drm/i915: remove Haswell/LPT bits from ironlake_pch_enable
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 47static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 48static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
49
50typedef struct {
0206e353
AJ
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
79e53945
JB
60} intel_clock_t;
61
62typedef struct {
0206e353 63 int min, max;
79e53945
JB
64} intel_range_t;
65
66typedef struct {
0206e353
AJ
67 int dot_limit;
68 int p2_slow, p2_fast;
79e53945
JB
69} intel_p2_t;
70
71#define INTEL_P2_NUM 2
d4906093
ML
72typedef struct intel_limit intel_limit_t;
73struct intel_limit {
0206e353
AJ
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 77 int, int, intel_clock_t *, intel_clock_t *);
d4906093 78};
79e53945 79
2377b741
JB
80/* FDI */
81#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
d2acd215
DV
83int
84intel_pch_rawclk(struct drm_device *dev)
85{
86 struct drm_i915_private *dev_priv = dev->dev_private;
87
88 WARN_ON(!HAS_PCH_SPLIT(dev));
89
90 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
91}
92
d4906093
ML
93static bool
94intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
d4906093
ML
97static bool
98intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
79e53945 101
a4fc5ed6
KP
102static bool
103intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
104 int target, int refclk, intel_clock_t *match_clock,
105 intel_clock_t *best_clock);
5eb08b69 106static bool
f2b115e6 107intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
108 int target, int refclk, intel_clock_t *match_clock,
109 intel_clock_t *best_clock);
a4fc5ed6 110
a0c4da24
JB
111static bool
112intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
115
021357ac
CW
116static inline u32 /* units of 100MHz */
117intel_fdi_link_freq(struct drm_device *dev)
118{
8b99e68c
CW
119 if (IS_GEN5(dev)) {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122 } else
123 return 27;
021357ac
CW
124}
125
e4b36699 126static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 4, .p2_fast = 2 },
d4906093 137 .find_pll = intel_find_best_PLL,
e4b36699
KP
138};
139
140static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 14, .p2_fast = 7 },
d4906093 151 .find_pll = intel_find_best_PLL,
e4b36699 152};
273e27ca 153
e4b36699 154static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 5, .max = 80 },
162 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
163 .p2 = { .dot_limit = 200000,
164 .p2_slow = 10, .p2_fast = 5 },
d4906093 165 .find_pll = intel_find_best_PLL,
e4b36699
KP
166};
167
168static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 10, .max = 22 },
174 .m2 = { .min = 5, .max = 9 },
175 .p = { .min = 7, .max = 98 },
176 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
177 .p2 = { .dot_limit = 112000,
178 .p2_slow = 14, .p2_fast = 7 },
d4906093 179 .find_pll = intel_find_best_PLL,
e4b36699
KP
180};
181
273e27ca 182
e4b36699 183static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
184 .dot = { .min = 25000, .max = 270000 },
185 .vco = { .min = 1750000, .max = 3500000},
186 .n = { .min = 1, .max = 4 },
187 .m = { .min = 104, .max = 138 },
188 .m1 = { .min = 17, .max = 23 },
189 .m2 = { .min = 5, .max = 11 },
190 .p = { .min = 10, .max = 30 },
191 .p1 = { .min = 1, .max = 3},
192 .p2 = { .dot_limit = 270000,
193 .p2_slow = 10,
194 .p2_fast = 10
044c7c41 195 },
d4906093 196 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
197};
198
199static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
200 .dot = { .min = 22000, .max = 400000 },
201 .vco = { .min = 1750000, .max = 3500000},
202 .n = { .min = 1, .max = 4 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 16, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 5, .max = 80 },
207 .p1 = { .min = 1, .max = 8},
208 .p2 = { .dot_limit = 165000,
209 .p2_slow = 10, .p2_fast = 5 },
d4906093 210 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
211};
212
213static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
214 .dot = { .min = 20000, .max = 115000 },
215 .vco = { .min = 1750000, .max = 3500000 },
216 .n = { .min = 1, .max = 3 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 28, .max = 112 },
221 .p1 = { .min = 2, .max = 8 },
222 .p2 = { .dot_limit = 0,
223 .p2_slow = 14, .p2_fast = 14
044c7c41 224 },
d4906093 225 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
226};
227
228static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
229 .dot = { .min = 80000, .max = 224000 },
230 .vco = { .min = 1750000, .max = 3500000 },
231 .n = { .min = 1, .max = 3 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 17, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 14, .max = 42 },
236 .p1 = { .min = 2, .max = 6 },
237 .p2 = { .dot_limit = 0,
238 .p2_slow = 7, .p2_fast = 7
044c7c41 239 },
d4906093 240 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
241};
242
243static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
244 .dot = { .min = 161670, .max = 227000 },
245 .vco = { .min = 1750000, .max = 3500000},
246 .n = { .min = 1, .max = 2 },
247 .m = { .min = 97, .max = 108 },
248 .m1 = { .min = 0x10, .max = 0x12 },
249 .m2 = { .min = 0x05, .max = 0x06 },
250 .p = { .min = 10, .max = 20 },
251 .p1 = { .min = 1, .max = 2},
252 .p2 = { .dot_limit = 0,
273e27ca 253 .p2_slow = 10, .p2_fast = 10 },
0206e353 254 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
255};
256
f2b115e6 257static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
258 .dot = { .min = 20000, .max = 400000},
259 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 260 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
261 .n = { .min = 3, .max = 6 },
262 .m = { .min = 2, .max = 256 },
273e27ca 263 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 5, .max = 80 },
267 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
268 .p2 = { .dot_limit = 200000,
269 .p2_slow = 10, .p2_fast = 5 },
6115707b 270 .find_pll = intel_find_best_PLL,
e4b36699
KP
271};
272
f2b115e6 273static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
274 .dot = { .min = 20000, .max = 400000 },
275 .vco = { .min = 1700000, .max = 3500000 },
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 7, .max = 112 },
281 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
282 .p2 = { .dot_limit = 112000,
283 .p2_slow = 14, .p2_fast = 14 },
6115707b 284 .find_pll = intel_find_best_PLL,
e4b36699
KP
285};
286
273e27ca
EA
287/* Ironlake / Sandybridge
288 *
289 * We calculate clock using (register_value + 2) for N/M1/M2, so here
290 * the range value for them is (actual_value - 2).
291 */
b91ad0ec 292static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 5 },
296 .m = { .min = 79, .max = 127 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 5, .max = 80 },
300 .p1 = { .min = 1, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 10, .p2_fast = 5 },
4547668a 303 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
304};
305
b91ad0ec 306static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 118 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 28, .max = 112 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
317 .find_pll = intel_g4x_find_best_PLL,
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331 .find_pll = intel_g4x_find_best_PLL,
332};
333
273e27ca 334/* LVDS 100mhz refclk limits. */
b91ad0ec 335static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 2 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 28, .max = 112 },
0206e353 343 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
346 .find_pll = intel_g4x_find_best_PLL,
347};
348
349static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 3 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 14, .max = 42 },
0206e353 357 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
360 .find_pll = intel_g4x_find_best_PLL,
361};
362
363static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000},
366 .n = { .min = 1, .max = 2 },
367 .m = { .min = 81, .max = 90 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 10, .max = 20 },
371 .p1 = { .min = 1, .max = 2},
372 .p2 = { .dot_limit = 0,
273e27ca 373 .p2_slow = 10, .p2_fast = 10 },
0206e353 374 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
375};
376
a0c4da24
JB
377static const intel_limit_t intel_limits_vlv_dac = {
378 .dot = { .min = 25000, .max = 270000 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m = { .min = 22, .max = 450 }, /* guess */
382 .m1 = { .min = 2, .max = 3 },
383 .m2 = { .min = 11, .max = 156 },
384 .p = { .min = 10, .max = 30 },
385 .p1 = { .min = 2, .max = 3 },
386 .p2 = { .dot_limit = 270000,
387 .p2_slow = 2, .p2_fast = 20 },
388 .find_pll = intel_vlv_find_best_pll,
389};
390
391static const intel_limit_t intel_limits_vlv_hdmi = {
392 .dot = { .min = 20000, .max = 165000 },
17dc9257 393 .vco = { .min = 4000000, .max = 5994000},
a0c4da24
JB
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 60, .max = 300 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
403};
404
405static const intel_limit_t intel_limits_vlv_dp = {
74a4dd2e
VP
406 .dot = { .min = 25000, .max = 270000 },
407 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 408 .n = { .min = 1, .max = 7 },
74a4dd2e 409 .m = { .min = 22, .max = 450 },
a0c4da24
JB
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
417};
418
57f350b6
JB
419u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
420{
421 unsigned long flags;
422 u32 val = 0;
423
424 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426 DRM_ERROR("DPIO idle wait timed out\n");
427 goto out_unlock;
428 }
429
430 I915_WRITE(DPIO_REG, reg);
431 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432 DPIO_BYTE);
433 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434 DRM_ERROR("DPIO read wait timed out\n");
435 goto out_unlock;
436 }
437 val = I915_READ(DPIO_DATA);
438
439out_unlock:
440 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441 return val;
442}
443
a0c4da24
JB
444static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445 u32 val)
446{
447 unsigned long flags;
448
449 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451 DRM_ERROR("DPIO idle wait timed out\n");
452 goto out_unlock;
453 }
454
455 I915_WRITE(DPIO_DATA, val);
456 I915_WRITE(DPIO_REG, reg);
457 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458 DPIO_BYTE);
459 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460 DRM_ERROR("DPIO write wait timed out\n");
461
462out_unlock:
463 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
464}
465
57f350b6
JB
466static void vlv_init_dpio(struct drm_device *dev)
467{
468 struct drm_i915_private *dev_priv = dev->dev_private;
469
470 /* Reset the DPIO config */
471 I915_WRITE(DPIO_CTL, 0);
472 POSTING_READ(DPIO_CTL);
473 I915_WRITE(DPIO_CTL, 1);
474 POSTING_READ(DPIO_CTL);
475}
476
618563e3
DV
477static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
478{
479 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480 return 1;
481}
482
483static const struct dmi_system_id intel_dual_link_lvds[] = {
484 {
485 .callback = intel_dual_link_lvds_callback,
486 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487 .matches = {
488 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
490 },
491 },
492 { } /* terminating entry */
493};
494
b0354385
TI
495static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496 unsigned int reg)
497{
498 unsigned int val;
499
121d527a
TI
500 /* use the module option value if specified */
501 if (i915_lvds_channel_mode > 0)
502 return i915_lvds_channel_mode == 2;
503
618563e3
DV
504 if (dmi_check_system(intel_dual_link_lvds))
505 return true;
506
b0354385
TI
507 if (dev_priv->lvds_val)
508 val = dev_priv->lvds_val;
509 else {
510 /* BIOS should set the proper LVDS register value at boot, but
511 * in reality, it doesn't set the value when the lid is closed;
512 * we need to check "the value to be set" in VBT when LVDS
513 * register is uninitialized.
514 */
515 val = I915_READ(reg);
14d94a3d 516 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
b0354385
TI
517 val = dev_priv->bios_lvds_val;
518 dev_priv->lvds_val = val;
519 }
520 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
521}
522
1b894b59
CW
523static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524 int refclk)
2c07245f 525{
b91ad0ec
ZW
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 528 const intel_limit_t *limit;
b91ad0ec
ZW
529
530 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 531 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
b91ad0ec 532 /* LVDS dual channel */
1b894b59 533 if (refclk == 100000)
b91ad0ec
ZW
534 limit = &intel_limits_ironlake_dual_lvds_100m;
535 else
536 limit = &intel_limits_ironlake_dual_lvds;
537 } else {
1b894b59 538 if (refclk == 100000)
b91ad0ec
ZW
539 limit = &intel_limits_ironlake_single_lvds_100m;
540 else
541 limit = &intel_limits_ironlake_single_lvds;
542 }
543 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
544 HAS_eDP)
545 limit = &intel_limits_ironlake_display_port;
2c07245f 546 else
b91ad0ec 547 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
548
549 return limit;
550}
551
044c7c41
ML
552static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
553{
554 struct drm_device *dev = crtc->dev;
555 struct drm_i915_private *dev_priv = dev->dev_private;
556 const intel_limit_t *limit;
557
558 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 559 if (is_dual_link_lvds(dev_priv, LVDS))
044c7c41 560 /* LVDS with dual channel */
e4b36699 561 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
562 else
563 /* LVDS with dual channel */
e4b36699 564 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
565 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 567 limit = &intel_limits_g4x_hdmi;
044c7c41 568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 569 limit = &intel_limits_g4x_sdvo;
0206e353 570 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 571 limit = &intel_limits_g4x_display_port;
044c7c41 572 } else /* The option is for other outputs */
e4b36699 573 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
574
575 return limit;
576}
577
1b894b59 578static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
579{
580 struct drm_device *dev = crtc->dev;
581 const intel_limit_t *limit;
582
bad720ff 583 if (HAS_PCH_SPLIT(dev))
1b894b59 584 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 585 else if (IS_G4X(dev)) {
044c7c41 586 limit = intel_g4x_limit(crtc);
f2b115e6 587 } else if (IS_PINEVIEW(dev)) {
2177832f 588 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 589 limit = &intel_limits_pineview_lvds;
2177832f 590 else
f2b115e6 591 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
592 } else if (IS_VALLEYVIEW(dev)) {
593 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594 limit = &intel_limits_vlv_dac;
595 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596 limit = &intel_limits_vlv_hdmi;
597 else
598 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
599 } else if (!IS_GEN2(dev)) {
600 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601 limit = &intel_limits_i9xx_lvds;
602 else
603 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
604 } else {
605 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 606 limit = &intel_limits_i8xx_lvds;
79e53945 607 else
e4b36699 608 limit = &intel_limits_i8xx_dvo;
79e53945
JB
609 }
610 return limit;
611}
612
f2b115e6
AJ
613/* m1 is reserved as 0 in Pineview, n is a ring counter */
614static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 615{
2177832f
SL
616 clock->m = clock->m2 + 2;
617 clock->p = clock->p1 * clock->p2;
618 clock->vco = refclk * clock->m / clock->n;
619 clock->dot = clock->vco / clock->p;
620}
621
622static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
623{
f2b115e6
AJ
624 if (IS_PINEVIEW(dev)) {
625 pineview_clock(refclk, clock);
2177832f
SL
626 return;
627 }
79e53945
JB
628 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629 clock->p = clock->p1 * clock->p2;
630 clock->vco = refclk * clock->m / (clock->n + 2);
631 clock->dot = clock->vco / clock->p;
632}
633
79e53945
JB
634/**
635 * Returns whether any output on the specified pipe is of the specified type
636 */
4ef69c7a 637bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 638{
4ef69c7a 639 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
640 struct intel_encoder *encoder;
641
6c2b7c12
DV
642 for_each_encoder_on_crtc(dev, crtc, encoder)
643 if (encoder->type == type)
4ef69c7a
CW
644 return true;
645
646 return false;
79e53945
JB
647}
648
7c04d1d9 649#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
650/**
651 * Returns whether the given set of divisors are valid for a given refclk with
652 * the given connectors.
653 */
654
1b894b59
CW
655static bool intel_PLL_is_valid(struct drm_device *dev,
656 const intel_limit_t *limit,
657 const intel_clock_t *clock)
79e53945 658{
79e53945 659 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 660 INTELPllInvalid("p1 out of range\n");
79e53945 661 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 662 INTELPllInvalid("p out of range\n");
79e53945 663 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 664 INTELPllInvalid("m2 out of range\n");
79e53945 665 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 666 INTELPllInvalid("m1 out of range\n");
f2b115e6 667 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 668 INTELPllInvalid("m1 <= m2\n");
79e53945 669 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 670 INTELPllInvalid("m out of range\n");
79e53945 671 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 672 INTELPllInvalid("n out of range\n");
79e53945 673 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 674 INTELPllInvalid("vco out of range\n");
79e53945
JB
675 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676 * connector, etc., rather than just a single range.
677 */
678 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 679 INTELPllInvalid("dot out of range\n");
79e53945
JB
680
681 return true;
682}
683
d4906093
ML
684static bool
685intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
686 int target, int refclk, intel_clock_t *match_clock,
687 intel_clock_t *best_clock)
d4906093 688
79e53945
JB
689{
690 struct drm_device *dev = crtc->dev;
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 intel_clock_t clock;
79e53945
JB
693 int err = target;
694
bc5e5718 695 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 696 (I915_READ(LVDS)) != 0) {
79e53945
JB
697 /*
698 * For LVDS, if the panel is on, just rely on its current
699 * settings for dual-channel. We haven't figured out how to
700 * reliably set up different single/dual channel state, if we
701 * even can.
702 */
b0354385 703 if (is_dual_link_lvds(dev_priv, LVDS))
79e53945
JB
704 clock.p2 = limit->p2.p2_fast;
705 else
706 clock.p2 = limit->p2.p2_slow;
707 } else {
708 if (target < limit->p2.dot_limit)
709 clock.p2 = limit->p2.p2_slow;
710 else
711 clock.p2 = limit->p2.p2_fast;
712 }
713
0206e353 714 memset(best_clock, 0, sizeof(*best_clock));
79e53945 715
42158660
ZY
716 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717 clock.m1++) {
718 for (clock.m2 = limit->m2.min;
719 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
720 /* m1 is always 0 in Pineview */
721 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
722 break;
723 for (clock.n = limit->n.min;
724 clock.n <= limit->n.max; clock.n++) {
725 for (clock.p1 = limit->p1.min;
726 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
727 int this_err;
728
2177832f 729 intel_clock(dev, refclk, &clock);
1b894b59
CW
730 if (!intel_PLL_is_valid(dev, limit,
731 &clock))
79e53945 732 continue;
cec2f356
SP
733 if (match_clock &&
734 clock.p != match_clock->p)
735 continue;
79e53945
JB
736
737 this_err = abs(clock.dot - target);
738 if (this_err < err) {
739 *best_clock = clock;
740 err = this_err;
741 }
742 }
743 }
744 }
745 }
746
747 return (err != target);
748}
749
d4906093
ML
750static bool
751intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
752 int target, int refclk, intel_clock_t *match_clock,
753 intel_clock_t *best_clock)
d4906093
ML
754{
755 struct drm_device *dev = crtc->dev;
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 intel_clock_t clock;
758 int max_n;
759 bool found;
6ba770dc
AJ
760 /* approximately equals target * 0.00585 */
761 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
762 found = false;
763
764 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
765 int lvds_reg;
766
c619eed4 767 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
768 lvds_reg = PCH_LVDS;
769 else
770 lvds_reg = LVDS;
771 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
772 LVDS_CLKB_POWER_UP)
773 clock.p2 = limit->p2.p2_fast;
774 else
775 clock.p2 = limit->p2.p2_slow;
776 } else {
777 if (target < limit->p2.dot_limit)
778 clock.p2 = limit->p2.p2_slow;
779 else
780 clock.p2 = limit->p2.p2_fast;
781 }
782
783 memset(best_clock, 0, sizeof(*best_clock));
784 max_n = limit->n.max;
f77f13e2 785 /* based on hardware requirement, prefer smaller n to precision */
d4906093 786 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 787 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
788 for (clock.m1 = limit->m1.max;
789 clock.m1 >= limit->m1.min; clock.m1--) {
790 for (clock.m2 = limit->m2.max;
791 clock.m2 >= limit->m2.min; clock.m2--) {
792 for (clock.p1 = limit->p1.max;
793 clock.p1 >= limit->p1.min; clock.p1--) {
794 int this_err;
795
2177832f 796 intel_clock(dev, refclk, &clock);
1b894b59
CW
797 if (!intel_PLL_is_valid(dev, limit,
798 &clock))
d4906093 799 continue;
cec2f356
SP
800 if (match_clock &&
801 clock.p != match_clock->p)
802 continue;
1b894b59
CW
803
804 this_err = abs(clock.dot - target);
d4906093
ML
805 if (this_err < err_most) {
806 *best_clock = clock;
807 err_most = this_err;
808 max_n = clock.n;
809 found = true;
810 }
811 }
812 }
813 }
814 }
2c07245f
ZW
815 return found;
816}
817
5eb08b69 818static bool
f2b115e6 819intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
820 int target, int refclk, intel_clock_t *match_clock,
821 intel_clock_t *best_clock)
5eb08b69
ZW
822{
823 struct drm_device *dev = crtc->dev;
824 intel_clock_t clock;
4547668a 825
5eb08b69
ZW
826 if (target < 200000) {
827 clock.n = 1;
828 clock.p1 = 2;
829 clock.p2 = 10;
830 clock.m1 = 12;
831 clock.m2 = 9;
832 } else {
833 clock.n = 2;
834 clock.p1 = 1;
835 clock.p2 = 10;
836 clock.m1 = 14;
837 clock.m2 = 8;
838 }
839 intel_clock(dev, refclk, &clock);
840 memcpy(best_clock, &clock, sizeof(intel_clock_t));
841 return true;
842}
843
a4fc5ed6
KP
844/* DisplayPort has only two frequencies, 162MHz and 270MHz */
845static bool
846intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
a4fc5ed6 849{
5eddb70b
CW
850 intel_clock_t clock;
851 if (target < 200000) {
852 clock.p1 = 2;
853 clock.p2 = 10;
854 clock.n = 2;
855 clock.m1 = 23;
856 clock.m2 = 8;
857 } else {
858 clock.p1 = 1;
859 clock.p2 = 10;
860 clock.n = 1;
861 clock.m1 = 14;
862 clock.m2 = 2;
863 }
864 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865 clock.p = (clock.p1 * clock.p2);
866 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867 clock.vco = 0;
868 memcpy(best_clock, &clock, sizeof(intel_clock_t));
869 return true;
a4fc5ed6 870}
a0c4da24
JB
871static bool
872intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873 int target, int refclk, intel_clock_t *match_clock,
874 intel_clock_t *best_clock)
875{
876 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877 u32 m, n, fastclk;
878 u32 updrate, minupdate, fracbits, p;
879 unsigned long bestppm, ppm, absppm;
880 int dotclk, flag;
881
af447bd3 882 flag = 0;
a0c4da24
JB
883 dotclk = target * 1000;
884 bestppm = 1000000;
885 ppm = absppm = 0;
886 fastclk = dotclk / (2*100);
887 updrate = 0;
888 minupdate = 19200;
889 fracbits = 1;
890 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891 bestm1 = bestm2 = bestp1 = bestp2 = 0;
892
893 /* based on hardware requirement, prefer smaller n to precision */
894 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895 updrate = refclk / n;
896 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898 if (p2 > 10)
899 p2 = p2 - 1;
900 p = p1 * p2;
901 /* based on hardware requirement, prefer bigger m1,m2 values */
902 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903 m2 = (((2*(fastclk * p * n / m1 )) +
904 refclk) / (2*refclk));
905 m = m1 * m2;
906 vco = updrate * m;
907 if (vco >= limit->vco.min && vco < limit->vco.max) {
908 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909 absppm = (ppm > 0) ? ppm : (-ppm);
910 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911 bestppm = 0;
912 flag = 1;
913 }
914 if (absppm < bestppm - 10) {
915 bestppm = absppm;
916 flag = 1;
917 }
918 if (flag) {
919 bestn = n;
920 bestm1 = m1;
921 bestm2 = m2;
922 bestp1 = p1;
923 bestp2 = p2;
924 flag = 0;
925 }
926 }
927 }
928 }
929 }
930 }
931 best_clock->n = bestn;
932 best_clock->m1 = bestm1;
933 best_clock->m2 = bestm2;
934 best_clock->p1 = bestp1;
935 best_clock->p2 = bestp2;
936
937 return true;
938}
a4fc5ed6 939
a5c961d1
PZ
940enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941 enum pipe pipe)
942{
943 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
945
946 return intel_crtc->cpu_transcoder;
947}
948
a928d536
PZ
949static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
950{
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 frame, frame_reg = PIPEFRAME(pipe);
953
954 frame = I915_READ(frame_reg);
955
956 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957 DRM_DEBUG_KMS("vblank wait timed out\n");
958}
959
9d0498a2
JB
960/**
961 * intel_wait_for_vblank - wait for vblank on a given pipe
962 * @dev: drm device
963 * @pipe: pipe to wait for
964 *
965 * Wait for vblank to occur on a given pipe. Needed for various bits of
966 * mode setting code.
967 */
968void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 969{
9d0498a2 970 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 971 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 972
a928d536
PZ
973 if (INTEL_INFO(dev)->gen >= 5) {
974 ironlake_wait_for_vblank(dev, pipe);
975 return;
976 }
977
300387c0
CW
978 /* Clear existing vblank status. Note this will clear any other
979 * sticky status fields as well.
980 *
981 * This races with i915_driver_irq_handler() with the result
982 * that either function could miss a vblank event. Here it is not
983 * fatal, as we will either wait upon the next vblank interrupt or
984 * timeout. Generally speaking intel_wait_for_vblank() is only
985 * called during modeset at which time the GPU should be idle and
986 * should *not* be performing page flips and thus not waiting on
987 * vblanks...
988 * Currently, the result of us stealing a vblank from the irq
989 * handler is that a single frame will be skipped during swapbuffers.
990 */
991 I915_WRITE(pipestat_reg,
992 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
993
9d0498a2 994 /* Wait for vblank interrupt bit to set */
481b6af3
CW
995 if (wait_for(I915_READ(pipestat_reg) &
996 PIPE_VBLANK_INTERRUPT_STATUS,
997 50))
9d0498a2
JB
998 DRM_DEBUG_KMS("vblank wait timed out\n");
999}
1000
ab7ad7f6
KP
1001/*
1002 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
1003 * @dev: drm device
1004 * @pipe: pipe to wait for
1005 *
1006 * After disabling a pipe, we can't wait for vblank in the usual way,
1007 * spinning on the vblank interrupt status bit, since we won't actually
1008 * see an interrupt when the pipe is disabled.
1009 *
ab7ad7f6
KP
1010 * On Gen4 and above:
1011 * wait for the pipe register state bit to turn off
1012 *
1013 * Otherwise:
1014 * wait for the display line value to settle (it usually
1015 * ends up stopping at the start of the next frame).
58e10eb9 1016 *
9d0498a2 1017 */
58e10eb9 1018void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
1019{
1020 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
1021 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022 pipe);
ab7ad7f6
KP
1023
1024 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1025 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1026
1027 /* Wait for the Pipe State to go off */
58e10eb9
CW
1028 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029 100))
284637d9 1030 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1031 } else {
837ba00f 1032 u32 last_line, line_mask;
58e10eb9 1033 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
1034 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1035
837ba00f
PZ
1036 if (IS_GEN2(dev))
1037 line_mask = DSL_LINEMASK_GEN2;
1038 else
1039 line_mask = DSL_LINEMASK_GEN3;
1040
ab7ad7f6
KP
1041 /* Wait for the display line to settle */
1042 do {
837ba00f 1043 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 1044 mdelay(5);
837ba00f 1045 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
1046 time_after(timeout, jiffies));
1047 if (time_after(jiffies, timeout))
284637d9 1048 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1049 }
79e53945
JB
1050}
1051
b24e7179
JB
1052static const char *state_string(bool enabled)
1053{
1054 return enabled ? "on" : "off";
1055}
1056
1057/* Only for pre-ILK configs */
1058static void assert_pll(struct drm_i915_private *dev_priv,
1059 enum pipe pipe, bool state)
1060{
1061 int reg;
1062 u32 val;
1063 bool cur_state;
1064
1065 reg = DPLL(pipe);
1066 val = I915_READ(reg);
1067 cur_state = !!(val & DPLL_VCO_ENABLE);
1068 WARN(cur_state != state,
1069 "PLL state assertion failure (expected %s, current %s)\n",
1070 state_string(state), state_string(cur_state));
1071}
1072#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1074
040484af
JB
1075/* For ILK+ */
1076static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1077 struct intel_pch_pll *pll,
1078 struct intel_crtc *crtc,
1079 bool state)
040484af 1080{
040484af
JB
1081 u32 val;
1082 bool cur_state;
1083
9d82aa17
ED
1084 if (HAS_PCH_LPT(dev_priv->dev)) {
1085 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086 return;
1087 }
1088
92b27b08
CW
1089 if (WARN (!pll,
1090 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1091 return;
ee7b9f93 1092
92b27b08
CW
1093 val = I915_READ(pll->pll_reg);
1094 cur_state = !!(val & DPLL_VCO_ENABLE);
1095 WARN(cur_state != state,
1096 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097 pll->pll_reg, state_string(state), state_string(cur_state), val);
1098
1099 /* Make sure the selected PLL is correctly attached to the transcoder */
1100 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1101 u32 pch_dpll;
1102
1103 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1104 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106 "PLL[%d] not attached to this transcoder %d: %08x\n",
1107 cur_state, crtc->pipe, pch_dpll)) {
1108 cur_state = !!(val >> (4*crtc->pipe + 3));
1109 WARN(cur_state != state,
1110 "PLL[%d] not %s on this transcoder %d: %08x\n",
1111 pll->pll_reg == _PCH_DPLL_B,
1112 state_string(state),
1113 crtc->pipe,
1114 val);
1115 }
d3ccbe86 1116 }
040484af 1117}
92b27b08
CW
1118#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1120
1121static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122 enum pipe pipe, bool state)
1123{
1124 int reg;
1125 u32 val;
1126 bool cur_state;
ad80a810
PZ
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
040484af 1129
bf507ef7
ED
1130 if (IS_HASWELL(dev_priv->dev)) {
1131 /* On Haswell, DDI is used instead of FDI_TX_CTL */
ad80a810 1132 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1133 val = I915_READ(reg);
ad80a810 1134 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1135 } else {
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 cur_state = !!(val & FDI_TX_ENABLE);
1139 }
040484af
JB
1140 WARN(cur_state != state,
1141 "FDI TX state assertion failure (expected %s, current %s)\n",
1142 state_string(state), state_string(cur_state));
1143}
1144#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1146
1147static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148 enum pipe pipe, bool state)
1149{
1150 int reg;
1151 u32 val;
1152 bool cur_state;
1153
59c859d6
ED
1154 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156 return;
1157 } else {
1158 reg = FDI_RX_CTL(pipe);
1159 val = I915_READ(reg);
1160 cur_state = !!(val & FDI_RX_ENABLE);
1161 }
040484af
JB
1162 WARN(cur_state != state,
1163 "FDI RX state assertion failure (expected %s, current %s)\n",
1164 state_string(state), state_string(cur_state));
1165}
1166#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1168
1169static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170 enum pipe pipe)
1171{
1172 int reg;
1173 u32 val;
1174
1175 /* ILK FDI PLL is always enabled */
1176 if (dev_priv->info->gen == 5)
1177 return;
1178
bf507ef7
ED
1179 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180 if (IS_HASWELL(dev_priv->dev))
1181 return;
1182
040484af
JB
1183 reg = FDI_TX_CTL(pipe);
1184 val = I915_READ(reg);
1185 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1186}
1187
1188static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1190{
1191 int reg;
1192 u32 val;
1193
59c859d6
ED
1194 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196 return;
1197 }
040484af
JB
1198 reg = FDI_RX_CTL(pipe);
1199 val = I915_READ(reg);
1200 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1201}
1202
ea0760cf
JB
1203static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204 enum pipe pipe)
1205{
1206 int pp_reg, lvds_reg;
1207 u32 val;
1208 enum pipe panel_pipe = PIPE_A;
0de3b485 1209 bool locked = true;
ea0760cf
JB
1210
1211 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212 pp_reg = PCH_PP_CONTROL;
1213 lvds_reg = PCH_LVDS;
1214 } else {
1215 pp_reg = PP_CONTROL;
1216 lvds_reg = LVDS;
1217 }
1218
1219 val = I915_READ(pp_reg);
1220 if (!(val & PANEL_POWER_ON) ||
1221 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222 locked = false;
1223
1224 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225 panel_pipe = PIPE_B;
1226
1227 WARN(panel_pipe == pipe && locked,
1228 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1229 pipe_name(pipe));
ea0760cf
JB
1230}
1231
b840d907
JB
1232void assert_pipe(struct drm_i915_private *dev_priv,
1233 enum pipe pipe, bool state)
b24e7179
JB
1234{
1235 int reg;
1236 u32 val;
63d7bbe9 1237 bool cur_state;
702e7a56
PZ
1238 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239 pipe);
b24e7179 1240
8e636784
DV
1241 /* if we need the pipe A quirk it must be always on */
1242 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243 state = true;
1244
702e7a56 1245 reg = PIPECONF(cpu_transcoder);
b24e7179 1246 val = I915_READ(reg);
63d7bbe9
JB
1247 cur_state = !!(val & PIPECONF_ENABLE);
1248 WARN(cur_state != state,
1249 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1250 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1251}
1252
931872fc
CW
1253static void assert_plane(struct drm_i915_private *dev_priv,
1254 enum plane plane, bool state)
b24e7179
JB
1255{
1256 int reg;
1257 u32 val;
931872fc 1258 bool cur_state;
b24e7179
JB
1259
1260 reg = DSPCNTR(plane);
1261 val = I915_READ(reg);
931872fc
CW
1262 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263 WARN(cur_state != state,
1264 "plane %c assertion failure (expected %s, current %s)\n",
1265 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1266}
1267
931872fc
CW
1268#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1270
b24e7179
JB
1271static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272 enum pipe pipe)
1273{
1274 int reg, i;
1275 u32 val;
1276 int cur_pipe;
1277
19ec1358 1278 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1279 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280 reg = DSPCNTR(pipe);
1281 val = I915_READ(reg);
1282 WARN((val & DISPLAY_PLANE_ENABLE),
1283 "plane %c assertion failure, should be disabled but not\n",
1284 plane_name(pipe));
19ec1358 1285 return;
28c05794 1286 }
19ec1358 1287
b24e7179
JB
1288 /* Need to check both planes against the pipe */
1289 for (i = 0; i < 2; i++) {
1290 reg = DSPCNTR(i);
1291 val = I915_READ(reg);
1292 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293 DISPPLANE_SEL_PIPE_SHIFT;
1294 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1295 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296 plane_name(i), pipe_name(pipe));
b24e7179
JB
1297 }
1298}
1299
92f2584a
JB
1300static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1301{
1302 u32 val;
1303 bool enabled;
1304
9d82aa17
ED
1305 if (HAS_PCH_LPT(dev_priv->dev)) {
1306 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307 return;
1308 }
1309
92f2584a
JB
1310 val = I915_READ(PCH_DREF_CONTROL);
1311 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312 DREF_SUPERSPREAD_SOURCE_MASK));
1313 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1314}
1315
1316static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1318{
1319 int reg;
1320 u32 val;
1321 bool enabled;
1322
1323 reg = TRANSCONF(pipe);
1324 val = I915_READ(reg);
1325 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1326 WARN(enabled,
1327 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328 pipe_name(pipe));
92f2584a
JB
1329}
1330
4e634389
KP
1331static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1333{
1334 if ((val & DP_PORT_EN) == 0)
1335 return false;
1336
1337 if (HAS_PCH_CPT(dev_priv->dev)) {
1338 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341 return false;
1342 } else {
1343 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344 return false;
1345 }
1346 return true;
1347}
1348
1519b995
KP
1349static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350 enum pipe pipe, u32 val)
1351{
1352 if ((val & PORT_ENABLE) == 0)
1353 return false;
1354
1355 if (HAS_PCH_CPT(dev_priv->dev)) {
1356 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357 return false;
1358 } else {
1359 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360 return false;
1361 }
1362 return true;
1363}
1364
1365static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, u32 val)
1367{
1368 if ((val & LVDS_PORT_EN) == 0)
1369 return false;
1370
1371 if (HAS_PCH_CPT(dev_priv->dev)) {
1372 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373 return false;
1374 } else {
1375 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376 return false;
1377 }
1378 return true;
1379}
1380
1381static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382 enum pipe pipe, u32 val)
1383{
1384 if ((val & ADPA_DAC_ENABLE) == 0)
1385 return false;
1386 if (HAS_PCH_CPT(dev_priv->dev)) {
1387 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388 return false;
1389 } else {
1390 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391 return false;
1392 }
1393 return true;
1394}
1395
291906f1 1396static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1397 enum pipe pipe, int reg, u32 port_sel)
291906f1 1398{
47a05eca 1399 u32 val = I915_READ(reg);
4e634389 1400 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1401 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1402 reg, pipe_name(pipe));
de9a35ab 1403
75c5da27
DV
1404 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405 && (val & DP_PIPEB_SELECT),
de9a35ab 1406 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1407}
1408
1409static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, int reg)
1411{
47a05eca 1412 u32 val = I915_READ(reg);
e9a851ed 1413 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1414 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1415 reg, pipe_name(pipe));
de9a35ab 1416
75c5da27
DV
1417 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1419 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1420}
1421
1422static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe)
1424{
1425 int reg;
1426 u32 val;
291906f1 1427
f0575e92
KP
1428 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1431
1432 reg = PCH_ADPA;
1433 val = I915_READ(reg);
e9a851ed 1434 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1435 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1436 pipe_name(pipe));
291906f1
JB
1437
1438 reg = PCH_LVDS;
1439 val = I915_READ(reg);
e9a851ed 1440 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1441 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1442 pipe_name(pipe));
291906f1
JB
1443
1444 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1447}
1448
63d7bbe9
JB
1449/**
1450 * intel_enable_pll - enable a PLL
1451 * @dev_priv: i915 private structure
1452 * @pipe: pipe PLL to enable
1453 *
1454 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1455 * make sure the PLL reg is writable first though, since the panel write
1456 * protect mechanism may be enabled.
