Merge tag 'drm-intel-fixes-2015-07-15' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
79e53945 47
465c120c 48/* Primary plane formats for gen <= 3 */
568db4f2 49static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
50 DRM_FORMAT_C8,
51 DRM_FORMAT_RGB565,
465c120c 52 DRM_FORMAT_XRGB1555,
67fe7dc5 53 DRM_FORMAT_XRGB8888,
465c120c
MR
54};
55
56/* Primary plane formats for gen >= 4 */
568db4f2 57static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
58 DRM_FORMAT_C8,
59 DRM_FORMAT_RGB565,
60 DRM_FORMAT_XRGB8888,
61 DRM_FORMAT_XBGR8888,
62 DRM_FORMAT_XRGB2101010,
63 DRM_FORMAT_XBGR2101010,
64};
65
66static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
465c120c 70 DRM_FORMAT_XBGR8888,
67fe7dc5 71 DRM_FORMAT_ARGB8888,
465c120c
MR
72 DRM_FORMAT_ABGR8888,
73 DRM_FORMAT_XRGB2101010,
465c120c 74 DRM_FORMAT_XBGR2101010,
465c120c
MR
75};
76
3d7d6510
MR
77/* Cursor formats */
78static const uint32_t intel_cursor_formats[] = {
79 DRM_FORMAT_ARGB8888,
80};
81
6b383a7f 82static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 83
f1f644dc 84static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 85 struct intel_crtc_state *pipe_config);
18442d08 86static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 87 struct intel_crtc_state *pipe_config);
f1f644dc 88
8c7b5ccb 89static int intel_set_mode(struct drm_crtc *crtc,
e62d8dc0
ACO
90 struct drm_atomic_state *state,
91 bool force_restore);
eb1bfe80
JB
92static int intel_framebuffer_init(struct drm_device *dev,
93 struct intel_framebuffer *ifb,
94 struct drm_mode_fb_cmd2 *mode_cmd,
95 struct drm_i915_gem_object *obj);
5b18e57c
DV
96static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
97static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 98static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
99 struct intel_link_m_n *m_n,
100 struct intel_link_m_n *m2_n2);
29407aab 101static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
102static void haswell_set_pipeconf(struct drm_crtc *crtc);
103static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 104static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 105 const struct intel_crtc_state *pipe_config);
d288f65f 106static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 107 const struct intel_crtc_state *pipe_config);
ea2c67bb
MR
108static void intel_begin_crtc_commit(struct drm_crtc *crtc);
109static void intel_finish_crtc_commit(struct drm_crtc *crtc);
549e2bfb
CK
110static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
111 struct intel_crtc_state *crtc_state);
5ab7b0b7
ID
112static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
113 int num_connectors);
ce22dba9
ML
114static void intel_crtc_enable_planes(struct drm_crtc *crtc);
115static void intel_crtc_disable_planes(struct drm_crtc *crtc);
e7457a9a 116
0e32b39c
DA
117static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
118{
119 if (!connector->mst_port)
120 return connector->encoder;
121 else
122 return &connector->mst_port->mst_encoders[pipe]->base;
123}
124
79e53945 125typedef struct {
0206e353 126 int min, max;
79e53945
JB
127} intel_range_t;
128
129typedef struct {
0206e353
AJ
130 int dot_limit;
131 int p2_slow, p2_fast;
79e53945
JB
132} intel_p2_t;
133
d4906093
ML
134typedef struct intel_limit intel_limit_t;
135struct intel_limit {
0206e353
AJ
136 intel_range_t dot, vco, n, m, m1, m2, p, p1;
137 intel_p2_t p2;
d4906093 138};
79e53945 139
d2acd215
DV
140int
141intel_pch_rawclk(struct drm_device *dev)
142{
143 struct drm_i915_private *dev_priv = dev->dev_private;
144
145 WARN_ON(!HAS_PCH_SPLIT(dev));
146
147 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
148}
149
021357ac
CW
150static inline u32 /* units of 100MHz */
151intel_fdi_link_freq(struct drm_device *dev)
152{
8b99e68c
CW
153 if (IS_GEN5(dev)) {
154 struct drm_i915_private *dev_priv = dev->dev_private;
155 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
156 } else
157 return 27;
021357ac
CW
158}
159
5d536e28 160static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 161 .dot = { .min = 25000, .max = 350000 },
9c333719 162 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 163 .n = { .min = 2, .max = 16 },
0206e353
AJ
164 .m = { .min = 96, .max = 140 },
165 .m1 = { .min = 18, .max = 26 },
166 .m2 = { .min = 6, .max = 16 },
167 .p = { .min = 4, .max = 128 },
168 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
169 .p2 = { .dot_limit = 165000,
170 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
171};
172
5d536e28
DV
173static const intel_limit_t intel_limits_i8xx_dvo = {
174 .dot = { .min = 25000, .max = 350000 },
9c333719 175 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 176 .n = { .min = 2, .max = 16 },
5d536e28
DV
177 .m = { .min = 96, .max = 140 },
178 .m1 = { .min = 18, .max = 26 },
179 .m2 = { .min = 6, .max = 16 },
180 .p = { .min = 4, .max = 128 },
181 .p1 = { .min = 2, .max = 33 },
182 .p2 = { .dot_limit = 165000,
183 .p2_slow = 4, .p2_fast = 4 },
184};
185
e4b36699 186static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 187 .dot = { .min = 25000, .max = 350000 },
9c333719 188 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 189 .n = { .min = 2, .max = 16 },
0206e353
AJ
190 .m = { .min = 96, .max = 140 },
191 .m1 = { .min = 18, .max = 26 },
192 .m2 = { .min = 6, .max = 16 },
193 .p = { .min = 4, .max = 128 },
194 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
195 .p2 = { .dot_limit = 165000,
196 .p2_slow = 14, .p2_fast = 7 },
e4b36699 197};
273e27ca 198
e4b36699 199static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
200 .dot = { .min = 20000, .max = 400000 },
201 .vco = { .min = 1400000, .max = 2800000 },
202 .n = { .min = 1, .max = 6 },
203 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
204 .m1 = { .min = 8, .max = 18 },
205 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
206 .p = { .min = 5, .max = 80 },
207 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
208 .p2 = { .dot_limit = 200000,
209 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
210};
211
212static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
213 .dot = { .min = 20000, .max = 400000 },
214 .vco = { .min = 1400000, .max = 2800000 },
215 .n = { .min = 1, .max = 6 },
216 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
217 .m1 = { .min = 8, .max = 18 },
218 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
219 .p = { .min = 7, .max = 98 },
220 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
221 .p2 = { .dot_limit = 112000,
222 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
223};
224
273e27ca 225
e4b36699 226static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
227 .dot = { .min = 25000, .max = 270000 },
228 .vco = { .min = 1750000, .max = 3500000},
229 .n = { .min = 1, .max = 4 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 17, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 10, .max = 30 },
234 .p1 = { .min = 1, .max = 3},
235 .p2 = { .dot_limit = 270000,
236 .p2_slow = 10,
237 .p2_fast = 10
044c7c41 238 },
e4b36699
KP
239};
240
241static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
242 .dot = { .min = 22000, .max = 400000 },
243 .vco = { .min = 1750000, .max = 3500000},
244 .n = { .min = 1, .max = 4 },
245 .m = { .min = 104, .max = 138 },
246 .m1 = { .min = 16, .max = 23 },
247 .m2 = { .min = 5, .max = 11 },
248 .p = { .min = 5, .max = 80 },
249 .p1 = { .min = 1, .max = 8},
250 .p2 = { .dot_limit = 165000,
251 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
252};
253
254static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
255 .dot = { .min = 20000, .max = 115000 },
256 .vco = { .min = 1750000, .max = 3500000 },
257 .n = { .min = 1, .max = 3 },
258 .m = { .min = 104, .max = 138 },
259 .m1 = { .min = 17, .max = 23 },
260 .m2 = { .min = 5, .max = 11 },
261 .p = { .min = 28, .max = 112 },
262 .p1 = { .min = 2, .max = 8 },
263 .p2 = { .dot_limit = 0,
264 .p2_slow = 14, .p2_fast = 14
044c7c41 265 },
e4b36699
KP
266};
267
268static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
269 .dot = { .min = 80000, .max = 224000 },
270 .vco = { .min = 1750000, .max = 3500000 },
271 .n = { .min = 1, .max = 3 },
272 .m = { .min = 104, .max = 138 },
273 .m1 = { .min = 17, .max = 23 },
274 .m2 = { .min = 5, .max = 11 },
275 .p = { .min = 14, .max = 42 },
276 .p1 = { .min = 2, .max = 6 },
277 .p2 = { .dot_limit = 0,
278 .p2_slow = 7, .p2_fast = 7
044c7c41 279 },
e4b36699
KP
280};
281
f2b115e6 282static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
283 .dot = { .min = 20000, .max = 400000},
284 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 285 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
286 .n = { .min = 3, .max = 6 },
287 .m = { .min = 2, .max = 256 },
273e27ca 288 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
289 .m1 = { .min = 0, .max = 0 },
290 .m2 = { .min = 0, .max = 254 },
291 .p = { .min = 5, .max = 80 },
292 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
293 .p2 = { .dot_limit = 200000,
294 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
295};
296
f2b115e6 297static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
298 .dot = { .min = 20000, .max = 400000 },
299 .vco = { .min = 1700000, .max = 3500000 },
300 .n = { .min = 3, .max = 6 },
301 .m = { .min = 2, .max = 256 },
302 .m1 = { .min = 0, .max = 0 },
303 .m2 = { .min = 0, .max = 254 },
304 .p = { .min = 7, .max = 112 },
305 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
306 .p2 = { .dot_limit = 112000,
307 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
308};
309
273e27ca
EA
310/* Ironlake / Sandybridge
311 *
312 * We calculate clock using (register_value + 2) for N/M1/M2, so here
313 * the range value for them is (actual_value - 2).
314 */
b91ad0ec 315static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
316 .dot = { .min = 25000, .max = 350000 },
317 .vco = { .min = 1760000, .max = 3510000 },
318 .n = { .min = 1, .max = 5 },
319 .m = { .min = 79, .max = 127 },
320 .m1 = { .min = 12, .max = 22 },
321 .m2 = { .min = 5, .max = 9 },
322 .p = { .min = 5, .max = 80 },
323 .p1 = { .min = 1, .max = 8 },
324 .p2 = { .dot_limit = 225000,
325 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
326};
327
b91ad0ec 328static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
329 .dot = { .min = 25000, .max = 350000 },
330 .vco = { .min = 1760000, .max = 3510000 },
331 .n = { .min = 1, .max = 3 },
332 .m = { .min = 79, .max = 118 },
333 .m1 = { .min = 12, .max = 22 },
334 .m2 = { .min = 5, .max = 9 },
335 .p = { .min = 28, .max = 112 },
336 .p1 = { .min = 2, .max = 8 },
337 .p2 = { .dot_limit = 225000,
338 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
339};
340
341static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
342 .dot = { .min = 25000, .max = 350000 },
343 .vco = { .min = 1760000, .max = 3510000 },
344 .n = { .min = 1, .max = 3 },
345 .m = { .min = 79, .max = 127 },
346 .m1 = { .min = 12, .max = 22 },
347 .m2 = { .min = 5, .max = 9 },
348 .p = { .min = 14, .max = 56 },
349 .p1 = { .min = 2, .max = 8 },
350 .p2 = { .dot_limit = 225000,
351 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
352};
353
273e27ca 354/* LVDS 100mhz refclk limits. */
b91ad0ec 355static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
356 .dot = { .min = 25000, .max = 350000 },
357 .vco = { .min = 1760000, .max = 3510000 },
358 .n = { .min = 1, .max = 2 },
359 .m = { .min = 79, .max = 126 },
360 .m1 = { .min = 12, .max = 22 },
361 .m2 = { .min = 5, .max = 9 },
362 .p = { .min = 28, .max = 112 },
0206e353 363 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
364 .p2 = { .dot_limit = 225000,
365 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
366};
367
368static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
369 .dot = { .min = 25000, .max = 350000 },
370 .vco = { .min = 1760000, .max = 3510000 },
371 .n = { .min = 1, .max = 3 },
372 .m = { .min = 79, .max = 126 },
373 .m1 = { .min = 12, .max = 22 },
374 .m2 = { .min = 5, .max = 9 },
375 .p = { .min = 14, .max = 42 },
0206e353 376 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
377 .p2 = { .dot_limit = 225000,
378 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
379};
380
dc730512 381static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
382 /*
383 * These are the data rate limits (measured in fast clocks)
384 * since those are the strictest limits we have. The fast
385 * clock and actual rate limits are more relaxed, so checking
386 * them would make no difference.
387 */
388 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 389 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 390 .n = { .min = 1, .max = 7 },
a0c4da24
JB
391 .m1 = { .min = 2, .max = 3 },
392 .m2 = { .min = 11, .max = 156 },
b99ab663 393 .p1 = { .min = 2, .max = 3 },
5fdc9c49 394 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
395};
396
ef9348c8
CML
397static const intel_limit_t intel_limits_chv = {
398 /*
399 * These are the data rate limits (measured in fast clocks)
400 * since those are the strictest limits we have. The fast
401 * clock and actual rate limits are more relaxed, so checking
402 * them would make no difference.
403 */
404 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 405 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
406 .n = { .min = 1, .max = 1 },
407 .m1 = { .min = 2, .max = 2 },
408 .m2 = { .min = 24 << 22, .max = 175 << 22 },
409 .p1 = { .min = 2, .max = 4 },
410 .p2 = { .p2_slow = 1, .p2_fast = 14 },
411};
412
5ab7b0b7
ID
413static const intel_limit_t intel_limits_bxt = {
414 /* FIXME: find real dot limits */
415 .dot = { .min = 0, .max = INT_MAX },
416 .vco = { .min = 4800000, .max = 6480000 },
417 .n = { .min = 1, .max = 1 },
418 .m1 = { .min = 2, .max = 2 },
419 /* FIXME: find real m2 limits */
420 .m2 = { .min = 2 << 22, .max = 255 << 22 },
421 .p1 = { .min = 2, .max = 4 },
422 .p2 = { .p2_slow = 1, .p2_fast = 20 },
423};
424
6b4bf1c4
VS
425static void vlv_clock(int refclk, intel_clock_t *clock)
426{
427 clock->m = clock->m1 * clock->m2;
428 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
429 if (WARN_ON(clock->n == 0 || clock->p == 0))
430 return;
fb03ac01
VS
431 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
432 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
433}
434
e0638cdf
PZ
435/**
436 * Returns whether any output on the specified pipe is of the specified type
437 */
4093561b 438bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 439{
409ee761 440 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
441 struct intel_encoder *encoder;
442
409ee761 443 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
444 if (encoder->type == type)
445 return true;
446
447 return false;
448}
449
d0737e1d
ACO
450/**
451 * Returns whether any output on the specified pipe will have the specified
452 * type after a staged modeset is complete, i.e., the same as
453 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
454 * encoder->crtc.
