drm/i915: Keep plane->state updated on pageflip
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
c196e1d6 40#include <drm/drm_atomic_helper.h>
760285e7
DH
41#include <drm/drm_dp_helper.h>
42#include <drm/drm_crtc_helper.h>
465c120c
MR
43#include <drm/drm_plane_helper.h>
44#include <drm/drm_rect.h>
c0f372b3 45#include <linux/dma_remapping.h>
79e53945 46
465c120c
MR
47/* Primary plane formats supported by all gen */
48#define COMMON_PRIMARY_FORMATS \
49 DRM_FORMAT_C8, \
50 DRM_FORMAT_RGB565, \
51 DRM_FORMAT_XRGB8888, \
52 DRM_FORMAT_ARGB8888
53
54/* Primary plane formats for gen <= 3 */
55static const uint32_t intel_primary_formats_gen2[] = {
56 COMMON_PRIMARY_FORMATS,
57 DRM_FORMAT_XRGB1555,
58 DRM_FORMAT_ARGB1555,
59};
60
61/* Primary plane formats for gen >= 4 */
62static const uint32_t intel_primary_formats_gen4[] = {
63 COMMON_PRIMARY_FORMATS, \
64 DRM_FORMAT_XBGR8888,
65 DRM_FORMAT_ABGR8888,
66 DRM_FORMAT_XRGB2101010,
67 DRM_FORMAT_ARGB2101010,
68 DRM_FORMAT_XBGR2101010,
69 DRM_FORMAT_ABGR2101010,
70};
71
3d7d6510
MR
72/* Cursor formats */
73static const uint32_t intel_cursor_formats[] = {
74 DRM_FORMAT_ARGB8888,
75};
76
6b383a7f 77static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 78
f1f644dc 79static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 80 struct intel_crtc_state *pipe_config);
18442d08 81static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 82 struct intel_crtc_state *pipe_config);
f1f644dc 83
e7457a9a
DL
84static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
85 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
86static int intel_framebuffer_init(struct drm_device *dev,
87 struct intel_framebuffer *ifb,
88 struct drm_mode_fb_cmd2 *mode_cmd,
89 struct drm_i915_gem_object *obj);
5b18e57c
DV
90static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
91static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 92static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
93 struct intel_link_m_n *m_n,
94 struct intel_link_m_n *m2_n2);
29407aab 95static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
96static void haswell_set_pipeconf(struct drm_crtc *crtc);
97static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 98static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 99 const struct intel_crtc_state *pipe_config);
d288f65f 100static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 101 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
102static void intel_begin_crtc_commit(struct drm_crtc *crtc);
103static void intel_finish_crtc_commit(struct drm_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
4093561b 414bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 415{
409ee761 416 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
417 struct intel_encoder *encoder;
418
409ee761 419 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
d0737e1d
ACO
426/**
427 * Returns whether any output on the specified pipe will have the specified
428 * type after a staged modeset is complete, i.e., the same as
429 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
430 * encoder->crtc.
431 */
432static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
433{
434 struct drm_device *dev = crtc->base.dev;
435 struct intel_encoder *encoder;
436
437 for_each_intel_encoder(dev, encoder)
438 if (encoder->new_crtc == crtc && encoder->type == type)
439 return true;
440
441 return false;
442}
443
409ee761 444static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
1b894b59 445 int refclk)
2c07245f 446{
409ee761 447 struct drm_device *dev = crtc->base.dev;
2c07245f 448 const intel_limit_t *limit;
b91ad0ec 449
d0737e1d 450 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 451 if (intel_is_dual_link_lvds(dev)) {
1b894b59 452 if (refclk == 100000)
b91ad0ec
ZW
453 limit = &intel_limits_ironlake_dual_lvds_100m;
454 else
455 limit = &intel_limits_ironlake_dual_lvds;
456 } else {
1b894b59 457 if (refclk == 100000)
b91ad0ec
ZW
458 limit = &intel_limits_ironlake_single_lvds_100m;
459 else
460 limit = &intel_limits_ironlake_single_lvds;
461 }
c6bb3538 462 } else
b91ad0ec 463 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
464
465 return limit;
466}
467
409ee761 468static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
044c7c41 469{
409ee761 470 struct drm_device *dev = crtc->base.dev;
044c7c41
ML
471 const intel_limit_t *limit;
472
d0737e1d 473 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 474 if (intel_is_dual_link_lvds(dev))
e4b36699 475 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 476 else
e4b36699 477 limit = &intel_limits_g4x_single_channel_lvds;
d0737e1d
ACO
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
479 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 480 limit = &intel_limits_g4x_hdmi;
d0737e1d 481 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 482 limit = &intel_limits_g4x_sdvo;
044c7c41 483 } else /* The option is for other outputs */
e4b36699 484 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
485
486 return limit;
487}
488
409ee761 489static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
79e53945 490{
409ee761 491 struct drm_device *dev = crtc->base.dev;
79e53945
JB
492 const intel_limit_t *limit;
493
bad720ff 494 if (HAS_PCH_SPLIT(dev))
1b894b59 495 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 496 else if (IS_G4X(dev)) {
044c7c41 497 limit = intel_g4x_limit(crtc);
f2b115e6 498 } else if (IS_PINEVIEW(dev)) {
d0737e1d 499 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 500 limit = &intel_limits_pineview_lvds;
2177832f 501 else
f2b115e6 502 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
503 } else if (IS_CHERRYVIEW(dev)) {
504 limit = &intel_limits_chv;
a0c4da24 505 } else if (IS_VALLEYVIEW(dev)) {
dc730512 506 limit = &intel_limits_vlv;
a6c45cf0 507 } else if (!IS_GEN2(dev)) {
d0737e1d 508 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
509 limit = &intel_limits_i9xx_lvds;
510 else
511 limit = &intel_limits_i9xx_sdvo;
79e53945 512 } else {
d0737e1d 513 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 514 limit = &intel_limits_i8xx_lvds;
d0737e1d 515 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 516 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
517 else
518 limit = &intel_limits_i8xx_dac;
79e53945
JB
519 }
520 return limit;
521}
522
f2b115e6
AJ
523/* m1 is reserved as 0 in Pineview, n is a ring counter */
524static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 525{
2177832f
SL
526 clock->m = clock->m2 + 2;
527 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
528 if (WARN_ON(clock->n == 0 || clock->p == 0))
529 return;
fb03ac01
VS
530 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
531 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
532}
533
7429e9d4
DV
534static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
535{
536 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
537}
538
ac58c3f0 539static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 540{
7429e9d4 541 clock->m = i9xx_dpll_compute_m(clock);
79e53945 542 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
543 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
544 return;
fb03ac01
VS
545 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
546 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
547}
548
ef9348c8
CML
549static void chv_clock(int refclk, intel_clock_t *clock)
550{
551 clock->m = clock->m1 * clock->m2;
552 clock->p = clock->p1 * clock->p2;
553 if (WARN_ON(clock->n == 0 || clock->p == 0))
554 return;
555 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 clock->n << 22);
557 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558}
559
7c04d1d9 560#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
561/**
562 * Returns whether the given set of divisors are valid for a given refclk with
563 * the given connectors.
564 */
565
1b894b59
CW
566static bool intel_PLL_is_valid(struct drm_device *dev,
567 const intel_limit_t *limit,
568 const intel_clock_t *clock)
79e53945 569{
f01b7962
VS
570 if (clock->n < limit->n.min || limit->n.max < clock->n)
571 INTELPllInvalid("n out of range\n");
79e53945 572 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 573 INTELPllInvalid("p1 out of range\n");
79e53945 574 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 575 INTELPllInvalid("m2 out of range\n");
79e53945 576 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 577 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
578
579 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
580 if (clock->m1 <= clock->m2)
581 INTELPllInvalid("m1 <= m2\n");
582
583 if (!IS_VALLEYVIEW(dev)) {
584 if (clock->p < limit->p.min || limit->p.max < clock->p)
585 INTELPllInvalid("p out of range\n");
586 if (clock->m < limit->m.min || limit->m.max < clock->m)
587 INTELPllInvalid("m out of range\n");
588 }
589
79e53945 590 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 591 INTELPllInvalid("vco out of range\n");
79e53945
JB
592 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593 * connector, etc., rather than just a single range.
594 */
595 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 596 INTELPllInvalid("dot out of range\n");
79e53945
JB
597
598 return true;
599}
600
d4906093 601static bool
a919ff14 602i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
cec2f356
SP
603 int target, int refclk, intel_clock_t *match_clock,
604 intel_clock_t *best_clock)
79e53945 605{
a919ff14 606 struct drm_device *dev = crtc->base.dev;
79e53945 607 intel_clock_t clock;
79e53945
JB
608 int err = target;
609
d0737e1d 610 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 611 /*
a210b028
DV
612 * For LVDS just rely on its current settings for dual-channel.
613 * We haven't figured out how to reliably set up different
614 * single/dual channel state, if we even can.
79e53945 615 */
1974cad0 616 if (intel_is_dual_link_lvds(dev))
79e53945
JB
617 clock.p2 = limit->p2.p2_fast;
618 else
619 clock.p2 = limit->p2.p2_slow;
620 } else {
621 if (target < limit->p2.dot_limit)
622 clock.p2 = limit->p2.p2_slow;
623 else
624 clock.p2 = limit->p2.p2_fast;
625 }
626
0206e353 627 memset(best_clock, 0, sizeof(*best_clock));
79e53945 628
42158660
ZY
629 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630 clock.m1++) {
631 for (clock.m2 = limit->m2.min;
632 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 633 if (clock.m2 >= clock.m1)
42158660
ZY
634 break;
635 for (clock.n = limit->n.min;
636 clock.n <= limit->n.max; clock.n++) {
637 for (clock.p1 = limit->p1.min;
638 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
639 int this_err;
640
ac58c3f0
DV
641 i9xx_clock(refclk, &clock);
642 if (!intel_PLL_is_valid(dev, limit,
643 &clock))
644 continue;
645 if (match_clock &&
646 clock.p != match_clock->p)
647 continue;
648
649 this_err = abs(clock.dot - target);
650 if (this_err < err) {
651 *best_clock = clock;
652 err = this_err;
653 }
654 }
655 }
656 }
657 }
658
659 return (err != target);
660}
661
662static bool
a919ff14 663pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
664 int target, int refclk, intel_clock_t *match_clock,
665 intel_clock_t *best_clock)
79e53945 666{
a919ff14 667 struct drm_device *dev = crtc->base.dev;
79e53945 668 intel_clock_t clock;
79e53945
JB
669 int err = target;
670
d0737e1d 671 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 672 /*
a210b028
DV
673 * For LVDS just rely on its current settings for dual-channel.
674 * We haven't figured out how to reliably set up different
675 * single/dual channel state, if we even can.
79e53945 676 */
1974cad0 677 if (intel_is_dual_link_lvds(dev))
79e53945
JB
678 clock.p2 = limit->p2.p2_fast;
679 else
680 clock.p2 = limit->p2.p2_slow;
681 } else {
682 if (target < limit->p2.dot_limit)
683 clock.p2 = limit->p2.p2_slow;
684 else
685 clock.p2 = limit->p2.p2_fast;
686 }
687
0206e353 688 memset(best_clock, 0, sizeof(*best_clock));
79e53945 689
42158660
ZY
690 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
691 clock.m1++) {
692 for (clock.m2 = limit->m2.min;
693 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
698 int this_err;
699
ac58c3f0 700 pineview_clock(refclk, &clock);
1b894b59
CW
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
79e53945 703 continue;
cec2f356
SP
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
79e53945
JB
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719}
720
d4906093 721static bool
a919ff14 722g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
723 int target, int refclk, intel_clock_t *match_clock,
724 intel_clock_t *best_clock)
d4906093 725{
a919ff14 726 struct drm_device *dev = crtc->base.dev;
d4906093
ML
727 intel_clock_t clock;
728 int max_n;
729 bool found;
6ba770dc
AJ
730 /* approximately equals target * 0.00585 */
731 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
732 found = false;
733
d0737e1d 734 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 735 if (intel_is_dual_link_lvds(dev))
d4906093
ML
736 clock.p2 = limit->p2.p2_fast;
737 else
738 clock.p2 = limit->p2.p2_slow;
739 } else {
740 if (target < limit->p2.dot_limit)
741 clock.p2 = limit->p2.p2_slow;
742 else
743 clock.p2 = limit->p2.p2_fast;
744 }
745
746 memset(best_clock, 0, sizeof(*best_clock));
747 max_n = limit->n.max;
f77f13e2 748 /* based on hardware requirement, prefer smaller n to precision */
d4906093 749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 750 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
758
ac58c3f0 759 i9xx_clock(refclk, &clock);
1b894b59
CW
760 if (!intel_PLL_is_valid(dev, limit,
761 &clock))
d4906093 762 continue;
1b894b59
CW
763
764 this_err = abs(clock.dot - target);
d4906093
ML
765 if (this_err < err_most) {
766 *best_clock = clock;
767 err_most = this_err;
768 max_n = clock.n;
769 found = true;
770 }
771 }
772 }
773 }
774 }
2c07245f
ZW
775 return found;
776}
777
a0c4da24 778static bool
a919ff14 779vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ee9300bb
DV
780 int target, int refclk, intel_clock_t *match_clock,
781 intel_clock_t *best_clock)
a0c4da24 782{
a919ff14 783 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 784 intel_clock_t clock;
69e4f900 785 unsigned int bestppm = 1000000;
27e639bf
VS
786 /* min update 19.2 MHz */
787 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 788 bool found = false;
a0c4da24 789
6b4bf1c4
VS
790 target *= 5; /* fast clock */
791
792 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
793
794 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 795 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 796 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 797 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 798 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 799 clock.p = clock.p1 * clock.p2;
a0c4da24 800 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 801 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
802 unsigned int ppm, diff;
803
6b4bf1c4
VS
804 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
805 refclk * clock.m1);
806
807 vlv_clock(refclk, &clock);
43b0ac53 808
f01b7962
VS
809 if (!intel_PLL_is_valid(dev, limit,
810 &clock))
43b0ac53
VS
811 continue;
812
6b4bf1c4
VS
813 diff = abs(clock.dot - target);
814 ppm = div_u64(1000000ULL * diff, target);
815
816 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 817 bestppm = 0;
6b4bf1c4 818 *best_clock = clock;
49e497ef 819 found = true;
43b0ac53 820 }
6b4bf1c4 821
c686122c 822 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 823 bestppm = ppm;
6b4bf1c4 824 *best_clock = clock;
49e497ef 825 found = true;
a0c4da24
JB
826 }
827 }
828 }
829 }
830 }
a0c4da24 831
49e497ef 832 return found;
a0c4da24 833}
a4fc5ed6 834
ef9348c8 835static bool
a919ff14 836chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
ef9348c8
CML
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839{
a919ff14 840 struct drm_device *dev = crtc->base.dev;
ef9348c8
CML
841 intel_clock_t clock;
842 uint64_t m2;
843 int found = false;
844
845 memset(best_clock, 0, sizeof(*best_clock));
846
847 /*
848 * Based on hardware doc, the n always set to 1, and m1 always
849 * set to 2. If requires to support 200Mhz refclk, we need to
850 * revisit this because n may not 1 anymore.
851 */
852 clock.n = 1, clock.m1 = 2;
853 target *= 5; /* fast clock */
854
855 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
856 for (clock.p2 = limit->p2.p2_fast;
857 clock.p2 >= limit->p2.p2_slow;
858 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
859
860 clock.p = clock.p1 * clock.p2;
861
862 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
863 clock.n) << 22, refclk * clock.m1);
864
865 if (m2 > INT_MAX/clock.m1)
866 continue;
867
868 clock.m2 = m2;
869
870 chv_clock(refclk, &clock);
871
872 if (!intel_PLL_is_valid(dev, limit, &clock))
873 continue;
874
875 /* based on hardware requirement, prefer bigger p
876 */
877 if (clock.p > best_clock->p) {
878 *best_clock = clock;
879 found = true;
880 }
881 }
882 }
883
884 return found;
885}
886
20ddf665
VS
887bool intel_crtc_active(struct drm_crtc *crtc)
888{
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 /* Be paranoid as we can arrive here with only partial
892 * state retrieved from the hardware during setup.
893 *
241bfc38 894 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
895 * as Haswell has gained clock readout/fastboot support.
896 *
66e514c1 897 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
898 * properly reconstruct framebuffers.
899 */
f4510a27 900 return intel_crtc->active && crtc->primary->fb &&
6e3c9717 901 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
902}
903
a5c961d1
PZ
904enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
905 enum pipe pipe)
906{
907 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
909
6e3c9717 910 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
911}
912
fbf49ea2
VS
913static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
914{
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 u32 reg = PIPEDSL(pipe);
917 u32 line1, line2;
918 u32 line_mask;
919
920 if (IS_GEN2(dev))
921 line_mask = DSL_LINEMASK_GEN2;
922 else
923 line_mask = DSL_LINEMASK_GEN3;
924
925 line1 = I915_READ(reg) & line_mask;
926 mdelay(5);
927 line2 = I915_READ(reg) & line_mask;
928
929 return line1 == line2;
930}
931
ab7ad7f6
KP
932/*
933 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 934 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
935 *
936 * After disabling a pipe, we can't wait for vblank in the usual way,
937 * spinning on the vblank interrupt status bit, since we won't actually
938 * see an interrupt when the pipe is disabled.
939 *
ab7ad7f6
KP
940 * On Gen4 and above:
941 * wait for the pipe register state bit to turn off
942 *
943 * Otherwise:
944 * wait for the display line value to settle (it usually
945 * ends up stopping at the start of the next frame).
58e10eb9 946 *
9d0498a2 947 */
575f7ab7 948static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 949{
575f7ab7 950 struct drm_device *dev = crtc->base.dev;
9d0498a2 951 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 952 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 953 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
954
955 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 956 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
957
958 /* Wait for the Pipe State to go off */
58e10eb9
CW
959 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
960 100))
284637d9 961 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 962 } else {
ab7ad7f6 963 /* Wait for the display line to settle */
fbf49ea2 964 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 965 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 966 }
79e53945
JB
967}
968
b0ea7d37
DL
969/*
970 * ibx_digital_port_connected - is the specified port connected?
971 * @dev_priv: i915 private structure
972 * @port: the port to test
973 *
974 * Returns true if @port is connected, false otherwise.
975 */
976bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
977 struct intel_digital_port *port)
978{
979 u32 bit;
980
c36346e3 981 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 982 switch (port->port) {
c36346e3
DL
983 case PORT_B:
984 bit = SDE_PORTB_HOTPLUG;
985 break;
986 case PORT_C:
987 bit = SDE_PORTC_HOTPLUG;
988 break;
989 case PORT_D:
990 bit = SDE_PORTD_HOTPLUG;
991 break;
992 default:
993 return true;
994 }
995 } else {
eba905b2 996 switch (port->port) {
c36346e3
DL
997 case PORT_B:
998 bit = SDE_PORTB_HOTPLUG_CPT;
999 break;
1000 case PORT_C:
1001 bit = SDE_PORTC_HOTPLUG_CPT;
1002 break;
1003 case PORT_D:
1004 bit = SDE_PORTD_HOTPLUG_CPT;
1005 break;
1006 default:
1007 return true;
1008 }
b0ea7d37
DL
1009 }
1010
1011 return I915_READ(SDEISR) & bit;
1012}
1013
b24e7179
JB
1014static const char *state_string(bool enabled)
1015{
1016 return enabled ? "on" : "off";
1017}
1018
1019/* Only for pre-ILK configs */
55607e8a
DV
1020void assert_pll(struct drm_i915_private *dev_priv,
1021 enum pipe pipe, bool state)
b24e7179
JB
1022{
1023 int reg;
1024 u32 val;
1025 bool cur_state;
1026
1027 reg = DPLL(pipe);
1028 val = I915_READ(reg);
1029 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1030 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1031 "PLL state assertion failure (expected %s, current %s)\n",
1032 state_string(state), state_string(cur_state));
1033}
b24e7179 1034
23538ef1
JN
1035/* XXX: the dsi pll is shared between MIPI DSI ports */
1036static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1037{
1038 u32 val;
1039 bool cur_state;
1040
1041 mutex_lock(&dev_priv->dpio_lock);
1042 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1043 mutex_unlock(&dev_priv->dpio_lock);
1044
1045 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1046 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1047 "DSI PLL state assertion failure (expected %s, current %s)\n",
1048 state_string(state), state_string(cur_state));
1049}
1050#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1051#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1052
55607e8a 1053struct intel_shared_dpll *
e2b78267
DV
1054intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1055{
1056 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1057
6e3c9717 1058 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1059 return NULL;
1060
6e3c9717 1061 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1062}
1063
040484af 1064/* For ILK+ */
55607e8a
DV
1065void assert_shared_dpll(struct drm_i915_private *dev_priv,
1066 struct intel_shared_dpll *pll,
1067 bool state)
040484af 1068{
040484af 1069 bool cur_state;
5358901f 1070 struct intel_dpll_hw_state hw_state;
040484af 1071
92b27b08 1072 if (WARN (!pll,
46edb027 1073 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1074 return;
ee7b9f93 1075
5358901f 1076 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1077 I915_STATE_WARN(cur_state != state,
5358901f
DV
1078 "%s assertion failure (expected %s, current %s)\n",
1079 pll->name, state_string(state), state_string(cur_state));
040484af 1080}
040484af
JB
1081
1082static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1083 enum pipe pipe, bool state)
1084{
1085 int reg;
1086 u32 val;
1087 bool cur_state;
ad80a810
PZ
1088 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1089 pipe);
040484af 1090
affa9354
PZ
1091 if (HAS_DDI(dev_priv->dev)) {
1092 /* DDI does not have a specific FDI_TX register */
ad80a810 1093 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1094 val = I915_READ(reg);
ad80a810 1095 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1096 } else {
1097 reg = FDI_TX_CTL(pipe);
1098 val = I915_READ(reg);
1099 cur_state = !!(val & FDI_TX_ENABLE);
1100 }
e2c719b7 1101 I915_STATE_WARN(cur_state != state,
040484af
JB
1102 "FDI TX state assertion failure (expected %s, current %s)\n",
1103 state_string(state), state_string(cur_state));
1104}
1105#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1106#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1107
1108static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1109 enum pipe pipe, bool state)
1110{
1111 int reg;
1112 u32 val;
1113 bool cur_state;
1114
d63fa0dc
PZ
1115 reg = FDI_RX_CTL(pipe);
1116 val = I915_READ(reg);
1117 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1118 I915_STATE_WARN(cur_state != state,
040484af
JB
1119 "FDI RX state assertion failure (expected %s, current %s)\n",
1120 state_string(state), state_string(cur_state));
1121}
1122#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1123#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1124
1125static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1126 enum pipe pipe)
1127{
1128 int reg;
1129 u32 val;
1130
1131 /* ILK FDI PLL is always enabled */
3d13ef2e 1132 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1133 return;
1134
bf507ef7 1135 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1136 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1137 return;
1138
040484af
JB
1139 reg = FDI_TX_CTL(pipe);
1140 val = I915_READ(reg);
e2c719b7 1141 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1142}
1143
55607e8a
DV
1144void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
040484af
JB
1146{
1147 int reg;
1148 u32 val;
55607e8a 1149 bool cur_state;
040484af
JB
1150
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
55607e8a 1153 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1154 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1155 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
040484af
JB
1157}
1158
b680c37a
DV
1159void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
ea0760cf 1161{
bedd4dba
JN
1162 struct drm_device *dev = dev_priv->dev;
1163 int pp_reg;
ea0760cf
JB
1164 u32 val;
1165 enum pipe panel_pipe = PIPE_A;
0de3b485 1166 bool locked = true;
ea0760cf 1167
bedd4dba
JN
1168 if (WARN_ON(HAS_DDI(dev)))
1169 return;
1170
1171 if (HAS_PCH_SPLIT(dev)) {
1172 u32 port_sel;
1173
ea0760cf 1174 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1175 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1176
1177 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1178 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1179 panel_pipe = PIPE_B;
1180 /* XXX: else fix for eDP */
1181 } else if (IS_VALLEYVIEW(dev)) {
1182 /* presumably write lock depends on pipe, not port select */
1183 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1184 panel_pipe = pipe;
ea0760cf
JB
1185 } else {
1186 pp_reg = PP_CONTROL;
bedd4dba
JN
1187 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1188 panel_pipe = PIPE_B;
ea0760cf
JB
1189 }
1190
1191 val = I915_READ(pp_reg);
1192 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1193 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1194 locked = false;
1195
e2c719b7 1196 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1197 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1198 pipe_name(pipe));
ea0760cf
JB
1199}
1200
93ce0ba6
JN
1201static void assert_cursor(struct drm_i915_private *dev_priv,
1202 enum pipe pipe, bool state)
1203{
1204 struct drm_device *dev = dev_priv->dev;
1205 bool cur_state;
1206
d9d82081 1207 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1208 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1209 else
5efb3e28 1210 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1211
e2c719b7 1212 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1213 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1214 pipe_name(pipe), state_string(state), state_string(cur_state));
1215}
1216#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1217#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1218
b840d907
JB
1219void assert_pipe(struct drm_i915_private *dev_priv,
1220 enum pipe pipe, bool state)
b24e7179
JB
1221{
1222 int reg;
1223 u32 val;
63d7bbe9 1224 bool cur_state;
702e7a56
PZ
1225 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1226 pipe);
b24e7179 1227
b6b5d049
VS
1228 /* if we need the pipe quirk it must be always on */
1229 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1230 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1231 state = true;
1232
f458ebbc 1233 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1234 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1235 cur_state = false;
1236 } else {
1237 reg = PIPECONF(cpu_transcoder);
1238 val = I915_READ(reg);
1239 cur_state = !!(val & PIPECONF_ENABLE);
1240 }
1241
e2c719b7 1242 I915_STATE_WARN(cur_state != state,
63d7bbe9 1243 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1244 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1245}
1246
931872fc
CW
1247static void assert_plane(struct drm_i915_private *dev_priv,
1248 enum plane plane, bool state)
b24e7179
JB
1249{
1250 int reg;
1251 u32 val;
931872fc 1252 bool cur_state;
b24e7179
JB
1253
1254 reg = DSPCNTR(plane);
1255 val = I915_READ(reg);
931872fc 1256 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1257 I915_STATE_WARN(cur_state != state,
931872fc
CW
1258 "plane %c assertion failure (expected %s, current %s)\n",
1259 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1260}
1261
931872fc
CW
1262#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1263#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1264
b24e7179
JB
1265static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1267{
653e1026 1268 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1269 int reg, i;
1270 u32 val;
1271 int cur_pipe;
1272
653e1026
VS
1273 /* Primary planes are fixed to pipes on gen4+ */
1274 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1275 reg = DSPCNTR(pipe);
1276 val = I915_READ(reg);
e2c719b7 1277 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1278 "plane %c assertion failure, should be disabled but not\n",
1279 plane_name(pipe));
19ec1358 1280 return;
28c05794 1281 }
19ec1358 1282
b24e7179 1283 /* Need to check both planes against the pipe */
055e393f 1284 for_each_pipe(dev_priv, i) {
b24e7179
JB
1285 reg = DSPCNTR(i);
1286 val = I915_READ(reg);
1287 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1288 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1289 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1290 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1291 plane_name(i), pipe_name(pipe));
b24e7179
JB
1292 }
1293}
1294
19332d7a
JB
1295static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe)
1297{
20674eef 1298 struct drm_device *dev = dev_priv->dev;
1fe47785 1299 int reg, sprite;
19332d7a
JB
1300 u32 val;
1301
7feb8b88
DL
1302 if (INTEL_INFO(dev)->gen >= 9) {
1303 for_each_sprite(pipe, sprite) {
1304 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1305 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1306 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1307 sprite, pipe_name(pipe));
1308 }
1309 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1310 for_each_sprite(pipe, sprite) {
1311 reg = SPCNTR(pipe, sprite);
20674eef 1312 val = I915_READ(reg);
e2c719b7 1313 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1314 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1315 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1316 }
1317 } else if (INTEL_INFO(dev)->gen >= 7) {
1318 reg = SPRCTL(pipe);
19332d7a 1319 val = I915_READ(reg);
e2c719b7 1320 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1321 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1322 plane_name(pipe), pipe_name(pipe));
1323 } else if (INTEL_INFO(dev)->gen >= 5) {
1324 reg = DVSCNTR(pipe);
19332d7a 1325 val = I915_READ(reg);
e2c719b7 1326 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1327 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1328 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1329 }
1330}
1331
08c71e5e
VS
1332static void assert_vblank_disabled(struct drm_crtc *crtc)
1333{
e2c719b7 1334 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1335 drm_crtc_vblank_put(crtc);
1336}
1337
89eff4be 1338static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1339{
1340 u32 val;
1341 bool enabled;
1342
e2c719b7 1343 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1344
92f2584a
JB
1345 val = I915_READ(PCH_DREF_CONTROL);
1346 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1347 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1348 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1349}
1350
ab9412ba
DV
1351static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1352 enum pipe pipe)
92f2584a
JB
1353{
1354 int reg;
1355 u32 val;
1356 bool enabled;
1357
ab9412ba 1358 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1359 val = I915_READ(reg);
1360 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1361 I915_STATE_WARN(enabled,
9db4a9c7
JB
1362 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1363 pipe_name(pipe));
92f2584a
JB
1364}
1365
4e634389
KP
1366static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1367 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1368{
1369 if ((val & DP_PORT_EN) == 0)
1370 return false;
1371
1372 if (HAS_PCH_CPT(dev_priv->dev)) {
1373 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1374 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
44f37d1f
CML
1377 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
f0575e92
KP
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1383 }
1384 return true;
1385}
1386
1519b995
KP
1387static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1389{
dc0fa718 1390 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1391 return false;
1392
1393 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1395 return false;
44f37d1f
CML
1396 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1519b995 1399 } else {
dc0fa718 1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1401 return false;
1402 }
1403 return true;
1404}
1405
1406static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1408{
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1411
1412 if (HAS_PCH_CPT(dev_priv->dev)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1418 }
1419 return true;
1420}
1421
1422static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1424{
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv->dev)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1433 }
1434 return true;
1435}
1436
291906f1 1437static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1438 enum pipe pipe, int reg, u32 port_sel)
291906f1 1439{
47a05eca 1440 u32 val = I915_READ(reg);
e2c719b7 1441 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1442 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1443 reg, pipe_name(pipe));
de9a35ab 1444
e2c719b7 1445 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1446 && (val & DP_PIPEB_SELECT),
de9a35ab 1447 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1448}
1449
1450static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1451 enum pipe pipe, int reg)
1452{
47a05eca 1453 u32 val = I915_READ(reg);
e2c719b7 1454 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1455 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1456 reg, pipe_name(pipe));
de9a35ab 1457
e2c719b7 1458 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1459 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1460 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1461}
1462
1463static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1464 enum pipe pipe)
1465{
1466 int reg;
1467 u32 val;
291906f1 1468
f0575e92
KP
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1472
1473 reg = PCH_ADPA;
1474 val = I915_READ(reg);
e2c719b7 1475 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1476 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1477 pipe_name(pipe));
291906f1
JB
1478
1479 reg = PCH_LVDS;
1480 val = I915_READ(reg);
e2c719b7 1481 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1482 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1483 pipe_name(pipe));
291906f1 1484
e2debe91
PZ
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1486 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1487 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1488}
1489
40e9cf64
JB
1490static void intel_init_dpio(struct drm_device *dev)
1491{
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1493
1494 if (!IS_VALLEYVIEW(dev))
1495 return;
1496
a09caddd
CML
1497 /*
1498 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1499 * CHV x1 PHY (DP/HDMI D)
1500 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1501 */
1502 if (IS_CHERRYVIEW(dev)) {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1504 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1505 } else {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1507 }
5382f5f3
JB
1508}
1509
d288f65f 1510static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1511 const struct intel_crtc_state *pipe_config)
87442f73 1512{
426115cf
DV
1513 struct drm_device *dev = crtc->base.dev;
1514 struct drm_i915_private *dev_priv = dev->dev_private;
1515 int reg = DPLL(crtc->pipe);
d288f65f 1516 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1517
426115cf 1518 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1519
1520 /* No really, not for ILK+ */
1521 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1522
1523 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1524 if (IS_MOBILE(dev_priv->dev))
426115cf 1525 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1526
426115cf
DV
1527 I915_WRITE(reg, dpll);
1528 POSTING_READ(reg);
1529 udelay(150);
1530
1531 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1532 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1533
d288f65f 1534 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1535 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1536
1537 /* We do this three times for luck */
426115cf 1538 I915_WRITE(reg, dpll);
87442f73
DV
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
426115cf 1541 I915_WRITE(reg, dpll);
87442f73
DV
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
426115cf 1544 I915_WRITE(reg, dpll);
87442f73
DV
1545 POSTING_READ(reg);
1546 udelay(150); /* wait for warmup */
1547}
1548
d288f65f 1549static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1550 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1551{
1552 struct drm_device *dev = crtc->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 int pipe = crtc->pipe;
1555 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1556 u32 tmp;
1557
1558 assert_pipe_disabled(dev_priv, crtc->pipe);
1559
1560 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1561
1562 mutex_lock(&dev_priv->dpio_lock);
1563
1564 /* Enable back the 10bit clock to display controller */
1565 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1566 tmp |= DPIO_DCLKP_EN;
1567 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1568
1569 /*
1570 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1571 */
1572 udelay(1);
1573
1574 /* Enable PLL */
d288f65f 1575 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1576
1577 /* Check PLL is locked */
a11b0703 1578 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1579 DRM_ERROR("PLL %d failed to lock\n", pipe);
1580
a11b0703 1581 /* not sure when this should be written */
d288f65f 1582 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703
VS
1583 POSTING_READ(DPLL_MD(pipe));
1584
9d556c99
CML
1585 mutex_unlock(&dev_priv->dpio_lock);
1586}
1587
1c4e0274
VS
1588static int intel_num_dvo_pipes(struct drm_device *dev)
1589{
1590 struct intel_crtc *crtc;
1591 int count = 0;
1592
1593 for_each_intel_crtc(dev, crtc)
1594 count += crtc->active &&
409ee761 1595 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1596
1597 return count;
1598}
1599
66e3d5c0 1600static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1601{
66e3d5c0
DV
1602 struct drm_device *dev = crtc->base.dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 int reg = DPLL(crtc->pipe);
6e3c9717 1605 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1606
66e3d5c0 1607 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1608
63d7bbe9 1609 /* No really, not for ILK+ */
3d13ef2e 1610 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1611
1612 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1613 if (IS_MOBILE(dev) && !IS_I830(dev))
1614 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1615
1c4e0274
VS
1616 /* Enable DVO 2x clock on both PLLs if necessary */
1617 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1618 /*
1619 * It appears to be important that we don't enable this
1620 * for the current pipe before otherwise configuring the
1621 * PLL. No idea how this should be handled if multiple
1622 * DVO outputs are enabled simultaneosly.
1623 */
1624 dpll |= DPLL_DVO_2X_MODE;
1625 I915_WRITE(DPLL(!crtc->pipe),
1626 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1627 }
66e3d5c0
DV
1628
1629 /* Wait for the clocks to stabilize. */
1630 POSTING_READ(reg);
1631 udelay(150);
1632
1633 if (INTEL_INFO(dev)->gen >= 4) {
1634 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1635 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1636 } else {
1637 /* The pixel multiplier can only be updated once the
1638 * DPLL is enabled and the clocks are stable.
1639 *
1640 * So write it again.
1641 */
1642 I915_WRITE(reg, dpll);
1643 }
63d7bbe9
JB
1644
1645 /* We do this three times for luck */
66e3d5c0 1646 I915_WRITE(reg, dpll);
63d7bbe9
JB
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
66e3d5c0 1649 I915_WRITE(reg, dpll);
63d7bbe9
JB
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
66e3d5c0 1652 I915_WRITE(reg, dpll);
63d7bbe9
JB
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
1655}
1656
1657/**
50b44a44 1658 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1659 * @dev_priv: i915 private structure
1660 * @pipe: pipe PLL to disable
1661 *
1662 * Disable the PLL for @pipe, making sure the pipe is off first.
1663 *
1664 * Note! This is for pre-ILK only.
1665 */
1c4e0274 1666static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1667{
1c4e0274
VS
1668 struct drm_device *dev = crtc->base.dev;
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670 enum pipe pipe = crtc->pipe;
1671
1672 /* Disable DVO 2x clock on both PLLs if necessary */
1673 if (IS_I830(dev) &&
409ee761 1674 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1675 intel_num_dvo_pipes(dev) == 1) {
1676 I915_WRITE(DPLL(PIPE_B),
1677 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1678 I915_WRITE(DPLL(PIPE_A),
1679 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1680 }
1681
b6b5d049
VS
1682 /* Don't disable pipe or pipe PLLs if needed */
1683 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1684 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1685 return;
1686
1687 /* Make sure the pipe isn't still relying on us */
1688 assert_pipe_disabled(dev_priv, pipe);
1689
50b44a44
DV
1690 I915_WRITE(DPLL(pipe), 0);
1691 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1692}
1693
f6071166
JB
1694static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1695{
1696 u32 val = 0;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
e5cbfbfb
ID
1701 /*
1702 * Leave integrated clock source and reference clock enabled for pipe B.
1703 * The latter is needed for VGA hotplug / manual detection.
1704 */
f6071166 1705 if (pipe == PIPE_B)
e5cbfbfb 1706 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1707 I915_WRITE(DPLL(pipe), val);
1708 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1709
1710}
1711
1712static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713{
d752048d 1714 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1715 u32 val;
1716
a11b0703
VS
1717 /* Make sure the pipe isn't still relying on us */
1718 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1719
a11b0703 1720 /* Set PLL en = 0 */
d17ec4ce 1721 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1722 if (pipe != PIPE_A)
1723 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
d752048d
VS
1726
1727 mutex_lock(&dev_priv->dpio_lock);
1728
1729 /* Disable 10bit clock to display controller */
1730 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1731 val &= ~DPIO_DCLKP_EN;
1732 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1733
61407f6d
VS
1734 /* disable left/right clock distribution */
1735 if (pipe != PIPE_B) {
1736 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1737 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1738 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1739 } else {
1740 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1741 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1742 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1743 }
1744
d752048d 1745 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1746}
1747
e4607fcf
CML
1748void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1749 struct intel_digital_port *dport)
89b667f8
JB
1750{
1751 u32 port_mask;
00fc31b7 1752 int dpll_reg;
89b667f8 1753
e4607fcf
CML
1754 switch (dport->port) {
1755 case PORT_B:
89b667f8 1756 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1757 dpll_reg = DPLL(0);
e4607fcf
CML
1758 break;
1759 case PORT_C:
89b667f8 1760 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1761 dpll_reg = DPLL(0);
1762 break;
1763 case PORT_D:
1764 port_mask = DPLL_PORTD_READY_MASK;
1765 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1766 break;
1767 default:
1768 BUG();
1769 }
89b667f8 1770
00fc31b7 1771 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1772 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1773 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1774}
1775
b14b1055
DV
1776static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1777{
1778 struct drm_device *dev = crtc->base.dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1781
be19f0ff
CW
1782 if (WARN_ON(pll == NULL))
1783 return;
1784
3e369b76 1785 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1786 if (pll->active == 0) {
1787 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1788 WARN_ON(pll->on);
1789 assert_shared_dpll_disabled(dev_priv, pll);
1790
1791 pll->mode_set(dev_priv, pll);
1792 }
1793}
1794
92f2584a 1795/**
85b3894f 1796 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1797 * @dev_priv: i915 private structure
1798 * @pipe: pipe PLL to enable
1799 *
1800 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1801 * drives the transcoder clock.
1802 */
85b3894f 1803static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1804{
3d13ef2e
DL
1805 struct drm_device *dev = crtc->base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1807 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1808
87a875bb 1809 if (WARN_ON(pll == NULL))
48da64a8
CW
1810 return;
1811
3e369b76 1812 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1813 return;
ee7b9f93 1814
74dd6928 1815 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1816 pll->name, pll->active, pll->on,
e2b78267 1817 crtc->base.base.id);
92f2584a 1818
cdbd2316
DV
1819 if (pll->active++) {
1820 WARN_ON(!pll->on);
e9d6944e 1821 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1822 return;
1823 }
f4a091c7 1824 WARN_ON(pll->on);
ee7b9f93 1825
bd2bb1b9
PZ
1826 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1827
46edb027 1828 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1829 pll->enable(dev_priv, pll);
ee7b9f93 1830 pll->on = true;
92f2584a
JB
1831}
1832
f6daaec2 1833static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1834{
3d13ef2e
DL
1835 struct drm_device *dev = crtc->base.dev;
1836 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1837 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1838
92f2584a 1839 /* PCH only available on ILK+ */
3d13ef2e 1840 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1841 if (WARN_ON(pll == NULL))
ee7b9f93 1842 return;
92f2584a 1843
3e369b76 1844 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1845 return;
7a419866 1846
46edb027
DV
1847 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1848 pll->name, pll->active, pll->on,
e2b78267 1849 crtc->base.base.id);
7a419866 1850
48da64a8 1851 if (WARN_ON(pll->active == 0)) {
e9d6944e 1852 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1853 return;
1854 }
1855
e9d6944e 1856 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1857 WARN_ON(!pll->on);
cdbd2316 1858 if (--pll->active)
7a419866 1859 return;
ee7b9f93 1860
46edb027 1861 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1862 pll->disable(dev_priv, pll);
ee7b9f93 1863 pll->on = false;
bd2bb1b9
PZ
1864
1865 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1866}
1867
b8a4f404
PZ
1868static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1869 enum pipe pipe)
040484af 1870{
23670b32 1871 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1872 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1874 uint32_t reg, val, pipeconf_val;
040484af
JB
1875
1876 /* PCH only available on ILK+ */
55522f37 1877 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1878
1879 /* Make sure PCH DPLL is enabled */
e72f9fbf 1880 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1881 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1882
1883 /* FDI must be feeding us bits for PCH ports */
1884 assert_fdi_tx_enabled(dev_priv, pipe);
1885 assert_fdi_rx_enabled(dev_priv, pipe);
1886
23670b32
DV
1887 if (HAS_PCH_CPT(dev)) {
1888 /* Workaround: Set the timing override bit before enabling the
1889 * pch transcoder. */
1890 reg = TRANS_CHICKEN2(pipe);
1891 val = I915_READ(reg);
1892 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1893 I915_WRITE(reg, val);
59c859d6 1894 }
23670b32 1895
ab9412ba 1896 reg = PCH_TRANSCONF(pipe);
040484af 1897 val = I915_READ(reg);
5f7f726d 1898 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1899
1900 if (HAS_PCH_IBX(dev_priv->dev)) {
1901 /*
1902 * make the BPC in transcoder be consistent with
1903 * that in pipeconf reg.
1904 */
dfd07d72
DV
1905 val &= ~PIPECONF_BPC_MASK;
1906 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1907 }
5f7f726d
PZ
1908
1909 val &= ~TRANS_INTERLACE_MASK;
1910 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1911 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1912 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1913 val |= TRANS_LEGACY_INTERLACED_ILK;
1914 else
1915 val |= TRANS_INTERLACED;
5f7f726d
PZ
1916 else
1917 val |= TRANS_PROGRESSIVE;
1918
040484af
JB
1919 I915_WRITE(reg, val | TRANS_ENABLE);
1920 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1921 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1922}
1923
8fb033d7 1924static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1925 enum transcoder cpu_transcoder)
040484af 1926{
8fb033d7 1927 u32 val, pipeconf_val;
8fb033d7
PZ
1928
1929 /* PCH only available on ILK+ */
55522f37 1930 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1931
8fb033d7 1932 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1933 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1934 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1935
223a6fdf
PZ
1936 /* Workaround: set timing override bit. */
1937 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1938 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1939 I915_WRITE(_TRANSA_CHICKEN2, val);
1940
25f3ef11 1941 val = TRANS_ENABLE;
937bb610 1942 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1943
9a76b1c6
PZ
1944 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1945 PIPECONF_INTERLACED_ILK)
a35f2679 1946 val |= TRANS_INTERLACED;
8fb033d7
PZ
1947 else
1948 val |= TRANS_PROGRESSIVE;
1949
ab9412ba
DV
1950 I915_WRITE(LPT_TRANSCONF, val);
1951 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1952 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1953}
1954
b8a4f404
PZ
1955static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1956 enum pipe pipe)
040484af 1957{
23670b32
DV
1958 struct drm_device *dev = dev_priv->dev;
1959 uint32_t reg, val;
040484af
JB
1960
1961 /* FDI relies on the transcoder */
1962 assert_fdi_tx_disabled(dev_priv, pipe);
1963 assert_fdi_rx_disabled(dev_priv, pipe);
1964
291906f1
JB
1965 /* Ports must be off as well */
1966 assert_pch_ports_disabled(dev_priv, pipe);
1967
ab9412ba 1968 reg = PCH_TRANSCONF(pipe);
040484af
JB
1969 val = I915_READ(reg);
1970 val &= ~TRANS_ENABLE;
1971 I915_WRITE(reg, val);
1972 /* wait for PCH transcoder off, transcoder state */
1973 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1974 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1975
1976 if (!HAS_PCH_IBX(dev)) {
1977 /* Workaround: Clear the timing override chicken bit again. */
1978 reg = TRANS_CHICKEN2(pipe);
1979 val = I915_READ(reg);
1980 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1981 I915_WRITE(reg, val);
1982 }
040484af
JB
1983}
1984
ab4d966c 1985static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1986{
8fb033d7
PZ
1987 u32 val;
1988
ab9412ba 1989 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1990 val &= ~TRANS_ENABLE;
ab9412ba 1991 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1992 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1993 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1994 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1995
1996 /* Workaround: clear timing override bit. */
1997 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1998 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1999 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2000}
2001
b24e7179 2002/**
309cfea8 2003 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2004 * @crtc: crtc responsible for the pipe
b24e7179 2005 *
0372264a 2006 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2007 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2008 */
e1fdc473 2009static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2010{
0372264a
PZ
2011 struct drm_device *dev = crtc->base.dev;
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2014 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2015 pipe);
1a240d4d 2016 enum pipe pch_transcoder;
b24e7179
JB
2017 int reg;
2018 u32 val;
2019
58c6eaa2 2020 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2021 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2022 assert_sprites_disabled(dev_priv, pipe);
2023
681e5811 2024 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2025 pch_transcoder = TRANSCODER_A;
2026 else
2027 pch_transcoder = pipe;
2028
b24e7179
JB
2029 /*
2030 * A pipe without a PLL won't actually be able to drive bits from
2031 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2032 * need the check.
2033 */
2034 if (!HAS_PCH_SPLIT(dev_priv->dev))
409ee761 2035 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2036 assert_dsi_pll_enabled(dev_priv);
2037 else
2038 assert_pll_enabled(dev_priv, pipe);
040484af 2039 else {
6e3c9717 2040 if (crtc->config->has_pch_encoder) {
040484af 2041 /* if driving the PCH, we need FDI enabled */
cc391bbb 2042 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2043 assert_fdi_tx_pll_enabled(dev_priv,
2044 (enum pipe) cpu_transcoder);
040484af
JB
2045 }
2046 /* FIXME: assert CPU port conditions for SNB+ */
2047 }
b24e7179 2048
702e7a56 2049 reg = PIPECONF(cpu_transcoder);
b24e7179 2050 val = I915_READ(reg);
7ad25d48 2051 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2052 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2053 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2054 return;
7ad25d48 2055 }
00d70b15
CW
2056
2057 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2058 POSTING_READ(reg);
b24e7179
JB
2059}
2060
2061/**
309cfea8 2062 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2063 * @crtc: crtc whose pipes is to be disabled
b24e7179 2064 *
575f7ab7
VS
2065 * Disable the pipe of @crtc, making sure that various hardware
2066 * specific requirements are met, if applicable, e.g. plane
2067 * disabled, panel fitter off, etc.
b24e7179
JB
2068 *
2069 * Will wait until the pipe has shut down before returning.
2070 */
575f7ab7 2071static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2072{
575f7ab7 2073 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2074 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2075 enum pipe pipe = crtc->pipe;
b24e7179
JB
2076 int reg;
2077 u32 val;
2078
2079 /*
2080 * Make sure planes won't keep trying to pump pixels to us,
2081 * or we might hang the display.
2082 */
2083 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2084 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2085 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2086
702e7a56 2087 reg = PIPECONF(cpu_transcoder);
b24e7179 2088 val = I915_READ(reg);
00d70b15
CW
2089 if ((val & PIPECONF_ENABLE) == 0)
2090 return;
2091
67adc644
VS
2092 /*
2093 * Double wide has implications for planes
2094 * so best keep it disabled when not needed.
2095 */
6e3c9717 2096 if (crtc->config->double_wide)
67adc644
VS
2097 val &= ~PIPECONF_DOUBLE_WIDE;
2098
2099 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2100 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2101 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2102 val &= ~PIPECONF_ENABLE;
2103
2104 I915_WRITE(reg, val);
2105 if ((val & PIPECONF_ENABLE) == 0)
2106 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2107}
2108
d74362c9
KP
2109/*
2110 * Plane regs are double buffered, going from enabled->disabled needs a
2111 * trigger in order to latch. The display address reg provides this.
2112 */
1dba99f4
VS
2113void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2114 enum plane plane)
d74362c9 2115{
3d13ef2e
DL
2116 struct drm_device *dev = dev_priv->dev;
2117 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2118
2119 I915_WRITE(reg, I915_READ(reg));
2120 POSTING_READ(reg);
d74362c9
KP
2121}
2122
b24e7179 2123/**
262ca2b0 2124 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2125 * @plane: plane to be enabled
2126 * @crtc: crtc for the plane
b24e7179 2127 *
fdd508a6 2128 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2129 */
fdd508a6
VS
2130static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2131 struct drm_crtc *crtc)
b24e7179 2132{
fdd508a6
VS
2133 struct drm_device *dev = plane->dev;
2134 struct drm_i915_private *dev_priv = dev->dev_private;
2135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2136
2137 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2138 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2139
98ec7739
VS
2140 if (intel_crtc->primary_enabled)
2141 return;
0037f71c 2142
4c445e0e 2143 intel_crtc->primary_enabled = true;
939c2fe8 2144
fdd508a6
VS
2145 dev_priv->display.update_primary_plane(crtc, plane->fb,
2146 crtc->x, crtc->y);
33c3b0d1
VS
2147
2148 /*
2149 * BDW signals flip done immediately if the plane
2150 * is disabled, even if the plane enable is already
2151 * armed to occur at the next vblank :(
2152 */
2153 if (IS_BROADWELL(dev))
2154 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2155}
2156
b24e7179 2157/**
262ca2b0 2158 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2159 * @plane: plane to be disabled
2160 * @crtc: crtc for the plane
b24e7179 2161 *
fdd508a6 2162 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2163 */
fdd508a6
VS
2164static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2165 struct drm_crtc *crtc)
b24e7179 2166{
fdd508a6
VS
2167 struct drm_device *dev = plane->dev;
2168 struct drm_i915_private *dev_priv = dev->dev_private;
2169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2170
32b7eeec
MR
2171 if (WARN_ON(!intel_crtc->active))
2172 return;
b24e7179 2173
98ec7739
VS
2174 if (!intel_crtc->primary_enabled)
2175 return;
0037f71c 2176
4c445e0e 2177 intel_crtc->primary_enabled = false;
939c2fe8 2178
fdd508a6
VS
2179 dev_priv->display.update_primary_plane(crtc, plane->fb,
2180 crtc->x, crtc->y);
b24e7179
JB
2181}
2182
693db184
CW
2183static bool need_vtd_wa(struct drm_device *dev)
2184{
2185#ifdef CONFIG_INTEL_IOMMU
2186 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2187 return true;
2188#endif
2189 return false;
2190}
2191
ec2c981e
DL
2192int
2193intel_fb_align_height(struct drm_device *dev, int height, unsigned int tiling)
a57ce0b2
JB
2194{
2195 int tile_height;
2196
ec2c981e 2197 tile_height = tiling ? (IS_GEN2(dev) ? 16 : 8) : 1;
a57ce0b2
JB
2198 return ALIGN(height, tile_height);
2199}
2200
127bd2ac 2201int
850c4cdc
TU
2202intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2203 struct drm_framebuffer *fb,
a4872ba6 2204 struct intel_engine_cs *pipelined)
6b95a207 2205{
850c4cdc 2206 struct drm_device *dev = fb->dev;
ce453d81 2207 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2208 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207
KH
2209 u32 alignment;
2210 int ret;
2211
ebcdd39e
MR
2212 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2213
05394f39 2214 switch (obj->tiling_mode) {
6b95a207 2215 case I915_TILING_NONE:
1fada4cc
DL
2216 if (INTEL_INFO(dev)->gen >= 9)
2217 alignment = 256 * 1024;
2218 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2219 alignment = 128 * 1024;
a6c45cf0 2220 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2221 alignment = 4 * 1024;
2222 else
2223 alignment = 64 * 1024;
6b95a207
KH
2224 break;
2225 case I915_TILING_X:
1fada4cc
DL
2226 if (INTEL_INFO(dev)->gen >= 9)
2227 alignment = 256 * 1024;
2228 else {
2229 /* pin() will align the object as required by fence */
2230 alignment = 0;
2231 }
6b95a207
KH
2232 break;
2233 case I915_TILING_Y:
80075d49 2234 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2235 return -EINVAL;
2236 default:
2237 BUG();
2238 }
2239
693db184
CW
2240 /* Note that the w/a also requires 64 PTE of padding following the
2241 * bo. We currently fill all unused PTE with the shadow page and so
2242 * we should always have valid PTE following the scanout preventing
2243 * the VT-d warning.