1457 *
1458 * Note! This is for pre-ILK only.
7434a255
TR
1459 *
1460 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9 1461 */
a37b9b34 1462static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9
JB
1463{
1464 int reg;
1465 u32 val;
1466
1467 /* No really, not for ILK+ */
a0c4da24 1468 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1469
1470 /* PLL is protected by panel, make sure we can write it */
1471 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472 assert_panel_unlocked(dev_priv, pipe);
1473
1474 reg = DPLL(pipe);
1475 val = I915_READ(reg);
1476 val |= DPLL_VCO_ENABLE;
1477
1478 /* We do this three times for luck */
1479 I915_WRITE(reg, val);
1480 POSTING_READ(reg);
1481 udelay(150); /* wait for warmup */
1482 I915_WRITE(reg, val);
1483 POSTING_READ(reg);
1484 udelay(150); /* wait for warmup */
1485 I915_WRITE(reg, val);
1486 POSTING_READ(reg);
1487 udelay(150); /* wait for warmup */
1488}
1489
1490/**
1491 * intel_disable_pll - disable a PLL
1492 * @dev_priv: i915 private structure
1493 * @pipe: pipe PLL to disable
1494 *
1495 * Disable the PLL for @pipe, making sure the pipe is off first.
1496 *
1497 * Note! This is for pre-ILK only.
1498 */
1499static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1500{
1501 int reg;
1502 u32 val;
1503
1504 /* Don't disable pipe A or pipe A PLLs if needed */
1505 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506 return;
1507
1508 /* Make sure the pipe isn't still relying on us */
1509 assert_pipe_disabled(dev_priv, pipe);
1510
1511 reg = DPLL(pipe);
1512 val = I915_READ(reg);
1513 val &= ~DPLL_VCO_ENABLE;
1514 I915_WRITE(reg, val);
1515 POSTING_READ(reg);
1516}
1517
a416edef
ED
1518/* SBI access */
1519static void
1520intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1521{
1522 unsigned long flags;
1523
1524 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1525 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1526 100)) {
1527 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528 goto out_unlock;
1529 }
1530
1531 I915_WRITE(SBI_ADDR,
1532 (reg << 16));
1533 I915_WRITE(SBI_DATA,
1534 value);
1535 I915_WRITE(SBI_CTL_STAT,
1536 SBI_BUSY |
1537 SBI_CTL_OP_CRWR);
1538
39fb50f6 1539 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1540 100)) {
1541 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542 goto out_unlock;
1543 }
1544
1545out_unlock:
1546 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1547}
1548
1549static u32
1550intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1551{
1552 unsigned long flags;
39fb50f6 1553 u32 value = 0;
a416edef
ED
1554
1555 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1556 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1557 100)) {
1558 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559 goto out_unlock;
1560 }
1561
1562 I915_WRITE(SBI_ADDR,
1563 (reg << 16));
1564 I915_WRITE(SBI_CTL_STAT,
1565 SBI_BUSY |
1566 SBI_CTL_OP_CRRD);
1567
39fb50f6 1568 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1569 100)) {
1570 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571 goto out_unlock;
1572 }
1573
1574 value = I915_READ(SBI_DATA);
1575
1576out_unlock:
1577 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578 return value;
1579}
1580
92f2584a
JB
1581/**
1582 * intel_enable_pch_pll - enable PCH PLL
1583 * @dev_priv: i915 private structure
1584 * @pipe: pipe PLL to enable
1585 *
1586 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587 * drives the transcoder clock.
1588 */
ee7b9f93 1589static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1590{
ee7b9f93 1591 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1592 struct intel_pch_pll *pll;
92f2584a
JB
1593 int reg;
1594 u32 val;
1595
48da64a8 1596 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1597 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1598 pll = intel_crtc->pch_pll;
1599 if (pll == NULL)
1600 return;
1601
1602 if (WARN_ON(pll->refcount == 0))
1603 return;
ee7b9f93
JB
1604
1605 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606 pll->pll_reg, pll->active, pll->on,
1607 intel_crtc->base.base.id);
92f2584a
JB
1608
1609 /* PCH refclock must be enabled first */
1610 assert_pch_refclk_enabled(dev_priv);
1611
ee7b9f93 1612 if (pll->active++ && pll->on) {
92b27b08 1613 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1614 return;
1615 }
1616
1617 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1618
1619 reg = pll->pll_reg;
92f2584a
JB
1620 val = I915_READ(reg);
1621 val |= DPLL_VCO_ENABLE;
1622 I915_WRITE(reg, val);
1623 POSTING_READ(reg);
1624 udelay(200);
ee7b9f93
JB
1625
1626 pll->on = true;
92f2584a
JB
1627}
1628
ee7b9f93 1629static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1630{
ee7b9f93
JB
1631 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1633 int reg;
ee7b9f93 1634 u32 val;
4c609cb8 1635
92f2584a
JB
1636 /* PCH only available on ILK+ */
1637 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1638 if (pll == NULL)
1639 return;
92f2584a 1640
48da64a8
CW
1641 if (WARN_ON(pll->refcount == 0))
1642 return;
7a419866 1643
ee7b9f93
JB
1644 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645 pll->pll_reg, pll->active, pll->on,
1646 intel_crtc->base.base.id);
7a419866 1647
48da64a8 1648 if (WARN_ON(pll->active == 0)) {
92b27b08 1649 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1650 return;
1651 }
1652
ee7b9f93 1653 if (--pll->active) {
92b27b08 1654 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1655 return;
ee7b9f93
JB
1656 }
1657
1658 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1659
1660 /* Make sure transcoder isn't still depending on us */
1661 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1662
ee7b9f93 1663 reg = pll->pll_reg;
92f2584a
JB
1664 val = I915_READ(reg);
1665 val &= ~DPLL_VCO_ENABLE;
1666 I915_WRITE(reg, val);
1667 POSTING_READ(reg);
1668 udelay(200);
ee7b9f93
JB
1669
1670 pll->on = false;
92f2584a
JB
1671}
1672
040484af
JB
1673static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1674 enum pipe pipe)
1675{
1676 int reg;
5f7f726d 1677 u32 val, pipeconf_val;
7c26e5c6 1678 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
040484af
JB
1679
1680 /* PCH only available on ILK+ */
1681 BUG_ON(dev_priv->info->gen < 5);
1682
1683 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1684 assert_pch_pll_enabled(dev_priv,
1685 to_intel_crtc(crtc)->pch_pll,
1686 to_intel_crtc(crtc));
040484af
JB
1687
1688 /* FDI must be feeding us bits for PCH ports */
1689 assert_fdi_tx_enabled(dev_priv, pipe);
1690 assert_fdi_rx_enabled(dev_priv, pipe);
1691
59c859d6
ED
1692 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1693 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1694 return;
1695 }
040484af
JB
1696 reg = TRANSCONF(pipe);
1697 val = I915_READ(reg);
5f7f726d 1698 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1699
1700 if (HAS_PCH_IBX(dev_priv->dev)) {
1701 /*
1702 * make the BPC in transcoder be consistent with
1703 * that in pipeconf reg.
1704 */
1705 val &= ~PIPE_BPC_MASK;
5f7f726d 1706 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1707 }
5f7f726d
PZ
1708
1709 val &= ~TRANS_INTERLACE_MASK;
1710 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1711 if (HAS_PCH_IBX(dev_priv->dev) &&
1712 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1713 val |= TRANS_LEGACY_INTERLACED_ILK;
1714 else
1715 val |= TRANS_INTERLACED;
5f7f726d
PZ
1716 else
1717 val |= TRANS_PROGRESSIVE;
1718
040484af
JB
1719 I915_WRITE(reg, val | TRANS_ENABLE);
1720 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1721 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1722}
1723
1724static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1725 enum pipe pipe)
1726{
1727 int reg;
1728 u32 val;
1729
1730 /* FDI relies on the transcoder */
1731 assert_fdi_tx_disabled(dev_priv, pipe);
1732 assert_fdi_rx_disabled(dev_priv, pipe);
1733
291906f1
JB
1734 /* Ports must be off as well */
1735 assert_pch_ports_disabled(dev_priv, pipe);
1736
040484af
JB
1737 reg = TRANSCONF(pipe);
1738 val = I915_READ(reg);
1739 val &= ~TRANS_ENABLE;
1740 I915_WRITE(reg, val);
1741 /* wait for PCH transcoder off, transcoder state */
1742 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1743 DRM_ERROR("failed to disable transcoder %d\n", pipe);
040484af
JB
1744}
1745
b24e7179 1746/**
309cfea8 1747 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1748 * @dev_priv: i915 private structure
1749 * @pipe: pipe to enable
040484af 1750 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1751 *
1752 * Enable @pipe, making sure that various hardware specific requirements
1753 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1754 *
1755 * @pipe should be %PIPE_A or %PIPE_B.
1756 *
1757 * Will wait until the pipe is actually running (i.e. first vblank) before
1758 * returning.
1759 */
040484af
JB
1760static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1761 bool pch_port)
b24e7179 1762{
702e7a56
PZ
1763 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1764 pipe);
b24e7179
JB
1765 int reg;
1766 u32 val;
1767
1768 /*
1769 * A pipe without a PLL won't actually be able to drive bits from
1770 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1771 * need the check.
1772 */
1773 if (!HAS_PCH_SPLIT(dev_priv->dev))
1774 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1775 else {
1776 if (pch_port) {
1777 /* if driving the PCH, we need FDI enabled */
1778 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1779 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1780 }
1781 /* FIXME: assert CPU port conditions for SNB+ */
1782 }
b24e7179 1783
702e7a56 1784 reg = PIPECONF(cpu_transcoder);
b24e7179 1785 val = I915_READ(reg);
00d70b15
CW
1786 if (val & PIPECONF_ENABLE)
1787 return;
1788
1789 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1790 intel_wait_for_vblank(dev_priv->dev, pipe);
1791}
1792
1793/**
309cfea8 1794 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1795 * @dev_priv: i915 private structure
1796 * @pipe: pipe to disable
1797 *
1798 * Disable @pipe, making sure that various hardware specific requirements
1799 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1800 *
1801 * @pipe should be %PIPE_A or %PIPE_B.
1802 *
1803 * Will wait until the pipe has shut down before returning.
1804 */
1805static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1806 enum pipe pipe)
1807{
702e7a56
PZ
1808 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1809 pipe);
b24e7179
JB
1810 int reg;
1811 u32 val;
1812
1813 /*
1814 * Make sure planes won't keep trying to pump pixels to us,
1815 * or we might hang the display.
1816 */
1817 assert_planes_disabled(dev_priv, pipe);
1818
1819 /* Don't disable pipe A or pipe A PLLs if needed */
1820 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1821 return;
1822
702e7a56 1823 reg = PIPECONF(cpu_transcoder);
b24e7179 1824 val = I915_READ(reg);
00d70b15
CW
1825 if ((val & PIPECONF_ENABLE) == 0)
1826 return;
1827
1828 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1829 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1830}
1831
d74362c9
KP
1832/*
1833 * Plane regs are double buffered, going from enabled->disabled needs a
1834 * trigger in order to latch. The display address reg provides this.
1835 */
6f1d69b0 1836void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1837 enum plane plane)
1838{
14f86147
DL
1839 if (dev_priv->info->gen >= 4)
1840 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1841 else
1842 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
d74362c9
KP
1843}
1844
b24e7179
JB
1845/**
1846 * intel_enable_plane - enable a display plane on a given pipe
1847 * @dev_priv: i915 private structure
1848 * @plane: plane to enable
1849 * @pipe: pipe being fed
1850 *
1851 * Enable @plane on @pipe, making sure that @pipe is running first.
1852 */
1853static void intel_enable_plane(struct drm_i915_private *dev_priv,
1854 enum plane plane, enum pipe pipe)
1855{
1856 int reg;
1857 u32 val;
1858
1859 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1860 assert_pipe_enabled(dev_priv, pipe);
1861
1862 reg = DSPCNTR(plane);
1863 val = I915_READ(reg);
00d70b15
CW
1864 if (val & DISPLAY_PLANE_ENABLE)
1865 return;
1866
1867 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1868 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1869 intel_wait_for_vblank(dev_priv->dev, pipe);
1870}
1871
b24e7179
JB
1872/**
1873 * intel_disable_plane - disable a display plane
1874 * @dev_priv: i915 private structure
1875 * @plane: plane to disable
1876 * @pipe: pipe consuming the data
1877 *
1878 * Disable @plane; should be an independent operation.
1879 */
1880static void intel_disable_plane(struct drm_i915_private *dev_priv,
1881 enum plane plane, enum pipe pipe)
1882{
1883 int reg;
1884 u32 val;
1885
1886 reg = DSPCNTR(plane);
1887 val = I915_READ(reg);
00d70b15
CW
1888 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1889 return;
1890
1891 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1892 intel_flush_display_plane(dev_priv, plane);
1893 intel_wait_for_vblank(dev_priv->dev, pipe);
1894}
1895
127bd2ac 1896int
48b956c5 1897intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1898 struct drm_i915_gem_object *obj,
919926ae 1899 struct intel_ring_buffer *pipelined)
6b95a207 1900{
ce453d81 1901 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1902 u32 alignment;
1903 int ret;
1904
05394f39 1905 switch (obj->tiling_mode) {
6b95a207 1906 case I915_TILING_NONE:
534843da
CW
1907 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1908 alignment = 128 * 1024;
a6c45cf0 1909 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1910 alignment = 4 * 1024;
1911 else
1912 alignment = 64 * 1024;
6b95a207
KH
1913 break;
1914 case I915_TILING_X:
1915 /* pin() will align the object as required by fence */
1916 alignment = 0;
1917 break;
1918 case I915_TILING_Y:
1919 /* FIXME: Is this true? */
1920 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1921 return -EINVAL;
1922 default:
1923 BUG();
1924 }
1925
ce453d81 1926 dev_priv->mm.interruptible = false;
2da3b9b9 1927 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1928 if (ret)
ce453d81 1929 goto err_interruptible;
6b95a207
KH
1930
1931 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1932 * fence, whereas 965+ only requires a fence if using
1933 * framebuffer compression. For simplicity, we always install
1934 * a fence as the cost is not that onerous.
1935 */
06d98131 1936 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1937 if (ret)
1938 goto err_unpin;
1690e1eb 1939
9a5a53b3 1940 i915_gem_object_pin_fence(obj);
6b95a207 1941
ce453d81 1942 dev_priv->mm.interruptible = true;
6b95a207 1943 return 0;
48b956c5
CW
1944
1945err_unpin:
1946 i915_gem_object_unpin(obj);
ce453d81
CW
1947err_interruptible:
1948 dev_priv->mm.interruptible = true;
48b956c5 1949 return ret;
6b95a207
KH
1950}
1951
1690e1eb
CW
1952void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1953{
1954 i915_gem_object_unpin_fence(obj);
1955 i915_gem_object_unpin(obj);
1956}
1957
c2c75131
DV
1958/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1959 * is assumed to be a power-of-two. */
5a35e99e
DL
1960unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1961 unsigned int bpp,
1962 unsigned int pitch)
c2c75131
DV
1963{
1964 int tile_rows, tiles;
1965
1966 tile_rows = *y / 8;
1967 *y %= 8;
1968 tiles = *x / (512/bpp);
1969 *x %= 512/bpp;
1970
1971 return tile_rows * pitch * 8 + tiles * 4096;
1972}
1973
17638cd6
JB
1974static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1975 int x, int y)
81255565
JB
1976{
1977 struct drm_device *dev = crtc->dev;
1978 struct drm_i915_private *dev_priv = dev->dev_private;
1979 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1980 struct intel_framebuffer *intel_fb;
05394f39 1981 struct drm_i915_gem_object *obj;
81255565 1982 int plane = intel_crtc->plane;
e506a0c6 1983 unsigned long linear_offset;
81255565 1984 u32 dspcntr;
5eddb70b 1985 u32 reg;
81255565
JB
1986
1987 switch (plane) {
1988 case 0:
1989 case 1:
1990 break;
1991 default:
1992 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1993 return -EINVAL;
1994 }
1995
1996 intel_fb = to_intel_framebuffer(fb);
1997 obj = intel_fb->obj;
81255565 1998
5eddb70b
CW
1999 reg = DSPCNTR(plane);
2000 dspcntr = I915_READ(reg);
81255565
JB
2001 /* Mask out pixel format bits in case we change it */
2002 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2003 switch (fb->pixel_format) {
2004 case DRM_FORMAT_C8:
81255565
JB
2005 dspcntr |= DISPPLANE_8BPP;
2006 break;
57779d06
VS
2007 case DRM_FORMAT_XRGB1555:
2008 case DRM_FORMAT_ARGB1555:
2009 dspcntr |= DISPPLANE_BGRX555;
81255565 2010 break;
57779d06
VS
2011 case DRM_FORMAT_RGB565:
2012 dspcntr |= DISPPLANE_BGRX565;
2013 break;
2014 case DRM_FORMAT_XRGB8888:
2015 case DRM_FORMAT_ARGB8888:
2016 dspcntr |= DISPPLANE_BGRX888;
2017 break;
2018 case DRM_FORMAT_XBGR8888:
2019 case DRM_FORMAT_ABGR8888:
2020 dspcntr |= DISPPLANE_RGBX888;
2021 break;
2022 case DRM_FORMAT_XRGB2101010:
2023 case DRM_FORMAT_ARGB2101010:
2024 dspcntr |= DISPPLANE_BGRX101010;
2025 break;
2026 case DRM_FORMAT_XBGR2101010:
2027 case DRM_FORMAT_ABGR2101010:
2028 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2029 break;
2030 default:
57779d06 2031 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
81255565
JB
2032 return -EINVAL;
2033 }
57779d06 2034
a6c45cf0 2035 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2036 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2037 dspcntr |= DISPPLANE_TILED;
2038 else
2039 dspcntr &= ~DISPPLANE_TILED;
2040 }
2041
5eddb70b 2042 I915_WRITE(reg, dspcntr);
81255565 2043
e506a0c6 2044 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2045
c2c75131
DV
2046 if (INTEL_INFO(dev)->gen >= 4) {
2047 intel_crtc->dspaddr_offset =
5a35e99e
DL
2048 intel_gen4_compute_offset_xtiled(&x, &y,
2049 fb->bits_per_pixel / 8,
2050 fb->pitches[0]);
c2c75131
DV
2051 linear_offset -= intel_crtc->dspaddr_offset;
2052 } else {
e506a0c6 2053 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2054 }
e506a0c6
DV
2055
2056 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2057 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2058 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2059 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2060 I915_MODIFY_DISPBASE(DSPSURF(plane),
2061 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2062 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2063 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2064 } else
e506a0c6 2065 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2066 POSTING_READ(reg);
81255565 2067
17638cd6
JB
2068 return 0;
2069}
2070
2071static int ironlake_update_plane(struct drm_crtc *crtc,
2072 struct drm_framebuffer *fb, int x, int y)
2073{
2074 struct drm_device *dev = crtc->dev;
2075 struct drm_i915_private *dev_priv = dev->dev_private;
2076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2077 struct intel_framebuffer *intel_fb;
2078 struct drm_i915_gem_object *obj;
2079 int plane = intel_crtc->plane;
e506a0c6 2080 unsigned long linear_offset;
17638cd6
JB
2081 u32 dspcntr;
2082 u32 reg;
2083
2084 switch (plane) {
2085 case 0:
2086 case 1:
27f8227b 2087 case 2:
17638cd6
JB
2088 break;
2089 default:
2090 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2091 return -EINVAL;
2092 }
2093
2094 intel_fb = to_intel_framebuffer(fb);
2095 obj = intel_fb->obj;
2096
2097 reg = DSPCNTR(plane);
2098 dspcntr = I915_READ(reg);
2099 /* Mask out pixel format bits in case we change it */
2100 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2101 switch (fb->pixel_format) {
2102 case DRM_FORMAT_C8:
17638cd6
JB
2103 dspcntr |= DISPPLANE_8BPP;
2104 break;
57779d06
VS
2105 case DRM_FORMAT_RGB565:
2106 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2107 break;
57779d06
VS
2108 case DRM_FORMAT_XRGB8888:
2109 case DRM_FORMAT_ARGB8888:
2110 dspcntr |= DISPPLANE_BGRX888;
2111 break;
2112 case DRM_FORMAT_XBGR8888:
2113 case DRM_FORMAT_ABGR8888:
2114 dspcntr |= DISPPLANE_RGBX888;
2115 break;
2116 case DRM_FORMAT_XRGB2101010:
2117 case DRM_FORMAT_ARGB2101010:
2118 dspcntr |= DISPPLANE_BGRX101010;
2119 break;
2120 case DRM_FORMAT_XBGR2101010:
2121 case DRM_FORMAT_ABGR2101010:
2122 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2123 break;
2124 default:
57779d06 2125 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
17638cd6
JB
2126 return -EINVAL;
2127 }
2128
2129 if (obj->tiling_mode != I915_TILING_NONE)
2130 dspcntr |= DISPPLANE_TILED;
2131 else
2132 dspcntr &= ~DISPPLANE_TILED;
2133
2134 /* must disable */
2135 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2136
2137 I915_WRITE(reg, dspcntr);
2138
e506a0c6 2139 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2140 intel_crtc->dspaddr_offset =
5a35e99e
DL
2141 intel_gen4_compute_offset_xtiled(&x, &y,
2142 fb->bits_per_pixel / 8,
2143 fb->pitches[0]);
c2c75131 2144 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2145
e506a0c6
DV
2146 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2147 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2148 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2149 I915_MODIFY_DISPBASE(DSPSURF(plane),
2150 obj->gtt_offset + intel_crtc->dspaddr_offset);
bc1c91eb
DL
2151 if (IS_HASWELL(dev)) {
2152 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2153 } else {
2154 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2155 I915_WRITE(DSPLINOFF(plane), linear_offset);
2156 }
17638cd6
JB
2157 POSTING_READ(reg);
2158
2159 return 0;
2160}
2161
2162/* Assume fb object is pinned & idle & fenced and just update base pointers */
2163static int
2164intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2165 int x, int y, enum mode_set_atomic state)
2166{
2167 struct drm_device *dev = crtc->dev;
2168 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2169
6b8e6ed0
CW
2170 if (dev_priv->display.disable_fbc)
2171 dev_priv->display.disable_fbc(dev);
3dec0095 2172 intel_increase_pllclock(crtc);
81255565 2173
6b8e6ed0 2174 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2175}
2176
14667a4b
CW
2177static int
2178intel_finish_fb(struct drm_framebuffer *old_fb)
2179{
2180 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2181 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182 bool was_interruptible = dev_priv->mm.interruptible;
2183 int ret;
2184
2185 wait_event(dev_priv->pending_flip_queue,
2186 atomic_read(&dev_priv->mm.wedged) ||
2187 atomic_read(&obj->pending_flip) == 0);
2188
2189 /* Big Hammer, we also need to ensure that any pending
2190 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2191 * current scanout is retired before unpinning the old
2192 * framebuffer.
2193 *
2194 * This should only fail upon a hung GPU, in which case we
2195 * can safely continue.
2196 */
2197 dev_priv->mm.interruptible = false;
2198 ret = i915_gem_object_finish_gpu(obj);
2199 dev_priv->mm.interruptible = was_interruptible;
2200
2201 return ret;
2202}
2203
198598d0
VS
2204static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2205{
2206 struct drm_device *dev = crtc->dev;
2207 struct drm_i915_master_private *master_priv;
2208 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2209
2210 if (!dev->primary->master)
2211 return;
2212
2213 master_priv = dev->primary->master->driver_priv;
2214 if (!master_priv->sarea_priv)
2215 return;
2216
2217 switch (intel_crtc->pipe) {
2218 case 0:
2219 master_priv->sarea_priv->pipeA_x = x;
2220 master_priv->sarea_priv->pipeA_y = y;
2221 break;
2222 case 1:
2223 master_priv->sarea_priv->pipeB_x = x;
2224 master_priv->sarea_priv->pipeB_y = y;
2225 break;
2226 default:
2227 break;
2228 }
2229}
2230
5c3b82e2 2231static int
3c4fdcfb 2232intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2233 struct drm_framebuffer *fb)
79e53945
JB
2234{
2235 struct drm_device *dev = crtc->dev;
6b8e6ed0 2236 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2237 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2238 struct drm_framebuffer *old_fb;
5c3b82e2 2239 int ret;
79e53945
JB
2240
2241 /* no fb bound */
94352cf9 2242 if (!fb) {
a5071c2f 2243 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2244 return 0;
2245 }
2246
5826eca5
ED
2247 if(intel_crtc->plane > dev_priv->num_pipe) {
2248 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2249 intel_crtc->plane,
2250 dev_priv->num_pipe);
5c3b82e2 2251 return -EINVAL;
79e53945
JB
2252 }
2253
5c3b82e2 2254 mutex_lock(&dev->struct_mutex);
265db958 2255 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2256 to_intel_framebuffer(fb)->obj,
919926ae 2257 NULL);
5c3b82e2
CW
2258 if (ret != 0) {
2259 mutex_unlock(&dev->struct_mutex);
a5071c2f 2260 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2261 return ret;
2262 }
79e53945 2263
94352cf9
DV
2264 if (crtc->fb)
2265 intel_finish_fb(crtc->fb);
265db958 2266
94352cf9 2267 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2268 if (ret) {
94352cf9 2269 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2270 mutex_unlock(&dev->struct_mutex);
a5071c2f 2271 DRM_ERROR("failed to update base address\n");
4e6cfefc 2272 return ret;
79e53945 2273 }
3c4fdcfb 2274
94352cf9
DV
2275 old_fb = crtc->fb;
2276 crtc->fb = fb;
6c4c86f5
DV
2277 crtc->x = x;
2278 crtc->y = y;
94352cf9 2279
b7f1de28
CW
2280 if (old_fb) {
2281 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2282 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2283 }
652c393a 2284
6b8e6ed0 2285 intel_update_fbc(dev);
5c3b82e2 2286 mutex_unlock(&dev->struct_mutex);
79e53945 2287
198598d0 2288 intel_crtc_update_sarea_pos(crtc, x, y);
5c3b82e2
CW
2289
2290 return 0;
79e53945
JB
2291}
2292
5eddb70b 2293static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2294{
2295 struct drm_device *dev = crtc->dev;
2296 struct drm_i915_private *dev_priv = dev->dev_private;
2297 u32 dpa_ctl;
2298
28c97730 2299 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2300 dpa_ctl = I915_READ(DP_A);
2301 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2302
2303 if (clock < 200000) {
2304 u32 temp;
2305 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2306 /* workaround for 160Mhz:
2307 1) program 0x4600c bits 15:0 = 0x8124
2308 2) program 0x46010 bit 0 = 1
2309 3) program 0x46034 bit 24 = 1
2310 4) program 0x64000 bit 14 = 1
2311 */
2312 temp = I915_READ(0x4600c);
2313 temp &= 0xffff0000;
2314 I915_WRITE(0x4600c, temp | 0x8124);
2315
2316 temp = I915_READ(0x46010);
2317 I915_WRITE(0x46010, temp | 1);
2318
2319 temp = I915_READ(0x46034);
2320 I915_WRITE(0x46034, temp | (1 << 24));
2321 } else {
2322 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2323 }
2324 I915_WRITE(DP_A, dpa_ctl);
2325
5eddb70b 2326 POSTING_READ(DP_A);
32f9d658
ZW
2327 udelay(500);
2328}
2329
5e84e1a4
ZW
2330static void intel_fdi_normal_train(struct drm_crtc *crtc)
2331{
2332 struct drm_device *dev = crtc->dev;
2333 struct drm_i915_private *dev_priv = dev->dev_private;
2334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2335 int pipe = intel_crtc->pipe;
2336 u32 reg, temp;
2337
2338 /* enable normal train */
2339 reg = FDI_TX_CTL(pipe);
2340 temp = I915_READ(reg);
61e499bf 2341 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2342 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2343 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2344 } else {
2345 temp &= ~FDI_LINK_TRAIN_NONE;
2346 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2347 }
5e84e1a4
ZW
2348 I915_WRITE(reg, temp);
2349
2350 reg = FDI_RX_CTL(pipe);
2351 temp = I915_READ(reg);
2352 if (HAS_PCH_CPT(dev)) {
2353 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2354 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2355 } else {
2356 temp &= ~FDI_LINK_TRAIN_NONE;
2357 temp |= FDI_LINK_TRAIN_NONE;
2358 }
2359 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2360
2361 /* wait one idle pattern time */
2362 POSTING_READ(reg);
2363 udelay(1000);
357555c0
JB
2364
2365 /* IVB wants error correction enabled */
2366 if (IS_IVYBRIDGE(dev))
2367 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2368 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2369}
2370
291427f5
JB
2371static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2372{
2373 struct drm_i915_private *dev_priv = dev->dev_private;
2374 u32 flags = I915_READ(SOUTH_CHICKEN1);
2375
2376 flags |= FDI_PHASE_SYNC_OVR(pipe);
2377 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2378 flags |= FDI_PHASE_SYNC_EN(pipe);
2379 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2380 POSTING_READ(SOUTH_CHICKEN1);
2381}
2382
01a415fd
DV
2383static void ivb_modeset_global_resources(struct drm_device *dev)
2384{
2385 struct drm_i915_private *dev_priv = dev->dev_private;
2386 struct intel_crtc *pipe_B_crtc =
2387 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2388 struct intel_crtc *pipe_C_crtc =
2389 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2390 uint32_t temp;
2391
2392 /* When everything is off disable fdi C so that we could enable fdi B
2393 * with all lanes. XXX: This misses the case where a pipe is not using
2394 * any pch resources and so doesn't need any fdi lanes. */
2395 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2396 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2397 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2398
2399 temp = I915_READ(SOUTH_CHICKEN1);
2400 temp &= ~FDI_BC_BIFURCATION_SELECT;
2401 DRM_DEBUG_KMS("disabling fdi C rx\n");
2402 I915_WRITE(SOUTH_CHICKEN1, temp);
2403 }
2404}
2405
8db9d77b
ZW
2406/* The FDI link training functions for ILK/Ibexpeak. */
2407static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2408{
2409 struct drm_device *dev = crtc->dev;
2410 struct drm_i915_private *dev_priv = dev->dev_private;
2411 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2412 int pipe = intel_crtc->pipe;
0fc932b8 2413 int plane = intel_crtc->plane;
5eddb70b 2414 u32 reg, temp, tries;
8db9d77b 2415
0fc932b8
JB
2416 /* FDI needs bits from pipe & plane first */
2417 assert_pipe_enabled(dev_priv, pipe);
2418 assert_plane_enabled(dev_priv, plane);
2419
e1a44743
AJ
2420 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2421 for train result */
5eddb70b
CW
2422 reg = FDI_RX_IMR(pipe);
2423 temp = I915_READ(reg);
e1a44743
AJ
2424 temp &= ~FDI_RX_SYMBOL_LOCK;
2425 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2426 I915_WRITE(reg, temp);
2427 I915_READ(reg);
e1a44743
AJ
2428 udelay(150);
2429
8db9d77b 2430 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2431 reg = FDI_TX_CTL(pipe);
2432 temp = I915_READ(reg);
77ffb597
AJ
2433 temp &= ~(7 << 19);
2434 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2435 temp &= ~FDI_LINK_TRAIN_NONE;
2436 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2437 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2438
5eddb70b
CW
2439 reg = FDI_RX_CTL(pipe);
2440 temp = I915_READ(reg);
8db9d77b
ZW
2441 temp &= ~FDI_LINK_TRAIN_NONE;
2442 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2443 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2444
2445 POSTING_READ(reg);
8db9d77b
ZW
2446 udelay(150);
2447
5b2adf89 2448 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2449 if (HAS_PCH_IBX(dev)) {
2450 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2451 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2452 FDI_RX_PHASE_SYNC_POINTER_EN);
2453 }
5b2adf89 2454
5eddb70b 2455 reg = FDI_RX_IIR(pipe);
e1a44743 2456 for (tries = 0; tries < 5; tries++) {
5eddb70b 2457 temp = I915_READ(reg);
8db9d77b
ZW
2458 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2459
2460 if ((temp & FDI_RX_BIT_LOCK)) {
2461 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2462 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2463 break;
2464 }
8db9d77b 2465 }
e1a44743 2466 if (tries == 5)
5eddb70b 2467 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2468
2469 /* Train 2 */
5eddb70b
CW
2470 reg = FDI_TX_CTL(pipe);
2471 temp = I915_READ(reg);
8db9d77b
ZW
2472 temp &= ~FDI_LINK_TRAIN_NONE;
2473 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2474 I915_WRITE(reg, temp);
8db9d77b 2475
5eddb70b
CW
2476 reg = FDI_RX_CTL(pipe);
2477 temp = I915_READ(reg);
8db9d77b
ZW
2478 temp &= ~FDI_LINK_TRAIN_NONE;
2479 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2480 I915_WRITE(reg, temp);
8db9d77b 2481
5eddb70b
CW
2482 POSTING_READ(reg);
2483 udelay(150);
8db9d77b 2484
5eddb70b 2485 reg = FDI_RX_IIR(pipe);
e1a44743 2486 for (tries = 0; tries < 5; tries++) {
5eddb70b 2487 temp = I915_READ(reg);
8db9d77b
ZW
2488 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2489
2490 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2491 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2492 DRM_DEBUG_KMS("FDI train 2 done.\n");
2493 break;
2494 }
8db9d77b 2495 }
e1a44743 2496 if (tries == 5)
5eddb70b 2497 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2498
2499 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2500
8db9d77b
ZW
2501}
2502
0206e353 2503static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2504 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2505 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2506 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2507 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2508};
2509
2510/* The FDI link training functions for SNB/Cougarpoint. */
2511static void gen6_fdi_link_train(struct drm_crtc *crtc)
2512{
2513 struct drm_device *dev = crtc->dev;
2514 struct drm_i915_private *dev_priv = dev->dev_private;
2515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2516 int pipe = intel_crtc->pipe;
fa37d39e 2517 u32 reg, temp, i, retry;
8db9d77b 2518
e1a44743
AJ
2519 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2520 for train result */
5eddb70b
CW
2521 reg = FDI_RX_IMR(pipe);
2522 temp = I915_READ(reg);
e1a44743
AJ
2523 temp &= ~FDI_RX_SYMBOL_LOCK;
2524 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2525 I915_WRITE(reg, temp);
2526
2527 POSTING_READ(reg);
e1a44743
AJ
2528 udelay(150);
2529
8db9d77b 2530 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2531 reg = FDI_TX_CTL(pipe);
2532 temp = I915_READ(reg);
77ffb597
AJ
2533 temp &= ~(7 << 19);
2534 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2535 temp &= ~FDI_LINK_TRAIN_NONE;
2536 temp |= FDI_LINK_TRAIN_PATTERN_1;
2537 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2538 /* SNB-B */
2539 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2540 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2541
d74cf324
DV
2542 I915_WRITE(FDI_RX_MISC(pipe),
2543 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2544
5eddb70b
CW
2545 reg = FDI_RX_CTL(pipe);
2546 temp = I915_READ(reg);
8db9d77b
ZW
2547 if (HAS_PCH_CPT(dev)) {
2548 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2549 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2550 } else {
2551 temp &= ~FDI_LINK_TRAIN_NONE;
2552 temp |= FDI_LINK_TRAIN_PATTERN_1;
2553 }
5eddb70b
CW
2554 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2555
2556 POSTING_READ(reg);
8db9d77b
ZW
2557 udelay(150);
2558
291427f5
JB
2559 if (HAS_PCH_CPT(dev))
2560 cpt_phase_pointer_enable(dev, pipe);
2561
0206e353 2562 for (i = 0; i < 4; i++) {
5eddb70b
CW
2563 reg = FDI_TX_CTL(pipe);
2564 temp = I915_READ(reg);
8db9d77b
ZW
2565 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2566 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2567 I915_WRITE(reg, temp);
2568
2569 POSTING_READ(reg);
8db9d77b
ZW
2570 udelay(500);
2571
fa37d39e
SP
2572 for (retry = 0; retry < 5; retry++) {
2573 reg = FDI_RX_IIR(pipe);
2574 temp = I915_READ(reg);
2575 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2576 if (temp & FDI_RX_BIT_LOCK) {
2577 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2578 DRM_DEBUG_KMS("FDI train 1 done.\n");
2579 break;
2580 }
2581 udelay(50);
8db9d77b 2582 }
fa37d39e
SP
2583 if (retry < 5)
2584 break;
8db9d77b
ZW
2585 }
2586 if (i == 4)
5eddb70b 2587 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2588
2589 /* Train 2 */
5eddb70b
CW
2590 reg = FDI_TX_CTL(pipe);
2591 temp = I915_READ(reg);
8db9d77b
ZW
2592 temp &= ~FDI_LINK_TRAIN_NONE;
2593 temp |= FDI_LINK_TRAIN_PATTERN_2;
2594 if (IS_GEN6(dev)) {
2595 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2596 /* SNB-B */
2597 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2598 }
5eddb70b 2599 I915_WRITE(reg, temp);
8db9d77b 2600