455 */
a93e255f
ACO
456static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
457 int type)
d0737e1d 458{
a93e255f 459 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 460 struct drm_connector *connector;
a93e255f 461 struct drm_connector_state *connector_state;
d0737e1d 462 struct intel_encoder *encoder;
a93e255f
ACO
463 int i, num_connectors = 0;
464
da3ced29 465 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
466 if (connector_state->crtc != crtc_state->base.crtc)
467 continue;
468
469 num_connectors++;
d0737e1d 470
a93e255f
ACO
471 encoder = to_intel_encoder(connector_state->best_encoder);
472 if (encoder->type == type)
d0737e1d 473 return true;
a93e255f
ACO
474 }
475
476 WARN_ON(num_connectors == 0);
d0737e1d
ACO
477
478 return false;
479}
480
a93e255f
ACO
481static const intel_limit_t *
482intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 483{
a93e255f 484 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 485 const intel_limit_t *limit;
b91ad0ec 486
a93e255f 487 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 488 if (intel_is_dual_link_lvds(dev)) {
1b894b59 489 if (refclk == 100000)
b91ad0ec
ZW
490 limit = &intel_limits_ironlake_dual_lvds_100m;
491 else
492 limit = &intel_limits_ironlake_dual_lvds;
493 } else {
1b894b59 494 if (refclk == 100000)
b91ad0ec
ZW
495 limit = &intel_limits_ironlake_single_lvds_100m;
496 else
497 limit = &intel_limits_ironlake_single_lvds;
498 }
c6bb3538 499 } else
b91ad0ec 500 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
501
502 return limit;
503}
504
a93e255f
ACO
505static const intel_limit_t *
506intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 507{
a93e255f 508 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
509 const intel_limit_t *limit;
510
a93e255f 511 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 512 if (intel_is_dual_link_lvds(dev))
e4b36699 513 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 514 else
e4b36699 515 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
516 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
517 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 518 limit = &intel_limits_g4x_hdmi;
a93e255f 519 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 520 limit = &intel_limits_g4x_sdvo;
044c7c41 521 } else /* The option is for other outputs */
e4b36699 522 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
523
524 return limit;
525}
526
a93e255f
ACO
527static const intel_limit_t *
528intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 529{
a93e255f 530 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
531 const intel_limit_t *limit;
532
5ab7b0b7
ID
533 if (IS_BROXTON(dev))
534 limit = &intel_limits_bxt;
535 else if (HAS_PCH_SPLIT(dev))
a93e255f 536 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 537 else if (IS_G4X(dev)) {
a93e255f 538 limit = intel_g4x_limit(crtc_state);
f2b115e6 539 } else if (IS_PINEVIEW(dev)) {
a93e255f 540 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 541 limit = &intel_limits_pineview_lvds;
2177832f 542 else
f2b115e6 543 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
544 } else if (IS_CHERRYVIEW(dev)) {
545 limit = &intel_limits_chv;
a0c4da24 546 } else if (IS_VALLEYVIEW(dev)) {
dc730512 547 limit = &intel_limits_vlv;
a6c45cf0 548 } else if (!IS_GEN2(dev)) {
a93e255f 549 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
550 limit = &intel_limits_i9xx_lvds;
551 else
552 limit = &intel_limits_i9xx_sdvo;
79e53945 553 } else {
a93e255f 554 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 555 limit = &intel_limits_i8xx_lvds;
a93e255f 556 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 557 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
558 else
559 limit = &intel_limits_i8xx_dac;
79e53945
JB
560 }
561 return limit;
562}
563
f2b115e6
AJ
564/* m1 is reserved as 0 in Pineview, n is a ring counter */
565static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 566{
2177832f
SL
567 clock->m = clock->m2 + 2;
568 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
569 if (WARN_ON(clock->n == 0 || clock->p == 0))
570 return;
fb03ac01
VS
571 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
572 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
573}
574
7429e9d4
DV
575static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
576{
577 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
578}
579
ac58c3f0 580static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 581{
7429e9d4 582 clock->m = i9xx_dpll_compute_m(clock);
79e53945 583 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
584 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
585 return;
fb03ac01
VS
586 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
587 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
588}
589
ef9348c8
CML
590static void chv_clock(int refclk, intel_clock_t *clock)
591{
592 clock->m = clock->m1 * clock->m2;
593 clock->p = clock->p1 * clock->p2;
594 if (WARN_ON(clock->n == 0 || clock->p == 0))
595 return;
596 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
597 clock->n << 22);
598 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
599}
600
7c04d1d9 601#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
602/**
603 * Returns whether the given set of divisors are valid for a given refclk with
604 * the given connectors.
605 */
606
1b894b59
CW
607static bool intel_PLL_is_valid(struct drm_device *dev,
608 const intel_limit_t *limit,
609 const intel_clock_t *clock)
79e53945 610{
f01b7962
VS
611 if (clock->n < limit->n.min || limit->n.max < clock->n)
612 INTELPllInvalid("n out of range\n");
79e53945 613 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 614 INTELPllInvalid("p1 out of range\n");
79e53945 615 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 616 INTELPllInvalid("m2 out of range\n");
79e53945 617 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 618 INTELPllInvalid("m1 out of range\n");
f01b7962 619
5ab7b0b7 620 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
621 if (clock->m1 <= clock->m2)
622 INTELPllInvalid("m1 <= m2\n");
623
5ab7b0b7 624 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
625 if (clock->p < limit->p.min || limit->p.max < clock->p)
626 INTELPllInvalid("p out of range\n");
627 if (clock->m < limit->m.min || limit->m.max < clock->m)
628 INTELPllInvalid("m out of range\n");
629 }
630
79e53945 631 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 632 INTELPllInvalid("vco out of range\n");
79e53945
JB
633 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
634 * connector, etc., rather than just a single range.
635 */
636 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 637 INTELPllInvalid("dot out of range\n");
79e53945
JB
638
639 return true;
640}
641
d4906093 642static bool
a93e255f
ACO
643i9xx_find_best_dpll(const intel_limit_t *limit,
644 struct intel_crtc_state *crtc_state,
cec2f356
SP
645 int target, int refclk, intel_clock_t *match_clock,
646 intel_clock_t *best_clock)
79e53945 647{
a93e255f 648 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 649 struct drm_device *dev = crtc->base.dev;
79e53945 650 intel_clock_t clock;
79e53945
JB
651 int err = target;
652
a93e255f 653 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 654 /*
a210b028
DV
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
79e53945 658 */
1974cad0 659 if (intel_is_dual_link_lvds(dev))
79e53945
JB
660 clock.p2 = limit->p2.p2_fast;
661 else
662 clock.p2 = limit->p2.p2_slow;
663 } else {
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
666 else
667 clock.p2 = limit->p2.p2_fast;
668 }
669
0206e353 670 memset(best_clock, 0, sizeof(*best_clock));
79e53945 671
42158660
ZY
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673 clock.m1++) {
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 676 if (clock.m2 >= clock.m1)
42158660
ZY
677 break;
678 for (clock.n = limit->n.min;
679 clock.n <= limit->n.max; clock.n++) {
680 for (clock.p1 = limit->p1.min;
681 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
682 int this_err;
683
ac58c3f0
DV
684 i9xx_clock(refclk, &clock);
685 if (!intel_PLL_is_valid(dev, limit,
686 &clock))
687 continue;
688 if (match_clock &&
689 clock.p != match_clock->p)
690 continue;
691
692 this_err = abs(clock.dot - target);
693 if (this_err < err) {
694 *best_clock = clock;
695 err = this_err;
696 }
697 }
698 }
699 }
700 }
701
702 return (err != target);
703}
704
705static bool
a93e255f
ACO
706pnv_find_best_dpll(const intel_limit_t *limit,
707 struct intel_crtc_state *crtc_state,
ee9300bb
DV
708 int target, int refclk, intel_clock_t *match_clock,
709 intel_clock_t *best_clock)
79e53945 710{
a93e255f 711 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 712 struct drm_device *dev = crtc->base.dev;
79e53945 713 intel_clock_t clock;
79e53945
JB
714 int err = target;
715
a93e255f 716 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 717 /*
a210b028
DV
718 * For LVDS just rely on its current settings for dual-channel.
719 * We haven't figured out how to reliably set up different
720 * single/dual channel state, if we even can.
79e53945 721 */
1974cad0 722 if (intel_is_dual_link_lvds(dev))
79e53945
JB
723 clock.p2 = limit->p2.p2_fast;
724 else
725 clock.p2 = limit->p2.p2_slow;
726 } else {
727 if (target < limit->p2.dot_limit)
728 clock.p2 = limit->p2.p2_slow;
729 else
730 clock.p2 = limit->p2.p2_fast;
731 }
732
0206e353 733 memset(best_clock, 0, sizeof(*best_clock));
79e53945 734
42158660
ZY
735 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
736 clock.m1++) {
737 for (clock.m2 = limit->m2.min;
738 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
739 for (clock.n = limit->n.min;
740 clock.n <= limit->n.max; clock.n++) {
741 for (clock.p1 = limit->p1.min;
742 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
743 int this_err;
744
ac58c3f0 745 pineview_clock(refclk, &clock);
1b894b59
CW
746 if (!intel_PLL_is_valid(dev, limit,
747 &clock))
79e53945 748 continue;
cec2f356
SP
749 if (match_clock &&
750 clock.p != match_clock->p)
751 continue;
79e53945
JB
752
753 this_err = abs(clock.dot - target);
754 if (this_err < err) {
755 *best_clock = clock;
756 err = this_err;
757 }
758 }
759 }
760 }
761 }
762
763 return (err != target);
764}
765
d4906093 766static bool
a93e255f
ACO
767g4x_find_best_dpll(const intel_limit_t *limit,
768 struct intel_crtc_state *crtc_state,
ee9300bb
DV
769 int target, int refclk, intel_clock_t *match_clock,
770 intel_clock_t *best_clock)
d4906093 771{
a93e255f 772 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 773 struct drm_device *dev = crtc->base.dev;
d4906093
ML
774 intel_clock_t clock;
775 int max_n;
776 bool found;
6ba770dc
AJ
777 /* approximately equals target * 0.00585 */
778 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
779 found = false;
780
a93e255f 781 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 782 if (intel_is_dual_link_lvds(dev))
d4906093
ML
783 clock.p2 = limit->p2.p2_fast;
784 else
785 clock.p2 = limit->p2.p2_slow;
786 } else {
787 if (target < limit->p2.dot_limit)
788 clock.p2 = limit->p2.p2_slow;
789 else
790 clock.p2 = limit->p2.p2_fast;
791 }
792
793 memset(best_clock, 0, sizeof(*best_clock));
794 max_n = limit->n.max;
f77f13e2 795 /* based on hardware requirement, prefer smaller n to precision */
d4906093 796 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 797 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
798 for (clock.m1 = limit->m1.max;
799 clock.m1 >= limit->m1.min; clock.m1--) {
800 for (clock.m2 = limit->m2.max;
801 clock.m2 >= limit->m2.min; clock.m2--) {
802 for (clock.p1 = limit->p1.max;
803 clock.p1 >= limit->p1.min; clock.p1--) {
804 int this_err;
805
ac58c3f0 806 i9xx_clock(refclk, &clock);
1b894b59
CW
807 if (!intel_PLL_is_valid(dev, limit,
808 &clock))
d4906093 809 continue;
1b894b59
CW
810
811 this_err = abs(clock.dot - target);
d4906093
ML
812 if (this_err < err_most) {
813 *best_clock = clock;
814 err_most = this_err;
815 max_n = clock.n;
816 found = true;
817 }
818 }
819 }
820 }
821 }
2c07245f
ZW
822 return found;
823}
824
d5dd62bd
ID
825/*
826 * Check if the calculated PLL configuration is more optimal compared to the
827 * best configuration and error found so far. Return the calculated error.
828 */
829static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
830 const intel_clock_t *calculated_clock,
831 const intel_clock_t *best_clock,
832 unsigned int best_error_ppm,
833 unsigned int *error_ppm)
834{
9ca3ba01
ID
835 /*
836 * For CHV ignore the error and consider only the P value.
837 * Prefer a bigger P value based on HW requirements.
838 */
839 if (IS_CHERRYVIEW(dev)) {
840 *error_ppm = 0;
841
842 return calculated_clock->p > best_clock->p;
843 }
844
24be4e46
ID
845 if (WARN_ON_ONCE(!target_freq))
846 return false;
847
d5dd62bd
ID
848 *error_ppm = div_u64(1000000ULL *
849 abs(target_freq - calculated_clock->dot),
850 target_freq);
851 /*
852 * Prefer a better P value over a better (smaller) error if the error
853 * is small. Ensure this preference for future configurations too by
854 * setting the error to 0.
855 */
856 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
857 *error_ppm = 0;
858
859 return true;
860 }
861
862 return *error_ppm + 10 < best_error_ppm;
863}
864
a0c4da24 865static bool
a93e255f
ACO
866vlv_find_best_dpll(const intel_limit_t *limit,
867 struct intel_crtc_state *crtc_state,
ee9300bb
DV
868 int target, int refclk, intel_clock_t *match_clock,
869 intel_clock_t *best_clock)
a0c4da24 870{
a93e255f 871 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 872 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 873 intel_clock_t clock;
69e4f900 874 unsigned int bestppm = 1000000;
27e639bf
VS
875 /* min update 19.2 MHz */
876 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 877 bool found = false;
a0c4da24 878
6b4bf1c4
VS
879 target *= 5; /* fast clock */
880
881 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
882
883 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 884 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 885 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 886 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 887 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 888 clock.p = clock.p1 * clock.p2;
a0c4da24 889 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 890 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 891 unsigned int ppm;
69e4f900 892
6b4bf1c4
VS
893 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
894 refclk * clock.m1);
895
896 vlv_clock(refclk, &clock);
43b0ac53 897
f01b7962
VS
898 if (!intel_PLL_is_valid(dev, limit,
899 &clock))
43b0ac53
VS
900 continue;
901
d5dd62bd
ID
902 if (!vlv_PLL_is_optimal(dev, target,
903 &clock,
904 best_clock,
905 bestppm, &ppm))
906 continue;
6b4bf1c4 907
d5dd62bd
ID
908 *best_clock = clock;
909 bestppm = ppm;
910 found = true;
a0c4da24
JB
911 }
912 }
913 }
914 }
a0c4da24 915
49e497ef 916 return found;
a0c4da24 917}
a4fc5ed6 918
ef9348c8 919static bool
a93e255f
ACO
920chv_find_best_dpll(const intel_limit_t *limit,
921 struct intel_crtc_state *crtc_state,
ef9348c8
CML
922 int target, int refclk, intel_clock_t *match_clock,
923 intel_clock_t *best_clock)
924{
a93e255f 925 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 926 struct drm_device *dev = crtc->base.dev;
9ca3ba01 927 unsigned int best_error_ppm;
ef9348c8
CML
928 intel_clock_t clock;
929 uint64_t m2;
930 int found = false;
931
932 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 933 best_error_ppm = 1000000;
ef9348c8
CML
934
935 /*
936 * Based on hardware doc, the n always set to 1, and m1 always
937 * set to 2. If requires to support 200Mhz refclk, we need to
938 * revisit this because n may not 1 anymore.
939 */
940 clock.n = 1, clock.m1 = 2;
941 target *= 5; /* fast clock */
942
943 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
944 for (clock.p2 = limit->p2.p2_fast;
945 clock.p2 >= limit->p2.p2_slow;
946 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 947 unsigned int error_ppm;
ef9348c8
CML
948
949 clock.p = clock.p1 * clock.p2;
950
951 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
952 clock.n) << 22, refclk * clock.m1);
953
954 if (m2 > INT_MAX/clock.m1)
955 continue;
956
957 clock.m2 = m2;
958
959 chv_clock(refclk, &clock);
960
961 if (!intel_PLL_is_valid(dev, limit, &clock))
962 continue;
963
9ca3ba01
ID
964 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
965 best_error_ppm, &error_ppm))
966 continue;
967
968 *best_clock = clock;
969 best_error_ppm = error_ppm;
970 found = true;
ef9348c8
CML
971 }
972 }
973
974 return found;
975}
976
5ab7b0b7
ID
977bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
978 intel_clock_t *best_clock)
979{
980 int refclk = i9xx_get_refclk(crtc_state, 0);
981
982 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
983 target_clock, refclk, NULL, best_clock);
984}
985
20ddf665
VS
986bool intel_crtc_active(struct drm_crtc *crtc)
987{
988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
989
990 /* Be paranoid as we can arrive here with only partial
991 * state retrieved from the hardware during setup.
992 *
241bfc38 993 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
994 * as Haswell has gained clock readout/fastboot support.
995 *
66e514c1 996 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 997 * properly reconstruct framebuffers.
c3d1f436
MR
998 *
999 * FIXME: The intel_crtc->active here should be switched to
1000 * crtc->state->active once we have proper CRTC states wired up
1001 * for atomic.
20ddf665 1002 */
c3d1f436 1003 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1004 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1005}
1006
a5c961d1
PZ
1007enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1008 enum pipe pipe)
1009{
1010 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1012
6e3c9717 1013 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1014}
1015
fbf49ea2
VS
1016static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1017{
1018 struct drm_i915_private *dev_priv = dev->dev_private;
1019 u32 reg = PIPEDSL(pipe);
1020 u32 line1, line2;
1021 u32 line_mask;
1022
1023 if (IS_GEN2(dev))
1024 line_mask = DSL_LINEMASK_GEN2;
1025 else
1026 line_mask = DSL_LINEMASK_GEN3;
1027
1028 line1 = I915_READ(reg) & line_mask;
1029 mdelay(5);
1030 line2 = I915_READ(reg) & line_mask;
1031
1032 return line1 == line2;
1033}
1034
ab7ad7f6
KP
1035/*
1036 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1037 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1038 *
1039 * After disabling a pipe, we can't wait for vblank in the usual way,
1040 * spinning on the vblank interrupt status bit, since we won't actually
1041 * see an interrupt when the pipe is disabled.
1042 *
ab7ad7f6
KP
1043 * On Gen4 and above:
1044 * wait for the pipe register state bit to turn off
1045 *
1046 * Otherwise:
1047 * wait for the display line value to settle (it usually
1048 * ends up stopping at the start of the next frame).