2244 */
2245 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2246 alignment = 256 * 1024;
2247
d6dd6843
PZ
2248 /*
2249 * Global gtt pte registers are special registers which actually forward
2250 * writes to a chunk of system memory. Which means that there is no risk
2251 * that the register values disappear as soon as we call
2252 * intel_runtime_pm_put(), so it is correct to wrap only the
2253 * pin/unpin/fence and not more.
2254 */
2255 intel_runtime_pm_get(dev_priv);
2256
ce453d81 2257 dev_priv->mm.interruptible = false;
2da3b9b9 2258 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2259 if (ret)
ce453d81 2260 goto err_interruptible;
6b95a207
KH
2261
2262 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2263 * fence, whereas 965+ only requires a fence if using
2264 * framebuffer compression. For simplicity, we always install
2265 * a fence as the cost is not that onerous.
2266 */
06d98131 2267 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2268 if (ret)
2269 goto err_unpin;
1690e1eb 2270
9a5a53b3 2271 i915_gem_object_pin_fence(obj);
6b95a207 2272
ce453d81 2273 dev_priv->mm.interruptible = true;
d6dd6843 2274 intel_runtime_pm_put(dev_priv);
6b95a207 2275 return 0;
48b956c5
CW
2276
2277err_unpin:
cc98b413 2278 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2279err_interruptible:
2280 dev_priv->mm.interruptible = true;
d6dd6843 2281 intel_runtime_pm_put(dev_priv);
48b956c5 2282 return ret;
6b95a207
KH
2283}
2284
1690e1eb
CW
2285void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2286{
ebcdd39e
MR
2287 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2288
1690e1eb 2289 i915_gem_object_unpin_fence(obj);
cc98b413 2290 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2291}
2292
c2c75131
DV
2293/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2294 * is assumed to be a power-of-two. */
bc752862
CW
2295unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2296 unsigned int tiling_mode,
2297 unsigned int cpp,
2298 unsigned int pitch)
c2c75131 2299{
bc752862
CW
2300 if (tiling_mode != I915_TILING_NONE) {
2301 unsigned int tile_rows, tiles;
c2c75131 2302
bc752862
CW
2303 tile_rows = *y / 8;
2304 *y %= 8;
c2c75131 2305
bc752862
CW
2306 tiles = *x / (512/cpp);
2307 *x %= 512/cpp;
2308
2309 return tile_rows * pitch * 8 + tiles * 4096;
2310 } else {
2311 unsigned int offset;
2312
2313 offset = *y * pitch + *x * cpp;
2314 *y = 0;
2315 *x = (offset & 4095) / cpp;
2316 return offset & -4096;
2317 }
c2c75131
DV
2318}
2319
b35d63fa 2320static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2321{
2322 switch (format) {
2323 case DISPPLANE_8BPP:
2324 return DRM_FORMAT_C8;
2325 case DISPPLANE_BGRX555:
2326 return DRM_FORMAT_XRGB1555;
2327 case DISPPLANE_BGRX565:
2328 return DRM_FORMAT_RGB565;
2329 default:
2330 case DISPPLANE_BGRX888:
2331 return DRM_FORMAT_XRGB8888;
2332 case DISPPLANE_RGBX888:
2333 return DRM_FORMAT_XBGR8888;
2334 case DISPPLANE_BGRX101010:
2335 return DRM_FORMAT_XRGB2101010;
2336 case DISPPLANE_RGBX101010:
2337 return DRM_FORMAT_XBGR2101010;
2338 }
2339}
2340
bc8d7dff
DL
2341static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2342{
2343 switch (format) {
2344 case PLANE_CTL_FORMAT_RGB_565:
2345 return DRM_FORMAT_RGB565;
2346 default:
2347 case PLANE_CTL_FORMAT_XRGB_8888:
2348 if (rgb_order) {
2349 if (alpha)
2350 return DRM_FORMAT_ABGR8888;
2351 else
2352 return DRM_FORMAT_XBGR8888;
2353 } else {
2354 if (alpha)
2355 return DRM_FORMAT_ARGB8888;
2356 else
2357 return DRM_FORMAT_XRGB8888;
2358 }
2359 case PLANE_CTL_FORMAT_XRGB_2101010:
2360 if (rgb_order)
2361 return DRM_FORMAT_XBGR2101010;
2362 else
2363 return DRM_FORMAT_XRGB2101010;
2364 }
2365}
2366
5724dbd1
DL
2367static bool
2368intel_alloc_plane_obj(struct intel_crtc *crtc,
2369 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2370{
2371 struct drm_device *dev = crtc->base.dev;
2372 struct drm_i915_gem_object *obj = NULL;
2373 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2374 u32 base = plane_config->base;
2375
ff2652ea
CW
2376 if (plane_config->size == 0)
2377 return false;
2378
46f297fb
JB
2379 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2380 plane_config->size);
2381 if (!obj)
484b41dd 2382 return false;
46f297fb 2383
49af449b
DL
2384 obj->tiling_mode = plane_config->tiling;
2385 if (obj->tiling_mode == I915_TILING_X)
66e514c1 2386 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb 2387
66e514c1
DA
2388 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2389 mode_cmd.width = crtc->base.primary->fb->width;
2390 mode_cmd.height = crtc->base.primary->fb->height;
2391 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2392
2393 mutex_lock(&dev->struct_mutex);
2394
66e514c1 2395 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2396 &mode_cmd, obj)) {
46f297fb
JB
2397 DRM_DEBUG_KMS("intel fb init failed\n");
2398 goto out_unref_obj;
2399 }
2400
a071fa00 2401 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2402 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2403
2404 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2405 return true;
46f297fb
JB
2406
2407out_unref_obj:
2408 drm_gem_object_unreference(&obj->base);
2409 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2410 return false;
2411}
2412
5724dbd1
DL
2413static void
2414intel_find_plane_obj(struct intel_crtc *intel_crtc,
2415 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2416{
2417 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2418 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2419 struct drm_crtc *c;
2420 struct intel_crtc *i;
2ff8fde1 2421 struct drm_i915_gem_object *obj;
484b41dd 2422
66e514c1 2423 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2424 return;
2425
2426 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2427 return;
2428
66e514c1
DA
2429 kfree(intel_crtc->base.primary->fb);
2430 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2431
2432 /*
2433 * Failed to alloc the obj, check to see if we should share
2434 * an fb with another CRTC instead
2435 */
70e1e0ec 2436 for_each_crtc(dev, c) {
484b41dd
JB
2437 i = to_intel_crtc(c);
2438
2439 if (c == &intel_crtc->base)
2440 continue;
2441
2ff8fde1
MR
2442 if (!i->active)
2443 continue;
2444
2445 obj = intel_fb_obj(c->primary->fb);
2446 if (obj == NULL)
484b41dd
JB
2447 continue;
2448
2ff8fde1 2449 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
d9ceb816
JB
2450 if (obj->tiling_mode != I915_TILING_NONE)
2451 dev_priv->preserve_bios_swizzle = true;
2452
66e514c1
DA
2453 drm_framebuffer_reference(c->primary->fb);
2454 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2455 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2456 break;
2457 }
2458 }
46f297fb
JB
2459}
2460
29b9bde6
DV
2461static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2462 struct drm_framebuffer *fb,
2463 int x, int y)
81255565
JB
2464{
2465 struct drm_device *dev = crtc->dev;
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2468 struct drm_i915_gem_object *obj;
81255565 2469 int plane = intel_crtc->plane;
e506a0c6 2470 unsigned long linear_offset;
81255565 2471 u32 dspcntr;
f45651ba 2472 u32 reg = DSPCNTR(plane);
48404c1e 2473 int pixel_size;
f45651ba 2474
fdd508a6
VS
2475 if (!intel_crtc->primary_enabled) {
2476 I915_WRITE(reg, 0);
2477 if (INTEL_INFO(dev)->gen >= 4)
2478 I915_WRITE(DSPSURF(plane), 0);
2479 else
2480 I915_WRITE(DSPADDR(plane), 0);
2481 POSTING_READ(reg);
2482 return;
2483 }
2484
c9ba6fad
VS
2485 obj = intel_fb_obj(fb);
2486 if (WARN_ON(obj == NULL))
2487 return;
2488
2489 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2490
f45651ba
VS
2491 dspcntr = DISPPLANE_GAMMA_ENABLE;
2492
fdd508a6 2493 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2494
2495 if (INTEL_INFO(dev)->gen < 4) {
2496 if (intel_crtc->pipe == PIPE_B)
2497 dspcntr |= DISPPLANE_SEL_PIPE_B;
2498
2499 /* pipesrc and dspsize control the size that is scaled from,
2500 * which should always be the user's requested size.
2501 */
2502 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2503 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2504 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2505 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2506 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2507 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2508 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2509 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2510 I915_WRITE(PRIMPOS(plane), 0);
2511 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2512 }
81255565 2513
57779d06
VS
2514 switch (fb->pixel_format) {
2515 case DRM_FORMAT_C8:
81255565
JB
2516 dspcntr |= DISPPLANE_8BPP;
2517 break;
57779d06
VS
2518 case DRM_FORMAT_XRGB1555:
2519 case DRM_FORMAT_ARGB1555:
2520 dspcntr |= DISPPLANE_BGRX555;
81255565 2521 break;
57779d06
VS
2522 case DRM_FORMAT_RGB565:
2523 dspcntr |= DISPPLANE_BGRX565;
2524 break;
2525 case DRM_FORMAT_XRGB8888:
2526 case DRM_FORMAT_ARGB8888:
2527 dspcntr |= DISPPLANE_BGRX888;
2528 break;
2529 case DRM_FORMAT_XBGR8888:
2530 case DRM_FORMAT_ABGR8888:
2531 dspcntr |= DISPPLANE_RGBX888;
2532 break;
2533 case DRM_FORMAT_XRGB2101010:
2534 case DRM_FORMAT_ARGB2101010:
2535 dspcntr |= DISPPLANE_BGRX101010;
2536 break;
2537 case DRM_FORMAT_XBGR2101010:
2538 case DRM_FORMAT_ABGR2101010:
2539 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2540 break;
2541 default:
baba133a 2542 BUG();
81255565 2543 }
57779d06 2544
f45651ba
VS
2545 if (INTEL_INFO(dev)->gen >= 4 &&
2546 obj->tiling_mode != I915_TILING_NONE)
2547 dspcntr |= DISPPLANE_TILED;
81255565 2548
de1aa629
VS
2549 if (IS_G4X(dev))
2550 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2551
b9897127 2552 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2553
c2c75131
DV
2554 if (INTEL_INFO(dev)->gen >= 4) {
2555 intel_crtc->dspaddr_offset =
bc752862 2556 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2557 pixel_size,
bc752862 2558 fb->pitches[0]);
c2c75131
DV
2559 linear_offset -= intel_crtc->dspaddr_offset;
2560 } else {
e506a0c6 2561 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2562 }
e506a0c6 2563
8e7d688b 2564 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2565 dspcntr |= DISPPLANE_ROTATE_180;
2566
6e3c9717
ACO
2567 x += (intel_crtc->config->pipe_src_w - 1);
2568 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2569
2570 /* Finding the last pixel of the last line of the display
2571 data and adding to linear_offset*/
2572 linear_offset +=
6e3c9717
ACO
2573 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2574 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2575 }
2576
2577 I915_WRITE(reg, dspcntr);
2578
f343c5f6
BW
2579 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2580 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2581 fb->pitches[0]);
01f2c773 2582 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2583 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2584 I915_WRITE(DSPSURF(plane),
2585 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2586 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2587 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2588 } else
f343c5f6 2589 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2590 POSTING_READ(reg);
17638cd6
JB
2591}
2592
29b9bde6
DV
2593static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2594 struct drm_framebuffer *fb,
2595 int x, int y)
17638cd6
JB
2596{
2597 struct drm_device *dev = crtc->dev;
2598 struct drm_i915_private *dev_priv = dev->dev_private;
2599 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2600 struct drm_i915_gem_object *obj;
17638cd6 2601 int plane = intel_crtc->plane;
e506a0c6 2602 unsigned long linear_offset;
17638cd6 2603 u32 dspcntr;
f45651ba 2604 u32 reg = DSPCNTR(plane);
48404c1e 2605 int pixel_size;
f45651ba 2606
fdd508a6
VS
2607 if (!intel_crtc->primary_enabled) {
2608 I915_WRITE(reg, 0);
2609 I915_WRITE(DSPSURF(plane), 0);
2610 POSTING_READ(reg);
2611 return;
2612 }
2613
c9ba6fad
VS
2614 obj = intel_fb_obj(fb);
2615 if (WARN_ON(obj == NULL))
2616 return;
2617
2618 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2619
f45651ba
VS
2620 dspcntr = DISPPLANE_GAMMA_ENABLE;
2621
fdd508a6 2622 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2623
2624 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2625 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2626
57779d06
VS
2627 switch (fb->pixel_format) {
2628 case DRM_FORMAT_C8:
17638cd6
JB
2629 dspcntr |= DISPPLANE_8BPP;
2630 break;
57779d06
VS
2631 case DRM_FORMAT_RGB565:
2632 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2633 break;
57779d06
VS
2634 case DRM_FORMAT_XRGB8888:
2635 case DRM_FORMAT_ARGB8888:
2636 dspcntr |= DISPPLANE_BGRX888;
2637 break;
2638 case DRM_FORMAT_XBGR8888:
2639 case DRM_FORMAT_ABGR8888:
2640 dspcntr |= DISPPLANE_RGBX888;
2641 break;
2642 case DRM_FORMAT_XRGB2101010:
2643 case DRM_FORMAT_ARGB2101010:
2644 dspcntr |= DISPPLANE_BGRX101010;
2645 break;
2646 case DRM_FORMAT_XBGR2101010:
2647 case DRM_FORMAT_ABGR2101010:
2648 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2649 break;
2650 default:
baba133a 2651 BUG();
17638cd6
JB
2652 }
2653
2654 if (obj->tiling_mode != I915_TILING_NONE)
2655 dspcntr |= DISPPLANE_TILED;
17638cd6 2656
f45651ba 2657 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2658 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2659
b9897127 2660 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2661 intel_crtc->dspaddr_offset =
bc752862 2662 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2663 pixel_size,
bc752862 2664 fb->pitches[0]);
c2c75131 2665 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2666 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2667 dspcntr |= DISPPLANE_ROTATE_180;
2668
2669 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2670 x += (intel_crtc->config->pipe_src_w - 1);
2671 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2672
2673 /* Finding the last pixel of the last line of the display
2674 data and adding to linear_offset*/
2675 linear_offset +=
6e3c9717
ACO
2676 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2677 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2678 }
2679 }
2680
2681 I915_WRITE(reg, dspcntr);
17638cd6 2682
f343c5f6
BW
2683 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2684 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2685 fb->pitches[0]);
01f2c773 2686 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2687 I915_WRITE(DSPSURF(plane),
2688 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2689 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2690 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2691 } else {
2692 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2693 I915_WRITE(DSPLINOFF(plane), linear_offset);
2694 }
17638cd6 2695 POSTING_READ(reg);
17638cd6
JB
2696}
2697
70d21f0e
DL
2698static void skylake_update_primary_plane(struct drm_crtc *crtc,
2699 struct drm_framebuffer *fb,
2700 int x, int y)
2701{
2702 struct drm_device *dev = crtc->dev;
2703 struct drm_i915_private *dev_priv = dev->dev_private;
2704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2705 struct intel_framebuffer *intel_fb;
2706 struct drm_i915_gem_object *obj;
2707 int pipe = intel_crtc->pipe;
2708 u32 plane_ctl, stride;
2709
2710 if (!intel_crtc->primary_enabled) {
2711 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2712 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2713 POSTING_READ(PLANE_CTL(pipe, 0));
2714 return;
2715 }
2716
2717 plane_ctl = PLANE_CTL_ENABLE |
2718 PLANE_CTL_PIPE_GAMMA_ENABLE |
2719 PLANE_CTL_PIPE_CSC_ENABLE;
2720
2721 switch (fb->pixel_format) {
2722 case DRM_FORMAT_RGB565:
2723 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2724 break;
2725 case DRM_FORMAT_XRGB8888:
2726 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2727 break;
2728 case DRM_FORMAT_XBGR8888:
2729 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2730 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2731 break;
2732 case DRM_FORMAT_XRGB2101010:
2733 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2734 break;
2735 case DRM_FORMAT_XBGR2101010:
2736 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2737 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2738 break;
2739 default:
2740 BUG();
2741 }
2742
2743 intel_fb = to_intel_framebuffer(fb);
2744 obj = intel_fb->obj;
2745
2746 /*
2747 * The stride is either expressed as a multiple of 64 bytes chunks for
2748 * linear buffers or in number of tiles for tiled buffers.
2749 */
2750 switch (obj->tiling_mode) {
2751 case I915_TILING_NONE:
2752 stride = fb->pitches[0] >> 6;
2753 break;
2754 case I915_TILING_X:
2755 plane_ctl |= PLANE_CTL_TILED_X;
2756 stride = fb->pitches[0] >> 9;
2757 break;
2758 default:
2759 BUG();
2760 }
2761
2762 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
8e7d688b 2763 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
1447dde0 2764 plane_ctl |= PLANE_CTL_ROTATE_180;
70d21f0e
DL
2765
2766 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2767
2768 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2769 i915_gem_obj_ggtt_offset(obj),
2770 x, y, fb->width, fb->height,
2771 fb->pitches[0]);
2772
2773 I915_WRITE(PLANE_POS(pipe, 0), 0);
2774 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2775 I915_WRITE(PLANE_SIZE(pipe, 0),
6e3c9717
ACO
2776 (intel_crtc->config->pipe_src_h - 1) << 16 |
2777 (intel_crtc->config->pipe_src_w - 1));
70d21f0e
DL
2778 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2779 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2780
2781 POSTING_READ(PLANE_SURF(pipe, 0));
2782}
2783
17638cd6
JB
2784/* Assume fb object is pinned & idle & fenced and just update base pointers */
2785static int
2786intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2787 int x, int y, enum mode_set_atomic state)
2788{
2789 struct drm_device *dev = crtc->dev;
2790 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2791
6b8e6ed0
CW
2792 if (dev_priv->display.disable_fbc)
2793 dev_priv->display.disable_fbc(dev);
81255565 2794
29b9bde6
DV
2795 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2796
2797 return 0;
81255565
JB
2798}
2799
7514747d 2800static void intel_complete_page_flips(struct drm_device *dev)
96a02917 2801{
96a02917
VS
2802 struct drm_crtc *crtc;
2803
70e1e0ec 2804 for_each_crtc(dev, crtc) {
96a02917
VS
2805 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2806 enum plane plane = intel_crtc->plane;
2807
2808 intel_prepare_page_flip(dev, plane);
2809 intel_finish_page_flip_plane(dev, plane);
2810 }
7514747d
VS
2811}
2812
2813static void intel_update_primary_planes(struct drm_device *dev)
2814{
2815 struct drm_i915_private *dev_priv = dev->dev_private;
2816 struct drm_crtc *crtc;
96a02917 2817
70e1e0ec 2818 for_each_crtc(dev, crtc) {
96a02917
VS
2819 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2820
51fd371b 2821 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2822 /*
2823 * FIXME: Once we have proper support for primary planes (and
2824 * disabling them without disabling the entire crtc) allow again
66e514c1 2825 * a NULL crtc->primary->fb.
947fdaad 2826 */
f4510a27 2827 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2828 dev_priv->display.update_primary_plane(crtc,
66e514c1 2829 crtc->primary->fb,
262ca2b0
MR
2830 crtc->x,
2831 crtc->y);
51fd371b 2832 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2833 }
2834}
2835
7514747d
VS
2836void intel_prepare_reset(struct drm_device *dev)
2837{
f98ce92f
VS
2838 struct drm_i915_private *dev_priv = to_i915(dev);
2839 struct intel_crtc *crtc;
2840
7514747d
VS
2841 /* no reset support for gen2 */
2842 if (IS_GEN2(dev))
2843 return;
2844
2845 /* reset doesn't touch the display */
2846 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2847 return;
2848
2849 drm_modeset_lock_all(dev);
f98ce92f
VS
2850
2851 /*
2852 * Disabling the crtcs gracefully seems nicer. Also the
2853 * g33 docs say we should at least disable all the planes.
2854 */
2855 for_each_intel_crtc(dev, crtc) {
2856 if (crtc->active)
2857 dev_priv->display.crtc_disable(&crtc->base);
2858 }
7514747d
VS
2859}
2860
2861void intel_finish_reset(struct drm_device *dev)
2862{
2863 struct drm_i915_private *dev_priv = to_i915(dev);
2864
2865 /*
2866 * Flips in the rings will be nuked by the reset,
2867 * so complete all pending flips so that user space
2868 * will get its events and not get stuck.
2869 */
2870 intel_complete_page_flips(dev);
2871
2872 /* no reset support for gen2 */
2873 if (IS_GEN2(dev))
2874 return;
2875
2876 /* reset doesn't touch the display */
2877 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2878 /*
2879 * Flips in the rings have been nuked by the reset,
2880 * so update the base address of all primary
2881 * planes to the the last fb to make sure we're
2882 * showing the correct fb after a reset.
2883 */
2884 intel_update_primary_planes(dev);
2885 return;
2886 }
2887
2888 /*
2889 * The display has been reset as well,
2890 * so need a full re-initialization.
2891 */
2892 intel_runtime_pm_disable_interrupts(dev_priv);
2893 intel_runtime_pm_enable_interrupts(dev_priv);
2894
2895 intel_modeset_init_hw(dev);
2896
2897 spin_lock_irq(&dev_priv->irq_lock);
2898 if (dev_priv->display.hpd_irq_setup)
2899 dev_priv->display.hpd_irq_setup(dev);
2900 spin_unlock_irq(&dev_priv->irq_lock);
2901
2902 intel_modeset_setup_hw_state(dev, true);
2903
2904 intel_hpd_init(dev_priv);
2905
2906 drm_modeset_unlock_all(dev);
2907}
2908
14667a4b
CW
2909static int
2910intel_finish_fb(struct drm_framebuffer *old_fb)
2911{
2ff8fde1 2912 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2913 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2914 bool was_interruptible = dev_priv->mm.interruptible;
2915 int ret;
2916
14667a4b
CW
2917 /* Big Hammer, we also need to ensure that any pending
2918 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2919 * current scanout is retired before unpinning the old
2920 * framebuffer.
2921 *
2922 * This should only fail upon a hung GPU, in which case we
2923 * can safely continue.
2924 */
2925 dev_priv->mm.interruptible = false;
2926 ret = i915_gem_object_finish_gpu(obj);
2927 dev_priv->mm.interruptible = was_interruptible;
2928
2929 return ret;
2930}
2931
7d5e3799
CW
2932static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2933{
2934 struct drm_device *dev = crtc->dev;
2935 struct drm_i915_private *dev_priv = dev->dev_private;
2936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
2937 bool pending;
2938
2939 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2940 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2941 return false;
2942
5e2d7afc 2943 spin_lock_irq(&dev->event_lock);
7d5e3799 2944 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 2945 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
2946
2947 return pending;
2948}
2949
e30e8f75
GP
2950static void intel_update_pipe_size(struct intel_crtc *crtc)
2951{
2952 struct drm_device *dev = crtc->base.dev;
2953 struct drm_i915_private *dev_priv = dev->dev_private;
2954 const struct drm_display_mode *adjusted_mode;
2955
2956 if (!i915.fastboot)
2957 return;
2958
2959 /*
2960 * Update pipe size and adjust fitter if needed: the reason for this is
2961 * that in compute_mode_changes we check the native mode (not the pfit
2962 * mode) to see if we can flip rather than do a full mode set. In the
2963 * fastboot case, we'll flip, but if we don't update the pipesrc and
2964 * pfit state, we'll end up with a big fb scanned out into the wrong
2965 * sized surface.
2966 *
2967 * To fix this properly, we need to hoist the checks up into
2968 * compute_mode_changes (or above), check the actual pfit state and
2969 * whether the platform allows pfit disable with pipe active, and only
2970 * then update the pipesrc and pfit state, even on the flip path.
2971 */
2972
6e3c9717 2973 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
2974
2975 I915_WRITE(PIPESRC(crtc->pipe),
2976 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2977 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 2978 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
2979 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2980 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
2981 I915_WRITE(PF_CTL(crtc->pipe), 0);
2982 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
2983 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
2984 }
6e3c9717
ACO
2985 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
2986 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
2987}
2988
5e84e1a4
ZW
2989static void intel_fdi_normal_train(struct drm_crtc *crtc)
2990{
2991 struct drm_device *dev = crtc->dev;
2992 struct drm_i915_private *dev_priv = dev->dev_private;
2993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2994 int pipe = intel_crtc->pipe;
2995 u32 reg, temp;
2996
2997 /* enable normal train */
2998 reg = FDI_TX_CTL(pipe);
2999 temp = I915_READ(reg);
61e499bf 3000 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3001 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3002 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3003 } else {
3004 temp &= ~FDI_LINK_TRAIN_NONE;
3005 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3006 }
5e84e1a4
ZW
3007 I915_WRITE(reg, temp);
3008
3009 reg = FDI_RX_CTL(pipe);
3010 temp = I915_READ(reg);
3011 if (HAS_PCH_CPT(dev)) {
3012 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3013 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3014 } else {
3015 temp &= ~FDI_LINK_TRAIN_NONE;
3016 temp |= FDI_LINK_TRAIN_NONE;
3017 }
3018 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3019
3020 /* wait one idle pattern time */
3021 POSTING_READ(reg);
3022 udelay(1000);
357555c0
JB
3023
3024 /* IVB wants error correction enabled */
3025 if (IS_IVYBRIDGE(dev))
3026 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3027 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3028}
3029
1fbc0d78 3030static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 3031{
1fbc0d78 3032 return crtc->base.enabled && crtc->active &&
6e3c9717 3033 crtc->config->has_pch_encoder;
1e833f40
DV
3034}
3035
01a415fd
DV
3036static void ivb_modeset_global_resources(struct drm_device *dev)
3037{
3038 struct drm_i915_private *dev_priv = dev->dev_private;
3039 struct intel_crtc *pipe_B_crtc =
3040 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3041 struct intel_crtc *pipe_C_crtc =
3042 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3043 uint32_t temp;
3044
1e833f40
DV
3045 /*
3046 * When everything is off disable fdi C so that we could enable fdi B
3047 * with all lanes. Note that we don't care about enabled pipes without
3048 * an enabled pch encoder.
3049 */
3050 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3051 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
3052 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3053 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3054
3055 temp = I915_READ(SOUTH_CHICKEN1);
3056 temp &= ~FDI_BC_BIFURCATION_SELECT;
3057 DRM_DEBUG_KMS("disabling fdi C rx\n");
3058 I915_WRITE(SOUTH_CHICKEN1, temp);
3059 }
3060}
3061
8db9d77b
ZW
3062/* The FDI link training functions for ILK/Ibexpeak. */
3063static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3064{
3065 struct drm_device *dev = crtc->dev;
3066 struct drm_i915_private *dev_priv = dev->dev_private;
3067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3068 int pipe = intel_crtc->pipe;
5eddb70b 3069 u32 reg, temp, tries;
8db9d77b 3070
1c8562f6 3071 /* FDI needs bits from pipe first */
0fc932b8 3072 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3073
e1a44743
AJ
3074 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3075 for train result */
5eddb70b
CW
3076 reg = FDI_RX_IMR(pipe);
3077 temp = I915_READ(reg);
e1a44743
AJ
3078 temp &= ~FDI_RX_SYMBOL_LOCK;
3079 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3080 I915_WRITE(reg, temp);
3081 I915_READ(reg);
e1a44743
AJ
3082 udelay(150);
3083
8db9d77b 3084 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3085 reg = FDI_TX_CTL(pipe);
3086 temp = I915_READ(reg);
627eb5a3 3087 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3088 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3089 temp &= ~FDI_LINK_TRAIN_NONE;
3090 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3091 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3092
5eddb70b
CW
3093 reg = FDI_RX_CTL(pipe);
3094 temp = I915_READ(reg);
8db9d77b
ZW
3095 temp &= ~FDI_LINK_TRAIN_NONE;
3096 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3097 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3098
3099 POSTING_READ(reg);
8db9d77b
ZW
3100 udelay(150);
3101
5b2adf89 3102 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3103 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3104 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3105 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3106
5eddb70b 3107 reg = FDI_RX_IIR(pipe);
e1a44743 3108 for (tries = 0; tries < 5; tries++) {
5eddb70b 3109 temp = I915_READ(reg);
8db9d77b
ZW
3110 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3111
3112 if ((temp & FDI_RX_BIT_LOCK)) {
3113 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3114 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3115 break;
3116 }
8db9d77b 3117 }
e1a44743 3118 if (tries == 5)
5eddb70b 3119 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3120
3121 /* Train 2 */
5eddb70b
CW
3122 reg = FDI_TX_CTL(pipe);
3123 temp = I915_READ(reg);
8db9d77b
ZW
3124 temp &= ~FDI_LINK_TRAIN_NONE;
3125 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3126 I915_WRITE(reg, temp);
8db9d77b 3127
5eddb70b
CW
3128 reg = FDI_RX_CTL(pipe);
3129 temp = I915_READ(reg);
8db9d77b
ZW
3130 temp &= ~FDI_LINK_TRAIN_NONE;
3131 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3132 I915_WRITE(reg, temp);
8db9d77b 3133
5eddb70b
CW
3134 POSTING_READ(reg);
3135 udelay(150);
8db9d77b 3136
5eddb70b 3137 reg = FDI_RX_IIR(pipe);
e1a44743 3138 for (tries = 0; tries < 5; tries++) {
5eddb70b 3139 temp = I915_READ(reg);
8db9d77b
ZW
3140 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3141
3142 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3143 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3144 DRM_DEBUG_KMS("FDI train 2 done.\n");
3145 break;
3146 }
8db9d77b 3147 }
e1a44743 3148 if (tries == 5)
5eddb70b 3149 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3150
3151 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3152
8db9d77b
ZW
3153}
3154
0206e353 3155static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3156 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3157 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3158 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3159 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3160};
3161
3162/* The FDI link training functions for SNB/Cougarpoint. */
3163static void gen6_fdi_link_train(struct drm_crtc *crtc)
3164{
3165 struct drm_device *dev = crtc->dev;
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3168 int pipe = intel_crtc->pipe;
fa37d39e 3169 u32 reg, temp, i, retry;
8db9d77b 3170
e1a44743
AJ
3171 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3172 for train result */
5eddb70b
CW
3173 reg = FDI_RX_IMR(pipe);
3174 temp = I915_READ(reg);
e1a44743
AJ
3175 temp &= ~FDI_RX_SYMBOL_LOCK;
3176 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3177 I915_WRITE(reg, temp);
3178
3179 POSTING_READ(reg);
e1a44743
AJ
3180 udelay(150);
3181
8db9d77b 3182 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3183 reg = FDI_TX_CTL(pipe);
3184 temp = I915_READ(reg);
627eb5a3 3185 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3186 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3187 temp &= ~FDI_LINK_TRAIN_NONE;
3188 temp |= FDI_LINK_TRAIN_PATTERN_1;
3189 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3190 /* SNB-B */
3191 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3192 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3193
d74cf324
DV
3194 I915_WRITE(FDI_RX_MISC(pipe),
3195 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3196
5eddb70b
CW
3197 reg = FDI_RX_CTL(pipe);
3198 temp = I915_READ(reg);
8db9d77b
ZW
3199 if (HAS_PCH_CPT(dev)) {
3200 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3201 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3202 } else {
3203 temp &= ~FDI_LINK_TRAIN_NONE;
3204 temp |= FDI_LINK_TRAIN_PATTERN_1;
3205 }
5eddb70b
CW
3206 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3207
3208 POSTING_READ(reg);
8db9d77b
ZW
3209 udelay(150);
3210
0206e353 3211 for (i = 0; i < 4; i++) {
5eddb70b
CW
3212 reg = FDI_TX_CTL(pipe);
3213 temp = I915_READ(reg);
8db9d77b
ZW
3214 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3215 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3216 I915_WRITE(reg, temp);
3217
3218 POSTING_READ(reg);
8db9d77b
ZW
3219 udelay(500);
3220
fa37d39e
SP
3221 for (retry = 0; retry < 5; retry++) {
3222 reg = FDI_RX_IIR(pipe);
3223 temp = I915_READ(reg);
3224 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3225 if (temp & FDI_RX_BIT_LOCK) {
3226 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3227 DRM_DEBUG_KMS("FDI train 1 done.\n");
3228 break;
3229 }
3230 udelay(50);
8db9d77b 3231 }
fa37d39e
SP
3232 if (retry < 5)
3233 break;
8db9d77b
ZW
3234 }
3235 if (i == 4)
5eddb70b 3236 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3237
3238 /* Train 2 */
5eddb70b
CW
3239 reg = FDI_TX_CTL(pipe);
3240 temp = I915_READ(reg);
8db9d77b
ZW
3241 temp &= ~FDI_LINK_TRAIN_NONE;
3242 temp |= FDI_LINK_TRAIN_PATTERN_2;
3243 if (IS_GEN6(dev)) {
3244 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3245 /* SNB-B */
3246 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3247 }
5eddb70b 3248 I915_WRITE(reg, temp);
8db9d77b 3249
5eddb70b
CW
3250 reg = FDI_RX_CTL(pipe);
3251 temp = I915_READ(reg);
8db9d77b
ZW
3252 if (HAS_PCH_CPT(dev)) {
3253 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3254 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3255 } else {
3256 temp &= ~FDI_LINK_TRAIN_NONE;
3257 temp |= FDI_LINK_TRAIN_PATTERN_2;
3258 }
5eddb70b
CW
3259 I915_WRITE(reg, temp);
3260
3261 POSTING_READ(reg);
8db9d77b
ZW
3262 udelay(150);
3263
0206e353 3264 for (i = 0; i < 4; i++) {
5eddb70b
CW
3265 reg = FDI_TX_CTL(pipe);
3266 temp = I915_READ(reg);
8db9d77b
ZW
3267 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3268 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3269 I915_WRITE(reg, temp);
3270
3271 POSTING_READ(reg);
8db9d77b
ZW
3272 udelay(500);
3273
fa37d39e
SP
3274 for (retry = 0; retry < 5; retry++) {
3275 reg = FDI_RX_IIR(pipe);
3276 temp = I915_READ(reg);
3277 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3278 if (temp & FDI_RX_SYMBOL_LOCK) {
3279 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3280 DRM_DEBUG_KMS("FDI train 2 done.\n");
3281 break;
3282 }
3283 udelay(50);
8db9d77b 3284 }
fa37d39e
SP
3285 if (retry < 5)
3286 break;
8db9d77b
ZW
3287 }
3288 if (i == 4)
5eddb70b 3289 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3290
3291 DRM_DEBUG_KMS("FDI train done.\n");
3292}
3293
357555c0
JB
3294/* Manual link training for Ivy Bridge A0 parts */
3295static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3296{
3297 struct drm_device *dev = crtc->dev;
3298 struct drm_i915_private *dev_priv = dev->dev_private;
3299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3300 int pipe = intel_crtc->pipe;
139ccd3f 3301 u32 reg, temp, i, j;
357555c0
JB
3302
3303 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3304 for train result */
3305 reg = FDI_RX_IMR(pipe);
3306 temp = I915_READ(reg);
3307 temp &= ~FDI_RX_SYMBOL_LOCK;
3308 temp &= ~FDI_RX_BIT_LOCK;
3309 I915_WRITE(reg, temp);
3310
3311 POSTING_READ(reg);
3312 udelay(150);
3313
01a415fd
DV
3314 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3315 I915_READ(FDI_RX_IIR(pipe)));
3316
139ccd3f
JB
3317 /* Try each vswing and preemphasis setting twice before moving on */
3318 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3319 /* disable first in case we need to retry */
3320 reg = FDI_TX_CTL(pipe);
3321 temp = I915_READ(reg);
3322 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3323 temp &= ~FDI_TX_ENABLE;
3324 I915_WRITE(reg, temp);
357555c0 3325
139ccd3f
JB
3326 reg = FDI_RX_CTL(pipe);
3327 temp = I915_READ(reg);
3328 temp &= ~FDI_LINK_TRAIN_AUTO;
3329 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3330 temp &= ~FDI_RX_ENABLE;
3331 I915_WRITE(reg, temp);
357555c0 3332
139ccd3f 3333 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3334 reg = FDI_TX_CTL(pipe);
3335 temp = I915_READ(reg);
139ccd3f 3336 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3337 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3338 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3339 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3340 temp |= snb_b_fdi_train_param[j/2];
3341 temp |= FDI_COMPOSITE_SYNC;
3342 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3343
139ccd3f
JB
3344 I915_WRITE(FDI_RX_MISC(pipe),
3345 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3346
139ccd3f 3347 reg = FDI_RX_CTL(pipe);
357555c0 3348 temp = I915_READ(reg);
139ccd3f
JB
3349 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3350 temp |= FDI_COMPOSITE_SYNC;
3351 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3352
139ccd3f
JB
3353 POSTING_READ(reg);
3354 udelay(1); /* should be 0.5us */
357555c0 3355
139ccd3f
JB
3356 for (i = 0; i < 4; i++) {
3357 reg = FDI_RX_IIR(pipe);
3358 temp = I915_READ(reg);
3359 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3360
139ccd3f
JB
3361 if (temp & FDI_RX_BIT_LOCK ||
3362 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3363 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3364 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3365 i);
3366 break;
3367 }
3368 udelay(1); /* should be 0.5us */
3369 }
3370 if (i == 4) {
3371 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3372 continue;
3373 }
357555c0 3374
139ccd3f 3375 /* Train 2 */
357555c0
JB
3376 reg = FDI_TX_CTL(pipe);
3377 temp = I915_READ(reg);
139ccd3f
JB
3378 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3379 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3380 I915_WRITE(reg, temp);
3381
3382 reg = FDI_RX_CTL(pipe);
3383 temp = I915_READ(reg);
3384 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3385 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3386 I915_WRITE(reg, temp);
3387
3388 POSTING_READ(reg);
139ccd3f 3389 udelay(2); /* should be 1.5us */
357555c0 3390
139ccd3f
JB
3391 for (i = 0; i < 4; i++) {
3392 reg = FDI_RX_IIR(pipe);
3393 temp = I915_READ(reg);
3394 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3395
139ccd3f
JB
3396 if (temp & FDI_RX_SYMBOL_LOCK ||
3397 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3398 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3399 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3400 i);
3401 goto train_done;
3402 }
3403 udelay(2); /* should be 1.5us */
357555c0 3404 }
139ccd3f
JB
3405 if (i == 4)
3406 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3407 }
357555c0 3408
139ccd3f 3409train_done:
357555c0
JB
3410 DRM_DEBUG_KMS("FDI train done.\n");
3411}
3412
88cefb6c 3413static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3414{
88cefb6c 3415 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3416 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3417 int pipe = intel_crtc->pipe;
5eddb70b 3418 u32 reg, temp;
79e53945 3419
c64e311e 3420
c98e9dcf 3421 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3422 reg = FDI_RX_CTL(pipe);
3423 temp = I915_READ(reg);
627eb5a3 3424 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3425 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3426 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3427 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3428
3429 POSTING_READ(reg);
c98e9dcf
JB
3430 udelay(200);
3431
3432 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3433 temp = I915_READ(reg);
3434 I915_WRITE(reg, temp | FDI_PCDCLK);
3435
3436 POSTING_READ(reg);
c98e9dcf
JB
3437 udelay(200);
3438
20749730
PZ
3439 /* Enable CPU FDI TX PLL, always on for Ironlake */
3440 reg = FDI_TX_CTL(pipe);
3441 temp = I915_READ(reg);
3442 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3443 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3444
20749730
PZ
3445 POSTING_READ(reg);
3446 udelay(100);
6be4a607 3447 }
0e23b99d
JB
3448}
3449
88cefb6c
DV
3450static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3451{
3452 struct drm_device *dev = intel_crtc->base.dev;
3453 struct drm_i915_private *dev_priv = dev->dev_private;
3454 int pipe = intel_crtc->pipe;
3455 u32 reg, temp;
3456
3457 /* Switch from PCDclk to Rawclk */
3458 reg = FDI_RX_CTL(pipe);
3459 temp = I915_READ(reg);
3460 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3461
3462 /* Disable CPU FDI TX PLL */
3463 reg = FDI_TX_CTL(pipe);
3464 temp = I915_READ(reg);
3465 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3466
3467 POSTING_READ(reg);
3468 udelay(100);
3469
3470 reg = FDI_RX_CTL(pipe);
3471 temp = I915_READ(reg);
3472 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3473
3474 /* Wait for the clocks to turn off. */
3475 POSTING_READ(reg);
3476 udelay(100);
3477}
3478
0fc932b8
JB
3479static void ironlake_fdi_disable(struct drm_crtc *crtc)
3480{
3481 struct drm_device *dev = crtc->dev;
3482 struct drm_i915_private *dev_priv = dev->dev_private;
3483 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3484 int pipe = intel_crtc->pipe;
3485 u32 reg, temp;
3486
3487 /* disable CPU FDI tx and PCH FDI rx */
3488 reg = FDI_TX_CTL(pipe);
3489 temp = I915_READ(reg);
3490 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3491 POSTING_READ(reg);
3492
3493 reg = FDI_RX_CTL(pipe);
3494 temp = I915_READ(reg);
3495 temp &= ~(0x7 << 16);
dfd07d72 3496 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3497 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3498
3499 POSTING_READ(reg);
3500 udelay(100);
3501
3502 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3503 if (HAS_PCH_IBX(dev))
6f06ce18 3504 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3505
3506 /* still set train pattern 1 */
3507 reg = FDI_TX_CTL(pipe);
3508 temp = I915_READ(reg);
3509 temp &= ~FDI_LINK_TRAIN_NONE;
3510 temp |= FDI_LINK_TRAIN_PATTERN_1;
3511 I915_WRITE(reg, temp);
3512
3513 reg = FDI_RX_CTL(pipe);
3514 temp = I915_READ(reg);
3515 if (HAS_PCH_CPT(dev)) {
3516 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3517 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3518 } else {
3519 temp &= ~FDI_LINK_TRAIN_NONE;
3520 temp |= FDI_LINK_TRAIN_PATTERN_1;
3521 }
3522 /* BPC in FDI rx is consistent with that in PIPECONF */
3523 temp &= ~(0x07 << 16);
dfd07d72 3524 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3525 I915_WRITE(reg, temp);
3526
3527 POSTING_READ(reg);
3528 udelay(100);
3529}
3530
5dce5b93
CW
3531bool intel_has_pending_fb_unpin(struct drm_device *dev)
3532{
3533 struct intel_crtc *crtc;
3534
3535 /* Note that we don't need to be called with mode_config.lock here
3536 * as our list of CRTC objects is static for the lifetime of the
3537 * device and so cannot disappear as we iterate. Similarly, we can
3538 * happily treat the predicates as racy, atomic checks as userspace
3539 * cannot claim and pin a new fb without at least acquring the
3540 * struct_mutex and so serialising with us.
3541 */
d3fcc808 3542 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3543 if (atomic_read(&crtc->unpin_work_count) == 0)
3544 continue;
3545
3546 if (crtc->unpin_work)
3547 intel_wait_for_vblank(dev, crtc->pipe);
3548
3549 return true;
3550 }
3551
3552 return false;
3553}
3554
d6bbafa1
CW
3555static void page_flip_completed(struct intel_crtc *intel_crtc)
3556{
3557 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3558 struct intel_unpin_work *work = intel_crtc->unpin_work;
3559
3560 /* ensure that the unpin work is consistent wrt ->pending. */
3561 smp_rmb();
3562 intel_crtc->unpin_work = NULL;
3563
3564 if (work->event)
3565 drm_send_vblank_event(intel_crtc->base.dev,
3566 intel_crtc->pipe,
3567 work->event);
3568
3569 drm_crtc_vblank_put(&intel_crtc->base);
3570
3571 wake_up_all(&dev_priv->pending_flip_queue);
3572 queue_work(dev_priv->wq, &work->work);
3573
3574 trace_i915_flip_complete(intel_crtc->plane,
3575 work->pending_flip_obj);
3576}
3577
46a55d30 3578void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3579{
0f91128d 3580 struct drm_device *dev = crtc->dev;
5bb61643 3581 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3582
2c10d571 3583 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3584 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3585 !intel_crtc_has_pending_flip(crtc),
3586 60*HZ) == 0)) {
3587 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3588
5e2d7afc 3589 spin_lock_irq(&dev->event_lock);
9c787942
CW
3590 if (intel_crtc->unpin_work) {
3591 WARN_ONCE(1, "Removing stuck page flip\n");
3592 page_flip_completed(intel_crtc);
3593 }
5e2d7afc 3594 spin_unlock_irq(&dev->event_lock);
9c787942 3595 }
5bb61643 3596
975d568a
CW
3597 if (crtc->primary->fb) {
3598 mutex_lock(&dev->struct_mutex);
3599 intel_finish_fb(crtc->primary->fb);
3600 mutex_unlock(&dev->struct_mutex);
3601 }
e6c3a2a6
CW
3602}
3603
e615efe4
ED
3604/* Program iCLKIP clock to the desired frequency */
3605static void lpt_program_iclkip(struct drm_crtc *crtc)
3606{
3607 struct drm_device *dev = crtc->dev;
3608 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3609 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3610 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3611 u32 temp;
3612
09153000
DV
3613 mutex_lock(&dev_priv->dpio_lock);
3614
e615efe4
ED
3615 /* It is necessary to ungate the pixclk gate prior to programming
3616 * the divisors, and gate it back when it is done.
3617 */
3618 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3619
3620 /* Disable SSCCTL */
3621 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3622 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3623 SBI_SSCCTL_DISABLE,
3624 SBI_ICLK);
e615efe4
ED
3625
3626 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3627 if (clock == 20000) {
e615efe4
ED
3628 auxdiv = 1;
3629 divsel = 0x41;
3630 phaseinc = 0x20;
3631 } else {
3632 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3633 * but the adjusted_mode->crtc_clock in in KHz. To get the
3634 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3635 * convert the virtual clock precision to KHz here for higher
3636 * precision.
3637 */
3638 u32 iclk_virtual_root_freq = 172800 * 1000;
3639 u32 iclk_pi_range = 64;
3640 u32 desired_divisor, msb_divisor_value, pi_value;
3641
12d7ceed 3642 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3643 msb_divisor_value = desired_divisor / iclk_pi_range;
3644 pi_value = desired_divisor % iclk_pi_range;
3645
3646 auxdiv = 0;
3647 divsel = msb_divisor_value - 2;
3648 phaseinc = pi_value;
3649 }
3650
3651 /* This should not happen with any sane values */
3652 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3653 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3654 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3655 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3656
3657 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3658 clock,
e615efe4
ED
3659 auxdiv,
3660 divsel,
3661 phasedir,
3662 phaseinc);
3663
3664 /* Program SSCDIVINTPHASE6 */
988d6ee8 3665 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3666 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3667 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3668 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3669 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3670 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3671 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3672 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3673
3674 /* Program SSCAUXDIV */
988d6ee8 3675 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3676 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3677 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3678 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3679
3680 /* Enable modulator and associated divider */
988d6ee8 3681 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3682 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3683 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3684
3685 /* Wait for initialization time */
3686 udelay(24);
3687
3688 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3689
3690 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3691}
3692
275f01b2
DV
3693static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3694 enum pipe pch_transcoder)
3695{
3696 struct drm_device *dev = crtc->base.dev;
3697 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3698 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3699
3700 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3701 I915_READ(HTOTAL(cpu_transcoder)));
3702 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3703 I915_READ(HBLANK(cpu_transcoder)));
3704 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3705 I915_READ(HSYNC(cpu_transcoder)));
3706
3707 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3708 I915_READ(VTOTAL(cpu_transcoder)));
3709 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3710 I915_READ(VBLANK(cpu_transcoder)));
3711 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3712 I915_READ(VSYNC(cpu_transcoder)));
3713 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3714 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3715}
3716
1fbc0d78
DV
3717static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3718{
3719 struct drm_i915_private *dev_priv = dev->dev_private;
3720 uint32_t temp;
3721
3722 temp = I915_READ(SOUTH_CHICKEN1);
3723 if (temp & FDI_BC_BIFURCATION_SELECT)
3724 return;
3725
3726 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3727 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3728
3729 temp |= FDI_BC_BIFURCATION_SELECT;
3730 DRM_DEBUG_KMS("enabling fdi C rx\n");
3731 I915_WRITE(SOUTH_CHICKEN1, temp);
3732 POSTING_READ(SOUTH_CHICKEN1);
3733}
3734
3735static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3736{
3737 struct drm_device *dev = intel_crtc->base.dev;
3738 struct drm_i915_private *dev_priv = dev->dev_private;
3739
3740 switch (intel_crtc->pipe) {
3741 case PIPE_A:
3742 break;
3743 case PIPE_B:
6e3c9717 3744 if (intel_crtc->config->fdi_lanes > 2)
1fbc0d78
DV
3745 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3746 else
3747 cpt_enable_fdi_bc_bifurcation(dev);
3748
3749 break;
3750 case PIPE_C:
3751 cpt_enable_fdi_bc_bifurcation(dev);
3752
3753 break;
3754 default:
3755 BUG();
3756 }
3757}
3758
f67a559d
JB
3759/*
3760 * Enable PCH resources required for PCH ports:
3761 * - PCH PLLs
3762 * - FDI training & RX/TX
3763 * - update transcoder timings
3764 * - DP transcoding bits
3765 * - transcoder
3766 */
3767static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3768{
3769 struct drm_device *dev = crtc->dev;
3770 struct drm_i915_private *dev_priv = dev->dev_private;
3771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3772 int pipe = intel_crtc->pipe;
ee7b9f93 3773 u32 reg, temp;
2c07245f 3774
ab9412ba 3775 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3776
1fbc0d78
DV
3777 if (IS_IVYBRIDGE(dev))
3778 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3779
cd986abb
DV
3780 /* Write the TU size bits before fdi link training, so that error
3781 * detection works. */
3782 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3783 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3784
c98e9dcf 3785 /* For PCH output, training FDI link */
674cf967 3786 dev_priv->display.fdi_link_train(crtc);
2c07245f 3787
3ad8a208
DV
3788 /* We need to program the right clock selection before writing the pixel
3789 * mutliplier into the DPLL. */
303b81e0 3790 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3791 u32 sel;
4b645f14 3792
c98e9dcf 3793 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3794 temp |= TRANS_DPLL_ENABLE(pipe);
3795 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 3796 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3797 temp |= sel;
3798 else
3799 temp &= ~sel;
c98e9dcf 3800 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3801 }
5eddb70b 3802
3ad8a208
DV
3803 /* XXX: pch pll's can be enabled any time before we enable the PCH
3804 * transcoder, and we actually should do this to not upset any PCH
3805 * transcoder that already use the clock when we share it.