5eddb70b
CW
2601 reg = FDI_RX_CTL(pipe);
2602 temp = I915_READ(reg);
8db9d77b
ZW
2603 if (HAS_PCH_CPT(dev)) {
2604 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2605 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2606 } else {
2607 temp &= ~FDI_LINK_TRAIN_NONE;
2608 temp |= FDI_LINK_TRAIN_PATTERN_2;
2609 }
5eddb70b
CW
2610 I915_WRITE(reg, temp);
2611
2612 POSTING_READ(reg);
8db9d77b
ZW
2613 udelay(150);
2614
0206e353 2615 for (i = 0; i < 4; i++) {
5eddb70b
CW
2616 reg = FDI_TX_CTL(pipe);
2617 temp = I915_READ(reg);
8db9d77b
ZW
2618 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2619 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2620 I915_WRITE(reg, temp);
2621
2622 POSTING_READ(reg);
8db9d77b
ZW
2623 udelay(500);
2624
fa37d39e
SP
2625 for (retry = 0; retry < 5; retry++) {
2626 reg = FDI_RX_IIR(pipe);
2627 temp = I915_READ(reg);
2628 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2629 if (temp & FDI_RX_SYMBOL_LOCK) {
2630 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2631 DRM_DEBUG_KMS("FDI train 2 done.\n");
2632 break;
2633 }
2634 udelay(50);
8db9d77b 2635 }
fa37d39e
SP
2636 if (retry < 5)
2637 break;
8db9d77b
ZW
2638 }
2639 if (i == 4)
5eddb70b 2640 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2641
2642 DRM_DEBUG_KMS("FDI train done.\n");
2643}
2644
357555c0
JB
2645/* Manual link training for Ivy Bridge A0 parts */
2646static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2647{
2648 struct drm_device *dev = crtc->dev;
2649 struct drm_i915_private *dev_priv = dev->dev_private;
2650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651 int pipe = intel_crtc->pipe;
2652 u32 reg, temp, i;
2653
2654 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2655 for train result */
2656 reg = FDI_RX_IMR(pipe);
2657 temp = I915_READ(reg);
2658 temp &= ~FDI_RX_SYMBOL_LOCK;
2659 temp &= ~FDI_RX_BIT_LOCK;
2660 I915_WRITE(reg, temp);
2661
2662 POSTING_READ(reg);
2663 udelay(150);
2664
01a415fd
DV
2665 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2666 I915_READ(FDI_RX_IIR(pipe)));
2667
357555c0
JB
2668 /* enable CPU FDI TX and PCH FDI RX */
2669 reg = FDI_TX_CTL(pipe);
2670 temp = I915_READ(reg);
2671 temp &= ~(7 << 19);
2672 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2673 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2674 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2675 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2676 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2677 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2678 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2679
d74cf324
DV
2680 I915_WRITE(FDI_RX_MISC(pipe),
2681 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2682
357555c0
JB
2683 reg = FDI_RX_CTL(pipe);
2684 temp = I915_READ(reg);
2685 temp &= ~FDI_LINK_TRAIN_AUTO;
2686 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2688 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2689 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2690
2691 POSTING_READ(reg);
2692 udelay(150);
2693
291427f5
JB
2694 if (HAS_PCH_CPT(dev))
2695 cpt_phase_pointer_enable(dev, pipe);
2696
0206e353 2697 for (i = 0; i < 4; i++) {
357555c0
JB
2698 reg = FDI_TX_CTL(pipe);
2699 temp = I915_READ(reg);
2700 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2701 temp |= snb_b_fdi_train_param[i];
2702 I915_WRITE(reg, temp);
2703
2704 POSTING_READ(reg);
2705 udelay(500);
2706
2707 reg = FDI_RX_IIR(pipe);
2708 temp = I915_READ(reg);
2709 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2710
2711 if (temp & FDI_RX_BIT_LOCK ||
2712 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2713 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
01a415fd 2714 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
357555c0
JB
2715 break;
2716 }
2717 }
2718 if (i == 4)
2719 DRM_ERROR("FDI train 1 fail!\n");
2720
2721 /* Train 2 */
2722 reg = FDI_TX_CTL(pipe);
2723 temp = I915_READ(reg);
2724 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2725 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2726 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2727 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2728 I915_WRITE(reg, temp);
2729
2730 reg = FDI_RX_CTL(pipe);
2731 temp = I915_READ(reg);
2732 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2733 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2734 I915_WRITE(reg, temp);
2735
2736 POSTING_READ(reg);
2737 udelay(150);
2738
0206e353 2739 for (i = 0; i < 4; i++) {
357555c0
JB
2740 reg = FDI_TX_CTL(pipe);
2741 temp = I915_READ(reg);
2742 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2743 temp |= snb_b_fdi_train_param[i];
2744 I915_WRITE(reg, temp);
2745
2746 POSTING_READ(reg);
2747 udelay(500);
2748
2749 reg = FDI_RX_IIR(pipe);
2750 temp = I915_READ(reg);
2751 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2752
2753 if (temp & FDI_RX_SYMBOL_LOCK) {
2754 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
01a415fd 2755 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
357555c0
JB
2756 break;
2757 }
2758 }
2759 if (i == 4)
2760 DRM_ERROR("FDI train 2 fail!\n");
2761
2762 DRM_DEBUG_KMS("FDI train done.\n");
2763}
2764
88cefb6c 2765static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2766{
88cefb6c 2767 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2768 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2769 int pipe = intel_crtc->pipe;
5eddb70b 2770 u32 reg, temp;
79e53945 2771
c64e311e 2772
c98e9dcf 2773 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2774 reg = FDI_RX_CTL(pipe);
2775 temp = I915_READ(reg);
2776 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2777 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2778 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2779 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2780
2781 POSTING_READ(reg);
c98e9dcf
JB
2782 udelay(200);
2783
2784 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2785 temp = I915_READ(reg);
2786 I915_WRITE(reg, temp | FDI_PCDCLK);
2787
2788 POSTING_READ(reg);
c98e9dcf
JB
2789 udelay(200);
2790
bf507ef7
ED
2791 /* On Haswell, the PLL configuration for ports and pipes is handled
2792 * separately, as part of DDI setup */
2793 if (!IS_HASWELL(dev)) {
2794 /* Enable CPU FDI TX PLL, always on for Ironlake */
2795 reg = FDI_TX_CTL(pipe);
2796 temp = I915_READ(reg);
2797 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2798 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2799
bf507ef7
ED
2800 POSTING_READ(reg);
2801 udelay(100);
2802 }
6be4a607 2803 }
0e23b99d
JB
2804}
2805
88cefb6c
DV
2806static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2807{
2808 struct drm_device *dev = intel_crtc->base.dev;
2809 struct drm_i915_private *dev_priv = dev->dev_private;
2810 int pipe = intel_crtc->pipe;
2811 u32 reg, temp;
2812
2813 /* Switch from PCDclk to Rawclk */
2814 reg = FDI_RX_CTL(pipe);
2815 temp = I915_READ(reg);
2816 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2817
2818 /* Disable CPU FDI TX PLL */
2819 reg = FDI_TX_CTL(pipe);
2820 temp = I915_READ(reg);
2821 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2822
2823 POSTING_READ(reg);
2824 udelay(100);
2825
2826 reg = FDI_RX_CTL(pipe);
2827 temp = I915_READ(reg);
2828 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2829
2830 /* Wait for the clocks to turn off. */
2831 POSTING_READ(reg);
2832 udelay(100);
2833}
2834
291427f5
JB
2835static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2836{
2837 struct drm_i915_private *dev_priv = dev->dev_private;
2838 u32 flags = I915_READ(SOUTH_CHICKEN1);
2839
2840 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2841 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2842 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2843 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2844 POSTING_READ(SOUTH_CHICKEN1);
2845}
0fc932b8
JB
2846static void ironlake_fdi_disable(struct drm_crtc *crtc)
2847{
2848 struct drm_device *dev = crtc->dev;
2849 struct drm_i915_private *dev_priv = dev->dev_private;
2850 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2851 int pipe = intel_crtc->pipe;
2852 u32 reg, temp;
2853
2854 /* disable CPU FDI tx and PCH FDI rx */
2855 reg = FDI_TX_CTL(pipe);
2856 temp = I915_READ(reg);
2857 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2858 POSTING_READ(reg);
2859
2860 reg = FDI_RX_CTL(pipe);
2861 temp = I915_READ(reg);
2862 temp &= ~(0x7 << 16);
2863 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2864 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2865
2866 POSTING_READ(reg);
2867 udelay(100);
2868
2869 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2870 if (HAS_PCH_IBX(dev)) {
2871 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2872 I915_WRITE(FDI_RX_CHICKEN(pipe),
2873 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2874 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2875 } else if (HAS_PCH_CPT(dev)) {
2876 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2877 }
0fc932b8
JB
2878
2879 /* still set train pattern 1 */
2880 reg = FDI_TX_CTL(pipe);
2881 temp = I915_READ(reg);
2882 temp &= ~FDI_LINK_TRAIN_NONE;
2883 temp |= FDI_LINK_TRAIN_PATTERN_1;
2884 I915_WRITE(reg, temp);
2885
2886 reg = FDI_RX_CTL(pipe);
2887 temp = I915_READ(reg);
2888 if (HAS_PCH_CPT(dev)) {
2889 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2890 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2891 } else {
2892 temp &= ~FDI_LINK_TRAIN_NONE;
2893 temp |= FDI_LINK_TRAIN_PATTERN_1;
2894 }
2895 /* BPC in FDI rx is consistent with that in PIPECONF */
2896 temp &= ~(0x07 << 16);
2897 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2898 I915_WRITE(reg, temp);
2899
2900 POSTING_READ(reg);
2901 udelay(100);
2902}
2903
5bb61643
CW
2904static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2905{
2906 struct drm_device *dev = crtc->dev;
2907 struct drm_i915_private *dev_priv = dev->dev_private;
2908 unsigned long flags;
2909 bool pending;
2910
2911 if (atomic_read(&dev_priv->mm.wedged))
2912 return false;
2913
2914 spin_lock_irqsave(&dev->event_lock, flags);
2915 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2916 spin_unlock_irqrestore(&dev->event_lock, flags);
2917
2918 return pending;
2919}
2920
e6c3a2a6
CW
2921static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2922{
0f91128d 2923 struct drm_device *dev = crtc->dev;
5bb61643 2924 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6
CW
2925
2926 if (crtc->fb == NULL)
2927 return;
2928
5bb61643
CW
2929 wait_event(dev_priv->pending_flip_queue,
2930 !intel_crtc_has_pending_flip(crtc));
2931
0f91128d
CW
2932 mutex_lock(&dev->struct_mutex);
2933 intel_finish_fb(crtc->fb);
2934 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2935}
2936
fc316cbe 2937static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
040484af
JB
2938{
2939 struct drm_device *dev = crtc->dev;
228d3e36 2940 struct intel_encoder *intel_encoder;
040484af
JB
2941
2942 /*
2943 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2944 * must be driven by its own crtc; no sharing is possible.
2945 */
228d3e36 2946 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
228d3e36 2947 switch (intel_encoder->type) {
040484af 2948 case INTEL_OUTPUT_EDP:
228d3e36 2949 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2950 return false;
2951 continue;
2952 }
2953 }
2954
2955 return true;
2956}
2957
fc316cbe
PZ
2958static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2959{
2960 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2961}
2962
e615efe4
ED
2963/* Program iCLKIP clock to the desired frequency */
2964static void lpt_program_iclkip(struct drm_crtc *crtc)
2965{
2966 struct drm_device *dev = crtc->dev;
2967 struct drm_i915_private *dev_priv = dev->dev_private;
2968 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2969 u32 temp;
2970
2971 /* It is necessary to ungate the pixclk gate prior to programming
2972 * the divisors, and gate it back when it is done.
2973 */
2974 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2975
2976 /* Disable SSCCTL */
2977 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2978 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2979 SBI_SSCCTL_DISABLE);
2980
2981 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2982 if (crtc->mode.clock == 20000) {
2983 auxdiv = 1;
2984 divsel = 0x41;
2985 phaseinc = 0x20;
2986 } else {
2987 /* The iCLK virtual clock root frequency is in MHz,
2988 * but the crtc->mode.clock in in KHz. To get the divisors,
2989 * it is necessary to divide one by another, so we
2990 * convert the virtual clock precision to KHz here for higher
2991 * precision.
2992 */
2993 u32 iclk_virtual_root_freq = 172800 * 1000;
2994 u32 iclk_pi_range = 64;
2995 u32 desired_divisor, msb_divisor_value, pi_value;
2996
2997 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2998 msb_divisor_value = desired_divisor / iclk_pi_range;
2999 pi_value = desired_divisor % iclk_pi_range;
3000
3001 auxdiv = 0;
3002 divsel = msb_divisor_value - 2;
3003 phaseinc = pi_value;
3004 }
3005
3006 /* This should not happen with any sane values */
3007 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3008 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3009 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3010 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3011
3012 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3013 crtc->mode.clock,
3014 auxdiv,
3015 divsel,
3016 phasedir,
3017 phaseinc);
3018
3019 /* Program SSCDIVINTPHASE6 */
3020 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3021 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3022 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3023 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3024 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3025 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3026 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3027
3028 intel_sbi_write(dev_priv,
3029 SBI_SSCDIVINTPHASE6,
3030 temp);
3031
3032 /* Program SSCAUXDIV */
3033 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3034 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3035 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3036 intel_sbi_write(dev_priv,
3037 SBI_SSCAUXDIV6,
3038 temp);
3039
3040
3041 /* Enable modulator and associated divider */
3042 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3043 temp &= ~SBI_SSCCTL_DISABLE;
3044 intel_sbi_write(dev_priv,
3045 SBI_SSCCTL6,
3046 temp);
3047
3048 /* Wait for initialization time */
3049 udelay(24);
3050
3051 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3052}
3053
f67a559d
JB
3054/*
3055 * Enable PCH resources required for PCH ports:
3056 * - PCH PLLs
3057 * - FDI training & RX/TX
3058 * - update transcoder timings
3059 * - DP transcoding bits
3060 * - transcoder
3061 */
3062static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3063{
3064 struct drm_device *dev = crtc->dev;
3065 struct drm_i915_private *dev_priv = dev->dev_private;
3066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3067 int pipe = intel_crtc->pipe;
ee7b9f93 3068 u32 reg, temp;
2c07245f 3069
e7e164db
CW
3070 assert_transcoder_disabled(dev_priv, pipe);
3071
cd986abb
DV
3072 /* Write the TU size bits before fdi link training, so that error
3073 * detection works. */
3074 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3075 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3076
c98e9dcf 3077 /* For PCH output, training FDI link */
674cf967 3078 dev_priv->display.fdi_link_train(crtc);
2c07245f 3079
572deb37
DV
3080 /* XXX: pch pll's can be enabled any time before we enable the PCH
3081 * transcoder, and we actually should do this to not upset any PCH
3082 * transcoder that already use the clock when we share it.
3083 *
3084 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3085 * unconditionally resets the pll - we need that to have the right LVDS
3086 * enable sequence. */
6f13b7b5
CW
3087 intel_enable_pch_pll(intel_crtc);
3088
303b81e0 3089 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3090 u32 sel;
4b645f14 3091
c98e9dcf 3092 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
3093 switch (pipe) {
3094 default:
3095 case 0:
3096 temp |= TRANSA_DPLL_ENABLE;
3097 sel = TRANSA_DPLLB_SEL;
3098 break;
3099 case 1:
3100 temp |= TRANSB_DPLL_ENABLE;
3101 sel = TRANSB_DPLLB_SEL;
3102 break;
3103 case 2:
3104 temp |= TRANSC_DPLL_ENABLE;
3105 sel = TRANSC_DPLLB_SEL;
3106 break;
d64311ab 3107 }
ee7b9f93
JB
3108 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3109 temp |= sel;
3110 else
3111 temp &= ~sel;
c98e9dcf 3112 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3113 }
5eddb70b 3114
d9b6cb56
JB
3115 /* set transcoder timing, panel must allow it */
3116 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3117 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3118 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3119 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3120
5eddb70b
CW
3121 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3122 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3123 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3124 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3125
303b81e0 3126 intel_fdi_normal_train(crtc);
5e84e1a4 3127
c98e9dcf
JB
3128 /* For PCH DP, enable TRANS_DP_CTL */
3129 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3130 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3131 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3132 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3133 reg = TRANS_DP_CTL(pipe);
3134 temp = I915_READ(reg);
3135 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3136 TRANS_DP_SYNC_MASK |
3137 TRANS_DP_BPC_MASK);
5eddb70b
CW
3138 temp |= (TRANS_DP_OUTPUT_ENABLE |
3139 TRANS_DP_ENH_FRAMING);
9325c9f0 3140 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3141
3142 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3143 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3144 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3145 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3146
3147 switch (intel_trans_dp_port_sel(crtc)) {
3148 case PCH_DP_B:
5eddb70b 3149 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3150 break;
3151 case PCH_DP_C:
5eddb70b 3152 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3153 break;
3154 case PCH_DP_D:
5eddb70b 3155 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3156 break;
3157 default:
e95d41e1 3158 BUG();
32f9d658 3159 }
2c07245f 3160
5eddb70b 3161 I915_WRITE(reg, temp);
6be4a607 3162 }
b52eb4dc 3163
040484af 3164 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
3165}
3166
1507e5bd
PZ
3167static void lpt_pch_enable(struct drm_crtc *crtc)
3168{
3169 struct drm_device *dev = crtc->dev;
3170 struct drm_i915_private *dev_priv = dev->dev_private;
3171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3172 int pipe = intel_crtc->pipe;
3173 u32 reg, temp;
3174
3175 assert_transcoder_disabled(dev_priv, pipe);
3176
3177 /* Write the TU size bits before fdi link training, so that error
3178 * detection works. */
3179 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3180 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3181
3182 /* For PCH output, training FDI link */
3183 dev_priv->display.fdi_link_train(crtc);
3184
3185 /* XXX: pch pll's can be enabled any time before we enable the PCH
3186 * transcoder, and we actually should do this to not upset any PCH
3187 * transcoder that already use the clock when we share it.
3188 *
3189 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3190 * unconditionally resets the pll - we need that to have the right LVDS
3191 * enable sequence. */
3192 intel_enable_pch_pll(intel_crtc);
3193
3194 if (HAS_PCH_LPT(dev)) {
3195 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
3196 lpt_program_iclkip(crtc);
3197 } else if (HAS_PCH_CPT(dev)) {
3198 u32 sel;
3199
3200 temp = I915_READ(PCH_DPLL_SEL);
3201 switch (pipe) {
3202 default:
3203 case 0:
3204 temp |= TRANSA_DPLL_ENABLE;
3205 sel = TRANSA_DPLLB_SEL;
3206 break;
3207 case 1:
3208 temp |= TRANSB_DPLL_ENABLE;
3209 sel = TRANSB_DPLLB_SEL;
3210 break;
3211 case 2:
3212 temp |= TRANSC_DPLL_ENABLE;
3213 sel = TRANSC_DPLLB_SEL;
3214 break;
3215 }
3216 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3217 temp |= sel;
3218 else
3219 temp &= ~sel;
3220 I915_WRITE(PCH_DPLL_SEL, temp);
3221 }
3222
3223 /* set transcoder timing, panel must allow it */
3224 assert_panel_unlocked(dev_priv, pipe);
3225 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3226 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3227 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3228
3229 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3230 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3231 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3232 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3233
3234 if (!IS_HASWELL(dev))
3235 intel_fdi_normal_train(crtc);
3236
3237 /* For PCH DP, enable TRANS_DP_CTL */
3238 if (HAS_PCH_CPT(dev) &&
3239 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3240 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3241 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3242 reg = TRANS_DP_CTL(pipe);
3243 temp = I915_READ(reg);
3244 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3245 TRANS_DP_SYNC_MASK |
3246 TRANS_DP_BPC_MASK);
3247 temp |= (TRANS_DP_OUTPUT_ENABLE |
3248 TRANS_DP_ENH_FRAMING);
3249 temp |= bpc << 9; /* same format but at 11:9 */
3250
3251 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3252 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3253 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3254 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3255
3256 switch (intel_trans_dp_port_sel(crtc)) {
3257 case PCH_DP_B:
3258 temp |= TRANS_DP_PORT_SEL_B;
3259 break;
3260 case PCH_DP_C:
3261 temp |= TRANS_DP_PORT_SEL_C;
3262 break;
3263 case PCH_DP_D:
3264 temp |= TRANS_DP_PORT_SEL_D;
3265 break;
3266 default:
3267 BUG();
3268 }
3269
3270 I915_WRITE(reg, temp);
3271 }
3272
3273 intel_enable_transcoder(dev_priv, pipe);
3274}
3275
ee7b9f93
JB
3276static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3277{
3278 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3279
3280 if (pll == NULL)
3281 return;
3282
3283 if (pll->refcount == 0) {
3284 WARN(1, "bad PCH PLL refcount\n");
3285 return;
3286 }
3287
3288 --pll->refcount;
3289 intel_crtc->pch_pll = NULL;
3290}
3291
3292static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3293{
3294 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3295 struct intel_pch_pll *pll;
3296 int i;
3297
3298 pll = intel_crtc->pch_pll;
3299 if (pll) {
3300 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3301 intel_crtc->base.base.id, pll->pll_reg);
3302 goto prepare;
3303 }
3304
98b6bd99
DV
3305 if (HAS_PCH_IBX(dev_priv->dev)) {
3306 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3307 i = intel_crtc->pipe;
3308 pll = &dev_priv->pch_plls[i];
3309
3310 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3311 intel_crtc->base.base.id, pll->pll_reg);
3312
3313 goto found;
3314 }
3315
ee7b9f93
JB
3316 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3317 pll = &dev_priv->pch_plls[i];
3318
3319 /* Only want to check enabled timings first */
3320 if (pll->refcount == 0)
3321 continue;
3322
3323 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3324 fp == I915_READ(pll->fp0_reg)) {
3325 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3326 intel_crtc->base.base.id,
3327 pll->pll_reg, pll->refcount, pll->active);
3328
3329 goto found;
3330 }
3331 }
3332
3333 /* Ok no matching timings, maybe there's a free one? */
3334 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3335 pll = &dev_priv->pch_plls[i];
3336 if (pll->refcount == 0) {
3337 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3338 intel_crtc->base.base.id, pll->pll_reg);
3339 goto found;
3340 }
3341 }
3342
3343 return NULL;
3344
3345found:
3346 intel_crtc->pch_pll = pll;
3347 pll->refcount++;
3348 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3349prepare: /* separate function? */
3350 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3351
e04c7350
CW
3352 /* Wait for the clocks to stabilize before rewriting the regs */
3353 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3354 POSTING_READ(pll->pll_reg);
3355 udelay(150);
e04c7350
CW
3356
3357 I915_WRITE(pll->fp0_reg, fp);
3358 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3359 pll->on = false;
3360 return pll;
3361}
3362
d4270e57
JB
3363void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3364{
3365 struct drm_i915_private *dev_priv = dev->dev_private;
3366 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3367 u32 temp;
3368
3369 temp = I915_READ(dslreg);
3370 udelay(500);
3371 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3372 /* Without this, mode sets may fail silently on FDI */
3373 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3374 udelay(250);
3375 I915_WRITE(tc2reg, 0);
3376 if (wait_for(I915_READ(dslreg) != temp, 5))
3377 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3378 }
3379}
3380
f67a559d
JB
3381static void ironlake_crtc_enable(struct drm_crtc *crtc)
3382{
3383 struct drm_device *dev = crtc->dev;
3384 struct drm_i915_private *dev_priv = dev->dev_private;
3385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3386 struct intel_encoder *encoder;
f67a559d
JB
3387 int pipe = intel_crtc->pipe;
3388 int plane = intel_crtc->plane;
3389 u32 temp;
3390 bool is_pch_port;
3391
08a48469
DV
3392 WARN_ON(!crtc->enabled);
3393
f67a559d
JB
3394 if (intel_crtc->active)
3395 return;
3396
3397 intel_crtc->active = true;
3398 intel_update_watermarks(dev);
3399
3400 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3401 temp = I915_READ(PCH_LVDS);
3402 if ((temp & LVDS_PORT_EN) == 0)
3403 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3404 }
3405
fc316cbe 3406 is_pch_port = ironlake_crtc_driving_pch(crtc);
f67a559d 3407
46b6f814 3408 if (is_pch_port) {
fff367c7
DV
3409 /* Note: FDI PLL enabling _must_ be done before we enable the
3410 * cpu pipes, hence this is separate from all the other fdi/pch
3411 * enabling. */
88cefb6c 3412 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3413 } else {
3414 assert_fdi_tx_disabled(dev_priv, pipe);
3415 assert_fdi_rx_disabled(dev_priv, pipe);
3416 }
f67a559d 3417
bf49ec8c
DV
3418 for_each_encoder_on_crtc(dev, crtc, encoder)
3419 if (encoder->pre_enable)
3420 encoder->pre_enable(encoder);
3421
f67a559d
JB
3422 /* Enable panel fitting for LVDS */
3423 if (dev_priv->pch_pf_size &&
3424 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3425 /* Force use of hard-coded filter coefficients
3426 * as some pre-programmed values are broken,
3427 * e.g. x201.
3428 */
9db4a9c7
JB
3429 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3430 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3431 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3432 }
3433
9c54c0dd
JB
3434 /*
3435 * On ILK+ LUT must be loaded before the pipe is running but with
3436 * clocks enabled
3437 */
3438 intel_crtc_load_lut(crtc);
3439
f67a559d
JB
3440 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3441 intel_enable_plane(dev_priv, plane, pipe);
3442
3443 if (is_pch_port)
3444 ironlake_pch_enable(crtc);
c98e9dcf 3445
d1ebd816 3446 mutex_lock(&dev->struct_mutex);
bed4a673 3447 intel_update_fbc(dev);
d1ebd816
BW
3448 mutex_unlock(&dev->struct_mutex);
3449
6b383a7f 3450 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3451
fa5c73b1
DV
3452 for_each_encoder_on_crtc(dev, crtc, encoder)
3453 encoder->enable(encoder);
61b77ddd
DV
3454
3455 if (HAS_PCH_CPT(dev))
3456 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100
DV
3457
3458 /*
3459 * There seems to be a race in PCH platform hw (at least on some
3460 * outputs) where an enabled pipe still completes any pageflip right
3461 * away (as if the pipe is off) instead of waiting for vblank. As soon
3462 * as the first vblank happend, everything works as expected. Hence just
3463 * wait for one vblank before returning to avoid strange things
3464 * happening.
3465 */
3466 intel_wait_for_vblank(dev, intel_crtc->pipe);
6be4a607
JB
3467}
3468
4f771f10
PZ
3469static void haswell_crtc_enable(struct drm_crtc *crtc)
3470{
3471 struct drm_device *dev = crtc->dev;
3472 struct drm_i915_private *dev_priv = dev->dev_private;
3473 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3474 struct intel_encoder *encoder;
3475 int pipe = intel_crtc->pipe;
3476 int plane = intel_crtc->plane;
4f771f10
PZ
3477 bool is_pch_port;
3478
3479 WARN_ON(!crtc->enabled);
3480
3481 if (intel_crtc->active)
3482 return;
3483
3484 intel_crtc->active = true;
3485 intel_update_watermarks(dev);
3486
fc316cbe 3487 is_pch_port = haswell_crtc_driving_pch(crtc);
4f771f10 3488
83616634 3489 if (is_pch_port)
4f771f10 3490 ironlake_fdi_pll_enable(intel_crtc);
4f771f10
PZ
3491
3492 for_each_encoder_on_crtc(dev, crtc, encoder)
3493 if (encoder->pre_enable)
3494 encoder->pre_enable(encoder);
3495
1f544388 3496 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 3497
1f544388
PZ
3498 /* Enable panel fitting for eDP */
3499 if (dev_priv->pch_pf_size && HAS_eDP) {
4f771f10
PZ
3500 /* Force use of hard-coded filter coefficients
3501 * as some pre-programmed values are broken,
3502 * e.g. x201.
3503 */
3504 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3505 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3506 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3507 }
3508
3509 /*
3510 * On ILK+ LUT must be loaded before the pipe is running but with
3511 * clocks enabled
3512 */
3513 intel_crtc_load_lut(crtc);
3514
1f544388
PZ
3515 intel_ddi_set_pipe_settings(crtc);
3516 intel_ddi_enable_pipe_func(crtc);
4f771f10
PZ
3517
3518 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3519 intel_enable_plane(dev_priv, plane, pipe);
3520
3521 if (is_pch_port)
1507e5bd 3522 lpt_pch_enable(crtc);
4f771f10
PZ
3523
3524 mutex_lock(&dev->struct_mutex);
3525 intel_update_fbc(dev);
3526 mutex_unlock(&dev->struct_mutex);
3527
3528 intel_crtc_update_cursor(crtc, true);
3529
3530 for_each_encoder_on_crtc(dev, crtc, encoder)
3531 encoder->enable(encoder);
3532
4f771f10
PZ
3533 /*
3534 * There seems to be a race in PCH platform hw (at least on some
3535 * outputs) where an enabled pipe still completes any pageflip right
3536 * away (as if the pipe is off) instead of waiting for vblank. As soon
3537 * as the first vblank happend, everything works as expected. Hence just
3538 * wait for one vblank before returning to avoid strange things
3539 * happening.
3540 */
3541 intel_wait_for_vblank(dev, intel_crtc->pipe);
3542}
3543
6be4a607
JB
3544static void ironlake_crtc_disable(struct drm_crtc *crtc)
3545{
3546 struct drm_device *dev = crtc->dev;
3547 struct drm_i915_private *dev_priv = dev->dev_private;
3548 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3549 struct intel_encoder *encoder;
6be4a607
JB
3550 int pipe = intel_crtc->pipe;
3551 int plane = intel_crtc->plane;
5eddb70b 3552 u32 reg, temp;
b52eb4dc 3553
ef9c3aee 3554
f7abfe8b
CW
3555 if (!intel_crtc->active)
3556 return;
3557
ea9d758d
DV
3558 for_each_encoder_on_crtc(dev, crtc, encoder)
3559 encoder->disable(encoder);
3560
e6c3a2a6 3561 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3562 drm_vblank_off(dev, pipe);
6b383a7f 3563 intel_crtc_update_cursor(crtc, false);
5eddb70b 3564
b24e7179 3565 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3566
973d04f9
CW
3567 if (dev_priv->cfb_plane == plane)
3568 intel_disable_fbc(dev);
2c07245f 3569
b24e7179 3570 intel_disable_pipe(dev_priv, pipe);
32f9d658 3571
6be4a607 3572 /* Disable PF */
9db4a9c7
JB
3573 I915_WRITE(PF_CTL(pipe), 0);
3574 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3575
bf49ec8c
DV
3576 for_each_encoder_on_crtc(dev, crtc, encoder)
3577 if (encoder->post_disable)
3578 encoder->post_disable(encoder);
3579
0fc932b8 3580 ironlake_fdi_disable(crtc);
2c07245f 3581
040484af 3582 intel_disable_transcoder(dev_priv, pipe);
913d8d11 3583
6be4a607
JB
3584 if (HAS_PCH_CPT(dev)) {
3585 /* disable TRANS_DP_CTL */
5eddb70b
CW
3586 reg = TRANS_DP_CTL(pipe);
3587 temp = I915_READ(reg);
3588 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3589 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3590 I915_WRITE(reg, temp);
6be4a607
JB
3591
3592 /* disable DPLL_SEL */
3593 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3594 switch (pipe) {
3595 case 0:
d64311ab 3596 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3597 break;
3598 case 1:
6be4a607 3599 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3600 break;
3601 case 2:
4b645f14 3602 /* C shares PLL A or B */
d64311ab 3603 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3604 break;
3605 default:
3606 BUG(); /* wtf */
3607 }
6be4a607 3608 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3609 }
e3421a18 3610
6be4a607 3611 /* disable PCH DPLL */
ee7b9f93 3612 intel_disable_pch_pll(intel_crtc);
8db9d77b 3613
88cefb6c 3614 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3615
f7abfe8b 3616 intel_crtc->active = false;
6b383a7f 3617 intel_update_watermarks(dev);
d1ebd816
BW
3618
3619 mutex_lock(&dev->struct_mutex);
6b383a7f 3620 intel_update_fbc(dev);
d1ebd816 3621 mutex_unlock(&dev->struct_mutex);
6be4a607 3622}
1b3c7a47 3623
4f771f10
PZ
3624static void haswell_crtc_disable(struct drm_crtc *crtc)
3625{
3626 struct drm_device *dev = crtc->dev;
3627 struct drm_i915_private *dev_priv = dev->dev_private;
3628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3629 struct intel_encoder *encoder;
3630 int pipe = intel_crtc->pipe;
3631 int plane = intel_crtc->plane;
ad80a810 3632 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
83616634 3633 bool is_pch_port;
4f771f10
PZ
3634
3635 if (!intel_crtc->active)
3636 return;
3637
83616634
PZ
3638 is_pch_port = haswell_crtc_driving_pch(crtc);
3639
4f771f10
PZ
3640 for_each_encoder_on_crtc(dev, crtc, encoder)
3641 encoder->disable(encoder);
3642
3643 intel_crtc_wait_for_pending_flips(crtc);
3644 drm_vblank_off(dev, pipe);
3645 intel_crtc_update_cursor(crtc, false);
3646
3647 intel_disable_plane(dev_priv, plane, pipe);
3648
3649 if (dev_priv->cfb_plane == plane)
3650 intel_disable_fbc(dev);
3651
3652 intel_disable_pipe(dev_priv, pipe);
3653
ad80a810 3654 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10
PZ
3655
3656 /* Disable PF */
3657 I915_WRITE(PF_CTL(pipe), 0);
3658 I915_WRITE(PF_WIN_SZ(pipe), 0);
3659
1f544388 3660 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
3661
3662 for_each_encoder_on_crtc(dev, crtc, encoder)
3663 if (encoder->post_disable)
3664 encoder->post_disable(encoder);
3665
83616634
PZ
3666 if (is_pch_port) {
3667 ironlake_fdi_disable(crtc);
3668 intel_disable_transcoder(dev_priv, pipe);
3669 intel_disable_pch_pll(intel_crtc);
3670 ironlake_fdi_pll_disable(intel_crtc);
3671 }
4f771f10
PZ
3672
3673 intel_crtc->active = false;
3674 intel_update_watermarks(dev);
3675
3676 mutex_lock(&dev->struct_mutex);
3677 intel_update_fbc(dev);
3678 mutex_unlock(&dev->struct_mutex);
3679}
3680
ee7b9f93
JB
3681static void ironlake_crtc_off(struct drm_crtc *crtc)
3682{
3683 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3684 intel_put_pch_pll(intel_crtc);
3685}
3686
6441ab5f
PZ
3687static void haswell_crtc_off(struct drm_crtc *crtc)
3688{
a5c961d1
PZ
3689 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3690
3691 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3692 * start using it. */
3693 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3694
6441ab5f
PZ
3695 intel_ddi_put_crtc_pll(crtc);
3696}
3697
02e792fb
DV
3698static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3699{
02e792fb 3700 if (!enable && intel_crtc->overlay) {
23f09ce3 3701 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3702 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3703
23f09ce3 3704 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3705 dev_priv->mm.interruptible = false;
3706 (void) intel_overlay_switch_off(intel_crtc->overlay);
3707 dev_priv->mm.interruptible = true;
23f09ce3 3708 mutex_unlock(&dev->struct_mutex);
02e792fb 3709 }
02e792fb 3710
5dcdbcb0
CW
3711 /* Let userspace switch the overlay on again. In most cases userspace
3712 * has to recompute where to put it anyway.
