = src_x,
11857 .y1 = src_y,
11858 .x2 = src_x + src_w,
11859 .y2 = src_y + src_h,
11860 };
11861 const struct drm_rect clip = {
11862 /* integer pixels */
1add143c
VS
11863 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11864 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
3d7d6510
MR
11865 };
11866 bool visible;
11867 int ret;
11868
11869 ret = drm_plane_helper_check_update(plane, crtc, fb,
11870 &src, &dest, &clip,
11871 DRM_PLANE_HELPER_NO_SCALING,
11872 DRM_PLANE_HELPER_NO_SCALING,
11873 true, true, &visible);
11874 if (ret)
11875 return ret;
11876
11877 crtc->cursor_x = crtc_x;
11878 crtc->cursor_y = crtc_y;
11879 if (fb != crtc->cursor->fb) {
11880 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11881 } else {
11882 intel_crtc_update_cursor(crtc, visible);
4ed91096
DV
11883
11884 intel_frontbuffer_flip(crtc->dev,
11885 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
11886
3d7d6510
MR
11887 return 0;
11888 }
11889}
11890static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11891 .update_plane = intel_cursor_plane_update,
11892 .disable_plane = intel_cursor_plane_disable,
11893 .destroy = intel_plane_destroy,
11894};
11895
11896static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11897 int pipe)
11898{
11899 struct intel_plane *cursor;
11900
11901 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11902 if (cursor == NULL)
11903 return NULL;
11904
11905 cursor->can_scale = false;
11906 cursor->max_downscale = 1;
11907 cursor->pipe = pipe;
11908 cursor->plane = pipe;
11909
11910 drm_universal_plane_init(dev, &cursor->base, 0,
11911 &intel_cursor_plane_funcs,
11912 intel_cursor_formats,
11913 ARRAY_SIZE(intel_cursor_formats),
11914 DRM_PLANE_TYPE_CURSOR);
11915 return &cursor->base;
11916}
11917
b358d0a6 11918static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11919{
fbee40df 11920 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11921 struct intel_crtc *intel_crtc;
3d7d6510
MR
11922 struct drm_plane *primary = NULL;
11923 struct drm_plane *cursor = NULL;
465c120c 11924 int i, ret;
79e53945 11925
955382f3 11926 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11927 if (intel_crtc == NULL)
11928 return;
11929
465c120c 11930 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11931 if (!primary)
11932 goto fail;
11933
11934 cursor = intel_cursor_plane_create(dev, pipe);
11935 if (!cursor)
11936 goto fail;
11937
465c120c 11938 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11939 cursor, &intel_crtc_funcs);
11940 if (ret)
11941 goto fail;
79e53945
JB
11942
11943 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11944 for (i = 0; i < 256; i++) {
11945 intel_crtc->lut_r[i] = i;
11946 intel_crtc->lut_g[i] = i;
11947 intel_crtc->lut_b[i] = i;
11948 }
11949
1f1c2e24
VS
11950 /*
11951 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11952 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11953 */
80824003
JB
11954 intel_crtc->pipe = pipe;
11955 intel_crtc->plane = pipe;
3a77c4c4 11956 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11957 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11958 intel_crtc->plane = !pipe;
80824003
JB
11959 }
11960
4b0e333e
CW
11961 intel_crtc->cursor_base = ~0;
11962 intel_crtc->cursor_cntl = ~0;
dc41c154 11963 intel_crtc->cursor_size = ~0;
4b0e333e 11964
22fd0fab
JB
11965 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11966 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11967 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11968 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11969
79e53945 11970 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11971
11972 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11973 return;
11974
11975fail:
11976 if (primary)
11977 drm_plane_cleanup(primary);
11978 if (cursor)
11979 drm_plane_cleanup(cursor);
11980 kfree(intel_crtc);
79e53945
JB
11981}
11982
752aa88a
JB
11983enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11984{
11985 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11986 struct drm_device *dev = connector->base.dev;
752aa88a 11987
51fd371b 11988 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11989
11990 if (!encoder)
11991 return INVALID_PIPE;
11992
11993 return to_intel_crtc(encoder->crtc)->pipe;
11994}
11995
08d7b3d1 11996int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11997 struct drm_file *file)
08d7b3d1 11998{
08d7b3d1 11999 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12000 struct drm_crtc *drmmode_crtc;
c05422d5 12001 struct intel_crtc *crtc;
08d7b3d1 12002
1cff8f6b
DV
12003 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12004 return -ENODEV;
08d7b3d1 12005
7707e653 12006 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12007
7707e653 12008 if (!drmmode_crtc) {
08d7b3d1 12009 DRM_ERROR("no such CRTC id\n");
3f2c2057 12010 return -ENOENT;
08d7b3d1
CW
12011 }
12012
7707e653 12013 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12014 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12015
c05422d5 12016 return 0;
08d7b3d1
CW
12017}
12018
66a9278e 12019static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12020{
66a9278e
DV
12021 struct drm_device *dev = encoder->base.dev;
12022 struct intel_encoder *source_encoder;
79e53945 12023 int index_mask = 0;
79e53945
JB
12024 int entry = 0;
12025
b2784e15 12026 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12027 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12028 index_mask |= (1 << entry);
12029
79e53945
JB
12030 entry++;
12031 }
4ef69c7a 12032
79e53945
JB
12033 return index_mask;
12034}
12035
4d302442
CW
12036static bool has_edp_a(struct drm_device *dev)
12037{
12038 struct drm_i915_private *dev_priv = dev->dev_private;
12039
12040 if (!IS_MOBILE(dev))
12041 return false;
12042
12043 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12044 return false;
12045
e3589908 12046 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12047 return false;
12048
12049 return true;
12050}
12051
ba0fbca4
DL
12052const char *intel_output_name(int output)
12053{
12054 static const char *names[] = {
12055 [INTEL_OUTPUT_UNUSED] = "Unused",
12056 [INTEL_OUTPUT_ANALOG] = "Analog",
12057 [INTEL_OUTPUT_DVO] = "DVO",
12058 [INTEL_OUTPUT_SDVO] = "SDVO",
12059 [INTEL_OUTPUT_LVDS] = "LVDS",
12060 [INTEL_OUTPUT_TVOUT] = "TV",
12061 [INTEL_OUTPUT_HDMI] = "HDMI",
12062 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12063 [INTEL_OUTPUT_EDP] = "eDP",
12064 [INTEL_OUTPUT_DSI] = "DSI",
12065 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12066 };
12067
12068 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12069 return "Invalid";
12070
12071 return names[output];
12072}
12073
84b4e042
JB
12074static bool intel_crt_present(struct drm_device *dev)
12075{
12076 struct drm_i915_private *dev_priv = dev->dev_private;
12077
12078 if (IS_ULT(dev))
12079 return false;
12080
12081 if (IS_CHERRYVIEW(dev))
12082 return false;
12083
12084 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12085 return false;
12086
12087 return true;
12088}
12089
79e53945
JB
12090static void intel_setup_outputs(struct drm_device *dev)
12091{
725e30ad 12092 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12093 struct intel_encoder *encoder;
cb0953d7 12094 bool dpd_is_edp = false;
79e53945 12095
c9093354 12096 intel_lvds_init(dev);
79e53945 12097
84b4e042 12098 if (intel_crt_present(dev))
79935fca 12099 intel_crt_init(dev);
cb0953d7 12100
affa9354 12101 if (HAS_DDI(dev)) {
0e72a5b5
ED
12102 int found;
12103
12104 /* Haswell uses DDI functions to detect digital outputs */
12105 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12106 /* DDI A only supports eDP */
12107 if (found)
12108 intel_ddi_init(dev, PORT_A);
12109
12110 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12111 * register */
12112 found = I915_READ(SFUSE_STRAP);
12113
12114 if (found & SFUSE_STRAP_DDIB_DETECTED)
12115 intel_ddi_init(dev, PORT_B);
12116 if (found & SFUSE_STRAP_DDIC_DETECTED)
12117 intel_ddi_init(dev, PORT_C);
12118 if (found & SFUSE_STRAP_DDID_DETECTED)
12119 intel_ddi_init(dev, PORT_D);
12120 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12121 int found;
5d8a7752 12122 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12123