3806 *
3807 * Note that enable_shared_dpll tries to do the right thing, but
3808 * get_shared_dpll unconditionally resets the pll - we need that to have
3809 * the right LVDS enable sequence. */
85b3894f 3810 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3811
d9b6cb56
JB
3812 /* set transcoder timing, panel must allow it */
3813 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3814 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3815
303b81e0 3816 intel_fdi_normal_train(crtc);
5e84e1a4 3817
c98e9dcf 3818 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 3819 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 3820 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3821 reg = TRANS_DP_CTL(pipe);
3822 temp = I915_READ(reg);
3823 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3824 TRANS_DP_SYNC_MASK |
3825 TRANS_DP_BPC_MASK);
5eddb70b
CW
3826 temp |= (TRANS_DP_OUTPUT_ENABLE |
3827 TRANS_DP_ENH_FRAMING);
9325c9f0 3828 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3829
3830 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3831 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3832 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3833 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3834
3835 switch (intel_trans_dp_port_sel(crtc)) {
3836 case PCH_DP_B:
5eddb70b 3837 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3838 break;
3839 case PCH_DP_C:
5eddb70b 3840 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3841 break;
3842 case PCH_DP_D:
5eddb70b 3843 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3844 break;
3845 default:
e95d41e1 3846 BUG();
32f9d658 3847 }
2c07245f 3848
5eddb70b 3849 I915_WRITE(reg, temp);
6be4a607 3850 }
b52eb4dc 3851
b8a4f404 3852 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3853}
3854
1507e5bd
PZ
3855static void lpt_pch_enable(struct drm_crtc *crtc)
3856{
3857 struct drm_device *dev = crtc->dev;
3858 struct drm_i915_private *dev_priv = dev->dev_private;
3859 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 3860 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 3861
ab9412ba 3862 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3863
8c52b5e8 3864 lpt_program_iclkip(crtc);
1507e5bd 3865
0540e488 3866 /* Set transcoder timing. */
275f01b2 3867 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3868
937bb610 3869 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3870}
3871
716c2e55 3872void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3873{
e2b78267 3874 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3875
3876 if (pll == NULL)
3877 return;
3878
3e369b76 3879 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 3880 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
3881 return;
3882 }
3883
3e369b76
ACO
3884 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3885 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
3886 WARN_ON(pll->on);
3887 WARN_ON(pll->active);
3888 }
3889
6e3c9717 3890 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3891}
3892
190f68c5
ACO
3893struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3894 struct intel_crtc_state *crtc_state)
ee7b9f93 3895{
e2b78267 3896 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 3897 struct intel_shared_dpll *pll;
e2b78267 3898 enum intel_dpll_id i;
ee7b9f93 3899
98b6bd99
DV
3900 if (HAS_PCH_IBX(dev_priv->dev)) {
3901 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3902 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3903 pll = &dev_priv->shared_dplls[i];
98b6bd99 3904
46edb027
DV
3905 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3906 crtc->base.base.id, pll->name);
98b6bd99 3907
8bd31e67 3908 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 3909
98b6bd99
DV
3910 goto found;
3911 }
3912
e72f9fbf
DV
3913 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3914 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3915
3916 /* Only want to check enabled timings first */
8bd31e67 3917 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
3918 continue;
3919
190f68c5 3920 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
3921 &pll->new_config->hw_state,
3922 sizeof(pll->new_config->hw_state)) == 0) {
3923 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 3924 crtc->base.base.id, pll->name,
8bd31e67
ACO
3925 pll->new_config->crtc_mask,
3926 pll->active);
ee7b9f93
JB
3927 goto found;
3928 }
3929 }
3930
3931 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3932 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3933 pll = &dev_priv->shared_dplls[i];
8bd31e67 3934 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
3935 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3936 crtc->base.base.id, pll->name);
ee7b9f93
JB
3937 goto found;
3938 }
3939 }
3940
3941 return NULL;
3942
3943found:
8bd31e67 3944 if (pll->new_config->crtc_mask == 0)
190f68c5 3945 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 3946
190f68c5 3947 crtc_state->shared_dpll = i;
46edb027
DV
3948 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3949 pipe_name(crtc->pipe));
ee7b9f93 3950
8bd31e67 3951 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 3952
ee7b9f93
JB
3953 return pll;
3954}
3955
8bd31e67
ACO
3956/**
3957 * intel_shared_dpll_start_config - start a new PLL staged config
3958 * @dev_priv: DRM device
3959 * @clear_pipes: mask of pipes that will have their PLLs freed
3960 *
3961 * Starts a new PLL staged config, copying the current config but
3962 * releasing the references of pipes specified in clear_pipes.
3963 */
3964static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3965 unsigned clear_pipes)
3966{
3967 struct intel_shared_dpll *pll;
3968 enum intel_dpll_id i;
3969
3970 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3971 pll = &dev_priv->shared_dplls[i];
3972
3973 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
3974 GFP_KERNEL);
3975 if (!pll->new_config)
3976 goto cleanup;
3977
3978 pll->new_config->crtc_mask &= ~clear_pipes;
3979 }
3980
3981 return 0;
3982
3983cleanup:
3984 while (--i >= 0) {
3985 pll = &dev_priv->shared_dplls[i];
f354d733 3986 kfree(pll->new_config);
8bd31e67
ACO
3987 pll->new_config = NULL;
3988 }
3989
3990 return -ENOMEM;
3991}
3992
3993static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
3994{
3995 struct intel_shared_dpll *pll;
3996 enum intel_dpll_id i;
3997
3998 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3999 pll = &dev_priv->shared_dplls[i];
4000
4001 WARN_ON(pll->new_config == &pll->config);
4002
4003 pll->config = *pll->new_config;
4004 kfree(pll->new_config);
4005 pll->new_config = NULL;
4006 }
4007}
4008
4009static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4010{
4011 struct intel_shared_dpll *pll;
4012 enum intel_dpll_id i;
4013
4014 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4015 pll = &dev_priv->shared_dplls[i];
4016
4017 WARN_ON(pll->new_config == &pll->config);
4018
4019 kfree(pll->new_config);
4020 pll->new_config = NULL;
4021 }
4022}
4023
a1520318 4024static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4025{
4026 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4027 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4028 u32 temp;
4029
4030 temp = I915_READ(dslreg);
4031 udelay(500);
4032 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4033 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4034 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4035 }
4036}
4037
bd2e244f
JB
4038static void skylake_pfit_enable(struct intel_crtc *crtc)
4039{
4040 struct drm_device *dev = crtc->base.dev;
4041 struct drm_i915_private *dev_priv = dev->dev_private;
4042 int pipe = crtc->pipe;
4043
6e3c9717 4044 if (crtc->config->pch_pfit.enabled) {
bd2e244f 4045 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
6e3c9717
ACO
4046 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4047 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
bd2e244f
JB
4048 }
4049}
4050
b074cec8
JB
4051static void ironlake_pfit_enable(struct intel_crtc *crtc)
4052{
4053 struct drm_device *dev = crtc->base.dev;
4054 struct drm_i915_private *dev_priv = dev->dev_private;
4055 int pipe = crtc->pipe;
4056
6e3c9717 4057 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4058 /* Force use of hard-coded filter coefficients
4059 * as some pre-programmed values are broken,
4060 * e.g. x201.
4061 */
4062 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4063 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4064 PF_PIPE_SEL_IVB(pipe));
4065 else
4066 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4067 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4068 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4069 }
4070}
4071
4a3b8769 4072static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4073{
4074 struct drm_device *dev = crtc->dev;
4075 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4076 struct drm_plane *plane;
bb53d4ae
VS
4077 struct intel_plane *intel_plane;
4078
af2b653b
MR
4079 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4080 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4081 if (intel_plane->pipe == pipe)
4082 intel_plane_restore(&intel_plane->base);
af2b653b 4083 }
bb53d4ae
VS
4084}
4085
4a3b8769 4086static void intel_disable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4087{
4088 struct drm_device *dev = crtc->dev;
4089 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4090 struct drm_plane *plane;
bb53d4ae
VS
4091 struct intel_plane *intel_plane;
4092
af2b653b
MR
4093 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4094 intel_plane = to_intel_plane(plane);
bb53d4ae 4095 if (intel_plane->pipe == pipe)
cf4c7c12 4096 plane->funcs->disable_plane(plane);
af2b653b 4097 }
bb53d4ae
VS
4098}
4099
20bc8673 4100void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4101{
cea165c3
VS
4102 struct drm_device *dev = crtc->base.dev;
4103 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4104
6e3c9717 4105 if (!crtc->config->ips_enabled)
d77e4531
PZ
4106 return;
4107
cea165c3
VS
4108 /* We can only enable IPS after we enable a plane and wait for a vblank */
4109 intel_wait_for_vblank(dev, crtc->pipe);
4110
d77e4531 4111 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4112 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4113 mutex_lock(&dev_priv->rps.hw_lock);
4114 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4115 mutex_unlock(&dev_priv->rps.hw_lock);
4116 /* Quoting Art Runyan: "its not safe to expect any particular
4117 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4118 * mailbox." Moreover, the mailbox may return a bogus state,
4119 * so we need to just enable it and continue on.
2a114cc1
BW
4120 */
4121 } else {
4122 I915_WRITE(IPS_CTL, IPS_ENABLE);
4123 /* The bit only becomes 1 in the next vblank, so this wait here
4124 * is essentially intel_wait_for_vblank. If we don't have this
4125 * and don't wait for vblanks until the end of crtc_enable, then
4126 * the HW state readout code will complain that the expected
4127 * IPS_CTL value is not the one we read. */
4128 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4129 DRM_ERROR("Timed out waiting for IPS enable\n");
4130 }
d77e4531
PZ
4131}
4132
20bc8673 4133void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4134{
4135 struct drm_device *dev = crtc->base.dev;
4136 struct drm_i915_private *dev_priv = dev->dev_private;
4137
6e3c9717 4138 if (!crtc->config->ips_enabled)
d77e4531
PZ
4139 return;
4140
4141 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4142 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4143 mutex_lock(&dev_priv->rps.hw_lock);
4144 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4145 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4146 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4147 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4148 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4149 } else {
2a114cc1 4150 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4151 POSTING_READ(IPS_CTL);
4152 }
d77e4531
PZ
4153
4154 /* We need to wait for a vblank before we can disable the plane. */
4155 intel_wait_for_vblank(dev, crtc->pipe);
4156}
4157
4158/** Loads the palette/gamma unit for the CRTC with the prepared values */
4159static void intel_crtc_load_lut(struct drm_crtc *crtc)
4160{
4161 struct drm_device *dev = crtc->dev;
4162 struct drm_i915_private *dev_priv = dev->dev_private;
4163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4164 enum pipe pipe = intel_crtc->pipe;
4165 int palreg = PALETTE(pipe);
4166 int i;
4167 bool reenable_ips = false;
4168
4169 /* The clocks have to be on to load the palette. */
4170 if (!crtc->enabled || !intel_crtc->active)
4171 return;
4172
4173 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
409ee761 4174 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4175 assert_dsi_pll_enabled(dev_priv);
4176 else
4177 assert_pll_enabled(dev_priv, pipe);
4178 }
4179
4180 /* use legacy palette for Ironlake */
7a1db49a 4181 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4182 palreg = LGC_PALETTE(pipe);
4183
4184 /* Workaround : Do not read or write the pipe palette/gamma data while
4185 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4186 */
6e3c9717 4187 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4188 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4189 GAMMA_MODE_MODE_SPLIT)) {
4190 hsw_disable_ips(intel_crtc);
4191 reenable_ips = true;
4192 }
4193
4194 for (i = 0; i < 256; i++) {
4195 I915_WRITE(palreg + 4 * i,
4196 (intel_crtc->lut_r[i] << 16) |
4197 (intel_crtc->lut_g[i] << 8) |
4198 intel_crtc->lut_b[i]);
4199 }
4200
4201 if (reenable_ips)
4202 hsw_enable_ips(intel_crtc);
4203}
4204
d3eedb1a
VS
4205static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4206{
4207 if (!enable && intel_crtc->overlay) {
4208 struct drm_device *dev = intel_crtc->base.dev;
4209 struct drm_i915_private *dev_priv = dev->dev_private;
4210
4211 mutex_lock(&dev->struct_mutex);
4212 dev_priv->mm.interruptible = false;
4213 (void) intel_overlay_switch_off(intel_crtc->overlay);
4214 dev_priv->mm.interruptible = true;
4215 mutex_unlock(&dev->struct_mutex);
4216 }
4217
4218 /* Let userspace switch the overlay on again. In most cases userspace
4219 * has to recompute where to put it anyway.
4220 */
4221}
4222
d3eedb1a 4223static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4224{
4225 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4227 int pipe = intel_crtc->pipe;
a5c4d7bc 4228
fdd508a6 4229 intel_enable_primary_hw_plane(crtc->primary, crtc);
4a3b8769 4230 intel_enable_sprite_planes(crtc);
a5c4d7bc 4231 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4232 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4233
4234 hsw_enable_ips(intel_crtc);
4235
4236 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4237 intel_fbc_update(dev);
a5c4d7bc 4238 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4239
4240 /*
4241 * FIXME: Once we grow proper nuclear flip support out of this we need
4242 * to compute the mask of flip planes precisely. For the time being
4243 * consider this a flip from a NULL plane.
4244 */
4245 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4246}
4247
d3eedb1a 4248static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4249{
4250 struct drm_device *dev = crtc->dev;
4251 struct drm_i915_private *dev_priv = dev->dev_private;
4252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4253 int pipe = intel_crtc->pipe;
4254 int plane = intel_crtc->plane;
4255
4256 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4257
4258 if (dev_priv->fbc.plane == plane)
7ff0ebcc 4259 intel_fbc_disable(dev);
a5c4d7bc
VS
4260
4261 hsw_disable_ips(intel_crtc);
4262
d3eedb1a 4263 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc 4264 intel_crtc_update_cursor(crtc, false);
4a3b8769 4265 intel_disable_sprite_planes(crtc);
fdd508a6 4266 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4267
f99d7069
DV
4268 /*
4269 * FIXME: Once we grow proper nuclear flip support out of this we need
4270 * to compute the mask of flip planes precisely. For the time being
4271 * consider this a flip to a NULL plane.
4272 */
4273 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4274}
4275
f67a559d
JB
4276static void ironlake_crtc_enable(struct drm_crtc *crtc)
4277{
4278 struct drm_device *dev = crtc->dev;
4279 struct drm_i915_private *dev_priv = dev->dev_private;
4280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4281 struct intel_encoder *encoder;
f67a559d 4282 int pipe = intel_crtc->pipe;
f67a559d 4283
08a48469
DV
4284 WARN_ON(!crtc->enabled);
4285
f67a559d
JB
4286 if (intel_crtc->active)
4287 return;
4288
6e3c9717 4289 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4290 intel_prepare_shared_dpll(intel_crtc);
4291
6e3c9717 4292 if (intel_crtc->config->has_dp_encoder)
29407aab
DV
4293 intel_dp_set_m_n(intel_crtc);
4294
4295 intel_set_pipe_timings(intel_crtc);
4296
6e3c9717 4297 if (intel_crtc->config->has_pch_encoder) {
29407aab 4298 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4299 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4300 }
4301
4302 ironlake_set_pipeconf(crtc);
4303
f67a559d 4304 intel_crtc->active = true;
8664281b 4305
a72e4c9f
DV
4306 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4307 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4308
f6736a1a 4309 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4310 if (encoder->pre_enable)
4311 encoder->pre_enable(encoder);
f67a559d 4312
6e3c9717 4313 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4314 /* Note: FDI PLL enabling _must_ be done before we enable the
4315 * cpu pipes, hence this is separate from all the other fdi/pch
4316 * enabling. */
88cefb6c 4317 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4318 } else {
4319 assert_fdi_tx_disabled(dev_priv, pipe);
4320 assert_fdi_rx_disabled(dev_priv, pipe);
4321 }
f67a559d 4322
b074cec8 4323 ironlake_pfit_enable(intel_crtc);
f67a559d 4324
9c54c0dd
JB
4325 /*
4326 * On ILK+ LUT must be loaded before the pipe is running but with
4327 * clocks enabled
4328 */
4329 intel_crtc_load_lut(crtc);
4330
f37fcc2a 4331 intel_update_watermarks(crtc);
e1fdc473 4332 intel_enable_pipe(intel_crtc);
f67a559d 4333
6e3c9717 4334 if (intel_crtc->config->has_pch_encoder)
f67a559d 4335 ironlake_pch_enable(crtc);
c98e9dcf 4336
f9b61ff6
DV
4337 assert_vblank_disabled(crtc);
4338 drm_crtc_vblank_on(crtc);
4339
fa5c73b1
DV
4340 for_each_encoder_on_crtc(dev, crtc, encoder)
4341 encoder->enable(encoder);
61b77ddd
DV
4342
4343 if (HAS_PCH_CPT(dev))
a1520318 4344 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4345
d3eedb1a 4346 intel_crtc_enable_planes(crtc);
6be4a607
JB
4347}
4348
42db64ef
PZ
4349/* IPS only exists on ULT machines and is tied to pipe A. */
4350static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4351{
f5adf94e 4352 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4353}
4354
e4916946
PZ
4355/*
4356 * This implements the workaround described in the "notes" section of the mode
4357 * set sequence documentation. When going from no pipes or single pipe to
4358 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4359 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4360 */
4361static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4362{
4363 struct drm_device *dev = crtc->base.dev;
4364 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4365
4366 /* We want to get the other_active_crtc only if there's only 1 other
4367 * active crtc. */
d3fcc808 4368 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4369 if (!crtc_it->active || crtc_it == crtc)
4370 continue;
4371
4372 if (other_active_crtc)
4373 return;
4374
4375 other_active_crtc = crtc_it;
4376 }
4377 if (!other_active_crtc)
4378 return;
4379
4380 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4381 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4382}
4383
4f771f10
PZ
4384static void haswell_crtc_enable(struct drm_crtc *crtc)
4385{
4386 struct drm_device *dev = crtc->dev;
4387 struct drm_i915_private *dev_priv = dev->dev_private;
4388 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4389 struct intel_encoder *encoder;
4390 int pipe = intel_crtc->pipe;
4f771f10
PZ
4391
4392 WARN_ON(!crtc->enabled);
4393
4394 if (intel_crtc->active)
4395 return;
4396
df8ad70c
DV
4397 if (intel_crtc_to_shared_dpll(intel_crtc))
4398 intel_enable_shared_dpll(intel_crtc);
4399
6e3c9717 4400 if (intel_crtc->config->has_dp_encoder)
229fca97
DV
4401 intel_dp_set_m_n(intel_crtc);
4402
4403 intel_set_pipe_timings(intel_crtc);
4404
6e3c9717
ACO
4405 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4406 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4407 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4408 }
4409
6e3c9717 4410 if (intel_crtc->config->has_pch_encoder) {
229fca97 4411 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4412 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4413 }
4414
4415 haswell_set_pipeconf(crtc);
4416
4417 intel_set_pipe_csc(crtc);
4418
4f771f10 4419 intel_crtc->active = true;
8664281b 4420
a72e4c9f 4421 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
4422 for_each_encoder_on_crtc(dev, crtc, encoder)
4423 if (encoder->pre_enable)
4424 encoder->pre_enable(encoder);
4425
6e3c9717 4426 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
4427 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4428 true);
4fe9467d
ID
4429 dev_priv->display.fdi_link_train(crtc);
4430 }
4431
1f544388 4432 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4433
bd2e244f
JB
4434 if (IS_SKYLAKE(dev))
4435 skylake_pfit_enable(intel_crtc);
4436 else
4437 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4438
4439 /*
4440 * On ILK+ LUT must be loaded before the pipe is running but with
4441 * clocks enabled
4442 */
4443 intel_crtc_load_lut(crtc);
4444
1f544388 4445 intel_ddi_set_pipe_settings(crtc);
8228c251 4446 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4447
f37fcc2a 4448 intel_update_watermarks(crtc);
e1fdc473 4449 intel_enable_pipe(intel_crtc);
42db64ef 4450
6e3c9717 4451 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4452 lpt_pch_enable(crtc);
4f771f10 4453
6e3c9717 4454 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4455 intel_ddi_set_vc_payload_alloc(crtc, true);
4456
f9b61ff6
DV
4457 assert_vblank_disabled(crtc);
4458 drm_crtc_vblank_on(crtc);
4459
8807e55b 4460 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4461 encoder->enable(encoder);
8807e55b
JN
4462 intel_opregion_notify_encoder(encoder, true);
4463 }
4f771f10 4464
e4916946
PZ
4465 /* If we change the relative order between pipe/planes enabling, we need
4466 * to change the workaround. */
4467 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4468 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4469}
4470
bd2e244f
JB
4471static void skylake_pfit_disable(struct intel_crtc *crtc)
4472{
4473 struct drm_device *dev = crtc->base.dev;
4474 struct drm_i915_private *dev_priv = dev->dev_private;
4475 int pipe = crtc->pipe;
4476
4477 /* To avoid upsetting the power well on haswell only disable the pfit if
4478 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4479 if (crtc->config->pch_pfit.enabled) {
bd2e244f
JB
4480 I915_WRITE(PS_CTL(pipe), 0);
4481 I915_WRITE(PS_WIN_POS(pipe), 0);
4482 I915_WRITE(PS_WIN_SZ(pipe), 0);
4483 }
4484}
4485
3f8dce3a
DV
4486static void ironlake_pfit_disable(struct intel_crtc *crtc)
4487{
4488 struct drm_device *dev = crtc->base.dev;
4489 struct drm_i915_private *dev_priv = dev->dev_private;
4490 int pipe = crtc->pipe;
4491
4492 /* To avoid upsetting the power well on haswell only disable the pfit if
4493 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 4494 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4495 I915_WRITE(PF_CTL(pipe), 0);
4496 I915_WRITE(PF_WIN_POS(pipe), 0);
4497 I915_WRITE(PF_WIN_SZ(pipe), 0);
4498 }
4499}
4500
6be4a607
JB
4501static void ironlake_crtc_disable(struct drm_crtc *crtc)
4502{
4503 struct drm_device *dev = crtc->dev;
4504 struct drm_i915_private *dev_priv = dev->dev_private;
4505 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4506 struct intel_encoder *encoder;
6be4a607 4507 int pipe = intel_crtc->pipe;
5eddb70b 4508 u32 reg, temp;
b52eb4dc 4509
f7abfe8b
CW
4510 if (!intel_crtc->active)
4511 return;
4512
d3eedb1a 4513 intel_crtc_disable_planes(crtc);
a5c4d7bc 4514
ea9d758d
DV
4515 for_each_encoder_on_crtc(dev, crtc, encoder)
4516 encoder->disable(encoder);
4517
f9b61ff6
DV
4518 drm_crtc_vblank_off(crtc);
4519 assert_vblank_disabled(crtc);
4520
6e3c9717 4521 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 4522 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 4523
575f7ab7 4524 intel_disable_pipe(intel_crtc);
32f9d658 4525
3f8dce3a 4526 ironlake_pfit_disable(intel_crtc);
2c07245f 4527
bf49ec8c
DV
4528 for_each_encoder_on_crtc(dev, crtc, encoder)
4529 if (encoder->post_disable)
4530 encoder->post_disable(encoder);
2c07245f 4531
6e3c9717 4532 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4533 ironlake_fdi_disable(crtc);
913d8d11 4534
d925c59a 4535 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4536
d925c59a
DV
4537 if (HAS_PCH_CPT(dev)) {
4538 /* disable TRANS_DP_CTL */
4539 reg = TRANS_DP_CTL(pipe);
4540 temp = I915_READ(reg);
4541 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4542 TRANS_DP_PORT_SEL_MASK);
4543 temp |= TRANS_DP_PORT_SEL_NONE;
4544 I915_WRITE(reg, temp);
4545
4546 /* disable DPLL_SEL */
4547 temp = I915_READ(PCH_DPLL_SEL);
11887397 4548 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4549 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4550 }
e3421a18 4551
d925c59a 4552 /* disable PCH DPLL */
e72f9fbf 4553 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4554
d925c59a
DV
4555 ironlake_fdi_pll_disable(intel_crtc);
4556 }
6b383a7f 4557
f7abfe8b 4558 intel_crtc->active = false;
46ba614c 4559 intel_update_watermarks(crtc);
d1ebd816
BW
4560
4561 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4562 intel_fbc_update(dev);
d1ebd816 4563 mutex_unlock(&dev->struct_mutex);
6be4a607 4564}
1b3c7a47 4565
4f771f10 4566static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4567{
4f771f10
PZ
4568 struct drm_device *dev = crtc->dev;
4569 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4571 struct intel_encoder *encoder;
6e3c9717 4572 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 4573
4f771f10
PZ
4574 if (!intel_crtc->active)
4575 return;
4576
d3eedb1a 4577 intel_crtc_disable_planes(crtc);
dda9a66a 4578
8807e55b
JN
4579 for_each_encoder_on_crtc(dev, crtc, encoder) {
4580 intel_opregion_notify_encoder(encoder, false);
4f771f10 4581 encoder->disable(encoder);
8807e55b 4582 }
4f771f10 4583
f9b61ff6
DV
4584 drm_crtc_vblank_off(crtc);
4585 assert_vblank_disabled(crtc);
4586
6e3c9717 4587 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
4588 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4589 false);
575f7ab7 4590 intel_disable_pipe(intel_crtc);
4f771f10 4591
6e3c9717 4592 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
4593 intel_ddi_set_vc_payload_alloc(crtc, false);
4594
ad80a810 4595 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4596
bd2e244f
JB
4597 if (IS_SKYLAKE(dev))
4598 skylake_pfit_disable(intel_crtc);
4599 else
4600 ironlake_pfit_disable(intel_crtc);
4f771f10 4601
1f544388 4602 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4603
6e3c9717 4604 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 4605 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 4606 intel_ddi_fdi_disable(crtc);
83616634 4607 }
4f771f10 4608
97b040aa
ID
4609 for_each_encoder_on_crtc(dev, crtc, encoder)
4610 if (encoder->post_disable)
4611 encoder->post_disable(encoder);
4612
4f771f10 4613 intel_crtc->active = false;
46ba614c 4614 intel_update_watermarks(crtc);
4f771f10
PZ
4615
4616 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4617 intel_fbc_update(dev);
4f771f10 4618 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4619
4620 if (intel_crtc_to_shared_dpll(intel_crtc))
4621 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4622}
4623
ee7b9f93
JB
4624static void ironlake_crtc_off(struct drm_crtc *crtc)
4625{
4626 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4627 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4628}
4629
6441ab5f 4630
2dd24552
JB
4631static void i9xx_pfit_enable(struct intel_crtc *crtc)
4632{
4633 struct drm_device *dev = crtc->base.dev;
4634 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4635 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 4636
681a8504 4637 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
4638 return;
4639
2dd24552 4640 /*
c0b03411
DV
4641 * The panel fitter should only be adjusted whilst the pipe is disabled,
4642 * according to register description and PRM.
2dd24552 4643 */
c0b03411
DV
4644 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4645 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4646
b074cec8
JB
4647 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4648 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4649
4650 /* Border color in case we don't scale up to the full screen. Black by
4651 * default, change to something else for debugging. */
4652 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4653}
4654
d05410f9
DA
4655static enum intel_display_power_domain port_to_power_domain(enum port port)
4656{
4657 switch (port) {
4658 case PORT_A:
4659 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4660 case PORT_B:
4661 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4662 case PORT_C:
4663 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4664 case PORT_D:
4665 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4666 default:
4667 WARN_ON_ONCE(1);
4668 return POWER_DOMAIN_PORT_OTHER;
4669 }
4670}
4671
77d22dca
ID
4672#define for_each_power_domain(domain, mask) \
4673 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4674 if ((1 << (domain)) & (mask))
4675
319be8ae
ID
4676enum intel_display_power_domain
4677intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4678{
4679 struct drm_device *dev = intel_encoder->base.dev;
4680 struct intel_digital_port *intel_dig_port;
4681
4682 switch (intel_encoder->type) {
4683 case INTEL_OUTPUT_UNKNOWN:
4684 /* Only DDI platforms should ever use this output type */
4685 WARN_ON_ONCE(!HAS_DDI(dev));
4686 case INTEL_OUTPUT_DISPLAYPORT:
4687 case INTEL_OUTPUT_HDMI:
4688 case INTEL_OUTPUT_EDP:
4689 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4690 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4691 case INTEL_OUTPUT_DP_MST:
4692 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4693 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4694 case INTEL_OUTPUT_ANALOG:
4695 return POWER_DOMAIN_PORT_CRT;
4696 case INTEL_OUTPUT_DSI:
4697 return POWER_DOMAIN_PORT_DSI;
4698 default:
4699 return POWER_DOMAIN_PORT_OTHER;
4700 }
4701}
4702
4703static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4704{
319be8ae
ID
4705 struct drm_device *dev = crtc->dev;
4706 struct intel_encoder *intel_encoder;
4707 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4708 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4709 unsigned long mask;
4710 enum transcoder transcoder;
4711
4712 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4713
4714 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4715 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
4716 if (intel_crtc->config->pch_pfit.enabled ||
4717 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
4718 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4719
319be8ae
ID
4720 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4721 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4722
77d22dca
ID
4723 return mask;
4724}
4725
77d22dca
ID
4726static void modeset_update_crtc_power_domains(struct drm_device *dev)
4727{
4728 struct drm_i915_private *dev_priv = dev->dev_private;
4729 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4730 struct intel_crtc *crtc;
4731
4732 /*
4733 * First get all needed power domains, then put all unneeded, to avoid
4734 * any unnecessary toggling of the power wells.
4735 */
d3fcc808 4736 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4737 enum intel_display_power_domain domain;
4738
4739 if (!crtc->base.enabled)
4740 continue;
4741
319be8ae 4742 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4743
4744 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4745 intel_display_power_get(dev_priv, domain);
4746 }
4747
50f6e502
VS
4748 if (dev_priv->display.modeset_global_resources)
4749 dev_priv->display.modeset_global_resources(dev);
4750
d3fcc808 4751 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4752 enum intel_display_power_domain domain;
4753
4754 for_each_power_domain(domain, crtc->enabled_power_domains)
4755 intel_display_power_put(dev_priv, domain);
4756
4757 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4758 }
4759
4760 intel_display_set_init_power(dev_priv, false);
4761}
4762
dfcab17e 4763/* returns HPLL frequency in kHz */
f8bf63fd 4764static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4765{
586f49dc 4766 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4767
586f49dc
JB
4768 /* Obtain SKU information */
4769 mutex_lock(&dev_priv->dpio_lock);
4770 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4771 CCK_FUSE_HPLL_FREQ_MASK;
4772 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4773
dfcab17e 4774 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4775}
4776
f8bf63fd
VS
4777static void vlv_update_cdclk(struct drm_device *dev)
4778{
4779 struct drm_i915_private *dev_priv = dev->dev_private;
4780
4781 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 4782 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
f8bf63fd
VS
4783 dev_priv->vlv_cdclk_freq);
4784
4785 /*
4786 * Program the gmbus_freq based on the cdclk frequency.
4787 * BSpec erroneously claims we should aim for 4MHz, but
4788 * in fact 1MHz is the correct frequency.
4789 */
6be1e3d3 4790 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
f8bf63fd
VS
4791}
4792
30a970c6
JB
4793/* Adjust CDclk dividers to allow high res or save power if possible */
4794static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4795{
4796 struct drm_i915_private *dev_priv = dev->dev_private;
4797 u32 val, cmd;
4798
d197b7d3 4799 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4800
dfcab17e 4801 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4802 cmd = 2;
dfcab17e 4803 else if (cdclk == 266667)
30a970c6
JB
4804 cmd = 1;
4805 else
4806 cmd = 0;
4807
4808 mutex_lock(&dev_priv->rps.hw_lock);
4809 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4810 val &= ~DSPFREQGUAR_MASK;
4811 val |= (cmd << DSPFREQGUAR_SHIFT);
4812 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4813 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4814 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4815 50)) {
4816 DRM_ERROR("timed out waiting for CDclk change\n");
4817 }
4818 mutex_unlock(&dev_priv->rps.hw_lock);
4819
dfcab17e 4820 if (cdclk == 400000) {
6bcda4f0 4821 u32 divider;
30a970c6 4822
6bcda4f0 4823 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6
JB
4824
4825 mutex_lock(&dev_priv->dpio_lock);
4826 /* adjust cdclk divider */
4827 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4828 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4829 val |= divider;
4830 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4831
4832 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4833 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4834 50))
4835 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4836 mutex_unlock(&dev_priv->dpio_lock);
4837 }
4838
4839 mutex_lock(&dev_priv->dpio_lock);
4840 /* adjust self-refresh exit latency value */
4841 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4842 val &= ~0x7f;
4843
4844 /*
4845 * For high bandwidth configs, we set a higher latency in the bunit
4846 * so that the core display fetch happens in time to avoid underruns.
4847 */
dfcab17e 4848 if (cdclk == 400000)
30a970c6
JB
4849 val |= 4500 / 250; /* 4.5 usec */
4850 else
4851 val |= 3000 / 250; /* 3.0 usec */
4852 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4853 mutex_unlock(&dev_priv->dpio_lock);
4854
f8bf63fd 4855 vlv_update_cdclk(dev);
30a970c6
JB
4856}
4857
383c5a6a
VS
4858static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4859{
4860 struct drm_i915_private *dev_priv = dev->dev_private;
4861 u32 val, cmd;
4862
4863 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4864
4865 switch (cdclk) {
4866 case 400000:
4867 cmd = 3;
4868 break;
4869 case 333333:
4870 case 320000:
4871 cmd = 2;
4872 break;
4873 case 266667:
4874 cmd = 1;
4875 break;
4876 case 200000:
4877 cmd = 0;
4878 break;
4879 default:
5f77eeb0 4880 MISSING_CASE(cdclk);
383c5a6a
VS
4881 return;
4882 }
4883
4884 mutex_lock(&dev_priv->rps.hw_lock);
4885 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4886 val &= ~DSPFREQGUAR_MASK_CHV;
4887 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4888 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4889 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4890 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4891 50)) {
4892 DRM_ERROR("timed out waiting for CDclk change\n");
4893 }
4894 mutex_unlock(&dev_priv->rps.hw_lock);
4895
4896 vlv_update_cdclk(dev);
4897}
4898
30a970c6
JB
4899static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4900 int max_pixclk)
4901{
6bcda4f0 4902 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
29dc7ef3 4903
d49a340d
VS
4904 /* FIXME: Punit isn't quite ready yet */
4905 if (IS_CHERRYVIEW(dev_priv->dev))
4906 return 400000;
4907
30a970c6
JB
4908 /*
4909 * Really only a few cases to deal with, as only 4 CDclks are supported:
4910 * 200MHz
4911 * 267MHz
29dc7ef3 4912 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4913 * 400MHz
4914 * So we check to see whether we're above 90% of the lower bin and
4915 * adjust if needed.
e37c67a1
VS
4916 *
4917 * We seem to get an unstable or solid color picture at 200MHz.
4918 * Not sure what's wrong. For now use 200MHz only when all pipes
4919 * are off.
30a970c6 4920 */
29dc7ef3 4921 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4922 return 400000;
4923 else if (max_pixclk > 266667*9/10)
29dc7ef3 4924 return freq_320;
e37c67a1 4925 else if (max_pixclk > 0)
dfcab17e 4926 return 266667;
e37c67a1
VS
4927 else
4928 return 200000;
30a970c6
JB
4929}
4930
2f2d7aa1
VS
4931/* compute the max pixel clock for new configuration */
4932static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4933{
4934 struct drm_device *dev = dev_priv->dev;
4935 struct intel_crtc *intel_crtc;
4936 int max_pixclk = 0;
4937
d3fcc808 4938 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4939 if (intel_crtc->new_enabled)
30a970c6 4940 max_pixclk = max(max_pixclk,
2d112de7 4941 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
30a970c6
JB
4942 }
4943
4944 return max_pixclk;
4945}
4946
4947static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4948 unsigned *prepare_pipes)
30a970c6
JB
4949{
4950 struct drm_i915_private *dev_priv = dev->dev_private;
4951 struct intel_crtc *intel_crtc;
2f2d7aa1 4952 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4953
d60c4473
ID
4954 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4955 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4956 return;
4957
2f2d7aa1 4958 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4959 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4960 if (intel_crtc->base.enabled)
4961 *prepare_pipes |= (1 << intel_crtc->pipe);
4962}
4963
4964static void valleyview_modeset_global_resources(struct drm_device *dev)
4965{
4966 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4967 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4968 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4969
383c5a6a 4970 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
738c05c0
ID
4971 /*
4972 * FIXME: We can end up here with all power domains off, yet
4973 * with a CDCLK frequency other than the minimum. To account
4974 * for this take the PIPE-A power domain, which covers the HW
4975 * blocks needed for the following programming. This can be
4976 * removed once it's guaranteed that we get here either with
4977 * the minimum CDCLK set, or the required power domains
4978 * enabled.
4979 */
4980 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
4981
383c5a6a
VS
4982 if (IS_CHERRYVIEW(dev))
4983 cherryview_set_cdclk(dev, req_cdclk);
4984 else
4985 valleyview_set_cdclk(dev, req_cdclk);
738c05c0
ID
4986
4987 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 4988 }
30a970c6
JB
4989}
4990
89b667f8
JB
4991static void valleyview_crtc_enable(struct drm_crtc *crtc)
4992{
4993 struct drm_device *dev = crtc->dev;
a72e4c9f 4994 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
4995 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4996 struct intel_encoder *encoder;
4997 int pipe = intel_crtc->pipe;
23538ef1 4998 bool is_dsi;
89b667f8
JB
4999
5000 WARN_ON(!crtc->enabled);
5001
5002 if (intel_crtc->active)
5003 return;
5004
409ee761 5005 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 5006
1ae0d137
VS
5007 if (!is_dsi) {
5008 if (IS_CHERRYVIEW(dev))
6e3c9717 5009 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5010 else
6e3c9717 5011 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 5012 }
5b18e57c 5013
6e3c9717 5014 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
5015 intel_dp_set_m_n(intel_crtc);
5016
5017 intel_set_pipe_timings(intel_crtc);
5018
c14b0485
VS
5019 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5020 struct drm_i915_private *dev_priv = dev->dev_private;
5021
5022 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5023 I915_WRITE(CHV_CANVAS(pipe), 0);
5024 }
5025
5b18e57c
DV
5026 i9xx_set_pipeconf(intel_crtc);
5027
89b667f8 5028 intel_crtc->active = true;
89b667f8 5029
a72e4c9f 5030 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5031
89b667f8
JB
5032 for_each_encoder_on_crtc(dev, crtc, encoder)
5033 if (encoder->pre_pll_enable)
5034 encoder->pre_pll_enable(encoder);
5035
9d556c99
CML
5036 if (!is_dsi) {
5037 if (IS_CHERRYVIEW(dev))
6e3c9717 5038 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5039 else
6e3c9717 5040 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 5041 }
89b667f8
JB
5042
5043 for_each_encoder_on_crtc(dev, crtc, encoder)
5044 if (encoder->pre_enable)
5045 encoder->pre_enable(encoder);
5046
2dd24552
JB
5047 i9xx_pfit_enable(intel_crtc);
5048
63cbb074
VS
5049 intel_crtc_load_lut(crtc);
5050
f37fcc2a 5051 intel_update_watermarks(crtc);
e1fdc473 5052 intel_enable_pipe(intel_crtc);
be6a6f8e 5053
4b3a9526
VS
5054 assert_vblank_disabled(crtc);
5055 drm_crtc_vblank_on(crtc);
5056
f9b61ff6
DV
5057 for_each_encoder_on_crtc(dev, crtc, encoder)
5058 encoder->enable(encoder);
5059
9ab0460b 5060 intel_crtc_enable_planes(crtc);
d40d9187 5061
56b80e1f 5062 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5063 i9xx_check_fifo_underruns(dev_priv);
89b667f8
JB
5064}
5065
f13c2ef3
DV
5066static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5067{
5068 struct drm_device *dev = crtc->base.dev;
5069 struct drm_i915_private *dev_priv = dev->dev_private;
5070
6e3c9717
ACO
5071 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5072 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
5073}
5074
0b8765c6 5075static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
5076{
5077 struct drm_device *dev = crtc->dev;
a72e4c9f 5078 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 5079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5080 struct intel_encoder *encoder;
79e53945 5081 int pipe = intel_crtc->pipe;
79e53945 5082
08a48469
DV
5083 WARN_ON(!crtc->enabled);
5084
f7abfe8b
CW
5085 if (intel_crtc->active)
5086 return;
5087
f13c2ef3
DV
5088 i9xx_set_pll_dividers(intel_crtc);
5089
6e3c9717 5090 if (intel_crtc->config->has_dp_encoder)
5b18e57c
DV
5091 intel_dp_set_m_n(intel_crtc);
5092
5093 intel_set_pipe_timings(intel_crtc);
5094
5b18e57c
DV
5095 i9xx_set_pipeconf(intel_crtc);
5096
f7abfe8b 5097 intel_crtc->active = true;
6b383a7f 5098
4a3436e8 5099 if (!IS_GEN2(dev))
a72e4c9f 5100 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5101
9d6d9f19
MK
5102 for_each_encoder_on_crtc(dev, crtc, encoder)
5103 if (encoder->pre_enable)
5104 encoder->pre_enable(encoder);
5105
f6736a1a
DV
5106 i9xx_enable_pll(intel_crtc);
5107
2dd24552
JB
5108 i9xx_pfit_enable(intel_crtc);
5109
63cbb074
VS
5110 intel_crtc_load_lut(crtc);
5111
f37fcc2a 5112 intel_update_watermarks(crtc);
e1fdc473 5113 intel_enable_pipe(intel_crtc);
be6a6f8e 5114
4b3a9526
VS
5115 assert_vblank_disabled(crtc);
5116 drm_crtc_vblank_on(crtc);
5117
f9b61ff6
DV
5118 for_each_encoder_on_crtc(dev, crtc, encoder)
5119 encoder->enable(encoder);
5120
9ab0460b 5121 intel_crtc_enable_planes(crtc);
d40d9187 5122
4a3436e8
VS
5123 /*
5124 * Gen2 reports pipe underruns whenever all planes are disabled.
5125 * So don't enable underrun reporting before at least some planes
5126 * are enabled.
5127 * FIXME: Need to fix the logic to work when we turn off all planes
5128 * but leave the pipe running.
5129 */
5130 if (IS_GEN2(dev))
a72e4c9f 5131 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 5132
56b80e1f 5133 /* Underruns don't raise interrupts, so check manually. */
a72e4c9f 5134 i9xx_check_fifo_underruns(dev_priv);
0b8765c6 5135}
79e53945 5136
87476d63
DV
5137static void i9xx_pfit_disable(struct intel_crtc *crtc)
5138{
5139 struct drm_device *dev = crtc->base.dev;
5140 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 5141
6e3c9717 5142 if (!crtc->config->gmch_pfit.control)
328d8e82 5143 return;
87476d63 5144
328d8e82 5145 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 5146
328d8e82
DV
5147 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5148 I915_READ(PFIT_CONTROL));
5149 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
5150}
5151
0b8765c6
JB
5152static void i9xx_crtc_disable(struct drm_crtc *crtc)
5153{
5154 struct drm_device *dev = crtc->dev;
5155 struct drm_i915_private *dev_priv = dev->dev_private;
5156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5157 struct intel_encoder *encoder;
0b8765c6 5158 int pipe = intel_crtc->pipe;
ef9c3aee 5159
f7abfe8b
CW
5160 if (!intel_crtc->active)
5161 return;
5162
4a3436e8
VS
5163 /*
5164 * Gen2 reports pipe underruns whenever all planes are disabled.
5165 * So diasble underrun reporting before all the planes get disabled.
5166 * FIXME: Need to fix the logic to work when we turn off all planes
5167 * but leave the pipe running.
5168 */
5169 if (IS_GEN2(dev))
a72e4c9f 5170 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5171
564ed191
ID
5172 /*
5173 * Vblank time updates from the shadow to live plane control register
5174 * are blocked if the memory self-refresh mode is active at that
5175 * moment. So to make sure the plane gets truly disabled, disable
5176 * first the self-refresh mode. The self-refresh enable bit in turn
5177 * will be checked/applied by the HW only at the next frame start
5178 * event which is after the vblank start event, so we need to have a
5179 * wait-for-vblank between disabling the plane and the pipe.
5180 */
5181 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5182 intel_crtc_disable_planes(crtc);
5183
6304cd91
VS
5184 /*
5185 * On gen2 planes are double buffered but the pipe isn't, so we must
5186 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5187 * We also need to wait on all gmch platforms because of the
5188 * self-refresh mode constraint explained above.
6304cd91 5189 */
564ed191 5190 intel_wait_for_vblank(dev, pipe);
6304cd91 5191
4b3a9526
VS
5192 for_each_encoder_on_crtc(dev, crtc, encoder)
5193 encoder->disable(encoder);
5194
f9b61ff6
DV
5195 drm_crtc_vblank_off(crtc);
5196 assert_vblank_disabled(crtc);
5197
575f7ab7 5198 intel_disable_pipe(intel_crtc);
24a1f16d 5199
87476d63 5200 i9xx_pfit_disable(intel_crtc);
24a1f16d 5201
89b667f8
JB
5202 for_each_encoder_on_crtc(dev, crtc, encoder)
5203 if (encoder->post_disable)
5204 encoder->post_disable(encoder);
5205
409ee761 5206 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
5207 if (IS_CHERRYVIEW(dev))
5208 chv_disable_pll(dev_priv, pipe);
5209 else if (IS_VALLEYVIEW(dev))
5210 vlv_disable_pll(dev_priv, pipe);
5211 else
1c4e0274 5212 i9xx_disable_pll(intel_crtc);
076ed3b2 5213 }
0b8765c6 5214
4a3436e8 5215 if (!IS_GEN2(dev))
a72e4c9f 5216 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 5217
f7abfe8b 5218 intel_crtc->active = false;
46ba614c 5219 intel_update_watermarks(crtc);
f37fcc2a 5220
efa9624e 5221 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5222 intel_fbc_update(dev);
efa9624e 5223 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5224}
5225
ee7b9f93
JB
5226static void i9xx_crtc_off(struct drm_crtc *crtc)
5227{
5228}
5229
b04c5bd6
BF
5230/* Master function to enable/disable CRTC and corresponding power wells */
5231void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5232{
5233 struct drm_device *dev = crtc->dev;
5234 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5236 enum intel_display_power_domain domain;
5237 unsigned long domains;
976f8a20 5238
0e572fe7
DV
5239 if (enable) {
5240 if (!intel_crtc->active) {
e1e9fb84
DV
5241 domains = get_crtc_power_domains(crtc);
5242 for_each_power_domain(domain, domains)
5243 intel_display_power_get(dev_priv, domain);
5244 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5245
5246 dev_priv->display.crtc_enable(crtc);
5247 }
5248 } else {
5249 if (intel_crtc->active) {
5250 dev_priv->display.crtc_disable(crtc);
5251
e1e9fb84
DV
5252 domains = intel_crtc->enabled_power_domains;
5253 for_each_power_domain(domain, domains)
5254 intel_display_power_put(dev_priv, domain);
5255 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5256 }
5257 }
b04c5bd6
BF
5258}
5259
5260/**
5261 * Sets the power management mode of the pipe and plane.
5262 */
5263void intel_crtc_update_dpms(struct drm_crtc *crtc)
5264{
5265 struct drm_device *dev = crtc->dev;
5266 struct intel_encoder *intel_encoder;
5267 bool enable = false;
5268
5269 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5270 enable |= intel_encoder->connectors_active;
5271
5272 intel_crtc_control(crtc, enable);
976f8a20
DV
5273}
5274
cdd59983
CW
5275static void intel_crtc_disable(struct drm_crtc *crtc)
5276{
cdd59983 5277 struct drm_device *dev = crtc->dev;
976f8a20 5278 struct drm_connector *connector;
ee7b9f93 5279 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 5280
976f8a20
DV
5281 /* crtc should still be enabled when we disable it. */
5282 WARN_ON(!crtc->enabled);
5283
5284 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
5285 dev_priv->display.off(crtc);
5286
455a6808 5287 crtc->primary->funcs->disable_plane(crtc->primary);
976f8a20
DV
5288
5289 /* Update computed state. */
5290 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5291 if (!connector->encoder || !connector->encoder->crtc)
5292 continue;
5293
5294 if (connector->encoder->crtc != crtc)
5295 continue;
5296
5297 connector->dpms = DRM_MODE_DPMS_OFF;
5298 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5299 }
5300}
5301
ea5b213a 5302void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5303{
4ef69c7a 5304 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5305
ea5b213a
CW
5306 drm_encoder_cleanup(encoder);
5307 kfree(intel_encoder);
7e7d76c3
JB
5308}
5309
9237329d 5310/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5311 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5312 * state of the entire output pipe. */
9237329d 5313static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5314{
5ab432ef
DV
5315 if (mode == DRM_MODE_DPMS_ON) {
5316 encoder->connectors_active = true;
5317
b2cabb0e 5318 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5319 } else {
5320 encoder->connectors_active = false;
5321
b2cabb0e 5322 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5323 }
79e53945
JB
5324}
5325
0a91ca29
DV
5326/* Cross check the actual hw state with our own modeset state tracking (and it's
5327 * internal consistency). */
b980514c 5328static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5329{
0a91ca29
DV
5330 if (connector->get_hw_state(connector)) {
5331 struct intel_encoder *encoder = connector->encoder;
5332 struct drm_crtc *crtc;
5333 bool encoder_enabled;
5334 enum pipe pipe;
5335
5336 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5337 connector->base.base.id,
c23cc417 5338 connector->base.name);
0a91ca29 5339
0e32b39c
DA
5340 /* there is no real hw state for MST connectors */
5341 if (connector->mst_port)
5342 return;
5343
e2c719b7 5344 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 5345 "wrong connector dpms state\n");
e2c719b7 5346 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 5347 "active connector not linked to encoder\n");
0a91ca29 5348
36cd7444 5349 if (encoder) {
e2c719b7 5350 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
5351 "encoder->connectors_active not set\n");
5352
5353 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
5354 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5355 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 5356 return;
0a91ca29 5357
36cd7444 5358 crtc = encoder->base.crtc;
0a91ca29 5359
e2c719b7
RC
5360 I915_STATE_WARN(!crtc->enabled, "crtc not enabled\n");
5361 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5362 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
5363 "encoder active on the wrong pipe\n");
5364 }
0a91ca29 5365 }
79e53945
JB
5366}
5367
5ab432ef
DV
5368/* Even simpler default implementation, if there's really no special case to
5369 * consider. */
5370void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5371{
5ab432ef
DV
5372 /* All the simple cases only support two dpms states. */
5373 if (mode != DRM_MODE_DPMS_ON)
5374 mode = DRM_MODE_DPMS_OFF;
d4270e57 5375
5ab432ef
DV
5376 if (mode == connector->dpms)
5377 return;
5378
5379 connector->dpms = mode;
5380
5381 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5382 if (connector->encoder)
5383 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5384
b980514c 5385 intel_modeset_check_state(connector->dev);
79e53945
JB
5386}
5387
f0947c37
DV
5388/* Simple connector->get_hw_state implementation for encoders that support only
5389 * one connector and no cloning and hence the encoder state determines the state
5390 * of the connector. */
5391bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5392{
24929352 5393 enum pipe pipe = 0;
f0947c37 5394 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5395
f0947c37 5396 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5397}
5398
1857e1da 5399static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 5400 struct intel_crtc_state *pipe_config)
1857e1da
DV
5401{
5402 struct drm_i915_private *dev_priv = dev->dev_private;
5403 struct intel_crtc *pipe_B_crtc =
5404 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5405
5406 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5407 pipe_name(pipe), pipe_config->fdi_lanes);
5408 if (pipe_config->fdi_lanes > 4) {
5409 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5410 pipe_name(pipe), pipe_config->fdi_lanes);
5411 return false;
5412 }
5413
bafb6553 5414 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5415 if (pipe_config->fdi_lanes > 2) {
5416 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5417 pipe_config->fdi_lanes);
5418 return false;
5419 } else {
5420 return true;
5421 }
5422 }
5423
5424 if (INTEL_INFO(dev)->num_pipes == 2)
5425 return true;
5426
5427 /* Ivybridge 3 pipe is really complicated */
5428 switch (pipe) {
5429 case PIPE_A:
5430 return true;
5431 case PIPE_B:
5432 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5433 pipe_config->fdi_lanes > 2) {
5434 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5435 pipe_name(pipe), pipe_config->fdi_lanes);
5436 return false;
5437 }
5438 return true;
5439 case PIPE_C:
1e833f40 5440 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
6e3c9717 5441 pipe_B_crtc->config->fdi_lanes <= 2) {
1857e1da
DV
5442 if (pipe_config->fdi_lanes > 2) {
5443 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5444 pipe_name(pipe), pipe_config->fdi_lanes);
5445 return false;
5446 }
5447 } else {
5448 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5449 return false;
5450 }
5451 return true;
5452 default:
5453 BUG();
5454 }
5455}
5456
e29c22c0
DV
5457#define RETRY 1
5458static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 5459 struct intel_crtc_state *pipe_config)
877d48d5 5460{
1857e1da 5461 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 5462 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
ff9a6750 5463 int lane, link_bw, fdi_dotclock;
e29c22c0 5464 bool setup_ok, needs_recompute = false;
877d48d5 5465
e29c22c0 5466retry:
877d48d5
DV
5467 /* FDI is a binary signal running at ~2.7GHz, encoding
5468 * each output octet as 10 bits. The actual frequency
5469 * is stored as a divider into a 100MHz clock, and the
5470 * mode pixel clock is stored in units of 1KHz.
5471 * Hence the bw of each lane in terms of the mode signal
5472 * is:
5473 */
5474 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5475
241bfc38 5476 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5477
2bd89a07 5478 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5479 pipe_config->pipe_bpp);
5480
5481 pipe_config->fdi_lanes = lane;
5482
2bd89a07 5483 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5484 link_bw, &pipe_config->fdi_m_n);
1857e1da 5485
e29c22c0
DV
5486 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5487 intel_crtc->pipe, pipe_config);
5488 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5489 pipe_config->pipe_bpp -= 2*3;
5490 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5491 pipe_config->pipe_bpp);
5492 needs_recompute = true;
5493 pipe_config->bw_constrained = true;
5494
5495 goto retry;
5496 }
5497
5498 if (needs_recompute)
5499 return RETRY;
5500
5501 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5502}
5503
42db64ef 5504static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 5505 struct intel_crtc_state *pipe_config)
42db64ef 5506{
d330a953 5507 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5508 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5509 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5510}
5511
a43f6e0f 5512static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 5513 struct intel_crtc_state *pipe_config)
79e53945 5514{
a43f6e0f 5515 struct drm_device *dev = crtc->base.dev;
8bd31e67 5516 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 5517 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 5518
ad3a4479 5519 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 5520 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
5521 int clock_limit =
5522 dev_priv->display.get_display_clock_speed(dev);
5523
5524 /*
5525 * Enable pixel doubling when the dot clock
5526 * is > 90% of the (display) core speed.