3713 */
02e792fb
DV
3714}
3715
0b8765c6 3716static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3717{
3718 struct drm_device *dev = crtc->dev;
79e53945
JB
3719 struct drm_i915_private *dev_priv = dev->dev_private;
3720 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3721 struct intel_encoder *encoder;
79e53945 3722 int pipe = intel_crtc->pipe;
80824003 3723 int plane = intel_crtc->plane;
79e53945 3724
08a48469
DV
3725 WARN_ON(!crtc->enabled);
3726
f7abfe8b
CW
3727 if (intel_crtc->active)
3728 return;
3729
3730 intel_crtc->active = true;
6b383a7f
CW
3731 intel_update_watermarks(dev);
3732
63d7bbe9 3733 intel_enable_pll(dev_priv, pipe);
040484af 3734 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3735 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3736
0b8765c6 3737 intel_crtc_load_lut(crtc);
bed4a673 3738 intel_update_fbc(dev);
79e53945 3739
0b8765c6
JB
3740 /* Give the overlay scaler a chance to enable if it's on this pipe */
3741 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3742 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3743
fa5c73b1
DV
3744 for_each_encoder_on_crtc(dev, crtc, encoder)
3745 encoder->enable(encoder);
0b8765c6 3746}
79e53945 3747
0b8765c6
JB
3748static void i9xx_crtc_disable(struct drm_crtc *crtc)
3749{
3750 struct drm_device *dev = crtc->dev;
3751 struct drm_i915_private *dev_priv = dev->dev_private;
3752 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3753 struct intel_encoder *encoder;
0b8765c6
JB
3754 int pipe = intel_crtc->pipe;
3755 int plane = intel_crtc->plane;
b690e96c 3756
ef9c3aee 3757
f7abfe8b
CW
3758 if (!intel_crtc->active)
3759 return;
3760
ea9d758d
DV
3761 for_each_encoder_on_crtc(dev, crtc, encoder)
3762 encoder->disable(encoder);
3763
0b8765c6 3764 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3765 intel_crtc_wait_for_pending_flips(crtc);
3766 drm_vblank_off(dev, pipe);
0b8765c6 3767 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3768 intel_crtc_update_cursor(crtc, false);
0b8765c6 3769
973d04f9
CW
3770 if (dev_priv->cfb_plane == plane)
3771 intel_disable_fbc(dev);
79e53945 3772
b24e7179 3773 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3774 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3775 intel_disable_pll(dev_priv, pipe);
0b8765c6 3776
f7abfe8b 3777 intel_crtc->active = false;
6b383a7f
CW
3778 intel_update_fbc(dev);
3779 intel_update_watermarks(dev);
0b8765c6
JB
3780}
3781
ee7b9f93
JB
3782static void i9xx_crtc_off(struct drm_crtc *crtc)
3783{
3784}
3785
976f8a20
DV
3786static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3787 bool enabled)
2c07245f
ZW
3788{
3789 struct drm_device *dev = crtc->dev;
3790 struct drm_i915_master_private *master_priv;
3791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3792 int pipe = intel_crtc->pipe;
79e53945
JB
3793
3794 if (!dev->primary->master)
3795 return;
3796
3797 master_priv = dev->primary->master->driver_priv;
3798 if (!master_priv->sarea_priv)
3799 return;
3800
79e53945
JB
3801 switch (pipe) {
3802 case 0:
3803 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3804 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3805 break;
3806 case 1:
3807 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3808 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3809 break;
3810 default:
9db4a9c7 3811 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3812 break;
3813 }
79e53945
JB
3814}
3815
976f8a20
DV
3816/**
3817 * Sets the power management mode of the pipe and plane.
3818 */
3819void intel_crtc_update_dpms(struct drm_crtc *crtc)
3820{
3821 struct drm_device *dev = crtc->dev;
3822 struct drm_i915_private *dev_priv = dev->dev_private;
3823 struct intel_encoder *intel_encoder;
3824 bool enable = false;
3825
3826 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3827 enable |= intel_encoder->connectors_active;
3828
3829 if (enable)
3830 dev_priv->display.crtc_enable(crtc);
3831 else
3832 dev_priv->display.crtc_disable(crtc);
3833
3834 intel_crtc_update_sarea(crtc, enable);
3835}
3836
3837static void intel_crtc_noop(struct drm_crtc *crtc)
3838{
3839}
3840
cdd59983
CW
3841static void intel_crtc_disable(struct drm_crtc *crtc)
3842{
cdd59983 3843 struct drm_device *dev = crtc->dev;
976f8a20 3844 struct drm_connector *connector;
ee7b9f93 3845 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3846
976f8a20
DV
3847 /* crtc should still be enabled when we disable it. */
3848 WARN_ON(!crtc->enabled);
3849
3850 dev_priv->display.crtc_disable(crtc);
3851 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3852 dev_priv->display.off(crtc);
3853
931872fc
CW
3854 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3855 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3856
3857 if (crtc->fb) {
3858 mutex_lock(&dev->struct_mutex);
1690e1eb 3859 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3860 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3861 crtc->fb = NULL;
3862 }
3863
3864 /* Update computed state. */
3865 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3866 if (!connector->encoder || !connector->encoder->crtc)
3867 continue;
3868
3869 if (connector->encoder->crtc != crtc)
3870 continue;
3871
3872 connector->dpms = DRM_MODE_DPMS_OFF;
3873 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3874 }
3875}
3876
a261b246 3877void intel_modeset_disable(struct drm_device *dev)
79e53945 3878{
a261b246
DV
3879 struct drm_crtc *crtc;
3880
3881 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3882 if (crtc->enabled)
3883 intel_crtc_disable(crtc);
3884 }
79e53945
JB
3885}
3886
1f703855 3887void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3888{
7e7d76c3
JB
3889}
3890
ea5b213a 3891void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3892{
4ef69c7a 3893 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3894
ea5b213a
CW
3895 drm_encoder_cleanup(encoder);
3896 kfree(intel_encoder);
7e7d76c3
JB
3897}
3898
5ab432ef
DV
3899/* Simple dpms helper for encodres with just one connector, no cloning and only
3900 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3901 * state of the entire output pipe. */
3902void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3903{
5ab432ef
DV
3904 if (mode == DRM_MODE_DPMS_ON) {
3905 encoder->connectors_active = true;
3906
b2cabb0e 3907 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3908 } else {
3909 encoder->connectors_active = false;
3910
b2cabb0e 3911 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3912 }
79e53945
JB
3913}
3914
0a91ca29
DV
3915/* Cross check the actual hw state with our own modeset state tracking (and it's
3916 * internal consistency). */
b980514c 3917static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3918{
0a91ca29
DV
3919 if (connector->get_hw_state(connector)) {
3920 struct intel_encoder *encoder = connector->encoder;
3921 struct drm_crtc *crtc;
3922 bool encoder_enabled;
3923 enum pipe pipe;
3924
3925 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3926 connector->base.base.id,
3927 drm_get_connector_name(&connector->base));
3928
3929 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3930 "wrong connector dpms state\n");
3931 WARN(connector->base.encoder != &encoder->base,
3932 "active connector not linked to encoder\n");
3933 WARN(!encoder->connectors_active,
3934 "encoder->connectors_active not set\n");
3935
3936 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3937 WARN(!encoder_enabled, "encoder not enabled\n");
3938 if (WARN_ON(!encoder->base.crtc))
3939 return;
3940
3941 crtc = encoder->base.crtc;
3942
3943 WARN(!crtc->enabled, "crtc not enabled\n");
3944 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3945 WARN(pipe != to_intel_crtc(crtc)->pipe,
3946 "encoder active on the wrong pipe\n");
3947 }
79e53945
JB
3948}
3949
5ab432ef
DV
3950/* Even simpler default implementation, if there's really no special case to
3951 * consider. */
3952void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3953{
5ab432ef 3954 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3955
5ab432ef
DV
3956 /* All the simple cases only support two dpms states. */
3957 if (mode != DRM_MODE_DPMS_ON)
3958 mode = DRM_MODE_DPMS_OFF;
d4270e57 3959
5ab432ef
DV
3960 if (mode == connector->dpms)
3961 return;
3962
3963 connector->dpms = mode;
3964
3965 /* Only need to change hw state when actually enabled */
3966 if (encoder->base.crtc)
3967 intel_encoder_dpms(encoder, mode);
3968 else
8af6cf88 3969 WARN_ON(encoder->connectors_active != false);
0a91ca29 3970
b980514c 3971 intel_modeset_check_state(connector->dev);
79e53945
JB
3972}
3973
f0947c37
DV
3974/* Simple connector->get_hw_state implementation for encoders that support only
3975 * one connector and no cloning and hence the encoder state determines the state
3976 * of the connector. */
3977bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3978{
24929352 3979 enum pipe pipe = 0;
f0947c37 3980 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3981
f0947c37 3982 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3983}
3984
79e53945 3985static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3986 const struct drm_display_mode *mode,
79e53945
JB
3987 struct drm_display_mode *adjusted_mode)
3988{
2c07245f 3989 struct drm_device *dev = crtc->dev;
89749350 3990
bad720ff 3991 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3992 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3993 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3994 return false;
2c07245f 3995 }
89749350 3996
f9bef081
DV
3997 /* All interlaced capable intel hw wants timings in frames. Note though
3998 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3999 * timings, so we need to be careful not to clobber these.*/
4000 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
4001 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 4002
44f46b42
CW
4003 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
4004 * with a hsync front porch of 0.
4005 */
4006 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4007 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4008 return false;
4009
79e53945
JB
4010 return true;
4011}
4012
25eb05fc
JB
4013static int valleyview_get_display_clock_speed(struct drm_device *dev)
4014{
4015 return 400000; /* FIXME */
4016}
4017
e70236a8
JB
4018static int i945_get_display_clock_speed(struct drm_device *dev)
4019{
4020 return 400000;
4021}
79e53945 4022
e70236a8 4023static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 4024{
e70236a8
JB
4025 return 333000;
4026}
79e53945 4027
e70236a8
JB
4028static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4029{
4030 return 200000;
4031}
79e53945 4032
e70236a8
JB
4033static int i915gm_get_display_clock_speed(struct drm_device *dev)
4034{
4035 u16 gcfgc = 0;
79e53945 4036
e70236a8
JB
4037 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4038
4039 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4040 return 133000;
4041 else {
4042 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4043 case GC_DISPLAY_CLOCK_333_MHZ:
4044 return 333000;
4045 default:
4046 case GC_DISPLAY_CLOCK_190_200_MHZ:
4047 return 190000;
79e53945 4048 }
e70236a8
JB
4049 }
4050}
4051
4052static int i865_get_display_clock_speed(struct drm_device *dev)
4053{
4054 return 266000;
4055}
4056
4057static int i855_get_display_clock_speed(struct drm_device *dev)
4058{
4059 u16 hpllcc = 0;
4060 /* Assume that the hardware is in the high speed state. This
4061 * should be the default.
4062 */
4063 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4064 case GC_CLOCK_133_200:
4065 case GC_CLOCK_100_200:
4066 return 200000;
4067 case GC_CLOCK_166_250:
4068 return 250000;
4069 case GC_CLOCK_100_133:
79e53945 4070 return 133000;
e70236a8 4071 }
79e53945 4072
e70236a8
JB
4073 /* Shouldn't happen */
4074 return 0;
4075}
79e53945 4076
e70236a8
JB
4077static int i830_get_display_clock_speed(struct drm_device *dev)
4078{
4079 return 133000;
79e53945
JB
4080}
4081
2c07245f
ZW
4082struct fdi_m_n {
4083 u32 tu;
4084 u32 gmch_m;
4085 u32 gmch_n;
4086 u32 link_m;
4087 u32 link_n;
4088};
4089
4090static void
4091fdi_reduce_ratio(u32 *num, u32 *den)
4092{
4093 while (*num > 0xffffff || *den > 0xffffff) {
4094 *num >>= 1;
4095 *den >>= 1;
4096 }
4097}
4098
2c07245f 4099static void
f2b115e6
AJ
4100ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4101 int link_clock, struct fdi_m_n *m_n)
2c07245f 4102{
2c07245f
ZW
4103 m_n->tu = 64; /* default size */
4104
22ed1113
CW
4105 /* BUG_ON(pixel_clock > INT_MAX / 36); */
4106 m_n->gmch_m = bits_per_pixel * pixel_clock;
4107 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
4108 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4109
22ed1113
CW
4110 m_n->link_m = pixel_clock;
4111 m_n->link_n = link_clock;
2c07245f
ZW
4112 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4113}
4114
a7615030
CW
4115static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4116{
72bbe58c
KP
4117 if (i915_panel_use_ssc >= 0)
4118 return i915_panel_use_ssc != 0;
4119 return dev_priv->lvds_use_ssc
435793df 4120 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4121}
4122
5a354204
JB
4123/**
4124 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4125 * @crtc: CRTC structure
3b5c78a3 4126 * @mode: requested mode
5a354204
JB
4127 *
4128 * A pipe may be connected to one or more outputs. Based on the depth of the
4129 * attached framebuffer, choose a good color depth to use on the pipe.
4130 *
4131 * If possible, match the pipe depth to the fb depth. In some cases, this
4132 * isn't ideal, because the connected output supports a lesser or restricted
4133 * set of depths. Resolve that here:
4134 * LVDS typically supports only 6bpc, so clamp down in that case
4135 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4136 * Displays may support a restricted set as well, check EDID and clamp as
4137 * appropriate.
3b5c78a3 4138 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
4139 *
4140 * RETURNS:
4141 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4142 * true if they don't match).
4143 */
4144static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 4145 struct drm_framebuffer *fb,
3b5c78a3
AJ
4146 unsigned int *pipe_bpp,
4147 struct drm_display_mode *mode)
5a354204
JB
4148{
4149 struct drm_device *dev = crtc->dev;
4150 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 4151 struct drm_connector *connector;
6c2b7c12 4152 struct intel_encoder *intel_encoder;
5a354204
JB
4153 unsigned int display_bpc = UINT_MAX, bpc;
4154
4155 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 4156 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
4157
4158 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4159 unsigned int lvds_bpc;
4160
4161 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4162 LVDS_A3_POWER_UP)
4163 lvds_bpc = 8;
4164 else
4165 lvds_bpc = 6;
4166
4167 if (lvds_bpc < display_bpc) {
82820490 4168 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
4169 display_bpc = lvds_bpc;
4170 }
4171 continue;
4172 }
4173
5a354204
JB
4174 /* Not one of the known troublemakers, check the EDID */
4175 list_for_each_entry(connector, &dev->mode_config.connector_list,
4176 head) {
6c2b7c12 4177 if (connector->encoder != &intel_encoder->base)
5a354204
JB
4178 continue;
4179
62ac41a6
JB
4180 /* Don't use an invalid EDID bpc value */
4181 if (connector->display_info.bpc &&
4182 connector->display_info.bpc < display_bpc) {
82820490 4183 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
4184 display_bpc = connector->display_info.bpc;
4185 }
4186 }
4187
4188 /*
4189 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4190 * through, clamp it down. (Note: >12bpc will be caught below.)
4191 */
4192 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4193 if (display_bpc > 8 && display_bpc < 12) {
82820490 4194 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
4195 display_bpc = 12;
4196 } else {
82820490 4197 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
4198 display_bpc = 8;
4199 }
4200 }
4201 }
4202
3b5c78a3
AJ
4203 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4204 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4205 display_bpc = 6;
4206 }
4207
5a354204
JB
4208 /*
4209 * We could just drive the pipe at the highest bpc all the time and
4210 * enable dithering as needed, but that costs bandwidth. So choose
4211 * the minimum value that expresses the full color range of the fb but
4212 * also stays within the max display bpc discovered above.
4213 */
4214
94352cf9 4215 switch (fb->depth) {
5a354204
JB
4216 case 8:
4217 bpc = 8; /* since we go through a colormap */
4218 break;
4219 case 15:
4220 case 16:
4221 bpc = 6; /* min is 18bpp */
4222 break;
4223 case 24:
578393cd 4224 bpc = 8;
5a354204
JB
4225 break;
4226 case 30:
578393cd 4227 bpc = 10;
5a354204
JB
4228 break;
4229 case 48:
578393cd 4230 bpc = 12;
5a354204
JB
4231 break;
4232 default:
4233 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4234 bpc = min((unsigned int)8, display_bpc);
4235 break;
4236 }
4237
578393cd
KP
4238 display_bpc = min(display_bpc, bpc);
4239
82820490
AJ
4240 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4241 bpc, display_bpc);
5a354204 4242
578393cd 4243 *pipe_bpp = display_bpc * 3;
5a354204
JB
4244
4245 return display_bpc != bpc;
4246}
4247
a0c4da24
JB
4248static int vlv_get_refclk(struct drm_crtc *crtc)
4249{
4250 struct drm_device *dev = crtc->dev;
4251 struct drm_i915_private *dev_priv = dev->dev_private;
4252 int refclk = 27000; /* for DP & HDMI */
4253
4254 return 100000; /* only one validated so far */
4255
4256 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4257 refclk = 96000;
4258 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4259 if (intel_panel_use_ssc(dev_priv))
4260 refclk = 100000;
4261 else
4262 refclk = 96000;
4263 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4264 refclk = 100000;
4265 }
4266
4267 return refclk;
4268}
4269
c65d77d8
JB
4270static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4271{
4272 struct drm_device *dev = crtc->dev;
4273 struct drm_i915_private *dev_priv = dev->dev_private;
4274 int refclk;
4275
a0c4da24
JB
4276 if (IS_VALLEYVIEW(dev)) {
4277 refclk = vlv_get_refclk(crtc);
4278 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
4279 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4280 refclk = dev_priv->lvds_ssc_freq * 1000;
4281 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4282 refclk / 1000);
4283 } else if (!IS_GEN2(dev)) {
4284 refclk = 96000;
4285 } else {
4286 refclk = 48000;
4287 }
4288
4289 return refclk;
4290}
4291
4292static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4293 intel_clock_t *clock)
4294{
4295 /* SDVO TV has fixed PLL values depend on its clock range,
4296 this mirrors vbios setting. */
4297 if (adjusted_mode->clock >= 100000
4298 && adjusted_mode->clock < 140500) {
4299 clock->p1 = 2;
4300 clock->p2 = 10;
4301 clock->n = 3;
4302 clock->m1 = 16;
4303 clock->m2 = 8;
4304 } else if (adjusted_mode->clock >= 140500
4305 && adjusted_mode->clock <= 200000) {
4306 clock->p1 = 1;
4307 clock->p2 = 10;
4308 clock->n = 6;
4309 clock->m1 = 12;
4310 clock->m2 = 8;
4311 }
4312}
4313
a7516a05
JB
4314static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4315 intel_clock_t *clock,
4316 intel_clock_t *reduced_clock)
4317{
4318 struct drm_device *dev = crtc->dev;
4319 struct drm_i915_private *dev_priv = dev->dev_private;
4320 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4321 int pipe = intel_crtc->pipe;
4322 u32 fp, fp2 = 0;
4323
4324 if (IS_PINEVIEW(dev)) {
4325 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4326 if (reduced_clock)
4327 fp2 = (1 << reduced_clock->n) << 16 |
4328 reduced_clock->m1 << 8 | reduced_clock->m2;
4329 } else {
4330 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4331 if (reduced_clock)
4332 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4333 reduced_clock->m2;
4334 }
4335
4336 I915_WRITE(FP0(pipe), fp);
4337
4338 intel_crtc->lowfreq_avail = false;
4339 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4340 reduced_clock && i915_powersave) {
4341 I915_WRITE(FP1(pipe), fp2);
4342 intel_crtc->lowfreq_avail = true;
4343 } else {
4344 I915_WRITE(FP1(pipe), fp);
4345 }
4346}
4347
93e537a1
DV
4348static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4349 struct drm_display_mode *adjusted_mode)
4350{
4351 struct drm_device *dev = crtc->dev;
4352 struct drm_i915_private *dev_priv = dev->dev_private;
4353 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4354 int pipe = intel_crtc->pipe;
284d5df5 4355 u32 temp;
93e537a1
DV
4356
4357 temp = I915_READ(LVDS);
4358 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4359 if (pipe == 1) {
4360 temp |= LVDS_PIPEB_SELECT;
4361 } else {
4362 temp &= ~LVDS_PIPEB_SELECT;
4363 }
4364 /* set the corresponsding LVDS_BORDER bit */
4365 temp |= dev_priv->lvds_border_bits;
4366 /* Set the B0-B3 data pairs corresponding to whether we're going to
4367 * set the DPLLs for dual-channel mode or not.
4368 */
4369 if (clock->p2 == 7)
4370 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4371 else
4372 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4373
4374 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4375 * appropriately here, but we need to look more thoroughly into how
4376 * panels behave in the two modes.
4377 */
4378 /* set the dithering flag on LVDS as needed */
4379 if (INTEL_INFO(dev)->gen >= 4) {
4380 if (dev_priv->lvds_dither)
4381 temp |= LVDS_ENABLE_DITHER;
4382 else
4383 temp &= ~LVDS_ENABLE_DITHER;
4384 }
284d5df5 4385 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4386 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4387 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4388 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4389 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4390 I915_WRITE(LVDS, temp);
4391}
4392
a0c4da24
JB
4393static void vlv_update_pll(struct drm_crtc *crtc,
4394 struct drm_display_mode *mode,
4395 struct drm_display_mode *adjusted_mode,
4396 intel_clock_t *clock, intel_clock_t *reduced_clock,
2a8f64ca 4397 int num_connectors)
a0c4da24
JB
4398{
4399 struct drm_device *dev = crtc->dev;
4400 struct drm_i915_private *dev_priv = dev->dev_private;
4401 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4402 int pipe = intel_crtc->pipe;
4403 u32 dpll, mdiv, pdiv;
4404 u32 bestn, bestm1, bestm2, bestp1, bestp2;
2a8f64ca
VP
4405 bool is_sdvo;
4406 u32 temp;
4407
4408 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4409 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
a0c4da24 4410
2a8f64ca
VP
4411 dpll = DPLL_VGA_MODE_DIS;
4412 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4413 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4414 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4415
4416 I915_WRITE(DPLL(pipe), dpll);
4417 POSTING_READ(DPLL(pipe));
a0c4da24
JB
4418
4419 bestn = clock->n;
4420 bestm1 = clock->m1;
4421 bestm2 = clock->m2;
4422 bestp1 = clock->p1;
4423 bestp2 = clock->p2;
4424
2a8f64ca
VP
4425 /*
4426 * In Valleyview PLL and program lane counter registers are exposed
4427 * through DPIO interface
4428 */
a0c4da24
JB
4429 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4430 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4431 mdiv |= ((bestn << DPIO_N_SHIFT));
4432 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4433 mdiv |= (1 << DPIO_K_SHIFT);
4434 mdiv |= DPIO_ENABLE_CALIBRATION;
4435 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4436
4437 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4438
2a8f64ca 4439 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
a0c4da24 4440 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
2a8f64ca
VP
4441 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4442 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
a0c4da24
JB
4443 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4444
2a8f64ca 4445 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
a0c4da24
JB
4446
4447 dpll |= DPLL_VCO_ENABLE;
4448 I915_WRITE(DPLL(pipe), dpll);
4449 POSTING_READ(DPLL(pipe));
4450 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4451 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4452
2a8f64ca
VP
4453 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4454
4455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4456 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4457
4458 I915_WRITE(DPLL(pipe), dpll);
4459
4460 /* Wait for the clocks to stabilize. */
4461 POSTING_READ(DPLL(pipe));
4462 udelay(150);
a0c4da24 4463
2a8f64ca
VP
4464 temp = 0;
4465 if (is_sdvo) {
4466 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
a0c4da24
JB
4467 if (temp > 1)
4468 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4469 else
4470 temp = 0;
a0c4da24 4471 }
2a8f64ca
VP
4472 I915_WRITE(DPLL_MD(pipe), temp);
4473 POSTING_READ(DPLL_MD(pipe));
a0c4da24 4474
2a8f64ca
VP
4475 /* Now program lane control registers */
4476 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4477 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4478 {
4479 temp = 0x1000C4;
4480 if(pipe == 1)
4481 temp |= (1 << 21);
4482 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4483 }
4484 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4485 {
4486 temp = 0x1000C4;
4487 if(pipe == 1)
4488 temp |= (1 << 21);
4489 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4490 }
a0c4da24
JB
4491}
4492
eb1cbe48
DV
4493static void i9xx_update_pll(struct drm_crtc *crtc,
4494 struct drm_display_mode *mode,
4495 struct drm_display_mode *adjusted_mode,
4496 intel_clock_t *clock, intel_clock_t *reduced_clock,
4497 int num_connectors)
4498{
4499 struct drm_device *dev = crtc->dev;
4500 struct drm_i915_private *dev_priv = dev->dev_private;
4501 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4502 int pipe = intel_crtc->pipe;
4503 u32 dpll;
4504 bool is_sdvo;
4505
2a8f64ca
VP
4506 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4507
eb1cbe48
DV
4508 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4509 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4510
4511 dpll = DPLL_VGA_MODE_DIS;
4512
4513 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4514 dpll |= DPLLB_MODE_LVDS;
4515 else
4516 dpll |= DPLLB_MODE_DAC_SERIAL;
4517 if (is_sdvo) {
4518 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4519 if (pixel_multiplier > 1) {
4520 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4521 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4522 }
4523 dpll |= DPLL_DVO_HIGH_SPEED;
4524 }
4525 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4526 dpll |= DPLL_DVO_HIGH_SPEED;
4527
4528 /* compute bitmask from p1 value */
4529 if (IS_PINEVIEW(dev))
4530 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4531 else {
4532 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4533 if (IS_G4X(dev) && reduced_clock)
4534 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4535 }
4536 switch (clock->p2) {
4537 case 5:
4538 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4539 break;
4540 case 7:
4541 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4542 break;
4543 case 10:
4544 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4545 break;
4546 case 14:
4547 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4548 break;
4549 }
4550 if (INTEL_INFO(dev)->gen >= 4)
4551 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4552
4553 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4554 dpll |= PLL_REF_INPUT_TVCLKINBC;
4555 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4556 /* XXX: just matching BIOS for now */
4557 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4558 dpll |= 3;
4559 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4560 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4561 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4562 else
4563 dpll |= PLL_REF_INPUT_DREFCLK;
4564
4565 dpll |= DPLL_VCO_ENABLE;
4566 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4567 POSTING_READ(DPLL(pipe));
4568 udelay(150);
4569
4570 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4571 * This is an exception to the general rule that mode_set doesn't turn
4572 * things on.
4573 */
4574 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4575 intel_update_lvds(crtc, clock, adjusted_mode);
4576
4577 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4578 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4579
4580 I915_WRITE(DPLL(pipe), dpll);
4581
4582 /* Wait for the clocks to stabilize. */
4583 POSTING_READ(DPLL(pipe));
4584 udelay(150);
4585
4586 if (INTEL_INFO(dev)->gen >= 4) {
4587 u32 temp = 0;
4588 if (is_sdvo) {
4589 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4590 if (temp > 1)
4591 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4592 else
4593 temp = 0;
4594 }
4595 I915_WRITE(DPLL_MD(pipe), temp);
4596 } else {
4597 /* The pixel multiplier can only be updated once the
4598 * DPLL is enabled and the clocks are stable.
4599 *
4600 * So write it again.
4601 */
4602 I915_WRITE(DPLL(pipe), dpll);
4603 }
4604}
4605
4606static void i8xx_update_pll(struct drm_crtc *crtc,
4607 struct drm_display_mode *adjusted_mode,
2a8f64ca 4608 intel_clock_t *clock, intel_clock_t *reduced_clock,
eb1cbe48
DV
4609 int num_connectors)
4610{
4611 struct drm_device *dev = crtc->dev;
4612 struct drm_i915_private *dev_priv = dev->dev_private;
4613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4614 int pipe = intel_crtc->pipe;
4615 u32 dpll;
4616
2a8f64ca
VP
4617 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4618
eb1cbe48
DV
4619 dpll = DPLL_VGA_MODE_DIS;
4620
4621 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4622 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4623 } else {
4624 if (clock->p1 == 2)
4625 dpll |= PLL_P1_DIVIDE_BY_TWO;
4626 else
4627 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4628 if (clock->p2 == 4)
4629 dpll |= PLL_P2_DIVIDE_BY_4;
4630 }
4631
4632 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4633 /* XXX: just matching BIOS for now */
4634 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4635 dpll |= 3;
4636 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4637 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4638 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4639 else
4640 dpll |= PLL_REF_INPUT_DREFCLK;
4641
4642 dpll |= DPLL_VCO_ENABLE;
4643 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4644 POSTING_READ(DPLL(pipe));
4645 udelay(150);
4646
eb1cbe48
DV
4647 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4648 * This is an exception to the general rule that mode_set doesn't turn
4649 * things on.
4650 */
4651 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4652 intel_update_lvds(crtc, clock, adjusted_mode);
4653
5b5896e4
DV
4654 I915_WRITE(DPLL(pipe), dpll);
4655
4656 /* Wait for the clocks to stabilize. */
4657 POSTING_READ(DPLL(pipe));
4658 udelay(150);
4659
eb1cbe48
DV
4660 /* The pixel multiplier can only be updated once the
4661 * DPLL is enabled and the clocks are stable.
4662 *
4663 * So write it again.
4664 */
4665 I915_WRITE(DPLL(pipe), dpll);
4666}
4667
b0e77b9c
PZ
4668static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4669 struct drm_display_mode *mode,
4670 struct drm_display_mode *adjusted_mode)
4671{
4672 struct drm_device *dev = intel_crtc->base.dev;
4673 struct drm_i915_private *dev_priv = dev->dev_private;
4674 enum pipe pipe = intel_crtc->pipe;
fe2b8f9d 4675 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
b0e77b9c
PZ
4676 uint32_t vsyncshift;
4677
4678 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4679 /* the chip adds 2 halflines automatically */
4680 adjusted_mode->crtc_vtotal -= 1;
4681 adjusted_mode->crtc_vblank_end -= 1;
4682 vsyncshift = adjusted_mode->crtc_hsync_start
4683 - adjusted_mode->crtc_htotal / 2;
4684 } else {
4685 vsyncshift = 0;
4686 }
4687
4688 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 4689 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 4690
fe2b8f9d 4691 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
4692 (adjusted_mode->crtc_hdisplay - 1) |
4693 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 4694 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
4695 (adjusted_mode->crtc_hblank_start - 1) |
4696 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 4697 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
4698 (adjusted_mode->crtc_hsync_start - 1) |
4699 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4700
fe2b8f9d 4701 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c
PZ
4702 (adjusted_mode->crtc_vdisplay - 1) |
4703 ((adjusted_mode->crtc_vtotal - 1) << 16));
fe2b8f9d 4704 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c
PZ
4705 (adjusted_mode->crtc_vblank_start - 1) |
4706 ((adjusted_mode->crtc_vblank_end - 1) << 16));
fe2b8f9d 4707 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
4708 (adjusted_mode->crtc_vsync_start - 1) |
4709 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4710
b5e508d4
PZ
4711 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4712 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4713 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4714 * bits. */
4715 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4716 (pipe == PIPE_B || pipe == PIPE_C))
4717 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4718
b0e77b9c
PZ
4719 /* pipesrc controls the size that is scaled from, which should
4720 * always be the user's requested size.
4721 */
4722 I915_WRITE(PIPESRC(pipe),
4723 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4724}
4725
f564048e
EA
4726static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4727 struct drm_display_mode *mode,
4728 struct drm_display_mode *adjusted_mode,
4729 int x, int y,
94352cf9 4730 struct drm_framebuffer *fb)
79e53945
JB
4731{
4732 struct drm_device *dev = crtc->dev;
4733 struct drm_i915_private *dev_priv = dev->dev_private;
4734 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4735 int pipe = intel_crtc->pipe;
80824003 4736 int plane = intel_crtc->plane;
c751ce4f 4737 int refclk, num_connectors = 0;
652c393a 4738 intel_clock_t clock, reduced_clock;
b0e77b9c 4739 u32 dspcntr, pipeconf;
eb1cbe48
DV
4740 bool ok, has_reduced_clock = false, is_sdvo = false;
4741 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4742 struct intel_encoder *encoder;
d4906093 4743 const intel_limit_t *limit;
5c3b82e2 4744 int ret;
79e53945 4745
6c2b7c12 4746 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4747 switch (encoder->type) {
79e53945
JB
4748 case INTEL_OUTPUT_LVDS:
4749 is_lvds = true;
4750 break;
4751 case INTEL_OUTPUT_SDVO:
7d57382e 4752 case INTEL_OUTPUT_HDMI:
79e53945 4753 is_sdvo = true;
5eddb70b 4754 if (encoder->needs_tv_clock)
e2f0ba97 4755 is_tv = true;
79e53945 4756 break;
79e53945
JB
4757 case INTEL_OUTPUT_TVOUT:
4758 is_tv = true;
4759 break;
a4fc5ed6
KP
4760 case INTEL_OUTPUT_DISPLAYPORT:
4761 is_dp = true;
4762 break;
79e53945 4763 }
43565a06 4764
c751ce4f 4765 num_connectors++;
79e53945
JB
4766 }
4767
c65d77d8 4768 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4769
d4906093
ML
4770 /*
4771 * Returns a set of divisors for the desired target clock with the given
4772 * refclk, or FALSE. The returned values represent the clock equation:
4773 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4774 */
1b894b59 4775 limit = intel_limit(crtc, refclk);
cec2f356
SP
4776 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4777 &clock);
79e53945
JB
4778 if (!ok) {
4779 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4780 return -EINVAL;
79e53945
JB
4781 }
4782
cda4b7d3 4783 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4784 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4785
ddc9003c 4786 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4787 /*
4788 * Ensure we match the reduced clock's P to the target clock.