58e10eb9 1049 *
9d0498a2 1050 */
575f7ab7 1051static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1052{
575f7ab7 1053 struct drm_device *dev = crtc->base.dev;
9d0498a2 1054 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1055 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1056 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1057
1058 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 1059 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1060
1061 /* Wait for the Pipe State to go off */
58e10eb9
CW
1062 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1063 100))
284637d9 1064 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1065 } else {
ab7ad7f6 1066 /* Wait for the display line to settle */
fbf49ea2 1067 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1068 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1069 }
79e53945
JB
1070}
1071
b0ea7d37
DL
1072/*
1073 * ibx_digital_port_connected - is the specified port connected?
1074 * @dev_priv: i915 private structure
1075 * @port: the port to test
1076 *
1077 * Returns true if @port is connected, false otherwise.
1078 */
1079bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1080 struct intel_digital_port *port)
1081{
1082 u32 bit;
1083
c36346e3 1084 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1085 switch (port->port) {
c36346e3
DL
1086 case PORT_B:
1087 bit = SDE_PORTB_HOTPLUG;
1088 break;
1089 case PORT_C:
1090 bit = SDE_PORTC_HOTPLUG;
1091 break;
1092 case PORT_D:
1093 bit = SDE_PORTD_HOTPLUG;
1094 break;
1095 default:
1096 return true;
1097 }
1098 } else {
eba905b2 1099 switch (port->port) {
c36346e3
DL
1100 case PORT_B:
1101 bit = SDE_PORTB_HOTPLUG_CPT;
1102 break;
1103 case PORT_C:
1104 bit = SDE_PORTC_HOTPLUG_CPT;
1105 break;
1106 case PORT_D:
1107 bit = SDE_PORTD_HOTPLUG_CPT;
1108 break;
1109 default:
1110 return true;
1111 }
b0ea7d37
DL
1112 }
1113
1114 return I915_READ(SDEISR) & bit;
1115}
1116
b24e7179
JB
1117static const char *state_string(bool enabled)
1118{
1119 return enabled ? "on" : "off";
1120}
1121
1122/* Only for pre-ILK configs */
55607e8a
DV
1123void assert_pll(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
b24e7179
JB
1125{
1126 int reg;
1127 u32 val;
1128 bool cur_state;
1129
1130 reg = DPLL(pipe);
1131 val = I915_READ(reg);
1132 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1133 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1134 "PLL state assertion failure (expected %s, current %s)\n",
1135 state_string(state), state_string(cur_state));
1136}
b24e7179 1137
23538ef1
JN
1138/* XXX: the dsi pll is shared between MIPI DSI ports */
1139static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1140{
1141 u32 val;
1142 bool cur_state;
1143
a580516d 1144 mutex_lock(&dev_priv->sb_lock);
23538ef1 1145 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1146 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1147
1148 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1149 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1150 "DSI PLL state assertion failure (expected %s, current %s)\n",
1151 state_string(state), state_string(cur_state));
1152}
1153#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1154#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1155
55607e8a 1156struct intel_shared_dpll *
e2b78267
DV
1157intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1158{
1159 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1160
6e3c9717 1161 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1162 return NULL;
1163
6e3c9717 1164 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1165}
1166
040484af 1167/* For ILK+ */
55607e8a
DV
1168void assert_shared_dpll(struct drm_i915_private *dev_priv,
1169 struct intel_shared_dpll *pll,
1170 bool state)
040484af 1171{
040484af 1172 bool cur_state;
5358901f 1173 struct intel_dpll_hw_state hw_state;
040484af 1174
92b27b08 1175 if (WARN (!pll,
46edb027 1176 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1177 return;
ee7b9f93 1178
5358901f 1179 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1180 I915_STATE_WARN(cur_state != state,
5358901f
DV
1181 "%s assertion failure (expected %s, current %s)\n",
1182 pll->name, state_string(state), state_string(cur_state));
040484af 1183}
040484af
JB
1184
1185static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1186 enum pipe pipe, bool state)
1187{
1188 int reg;
1189 u32 val;
1190 bool cur_state;
ad80a810
PZ
1191 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1192 pipe);
040484af 1193
affa9354
PZ
1194 if (HAS_DDI(dev_priv->dev)) {
1195 /* DDI does not have a specific FDI_TX register */
ad80a810 1196 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1197 val = I915_READ(reg);
ad80a810 1198 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1199 } else {
1200 reg = FDI_TX_CTL(pipe);
1201 val = I915_READ(reg);
1202 cur_state = !!(val & FDI_TX_ENABLE);
1203 }
e2c719b7 1204 I915_STATE_WARN(cur_state != state,
040484af
JB
1205 "FDI TX state assertion failure (expected %s, current %s)\n",
1206 state_string(state), state_string(cur_state));
1207}
1208#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1209#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1210
1211static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1212 enum pipe pipe, bool state)
1213{
1214 int reg;
1215 u32 val;
1216 bool cur_state;
1217
d63fa0dc
PZ
1218 reg = FDI_RX_CTL(pipe);
1219 val = I915_READ(reg);
1220 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1221 I915_STATE_WARN(cur_state != state,
040484af
JB
1222 "FDI RX state assertion failure (expected %s, current %s)\n",
1223 state_string(state), state_string(cur_state));
1224}
1225#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1226#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1227
1228static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1229 enum pipe pipe)
1230{
1231 int reg;
1232 u32 val;
1233
1234 /* ILK FDI PLL is always enabled */
3d13ef2e 1235 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1236 return;
1237
bf507ef7 1238 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1239 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1240 return;
1241
040484af
JB
1242 reg = FDI_TX_CTL(pipe);
1243 val = I915_READ(reg);
e2c719b7 1244 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1245}
1246
55607e8a
DV
1247void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1248 enum pipe pipe, bool state)
040484af
JB
1249{
1250 int reg;
1251 u32 val;
55607e8a 1252 bool cur_state;
040484af
JB
1253
1254 reg = FDI_RX_CTL(pipe);
1255 val = I915_READ(reg);
55607e8a 1256 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1257 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1258 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1259 state_string(state), state_string(cur_state));
040484af
JB
1260}
1261
b680c37a
DV
1262void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1263 enum pipe pipe)
ea0760cf 1264{
bedd4dba
JN
1265 struct drm_device *dev = dev_priv->dev;
1266 int pp_reg;
ea0760cf
JB
1267 u32 val;
1268 enum pipe panel_pipe = PIPE_A;
0de3b485 1269 bool locked = true;
ea0760cf 1270
bedd4dba
JN
1271 if (WARN_ON(HAS_DDI(dev)))
1272 return;
1273
1274 if (HAS_PCH_SPLIT(dev)) {
1275 u32 port_sel;
1276
ea0760cf 1277 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1278 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1279
1280 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1281 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1282 panel_pipe = PIPE_B;
1283 /* XXX: else fix for eDP */
1284 } else if (IS_VALLEYVIEW(dev)) {
1285 /* presumably write lock depends on pipe, not port select */
1286 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1287 panel_pipe = pipe;
ea0760cf
JB
1288 } else {
1289 pp_reg = PP_CONTROL;
bedd4dba
JN
1290 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1291 panel_pipe = PIPE_B;
ea0760cf
JB
1292 }
1293
1294 val = I915_READ(pp_reg);
1295 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1296 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1297 locked = false;
1298
e2c719b7 1299 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1300 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1301 pipe_name(pipe));
ea0760cf
JB
1302}
1303
93ce0ba6
JN
1304static void assert_cursor(struct drm_i915_private *dev_priv,
1305 enum pipe pipe, bool state)
1306{
1307 struct drm_device *dev = dev_priv->dev;
1308 bool cur_state;
1309
d9d82081 1310 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1311 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1312 else
5efb3e28 1313 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1314
e2c719b7 1315 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1316 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1317 pipe_name(pipe), state_string(state), state_string(cur_state));
1318}
1319#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1320#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1321
b840d907
JB
1322void assert_pipe(struct drm_i915_private *dev_priv,
1323 enum pipe pipe, bool state)
b24e7179
JB
1324{
1325 int reg;
1326 u32 val;
63d7bbe9 1327 bool cur_state;
702e7a56
PZ
1328 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1329 pipe);
b24e7179 1330
b6b5d049
VS
1331 /* if we need the pipe quirk it must be always on */
1332 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1333 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1334 state = true;
1335
f458ebbc 1336 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1337 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1338 cur_state = false;
1339 } else {
1340 reg = PIPECONF(cpu_transcoder);
1341 val = I915_READ(reg);
1342 cur_state = !!(val & PIPECONF_ENABLE);
1343 }
1344
e2c719b7 1345 I915_STATE_WARN(cur_state != state,
63d7bbe9 1346 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1347 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1348}
1349
931872fc
CW
1350static void assert_plane(struct drm_i915_private *dev_priv,
1351 enum plane plane, bool state)
b24e7179
JB
1352{
1353 int reg;
1354 u32 val;
931872fc 1355 bool cur_state;
b24e7179
JB
1356
1357 reg = DSPCNTR(plane);
1358 val = I915_READ(reg);
931872fc 1359 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1360 I915_STATE_WARN(cur_state != state,
931872fc
CW
1361 "plane %c assertion failure (expected %s, current %s)\n",
1362 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1363}
1364
931872fc
CW
1365#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1366#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1367
b24e7179
JB
1368static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1369 enum pipe pipe)
1370{
653e1026 1371 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1372 int reg, i;
1373 u32 val;
1374 int cur_pipe;
1375
653e1026
VS
1376 /* Primary planes are fixed to pipes on gen4+ */
1377 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1378 reg = DSPCNTR(pipe);
1379 val = I915_READ(reg);
e2c719b7 1380 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1381 "plane %c assertion failure, should be disabled but not\n",
1382 plane_name(pipe));
19ec1358 1383 return;
28c05794 1384 }
19ec1358 1385
b24e7179 1386 /* Need to check both planes against the pipe */
055e393f 1387 for_each_pipe(dev_priv, i) {
b24e7179
JB
1388 reg = DSPCNTR(i);
1389 val = I915_READ(reg);
1390 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1391 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1392 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1393 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1394 plane_name(i), pipe_name(pipe));
b24e7179
JB
1395 }
1396}
1397
19332d7a
JB
1398static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1399 enum pipe pipe)
1400{
20674eef 1401 struct drm_device *dev = dev_priv->dev;
1fe47785 1402 int reg, sprite;
19332d7a
JB
1403 u32 val;
1404
7feb8b88 1405 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1406 for_each_sprite(dev_priv, pipe, sprite) {
7feb8b88 1407 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1408 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1409 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1410 sprite, pipe_name(pipe));
1411 }
1412 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1413 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 1414 reg = SPCNTR(pipe, sprite);
20674eef 1415 val = I915_READ(reg);
e2c719b7 1416 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1417 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1418 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1419 }
1420 } else if (INTEL_INFO(dev)->gen >= 7) {
1421 reg = SPRCTL(pipe);
19332d7a 1422 val = I915_READ(reg);
e2c719b7 1423 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1424 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1425 plane_name(pipe), pipe_name(pipe));
1426 } else if (INTEL_INFO(dev)->gen >= 5) {
1427 reg = DVSCNTR(pipe);
19332d7a 1428 val = I915_READ(reg);
e2c719b7 1429 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1430 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1431 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1432 }
1433}
1434
08c71e5e
VS
1435static void assert_vblank_disabled(struct drm_crtc *crtc)
1436{
e2c719b7 1437 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1438 drm_crtc_vblank_put(crtc);
1439}
1440
89eff4be 1441static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1442{
1443 u32 val;
1444 bool enabled;
1445
e2c719b7 1446 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1447
92f2584a
JB
1448 val = I915_READ(PCH_DREF_CONTROL);
1449 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1450 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1451 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1452}
1453
ab9412ba
DV
1454static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1455 enum pipe pipe)
92f2584a
JB
1456{
1457 int reg;
1458 u32 val;
1459 bool enabled;
1460
ab9412ba 1461 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1462 val = I915_READ(reg);
1463 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1464 I915_STATE_WARN(enabled,
9db4a9c7
JB
1465 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1466 pipe_name(pipe));
92f2584a
JB
1467}
1468
4e634389
KP
1469static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1471{
1472 if ((val & DP_PORT_EN) == 0)
1473 return false;
1474
1475 if (HAS_PCH_CPT(dev_priv->dev)) {
1476 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1477 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1478 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1479 return false;
44f37d1f
CML
1480 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1481 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1482 return false;
f0575e92
KP
1483 } else {
1484 if ((val & DP_PIPE_MASK) != (pipe << 30))
1485 return false;
1486 }
1487 return true;
1488}
1489
1519b995
KP
1490static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1491 enum pipe pipe, u32 val)
1492{
dc0fa718 1493 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1494 return false;
1495
1496 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1497 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1498 return false;
44f37d1f
CML
1499 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1500 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1501 return false;
1519b995 1502 } else {
dc0fa718 1503 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1504 return false;
1505 }
1506 return true;
1507}
1508
1509static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1510 enum pipe pipe, u32 val)
1511{
1512 if ((val & LVDS_PORT_EN) == 0)
1513 return false;
1514
1515 if (HAS_PCH_CPT(dev_priv->dev)) {
1516 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1517 return false;
1518 } else {
1519 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1520 return false;
1521 }
1522 return true;
1523}
1524
1525static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1526 enum pipe pipe, u32 val)
1527{
1528 if ((val & ADPA_DAC_ENABLE) == 0)
1529 return false;
1530 if (HAS_PCH_CPT(dev_priv->dev)) {
1531 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1532 return false;
1533 } else {
1534 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1535 return false;
1536 }
1537 return true;
1538}
1539
291906f1 1540static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1541 enum pipe pipe, int reg, u32 port_sel)
291906f1 1542{
47a05eca 1543 u32 val = I915_READ(reg);
e2c719b7 1544 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1545 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1546 reg, pipe_name(pipe));
de9a35ab 1547
e2c719b7 1548 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1549 && (val & DP_PIPEB_SELECT),
de9a35ab 1550 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1551}
1552
1553static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1554 enum pipe pipe, int reg)
1555{
47a05eca 1556 u32 val = I915_READ(reg);
e2c719b7 1557 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1558 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1559 reg, pipe_name(pipe));
de9a35ab 1560
e2c719b7 1561 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1562 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1563 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1564}
1565
1566static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1567 enum pipe pipe)
1568{
1569 int reg;
1570 u32 val;
291906f1 1571
f0575e92
KP
1572 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1573 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1574 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1575
1576 reg = PCH_ADPA;
1577 val = I915_READ(reg);
e2c719b7 1578 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1579 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1580 pipe_name(pipe));
291906f1
JB
1581
1582 reg = PCH_LVDS;
1583 val = I915_READ(reg);
e2c719b7 1584 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1585 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1586 pipe_name(pipe));
291906f1 1587
e2debe91
PZ
1588 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1589 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1590 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1591}
1592
40e9cf64
JB
1593static void intel_init_dpio(struct drm_device *dev)
1594{
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597 if (!IS_VALLEYVIEW(dev))
1598 return;
1599
a09caddd
CML
1600 /*
1601 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1602 * CHV x1 PHY (DP/HDMI D)
1603 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1604 */
1605 if (IS_CHERRYVIEW(dev)) {
1606 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1607 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1608 } else {
1609 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1610 }
5382f5f3
JB
1611}
1612
d288f65f 1613static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1614 const struct intel_crtc_state *pipe_config)
87442f73 1615{
426115cf
DV
1616 struct drm_device *dev = crtc->base.dev;
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1618 int reg = DPLL(crtc->pipe);
d288f65f 1619 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1620
426115cf 1621 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1622
1623 /* No really, not for ILK+ */
1624 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1625
1626 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1627 if (IS_MOBILE(dev_priv->dev))
426115cf 1628 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1629
426115cf
DV
1630 I915_WRITE(reg, dpll);
1631 POSTING_READ(reg);
1632 udelay(150);
1633
1634 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1635 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1636
d288f65f 1637 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1638 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1639
1640 /* We do this three times for luck */
426115cf 1641 I915_WRITE(reg, dpll);
87442f73
DV
1642 POSTING_READ(reg);
1643 udelay(150); /* wait for warmup */
426115cf 1644 I915_WRITE(reg, dpll);
87442f73
DV
1645 POSTING_READ(reg);
1646 udelay(150); /* wait for warmup */
426115cf 1647 I915_WRITE(reg, dpll);
87442f73
DV
1648 POSTING_READ(reg);
1649 udelay(150); /* wait for warmup */
1650}
1651
d288f65f 1652static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1653 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1654{
1655 struct drm_device *dev = crtc->base.dev;
1656 struct drm_i915_private *dev_priv = dev->dev_private;
1657 int pipe = crtc->pipe;
1658 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1659 u32 tmp;
1660
1661 assert_pipe_disabled(dev_priv, crtc->pipe);
1662
1663 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1664
a580516d 1665 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1666
1667 /* Enable back the 10bit clock to display controller */
1668 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1669 tmp |= DPIO_DCLKP_EN;
1670 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1671
54433e91
VS
1672 mutex_unlock(&dev_priv->sb_lock);
1673
9d556c99
CML
1674 /*
1675 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1676 */
1677 udelay(1);
1678
1679 /* Enable PLL */
d288f65f 1680 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1681
1682 /* Check PLL is locked */
a11b0703 1683 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1684 DRM_ERROR("PLL %d failed to lock\n", pipe);
1685
a11b0703 1686 /* not sure when this should be written */
d288f65f 1687 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703 1688 POSTING_READ(DPLL_MD(pipe));
9d556c99
CML
1689}
1690
1c4e0274
VS
1691static int intel_num_dvo_pipes(struct drm_device *dev)
1692{
1693 struct intel_crtc *crtc;
1694 int count = 0;
1695
1696 for_each_intel_crtc(dev, crtc)
1697 count += crtc->active &&
409ee761 1698 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1699
1700 return count;
1701}
1702
66e3d5c0 1703static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1704{
66e3d5c0
DV
1705 struct drm_device *dev = crtc->base.dev;
1706 struct drm_i915_private *dev_priv = dev->dev_private;
1707 int reg = DPLL(crtc->pipe);
6e3c9717 1708 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1709
66e3d5c0 1710 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1711
63d7bbe9 1712 /* No really, not for ILK+ */
3d13ef2e 1713 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1714
1715 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1716 if (IS_MOBILE(dev) && !IS_I830(dev))
1717 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1718
1c4e0274
VS
1719 /* Enable DVO 2x clock on both PLLs if necessary */
1720 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1721 /*
1722 * It appears to be important that we don't enable this
1723 * for the current pipe before otherwise configuring the
1724 * PLL. No idea how this should be handled if multiple
1725 * DVO outputs are enabled simultaneosly.