5527 *
b397c96b
VS
5528 * GDG double wide on either pipe,
5529 * otherwise pipe A only.
cf532bb2 5530 */
b397c96b 5531 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5532 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5533 clock_limit *= 2;
cf532bb2 5534 pipe_config->double_wide = true;
ad3a4479
VS
5535 }
5536
241bfc38 5537 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5538 return -EINVAL;
2c07245f 5539 }
89749350 5540
1d1d0e27
VS
5541 /*
5542 * Pipe horizontal size must be even in:
5543 * - DVO ganged mode
5544 * - LVDS dual channel mode
5545 * - Double wide pipe
5546 */
409ee761 5547 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
5548 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5549 pipe_config->pipe_src_w &= ~1;
5550
8693a824
DL
5551 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5552 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5553 */
5554 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5555 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5556 return -EINVAL;
44f46b42 5557
bd080ee5 5558 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5559 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5560 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5561 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5562 * for lvds. */
5563 pipe_config->pipe_bpp = 8*3;
5564 }
5565
f5adf94e 5566 if (HAS_IPS(dev))
a43f6e0f
DV
5567 hsw_compute_ips_config(crtc, pipe_config);
5568
877d48d5 5569 if (pipe_config->has_pch_encoder)
a43f6e0f 5570 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5571
e29c22c0 5572 return 0;
79e53945
JB
5573}
5574
25eb05fc
JB
5575static int valleyview_get_display_clock_speed(struct drm_device *dev)
5576{
d197b7d3 5577 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
5578 u32 val;
5579 int divider;
5580
d49a340d
VS
5581 /* FIXME: Punit isn't quite ready yet */
5582 if (IS_CHERRYVIEW(dev))
5583 return 400000;
5584
6bcda4f0
VS
5585 if (dev_priv->hpll_freq == 0)
5586 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5587
d197b7d3
VS
5588 mutex_lock(&dev_priv->dpio_lock);
5589 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5590 mutex_unlock(&dev_priv->dpio_lock);
5591
5592 divider = val & DISPLAY_FREQUENCY_VALUES;
5593
7d007f40
VS
5594 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5595 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5596 "cdclk change in progress\n");
5597
6bcda4f0 5598 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
5599}
5600
e70236a8
JB
5601static int i945_get_display_clock_speed(struct drm_device *dev)
5602{
5603 return 400000;
5604}
79e53945 5605
e70236a8 5606static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5607{
e70236a8
JB
5608 return 333000;
5609}
79e53945 5610
e70236a8
JB
5611static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5612{
5613 return 200000;
5614}
79e53945 5615
257a7ffc
DV
5616static int pnv_get_display_clock_speed(struct drm_device *dev)
5617{
5618 u16 gcfgc = 0;
5619
5620 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5621
5622 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5623 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5624 return 267000;
5625 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5626 return 333000;
5627 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5628 return 444000;
5629 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5630 return 200000;
5631 default:
5632 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5633 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5634 return 133000;
5635 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5636 return 167000;
5637 }
5638}
5639
e70236a8
JB
5640static int i915gm_get_display_clock_speed(struct drm_device *dev)
5641{
5642 u16 gcfgc = 0;
79e53945 5643
e70236a8
JB
5644 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5645
5646 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5647 return 133000;
5648 else {
5649 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5650 case GC_DISPLAY_CLOCK_333_MHZ:
5651 return 333000;
5652 default:
5653 case GC_DISPLAY_CLOCK_190_200_MHZ:
5654 return 190000;
79e53945 5655 }
e70236a8
JB
5656 }
5657}
5658
5659static int i865_get_display_clock_speed(struct drm_device *dev)
5660{
5661 return 266000;
5662}
5663
5664static int i855_get_display_clock_speed(struct drm_device *dev)
5665{
5666 u16 hpllcc = 0;
5667 /* Assume that the hardware is in the high speed state. This
5668 * should be the default.
5669 */
5670 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5671 case GC_CLOCK_133_200:
5672 case GC_CLOCK_100_200:
5673 return 200000;
5674 case GC_CLOCK_166_250:
5675 return 250000;
5676 case GC_CLOCK_100_133:
79e53945 5677 return 133000;
e70236a8 5678 }
79e53945 5679
e70236a8
JB
5680 /* Shouldn't happen */
5681 return 0;
5682}
79e53945 5683
e70236a8
JB
5684static int i830_get_display_clock_speed(struct drm_device *dev)
5685{
5686 return 133000;
79e53945
JB
5687}
5688
2c07245f 5689static void
a65851af 5690intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5691{
a65851af
VS
5692 while (*num > DATA_LINK_M_N_MASK ||
5693 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5694 *num >>= 1;
5695 *den >>= 1;
5696 }
5697}
5698
a65851af
VS
5699static void compute_m_n(unsigned int m, unsigned int n,
5700 uint32_t *ret_m, uint32_t *ret_n)
5701{
5702 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5703 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5704 intel_reduce_m_n_ratio(ret_m, ret_n);
5705}
5706
e69d0bc1
DV
5707void
5708intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5709 int pixel_clock, int link_clock,
5710 struct intel_link_m_n *m_n)
2c07245f 5711{
e69d0bc1 5712 m_n->tu = 64;
a65851af
VS
5713
5714 compute_m_n(bits_per_pixel * pixel_clock,
5715 link_clock * nlanes * 8,
5716 &m_n->gmch_m, &m_n->gmch_n);
5717
5718 compute_m_n(pixel_clock, link_clock,
5719 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5720}
5721
a7615030
CW
5722static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5723{
d330a953
JN
5724 if (i915.panel_use_ssc >= 0)
5725 return i915.panel_use_ssc != 0;
41aa3448 5726 return dev_priv->vbt.lvds_use_ssc
435793df 5727 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5728}
5729
409ee761 5730static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
c65d77d8 5731{
409ee761 5732 struct drm_device *dev = crtc->base.dev;
c65d77d8
JB
5733 struct drm_i915_private *dev_priv = dev->dev_private;
5734 int refclk;
5735
a0c4da24 5736 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5737 refclk = 100000;
d0737e1d 5738 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5739 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5740 refclk = dev_priv->vbt.lvds_ssc_freq;
5741 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5742 } else if (!IS_GEN2(dev)) {
5743 refclk = 96000;
5744 } else {
5745 refclk = 48000;
5746 }
5747
5748 return refclk;
5749}
5750
7429e9d4 5751static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5752{
7df00d7a 5753 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5754}
f47709a9 5755
7429e9d4
DV
5756static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5757{
5758 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5759}
5760
f47709a9 5761static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 5762 struct intel_crtc_state *crtc_state,
a7516a05
JB
5763 intel_clock_t *reduced_clock)
5764{
f47709a9 5765 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5766 u32 fp, fp2 = 0;
5767
5768 if (IS_PINEVIEW(dev)) {
190f68c5 5769 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5770 if (reduced_clock)
7429e9d4 5771 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5772 } else {
190f68c5 5773 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 5774 if (reduced_clock)
7429e9d4 5775 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5776 }
5777
190f68c5 5778 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 5779
f47709a9 5780 crtc->lowfreq_avail = false;
e1f234bd 5781 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
d330a953 5782 reduced_clock && i915.powersave) {
190f68c5 5783 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 5784 crtc->lowfreq_avail = true;
a7516a05 5785 } else {
190f68c5 5786 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
5787 }
5788}
5789
5e69f97f
CML
5790static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5791 pipe)
89b667f8
JB
5792{
5793 u32 reg_val;
5794
5795 /*
5796 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5797 * and set it to a reasonable value instead.
5798 */
ab3c759a 5799 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5800 reg_val &= 0xffffff00;
5801 reg_val |= 0x00000030;
ab3c759a 5802 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5803
ab3c759a 5804 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5805 reg_val &= 0x8cffffff;
5806 reg_val = 0x8c000000;
ab3c759a 5807 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5808
ab3c759a 5809 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5810 reg_val &= 0xffffff00;
ab3c759a 5811 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5812
ab3c759a 5813 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5814 reg_val &= 0x00ffffff;
5815 reg_val |= 0xb0000000;
ab3c759a 5816 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5817}
5818
b551842d
DV
5819static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5820 struct intel_link_m_n *m_n)
5821{
5822 struct drm_device *dev = crtc->base.dev;
5823 struct drm_i915_private *dev_priv = dev->dev_private;
5824 int pipe = crtc->pipe;
5825
e3b95f1e
DV
5826 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5827 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5828 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5829 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5830}
5831
5832static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5833 struct intel_link_m_n *m_n,
5834 struct intel_link_m_n *m2_n2)
b551842d
DV
5835{
5836 struct drm_device *dev = crtc->base.dev;
5837 struct drm_i915_private *dev_priv = dev->dev_private;
5838 int pipe = crtc->pipe;
6e3c9717 5839 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
5840
5841 if (INTEL_INFO(dev)->gen >= 5) {
5842 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5843 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5844 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5845 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5846 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5847 * for gen < 8) and if DRRS is supported (to make sure the
5848 * registers are not unnecessarily accessed).
5849 */
5850 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 5851 crtc->config->has_drrs) {
f769cd24
VK
5852 I915_WRITE(PIPE_DATA_M2(transcoder),
5853 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5854 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5855 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5856 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5857 }
b551842d 5858 } else {
e3b95f1e
DV
5859 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5860 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5861 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5862 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5863 }
5864}
5865
f769cd24 5866void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2 5867{
6e3c9717
ACO
5868 if (crtc->config->has_pch_encoder)
5869 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 5870 else
6e3c9717
ACO
5871 intel_cpu_transcoder_set_m_n(crtc, &crtc->config->dp_m_n,
5872 &crtc->config->dp_m2_n2);
03afc4a2
DV
5873}
5874
d288f65f 5875static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 5876 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
5877{
5878 u32 dpll, dpll_md;
5879
5880 /*
5881 * Enable DPIO clock input. We should never disable the reference
5882 * clock for pipe B, since VGA hotplug / manual detection depends
5883 * on it.
5884 */
5885 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5886 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5887 /* We should never disable this, set it here for state tracking */
5888 if (crtc->pipe == PIPE_B)
5889 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5890 dpll |= DPLL_VCO_ENABLE;
d288f65f 5891 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 5892
d288f65f 5893 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 5894 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 5895 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
5896}
5897
d288f65f 5898static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 5899 const struct intel_crtc_state *pipe_config)
a0c4da24 5900{
f47709a9 5901 struct drm_device *dev = crtc->base.dev;
a0c4da24 5902 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5903 int pipe = crtc->pipe;
bdd4b6a6 5904 u32 mdiv;
a0c4da24 5905 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5906 u32 coreclk, reg_val;
a0c4da24 5907
09153000
DV
5908 mutex_lock(&dev_priv->dpio_lock);
5909
d288f65f
VS
5910 bestn = pipe_config->dpll.n;
5911 bestm1 = pipe_config->dpll.m1;
5912 bestm2 = pipe_config->dpll.m2;
5913 bestp1 = pipe_config->dpll.p1;
5914 bestp2 = pipe_config->dpll.p2;
a0c4da24 5915
89b667f8
JB
5916 /* See eDP HDMI DPIO driver vbios notes doc */
5917
5918 /* PLL B needs special handling */
bdd4b6a6 5919 if (pipe == PIPE_B)
5e69f97f 5920 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5921
5922 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5923 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5924
5925 /* Disable target IRef on PLL */
ab3c759a 5926 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5927 reg_val &= 0x00ffffff;
ab3c759a 5928 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5929
5930 /* Disable fast lock */
ab3c759a 5931 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5932
5933 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5934 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5935 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5936 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5937 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5938
5939 /*
5940 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5941 * but we don't support that).
5942 * Note: don't use the DAC post divider as it seems unstable.
5943 */
5944 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5945 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5946
a0c4da24 5947 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5948 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5949
89b667f8 5950 /* Set HBR and RBR LPF coefficients */
d288f65f 5951 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
5952 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
5953 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 5954 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5955 0x009f0003);
89b667f8 5956 else
ab3c759a 5957 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5958 0x00d0000f);
5959
681a8504 5960 if (pipe_config->has_dp_encoder) {
89b667f8 5961 /* Use SSC source */
bdd4b6a6 5962 if (pipe == PIPE_A)
ab3c759a 5963 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5964 0x0df40000);
5965 else
ab3c759a 5966 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5967 0x0df70000);
5968 } else { /* HDMI or VGA */
5969 /* Use bend source */
bdd4b6a6 5970 if (pipe == PIPE_A)
ab3c759a 5971 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5972 0x0df70000);
5973 else
ab3c759a 5974 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5975 0x0df40000);
5976 }
a0c4da24 5977
ab3c759a 5978 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 5979 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
5980 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
5981 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 5982 coreclk |= 0x01000000;
ab3c759a 5983 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5984
ab3c759a 5985 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5986 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5987}
5988
d288f65f 5989static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 5990 struct intel_crtc_state *pipe_config)
1ae0d137 5991{
d288f65f 5992 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
5993 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5994 DPLL_VCO_ENABLE;
5995 if (crtc->pipe != PIPE_A)
d288f65f 5996 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 5997
d288f65f
VS
5998 pipe_config->dpll_hw_state.dpll_md =
5999 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
6000}
6001
d288f65f 6002static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 6003 const struct intel_crtc_state *pipe_config)
9d556c99
CML
6004{
6005 struct drm_device *dev = crtc->base.dev;
6006 struct drm_i915_private *dev_priv = dev->dev_private;
6007 int pipe = crtc->pipe;
6008 int dpll_reg = DPLL(crtc->pipe);
6009 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 6010 u32 loopfilter, intcoeff;
9d556c99
CML
6011 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6012 int refclk;
6013
d288f65f
VS
6014 bestn = pipe_config->dpll.n;
6015 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6016 bestm1 = pipe_config->dpll.m1;
6017 bestm2 = pipe_config->dpll.m2 >> 22;
6018 bestp1 = pipe_config->dpll.p1;
6019 bestp2 = pipe_config->dpll.p2;
9d556c99
CML
6020
6021 /*
6022 * Enable Refclk and SSC
6023 */
a11b0703 6024 I915_WRITE(dpll_reg,
d288f65f 6025 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703
VS
6026
6027 mutex_lock(&dev_priv->dpio_lock);
9d556c99 6028
9d556c99
CML
6029 /* p1 and p2 divider */
6030 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6031 5 << DPIO_CHV_S1_DIV_SHIFT |
6032 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6033 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6034 1 << DPIO_CHV_K_DIV_SHIFT);
6035
6036 /* Feedback post-divider - m2 */
6037 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6038
6039 /* Feedback refclk divider - n and m1 */
6040 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6041 DPIO_CHV_M1_DIV_BY_2 |
6042 1 << DPIO_CHV_N_DIV_SHIFT);
6043
6044 /* M2 fraction division */
6045 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6046
6047 /* M2 fraction division enable */
6048 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6049 DPIO_CHV_FRAC_DIV_EN |
6050 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6051
6052 /* Loop filter */
409ee761 6053 refclk = i9xx_get_refclk(crtc, 0);
9d556c99
CML
6054 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6055 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6056 if (refclk == 100000)
6057 intcoeff = 11;
6058 else if (refclk == 38400)
6059 intcoeff = 10;
6060 else
6061 intcoeff = 9;
6062 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6063 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6064
6065 /* AFC Recal */
6066 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6067 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6068 DPIO_AFC_RECAL);
6069
6070 mutex_unlock(&dev_priv->dpio_lock);
6071}
6072
d288f65f
VS
6073/**
6074 * vlv_force_pll_on - forcibly enable just the PLL
6075 * @dev_priv: i915 private structure
6076 * @pipe: pipe PLL to enable
6077 * @dpll: PLL configuration
6078 *
6079 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6080 * in cases where we need the PLL enabled even when @pipe is not going to
6081 * be enabled.
6082 */
6083void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6084 const struct dpll *dpll)
6085{
6086 struct intel_crtc *crtc =
6087 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 6088 struct intel_crtc_state pipe_config = {
d288f65f
VS
6089 .pixel_multiplier = 1,
6090 .dpll = *dpll,
6091 };
6092
6093 if (IS_CHERRYVIEW(dev)) {
6094 chv_update_pll(crtc, &pipe_config);
6095 chv_prepare_pll(crtc, &pipe_config);
6096 chv_enable_pll(crtc, &pipe_config);
6097 } else {
6098 vlv_update_pll(crtc, &pipe_config);
6099 vlv_prepare_pll(crtc, &pipe_config);
6100 vlv_enable_pll(crtc, &pipe_config);
6101 }
6102}
6103
6104/**
6105 * vlv_force_pll_off - forcibly disable just the PLL
6106 * @dev_priv: i915 private structure
6107 * @pipe: pipe PLL to disable
6108 *
6109 * Disable the PLL for @pipe. To be used in cases where we need
6110 * the PLL enabled even when @pipe is not going to be enabled.
6111 */
6112void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6113{
6114 if (IS_CHERRYVIEW(dev))
6115 chv_disable_pll(to_i915(dev), pipe);
6116 else
6117 vlv_disable_pll(to_i915(dev), pipe);
6118}
6119
f47709a9 6120static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 6121 struct intel_crtc_state *crtc_state,
f47709a9 6122 intel_clock_t *reduced_clock,
eb1cbe48
DV
6123 int num_connectors)
6124{
f47709a9 6125 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6126 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
6127 u32 dpll;
6128 bool is_sdvo;
190f68c5 6129 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6130
190f68c5 6131 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6132
d0737e1d
ACO
6133 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6134 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
6135
6136 dpll = DPLL_VGA_MODE_DIS;
6137
d0737e1d 6138 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
6139 dpll |= DPLLB_MODE_LVDS;
6140 else
6141 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 6142
ef1b460d 6143 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 6144 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 6145 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 6146 }
198a037f
DV
6147
6148 if (is_sdvo)
4a33e48d 6149 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 6150
190f68c5 6151 if (crtc_state->has_dp_encoder)
4a33e48d 6152 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
6153
6154 /* compute bitmask from p1 value */
6155 if (IS_PINEVIEW(dev))
6156 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6157 else {
6158 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6159 if (IS_G4X(dev) && reduced_clock)
6160 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6161 }
6162 switch (clock->p2) {
6163 case 5:
6164 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6165 break;
6166 case 7:
6167 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6168 break;
6169 case 10:
6170 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6171 break;
6172 case 14:
6173 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6174 break;
6175 }
6176 if (INTEL_INFO(dev)->gen >= 4)
6177 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6178
190f68c5 6179 if (crtc_state->sdvo_tv_clock)
eb1cbe48 6180 dpll |= PLL_REF_INPUT_TVCLKINBC;
d0737e1d 6181 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6182 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6183 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6184 else
6185 dpll |= PLL_REF_INPUT_DREFCLK;
6186
6187 dpll |= DPLL_VCO_ENABLE;
190f68c5 6188 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 6189
eb1cbe48 6190 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 6191 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 6192 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 6193 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6194 }
6195}
6196
f47709a9 6197static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 6198 struct intel_crtc_state *crtc_state,
f47709a9 6199 intel_clock_t *reduced_clock,
eb1cbe48
DV
6200 int num_connectors)
6201{
f47709a9 6202 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6203 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6204 u32 dpll;
190f68c5 6205 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 6206
190f68c5 6207 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 6208
eb1cbe48
DV
6209 dpll = DPLL_VGA_MODE_DIS;
6210
d0737e1d 6211 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6212 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6213 } else {
6214 if (clock->p1 == 2)
6215 dpll |= PLL_P1_DIVIDE_BY_TWO;
6216 else
6217 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6218 if (clock->p2 == 4)
6219 dpll |= PLL_P2_DIVIDE_BY_4;
6220 }
6221
d0737e1d 6222 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
4a33e48d
DV
6223 dpll |= DPLL_DVO_2X_MODE;
6224
d0737e1d 6225 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6226 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6227 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6228 else
6229 dpll |= PLL_REF_INPUT_DREFCLK;
6230
6231 dpll |= DPLL_VCO_ENABLE;
190f68c5 6232 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6233}
6234
8a654f3b 6235static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6236{
6237 struct drm_device *dev = intel_crtc->base.dev;
6238 struct drm_i915_private *dev_priv = dev->dev_private;
6239 enum pipe pipe = intel_crtc->pipe;
6e3c9717 6240 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 6241 struct drm_display_mode *adjusted_mode =
6e3c9717 6242 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
6243 uint32_t crtc_vtotal, crtc_vblank_end;
6244 int vsyncshift = 0;
4d8a62ea
DV
6245
6246 /* We need to be careful not to changed the adjusted mode, for otherwise
6247 * the hw state checker will get angry at the mismatch. */
6248 crtc_vtotal = adjusted_mode->crtc_vtotal;
6249 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6250
609aeaca 6251 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6252 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6253 crtc_vtotal -= 1;
6254 crtc_vblank_end -= 1;
609aeaca 6255
409ee761 6256 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
6257 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6258 else
6259 vsyncshift = adjusted_mode->crtc_hsync_start -
6260 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6261 if (vsyncshift < 0)
6262 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6263 }
6264
6265 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6266 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6267
fe2b8f9d 6268 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6269 (adjusted_mode->crtc_hdisplay - 1) |
6270 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6271 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6272 (adjusted_mode->crtc_hblank_start - 1) |
6273 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6274 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6275 (adjusted_mode->crtc_hsync_start - 1) |
6276 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6277
fe2b8f9d 6278 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6279 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6280 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6281 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6282 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6283 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6284 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6285 (adjusted_mode->crtc_vsync_start - 1) |
6286 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6287
b5e508d4
PZ
6288 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6289 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6290 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6291 * bits. */
6292 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6293 (pipe == PIPE_B || pipe == PIPE_C))
6294 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6295
b0e77b9c
PZ
6296 /* pipesrc controls the size that is scaled from, which should
6297 * always be the user's requested size.
6298 */
6299 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
6300 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6301 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
6302}
6303
1bd1bd80 6304static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 6305 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
6306{
6307 struct drm_device *dev = crtc->base.dev;
6308 struct drm_i915_private *dev_priv = dev->dev_private;
6309 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6310 uint32_t tmp;
6311
6312 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
6313 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6314 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6315 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
6316 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6317 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6318 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
6319 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6320 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6321
6322 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
6323 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6324 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6325 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
6326 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6327 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 6328 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
6329 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6330 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
6331
6332 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
6333 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6334 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6335 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
6336 }
6337
6338 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6339 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6340 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6341
2d112de7
ACO
6342 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6343 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6344}
6345
f6a83288 6346void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 6347 struct intel_crtc_state *pipe_config)
babea61d 6348{
2d112de7
ACO
6349 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6350 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6351 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6352 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 6353
2d112de7
ACO
6354 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6355 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6356 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6357 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 6358
2d112de7 6359 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 6360
2d112de7
ACO
6361 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6362 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
6363}
6364
84b046f3
DV
6365static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6366{
6367 struct drm_device *dev = intel_crtc->base.dev;
6368 struct drm_i915_private *dev_priv = dev->dev_private;
6369 uint32_t pipeconf;
6370
9f11a9e4 6371 pipeconf = 0;
84b046f3 6372
b6b5d049
VS
6373 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6374 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6375 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6376
6e3c9717 6377 if (intel_crtc->config->double_wide)
cf532bb2 6378 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6379
ff9ce46e
DV
6380 /* only g4x and later have fancy bpc/dither controls */
6381 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 6382 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 6383 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 6384 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6385 PIPECONF_DITHER_TYPE_SP;
84b046f3 6386
6e3c9717 6387 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
6388 case 18:
6389 pipeconf |= PIPECONF_6BPC;
6390 break;
6391 case 24:
6392 pipeconf |= PIPECONF_8BPC;
6393 break;
6394 case 30:
6395 pipeconf |= PIPECONF_10BPC;
6396 break;
6397 default:
6398 /* Case prevented by intel_choose_pipe_bpp_dither. */
6399 BUG();
84b046f3
DV
6400 }
6401 }
6402
6403 if (HAS_PIPE_CXSR(dev)) {
6404 if (intel_crtc->lowfreq_avail) {
6405 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6406 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6407 } else {
6408 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6409 }
6410 }
6411
6e3c9717 6412 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 6413 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 6414 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
6415 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6416 else
6417 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6418 } else
84b046f3
DV
6419 pipeconf |= PIPECONF_PROGRESSIVE;
6420
6e3c9717 6421 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 6422 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6423
84b046f3
DV
6424 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6425 POSTING_READ(PIPECONF(intel_crtc->pipe));
6426}
6427
190f68c5
ACO
6428static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6429 struct intel_crtc_state *crtc_state)
79e53945 6430{
c7653199 6431 struct drm_device *dev = crtc->base.dev;
79e53945 6432 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 6433 int refclk, num_connectors = 0;
652c393a 6434 intel_clock_t clock, reduced_clock;
a16af721 6435 bool ok, has_reduced_clock = false;
e9fd1c02 6436 bool is_lvds = false, is_dsi = false;
5eddb70b 6437 struct intel_encoder *encoder;
d4906093 6438 const intel_limit_t *limit;
79e53945 6439
d0737e1d
ACO
6440 for_each_intel_encoder(dev, encoder) {
6441 if (encoder->new_crtc != crtc)
6442 continue;
6443
5eddb70b 6444 switch (encoder->type) {
79e53945
JB
6445 case INTEL_OUTPUT_LVDS:
6446 is_lvds = true;
6447 break;
e9fd1c02
JN
6448 case INTEL_OUTPUT_DSI:
6449 is_dsi = true;
6450 break;
6847d71b
PZ
6451 default:
6452 break;
79e53945 6453 }
43565a06 6454
c751ce4f 6455 num_connectors++;
79e53945
JB
6456 }
6457
f2335330 6458 if (is_dsi)
5b18e57c 6459 return 0;
f2335330 6460
190f68c5 6461 if (!crtc_state->clock_set) {
409ee761 6462 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6463
e9fd1c02
JN
6464 /*
6465 * Returns a set of divisors for the desired target clock with
6466 * the given refclk, or FALSE. The returned values represent
6467 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6468 * 2) / p1 / p2.
6469 */
409ee761 6470 limit = intel_limit(crtc, refclk);
c7653199 6471 ok = dev_priv->display.find_dpll(limit, crtc,
190f68c5 6472 crtc_state->port_clock,
e9fd1c02 6473 refclk, NULL, &clock);
f2335330 6474 if (!ok) {
e9fd1c02
JN
6475 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6476 return -EINVAL;
6477 }
79e53945 6478
f2335330
JN
6479 if (is_lvds && dev_priv->lvds_downclock_avail) {
6480 /*
6481 * Ensure we match the reduced clock's P to the target
6482 * clock. If the clocks don't match, we can't switch
6483 * the display clock by using the FP0/FP1. In such case
6484 * we will disable the LVDS downclock feature.
6485 */
6486 has_reduced_clock =
c7653199 6487 dev_priv->display.find_dpll(limit, crtc,
f2335330
JN
6488 dev_priv->lvds_downclock,
6489 refclk, &clock,
6490 &reduced_clock);
6491 }
6492 /* Compat-code for transition, will disappear. */
190f68c5
ACO
6493 crtc_state->dpll.n = clock.n;
6494 crtc_state->dpll.m1 = clock.m1;
6495 crtc_state->dpll.m2 = clock.m2;
6496 crtc_state->dpll.p1 = clock.p1;
6497 crtc_state->dpll.p2 = clock.p2;
f47709a9 6498 }
7026d4ac 6499
e9fd1c02 6500 if (IS_GEN2(dev)) {
190f68c5 6501 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
6502 has_reduced_clock ? &reduced_clock : NULL,
6503 num_connectors);
9d556c99 6504 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 6505 chv_update_pll(crtc, crtc_state);
e9fd1c02 6506 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 6507 vlv_update_pll(crtc, crtc_state);
e9fd1c02 6508 } else {
190f68c5 6509 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 6510 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6511 num_connectors);
e9fd1c02 6512 }
79e53945 6513
c8f7a0db 6514 return 0;
f564048e
EA
6515}
6516
2fa2fe9a 6517static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 6518 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
6519{
6520 struct drm_device *dev = crtc->base.dev;
6521 struct drm_i915_private *dev_priv = dev->dev_private;
6522 uint32_t tmp;
6523
dc9e7dec
VS
6524 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6525 return;
6526
2fa2fe9a 6527 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6528 if (!(tmp & PFIT_ENABLE))
6529 return;
2fa2fe9a 6530
06922821 6531 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6532 if (INTEL_INFO(dev)->gen < 4) {
6533 if (crtc->pipe != PIPE_B)
6534 return;
2fa2fe9a
DV
6535 } else {
6536 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6537 return;
6538 }
6539
06922821 6540 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6541 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6542 if (INTEL_INFO(dev)->gen < 5)
6543 pipe_config->gmch_pfit.lvds_border_bits =
6544 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6545}
6546
acbec814 6547static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6548 struct intel_crtc_state *pipe_config)
acbec814
JB
6549{
6550 struct drm_device *dev = crtc->base.dev;
6551 struct drm_i915_private *dev_priv = dev->dev_private;
6552 int pipe = pipe_config->cpu_transcoder;
6553 intel_clock_t clock;
6554 u32 mdiv;
662c6ecb 6555 int refclk = 100000;
acbec814 6556
f573de5a
SK
6557 /* In case of MIPI DPLL will not even be used */
6558 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6559 return;
6560
acbec814 6561 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6562 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6563 mutex_unlock(&dev_priv->dpio_lock);
6564
6565 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6566 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6567 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6568 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6569 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6570
f646628b 6571 vlv_clock(refclk, &clock);
acbec814 6572
f646628b
VS
6573 /* clock.dot is the fast clock */
6574 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6575}
6576
5724dbd1
DL
6577static void
6578i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6579 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
6580{
6581 struct drm_device *dev = crtc->base.dev;
6582 struct drm_i915_private *dev_priv = dev->dev_private;
6583 u32 val, base, offset;
6584 int pipe = crtc->pipe, plane = crtc->plane;
6585 int fourcc, pixel_format;
6586 int aligned_height;
b113d5ee 6587 struct drm_framebuffer *fb;
1b842c89 6588 struct intel_framebuffer *intel_fb;
1ad292b5 6589
d9806c9f 6590 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 6591 if (!intel_fb) {
1ad292b5
JB
6592 DRM_DEBUG_KMS("failed to alloc fb\n");
6593 return;
6594 }
6595
1b842c89
DL
6596 fb = &intel_fb->base;
6597
1ad292b5
JB
6598 val = I915_READ(DSPCNTR(plane));
6599
6600 if (INTEL_INFO(dev)->gen >= 4)
6601 if (val & DISPPLANE_TILED)
49af449b 6602 plane_config->tiling = I915_TILING_X;
1ad292b5
JB
6603
6604 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 6605 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
6606 fb->pixel_format = fourcc;
6607 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
6608
6609 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 6610 if (plane_config->tiling)
1ad292b5
JB
6611 offset = I915_READ(DSPTILEOFF(plane));
6612 else
6613 offset = I915_READ(DSPLINOFF(plane));
6614 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6615 } else {
6616 base = I915_READ(DSPADDR(plane));
6617 }
6618 plane_config->base = base;
6619
6620 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
6621 fb->width = ((val >> 16) & 0xfff) + 1;
6622 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6623
6624 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 6625 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6626
b113d5ee 6627 aligned_height = intel_fb_align_height(dev, fb->height,
ec2c981e 6628 plane_config->tiling);
1ad292b5 6629
b113d5ee 6630 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
1ad292b5 6631
2844a921
DL
6632 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6633 pipe_name(pipe), plane, fb->width, fb->height,
6634 fb->bits_per_pixel, base, fb->pitches[0],
6635 plane_config->size);
1ad292b5 6636
b113d5ee 6637 crtc->base.primary->fb = fb;
1ad292b5
JB
6638}
6639
70b23a98 6640static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 6641 struct intel_crtc_state *pipe_config)
70b23a98
VS
6642{
6643 struct drm_device *dev = crtc->base.dev;
6644 struct drm_i915_private *dev_priv = dev->dev_private;
6645 int pipe = pipe_config->cpu_transcoder;
6646 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6647 intel_clock_t clock;
6648 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6649 int refclk = 100000;
6650
6651 mutex_lock(&dev_priv->dpio_lock);
6652 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6653 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6654 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6655 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6656 mutex_unlock(&dev_priv->dpio_lock);
6657
6658 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6659 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6660 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6661 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6662 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6663
6664 chv_clock(refclk, &clock);
6665
6666 /* clock.dot is the fast clock */
6667 pipe_config->port_clock = clock.dot / 5;
6668}
6669
0e8ffe1b 6670static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 6671 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
6672{
6673 struct drm_device *dev = crtc->base.dev;
6674 struct drm_i915_private *dev_priv = dev->dev_private;
6675 uint32_t tmp;
6676
f458ebbc
DV
6677 if (!intel_display_power_is_enabled(dev_priv,
6678 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
6679 return false;
6680
e143a21c 6681 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6682 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6683
0e8ffe1b
DV
6684 tmp = I915_READ(PIPECONF(crtc->pipe));
6685 if (!(tmp & PIPECONF_ENABLE))
6686 return false;
6687
42571aef
VS
6688 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6689 switch (tmp & PIPECONF_BPC_MASK) {
6690 case PIPECONF_6BPC:
6691 pipe_config->pipe_bpp = 18;
6692 break;
6693 case PIPECONF_8BPC:
6694 pipe_config->pipe_bpp = 24;
6695 break;
6696 case PIPECONF_10BPC:
6697 pipe_config->pipe_bpp = 30;
6698 break;
6699 default:
6700 break;
6701 }
6702 }
6703
b5a9fa09
DV
6704 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6705 pipe_config->limited_color_range = true;
6706
282740f7
VS
6707 if (INTEL_INFO(dev)->gen < 4)
6708 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6709
1bd1bd80
DV
6710 intel_get_pipe_timings(crtc, pipe_config);
6711
2fa2fe9a
DV
6712 i9xx_get_pfit_config(crtc, pipe_config);
6713
6c49f241
DV
6714 if (INTEL_INFO(dev)->gen >= 4) {
6715 tmp = I915_READ(DPLL_MD(crtc->pipe));
6716 pipe_config->pixel_multiplier =
6717 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6718 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6719 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6720 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6721 tmp = I915_READ(DPLL(crtc->pipe));
6722 pipe_config->pixel_multiplier =
6723 ((tmp & SDVO_MULTIPLIER_MASK)
6724 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6725 } else {
6726 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6727 * port and will be fixed up in the encoder->get_config
6728 * function. */
6729 pipe_config->pixel_multiplier = 1;
6730 }
8bcc2795
DV
6731 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6732 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
6733 /*
6734 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6735 * on 830. Filter it out here so that we don't
6736 * report errors due to that.
6737 */
6738 if (IS_I830(dev))
6739 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6740
8bcc2795
DV
6741 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6742 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6743 } else {
6744 /* Mask out read-only status bits. */
6745 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6746 DPLL_PORTC_READY_MASK |
6747 DPLL_PORTB_READY_MASK);
8bcc2795 6748 }
6c49f241 6749
70b23a98
VS
6750 if (IS_CHERRYVIEW(dev))
6751 chv_crtc_clock_get(crtc, pipe_config);
6752 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6753 vlv_crtc_clock_get(crtc, pipe_config);
6754 else
6755 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6756
0e8ffe1b
DV
6757 return true;
6758}
6759
dde86e2d 6760static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6761{
6762 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6763 struct intel_encoder *encoder;
74cfd7ac 6764 u32 val, final;
13d83a67 6765 bool has_lvds = false;
199e5d79 6766 bool has_cpu_edp = false;
199e5d79 6767 bool has_panel = false;
99eb6a01
KP
6768 bool has_ck505 = false;
6769 bool can_ssc = false;
13d83a67
JB
6770
6771 /* We need to take the global config into account */
b2784e15 6772 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6773 switch (encoder->type) {
6774 case INTEL_OUTPUT_LVDS:
6775 has_panel = true;
6776 has_lvds = true;
6777 break;
6778 case INTEL_OUTPUT_EDP:
6779 has_panel = true;
2de6905f 6780 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6781 has_cpu_edp = true;
6782 break;
6847d71b
PZ
6783 default:
6784 break;
13d83a67
JB
6785 }
6786 }
6787
99eb6a01 6788 if (HAS_PCH_IBX(dev)) {
41aa3448 6789 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6790 can_ssc = has_ck505;
6791 } else {
6792 has_ck505 = false;
6793 can_ssc = true;
6794 }
6795
2de6905f
ID
6796 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6797 has_panel, has_lvds, has_ck505);
13d83a67
JB
6798
6799 /* Ironlake: try to setup display ref clock before DPLL
6800 * enabling. This is only under driver's control after
6801 * PCH B stepping, previous chipset stepping should be
6802 * ignoring this setting.
6803 */
74cfd7ac
CW
6804 val = I915_READ(PCH_DREF_CONTROL);
6805
6806 /* As we must carefully and slowly disable/enable each source in turn,
6807 * compute the final state we want first and check if we need to
6808 * make any changes at all.
6809 */
6810 final = val;
6811 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6812 if (has_ck505)
6813 final |= DREF_NONSPREAD_CK505_ENABLE;
6814 else
6815 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6816
6817 final &= ~DREF_SSC_SOURCE_MASK;
6818 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6819 final &= ~DREF_SSC1_ENABLE;
6820
6821 if (has_panel) {
6822 final |= DREF_SSC_SOURCE_ENABLE;
6823
6824 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6825 final |= DREF_SSC1_ENABLE;
6826
6827 if (has_cpu_edp) {
6828 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6829 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6830 else
6831 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6832 } else
6833 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6834 } else {
6835 final |= DREF_SSC_SOURCE_DISABLE;
6836 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6837 }
6838
6839 if (final == val)
6840 return;
6841
13d83a67 6842 /* Always enable nonspread source */
74cfd7ac 6843 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6844
99eb6a01 6845 if (has_ck505)
74cfd7ac 6846 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6847 else
74cfd7ac 6848 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6849
199e5d79 6850 if (has_panel) {
74cfd7ac
CW
6851 val &= ~DREF_SSC_SOURCE_MASK;
6852 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6853
199e5d79 6854 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6855 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6856 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6857 val |= DREF_SSC1_ENABLE;
e77166b5 6858 } else
74cfd7ac 6859 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6860
6861 /* Get SSC going before enabling the outputs */
74cfd7ac 6862 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6863 POSTING_READ(PCH_DREF_CONTROL);
6864 udelay(200);
6865
74cfd7ac 6866 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6867
6868 /* Enable CPU source on CPU attached eDP */
199e5d79 6869 if (has_cpu_edp) {
99eb6a01 6870 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6871 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6872 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6873 } else
74cfd7ac 6874 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6875 } else
74cfd7ac 6876 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6877
74cfd7ac 6878 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6879 POSTING_READ(PCH_DREF_CONTROL);
6880 udelay(200);
6881 } else {
6882 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6883
74cfd7ac 6884 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6885
6886 /* Turn off CPU output */
74cfd7ac 6887 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6888
74cfd7ac 6889 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6890 POSTING_READ(PCH_DREF_CONTROL);
6891 udelay(200);
6892
6893 /* Turn off the SSC source */
74cfd7ac
CW
6894 val &= ~DREF_SSC_SOURCE_MASK;
6895 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6896
6897 /* Turn off SSC1 */
74cfd7ac 6898 val &= ~DREF_SSC1_ENABLE;
199e5d79 6899
74cfd7ac 6900 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6901 POSTING_READ(PCH_DREF_CONTROL);
6902 udelay(200);
6903 }
74cfd7ac
CW
6904
6905 BUG_ON(val != final);
13d83a67
JB
6906}
6907
f31f2d55 6908static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6909{
f31f2d55 6910 uint32_t tmp;
dde86e2d 6911
0ff066a9
PZ
6912 tmp = I915_READ(SOUTH_CHICKEN2);
6913 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6914 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6915
0ff066a9
PZ
6916 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6917 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6918 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6919
0ff066a9
PZ
6920 tmp = I915_READ(SOUTH_CHICKEN2);
6921 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6922 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6923
0ff066a9
PZ
6924 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6925 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6926 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6927}
6928
6929/* WaMPhyProgramming:hsw */
6930static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6931{
6932 uint32_t tmp;
dde86e2d
PZ
6933
6934 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6935 tmp &= ~(0xFF << 24);
6936 tmp |= (0x12 << 24);
6937 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6938
dde86e2d
PZ
6939 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6940 tmp |= (1 << 11);
6941 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6942
6943 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6944 tmp |= (1 << 11);
6945 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6946
dde86e2d
PZ
6947 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6948 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6949 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6950
6951 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6952 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6953 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6954
0ff066a9
PZ
6955 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6956 tmp &= ~(7 << 13);
6957 tmp |= (5 << 13);
6958 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6959
0ff066a9
PZ
6960 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6961 tmp &= ~(7 << 13);
6962 tmp |= (5 << 13);
6963 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6964
6965 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6966 tmp &= ~0xFF;
6967 tmp |= 0x1C;
6968 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6969
6970 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6971 tmp &= ~0xFF;
6972 tmp |= 0x1C;
6973 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6974
6975 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6976 tmp &= ~(0xFF << 16);
6977 tmp |= (0x1C << 16);
6978 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6979
6980 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6981 tmp &= ~(0xFF << 16);
6982 tmp |= (0x1C << 16);
6983 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6984
0ff066a9
PZ
6985 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6986 tmp |= (1 << 27);
6987 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6988
0ff066a9
PZ
6989 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6990 tmp |= (1 << 27);
6991 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6992
0ff066a9
PZ
6993 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6994 tmp &= ~(0xF << 28);
6995 tmp |= (4 << 28);
6996 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6997
0ff066a9
PZ
6998 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6999 tmp &= ~(0xF << 28);
7000 tmp |= (4 << 28);
7001 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
7002}
7003
2fa86a1f
PZ
7004/* Implements 3 different sequences from BSpec chapter "Display iCLK
7005 * Programming" based on the parameters passed:
7006 * - Sequence to enable CLKOUT_DP
7007 * - Sequence to enable CLKOUT_DP without spread
7008 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7009 */
7010static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7011 bool with_fdi)
f31f2d55
PZ
7012{
7013 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
7014 uint32_t reg, tmp;
7015
7016 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7017 with_spread = true;
7018 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7019 with_fdi, "LP PCH doesn't have FDI\n"))
7020 with_fdi = false;
f31f2d55
PZ
7021
7022 mutex_lock(&dev_priv->dpio_lock);
7023
7024 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7025 tmp &= ~SBI_SSCCTL_DISABLE;
7026 tmp |= SBI_SSCCTL_PATHALT;
7027 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7028
7029 udelay(24);
7030
2fa86a1f
PZ
7031 if (with_spread) {
7032 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7033 tmp &= ~SBI_SSCCTL_PATHALT;
7034 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 7035
2fa86a1f
PZ
7036 if (with_fdi) {
7037 lpt_reset_fdi_mphy(dev_priv);
7038 lpt_program_fdi_mphy(dev_priv);
7039 }
7040 }
dde86e2d 7041
2fa86a1f
PZ
7042 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7043 SBI_GEN0 : SBI_DBUFF0;
7044 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7045 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7046 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
7047
7048 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
7049}
7050
47701c3b
PZ
7051/* Sequence to disable CLKOUT_DP */
7052static void lpt_disable_clkout_dp(struct drm_device *dev)
7053{
7054 struct drm_i915_private *dev_priv = dev->dev_private;
7055 uint32_t reg, tmp;
7056
7057 mutex_lock(&dev_priv->dpio_lock);
7058
7059 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7060 SBI_GEN0 : SBI_DBUFF0;
7061 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7062 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7063 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7064
7065 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7066 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7067 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7068 tmp |= SBI_SSCCTL_PATHALT;
7069 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7070 udelay(32);
7071 }
7072 tmp |= SBI_SSCCTL_DISABLE;
7073 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7074 }
7075
7076 mutex_unlock(&dev_priv->dpio_lock);
7077}
7078
bf8fa3d3
PZ
7079static void lpt_init_pch_refclk(struct drm_device *dev)
7080{
bf8fa3d3
PZ
7081 struct intel_encoder *encoder;
7082 bool has_vga = false;
7083
b2784e15 7084 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
7085 switch (encoder->type) {
7086 case INTEL_OUTPUT_ANALOG:
7087 has_vga = true;
7088 break;
6847d71b
PZ
7089 default:
7090 break;
bf8fa3d3
PZ
7091 }
7092 }
7093
47701c3b
PZ
7094 if (has_vga)
7095 lpt_enable_clkout_dp(dev, true, true);
7096 else
7097 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
7098}
7099
dde86e2d
PZ
7100/*
7101 * Initialize reference clocks when the driver loads
7102 */
7103void intel_init_pch_refclk(struct drm_device *dev)
7104{
7105 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7106 ironlake_init_pch_refclk(dev);
7107 else if (HAS_PCH_LPT(dev))
7108 lpt_init_pch_refclk(dev);
7109}
7110
d9d444cb
JB
7111static int ironlake_get_refclk(struct drm_crtc *crtc)
7112{
7113 struct drm_device *dev = crtc->dev;
7114 struct drm_i915_private *dev_priv = dev->dev_private;
7115 struct intel_encoder *encoder;
d9d444cb
JB
7116 int num_connectors = 0;
7117 bool is_lvds = false;
7118
d0737e1d
ACO
7119 for_each_intel_encoder(dev, encoder) {
7120 if (encoder->new_crtc != to_intel_crtc(crtc))
7121 continue;
7122
d9d444cb
JB
7123 switch (encoder->type) {
7124 case INTEL_OUTPUT_LVDS:
7125 is_lvds = true;
7126 break;
6847d71b
PZ
7127 default:
7128 break;
d9d444cb
JB
7129 }
7130 num_connectors++;
7131 }
7132
7133 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 7134 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 7135 dev_priv->vbt.lvds_ssc_freq);
e91e941b 7136 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
7137 }
7138
7139 return 120000;
7140}
7141
6ff93609 7142static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 7143{
c8203565 7144 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
7145 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7146 int pipe = intel_crtc->pipe;
c8203565
PZ
7147 uint32_t val;
7148
78114071 7149 val = 0;
c8203565 7150
6e3c9717 7151 switch (intel_crtc->config->pipe_bpp) {
c8203565 7152 case 18:
dfd07d72 7153 val |= PIPECONF_6BPC;
c8203565
PZ
7154 break;
7155 case 24:
dfd07d72 7156 val |= PIPECONF_8BPC;
c8203565
PZ
7157 break;
7158 case 30:
dfd07d72 7159 val |= PIPECONF_10BPC;
c8203565
PZ
7160 break;
7161 case 36:
dfd07d72 7162 val |= PIPECONF_12BPC;
c8203565
PZ
7163 break;
7164 default:
cc769b62
PZ
7165 /* Case prevented by intel_choose_pipe_bpp_dither. */
7166 BUG();
c8203565
PZ
7167 }
7168
6e3c9717 7169 if (intel_crtc->config->dither)
c8203565
PZ
7170 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7171
6e3c9717 7172 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
7173 val |= PIPECONF_INTERLACED_ILK;
7174 else
7175 val |= PIPECONF_PROGRESSIVE;
7176
6e3c9717 7177 if (intel_crtc->config->limited_color_range)
3685a8f3 7178 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 7179
c8203565
PZ
7180 I915_WRITE(PIPECONF(pipe), val);
7181 POSTING_READ(PIPECONF(pipe));
7182}
7183
86d3efce
VS
7184/*
7185 * Set up the pipe CSC unit.
7186 *
7187 * Currently only full range RGB to limited range RGB conversion
7188 * is supported, but eventually this should handle various
7189 * RGB<->YCbCr scenarios as well.
7190 */
50f3b016 7191static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
7192{
7193 struct drm_device *dev = crtc->dev;
7194 struct drm_i915_private *dev_priv = dev->dev_private;
7195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7196 int pipe = intel_crtc->pipe;
7197 uint16_t coeff = 0x7800; /* 1.0 */
7198
7199 /*
7200 * TODO: Check what kind of values actually come out of the pipe
7201 * with these coeff/postoff values and adjust to get the best
7202 * accuracy. Perhaps we even need to take the bpc value into
7203 * consideration.
7204 */
7205
6e3c9717 7206 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7207 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7208
7209 /*
7210 * GY/GU and RY/RU should be the other way around according
7211 * to BSpec, but reality doesn't agree. Just set them up in
7212 * a way that results in the correct picture.
7213 */
7214 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7215 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7216
7217 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7218 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7219
7220 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7221 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7222
7223 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7224 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7225 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7226
7227 if (INTEL_INFO(dev)->gen > 6) {
7228 uint16_t postoff = 0;
7229
6e3c9717 7230 if (intel_crtc->config->limited_color_range)
32cf0cb0 7231 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7232
7233 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7234 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7235 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7236
7237 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7238 } else {
7239 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7240
6e3c9717 7241 if (intel_crtc->config->limited_color_range)
86d3efce
VS
7242 mode |= CSC_BLACK_SCREEN_OFFSET;
7243
7244 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7245 }
7246}
7247
6ff93609 7248static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7249{
756f85cf
PZ
7250 struct drm_device *dev = crtc->dev;
7251 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7253 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7254 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
7255 uint32_t val;
7256
3eff4faa 7257 val = 0;
ee2b0b38 7258
6e3c9717 7259 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
7260 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7261
6e3c9717 7262 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7263 val |= PIPECONF_INTERLACED_ILK;
7264 else
7265 val |= PIPECONF_PROGRESSIVE;
7266
702e7a56
PZ
7267 I915_WRITE(PIPECONF(cpu_transcoder), val);
7268 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7269
7270 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7271 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7272
3cdf122c 7273 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7274 val = 0;
7275
6e3c9717 7276 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
7277 case 18:
7278 val |= PIPEMISC_DITHER_6_BPC;
7279 break;
7280 case 24:
7281 val |= PIPEMISC_DITHER_8_BPC;
7282 break;
7283 case 30:
7284 val |= PIPEMISC_DITHER_10_BPC;
7285 break;
7286 case 36:
7287 val |= PIPEMISC_DITHER_12_BPC;
7288 break;
7289 default:
7290 /* Case prevented by pipe_config_set_bpp. */
7291 BUG();
7292 }
7293
6e3c9717 7294 if (intel_crtc->config->dither)
756f85cf
PZ
7295 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7296
7297 I915_WRITE(PIPEMISC(pipe), val);
7298 }
ee2b0b38
PZ
7299}
7300
6591c6e4 7301static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 7302 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
7303 intel_clock_t *clock,
7304 bool *has_reduced_clock,
7305 intel_clock_t *reduced_clock)
7306{
7307 struct drm_device *dev = crtc->dev;
7308 struct drm_i915_private *dev_priv = dev->dev_private;
a919ff14 7309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6591c6e4 7310 int refclk;
d4906093 7311 const intel_limit_t *limit;
a16af721 7312 bool ret, is_lvds = false;
79e53945 7313
d0737e1d 7314 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
79e53945 7315
d9d444cb 7316 refclk = ironlake_get_refclk(crtc);
79e53945 7317
d4906093
ML
7318 /*
7319 * Returns a set of divisors for the desired target clock with the given
7320 * refclk, or FALSE. The returned values represent the clock equation:
7321 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7322 */
409ee761 7323 limit = intel_limit(intel_crtc, refclk);
a919ff14 7324 ret = dev_priv->display.find_dpll(limit, intel_crtc,
190f68c5 7325 crtc_state->port_clock,
ee9300bb 7326 refclk, NULL, clock);
6591c6e4
PZ
7327 if (!ret)
7328 return false;
cda4b7d3 7329
ddc9003c 7330 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7331 /*
7332 * Ensure we match the reduced clock's P to the target clock.
7333 * If the clocks don't match, we can't switch the display clock
7334 * by using the FP0/FP1. In such case we will disable the LVDS
7335 * downclock feature.
7336 */
ee9300bb 7337 *has_reduced_clock =
a919ff14 7338 dev_priv->display.find_dpll(limit, intel_crtc,
ee9300bb
DV
7339 dev_priv->lvds_downclock,
7340 refclk, clock,
7341 reduced_clock);
652c393a 7342 }
61e9653f 7343
6591c6e4
PZ
7344 return true;
7345}
7346
d4b1931c
PZ
7347int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7348{
7349 /*
7350 * Account for spread spectrum to avoid
7351 * oversubscribing the link. Max center spread
7352 * is 2.5%; use 5% for safety's sake.