4789 * If the clocks don't match, we can't switch the display clock
4790 * by using the FP0/FP1. In such case we will disable the LVDS
4791 * downclock feature.
4792 */
ddc9003c 4793 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4794 dev_priv->lvds_downclock,
4795 refclk,
cec2f356 4796 &clock,
5eddb70b 4797 &reduced_clock);
7026d4ac
ZW
4798 }
4799
c65d77d8
JB
4800 if (is_sdvo && is_tv)
4801 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4802
eb1cbe48 4803 if (IS_GEN2(dev))
2a8f64ca
VP
4804 i8xx_update_pll(crtc, adjusted_mode, &clock,
4805 has_reduced_clock ? &reduced_clock : NULL,
4806 num_connectors);
a0c4da24 4807 else if (IS_VALLEYVIEW(dev))
2a8f64ca
VP
4808 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4809 has_reduced_clock ? &reduced_clock : NULL,
4810 num_connectors);
79e53945 4811 else
eb1cbe48
DV
4812 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4813 has_reduced_clock ? &reduced_clock : NULL,
4814 num_connectors);
79e53945
JB
4815
4816 /* setup pipeconf */
5eddb70b 4817 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4818
4819 /* Set up the display plane register */
4820 dspcntr = DISPPLANE_GAMMA_ENABLE;
4821
929c77fb
EA
4822 if (pipe == 0)
4823 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4824 else
4825 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4826
a6c45cf0 4827 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4828 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4829 * core speed.
4830 *
4831 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4832 * pipe == 0 check?
4833 */
e70236a8
JB
4834 if (mode->clock >
4835 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4836 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4837 else
5eddb70b 4838 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4839 }
4840
3b5c78a3
AJ
4841 /* default to 8bpc */
4842 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4843 if (is_dp) {
0c96c65b 4844 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3b5c78a3
AJ
4845 pipeconf |= PIPECONF_BPP_6 |
4846 PIPECONF_DITHER_EN |
4847 PIPECONF_DITHER_TYPE_SP;
4848 }
4849 }
4850
19c03924
GB
4851 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4852 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4853 pipeconf |= PIPECONF_BPP_6 |
4854 PIPECONF_ENABLE |
4855 I965_PIPECONF_ACTIVE;
4856 }
4857 }
4858
28c97730 4859 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4860 drm_mode_debug_printmodeline(mode);
4861
a7516a05
JB
4862 if (HAS_PIPE_CXSR(dev)) {
4863 if (intel_crtc->lowfreq_avail) {
28c97730 4864 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4865 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4866 } else {
28c97730 4867 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4868 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4869 }
4870 }
4871
617cf884 4872 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575 4873 if (!IS_GEN2(dev) &&
b0e77b9c 4874 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
734b4157 4875 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
b0e77b9c 4876 else
617cf884 4877 pipeconf |= PIPECONF_PROGRESSIVE;
734b4157 4878
b0e77b9c 4879 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5eddb70b
CW
4880
4881 /* pipesrc and dspsize control the size that is scaled from,
4882 * which should always be the user's requested size.
79e53945 4883 */
929c77fb
EA
4884 I915_WRITE(DSPSIZE(plane),
4885 ((mode->vdisplay - 1) << 16) |
4886 (mode->hdisplay - 1));
4887 I915_WRITE(DSPPOS(plane), 0);
2c07245f 4888
f564048e
EA
4889 I915_WRITE(PIPECONF(pipe), pipeconf);
4890 POSTING_READ(PIPECONF(pipe));
929c77fb 4891 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4892
4893 intel_wait_for_vblank(dev, pipe);
4894
f564048e
EA
4895 I915_WRITE(DSPCNTR(plane), dspcntr);
4896 POSTING_READ(DSPCNTR(plane));
4897
94352cf9 4898 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4899
4900 intel_update_watermarks(dev);
4901
f564048e
EA
4902 return ret;
4903}
4904
9fb526db
KP
4905/*
4906 * Initialize reference clocks when the driver loads
4907 */
4908void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4909{
4910 struct drm_i915_private *dev_priv = dev->dev_private;
4911 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4912 struct intel_encoder *encoder;
13d83a67
JB
4913 u32 temp;
4914 bool has_lvds = false;
199e5d79
KP
4915 bool has_cpu_edp = false;
4916 bool has_pch_edp = false;
4917 bool has_panel = false;
99eb6a01
KP
4918 bool has_ck505 = false;
4919 bool can_ssc = false;
13d83a67
JB
4920
4921 /* We need to take the global config into account */
199e5d79
KP
4922 list_for_each_entry(encoder, &mode_config->encoder_list,
4923 base.head) {
4924 switch (encoder->type) {
4925 case INTEL_OUTPUT_LVDS:
4926 has_panel = true;
4927 has_lvds = true;
4928 break;
4929 case INTEL_OUTPUT_EDP:
4930 has_panel = true;
4931 if (intel_encoder_is_pch_edp(&encoder->base))
4932 has_pch_edp = true;
4933 else
4934 has_cpu_edp = true;
4935 break;
13d83a67
JB
4936 }
4937 }
4938
99eb6a01
KP
4939 if (HAS_PCH_IBX(dev)) {
4940 has_ck505 = dev_priv->display_clock_mode;
4941 can_ssc = has_ck505;
4942 } else {
4943 has_ck505 = false;
4944 can_ssc = true;
4945 }
4946
4947 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4948 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4949 has_ck505);
13d83a67
JB
4950
4951 /* Ironlake: try to setup display ref clock before DPLL
4952 * enabling. This is only under driver's control after
4953 * PCH B stepping, previous chipset stepping should be
4954 * ignoring this setting.
4955 */
4956 temp = I915_READ(PCH_DREF_CONTROL);
4957 /* Always enable nonspread source */
4958 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4959
99eb6a01
KP
4960 if (has_ck505)
4961 temp |= DREF_NONSPREAD_CK505_ENABLE;
4962 else
4963 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4964
199e5d79
KP
4965 if (has_panel) {
4966 temp &= ~DREF_SSC_SOURCE_MASK;
4967 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4968
199e5d79 4969 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4970 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4971 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4972 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4973 } else
4974 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4975
4976 /* Get SSC going before enabling the outputs */
4977 I915_WRITE(PCH_DREF_CONTROL, temp);
4978 POSTING_READ(PCH_DREF_CONTROL);
4979 udelay(200);
4980
13d83a67
JB
4981 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4982
4983 /* Enable CPU source on CPU attached eDP */
199e5d79 4984 if (has_cpu_edp) {
99eb6a01 4985 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4986 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4987 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4988 }
13d83a67
JB
4989 else
4990 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4991 } else
4992 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4993
4994 I915_WRITE(PCH_DREF_CONTROL, temp);
4995 POSTING_READ(PCH_DREF_CONTROL);
4996 udelay(200);
4997 } else {
4998 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4999
5000 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5001
5002 /* Turn off CPU output */
5003 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5004
5005 I915_WRITE(PCH_DREF_CONTROL, temp);
5006 POSTING_READ(PCH_DREF_CONTROL);
5007 udelay(200);
5008
5009 /* Turn off the SSC source */
5010 temp &= ~DREF_SSC_SOURCE_MASK;
5011 temp |= DREF_SSC_SOURCE_DISABLE;
5012
5013 /* Turn off SSC1 */
5014 temp &= ~ DREF_SSC1_ENABLE;
5015
13d83a67
JB
5016 I915_WRITE(PCH_DREF_CONTROL, temp);
5017 POSTING_READ(PCH_DREF_CONTROL);
5018 udelay(200);
5019 }
5020}
5021
d9d444cb
JB
5022static int ironlake_get_refclk(struct drm_crtc *crtc)
5023{
5024 struct drm_device *dev = crtc->dev;
5025 struct drm_i915_private *dev_priv = dev->dev_private;
5026 struct intel_encoder *encoder;
d9d444cb
JB
5027 struct intel_encoder *edp_encoder = NULL;
5028 int num_connectors = 0;
5029 bool is_lvds = false;
5030
6c2b7c12 5031 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
5032 switch (encoder->type) {
5033 case INTEL_OUTPUT_LVDS:
5034 is_lvds = true;
5035 break;
5036 case INTEL_OUTPUT_EDP:
5037 edp_encoder = encoder;
5038 break;
5039 }
5040 num_connectors++;
5041 }
5042
5043 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5044 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5045 dev_priv->lvds_ssc_freq);
5046 return dev_priv->lvds_ssc_freq * 1000;
5047 }
5048
5049 return 120000;
5050}
5051
c8203565
PZ
5052static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5053 struct drm_display_mode *adjusted_mode,
5054 bool dither)
5055{
5056 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5058 int pipe = intel_crtc->pipe;
5059 uint32_t val;
5060
5061 val = I915_READ(PIPECONF(pipe));
5062
5063 val &= ~PIPE_BPC_MASK;
5064 switch (intel_crtc->bpp) {
5065 case 18:
5066 val |= PIPE_6BPC;
5067 break;
5068 case 24:
5069 val |= PIPE_8BPC;
5070 break;
5071 case 30:
5072 val |= PIPE_10BPC;
5073 break;
5074 case 36:
5075 val |= PIPE_12BPC;
5076 break;
5077 default:
cc769b62
PZ
5078 /* Case prevented by intel_choose_pipe_bpp_dither. */
5079 BUG();
c8203565
PZ
5080 }
5081
5082 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5083 if (dither)
5084 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5085
5086 val &= ~PIPECONF_INTERLACE_MASK;
5087 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5088 val |= PIPECONF_INTERLACED_ILK;
5089 else
5090 val |= PIPECONF_PROGRESSIVE;
5091
5092 I915_WRITE(PIPECONF(pipe), val);
5093 POSTING_READ(PIPECONF(pipe));
5094}
5095
ee2b0b38
PZ
5096static void haswell_set_pipeconf(struct drm_crtc *crtc,
5097 struct drm_display_mode *adjusted_mode,
5098 bool dither)
5099{
5100 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5101 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
702e7a56 5102 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
ee2b0b38
PZ
5103 uint32_t val;
5104
702e7a56 5105 val = I915_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5106
5107 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5108 if (dither)
5109 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5110
5111 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5112 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5113 val |= PIPECONF_INTERLACED_ILK;
5114 else
5115 val |= PIPECONF_PROGRESSIVE;
5116
702e7a56
PZ
5117 I915_WRITE(PIPECONF(cpu_transcoder), val);
5118 POSTING_READ(PIPECONF(cpu_transcoder));
ee2b0b38
PZ
5119}
5120
6591c6e4
PZ
5121static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5122 struct drm_display_mode *adjusted_mode,
5123 intel_clock_t *clock,
5124 bool *has_reduced_clock,
5125 intel_clock_t *reduced_clock)
5126{
5127 struct drm_device *dev = crtc->dev;
5128 struct drm_i915_private *dev_priv = dev->dev_private;
5129 struct intel_encoder *intel_encoder;
5130 int refclk;
5131 const intel_limit_t *limit;
5132 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5133
5134 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5135 switch (intel_encoder->type) {
5136 case INTEL_OUTPUT_LVDS:
5137 is_lvds = true;
5138 break;
5139 case INTEL_OUTPUT_SDVO:
5140 case INTEL_OUTPUT_HDMI:
5141 is_sdvo = true;
5142 if (intel_encoder->needs_tv_clock)
5143 is_tv = true;
5144 break;
5145 case INTEL_OUTPUT_TVOUT:
5146 is_tv = true;
5147 break;
5148 }
5149 }
5150
5151 refclk = ironlake_get_refclk(crtc);
5152
5153 /*
5154 * Returns a set of divisors for the desired target clock with the given
5155 * refclk, or FALSE. The returned values represent the clock equation:
5156 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5157 */
5158 limit = intel_limit(crtc, refclk);
5159 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5160 clock);
5161 if (!ret)
5162 return false;
5163
5164 if (is_lvds && dev_priv->lvds_downclock_avail) {
5165 /*
5166 * Ensure we match the reduced clock's P to the target clock.
5167 * If the clocks don't match, we can't switch the display clock
5168 * by using the FP0/FP1. In such case we will disable the LVDS
5169 * downclock feature.
5170 */
5171 *has_reduced_clock = limit->find_pll(limit, crtc,
5172 dev_priv->lvds_downclock,
5173 refclk,
5174 clock,
5175 reduced_clock);
5176 }
5177
5178 if (is_sdvo && is_tv)
5179 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5180
5181 return true;
5182}
5183
01a415fd
DV
5184static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5185{
5186 struct drm_i915_private *dev_priv = dev->dev_private;
5187 uint32_t temp;
5188
5189 temp = I915_READ(SOUTH_CHICKEN1);
5190 if (temp & FDI_BC_BIFURCATION_SELECT)
5191 return;
5192
5193 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5194 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5195
5196 temp |= FDI_BC_BIFURCATION_SELECT;
5197 DRM_DEBUG_KMS("enabling fdi C rx\n");
5198 I915_WRITE(SOUTH_CHICKEN1, temp);
5199 POSTING_READ(SOUTH_CHICKEN1);
5200}
5201
5202static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5203{
5204 struct drm_device *dev = intel_crtc->base.dev;
5205 struct drm_i915_private *dev_priv = dev->dev_private;
5206 struct intel_crtc *pipe_B_crtc =
5207 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5208
5209 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5210 intel_crtc->pipe, intel_crtc->fdi_lanes);
5211 if (intel_crtc->fdi_lanes > 4) {
5212 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5213 intel_crtc->pipe, intel_crtc->fdi_lanes);
5214 /* Clamp lanes to avoid programming the hw with bogus values. */
5215 intel_crtc->fdi_lanes = 4;
5216
5217 return false;
5218 }
5219
5220 if (dev_priv->num_pipe == 2)
5221 return true;
5222
5223 switch (intel_crtc->pipe) {
5224 case PIPE_A:
5225 return true;
5226 case PIPE_B:
5227 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5228 intel_crtc->fdi_lanes > 2) {
5229 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5230 intel_crtc->pipe, intel_crtc->fdi_lanes);
5231 /* Clamp lanes to avoid programming the hw with bogus values. */
5232 intel_crtc->fdi_lanes = 2;
5233
5234 return false;
5235 }
5236
5237 if (intel_crtc->fdi_lanes > 2)
5238 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5239 else
5240 cpt_enable_fdi_bc_bifurcation(dev);
5241
5242 return true;
5243 case PIPE_C:
5244 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5245 if (intel_crtc->fdi_lanes > 2) {
5246 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5247 intel_crtc->pipe, intel_crtc->fdi_lanes);
5248 /* Clamp lanes to avoid programming the hw with bogus values. */
5249 intel_crtc->fdi_lanes = 2;
5250
5251 return false;
5252 }
5253 } else {
5254 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5255 return false;
5256 }
5257
5258 cpt_enable_fdi_bc_bifurcation(dev);
5259
5260 return true;
5261 default:
5262 BUG();
5263 }
5264}
5265
f48d8f23
PZ
5266static void ironlake_set_m_n(struct drm_crtc *crtc,
5267 struct drm_display_mode *mode,
5268 struct drm_display_mode *adjusted_mode)
5269{
5270 struct drm_device *dev = crtc->dev;
5271 struct drm_i915_private *dev_priv = dev->dev_private;
5272 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
afe2fcf5 5273 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
f48d8f23
PZ
5274 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5275 struct fdi_m_n m_n = {0};
5276 int target_clock, pixel_multiplier, lane, link_bw;
5277 bool is_dp = false, is_cpu_edp = false;
5278
5279 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5280 switch (intel_encoder->type) {
5281 case INTEL_OUTPUT_DISPLAYPORT:
5282 is_dp = true;
5283 break;
5284 case INTEL_OUTPUT_EDP:
5285 is_dp = true;
5286 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5287 is_cpu_edp = true;
5288 edp_encoder = intel_encoder;
5289 break;
5290 }
5291 }
5292
5293 /* FDI link */
5294 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5295 lane = 0;
5296 /* CPU eDP doesn't require FDI link, so just set DP M/N
5297 according to current link config */
5298 if (is_cpu_edp) {
5299 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5300 } else {
5301 /* FDI is a binary signal running at ~2.7GHz, encoding
5302 * each output octet as 10 bits. The actual frequency
5303 * is stored as a divider into a 100MHz clock, and the
5304 * mode pixel clock is stored in units of 1KHz.
5305 * Hence the bw of each lane in terms of the mode signal
5306 * is:
5307 */
5308 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5309 }
5310
5311 /* [e]DP over FDI requires target mode clock instead of link clock. */
5312 if (edp_encoder)
5313 target_clock = intel_edp_target_clock(edp_encoder, mode);
5314 else if (is_dp)
5315 target_clock = mode->clock;
5316 else
5317 target_clock = adjusted_mode->clock;
5318
5319 if (!lane) {
5320 /*
5321 * Account for spread spectrum to avoid
5322 * oversubscribing the link. Max center spread
5323 * is 2.5%; use 5% for safety's sake.
5324 */
5325 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5326 lane = bps / (link_bw * 8) + 1;
5327 }
5328
5329 intel_crtc->fdi_lanes = lane;
5330
5331 if (pixel_multiplier > 1)
5332 link_bw *= pixel_multiplier;
5333 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5334 &m_n);
5335
afe2fcf5
PZ
5336 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5337 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5338 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5339 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
f48d8f23
PZ
5340}
5341
de13a2e3
PZ
5342static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5343 struct drm_display_mode *adjusted_mode,
5344 intel_clock_t *clock, u32 fp)
79e53945 5345{
de13a2e3 5346 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
5347 struct drm_device *dev = crtc->dev;
5348 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
5349 struct intel_encoder *intel_encoder;
5350 uint32_t dpll;
5351 int factor, pixel_multiplier, num_connectors = 0;
5352 bool is_lvds = false, is_sdvo = false, is_tv = false;
5353 bool is_dp = false, is_cpu_edp = false;
79e53945 5354
de13a2e3
PZ
5355 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5356 switch (intel_encoder->type) {
79e53945
JB
5357 case INTEL_OUTPUT_LVDS:
5358 is_lvds = true;
5359 break;
5360 case INTEL_OUTPUT_SDVO:
7d57382e 5361 case INTEL_OUTPUT_HDMI:
79e53945 5362 is_sdvo = true;
de13a2e3 5363 if (intel_encoder->needs_tv_clock)
e2f0ba97 5364 is_tv = true;
79e53945 5365 break;
79e53945
JB
5366 case INTEL_OUTPUT_TVOUT:
5367 is_tv = true;
5368 break;
a4fc5ed6
KP
5369 case INTEL_OUTPUT_DISPLAYPORT:
5370 is_dp = true;
5371 break;
32f9d658 5372 case INTEL_OUTPUT_EDP:
e3aef172 5373 is_dp = true;
de13a2e3 5374 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
e3aef172 5375 is_cpu_edp = true;
32f9d658 5376 break;
79e53945 5377 }
43565a06 5378
c751ce4f 5379 num_connectors++;
79e53945
JB
5380 }
5381
c1858123 5382 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5383 factor = 21;
5384 if (is_lvds) {
5385 if ((intel_panel_use_ssc(dev_priv) &&
5386 dev_priv->lvds_ssc_freq == 100) ||
5387 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5388 factor = 25;
5389 } else if (is_sdvo && is_tv)
5390 factor = 20;
c1858123 5391
de13a2e3 5392 if (clock->m < factor * clock->n)
8febb297 5393 fp |= FP_CB_TUNE;
2c07245f 5394
5eddb70b 5395 dpll = 0;
2c07245f 5396
a07d6787
EA
5397 if (is_lvds)
5398 dpll |= DPLLB_MODE_LVDS;
5399 else
5400 dpll |= DPLLB_MODE_DAC_SERIAL;
5401 if (is_sdvo) {
de13a2e3 5402 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
a07d6787
EA
5403 if (pixel_multiplier > 1) {
5404 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5405 }
a07d6787
EA
5406 dpll |= DPLL_DVO_HIGH_SPEED;
5407 }
e3aef172 5408 if (is_dp && !is_cpu_edp)
a07d6787 5409 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5410
a07d6787 5411 /* compute bitmask from p1 value */
de13a2e3 5412 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 5413 /* also FPA1 */
de13a2e3 5414 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 5415
de13a2e3 5416 switch (clock->p2) {
a07d6787
EA
5417 case 5:
5418 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5419 break;
5420 case 7:
5421 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5422 break;
5423 case 10:
5424 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5425 break;
5426 case 14:
5427 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5428 break;
79e53945
JB
5429 }
5430
43565a06
KH
5431 if (is_sdvo && is_tv)
5432 dpll |= PLL_REF_INPUT_TVCLKINBC;
5433 else if (is_tv)
79e53945 5434 /* XXX: just matching BIOS for now */
43565a06 5435 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5436 dpll |= 3;
a7615030 5437 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5438 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5439 else
5440 dpll |= PLL_REF_INPUT_DREFCLK;
5441
de13a2e3
PZ
5442 return dpll;
5443}
5444
5445static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5446 struct drm_display_mode *mode,
5447 struct drm_display_mode *adjusted_mode,
5448 int x, int y,
5449 struct drm_framebuffer *fb)
5450{
5451 struct drm_device *dev = crtc->dev;
5452 struct drm_i915_private *dev_priv = dev->dev_private;
5453 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5454 int pipe = intel_crtc->pipe;
5455 int plane = intel_crtc->plane;
5456 int num_connectors = 0;
5457 intel_clock_t clock, reduced_clock;
5458 u32 dpll, fp = 0, fp2 = 0;
e2f12b07
PZ
5459 bool ok, has_reduced_clock = false;
5460 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
de13a2e3
PZ
5461 struct intel_encoder *encoder;
5462 u32 temp;
5463 int ret;
01a415fd 5464 bool dither, fdi_config_ok;
de13a2e3
PZ
5465
5466 for_each_encoder_on_crtc(dev, crtc, encoder) {
5467 switch (encoder->type) {
5468 case INTEL_OUTPUT_LVDS:
5469 is_lvds = true;
5470 break;
de13a2e3
PZ
5471 case INTEL_OUTPUT_DISPLAYPORT:
5472 is_dp = true;
5473 break;
5474 case INTEL_OUTPUT_EDP:
5475 is_dp = true;
e2f12b07 5476 if (!intel_encoder_is_pch_edp(&encoder->base))
de13a2e3
PZ
5477 is_cpu_edp = true;
5478 break;
5479 }
5480
5481 num_connectors++;
5482 }
5483
5dc5298b
PZ
5484 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5485 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5486
de13a2e3
PZ
5487 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5488 &has_reduced_clock, &reduced_clock);
5489 if (!ok) {
5490 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5491 return -EINVAL;
5492 }
5493
5494 /* Ensure that the cursor is valid for the new mode before changing... */
5495 intel_crtc_update_cursor(crtc, true);
5496
5497 /* determine panel color depth */
c8241969
JN
5498 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5499 adjusted_mode);
de13a2e3
PZ
5500 if (is_lvds && dev_priv->lvds_dither)
5501 dither = true;
5502
5503 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5504 if (has_reduced_clock)
5505 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5506 reduced_clock.m2;
5507
5508 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5509
f7cb34d4 5510 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5511 drm_mode_debug_printmodeline(mode);
5512
5dc5298b
PZ
5513 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5514 if (!is_cpu_edp) {
ee7b9f93 5515 struct intel_pch_pll *pll;
4b645f14 5516
ee7b9f93
JB
5517 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5518 if (pll == NULL) {
5519 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5520 pipe);
4b645f14
JB
5521 return -EINVAL;
5522 }
ee7b9f93
JB
5523 } else
5524 intel_put_pch_pll(intel_crtc);
79e53945
JB
5525
5526 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5527 * This is an exception to the general rule that mode_set doesn't turn
5528 * things on.
5529 */
5530 if (is_lvds) {
fae14981 5531 temp = I915_READ(PCH_LVDS);
5eddb70b 5532 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
5533 if (HAS_PCH_CPT(dev)) {
5534 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 5535 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
5536 } else {
5537 if (pipe == 1)
5538 temp |= LVDS_PIPEB_SELECT;
5539 else
5540 temp &= ~LVDS_PIPEB_SELECT;
5541 }
4b645f14 5542
a3e17eb8 5543 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5544 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5545 /* Set the B0-B3 data pairs corresponding to whether we're going to
5546 * set the DPLLs for dual-channel mode or not.
5547 */
5548 if (clock.p2 == 7)
5eddb70b 5549 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5550 else
5eddb70b 5551 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5552
5553 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5554 * appropriately here, but we need to look more thoroughly into how
5555 * panels behave in the two modes.
5556 */
284d5df5 5557 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 5558 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 5559 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 5560 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 5561 temp |= LVDS_VSYNC_POLARITY;
fae14981 5562 I915_WRITE(PCH_LVDS, temp);
79e53945 5563 }
434ed097 5564
e3aef172 5565 if (is_dp && !is_cpu_edp) {
a4fc5ed6 5566 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5567 } else {
8db9d77b 5568 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5569 I915_WRITE(TRANSDATA_M1(pipe), 0);
5570 I915_WRITE(TRANSDATA_N1(pipe), 0);
5571 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5572 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5573 }
79e53945 5574
ee7b9f93
JB
5575 if (intel_crtc->pch_pll) {
5576 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 5577
32f9d658 5578 /* Wait for the clocks to stabilize. */
ee7b9f93 5579 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
5580 udelay(150);
5581
8febb297
EA
5582 /* The pixel multiplier can only be updated once the
5583 * DPLL is enabled and the clocks are stable.
5584 *
5585 * So write it again.
5586 */
ee7b9f93 5587 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 5588 }
79e53945 5589
5eddb70b 5590 intel_crtc->lowfreq_avail = false;
ee7b9f93 5591 if (intel_crtc->pch_pll) {
4b645f14 5592 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 5593 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 5594 intel_crtc->lowfreq_avail = true;
4b645f14 5595 } else {
ee7b9f93 5596 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
5597 }
5598 }
5599
b0e77b9c 5600 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
2c07245f 5601
01a415fd
DV
5602 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5603 * ironlake_check_fdi_lanes. */
f48d8f23 5604 ironlake_set_m_n(crtc, mode, adjusted_mode);
2c07245f 5605
01a415fd
DV
5606 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5607
e3aef172 5608 if (is_cpu_edp)
8febb297 5609 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5610
c8203565 5611 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5612
9d0498a2 5613 intel_wait_for_vblank(dev, pipe);
79e53945 5614
a1f9e77e
PZ
5615 /* Set up the display plane register */
5616 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5617 POSTING_READ(DSPCNTR(plane));
79e53945 5618
94352cf9 5619 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5620
5621 intel_update_watermarks(dev);
5622
1f8eeabf
ED
5623 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5624
01a415fd 5625 return fdi_config_ok ? ret : -EINVAL;
79e53945
JB
5626}
5627
09b4ddf9
PZ
5628static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5629 struct drm_display_mode *mode,
5630 struct drm_display_mode *adjusted_mode,
5631 int x, int y,
5632 struct drm_framebuffer *fb)
5633{
5634 struct drm_device *dev = crtc->dev;
5635 struct drm_i915_private *dev_priv = dev->dev_private;
5636 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5637 int pipe = intel_crtc->pipe;
5638 int plane = intel_crtc->plane;
5639 int num_connectors = 0;
5640 intel_clock_t clock, reduced_clock;
5dc5298b 5641 u32 dpll = 0, fp = 0, fp2 = 0;
09b4ddf9
PZ
5642 bool ok, has_reduced_clock = false;
5643 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5644 struct intel_encoder *encoder;
5645 u32 temp;
5646 int ret;
5647 bool dither;
5648
5649 for_each_encoder_on_crtc(dev, crtc, encoder) {
5650 switch (encoder->type) {
5651 case INTEL_OUTPUT_LVDS:
5652 is_lvds = true;
5653 break;
5654 case INTEL_OUTPUT_DISPLAYPORT:
5655 is_dp = true;
5656 break;
5657 case INTEL_OUTPUT_EDP:
5658 is_dp = true;
5659 if (!intel_encoder_is_pch_edp(&encoder->base))
5660 is_cpu_edp = true;
5661 break;
5662 }
5663
5664 num_connectors++;
5665 }
5666
a5c961d1
PZ
5667 if (is_cpu_edp)
5668 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5669 else
5670 intel_crtc->cpu_transcoder = pipe;
5671
5dc5298b
PZ
5672 /* We are not sure yet this won't happen. */
5673 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5674 INTEL_PCH_TYPE(dev));
5675
5676 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5677 num_connectors, pipe_name(pipe));
5678
702e7a56 5679 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
1ce42920
PZ
5680 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5681
5682 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5683
6441ab5f
PZ
5684 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5685 return -EINVAL;
5686
5dc5298b
PZ
5687 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5688 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5689 &has_reduced_clock,
5690 &reduced_clock);
5691 if (!ok) {
5692 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5693 return -EINVAL;
5694 }
09b4ddf9
PZ
5695 }
5696
5697 /* Ensure that the cursor is valid for the new mode before changing... */
5698 intel_crtc_update_cursor(crtc, true);
5699
5700 /* determine panel color depth */
c8241969
JN
5701 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5702 adjusted_mode);
09b4ddf9
PZ
5703 if (is_lvds && dev_priv->lvds_dither)
5704 dither = true;
5705
09b4ddf9
PZ
5706 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5707 drm_mode_debug_printmodeline(mode);
5708
5dc5298b
PZ
5709 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5710 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5711 if (has_reduced_clock)
5712 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5713 reduced_clock.m2;
5714
5715 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5716 fp);
5717
5718 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5719 * own on pre-Haswell/LPT generation */
5720 if (!is_cpu_edp) {
5721 struct intel_pch_pll *pll;
5722
5723 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5724 if (pll == NULL) {
5725 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5726 pipe);
5727 return -EINVAL;
5728 }
5729 } else
5730 intel_put_pch_pll(intel_crtc);
09b4ddf9 5731
5dc5298b
PZ
5732 /* The LVDS pin pair needs to be on before the DPLLs are
5733 * enabled. This is an exception to the general rule that
5734 * mode_set doesn't turn things on.
5735 */
5736 if (is_lvds) {
5737 temp = I915_READ(PCH_LVDS);
5738 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5739 if (HAS_PCH_CPT(dev)) {
5740 temp &= ~PORT_TRANS_SEL_MASK;
5741 temp |= PORT_TRANS_SEL_CPT(pipe);
5742 } else {
5743 if (pipe == 1)
5744 temp |= LVDS_PIPEB_SELECT;
5745 else
5746 temp &= ~LVDS_PIPEB_SELECT;
5747 }
09b4ddf9 5748
5dc5298b
PZ
5749 /* set the corresponsding LVDS_BORDER bit */
5750 temp |= dev_priv->lvds_border_bits;
5751 /* Set the B0-B3 data pairs corresponding to whether
5752 * we're going to set the DPLLs for dual-channel mode or
5753 * not.
5754 */
5755 if (clock.p2 == 7)
5756 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
09b4ddf9 5757 else
5dc5298b
PZ
5758 temp &= ~(LVDS_B0B3_POWER_UP |
5759 LVDS_CLKB_POWER_UP);
5760
5761 /* It would be nice to set 24 vs 18-bit mode
5762 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5763 * look more thoroughly into how panels behave in the
5764 * two modes.
5765 */
5766 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5767 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5768 temp |= LVDS_HSYNC_POLARITY;
5769 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5770 temp |= LVDS_VSYNC_POLARITY;
5771 I915_WRITE(PCH_LVDS, temp);
09b4ddf9 5772 }
09b4ddf9
PZ
5773 }
5774
5775 if (is_dp && !is_cpu_edp) {
5776 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5777 } else {
5dc5298b
PZ
5778 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5779 /* For non-DP output, clear any trans DP clock recovery
5780 * setting.*/
5781 I915_WRITE(TRANSDATA_M1(pipe), 0);
5782 I915_WRITE(TRANSDATA_N1(pipe), 0);
5783 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5784 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5785 }
09b4ddf9
PZ
5786 }
5787
5788 intel_crtc->lowfreq_avail = false;
5dc5298b
PZ
5789 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5790 if (intel_crtc->pch_pll) {
5791 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5792
5793 /* Wait for the clocks to stabilize. */
5794 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5795 udelay(150);
5796
5797 /* The pixel multiplier can only be updated once the
5798 * DPLL is enabled and the clocks are stable.
5799 *
5800 * So write it again.