12124 if (has_edp_a(dev))
12125 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12126
dc0fa718 12127 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12128 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12129 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12130 if (!found)
e2debe91 12131 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12132 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12133 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12134 }
12135
dc0fa718 12136 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12137 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12138
dc0fa718 12139 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12140 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12141
5eb08b69 12142 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12143 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12144
270b3042 12145 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12146 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12147 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
12148 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12149 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12150 PORT_B);
12151 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12152 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12153 }
12154
6f6005a5
JB
12155 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12156 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12157 PORT_C);
12158 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12159 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12160 }
19c03924 12161
9418c1f1
VS
12162 if (IS_CHERRYVIEW(dev)) {
12163 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12164 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12165 PORT_D);
12166 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12167 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12168 }
12169 }
12170
3cfca973 12171 intel_dsi_init(dev);
103a196f 12172 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12173 bool found = false;
7d57382e 12174
e2debe91 12175 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12176 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12177 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12178 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12179 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12180 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12181 }
27185ae1 12182
e7281eab 12183 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12184 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12185 }
13520b05
KH
12186
12187 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12188
e2debe91 12189 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12190 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12191 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12192 }
27185ae1 12193
e2debe91 12194 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12195
b01f2c3a
JB
12196 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12197 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12198 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12199 }
e7281eab 12200 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12201 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12202 }
27185ae1 12203
b01f2c3a 12204 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12205 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12206 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12207 } else if (IS_GEN2(dev))
79e53945
JB
12208 intel_dvo_init(dev);
12209
103a196f 12210 if (SUPPORTS_TV(dev))
79e53945
JB
12211 intel_tv_init(dev);
12212
7c8f8a70
RV
12213 intel_edp_psr_init(dev);
12214
b2784e15 12215 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12216 encoder->base.possible_crtcs = encoder->crtc_mask;
12217 encoder->base.possible_clones =
66a9278e 12218 intel_encoder_clones(encoder);
79e53945 12219 }
47356eb6 12220
dde86e2d 12221 intel_init_pch_refclk(dev);
270b3042
DV
12222
12223 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12224}
12225
12226static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12227{
60a5ca01 12228 struct drm_device *dev = fb->dev;
79e53945 12229 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12230
ef2d633e 12231 drm_framebuffer_cleanup(fb);
60a5ca01 12232 mutex_lock(&dev->struct_mutex);
ef2d633e 12233 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12234 drm_gem_object_unreference(&intel_fb->obj->base);
12235 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12236 kfree(intel_fb);
12237}
12238
12239static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12240 struct drm_file *file,
79e53945
JB
12241 unsigned int *handle)
12242{
12243 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12244 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12245
05394f39 12246 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12247}
12248
12249static const struct drm_framebuffer_funcs intel_fb_funcs = {
12250 .destroy = intel_user_framebuffer_destroy,
12251 .create_handle = intel_user_framebuffer_create_handle,
12252};
12253
b5ea642a
DV
12254static int intel_framebuffer_init(struct drm_device *dev,
12255 struct intel_framebuffer *intel_fb,
12256 struct drm_mode_fb_cmd2 *mode_cmd,
12257 struct drm_i915_gem_object *obj)
79e53945 12258{
a57ce0b2 12259 int aligned_height;
a35cdaa0 12260 int pitch_limit;
79e53945
JB
12261 int ret;
12262
dd4916c5
DV
12263 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12264
c16ed4be
CW
12265 if (obj->tiling_mode == I915_TILING_Y) {
12266 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12267 return -EINVAL;
c16ed4be 12268 }
57cd6508 12269
c16ed4be
CW
12270 if (mode_cmd->pitches[0] & 63) {
12271 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12272 mode_cmd->pitches[0]);
57cd6508 12273 return -EINVAL;
c16ed4be 12274 }
57cd6508 12275
a35cdaa0
CW
12276 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12277 pitch_limit = 32*1024;
12278 } else if (INTEL_INFO(dev)->gen >= 4) {
12279 if (obj->tiling_mode)
12280 pitch_limit = 16*1024;
12281 else
12282 pitch_limit = 32*1024;
12283 } else if (INTEL_INFO(dev)->gen >= 3) {
12284 if (obj->tiling_mode)
12285 pitch_limit = 8*1024;
12286 else
12287 pitch_limit = 16*1024;
12288 } else
12289 /* XXX DSPC is limited to 4k tiled */
12290 pitch_limit = 8*1024;
12291
12292 if (mode_cmd->pitches[0] > pitch_limit) {
12293 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12294 obj->tiling_mode ? "tiled" : "linear",
12295 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12296 return -EINVAL;
c16ed4be 12297 }
5d7bd705
VS
12298
12299 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12300 mode_cmd->pitches[0] != obj->stride) {
12301 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12302 mode_cmd->pitches[0], obj->stride);
5d7bd705 12303 return -EINVAL;
c16ed4be 12304 }
5d7bd705 12305
57779d06 12306 /* Reject formats not supported by any plane early. */
308e5bcb 12307 switch (mode_cmd->pixel_format) {
57779d06 12308 case DRM_FORMAT_C8:
04b3924d
VS
12309 case DRM_FORMAT_RGB565:
12310 case DRM_FORMAT_XRGB8888:
12311 case DRM_FORMAT_ARGB8888:
57779d06
VS
12312 break;
12313 case DRM_FORMAT_XRGB1555:
12314 case DRM_FORMAT_ARGB1555:
c16ed4be 12315 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12316 DRM_DEBUG("unsupported pixel format: %s\n",
12317 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12318 return -EINVAL;
c16ed4be 12319 }
57779d06
VS
12320 break;
12321 case DRM_FORMAT_XBGR8888:
12322 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12323 case DRM_FORMAT_XRGB2101010:
12324 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12325 case DRM_FORMAT_XBGR2101010:
12326 case DRM_FORMAT_ABGR2101010:
c16ed4be 12327 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12328 DRM_DEBUG("unsupported pixel format: %s\n",
12329 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12330 return -EINVAL;
c16ed4be 12331 }
b5626747 12332 break;
04b3924d
VS
12333 case DRM_FORMAT_YUYV:
12334 case DRM_FORMAT_UYVY:
12335 case DRM_FORMAT_YVYU:
12336 case DRM_FORMAT_VYUY:
c16ed4be 12337 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12338 DRM_DEBUG("unsupported pixel format: %s\n",