1726 */
1727 dpll |= DPLL_DVO_2X_MODE;
1728 I915_WRITE(DPLL(!crtc->pipe),
1729 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1730 }
66e3d5c0
DV
1731
1732 /* Wait for the clocks to stabilize. */
1733 POSTING_READ(reg);
1734 udelay(150);
1735
1736 if (INTEL_INFO(dev)->gen >= 4) {
1737 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1738 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1739 } else {
1740 /* The pixel multiplier can only be updated once the
1741 * DPLL is enabled and the clocks are stable.
1742 *
1743 * So write it again.
1744 */
1745 I915_WRITE(reg, dpll);
1746 }
63d7bbe9
JB
1747
1748 /* We do this three times for luck */
66e3d5c0 1749 I915_WRITE(reg, dpll);
63d7bbe9
JB
1750 POSTING_READ(reg);
1751 udelay(150); /* wait for warmup */
66e3d5c0 1752 I915_WRITE(reg, dpll);
63d7bbe9
JB
1753 POSTING_READ(reg);
1754 udelay(150); /* wait for warmup */
66e3d5c0 1755 I915_WRITE(reg, dpll);
63d7bbe9
JB
1756 POSTING_READ(reg);
1757 udelay(150); /* wait for warmup */
1758}
1759
1760/**
50b44a44 1761 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1762 * @dev_priv: i915 private structure
1763 * @pipe: pipe PLL to disable
1764 *
1765 * Disable the PLL for @pipe, making sure the pipe is off first.
1766 *
1767 * Note! This is for pre-ILK only.
1768 */
1c4e0274 1769static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1770{
1c4e0274
VS
1771 struct drm_device *dev = crtc->base.dev;
1772 struct drm_i915_private *dev_priv = dev->dev_private;
1773 enum pipe pipe = crtc->pipe;
1774
1775 /* Disable DVO 2x clock on both PLLs if necessary */
1776 if (IS_I830(dev) &&
409ee761 1777 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1c4e0274
VS
1778 intel_num_dvo_pipes(dev) == 1) {
1779 I915_WRITE(DPLL(PIPE_B),
1780 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1781 I915_WRITE(DPLL(PIPE_A),
1782 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1783 }
1784
b6b5d049
VS
1785 /* Don't disable pipe or pipe PLLs if needed */
1786 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1787 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1788 return;
1789
1790 /* Make sure the pipe isn't still relying on us */
1791 assert_pipe_disabled(dev_priv, pipe);
1792
50b44a44
DV
1793 I915_WRITE(DPLL(pipe), 0);
1794 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1795}
1796
f6071166
JB
1797static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1798{
1799 u32 val = 0;
1800
1801 /* Make sure the pipe isn't still relying on us */
1802 assert_pipe_disabled(dev_priv, pipe);
1803
e5cbfbfb
ID
1804 /*
1805 * Leave integrated clock source and reference clock enabled for pipe B.
1806 * The latter is needed for VGA hotplug / manual detection.
1807 */
f6071166 1808 if (pipe == PIPE_B)
e5cbfbfb 1809 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1810 I915_WRITE(DPLL(pipe), val);
1811 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1812
1813}
1814
1815static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1816{
d752048d 1817 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1818 u32 val;
1819
a11b0703
VS
1820 /* Make sure the pipe isn't still relying on us */
1821 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1822
a11b0703 1823 /* Set PLL en = 0 */
d17ec4ce 1824 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1825 if (pipe != PIPE_A)
1826 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1827 I915_WRITE(DPLL(pipe), val);
1828 POSTING_READ(DPLL(pipe));
d752048d 1829
a580516d 1830 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1831
1832 /* Disable 10bit clock to display controller */
1833 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1834 val &= ~DPIO_DCLKP_EN;
1835 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1836
61407f6d
VS
1837 /* disable left/right clock distribution */
1838 if (pipe != PIPE_B) {
1839 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1840 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1841 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1842 } else {
1843 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1844 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1845 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1846 }
1847
a580516d 1848 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1849}
1850
e4607fcf 1851void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1852 struct intel_digital_port *dport,
1853 unsigned int expected_mask)
89b667f8
JB
1854{
1855 u32 port_mask;
00fc31b7 1856 int dpll_reg;
89b667f8 1857
e4607fcf
CML
1858 switch (dport->port) {
1859 case PORT_B:
89b667f8 1860 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1861 dpll_reg = DPLL(0);
e4607fcf
CML
1862 break;
1863 case PORT_C:
89b667f8 1864 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1865 dpll_reg = DPLL(0);
9b6de0a1 1866 expected_mask <<= 4;
00fc31b7
CML
1867 break;
1868 case PORT_D:
1869 port_mask = DPLL_PORTD_READY_MASK;
1870 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1871 break;
1872 default:
1873 BUG();
1874 }
89b667f8 1875
9b6de0a1
VS
1876 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1877 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1878 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1879}
1880
b14b1055
DV
1881static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1882{
1883 struct drm_device *dev = crtc->base.dev;
1884 struct drm_i915_private *dev_priv = dev->dev_private;
1885 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1886
be19f0ff
CW
1887 if (WARN_ON(pll == NULL))
1888 return;
1889
3e369b76 1890 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1891 if (pll->active == 0) {
1892 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1893 WARN_ON(pll->on);
1894 assert_shared_dpll_disabled(dev_priv, pll);
1895
1896 pll->mode_set(dev_priv, pll);
1897 }
1898}
1899
92f2584a 1900/**
85b3894f 1901 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1902 * @dev_priv: i915 private structure
1903 * @pipe: pipe PLL to enable
1904 *
1905 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1906 * drives the transcoder clock.
1907 */
85b3894f 1908static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1909{
3d13ef2e
DL
1910 struct drm_device *dev = crtc->base.dev;
1911 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1912 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1913
87a875bb 1914 if (WARN_ON(pll == NULL))
48da64a8
CW
1915 return;
1916
3e369b76 1917 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1918 return;
ee7b9f93 1919
74dd6928 1920 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1921 pll->name, pll->active, pll->on,
e2b78267 1922 crtc->base.base.id);
92f2584a 1923
cdbd2316
DV
1924 if (pll->active++) {
1925 WARN_ON(!pll->on);
e9d6944e 1926 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1927 return;
1928 }
f4a091c7 1929 WARN_ON(pll->on);
ee7b9f93 1930
bd2bb1b9
PZ
1931 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1932
46edb027 1933 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1934 pll->enable(dev_priv, pll);
ee7b9f93 1935 pll->on = true;
92f2584a
JB
1936}
1937
f6daaec2 1938static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1939{
3d13ef2e
DL
1940 struct drm_device *dev = crtc->base.dev;
1941 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1942 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1943
92f2584a 1944 /* PCH only available on ILK+ */
3d13ef2e 1945 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1946 if (WARN_ON(pll == NULL))
ee7b9f93 1947 return;
92f2584a 1948
3e369b76 1949 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1950 return;
7a419866 1951
46edb027
DV
1952 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1953 pll->name, pll->active, pll->on,
e2b78267 1954 crtc->base.base.id);
7a419866 1955
48da64a8 1956 if (WARN_ON(pll->active == 0)) {
e9d6944e 1957 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1958 return;
1959 }
1960
e9d6944e 1961 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1962 WARN_ON(!pll->on);
cdbd2316 1963 if (--pll->active)
7a419866 1964 return;
ee7b9f93 1965
46edb027 1966 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1967 pll->disable(dev_priv, pll);
ee7b9f93 1968 pll->on = false;
bd2bb1b9
PZ
1969
1970 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1971}
1972
b8a4f404
PZ
1973static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1974 enum pipe pipe)
040484af 1975{
23670b32 1976 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1977 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1979 uint32_t reg, val, pipeconf_val;
040484af
JB
1980
1981 /* PCH only available on ILK+ */
55522f37 1982 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1983
1984 /* Make sure PCH DPLL is enabled */
e72f9fbf 1985 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1986 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1987
1988 /* FDI must be feeding us bits for PCH ports */
1989 assert_fdi_tx_enabled(dev_priv, pipe);
1990 assert_fdi_rx_enabled(dev_priv, pipe);
1991
23670b32
DV
1992 if (HAS_PCH_CPT(dev)) {
1993 /* Workaround: Set the timing override bit before enabling the
1994 * pch transcoder. */
1995 reg = TRANS_CHICKEN2(pipe);
1996 val = I915_READ(reg);
1997 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1998 I915_WRITE(reg, val);
59c859d6 1999 }
23670b32 2000
ab9412ba 2001 reg = PCH_TRANSCONF(pipe);
040484af 2002 val = I915_READ(reg);
5f7f726d 2003 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
2004
2005 if (HAS_PCH_IBX(dev_priv->dev)) {
2006 /*
2007 * make the BPC in transcoder be consistent with
2008 * that in pipeconf reg.
2009 */
dfd07d72
DV
2010 val &= ~PIPECONF_BPC_MASK;
2011 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 2012 }
5f7f726d
PZ
2013
2014 val &= ~TRANS_INTERLACE_MASK;
2015 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 2016 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 2017 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
2018 val |= TRANS_LEGACY_INTERLACED_ILK;
2019 else
2020 val |= TRANS_INTERLACED;
5f7f726d
PZ
2021 else
2022 val |= TRANS_PROGRESSIVE;
2023
040484af
JB
2024 I915_WRITE(reg, val | TRANS_ENABLE);
2025 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 2026 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
2027}
2028
8fb033d7 2029static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 2030 enum transcoder cpu_transcoder)
040484af 2031{
8fb033d7 2032 u32 val, pipeconf_val;
8fb033d7
PZ
2033
2034 /* PCH only available on ILK+ */
55522f37 2035 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 2036
8fb033d7 2037 /* FDI must be feeding us bits for PCH ports */
1a240d4d 2038 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 2039 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 2040
223a6fdf
PZ
2041 /* Workaround: set timing override bit. */
2042 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2043 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
2044 I915_WRITE(_TRANSA_CHICKEN2, val);
2045
25f3ef11 2046 val = TRANS_ENABLE;
937bb610 2047 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 2048
9a76b1c6
PZ
2049 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2050 PIPECONF_INTERLACED_ILK)
a35f2679 2051 val |= TRANS_INTERLACED;
8fb033d7
PZ
2052 else
2053 val |= TRANS_PROGRESSIVE;
2054
ab9412ba
DV
2055 I915_WRITE(LPT_TRANSCONF, val);
2056 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 2057 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
2058}
2059
b8a4f404
PZ
2060static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2061 enum pipe pipe)
040484af 2062{
23670b32
DV
2063 struct drm_device *dev = dev_priv->dev;
2064 uint32_t reg, val;
040484af
JB
2065
2066 /* FDI relies on the transcoder */
2067 assert_fdi_tx_disabled(dev_priv, pipe);
2068 assert_fdi_rx_disabled(dev_priv, pipe);
2069
291906f1
JB
2070 /* Ports must be off as well */
2071 assert_pch_ports_disabled(dev_priv, pipe);
2072
ab9412ba 2073 reg = PCH_TRANSCONF(pipe);
040484af
JB
2074 val = I915_READ(reg);
2075 val &= ~TRANS_ENABLE;
2076 I915_WRITE(reg, val);
2077 /* wait for PCH transcoder off, transcoder state */
2078 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2079 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
2080
2081 if (!HAS_PCH_IBX(dev)) {
2082 /* Workaround: Clear the timing override chicken bit again. */
2083 reg = TRANS_CHICKEN2(pipe);
2084 val = I915_READ(reg);
2085 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2086 I915_WRITE(reg, val);
2087 }
040484af
JB
2088}
2089
ab4d966c 2090static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2091{
8fb033d7
PZ
2092 u32 val;
2093
ab9412ba 2094 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2095 val &= ~TRANS_ENABLE;
ab9412ba 2096 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2097 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2098 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2099 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2100
2101 /* Workaround: clear timing override bit. */
2102 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2103 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2104 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2105}
2106
b24e7179 2107/**
309cfea8 2108 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2109 * @crtc: crtc responsible for the pipe
b24e7179 2110 *
0372264a 2111 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2112 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2113 */
e1fdc473 2114static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2115{
0372264a
PZ
2116 struct drm_device *dev = crtc->base.dev;
2117 struct drm_i915_private *dev_priv = dev->dev_private;
2118 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2119 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2120 pipe);
1a240d4d 2121 enum pipe pch_transcoder;
b24e7179
JB
2122 int reg;
2123 u32 val;
2124
58c6eaa2 2125 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2126 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2127 assert_sprites_disabled(dev_priv, pipe);
2128
681e5811 2129 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2130 pch_transcoder = TRANSCODER_A;
2131 else
2132 pch_transcoder = pipe;
2133
b24e7179
JB
2134 /*
2135 * A pipe without a PLL won't actually be able to drive bits from
2136 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2137 * need the check.
2138 */
50360403 2139 if (HAS_GMCH_DISPLAY(dev_priv->dev))
409ee761 2140 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
23538ef1
JN
2141 assert_dsi_pll_enabled(dev_priv);
2142 else
2143 assert_pll_enabled(dev_priv, pipe);
040484af 2144 else {
6e3c9717 2145 if (crtc->config->has_pch_encoder) {
040484af 2146 /* if driving the PCH, we need FDI enabled */
cc391bbb 2147 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2148 assert_fdi_tx_pll_enabled(dev_priv,
2149 (enum pipe) cpu_transcoder);
040484af
JB
2150 }
2151 /* FIXME: assert CPU port conditions for SNB+ */
2152 }
b24e7179 2153
702e7a56 2154 reg = PIPECONF(cpu_transcoder);
b24e7179 2155 val = I915_READ(reg);
7ad25d48 2156 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2157 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2158 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2159 return;
7ad25d48 2160 }
00d70b15
CW
2161
2162 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2163 POSTING_READ(reg);
b24e7179
JB
2164}
2165
2166/**
309cfea8 2167 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2168 * @crtc: crtc whose pipes is to be disabled
b24e7179 2169 *
575f7ab7
VS
2170 * Disable the pipe of @crtc, making sure that various hardware
2171 * specific requirements are met, if applicable, e.g. plane
2172 * disabled, panel fitter off, etc.
b24e7179
JB
2173 *
2174 * Will wait until the pipe has shut down before returning.