5801 */
5802 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5803 }
5804
5805 if (intel_crtc->pch_pll) {
5806 if (is_lvds && has_reduced_clock && i915_powersave) {
5807 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5808 intel_crtc->lowfreq_avail = true;
5809 } else {
5810 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5811 }
09b4ddf9
PZ
5812 }
5813 }
5814
5815 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5816
1eb8dfec
PZ
5817 if (!is_dp || is_cpu_edp)
5818 ironlake_set_m_n(crtc, mode, adjusted_mode);
09b4ddf9 5819
5dc5298b
PZ
5820 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5821 if (is_cpu_edp)
5822 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
09b4ddf9 5823
ee2b0b38 5824 haswell_set_pipeconf(crtc, adjusted_mode, dither);
09b4ddf9 5825
09b4ddf9
PZ
5826 /* Set up the display plane register */
5827 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5828 POSTING_READ(DSPCNTR(plane));
5829
5830 ret = intel_pipe_set_base(crtc, x, y, fb);
5831
5832 intel_update_watermarks(dev);
5833
5834 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5835
5836 return ret;
5837}
5838
f564048e
EA
5839static int intel_crtc_mode_set(struct drm_crtc *crtc,
5840 struct drm_display_mode *mode,
5841 struct drm_display_mode *adjusted_mode,
5842 int x, int y,
94352cf9 5843 struct drm_framebuffer *fb)
f564048e
EA
5844{
5845 struct drm_device *dev = crtc->dev;
5846 struct drm_i915_private *dev_priv = dev->dev_private;
9256aa19
DV
5847 struct drm_encoder_helper_funcs *encoder_funcs;
5848 struct intel_encoder *encoder;
0b701d27
EA
5849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5850 int pipe = intel_crtc->pipe;
f564048e
EA
5851 int ret;
5852
0b701d27 5853 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5854
f564048e 5855 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5856 x, y, fb);
79e53945 5857 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5858
9256aa19
DV
5859 if (ret != 0)
5860 return ret;
5861
5862 for_each_encoder_on_crtc(dev, crtc, encoder) {
5863 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5864 encoder->base.base.id,
5865 drm_get_encoder_name(&encoder->base),
5866 mode->base.id, mode->name);
5867 encoder_funcs = encoder->base.helper_private;
5868 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5869 }
5870
5871 return 0;
79e53945
JB
5872}
5873
3a9627f4
WF
5874static bool intel_eld_uptodate(struct drm_connector *connector,
5875 int reg_eldv, uint32_t bits_eldv,
5876 int reg_elda, uint32_t bits_elda,
5877 int reg_edid)
5878{
5879 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5880 uint8_t *eld = connector->eld;
5881 uint32_t i;
5882
5883 i = I915_READ(reg_eldv);
5884 i &= bits_eldv;
5885
5886 if (!eld[0])
5887 return !i;
5888
5889 if (!i)
5890 return false;
5891
5892 i = I915_READ(reg_elda);
5893 i &= ~bits_elda;
5894 I915_WRITE(reg_elda, i);
5895
5896 for (i = 0; i < eld[2]; i++)
5897 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5898 return false;
5899
5900 return true;
5901}
5902
e0dac65e
WF
5903static void g4x_write_eld(struct drm_connector *connector,
5904 struct drm_crtc *crtc)
5905{
5906 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5907 uint8_t *eld = connector->eld;
5908 uint32_t eldv;
5909 uint32_t len;
5910 uint32_t i;
5911
5912 i = I915_READ(G4X_AUD_VID_DID);
5913
5914 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5915 eldv = G4X_ELDV_DEVCL_DEVBLC;
5916 else
5917 eldv = G4X_ELDV_DEVCTG;
5918
3a9627f4
WF
5919 if (intel_eld_uptodate(connector,
5920 G4X_AUD_CNTL_ST, eldv,
5921 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5922 G4X_HDMIW_HDMIEDID))
5923 return;
5924
e0dac65e
WF
5925 i = I915_READ(G4X_AUD_CNTL_ST);
5926 i &= ~(eldv | G4X_ELD_ADDR);
5927 len = (i >> 9) & 0x1f; /* ELD buffer size */
5928 I915_WRITE(G4X_AUD_CNTL_ST, i);
5929
5930 if (!eld[0])
5931 return;
5932
5933 len = min_t(uint8_t, eld[2], len);
5934 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5935 for (i = 0; i < len; i++)
5936 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5937
5938 i = I915_READ(G4X_AUD_CNTL_ST);
5939 i |= eldv;
5940 I915_WRITE(G4X_AUD_CNTL_ST, i);
5941}
5942
83358c85
WX
5943static void haswell_write_eld(struct drm_connector *connector,
5944 struct drm_crtc *crtc)
5945{
5946 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5947 uint8_t *eld = connector->eld;
5948 struct drm_device *dev = crtc->dev;
5949 uint32_t eldv;
5950 uint32_t i;
5951 int len;
5952 int pipe = to_intel_crtc(crtc)->pipe;
5953 int tmp;
5954
5955 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5956 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5957 int aud_config = HSW_AUD_CFG(pipe);
5958 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5959
5960
5961 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5962
5963 /* Audio output enable */
5964 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5965 tmp = I915_READ(aud_cntrl_st2);
5966 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5967 I915_WRITE(aud_cntrl_st2, tmp);
5968
5969 /* Wait for 1 vertical blank */
5970 intel_wait_for_vblank(dev, pipe);
5971
5972 /* Set ELD valid state */
5973 tmp = I915_READ(aud_cntrl_st2);
5974 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5975 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5976 I915_WRITE(aud_cntrl_st2, tmp);
5977 tmp = I915_READ(aud_cntrl_st2);
5978 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5979
5980 /* Enable HDMI mode */
5981 tmp = I915_READ(aud_config);
5982 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5983 /* clear N_programing_enable and N_value_index */
5984 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5985 I915_WRITE(aud_config, tmp);
5986
5987 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5988
5989 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5990
5991 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5992 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5993 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5994 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5995 } else
5996 I915_WRITE(aud_config, 0);
5997
5998 if (intel_eld_uptodate(connector,
5999 aud_cntrl_st2, eldv,
6000 aud_cntl_st, IBX_ELD_ADDRESS,
6001 hdmiw_hdmiedid))
6002 return;
6003
6004 i = I915_READ(aud_cntrl_st2);
6005 i &= ~eldv;
6006 I915_WRITE(aud_cntrl_st2, i);
6007
6008 if (!eld[0])
6009 return;
6010
6011 i = I915_READ(aud_cntl_st);
6012 i &= ~IBX_ELD_ADDRESS;
6013 I915_WRITE(aud_cntl_st, i);
6014 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6015 DRM_DEBUG_DRIVER("port num:%d\n", i);
6016
6017 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6018 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6019 for (i = 0; i < len; i++)
6020 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6021
6022 i = I915_READ(aud_cntrl_st2);
6023 i |= eldv;
6024 I915_WRITE(aud_cntrl_st2, i);
6025
6026}
6027
e0dac65e
WF
6028static void ironlake_write_eld(struct drm_connector *connector,
6029 struct drm_crtc *crtc)
6030{
6031 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6032 uint8_t *eld = connector->eld;
6033 uint32_t eldv;
6034 uint32_t i;
6035 int len;
6036 int hdmiw_hdmiedid;
b6daa025 6037 int aud_config;
e0dac65e
WF
6038 int aud_cntl_st;
6039 int aud_cntrl_st2;
9b138a83 6040 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 6041
b3f33cbf 6042 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
6043 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6044 aud_config = IBX_AUD_CFG(pipe);
6045 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 6046 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 6047 } else {
9b138a83
WX
6048 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6049 aud_config = CPT_AUD_CFG(pipe);
6050 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 6051 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
6052 }
6053
9b138a83 6054 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
6055
6056 i = I915_READ(aud_cntl_st);
9b138a83 6057 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
6058 if (!i) {
6059 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6060 /* operate blindly on all ports */
1202b4c6
WF
6061 eldv = IBX_ELD_VALIDB;
6062 eldv |= IBX_ELD_VALIDB << 4;
6063 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
6064 } else {
6065 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 6066 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
6067 }
6068
3a9627f4
WF
6069 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6070 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6071 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
6072 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6073 } else
6074 I915_WRITE(aud_config, 0);
e0dac65e 6075
3a9627f4
WF
6076 if (intel_eld_uptodate(connector,
6077 aud_cntrl_st2, eldv,
6078 aud_cntl_st, IBX_ELD_ADDRESS,
6079 hdmiw_hdmiedid))
6080 return;
6081
e0dac65e
WF
6082 i = I915_READ(aud_cntrl_st2);
6083 i &= ~eldv;
6084 I915_WRITE(aud_cntrl_st2, i);
6085
6086 if (!eld[0])
6087 return;
6088
e0dac65e 6089 i = I915_READ(aud_cntl_st);
1202b4c6 6090 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
6091 I915_WRITE(aud_cntl_st, i);
6092
6093 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6094 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6095 for (i = 0; i < len; i++)
6096 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6097
6098 i = I915_READ(aud_cntrl_st2);
6099 i |= eldv;
6100 I915_WRITE(aud_cntrl_st2, i);
6101}
6102
6103void intel_write_eld(struct drm_encoder *encoder,
6104 struct drm_display_mode *mode)
6105{
6106 struct drm_crtc *crtc = encoder->crtc;
6107 struct drm_connector *connector;
6108 struct drm_device *dev = encoder->dev;
6109 struct drm_i915_private *dev_priv = dev->dev_private;
6110
6111 connector = drm_select_eld(encoder, mode);
6112 if (!connector)
6113 return;
6114
6115 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6116 connector->base.id,
6117 drm_get_connector_name(connector),
6118 connector->encoder->base.id,
6119 drm_get_encoder_name(connector->encoder));
6120
6121 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6122
6123 if (dev_priv->display.write_eld)
6124 dev_priv->display.write_eld(connector, crtc);
6125}
6126
79e53945
JB
6127/** Loads the palette/gamma unit for the CRTC with the prepared values */
6128void intel_crtc_load_lut(struct drm_crtc *crtc)
6129{
6130 struct drm_device *dev = crtc->dev;
6131 struct drm_i915_private *dev_priv = dev->dev_private;
6132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 6133 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
6134 int i;
6135
6136 /* The clocks have to be on to load the palette. */
aed3f09d 6137 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
6138 return;
6139
f2b115e6 6140 /* use legacy palette for Ironlake */
bad720ff 6141 if (HAS_PCH_SPLIT(dev))
9db4a9c7 6142 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 6143
79e53945
JB
6144 for (i = 0; i < 256; i++) {
6145 I915_WRITE(palreg + 4 * i,
6146 (intel_crtc->lut_r[i] << 16) |
6147 (intel_crtc->lut_g[i] << 8) |
6148 intel_crtc->lut_b[i]);
6149 }
6150}
6151
560b85bb
CW
6152static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6153{
6154 struct drm_device *dev = crtc->dev;
6155 struct drm_i915_private *dev_priv = dev->dev_private;
6156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6157 bool visible = base != 0;
6158 u32 cntl;
6159
6160 if (intel_crtc->cursor_visible == visible)
6161 return;
6162
9db4a9c7 6163 cntl = I915_READ(_CURACNTR);
560b85bb
CW
6164 if (visible) {
6165 /* On these chipsets we can only modify the base whilst
6166 * the cursor is disabled.
6167 */
9db4a9c7 6168 I915_WRITE(_CURABASE, base);
560b85bb
CW
6169
6170 cntl &= ~(CURSOR_FORMAT_MASK);
6171 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6172 cntl |= CURSOR_ENABLE |
6173 CURSOR_GAMMA_ENABLE |
6174 CURSOR_FORMAT_ARGB;
6175 } else
6176 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 6177 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
6178
6179 intel_crtc->cursor_visible = visible;
6180}
6181
6182static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6183{
6184 struct drm_device *dev = crtc->dev;
6185 struct drm_i915_private *dev_priv = dev->dev_private;
6186 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6187 int pipe = intel_crtc->pipe;
6188 bool visible = base != 0;
6189
6190 if (intel_crtc->cursor_visible != visible) {
548f245b 6191 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
6192 if (base) {
6193 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6194 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6195 cntl |= pipe << 28; /* Connect to correct pipe */
6196 } else {
6197 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6198 cntl |= CURSOR_MODE_DISABLE;
6199 }
9db4a9c7 6200 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
6201
6202 intel_crtc->cursor_visible = visible;
6203 }
6204 /* and commit changes on next vblank */
9db4a9c7 6205 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
6206}
6207
65a21cd6
JB
6208static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6209{
6210 struct drm_device *dev = crtc->dev;
6211 struct drm_i915_private *dev_priv = dev->dev_private;
6212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6213 int pipe = intel_crtc->pipe;
6214 bool visible = base != 0;
6215
6216 if (intel_crtc->cursor_visible != visible) {
6217 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6218 if (base) {
6219 cntl &= ~CURSOR_MODE;
6220 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6221 } else {
6222 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6223 cntl |= CURSOR_MODE_DISABLE;
6224 }
6225 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6226
6227 intel_crtc->cursor_visible = visible;
6228 }
6229 /* and commit changes on next vblank */
6230 I915_WRITE(CURBASE_IVB(pipe), base);
6231}
6232
cda4b7d3 6233/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
6234static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6235 bool on)
cda4b7d3
CW
6236{
6237 struct drm_device *dev = crtc->dev;
6238 struct drm_i915_private *dev_priv = dev->dev_private;
6239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6240 int pipe = intel_crtc->pipe;
6241 int x = intel_crtc->cursor_x;
6242 int y = intel_crtc->cursor_y;
560b85bb 6243 u32 base, pos;
cda4b7d3
CW
6244 bool visible;
6245
6246 pos = 0;
6247
6b383a7f 6248 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
6249 base = intel_crtc->cursor_addr;
6250 if (x > (int) crtc->fb->width)
6251 base = 0;
6252
6253 if (y > (int) crtc->fb->height)
6254 base = 0;
6255 } else
6256 base = 0;
6257
6258 if (x < 0) {
6259 if (x + intel_crtc->cursor_width < 0)
6260 base = 0;
6261
6262 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6263 x = -x;
6264 }
6265 pos |= x << CURSOR_X_SHIFT;
6266
6267 if (y < 0) {
6268 if (y + intel_crtc->cursor_height < 0)
6269 base = 0;
6270
6271 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6272 y = -y;
6273 }
6274 pos |= y << CURSOR_Y_SHIFT;
6275
6276 visible = base != 0;
560b85bb 6277 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
6278 return;
6279
0cd83aa9 6280 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
6281 I915_WRITE(CURPOS_IVB(pipe), pos);
6282 ivb_update_cursor(crtc, base);
6283 } else {
6284 I915_WRITE(CURPOS(pipe), pos);
6285 if (IS_845G(dev) || IS_I865G(dev))
6286 i845_update_cursor(crtc, base);
6287 else
6288 i9xx_update_cursor(crtc, base);
6289 }
cda4b7d3
CW
6290}
6291
79e53945 6292static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 6293 struct drm_file *file,
79e53945
JB
6294 uint32_t handle,
6295 uint32_t width, uint32_t height)
6296{
6297 struct drm_device *dev = crtc->dev;
6298 struct drm_i915_private *dev_priv = dev->dev_private;
6299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 6300 struct drm_i915_gem_object *obj;
cda4b7d3 6301 uint32_t addr;
3f8bc370 6302 int ret;
79e53945 6303
79e53945
JB
6304 /* if we want to turn off the cursor ignore width and height */
6305 if (!handle) {
28c97730 6306 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 6307 addr = 0;
05394f39 6308 obj = NULL;
5004417d 6309 mutex_lock(&dev->struct_mutex);
3f8bc370 6310 goto finish;
79e53945
JB
6311 }
6312
6313 /* Currently we only support 64x64 cursors */
6314 if (width != 64 || height != 64) {
6315 DRM_ERROR("we currently only support 64x64 cursors\n");
6316 return -EINVAL;
6317 }
6318
05394f39 6319 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6320 if (&obj->base == NULL)
79e53945
JB
6321 return -ENOENT;
6322
05394f39 6323 if (obj->base.size < width * height * 4) {
79e53945 6324 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6325 ret = -ENOMEM;
6326 goto fail;
79e53945
JB
6327 }
6328
71acb5eb 6329 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6330 mutex_lock(&dev->struct_mutex);
b295d1b6 6331 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6332 if (obj->tiling_mode) {
6333 DRM_ERROR("cursor cannot be tiled\n");
6334 ret = -EINVAL;
6335 goto fail_locked;
6336 }
6337
2da3b9b9 6338 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6339 if (ret) {
6340 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6341 goto fail_locked;
e7b526bb
CW
6342 }
6343
d9e86c0e
CW
6344 ret = i915_gem_object_put_fence(obj);
6345 if (ret) {
2da3b9b9 6346 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6347 goto fail_unpin;
6348 }
6349
05394f39 6350 addr = obj->gtt_offset;
71acb5eb 6351 } else {
6eeefaf3 6352 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6353 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6354 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6355 align);
71acb5eb
DA
6356 if (ret) {
6357 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6358 goto fail_locked;
71acb5eb 6359 }
05394f39 6360 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6361 }
6362
a6c45cf0 6363 if (IS_GEN2(dev))
14b60391
JB
6364 I915_WRITE(CURSIZE, (height << 12) | width);
6365
3f8bc370 6366 finish:
3f8bc370 6367 if (intel_crtc->cursor_bo) {
b295d1b6 6368 if (dev_priv->info->cursor_needs_physical) {
05394f39 6369 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6370 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6371 } else
6372 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6373 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6374 }
80824003 6375
7f9872e0 6376 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6377
6378 intel_crtc->cursor_addr = addr;
05394f39 6379 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6380 intel_crtc->cursor_width = width;
6381 intel_crtc->cursor_height = height;
6382
6b383a7f 6383 intel_crtc_update_cursor(crtc, true);
3f8bc370 6384
79e53945 6385 return 0;
e7b526bb 6386fail_unpin:
05394f39 6387 i915_gem_object_unpin(obj);
7f9872e0 6388fail_locked:
34b8686e 6389 mutex_unlock(&dev->struct_mutex);
bc9025bd 6390fail:
05394f39 6391 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6392 return ret;
79e53945
JB
6393}
6394
6395static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6396{
79e53945 6397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6398
cda4b7d3
CW
6399 intel_crtc->cursor_x = x;
6400 intel_crtc->cursor_y = y;
652c393a 6401
6b383a7f 6402 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6403
6404 return 0;
6405}
6406
6407/** Sets the color ramps on behalf of RandR */
6408void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6409 u16 blue, int regno)
6410{
6411 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6412
6413 intel_crtc->lut_r[regno] = red >> 8;
6414 intel_crtc->lut_g[regno] = green >> 8;
6415 intel_crtc->lut_b[regno] = blue >> 8;
6416}
6417
b8c00ac5
DA
6418void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6419 u16 *blue, int regno)
6420{
6421 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6422
6423 *red = intel_crtc->lut_r[regno] << 8;
6424 *green = intel_crtc->lut_g[regno] << 8;
6425 *blue = intel_crtc->lut_b[regno] << 8;
6426}
6427
79e53945 6428static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6429 u16 *blue, uint32_t start, uint32_t size)
79e53945 6430{
7203425a 6431 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6432 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6433
7203425a 6434 for (i = start; i < end; i++) {
79e53945
JB
6435 intel_crtc->lut_r[i] = red[i] >> 8;
6436 intel_crtc->lut_g[i] = green[i] >> 8;
6437 intel_crtc->lut_b[i] = blue[i] >> 8;
6438 }
6439
6440 intel_crtc_load_lut(crtc);
6441}
6442
6443/**
6444 * Get a pipe with a simple mode set on it for doing load-based monitor
6445 * detection.
6446 *
6447 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6448 * its requirements. The pipe will be connected to no other encoders.
79e53945 6449 *
c751ce4f 6450 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6451 * configured for it. In the future, it could choose to temporarily disable
6452 * some outputs to free up a pipe for its use.
6453 *
6454 * \return crtc, or NULL if no pipes are available.
6455 */
6456
6457/* VESA 640x480x72Hz mode to set on the pipe */
6458static struct drm_display_mode load_detect_mode = {
6459 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6460 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6461};
6462
d2dff872
CW
6463static struct drm_framebuffer *
6464intel_framebuffer_create(struct drm_device *dev,
308e5bcb 6465 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
6466 struct drm_i915_gem_object *obj)
6467{
6468 struct intel_framebuffer *intel_fb;
6469 int ret;
6470
6471 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6472 if (!intel_fb) {
6473 drm_gem_object_unreference_unlocked(&obj->base);
6474 return ERR_PTR(-ENOMEM);
6475 }
6476
6477 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6478 if (ret) {
6479 drm_gem_object_unreference_unlocked(&obj->base);
6480 kfree(intel_fb);
6481 return ERR_PTR(ret);
6482 }
6483
6484 return &intel_fb->base;
6485}
6486
6487static u32
6488intel_framebuffer_pitch_for_width(int width, int bpp)
6489{
6490 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6491 return ALIGN(pitch, 64);
6492}
6493
6494static u32
6495intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6496{
6497 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6498 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6499}
6500
6501static struct drm_framebuffer *
6502intel_framebuffer_create_for_mode(struct drm_device *dev,
6503 struct drm_display_mode *mode,
6504 int depth, int bpp)
6505{
6506 struct drm_i915_gem_object *obj;
308e5bcb 6507 struct drm_mode_fb_cmd2 mode_cmd;
d2dff872
CW
6508
6509 obj = i915_gem_alloc_object(dev,
6510 intel_framebuffer_size_for_mode(mode, bpp));
6511 if (obj == NULL)
6512 return ERR_PTR(-ENOMEM);
6513
6514 mode_cmd.width = mode->hdisplay;
6515 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
6516 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6517 bpp);
5ca0c34a 6518 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
6519
6520 return intel_framebuffer_create(dev, &mode_cmd, obj);
6521}
6522
6523static struct drm_framebuffer *
6524mode_fits_in_fbdev(struct drm_device *dev,
6525 struct drm_display_mode *mode)
6526{
6527 struct drm_i915_private *dev_priv = dev->dev_private;
6528 struct drm_i915_gem_object *obj;
6529 struct drm_framebuffer *fb;
6530
6531 if (dev_priv->fbdev == NULL)
6532 return NULL;
6533
6534 obj = dev_priv->fbdev->ifb.obj;
6535 if (obj == NULL)
6536 return NULL;
6537
6538 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
6539 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6540 fb->bits_per_pixel))
d2dff872
CW
6541 return NULL;
6542
01f2c773 6543 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
6544 return NULL;
6545
6546 return fb;
6547}
6548
d2434ab7 6549bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 6550 struct drm_display_mode *mode,
8261b191 6551 struct intel_load_detect_pipe *old)
79e53945
JB
6552{
6553 struct intel_crtc *intel_crtc;
d2434ab7
DV
6554 struct intel_encoder *intel_encoder =
6555 intel_attached_encoder(connector);
79e53945 6556 struct drm_crtc *possible_crtc;
4ef69c7a 6557 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6558 struct drm_crtc *crtc = NULL;
6559 struct drm_device *dev = encoder->dev;
94352cf9 6560 struct drm_framebuffer *fb;
79e53945
JB
6561 int i = -1;
6562
d2dff872
CW
6563 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6564 connector->base.id, drm_get_connector_name(connector),
6565 encoder->base.id, drm_get_encoder_name(encoder));
6566
79e53945
JB
6567 /*
6568 * Algorithm gets a little messy:
7a5e4805 6569 *
79e53945
JB
6570 * - if the connector already has an assigned crtc, use it (but make
6571 * sure it's on first)
7a5e4805 6572 *
79e53945
JB
6573 * - try to find the first unused crtc that can drive this connector,
6574 * and use that if we find one
79e53945
JB
6575 */
6576
6577 /* See if we already have a CRTC for this connector */
6578 if (encoder->crtc) {
6579 crtc = encoder->crtc;
8261b191 6580
24218aac 6581 old->dpms_mode = connector->dpms;
8261b191
CW
6582 old->load_detect_temp = false;
6583
6584 /* Make sure the crtc and connector are running */
24218aac
DV
6585 if (connector->dpms != DRM_MODE_DPMS_ON)
6586 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 6587
7173188d 6588 return true;
79e53945
JB
6589 }
6590
6591 /* Find an unused one (if possible) */
6592 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6593 i++;
6594 if (!(encoder->possible_crtcs & (1 << i)))
6595 continue;
6596 if (!possible_crtc->enabled) {
6597 crtc = possible_crtc;
6598 break;
6599 }
79e53945
JB
6600 }
6601
6602 /*
6603 * If we didn't find an unused CRTC, don't use any.
6604 */
6605 if (!crtc) {
7173188d
CW
6606 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6607 return false;
79e53945
JB
6608 }
6609
fc303101
DV
6610 intel_encoder->new_crtc = to_intel_crtc(crtc);
6611 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
6612
6613 intel_crtc = to_intel_crtc(crtc);
24218aac 6614 old->dpms_mode = connector->dpms;
8261b191 6615 old->load_detect_temp = true;
d2dff872 6616 old->release_fb = NULL;
79e53945 6617
6492711d
CW
6618 if (!mode)
6619 mode = &load_detect_mode;
79e53945 6620
d2dff872
CW
6621 /* We need a framebuffer large enough to accommodate all accesses
6622 * that the plane may generate whilst we perform load detection.
6623 * We can not rely on the fbcon either being present (we get called
6624 * during its initialisation to detect all boot displays, or it may
6625 * not even exist) or that it is large enough to satisfy the
6626 * requested mode.
6627 */
94352cf9
DV
6628 fb = mode_fits_in_fbdev(dev, mode);
6629 if (fb == NULL) {
d2dff872 6630 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
6631 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6632 old->release_fb = fb;
d2dff872
CW
6633 } else
6634 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 6635 if (IS_ERR(fb)) {
d2dff872 6636 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
24218aac 6637 goto fail;
79e53945 6638 }
79e53945 6639
94352cf9 6640 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 6641 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6642 if (old->release_fb)
6643 old->release_fb->funcs->destroy(old->release_fb);
24218aac 6644 goto fail;
79e53945 6645 }
7173188d 6646
79e53945 6647 /* let the connector get through one full cycle before testing */
9d0498a2 6648 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 6649
7173188d 6650 return true;
24218aac
DV
6651fail:
6652 connector->encoder = NULL;
6653 encoder->crtc = NULL;
24218aac 6654 return false;
79e53945
JB
6655}
6656
d2434ab7 6657void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 6658 struct intel_load_detect_pipe *old)
79e53945 6659{
d2434ab7
DV
6660 struct intel_encoder *intel_encoder =
6661 intel_attached_encoder(connector);
4ef69c7a 6662 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 6663
d2dff872
CW
6664 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6665 connector->base.id, drm_get_connector_name(connector),
6666 encoder->base.id, drm_get_encoder_name(encoder));
6667
8261b191 6668 if (old->load_detect_temp) {
fc303101
DV
6669 struct drm_crtc *crtc = encoder->crtc;
6670
6671 to_intel_connector(connector)->new_encoder = NULL;
6672 intel_encoder->new_crtc = NULL;
6673 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
6674
6675 if (old->release_fb)
6676 old->release_fb->funcs->destroy(old->release_fb);
6677
0622a53c 6678 return;
79e53945
JB
6679 }
6680
c751ce4f 6681 /* Switch crtc and encoder back off if necessary */
24218aac
DV
6682 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6683 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
6684}
6685
6686/* Returns the clock of the currently programmed mode of the given pipe. */
6687static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6688{
6689 struct drm_i915_private *dev_priv = dev->dev_private;
6690 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6691 int pipe = intel_crtc->pipe;
548f245b 6692 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6693 u32 fp;
6694 intel_clock_t clock;
6695
6696 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6697 fp = I915_READ(FP0(pipe));
79e53945 6698 else
39adb7a5 6699 fp = I915_READ(FP1(pipe));
79e53945
JB
6700
6701 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6702 if (IS_PINEVIEW(dev)) {
6703 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6704 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6705 } else {
6706 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6707 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6708 }
6709
a6c45cf0 6710 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6711 if (IS_PINEVIEW(dev))
6712 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6713 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6714 else
6715 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6716 DPLL_FPA01_P1_POST_DIV_SHIFT);
6717
6718 switch (dpll & DPLL_MODE_MASK) {
6719 case DPLLB_MODE_DAC_SERIAL:
6720 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6721 5 : 10;
6722 break;
6723 case DPLLB_MODE_LVDS:
6724 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6725 7 : 14;
6726 break;
6727 default:
28c97730 6728 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6729 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6730 return 0;
6731 }
6732
6733 /* XXX: Handle the 100Mhz refclk */
2177832f 6734 intel_clock(dev, 96000, &clock);
79e53945
JB
6735 } else {
6736 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6737
6738 if (is_lvds) {
6739 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6740 DPLL_FPA01_P1_POST_DIV_SHIFT);
6741 clock.p2 = 14;
6742
6743 if ((dpll & PLL_REF_INPUT_MASK) ==
6744 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6745 /* XXX: might not be 66MHz */
2177832f 6746 intel_clock(dev, 66000, &clock);
79e53945 6747 } else
2177832f 6748 intel_clock(dev, 48000, &clock);
79e53945
JB
6749 } else {
6750 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6751 clock.p1 = 2;
6752 else {
6753 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6754 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6755 }
6756 if (dpll & PLL_P2_DIVIDE_BY_4)
6757 clock.p2 = 4;
6758 else
6759 clock.p2 = 2;
6760
2177832f 6761 intel_clock(dev, 48000, &clock);
79e53945
JB
6762 }
6763 }
6764
6765 /* XXX: It would be nice to validate the clocks, but we can't reuse
6766 * i830PllIsValid() because it relies on the xf86_config connector
6767 * configuration being accurate, which it isn't necessarily.
6768 */
6769
6770 return clock.dot;
6771}
6772
6773/** Returns the currently programmed mode of the given pipe. */
6774struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6775 struct drm_crtc *crtc)
6776{
548f245b 6777 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 6778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
fe2b8f9d 6779 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
79e53945 6780 struct drm_display_mode *mode;
fe2b8f9d
PZ
6781 int htot = I915_READ(HTOTAL(cpu_transcoder));
6782 int hsync = I915_READ(HSYNC(cpu_transcoder));
6783 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6784 int vsync = I915_READ(VSYNC(cpu_transcoder));
79e53945
JB
6785
6786 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6787 if (!mode)
6788 return NULL;
6789
6790 mode->clock = intel_crtc_clock_get(dev, crtc);
6791 mode->hdisplay = (htot & 0xffff) + 1;
6792 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6793 mode->hsync_start = (hsync & 0xffff) + 1;
6794 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6795 mode->vdisplay = (vtot & 0xffff) + 1;
6796 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6797 mode->vsync_start = (vsync & 0xffff) + 1;
6798 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6799
6800 drm_mode_set_name(mode);
79e53945
JB
6801
6802 return mode;
6803}
6804
3dec0095 6805static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6806{
6807 struct drm_device *dev = crtc->dev;
6808 drm_i915_private_t *dev_priv = dev->dev_private;
6809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6810 int pipe = intel_crtc->pipe;
dbdc6479
JB
6811 int dpll_reg = DPLL(pipe);
6812 int dpll;
652c393a 6813
bad720ff 6814 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6815 return;
6816
6817 if (!dev_priv->lvds_downclock_avail)
6818 return;
6819
dbdc6479 6820 dpll = I915_READ(dpll_reg);
652c393a 6821 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6822 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6823
8ac5a6d5 6824 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6825
6826 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6827 I915_WRITE(dpll_reg, dpll);
9d0498a2 6828 intel_wait_for_vblank(dev, pipe);
dbdc6479 6829
652c393a
JB
6830 dpll = I915_READ(dpll_reg);
6831 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6832 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6833 }
652c393a
JB
6834}
6835
6836static void intel_decrease_pllclock(struct drm_crtc *crtc)
6837{
6838 struct drm_device *dev = crtc->dev;
6839 drm_i915_private_t *dev_priv = dev->dev_private;
6840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6841
bad720ff 6842 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6843 return;
6844
6845 if (!dev_priv->lvds_downclock_avail)
6846 return;
6847
6848 /*
6849 * Since this is called by a timer, we should never get here in
6850 * the manual case.
6851 */
6852 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6853 int pipe = intel_crtc->pipe;
6854 int dpll_reg = DPLL(pipe);
6855 int dpll;
f6e5b160 6856
44d98a61 6857 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6858
8ac5a6d5 6859 assert_panel_unlocked(dev_priv, pipe);
652c393a 6860
dc257cf1 6861 dpll = I915_READ(dpll_reg);
652c393a
JB
6862 dpll |= DISPLAY_RATE_SELECT_FPA1;
6863 I915_WRITE(dpll_reg, dpll);
9d0498a2 6864 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6865 dpll = I915_READ(dpll_reg);
6866 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6867 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6868 }
6869
6870}
6871
f047e395
CW
6872void intel_mark_busy(struct drm_device *dev)
6873{
f047e395
CW
6874 i915_update_gfx_val(dev->dev_private);
6875}
6876
6877void intel_mark_idle(struct drm_device *dev)
652c393a 6878{
f047e395
CW
6879}
6880
6881void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6882{
6883 struct drm_device *dev = obj->base.dev;
652c393a 6884 struct drm_crtc *crtc;
652c393a
JB
6885
6886 if (!i915_powersave)
6887 return;
6888
652c393a 6889 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
6890 if (!crtc->fb)
6891 continue;
6892
f047e395
CW
6893 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6894 intel_increase_pllclock(crtc);
652c393a 6895 }
652c393a
JB
6896}
6897
f047e395 6898void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 6899{
f047e395
CW
6900 struct drm_device *dev = obj->base.dev;
6901 struct drm_crtc *crtc;
652c393a 6902
f047e395 6903 if (!i915_powersave)
acb87dfb
CW
6904 return;
6905
652c393a
JB
6906 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6907 if (!crtc->fb)
6908 continue;
6909
f047e395
CW
6910 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6911 intel_decrease_pllclock(crtc);
652c393a
JB
6912 }
6913}
6914
79e53945
JB
6915static void intel_crtc_destroy(struct drm_crtc *crtc)
6916{
6917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6918 struct drm_device *dev = crtc->dev;
6919 struct intel_unpin_work *work;
6920 unsigned long flags;
6921
6922 spin_lock_irqsave(&dev->event_lock, flags);
6923 work = intel_crtc->unpin_work;
6924 intel_crtc->unpin_work = NULL;
6925 spin_unlock_irqrestore(&dev->event_lock, flags);
6926
6927 if (work) {
6928 cancel_work_sync(&work->work);
6929 kfree(work);
6930 }
79e53945
JB
6931
6932 drm_crtc_cleanup(crtc);
67e77c5a 6933
79e53945
JB
6934 kfree(intel_crtc);
6935}
6936
6b95a207
KH
6937static void intel_unpin_work_fn(struct work_struct *__work)
6938{
6939 struct intel_unpin_work *work =
6940 container_of(__work, struct intel_unpin_work, work);
6941
6942 mutex_lock(&work->dev->struct_mutex);
1690e1eb 6943 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
6944 drm_gem_object_unreference(&work->pending_flip_obj->base);
6945 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6946
7782de3b 6947 intel_update_fbc(work->dev);
6b95a207
KH
6948 mutex_unlock(&work->dev->struct_mutex);
6949 kfree(work);
6950}
6951
1afe3e9d 6952static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6953 struct drm_crtc *crtc)
6b95a207
KH
6954{
6955 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6956 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6957 struct intel_unpin_work *work;
05394f39 6958 struct drm_i915_gem_object *obj;
6b95a207 6959 struct drm_pending_vblank_event *e;
95cb1b02 6960 struct timeval tvbl;
6b95a207
KH
6961 unsigned long flags;
6962
6963 /* Ignore early vblank irqs */
6964 if (intel_crtc == NULL)
6965 return;
6966
6967 spin_lock_irqsave(&dev->event_lock, flags);
6968 work = intel_crtc->unpin_work;
6969 if (work == NULL || !work->pending) {
6970 spin_unlock_irqrestore(&dev->event_lock, flags);
6971 return;
6972 }
6973
6974 intel_crtc->unpin_work = NULL;
6b95a207
KH
6975
6976 if (work->event) {
6977 e = work->event;
49b14a5c 6978 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df 6979
49b14a5c
MK
6980 e->event.tv_sec = tvbl.tv_sec;
6981 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6982
6b95a207
KH
6983 list_add_tail(&e->base.link,
6984 &e->base.file_priv->event_list);
6985 wake_up_interruptible(&e->base.file_priv->event_wait);
6986 }
6987
0af7e4df
MK
6988 drm_vblank_put(dev, intel_crtc->pipe);
6989
6b95a207
KH
6990 spin_unlock_irqrestore(&dev->event_lock, flags);
6991
05394f39 6992 obj = work->old_fb_obj;
d9e86c0e 6993
e59f2bac 6994 atomic_clear_mask(1 << intel_crtc->plane,
05394f39 6995 &obj->pending_flip.counter);
d9e86c0e 6996
5bb61643 6997 wake_up(&dev_priv->pending_flip_queue);
6b95a207 6998 schedule_work(&work->work);
e5510fac
JB
6999
7000 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
7001}
7002
1afe3e9d
JB
7003void intel_finish_page_flip(struct drm_device *dev, int pipe)
7004{
7005 drm_i915_private_t *dev_priv = dev->dev_private;
7006 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7007
49b14a5c 7008 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
7009}
7010
7011void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7012{
7013 drm_i915_private_t *dev_priv = dev->dev_private;
7014 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7015
49b14a5c 7016 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
7017}
7018
6b95a207
KH
7019void intel_prepare_page_flip(struct drm_device *dev, int plane)
7020{
7021 drm_i915_private_t *dev_priv = dev->dev_private;
7022 struct intel_crtc *intel_crtc =
7023 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7024 unsigned long flags;
7025
7026 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 7027 if (intel_crtc->unpin_work) {
4e5359cd
SF
7028 if ((++intel_crtc->unpin_work->pending) > 1)
7029 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
7030 } else {
7031 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7032 }
6b95a207
KH
7033 spin_unlock_irqrestore(&dev->event_lock, flags);
7034}
7035
8c9f3aaf
JB
7036static int intel_gen2_queue_flip(struct drm_device *dev,
7037 struct drm_crtc *crtc,
7038 struct drm_framebuffer *fb,
7039 struct drm_i915_gem_object *obj)
7040{
7041 struct drm_i915_private *dev_priv = dev->dev_private;
7042 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 7043 u32 flip_mask;
6d90c952 7044 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7045 int ret;
7046
6d90c952 7047 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7048 if (ret)
83d4092b 7049 goto err;
8c9f3aaf 7050
6d90c952 7051 ret = intel_ring_begin(ring, 6);
8c9f3aaf 7052 if (ret)
83d4092b 7053 goto err_unpin;
8c9f3aaf
JB
7054
7055 /* Can't queue multiple flips, so wait for the previous
7056 * one to finish before executing the next.