12339 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12340 return -EINVAL;
c16ed4be 12341 }
57cd6508
CW
12342 break;
12343 default:
4ee62c76
VS
12344 DRM_DEBUG("unsupported pixel format: %s\n",
12345 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12346 return -EINVAL;
12347 }
12348
90f9a336
VS
12349 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12350 if (mode_cmd->offsets[0] != 0)
12351 return -EINVAL;
12352
a57ce0b2
JB
12353 aligned_height = intel_align_height(dev, mode_cmd->height,
12354 obj->tiling_mode);
53155c0a
DV
12355 /* FIXME drm helper for size checks (especially planar formats)? */
12356 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12357 return -EINVAL;
12358
c7d73f6a
DV
12359 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12360 intel_fb->obj = obj;
80075d49 12361 intel_fb->obj->framebuffer_references++;
c7d73f6a 12362
79e53945
JB
12363 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12364 if (ret) {
12365 DRM_ERROR("framebuffer init failed %d\n", ret);
12366 return ret;
12367 }
12368
79e53945
JB
12369 return 0;
12370}
12371
79e53945
JB
12372static struct drm_framebuffer *
12373intel_user_framebuffer_create(struct drm_device *dev,
12374 struct drm_file *filp,
308e5bcb 12375 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12376{
05394f39 12377 struct drm_i915_gem_object *obj;
79e53945 12378
308e5bcb
JB
12379 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12380 mode_cmd->handles[0]));
c8725226 12381 if (&obj->base == NULL)
cce13ff7 12382 return ERR_PTR(-ENOENT);
79e53945 12383
d2dff872 12384 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12385}
12386
4520f53a 12387#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12388static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12389{
12390}
12391#endif
12392
79e53945 12393static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12394 .fb_create = intel_user_framebuffer_create,
0632fef6 12395 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12396};
12397
e70236a8
JB
12398/* Set up chip specific display functions */
12399static void intel_init_display(struct drm_device *dev)
12400{
12401 struct drm_i915_private *dev_priv = dev->dev_private;
12402
ee9300bb
DV
12403 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12404 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12405 else if (IS_CHERRYVIEW(dev))
12406 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12407 else if (IS_VALLEYVIEW(dev))
12408 dev_priv->display.find_dpll = vlv_find_best_dpll;
12409 else if (IS_PINEVIEW(dev))
12410 dev_priv->display.find_dpll = pnv_find_best_dpll;
12411 else
12412 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12413
affa9354 12414 if (HAS_DDI(dev)) {
0e8ffe1b 12415 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12416 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12417 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12418 dev_priv->display.crtc_enable = haswell_crtc_enable;
12419 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12420 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12421 dev_priv->display.update_primary_plane =
12422 ironlake_update_primary_plane;
09b4ddf9 12423 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12424 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12425 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12426 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12427 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12428 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12429 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12430 dev_priv->display.update_primary_plane =
12431 ironlake_update_primary_plane;
89b667f8
JB
12432 } else if (IS_VALLEYVIEW(dev)) {
12433 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12434 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12435 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12436 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12437 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12438 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12439 dev_priv->display.update_primary_plane =
12440 i9xx_update_primary_plane;
f564048e 12441 } else {
0e8ffe1b 12442 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12443 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12444 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12445 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12446 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12447 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12448 dev_priv->display.update_primary_plane =
12449 i9xx_update_primary_plane;
f564048e 12450 }
e70236a8 12451
e70236a8 12452 /* Returns the core display clock speed */
25eb05fc
JB
12453 if (IS_VALLEYVIEW(dev))
12454 dev_priv->display.get_display_clock_speed =
12455 valleyview_get_display_clock_speed;
12456 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12457 dev_priv->display.get_display_clock_speed =
12458 i945_get_display_clock_speed;
12459 else if (IS_I915G(dev))
12460 dev_priv->display.get_display_clock_speed =
12461 i915_get_display_clock_speed;
257a7ffc 12462 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12463 dev_priv->display.get_display_clock_speed =
12464 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12465 else if (IS_PINEVIEW(dev))
12466 dev_priv->display.get_display_clock_speed =
12467 pnv_get_display_clock_speed;
e70236a8
JB
12468 else if (IS_I915GM(dev))
12469 dev_priv->display.get_display_clock_speed =
12470 i915gm_get_display_clock_speed;
12471 else if (IS_I865G(dev))
12472 dev_priv->display.get_display_clock_speed =
12473 i865_get_display_clock_speed;
f0f8a9ce 12474 else if (IS_I85X(dev))
e70236a8
JB
12475 dev_priv->display.get_display_clock_speed =
12476 i855_get_display_clock_speed;
12477 else /* 852, 830 */
12478 dev_priv->display.get_display_clock_speed =
12479 i830_get_display_clock_speed;
12480
3bb11b53 12481 if (IS_G4X(dev)) {
e0dac65e 12482 dev_priv->display.write_eld = g4x_write_eld;
3bb11b53
SJ
12483 } else if (IS_GEN5(dev)) {
12484 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12485 dev_priv->display.write_eld = ironlake_write_eld;
12486 } else if (IS_GEN6(dev)) {
12487 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12488 dev_priv->display.write_eld = ironlake_write_eld;
12489 dev_priv->display.modeset_global_resources =
12490 snb_modeset_global_resources;
12491 } else if (IS_IVYBRIDGE(dev)) {
12492 /* FIXME: detect B0+ stepping and use auto training */
12493 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12494 dev_priv->display.write_eld = ironlake_write_eld;
12495 dev_priv->display.modeset_global_resources =
12496 ivb_modeset_global_resources;
12497 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
12498 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12499 dev_priv->display.write_eld = haswell_write_eld;
12500 dev_priv->display.modeset_global_resources =
12501 haswell_modeset_global_resources;
30a970c6
JB
12502 } else if (IS_VALLEYVIEW(dev)) {
12503 dev_priv->display.modeset_global_resources =
12504 valleyview_modeset_global_resources;
9ca2fe73 12505 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12506 }
8c9f3aaf
JB
12507
12508 /* Default just returns -ENODEV to indicate unsupported */
12509 dev_priv->display.queue_flip = intel_default_queue_flip;
12510
12511 switch (INTEL_INFO(dev)->gen) {
12512 case 2:
12513 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12514 break;
12515
12516 case 3:
12517 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12518 break;
12519
12520 case 4:
12521 case 5:
12522 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12523 break;
12524
12525 case 6:
12526 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12527 break;
7c9017e5 12528 case 7:
4e0bbc31 12529 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12530 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12531 break;
8c9f3aaf 12532 }
7bd688cd
JN
12533
12534 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12535}
12536
b690e96c
JB
12537/*
12538 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12539 * resume, or other times. This quirk makes sure that's the case for
12540 * affected systems.