2175 */
575f7ab7 2176static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2177{
575f7ab7 2178 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2179 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2180 enum pipe pipe = crtc->pipe;
b24e7179
JB
2181 int reg;
2182 u32 val;
2183
2184 /*
2185 * Make sure planes won't keep trying to pump pixels to us,
2186 * or we might hang the display.
2187 */
2188 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2189 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2190 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2191
702e7a56 2192 reg = PIPECONF(cpu_transcoder);
b24e7179 2193 val = I915_READ(reg);
00d70b15
CW
2194 if ((val & PIPECONF_ENABLE) == 0)
2195 return;
2196
67adc644
VS
2197 /*
2198 * Double wide has implications for planes
2199 * so best keep it disabled when not needed.
2200 */
6e3c9717 2201 if (crtc->config->double_wide)
67adc644
VS
2202 val &= ~PIPECONF_DOUBLE_WIDE;
2203
2204 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2205 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2206 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2207 val &= ~PIPECONF_ENABLE;
2208
2209 I915_WRITE(reg, val);
2210 if ((val & PIPECONF_ENABLE) == 0)
2211 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2212}
2213
2214/**
262ca2b0 2215 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2216 * @plane: plane to be enabled
2217 * @crtc: crtc for the plane
b24e7179 2218 *
fdd508a6 2219 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2220 */
fdd508a6
VS
2221static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2222 struct drm_crtc *crtc)
b24e7179 2223{
fdd508a6
VS
2224 struct drm_device *dev = plane->dev;
2225 struct drm_i915_private *dev_priv = dev->dev_private;
2226 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2227
2228 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2229 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b70709a6 2230 to_intel_plane_state(plane->state)->visible = true;
939c2fe8 2231
fdd508a6
VS
2232 dev_priv->display.update_primary_plane(crtc, plane->fb,
2233 crtc->x, crtc->y);
b24e7179
JB
2234}
2235
693db184
CW
2236static bool need_vtd_wa(struct drm_device *dev)
2237{
2238#ifdef CONFIG_INTEL_IOMMU
2239 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2240 return true;
2241#endif
2242 return false;
2243}
2244
50470bb0 2245unsigned int
6761dd31
TU
2246intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2247 uint64_t fb_format_modifier)
a57ce0b2 2248{
6761dd31
TU
2249 unsigned int tile_height;
2250 uint32_t pixel_bytes;
a57ce0b2 2251
b5d0e9bf
DL
2252 switch (fb_format_modifier) {
2253 case DRM_FORMAT_MOD_NONE:
2254 tile_height = 1;
2255 break;
2256 case I915_FORMAT_MOD_X_TILED:
2257 tile_height = IS_GEN2(dev) ? 16 : 8;
2258 break;
2259 case I915_FORMAT_MOD_Y_TILED:
2260 tile_height = 32;
2261 break;
2262 case I915_FORMAT_MOD_Yf_TILED:
6761dd31
TU
2263 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2264 switch (pixel_bytes) {
b5d0e9bf 2265 default:
6761dd31 2266 case 1:
b5d0e9bf
DL
2267 tile_height = 64;
2268 break;
6761dd31
TU
2269 case 2:
2270 case 4:
b5d0e9bf
DL
2271 tile_height = 32;
2272 break;
6761dd31 2273 case 8:
b5d0e9bf
DL
2274 tile_height = 16;
2275 break;
6761dd31 2276 case 16:
b5d0e9bf
DL
2277 WARN_ONCE(1,
2278 "128-bit pixels are not supported for display!");
2279 tile_height = 16;
2280 break;
2281 }
2282 break;
2283 default:
2284 MISSING_CASE(fb_format_modifier);
2285 tile_height = 1;
2286 break;
2287 }
091df6cb 2288
6761dd31
TU
2289 return tile_height;
2290}
2291
2292unsigned int
2293intel_fb_align_height(struct drm_device *dev, unsigned int height,
2294 uint32_t pixel_format, uint64_t fb_format_modifier)
2295{
2296 return ALIGN(height, intel_tile_height(dev, pixel_format,
2297 fb_format_modifier));
a57ce0b2
JB
2298}
2299
f64b98cd
TU
2300static int
2301intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2302 const struct drm_plane_state *plane_state)
2303{
50470bb0 2304 struct intel_rotation_info *info = &view->rotation_info;
50470bb0 2305
f64b98cd
TU
2306 *view = i915_ggtt_view_normal;
2307
50470bb0
TU
2308 if (!plane_state)
2309 return 0;
2310
121920fa 2311 if (!intel_rotation_90_or_270(plane_state->rotation))
50470bb0
TU
2312 return 0;
2313
9abc4648 2314 *view = i915_ggtt_view_rotated;
50470bb0
TU
2315
2316 info->height = fb->height;
2317 info->pixel_format = fb->pixel_format;
2318 info->pitch = fb->pitches[0];
2319 info->fb_modifier = fb->modifier[0];
2320
f64b98cd
TU
2321 return 0;
2322}
2323
127bd2ac 2324int
850c4cdc
TU
2325intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2326 struct drm_framebuffer *fb,
82bc3b2d 2327 const struct drm_plane_state *plane_state,
a4872ba6 2328 struct intel_engine_cs *pipelined)
6b95a207 2329{
850c4cdc 2330 struct drm_device *dev = fb->dev;
ce453d81 2331 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2332 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2333 struct i915_ggtt_view view;
6b95a207
KH
2334 u32 alignment;
2335 int ret;
2336
ebcdd39e
MR
2337 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2338
7b911adc
TU
2339 switch (fb->modifier[0]) {
2340 case DRM_FORMAT_MOD_NONE:
1fada4cc
DL
2341 if (INTEL_INFO(dev)->gen >= 9)
2342 alignment = 256 * 1024;
2343 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2344 alignment = 128 * 1024;
a6c45cf0 2345 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2346 alignment = 4 * 1024;
2347 else
2348 alignment = 64 * 1024;
6b95a207 2349 break;
7b911adc 2350 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2351 if (INTEL_INFO(dev)->gen >= 9)
2352 alignment = 256 * 1024;
2353 else {
2354 /* pin() will align the object as required by fence */
2355 alignment = 0;
2356 }
6b95a207 2357 break;
7b911adc 2358 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2359 case I915_FORMAT_MOD_Yf_TILED:
2360 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361 "Y tiling bo slipped through, driver bug!\n"))
2362 return -EINVAL;
2363 alignment = 1 * 1024 * 1024;
2364 break;
6b95a207 2365 default:
7b911adc
TU
2366 MISSING_CASE(fb->modifier[0]);
2367 return -EINVAL;
6b95a207
KH
2368 }
2369
f64b98cd
TU
2370 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371 if (ret)
2372 return ret;
2373
693db184
CW
2374 /* Note that the w/a also requires 64 PTE of padding following the
2375 * bo. We currently fill all unused PTE with the shadow page and so
2376 * we should always have valid PTE following the scanout preventing
2377 * the VT-d warning.
2378 */
2379 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380 alignment = 256 * 1024;
2381
d6dd6843
PZ
2382 /*
2383 * Global gtt pte registers are special registers which actually forward
2384 * writes to a chunk of system memory. Which means that there is no risk
2385 * that the register values disappear as soon as we call
2386 * intel_runtime_pm_put(), so it is correct to wrap only the
2387 * pin/unpin/fence and not more.
2388 */
2389 intel_runtime_pm_get(dev_priv);
2390
ce453d81 2391 dev_priv->mm.interruptible = false;
e6617330 2392 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
f64b98cd 2393 &view);
48b956c5 2394 if (ret)
ce453d81 2395 goto err_interruptible;
6b95a207
KH
2396
2397 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398 * fence, whereas 965+ only requires a fence if using
2399 * framebuffer compression. For simplicity, we always install
2400 * a fence as the cost is not that onerous.
2401 */
06d98131 2402 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2403 if (ret)
2404 goto err_unpin;
1690e1eb 2405
9a5a53b3 2406 i915_gem_object_pin_fence(obj);
6b95a207 2407
ce453d81 2408 dev_priv->mm.interruptible = true;
d6dd6843 2409 intel_runtime_pm_put(dev_priv);
6b95a207 2410 return 0;
48b956c5
CW
2411
2412err_unpin:
f64b98cd 2413 i915_gem_object_unpin_from_display_plane(obj, &view);
ce453d81
CW
2414err_interruptible:
2415 dev_priv->mm.interruptible = true;
d6dd6843 2416 intel_runtime_pm_put(dev_priv);
48b956c5 2417 return ret;
6b95a207
KH
2418}
2419
82bc3b2d
TU
2420static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2421 const struct drm_plane_state *plane_state)
1690e1eb 2422{
82bc3b2d 2423 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd
TU
2424 struct i915_ggtt_view view;
2425 int ret;
82bc3b2d 2426
ebcdd39e
MR
2427 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2428
f64b98cd
TU
2429 ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2430 WARN_ONCE(ret, "Couldn't get view from plane state!");
2431
1690e1eb 2432 i915_gem_object_unpin_fence(obj);
f64b98cd 2433 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2434}
2435
c2c75131
DV
2436/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2437 * is assumed to be a power-of-two. */
bc752862
CW
2438unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2439 unsigned int tiling_mode,
2440 unsigned int cpp,
2441 unsigned int pitch)
c2c75131 2442{
bc752862
CW
2443 if (tiling_mode != I915_TILING_NONE) {
2444 unsigned int tile_rows, tiles;
c2c75131 2445
bc752862
CW
2446 tile_rows = *y / 8;
2447 *y %= 8;
c2c75131 2448
bc752862
CW
2449 tiles = *x / (512/cpp);
2450 *x %= 512/cpp;
2451
2452 return tile_rows * pitch * 8 + tiles * 4096;
2453 } else {
2454 unsigned int offset;
2455
2456 offset = *y * pitch + *x * cpp;
2457 *y = 0;
2458 *x = (offset & 4095) / cpp;
2459 return offset & -4096;
2460 }
c2c75131
DV
2461}
2462
b35d63fa 2463static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2464{
2465 switch (format) {
2466 case DISPPLANE_8BPP:
2467 return DRM_FORMAT_C8;
2468 case DISPPLANE_BGRX555:
2469 return DRM_FORMAT_XRGB1555;
2470 case DISPPLANE_BGRX565:
2471 return DRM_FORMAT_RGB565;
2472 default:
2473 case DISPPLANE_BGRX888:
2474 return DRM_FORMAT_XRGB8888;
2475 case DISPPLANE_RGBX888:
2476 return DRM_FORMAT_XBGR8888;
2477 case DISPPLANE_BGRX101010:
2478 return DRM_FORMAT_XRGB2101010;
2479 case DISPPLANE_RGBX101010:
2480 return DRM_FORMAT_XBGR2101010;
2481 }
2482}
2483
bc8d7dff
DL
2484static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2485{
2486 switch (format) {
2487 case PLANE_CTL_FORMAT_RGB_565:
2488 return DRM_FORMAT_RGB565;
2489 default:
2490 case PLANE_CTL_FORMAT_XRGB_8888:
2491 if (rgb_order) {
2492 if (alpha)
2493 return DRM_FORMAT_ABGR8888;
2494 else
2495 return DRM_FORMAT_XBGR8888;
2496 } else {
2497 if (alpha)
2498 return DRM_FORMAT_ARGB8888;
2499 else
2500 return DRM_FORMAT_XRGB8888;
2501 }
2502 case PLANE_CTL_FORMAT_XRGB_2101010:
2503 if (rgb_order)
2504 return DRM_FORMAT_XBGR2101010;
2505 else
2506 return DRM_FORMAT_XRGB2101010;
2507 }
2508}
2509
5724dbd1 2510static bool
f6936e29
DV
2511intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2512 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2513{
2514 struct drm_device *dev = crtc->base.dev;
2515 struct drm_i915_gem_object *obj = NULL;
2516 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2517 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2518 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2519 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2520 PAGE_SIZE);
2521
2522 size_aligned -= base_aligned;
46f297fb 2523
ff2652ea
CW
2524 if (plane_config->size == 0)
2525 return false;
2526
f37b5c2b
DV
2527 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2528 base_aligned,
2529 base_aligned,
2530 size_aligned);
46f297fb 2531 if (!obj)
484b41dd 2532 return false;
46f297fb 2533
49af449b
DL
2534 obj->tiling_mode = plane_config->tiling;
2535 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2536 obj->stride = fb->pitches[0];
46f297fb 2537
6bf129df
DL
2538 mode_cmd.pixel_format = fb->pixel_format;
2539 mode_cmd.width = fb->width;
2540 mode_cmd.height = fb->height;
2541 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2542 mode_cmd.modifier[0] = fb->modifier[0];
2543 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2544
2545 mutex_lock(&dev->struct_mutex);
6bf129df 2546 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2547 &mode_cmd, obj)) {
46f297fb
JB
2548 DRM_DEBUG_KMS("intel fb init failed\n");
2549 goto out_unref_obj;
2550 }
46f297fb 2551 mutex_unlock(&dev->struct_mutex);
484b41dd 2552
f6936e29 2553 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2554 return true;
46f297fb
JB
2555
2556out_unref_obj:
2557 drm_gem_object_unreference(&obj->base);
2558 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2559 return false;
2560}
2561
afd65eb4
MR
2562/* Update plane->state->fb to match plane->fb after driver-internal updates */
2563static void
2564update_state_fb(struct drm_plane *plane)
2565{
2566 if (plane->fb == plane->state->fb)
2567 return;
2568
2569 if (plane->state->fb)
2570 drm_framebuffer_unreference(plane->state->fb);
2571 plane->state->fb = plane->fb;
2572 if (plane->state->fb)
2573 drm_framebuffer_reference(plane->state->fb);
2574}
2575
5724dbd1 2576static void
f6936e29
DV
2577intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2578 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2579{
2580 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2581 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2582 struct drm_crtc *c;
2583 struct intel_crtc *i;
2ff8fde1 2584 struct drm_i915_gem_object *obj;
88595ac9
DV
2585 struct drm_plane *primary = intel_crtc->base.primary;
2586 struct drm_framebuffer *fb;
484b41dd 2587
2d14030b 2588 if (!plane_config->fb)
484b41dd
JB
2589 return;
2590
f6936e29 2591 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2592 fb = &plane_config->fb->base;
2593 goto valid_fb;
f55548b5 2594 }
484b41dd 2595
2d14030b 2596 kfree(plane_config->fb);
484b41dd
JB
2597
2598 /*
2599 * Failed to alloc the obj, check to see if we should share
2600 * an fb with another CRTC instead
2601 */
70e1e0ec 2602 for_each_crtc(dev, c) {
484b41dd
JB
2603 i = to_intel_crtc(c);
2604
2605 if (c == &intel_crtc->base)
2606 continue;
2607
2ff8fde1
MR
2608 if (!i->active)
2609 continue;
2610
88595ac9
DV
2611 fb = c->primary->fb;
2612 if (!fb)
484b41dd
JB
2613 continue;
2614
88595ac9 2615 obj = intel_fb_obj(fb);
2ff8fde1 2616 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2617 drm_framebuffer_reference(fb);
2618 goto valid_fb;
484b41dd
JB
2619 }
2620 }
88595ac9
DV
2621
2622 return;
2623
2624valid_fb:
2625 obj = intel_fb_obj(fb);
2626 if (obj->tiling_mode != I915_TILING_NONE)
2627 dev_priv->preserve_bios_swizzle = true;
2628
2629 primary->fb = fb;
2630 primary->state->crtc = &intel_crtc->base;
2631 primary->crtc = &intel_crtc->base;
2632 update_state_fb(primary);
2633 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
46f297fb
JB
2634}
2635
29b9bde6
DV
2636static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2637 struct drm_framebuffer *fb,
2638 int x, int y)
81255565
JB
2639{
2640 struct drm_device *dev = crtc->dev;
2641 struct drm_i915_private *dev_priv = dev->dev_private;
2642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2643 struct drm_plane *primary = crtc->primary;
2644 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2645 struct drm_i915_gem_object *obj;
81255565 2646 int plane = intel_crtc->plane;
e506a0c6 2647 unsigned long linear_offset;
81255565 2648 u32 dspcntr;
f45651ba 2649 u32 reg = DSPCNTR(plane);
48404c1e 2650 int pixel_size;
f45651ba 2651
b70709a6 2652 if (!visible || !fb) {
fdd508a6
VS
2653 I915_WRITE(reg, 0);
2654 if (INTEL_INFO(dev)->gen >= 4)
2655 I915_WRITE(DSPSURF(plane), 0);
2656 else
2657 I915_WRITE(DSPADDR(plane), 0);
2658 POSTING_READ(reg);
2659 return;
2660 }
2661
c9ba6fad
VS
2662 obj = intel_fb_obj(fb);
2663 if (WARN_ON(obj == NULL))
2664 return;
2665
2666 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2667
f45651ba
VS
2668 dspcntr = DISPPLANE_GAMMA_ENABLE;
2669
fdd508a6 2670 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2671
2672 if (INTEL_INFO(dev)->gen < 4) {
2673 if (intel_crtc->pipe == PIPE_B)
2674 dspcntr |= DISPPLANE_SEL_PIPE_B;
2675
2676 /* pipesrc and dspsize control the size that is scaled from,
2677 * which should always be the user's requested size.