7057 */
7058 if (intel_crtc->plane)
7059 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7060 else
7061 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
7062 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7063 intel_ring_emit(ring, MI_NOOP);
7064 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7065 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7066 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 7067 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
7068 intel_ring_emit(ring, 0); /* aux display base address, unused */
7069 intel_ring_advance(ring);
83d4092b
CW
7070 return 0;
7071
7072err_unpin:
7073 intel_unpin_fb_obj(obj);
7074err:
8c9f3aaf
JB
7075 return ret;
7076}
7077
7078static int intel_gen3_queue_flip(struct drm_device *dev,
7079 struct drm_crtc *crtc,
7080 struct drm_framebuffer *fb,
7081 struct drm_i915_gem_object *obj)
7082{
7083 struct drm_i915_private *dev_priv = dev->dev_private;
7084 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 7085 u32 flip_mask;
6d90c952 7086 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7087 int ret;
7088
6d90c952 7089 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7090 if (ret)
83d4092b 7091 goto err;
8c9f3aaf 7092
6d90c952 7093 ret = intel_ring_begin(ring, 6);
8c9f3aaf 7094 if (ret)
83d4092b 7095 goto err_unpin;
8c9f3aaf
JB
7096
7097 if (intel_crtc->plane)
7098 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7099 else
7100 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
7101 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7102 intel_ring_emit(ring, MI_NOOP);
7103 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7104 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7105 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 7106 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
7107 intel_ring_emit(ring, MI_NOOP);
7108
7109 intel_ring_advance(ring);
83d4092b
CW
7110 return 0;
7111
7112err_unpin:
7113 intel_unpin_fb_obj(obj);
7114err:
8c9f3aaf
JB
7115 return ret;
7116}
7117
7118static int intel_gen4_queue_flip(struct drm_device *dev,
7119 struct drm_crtc *crtc,
7120 struct drm_framebuffer *fb,
7121 struct drm_i915_gem_object *obj)
7122{
7123 struct drm_i915_private *dev_priv = dev->dev_private;
7124 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7125 uint32_t pf, pipesrc;
6d90c952 7126 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7127 int ret;
7128
6d90c952 7129 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7130 if (ret)
83d4092b 7131 goto err;
8c9f3aaf 7132
6d90c952 7133 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7134 if (ret)
83d4092b 7135 goto err_unpin;
8c9f3aaf
JB
7136
7137 /* i965+ uses the linear or tiled offsets from the
7138 * Display Registers (which do not change across a page-flip)
7139 * so we need only reprogram the base address.
7140 */
6d90c952
DV
7141 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7142 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7143 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
7144 intel_ring_emit(ring,
7145 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7146 obj->tiling_mode);
8c9f3aaf
JB
7147
7148 /* XXX Enabling the panel-fitter across page-flip is so far
7149 * untested on non-native modes, so ignore it for now.
7150 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7151 */
7152 pf = 0;
7153 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
7154 intel_ring_emit(ring, pf | pipesrc);
7155 intel_ring_advance(ring);
83d4092b
CW
7156 return 0;
7157
7158err_unpin:
7159 intel_unpin_fb_obj(obj);
7160err:
8c9f3aaf
JB
7161 return ret;
7162}
7163
7164static int intel_gen6_queue_flip(struct drm_device *dev,
7165 struct drm_crtc *crtc,
7166 struct drm_framebuffer *fb,
7167 struct drm_i915_gem_object *obj)
7168{
7169 struct drm_i915_private *dev_priv = dev->dev_private;
7170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 7171 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
7172 uint32_t pf, pipesrc;
7173 int ret;
7174
6d90c952 7175 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 7176 if (ret)
83d4092b 7177 goto err;
8c9f3aaf 7178
6d90c952 7179 ret = intel_ring_begin(ring, 4);
8c9f3aaf 7180 if (ret)
83d4092b 7181 goto err_unpin;
8c9f3aaf 7182
6d90c952
DV
7183 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7184 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7185 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 7186 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 7187
dc257cf1
DV
7188 /* Contrary to the suggestions in the documentation,
7189 * "Enable Panel Fitter" does not seem to be required when page
7190 * flipping with a non-native mode, and worse causes a normal
7191 * modeset to fail.
7192 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7193 */
7194 pf = 0;
8c9f3aaf 7195 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
7196 intel_ring_emit(ring, pf | pipesrc);
7197 intel_ring_advance(ring);
83d4092b
CW
7198 return 0;
7199
7200err_unpin:
7201 intel_unpin_fb_obj(obj);
7202err:
8c9f3aaf
JB
7203 return ret;
7204}
7205
7c9017e5
JB
7206/*
7207 * On gen7 we currently use the blit ring because (in early silicon at least)
7208 * the render ring doesn't give us interrpts for page flip completion, which
7209 * means clients will hang after the first flip is queued. Fortunately the
7210 * blit ring generates interrupts properly, so use it instead.
7211 */
7212static int intel_gen7_queue_flip(struct drm_device *dev,
7213 struct drm_crtc *crtc,
7214 struct drm_framebuffer *fb,
7215 struct drm_i915_gem_object *obj)
7216{
7217 struct drm_i915_private *dev_priv = dev->dev_private;
7218 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7219 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 7220 uint32_t plane_bit = 0;
7c9017e5
JB
7221 int ret;
7222
7223 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7224 if (ret)
83d4092b 7225 goto err;
7c9017e5 7226
cb05d8de
DV
7227 switch(intel_crtc->plane) {
7228 case PLANE_A:
7229 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7230 break;
7231 case PLANE_B:
7232 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7233 break;
7234 case PLANE_C:
7235 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7236 break;
7237 default:
7238 WARN_ONCE(1, "unknown plane in flip command\n");
7239 ret = -ENODEV;
ab3951eb 7240 goto err_unpin;
cb05d8de
DV
7241 }
7242
7c9017e5
JB
7243 ret = intel_ring_begin(ring, 4);
7244 if (ret)
83d4092b 7245 goto err_unpin;
7c9017e5 7246
cb05d8de 7247 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 7248 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 7249 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5
JB
7250 intel_ring_emit(ring, (MI_NOOP));
7251 intel_ring_advance(ring);
83d4092b
CW
7252 return 0;
7253
7254err_unpin:
7255 intel_unpin_fb_obj(obj);
7256err:
7c9017e5
JB
7257 return ret;
7258}
7259
8c9f3aaf
JB
7260static int intel_default_queue_flip(struct drm_device *dev,
7261 struct drm_crtc *crtc,
7262 struct drm_framebuffer *fb,
7263 struct drm_i915_gem_object *obj)
7264{
7265 return -ENODEV;
7266}
7267
6b95a207
KH
7268static int intel_crtc_page_flip(struct drm_crtc *crtc,
7269 struct drm_framebuffer *fb,
7270 struct drm_pending_vblank_event *event)
7271{
7272 struct drm_device *dev = crtc->dev;
7273 struct drm_i915_private *dev_priv = dev->dev_private;
7274 struct intel_framebuffer *intel_fb;
05394f39 7275 struct drm_i915_gem_object *obj;
6b95a207
KH
7276 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7277 struct intel_unpin_work *work;
8c9f3aaf 7278 unsigned long flags;
52e68630 7279 int ret;
6b95a207 7280
e6a595d2
VS
7281 /* Can't change pixel format via MI display flips. */
7282 if (fb->pixel_format != crtc->fb->pixel_format)
7283 return -EINVAL;
7284
7285 /*
7286 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7287 * Note that pitch changes could also affect these register.
7288 */
7289 if (INTEL_INFO(dev)->gen > 3 &&
7290 (fb->offsets[0] != crtc->fb->offsets[0] ||
7291 fb->pitches[0] != crtc->fb->pitches[0]))
7292 return -EINVAL;
7293
6b95a207
KH
7294 work = kzalloc(sizeof *work, GFP_KERNEL);
7295 if (work == NULL)
7296 return -ENOMEM;
7297
6b95a207
KH
7298 work->event = event;
7299 work->dev = crtc->dev;
7300 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 7301 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
7302 INIT_WORK(&work->work, intel_unpin_work_fn);
7303
7317c75e
JB
7304 ret = drm_vblank_get(dev, intel_crtc->pipe);
7305 if (ret)
7306 goto free_work;
7307
6b95a207
KH
7308 /* We borrow the event spin lock for protecting unpin_work */
7309 spin_lock_irqsave(&dev->event_lock, flags);
7310 if (intel_crtc->unpin_work) {
7311 spin_unlock_irqrestore(&dev->event_lock, flags);
7312 kfree(work);
7317c75e 7313 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
7314
7315 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7316 return -EBUSY;
7317 }
7318 intel_crtc->unpin_work = work;
7319 spin_unlock_irqrestore(&dev->event_lock, flags);
7320
7321 intel_fb = to_intel_framebuffer(fb);
7322 obj = intel_fb->obj;
7323
79158103
CW
7324 ret = i915_mutex_lock_interruptible(dev);
7325 if (ret)
7326 goto cleanup;
6b95a207 7327
75dfca80 7328 /* Reference the objects for the scheduled work. */
05394f39
CW
7329 drm_gem_object_reference(&work->old_fb_obj->base);
7330 drm_gem_object_reference(&obj->base);
6b95a207
KH
7331
7332 crtc->fb = fb;
96b099fd 7333
e1f99ce6 7334 work->pending_flip_obj = obj;
e1f99ce6 7335
4e5359cd
SF
7336 work->enable_stall_check = true;
7337
e1f99ce6
CW
7338 /* Block clients from rendering to the new back buffer until
7339 * the flip occurs and the object is no longer visible.
7340 */
05394f39 7341 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 7342
8c9f3aaf
JB
7343 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7344 if (ret)
7345 goto cleanup_pending;
6b95a207 7346
7782de3b 7347 intel_disable_fbc(dev);
f047e395 7348 intel_mark_fb_busy(obj);
6b95a207
KH
7349 mutex_unlock(&dev->struct_mutex);
7350
e5510fac
JB
7351 trace_i915_flip_request(intel_crtc->plane, obj);
7352
6b95a207 7353 return 0;
96b099fd 7354
8c9f3aaf
JB
7355cleanup_pending:
7356 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
7357 drm_gem_object_unreference(&work->old_fb_obj->base);
7358 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7359 mutex_unlock(&dev->struct_mutex);
7360
79158103 7361cleanup:
96b099fd
CW
7362 spin_lock_irqsave(&dev->event_lock, flags);
7363 intel_crtc->unpin_work = NULL;
7364 spin_unlock_irqrestore(&dev->event_lock, flags);
7365
7317c75e
JB
7366 drm_vblank_put(dev, intel_crtc->pipe);
7367free_work:
96b099fd
CW
7368 kfree(work);
7369
7370 return ret;
6b95a207
KH
7371}
7372
f6e5b160 7373static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
7374 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7375 .load_lut = intel_crtc_load_lut,
976f8a20 7376 .disable = intel_crtc_noop,
f6e5b160
CW
7377};
7378
6ed0f796 7379bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 7380{
6ed0f796
DV
7381 struct intel_encoder *other_encoder;
7382 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 7383
6ed0f796
DV
7384 if (WARN_ON(!crtc))
7385 return false;
7386
7387 list_for_each_entry(other_encoder,
7388 &crtc->dev->mode_config.encoder_list,
7389 base.head) {
7390
7391 if (&other_encoder->new_crtc->base != crtc ||
7392 encoder == other_encoder)
7393 continue;
7394 else
7395 return true;
f47166d2
CW
7396 }
7397
6ed0f796
DV
7398 return false;
7399}
47f1c6c9 7400
50f56119
DV
7401static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7402 struct drm_crtc *crtc)
7403{
7404 struct drm_device *dev;
7405 struct drm_crtc *tmp;
7406 int crtc_mask = 1;
47f1c6c9 7407
50f56119 7408 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 7409
50f56119 7410 dev = crtc->dev;
47f1c6c9 7411
50f56119
DV
7412 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7413 if (tmp == crtc)
7414 break;
7415 crtc_mask <<= 1;
7416 }
47f1c6c9 7417
50f56119
DV
7418 if (encoder->possible_crtcs & crtc_mask)
7419 return true;
7420 return false;
47f1c6c9 7421}
79e53945 7422
9a935856
DV
7423/**
7424 * intel_modeset_update_staged_output_state
7425 *
7426 * Updates the staged output configuration state, e.g. after we've read out the
7427 * current hw state.
7428 */
7429static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 7430{
9a935856
DV
7431 struct intel_encoder *encoder;
7432 struct intel_connector *connector;
f6e5b160 7433
9a935856
DV
7434 list_for_each_entry(connector, &dev->mode_config.connector_list,
7435 base.head) {
7436 connector->new_encoder =
7437 to_intel_encoder(connector->base.encoder);
7438 }
f6e5b160 7439
9a935856
DV
7440 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7441 base.head) {
7442 encoder->new_crtc =
7443 to_intel_crtc(encoder->base.crtc);
7444 }
f6e5b160
CW
7445}
7446
9a935856
DV
7447/**
7448 * intel_modeset_commit_output_state
7449 *
7450 * This function copies the stage display pipe configuration to the real one.
7451 */
7452static void intel_modeset_commit_output_state(struct drm_device *dev)
7453{
7454 struct intel_encoder *encoder;
7455 struct intel_connector *connector;
f6e5b160 7456
9a935856
DV
7457 list_for_each_entry(connector, &dev->mode_config.connector_list,
7458 base.head) {
7459 connector->base.encoder = &connector->new_encoder->base;
7460 }
f6e5b160 7461
9a935856
DV
7462 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7463 base.head) {
7464 encoder->base.crtc = &encoder->new_crtc->base;
7465 }
7466}
7467
7758a113
DV
7468static struct drm_display_mode *
7469intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7470 struct drm_display_mode *mode)
ee7b9f93 7471{
7758a113
DV
7472 struct drm_device *dev = crtc->dev;
7473 struct drm_display_mode *adjusted_mode;
7474 struct drm_encoder_helper_funcs *encoder_funcs;
7475 struct intel_encoder *encoder;
ee7b9f93 7476
7758a113
DV
7477 adjusted_mode = drm_mode_duplicate(dev, mode);
7478 if (!adjusted_mode)
7479 return ERR_PTR(-ENOMEM);
7480
7481 /* Pass our mode to the connectors and the CRTC to give them a chance to
7482 * adjust it according to limitations or connector properties, and also
7483 * a chance to reject the mode entirely.
7484 */
7485 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7486 base.head) {
7487
7488 if (&encoder->new_crtc->base != crtc)
7489 continue;
7490 encoder_funcs = encoder->base.helper_private;
7491 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7492 adjusted_mode))) {
7493 DRM_DEBUG_KMS("Encoder fixup failed\n");
7494 goto fail;
7495 }
ee7b9f93
JB
7496 }
7497
7758a113
DV
7498 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7499 DRM_DEBUG_KMS("CRTC fixup failed\n");
7500 goto fail;
ee7b9f93 7501 }
7758a113
DV
7502 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7503
7504 return adjusted_mode;
7505fail:
7506 drm_mode_destroy(dev, adjusted_mode);
7507 return ERR_PTR(-EINVAL);
ee7b9f93
JB
7508}
7509
e2e1ed41
DV
7510/* Computes which crtcs are affected and sets the relevant bits in the mask. For
7511 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7512static void
7513intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7514 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
7515{
7516 struct intel_crtc *intel_crtc;
e2e1ed41
DV
7517 struct drm_device *dev = crtc->dev;
7518 struct intel_encoder *encoder;
7519 struct intel_connector *connector;
7520 struct drm_crtc *tmp_crtc;
79e53945 7521
e2e1ed41 7522 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 7523
e2e1ed41
DV
7524 /* Check which crtcs have changed outputs connected to them, these need
7525 * to be part of the prepare_pipes mask. We don't (yet) support global
7526 * modeset across multiple crtcs, so modeset_pipes will only have one
7527 * bit set at most. */
7528 list_for_each_entry(connector, &dev->mode_config.connector_list,
7529 base.head) {
7530 if (connector->base.encoder == &connector->new_encoder->base)
7531 continue;
79e53945 7532
e2e1ed41
DV
7533 if (connector->base.encoder) {
7534 tmp_crtc = connector->base.encoder->crtc;
7535
7536 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7537 }
7538
7539 if (connector->new_encoder)
7540 *prepare_pipes |=
7541 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
7542 }
7543
e2e1ed41
DV
7544 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7545 base.head) {
7546 if (encoder->base.crtc == &encoder->new_crtc->base)
7547 continue;
7548
7549 if (encoder->base.crtc) {
7550 tmp_crtc = encoder->base.crtc;
7551
7552 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7553 }
7554
7555 if (encoder->new_crtc)
7556 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
7557 }
7558
e2e1ed41
DV
7559 /* Check for any pipes that will be fully disabled ... */
7560 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7561 base.head) {
7562 bool used = false;
22fd0fab 7563
e2e1ed41
DV
7564 /* Don't try to disable disabled crtcs. */
7565 if (!intel_crtc->base.enabled)
7566 continue;
7e7d76c3 7567
e2e1ed41
DV
7568 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7569 base.head) {
7570 if (encoder->new_crtc == intel_crtc)
7571 used = true;
7572 }
7573
7574 if (!used)
7575 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
7576 }
7577
e2e1ed41
DV
7578
7579 /* set_mode is also used to update properties on life display pipes. */
7580 intel_crtc = to_intel_crtc(crtc);
7581 if (crtc->enabled)
7582 *prepare_pipes |= 1 << intel_crtc->pipe;
7583
7584 /* We only support modeset on one single crtc, hence we need to do that
7585 * only for the passed in crtc iff we change anything else than just
7586 * disable crtcs.
7587 *
7588 * This is actually not true, to be fully compatible with the old crtc
7589 * helper we automatically disable _any_ output (i.e. doesn't need to be
7590 * connected to the crtc we're modesetting on) if it's disconnected.
7591 * Which is a rather nutty api (since changed the output configuration
7592 * without userspace's explicit request can lead to confusion), but
7593 * alas. Hence we currently need to modeset on all pipes we prepare. */
7594 if (*prepare_pipes)
7595 *modeset_pipes = *prepare_pipes;
7596
7597 /* ... and mask these out. */
7598 *modeset_pipes &= ~(*disable_pipes);
7599 *prepare_pipes &= ~(*disable_pipes);
7600}
7601
ea9d758d
DV
7602static bool intel_crtc_in_use(struct drm_crtc *crtc)
7603{
7604 struct drm_encoder *encoder;
7605 struct drm_device *dev = crtc->dev;
7606
7607 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7608 if (encoder->crtc == crtc)
7609 return true;
7610
7611 return false;
7612}
7613
7614static void
7615intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7616{
7617 struct intel_encoder *intel_encoder;
7618 struct intel_crtc *intel_crtc;
7619 struct drm_connector *connector;
7620
7621 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7622 base.head) {
7623 if (!intel_encoder->base.crtc)
7624 continue;
7625
7626 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7627
7628 if (prepare_pipes & (1 << intel_crtc->pipe))
7629 intel_encoder->connectors_active = false;
7630 }
7631
7632 intel_modeset_commit_output_state(dev);
7633
7634 /* Update computed state. */
7635 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7636 base.head) {
7637 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7638 }
7639
7640 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7641 if (!connector->encoder || !connector->encoder->crtc)
7642 continue;
7643
7644 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7645
7646 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
7647 struct drm_property *dpms_property =
7648 dev->mode_config.dpms_property;
7649
ea9d758d 7650 connector->dpms = DRM_MODE_DPMS_ON;
68d34720
DV
7651 drm_connector_property_set_value(connector,
7652 dpms_property,
7653 DRM_MODE_DPMS_ON);
ea9d758d
DV
7654
7655 intel_encoder = to_intel_encoder(connector->encoder);
7656 intel_encoder->connectors_active = true;
7657 }
7658 }
7659
7660}
7661
25c5b266
DV
7662#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7663 list_for_each_entry((intel_crtc), \
7664 &(dev)->mode_config.crtc_list, \
7665 base.head) \
7666 if (mask & (1 <<(intel_crtc)->pipe)) \
7667
b980514c 7668void
8af6cf88
DV
7669intel_modeset_check_state(struct drm_device *dev)
7670{
7671 struct intel_crtc *crtc;
7672 struct intel_encoder *encoder;
7673 struct intel_connector *connector;
7674
7675 list_for_each_entry(connector, &dev->mode_config.connector_list,
7676 base.head) {
7677 /* This also checks the encoder/connector hw state with the
7678 * ->get_hw_state callbacks. */
7679 intel_connector_check_state(connector);
7680
7681 WARN(&connector->new_encoder->base != connector->base.encoder,
7682 "connector's staged encoder doesn't match current encoder\n");
7683 }
7684
7685 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7686 base.head) {
7687 bool enabled = false;
7688 bool active = false;
7689 enum pipe pipe, tracked_pipe;
7690
7691 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7692 encoder->base.base.id,
7693 drm_get_encoder_name(&encoder->base));
7694
7695 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7696 "encoder's stage crtc doesn't match current crtc\n");
7697 WARN(encoder->connectors_active && !encoder->base.crtc,
7698 "encoder's active_connectors set, but no crtc\n");
7699
7700 list_for_each_entry(connector, &dev->mode_config.connector_list,
7701 base.head) {
7702 if (connector->base.encoder != &encoder->base)
7703 continue;
7704 enabled = true;
7705 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7706 active = true;
7707 }
7708 WARN(!!encoder->base.crtc != enabled,
7709 "encoder's enabled state mismatch "
7710 "(expected %i, found %i)\n",
7711 !!encoder->base.crtc, enabled);
7712 WARN(active && !encoder->base.crtc,
7713 "active encoder with no crtc\n");
7714
7715 WARN(encoder->connectors_active != active,
7716 "encoder's computed active state doesn't match tracked active state "
7717 "(expected %i, found %i)\n", active, encoder->connectors_active);
7718
7719 active = encoder->get_hw_state(encoder, &pipe);
7720 WARN(active != encoder->connectors_active,
7721 "encoder's hw state doesn't match sw tracking "
7722 "(expected %i, found %i)\n",
7723 encoder->connectors_active, active);
7724
7725 if (!encoder->base.crtc)
7726 continue;
7727
7728 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7729 WARN(active && pipe != tracked_pipe,
7730 "active encoder's pipe doesn't match"
7731 "(expected %i, found %i)\n",
7732 tracked_pipe, pipe);
7733
7734 }
7735
7736 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7737 base.head) {
7738 bool enabled = false;
7739 bool active = false;
7740
7741 DRM_DEBUG_KMS("[CRTC:%d]\n",
7742 crtc->base.base.id);
7743
7744 WARN(crtc->active && !crtc->base.enabled,
7745 "active crtc, but not enabled in sw tracking\n");
7746
7747 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7748 base.head) {
7749 if (encoder->base.crtc != &crtc->base)
7750 continue;
7751 enabled = true;
7752 if (encoder->connectors_active)
7753 active = true;
7754 }
7755 WARN(active != crtc->active,
7756 "crtc's computed active state doesn't match tracked active state "
7757 "(expected %i, found %i)\n", active, crtc->active);
7758 WARN(enabled != crtc->base.enabled,
7759 "crtc's computed enabled state doesn't match tracked enabled state "
7760 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7761
7762 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7763 }
7764}
7765
a6778b3c
DV
7766bool intel_set_mode(struct drm_crtc *crtc,
7767 struct drm_display_mode *mode,
94352cf9 7768 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
7769{
7770 struct drm_device *dev = crtc->dev;
dbf2b54e 7771 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 7772 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
25c5b266
DV
7773 struct intel_crtc *intel_crtc;
7774 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7775 bool ret = true;
7776
e2e1ed41 7777 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7778 &prepare_pipes, &disable_pipes);
7779
7780 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7781 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7782
976f8a20
DV
7783 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7784 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7785
a6778b3c
DV
7786 saved_hwmode = crtc->hwmode;
7787 saved_mode = crtc->mode;
a6778b3c 7788
25c5b266
DV
7789 /* Hack: Because we don't (yet) support global modeset on multiple
7790 * crtcs, we don't keep track of the new mode for more than one crtc.
7791 * Hence simply check whether any bit is set in modeset_pipes in all the
7792 * pieces of code that are not yet converted to deal with mutliple crtcs
7793 * changing their mode at the same time. */
7794 adjusted_mode = NULL;
7795 if (modeset_pipes) {
7796 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7797 if (IS_ERR(adjusted_mode)) {
7798 return false;
7799 }
25c5b266 7800 }
a6778b3c 7801
ea9d758d
DV
7802 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7803 if (intel_crtc->base.enabled)
7804 dev_priv->display.crtc_disable(&intel_crtc->base);
7805 }
a6778b3c 7806
6c4c86f5
DV
7807 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7808 * to set it here already despite that we pass it down the callchain.
7809 */
7810 if (modeset_pipes)
25c5b266 7811 crtc->mode = *mode;
7758a113 7812
ea9d758d
DV
7813 /* Only after disabling all output pipelines that will be changed can we
7814 * update the the output configuration. */
7815 intel_modeset_update_state(dev, prepare_pipes);
7816
47fab737
DV
7817 if (dev_priv->display.modeset_global_resources)
7818 dev_priv->display.modeset_global_resources(dev);
7819
a6778b3c
DV
7820 /* Set up the DPLL and any encoders state that needs to adjust or depend
7821 * on the DPLL.
7822 */
25c5b266
DV
7823 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7824 ret = !intel_crtc_mode_set(&intel_crtc->base,
7825 mode, adjusted_mode,
7826 x, y, fb);
7827 if (!ret)
7828 goto done;
a6778b3c
DV
7829 }
7830
7831 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7832 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7833 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7834
25c5b266
DV
7835 if (modeset_pipes) {
7836 /* Store real post-adjustment hardware mode. */
7837 crtc->hwmode = *adjusted_mode;
a6778b3c 7838
25c5b266
DV
7839 /* Calculate and store various constants which
7840 * are later needed by vblank and swap-completion
7841 * timestamping. They are derived from true hwmode.
7842 */
7843 drm_calc_timestamping_constants(crtc);
7844 }
a6778b3c
DV
7845
7846 /* FIXME: add subpixel order */
7847done:
7848 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7849 if (!ret && crtc->enabled) {
a6778b3c
DV
7850 crtc->hwmode = saved_hwmode;
7851 crtc->mode = saved_mode;
8af6cf88
DV
7852 } else {
7853 intel_modeset_check_state(dev);
a6778b3c
DV
7854 }
7855
7856 return ret;
7857}
7858
25c5b266
DV
7859#undef for_each_intel_crtc_masked
7860
d9e55608
DV
7861static void intel_set_config_free(struct intel_set_config *config)
7862{
7863 if (!config)
7864 return;
7865
1aa4b628
DV
7866 kfree(config->save_connector_encoders);
7867 kfree(config->save_encoder_crtcs);
d9e55608
DV
7868 kfree(config);
7869}
7870
85f9eb71
DV
7871static int intel_set_config_save_state(struct drm_device *dev,
7872 struct intel_set_config *config)
7873{
85f9eb71
DV
7874 struct drm_encoder *encoder;
7875 struct drm_connector *connector;
7876 int count;
7877
1aa4b628
DV
7878 config->save_encoder_crtcs =
7879 kcalloc(dev->mode_config.num_encoder,
7880 sizeof(struct drm_crtc *), GFP_KERNEL);
7881 if (!config->save_encoder_crtcs)
85f9eb71
DV
7882 return -ENOMEM;
7883
1aa4b628
DV
7884 config->save_connector_encoders =
7885 kcalloc(dev->mode_config.num_connector,
7886 sizeof(struct drm_encoder *), GFP_KERNEL);
7887 if (!config->save_connector_encoders)
85f9eb71
DV
7888 return -ENOMEM;
7889
7890 /* Copy data. Note that driver private data is not affected.
7891 * Should anything bad happen only the expected state is
7892 * restored, not the drivers personal bookkeeping.
7893 */
85f9eb71
DV
7894 count = 0;
7895 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 7896 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
7897 }
7898
7899 count = 0;
7900 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 7901 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
7902 }
7903
7904 return 0;
7905}
7906
7907static void intel_set_config_restore_state(struct drm_device *dev,
7908 struct intel_set_config *config)
7909{
9a935856
DV
7910 struct intel_encoder *encoder;
7911 struct intel_connector *connector;
85f9eb71
DV
7912 int count;
7913
85f9eb71 7914 count = 0;
9a935856
DV
7915 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7916 encoder->new_crtc =
7917 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
7918 }
7919
7920 count = 0;
9a935856
DV
7921 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7922 connector->new_encoder =
7923 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
7924 }
7925}
7926
5e2b584e
DV
7927static void
7928intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7929 struct intel_set_config *config)
7930{
7931
7932 /* We should be able to check here if the fb has the same properties
7933 * and then just flip_or_move it */
7934 if (set->crtc->fb != set->fb) {
7935 /* If we have no fb then treat it as a full mode set */
7936 if (set->crtc->fb == NULL) {
7937 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7938 config->mode_changed = true;
7939 } else if (set->fb == NULL) {
7940 config->mode_changed = true;
7941 } else if (set->fb->depth != set->crtc->fb->depth) {
7942 config->mode_changed = true;
7943 } else if (set->fb->bits_per_pixel !=
7944 set->crtc->fb->bits_per_pixel) {
7945 config->mode_changed = true;
7946 } else
7947 config->fb_changed = true;
7948 }
7949
835c5873 7950 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
7951 config->fb_changed = true;
7952
7953 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7954 DRM_DEBUG_KMS("modes are different, full mode set\n");
7955 drm_mode_debug_printmodeline(&set->crtc->mode);
7956 drm_mode_debug_printmodeline(set->mode);
7957 config->mode_changed = true;
7958 }
7959}
7960
2e431051 7961static int
9a935856
DV
7962intel_modeset_stage_output_state(struct drm_device *dev,
7963 struct drm_mode_set *set,
7964 struct intel_set_config *config)
50f56119 7965{
85f9eb71 7966 struct drm_crtc *new_crtc;
9a935856
DV
7967 struct intel_connector *connector;
7968 struct intel_encoder *encoder;
2e431051 7969 int count, ro;
50f56119 7970
9a935856
DV
7971 /* The upper layers ensure that we either disabl a crtc or have a list
7972 * of connectors. For paranoia, double-check this. */
7973 WARN_ON(!set->fb && (set->num_connectors != 0));
7974 WARN_ON(set->fb && (set->num_connectors == 0));
7975
50f56119 7976 count = 0;
9a935856
DV
7977 list_for_each_entry(connector, &dev->mode_config.connector_list,
7978 base.head) {
7979 /* Otherwise traverse passed in connector list and get encoders
7980 * for them. */
50f56119 7981 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
7982 if (set->connectors[ro] == &connector->base) {
7983 connector->new_encoder = connector->encoder;
50f56119
DV
7984 break;
7985 }
7986 }
7987
9a935856
DV
7988 /* If we disable the crtc, disable all its connectors. Also, if
7989 * the connector is on the changing crtc but not on the new
7990 * connector list, disable it. */
7991 if ((!set->fb || ro == set->num_connectors) &&
7992 connector->base.encoder &&
7993 connector->base.encoder->crtc == set->crtc) {
7994 connector->new_encoder = NULL;
7995
7996 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7997 connector->base.base.id,
7998 drm_get_connector_name(&connector->base));
7999 }
8000
8001
8002 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 8003 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 8004 config->mode_changed = true;
50f56119 8005 }
9a935856
DV
8006
8007 /* Disable all disconnected encoders. */
8008 if (connector->base.status == connector_status_disconnected)
8009 connector->new_encoder = NULL;
50f56119 8010 }
9a935856 8011 /* connector->new_encoder is now updated for all connectors. */
50f56119 8012
9a935856 8013 /* Update crtc of enabled connectors. */
50f56119 8014 count = 0;
9a935856
DV
8015 list_for_each_entry(connector, &dev->mode_config.connector_list,
8016 base.head) {
8017 if (!connector->new_encoder)
50f56119
DV
8018 continue;
8019
9a935856 8020 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
8021
8022 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 8023 if (set->connectors[ro] == &connector->base)
50f56119
DV
8024 new_crtc = set->crtc;
8025 }
8026
8027 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
8028 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
8029 new_crtc)) {
5e2b584e 8030 return -EINVAL;
50f56119 8031 }
9a935856
DV
8032 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8033
8034 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8035 connector->base.base.id,
8036 drm_get_connector_name(&connector->base),
8037 new_crtc->base.id);
8038 }
8039
8040 /* Check for any encoders that needs to be disabled. */
8041 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8042 base.head) {
8043 list_for_each_entry(connector,
8044 &dev->mode_config.connector_list,
8045 base.head) {
8046 if (connector->new_encoder == encoder) {
8047 WARN_ON(!connector->new_encoder->new_crtc);
8048
8049 goto next_encoder;
8050 }
8051 }
8052 encoder->new_crtc = NULL;
8053next_encoder:
8054 /* Only now check for crtc changes so we don't miss encoders
8055 * that will be disabled. */
8056 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 8057 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 8058 config->mode_changed = true;
50f56119
DV
8059 }
8060 }
9a935856 8061 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 8062
2e431051
DV
8063 return 0;
8064}
8065
8066static int intel_crtc_set_config(struct drm_mode_set *set)
8067{
8068 struct drm_device *dev;
2e431051
DV
8069 struct drm_mode_set save_set;
8070 struct intel_set_config *config;
8071 int ret;
2e431051 8072
8d3e375e
DV
8073 BUG_ON(!set);
8074 BUG_ON(!set->crtc);
8075 BUG_ON(!set->crtc->helper_private);
2e431051
DV
8076
8077 if (!set->mode)
8078 set->fb = NULL;
8079
431e50f7
DV
8080 /* The fb helper likes to play gross jokes with ->mode_set_config.