12541 */
0206e353 12542static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12543{
12544 struct drm_i915_private *dev_priv = dev->dev_private;
12545
12546 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12547 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12548}
12549
435793df
KP
12550/*
12551 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12552 */
12553static void quirk_ssc_force_disable(struct drm_device *dev)
12554{
12555 struct drm_i915_private *dev_priv = dev->dev_private;
12556 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12557 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12558}
12559
4dca20ef 12560/*
5a15ab5b
CE
12561 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12562 * brightness value
4dca20ef
CE
12563 */
12564static void quirk_invert_brightness(struct drm_device *dev)
12565{
12566 struct drm_i915_private *dev_priv = dev->dev_private;
12567 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12568 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12569}
12570
9c72cc6f
SD
12571/* Some VBT's incorrectly indicate no backlight is present */
12572static void quirk_backlight_present(struct drm_device *dev)
12573{
12574 struct drm_i915_private *dev_priv = dev->dev_private;
12575 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12576 DRM_INFO("applying backlight present quirk\n");
12577}
12578
b690e96c
JB
12579struct intel_quirk {
12580 int device;
12581 int subsystem_vendor;
12582 int subsystem_device;
12583 void (*hook)(struct drm_device *dev);
12584};
12585
5f85f176
EE
12586/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12587struct intel_dmi_quirk {
12588 void (*hook)(struct drm_device *dev);
12589 const struct dmi_system_id (*dmi_id_list)[];
12590};
12591
12592static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12593{
12594 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12595 return 1;
12596}
12597
12598static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12599 {
12600 .dmi_id_list = &(const struct dmi_system_id[]) {
12601 {
12602 .callback = intel_dmi_reverse_brightness,
12603 .ident = "NCR Corporation",
12604 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12605 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12606 },
12607 },
12608 { } /* terminating entry */
12609 },
12610 .hook = quirk_invert_brightness,
12611 },
12612};
12613
c43b5634 12614static struct intel_quirk intel_quirks[] = {
b690e96c 12615 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12616 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12617
b690e96c
JB
12618 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12619 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12620
b690e96c
JB
12621 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12622 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12623
435793df
KP
12624 /* Lenovo U160 cannot use SSC on LVDS */
12625 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12626
12627 /* Sony Vaio Y cannot use SSC on LVDS */
12628 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12629
be505f64
AH
12630 /* Acer Aspire 5734Z must invert backlight brightness */
12631 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12632
12633 /* Acer/eMachines G725 */
12634 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12635
12636 /* Acer/eMachines e725 */
12637 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12638
12639 /* Acer/Packard Bell NCL20 */
12640 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12641
12642 /* Acer Aspire 4736Z */
12643 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12644
12645 /* Acer Aspire 5336 */
12646 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12647
12648 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12649 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c
SD
12650
12651 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12652 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12653
12654 /* HP Chromebook 14 (Celeron 2955U) */
12655 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12656};
12657
12658static void intel_init_quirks(struct drm_device *dev)
12659{
12660 struct pci_dev *d = dev->pdev;
12661 int i;
12662
12663 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12664 struct intel_quirk *q = &intel_quirks[i];
12665
12666 if (d->device == q->device &&
12667 (d->subsystem_vendor == q->subsystem_vendor ||
12668 q->subsystem_vendor == PCI_ANY_ID) &&
12669 (d->subsystem_device == q->subsystem_device ||
12670 q->subsystem_device == PCI_ANY_ID))
12671 q->hook(dev);
12672 }
5f85f176
EE
12673 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12674 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12675 intel_dmi_quirks[i].hook(dev);
12676 }
b690e96c
JB
12677}
12678
9cce37f4
JB
12679/* Disable the VGA plane that we never use */
12680static void i915_disable_vga(struct drm_device *dev)
12681{
12682 struct drm_i915_private *dev_priv = dev->dev_private;
12683 u8 sr1;
766aa1c4 12684 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12685
2b37c616 12686 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12687 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12688 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12689 sr1 = inb(VGA_SR_DATA);
12690 outb(sr1 | 1<<5, VGA_SR_DATA);
12691 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12692 udelay(300);
12693
12694 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12695 POSTING_READ(vga_reg);
12696}
12697
f817586c
DV
12698void intel_modeset_init_hw(struct drm_device *dev)
12699{
a8f78b58
ED
12700 intel_prepare_ddi(dev);
12701
f8bf63fd
VS
12702 if (IS_VALLEYVIEW(dev))
12703 vlv_update_cdclk(dev);
12704
f817586c
DV
12705 intel_init_clock_gating(dev);
12706
8090c6b9 12707 intel_enable_gt_powersave(dev);
f817586c
DV
12708}
12709
7d708ee4
ID
12710void intel_modeset_suspend_hw(struct drm_device *dev)
12711{
12712 intel_suspend_hw(dev);
12713}
12714
79e53945
JB
12715void intel_modeset_init(struct drm_device *dev)
12716{
652c393a 12717 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12718 int sprite, ret;
8cc87b75 12719 enum pipe pipe;
46f297fb 12720 struct intel_crtc *crtc;
79e53945
JB
12721
12722 drm_mode_config_init(dev);
12723
12724 dev->mode_config.min_width = 0;
12725 dev->mode_config.min_height = 0;
12726
019d96cb
DA
12727 dev->mode_config.preferred_depth = 24;
12728 dev->mode_config.prefer_shadow = 1;
12729
e6ecefaa 12730 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12731
b690e96c
JB
12732 intel_init_quirks(dev);
12733
1fa61106
ED
12734 intel_init_pm(dev);
12735
e3c74757
BW
12736 if (INTEL_INFO(dev)->num_pipes == 0)
12737 return;
12738
e70236a8
JB
12739 intel_init_display(dev);
12740
a6c45cf0
CW
12741 if (IS_GEN2(dev)) {
12742 dev->mode_config.max_width = 2048;
12743 dev->mode_config.max_height = 2048;
12744 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12745 dev->mode_config.max_width = 4096;
12746 dev->mode_config.max_height = 4096;
79e53945 12747 } else {
a6c45cf0
CW
12748 dev->mode_config.max_width = 8192;
12749 dev->mode_config.max_height = 8192;
79e53945 12750 }
068be561 12751
dc41c154
VS
12752 if (IS_845G(dev) || IS_I865G(dev)) {
12753 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
12754 dev->mode_config.cursor_height = 1023;
12755 } else if (IS_GEN2(dev)) {
068be561
DL
12756 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12757 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12758 } else {