2678 */
2679 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2680 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2681 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2682 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2683 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2684 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2685 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2686 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2687 I915_WRITE(PRIMPOS(plane), 0);
2688 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2689 }
81255565 2690
57779d06
VS
2691 switch (fb->pixel_format) {
2692 case DRM_FORMAT_C8:
81255565
JB
2693 dspcntr |= DISPPLANE_8BPP;
2694 break;
57779d06 2695 case DRM_FORMAT_XRGB1555:
57779d06 2696 dspcntr |= DISPPLANE_BGRX555;
81255565 2697 break;
57779d06
VS
2698 case DRM_FORMAT_RGB565:
2699 dspcntr |= DISPPLANE_BGRX565;
2700 break;
2701 case DRM_FORMAT_XRGB8888:
57779d06
VS
2702 dspcntr |= DISPPLANE_BGRX888;
2703 break;
2704 case DRM_FORMAT_XBGR8888:
57779d06
VS
2705 dspcntr |= DISPPLANE_RGBX888;
2706 break;
2707 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2708 dspcntr |= DISPPLANE_BGRX101010;
2709 break;
2710 case DRM_FORMAT_XBGR2101010:
57779d06 2711 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2712 break;
2713 default:
baba133a 2714 BUG();
81255565 2715 }
57779d06 2716
f45651ba
VS
2717 if (INTEL_INFO(dev)->gen >= 4 &&
2718 obj->tiling_mode != I915_TILING_NONE)
2719 dspcntr |= DISPPLANE_TILED;
81255565 2720
de1aa629
VS
2721 if (IS_G4X(dev))
2722 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2723
b9897127 2724 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2725
c2c75131
DV
2726 if (INTEL_INFO(dev)->gen >= 4) {
2727 intel_crtc->dspaddr_offset =
bc752862 2728 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2729 pixel_size,
bc752862 2730 fb->pitches[0]);
c2c75131
DV
2731 linear_offset -= intel_crtc->dspaddr_offset;
2732 } else {
e506a0c6 2733 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2734 }
e506a0c6 2735
8e7d688b 2736 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2737 dspcntr |= DISPPLANE_ROTATE_180;
2738
6e3c9717
ACO
2739 x += (intel_crtc->config->pipe_src_w - 1);
2740 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2741
2742 /* Finding the last pixel of the last line of the display
2743 data and adding to linear_offset*/
2744 linear_offset +=
6e3c9717
ACO
2745 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2746 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2747 }
2748
2749 I915_WRITE(reg, dspcntr);
2750
01f2c773 2751 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2752 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2753 I915_WRITE(DSPSURF(plane),
2754 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2755 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2756 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2757 } else
f343c5f6 2758 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2759 POSTING_READ(reg);
17638cd6
JB
2760}
2761
29b9bde6
DV
2762static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2763 struct drm_framebuffer *fb,
2764 int x, int y)
17638cd6
JB
2765{
2766 struct drm_device *dev = crtc->dev;
2767 struct drm_i915_private *dev_priv = dev->dev_private;
2768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2769 struct drm_plane *primary = crtc->primary;
2770 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2771 struct drm_i915_gem_object *obj;
17638cd6 2772 int plane = intel_crtc->plane;
e506a0c6 2773 unsigned long linear_offset;
17638cd6 2774 u32 dspcntr;
f45651ba 2775 u32 reg = DSPCNTR(plane);
48404c1e 2776 int pixel_size;
f45651ba 2777
b70709a6 2778 if (!visible || !fb) {
fdd508a6
VS
2779 I915_WRITE(reg, 0);
2780 I915_WRITE(DSPSURF(plane), 0);
2781 POSTING_READ(reg);
2782 return;
2783 }
2784
c9ba6fad
VS
2785 obj = intel_fb_obj(fb);
2786 if (WARN_ON(obj == NULL))
2787 return;
2788
2789 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2790
f45651ba
VS
2791 dspcntr = DISPPLANE_GAMMA_ENABLE;
2792
fdd508a6 2793 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2794
2795 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2796 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2797
57779d06
VS
2798 switch (fb->pixel_format) {
2799 case DRM_FORMAT_C8:
17638cd6
JB
2800 dspcntr |= DISPPLANE_8BPP;
2801 break;
57779d06
VS
2802 case DRM_FORMAT_RGB565:
2803 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2804 break;
57779d06 2805 case DRM_FORMAT_XRGB8888:
57779d06
VS
2806 dspcntr |= DISPPLANE_BGRX888;
2807 break;
2808 case DRM_FORMAT_XBGR8888:
57779d06
VS
2809 dspcntr |= DISPPLANE_RGBX888;
2810 break;
2811 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2812 dspcntr |= DISPPLANE_BGRX101010;
2813 break;
2814 case DRM_FORMAT_XBGR2101010:
57779d06 2815 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2816 break;
2817 default:
baba133a 2818 BUG();
17638cd6
JB
2819 }
2820
2821 if (obj->tiling_mode != I915_TILING_NONE)
2822 dspcntr |= DISPPLANE_TILED;
17638cd6 2823
f45651ba 2824 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2825 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2826
b9897127 2827 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2828 intel_crtc->dspaddr_offset =
bc752862 2829 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2830 pixel_size,
bc752862 2831 fb->pitches[0]);
c2c75131 2832 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2833 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2834 dspcntr |= DISPPLANE_ROTATE_180;
2835
2836 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2837 x += (intel_crtc->config->pipe_src_w - 1);
2838 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2839
2840 /* Finding the last pixel of the last line of the display
2841 data and adding to linear_offset*/
2842 linear_offset +=
6e3c9717
ACO
2843 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2844 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2845 }
2846 }
2847
2848 I915_WRITE(reg, dspcntr);
17638cd6 2849
01f2c773 2850 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2851 I915_WRITE(DSPSURF(plane),
2852 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2853 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2854 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2855 } else {
2856 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2857 I915_WRITE(DSPLINOFF(plane), linear_offset);
2858 }
17638cd6 2859 POSTING_READ(reg);
17638cd6
JB
2860}
2861
b321803d
DL
2862u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2863 uint32_t pixel_format)
2864{
2865 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2866
2867 /*
2868 * The stride is either expressed as a multiple of 64 bytes
2869 * chunks for linear buffers or in number of tiles for tiled
2870 * buffers.
2871 */
2872 switch (fb_modifier) {
2873 case DRM_FORMAT_MOD_NONE:
2874 return 64;
2875 case I915_FORMAT_MOD_X_TILED:
2876 if (INTEL_INFO(dev)->gen == 2)
2877 return 128;
2878 return 512;
2879 case I915_FORMAT_MOD_Y_TILED:
2880 /* No need to check for old gens and Y tiling since this is
2881 * about the display engine and those will be blocked before
2882 * we get here.
2883 */
2884 return 128;
2885 case I915_FORMAT_MOD_Yf_TILED:
2886 if (bits_per_pixel == 8)
2887 return 64;
2888 else
2889 return 128;
2890 default:
2891 MISSING_CASE(fb_modifier);
2892 return 64;
2893 }
2894}
2895
121920fa
TU
2896unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2897 struct drm_i915_gem_object *obj)
2898{
9abc4648 2899 const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
121920fa
TU
2900
2901 if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
9abc4648 2902 view = &i915_ggtt_view_rotated;
121920fa
TU
2903
2904 return i915_gem_obj_ggtt_offset_view(obj, view);
2905}
2906
a1b2278e
CK
2907/*
2908 * This function detaches (aka. unbinds) unused scalers in hardware
2909 */
2910void skl_detach_scalers(struct intel_crtc *intel_crtc)
2911{
2912 struct drm_device *dev;
2913 struct drm_i915_private *dev_priv;
2914 struct intel_crtc_scaler_state *scaler_state;
2915 int i;
2916
2917 if (!intel_crtc || !intel_crtc->config)
2918 return;
2919
2920 dev = intel_crtc->base.dev;
2921 dev_priv = dev->dev_private;
2922 scaler_state = &intel_crtc->config->scaler_state;
2923
2924 /* loop through and disable scalers that aren't in use */
2925 for (i = 0; i < intel_crtc->num_scalers; i++) {
2926 if (!scaler_state->scalers[i].in_use) {
2927 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2928 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2929 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2930 DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2931 intel_crtc->base.base.id, intel_crtc->pipe, i);
2932 }
2933 }
2934}
2935
6156a456 2936u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2937{
6156a456 2938 switch (pixel_format) {
d161cf7a 2939 case DRM_FORMAT_C8:
c34ce3d1 2940 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2941 case DRM_FORMAT_RGB565:
c34ce3d1 2942 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2943 case DRM_FORMAT_XBGR8888:
c34ce3d1 2944 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2945 case DRM_FORMAT_XRGB8888:
c34ce3d1 2946 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2947 /*
2948 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2949 * to be already pre-multiplied. We need to add a knob (or a different
2950 * DRM_FORMAT) for user-space to configure that.
2951 */
f75fb42a 2952 case DRM_FORMAT_ABGR8888:
c34ce3d1 2953 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 2954 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 2955 case DRM_FORMAT_ARGB8888:
c34ce3d1 2956 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 2957 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 2958 case DRM_FORMAT_XRGB2101010:
c34ce3d1 2959 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 2960 case DRM_FORMAT_XBGR2101010:
c34ce3d1 2961 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 2962 case DRM_FORMAT_YUYV:
c34ce3d1 2963 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 2964 case DRM_FORMAT_YVYU:
c34ce3d1 2965 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 2966 case DRM_FORMAT_UYVY:
c34ce3d1 2967 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 2968 case DRM_FORMAT_VYUY:
c34ce3d1 2969 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 2970 default:
4249eeef 2971 MISSING_CASE(pixel_format);
70d21f0e 2972 }
8cfcba41 2973
c34ce3d1 2974 return 0;
6156a456 2975}
70d21f0e 2976
6156a456
CK
2977u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2978{
6156a456 2979 switch (fb_modifier) {
30af77c4 2980 case DRM_FORMAT_MOD_NONE:
70d21f0e 2981 break;
30af77c4 2982 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 2983 return PLANE_CTL_TILED_X;
b321803d 2984 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 2985 return PLANE_CTL_TILED_Y;
b321803d 2986 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 2987 return PLANE_CTL_TILED_YF;
70d21f0e 2988 default:
6156a456 2989 MISSING_CASE(fb_modifier);
70d21f0e 2990 }
8cfcba41 2991
c34ce3d1 2992 return 0;
6156a456 2993}
70d21f0e 2994
6156a456
CK
2995u32 skl_plane_ctl_rotation(unsigned int rotation)
2996{
3b7a5119 2997 switch (rotation) {
6156a456
CK
2998 case BIT(DRM_ROTATE_0):
2999 break;
1e8df167
SJ
3000 /*
3001 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3002 * while i915 HW rotation is clockwise, thats why this swapping.
3003 */
3b7a5119 3004 case BIT(DRM_ROTATE_90):
1e8df167 3005 return PLANE_CTL_ROTATE_270;
3b7a5119 3006 case BIT(DRM_ROTATE_180):
c34ce3d1 3007 return PLANE_CTL_ROTATE_180;
3b7a5119 3008 case BIT(DRM_ROTATE_270):
1e8df167 3009 return PLANE_CTL_ROTATE_90;
6156a456
CK
3010 default:
3011 MISSING_CASE(rotation);
3012 }
3013
c34ce3d1 3014 return 0;
6156a456
CK
3015}
3016
3017static void skylake_update_primary_plane(struct drm_crtc *crtc,
3018 struct drm_framebuffer *fb,
3019 int x, int y)
3020{
3021 struct drm_device *dev = crtc->dev;
3022 struct drm_i915_private *dev_priv = dev->dev_private;
3023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
3024 struct drm_plane *plane = crtc->primary;
3025 bool visible = to_intel_plane_state(plane->state)->visible;
6156a456
CK
3026 struct drm_i915_gem_object *obj;
3027 int pipe = intel_crtc->pipe;
3028 u32 plane_ctl, stride_div, stride;
3029 u32 tile_height, plane_offset, plane_size;
3030 unsigned int rotation;
3031 int x_offset, y_offset;
3032 unsigned long surf_addr;
6156a456
CK
3033 struct intel_crtc_state *crtc_state = intel_crtc->config;
3034 struct intel_plane_state *plane_state;
3035 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3036 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3037 int scaler_id = -1;
3038
6156a456
CK
3039 plane_state = to_intel_plane_state(plane->state);
3040
b70709a6 3041 if (!visible || !fb) {
6156a456
CK
3042 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3043 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3044 POSTING_READ(PLANE_CTL(pipe, 0));
3045 return;
3b7a5119 3046 }
70d21f0e 3047
6156a456
CK
3048 plane_ctl = PLANE_CTL_ENABLE |
3049 PLANE_CTL_PIPE_GAMMA_ENABLE |
3050 PLANE_CTL_PIPE_CSC_ENABLE;
3051
3052 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3053 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3054 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3055
3056 rotation = plane->state->rotation;
3057 plane_ctl |= skl_plane_ctl_rotation(rotation);
3058
b321803d
DL
3059 obj = intel_fb_obj(fb);
3060 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3061 fb->pixel_format);
3b7a5119
SJ
3062 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3063
6156a456
CK
3064 /*
3065 * FIXME: intel_plane_state->src, dst aren't set when transitional
3066 * update_plane helpers are called from legacy paths.
3067 * Once full atomic crtc is available, below check can be avoided.
3068 */
3069 if (drm_rect_width(&plane_state->src)) {
3070 scaler_id = plane_state->scaler_id;
3071 src_x = plane_state->src.x1 >> 16;
3072 src_y = plane_state->src.y1 >> 16;
3073 src_w = drm_rect_width(&plane_state->src) >> 16;
3074 src_h = drm_rect_height(&plane_state->src) >> 16;
3075 dst_x = plane_state->dst.x1;
3076 dst_y = plane_state->dst.y1;
3077 dst_w = drm_rect_width(&plane_state->dst);
3078 dst_h = drm_rect_height(&plane_state->dst);
3079
3080 WARN_ON(x != src_x || y != src_y);
3081 } else {
3082 src_w = intel_crtc->config->pipe_src_w;
3083 src_h = intel_crtc->config->pipe_src_h;
3084 }
3085
3b7a5119
SJ
3086 if (intel_rotation_90_or_270(rotation)) {
3087 /* stride = Surface height in tiles */
2614f17d 3088 tile_height = intel_tile_height(dev, fb->pixel_format,
3b7a5119
SJ
3089 fb->modifier[0]);
3090 stride = DIV_ROUND_UP(fb->height, tile_height);
6156a456 3091 x_offset = stride * tile_height - y - src_h;
3b7a5119 3092 y_offset = x;
6156a456 3093 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3094 } else {
3095 stride = fb->pitches[0] / stride_div;
3096 x_offset = x;
3097 y_offset = y;
6156a456 3098 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3099 }
3100 plane_offset = y_offset << 16 | x_offset;
b321803d 3101
70d21f0e 3102 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3103 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3104 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3105 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3106
3107 if (scaler_id >= 0) {
3108 uint32_t ps_ctrl = 0;
3109
3110 WARN_ON(!dst_w || !dst_h);
3111 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3112 crtc_state->scaler_state.scalers[scaler_id].mode;
3113 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3114 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3115 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3116 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3117 I915_WRITE(PLANE_POS(pipe, 0), 0);
3118 } else {
3119 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3120 }
3121
121920fa 3122 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3123
3124 POSTING_READ(PLANE_SURF(pipe, 0));
3125}
3126
17638cd6
JB
3127/* Assume fb object is pinned & idle & fenced and just update base pointers */
3128static int
3129intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3130 int x, int y, enum mode_set_atomic state)
3131{
3132 struct drm_device *dev = crtc->dev;
3133 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3134
6b8e6ed0
CW
3135 if (dev_priv->display.disable_fbc)
3136 dev_priv->display.disable_fbc(dev);
81255565 3137
29b9bde6
DV
3138 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3139
3140 return 0;
81255565
JB
3141}
3142
7514747d 3143static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3144{
96a02917
VS
3145 struct drm_crtc *crtc;
3146
70e1e0ec 3147 for_each_crtc(dev, crtc) {
96a02917
VS
3148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3149 enum plane plane = intel_crtc->plane;
3150
3151 intel_prepare_page_flip(dev, plane);
3152 intel_finish_page_flip_plane(dev, plane);
3153 }
7514747d
VS
3154}
3155
3156static void intel_update_primary_planes(struct drm_device *dev)
3157{
3158 struct drm_i915_private *dev_priv = dev->dev_private;
3159 struct drm_crtc *crtc;
96a02917 3160
70e1e0ec 3161 for_each_crtc(dev, crtc) {
96a02917
VS
3162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3163
51fd371b 3164 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
3165 /*
3166 * FIXME: Once we have proper support for primary planes (and
3167 * disabling them without disabling the entire crtc) allow again
66e514c1 3168 * a NULL crtc->primary->fb.