8081 * Unfortunately the crtc helper doesn't do much at all for this case,
8082 * so we have to cope with this madness until the fb helper is fixed up. */
8083 if (set->fb && set->num_connectors == 0)
8084 return 0;
8085
2e431051
DV
8086 if (set->fb) {
8087 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8088 set->crtc->base.id, set->fb->base.id,
8089 (int)set->num_connectors, set->x, set->y);
8090 } else {
8091 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
8092 }
8093
8094 dev = set->crtc->dev;
8095
8096 ret = -ENOMEM;
8097 config = kzalloc(sizeof(*config), GFP_KERNEL);
8098 if (!config)
8099 goto out_config;
8100
8101 ret = intel_set_config_save_state(dev, config);
8102 if (ret)
8103 goto out_config;
8104
8105 save_set.crtc = set->crtc;
8106 save_set.mode = &set->crtc->mode;
8107 save_set.x = set->crtc->x;
8108 save_set.y = set->crtc->y;
8109 save_set.fb = set->crtc->fb;
8110
8111 /* Compute whether we need a full modeset, only an fb base update or no
8112 * change at all. In the future we might also check whether only the
8113 * mode changed, e.g. for LVDS where we only change the panel fitter in
8114 * such cases. */
8115 intel_set_config_compute_mode_changes(set, config);
8116
9a935856 8117 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
8118 if (ret)
8119 goto fail;
8120
5e2b584e 8121 if (config->mode_changed) {
87f1faa6 8122 if (set->mode) {
50f56119
DV
8123 DRM_DEBUG_KMS("attempting to set mode from"
8124 " userspace\n");
8125 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
8126 }
8127
8128 if (!intel_set_mode(set->crtc, set->mode,
8129 set->x, set->y, set->fb)) {
8130 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8131 set->crtc->base.id);
8132 ret = -EINVAL;
8133 goto fail;
8134 }
5e2b584e 8135 } else if (config->fb_changed) {
4f660f49 8136 ret = intel_pipe_set_base(set->crtc,
94352cf9 8137 set->x, set->y, set->fb);
50f56119
DV
8138 }
8139
d9e55608
DV
8140 intel_set_config_free(config);
8141
50f56119
DV
8142 return 0;
8143
8144fail:
85f9eb71 8145 intel_set_config_restore_state(dev, config);
50f56119
DV
8146
8147 /* Try to restore the config */
5e2b584e 8148 if (config->mode_changed &&
a6778b3c
DV
8149 !intel_set_mode(save_set.crtc, save_set.mode,
8150 save_set.x, save_set.y, save_set.fb))
50f56119
DV
8151 DRM_ERROR("failed to restore config after modeset failure\n");
8152
d9e55608
DV
8153out_config:
8154 intel_set_config_free(config);
50f56119
DV
8155 return ret;
8156}
8157
f6e5b160 8158static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
8159 .cursor_set = intel_crtc_cursor_set,
8160 .cursor_move = intel_crtc_cursor_move,
8161 .gamma_set = intel_crtc_gamma_set,
50f56119 8162 .set_config = intel_crtc_set_config,
f6e5b160
CW
8163 .destroy = intel_crtc_destroy,
8164 .page_flip = intel_crtc_page_flip,
8165};
8166
79f689aa
PZ
8167static void intel_cpu_pll_init(struct drm_device *dev)
8168{
8169 if (IS_HASWELL(dev))
8170 intel_ddi_pll_init(dev);
8171}
8172
ee7b9f93
JB
8173static void intel_pch_pll_init(struct drm_device *dev)
8174{
8175 drm_i915_private_t *dev_priv = dev->dev_private;
8176 int i;
8177
8178 if (dev_priv->num_pch_pll == 0) {
8179 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8180 return;
8181 }
8182
8183 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8184 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8185 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8186 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8187 }
8188}
8189
b358d0a6 8190static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 8191{
22fd0fab 8192 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
8193 struct intel_crtc *intel_crtc;
8194 int i;
8195
8196 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8197 if (intel_crtc == NULL)
8198 return;
8199
8200 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8201
8202 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
8203 for (i = 0; i < 256; i++) {
8204 intel_crtc->lut_r[i] = i;
8205 intel_crtc->lut_g[i] = i;
8206 intel_crtc->lut_b[i] = i;
8207 }
8208
80824003
JB
8209 /* Swap pipes & planes for FBC on pre-965 */
8210 intel_crtc->pipe = pipe;
8211 intel_crtc->plane = pipe;
a5c961d1 8212 intel_crtc->cpu_transcoder = pipe;
e2e767ab 8213 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 8214 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 8215 intel_crtc->plane = !pipe;
80824003
JB
8216 }
8217
22fd0fab
JB
8218 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8219 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8220 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8221 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8222
5a354204 8223 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 8224
79e53945 8225 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
8226}
8227
08d7b3d1 8228int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 8229 struct drm_file *file)
08d7b3d1 8230{
08d7b3d1 8231 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
8232 struct drm_mode_object *drmmode_obj;
8233 struct intel_crtc *crtc;
08d7b3d1 8234
1cff8f6b
DV
8235 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8236 return -ENODEV;
08d7b3d1 8237
c05422d5
DV
8238 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8239 DRM_MODE_OBJECT_CRTC);
08d7b3d1 8240
c05422d5 8241 if (!drmmode_obj) {
08d7b3d1
CW
8242 DRM_ERROR("no such CRTC id\n");
8243 return -EINVAL;
8244 }
8245
c05422d5
DV
8246 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8247 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 8248
c05422d5 8249 return 0;
08d7b3d1
CW
8250}
8251
66a9278e 8252static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 8253{
66a9278e
DV
8254 struct drm_device *dev = encoder->base.dev;
8255 struct intel_encoder *source_encoder;
79e53945 8256 int index_mask = 0;
79e53945
JB
8257 int entry = 0;
8258
66a9278e
DV
8259 list_for_each_entry(source_encoder,
8260 &dev->mode_config.encoder_list, base.head) {
8261
8262 if (encoder == source_encoder)
79e53945 8263 index_mask |= (1 << entry);
66a9278e
DV
8264
8265 /* Intel hw has only one MUX where enocoders could be cloned. */
8266 if (encoder->cloneable && source_encoder->cloneable)
8267 index_mask |= (1 << entry);
8268
79e53945
JB
8269 entry++;
8270 }
4ef69c7a 8271
79e53945
JB
8272 return index_mask;
8273}
8274
4d302442
CW
8275static bool has_edp_a(struct drm_device *dev)
8276{
8277 struct drm_i915_private *dev_priv = dev->dev_private;
8278
8279 if (!IS_MOBILE(dev))
8280 return false;
8281
8282 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8283 return false;
8284
8285 if (IS_GEN5(dev) &&
8286 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8287 return false;
8288
8289 return true;
8290}
8291
79e53945
JB
8292static void intel_setup_outputs(struct drm_device *dev)
8293{
725e30ad 8294 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 8295 struct intel_encoder *encoder;
cb0953d7 8296 bool dpd_is_edp = false;
f3cfcba6 8297 bool has_lvds;
79e53945 8298
f3cfcba6 8299 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
8300 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8301 /* disable the panel fitter on everything but LVDS */
8302 I915_WRITE(PFIT_CONTROL, 0);
8303 }
79e53945 8304
bad720ff 8305 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 8306 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 8307
4d302442 8308 if (has_edp_a(dev))
ab9d7c30 8309 intel_dp_init(dev, DP_A, PORT_A);
32f9d658 8310
cb0953d7 8311 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 8312 intel_dp_init(dev, PCH_DP_D, PORT_D);
cb0953d7
AJ
8313 }
8314
8315 intel_crt_init(dev);
8316
0e72a5b5
ED
8317 if (IS_HASWELL(dev)) {
8318 int found;
8319
8320 /* Haswell uses DDI functions to detect digital outputs */
8321 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8322 /* DDI A only supports eDP */
8323 if (found)
8324 intel_ddi_init(dev, PORT_A);
8325
8326 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8327 * register */
8328 found = I915_READ(SFUSE_STRAP);
8329
8330 if (found & SFUSE_STRAP_DDIB_DETECTED)
8331 intel_ddi_init(dev, PORT_B);
8332 if (found & SFUSE_STRAP_DDIC_DETECTED)
8333 intel_ddi_init(dev, PORT_C);
8334 if (found & SFUSE_STRAP_DDID_DETECTED)
8335 intel_ddi_init(dev, PORT_D);
8336 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7
AJ
8337 int found;
8338
30ad48b7 8339 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 8340 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 8341 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 8342 if (!found)
08d644ad 8343 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 8344 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 8345 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
8346 }
8347
8348 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 8349 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 8350
b708a1d5 8351 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 8352 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 8353
5eb08b69 8354 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 8355 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 8356
cb0953d7 8357 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 8358 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
8359 } else if (IS_VALLEYVIEW(dev)) {
8360 int found;
8361
19c03924
GB
8362 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8363 if (I915_READ(DP_C) & DP_DETECTED)
8364 intel_dp_init(dev, DP_C, PORT_C);
8365
4a87d65d
JB
8366 if (I915_READ(SDVOB) & PORT_DETECTED) {
8367 /* SDVOB multiplex with HDMIB */
8368 found = intel_sdvo_init(dev, SDVOB, true);
8369 if (!found)
08d644ad 8370 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 8371 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 8372 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
8373 }
8374
8375 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 8376 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 8377
103a196f 8378 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 8379 bool found = false;
7d57382e 8380
725e30ad 8381 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 8382 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 8383 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
8384 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8385 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 8386 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 8387 }
27185ae1 8388
b01f2c3a
JB
8389 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8390 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 8391 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 8392 }
725e30ad 8393 }
13520b05
KH
8394
8395 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 8396
b01f2c3a
JB
8397 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8398 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 8399 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 8400 }
27185ae1
ML
8401
8402 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8403
b01f2c3a
JB
8404 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8405 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 8406 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
8407 }
8408 if (SUPPORTS_INTEGRATED_DP(dev)) {
8409 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 8410 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 8411 }
725e30ad 8412 }
27185ae1 8413
b01f2c3a
JB
8414 if (SUPPORTS_INTEGRATED_DP(dev) &&
8415 (I915_READ(DP_D) & DP_DETECTED)) {
8416 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 8417 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 8418 }
bad720ff 8419 } else if (IS_GEN2(dev))
79e53945
JB
8420 intel_dvo_init(dev);
8421
103a196f 8422 if (SUPPORTS_TV(dev))
79e53945
JB
8423 intel_tv_init(dev);
8424
4ef69c7a
CW
8425 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8426 encoder->base.possible_crtcs = encoder->crtc_mask;
8427 encoder->base.possible_clones =
66a9278e 8428 intel_encoder_clones(encoder);
79e53945 8429 }
47356eb6 8430
40579abe 8431 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9fb526db 8432 ironlake_init_pch_refclk(dev);
79e53945
JB
8433}
8434
8435static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8436{
8437 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
8438
8439 drm_framebuffer_cleanup(fb);
05394f39 8440 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
8441
8442 kfree(intel_fb);
8443}
8444
8445static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 8446 struct drm_file *file,
79e53945
JB
8447 unsigned int *handle)
8448{
8449 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 8450 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 8451
05394f39 8452 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
8453}
8454
8455static const struct drm_framebuffer_funcs intel_fb_funcs = {
8456 .destroy = intel_user_framebuffer_destroy,
8457 .create_handle = intel_user_framebuffer_create_handle,
8458};
8459
38651674
DA
8460int intel_framebuffer_init(struct drm_device *dev,
8461 struct intel_framebuffer *intel_fb,
308e5bcb 8462 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 8463 struct drm_i915_gem_object *obj)
79e53945 8464{
79e53945
JB
8465 int ret;
8466
05394f39 8467 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
8468 return -EINVAL;
8469
308e5bcb 8470 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
8471 return -EINVAL;
8472
5d7bd705
VS
8473 /* FIXME <= Gen4 stride limits are bit unclear */
8474 if (mode_cmd->pitches[0] > 32768)
8475 return -EINVAL;
8476
8477 if (obj->tiling_mode != I915_TILING_NONE &&
8478 mode_cmd->pitches[0] != obj->stride)
8479 return -EINVAL;
8480
57779d06 8481 /* Reject formats not supported by any plane early. */
308e5bcb 8482 switch (mode_cmd->pixel_format) {
57779d06 8483 case DRM_FORMAT_C8:
04b3924d
VS
8484 case DRM_FORMAT_RGB565:
8485 case DRM_FORMAT_XRGB8888:
8486 case DRM_FORMAT_ARGB8888:
57779d06
VS
8487 break;
8488 case DRM_FORMAT_XRGB1555:
8489 case DRM_FORMAT_ARGB1555:
8490 if (INTEL_INFO(dev)->gen > 3)
8491 return -EINVAL;
8492 break;
8493 case DRM_FORMAT_XBGR8888:
8494 case DRM_FORMAT_ABGR8888:
04b3924d
VS
8495 case DRM_FORMAT_XRGB2101010:
8496 case DRM_FORMAT_ARGB2101010:
57779d06
VS
8497 case DRM_FORMAT_XBGR2101010:
8498 case DRM_FORMAT_ABGR2101010:
8499 if (INTEL_INFO(dev)->gen < 4)
8500 return -EINVAL;
b5626747 8501 break;
04b3924d
VS
8502 case DRM_FORMAT_YUYV:
8503 case DRM_FORMAT_UYVY:
8504 case DRM_FORMAT_YVYU:
8505 case DRM_FORMAT_VYUY:
57779d06
VS
8506 if (INTEL_INFO(dev)->gen < 6)
8507 return -EINVAL;
57cd6508
CW
8508 break;
8509 default:
57779d06 8510 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
57cd6508
CW
8511 return -EINVAL;
8512 }
8513
90f9a336
VS
8514 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8515 if (mode_cmd->offsets[0] != 0)
8516 return -EINVAL;
8517
79e53945
JB
8518 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8519 if (ret) {
8520 DRM_ERROR("framebuffer init failed %d\n", ret);
8521 return ret;
8522 }
8523
8524 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 8525 intel_fb->obj = obj;
79e53945
JB
8526 return 0;
8527}
8528
79e53945
JB
8529static struct drm_framebuffer *
8530intel_user_framebuffer_create(struct drm_device *dev,
8531 struct drm_file *filp,
308e5bcb 8532 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 8533{
05394f39 8534 struct drm_i915_gem_object *obj;
79e53945 8535
308e5bcb
JB
8536 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8537 mode_cmd->handles[0]));
c8725226 8538 if (&obj->base == NULL)
cce13ff7 8539 return ERR_PTR(-ENOENT);
79e53945 8540
d2dff872 8541 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
8542}
8543
79e53945 8544static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 8545 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 8546 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
8547};
8548
e70236a8
JB
8549/* Set up chip specific display functions */
8550static void intel_init_display(struct drm_device *dev)
8551{
8552 struct drm_i915_private *dev_priv = dev->dev_private;
8553
8554 /* We always want a DPMS function */
09b4ddf9
PZ
8555 if (IS_HASWELL(dev)) {
8556 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
8557 dev_priv->display.crtc_enable = haswell_crtc_enable;
8558 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 8559 dev_priv->display.off = haswell_crtc_off;
09b4ddf9
PZ
8560 dev_priv->display.update_plane = ironlake_update_plane;
8561 } else if (HAS_PCH_SPLIT(dev)) {
f564048e 8562 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
8563 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8564 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 8565 dev_priv->display.off = ironlake_crtc_off;
17638cd6 8566 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8567 } else {
f564048e 8568 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
8569 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8570 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 8571 dev_priv->display.off = i9xx_crtc_off;
17638cd6 8572 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8573 }
e70236a8 8574
e70236a8 8575 /* Returns the core display clock speed */
25eb05fc
JB
8576 if (IS_VALLEYVIEW(dev))
8577 dev_priv->display.get_display_clock_speed =
8578 valleyview_get_display_clock_speed;
8579 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8580 dev_priv->display.get_display_clock_speed =
8581 i945_get_display_clock_speed;
8582 else if (IS_I915G(dev))
8583 dev_priv->display.get_display_clock_speed =
8584 i915_get_display_clock_speed;
f2b115e6 8585 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8586 dev_priv->display.get_display_clock_speed =
8587 i9xx_misc_get_display_clock_speed;
8588 else if (IS_I915GM(dev))
8589 dev_priv->display.get_display_clock_speed =
8590 i915gm_get_display_clock_speed;
8591 else if (IS_I865G(dev))
8592 dev_priv->display.get_display_clock_speed =
8593 i865_get_display_clock_speed;
f0f8a9ce 8594 else if (IS_I85X(dev))
e70236a8
JB
8595 dev_priv->display.get_display_clock_speed =
8596 i855_get_display_clock_speed;
8597 else /* 852, 830 */
8598 dev_priv->display.get_display_clock_speed =
8599 i830_get_display_clock_speed;
8600
7f8a8569 8601 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 8602 if (IS_GEN5(dev)) {
674cf967 8603 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 8604 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 8605 } else if (IS_GEN6(dev)) {
674cf967 8606 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 8607 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8608 } else if (IS_IVYBRIDGE(dev)) {
8609 /* FIXME: detect B0+ stepping and use auto training */
8610 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 8611 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
8612 dev_priv->display.modeset_global_resources =
8613 ivb_modeset_global_resources;
c82e4d26
ED
8614 } else if (IS_HASWELL(dev)) {
8615 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 8616 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
8617 } else
8618 dev_priv->display.update_wm = NULL;
6067aaea 8619 } else if (IS_G4X(dev)) {
e0dac65e 8620 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8621 }
8c9f3aaf
JB
8622
8623 /* Default just returns -ENODEV to indicate unsupported */
8624 dev_priv->display.queue_flip = intel_default_queue_flip;
8625
8626 switch (INTEL_INFO(dev)->gen) {
8627 case 2:
8628 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8629 break;
8630
8631 case 3:
8632 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8633 break;
8634
8635 case 4:
8636 case 5:
8637 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8638 break;
8639
8640 case 6:
8641 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8642 break;
7c9017e5
JB
8643 case 7:
8644 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8645 break;
8c9f3aaf 8646 }
e70236a8
JB
8647}
8648
b690e96c
JB
8649/*
8650 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8651 * resume, or other times. This quirk makes sure that's the case for
8652 * affected systems.
8653 */
0206e353 8654static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8655{
8656 struct drm_i915_private *dev_priv = dev->dev_private;
8657
8658 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 8659 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
8660}
8661
435793df
KP
8662/*
8663 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8664 */
8665static void quirk_ssc_force_disable(struct drm_device *dev)
8666{
8667 struct drm_i915_private *dev_priv = dev->dev_private;
8668 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 8669 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
8670}
8671
4dca20ef 8672/*
5a15ab5b
CE
8673 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8674 * brightness value
4dca20ef
CE
8675 */
8676static void quirk_invert_brightness(struct drm_device *dev)
8677{
8678 struct drm_i915_private *dev_priv = dev->dev_private;
8679 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 8680 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
8681}
8682
b690e96c
JB
8683struct intel_quirk {
8684 int device;
8685 int subsystem_vendor;
8686 int subsystem_device;
8687 void (*hook)(struct drm_device *dev);
8688};
8689
c43b5634 8690static struct intel_quirk intel_quirks[] = {
b690e96c 8691 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8692 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 8693
b690e96c
JB
8694 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8695 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8696
b690e96c
JB
8697 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8698 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8699
ccd0d36e 8700 /* 830/845 need to leave pipe A & dpll A up */
b690e96c 8701 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 8702 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8703
8704 /* Lenovo U160 cannot use SSC on LVDS */
8705 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8706
8707 /* Sony Vaio Y cannot use SSC on LVDS */
8708 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
8709
8710 /* Acer Aspire 5734Z must invert backlight brightness */
8711 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
8712};
8713
8714static void intel_init_quirks(struct drm_device *dev)
8715{
8716 struct pci_dev *d = dev->pdev;
8717 int i;
8718
8719 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8720 struct intel_quirk *q = &intel_quirks[i];
8721
8722 if (d->device == q->device &&
8723 (d->subsystem_vendor == q->subsystem_vendor ||
8724 q->subsystem_vendor == PCI_ANY_ID) &&
8725 (d->subsystem_device == q->subsystem_device ||
8726 q->subsystem_device == PCI_ANY_ID))
8727 q->hook(dev);
8728 }
8729}
8730
9cce37f4
JB
8731/* Disable the VGA plane that we never use */
8732static void i915_disable_vga(struct drm_device *dev)
8733{
8734 struct drm_i915_private *dev_priv = dev->dev_private;
8735 u8 sr1;
8736 u32 vga_reg;
8737
8738 if (HAS_PCH_SPLIT(dev))
8739 vga_reg = CPU_VGACNTRL;
8740 else
8741 vga_reg = VGACNTRL;
8742
8743 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 8744 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
8745 sr1 = inb(VGA_SR_DATA);
8746 outb(sr1 | 1<<5, VGA_SR_DATA);
8747 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8748 udelay(300);
8749
8750 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8751 POSTING_READ(vga_reg);
8752}
8753
f817586c
DV
8754void intel_modeset_init_hw(struct drm_device *dev)
8755{
0232e927
ED
8756 /* We attempt to init the necessary power wells early in the initialization
8757 * time, so the subsystems that expect power to be enabled can work.
8758 */
8759 intel_init_power_wells(dev);
8760
a8f78b58
ED
8761 intel_prepare_ddi(dev);
8762
f817586c
DV
8763 intel_init_clock_gating(dev);
8764
79f5b2c7 8765 mutex_lock(&dev->struct_mutex);
8090c6b9 8766 intel_enable_gt_powersave(dev);
79f5b2c7 8767 mutex_unlock(&dev->struct_mutex);
f817586c
DV
8768}
8769
79e53945
JB
8770void intel_modeset_init(struct drm_device *dev)
8771{
652c393a 8772 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 8773 int i, ret;
79e53945
JB
8774
8775 drm_mode_config_init(dev);
8776
8777 dev->mode_config.min_width = 0;
8778 dev->mode_config.min_height = 0;
8779
019d96cb
DA
8780 dev->mode_config.preferred_depth = 24;
8781 dev->mode_config.prefer_shadow = 1;
8782
e6ecefaa 8783 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 8784
b690e96c
JB
8785 intel_init_quirks(dev);
8786
1fa61106
ED
8787 intel_init_pm(dev);
8788
e70236a8
JB
8789 intel_init_display(dev);
8790
a6c45cf0
CW
8791 if (IS_GEN2(dev)) {
8792 dev->mode_config.max_width = 2048;
8793 dev->mode_config.max_height = 2048;
8794 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8795 dev->mode_config.max_width = 4096;
8796 dev->mode_config.max_height = 4096;
79e53945 8797 } else {
a6c45cf0
CW
8798 dev->mode_config.max_width = 8192;
8799 dev->mode_config.max_height = 8192;
79e53945 8800 }
dd2757f8 8801 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 8802
28c97730 8803 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8804 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8805
a3524f1b 8806 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8807 intel_crtc_init(dev, i);
00c2064b
JB
8808 ret = intel_plane_init(dev, i);
8809 if (ret)
8810 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8811 }
8812
79f689aa 8813 intel_cpu_pll_init(dev);
ee7b9f93
JB
8814 intel_pch_pll_init(dev);
8815
9cce37f4
JB
8816 /* Just disable it once at startup */
8817 i915_disable_vga(dev);
79e53945 8818 intel_setup_outputs(dev);
2c7111db
CW
8819}
8820
24929352
DV
8821static void
8822intel_connector_break_all_links(struct intel_connector *connector)
8823{
8824 connector->base.dpms = DRM_MODE_DPMS_OFF;
8825 connector->base.encoder = NULL;
8826 connector->encoder->connectors_active = false;
8827 connector->encoder->base.crtc = NULL;
8828}
8829
7fad798e
DV
8830static void intel_enable_pipe_a(struct drm_device *dev)
8831{
8832 struct intel_connector *connector;
8833 struct drm_connector *crt = NULL;
8834 struct intel_load_detect_pipe load_detect_temp;
8835
8836 /* We can't just switch on the pipe A, we need to set things up with a
8837 * proper mode and output configuration. As a gross hack, enable pipe A
8838 * by enabling the load detect pipe once. */
8839 list_for_each_entry(connector,
8840 &dev->mode_config.connector_list,
8841 base.head) {
8842 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8843 crt = &connector->base;
8844 break;
8845 }
8846 }
8847
8848 if (!crt)
8849 return;
8850
8851 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8852 intel_release_load_detect_pipe(crt, &load_detect_temp);
8853
8854
8855}
8856
fa555837
DV
8857static bool
8858intel_check_plane_mapping(struct intel_crtc *crtc)
8859{
8860 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8861 u32 reg, val;
8862
8863 if (dev_priv->num_pipe == 1)
8864 return true;
8865
8866 reg = DSPCNTR(!crtc->plane);
8867 val = I915_READ(reg);
8868
8869 if ((val & DISPLAY_PLANE_ENABLE) &&
8870 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8871 return false;
8872
8873 return true;
8874}
8875
24929352
DV
8876static void intel_sanitize_crtc(struct intel_crtc *crtc)
8877{
8878 struct drm_device *dev = crtc->base.dev;
8879 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 8880 u32 reg;
24929352 8881
24929352 8882 /* Clear any frame start delays used for debugging left by the BIOS */
702e7a56 8883 reg = PIPECONF(crtc->cpu_transcoder);
24929352
DV
8884 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8885
8886 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
8887 * disable the crtc (and hence change the state) if it is wrong. Note
8888 * that gen4+ has a fixed plane -> pipe mapping. */
8889 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
8890 struct intel_connector *connector;
8891 bool plane;
8892
24929352
DV
8893 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8894 crtc->base.base.id);
8895
8896 /* Pipe has the wrong plane attached and the plane is active.
8897 * Temporarily change the plane mapping and disable everything
8898 * ... */
8899 plane = crtc->plane;
8900 crtc->plane = !plane;
8901 dev_priv->display.crtc_disable(&crtc->base);
8902 crtc->plane = plane;
8903
8904 /* ... and break all links. */
8905 list_for_each_entry(connector, &dev->mode_config.connector_list,
8906 base.head) {
8907 if (connector->encoder->base.crtc != &crtc->base)
8908 continue;
8909
8910 intel_connector_break_all_links(connector);
8911 }
8912
8913 WARN_ON(crtc->active);
8914 crtc->base.enabled = false;
8915 }
24929352 8916
7fad798e
DV
8917 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8918 crtc->pipe == PIPE_A && !crtc->active) {
8919 /* BIOS forgot to enable pipe A, this mostly happens after
8920 * resume. Force-enable the pipe to fix this, the update_dpms
8921 * call below we restore the pipe to the right state, but leave
8922 * the required bits on. */
8923 intel_enable_pipe_a(dev);
8924 }
8925
24929352
DV
8926 /* Adjust the state of the output pipe according to whether we
8927 * have active connectors/encoders. */
8928 intel_crtc_update_dpms(&crtc->base);
8929
8930 if (crtc->active != crtc->base.enabled) {
8931 struct intel_encoder *encoder;
8932
8933 /* This can happen either due to bugs in the get_hw_state
8934 * functions or because the pipe is force-enabled due to the
8935 * pipe A quirk. */
8936 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8937 crtc->base.base.id,
8938 crtc->base.enabled ? "enabled" : "disabled",
8939 crtc->active ? "enabled" : "disabled");
8940
8941 crtc->base.enabled = crtc->active;
8942
8943 /* Because we only establish the connector -> encoder ->
8944 * crtc links if something is active, this means the
8945 * crtc is now deactivated. Break the links. connector
8946 * -> encoder links are only establish when things are
8947 * actually up, hence no need to break them. */
8948 WARN_ON(crtc->active);
8949
8950 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8951 WARN_ON(encoder->connectors_active);
8952 encoder->base.crtc = NULL;
8953 }
8954 }
8955}
8956
8957static void intel_sanitize_encoder(struct intel_encoder *encoder)
8958{
8959 struct intel_connector *connector;
8960 struct drm_device *dev = encoder->base.dev;
8961
8962 /* We need to check both for a crtc link (meaning that the
8963 * encoder is active and trying to read from a pipe) and the
8964 * pipe itself being active. */
8965 bool has_active_crtc = encoder->base.crtc &&
8966 to_intel_crtc(encoder->base.crtc)->active;
8967
8968 if (encoder->connectors_active && !has_active_crtc) {
8969 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8970 encoder->base.base.id,
8971 drm_get_encoder_name(&encoder->base));
8972
8973 /* Connector is active, but has no active pipe. This is
8974 * fallout from our resume register restoring. Disable
8975 * the encoder manually again. */
8976 if (encoder->base.crtc) {
8977 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8978 encoder->base.base.id,
8979 drm_get_encoder_name(&encoder->base));
8980 encoder->disable(encoder);
8981 }
8982
8983 /* Inconsistent output/port/pipe state happens presumably due to
8984 * a bug in one of the get_hw_state functions. Or someplace else
8985 * in our code, like the register restore mess on resume. Clamp
8986 * things to off as a safer default. */
8987 list_for_each_entry(connector,
8988 &dev->mode_config.connector_list,
8989 base.head) {
8990 if (connector->encoder != encoder)
8991 continue;
8992
8993 intel_connector_break_all_links(connector);
8994 }
8995 }
8996 /* Enabled encoders without active connectors will be fixed in
8997 * the crtc fixup. */
8998}
8999
9000/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
9001 * and i915 state tracking structures. */
9002void intel_modeset_setup_hw_state(struct drm_device *dev)
9003{
9004 struct drm_i915_private *dev_priv = dev->dev_private;
9005 enum pipe pipe;
9006 u32 tmp;
9007 struct intel_crtc *crtc;
9008 struct intel_encoder *encoder;
9009 struct intel_connector *connector;
9010
e28d54cb
PZ
9011 if (IS_HASWELL(dev)) {
9012 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9013
9014 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9015 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9016 case TRANS_DDI_EDP_INPUT_A_ON:
9017 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9018 pipe = PIPE_A;
9019 break;
9020 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9021 pipe = PIPE_B;
9022 break;
9023 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9024 pipe = PIPE_C;
9025 break;
9026 }
9027
9028 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9029 crtc->cpu_transcoder = TRANSCODER_EDP;
9030
9031 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
9032 pipe_name(pipe));
9033 }
9034 }
9035
24929352
DV
9036 for_each_pipe(pipe) {
9037 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9038
702e7a56 9039 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
24929352
DV
9040 if (tmp & PIPECONF_ENABLE)
9041 crtc->active = true;
9042 else
9043 crtc->active = false;
9044
9045 crtc->base.enabled = crtc->active;
9046
9047 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9048 crtc->base.base.id,
9049 crtc->active ? "enabled" : "disabled");
9050 }
9051
6441ab5f
PZ
9052 if (IS_HASWELL(dev))
9053 intel_ddi_setup_hw_pll_state(dev);
9054
24929352
DV
9055 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9056 base.head) {
9057 pipe = 0;
9058
9059 if (encoder->get_hw_state(encoder, &pipe)) {
9060 encoder->base.crtc =
9061 dev_priv->pipe_to_crtc_mapping[pipe];
9062 } else {
9063 encoder->base.crtc = NULL;
9064 }
9065
9066 encoder->connectors_active = false;
9067 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9068 encoder->base.base.id,
9069 drm_get_encoder_name(&encoder->base),
9070 encoder->base.crtc ? "enabled" : "disabled",
9071 pipe);
9072 }
9073
9074 list_for_each_entry(connector, &dev->mode_config.connector_list,
9075 base.head) {
9076 if (connector->get_hw_state(connector)) {
9077 connector->base.dpms = DRM_MODE_DPMS_ON;
9078 connector->encoder->connectors_active = true;
9079 connector->base.encoder = &connector->encoder->base;
9080 } else {
9081 connector->base.dpms = DRM_MODE_DPMS_OFF;
9082 connector->base.encoder = NULL;
9083 }
9084 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9085 connector->base.base.id,
9086 drm_get_connector_name(&connector->base),
9087 connector->base.encoder ? "enabled" : "disabled");
9088 }
9089
9090 /* HW state is read out, now we need to sanitize this mess. */
9091 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9092 base.head) {
9093 intel_sanitize_encoder(encoder);
9094 }
9095
9096 for_each_pipe(pipe) {
9097 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9098 intel_sanitize_crtc(crtc);
9099 }
9a935856
DV
9100
9101 intel_modeset_update_staged_output_state(dev);
8af6cf88
DV
9102
9103 intel_modeset_check_state(dev);
2e938892
DV
9104
9105 drm_mode_config_reset(dev);
24929352
DV
9106}
9107
2c7111db
CW
9108void intel_modeset_gem_init(struct drm_device *dev)
9109{
1833b134 9110 intel_modeset_init_hw(dev);
02e792fb
DV
9111
9112 intel_setup_overlay(dev);
24929352
DV
9113
9114 intel_modeset_setup_hw_state(dev);
79e53945
JB
9115}
9116
9117void intel_modeset_cleanup(struct drm_device *dev)
9118{
652c393a
JB
9119 struct drm_i915_private *dev_priv = dev->dev_private;
9120 struct drm_crtc *crtc;
9121 struct intel_crtc *intel_crtc;
9122
f87ea761 9123 drm_kms_helper_poll_fini(dev);
652c393a
JB
9124 mutex_lock(&dev->struct_mutex);
9125
723bfd70
JB
9126 intel_unregister_dsm_handler();
9127
9128
652c393a
JB
9129 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9130 /* Skip inactive CRTCs */
9131 if (!crtc->fb)
9132 continue;
9133
9134 intel_crtc = to_intel_crtc(crtc);
3dec0095 9135 intel_increase_pllclock(crtc);
652c393a
JB
9136 }
9137
973d04f9 9138 intel_disable_fbc(dev);
e70236a8 9139
8090c6b9 9140 intel_disable_gt_powersave(dev);
0cdab21f 9141
930ebb46
DV
9142 ironlake_teardown_rc6(dev);
9143
57f350b6
JB
9144 if (IS_VALLEYVIEW(dev))
9145 vlv_init_dpio(dev);
9146
69341a5e
KH
9147 mutex_unlock(&dev->struct_mutex);
9148
6c0d9350
DV
9149 /* Disable the irq before mode object teardown, for the irq might
9150 * enqueue unpin/hotplug work. */
9151 drm_irq_uninstall(dev);
9152 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 9153 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 9154
1630fe75
CW
9155 /* flush any delayed tasks or pending work */
9156 flush_scheduled_work();
9157
79e53945
JB
9158 drm_mode_config_cleanup(dev);
9159}
9160
f1c79df3
ZW
9161/*
9162 * Return which encoder is currently attached for connector.
9163 */
df0e9248 9164struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 9165{
df0e9248
CW
9166 return &intel_attached_encoder(connector)->base;
9167}
f1c79df3 9168
df0e9248
CW
9169void intel_connector_attach_encoder(struct intel_connector *connector,
9170 struct intel_encoder *encoder)
9171{
9172 connector->encoder = encoder;
9173 drm_mode_connector_attach_encoder(&connector->base,
9174 &encoder->base);
79e53945 9175}
28d52043
DA
9176
9177/*
9178 * set vga decode state - true == enable VGA decode
9179 */
9180int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9181{
9182 struct drm_i915_private *dev_priv = dev->dev_private;
9183 u16 gmch_ctrl;
9184
9185 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9186 if (state)
9187 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9188 else
9189 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9190 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9191 return 0;
9192}
c4a1d9e4
CW
9193
9194#ifdef CONFIG_DEBUG_FS
9195#include <linux/seq_file.h>
9196
9197struct intel_display_error_state {
9198 struct intel_cursor_error_state {
9199 u32 control;
9200 u32 position;
9201 u32 base;
9202 u32 size;
52331309 9203 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
9204
9205 struct intel_pipe_error_state {
9206 u32 conf;
9207 u32 source;
9208
9209 u32 htotal;
9210 u32 hblank;
9211 u32 hsync;
9212 u32 vtotal;
9213 u32 vblank;
9214 u32 vsync;
52331309 9215 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
9216
9217 struct intel_plane_error_state {
9218 u32 control;
9219 u32 stride;
9220 u32 size;
9221 u32 pos;
9222 u32 addr;
9223 u32 surface;
9224 u32 tile_offset;
52331309 9225 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
9226};
9227
9228struct intel_display_error_state *
9229intel_display_capture_error_state(struct drm_device *dev)
9230{
0206e353 9231 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4 9232 struct intel_display_error_state *error;
702e7a56 9233 enum transcoder cpu_transcoder;
c4a1d9e4
CW
9234 int i;
9235
9236 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9237 if (error == NULL)
9238 return NULL;
9239
52331309 9240 for_each_pipe(i) {
702e7a56
PZ
9241 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9242
c4a1d9e4
CW
9243 error->cursor[i].control = I915_READ(CURCNTR(i));
9244 error->cursor[i].position = I915_READ(CURPOS(i));
9245 error->cursor[i].base = I915_READ(CURBASE(i));
9246
9247 error->plane[i].control = I915_READ(DSPCNTR(i));
9248 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9249 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 9250 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
9251 error->plane[i].addr = I915_READ(DSPADDR(i));
9252 if (INTEL_INFO(dev)->gen >= 4) {
9253 error->plane[i].surface = I915_READ(DSPSURF(i));
9254 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9255 }
9256
702e7a56 9257 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
c4a1d9e4 9258 error->pipe[i].source = I915_READ(PIPESRC(i));
fe2b8f9d
PZ
9259 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9260 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9261 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9262 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9263 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9264 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
9265 }
9266
9267 return error;
9268}
9269
9270void
9271intel_display_print_error_state(struct seq_file *m,
9272 struct drm_device *dev,
9273 struct intel_display_error_state *error)
9274{
52331309 9275 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
9276 int i;
9277
52331309
DL
9278 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9279 for_each_pipe(i) {
c4a1d9e4
CW
9280 seq_printf(m, "Pipe [%d]:\n", i);
9281 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9282 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9283 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9284 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9285 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9286 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9287 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9288 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9289
9290 seq_printf(m, "Plane [%d]:\n", i);
9291 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9292 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9293 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9294 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9295 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9296 if (INTEL_INFO(dev)->gen >= 4) {
9297 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9298 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9299 }
9300
9301 seq_printf(m, "Cursor [%d]:\n", i);
9302 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9303 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9304 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9305 }
9306}
9307#endif
This page took 1.633464 seconds and 5 git commands to generate.