7353 */
7354 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7355 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7356}
7357
7429e9d4 7358static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7359{
7429e9d4 7360 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7361}
7362
de13a2e3 7363static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 7364 struct intel_crtc_state *crtc_state,
7429e9d4 7365 u32 *fp,
9a7c7890 7366 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7367{
de13a2e3 7368 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7369 struct drm_device *dev = crtc->dev;
7370 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7371 struct intel_encoder *intel_encoder;
7372 uint32_t dpll;
6cc5f341 7373 int factor, num_connectors = 0;
09ede541 7374 bool is_lvds = false, is_sdvo = false;
79e53945 7375
d0737e1d
ACO
7376 for_each_intel_encoder(dev, intel_encoder) {
7377 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7378 continue;
7379
de13a2e3 7380 switch (intel_encoder->type) {
79e53945
JB
7381 case INTEL_OUTPUT_LVDS:
7382 is_lvds = true;
7383 break;
7384 case INTEL_OUTPUT_SDVO:
7d57382e 7385 case INTEL_OUTPUT_HDMI:
79e53945 7386 is_sdvo = true;
79e53945 7387 break;
6847d71b
PZ
7388 default:
7389 break;
79e53945 7390 }
43565a06 7391
c751ce4f 7392 num_connectors++;
79e53945 7393 }
79e53945 7394
c1858123 7395 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7396 factor = 21;
7397 if (is_lvds) {
7398 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7399 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7400 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7401 factor = 25;
190f68c5 7402 } else if (crtc_state->sdvo_tv_clock)
8febb297 7403 factor = 20;
c1858123 7404
190f68c5 7405 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 7406 *fp |= FP_CB_TUNE;
2c07245f 7407
9a7c7890
DV
7408 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7409 *fp2 |= FP_CB_TUNE;
7410
5eddb70b 7411 dpll = 0;
2c07245f 7412
a07d6787
EA
7413 if (is_lvds)
7414 dpll |= DPLLB_MODE_LVDS;
7415 else
7416 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7417
190f68c5 7418 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 7419 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7420
7421 if (is_sdvo)
4a33e48d 7422 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 7423 if (crtc_state->has_dp_encoder)
4a33e48d 7424 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7425
a07d6787 7426 /* compute bitmask from p1 value */
190f68c5 7427 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7428 /* also FPA1 */
190f68c5 7429 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7430
190f68c5 7431 switch (crtc_state->dpll.p2) {
a07d6787
EA
7432 case 5:
7433 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7434 break;
7435 case 7:
7436 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7437 break;
7438 case 10:
7439 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7440 break;
7441 case 14:
7442 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7443 break;
79e53945
JB
7444 }
7445
b4c09f3b 7446 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7447 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7448 else
7449 dpll |= PLL_REF_INPUT_DREFCLK;
7450
959e16d6 7451 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7452}
7453
190f68c5
ACO
7454static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7455 struct intel_crtc_state *crtc_state)
de13a2e3 7456{
c7653199 7457 struct drm_device *dev = crtc->base.dev;
de13a2e3 7458 intel_clock_t clock, reduced_clock;
cbbab5bd 7459 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7460 bool ok, has_reduced_clock = false;
8b47047b 7461 bool is_lvds = false;
e2b78267 7462 struct intel_shared_dpll *pll;
de13a2e3 7463
409ee761 7464 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 7465
5dc5298b
PZ
7466 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7467 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7468
190f68c5 7469 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 7470 &has_reduced_clock, &reduced_clock);
190f68c5 7471 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
7472 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7473 return -EINVAL;
79e53945 7474 }
f47709a9 7475 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7476 if (!crtc_state->clock_set) {
7477 crtc_state->dpll.n = clock.n;
7478 crtc_state->dpll.m1 = clock.m1;
7479 crtc_state->dpll.m2 = clock.m2;
7480 crtc_state->dpll.p1 = clock.p1;
7481 crtc_state->dpll.p2 = clock.p2;
f47709a9 7482 }
79e53945 7483
5dc5298b 7484 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
7485 if (crtc_state->has_pch_encoder) {
7486 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 7487 if (has_reduced_clock)
7429e9d4 7488 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7489
190f68c5 7490 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
7491 &fp, &reduced_clock,
7492 has_reduced_clock ? &fp2 : NULL);
7493
190f68c5
ACO
7494 crtc_state->dpll_hw_state.dpll = dpll;
7495 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 7496 if (has_reduced_clock)
190f68c5 7497 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 7498 else
190f68c5 7499 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 7500
190f68c5 7501 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 7502 if (pll == NULL) {
84f44ce7 7503 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 7504 pipe_name(crtc->pipe));
4b645f14
JB
7505 return -EINVAL;
7506 }
3fb37703 7507 }
79e53945 7508
d330a953 7509 if (is_lvds && has_reduced_clock && i915.powersave)
c7653199 7510 crtc->lowfreq_avail = true;
bcd644e0 7511 else
c7653199 7512 crtc->lowfreq_avail = false;
e2b78267 7513
c8f7a0db 7514 return 0;
79e53945
JB
7515}
7516
eb14cb74
VS
7517static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7518 struct intel_link_m_n *m_n)
7519{
7520 struct drm_device *dev = crtc->base.dev;
7521 struct drm_i915_private *dev_priv = dev->dev_private;
7522 enum pipe pipe = crtc->pipe;
7523
7524 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7525 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7526 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7527 & ~TU_SIZE_MASK;
7528 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7529 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7530 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7531}
7532
7533static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7534 enum transcoder transcoder,
b95af8be
VK
7535 struct intel_link_m_n *m_n,
7536 struct intel_link_m_n *m2_n2)
72419203
DV
7537{
7538 struct drm_device *dev = crtc->base.dev;
7539 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7540 enum pipe pipe = crtc->pipe;
72419203 7541
eb14cb74
VS
7542 if (INTEL_INFO(dev)->gen >= 5) {
7543 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7544 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7545 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7546 & ~TU_SIZE_MASK;
7547 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7548 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7549 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7550 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7551 * gen < 8) and if DRRS is supported (to make sure the
7552 * registers are not unnecessarily read).
7553 */
7554 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 7555 crtc->config->has_drrs) {
b95af8be
VK
7556 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7557 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7558 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7559 & ~TU_SIZE_MASK;
7560 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7561 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7562 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7563 }
eb14cb74
VS
7564 } else {
7565 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7566 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7567 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7568 & ~TU_SIZE_MASK;
7569 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7570 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7571 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7572 }
7573}
7574
7575void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 7576 struct intel_crtc_state *pipe_config)
eb14cb74 7577{
681a8504 7578 if (pipe_config->has_pch_encoder)
eb14cb74
VS
7579 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7580 else
7581 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7582 &pipe_config->dp_m_n,
7583 &pipe_config->dp_m2_n2);
eb14cb74 7584}
72419203 7585
eb14cb74 7586static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 7587 struct intel_crtc_state *pipe_config)
eb14cb74
VS
7588{
7589 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7590 &pipe_config->fdi_m_n, NULL);
72419203
DV
7591}
7592
bd2e244f 7593static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7594 struct intel_crtc_state *pipe_config)
bd2e244f
JB
7595{
7596 struct drm_device *dev = crtc->base.dev;
7597 struct drm_i915_private *dev_priv = dev->dev_private;
7598 uint32_t tmp;
7599
7600 tmp = I915_READ(PS_CTL(crtc->pipe));
7601
7602 if (tmp & PS_ENABLE) {
7603 pipe_config->pch_pfit.enabled = true;
7604 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7605 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7606 }
7607}
7608
5724dbd1
DL
7609static void
7610skylake_get_initial_plane_config(struct intel_crtc *crtc,
7611 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
7612{
7613 struct drm_device *dev = crtc->base.dev;
7614 struct drm_i915_private *dev_priv = dev->dev_private;
7615 u32 val, base, offset, stride_mult;
7616 int pipe = crtc->pipe;
7617 int fourcc, pixel_format;
7618 int aligned_height;
7619 struct drm_framebuffer *fb;
1b842c89 7620 struct intel_framebuffer *intel_fb;
bc8d7dff 7621
d9806c9f 7622 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7623 if (!intel_fb) {
bc8d7dff
DL
7624 DRM_DEBUG_KMS("failed to alloc fb\n");
7625 return;
7626 }
7627
1b842c89
DL
7628 fb = &intel_fb->base;
7629
bc8d7dff
DL
7630 val = I915_READ(PLANE_CTL(pipe, 0));
7631 if (val & PLANE_CTL_TILED_MASK)
7632 plane_config->tiling = I915_TILING_X;
7633
7634 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7635 fourcc = skl_format_to_fourcc(pixel_format,
7636 val & PLANE_CTL_ORDER_RGBX,
7637 val & PLANE_CTL_ALPHA_MASK);
7638 fb->pixel_format = fourcc;
7639 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7640
7641 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7642 plane_config->base = base;
7643
7644 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7645
7646 val = I915_READ(PLANE_SIZE(pipe, 0));
7647 fb->height = ((val >> 16) & 0xfff) + 1;
7648 fb->width = ((val >> 0) & 0x1fff) + 1;
7649
7650 val = I915_READ(PLANE_STRIDE(pipe, 0));
7651 switch (plane_config->tiling) {
7652 case I915_TILING_NONE:
7653 stride_mult = 64;
7654 break;
7655 case I915_TILING_X:
7656 stride_mult = 512;
7657 break;
7658 default:
7659 MISSING_CASE(plane_config->tiling);
7660 goto error;
7661 }
7662 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7663
7664 aligned_height = intel_fb_align_height(dev, fb->height,
7665 plane_config->tiling);
7666
7667 plane_config->size = ALIGN(fb->pitches[0] * aligned_height, PAGE_SIZE);
7668
7669 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7670 pipe_name(pipe), fb->width, fb->height,
7671 fb->bits_per_pixel, base, fb->pitches[0],
7672 plane_config->size);
7673
7674 crtc->base.primary->fb = fb;
7675 return;
7676
7677error:
7678 kfree(fb);
7679}
7680
2fa2fe9a 7681static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7682 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7683{
7684 struct drm_device *dev = crtc->base.dev;
7685 struct drm_i915_private *dev_priv = dev->dev_private;
7686 uint32_t tmp;
7687
7688 tmp = I915_READ(PF_CTL(crtc->pipe));
7689
7690 if (tmp & PF_ENABLE) {
fd4daa9c 7691 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7692 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7693 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7694
7695 /* We currently do not free assignements of panel fitters on
7696 * ivb/hsw (since we don't use the higher upscaling modes which
7697 * differentiates them) so just WARN about this case for now. */
7698 if (IS_GEN7(dev)) {
7699 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7700 PF_PIPE_SEL_IVB(crtc->pipe));
7701 }
2fa2fe9a 7702 }
79e53945
JB
7703}
7704
5724dbd1
DL
7705static void
7706ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7707 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
7708{
7709 struct drm_device *dev = crtc->base.dev;
7710 struct drm_i915_private *dev_priv = dev->dev_private;
7711 u32 val, base, offset;
aeee5a49 7712 int pipe = crtc->pipe;
4c6baa59
JB
7713 int fourcc, pixel_format;
7714 int aligned_height;
b113d5ee 7715 struct drm_framebuffer *fb;
1b842c89 7716 struct intel_framebuffer *intel_fb;
4c6baa59 7717
d9806c9f 7718 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7719 if (!intel_fb) {
4c6baa59
JB
7720 DRM_DEBUG_KMS("failed to alloc fb\n");
7721 return;
7722 }
7723
1b842c89
DL
7724 fb = &intel_fb->base;
7725
aeee5a49 7726 val = I915_READ(DSPCNTR(pipe));
4c6baa59
JB
7727
7728 if (INTEL_INFO(dev)->gen >= 4)
7729 if (val & DISPPLANE_TILED)
49af449b 7730 plane_config->tiling = I915_TILING_X;
4c6baa59
JB
7731
7732 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7733 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7734 fb->pixel_format = fourcc;
7735 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 7736
aeee5a49 7737 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 7738 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 7739 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 7740 } else {
49af449b 7741 if (plane_config->tiling)
aeee5a49 7742 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 7743 else
aeee5a49 7744 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
7745 }
7746 plane_config->base = base;
7747
7748 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
7749 fb->width = ((val >> 16) & 0xfff) + 1;
7750 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7751
7752 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 7753 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7754
b113d5ee 7755 aligned_height = intel_fb_align_height(dev, fb->height,
ec2c981e 7756 plane_config->tiling);
4c6baa59 7757
b113d5ee 7758 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
4c6baa59 7759
2844a921
DL
7760 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7761 pipe_name(pipe), fb->width, fb->height,
7762 fb->bits_per_pixel, base, fb->pitches[0],
7763 plane_config->size);
b113d5ee
DL
7764
7765 crtc->base.primary->fb = fb;
4c6baa59
JB
7766}
7767
0e8ffe1b 7768static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 7769 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
7770{
7771 struct drm_device *dev = crtc->base.dev;
7772 struct drm_i915_private *dev_priv = dev->dev_private;
7773 uint32_t tmp;
7774
f458ebbc
DV
7775 if (!intel_display_power_is_enabled(dev_priv,
7776 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
7777 return false;
7778
e143a21c 7779 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7780 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7781
0e8ffe1b
DV
7782 tmp = I915_READ(PIPECONF(crtc->pipe));
7783 if (!(tmp & PIPECONF_ENABLE))
7784 return false;
7785
42571aef
VS
7786 switch (tmp & PIPECONF_BPC_MASK) {
7787 case PIPECONF_6BPC:
7788 pipe_config->pipe_bpp = 18;
7789 break;
7790 case PIPECONF_8BPC:
7791 pipe_config->pipe_bpp = 24;
7792 break;
7793 case PIPECONF_10BPC:
7794 pipe_config->pipe_bpp = 30;
7795 break;
7796 case PIPECONF_12BPC:
7797 pipe_config->pipe_bpp = 36;
7798 break;
7799 default:
7800 break;
7801 }
7802
b5a9fa09
DV
7803 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7804 pipe_config->limited_color_range = true;
7805
ab9412ba 7806 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7807 struct intel_shared_dpll *pll;
7808
88adfff1
DV
7809 pipe_config->has_pch_encoder = true;
7810
627eb5a3
DV
7811 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7812 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7813 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7814
7815 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7816
c0d43d62 7817 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7818 pipe_config->shared_dpll =
7819 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7820 } else {
7821 tmp = I915_READ(PCH_DPLL_SEL);
7822 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7823 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7824 else
7825 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7826 }
66e985c0
DV
7827
7828 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7829
7830 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7831 &pipe_config->dpll_hw_state));
c93f54cf
DV
7832
7833 tmp = pipe_config->dpll_hw_state.dpll;
7834 pipe_config->pixel_multiplier =
7835 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7836 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7837
7838 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7839 } else {
7840 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7841 }
7842
1bd1bd80
DV
7843 intel_get_pipe_timings(crtc, pipe_config);
7844
2fa2fe9a
DV
7845 ironlake_get_pfit_config(crtc, pipe_config);
7846
0e8ffe1b
DV
7847 return true;
7848}
7849
be256dc7
PZ
7850static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7851{
7852 struct drm_device *dev = dev_priv->dev;
be256dc7 7853 struct intel_crtc *crtc;
be256dc7 7854
d3fcc808 7855 for_each_intel_crtc(dev, crtc)
e2c719b7 7856 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7857 pipe_name(crtc->pipe));
7858
e2c719b7
RC
7859 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7860 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7861 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7862 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7863 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7864 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 7865 "CPU PWM1 enabled\n");
c5107b87 7866 if (IS_HASWELL(dev))
e2c719b7 7867 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 7868 "CPU PWM2 enabled\n");
e2c719b7 7869 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 7870 "PCH PWM1 enabled\n");
e2c719b7 7871 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 7872 "Utility pin enabled\n");
e2c719b7 7873 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 7874
9926ada1
PZ
7875 /*
7876 * In theory we can still leave IRQs enabled, as long as only the HPD
7877 * interrupts remain enabled. We used to check for that, but since it's
7878 * gen-specific and since we only disable LCPLL after we fully disable
7879 * the interrupts, the check below should be enough.
7880 */
e2c719b7 7881 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7882}
7883
9ccd5aeb
PZ
7884static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7885{
7886 struct drm_device *dev = dev_priv->dev;
7887
7888 if (IS_HASWELL(dev))
7889 return I915_READ(D_COMP_HSW);
7890 else
7891 return I915_READ(D_COMP_BDW);
7892}
7893
3c4c9b81
PZ
7894static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7895{
7896 struct drm_device *dev = dev_priv->dev;
7897
7898 if (IS_HASWELL(dev)) {
7899 mutex_lock(&dev_priv->rps.hw_lock);
7900 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7901 val))
f475dadf 7902 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7903 mutex_unlock(&dev_priv->rps.hw_lock);
7904 } else {
9ccd5aeb
PZ
7905 I915_WRITE(D_COMP_BDW, val);
7906 POSTING_READ(D_COMP_BDW);
3c4c9b81 7907 }
be256dc7
PZ
7908}
7909
7910/*
7911 * This function implements pieces of two sequences from BSpec:
7912 * - Sequence for display software to disable LCPLL
7913 * - Sequence for display software to allow package C8+
7914 * The steps implemented here are just the steps that actually touch the LCPLL
7915 * register. Callers should take care of disabling all the display engine
7916 * functions, doing the mode unset, fixing interrupts, etc.
7917 */
6ff58d53
PZ
7918static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7919 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7920{
7921 uint32_t val;
7922
7923 assert_can_disable_lcpll(dev_priv);
7924
7925 val = I915_READ(LCPLL_CTL);
7926
7927 if (switch_to_fclk) {
7928 val |= LCPLL_CD_SOURCE_FCLK;
7929 I915_WRITE(LCPLL_CTL, val);
7930
7931 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7932 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7933 DRM_ERROR("Switching to FCLK failed\n");
7934
7935 val = I915_READ(LCPLL_CTL);
7936 }
7937
7938 val |= LCPLL_PLL_DISABLE;
7939 I915_WRITE(LCPLL_CTL, val);
7940 POSTING_READ(LCPLL_CTL);
7941
7942 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7943 DRM_ERROR("LCPLL still locked\n");
7944
9ccd5aeb 7945 val = hsw_read_dcomp(dev_priv);
be256dc7 7946 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7947 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7948 ndelay(100);
7949
9ccd5aeb
PZ
7950 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7951 1))
be256dc7
PZ
7952 DRM_ERROR("D_COMP RCOMP still in progress\n");
7953
7954 if (allow_power_down) {
7955 val = I915_READ(LCPLL_CTL);
7956 val |= LCPLL_POWER_DOWN_ALLOW;
7957 I915_WRITE(LCPLL_CTL, val);
7958 POSTING_READ(LCPLL_CTL);
7959 }
7960}
7961
7962/*
7963 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7964 * source.
7965 */
6ff58d53 7966static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7967{
7968 uint32_t val;
7969
7970 val = I915_READ(LCPLL_CTL);
7971
7972 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7973 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7974 return;
7975
a8a8bd54
PZ
7976 /*
7977 * Make sure we're not on PC8 state before disabling PC8, otherwise
7978 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 7979 */
59bad947 7980 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 7981
be256dc7
PZ
7982 if (val & LCPLL_POWER_DOWN_ALLOW) {
7983 val &= ~LCPLL_POWER_DOWN_ALLOW;
7984 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7985 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7986 }
7987
9ccd5aeb 7988 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7989 val |= D_COMP_COMP_FORCE;
7990 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7991 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7992
7993 val = I915_READ(LCPLL_CTL);
7994 val &= ~LCPLL_PLL_DISABLE;
7995 I915_WRITE(LCPLL_CTL, val);
7996
7997 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7998 DRM_ERROR("LCPLL not locked yet\n");
7999
8000 if (val & LCPLL_CD_SOURCE_FCLK) {
8001 val = I915_READ(LCPLL_CTL);
8002 val &= ~LCPLL_CD_SOURCE_FCLK;
8003 I915_WRITE(LCPLL_CTL, val);
8004
8005 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8006 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8007 DRM_ERROR("Switching back to LCPLL failed\n");
8008 }
215733fa 8009
59bad947 8010 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
8011}
8012
765dab67
PZ
8013/*
8014 * Package states C8 and deeper are really deep PC states that can only be
8015 * reached when all the devices on the system allow it, so even if the graphics
8016 * device allows PC8+, it doesn't mean the system will actually get to these
8017 * states. Our driver only allows PC8+ when going into runtime PM.
8018 *
8019 * The requirements for PC8+ are that all the outputs are disabled, the power
8020 * well is disabled and most interrupts are disabled, and these are also
8021 * requirements for runtime PM. When these conditions are met, we manually do
8022 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8023 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8024 * hang the machine.
8025 *
8026 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8027 * the state of some registers, so when we come back from PC8+ we need to
8028 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8029 * need to take care of the registers kept by RC6. Notice that this happens even
8030 * if we don't put the device in PCI D3 state (which is what currently happens
8031 * because of the runtime PM support).
8032 *
8033 * For more, read "Display Sequences for Package C8" on the hardware
8034 * documentation.
8035 */
a14cb6fc 8036void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 8037{
c67a470b
PZ
8038 struct drm_device *dev = dev_priv->dev;
8039 uint32_t val;
8040
c67a470b
PZ
8041 DRM_DEBUG_KMS("Enabling package C8+\n");
8042
c67a470b
PZ
8043 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8044 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8045 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8046 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8047 }
8048
8049 lpt_disable_clkout_dp(dev);
c67a470b
PZ
8050 hsw_disable_lcpll(dev_priv, true, true);
8051}
8052
a14cb6fc 8053void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
8054{
8055 struct drm_device *dev = dev_priv->dev;
8056 uint32_t val;
8057
c67a470b
PZ
8058 DRM_DEBUG_KMS("Disabling package C8+\n");
8059
8060 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
8061 lpt_init_pch_refclk(dev);
8062
8063 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8064 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8065 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8066 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8067 }
8068
8069 intel_prepare_ddi(dev);
c67a470b
PZ
8070}
8071
190f68c5
ACO
8072static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8073 struct intel_crtc_state *crtc_state)
09b4ddf9 8074{
190f68c5 8075 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 8076 return -EINVAL;
716c2e55 8077
c7653199 8078 crtc->lowfreq_avail = false;
644cef34 8079
c8f7a0db 8080 return 0;
79e53945
JB
8081}
8082
96b7dfb7
S
8083static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8084 enum port port,
5cec258b 8085 struct intel_crtc_state *pipe_config)
96b7dfb7 8086{
3148ade7 8087 u32 temp, dpll_ctl1;
96b7dfb7
S
8088
8089 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8090 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8091
8092 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
8093 case SKL_DPLL0:
8094 /*
8095 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8096 * of the shared DPLL framework and thus needs to be read out
8097 * separately
8098 */
8099 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8100 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8101 break;
96b7dfb7
S
8102 case SKL_DPLL1:
8103 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8104 break;
8105 case SKL_DPLL2:
8106 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8107 break;
8108 case SKL_DPLL3:
8109 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8110 break;
96b7dfb7
S
8111 }
8112}
8113
7d2c8175
DL
8114static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8115 enum port port,
5cec258b 8116 struct intel_crtc_state *pipe_config)
7d2c8175
DL
8117{
8118 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8119
8120 switch (pipe_config->ddi_pll_sel) {
8121 case PORT_CLK_SEL_WRPLL1:
8122 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8123 break;
8124 case PORT_CLK_SEL_WRPLL2:
8125 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8126 break;
8127 }
8128}
8129
26804afd 8130static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 8131 struct intel_crtc_state *pipe_config)
26804afd
DV
8132{
8133 struct drm_device *dev = crtc->base.dev;
8134 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 8135 struct intel_shared_dpll *pll;
26804afd
DV
8136 enum port port;
8137 uint32_t tmp;
8138
8139 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8140
8141 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8142
96b7dfb7
S
8143 if (IS_SKYLAKE(dev))
8144 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8145 else
8146 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 8147
d452c5b6
DV
8148 if (pipe_config->shared_dpll >= 0) {
8149 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8150
8151 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8152 &pipe_config->dpll_hw_state));
8153 }
8154
26804afd
DV
8155 /*
8156 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8157 * DDI E. So just check whether this pipe is wired to DDI E and whether
8158 * the PCH transcoder is on.
8159 */
ca370455
DL
8160 if (INTEL_INFO(dev)->gen < 9 &&
8161 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
8162 pipe_config->has_pch_encoder = true;
8163
8164 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8165 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8166 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8167
8168 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8169 }
8170}
8171
0e8ffe1b 8172static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8173 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8174{
8175 struct drm_device *dev = crtc->base.dev;
8176 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 8177 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
8178 uint32_t tmp;
8179
f458ebbc 8180 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
8181 POWER_DOMAIN_PIPE(crtc->pipe)))
8182 return false;
8183
e143a21c 8184 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
8185 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8186
eccb140b
DV
8187 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8188 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8189 enum pipe trans_edp_pipe;
8190 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8191 default:
8192 WARN(1, "unknown pipe linked to edp transcoder\n");
8193 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8194 case TRANS_DDI_EDP_INPUT_A_ON:
8195 trans_edp_pipe = PIPE_A;
8196 break;
8197 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8198 trans_edp_pipe = PIPE_B;
8199 break;
8200 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8201 trans_edp_pipe = PIPE_C;
8202 break;
8203 }
8204
8205 if (trans_edp_pipe == crtc->pipe)
8206 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8207 }
8208
f458ebbc 8209 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 8210 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
8211 return false;
8212
eccb140b 8213 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
8214 if (!(tmp & PIPECONF_ENABLE))
8215 return false;
8216
26804afd 8217 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 8218
1bd1bd80
DV
8219 intel_get_pipe_timings(crtc, pipe_config);
8220
2fa2fe9a 8221 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
bd2e244f
JB
8222 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8223 if (IS_SKYLAKE(dev))
8224 skylake_get_pfit_config(crtc, pipe_config);
8225 else
8226 ironlake_get_pfit_config(crtc, pipe_config);
8227 }
88adfff1 8228
e59150dc
JB
8229 if (IS_HASWELL(dev))
8230 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8231 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 8232
ebb69c95
CT
8233 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8234 pipe_config->pixel_multiplier =
8235 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8236 } else {
8237 pipe_config->pixel_multiplier = 1;
8238 }
6c49f241 8239
0e8ffe1b
DV
8240 return true;
8241}
8242
560b85bb
CW
8243static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8244{
8245 struct drm_device *dev = crtc->dev;
8246 struct drm_i915_private *dev_priv = dev->dev_private;
8247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8248 uint32_t cntl = 0, size = 0;
560b85bb 8249
dc41c154
VS
8250 if (base) {
8251 unsigned int width = intel_crtc->cursor_width;
8252 unsigned int height = intel_crtc->cursor_height;
8253 unsigned int stride = roundup_pow_of_two(width) * 4;
8254
8255 switch (stride) {
8256 default:
8257 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8258 width, stride);
8259 stride = 256;
8260 /* fallthrough */
8261 case 256:
8262 case 512:
8263 case 1024:
8264 case 2048:
8265 break;
4b0e333e
CW
8266 }
8267
dc41c154
VS
8268 cntl |= CURSOR_ENABLE |
8269 CURSOR_GAMMA_ENABLE |
8270 CURSOR_FORMAT_ARGB |
8271 CURSOR_STRIDE(stride);
8272
8273 size = (height << 12) | width;
4b0e333e 8274 }
560b85bb 8275
dc41c154
VS
8276 if (intel_crtc->cursor_cntl != 0 &&
8277 (intel_crtc->cursor_base != base ||
8278 intel_crtc->cursor_size != size ||
8279 intel_crtc->cursor_cntl != cntl)) {
8280 /* On these chipsets we can only modify the base/size/stride
8281 * whilst the cursor is disabled.
8282 */
8283 I915_WRITE(_CURACNTR, 0);
4b0e333e 8284 POSTING_READ(_CURACNTR);
dc41c154 8285 intel_crtc->cursor_cntl = 0;
4b0e333e 8286 }
560b85bb 8287
99d1f387 8288 if (intel_crtc->cursor_base != base) {
9db4a9c7 8289 I915_WRITE(_CURABASE, base);
99d1f387
VS
8290 intel_crtc->cursor_base = base;
8291 }
4726e0b0 8292
dc41c154
VS
8293 if (intel_crtc->cursor_size != size) {
8294 I915_WRITE(CURSIZE, size);
8295 intel_crtc->cursor_size = size;
4b0e333e 8296 }
560b85bb 8297
4b0e333e 8298 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8299 I915_WRITE(_CURACNTR, cntl);
8300 POSTING_READ(_CURACNTR);
4b0e333e 8301 intel_crtc->cursor_cntl = cntl;
560b85bb 8302 }
560b85bb
CW
8303}
8304
560b85bb 8305static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8306{
8307 struct drm_device *dev = crtc->dev;
8308 struct drm_i915_private *dev_priv = dev->dev_private;
8309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8310 int pipe = intel_crtc->pipe;
4b0e333e
CW
8311 uint32_t cntl;
8312
8313 cntl = 0;
8314 if (base) {
8315 cntl = MCURSOR_GAMMA_ENABLE;
8316 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8317 case 64:
8318 cntl |= CURSOR_MODE_64_ARGB_AX;
8319 break;
8320 case 128:
8321 cntl |= CURSOR_MODE_128_ARGB_AX;
8322 break;
8323 case 256:
8324 cntl |= CURSOR_MODE_256_ARGB_AX;
8325 break;
8326 default:
5f77eeb0 8327 MISSING_CASE(intel_crtc->cursor_width);
4726e0b0 8328 return;
65a21cd6 8329 }
4b0e333e 8330 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
8331
8332 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8333 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 8334 }
65a21cd6 8335
8e7d688b 8336 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
8337 cntl |= CURSOR_ROTATE_180;
8338
4b0e333e
CW
8339 if (intel_crtc->cursor_cntl != cntl) {
8340 I915_WRITE(CURCNTR(pipe), cntl);
8341 POSTING_READ(CURCNTR(pipe));
8342 intel_crtc->cursor_cntl = cntl;
65a21cd6 8343 }
4b0e333e 8344
65a21cd6 8345 /* and commit changes on next vblank */
5efb3e28
VS
8346 I915_WRITE(CURBASE(pipe), base);
8347 POSTING_READ(CURBASE(pipe));
99d1f387
VS
8348
8349 intel_crtc->cursor_base = base;
65a21cd6
JB
8350}
8351
cda4b7d3 8352/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8353static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8354 bool on)
cda4b7d3
CW
8355{
8356 struct drm_device *dev = crtc->dev;
8357 struct drm_i915_private *dev_priv = dev->dev_private;
8358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8359 int pipe = intel_crtc->pipe;
3d7d6510
MR
8360 int x = crtc->cursor_x;
8361 int y = crtc->cursor_y;
d6e4db15 8362 u32 base = 0, pos = 0;
cda4b7d3 8363
d6e4db15 8364 if (on)
cda4b7d3 8365 base = intel_crtc->cursor_addr;
cda4b7d3 8366
6e3c9717 8367 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
8368 base = 0;
8369
6e3c9717 8370 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
8371 base = 0;
8372
8373 if (x < 0) {
efc9064e 8374 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8375 base = 0;
8376
8377 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8378 x = -x;
8379 }
8380 pos |= x << CURSOR_X_SHIFT;
8381
8382 if (y < 0) {
efc9064e 8383 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8384 base = 0;
8385
8386 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8387 y = -y;
8388 }
8389 pos |= y << CURSOR_Y_SHIFT;
8390
4b0e333e 8391 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8392 return;
8393
5efb3e28
VS
8394 I915_WRITE(CURPOS(pipe), pos);
8395
4398ad45
VS
8396 /* ILK+ do this automagically */
8397 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 8398 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
4398ad45
VS
8399 base += (intel_crtc->cursor_height *
8400 intel_crtc->cursor_width - 1) * 4;
8401 }
8402
8ac54669 8403 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8404 i845_update_cursor(crtc, base);
8405 else
8406 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
8407}
8408
dc41c154
VS
8409static bool cursor_size_ok(struct drm_device *dev,
8410 uint32_t width, uint32_t height)
8411{
8412 if (width == 0 || height == 0)
8413 return false;
8414
8415 /*
8416 * 845g/865g are special in that they are only limited by
8417 * the width of their cursors, the height is arbitrary up to
8418 * the precision of the register. Everything else requires
8419 * square cursors, limited to a few power-of-two sizes.
8420 */
8421 if (IS_845G(dev) || IS_I865G(dev)) {
8422 if ((width & 63) != 0)
8423 return false;
8424
8425 if (width > (IS_845G(dev) ? 64 : 512))
8426 return false;
8427
8428 if (height > 1023)
8429 return false;
8430 } else {
8431 switch (width | height) {
8432 case 256:
8433 case 128:
8434 if (IS_GEN2(dev))
8435 return false;
8436 case 64:
8437 break;
8438 default:
8439 return false;
8440 }
8441 }
8442
8443 return true;
8444}
8445
79e53945 8446static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8447 u16 *blue, uint32_t start, uint32_t size)
79e53945 8448{
7203425a 8449 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8450 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8451
7203425a 8452 for (i = start; i < end; i++) {
79e53945
JB
8453 intel_crtc->lut_r[i] = red[i] >> 8;
8454 intel_crtc->lut_g[i] = green[i] >> 8;
8455 intel_crtc->lut_b[i] = blue[i] >> 8;
8456 }
8457
8458 intel_crtc_load_lut(crtc);
8459}
8460
79e53945
JB
8461/* VESA 640x480x72Hz mode to set on the pipe */
8462static struct drm_display_mode load_detect_mode = {
8463 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8464 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8465};
8466
a8bb6818
DV
8467struct drm_framebuffer *
8468__intel_framebuffer_create(struct drm_device *dev,
8469 struct drm_mode_fb_cmd2 *mode_cmd,
8470 struct drm_i915_gem_object *obj)
d2dff872
CW
8471{
8472 struct intel_framebuffer *intel_fb;
8473 int ret;
8474
8475 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8476 if (!intel_fb) {
6ccb81f2 8477 drm_gem_object_unreference(&obj->base);
d2dff872
CW
8478 return ERR_PTR(-ENOMEM);
8479 }
8480
8481 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8482 if (ret)
8483 goto err;
d2dff872
CW
8484
8485 return &intel_fb->base;
dd4916c5 8486err:
6ccb81f2 8487 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
8488 kfree(intel_fb);
8489
8490 return ERR_PTR(ret);
d2dff872
CW
8491}
8492
b5ea642a 8493static struct drm_framebuffer *
a8bb6818
DV
8494intel_framebuffer_create(struct drm_device *dev,
8495 struct drm_mode_fb_cmd2 *mode_cmd,
8496 struct drm_i915_gem_object *obj)
8497{
8498 struct drm_framebuffer *fb;
8499 int ret;
8500
8501 ret = i915_mutex_lock_interruptible(dev);
8502 if (ret)
8503 return ERR_PTR(ret);
8504 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8505 mutex_unlock(&dev->struct_mutex);
8506
8507 return fb;
8508}
8509
d2dff872
CW
8510static u32
8511intel_framebuffer_pitch_for_width(int width, int bpp)
8512{
8513 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8514 return ALIGN(pitch, 64);
8515}
8516
8517static u32
8518intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8519{
8520 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8521 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8522}
8523
8524static struct drm_framebuffer *
8525intel_framebuffer_create_for_mode(struct drm_device *dev,
8526 struct drm_display_mode *mode,
8527 int depth, int bpp)
8528{
8529 struct drm_i915_gem_object *obj;
0fed39bd 8530 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8531
8532 obj = i915_gem_alloc_object(dev,
8533 intel_framebuffer_size_for_mode(mode, bpp));
8534 if (obj == NULL)
8535 return ERR_PTR(-ENOMEM);
8536
8537 mode_cmd.width = mode->hdisplay;
8538 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8539 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8540 bpp);
5ca0c34a 8541 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8542
8543 return intel_framebuffer_create(dev, &mode_cmd, obj);
8544}
8545
8546static struct drm_framebuffer *
8547mode_fits_in_fbdev(struct drm_device *dev,
8548 struct drm_display_mode *mode)
8549{
4520f53a 8550#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8551 struct drm_i915_private *dev_priv = dev->dev_private;
8552 struct drm_i915_gem_object *obj;
8553 struct drm_framebuffer *fb;
8554
4c0e5528 8555 if (!dev_priv->fbdev)
d2dff872
CW
8556 return NULL;
8557
4c0e5528 8558 if (!dev_priv->fbdev->fb)
d2dff872
CW
8559 return NULL;
8560
4c0e5528
DV
8561 obj = dev_priv->fbdev->fb->obj;
8562 BUG_ON(!obj);
8563
8bcd4553 8564 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8565 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8566 fb->bits_per_pixel))
d2dff872
CW
8567 return NULL;
8568
01f2c773 8569 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8570 return NULL;
8571
8572 return fb;
4520f53a
DV
8573#else
8574 return NULL;
8575#endif
d2dff872
CW
8576}
8577
d2434ab7 8578bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8579 struct drm_display_mode *mode,
51fd371b
RC
8580 struct intel_load_detect_pipe *old,
8581 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8582{
8583 struct intel_crtc *intel_crtc;
d2434ab7
DV
8584 struct intel_encoder *intel_encoder =
8585 intel_attached_encoder(connector);
79e53945 8586 struct drm_crtc *possible_crtc;
4ef69c7a 8587 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8588 struct drm_crtc *crtc = NULL;
8589 struct drm_device *dev = encoder->dev;
94352cf9 8590 struct drm_framebuffer *fb;
51fd371b
RC
8591 struct drm_mode_config *config = &dev->mode_config;
8592 int ret, i = -1;
79e53945 8593
d2dff872 8594 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8595 connector->base.id, connector->name,
8e329a03 8596 encoder->base.id, encoder->name);
d2dff872 8597
51fd371b
RC
8598retry:
8599 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8600 if (ret)
8601 goto fail_unlock;
6e9f798d 8602
79e53945
JB
8603 /*
8604 * Algorithm gets a little messy:
7a5e4805 8605 *
79e53945
JB
8606 * - if the connector already has an assigned crtc, use it (but make
8607 * sure it's on first)
7a5e4805 8608 *
79e53945
JB
8609 * - try to find the first unused crtc that can drive this connector,
8610 * and use that if we find one
79e53945
JB
8611 */
8612
8613 /* See if we already have a CRTC for this connector */
8614 if (encoder->crtc) {
8615 crtc = encoder->crtc;
8261b191 8616
51fd371b 8617 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
8618 if (ret)
8619 goto fail_unlock;
8620 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
8621 if (ret)
8622 goto fail_unlock;
7b24056b 8623
24218aac 8624 old->dpms_mode = connector->dpms;
8261b191
CW
8625 old->load_detect_temp = false;
8626
8627 /* Make sure the crtc and connector are running */
24218aac
DV
8628 if (connector->dpms != DRM_MODE_DPMS_ON)
8629 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8630
7173188d 8631 return true;
79e53945
JB
8632 }
8633
8634 /* Find an unused one (if possible) */
70e1e0ec 8635 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8636 i++;
8637 if (!(encoder->possible_crtcs & (1 << i)))
8638 continue;
a459249c
VS
8639 if (possible_crtc->enabled)
8640 continue;
8641 /* This can occur when applying the pipe A quirk on resume. */
8642 if (to_intel_crtc(possible_crtc)->new_enabled)
8643 continue;
8644
8645 crtc = possible_crtc;
8646 break;
79e53945
JB
8647 }
8648
8649 /*
8650 * If we didn't find an unused CRTC, don't use any.
8651 */
8652 if (!crtc) {
7173188d 8653 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8654 goto fail_unlock;
79e53945
JB
8655 }
8656
51fd371b
RC
8657 ret = drm_modeset_lock(&crtc->mutex, ctx);
8658 if (ret)
4d02e2de
DV
8659 goto fail_unlock;
8660 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8661 if (ret)
51fd371b 8662 goto fail_unlock;
fc303101
DV
8663 intel_encoder->new_crtc = to_intel_crtc(crtc);
8664 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8665
8666 intel_crtc = to_intel_crtc(crtc);
412b61d8 8667 intel_crtc->new_enabled = true;
6e3c9717 8668 intel_crtc->new_config = intel_crtc->config;
24218aac 8669 old->dpms_mode = connector->dpms;
8261b191 8670 old->load_detect_temp = true;
d2dff872 8671 old->release_fb = NULL;
79e53945 8672
6492711d
CW
8673 if (!mode)
8674 mode = &load_detect_mode;
79e53945 8675
d2dff872
CW
8676 /* We need a framebuffer large enough to accommodate all accesses
8677 * that the plane may generate whilst we perform load detection.
8678 * We can not rely on the fbcon either being present (we get called
8679 * during its initialisation to detect all boot displays, or it may
8680 * not even exist) or that it is large enough to satisfy the
8681 * requested mode.
8682 */
94352cf9
DV
8683 fb = mode_fits_in_fbdev(dev, mode);
8684 if (fb == NULL) {
d2dff872 8685 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8686 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8687 old->release_fb = fb;
d2dff872
CW
8688 } else
8689 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8690 if (IS_ERR(fb)) {
d2dff872 8691 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8692 goto fail;
79e53945 8693 }
79e53945 8694
c0c36b94 8695 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8696 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8697 if (old->release_fb)
8698 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8699 goto fail;
79e53945 8700 }
7173188d 8701
79e53945 8702 /* let the connector get through one full cycle before testing */
9d0498a2 8703 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8704 return true;
412b61d8
VS
8705
8706 fail:
8707 intel_crtc->new_enabled = crtc->enabled;
8708 if (intel_crtc->new_enabled)
6e3c9717 8709 intel_crtc->new_config = intel_crtc->config;
412b61d8
VS
8710 else
8711 intel_crtc->new_config = NULL;
51fd371b
RC
8712fail_unlock:
8713 if (ret == -EDEADLK) {
8714 drm_modeset_backoff(ctx);
8715 goto retry;
8716 }
8717
412b61d8 8718 return false;
79e53945
JB
8719}
8720
d2434ab7 8721void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8722 struct intel_load_detect_pipe *old)
79e53945 8723{
d2434ab7
DV
8724 struct intel_encoder *intel_encoder =
8725 intel_attached_encoder(connector);
4ef69c7a 8726 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8727 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8729
d2dff872 8730 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8731 connector->base.id, connector->name,
8e329a03 8732 encoder->base.id, encoder->name);
d2dff872 8733
8261b191 8734 if (old->load_detect_temp) {
fc303101
DV
8735 to_intel_connector(connector)->new_encoder = NULL;
8736 intel_encoder->new_crtc = NULL;
412b61d8
VS
8737 intel_crtc->new_enabled = false;
8738 intel_crtc->new_config = NULL;
fc303101 8739 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8740
36206361
DV
8741 if (old->release_fb) {
8742 drm_framebuffer_unregister_private(old->release_fb);
8743 drm_framebuffer_unreference(old->release_fb);
8744 }
d2dff872 8745
0622a53c 8746 return;
79e53945
JB
8747 }
8748
c751ce4f 8749 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8750 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8751 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8752}
8753
da4a1efa 8754static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 8755 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
8756{
8757 struct drm_i915_private *dev_priv = dev->dev_private;
8758 u32 dpll = pipe_config->dpll_hw_state.dpll;
8759
8760 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8761 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8762 else if (HAS_PCH_SPLIT(dev))
8763 return 120000;
8764 else if (!IS_GEN2(dev))
8765 return 96000;
8766 else
8767 return 48000;
8768}
8769
79e53945 8770/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 8771static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8772 struct intel_crtc_state *pipe_config)
79e53945 8773{
f1f644dc 8774 struct drm_device *dev = crtc->base.dev;
79e53945 8775 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8776 int pipe = pipe_config->cpu_transcoder;
293623f7 8777 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8778 u32 fp;
8779 intel_clock_t clock;
da4a1efa 8780 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8781
8782 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8783 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8784 else
293623f7 8785 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8786
8787 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8788 if (IS_PINEVIEW(dev)) {
8789 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8790 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8791 } else {
8792 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8793 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8794 }
8795
a6c45cf0 8796 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8797 if (IS_PINEVIEW(dev))
8798 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8799 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8800 else
8801 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8802 DPLL_FPA01_P1_POST_DIV_SHIFT);
8803
8804 switch (dpll & DPLL_MODE_MASK) {
8805 case DPLLB_MODE_DAC_SERIAL:
8806 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8807 5 : 10;
8808 break;
8809 case DPLLB_MODE_LVDS:
8810 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8811 7 : 14;
8812 break;
8813 default:
28c97730 8814 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8815 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8816 return;
79e53945
JB
8817 }
8818
ac58c3f0 8819 if (IS_PINEVIEW(dev))
da4a1efa 8820 pineview_clock(refclk, &clock);
ac58c3f0 8821 else
da4a1efa 8822 i9xx_clock(refclk, &clock);
79e53945 8823 } else {
0fb58223 8824 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8825 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8826
8827 if (is_lvds) {
8828 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8829 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8830
8831 if (lvds & LVDS_CLKB_POWER_UP)
8832 clock.p2 = 7;
8833 else
8834 clock.p2 = 14;
79e53945
JB
8835 } else {
8836 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8837 clock.p1 = 2;
8838 else {
8839 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8840 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8841 }
8842 if (dpll & PLL_P2_DIVIDE_BY_4)
8843 clock.p2 = 4;
8844 else
8845 clock.p2 = 2;
79e53945 8846 }
da4a1efa
VS
8847
8848 i9xx_clock(refclk, &clock);
79e53945
JB
8849 }
8850
18442d08
VS
8851 /*
8852 * This value includes pixel_multiplier. We will use
241bfc38 8853 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8854 * encoder's get_config() function.
8855 */
8856 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8857}
8858
6878da05
VS
8859int intel_dotclock_calculate(int link_freq,
8860 const struct intel_link_m_n *m_n)
f1f644dc 8861{
f1f644dc
JB
8862 /*
8863 * The calculation for the data clock is:
1041a02f 8864 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8865 * But we want to avoid losing precison if possible, so:
1041a02f 8866 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8867 *
8868 * and the link clock is simpler:
1041a02f 8869 * link_clock = (m * link_clock) / n
f1f644dc
JB
8870 */
8871
6878da05
VS
8872 if (!m_n->link_n)
8873 return 0;
f1f644dc 8874
6878da05
VS
8875 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8876}
f1f644dc 8877
18442d08 8878static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 8879 struct intel_crtc_state *pipe_config)
6878da05
VS
8880{
8881 struct drm_device *dev = crtc->base.dev;
79e53945 8882
18442d08
VS
8883 /* read out port_clock from the DPLL */
8884 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8885
f1f644dc 8886 /*
18442d08 8887 * This value does not include pixel_multiplier.
241bfc38 8888 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8889 * agree once we know their relationship in the encoder's
8890 * get_config() function.
79e53945 8891 */
2d112de7 8892 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
8893 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8894 &pipe_config->fdi_m_n);
79e53945
JB
8895}
8896
8897/** Returns the currently programmed mode of the given pipe. */
8898struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8899 struct drm_crtc *crtc)
8900{
548f245b 8901 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 8903 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 8904 struct drm_display_mode *mode;
5cec258b 8905 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
8906 int htot = I915_READ(HTOTAL(cpu_transcoder));
8907 int hsync = I915_READ(HSYNC(cpu_transcoder));
8908 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8909 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8910 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8911
8912 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8913 if (!mode)
8914 return NULL;
8915
f1f644dc
JB
8916 /*
8917 * Construct a pipe_config sufficient for getting the clock info
8918 * back out of crtc_clock_get.
8919 *
8920 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8921 * to use a real value here instead.
8922 */
293623f7 8923 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8924 pipe_config.pixel_multiplier = 1;
293623f7
VS
8925 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8926 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8927 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8928 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8929
773ae034 8930 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8931 mode->hdisplay = (htot & 0xffff) + 1;
8932 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8933 mode->hsync_start = (hsync & 0xffff) + 1;
8934 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8935 mode->vdisplay = (vtot & 0xffff) + 1;
8936 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8937 mode->vsync_start = (vsync & 0xffff) + 1;
8938 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8939
8940 drm_mode_set_name(mode);
79e53945
JB
8941
8942 return mode;
8943}
8944
652c393a
JB
8945static void intel_decrease_pllclock(struct drm_crtc *crtc)
8946{
8947 struct drm_device *dev = crtc->dev;
fbee40df 8948 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8950
baff296c 8951 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8952 return;
8953
8954 if (!dev_priv->lvds_downclock_avail)
8955 return;
8956
8957 /*
8958 * Since this is called by a timer, we should never get here in
8959 * the manual case.
8960 */
8961 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8962 int pipe = intel_crtc->pipe;
8963 int dpll_reg = DPLL(pipe);
8964 int dpll;
f6e5b160 8965
44d98a61 8966 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8967
8ac5a6d5 8968 assert_panel_unlocked(dev_priv, pipe);
652c393a 8969
dc257cf1 8970 dpll = I915_READ(dpll_reg);
652c393a
JB
8971 dpll |= DISPLAY_RATE_SELECT_FPA1;
8972 I915_WRITE(dpll_reg, dpll);
9d0498a2 8973 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8974 dpll = I915_READ(dpll_reg);
8975 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8976 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8977 }
8978
8979}
8980
f047e395
CW
8981void intel_mark_busy(struct drm_device *dev)
8982{
c67a470b
PZ
8983 struct drm_i915_private *dev_priv = dev->dev_private;
8984
f62a0076
CW
8985 if (dev_priv->mm.busy)
8986 return;
8987
43694d69 8988 intel_runtime_pm_get(dev_priv);
c67a470b 8989 i915_update_gfx_val(dev_priv);
f62a0076 8990 dev_priv->mm.busy = true;
f047e395
CW
8991}
8992
8993void intel_mark_idle(struct drm_device *dev)
652c393a 8994{
c67a470b 8995 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8996 struct drm_crtc *crtc;
652c393a 8997
f62a0076
CW
8998 if (!dev_priv->mm.busy)
8999 return;
9000
9001 dev_priv->mm.busy = false;
9002
d330a953 9003 if (!i915.powersave)
bb4cdd53 9004 goto out;
652c393a 9005
70e1e0ec 9006 for_each_crtc(dev, crtc) {
f4510a27 9007 if (!crtc->primary->fb)
652c393a
JB
9008 continue;
9009
725a5b54 9010 intel_decrease_pllclock(crtc);
652c393a 9011 }
b29c19b6 9012
3d13ef2e 9013 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9014 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
9015
9016out:
43694d69 9017 intel_runtime_pm_put(dev_priv);
652c393a
JB
9018}
9019
f5de6e07
ACO
9020static void intel_crtc_set_state(struct intel_crtc *crtc,
9021 struct intel_crtc_state *crtc_state)
9022{
9023 kfree(crtc->config);
9024 crtc->config = crtc_state;
16f3f658 9025 crtc->base.state = &crtc_state->base;
f5de6e07
ACO
9026}
9027
79e53945
JB
9028static void intel_crtc_destroy(struct drm_crtc *crtc)
9029{
9030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9031 struct drm_device *dev = crtc->dev;
9032 struct intel_unpin_work *work;
67e77c5a 9033
5e2d7afc 9034 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
9035 work = intel_crtc->unpin_work;
9036 intel_crtc->unpin_work = NULL;
5e2d7afc 9037 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
9038
9039 if (work) {
9040 cancel_work_sync(&work->work);
9041 kfree(work);
9042 }
79e53945 9043
f5de6e07 9044 intel_crtc_set_state(intel_crtc, NULL);
79e53945 9045 drm_crtc_cleanup(crtc);
67e77c5a 9046
79e53945
JB
9047 kfree(intel_crtc);
9048}
9049
6b95a207
KH
9050static void intel_unpin_work_fn(struct work_struct *__work)
9051{
9052 struct intel_unpin_work *work =
9053 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9054 struct drm_device *dev = work->crtc->dev;
f99d7069 9055 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9056
b4a98e57 9057 mutex_lock(&dev->struct_mutex);
1690e1eb 9058 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9059 drm_gem_object_unreference(&work->pending_flip_obj->base);
9060 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9061
7ff0ebcc 9062 intel_fbc_update(dev);
f06cc1b9
JH
9063
9064 if (work->flip_queued_req)
146d84f0 9065 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
9066 mutex_unlock(&dev->struct_mutex);
9067
f99d7069
DV
9068 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9069
b4a98e57
CW
9070 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9071 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9072
6b95a207
KH
9073 kfree(work);
9074}
9075
1afe3e9d 9076static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9077 struct drm_crtc *crtc)
6b95a207 9078{
6b95a207
KH
9079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9080 struct intel_unpin_work *work;
6b95a207
KH
9081 unsigned long flags;
9082
9083 /* Ignore early vblank irqs */
9084 if (intel_crtc == NULL)
9085 return;
9086
f326038a
DV
9087 /*
9088 * This is called both by irq handlers and the reset code (to complete
9089 * lost pageflips) so needs the full irqsave spinlocks.
9090 */
6b95a207
KH
9091 spin_lock_irqsave(&dev->event_lock, flags);
9092 work = intel_crtc->unpin_work;
e7d841ca
CW
9093
9094 /* Ensure we don't miss a work->pending update ... */
9095 smp_rmb();
9096
9097 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9098 spin_unlock_irqrestore(&dev->event_lock, flags);
9099 return;
9100 }
9101
d6bbafa1 9102 page_flip_completed(intel_crtc);
0af7e4df 9103
6b95a207 9104 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9105}
9106
1afe3e9d
JB
9107void intel_finish_page_flip(struct drm_device *dev, int pipe)
9108{
fbee40df 9109 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9110 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9111
49b14a5c 9112 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9113}
9114
9115void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9116{
fbee40df 9117 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9118 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9119
49b14a5c 9120 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9121}
9122
75f7f3ec
VS
9123/* Is 'a' after or equal to 'b'? */
9124static bool g4x_flip_count_after_eq(u32 a, u32 b)
9125{
9126 return !((a - b) & 0x80000000);
9127}
9128
9129static bool page_flip_finished(struct intel_crtc *crtc)
9130{
9131 struct drm_device *dev = crtc->base.dev;
9132 struct drm_i915_private *dev_priv = dev->dev_private;
9133
bdfa7542
VS
9134 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9135 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9136 return true;
9137
75f7f3ec
VS
9138 /*
9139 * The relevant registers doen't exist on pre-ctg.