947fdaad 3169 */
f4510a27 3170 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 3171 dev_priv->display.update_primary_plane(crtc,
66e514c1 3172 crtc->primary->fb,
262ca2b0
MR
3173 crtc->x,
3174 crtc->y);
51fd371b 3175 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
3176 }
3177}
3178
ce22dba9
ML
3179void intel_crtc_reset(struct intel_crtc *crtc)
3180{
3181 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3182
3183 if (!crtc->active)
3184 return;
3185
3186 intel_crtc_disable_planes(&crtc->base);
3187 dev_priv->display.crtc_disable(&crtc->base);
3188 dev_priv->display.crtc_enable(&crtc->base);
3189 intel_crtc_enable_planes(&crtc->base);
3190}
3191
7514747d
VS
3192void intel_prepare_reset(struct drm_device *dev)
3193{
f98ce92f
VS
3194 struct drm_i915_private *dev_priv = to_i915(dev);
3195 struct intel_crtc *crtc;
3196
7514747d
VS
3197 /* no reset support for gen2 */
3198 if (IS_GEN2(dev))
3199 return;
3200
3201 /* reset doesn't touch the display */
3202 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3203 return;
3204
3205 drm_modeset_lock_all(dev);
f98ce92f
VS
3206
3207 /*
3208 * Disabling the crtcs gracefully seems nicer. Also the
3209 * g33 docs say we should at least disable all the planes.
3210 */
3211 for_each_intel_crtc(dev, crtc) {
ce22dba9
ML
3212 if (!crtc->active)
3213 continue;
3214
3215 intel_crtc_disable_planes(&crtc->base);
3216 dev_priv->display.crtc_disable(&crtc->base);
f98ce92f 3217 }
7514747d
VS
3218}
3219
3220void intel_finish_reset(struct drm_device *dev)
3221{
3222 struct drm_i915_private *dev_priv = to_i915(dev);
3223
3224 /*
3225 * Flips in the rings will be nuked by the reset,
3226 * so complete all pending flips so that user space
3227 * will get its events and not get stuck.
3228 */
3229 intel_complete_page_flips(dev);
3230
3231 /* no reset support for gen2 */
3232 if (IS_GEN2(dev))
3233 return;
3234
3235 /* reset doesn't touch the display */
3236 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3237 /*
3238 * Flips in the rings have been nuked by the reset,
3239 * so update the base address of all primary
3240 * planes to the the last fb to make sure we're
3241 * showing the correct fb after a reset.
3242 */
3243 intel_update_primary_planes(dev);
3244 return;
3245 }
3246
3247 /*
3248 * The display has been reset as well,
3249 * so need a full re-initialization.
3250 */
3251 intel_runtime_pm_disable_interrupts(dev_priv);
3252 intel_runtime_pm_enable_interrupts(dev_priv);
3253
3254 intel_modeset_init_hw(dev);
3255
3256 spin_lock_irq(&dev_priv->irq_lock);
3257 if (dev_priv->display.hpd_irq_setup)
3258 dev_priv->display.hpd_irq_setup(dev);
3259 spin_unlock_irq(&dev_priv->irq_lock);
3260
3261 intel_modeset_setup_hw_state(dev, true);
3262
3263 intel_hpd_init(dev_priv);
3264
3265 drm_modeset_unlock_all(dev);
3266}
3267
2e2f351d 3268static void
14667a4b
CW
3269intel_finish_fb(struct drm_framebuffer *old_fb)
3270{
2ff8fde1 3271 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2e2f351d 3272 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
14667a4b
CW
3273 bool was_interruptible = dev_priv->mm.interruptible;
3274 int ret;
3275
14667a4b
CW
3276 /* Big Hammer, we also need to ensure that any pending
3277 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3278 * current scanout is retired before unpinning the old
2e2f351d
CW
3279 * framebuffer. Note that we rely on userspace rendering
3280 * into the buffer attached to the pipe they are waiting
3281 * on. If not, userspace generates a GPU hang with IPEHR
3282 * point to the MI_WAIT_FOR_EVENT.
14667a4b
CW
3283 *
3284 * This should only fail upon a hung GPU, in which case we
3285 * can safely continue.
3286 */
3287 dev_priv->mm.interruptible = false;
2e2f351d 3288 ret = i915_gem_object_wait_rendering(obj, true);
14667a4b
CW
3289 dev_priv->mm.interruptible = was_interruptible;
3290
2e2f351d 3291 WARN_ON(ret);
14667a4b
CW
3292}
3293
7d5e3799
CW
3294static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3295{
3296 struct drm_device *dev = crtc->dev;
3297 struct drm_i915_private *dev_priv = dev->dev_private;
3298 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3299 bool pending;
3300
3301 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3302 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3303 return false;
3304
5e2d7afc 3305 spin_lock_irq(&dev->event_lock);
7d5e3799 3306 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3307 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3308
3309 return pending;
3310}
3311
e30e8f75
GP
3312static void intel_update_pipe_size(struct intel_crtc *crtc)
3313{
3314 struct drm_device *dev = crtc->base.dev;
3315 struct drm_i915_private *dev_priv = dev->dev_private;
3316 const struct drm_display_mode *adjusted_mode;
3317
3318 if (!i915.fastboot)
3319 return;
3320
3321 /*
3322 * Update pipe size and adjust fitter if needed: the reason for this is
3323 * that in compute_mode_changes we check the native mode (not the pfit
3324 * mode) to see if we can flip rather than do a full mode set. In the
3325 * fastboot case, we'll flip, but if we don't update the pipesrc and
3326 * pfit state, we'll end up with a big fb scanned out into the wrong
3327 * sized surface.
3328 *
3329 * To fix this properly, we need to hoist the checks up into
3330 * compute_mode_changes (or above), check the actual pfit state and
3331 * whether the platform allows pfit disable with pipe active, and only
3332 * then update the pipesrc and pfit state, even on the flip path.
3333 */
3334
6e3c9717 3335 adjusted_mode = &crtc->config->base.adjusted_mode;
e30e8f75
GP
3336
3337 I915_WRITE(PIPESRC(crtc->pipe),
3338 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3339 (adjusted_mode->crtc_vdisplay - 1));
6e3c9717 3340 if (!crtc->config->pch_pfit.enabled &&
409ee761
ACO
3341 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3342 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
e30e8f75
GP
3343 I915_WRITE(PF_CTL(crtc->pipe), 0);
3344 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3345 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3346 }
6e3c9717
ACO
3347 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3348 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
e30e8f75
GP
3349}
3350
5e84e1a4
ZW
3351static void intel_fdi_normal_train(struct drm_crtc *crtc)
3352{
3353 struct drm_device *dev = crtc->dev;
3354 struct drm_i915_private *dev_priv = dev->dev_private;
3355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3356 int pipe = intel_crtc->pipe;
3357 u32 reg, temp;
3358
3359 /* enable normal train */
3360 reg = FDI_TX_CTL(pipe);
3361 temp = I915_READ(reg);
61e499bf 3362 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3363 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3364 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3365 } else {
3366 temp &= ~FDI_LINK_TRAIN_NONE;
3367 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3368 }
5e84e1a4
ZW
3369 I915_WRITE(reg, temp);
3370
3371 reg = FDI_RX_CTL(pipe);
3372 temp = I915_READ(reg);
3373 if (HAS_PCH_CPT(dev)) {
3374 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3375 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3376 } else {
3377 temp &= ~FDI_LINK_TRAIN_NONE;
3378 temp |= FDI_LINK_TRAIN_NONE;
3379 }
3380 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3381
3382 /* wait one idle pattern time */
3383 POSTING_READ(reg);
3384 udelay(1000);
357555c0
JB
3385
3386 /* IVB wants error correction enabled */
3387 if (IS_IVYBRIDGE(dev))
3388 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3389 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3390}
3391
8db9d77b
ZW
3392/* The FDI link training functions for ILK/Ibexpeak. */
3393static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3394{
3395 struct drm_device *dev = crtc->dev;
3396 struct drm_i915_private *dev_priv = dev->dev_private;
3397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3398 int pipe = intel_crtc->pipe;
5eddb70b 3399 u32 reg, temp, tries;
8db9d77b 3400
1c8562f6 3401 /* FDI needs bits from pipe first */
0fc932b8 3402 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3403
e1a44743
AJ
3404 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3405 for train result */
5eddb70b
CW
3406 reg = FDI_RX_IMR(pipe);
3407 temp = I915_READ(reg);
e1a44743
AJ
3408 temp &= ~FDI_RX_SYMBOL_LOCK;
3409 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3410 I915_WRITE(reg, temp);
3411 I915_READ(reg);
e1a44743
AJ
3412 udelay(150);
3413
8db9d77b 3414 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3415 reg = FDI_TX_CTL(pipe);
3416 temp = I915_READ(reg);
627eb5a3 3417 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3418 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3419 temp &= ~FDI_LINK_TRAIN_NONE;
3420 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3421 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3422
5eddb70b
CW
3423 reg = FDI_RX_CTL(pipe);
3424 temp = I915_READ(reg);
8db9d77b
ZW
3425 temp &= ~FDI_LINK_TRAIN_NONE;
3426 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3427 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3428
3429 POSTING_READ(reg);
8db9d77b
ZW
3430 udelay(150);
3431
5b2adf89 3432 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3433 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3434 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3435 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3436
5eddb70b 3437 reg = FDI_RX_IIR(pipe);
e1a44743 3438 for (tries = 0; tries < 5; tries++) {
5eddb70b 3439 temp = I915_READ(reg);
8db9d77b
ZW
3440 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3441
3442 if ((temp & FDI_RX_BIT_LOCK)) {
3443 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3444 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3445 break;
3446 }
8db9d77b 3447 }
e1a44743 3448 if (tries == 5)
5eddb70b 3449 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3450
3451 /* Train 2 */
5eddb70b
CW
3452 reg = FDI_TX_CTL(pipe);
3453 temp = I915_READ(reg);
8db9d77b
ZW
3454 temp &= ~FDI_LINK_TRAIN_NONE;
3455 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3456 I915_WRITE(reg, temp);
8db9d77b 3457
5eddb70b
CW
3458 reg = FDI_RX_CTL(pipe);
3459 temp = I915_READ(reg);
8db9d77b
ZW
3460 temp &= ~FDI_LINK_TRAIN_NONE;
3461 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3462 I915_WRITE(reg, temp);
8db9d77b 3463
5eddb70b
CW
3464 POSTING_READ(reg);
3465 udelay(150);
8db9d77b 3466
5eddb70b 3467 reg = FDI_RX_IIR(pipe);
e1a44743 3468 for (tries = 0; tries < 5; tries++) {
5eddb70b 3469 temp = I915_READ(reg);
8db9d77b
ZW
3470 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3471
3472 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3473 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3474 DRM_DEBUG_KMS("FDI train 2 done.\n");
3475 break;
3476 }
8db9d77b 3477 }
e1a44743 3478 if (tries == 5)
5eddb70b 3479 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3480
3481 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3482
8db9d77b
ZW
3483}
3484
0206e353 3485static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3486 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3487 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3488 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3489 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3490};
3491
3492/* The FDI link training functions for SNB/Cougarpoint. */
3493static void gen6_fdi_link_train(struct drm_crtc *crtc)
3494{
3495 struct drm_device *dev = crtc->dev;
3496 struct drm_i915_private *dev_priv = dev->dev_private;
3497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3498 int pipe = intel_crtc->pipe;
fa37d39e 3499 u32 reg, temp, i, retry;
8db9d77b 3500
e1a44743
AJ
3501 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3502 for train result */
5eddb70b
CW
3503 reg = FDI_RX_IMR(pipe);
3504 temp = I915_READ(reg);
e1a44743
AJ
3505 temp &= ~FDI_RX_SYMBOL_LOCK;
3506 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3507 I915_WRITE(reg, temp);
3508
3509 POSTING_READ(reg);
e1a44743
AJ
3510 udelay(150);
3511
8db9d77b 3512 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3513 reg = FDI_TX_CTL(pipe);
3514 temp = I915_READ(reg);
627eb5a3 3515 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3516 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3517 temp &= ~FDI_LINK_TRAIN_NONE;
3518 temp |= FDI_LINK_TRAIN_PATTERN_1;
3519 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3520 /* SNB-B */
3521 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3522 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3523
d74cf324
DV
3524 I915_WRITE(FDI_RX_MISC(pipe),
3525 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3526
5eddb70b
CW
3527 reg = FDI_RX_CTL(pipe);
3528 temp = I915_READ(reg);
8db9d77b
ZW
3529 if (HAS_PCH_CPT(dev)) {
3530 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3531 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3532 } else {
3533 temp &= ~FDI_LINK_TRAIN_NONE;
3534 temp |= FDI_LINK_TRAIN_PATTERN_1;
3535 }
5eddb70b
CW
3536 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3537
3538 POSTING_READ(reg);
8db9d77b
ZW
3539 udelay(150);
3540
0206e353 3541 for (i = 0; i < 4; i++) {
5eddb70b
CW
3542 reg = FDI_TX_CTL(pipe);
3543 temp = I915_READ(reg);
8db9d77b
ZW
3544 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3545 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3546 I915_WRITE(reg, temp);
3547
3548 POSTING_READ(reg);
8db9d77b
ZW
3549 udelay(500);
3550
fa37d39e
SP
3551 for (retry = 0; retry < 5; retry++) {
3552 reg = FDI_RX_IIR(pipe);
3553 temp = I915_READ(reg);
3554 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3555 if (temp & FDI_RX_BIT_LOCK) {
3556 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3557 DRM_DEBUG_KMS("FDI train 1 done.\n");
3558 break;
3559 }
3560 udelay(50);
8db9d77b 3561 }
fa37d39e
SP
3562 if (retry < 5)
3563 break;
8db9d77b
ZW
3564 }
3565 if (i == 4)
5eddb70b 3566 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3567
3568 /* Train 2 */
5eddb70b
CW
3569 reg = FDI_TX_CTL(pipe);
3570 temp = I915_READ(reg);
8db9d77b
ZW
3571 temp &= ~FDI_LINK_TRAIN_NONE;
3572 temp |= FDI_LINK_TRAIN_PATTERN_2;
3573 if (IS_GEN6(dev)) {
3574 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3575 /* SNB-B */
3576 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3577 }
5eddb70b 3578 I915_WRITE(reg, temp);
8db9d77b 3579
5eddb70b
CW
3580 reg = FDI_RX_CTL(pipe);
3581 temp = I915_READ(reg);
8db9d77b
ZW
3582 if (HAS_PCH_CPT(dev)) {
3583 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3584 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3585 } else {
3586 temp &= ~FDI_LINK_TRAIN_NONE;
3587 temp |= FDI_LINK_TRAIN_PATTERN_2;
3588 }
5eddb70b
CW
3589 I915_WRITE(reg, temp);
3590
3591 POSTING_READ(reg);
8db9d77b
ZW
3592 udelay(150);
3593
0206e353 3594 for (i = 0; i < 4; i++) {
5eddb70b
CW
3595 reg = FDI_TX_CTL(pipe);
3596 temp = I915_READ(reg);
8db9d77b
ZW
3597 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3598 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3599 I915_WRITE(reg, temp);
3600
3601 POSTING_READ(reg);
8db9d77b
ZW
3602 udelay(500);
3603
fa37d39e
SP
3604 for (retry = 0; retry < 5; retry++) {
3605 reg = FDI_RX_IIR(pipe);
3606 temp = I915_READ(reg);
3607 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3608 if (temp & FDI_RX_SYMBOL_LOCK) {
3609 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3610 DRM_DEBUG_KMS("FDI train 2 done.\n");
3611 break;
3612 }
3613 udelay(50);
8db9d77b 3614 }
fa37d39e
SP
3615 if (retry < 5)
3616 break;
8db9d77b
ZW
3617 }
3618 if (i == 4)
5eddb70b 3619 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3620
3621 DRM_DEBUG_KMS("FDI train done.\n");
3622}
3623
357555c0
JB
3624/* Manual link training for Ivy Bridge A0 parts */
3625static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3626{
3627 struct drm_device *dev = crtc->dev;
3628 struct drm_i915_private *dev_priv = dev->dev_private;
3629 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3630 int pipe = intel_crtc->pipe;
139ccd3f 3631 u32 reg, temp, i, j;
357555c0
JB
3632
3633 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3634 for train result */
3635 reg = FDI_RX_IMR(pipe);
3636 temp = I915_READ(reg);
3637 temp &= ~FDI_RX_SYMBOL_LOCK;
3638 temp &= ~FDI_RX_BIT_LOCK;
3639 I915_WRITE(reg, temp);
3640
3641 POSTING_READ(reg);
3642 udelay(150);
3643
01a415fd
DV
3644 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3645 I915_READ(FDI_RX_IIR(pipe)));
3646
139ccd3f
JB
3647 /* Try each vswing and preemphasis setting twice before moving on */
3648 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3649 /* disable first in case we need to retry */
3650 reg = FDI_TX_CTL(pipe);
3651 temp = I915_READ(reg);
3652 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3653 temp &= ~FDI_TX_ENABLE;