12759 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12760 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12761 }
12762
5d4545ae 12763 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12764
28c97730 12765 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12766 INTEL_INFO(dev)->num_pipes,
12767 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12768
055e393f 12769 for_each_pipe(dev_priv, pipe) {
8cc87b75 12770 intel_crtc_init(dev, pipe);
1fe47785
DL
12771 for_each_sprite(pipe, sprite) {
12772 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12773 if (ret)
06da8da2 12774 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12775 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12776 }
79e53945
JB
12777 }
12778
f42bb70d
JB
12779 intel_init_dpio(dev);
12780
e72f9fbf 12781 intel_shared_dpll_init(dev);
ee7b9f93 12782
9cce37f4
JB
12783 /* Just disable it once at startup */
12784 i915_disable_vga(dev);
79e53945 12785 intel_setup_outputs(dev);
11be49eb
CW
12786
12787 /* Just in case the BIOS is doing something questionable. */
12788 intel_disable_fbc(dev);
fa9fa083 12789
6e9f798d 12790 drm_modeset_lock_all(dev);
fa9fa083 12791 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12792 drm_modeset_unlock_all(dev);
46f297fb 12793
d3fcc808 12794 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12795 if (!crtc->active)
12796 continue;
12797
46f297fb 12798 /*
46f297fb
JB
12799 * Note that reserving the BIOS fb up front prevents us
12800 * from stuffing other stolen allocations like the ring
12801 * on top. This prevents some ugliness at boot time, and
12802 * can even allow for smooth boot transitions if the BIOS
12803 * fb is large enough for the active pipe configuration.
12804 */
12805 if (dev_priv->display.get_plane_config) {
12806 dev_priv->display.get_plane_config(crtc,
12807 &crtc->plane_config);
12808 /*
12809 * If the fb is shared between multiple heads, we'll
12810 * just get the first one.
12811 */
484b41dd 12812 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12813 }
46f297fb 12814 }
2c7111db
CW
12815}
12816
7fad798e
DV
12817static void intel_enable_pipe_a(struct drm_device *dev)
12818{
12819 struct intel_connector *connector;
12820 struct drm_connector *crt = NULL;
12821 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 12822 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
12823
12824 /* We can't just switch on the pipe A, we need to set things up with a
12825 * proper mode and output configuration. As a gross hack, enable pipe A
12826 * by enabling the load detect pipe once. */
12827 list_for_each_entry(connector,
12828 &dev->mode_config.connector_list,
12829 base.head) {
12830 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12831 crt = &connector->base;
12832 break;
12833 }
12834 }
12835
12836 if (!crt)
12837 return;
12838
208bf9fd
VS
12839 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
12840 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
12841}
12842
fa555837
DV
12843static bool
12844intel_check_plane_mapping(struct intel_crtc *crtc)
12845{
7eb552ae
BW
12846 struct drm_device *dev = crtc->base.dev;
12847 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12848 u32 reg, val;
12849
7eb552ae 12850 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12851 return true;
12852
12853 reg = DSPCNTR(!crtc->plane);
12854 val = I915_READ(reg);
12855
12856 if ((val & DISPLAY_PLANE_ENABLE) &&
12857 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12858 return false;
12859
12860 return true;
12861}
12862
24929352
DV
12863static void intel_sanitize_crtc(struct intel_crtc *crtc)
12864{
12865 struct drm_device *dev = crtc->base.dev;
12866 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12867 u32 reg;
24929352 12868
24929352 12869 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12870 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12871 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12872
d3eaf884
VS
12873 /* restore vblank interrupts to correct state */
12874 if (crtc->active)
12875 drm_vblank_on(dev, crtc->pipe);
12876 else
12877 drm_vblank_off(dev, crtc->pipe);
12878
24929352 12879 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12880 * disable the crtc (and hence change the state) if it is wrong. Note
12881 * that gen4+ has a fixed plane -> pipe mapping. */
12882 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12883 struct intel_connector *connector;
12884 bool plane;
12885
24929352
DV
12886 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12887 crtc->base.base.id);
12888
12889 /* Pipe has the wrong plane attached and the plane is active.
12890 * Temporarily change the plane mapping and disable everything
12891 * ... */
12892 plane = crtc->plane;
12893 crtc->plane = !plane;
9c8958bc 12894 crtc->primary_enabled = true;
24929352
DV
12895 dev_priv->display.crtc_disable(&crtc->base);
12896 crtc->plane = plane;
12897
12898 /* ... and break all links. */
12899 list_for_each_entry(connector, &dev->mode_config.connector_list,
12900 base.head) {
12901 if (connector->encoder->base.crtc != &crtc->base)
12902 continue;
12903
7f1950fb
EE
12904 connector->base.dpms = DRM_MODE_DPMS_OFF;
12905 connector->base.encoder = NULL;
24929352 12906 }
7f1950fb
EE
12907 /* multiple connectors may have the same encoder:
12908 * handle them and break crtc link separately */
12909 list_for_each_entry(connector, &dev->mode_config.connector_list,
12910 base.head)
12911 if (connector->encoder->base.crtc == &crtc->base) {
12912 connector->encoder->base.crtc = NULL;
12913 connector->encoder->connectors_active = false;
12914 }
24929352
DV
12915
12916 WARN_ON(crtc->active);
12917 crtc->base.enabled = false;
12918 }
24929352 12919
7fad798e
DV
12920 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12921 crtc->pipe == PIPE_A && !crtc->active) {
12922 /* BIOS forgot to enable pipe A, this mostly happens after
12923 * resume. Force-enable the pipe to fix this, the update_dpms
12924 * call below we restore the pipe to the right state, but leave
12925 * the required bits on. */
12926 intel_enable_pipe_a(dev);
12927 }
12928
24929352
DV
12929 /* Adjust the state of the output pipe according to whether we
12930 * have active connectors/encoders. */
12931 intel_crtc_update_dpms(&crtc->base);
12932
12933 if (crtc->active != crtc->base.enabled) {
12934 struct intel_encoder *encoder;
12935
12936 /* This can happen either due to bugs in the get_hw_state
12937 * functions or because the pipe is force-enabled due to the
12938 * pipe A quirk. */
12939 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12940 crtc->base.base.id,
12941 crtc->base.enabled ? "enabled" : "disabled",
12942 crtc->active ? "enabled" : "disabled");
12943
12944 crtc->base.enabled = crtc->active;
12945
12946 /* Because we only establish the connector -> encoder ->
12947 * crtc links if something is active, this means the
12948 * crtc is now deactivated. Break the links. connector
12949 * -> encoder links are only establish when things are
12950 * actually up, hence no need to break them. */
12951 WARN_ON(crtc->active);
12952
12953 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12954 WARN_ON(encoder->connectors_active);
12955 encoder->base.crtc = NULL;
12956 }
12957 }
c5ab3bc0
DV
12958
12959 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12960 /*
12961 * We start out with underrun reporting disabled to avoid races.