9140 * As the flip done interrupt doesn't trigger for mmio
9141 * flips on gmch platforms, a flip count check isn't
9142 * really needed there. But since ctg has the registers,
9143 * include it in the check anyway.
9144 */
9145 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9146 return true;
9147
9148 /*
9149 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9150 * used the same base address. In that case the mmio flip might
9151 * have completed, but the CS hasn't even executed the flip yet.
9152 *
9153 * A flip count check isn't enough as the CS might have updated
9154 * the base address just after start of vblank, but before we
9155 * managed to process the interrupt. This means we'd complete the
9156 * CS flip too soon.
9157 *
9158 * Combining both checks should get us a good enough result. It may
9159 * still happen that the CS flip has been executed, but has not
9160 * yet actually completed. But in case the base address is the same
9161 * anyway, we don't really care.
9162 */
9163 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9164 crtc->unpin_work->gtt_offset &&
9165 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9166 crtc->unpin_work->flip_count);
9167}
9168
6b95a207
KH
9169void intel_prepare_page_flip(struct drm_device *dev, int plane)
9170{
fbee40df 9171 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9172 struct intel_crtc *intel_crtc =
9173 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9174 unsigned long flags;
9175
f326038a
DV
9176
9177 /*
9178 * This is called both by irq handlers and the reset code (to complete
9179 * lost pageflips) so needs the full irqsave spinlocks.
9180 *
9181 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
9182 * generate a page-flip completion irq, i.e. every modeset
9183 * is also accompanied by a spurious intel_prepare_page_flip().
9184 */
6b95a207 9185 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9186 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9187 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9188 spin_unlock_irqrestore(&dev->event_lock, flags);
9189}
9190
eba905b2 9191static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9192{
9193 /* Ensure that the work item is consistent when activating it ... */
9194 smp_wmb();
9195 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9196 /* and that it is marked active as soon as the irq could fire. */
9197 smp_wmb();
9198}
9199
8c9f3aaf
JB
9200static int intel_gen2_queue_flip(struct drm_device *dev,
9201 struct drm_crtc *crtc,
9202 struct drm_framebuffer *fb,
ed8d1975 9203 struct drm_i915_gem_object *obj,
a4872ba6 9204 struct intel_engine_cs *ring,
ed8d1975 9205 uint32_t flags)
8c9f3aaf 9206{
8c9f3aaf 9207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9208 u32 flip_mask;
9209 int ret;
9210
6d90c952 9211 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9212 if (ret)
4fa62c89 9213 return ret;
8c9f3aaf
JB
9214
9215 /* Can't queue multiple flips, so wait for the previous
9216 * one to finish before executing the next.
9217 */
9218 if (intel_crtc->plane)
9219 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9220 else
9221 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9222 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9223 intel_ring_emit(ring, MI_NOOP);
9224 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9225 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9226 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9227 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9228 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9229
9230 intel_mark_page_flip_active(intel_crtc);
09246732 9231 __intel_ring_advance(ring);
83d4092b 9232 return 0;
8c9f3aaf
JB
9233}
9234
9235static int intel_gen3_queue_flip(struct drm_device *dev,
9236 struct drm_crtc *crtc,
9237 struct drm_framebuffer *fb,
ed8d1975 9238 struct drm_i915_gem_object *obj,
a4872ba6 9239 struct intel_engine_cs *ring,
ed8d1975 9240 uint32_t flags)
8c9f3aaf 9241{
8c9f3aaf 9242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9243 u32 flip_mask;
9244 int ret;
9245
6d90c952 9246 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9247 if (ret)
4fa62c89 9248 return ret;
8c9f3aaf
JB
9249
9250 if (intel_crtc->plane)
9251 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9252 else
9253 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9254 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9255 intel_ring_emit(ring, MI_NOOP);
9256 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9257 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9258 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9259 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9260 intel_ring_emit(ring, MI_NOOP);
9261
e7d841ca 9262 intel_mark_page_flip_active(intel_crtc);
09246732 9263 __intel_ring_advance(ring);
83d4092b 9264 return 0;
8c9f3aaf
JB
9265}
9266
9267static int intel_gen4_queue_flip(struct drm_device *dev,
9268 struct drm_crtc *crtc,
9269 struct drm_framebuffer *fb,
ed8d1975 9270 struct drm_i915_gem_object *obj,
a4872ba6 9271 struct intel_engine_cs *ring,
ed8d1975 9272 uint32_t flags)
8c9f3aaf
JB
9273{
9274 struct drm_i915_private *dev_priv = dev->dev_private;
9275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9276 uint32_t pf, pipesrc;
9277 int ret;
9278
6d90c952 9279 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9280 if (ret)
4fa62c89 9281 return ret;
8c9f3aaf
JB
9282
9283 /* i965+ uses the linear or tiled offsets from the
9284 * Display Registers (which do not change across a page-flip)
9285 * so we need only reprogram the base address.
9286 */
6d90c952
DV
9287 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9288 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9289 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9290 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9291 obj->tiling_mode);
8c9f3aaf
JB
9292
9293 /* XXX Enabling the panel-fitter across page-flip is so far
9294 * untested on non-native modes, so ignore it for now.
9295 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9296 */
9297 pf = 0;
9298 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9299 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9300
9301 intel_mark_page_flip_active(intel_crtc);
09246732 9302 __intel_ring_advance(ring);
83d4092b 9303 return 0;
8c9f3aaf
JB
9304}
9305
9306static int intel_gen6_queue_flip(struct drm_device *dev,
9307 struct drm_crtc *crtc,
9308 struct drm_framebuffer *fb,
ed8d1975 9309 struct drm_i915_gem_object *obj,
a4872ba6 9310 struct intel_engine_cs *ring,
ed8d1975 9311 uint32_t flags)
8c9f3aaf
JB
9312{
9313 struct drm_i915_private *dev_priv = dev->dev_private;
9314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9315 uint32_t pf, pipesrc;
9316 int ret;
9317
6d90c952 9318 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9319 if (ret)
4fa62c89 9320 return ret;
8c9f3aaf 9321
6d90c952
DV
9322 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9323 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9324 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9325 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9326
dc257cf1
DV
9327 /* Contrary to the suggestions in the documentation,
9328 * "Enable Panel Fitter" does not seem to be required when page
9329 * flipping with a non-native mode, and worse causes a normal
9330 * modeset to fail.
9331 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9332 */
9333 pf = 0;
8c9f3aaf 9334 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9335 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9336
9337 intel_mark_page_flip_active(intel_crtc);
09246732 9338 __intel_ring_advance(ring);
83d4092b 9339 return 0;
8c9f3aaf
JB
9340}
9341
7c9017e5
JB
9342static int intel_gen7_queue_flip(struct drm_device *dev,
9343 struct drm_crtc *crtc,
9344 struct drm_framebuffer *fb,
ed8d1975 9345 struct drm_i915_gem_object *obj,
a4872ba6 9346 struct intel_engine_cs *ring,
ed8d1975 9347 uint32_t flags)
7c9017e5 9348{
7c9017e5 9349 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9350 uint32_t plane_bit = 0;
ffe74d75
CW
9351 int len, ret;
9352
eba905b2 9353 switch (intel_crtc->plane) {
cb05d8de
DV
9354 case PLANE_A:
9355 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9356 break;
9357 case PLANE_B:
9358 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9359 break;
9360 case PLANE_C:
9361 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9362 break;
9363 default:
9364 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9365 return -ENODEV;
cb05d8de
DV
9366 }
9367
ffe74d75 9368 len = 4;
f476828a 9369 if (ring->id == RCS) {
ffe74d75 9370 len += 6;
f476828a
DL
9371 /*
9372 * On Gen 8, SRM is now taking an extra dword to accommodate
9373 * 48bits addresses, and we need a NOOP for the batch size to
9374 * stay even.
9375 */
9376 if (IS_GEN8(dev))
9377 len += 2;
9378 }
ffe74d75 9379
f66fab8e
VS
9380 /*
9381 * BSpec MI_DISPLAY_FLIP for IVB:
9382 * "The full packet must be contained within the same cache line."
9383 *
9384 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9385 * cacheline, if we ever start emitting more commands before
9386 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9387 * then do the cacheline alignment, and finally emit the
9388 * MI_DISPLAY_FLIP.
9389 */
9390 ret = intel_ring_cacheline_align(ring);
9391 if (ret)
4fa62c89 9392 return ret;
f66fab8e 9393
ffe74d75 9394 ret = intel_ring_begin(ring, len);
7c9017e5 9395 if (ret)
4fa62c89 9396 return ret;
7c9017e5 9397
ffe74d75
CW
9398 /* Unmask the flip-done completion message. Note that the bspec says that
9399 * we should do this for both the BCS and RCS, and that we must not unmask
9400 * more than one flip event at any time (or ensure that one flip message
9401 * can be sent by waiting for flip-done prior to queueing new flips).
9402 * Experimentation says that BCS works despite DERRMR masking all
9403 * flip-done completion events and that unmasking all planes at once
9404 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9405 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9406 */
9407 if (ring->id == RCS) {
9408 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9409 intel_ring_emit(ring, DERRMR);
9410 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9411 DERRMR_PIPEB_PRI_FLIP_DONE |
9412 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9413 if (IS_GEN8(dev))
9414 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9415 MI_SRM_LRM_GLOBAL_GTT);
9416 else
9417 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9418 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9419 intel_ring_emit(ring, DERRMR);
9420 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9421 if (IS_GEN8(dev)) {
9422 intel_ring_emit(ring, 0);
9423 intel_ring_emit(ring, MI_NOOP);
9424 }
ffe74d75
CW
9425 }
9426
cb05d8de 9427 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9428 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9429 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9430 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9431
9432 intel_mark_page_flip_active(intel_crtc);
09246732 9433 __intel_ring_advance(ring);
83d4092b 9434 return 0;
7c9017e5
JB
9435}
9436
84c33a64
SG
9437static bool use_mmio_flip(struct intel_engine_cs *ring,
9438 struct drm_i915_gem_object *obj)
9439{
9440 /*
9441 * This is not being used for older platforms, because
9442 * non-availability of flip done interrupt forces us to use
9443 * CS flips. Older platforms derive flip done using some clever
9444 * tricks involving the flip_pending status bits and vblank irqs.
9445 * So using MMIO flips there would disrupt this mechanism.
9446 */
9447
8e09bf83
CW
9448 if (ring == NULL)
9449 return true;
9450
84c33a64
SG
9451 if (INTEL_INFO(ring->dev)->gen < 5)
9452 return false;
9453
9454 if (i915.use_mmio_flip < 0)
9455 return false;
9456 else if (i915.use_mmio_flip > 0)
9457 return true;
14bf993e
OM
9458 else if (i915.enable_execlists)
9459 return true;
84c33a64 9460 else
41c52415 9461 return ring != i915_gem_request_get_ring(obj->last_read_req);
84c33a64
SG
9462}
9463
ff944564
DL
9464static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9465{
9466 struct drm_device *dev = intel_crtc->base.dev;
9467 struct drm_i915_private *dev_priv = dev->dev_private;
9468 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9469 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9470 struct drm_i915_gem_object *obj = intel_fb->obj;
9471 const enum pipe pipe = intel_crtc->pipe;
9472 u32 ctl, stride;
9473
9474 ctl = I915_READ(PLANE_CTL(pipe, 0));
9475 ctl &= ~PLANE_CTL_TILED_MASK;
9476 if (obj->tiling_mode == I915_TILING_X)
9477 ctl |= PLANE_CTL_TILED_X;
9478
9479 /*
9480 * The stride is either expressed as a multiple of 64 bytes chunks for
9481 * linear buffers or in number of tiles for tiled buffers.
9482 */
9483 stride = fb->pitches[0] >> 6;
9484 if (obj->tiling_mode == I915_TILING_X)
9485 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9486
9487 /*
9488 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9489 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9490 */
9491 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9492 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9493
9494 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9495 POSTING_READ(PLANE_SURF(pipe, 0));
9496}
9497
9498static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
9499{
9500 struct drm_device *dev = intel_crtc->base.dev;
9501 struct drm_i915_private *dev_priv = dev->dev_private;
9502 struct intel_framebuffer *intel_fb =
9503 to_intel_framebuffer(intel_crtc->base.primary->fb);
9504 struct drm_i915_gem_object *obj = intel_fb->obj;
9505 u32 dspcntr;
9506 u32 reg;
9507
84c33a64
SG
9508 reg = DSPCNTR(intel_crtc->plane);
9509 dspcntr = I915_READ(reg);
9510
c5d97472
DL
9511 if (obj->tiling_mode != I915_TILING_NONE)
9512 dspcntr |= DISPPLANE_TILED;
9513 else
9514 dspcntr &= ~DISPPLANE_TILED;
9515
84c33a64
SG
9516 I915_WRITE(reg, dspcntr);
9517
9518 I915_WRITE(DSPSURF(intel_crtc->plane),
9519 intel_crtc->unpin_work->gtt_offset);
9520 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 9521
ff944564
DL
9522}
9523
9524/*
9525 * XXX: This is the temporary way to update the plane registers until we get
9526 * around to using the usual plane update functions for MMIO flips
9527 */
9528static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9529{
9530 struct drm_device *dev = intel_crtc->base.dev;
9531 bool atomic_update;
9532 u32 start_vbl_count;
9533
9534 intel_mark_page_flip_active(intel_crtc);
9535
9536 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9537
9538 if (INTEL_INFO(dev)->gen >= 9)
9539 skl_do_mmio_flip(intel_crtc);
9540 else
9541 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9542 ilk_do_mmio_flip(intel_crtc);
9543
9362c7c5
ACO
9544 if (atomic_update)
9545 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
9546}
9547
9362c7c5 9548static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 9549{
cc8c4cc2 9550 struct intel_crtc *crtc =
9362c7c5 9551 container_of(work, struct intel_crtc, mmio_flip.work);
cc8c4cc2 9552 struct intel_mmio_flip *mmio_flip;
84c33a64 9553
cc8c4cc2
JH
9554 mmio_flip = &crtc->mmio_flip;
9555 if (mmio_flip->req)
9c654818
JH
9556 WARN_ON(__i915_wait_request(mmio_flip->req,
9557 crtc->reset_counter,
9558 false, NULL, NULL) != 0);
84c33a64 9559
cc8c4cc2
JH
9560 intel_do_mmio_flip(crtc);
9561 if (mmio_flip->req) {
9562 mutex_lock(&crtc->base.dev->struct_mutex);
146d84f0 9563 i915_gem_request_assign(&mmio_flip->req, NULL);
cc8c4cc2
JH
9564 mutex_unlock(&crtc->base.dev->struct_mutex);
9565 }
84c33a64
SG
9566}
9567
9568static int intel_queue_mmio_flip(struct drm_device *dev,
9569 struct drm_crtc *crtc,
9570 struct drm_framebuffer *fb,
9571 struct drm_i915_gem_object *obj,
9572 struct intel_engine_cs *ring,
9573 uint32_t flags)
9574{
84c33a64 9575 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
84c33a64 9576
cc8c4cc2
JH
9577 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9578 obj->last_write_req);
536f5b5e
ACO
9579
9580 schedule_work(&intel_crtc->mmio_flip.work);
84c33a64 9581
84c33a64
SG
9582 return 0;
9583}
9584
830c81db
DL
9585static int intel_gen9_queue_flip(struct drm_device *dev,
9586 struct drm_crtc *crtc,
9587 struct drm_framebuffer *fb,
9588 struct drm_i915_gem_object *obj,
9589 struct intel_engine_cs *ring,
9590 uint32_t flags)
9591{
9592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9593 uint32_t plane = 0, stride;
9594 int ret;
9595
9596 switch(intel_crtc->pipe) {
9597 case PIPE_A:
9598 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_A;
9599 break;
9600 case PIPE_B:
9601 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_B;
9602 break;
9603 case PIPE_C:
9604 plane = MI_DISPLAY_FLIP_SKL_PLANE_1_C;
9605 break;
9606 default:
9607 WARN_ONCE(1, "unknown plane in flip command\n");
9608 return -ENODEV;
9609 }
9610
9611 switch (obj->tiling_mode) {
9612 case I915_TILING_NONE:
9613 stride = fb->pitches[0] >> 6;
9614 break;
9615 case I915_TILING_X:
9616 stride = fb->pitches[0] >> 9;
9617 break;
9618 default:
9619 WARN_ONCE(1, "unknown tiling in flip command\n");
9620 return -ENODEV;
9621 }
9622
9623 ret = intel_ring_begin(ring, 10);
9624 if (ret)
9625 return ret;
9626
9627 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9628 intel_ring_emit(ring, DERRMR);
9629 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9630 DERRMR_PIPEB_PRI_FLIP_DONE |
9631 DERRMR_PIPEC_PRI_FLIP_DONE));
9632 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9633 MI_SRM_LRM_GLOBAL_GTT);
9634 intel_ring_emit(ring, DERRMR);
9635 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9636 intel_ring_emit(ring, 0);
9637
9638 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane);
9639 intel_ring_emit(ring, stride << 6 | obj->tiling_mode);
9640 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9641
9642 intel_mark_page_flip_active(intel_crtc);
9643 __intel_ring_advance(ring);
9644
9645 return 0;
9646}
9647
8c9f3aaf
JB
9648static int intel_default_queue_flip(struct drm_device *dev,
9649 struct drm_crtc *crtc,
9650 struct drm_framebuffer *fb,
ed8d1975 9651 struct drm_i915_gem_object *obj,
a4872ba6 9652 struct intel_engine_cs *ring,
ed8d1975 9653 uint32_t flags)
8c9f3aaf
JB
9654{
9655 return -ENODEV;
9656}
9657
d6bbafa1
CW
9658static bool __intel_pageflip_stall_check(struct drm_device *dev,
9659 struct drm_crtc *crtc)
9660{
9661 struct drm_i915_private *dev_priv = dev->dev_private;
9662 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9663 struct intel_unpin_work *work = intel_crtc->unpin_work;
9664 u32 addr;
9665
9666 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9667 return true;
9668
9669 if (!work->enable_stall_check)
9670 return false;
9671
9672 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
9673 if (work->flip_queued_req &&
9674 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
9675 return false;
9676
9677 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9678 }
9679
9680 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9681 return false;
9682
9683 /* Potential stall - if we see that the flip has happened,
9684 * assume a missed interrupt. */
9685 if (INTEL_INFO(dev)->gen >= 4)
9686 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9687 else
9688 addr = I915_READ(DSPADDR(intel_crtc->plane));
9689
9690 /* There is a potential issue here with a false positive after a flip
9691 * to the same address. We could address this by checking for a
9692 * non-incrementing frame counter.
9693 */
9694 return addr == work->gtt_offset;
9695}
9696
9697void intel_check_page_flip(struct drm_device *dev, int pipe)
9698{
9699 struct drm_i915_private *dev_priv = dev->dev_private;
9700 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f326038a
DV
9702
9703 WARN_ON(!in_irq());
d6bbafa1
CW
9704
9705 if (crtc == NULL)
9706 return;
9707
f326038a 9708 spin_lock(&dev->event_lock);
d6bbafa1
CW
9709 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9710 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9711 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9712 page_flip_completed(intel_crtc);
9713 }
f326038a 9714 spin_unlock(&dev->event_lock);
d6bbafa1
CW
9715}
9716
6b95a207
KH
9717static int intel_crtc_page_flip(struct drm_crtc *crtc,
9718 struct drm_framebuffer *fb,
ed8d1975
KP
9719 struct drm_pending_vblank_event *event,
9720 uint32_t page_flip_flags)
6b95a207
KH
9721{
9722 struct drm_device *dev = crtc->dev;
9723 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9724 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9725 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9726 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 9727 struct drm_plane *primary = crtc->primary;
a071fa00 9728 enum pipe pipe = intel_crtc->pipe;
6b95a207 9729 struct intel_unpin_work *work;
a4872ba6 9730 struct intel_engine_cs *ring;
52e68630 9731 int ret;
6b95a207 9732
2ff8fde1
MR
9733 /*
9734 * drm_mode_page_flip_ioctl() should already catch this, but double
9735 * check to be safe. In the future we may enable pageflipping from
9736 * a disabled primary plane.
9737 */
9738 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9739 return -EBUSY;
9740
e6a595d2 9741 /* Can't change pixel format via MI display flips. */
f4510a27 9742 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9743 return -EINVAL;
9744
9745 /*
9746 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9747 * Note that pitch changes could also affect these register.
9748 */
9749 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9750 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9751 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9752 return -EINVAL;
9753
f900db47
CW
9754 if (i915_terminally_wedged(&dev_priv->gpu_error))
9755 goto out_hang;
9756
b14c5679 9757 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9758 if (work == NULL)
9759 return -ENOMEM;
9760
6b95a207 9761 work->event = event;
b4a98e57 9762 work->crtc = crtc;
2ff8fde1 9763 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9764 INIT_WORK(&work->work, intel_unpin_work_fn);
9765
87b6b101 9766 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9767 if (ret)
9768 goto free_work;
9769
6b95a207 9770 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 9771 spin_lock_irq(&dev->event_lock);
6b95a207 9772 if (intel_crtc->unpin_work) {
d6bbafa1
CW
9773 /* Before declaring the flip queue wedged, check if
9774 * the hardware completed the operation behind our backs.
9775 */
9776 if (__intel_pageflip_stall_check(dev, crtc)) {
9777 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9778 page_flip_completed(intel_crtc);
9779 } else {
9780 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 9781 spin_unlock_irq(&dev->event_lock);
468f0b44 9782
d6bbafa1
CW
9783 drm_crtc_vblank_put(crtc);
9784 kfree(work);
9785 return -EBUSY;
9786 }
6b95a207
KH
9787 }
9788 intel_crtc->unpin_work = work;
5e2d7afc 9789 spin_unlock_irq(&dev->event_lock);
6b95a207 9790
b4a98e57
CW
9791 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9792 flush_workqueue(dev_priv->wq);
9793
79158103
CW
9794 ret = i915_mutex_lock_interruptible(dev);
9795 if (ret)
9796 goto cleanup;
6b95a207 9797
75dfca80 9798 /* Reference the objects for the scheduled work. */
05394f39
CW
9799 drm_gem_object_reference(&work->old_fb_obj->base);
9800 drm_gem_object_reference(&obj->base);
6b95a207 9801
f4510a27 9802 crtc->primary->fb = fb;
96b099fd 9803
1ed1f968
MR
9804 /* Keep state structure in sync */
9805 if (crtc->primary->state->fb)
9806 drm_framebuffer_unreference(crtc->primary->state->fb);
9807 crtc->primary->state->fb = fb;
9808 if (crtc->primary->state->fb)
9809 drm_framebuffer_reference(crtc->primary->state->fb);
9810
e1f99ce6 9811 work->pending_flip_obj = obj;
e1f99ce6 9812
b4a98e57 9813 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9814 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9815
75f7f3ec 9816 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9817 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9818
4fa62c89
VS
9819 if (IS_VALLEYVIEW(dev)) {
9820 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9821 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9822 /* vlv: DISPLAY_FLIP fails to change tiling */
9823 ring = NULL;
48bf5b2d 9824 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 9825 ring = &dev_priv->ring[BCS];
4fa62c89 9826 } else if (INTEL_INFO(dev)->gen >= 7) {
41c52415 9827 ring = i915_gem_request_get_ring(obj->last_read_req);
4fa62c89
VS
9828 if (ring == NULL || ring->id != RCS)
9829 ring = &dev_priv->ring[BCS];
9830 } else {
9831 ring = &dev_priv->ring[RCS];
9832 }
9833
850c4cdc 9834 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
8c9f3aaf
JB
9835 if (ret)
9836 goto cleanup_pending;
6b95a207 9837
4fa62c89
VS
9838 work->gtt_offset =
9839 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9840
d6bbafa1 9841 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
9842 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9843 page_flip_flags);
d6bbafa1
CW
9844 if (ret)
9845 goto cleanup_unpin;
9846
f06cc1b9
JH
9847 i915_gem_request_assign(&work->flip_queued_req,
9848 obj->last_write_req);
d6bbafa1 9849 } else {
84c33a64 9850 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
9851 page_flip_flags);
9852 if (ret)
9853 goto cleanup_unpin;
9854
f06cc1b9
JH
9855 i915_gem_request_assign(&work->flip_queued_req,
9856 intel_ring_get_request(ring));
d6bbafa1
CW
9857 }
9858
9859 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9860 work->enable_stall_check = true;
4fa62c89 9861
a071fa00
DV
9862 i915_gem_track_fb(work->old_fb_obj, obj,
9863 INTEL_FRONTBUFFER_PRIMARY(pipe));
9864
7ff0ebcc 9865 intel_fbc_disable(dev);
f99d7069 9866 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9867 mutex_unlock(&dev->struct_mutex);
9868
e5510fac
JB
9869 trace_i915_flip_request(intel_crtc->plane, obj);
9870
6b95a207 9871 return 0;
96b099fd 9872
4fa62c89
VS
9873cleanup_unpin:
9874 intel_unpin_fb_obj(obj);
8c9f3aaf 9875cleanup_pending:
b4a98e57 9876 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9877 crtc->primary->fb = old_fb;
05394f39
CW
9878 drm_gem_object_unreference(&work->old_fb_obj->base);
9879 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9880 mutex_unlock(&dev->struct_mutex);
9881
79158103 9882cleanup:
5e2d7afc 9883 spin_lock_irq(&dev->event_lock);
96b099fd 9884 intel_crtc->unpin_work = NULL;
5e2d7afc 9885 spin_unlock_irq(&dev->event_lock);
96b099fd 9886
87b6b101 9887 drm_crtc_vblank_put(crtc);
7317c75e 9888free_work:
96b099fd
CW
9889 kfree(work);
9890
f900db47
CW
9891 if (ret == -EIO) {
9892out_hang:
53a366b9 9893 ret = intel_plane_restore(primary);
f0d3dad3 9894 if (ret == 0 && event) {
5e2d7afc 9895 spin_lock_irq(&dev->event_lock);
a071fa00 9896 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 9897 spin_unlock_irq(&dev->event_lock);
f0d3dad3 9898 }
f900db47 9899 }
96b099fd 9900 return ret;
6b95a207
KH
9901}
9902
f6e5b160 9903static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9904 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9905 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
9906 .atomic_begin = intel_begin_crtc_commit,
9907 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
9908};
9909
9a935856
DV
9910/**
9911 * intel_modeset_update_staged_output_state
9912 *
9913 * Updates the staged output configuration state, e.g. after we've read out the
9914 * current hw state.
9915 */
9916static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9917{
7668851f 9918 struct intel_crtc *crtc;
9a935856
DV
9919 struct intel_encoder *encoder;
9920 struct intel_connector *connector;
f6e5b160 9921
9a935856
DV
9922 list_for_each_entry(connector, &dev->mode_config.connector_list,
9923 base.head) {
9924 connector->new_encoder =
9925 to_intel_encoder(connector->base.encoder);
9926 }
f6e5b160 9927
b2784e15 9928 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9929 encoder->new_crtc =
9930 to_intel_crtc(encoder->base.crtc);
9931 }
7668851f 9932
d3fcc808 9933 for_each_intel_crtc(dev, crtc) {
7668851f 9934 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9935
9936 if (crtc->new_enabled)
6e3c9717 9937 crtc->new_config = crtc->config;
7bd0a8e7
VS
9938 else
9939 crtc->new_config = NULL;
7668851f 9940 }
f6e5b160
CW
9941}
9942
9a935856
DV
9943/**
9944 * intel_modeset_commit_output_state
9945 *
9946 * This function copies the stage display pipe configuration to the real one.
9947 */
9948static void intel_modeset_commit_output_state(struct drm_device *dev)
9949{
7668851f 9950 struct intel_crtc *crtc;
9a935856
DV
9951 struct intel_encoder *encoder;
9952 struct intel_connector *connector;
f6e5b160 9953
9a935856
DV
9954 list_for_each_entry(connector, &dev->mode_config.connector_list,
9955 base.head) {
9956 connector->base.encoder = &connector->new_encoder->base;
9957 }
f6e5b160 9958
b2784e15 9959 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9960 encoder->base.crtc = &encoder->new_crtc->base;
9961 }
7668851f 9962
d3fcc808 9963 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9964 crtc->base.enabled = crtc->new_enabled;
9965 }
9a935856
DV
9966}
9967
050f7aeb 9968static void
eba905b2 9969connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 9970 struct intel_crtc_state *pipe_config)
050f7aeb
DV
9971{
9972 int bpp = pipe_config->pipe_bpp;
9973
9974 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9975 connector->base.base.id,
c23cc417 9976 connector->base.name);
050f7aeb
DV
9977
9978 /* Don't use an invalid EDID bpc value */
9979 if (connector->base.display_info.bpc &&
9980 connector->base.display_info.bpc * 3 < bpp) {
9981 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9982 bpp, connector->base.display_info.bpc*3);
9983 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9984 }
9985
9986 /* Clamp bpp to 8 on screens without EDID 1.4 */
9987 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9988 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9989 bpp);
9990 pipe_config->pipe_bpp = 24;
9991 }
9992}
9993
4e53c2e0 9994static int
050f7aeb
DV
9995compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9996 struct drm_framebuffer *fb,
5cec258b 9997 struct intel_crtc_state *pipe_config)
4e53c2e0 9998{
050f7aeb
DV
9999 struct drm_device *dev = crtc->base.dev;
10000 struct intel_connector *connector;
4e53c2e0
DV
10001 int bpp;
10002
d42264b1
DV
10003 switch (fb->pixel_format) {
10004 case DRM_FORMAT_C8:
4e53c2e0
DV
10005 bpp = 8*3; /* since we go through a colormap */
10006 break;
d42264b1
DV
10007 case DRM_FORMAT_XRGB1555:
10008 case DRM_FORMAT_ARGB1555:
10009 /* checked in intel_framebuffer_init already */
10010 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10011 return -EINVAL;
10012 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10013 bpp = 6*3; /* min is 18bpp */
10014 break;
d42264b1
DV
10015 case DRM_FORMAT_XBGR8888:
10016 case DRM_FORMAT_ABGR8888:
10017 /* checked in intel_framebuffer_init already */
10018 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10019 return -EINVAL;
10020 case DRM_FORMAT_XRGB8888:
10021 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10022 bpp = 8*3;
10023 break;
d42264b1
DV
10024 case DRM_FORMAT_XRGB2101010:
10025 case DRM_FORMAT_ARGB2101010:
10026 case DRM_FORMAT_XBGR2101010:
10027 case DRM_FORMAT_ABGR2101010:
10028 /* checked in intel_framebuffer_init already */
10029 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10030 return -EINVAL;
4e53c2e0
DV
10031 bpp = 10*3;
10032 break;
baba133a 10033 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10034 default:
10035 DRM_DEBUG_KMS("unsupported depth\n");
10036 return -EINVAL;
10037 }
10038
4e53c2e0
DV
10039 pipe_config->pipe_bpp = bpp;
10040
10041 /* Clamp display bpp to EDID value */
10042 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10043 base.head) {
1b829e05
DV
10044 if (!connector->new_encoder ||
10045 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10046 continue;
10047
050f7aeb 10048 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10049 }
10050
10051 return bpp;
10052}
10053
644db711
DV
10054static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10055{
10056 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10057 "type: 0x%x flags: 0x%x\n",
1342830c 10058 mode->crtc_clock,
644db711
DV
10059 mode->crtc_hdisplay, mode->crtc_hsync_start,
10060 mode->crtc_hsync_end, mode->crtc_htotal,
10061 mode->crtc_vdisplay, mode->crtc_vsync_start,
10062 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10063}
10064
c0b03411 10065static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 10066 struct intel_crtc_state *pipe_config,
c0b03411
DV
10067 const char *context)
10068{
10069 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10070 context, pipe_name(crtc->pipe));
10071
10072 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10073 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10074 pipe_config->pipe_bpp, pipe_config->dither);
10075 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10076 pipe_config->has_pch_encoder,
10077 pipe_config->fdi_lanes,
10078 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10079 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10080 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10081 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10082 pipe_config->has_dp_encoder,
10083 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10084 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10085 pipe_config->dp_m_n.tu);
b95af8be
VK
10086
10087 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10088 pipe_config->has_dp_encoder,
10089 pipe_config->dp_m2_n2.gmch_m,
10090 pipe_config->dp_m2_n2.gmch_n,
10091 pipe_config->dp_m2_n2.link_m,
10092 pipe_config->dp_m2_n2.link_n,
10093 pipe_config->dp_m2_n2.tu);
10094
55072d19
DV
10095 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10096 pipe_config->has_audio,
10097 pipe_config->has_infoframe);
10098
c0b03411 10099 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 10100 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 10101 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
10102 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10103 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 10104 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10105 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10106 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10107 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10108 pipe_config->gmch_pfit.control,
10109 pipe_config->gmch_pfit.pgm_ratios,
10110 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10111 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10112 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10113 pipe_config->pch_pfit.size,
10114 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10115 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10116 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10117}
10118
bc079e8b
VS
10119static bool encoders_cloneable(const struct intel_encoder *a,
10120 const struct intel_encoder *b)
accfc0c5 10121{
bc079e8b
VS
10122 /* masks could be asymmetric, so check both ways */
10123 return a == b || (a->cloneable & (1 << b->type) &&
10124 b->cloneable & (1 << a->type));
10125}
10126
10127static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10128 struct intel_encoder *encoder)
10129{
10130 struct drm_device *dev = crtc->base.dev;
10131 struct intel_encoder *source_encoder;
10132
b2784e15 10133 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10134 if (source_encoder->new_crtc != crtc)
10135 continue;
10136
10137 if (!encoders_cloneable(encoder, source_encoder))
10138 return false;
10139 }
10140
10141 return true;
10142}
10143
10144static bool check_encoder_cloning(struct intel_crtc *crtc)
10145{
10146 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10147 struct intel_encoder *encoder;
10148
b2784e15 10149 for_each_intel_encoder(dev, encoder) {
bc079e8b 10150 if (encoder->new_crtc != crtc)
accfc0c5
DV
10151 continue;
10152
bc079e8b
VS
10153 if (!check_single_encoder_cloning(crtc, encoder))
10154 return false;
accfc0c5
DV
10155 }
10156
bc079e8b 10157 return true;
accfc0c5
DV
10158}
10159
00f0b378
VS
10160static bool check_digital_port_conflicts(struct drm_device *dev)
10161{
10162 struct intel_connector *connector;
10163 unsigned int used_ports = 0;
10164
10165 /*
10166 * Walk the connector list instead of the encoder
10167 * list to detect the problem on ddi platforms
10168 * where there's just one encoder per digital port.
10169 */
10170 list_for_each_entry(connector,
10171 &dev->mode_config.connector_list, base.head) {
10172 struct intel_encoder *encoder = connector->new_encoder;
10173
10174 if (!encoder)
10175 continue;
10176
10177 WARN_ON(!encoder->new_crtc);
10178
10179 switch (encoder->type) {
10180 unsigned int port_mask;
10181 case INTEL_OUTPUT_UNKNOWN:
10182 if (WARN_ON(!HAS_DDI(dev)))
10183 break;
10184 case INTEL_OUTPUT_DISPLAYPORT:
10185 case INTEL_OUTPUT_HDMI:
10186 case INTEL_OUTPUT_EDP:
10187 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10188
10189 /* the same port mustn't appear more than once */
10190 if (used_ports & port_mask)
10191 return false;
10192
10193 used_ports |= port_mask;
10194 default:
10195 break;
10196 }
10197 }
10198
10199 return true;
10200}
10201
5cec258b 10202static struct intel_crtc_state *
b8cecdf5 10203intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10204 struct drm_framebuffer *fb,
b8cecdf5 10205 struct drm_display_mode *mode)
ee7b9f93 10206{
7758a113 10207 struct drm_device *dev = crtc->dev;
7758a113 10208 struct intel_encoder *encoder;
5cec258b 10209 struct intel_crtc_state *pipe_config;
e29c22c0
DV
10210 int plane_bpp, ret = -EINVAL;
10211 bool retry = true;
ee7b9f93 10212
bc079e8b 10213 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10214 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10215 return ERR_PTR(-EINVAL);
10216 }
10217
00f0b378
VS
10218 if (!check_digital_port_conflicts(dev)) {
10219 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10220 return ERR_PTR(-EINVAL);
10221 }
10222
b8cecdf5
DV
10223 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10224 if (!pipe_config)
7758a113
DV
10225 return ERR_PTR(-ENOMEM);
10226
2d112de7
ACO
10227 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10228 drm_mode_copy(&pipe_config->base.mode, mode);
37327abd 10229
e143a21c
DV
10230 pipe_config->cpu_transcoder =
10231 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10232 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10233
2960bc9c
ID
10234 /*
10235 * Sanitize sync polarity flags based on requested ones. If neither
10236 * positive or negative polarity is requested, treat this as meaning
10237 * negative polarity.
10238 */
2d112de7 10239 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10240 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 10241 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 10242
2d112de7 10243 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 10244 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 10245 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 10246
050f7aeb
DV
10247 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10248 * plane pixel format and any sink constraints into account. Returns the
10249 * source plane bpp so that dithering can be selected on mismatches
10250 * after encoders and crtc also have had their say. */
10251 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10252 fb, pipe_config);
4e53c2e0
DV
10253 if (plane_bpp < 0)
10254 goto fail;
10255
e41a56be
VS
10256 /*
10257 * Determine the real pipe dimensions. Note that stereo modes can
10258 * increase the actual pipe size due to the frame doubling and
10259 * insertion of additional space for blanks between the frame. This
10260 * is stored in the crtc timings. We use the requested mode to do this
10261 * computation to clearly distinguish it from the adjusted mode, which
10262 * can be changed by the connectors in the below retry loop.
10263 */
2d112de7 10264 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
10265 &pipe_config->pipe_src_w,
10266 &pipe_config->pipe_src_h);
e41a56be 10267
e29c22c0 10268encoder_retry:
ef1b460d 10269 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10270 pipe_config->port_clock = 0;
ef1b460d 10271 pipe_config->pixel_multiplier = 1;
ff9a6750 10272
135c81b8 10273 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
10274 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10275 CRTC_STEREO_DOUBLE);
135c81b8 10276
7758a113
DV
10277 /* Pass our mode to the connectors and the CRTC to give them a chance to
10278 * adjust it according to limitations or connector properties, and also
10279 * a chance to reject the mode entirely.
47f1c6c9 10280 */
b2784e15 10281 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10282
7758a113
DV
10283 if (&encoder->new_crtc->base != crtc)
10284 continue;
7ae89233 10285
efea6e8e
DV
10286 if (!(encoder->compute_config(encoder, pipe_config))) {
10287 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10288 goto fail;
10289 }
ee7b9f93 10290 }
47f1c6c9 10291
ff9a6750
DV
10292 /* Set default port clock if not overwritten by the encoder. Needs to be
10293 * done afterwards in case the encoder adjusts the mode. */
10294 if (!pipe_config->port_clock)
2d112de7 10295 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 10296 * pipe_config->pixel_multiplier;
ff9a6750 10297
a43f6e0f 10298 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10299 if (ret < 0) {
7758a113
DV
10300 DRM_DEBUG_KMS("CRTC fixup failed\n");
10301 goto fail;
ee7b9f93 10302 }
e29c22c0
DV
10303
10304 if (ret == RETRY) {
10305 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10306 ret = -EINVAL;
10307 goto fail;
10308 }
10309
10310 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10311 retry = false;
10312 goto encoder_retry;
10313 }
10314
4e53c2e0
DV
10315 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10316 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10317 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10318
b8cecdf5 10319 return pipe_config;
7758a113 10320fail:
b8cecdf5 10321 kfree(pipe_config);
e29c22c0 10322 return ERR_PTR(ret);
ee7b9f93 10323}
47f1c6c9 10324
e2e1ed41
DV
10325/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10326 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10327static void
10328intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10329 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10330{
10331 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10332 struct drm_device *dev = crtc->dev;
10333 struct intel_encoder *encoder;
10334 struct intel_connector *connector;
10335 struct drm_crtc *tmp_crtc;
79e53945 10336
e2e1ed41 10337 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10338
e2e1ed41
DV
10339 /* Check which crtcs have changed outputs connected to them, these need
10340 * to be part of the prepare_pipes mask. We don't (yet) support global
10341 * modeset across multiple crtcs, so modeset_pipes will only have one
10342 * bit set at most. */
10343 list_for_each_entry(connector, &dev->mode_config.connector_list,
10344 base.head) {
10345 if (connector->base.encoder == &connector->new_encoder->base)
10346 continue;
79e53945 10347
e2e1ed41
DV
10348 if (connector->base.encoder) {
10349 tmp_crtc = connector->base.encoder->crtc;
10350
10351 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10352 }
10353
10354 if (connector->new_encoder)
10355 *prepare_pipes |=
10356 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10357 }
10358
b2784e15 10359 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10360 if (encoder->base.crtc == &encoder->new_crtc->base)
10361 continue;
10362
10363 if (encoder->base.crtc) {
10364 tmp_crtc = encoder->base.crtc;
10365
10366 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10367 }
10368
10369 if (encoder->new_crtc)
10370 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10371 }
10372
7668851f 10373 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10374 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10375 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10376 continue;
7e7d76c3 10377
7668851f 10378 if (!intel_crtc->new_enabled)
e2e1ed41 10379 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10380 else
10381 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10382 }
10383
e2e1ed41
DV
10384
10385 /* set_mode is also used to update properties on life display pipes. */
10386 intel_crtc = to_intel_crtc(crtc);
7668851f 10387 if (intel_crtc->new_enabled)
e2e1ed41
DV
10388 *prepare_pipes |= 1 << intel_crtc->pipe;
10389
b6c5164d
DV
10390 /*
10391 * For simplicity do a full modeset on any pipe where the output routing
10392 * changed. We could be more clever, but that would require us to be
10393 * more careful with calling the relevant encoder->mode_set functions.
10394 */
e2e1ed41
DV
10395 if (*prepare_pipes)
10396 *modeset_pipes = *prepare_pipes;
10397
10398 /* ... and mask these out. */
10399 *modeset_pipes &= ~(*disable_pipes);
10400 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10401
10402 /*
10403 * HACK: We don't (yet) fully support global modesets. intel_set_config
10404 * obies this rule, but the modeset restore mode of
10405 * intel_modeset_setup_hw_state does not.
10406 */
10407 *modeset_pipes &= 1 << intel_crtc->pipe;
10408 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10409
10410 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10411 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10412}
79e53945 10413
ea9d758d 10414static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10415{
ea9d758d 10416 struct drm_encoder *encoder;
f6e5b160 10417 struct drm_device *dev = crtc->dev;
f6e5b160 10418
ea9d758d
DV
10419 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10420 if (encoder->crtc == crtc)
10421 return true;
10422
10423 return false;
10424}
10425
10426static void
10427intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10428{
ba41c0de 10429 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d
DV
10430 struct intel_encoder *intel_encoder;
10431 struct intel_crtc *intel_crtc;
10432 struct drm_connector *connector;
10433
ba41c0de
DV
10434 intel_shared_dpll_commit(dev_priv);
10435
b2784e15 10436 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10437 if (!intel_encoder->base.crtc)
10438 continue;
10439
10440 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10441
10442 if (prepare_pipes & (1 << intel_crtc->pipe))
10443 intel_encoder->connectors_active = false;
10444 }
10445
10446 intel_modeset_commit_output_state(dev);
10447
7668851f 10448 /* Double check state. */
d3fcc808 10449 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10450 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7 10451 WARN_ON(intel_crtc->new_config &&
6e3c9717 10452 intel_crtc->new_config != intel_crtc->config);
7bd0a8e7 10453 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10454 }
10455
10456 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10457 if (!connector->encoder || !connector->encoder->crtc)
10458 continue;
10459
10460 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10461
10462 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10463 struct drm_property *dpms_property =
10464 dev->mode_config.dpms_property;
10465
ea9d758d 10466 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10467 drm_object_property_set_value(&connector->base,
68d34720
DV
10468 dpms_property,
10469 DRM_MODE_DPMS_ON);
ea9d758d
DV
10470
10471 intel_encoder = to_intel_encoder(connector->encoder);
10472 intel_encoder->connectors_active = true;
10473 }
10474 }
10475
10476}
10477
3bd26263 10478static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10479{
3bd26263 10480 int diff;
f1f644dc
JB
10481
10482 if (clock1 == clock2)
10483 return true;
10484
10485 if (!clock1 || !clock2)
10486 return false;
10487
10488 diff = abs(clock1 - clock2);
10489
10490 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10491 return true;
10492
10493 return false;
10494}
10495
25c5b266
DV
10496#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10497 list_for_each_entry((intel_crtc), \
10498 &(dev)->mode_config.crtc_list, \
10499 base.head) \
0973f18f 10500 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10501
0e8ffe1b 10502static bool
2fa2fe9a 10503intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
10504 struct intel_crtc_state *current_config,
10505 struct intel_crtc_state *pipe_config)
0e8ffe1b 10506{
66e985c0
DV
10507#define PIPE_CONF_CHECK_X(name) \
10508 if (current_config->name != pipe_config->name) { \
10509 DRM_ERROR("mismatch in " #name " " \
10510 "(expected 0x%08x, found 0x%08x)\n", \
10511 current_config->name, \
10512 pipe_config->name); \
10513 return false; \
10514 }
10515
08a24034
DV
10516#define PIPE_CONF_CHECK_I(name) \
10517 if (current_config->name != pipe_config->name) { \
10518 DRM_ERROR("mismatch in " #name " " \
10519 "(expected %i, found %i)\n", \
10520 current_config->name, \
10521 pipe_config->name); \
10522 return false; \
88adfff1
DV
10523 }
10524
b95af8be
VK
10525/* This is required for BDW+ where there is only one set of registers for
10526 * switching between high and low RR.
10527 * This macro can be used whenever a comparison has to be made between one
10528 * hw state and multiple sw state variables.
10529 */
10530#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10531 if ((current_config->name != pipe_config->name) && \
10532 (current_config->alt_name != pipe_config->name)) { \
10533 DRM_ERROR("mismatch in " #name " " \
10534 "(expected %i or %i, found %i)\n", \
10535 current_config->name, \
10536 current_config->alt_name, \
10537 pipe_config->name); \
10538 return false; \
10539 }
10540
1bd1bd80
DV
10541#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10542 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10543 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10544 "(expected %i, found %i)\n", \
10545 current_config->name & (mask), \
10546 pipe_config->name & (mask)); \
10547 return false; \
10548 }
10549
5e550656
VS
10550#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10551 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10552 DRM_ERROR("mismatch in " #name " " \
10553 "(expected %i, found %i)\n", \
10554 current_config->name, \
10555 pipe_config->name); \
10556 return false; \
10557 }
10558
bb760063
DV
10559#define PIPE_CONF_QUIRK(quirk) \
10560 ((current_config->quirks | pipe_config->quirks) & (quirk))
10561
eccb140b
DV
10562 PIPE_CONF_CHECK_I(cpu_transcoder);
10563
08a24034
DV
10564 PIPE_CONF_CHECK_I(has_pch_encoder);
10565 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10566 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10567 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10568 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10569 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10570 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10571
eb14cb74 10572 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10573
10574 if (INTEL_INFO(dev)->gen < 8) {
10575 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10576 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10577 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10578 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10579 PIPE_CONF_CHECK_I(dp_m_n.tu);
10580
10581 if (current_config->has_drrs) {
10582 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10583 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10584 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10585 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10586 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10587 }
10588 } else {
10589 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10590 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10591 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10592 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10593 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10594 }
eb14cb74 10595
2d112de7
ACO
10596 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10597 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10598 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10599 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10600 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10601 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 10602
2d112de7
ACO
10603 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10604 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10605 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10606 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10607 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10608 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 10609
c93f54cf 10610 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10611 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10612 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10613 IS_VALLEYVIEW(dev))
10614 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 10615 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 10616
9ed109a7
DV
10617 PIPE_CONF_CHECK_I(has_audio);
10618
2d112de7 10619 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
10620 DRM_MODE_FLAG_INTERLACE);
10621
bb760063 10622 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 10623 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10624 DRM_MODE_FLAG_PHSYNC);
2d112de7 10625 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10626 DRM_MODE_FLAG_NHSYNC);
2d112de7 10627 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 10628 DRM_MODE_FLAG_PVSYNC);
2d112de7 10629 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
10630 DRM_MODE_FLAG_NVSYNC);
10631 }
045ac3b5 10632
37327abd
VS
10633 PIPE_CONF_CHECK_I(pipe_src_w);
10634 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10635
9953599b
DV
10636 /*
10637 * FIXME: BIOS likes to set up a cloned config with lvds+external
10638 * screen. Since we don't yet re-compute the pipe config when moving
10639 * just the lvds port away to another pipe the sw tracking won't match.
10640 *
10641 * Proper atomic modesets with recomputed global state will fix this.
10642 * Until then just don't check gmch state for inherited modes.
10643 */
10644 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10645 PIPE_CONF_CHECK_I(gmch_pfit.control);
10646 /* pfit ratios are autocomputed by the hw on gen4+ */
10647 if (INTEL_INFO(dev)->gen < 4)
10648 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10649 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10650 }
10651
fd4daa9c
CW
10652 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10653 if (current_config->pch_pfit.enabled) {
10654 PIPE_CONF_CHECK_I(pch_pfit.pos);
10655 PIPE_CONF_CHECK_I(pch_pfit.size);
10656 }
2fa2fe9a 10657
e59150dc
JB
10658 /* BDW+ don't expose a synchronous way to read the state */
10659 if (IS_HASWELL(dev))
10660 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10661
282740f7
VS
10662 PIPE_CONF_CHECK_I(double_wide);
10663
26804afd
DV
10664 PIPE_CONF_CHECK_X(ddi_pll_sel);
10665
c0d43d62 10666 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10667 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10668 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10669 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10670 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10671 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
10672 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10673 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10674 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 10675
42571aef
VS
10676 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10677 PIPE_CONF_CHECK_I(pipe_bpp);
10678
2d112de7 10679 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 10680 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10681
66e985c0 10682#undef PIPE_CONF_CHECK_X
08a24034 10683#undef PIPE_CONF_CHECK_I
b95af8be 10684#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10685#undef PIPE_CONF_CHECK_FLAGS
5e550656 10686#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10687#undef PIPE_CONF_QUIRK
88adfff1 10688
0e8ffe1b
DV
10689 return true;
10690}
10691
08db6652
DL
10692static void check_wm_state(struct drm_device *dev)
10693{
10694 struct drm_i915_private *dev_priv = dev->dev_private;
10695 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10696 struct intel_crtc *intel_crtc;
10697 int plane;
10698
10699 if (INTEL_INFO(dev)->gen < 9)
10700 return;
10701
10702 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10703 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10704
10705 for_each_intel_crtc(dev, intel_crtc) {
10706 struct skl_ddb_entry *hw_entry, *sw_entry;
10707 const enum pipe pipe = intel_crtc->pipe;
10708
10709 if (!intel_crtc->active)
10710 continue;
10711
10712 /* planes */
10713 for_each_plane(pipe, plane) {
10714 hw_entry = &hw_ddb.plane[pipe][plane];
10715 sw_entry = &sw_ddb->plane[pipe][plane];
10716
10717 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10718 continue;
10719
10720 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10721 "(expected (%u,%u), found (%u,%u))\n",
10722 pipe_name(pipe), plane + 1,
10723 sw_entry->start, sw_entry->end,
10724 hw_entry->start, hw_entry->end);
10725 }
10726
10727 /* cursor */
10728 hw_entry = &hw_ddb.cursor[pipe];
10729 sw_entry = &sw_ddb->cursor[pipe];
10730
10731 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10732 continue;
10733
10734 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10735 "(expected (%u,%u), found (%u,%u))\n",
10736 pipe_name(pipe),
10737 sw_entry->start, sw_entry->end,
10738 hw_entry->start, hw_entry->end);
10739 }
10740}
10741
91d1b4bd
DV
10742static void
10743check_connector_state(struct drm_device *dev)
8af6cf88 10744{
8af6cf88
DV
10745 struct intel_connector *connector;
10746
10747 list_for_each_entry(connector, &dev->mode_config.connector_list,
10748 base.head) {
10749 /* This also checks the encoder/connector hw state with the
10750 * ->get_hw_state callbacks. */
10751 intel_connector_check_state(connector);
10752
e2c719b7 10753 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
10754 "connector's staged encoder doesn't match current encoder\n");
10755 }
91d1b4bd
DV
10756}
10757
10758static void
10759check_encoder_state(struct drm_device *dev)
10760{
10761 struct intel_encoder *encoder;
10762 struct intel_connector *connector;
8af6cf88 10763
b2784e15 10764 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10765 bool enabled = false;
10766 bool active = false;
10767 enum pipe pipe, tracked_pipe;
10768
10769 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10770 encoder->base.base.id,
8e329a03 10771 encoder->base.name);
8af6cf88 10772
e2c719b7 10773 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 10774 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 10775 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
10776 "encoder's active_connectors set, but no crtc\n");
10777
10778 list_for_each_entry(connector, &dev->mode_config.connector_list,
10779 base.head) {
10780 if (connector->base.encoder != &encoder->base)
10781 continue;
10782 enabled = true;
10783 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10784 active = true;
10785 }
0e32b39c
DA
10786 /*
10787 * for MST connectors if we unplug the connector is gone
10788 * away but the encoder is still connected to a crtc
10789 * until a modeset happens in response to the hotplug.
10790 */
10791 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10792 continue;
10793
e2c719b7 10794 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
10795 "encoder's enabled state mismatch "
10796 "(expected %i, found %i)\n",
10797 !!encoder->base.crtc, enabled);
e2c719b7 10798 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
10799 "active encoder with no crtc\n");
10800
e2c719b7 10801 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
10802 "encoder's computed active state doesn't match tracked active state "
10803 "(expected %i, found %i)\n", active, encoder->connectors_active);
10804
10805 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 10806 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
10807 "encoder's hw state doesn't match sw tracking "
10808 "(expected %i, found %i)\n",
10809 encoder->connectors_active, active);
10810
10811 if (!encoder->base.crtc)
10812 continue;
10813
10814 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 10815 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
10816 "active encoder's pipe doesn't match"
10817 "(expected %i, found %i)\n",
10818 tracked_pipe, pipe);
10819
10820 }
91d1b4bd
DV
10821}
10822
10823static void
10824check_crtc_state(struct drm_device *dev)
10825{
fbee40df 10826 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10827 struct intel_crtc *crtc;
10828 struct intel_encoder *encoder;
5cec258b 10829 struct intel_crtc_state pipe_config;
8af6cf88 10830
d3fcc808 10831 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10832 bool enabled = false;
10833 bool active = false;
10834
045ac3b5
JB
10835 memset(&pipe_config, 0, sizeof(pipe_config));
10836
8af6cf88
DV
10837 DRM_DEBUG_KMS("[CRTC:%d]\n",
10838 crtc->base.base.id);
10839
e2c719b7 10840 I915_STATE_WARN(crtc->active && !crtc->base.enabled,
8af6cf88
DV
10841 "active crtc, but not enabled in sw tracking\n");
10842
b2784e15 10843 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10844 if (encoder->base.crtc != &crtc->base)
10845 continue;
10846 enabled = true;
10847 if (encoder->connectors_active)
10848 active = true;
10849 }
6c49f241 10850
e2c719b7 10851 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
10852 "crtc's computed active state doesn't match tracked active state "
10853 "(expected %i, found %i)\n", active, crtc->active);
e2c719b7 10854 I915_STATE_WARN(enabled != crtc->base.enabled,
8af6cf88
DV
10855 "crtc's computed enabled state doesn't match tracked enabled state "
10856 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10857
0e8ffe1b
DV
10858 active = dev_priv->display.get_pipe_config(crtc,
10859 &pipe_config);
d62cf62a 10860
b6b5d049
VS
10861 /* hw state is inconsistent with the pipe quirk */
10862 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10863 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10864 active = crtc->active;
10865
b2784e15 10866 for_each_intel_encoder(dev, encoder) {
3eaba51c 10867 enum pipe pipe;
6c49f241
DV
10868 if (encoder->base.crtc != &crtc->base)
10869 continue;
1d37b689 10870 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10871 encoder->get_config(encoder, &pipe_config);
10872 }
10873
e2c719b7 10874 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
10875 "crtc active state doesn't match with hw state "
10876 "(expected %i, found %i)\n", crtc->active, active);
10877
c0b03411 10878 if (active &&
6e3c9717 10879 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 10880 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
10881 intel_dump_pipe_config(crtc, &pipe_config,
10882 "[hw state]");
6e3c9717 10883 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
10884 "[sw state]");
10885 }
8af6cf88
DV
10886 }
10887}
10888
91d1b4bd
DV
10889static void
10890check_shared_dpll_state(struct drm_device *dev)
10891{
fbee40df 10892 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10893 struct intel_crtc *crtc;
10894 struct intel_dpll_hw_state dpll_hw_state;
10895 int i;
5358901f
DV
10896
10897 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10898 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10899 int enabled_crtcs = 0, active_crtcs = 0;
10900 bool active;
10901
10902 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10903
10904 DRM_DEBUG_KMS("%s\n", pll->name);
10905
10906 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10907
e2c719b7 10908 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 10909 "more active pll users than references: %i vs %i\n",
3e369b76 10910 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 10911 I915_STATE_WARN(pll->active && !pll->on,
5358901f 10912 "pll in active use but not on in sw tracking\n");
e2c719b7 10913 I915_STATE_WARN(pll->on && !pll->active,
35c95375 10914 "pll in on but not on in use in sw tracking\n");
e2c719b7 10915 I915_STATE_WARN(pll->on != active,
5358901f
DV
10916 "pll on state mismatch (expected %i, found %i)\n",
10917 pll->on, active);
10918
d3fcc808 10919 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10920 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10921 enabled_crtcs++;
10922 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10923 active_crtcs++;
10924 }
e2c719b7 10925 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
10926 "pll active crtcs mismatch (expected %i, found %i)\n",
10927 pll->active, active_crtcs);
e2c719b7 10928 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 10929 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 10930 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 10931
e2c719b7 10932 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
10933 sizeof(dpll_hw_state)),
10934 "pll hw state mismatch\n");
5358901f 10935 }
8af6cf88
DV
10936}
10937
91d1b4bd
DV
10938void
10939intel_modeset_check_state(struct drm_device *dev)
10940{
08db6652 10941 check_wm_state(dev);
91d1b4bd
DV
10942 check_connector_state(dev);
10943 check_encoder_state(dev);
10944 check_crtc_state(dev);
10945 check_shared_dpll_state(dev);
10946}
10947
5cec258b 10948void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
10949 int dotclock)
10950{
10951 /*
10952 * FDI already provided one idea for the dotclock.
10953 * Yell if the encoder disagrees.
10954 */
2d112de7 10955 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 10956 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 10957 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10958}
10959
80715b2f
VS
10960static void update_scanline_offset(struct intel_crtc *crtc)
10961{
10962 struct drm_device *dev = crtc->base.dev;
10963
10964 /*
10965 * The scanline counter increments at the leading edge of hsync.
10966 *
10967 * On most platforms it starts counting from vtotal-1 on the
10968 * first active line. That means the scanline counter value is
10969 * always one less than what we would expect. Ie. just after
10970 * start of vblank, which also occurs at start of hsync (on the
10971 * last active line), the scanline counter will read vblank_start-1.
10972 *
10973 * On gen2 the scanline counter starts counting from 1 instead
10974 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10975 * to keep the value positive), instead of adding one.
10976 *
10977 * On HSW+ the behaviour of the scanline counter depends on the output
10978 * type. For DP ports it behaves like most other platforms, but on HDMI
10979 * there's an extra 1 line difference. So we need to add two instead of
10980 * one to the value.
10981 */
10982 if (IS_GEN2(dev)) {
6e3c9717 10983 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
10984 int vtotal;
10985
10986 vtotal = mode->crtc_vtotal;
10987 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10988 vtotal /= 2;
10989
10990 crtc->scanline_offset = vtotal - 1;
10991 } else if (HAS_DDI(dev) &&
409ee761 10992 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
10993 crtc->scanline_offset = 2;
10994 } else
10995 crtc->scanline_offset = 1;
10996}
10997
5cec258b 10998static struct intel_crtc_state *
7f27126e
JB
10999intel_modeset_compute_config(struct drm_crtc *crtc,
11000 struct drm_display_mode *mode,
11001 struct drm_framebuffer *fb,
11002 unsigned *modeset_pipes,
11003 unsigned *prepare_pipes,
11004 unsigned *disable_pipes)
11005{
5cec258b 11006 struct intel_crtc_state *pipe_config = NULL;
7f27126e
JB
11007
11008 intel_modeset_affected_pipes(crtc, modeset_pipes,
11009 prepare_pipes, disable_pipes);
11010
11011 if ((*modeset_pipes) == 0)
11012 goto out;
11013
11014 /*
11015 * Note this needs changes when we start tracking multiple modes
11016 * and crtcs. At that point we'll need to compute the whole config
11017 * (i.e. one pipe_config for each crtc) rather than just the one
11018 * for this crtc.
11019 */
11020 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11021 if (IS_ERR(pipe_config)) {
11022 goto out;
11023 }
11024 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11025 "[modeset]");
7f27126e
JB
11026
11027out:
11028 return pipe_config;
11029}
11030
ed6739ef
ACO
11031static int __intel_set_mode_setup_plls(struct drm_device *dev,
11032 unsigned modeset_pipes,
11033 unsigned disable_pipes)
11034{
11035 struct drm_i915_private *dev_priv = to_i915(dev);
11036 unsigned clear_pipes = modeset_pipes | disable_pipes;
11037 struct intel_crtc *intel_crtc;
11038 int ret = 0;
11039
11040 if (!dev_priv->display.crtc_compute_clock)
11041 return 0;
11042
11043 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11044 if (ret)
11045 goto done;
11046
11047 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11048 struct intel_crtc_state *state = intel_crtc->new_config;
11049 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11050 state);
11051 if (ret) {
11052 intel_shared_dpll_abort_config(dev_priv);
11053 goto done;
11054 }
11055 }
11056
11057done:
11058 return ret;
11059}
11060
f30da187
DV
11061static int __intel_set_mode(struct drm_crtc *crtc,
11062 struct drm_display_mode *mode,
7f27126e 11063 int x, int y, struct drm_framebuffer *fb,
5cec258b 11064 struct intel_crtc_state *pipe_config,
7f27126e
JB
11065 unsigned modeset_pipes,
11066 unsigned prepare_pipes,
11067 unsigned disable_pipes)
a6778b3c
DV
11068{
11069 struct drm_device *dev = crtc->dev;
fbee40df 11070 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11071 struct drm_display_mode *saved_mode;
25c5b266 11072 struct intel_crtc *intel_crtc;
c0c36b94 11073 int ret = 0;
a6778b3c 11074
4b4b9238 11075 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11076 if (!saved_mode)
11077 return -ENOMEM;
a6778b3c 11078
3ac18232 11079 *saved_mode = crtc->mode;
a6778b3c 11080
b9950a13
VS
11081 if (modeset_pipes)
11082 to_intel_crtc(crtc)->new_config = pipe_config;
11083
30a970c6
JB
11084 /*
11085 * See if the config requires any additional preparation, e.g.
11086 * to adjust global state with pipes off. We need to do this
11087 * here so we can get the modeset_pipe updated config for the new
11088 * mode set on this crtc. For other crtcs we need to use the
11089 * adjusted_mode bits in the crtc directly.
11090 */
c164f833 11091 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11092 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11093
c164f833
VS
11094 /* may have added more to prepare_pipes than we should */
11095 prepare_pipes &= ~disable_pipes;
11096 }
11097
ed6739ef
ACO
11098 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11099 if (ret)
11100 goto done;
8bd31e67 11101
460da916
DV
11102 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11103 intel_crtc_disable(&intel_crtc->base);
11104
ea9d758d
DV
11105 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11106 if (intel_crtc->base.enabled)
11107 dev_priv->display.crtc_disable(&intel_crtc->base);
11108 }
a6778b3c 11109
6c4c86f5
DV
11110 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11111 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
11112 *
11113 * Note we'll need to fix this up when we start tracking multiple
11114 * pipes; here we assume a single modeset_pipe and only track the
11115 * single crtc and mode.
f6e5b160 11116 */
b8cecdf5 11117 if (modeset_pipes) {
25c5b266 11118 crtc->mode = *mode;
b8cecdf5
DV
11119 /* mode_set/enable/disable functions rely on a correct pipe
11120 * config. */
f5de6e07 11121 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
c326c0a9
VS
11122
11123 /*
11124 * Calculate and store various constants which
11125 * are later needed by vblank and swap-completion
11126 * timestamping. They are derived from true hwmode.
11127 */
11128 drm_calc_timestamping_constants(crtc,
2d112de7 11129 &pipe_config->base.adjusted_mode);
b8cecdf5 11130 }
7758a113 11131
ea9d758d
DV
11132 /* Only after disabling all output pipelines that will be changed can we
11133 * update the the output configuration. */
11134 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11135
50f6e502 11136 modeset_update_crtc_power_domains(dev);
47fab737 11137
a6778b3c
DV
11138 /* Set up the DPLL and any encoders state that needs to adjust or depend
11139 * on the DPLL.
f6e5b160 11140 */
25c5b266 11141 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
455a6808
GP
11142 struct drm_plane *primary = intel_crtc->base.primary;
11143 int vdisplay, hdisplay;
4c10794f 11144
455a6808
GP
11145 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11146 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11147 fb, 0, 0,
11148 hdisplay, vdisplay,
11149 x << 16, y << 16,
11150 hdisplay << 16, vdisplay << 16);
a6778b3c
DV
11151 }
11152
11153 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11154 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11155 update_scanline_offset(intel_crtc);
11156
25c5b266 11157 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11158 }
a6778b3c 11159
a6778b3c
DV
11160 /* FIXME: add subpixel order */
11161done:
4b4b9238 11162 if (ret && crtc->enabled)
3ac18232 11163 crtc->mode = *saved_mode;
a6778b3c 11164
3ac18232 11165 kfree(saved_mode);
a6778b3c 11166 return ret;
f6e5b160
CW
11167}
11168
7f27126e
JB
11169static int intel_set_mode_pipes(struct drm_crtc *crtc,
11170 struct drm_display_mode *mode,
11171 int x, int y, struct drm_framebuffer *fb,
5cec258b 11172 struct intel_crtc_state *pipe_config,
7f27126e
JB
11173 unsigned modeset_pipes,
11174 unsigned prepare_pipes,
11175 unsigned disable_pipes)
f30da187
DV
11176{
11177 int ret;
11178
7f27126e
JB
11179 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11180 prepare_pipes, disable_pipes);
f30da187
DV
11181
11182 if (ret == 0)
11183 intel_modeset_check_state(crtc->dev);
11184
11185 return ret;
11186}
11187
7f27126e
JB
11188static int intel_set_mode(struct drm_crtc *crtc,
11189 struct drm_display_mode *mode,
11190 int x, int y, struct drm_framebuffer *fb)
11191{
5cec258b 11192 struct intel_crtc_state *pipe_config;
7f27126e
JB
11193 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11194
11195 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11196 &modeset_pipes,
11197 &prepare_pipes,
11198 &disable_pipes);
11199
11200 if (IS_ERR(pipe_config))
11201 return PTR_ERR(pipe_config);
11202
11203 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11204 modeset_pipes, prepare_pipes,
11205 disable_pipes);
11206}
11207
c0c36b94
CW
11208void intel_crtc_restore_mode(struct drm_crtc *crtc)
11209{
f4510a27 11210 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11211}
11212
25c5b266
DV
11213#undef for_each_intel_crtc_masked
11214
d9e55608
DV
11215static void intel_set_config_free(struct intel_set_config *config)
11216{
11217 if (!config)
11218 return;
11219
1aa4b628
DV
11220 kfree(config->save_connector_encoders);
11221 kfree(config->save_encoder_crtcs);
7668851f 11222 kfree(config->save_crtc_enabled);
d9e55608
DV
11223 kfree(config);
11224}
11225
85f9eb71
DV
11226static int intel_set_config_save_state(struct drm_device *dev,
11227 struct intel_set_config *config)
11228{
7668851f 11229 struct drm_crtc *crtc;
85f9eb71
DV
11230 struct drm_encoder *encoder;
11231 struct drm_connector *connector;
11232 int count;
11233
7668851f
VS
11234 config->save_crtc_enabled =
11235 kcalloc(dev->mode_config.num_crtc,
11236 sizeof(bool), GFP_KERNEL);
11237 if (!config->save_crtc_enabled)
11238 return -ENOMEM;
11239
1aa4b628
DV
11240 config->save_encoder_crtcs =
11241 kcalloc(dev->mode_config.num_encoder,
11242 sizeof(struct drm_crtc *), GFP_KERNEL);
11243 if (!config->save_encoder_crtcs)
85f9eb71
DV
11244 return -ENOMEM;
11245
1aa4b628
DV
11246 config->save_connector_encoders =
11247 kcalloc(dev->mode_config.num_connector,
11248 sizeof(struct drm_encoder *), GFP_KERNEL);
11249 if (!config->save_connector_encoders)
85f9eb71
DV
11250 return -ENOMEM;
11251
11252 /* Copy data. Note that driver private data is not affected.
11253 * Should anything bad happen only the expected state is
11254 * restored, not the drivers personal bookkeeping.
11255 */
7668851f 11256 count = 0;
70e1e0ec 11257 for_each_crtc(dev, crtc) {
7668851f
VS
11258 config->save_crtc_enabled[count++] = crtc->enabled;
11259 }
11260
85f9eb71
DV
11261 count = 0;
11262 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11263 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11264 }
11265
11266 count = 0;
11267 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11268 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11269 }
11270
11271 return 0;
11272}
11273
11274static void intel_set_config_restore_state(struct drm_device *dev,
11275 struct intel_set_config *config)
11276{
7668851f 11277 struct intel_crtc *crtc;
9a935856
DV
11278 struct intel_encoder *encoder;
11279 struct intel_connector *connector;
85f9eb71
DV
11280 int count;
11281
7668851f 11282 count = 0;
d3fcc808 11283 for_each_intel_crtc(dev, crtc) {
7668851f 11284 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11285
11286 if (crtc->new_enabled)
6e3c9717 11287 crtc->new_config = crtc->config;
7bd0a8e7
VS
11288 else
11289 crtc->new_config = NULL;
7668851f
VS
11290 }
11291
85f9eb71 11292 count = 0;
b2784e15 11293 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11294 encoder->new_crtc =
11295 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11296 }
11297
11298 count = 0;
9a935856
DV
11299 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11300 connector->new_encoder =
11301 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11302 }
11303}
11304
e3de42b6 11305static bool
2e57f47d 11306is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11307{
11308 int i;
11309
2e57f47d
CW
11310 if (set->num_connectors == 0)
11311 return false;
11312
11313 if (WARN_ON(set->connectors == NULL))
11314 return false;
11315
11316 for (i = 0; i < set->num_connectors; i++)
11317 if (set->connectors[i]->encoder &&
11318 set->connectors[i]->encoder->crtc == set->crtc &&
11319 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11320 return true;
11321
11322 return false;
11323}
11324
5e2b584e
DV
11325static void
11326intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11327 struct intel_set_config *config)
11328{
11329
11330 /* We should be able to check here if the fb has the same properties
11331 * and then just flip_or_move it */
2e57f47d
CW
11332 if (is_crtc_connector_off(set)) {
11333 config->mode_changed = true;
f4510a27 11334 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11335 /*
11336 * If we have no fb, we can only flip as long as the crtc is
11337 * active, otherwise we need a full mode set. The crtc may
11338 * be active if we've only disabled the primary plane, or
11339 * in fastboot situations.
11340 */
f4510a27 11341 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11342 struct intel_crtc *intel_crtc =
11343 to_intel_crtc(set->crtc);
11344
3b150f08 11345 if (intel_crtc->active) {
319d9827
JB
11346 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11347 config->fb_changed = true;
11348 } else {
11349 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11350 config->mode_changed = true;
11351 }
5e2b584e
DV
11352 } else if (set->fb == NULL) {
11353 config->mode_changed = true;
72f4901e 11354 } else if (set->fb->pixel_format !=
f4510a27 11355 set->crtc->primary->fb->pixel_format) {
5e2b584e 11356 config->mode_changed = true;
e3de42b6 11357 } else {
5e2b584e 11358 config->fb_changed = true;
e3de42b6 11359 }
5e2b584e
DV
11360 }
11361
835c5873 11362 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11363 config->fb_changed = true;
11364
11365 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11366 DRM_DEBUG_KMS("modes are different, full mode set\n");
11367 drm_mode_debug_printmodeline(&set->crtc->mode);
11368 drm_mode_debug_printmodeline(set->mode);
11369 config->mode_changed = true;
11370 }
a1d95703
CW
11371
11372 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11373 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11374}
11375
2e431051 11376static int
9a935856
DV
11377intel_modeset_stage_output_state(struct drm_device *dev,
11378 struct drm_mode_set *set,
11379 struct intel_set_config *config)
50f56119 11380{
9a935856
DV
11381 struct intel_connector *connector;
11382 struct intel_encoder *encoder;
7668851f 11383 struct intel_crtc *crtc;
f3f08572 11384 int ro;
50f56119 11385
9abdda74 11386 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11387 * of connectors. For paranoia, double-check this. */
11388 WARN_ON(!set->fb && (set->num_connectors != 0));
11389 WARN_ON(set->fb && (set->num_connectors == 0));
11390
9a935856
DV
11391 list_for_each_entry(connector, &dev->mode_config.connector_list,
11392 base.head) {
11393 /* Otherwise traverse passed in connector list and get encoders
11394 * for them. */
50f56119 11395 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11396 if (set->connectors[ro] == &connector->base) {
0e32b39c 11397 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11398 break;
11399 }
11400 }
11401
9a935856
DV
11402 /* If we disable the crtc, disable all its connectors. Also, if
11403 * the connector is on the changing crtc but not on the new
11404 * connector list, disable it. */
11405 if ((!set->fb || ro == set->num_connectors) &&
11406 connector->base.encoder &&
11407 connector->base.encoder->crtc == set->crtc) {
11408 connector->new_encoder = NULL;
11409
11410 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11411 connector->base.base.id,
c23cc417 11412 connector->base.name);
9a935856
DV
11413 }
11414
11415
11416 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11417 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11418 config->mode_changed = true;
50f56119
DV
11419 }
11420 }
9a935856 11421 /* connector->new_encoder is now updated for all connectors. */
50f56119 11422
9a935856 11423 /* Update crtc of enabled connectors. */
9a935856
DV
11424 list_for_each_entry(connector, &dev->mode_config.connector_list,
11425 base.head) {
7668851f
VS
11426 struct drm_crtc *new_crtc;
11427
9a935856 11428 if (!connector->new_encoder)
50f56119
DV
11429 continue;
11430
9a935856 11431 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11432
11433 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11434 if (set->connectors[ro] == &connector->base)
50f56119
DV
11435 new_crtc = set->crtc;
11436 }
11437
11438 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11439 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11440 new_crtc)) {
5e2b584e 11441 return -EINVAL;
50f56119 11442 }
0e32b39c 11443 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11444
11445 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11446 connector->base.base.id,
c23cc417 11447 connector->base.name,
9a935856
DV
11448 new_crtc->base.id);
11449 }
11450
11451 /* Check for any encoders that needs to be disabled. */
b2784e15 11452 for_each_intel_encoder(dev, encoder) {
5a65f358 11453 int num_connectors = 0;
9a935856
DV
11454 list_for_each_entry(connector,
11455 &dev->mode_config.connector_list,
11456 base.head) {
11457 if (connector->new_encoder == encoder) {
11458 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11459 num_connectors++;
9a935856
DV
11460 }
11461 }
5a65f358
PZ
11462
11463 if (num_connectors == 0)
11464 encoder->new_crtc = NULL;
11465 else if (num_connectors > 1)
11466 return -EINVAL;
11467
9a935856
DV
11468 /* Only now check for crtc changes so we don't miss encoders
11469 * that will be disabled. */
11470 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11471 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11472 config->mode_changed = true;
50f56119
DV
11473 }
11474 }
9a935856 11475 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11476 list_for_each_entry(connector, &dev->mode_config.connector_list,
11477 base.head) {
11478 if (connector->new_encoder)
11479 if (connector->new_encoder != connector->encoder)
11480 connector->encoder = connector->new_encoder;
11481 }
d3fcc808 11482 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11483 crtc->new_enabled = false;
11484
b2784e15 11485 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11486 if (encoder->new_crtc == crtc) {
11487 crtc->new_enabled = true;
11488 break;
11489 }
11490 }
11491
11492 if (crtc->new_enabled != crtc->base.enabled) {
11493 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11494 crtc->new_enabled ? "en" : "dis");
11495 config->mode_changed = true;
11496 }
7bd0a8e7
VS
11497
11498 if (crtc->new_enabled)
6e3c9717 11499 crtc->new_config = crtc->config;
7bd0a8e7
VS
11500 else
11501 crtc->new_config = NULL;
7668851f
VS
11502 }
11503
2e431051
DV
11504 return 0;
11505}
11506
7d00a1f5
VS
11507static void disable_crtc_nofb(struct intel_crtc *crtc)
11508{
11509 struct drm_device *dev = crtc->base.dev;
11510 struct intel_encoder *encoder;
11511 struct intel_connector *connector;
11512
11513 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11514 pipe_name(crtc->pipe));
11515
11516 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11517 if (connector->new_encoder &&
11518 connector->new_encoder->new_crtc == crtc)
11519 connector->new_encoder = NULL;
11520 }
11521
b2784e15 11522 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11523 if (encoder->new_crtc == crtc)
11524 encoder->new_crtc = NULL;
11525 }
11526
11527 crtc->new_enabled = false;
7bd0a8e7 11528 crtc->new_config = NULL;
7d00a1f5
VS
11529}
11530
2e431051
DV
11531static int intel_crtc_set_config(struct drm_mode_set *set)
11532{
11533 struct drm_device *dev;
2e431051
DV
11534 struct drm_mode_set save_set;
11535 struct intel_set_config *config;
5cec258b 11536 struct intel_crtc_state *pipe_config;
50f52756 11537 unsigned modeset_pipes, prepare_pipes, disable_pipes;
2e431051 11538 int ret;
2e431051 11539
8d3e375e
DV
11540 BUG_ON(!set);
11541 BUG_ON(!set->crtc);
11542 BUG_ON(!set->crtc->helper_private);
2e431051 11543
7e53f3a4
DV
11544 /* Enforce sane interface api - has been abused by the fb helper. */
11545 BUG_ON(!set->mode && set->fb);
11546 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11547
2e431051
DV
11548 if (set->fb) {
11549 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11550 set->crtc->base.id, set->fb->base.id,
11551 (int)set->num_connectors, set->x, set->y);
11552 } else {
11553 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11554 }
11555
11556 dev = set->crtc->dev;
11557
11558 ret = -ENOMEM;
11559 config = kzalloc(sizeof(*config), GFP_KERNEL);
11560 if (!config)
11561 goto out_config;
11562
11563 ret = intel_set_config_save_state(dev, config);
11564 if (ret)
11565 goto out_config;
11566
11567 save_set.crtc = set->crtc;
11568 save_set.mode = &set->crtc->mode;
11569 save_set.x = set->crtc->x;
11570 save_set.y = set->crtc->y;
f4510a27 11571 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11572
11573 /* Compute whether we need a full modeset, only an fb base update or no
11574 * change at all. In the future we might also check whether only the
11575 * mode changed, e.g. for LVDS where we only change the panel fitter in
11576 * such cases. */
11577 intel_set_config_compute_mode_changes(set, config);
11578
9a935856 11579 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11580 if (ret)
11581 goto fail;
11582
50f52756
JB
11583 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11584 set->fb,
11585 &modeset_pipes,
11586 &prepare_pipes,
11587 &disable_pipes);
20664591 11588 if (IS_ERR(pipe_config)) {
6ac0483b 11589 ret = PTR_ERR(pipe_config);
50f52756 11590 goto fail;
20664591 11591 } else if (pipe_config) {
b9950a13 11592 if (pipe_config->has_audio !=
6e3c9717 11593 to_intel_crtc(set->crtc)->config->has_audio)
20664591
JB
11594 config->mode_changed = true;
11595
af15d2ce
JB
11596 /*
11597 * Note we have an issue here with infoframes: current code
11598 * only updates them on the full mode set path per hw
11599 * requirements. So here we should be checking for any
11600 * required changes and forcing a mode set.
11601 */
20664591 11602 }
50f52756
JB
11603
11604 /* set_mode will free it in the mode_changed case */
11605 if (!config->mode_changed)
11606 kfree(pipe_config);
11607
1f9954d0
JB
11608 intel_update_pipe_size(to_intel_crtc(set->crtc));
11609
5e2b584e 11610 if (config->mode_changed) {
50f52756
JB
11611 ret = intel_set_mode_pipes(set->crtc, set->mode,
11612 set->x, set->y, set->fb, pipe_config,
11613 modeset_pipes, prepare_pipes,
11614 disable_pipes);
5e2b584e 11615 } else if (config->fb_changed) {
3b150f08 11616 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
455a6808
GP
11617 struct drm_plane *primary = set->crtc->primary;
11618 int vdisplay, hdisplay;
3b150f08 11619
455a6808
GP
11620 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11621 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11622 0, 0, hdisplay, vdisplay,
11623 set->x << 16, set->y << 16,
11624 hdisplay << 16, vdisplay << 16);
3b150f08
MR
11625
11626 /*
11627 * We need to make sure the primary plane is re-enabled if it
11628 * has previously been turned off.
11629 */
11630 if (!intel_crtc->primary_enabled && ret == 0) {
11631 WARN_ON(!intel_crtc->active);
fdd508a6 11632 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11633 }
11634
7ca51a3a
JB
11635 /*
11636 * In the fastboot case this may be our only check of the
11637 * state after boot. It would be better to only do it on
11638 * the first update, but we don't have a nice way of doing that
11639 * (and really, set_config isn't used much for high freq page
11640 * flipping, so increasing its cost here shouldn't be a big
11641 * deal).
11642 */
d330a953 11643 if (i915.fastboot && ret == 0)
7ca51a3a 11644 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11645 }
11646
2d05eae1 11647 if (ret) {
bf67dfeb
DV
11648 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11649 set->crtc->base.id, ret);
50f56119 11650fail:
2d05eae1 11651 intel_set_config_restore_state(dev, config);
50f56119 11652
7d00a1f5
VS
11653 /*
11654 * HACK: if the pipe was on, but we didn't have a framebuffer,
11655 * force the pipe off to avoid oopsing in the modeset code
11656 * due to fb==NULL. This should only happen during boot since
11657 * we don't yet reconstruct the FB from the hardware state.
11658 */
11659 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11660 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11661
2d05eae1
CW
11662 /* Try to restore the config */
11663 if (config->mode_changed &&
11664 intel_set_mode(save_set.crtc, save_set.mode,
11665 save_set.x, save_set.y, save_set.fb))
11666 DRM_ERROR("failed to restore config after modeset failure\n");
11667 }
50f56119 11668
d9e55608
DV
11669out_config:
11670 intel_set_config_free(config);
50f56119
DV
11671 return ret;
11672}
f6e5b160
CW
11673
11674static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11675 .gamma_set = intel_crtc_gamma_set,
50f56119 11676 .set_config = intel_crtc_set_config,
f6e5b160
CW
11677 .destroy = intel_crtc_destroy,
11678 .page_flip = intel_crtc_page_flip,
1356837e
MR
11679 .atomic_duplicate_state = intel_crtc_duplicate_state,
11680 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
11681};
11682
5358901f
DV
11683static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11684 struct intel_shared_dpll *pll,
11685 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11686{
5358901f 11687 uint32_t val;
ee7b9f93 11688
f458ebbc 11689 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
11690 return false;
11691
5358901f 11692 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11693 hw_state->dpll = val;
11694 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11695 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11696
11697 return val & DPLL_VCO_ENABLE;
11698}
11699
15bdd4cf
DV
11700static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11701 struct intel_shared_dpll *pll)
11702{
3e369b76
ACO
11703 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11704 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
11705}
11706
e7b903d2
DV
11707static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11708 struct intel_shared_dpll *pll)
11709{
e7b903d2 11710 /* PCH refclock must be enabled first */
89eff4be 11711 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11712
3e369b76 11713 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
11714
11715 /* Wait for the clocks to stabilize. */
11716 POSTING_READ(PCH_DPLL(pll->id));
11717 udelay(150);
11718
11719 /* The pixel multiplier can only be updated once the
11720 * DPLL is enabled and the clocks are stable.
11721 *
11722 * So write it again.
11723 */
3e369b76 11724 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 11725 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11726 udelay(200);
11727}
11728
11729static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11730 struct intel_shared_dpll *pll)
11731{
11732 struct drm_device *dev = dev_priv->dev;
11733 struct intel_crtc *crtc;
e7b903d2
DV
11734
11735 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11736 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11737 if (intel_crtc_to_shared_dpll(crtc) == pll)
11738 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11739 }
11740
15bdd4cf
DV
11741 I915_WRITE(PCH_DPLL(pll->id), 0);
11742 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11743 udelay(200);
11744}
11745
46edb027
DV
11746static char *ibx_pch_dpll_names[] = {
11747 "PCH DPLL A",
11748 "PCH DPLL B",
11749};
11750
7c74ade1 11751static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11752{
e7b903d2 11753 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11754 int i;
11755
7c74ade1 11756 dev_priv->num_shared_dpll = 2;
ee7b9f93 11757
e72f9fbf 11758 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11759 dev_priv->shared_dplls[i].id = i;
11760 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11761 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11762 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11763 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11764 dev_priv->shared_dplls[i].get_hw_state =
11765 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11766 }
11767}
11768
7c74ade1
DV
11769static void intel_shared_dpll_init(struct drm_device *dev)
11770{
e7b903d2 11771 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11772
9cd86933
DV
11773 if (HAS_DDI(dev))
11774 intel_ddi_pll_init(dev);
11775 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11776 ibx_pch_dpll_init(dev);
11777 else
11778 dev_priv->num_shared_dpll = 0;
11779
11780 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11781}
11782
6beb8c23
MR
11783/**
11784 * intel_prepare_plane_fb - Prepare fb for usage on plane
11785 * @plane: drm plane to prepare for
11786 * @fb: framebuffer to prepare for presentation
11787 *
11788 * Prepares a framebuffer for usage on a display plane. Generally this
11789 * involves pinning the underlying object and updating the frontbuffer tracking
11790 * bits. Some older platforms need special physical address handling for
11791 * cursor planes.
11792 *
11793 * Returns 0 on success, negative error code on failure.
11794 */
11795int
11796intel_prepare_plane_fb(struct drm_plane *plane,
11797 struct drm_framebuffer *fb)
465c120c
MR
11798{
11799 struct drm_device *dev = plane->dev;
6beb8c23
MR
11800 struct intel_plane *intel_plane = to_intel_plane(plane);
11801 enum pipe pipe = intel_plane->pipe;
11802 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11803 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11804 unsigned frontbuffer_bits = 0;
11805 int ret = 0;
465c120c 11806
ea2c67bb 11807 if (!obj)
465c120c
MR
11808 return 0;
11809
6beb8c23
MR
11810 switch (plane->type) {
11811 case DRM_PLANE_TYPE_PRIMARY:
11812 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11813 break;
11814 case DRM_PLANE_TYPE_CURSOR:
11815 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11816 break;
11817 case DRM_PLANE_TYPE_OVERLAY:
11818 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11819 break;
11820 }
465c120c 11821
6beb8c23 11822 mutex_lock(&dev->struct_mutex);
465c120c 11823
6beb8c23
MR
11824 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11825 INTEL_INFO(dev)->cursor_needs_physical) {
11826 int align = IS_I830(dev) ? 16 * 1024 : 256;
11827 ret = i915_gem_object_attach_phys(obj, align);
11828 if (ret)
11829 DRM_DEBUG_KMS("failed to attach phys object\n");
11830 } else {
11831 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11832 }
465c120c 11833
6beb8c23
MR
11834 if (ret == 0)
11835 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 11836
4c34574f 11837 mutex_unlock(&dev->struct_mutex);
465c120c 11838
6beb8c23
MR
11839 return ret;
11840}
11841
38f3ce3a
MR
11842/**
11843 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11844 * @plane: drm plane to clean up for
11845 * @fb: old framebuffer that was on plane
11846 *
11847 * Cleans up a framebuffer that has just been removed from a plane.
11848 */
11849void
11850intel_cleanup_plane_fb(struct drm_plane *plane,
11851 struct drm_framebuffer *fb)
11852{
11853 struct drm_device *dev = plane->dev;
11854 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11855
11856 if (WARN_ON(!obj))
11857 return;
11858
11859 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11860 !INTEL_INFO(dev)->cursor_needs_physical) {
11861 mutex_lock(&dev->struct_mutex);
11862 intel_unpin_fb_obj(obj);
11863 mutex_unlock(&dev->struct_mutex);
11864 }
465c120c
MR
11865}
11866
11867static int
3c692a41
GP
11868intel_check_primary_plane(struct drm_plane *plane,
11869 struct intel_plane_state *state)
11870{
32b7eeec
MR
11871 struct drm_device *dev = plane->dev;
11872 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 11873 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 11874 struct intel_crtc *intel_crtc;
2b875c22 11875 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
11876 struct drm_rect *dest = &state->dst;
11877 struct drm_rect *src = &state->src;
11878 const struct drm_rect *clip = &state->clip;
465c120c
MR
11879 int ret;
11880
ea2c67bb
MR
11881 crtc = crtc ? crtc : plane->crtc;
11882 intel_crtc = to_intel_crtc(crtc);
11883
c59cb179
MR
11884 ret = drm_plane_helper_check_update(plane, crtc, fb,
11885 src, dest, clip,
11886 DRM_PLANE_HELPER_NO_SCALING,
11887 DRM_PLANE_HELPER_NO_SCALING,
11888 false, true, &state->visible);
11889 if (ret)
11890 return ret;
465c120c 11891
32b7eeec
MR
11892 if (intel_crtc->active) {
11893 intel_crtc->atomic.wait_for_flips = true;
11894
11895 /*
11896 * FBC does not work on some platforms for rotated
11897 * planes, so disable it when rotation is not 0 and
11898 * update it when rotation is set back to 0.
11899 *
11900 * FIXME: This is redundant with the fbc update done in
11901 * the primary plane enable function except that that
11902 * one is done too late. We eventually need to unify
11903 * this.
11904 */
11905 if (intel_crtc->primary_enabled &&
11906 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11907 dev_priv->fbc.plane == intel_crtc->plane &&
8e7d688b 11908 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
11909 intel_crtc->atomic.disable_fbc = true;
11910 }
11911
11912 if (state->visible) {
11913 /*
11914 * BDW signals flip done immediately if the plane
11915 * is disabled, even if the plane enable is already
11916 * armed to occur at the next vblank :(
11917 */
11918 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11919 intel_crtc->atomic.wait_vblank = true;
11920 }
11921
11922 intel_crtc->atomic.fb_bits |=
11923 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11924
11925 intel_crtc->atomic.update_fbc = true;
ccc759dc
GP
11926 }
11927
14af293f
GP
11928 return 0;
11929}
11930
11931static void
11932intel_commit_primary_plane(struct drm_plane *plane,
11933 struct intel_plane_state *state)
11934{
2b875c22
MR
11935 struct drm_crtc *crtc = state->base.crtc;
11936 struct drm_framebuffer *fb = state->base.fb;
11937 struct drm_device *dev = plane->dev;
14af293f 11938 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 11939 struct intel_crtc *intel_crtc;
14af293f 11940 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14af293f
GP
11941 struct intel_plane *intel_plane = to_intel_plane(plane);
11942 struct drm_rect *src = &state->src;
11943
ea2c67bb
MR
11944 crtc = crtc ? crtc : plane->crtc;
11945 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
11946
11947 plane->fb = fb;
9dc806fc
MR
11948 crtc->x = src->x1 >> 16;
11949 crtc->y = src->y1 >> 16;
ccc759dc 11950
ccc759dc 11951 intel_plane->obj = obj;
4c34574f 11952
ccc759dc 11953 if (intel_crtc->active) {
ccc759dc 11954 if (state->visible) {
ccc759dc
GP
11955 /* FIXME: kill this fastboot hack */
11956 intel_update_pipe_size(intel_crtc);
465c120c 11957
ccc759dc 11958 intel_crtc->primary_enabled = true;
465c120c 11959
ccc759dc
GP
11960 dev_priv->display.update_primary_plane(crtc, plane->fb,
11961 crtc->x, crtc->y);
ccc759dc
GP
11962 } else {
11963 /*
11964 * If clipping results in a non-visible primary plane,
11965 * we'll disable the primary plane. Note that this is
11966 * a bit different than what happens if userspace
11967 * explicitly disables the plane by passing fb=0
11968 * because plane->fb still gets set and pinned.
11969 */
11970 intel_disable_primary_hw_plane(plane, crtc);
48404c1e 11971 }
ccc759dc 11972 }
465c120c
MR
11973}
11974
32b7eeec 11975static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 11976{
32b7eeec 11977 struct drm_device *dev = crtc->dev;
140fd38d 11978 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 11979 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
11980 struct intel_plane *intel_plane;
11981 struct drm_plane *p;
11982 unsigned fb_bits = 0;
11983
11984 /* Track fb's for any planes being disabled */
11985 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
11986 intel_plane = to_intel_plane(p);
11987
11988 if (intel_crtc->atomic.disabled_planes &
11989 (1 << drm_plane_index(p))) {
11990 switch (p->type) {
11991 case DRM_PLANE_TYPE_PRIMARY:
11992 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
11993 break;
11994 case DRM_PLANE_TYPE_CURSOR:
11995 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
11996 break;
11997 case DRM_PLANE_TYPE_OVERLAY:
11998 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
11999 break;
12000 }
3c692a41 12001
ea2c67bb
MR
12002 mutex_lock(&dev->struct_mutex);
12003 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12004 mutex_unlock(&dev->struct_mutex);
12005 }
12006 }
3c692a41 12007
32b7eeec
MR
12008 if (intel_crtc->atomic.wait_for_flips)
12009 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 12010
32b7eeec
MR
12011 if (intel_crtc->atomic.disable_fbc)
12012 intel_fbc_disable(dev);
3c692a41 12013
32b7eeec
MR
12014 if (intel_crtc->atomic.pre_disable_primary)
12015 intel_pre_disable_primary(crtc);
3c692a41 12016
32b7eeec
MR
12017 if (intel_crtc->atomic.update_wm)
12018 intel_update_watermarks(crtc);
3c692a41 12019
32b7eeec 12020 intel_runtime_pm_get(dev_priv);
3c692a41 12021
c34c9ee4
MR
12022 /* Perform vblank evasion around commit operation */
12023 if (intel_crtc->active)
12024 intel_crtc->atomic.evade =
12025 intel_pipe_update_start(intel_crtc,
12026 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
12027}
12028
12029static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12030{
12031 struct drm_device *dev = crtc->dev;
12032 struct drm_i915_private *dev_priv = dev->dev_private;
12033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12034 struct drm_plane *p;
12035
c34c9ee4
MR
12036 if (intel_crtc->atomic.evade)
12037 intel_pipe_update_end(intel_crtc,
12038 intel_crtc->atomic.start_vbl_count);
3c692a41 12039
140fd38d 12040 intel_runtime_pm_put(dev_priv);
3c692a41 12041
32b7eeec
MR
12042 if (intel_crtc->atomic.wait_vblank)
12043 intel_wait_for_vblank(dev, intel_crtc->pipe);
12044
12045 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12046
12047 if (intel_crtc->atomic.update_fbc) {
ccc759dc 12048 mutex_lock(&dev->struct_mutex);
7ff0ebcc 12049 intel_fbc_update(dev);
ccc759dc 12050 mutex_unlock(&dev->struct_mutex);
38f3ce3a 12051 }
3c692a41 12052
32b7eeec
MR
12053 if (intel_crtc->atomic.post_enable_primary)
12054 intel_post_enable_primary(crtc);
3c692a41 12055
32b7eeec
MR
12056 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12057 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12058 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12059 false, false);
12060
12061 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
12062}
12063
cf4c7c12 12064/**
4a3b8769
MR
12065 * intel_plane_destroy - destroy a plane
12066 * @plane: plane to destroy
cf4c7c12 12067 *
4a3b8769
MR
12068 * Common destruction function for all types of planes (primary, cursor,
12069 * sprite).
cf4c7c12 12070 */
4a3b8769 12071void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
12072{
12073 struct intel_plane *intel_plane = to_intel_plane(plane);
12074 drm_plane_cleanup(plane);
12075 kfree(intel_plane);
12076}
12077
65a3fea0 12078const struct drm_plane_funcs intel_plane_funcs = {
ea2c67bb
MR
12079 .update_plane = drm_plane_helper_update,
12080 .disable_plane = drm_plane_helper_disable,
3d7d6510 12081 .destroy = intel_plane_destroy,
c196e1d6 12082 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
12083 .atomic_get_property = intel_plane_atomic_get_property,
12084 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
12085 .atomic_duplicate_state = intel_plane_duplicate_state,
12086 .atomic_destroy_state = intel_plane_destroy_state,
12087
465c120c
MR
12088};
12089
12090static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12091 int pipe)
12092{
12093 struct intel_plane *primary;
8e7d688b 12094 struct intel_plane_state *state;
465c120c
MR
12095 const uint32_t *intel_primary_formats;
12096 int num_formats;
12097
12098 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12099 if (primary == NULL)
12100 return NULL;
12101
8e7d688b
MR
12102 state = intel_create_plane_state(&primary->base);
12103 if (!state) {
ea2c67bb
MR
12104 kfree(primary);
12105 return NULL;
12106 }
8e7d688b 12107 primary->base.state = &state->base;
ea2c67bb 12108
465c120c
MR
12109 primary->can_scale = false;
12110 primary->max_downscale = 1;
12111 primary->pipe = pipe;
12112 primary->plane = pipe;
c59cb179
MR
12113 primary->check_plane = intel_check_primary_plane;
12114 primary->commit_plane = intel_commit_primary_plane;
465c120c
MR
12115 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12116 primary->plane = !pipe;
12117
12118 if (INTEL_INFO(dev)->gen <= 3) {
12119 intel_primary_formats = intel_primary_formats_gen2;
12120 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12121 } else {
12122 intel_primary_formats = intel_primary_formats_gen4;
12123 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12124 }
12125
12126 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 12127 &intel_plane_funcs,
465c120c
MR
12128 intel_primary_formats, num_formats,
12129 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12130
12131 if (INTEL_INFO(dev)->gen >= 4) {
12132 if (!dev->mode_config.rotation_property)
12133 dev->mode_config.rotation_property =
12134 drm_mode_create_rotation_property(dev,
12135 BIT(DRM_ROTATE_0) |
12136 BIT(DRM_ROTATE_180));
12137 if (dev->mode_config.rotation_property)
12138 drm_object_attach_property(&primary->base.base,
12139 dev->mode_config.rotation_property,
8e7d688b 12140 state->base.rotation);
48404c1e
SJ
12141 }
12142
ea2c67bb
MR
12143 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12144
465c120c
MR
12145 return &primary->base;
12146}
12147
3d7d6510 12148static int
852e787c
GP
12149intel_check_cursor_plane(struct drm_plane *plane,
12150 struct intel_plane_state *state)
3d7d6510 12151{
2b875c22 12152 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 12153 struct drm_device *dev = plane->dev;
2b875c22 12154 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
12155 struct drm_rect *dest = &state->dst;
12156 struct drm_rect *src = &state->src;
12157 const struct drm_rect *clip = &state->clip;
757f9a3e 12158 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 12159 struct intel_crtc *intel_crtc;
757f9a3e
GP
12160 unsigned stride;
12161 int ret;
3d7d6510 12162
ea2c67bb
MR
12163 crtc = crtc ? crtc : plane->crtc;
12164 intel_crtc = to_intel_crtc(crtc);
12165
757f9a3e 12166 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 12167 src, dest, clip,
3d7d6510
MR
12168 DRM_PLANE_HELPER_NO_SCALING,
12169 DRM_PLANE_HELPER_NO_SCALING,
852e787c 12170 true, true, &state->visible);
757f9a3e
GP
12171 if (ret)
12172 return ret;
12173
12174
12175 /* if we want to turn off the cursor ignore width and height */
12176 if (!obj)
32b7eeec 12177 goto finish;
757f9a3e 12178
757f9a3e 12179 /* Check for which cursor types we support */
ea2c67bb
MR
12180 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12181 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12182 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
12183 return -EINVAL;
12184 }
12185
ea2c67bb
MR
12186 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12187 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
12188 DRM_DEBUG_KMS("buffer is too small\n");
12189 return -ENOMEM;
12190 }
12191
e391ea88
GP
12192 if (fb == crtc->cursor->fb)
12193 return 0;
12194
757f9a3e
GP
12195 /* we only need to pin inside GTT if cursor is non-phy */
12196 mutex_lock(&dev->struct_mutex);
12197 if (!INTEL_INFO(dev)->cursor_needs_physical && obj->tiling_mode) {
12198 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12199 ret = -EINVAL;
12200 }
12201 mutex_unlock(&dev->struct_mutex);
12202
32b7eeec
MR
12203finish:
12204 if (intel_crtc->active) {
ea2c67bb 12205 if (intel_crtc->cursor_width != state->base.crtc_w)
32b7eeec
MR
12206 intel_crtc->atomic.update_wm = true;
12207
12208 intel_crtc->atomic.fb_bits |=
12209 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12210 }
12211
757f9a3e 12212 return ret;
852e787c 12213}
3d7d6510 12214
f4a2cf29 12215static void
852e787c
GP
12216intel_commit_cursor_plane(struct drm_plane *plane,
12217 struct intel_plane_state *state)
12218{
2b875c22 12219 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
12220 struct drm_device *dev = plane->dev;
12221 struct intel_crtc *intel_crtc;
a919db90 12222 struct intel_plane *intel_plane = to_intel_plane(plane);
2b875c22 12223 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 12224 uint32_t addr;
852e787c 12225
ea2c67bb
MR
12226 crtc = crtc ? crtc : plane->crtc;
12227 intel_crtc = to_intel_crtc(crtc);
12228
2b875c22 12229 plane->fb = state->base.fb;
ea2c67bb
MR
12230 crtc->cursor_x = state->base.crtc_x;
12231 crtc->cursor_y = state->base.crtc_y;
12232
a919db90
SJ
12233 intel_plane->obj = obj;
12234
a912f12f
GP
12235 if (intel_crtc->cursor_bo == obj)
12236 goto update;
4ed91096 12237
f4a2cf29 12238 if (!obj)
a912f12f 12239 addr = 0;
f4a2cf29 12240 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 12241 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 12242 else
a912f12f 12243 addr = obj->phys_handle->busaddr;
852e787c 12244
a912f12f
GP
12245 intel_crtc->cursor_addr = addr;
12246 intel_crtc->cursor_bo = obj;
12247update:
ea2c67bb
MR
12248 intel_crtc->cursor_width = state->base.crtc_w;
12249 intel_crtc->cursor_height = state->base.crtc_h;
852e787c 12250
32b7eeec 12251 if (intel_crtc->active)
a912f12f 12252 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
12253}
12254
3d7d6510
MR
12255static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12256 int pipe)
12257{
12258 struct intel_plane *cursor;
8e7d688b 12259 struct intel_plane_state *state;
3d7d6510
MR
12260
12261 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12262 if (cursor == NULL)
12263 return NULL;
12264
8e7d688b
MR
12265 state = intel_create_plane_state(&cursor->base);
12266 if (!state) {
ea2c67bb
MR
12267 kfree(cursor);
12268 return NULL;
12269 }
8e7d688b 12270 cursor->base.state = &state->base;
ea2c67bb 12271
3d7d6510
MR
12272 cursor->can_scale = false;
12273 cursor->max_downscale = 1;
12274 cursor->pipe = pipe;
12275 cursor->plane = pipe;
c59cb179
MR
12276 cursor->check_plane = intel_check_cursor_plane;
12277 cursor->commit_plane = intel_commit_cursor_plane;
3d7d6510
MR
12278
12279 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 12280 &intel_plane_funcs,
3d7d6510
MR
12281 intel_cursor_formats,
12282 ARRAY_SIZE(intel_cursor_formats),
12283 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
12284
12285 if (INTEL_INFO(dev)->gen >= 4) {
12286 if (!dev->mode_config.rotation_property)
12287 dev->mode_config.rotation_property =
12288 drm_mode_create_rotation_property(dev,
12289 BIT(DRM_ROTATE_0) |
12290 BIT(DRM_ROTATE_180));
12291 if (dev->mode_config.rotation_property)
12292 drm_object_attach_property(&cursor->base.base,
12293 dev->mode_config.rotation_property,
8e7d688b 12294 state->base.rotation);
4398ad45
VS
12295 }
12296
ea2c67bb
MR
12297 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12298
3d7d6510
MR
12299 return &cursor->base;
12300}
12301
b358d0a6 12302static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12303{
fbee40df 12304 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12305 struct intel_crtc *intel_crtc;
f5de6e07 12306 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
12307 struct drm_plane *primary = NULL;
12308 struct drm_plane *cursor = NULL;
465c120c 12309 int i, ret;
79e53945 12310
955382f3 12311 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12312 if (intel_crtc == NULL)
12313 return;
12314
f5de6e07
ACO
12315 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12316 if (!crtc_state)
12317 goto fail;
12318 intel_crtc_set_state(intel_crtc, crtc_state);
12319
465c120c 12320 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12321 if (!primary)
12322 goto fail;
12323
12324 cursor = intel_cursor_plane_create(dev, pipe);
12325 if (!cursor)
12326 goto fail;
12327
465c120c 12328 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12329 cursor, &intel_crtc_funcs);
12330 if (ret)
12331 goto fail;
79e53945
JB
12332
12333 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12334 for (i = 0; i < 256; i++) {
12335 intel_crtc->lut_r[i] = i;
12336 intel_crtc->lut_g[i] = i;
12337 intel_crtc->lut_b[i] = i;
12338 }
12339
1f1c2e24
VS
12340 /*
12341 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12342 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12343 */
80824003
JB
12344 intel_crtc->pipe = pipe;
12345 intel_crtc->plane = pipe;
3a77c4c4 12346 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12347 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12348 intel_crtc->plane = !pipe;
80824003
JB
12349 }
12350
4b0e333e
CW
12351 intel_crtc->cursor_base = ~0;
12352 intel_crtc->cursor_cntl = ~0;
dc41c154 12353 intel_crtc->cursor_size = ~0;
8d7849db 12354
22fd0fab
JB
12355 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12356 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12357 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12358 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12359
9362c7c5
ACO
12360 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12361
79e53945 12362 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12363
12364 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12365 return;
12366
12367fail:
12368 if (primary)
12369 drm_plane_cleanup(primary);
12370 if (cursor)
12371 drm_plane_cleanup(cursor);
f5de6e07 12372 kfree(crtc_state);
3d7d6510 12373 kfree(intel_crtc);
79e53945
JB
12374}
12375
752aa88a
JB
12376enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12377{
12378 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12379 struct drm_device *dev = connector->base.dev;
752aa88a 12380
51fd371b 12381 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 12382
d3babd3f 12383 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
12384 return INVALID_PIPE;
12385
12386 return to_intel_crtc(encoder->crtc)->pipe;
12387}
12388
08d7b3d1 12389int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12390 struct drm_file *file)
08d7b3d1 12391{
08d7b3d1 12392 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12393 struct drm_crtc *drmmode_crtc;
c05422d5 12394 struct intel_crtc *crtc;
08d7b3d1 12395
1cff8f6b
DV
12396 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12397 return -ENODEV;
08d7b3d1 12398
7707e653 12399 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12400
7707e653 12401 if (!drmmode_crtc) {
08d7b3d1 12402 DRM_ERROR("no such CRTC id\n");
3f2c2057 12403 return -ENOENT;
08d7b3d1
CW
12404 }
12405
7707e653 12406 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12407 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12408
c05422d5 12409 return 0;
08d7b3d1
CW
12410}
12411
66a9278e 12412static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12413{
66a9278e
DV
12414 struct drm_device *dev = encoder->base.dev;
12415 struct intel_encoder *source_encoder;
79e53945 12416 int index_mask = 0;
79e53945
JB
12417 int entry = 0;
12418
b2784e15 12419 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12420 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12421 index_mask |= (1 << entry);
12422
79e53945
JB
12423 entry++;
12424 }
4ef69c7a 12425
79e53945
JB
12426 return index_mask;
12427}
12428
4d302442
CW
12429static bool has_edp_a(struct drm_device *dev)
12430{
12431 struct drm_i915_private *dev_priv = dev->dev_private;
12432
12433 if (!IS_MOBILE(dev))
12434 return false;
12435
12436 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12437 return false;
12438
e3589908 12439 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12440 return false;
12441
12442 return true;
12443}
12444
84b4e042
JB
12445static bool intel_crt_present(struct drm_device *dev)
12446{
12447 struct drm_i915_private *dev_priv = dev->dev_private;
12448
884497ed
DL
12449 if (INTEL_INFO(dev)->gen >= 9)
12450 return false;
12451
cf404ce4 12452 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
12453 return false;
12454
12455 if (IS_CHERRYVIEW(dev))
12456 return false;
12457
12458 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12459 return false;
12460
12461 return true;
12462}
12463
79e53945
JB
12464static void intel_setup_outputs(struct drm_device *dev)
12465{
725e30ad 12466 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12467 struct intel_encoder *encoder;
c6f95f27 12468 struct drm_connector *connector;
cb0953d7 12469 bool dpd_is_edp = false;
79e53945 12470
c9093354 12471 intel_lvds_init(dev);
79e53945 12472
84b4e042 12473 if (intel_crt_present(dev))
79935fca 12474 intel_crt_init(dev);
cb0953d7 12475
affa9354 12476 if (HAS_DDI(dev)) {
0e72a5b5
ED
12477 int found;
12478
12479 /* Haswell uses DDI functions to detect digital outputs */
12480 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12481 /* DDI A only supports eDP */
12482 if (found)
12483 intel_ddi_init(dev, PORT_A);
12484
12485 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12486 * register */
12487 found = I915_READ(SFUSE_STRAP);
12488
12489 if (found & SFUSE_STRAP_DDIB_DETECTED)
12490 intel_ddi_init(dev, PORT_B);
12491 if (found & SFUSE_STRAP_DDIC_DETECTED)
12492 intel_ddi_init(dev, PORT_C);
12493 if (found & SFUSE_STRAP_DDID_DETECTED)
12494 intel_ddi_init(dev, PORT_D);
12495 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12496 int found;
5d8a7752 12497 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12498
12499 if (has_edp_a(dev))
12500 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12501
dc0fa718 12502 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12503 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12504 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12505 if (!found)
e2debe91 12506 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12507 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12508 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12509 }
12510
dc0fa718 12511 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12512 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12513
dc0fa718 12514 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12515 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12516
5eb08b69 12517 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12518 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12519
270b3042 12520 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12521 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12522 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
12523 /*
12524 * The DP_DETECTED bit is the latched state of the DDC
12525 * SDA pin at boot. However since eDP doesn't require DDC
12526 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12527 * eDP ports may have been muxed to an alternate function.