12962 * For correct bookkeeping mark this on active crtcs.
12963 *
c5ab3bc0
DV
12964 * Also on gmch platforms we dont have any hardware bits to
12965 * disable the underrun reporting. Which means we need to start
12966 * out with underrun reporting disabled also on inactive pipes,
12967 * since otherwise we'll complain about the garbage we read when
12968 * e.g. coming up after runtime pm.
12969 *
4cc31489
DV
12970 * No protection against concurrent access is required - at
12971 * worst a fifo underrun happens which also sets this to false.
12972 */
12973 crtc->cpu_fifo_underrun_disabled = true;
12974 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12975
12976 update_scanline_offset(crtc);
4cc31489 12977 }
24929352
DV
12978}
12979
12980static void intel_sanitize_encoder(struct intel_encoder *encoder)
12981{
12982 struct intel_connector *connector;
12983 struct drm_device *dev = encoder->base.dev;
12984
12985 /* We need to check both for a crtc link (meaning that the
12986 * encoder is active and trying to read from a pipe) and the
12987 * pipe itself being active. */
12988 bool has_active_crtc = encoder->base.crtc &&
12989 to_intel_crtc(encoder->base.crtc)->active;
12990
12991 if (encoder->connectors_active && !has_active_crtc) {
12992 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12993 encoder->base.base.id,
8e329a03 12994 encoder->base.name);
24929352
DV
12995
12996 /* Connector is active, but has no active pipe. This is
12997 * fallout from our resume register restoring. Disable
12998 * the encoder manually again. */
12999 if (encoder->base.crtc) {
13000 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13001 encoder->base.base.id,
8e329a03 13002 encoder->base.name);
24929352 13003 encoder->disable(encoder);
a62d1497
VS
13004 if (encoder->post_disable)
13005 encoder->post_disable(encoder);
24929352 13006 }
7f1950fb
EE
13007 encoder->base.crtc = NULL;
13008 encoder->connectors_active = false;
24929352
DV
13009
13010 /* Inconsistent output/port/pipe state happens presumably due to
13011 * a bug in one of the get_hw_state functions. Or someplace else
13012 * in our code, like the register restore mess on resume. Clamp
13013 * things to off as a safer default. */
13014 list_for_each_entry(connector,
13015 &dev->mode_config.connector_list,
13016 base.head) {
13017 if (connector->encoder != encoder)
13018 continue;
7f1950fb
EE
13019 connector->base.dpms = DRM_MODE_DPMS_OFF;
13020 connector->base.encoder = NULL;
24929352
DV
13021 }
13022 }
13023 /* Enabled encoders without active connectors will be fixed in
13024 * the crtc fixup. */
13025}
13026
04098753 13027void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13028{
13029 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13030 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13031
04098753
ID
13032 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13033 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13034 i915_disable_vga(dev);
13035 }
13036}
13037
13038void i915_redisable_vga(struct drm_device *dev)
13039{
13040 struct drm_i915_private *dev_priv = dev->dev_private;
13041
8dc8a27c
PZ
13042 /* This function can be called both from intel_modeset_setup_hw_state or
13043 * at a very early point in our resume sequence, where the power well
13044 * structures are not yet restored. Since this function is at a very
13045 * paranoid "someone might have enabled VGA while we were not looking"
13046 * level, just check if the power well is enabled instead of trying to
13047 * follow the "don't touch the power well if we don't need it" policy
13048 * the rest of the driver uses. */
04098753 13049 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13050 return;
13051
04098753 13052 i915_redisable_vga_power_on(dev);
0fde901f
KM
13053}
13054
98ec7739
VS
13055static bool primary_get_hw_state(struct intel_crtc *crtc)
13056{
13057 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13058
13059 if (!crtc->active)
13060 return false;
13061
13062 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13063}
13064
30e984df 13065static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13066{
13067 struct drm_i915_private *dev_priv = dev->dev_private;
13068 enum pipe pipe;
24929352
DV
13069 struct intel_crtc *crtc;
13070 struct intel_encoder *encoder;
13071 struct intel_connector *connector;
5358901f 13072 int i;
24929352 13073
d3fcc808 13074 for_each_intel_crtc(dev, crtc) {
88adfff1 13075 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13076
9953599b
DV
13077 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13078
0e8ffe1b
DV
13079 crtc->active = dev_priv->display.get_pipe_config(crtc,
13080 &crtc->config);
24929352
DV
13081
13082 crtc->base.enabled = crtc->active;
98ec7739 13083 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13084
13085 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13086 crtc->base.base.id,
13087 crtc->active ? "enabled" : "disabled");
13088 }
13089
5358901f
DV
13090 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13091 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13092
13093 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13094 pll->active = 0;
d3fcc808 13095 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13096 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13097 pll->active++;
13098 }
13099 pll->refcount = pll->active;
13100
35c95375
DV
13101 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13102 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13103
13104 if (pll->refcount)
13105 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13106 }
13107
b2784e15 13108 for_each_intel_encoder(dev, encoder) {
24929352
DV
13109 pipe = 0;
13110
13111 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13112 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13113 encoder->base.crtc = &crtc->base;
1d37b689 13114 encoder->get_config(encoder, &crtc->config);
24929352
DV
13115 } else {
13116 encoder->base.crtc = NULL;
13117 }
13118
13119 encoder->connectors_active = false;
6f2bcceb 13120 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13121 encoder->base.base.id,
8e329a03 13122 encoder->base.name,
24929352 13123 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13124 pipe_name(pipe));
24929352
DV
13125 }
13126
13127 list_for_each_entry(connector, &dev->mode_config.connector_list,
13128 base.head) {
13129 if (connector->get_hw_state(connector)) {
13130 connector->base.dpms = DRM_MODE_DPMS_ON;
13131 connector->encoder->connectors_active = true;
13132 connector->base.encoder = &connector->encoder->base;
13133 } else {
13134 connector->base.dpms = DRM_MODE_DPMS_OFF;
13135 connector->base.encoder = NULL;
13136 }
13137 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13138 connector->base.base.id,
c23cc417 13139 connector->base.name,
24929352
DV
13140 connector->base.encoder ? "enabled" : "disabled");
13141 }
30e984df
DV
13142}
13143
13144/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13145 * and i915 state tracking structures. */
13146void intel_modeset_setup_hw_state(struct drm_device *dev,
13147 bool force_restore)
13148{
13149 struct drm_i915_private *dev_priv = dev->dev_private;
13150 enum pipe pipe;
30e984df
DV
13151 struct intel_crtc *crtc;
13152 struct intel_encoder *encoder;
35c95375 13153 int i;
30e984df
DV
13154
13155 intel_modeset_readout_hw_state(dev);
24929352 13156
babea61d
JB
13157 /*
13158 * Now that we have the config, copy it to each CRTC struct
13159 * Note that this could go away if we move to using crtc_config
13160 * checking everywhere.