12528 * Thus we can't rely on the DP_DETECTED bit alone to detect
12529 * eDP ports. Consult the VBT as well as DP_DETECTED to
12530 * detect eDP ports.
12531 */
d2182a66
VS
12532 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12533 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
12534 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12535 PORT_B);
e17ac6db
VS
12536 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12537 intel_dp_is_edp(dev, PORT_B))
12538 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 12539
d2182a66
VS
12540 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12541 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
12542 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12543 PORT_C);
e17ac6db
VS
12544 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12545 intel_dp_is_edp(dev, PORT_C))
12546 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 12547
9418c1f1 12548 if (IS_CHERRYVIEW(dev)) {
e17ac6db 12549 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
12550 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12551 PORT_D);
e17ac6db
VS
12552 /* eDP not supported on port D, so don't check VBT */
12553 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12554 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
12555 }
12556
3cfca973 12557 intel_dsi_init(dev);
103a196f 12558 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12559 bool found = false;
7d57382e 12560
e2debe91 12561 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12562 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12563 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12564 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12565 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12566 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12567 }
27185ae1 12568
e7281eab 12569 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12570 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12571 }
13520b05
KH
12572
12573 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12574
e2debe91 12575 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12576 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12577 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12578 }
27185ae1 12579
e2debe91 12580 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12581
b01f2c3a
JB
12582 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12583 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12584 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12585 }
e7281eab 12586 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12587 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12588 }
27185ae1 12589
b01f2c3a 12590 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12591 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12592 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12593 } else if (IS_GEN2(dev))
79e53945
JB
12594 intel_dvo_init(dev);
12595
103a196f 12596 if (SUPPORTS_TV(dev))
79e53945
JB
12597 intel_tv_init(dev);
12598
c6f95f27
MR
12599 /*
12600 * FIXME: We don't have full atomic support yet, but we want to be
12601 * able to enable/test plane updates via the atomic interface in the
12602 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
12603 * will take some atomic codepaths to lookup properties during
12604 * drmModeGetConnector() that unconditionally dereference
12605 * connector->state.
12606 *
12607 * We create a dummy connector state here for each connector to ensure
12608 * the DRM core doesn't try to dereference a NULL connector->state.
12609 * The actual connector properties will never be updated or contain
12610 * useful information, but since we're doing this specifically for
12611 * testing/debug of the plane operations (and only when a specific
12612 * kernel module option is given), that shouldn't really matter.
12613 *
12614 * Once atomic support for crtc's + connectors lands, this loop should
12615 * be removed since we'll be setting up real connector state, which
12616 * will contain Intel-specific properties.
12617 */
12618 if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12619 list_for_each_entry(connector,
12620 &dev->mode_config.connector_list,
12621 head) {
12622 if (!WARN_ON(connector->state)) {
12623 connector->state =
12624 kzalloc(sizeof(*connector->state),
12625 GFP_KERNEL);
12626 }
12627 }
12628 }
12629
0bc12bcb 12630 intel_psr_init(dev);
7c8f8a70 12631
b2784e15 12632 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12633 encoder->base.possible_crtcs = encoder->crtc_mask;
12634 encoder->base.possible_clones =
66a9278e 12635 intel_encoder_clones(encoder);
79e53945 12636 }
47356eb6 12637
dde86e2d 12638 intel_init_pch_refclk(dev);
270b3042
DV
12639
12640 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12641}
12642
12643static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12644{
60a5ca01 12645 struct drm_device *dev = fb->dev;
79e53945 12646 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12647
ef2d633e 12648 drm_framebuffer_cleanup(fb);
60a5ca01 12649 mutex_lock(&dev->struct_mutex);
ef2d633e 12650 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12651 drm_gem_object_unreference(&intel_fb->obj->base);
12652 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12653 kfree(intel_fb);
12654}
12655
12656static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12657 struct drm_file *file,
79e53945
JB
12658 unsigned int *handle)
12659{
12660 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12661 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12662
05394f39 12663 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12664}
12665
12666static const struct drm_framebuffer_funcs intel_fb_funcs = {
12667 .destroy = intel_user_framebuffer_destroy,
12668 .create_handle = intel_user_framebuffer_create_handle,
12669};
12670
b5ea642a
DV
12671static int intel_framebuffer_init(struct drm_device *dev,
12672 struct intel_framebuffer *intel_fb,
12673 struct drm_mode_fb_cmd2 *mode_cmd,
12674 struct drm_i915_gem_object *obj)
79e53945 12675{
a57ce0b2 12676 int aligned_height;
a35cdaa0 12677 int pitch_limit;
79e53945
JB
12678 int ret;
12679
dd4916c5
DV
12680 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12681
c16ed4be
CW
12682 if (obj->tiling_mode == I915_TILING_Y) {
12683 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12684 return -EINVAL;
c16ed4be 12685 }
57cd6508 12686
c16ed4be
CW
12687 if (mode_cmd->pitches[0] & 63) {
12688 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12689 mode_cmd->pitches[0]);
57cd6508 12690 return -EINVAL;
c16ed4be 12691 }
57cd6508 12692
a35cdaa0
CW
12693 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12694 pitch_limit = 32*1024;
12695 } else if (INTEL_INFO(dev)->gen >= 4) {
12696 if (obj->tiling_mode)
12697 pitch_limit = 16*1024;
12698 else
12699 pitch_limit = 32*1024;
12700 } else if (INTEL_INFO(dev)->gen >= 3) {
12701 if (obj->tiling_mode)
12702 pitch_limit = 8*1024;
12703 else
12704 pitch_limit = 16*1024;
12705 } else
12706 /* XXX DSPC is limited to 4k tiled */
12707 pitch_limit = 8*1024;
12708
12709 if (mode_cmd->pitches[0] > pitch_limit) {
12710 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12711 obj->tiling_mode ? "tiled" : "linear",
12712 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12713 return -EINVAL;
c16ed4be 12714 }
5d7bd705
VS
12715
12716 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12717 mode_cmd->pitches[0] != obj->stride) {
12718 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12719 mode_cmd->pitches[0], obj->stride);
5d7bd705 12720 return -EINVAL;
c16ed4be 12721 }
5d7bd705 12722
57779d06 12723 /* Reject formats not supported by any plane early. */
308e5bcb 12724 switch (mode_cmd->pixel_format) {
57779d06 12725 case DRM_FORMAT_C8:
04b3924d
VS
12726 case DRM_FORMAT_RGB565:
12727 case DRM_FORMAT_XRGB8888:
12728 case DRM_FORMAT_ARGB8888:
57779d06
VS
12729 break;
12730 case DRM_FORMAT_XRGB1555:
12731 case DRM_FORMAT_ARGB1555:
c16ed4be 12732 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12733 DRM_DEBUG("unsupported pixel format: %s\n",
12734 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12735 return -EINVAL;
c16ed4be 12736 }
57779d06
VS
12737 break;
12738 case DRM_FORMAT_XBGR8888:
12739 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12740 case DRM_FORMAT_XRGB2101010:
12741 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12742 case DRM_FORMAT_XBGR2101010:
12743 case DRM_FORMAT_ABGR2101010:
c16ed4be 12744 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12745 DRM_DEBUG("unsupported pixel format: %s\n",
12746 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12747 return -EINVAL;
c16ed4be 12748 }
b5626747 12749 break;
04b3924d
VS
12750 case DRM_FORMAT_YUYV:
12751 case DRM_FORMAT_UYVY:
12752 case DRM_FORMAT_YVYU:
12753 case DRM_FORMAT_VYUY:
c16ed4be 12754 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12755 DRM_DEBUG("unsupported pixel format: %s\n",
12756 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12757 return -EINVAL;
c16ed4be 12758 }
57cd6508
CW
12759 break;
12760 default:
4ee62c76
VS
12761 DRM_DEBUG("unsupported pixel format: %s\n",
12762 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12763 return -EINVAL;
12764 }
12765
90f9a336
VS
12766 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12767 if (mode_cmd->offsets[0] != 0)
12768 return -EINVAL;
12769
ec2c981e
DL
12770 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
12771 obj->tiling_mode);
53155c0a
DV
12772 /* FIXME drm helper for size checks (especially planar formats)? */
12773 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12774 return -EINVAL;
12775
c7d73f6a
DV
12776 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12777 intel_fb->obj = obj;
80075d49 12778 intel_fb->obj->framebuffer_references++;
c7d73f6a 12779
79e53945
JB
12780 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12781 if (ret) {
12782 DRM_ERROR("framebuffer init failed %d\n", ret);
12783 return ret;
12784 }
12785
79e53945
JB
12786 return 0;
12787}
12788
79e53945
JB
12789static struct drm_framebuffer *
12790intel_user_framebuffer_create(struct drm_device *dev,
12791 struct drm_file *filp,
308e5bcb 12792 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12793{
05394f39 12794 struct drm_i915_gem_object *obj;
79e53945 12795
308e5bcb
JB
12796 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12797 mode_cmd->handles[0]));
c8725226 12798 if (&obj->base == NULL)
cce13ff7 12799 return ERR_PTR(-ENOENT);
79e53945 12800
d2dff872 12801 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12802}
12803
4520f53a 12804#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12805static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12806{
12807}
12808#endif
12809
79e53945 12810static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12811 .fb_create = intel_user_framebuffer_create,
0632fef6 12812 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
12813 .atomic_check = intel_atomic_check,
12814 .atomic_commit = intel_atomic_commit,
79e53945
JB
12815};
12816
e70236a8
JB
12817/* Set up chip specific display functions */
12818static void intel_init_display(struct drm_device *dev)
12819{
12820 struct drm_i915_private *dev_priv = dev->dev_private;
12821
ee9300bb
DV
12822 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12823 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12824 else if (IS_CHERRYVIEW(dev))
12825 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12826 else if (IS_VALLEYVIEW(dev))
12827 dev_priv->display.find_dpll = vlv_find_best_dpll;
12828 else if (IS_PINEVIEW(dev))
12829 dev_priv->display.find_dpll = pnv_find_best_dpll;
12830 else
12831 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12832
bc8d7dff
DL
12833 if (INTEL_INFO(dev)->gen >= 9) {
12834 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
12835 dev_priv->display.get_initial_plane_config =
12836 skylake_get_initial_plane_config;
bc8d7dff
DL
12837 dev_priv->display.crtc_compute_clock =
12838 haswell_crtc_compute_clock;
12839 dev_priv->display.crtc_enable = haswell_crtc_enable;
12840 dev_priv->display.crtc_disable = haswell_crtc_disable;
12841 dev_priv->display.off = ironlake_crtc_off;
12842 dev_priv->display.update_primary_plane =
12843 skylake_update_primary_plane;
12844 } else if (HAS_DDI(dev)) {
0e8ffe1b 12845 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
12846 dev_priv->display.get_initial_plane_config =
12847 ironlake_get_initial_plane_config;
797d0259
ACO
12848 dev_priv->display.crtc_compute_clock =
12849 haswell_crtc_compute_clock;
4f771f10
PZ
12850 dev_priv->display.crtc_enable = haswell_crtc_enable;
12851 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12852 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
12853 dev_priv->display.update_primary_plane =
12854 ironlake_update_primary_plane;
09b4ddf9 12855 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12856 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
12857 dev_priv->display.get_initial_plane_config =
12858 ironlake_get_initial_plane_config;
3fb37703
ACO
12859 dev_priv->display.crtc_compute_clock =
12860 ironlake_crtc_compute_clock;
76e5a89c
DV
12861 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12862 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12863 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12864 dev_priv->display.update_primary_plane =
12865 ironlake_update_primary_plane;
89b667f8
JB
12866 } else if (IS_VALLEYVIEW(dev)) {
12867 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
12868 dev_priv->display.get_initial_plane_config =
12869 i9xx_get_initial_plane_config;
d6dfee7a 12870 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
12871 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12872 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12873 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12874 dev_priv->display.update_primary_plane =
12875 i9xx_update_primary_plane;
f564048e 12876 } else {
0e8ffe1b 12877 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
12878 dev_priv->display.get_initial_plane_config =
12879 i9xx_get_initial_plane_config;
d6dfee7a 12880 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
12881 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12882 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12883 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12884 dev_priv->display.update_primary_plane =
12885 i9xx_update_primary_plane;
f564048e 12886 }
e70236a8 12887
e70236a8 12888 /* Returns the core display clock speed */
25eb05fc
JB
12889 if (IS_VALLEYVIEW(dev))
12890 dev_priv->display.get_display_clock_speed =
12891 valleyview_get_display_clock_speed;
12892 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12893 dev_priv->display.get_display_clock_speed =
12894 i945_get_display_clock_speed;
12895 else if (IS_I915G(dev))
12896 dev_priv->display.get_display_clock_speed =
12897 i915_get_display_clock_speed;
257a7ffc 12898 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12899 dev_priv->display.get_display_clock_speed =
12900 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12901 else if (IS_PINEVIEW(dev))
12902 dev_priv->display.get_display_clock_speed =
12903 pnv_get_display_clock_speed;
e70236a8
JB
12904 else if (IS_I915GM(dev))
12905 dev_priv->display.get_display_clock_speed =
12906 i915gm_get_display_clock_speed;
12907 else if (IS_I865G(dev))
12908 dev_priv->display.get_display_clock_speed =
12909 i865_get_display_clock_speed;
f0f8a9ce 12910 else if (IS_I85X(dev))
e70236a8
JB
12911 dev_priv->display.get_display_clock_speed =
12912 i855_get_display_clock_speed;
12913 else /* 852, 830 */
12914 dev_priv->display.get_display_clock_speed =
12915 i830_get_display_clock_speed;
12916
7c10a2b5 12917 if (IS_GEN5(dev)) {
3bb11b53 12918 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
12919 } else if (IS_GEN6(dev)) {
12920 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
12921 } else if (IS_IVYBRIDGE(dev)) {
12922 /* FIXME: detect B0+ stepping and use auto training */
12923 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
3bb11b53
SJ
12924 dev_priv->display.modeset_global_resources =
12925 ivb_modeset_global_resources;
059b2fe9 12926 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 12927 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
12928 } else if (IS_VALLEYVIEW(dev)) {
12929 dev_priv->display.modeset_global_resources =
12930 valleyview_modeset_global_resources;
e70236a8 12931 }
8c9f3aaf
JB
12932
12933 /* Default just returns -ENODEV to indicate unsupported */
12934 dev_priv->display.queue_flip = intel_default_queue_flip;
12935
12936 switch (INTEL_INFO(dev)->gen) {
12937 case 2:
12938 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12939 break;
12940
12941 case 3:
12942 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12943 break;
12944
12945 case 4:
12946 case 5:
12947 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12948 break;
12949
12950 case 6:
12951 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12952 break;
7c9017e5 12953 case 7:
4e0bbc31 12954 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12955 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12956 break;
830c81db
DL
12957 case 9:
12958 dev_priv->display.queue_flip = intel_gen9_queue_flip;
12959 break;
8c9f3aaf 12960 }
7bd688cd
JN
12961
12962 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12963
12964 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12965}
12966
b690e96c
JB
12967/*
12968 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12969 * resume, or other times. This quirk makes sure that's the case for
12970 * affected systems.
12971 */
0206e353 12972static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12973{
12974 struct drm_i915_private *dev_priv = dev->dev_private;
12975
12976 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12977 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12978}
12979
b6b5d049
VS
12980static void quirk_pipeb_force(struct drm_device *dev)
12981{
12982 struct drm_i915_private *dev_priv = dev->dev_private;
12983
12984 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12985 DRM_INFO("applying pipe b force quirk\n");
12986}
12987
435793df
KP
12988/*
12989 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12990 */
12991static void quirk_ssc_force_disable(struct drm_device *dev)
12992{
12993 struct drm_i915_private *dev_priv = dev->dev_private;
12994 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12995 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12996}
12997
4dca20ef 12998/*
5a15ab5b
CE
12999 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13000 * brightness value
4dca20ef
CE
13001 */
13002static void quirk_invert_brightness(struct drm_device *dev)
13003{
13004 struct drm_i915_private *dev_priv = dev->dev_private;
13005 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 13006 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
13007}
13008
9c72cc6f
SD
13009/* Some VBT's incorrectly indicate no backlight is present */
13010static void quirk_backlight_present(struct drm_device *dev)
13011{
13012 struct drm_i915_private *dev_priv = dev->dev_private;
13013 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13014 DRM_INFO("applying backlight present quirk\n");
13015}
13016
b690e96c
JB
13017struct intel_quirk {
13018 int device;
13019 int subsystem_vendor;
13020 int subsystem_device;
13021 void (*hook)(struct drm_device *dev);
13022};
13023
5f85f176
EE
13024/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13025struct intel_dmi_quirk {
13026 void (*hook)(struct drm_device *dev);
13027 const struct dmi_system_id (*dmi_id_list)[];
13028};
13029
13030static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13031{
13032 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13033 return 1;
13034}
13035
13036static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13037 {
13038 .dmi_id_list = &(const struct dmi_system_id[]) {
13039 {
13040 .callback = intel_dmi_reverse_brightness,
13041 .ident = "NCR Corporation",
13042 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13043 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13044 },
13045 },
13046 { } /* terminating entry */
13047 },
13048 .hook = quirk_invert_brightness,
13049 },
13050};
13051
c43b5634 13052static struct intel_quirk intel_quirks[] = {
b690e96c 13053 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 13054 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 13055
b690e96c
JB
13056 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13057 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13058
b690e96c
JB
13059 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13060 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13061
5f080c0f
VS
13062 /* 830 needs to leave pipe A & dpll A up */
13063 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13064
b6b5d049
VS
13065 /* 830 needs to leave pipe B & dpll B up */
13066 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13067
435793df
KP
13068 /* Lenovo U160 cannot use SSC on LVDS */
13069 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
13070
13071 /* Sony Vaio Y cannot use SSC on LVDS */
13072 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 13073
be505f64
AH
13074 /* Acer Aspire 5734Z must invert backlight brightness */
13075 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13076
13077 /* Acer/eMachines G725 */
13078 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13079
13080 /* Acer/eMachines e725 */
13081 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13082
13083 /* Acer/Packard Bell NCL20 */
13084 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13085
13086 /* Acer Aspire 4736Z */
13087 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
13088
13089 /* Acer Aspire 5336 */
13090 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
13091
13092 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13093 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 13094
dfb3d47b
SD
13095 /* Acer C720 Chromebook (Core i3 4005U) */
13096 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13097
b2a9601c 13098 /* Apple Macbook 2,1 (Core 2 T7400) */
13099 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13100
d4967d8c
SD
13101 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13102 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
13103
13104 /* HP Chromebook 14 (Celeron 2955U) */
13105 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
13106};
13107
13108static void intel_init_quirks(struct drm_device *dev)
13109{
13110 struct pci_dev *d = dev->pdev;
13111 int i;
13112
13113 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13114 struct intel_quirk *q = &intel_quirks[i];
13115
13116 if (d->device == q->device &&
13117 (d->subsystem_vendor == q->subsystem_vendor ||
13118 q->subsystem_vendor == PCI_ANY_ID) &&
13119 (d->subsystem_device == q->subsystem_device ||
13120 q->subsystem_device == PCI_ANY_ID))
13121 q->hook(dev);
13122 }
5f85f176
EE
13123 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13124 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13125 intel_dmi_quirks[i].hook(dev);
13126 }
b690e96c
JB
13127}
13128
9cce37f4
JB
13129/* Disable the VGA plane that we never use */
13130static void i915_disable_vga(struct drm_device *dev)
13131{
13132 struct drm_i915_private *dev_priv = dev->dev_private;
13133 u8 sr1;
766aa1c4 13134 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 13135
2b37c616 13136 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 13137 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 13138 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
13139 sr1 = inb(VGA_SR_DATA);
13140 outb(sr1 | 1<<5, VGA_SR_DATA);
13141 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13142 udelay(300);
13143
01f5a626 13144 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
13145 POSTING_READ(vga_reg);
13146}
13147
f817586c
DV
13148void intel_modeset_init_hw(struct drm_device *dev)
13149{
a8f78b58
ED
13150 intel_prepare_ddi(dev);
13151
f8bf63fd
VS
13152 if (IS_VALLEYVIEW(dev))
13153 vlv_update_cdclk(dev);
13154
f817586c
DV
13155 intel_init_clock_gating(dev);
13156
8090c6b9 13157 intel_enable_gt_powersave(dev);
f817586c
DV
13158}
13159
79e53945
JB
13160void intel_modeset_init(struct drm_device *dev)
13161{
652c393a 13162 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 13163 int sprite, ret;
8cc87b75 13164 enum pipe pipe;
46f297fb 13165 struct intel_crtc *crtc;
79e53945
JB
13166
13167 drm_mode_config_init(dev);
13168
13169 dev->mode_config.min_width = 0;
13170 dev->mode_config.min_height = 0;
13171
019d96cb
DA
13172 dev->mode_config.preferred_depth = 24;
13173 dev->mode_config.prefer_shadow = 1;
13174
e6ecefaa 13175 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13176
b690e96c
JB
13177 intel_init_quirks(dev);
13178
1fa61106
ED
13179 intel_init_pm(dev);
13180
e3c74757
BW
13181 if (INTEL_INFO(dev)->num_pipes == 0)
13182 return;
13183
e70236a8 13184 intel_init_display(dev);
7c10a2b5 13185 intel_init_audio(dev);
e70236a8 13186
a6c45cf0
CW
13187 if (IS_GEN2(dev)) {
13188 dev->mode_config.max_width = 2048;
13189 dev->mode_config.max_height = 2048;
13190 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13191 dev->mode_config.max_width = 4096;
13192 dev->mode_config.max_height = 4096;
79e53945 13193 } else {
a6c45cf0
CW
13194 dev->mode_config.max_width = 8192;
13195 dev->mode_config.max_height = 8192;
79e53945 13196 }
068be561 13197
dc41c154
VS
13198 if (IS_845G(dev) || IS_I865G(dev)) {
13199 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13200 dev->mode_config.cursor_height = 1023;
13201 } else if (IS_GEN2(dev)) {
068be561
DL
13202 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13203 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13204 } else {
13205 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13206 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13207 }
13208
5d4545ae 13209 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13210
28c97730 13211 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13212 INTEL_INFO(dev)->num_pipes,
13213 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13214
055e393f 13215 for_each_pipe(dev_priv, pipe) {
8cc87b75 13216 intel_crtc_init(dev, pipe);
1fe47785
DL
13217 for_each_sprite(pipe, sprite) {
13218 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13219 if (ret)
06da8da2 13220 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13221 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13222 }
79e53945
JB
13223 }
13224
f42bb70d
JB
13225 intel_init_dpio(dev);
13226
e72f9fbf 13227 intel_shared_dpll_init(dev);
ee7b9f93 13228
9cce37f4
JB
13229 /* Just disable it once at startup */
13230 i915_disable_vga(dev);
79e53945 13231 intel_setup_outputs(dev);
11be49eb
CW
13232
13233 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 13234 intel_fbc_disable(dev);
fa9fa083 13235
6e9f798d 13236 drm_modeset_lock_all(dev);
fa9fa083 13237 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13238 drm_modeset_unlock_all(dev);
46f297fb 13239
d3fcc808 13240 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13241 if (!crtc->active)
13242 continue;
13243
46f297fb 13244 /*
46f297fb
JB
13245 * Note that reserving the BIOS fb up front prevents us
13246 * from stuffing other stolen allocations like the ring
13247 * on top. This prevents some ugliness at boot time, and
13248 * can even allow for smooth boot transitions if the BIOS
13249 * fb is large enough for the active pipe configuration.
13250 */
5724dbd1
DL
13251 if (dev_priv->display.get_initial_plane_config) {
13252 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
13253 &crtc->plane_config);
13254 /*
13255 * If the fb is shared between multiple heads, we'll
13256 * just get the first one.
13257 */
484b41dd 13258 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 13259 }
46f297fb 13260 }
2c7111db
CW
13261}
13262
7fad798e
DV
13263static void intel_enable_pipe_a(struct drm_device *dev)
13264{
13265 struct intel_connector *connector;
13266 struct drm_connector *crt = NULL;
13267 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13268 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13269
13270 /* We can't just switch on the pipe A, we need to set things up with a
13271 * proper mode and output configuration. As a gross hack, enable pipe A
13272 * by enabling the load detect pipe once. */
13273 list_for_each_entry(connector,
13274 &dev->mode_config.connector_list,
13275 base.head) {
13276 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13277 crt = &connector->base;
13278 break;
13279 }
13280 }
13281
13282 if (!crt)
13283 return;
13284
208bf9fd
VS
13285 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13286 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13287}
13288
fa555837
DV
13289static bool
13290intel_check_plane_mapping(struct intel_crtc *crtc)
13291{
7eb552ae
BW
13292 struct drm_device *dev = crtc->base.dev;
13293 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13294 u32 reg, val;
13295
7eb552ae 13296 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13297 return true;
13298
13299 reg = DSPCNTR(!crtc->plane);
13300 val = I915_READ(reg);
13301
13302 if ((val & DISPLAY_PLANE_ENABLE) &&
13303 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13304 return false;
13305
13306 return true;
13307}
13308
24929352
DV
13309static void intel_sanitize_crtc(struct intel_crtc *crtc)
13310{
13311 struct drm_device *dev = crtc->base.dev;
13312 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13313 u32 reg;
24929352 13314
24929352 13315 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 13316 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
13317 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13318
d3eaf884 13319 /* restore vblank interrupts to correct state */
d297e103
VS
13320 if (crtc->active) {
13321 update_scanline_offset(crtc);
d3eaf884 13322 drm_vblank_on(dev, crtc->pipe);
d297e103 13323 } else
d3eaf884
VS
13324 drm_vblank_off(dev, crtc->pipe);
13325
24929352 13326 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13327 * disable the crtc (and hence change the state) if it is wrong. Note
13328 * that gen4+ has a fixed plane -> pipe mapping. */
13329 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13330 struct intel_connector *connector;
13331 bool plane;
13332
24929352
DV
13333 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13334 crtc->base.base.id);
13335
13336 /* Pipe has the wrong plane attached and the plane is active.
13337 * Temporarily change the plane mapping and disable everything
13338 * ... */
13339 plane = crtc->plane;
13340 crtc->plane = !plane;
9c8958bc 13341 crtc->primary_enabled = true;
24929352
DV
13342 dev_priv->display.crtc_disable(&crtc->base);
13343 crtc->plane = plane;
13344
13345 /* ... and break all links. */
13346 list_for_each_entry(connector, &dev->mode_config.connector_list,
13347 base.head) {
13348 if (connector->encoder->base.crtc != &crtc->base)
13349 continue;
13350
7f1950fb
EE
13351 connector->base.dpms = DRM_MODE_DPMS_OFF;
13352 connector->base.encoder = NULL;
24929352 13353 }
7f1950fb
EE
13354 /* multiple connectors may have the same encoder:
13355 * handle them and break crtc link separately */
13356 list_for_each_entry(connector, &dev->mode_config.connector_list,
13357 base.head)
13358 if (connector->encoder->base.crtc == &crtc->base) {
13359 connector->encoder->base.crtc = NULL;
13360 connector->encoder->connectors_active = false;
13361 }
24929352
DV
13362
13363 WARN_ON(crtc->active);
13364 crtc->base.enabled = false;
13365 }
24929352 13366
7fad798e
DV
13367 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13368 crtc->pipe == PIPE_A && !crtc->active) {
13369 /* BIOS forgot to enable pipe A, this mostly happens after
13370 * resume. Force-enable the pipe to fix this, the update_dpms
13371 * call below we restore the pipe to the right state, but leave
13372 * the required bits on. */
13373 intel_enable_pipe_a(dev);
13374 }
13375
24929352
DV
13376 /* Adjust the state of the output pipe according to whether we
13377 * have active connectors/encoders. */
13378 intel_crtc_update_dpms(&crtc->base);
13379
13380 if (crtc->active != crtc->base.enabled) {
13381 struct intel_encoder *encoder;
13382
13383 /* This can happen either due to bugs in the get_hw_state
13384 * functions or because the pipe is force-enabled due to the
13385 * pipe A quirk. */
13386 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13387 crtc->base.base.id,
13388 crtc->base.enabled ? "enabled" : "disabled",
13389 crtc->active ? "enabled" : "disabled");
13390
13391 crtc->base.enabled = crtc->active;
13392
13393 /* Because we only establish the connector -> encoder ->
13394 * crtc links if something is active, this means the
13395 * crtc is now deactivated. Break the links. connector
13396 * -> encoder links are only establish when things are
13397 * actually up, hence no need to break them. */
13398 WARN_ON(crtc->active);
13399
13400 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13401 WARN_ON(encoder->connectors_active);
13402 encoder->base.crtc = NULL;
13403 }
13404 }
c5ab3bc0 13405
a3ed6aad 13406 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13407 /*
13408 * We start out with underrun reporting disabled to avoid races.
13409 * For correct bookkeeping mark this on active crtcs.
13410 *
c5ab3bc0
DV
13411 * Also on gmch platforms we dont have any hardware bits to
13412 * disable the underrun reporting. Which means we need to start
13413 * out with underrun reporting disabled also on inactive pipes,
13414 * since otherwise we'll complain about the garbage we read when
13415 * e.g. coming up after runtime pm.
13416 *
4cc31489
DV
13417 * No protection against concurrent access is required - at
13418 * worst a fifo underrun happens which also sets this to false.
13419 */
13420 crtc->cpu_fifo_underrun_disabled = true;
13421 crtc->pch_fifo_underrun_disabled = true;
13422 }
24929352
DV
13423}
13424
13425static void intel_sanitize_encoder(struct intel_encoder *encoder)
13426{
13427 struct intel_connector *connector;
13428 struct drm_device *dev = encoder->base.dev;
13429
13430 /* We need to check both for a crtc link (meaning that the
13431 * encoder is active and trying to read from a pipe) and the
13432 * pipe itself being active. */
13433 bool has_active_crtc = encoder->base.crtc &&
13434 to_intel_crtc(encoder->base.crtc)->active;
13435
13436 if (encoder->connectors_active && !has_active_crtc) {
13437 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13438 encoder->base.base.id,
8e329a03 13439 encoder->base.name);
24929352
DV
13440
13441 /* Connector is active, but has no active pipe. This is
13442 * fallout from our resume register restoring. Disable
13443 * the encoder manually again. */
13444 if (encoder->base.crtc) {
13445 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13446 encoder->base.base.id,
8e329a03 13447 encoder->base.name);
24929352 13448 encoder->disable(encoder);
a62d1497
VS
13449 if (encoder->post_disable)
13450 encoder->post_disable(encoder);
24929352 13451 }
7f1950fb
EE
13452 encoder->base.crtc = NULL;
13453 encoder->connectors_active = false;
24929352
DV
13454
13455 /* Inconsistent output/port/pipe state happens presumably due to
13456 * a bug in one of the get_hw_state functions. Or someplace else
13457 * in our code, like the register restore mess on resume. Clamp
13458 * things to off as a safer default. */
13459 list_for_each_entry(connector,
13460 &dev->mode_config.connector_list,
13461 base.head) {
13462 if (connector->encoder != encoder)
13463 continue;
7f1950fb
EE
13464 connector->base.dpms = DRM_MODE_DPMS_OFF;
13465 connector->base.encoder = NULL;
24929352
DV
13466 }
13467 }
13468 /* Enabled encoders without active connectors will be fixed in
13469 * the crtc fixup. */
13470}
13471
04098753 13472void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13473{
13474 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13475 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13476
04098753
ID
13477 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13478 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13479 i915_disable_vga(dev);
13480 }
13481}
13482
13483void i915_redisable_vga(struct drm_device *dev)
13484{
13485 struct drm_i915_private *dev_priv = dev->dev_private;
13486
8dc8a27c
PZ
13487 /* This function can be called both from intel_modeset_setup_hw_state or
13488 * at a very early point in our resume sequence, where the power well
13489 * structures are not yet restored. Since this function is at a very
13490 * paranoid "someone might have enabled VGA while we were not looking"
13491 * level, just check if the power well is enabled instead of trying to
13492 * follow the "don't touch the power well if we don't need it" policy
13493 * the rest of the driver uses. */
f458ebbc 13494 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13495 return;
13496
04098753 13497 i915_redisable_vga_power_on(dev);
0fde901f
KM
13498}
13499
98ec7739
VS
13500static bool primary_get_hw_state(struct intel_crtc *crtc)
13501{
13502 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13503
13504 if (!crtc->active)
13505 return false;
13506
13507 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13508}
13509
30e984df 13510static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13511{
13512 struct drm_i915_private *dev_priv = dev->dev_private;
13513 enum pipe pipe;
24929352
DV
13514 struct intel_crtc *crtc;
13515 struct intel_encoder *encoder;
13516 struct intel_connector *connector;
5358901f 13517 int i;
24929352 13518
d3fcc808 13519 for_each_intel_crtc(dev, crtc) {
6e3c9717 13520 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 13521
6e3c9717 13522 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 13523
0e8ffe1b 13524 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 13525 crtc->config);
24929352
DV
13526
13527 crtc->base.enabled = crtc->active;
98ec7739 13528 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13529
13530 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13531 crtc->base.base.id,
13532 crtc->active ? "enabled" : "disabled");
13533 }
13534
5358901f
DV
13535 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13536 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13537
3e369b76
ACO
13538 pll->on = pll->get_hw_state(dev_priv, pll,
13539 &pll->config.hw_state);
5358901f 13540 pll->active = 0;
3e369b76 13541 pll->config.crtc_mask = 0;
d3fcc808 13542 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 13543 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 13544 pll->active++;
3e369b76 13545 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 13546 }
5358901f 13547 }
5358901f 13548
1e6f2ddc 13549 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 13550 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 13551
3e369b76 13552 if (pll->config.crtc_mask)
bd2bb1b9 13553 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13554 }
13555
b2784e15 13556 for_each_intel_encoder(dev, encoder) {
24929352
DV
13557 pipe = 0;
13558
13559 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13560 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13561 encoder->base.crtc = &crtc->base;
6e3c9717 13562 encoder->get_config(encoder, crtc->config);
24929352
DV
13563 } else {
13564 encoder->base.crtc = NULL;
13565 }
13566
13567 encoder->connectors_active = false;
6f2bcceb 13568 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13569 encoder->base.base.id,
8e329a03 13570 encoder->base.name,
24929352 13571 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13572 pipe_name(pipe));
24929352
DV
13573 }
13574
13575 list_for_each_entry(connector, &dev->mode_config.connector_list,
13576 base.head) {
13577 if (connector->get_hw_state(connector)) {
13578 connector->base.dpms = DRM_MODE_DPMS_ON;
13579 connector->encoder->connectors_active = true;
13580 connector->base.encoder = &connector->encoder->base;
13581 } else {
13582 connector->base.dpms = DRM_MODE_DPMS_OFF;
13583 connector->base.encoder = NULL;
13584 }
13585 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13586 connector->base.base.id,
c23cc417 13587 connector->base.name,
24929352
DV
13588 connector->base.encoder ? "enabled" : "disabled");
13589 }
30e984df
DV
13590}
13591
13592/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13593 * and i915 state tracking structures. */
13594void intel_modeset_setup_hw_state(struct drm_device *dev,
13595 bool force_restore)
13596{
13597 struct drm_i915_private *dev_priv = dev->dev_private;
13598 enum pipe pipe;
30e984df
DV
13599 struct intel_crtc *crtc;
13600 struct intel_encoder *encoder;
35c95375 13601 int i;
30e984df
DV
13602
13603 intel_modeset_readout_hw_state(dev);
24929352 13604
babea61d
JB
13605 /*
13606 * Now that we have the config, copy it to each CRTC struct
13607 * Note that this could go away if we move to using crtc_config
13608 * checking everywhere.
13609 */
d3fcc808 13610 for_each_intel_crtc(dev, crtc) {
d330a953 13611 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
13612 intel_mode_from_pipe_config(&crtc->base.mode,
13613 crtc->config);
babea61d
JB
13614 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13615 crtc->base.base.id);
13616 drm_mode_debug_printmodeline(&crtc->base.mode);
13617 }
13618 }
13619
24929352 13620 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13621 for_each_intel_encoder(dev, encoder) {
24929352
DV
13622 intel_sanitize_encoder(encoder);
13623 }
13624
055e393f 13625 for_each_pipe(dev_priv, pipe) {
24929352
DV
13626 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13627 intel_sanitize_crtc(crtc);
6e3c9717
ACO
13628 intel_dump_pipe_config(crtc, crtc->config,
13629 "[setup_hw_state]");
24929352 13630 }
9a935856 13631
35c95375
DV
13632 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13633 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13634
13635 if (!pll->on || pll->active)
13636 continue;
13637
13638 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13639
13640 pll->disable(dev_priv, pll);
13641 pll->on = false;
13642 }
13643
3078999f
PB
13644 if (IS_GEN9(dev))
13645 skl_wm_get_hw_state(dev);
13646 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13647 ilk_wm_get_hw_state(dev);
13648
45e2b5f6 13649 if (force_restore) {
7d0bc1ea
VS
13650 i915_redisable_vga(dev);
13651
f30da187
DV
13652 /*
13653 * We need to use raw interfaces for restoring state to avoid
13654 * checking (bogus) intermediate states.
13655 */
055e393f 13656 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13657 struct drm_crtc *crtc =
13658 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 13659
7f27126e
JB
13660 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13661 crtc->primary->fb);
45e2b5f6
DV
13662 }
13663 } else {
13664 intel_modeset_update_staged_output_state(dev);
13665 }
8af6cf88
DV
13666
13667 intel_modeset_check_state(dev);
2c7111db
CW
13668}
13669
13670void intel_modeset_gem_init(struct drm_device *dev)
13671{
92122789 13672 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 13673 struct drm_crtc *c;
2ff8fde1 13674 struct drm_i915_gem_object *obj;
484b41dd 13675
ae48434c
ID
13676 mutex_lock(&dev->struct_mutex);
13677 intel_init_gt_powersave(dev);
13678 mutex_unlock(&dev->struct_mutex);
13679
92122789
JB
13680 /*
13681 * There may be no VBT; and if the BIOS enabled SSC we can
13682 * just keep using it to avoid unnecessary flicker. Whereas if the
13683 * BIOS isn't using it, don't assume it will work even if the VBT
13684 * indicates as much.
13685 */
13686 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13687 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13688 DREF_SSC1_ENABLE);
13689
1833b134 13690 intel_modeset_init_hw(dev);
02e792fb
DV
13691
13692 intel_setup_overlay(dev);
484b41dd
JB
13693
13694 /*
13695 * Make sure any fbs we allocated at startup are properly
13696 * pinned & fenced. When we do the allocation it's too early
13697 * for this.
13698 */
13699 mutex_lock(&dev->struct_mutex);
70e1e0ec 13700 for_each_crtc(dev, c) {
2ff8fde1
MR
13701 obj = intel_fb_obj(c->primary->fb);
13702 if (obj == NULL)
484b41dd
JB
13703 continue;
13704
850c4cdc
TU
13705 if (intel_pin_and_fence_fb_obj(c->primary,
13706 c->primary->fb,
13707 NULL)) {
484b41dd
JB
13708 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13709 to_intel_crtc(c)->pipe);
66e514c1
DA
13710 drm_framebuffer_unreference(c->primary->fb);
13711 c->primary->fb = NULL;
484b41dd
JB
13712 }
13713 }
13714 mutex_unlock(&dev->struct_mutex);
0962c3c9
VS
13715
13716 intel_backlight_register(dev);
79e53945
JB
13717}
13718
4932e2c3
ID
13719void intel_connector_unregister(struct intel_connector *intel_connector)
13720{
13721 struct drm_connector *connector = &intel_connector->base;
13722
13723 intel_panel_destroy_backlight(connector);
34ea3d38 13724 drm_connector_unregister(connector);
4932e2c3
ID
13725}
13726
79e53945
JB
13727void intel_modeset_cleanup(struct drm_device *dev)
13728{
652c393a 13729 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13730 struct drm_connector *connector;
652c393a 13731
2eb5252e
ID
13732 intel_disable_gt_powersave(dev);
13733
0962c3c9
VS
13734 intel_backlight_unregister(dev);
13735
fd0c0642
DV
13736 /*
13737 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 13738 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
13739 * experience fancy races otherwise.
13740 */
2aeb7d3a 13741 intel_irq_uninstall(dev_priv);
eb21b92b 13742
fd0c0642
DV
13743 /*
13744 * Due to the hpd irq storm handling the hotplug work can re-arm the
13745 * poll handlers. Hence disable polling after hpd handling is shut down.
13746 */
f87ea761 13747 drm_kms_helper_poll_fini(dev);
fd0c0642 13748
652c393a
JB
13749 mutex_lock(&dev->struct_mutex);
13750
723bfd70
JB
13751 intel_unregister_dsm_handler();
13752
7ff0ebcc 13753 intel_fbc_disable(dev);
e70236a8 13754
930ebb46
DV
13755 ironlake_teardown_rc6(dev);
13756
69341a5e
KH
13757 mutex_unlock(&dev->struct_mutex);
13758
1630fe75
CW
13759 /* flush any delayed tasks or pending work */
13760 flush_scheduled_work();
13761
db31af1d
JN
13762 /* destroy the backlight and sysfs files before encoders/connectors */
13763 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13764 struct intel_connector *intel_connector;
13765
13766 intel_connector = to_intel_connector(connector);
13767 intel_connector->unregister(intel_connector);
db31af1d 13768 }
d9255d57 13769
79e53945 13770 drm_mode_config_cleanup(dev);
4d7bb011
DV
13771
13772 intel_cleanup_overlay(dev);
ae48434c
ID
13773
13774 mutex_lock(&dev->struct_mutex);
13775 intel_cleanup_gt_powersave(dev);
13776 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13777}
13778
f1c79df3
ZW
13779/*
13780 * Return which encoder is currently attached for connector.
13781 */
df0e9248 13782struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13783{
df0e9248
CW
13784 return &intel_attached_encoder(connector)->base;
13785}
f1c79df3 13786
df0e9248
CW
13787void intel_connector_attach_encoder(struct intel_connector *connector,
13788 struct intel_encoder *encoder)
13789{
13790 connector->encoder = encoder;
13791 drm_mode_connector_attach_encoder(&connector->base,
13792 &encoder->base);
79e53945 13793}
28d52043
DA
13794
13795/*
13796 * set vga decode state - true == enable VGA decode
13797 */
13798int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13799{
13800 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13801 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13802 u16 gmch_ctrl;
13803
75fa041d
CW
13804 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13805 DRM_ERROR("failed to read control word\n");
13806 return -EIO;
13807 }
13808
c0cc8a55
CW
13809 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13810 return 0;
13811
28d52043
DA
13812 if (state)
13813 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13814 else
13815 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13816
13817 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13818 DRM_ERROR("failed to write control word\n");
13819 return -EIO;
13820 }
13821
28d52043
DA
13822 return 0;
13823}
c4a1d9e4 13824
c4a1d9e4 13825struct intel_display_error_state {
ff57f1b0
PZ
13826
13827 u32 power_well_driver;
13828
63b66e5b
CW
13829 int num_transcoders;
13830
c4a1d9e4
CW
13831 struct intel_cursor_error_state {
13832 u32 control;
13833 u32 position;
13834 u32 base;
13835 u32 size;
52331309 13836 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13837
13838 struct intel_pipe_error_state {
ddf9c536 13839 bool power_domain_on;
c4a1d9e4 13840 u32 source;
f301b1e1 13841 u32 stat;
52331309 13842 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13843
13844 struct intel_plane_error_state {
13845 u32 control;
13846 u32 stride;
13847 u32 size;
13848 u32 pos;
13849 u32 addr;
13850 u32 surface;
13851 u32 tile_offset;
52331309 13852 } plane[I915_MAX_PIPES];
63b66e5b
CW
13853
13854 struct intel_transcoder_error_state {
ddf9c536 13855 bool power_domain_on;
63b66e5b
CW
13856 enum transcoder cpu_transcoder;
13857
13858 u32 conf;
13859
13860 u32 htotal;
13861 u32 hblank;
13862 u32 hsync;
13863 u32 vtotal;
13864 u32 vblank;
13865 u32 vsync;
13866 } transcoder[4];
c4a1d9e4
CW
13867};
13868
13869struct intel_display_error_state *
13870intel_display_capture_error_state(struct drm_device *dev)
13871{
fbee40df 13872 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13873 struct intel_display_error_state *error;
63b66e5b
CW
13874 int transcoders[] = {
13875 TRANSCODER_A,
13876 TRANSCODER_B,
13877 TRANSCODER_C,
13878 TRANSCODER_EDP,
13879 };
c4a1d9e4
CW
13880 int i;
13881
63b66e5b
CW
13882 if (INTEL_INFO(dev)->num_pipes == 0)
13883 return NULL;
13884
9d1cb914 13885 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13886 if (error == NULL)
13887 return NULL;
13888
190be112 13889 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13890 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13891
055e393f 13892 for_each_pipe(dev_priv, i) {
ddf9c536 13893 error->pipe[i].power_domain_on =
f458ebbc
DV
13894 __intel_display_power_is_enabled(dev_priv,
13895 POWER_DOMAIN_PIPE(i));
ddf9c536 13896 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13897 continue;
13898
5efb3e28
VS
13899 error->cursor[i].control = I915_READ(CURCNTR(i));
13900 error->cursor[i].position = I915_READ(CURPOS(i));
13901 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13902
13903 error->plane[i].control = I915_READ(DSPCNTR(i));
13904 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13905 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13906 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13907 error->plane[i].pos = I915_READ(DSPPOS(i));
13908 }
ca291363
PZ
13909 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13910 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13911 if (INTEL_INFO(dev)->gen >= 4) {
13912 error->plane[i].surface = I915_READ(DSPSURF(i));
13913 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13914 }
13915
c4a1d9e4 13916 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13917
3abfce77 13918 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13919 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13920 }
13921
13922 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13923 if (HAS_DDI(dev_priv->dev))
13924 error->num_transcoders++; /* Account for eDP. */
13925
13926 for (i = 0; i < error->num_transcoders; i++) {
13927 enum transcoder cpu_transcoder = transcoders[i];
13928
ddf9c536 13929 error->transcoder[i].power_domain_on =
f458ebbc 13930 __intel_display_power_is_enabled(dev_priv,
38cc1daf 13931 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13932 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13933 continue;
13934
63b66e5b
CW
13935 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13936
13937 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13938 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13939 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13940 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13941 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13942 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13943 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13944 }
13945
13946 return error;
13947}
13948
edc3d884
MK
13949#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13950
c4a1d9e4 13951void
edc3d884 13952intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13953 struct drm_device *dev,
13954 struct intel_display_error_state *error)
13955{
055e393f 13956 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13957 int i;
13958
63b66e5b
CW
13959 if (!error)
13960 return;
13961
edc3d884 13962 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13963 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13964 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13965 error->power_well_driver);
055e393f 13966 for_each_pipe(dev_priv, i) {
edc3d884 13967 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13968 err_printf(m, " Power: %s\n",
13969 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13970 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13971 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13972
13973 err_printf(m, "Plane [%d]:\n", i);
13974 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13975 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13976 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13977 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13978 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13979 }
4b71a570 13980 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13981 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13982 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13983 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13984 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13985 }
13986
edc3d884
MK
13987 err_printf(m, "Cursor [%d]:\n", i);
13988 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13989 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13990 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13991 }
63b66e5b
CW
13992
13993 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13994 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13995 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13996 err_printf(m, " Power: %s\n",
13997 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13998 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13999 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14000 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14001 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14002 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14003 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14004 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14005 }
c4a1d9e4 14006}
e2fcdaa9
VS
14007
14008void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14009{
14010 struct intel_crtc *crtc;
14011
14012 for_each_intel_crtc(dev, crtc) {
14013 struct intel_unpin_work *work;
e2fcdaa9 14014
5e2d7afc 14015 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
14016
14017 work = crtc->unpin_work;
14018
14019 if (work && work->event &&
14020 work->event->base.file_priv == file) {
14021 kfree(work->event);
14022 work->event = NULL;
14023 }
14024
5e2d7afc 14025 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
14026 }
14027}
This page took 2.697809 seconds and 5 git commands to generate.