13161 */
d3fcc808 13162 for_each_intel_crtc(dev, crtc) {
d330a953 13163 if (crtc->active && i915.fastboot) {
f6a83288 13164 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13165 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13166 crtc->base.base.id);
13167 drm_mode_debug_printmodeline(&crtc->base.mode);
13168 }
13169 }
13170
24929352 13171 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13172 for_each_intel_encoder(dev, encoder) {
24929352
DV
13173 intel_sanitize_encoder(encoder);
13174 }
13175
055e393f 13176 for_each_pipe(dev_priv, pipe) {
24929352
DV
13177 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13178 intel_sanitize_crtc(crtc);
c0b03411 13179 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13180 }
9a935856 13181
35c95375
DV
13182 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13183 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13184
13185 if (!pll->on || pll->active)
13186 continue;
13187
13188 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13189
13190 pll->disable(dev_priv, pll);
13191 pll->on = false;
13192 }
13193
96f90c54 13194 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13195 ilk_wm_get_hw_state(dev);
13196
45e2b5f6 13197 if (force_restore) {
7d0bc1ea
VS
13198 i915_redisable_vga(dev);
13199
f30da187
DV
13200 /*
13201 * We need to use raw interfaces for restoring state to avoid
13202 * checking (bogus) intermediate states.
13203 */
055e393f 13204 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13205 struct drm_crtc *crtc =
13206 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13207
13208 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13209 crtc->primary->fb);
45e2b5f6
DV
13210 }
13211 } else {
13212 intel_modeset_update_staged_output_state(dev);
13213 }
8af6cf88
DV
13214
13215 intel_modeset_check_state(dev);
2c7111db
CW
13216}
13217
13218void intel_modeset_gem_init(struct drm_device *dev)
13219{
484b41dd 13220 struct drm_crtc *c;
2ff8fde1 13221 struct drm_i915_gem_object *obj;
484b41dd 13222
ae48434c
ID
13223 mutex_lock(&dev->struct_mutex);
13224 intel_init_gt_powersave(dev);
13225 mutex_unlock(&dev->struct_mutex);
13226
1833b134 13227 intel_modeset_init_hw(dev);
02e792fb
DV
13228
13229 intel_setup_overlay(dev);
484b41dd
JB
13230
13231 /*
13232 * Make sure any fbs we allocated at startup are properly
13233 * pinned & fenced. When we do the allocation it's too early
13234 * for this.
13235 */
13236 mutex_lock(&dev->struct_mutex);
70e1e0ec 13237 for_each_crtc(dev, c) {
2ff8fde1
MR
13238 obj = intel_fb_obj(c->primary->fb);
13239 if (obj == NULL)
484b41dd
JB
13240 continue;
13241
2ff8fde1 13242 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13243 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13244 to_intel_crtc(c)->pipe);
66e514c1
DA
13245 drm_framebuffer_unreference(c->primary->fb);
13246 c->primary->fb = NULL;
484b41dd
JB
13247 }
13248 }
13249 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13250}
13251
4932e2c3
ID
13252void intel_connector_unregister(struct intel_connector *intel_connector)
13253{
13254 struct drm_connector *connector = &intel_connector->base;
13255
13256 intel_panel_destroy_backlight(connector);
34ea3d38 13257 drm_connector_unregister(connector);
4932e2c3
ID
13258}
13259
79e53945
JB
13260void intel_modeset_cleanup(struct drm_device *dev)
13261{
652c393a 13262 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13263 struct drm_connector *connector;
652c393a 13264
fd0c0642
DV
13265 /*
13266 * Interrupts and polling as the first thing to avoid creating havoc.
13267 * Too much stuff here (turning of rps, connectors, ...) would
13268 * experience fancy races otherwise.
13269 */
13270 drm_irq_uninstall(dev);
1d0d343a 13271 intel_hpd_cancel_work(dev_priv);
eb21b92b
JB
13272 dev_priv->pm._irqs_disabled = true;
13273
fd0c0642
DV
13274 /*
13275 * Due to the hpd irq storm handling the hotplug work can re-arm the
13276 * poll handlers. Hence disable polling after hpd handling is shut down.
13277 */
f87ea761 13278 drm_kms_helper_poll_fini(dev);
fd0c0642 13279
652c393a
JB
13280 mutex_lock(&dev->struct_mutex);
13281
723bfd70
JB
13282 intel_unregister_dsm_handler();
13283
973d04f9 13284 intel_disable_fbc(dev);
e70236a8 13285
8090c6b9 13286 intel_disable_gt_powersave(dev);
0cdab21f 13287
930ebb46
DV
13288 ironlake_teardown_rc6(dev);
13289
69341a5e
KH
13290 mutex_unlock(&dev->struct_mutex);
13291
1630fe75
CW
13292 /* flush any delayed tasks or pending work */
13293 flush_scheduled_work();
13294
db31af1d
JN
13295 /* destroy the backlight and sysfs files before encoders/connectors */
13296 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13297 struct intel_connector *intel_connector;
13298
13299 intel_connector = to_intel_connector(connector);
13300 intel_connector->unregister(intel_connector);
db31af1d 13301 }
d9255d57 13302
79e53945 13303 drm_mode_config_cleanup(dev);
4d7bb011
DV
13304
13305 intel_cleanup_overlay(dev);
ae48434c
ID
13306
13307 mutex_lock(&dev->struct_mutex);
13308 intel_cleanup_gt_powersave(dev);
13309 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13310}
13311
f1c79df3
ZW
13312/*
13313 * Return which encoder is currently attached for connector.
13314 */
df0e9248 13315struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13316{
df0e9248
CW
13317 return &intel_attached_encoder(connector)->base;
13318}
f1c79df3 13319
df0e9248
CW
13320void intel_connector_attach_encoder(struct intel_connector *connector,
13321 struct intel_encoder *encoder)
13322{
13323 connector->encoder = encoder;
13324 drm_mode_connector_attach_encoder(&connector->base,
13325 &encoder->base);
79e53945 13326}
28d52043
DA
13327
13328/*
13329 * set vga decode state - true == enable VGA decode
13330 */
13331int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13332{
13333 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13334 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13335 u16 gmch_ctrl;
13336
75fa041d
CW
13337 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13338 DRM_ERROR("failed to read control word\n");
13339 return -EIO;
13340 }
13341
c0cc8a55
CW
13342 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13343 return 0;
13344
28d52043
DA
13345 if (state)
13346 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13347 else
13348 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13349
13350 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13351 DRM_ERROR("failed to write control word\n");
13352 return -EIO;
13353 }
13354
28d52043
DA
13355 return 0;
13356}
c4a1d9e4 13357
c4a1d9e4 13358struct intel_display_error_state {
ff57f1b0
PZ
13359
13360 u32 power_well_driver;
13361
63b66e5b
CW
13362 int num_transcoders;
13363
c4a1d9e4
CW
13364 struct intel_cursor_error_state {
13365 u32 control;
13366 u32 position;
13367 u32 base;
13368 u32 size;
52331309 13369 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13370
13371 struct intel_pipe_error_state {
ddf9c536 13372 bool power_domain_on;
c4a1d9e4 13373 u32 source;
f301b1e1 13374 u32 stat;
52331309 13375 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13376
13377 struct intel_plane_error_state {
13378 u32 control;
13379 u32 stride;
13380 u32 size;
13381 u32 pos;
13382 u32 addr;
13383 u32 surface;
13384 u32 tile_offset;
52331309 13385 } plane[I915_MAX_PIPES];
63b66e5b
CW
13386
13387 struct intel_transcoder_error_state {
ddf9c536 13388 bool power_domain_on;
63b66e5b
CW
13389 enum transcoder cpu_transcoder;
13390
13391 u32 conf;
13392
13393 u32 htotal;
13394 u32 hblank;
13395 u32 hsync;
13396 u32 vtotal;
13397 u32 vblank;
13398 u32 vsync;
13399 } transcoder[4];
c4a1d9e4
CW
13400};
13401
13402struct intel_display_error_state *
13403intel_display_capture_error_state(struct drm_device *dev)
13404{
fbee40df 13405 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13406 struct intel_display_error_state *error;
63b66e5b
CW
13407 int transcoders[] = {
13408 TRANSCODER_A,
13409 TRANSCODER_B,
13410 TRANSCODER_C,
13411 TRANSCODER_EDP,
13412 };
c4a1d9e4
CW
13413 int i;
13414
63b66e5b
CW
13415 if (INTEL_INFO(dev)->num_pipes == 0)
13416 return NULL;
13417
9d1cb914 13418 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13419 if (error == NULL)
13420 return NULL;
13421
190be112 13422 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13423 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13424
055e393f 13425 for_each_pipe(dev_priv, i) {
ddf9c536 13426 error->pipe[i].power_domain_on =
bfafe93a
ID
13427 intel_display_power_enabled_unlocked(dev_priv,
13428 POWER_DOMAIN_PIPE(i));
ddf9c536 13429 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13430 continue;
13431
5efb3e28
VS
13432 error->cursor[i].control = I915_READ(CURCNTR(i));
13433 error->cursor[i].position = I915_READ(CURPOS(i));
13434 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13435
13436 error->plane[i].control = I915_READ(DSPCNTR(i));
13437 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13438 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13439 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13440 error->plane[i].pos = I915_READ(DSPPOS(i));
13441 }
ca291363
PZ
13442 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13443 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13444 if (INTEL_INFO(dev)->gen >= 4) {
13445 error->plane[i].surface = I915_READ(DSPSURF(i));
13446 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13447 }
13448
c4a1d9e4 13449 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13450
3abfce77 13451 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13452 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13453 }
13454
13455 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13456 if (HAS_DDI(dev_priv->dev))
13457 error->num_transcoders++; /* Account for eDP. */
13458
13459 for (i = 0; i < error->num_transcoders; i++) {
13460 enum transcoder cpu_transcoder = transcoders[i];
13461
ddf9c536 13462 error->transcoder[i].power_domain_on =
bfafe93a 13463 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13464 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13465 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13466 continue;
13467
63b66e5b
CW
13468 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13469
13470 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13471 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13472 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13473 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13474 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13475 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13476 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13477 }
13478
13479 return error;
13480}
13481
edc3d884
MK
13482#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13483
c4a1d9e4 13484void
edc3d884 13485intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13486 struct drm_device *dev,
13487 struct intel_display_error_state *error)
13488{
055e393f 13489 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13490 int i;
13491
63b66e5b
CW
13492 if (!error)
13493 return;
13494
edc3d884 13495 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13496 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13497 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13498 error->power_well_driver);
055e393f 13499 for_each_pipe(dev_priv, i) {
edc3d884 13500 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13501 err_printf(m, " Power: %s\n",
13502 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13503 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13504 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13505
13506 err_printf(m, "Plane [%d]:\n", i);
13507 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13508 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13509 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13510 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13511 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13512 }
4b71a570 13513 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13514 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13515 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13516 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13517 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13518 }
13519
edc3d884
MK
13520 err_printf(m, "Cursor [%d]:\n", i);
13521 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13522 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13523 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13524 }
63b66e5b
CW
13525
13526 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13527 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13528 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13529 err_printf(m, " Power: %s\n",
13530 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13531 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13532 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13533 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13534 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13535 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13536 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13537 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13538 }
c4a1d9e4 13539}
e2fcdaa9
VS
13540
13541void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13542{
13543 struct intel_crtc *crtc;
13544
13545 for_each_intel_crtc(dev, crtc) {
13546 struct intel_unpin_work *work;
13547 unsigned long irqflags;
13548
13549 spin_lock_irqsave(&dev->event_lock, irqflags);
13550
13551 work = crtc->unpin_work;
13552
13553 if (work && work->event &&
13554 work->event->base.file_priv == file) {
13555 kfree(work->event);
13556 work->event = NULL;
13557 }
13558
13559 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13560 }
13561}
This page took 2.514556 seconds and 5 git commands to generate.