3654 I915_WRITE(reg, temp);
357555c0 3655
139ccd3f
JB
3656 reg = FDI_RX_CTL(pipe);
3657 temp = I915_READ(reg);
3658 temp &= ~FDI_LINK_TRAIN_AUTO;
3659 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3660 temp &= ~FDI_RX_ENABLE;
3661 I915_WRITE(reg, temp);
357555c0 3662
139ccd3f 3663 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3664 reg = FDI_TX_CTL(pipe);
3665 temp = I915_READ(reg);
139ccd3f 3666 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3667 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3668 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3669 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3670 temp |= snb_b_fdi_train_param[j/2];
3671 temp |= FDI_COMPOSITE_SYNC;
3672 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3673
139ccd3f
JB
3674 I915_WRITE(FDI_RX_MISC(pipe),
3675 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3676
139ccd3f 3677 reg = FDI_RX_CTL(pipe);
357555c0 3678 temp = I915_READ(reg);
139ccd3f
JB
3679 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3680 temp |= FDI_COMPOSITE_SYNC;
3681 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3682
139ccd3f
JB
3683 POSTING_READ(reg);
3684 udelay(1); /* should be 0.5us */
357555c0 3685
139ccd3f
JB
3686 for (i = 0; i < 4; i++) {
3687 reg = FDI_RX_IIR(pipe);
3688 temp = I915_READ(reg);
3689 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3690
139ccd3f
JB
3691 if (temp & FDI_RX_BIT_LOCK ||
3692 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3693 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3694 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3695 i);
3696 break;
3697 }
3698 udelay(1); /* should be 0.5us */
3699 }
3700 if (i == 4) {
3701 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3702 continue;
3703 }
357555c0 3704
139ccd3f 3705 /* Train 2 */
357555c0
JB
3706 reg = FDI_TX_CTL(pipe);
3707 temp = I915_READ(reg);
139ccd3f
JB
3708 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3709 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3710 I915_WRITE(reg, temp);
3711
3712 reg = FDI_RX_CTL(pipe);
3713 temp = I915_READ(reg);
3714 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3715 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3716 I915_WRITE(reg, temp);
3717
3718 POSTING_READ(reg);
139ccd3f 3719 udelay(2); /* should be 1.5us */
357555c0 3720
139ccd3f
JB
3721 for (i = 0; i < 4; i++) {
3722 reg = FDI_RX_IIR(pipe);
3723 temp = I915_READ(reg);
3724 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3725
139ccd3f
JB
3726 if (temp & FDI_RX_SYMBOL_LOCK ||
3727 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3728 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3729 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3730 i);
3731 goto train_done;
3732 }
3733 udelay(2); /* should be 1.5us */
357555c0 3734 }
139ccd3f
JB
3735 if (i == 4)
3736 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3737 }
357555c0 3738
139ccd3f 3739train_done:
357555c0
JB
3740 DRM_DEBUG_KMS("FDI train done.\n");
3741}
3742
88cefb6c 3743static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3744{
88cefb6c 3745 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3746 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3747 int pipe = intel_crtc->pipe;
5eddb70b 3748 u32 reg, temp;
79e53945 3749
c64e311e 3750
c98e9dcf 3751 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3752 reg = FDI_RX_CTL(pipe);
3753 temp = I915_READ(reg);
627eb5a3 3754 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3755 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3756 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3757 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3758
3759 POSTING_READ(reg);
c98e9dcf
JB
3760 udelay(200);
3761
3762 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3763 temp = I915_READ(reg);
3764 I915_WRITE(reg, temp | FDI_PCDCLK);
3765
3766 POSTING_READ(reg);
c98e9dcf
JB
3767 udelay(200);
3768
20749730
PZ
3769 /* Enable CPU FDI TX PLL, always on for Ironlake */
3770 reg = FDI_TX_CTL(pipe);
3771 temp = I915_READ(reg);
3772 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3773 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3774
20749730
PZ
3775 POSTING_READ(reg);
3776 udelay(100);
6be4a607 3777 }
0e23b99d
JB
3778}
3779
88cefb6c
DV
3780static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3781{
3782 struct drm_device *dev = intel_crtc->base.dev;
3783 struct drm_i915_private *dev_priv = dev->dev_private;
3784 int pipe = intel_crtc->pipe;
3785 u32 reg, temp;
3786
3787 /* Switch from PCDclk to Rawclk */
3788 reg = FDI_RX_CTL(pipe);
3789 temp = I915_READ(reg);
3790 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3791
3792 /* Disable CPU FDI TX PLL */
3793 reg = FDI_TX_CTL(pipe);
3794 temp = I915_READ(reg);
3795 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3796
3797 POSTING_READ(reg);
3798 udelay(100);
3799
3800 reg = FDI_RX_CTL(pipe);
3801 temp = I915_READ(reg);
3802 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3803
3804 /* Wait for the clocks to turn off. */
3805 POSTING_READ(reg);
3806 udelay(100);
3807}
3808
0fc932b8
JB
3809static void ironlake_fdi_disable(struct drm_crtc *crtc)
3810{
3811 struct drm_device *dev = crtc->dev;
3812 struct drm_i915_private *dev_priv = dev->dev_private;
3813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814 int pipe = intel_crtc->pipe;
3815 u32 reg, temp;
3816
3817 /* disable CPU FDI tx and PCH FDI rx */
3818 reg = FDI_TX_CTL(pipe);
3819 temp = I915_READ(reg);
3820 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3821 POSTING_READ(reg);
3822
3823 reg = FDI_RX_CTL(pipe);
3824 temp = I915_READ(reg);
3825 temp &= ~(0x7 << 16);
dfd07d72 3826 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3827 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3828
3829 POSTING_READ(reg);
3830 udelay(100);
3831
3832 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3833 if (HAS_PCH_IBX(dev))
6f06ce18 3834 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3835
3836 /* still set train pattern 1 */
3837 reg = FDI_TX_CTL(pipe);
3838 temp = I915_READ(reg);
3839 temp &= ~FDI_LINK_TRAIN_NONE;
3840 temp |= FDI_LINK_TRAIN_PATTERN_1;
3841 I915_WRITE(reg, temp);
3842
3843 reg = FDI_RX_CTL(pipe);
3844 temp = I915_READ(reg);
3845 if (HAS_PCH_CPT(dev)) {
3846 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3847 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3848 } else {
3849 temp &= ~FDI_LINK_TRAIN_NONE;
3850 temp |= FDI_LINK_TRAIN_PATTERN_1;
3851 }
3852 /* BPC in FDI rx is consistent with that in PIPECONF */
3853 temp &= ~(0x07 << 16);
dfd07d72 3854 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3855 I915_WRITE(reg, temp);
3856
3857 POSTING_READ(reg);
3858 udelay(100);
3859}
3860
5dce5b93
CW
3861bool intel_has_pending_fb_unpin(struct drm_device *dev)
3862{
3863 struct intel_crtc *crtc;
3864
3865 /* Note that we don't need to be called with mode_config.lock here
3866 * as our list of CRTC objects is static for the lifetime of the
3867 * device and so cannot disappear as we iterate. Similarly, we can
3868 * happily treat the predicates as racy, atomic checks as userspace
3869 * cannot claim and pin a new fb without at least acquring the
3870 * struct_mutex and so serialising with us.
3871 */
d3fcc808 3872 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3873 if (atomic_read(&crtc->unpin_work_count) == 0)
3874 continue;
3875
3876 if (crtc->unpin_work)
3877 intel_wait_for_vblank(dev, crtc->pipe);
3878
3879 return true;
3880 }
3881
3882 return false;
3883}
3884
d6bbafa1
CW
3885static void page_flip_completed(struct intel_crtc *intel_crtc)
3886{
3887 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3888 struct intel_unpin_work *work = intel_crtc->unpin_work;
3889
3890 /* ensure that the unpin work is consistent wrt ->pending. */
3891 smp_rmb();
3892 intel_crtc->unpin_work = NULL;
3893
3894 if (work->event)
3895 drm_send_vblank_event(intel_crtc->base.dev,
3896 intel_crtc->pipe,
3897 work->event);
3898
3899 drm_crtc_vblank_put(&intel_crtc->base);
3900
3901 wake_up_all(&dev_priv->pending_flip_queue);
3902 queue_work(dev_priv->wq, &work->work);
3903
3904 trace_i915_flip_complete(intel_crtc->plane,
3905 work->pending_flip_obj);
3906}
3907
46a55d30 3908void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3909{
0f91128d 3910 struct drm_device *dev = crtc->dev;
5bb61643 3911 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3912
2c10d571 3913 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3914 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3915 !intel_crtc_has_pending_flip(crtc),
3916 60*HZ) == 0)) {
3917 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3918
5e2d7afc 3919 spin_lock_irq(&dev->event_lock);
9c787942
CW
3920 if (intel_crtc->unpin_work) {
3921 WARN_ONCE(1, "Removing stuck page flip\n");
3922 page_flip_completed(intel_crtc);
3923 }
5e2d7afc 3924 spin_unlock_irq(&dev->event_lock);
9c787942 3925 }
5bb61643 3926
975d568a
CW
3927 if (crtc->primary->fb) {
3928 mutex_lock(&dev->struct_mutex);
3929 intel_finish_fb(crtc->primary->fb);
3930 mutex_unlock(&dev->struct_mutex);
3931 }
e6c3a2a6
CW
3932}
3933
e615efe4
ED
3934/* Program iCLKIP clock to the desired frequency */
3935static void lpt_program_iclkip(struct drm_crtc *crtc)
3936{
3937 struct drm_device *dev = crtc->dev;
3938 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3939 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3940 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3941 u32 temp;
3942
a580516d 3943 mutex_lock(&dev_priv->sb_lock);
09153000 3944
e615efe4
ED
3945 /* It is necessary to ungate the pixclk gate prior to programming
3946 * the divisors, and gate it back when it is done.
3947 */
3948 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3949
3950 /* Disable SSCCTL */
3951 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3952 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3953 SBI_SSCCTL_DISABLE,
3954 SBI_ICLK);
e615efe4
ED
3955
3956 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3957 if (clock == 20000) {
e615efe4
ED
3958 auxdiv = 1;
3959 divsel = 0x41;
3960 phaseinc = 0x20;
3961 } else {
3962 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3963 * but the adjusted_mode->crtc_clock in in KHz. To get the
3964 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3965 * convert the virtual clock precision to KHz here for higher
3966 * precision.
3967 */
3968 u32 iclk_virtual_root_freq = 172800 * 1000;
3969 u32 iclk_pi_range = 64;
3970 u32 desired_divisor, msb_divisor_value, pi_value;
3971
12d7ceed 3972 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3973 msb_divisor_value = desired_divisor / iclk_pi_range;
3974 pi_value = desired_divisor % iclk_pi_range;
3975
3976 auxdiv = 0;
3977 divsel = msb_divisor_value - 2;
3978 phaseinc = pi_value;
3979 }
3980
3981 /* This should not happen with any sane values */
3982 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3983 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3984 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3985 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3986
3987 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3988 clock,
e615efe4
ED
3989 auxdiv,
3990 divsel,
3991 phasedir,
3992 phaseinc);
3993
3994 /* Program SSCDIVINTPHASE6 */
988d6ee8 3995 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3996 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3997 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3998 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3999 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4000 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4001 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 4002 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
4003
4004 /* Program SSCAUXDIV */
988d6ee8 4005 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
4006 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4007 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 4008 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
4009
4010 /* Enable modulator and associated divider */
988d6ee8 4011 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 4012 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 4013 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
4014
4015 /* Wait for initialization time */
4016 udelay(24);
4017
4018 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000 4019
a580516d 4020 mutex_unlock(&dev_priv->sb_lock);
e615efe4
ED
4021}
4022
275f01b2
DV
4023static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4024 enum pipe pch_transcoder)
4025{
4026 struct drm_device *dev = crtc->base.dev;
4027 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4028 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4029
4030 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4031 I915_READ(HTOTAL(cpu_transcoder)));
4032 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4033 I915_READ(HBLANK(cpu_transcoder)));
4034 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4035 I915_READ(HSYNC(cpu_transcoder)));
4036
4037 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4038 I915_READ(VTOTAL(cpu_transcoder)));
4039 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4040 I915_READ(VBLANK(cpu_transcoder)));
4041 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4042 I915_READ(VSYNC(cpu_transcoder)));
4043 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4044 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4045}
4046
003632d9 4047static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4048{
4049 struct drm_i915_private *dev_priv = dev->dev_private;
4050 uint32_t temp;
4051
4052 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4053 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4054 return;
4055
4056 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4057 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4058
003632d9
ACO
4059 temp &= ~FDI_BC_BIFURCATION_SELECT;
4060 if (enable)
4061 temp |= FDI_BC_BIFURCATION_SELECT;
4062
4063 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4064 I915_WRITE(SOUTH_CHICKEN1, temp);
4065 POSTING_READ(SOUTH_CHICKEN1);
4066}
4067
4068static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4069{
4070 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4071
4072 switch (intel_crtc->pipe) {
4073 case PIPE_A:
4074 break;
4075 case PIPE_B:
6e3c9717 4076 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4077 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4078 else
003632d9 4079 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4080
4081 break;
4082 case PIPE_C:
003632d9 4083 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4084
4085 break;
4086 default:
4087 BUG();
4088 }
4089}
4090
f67a559d
JB
4091/*
4092 * Enable PCH resources required for PCH ports:
4093 * - PCH PLLs
4094 * - FDI training & RX/TX
4095 * - update transcoder timings
4096 * - DP transcoding bits
4097 * - transcoder
4098 */
4099static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4100{
4101 struct drm_device *dev = crtc->dev;
4102 struct drm_i915_private *dev_priv = dev->dev_private;
4103 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104 int pipe = intel_crtc->pipe;
ee7b9f93 4105 u32 reg, temp;
2c07245f 4106
ab9412ba 4107 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4108
1fbc0d78
DV
4109 if (IS_IVYBRIDGE(dev))
4110 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4111
cd986abb
DV
4112 /* Write the TU size bits before fdi link training, so that error
4113 * detection works. */
4114 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4115 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4116
c98e9dcf 4117 /* For PCH output, training FDI link */
674cf967 4118 dev_priv->display.fdi_link_train(crtc);
2c07245f 4119
3ad8a208
DV
4120 /* We need to program the right clock selection before writing the pixel
4121 * mutliplier into the DPLL. */
303b81e0 4122 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4123 u32 sel;
4b645f14 4124
c98e9dcf 4125 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4126 temp |= TRANS_DPLL_ENABLE(pipe);
4127 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 4128 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
4129 temp |= sel;
4130 else
4131 temp &= ~sel;
c98e9dcf 4132 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4133 }
5eddb70b 4134
3ad8a208
DV
4135 /* XXX: pch pll's can be enabled any time before we enable the PCH
4136 * transcoder, and we actually should do this to not upset any PCH
4137 * transcoder that already use the clock when we share it.
4138 *
4139 * Note that enable_shared_dpll tries to do the right thing, but
4140 * get_shared_dpll unconditionally resets the pll - we need that to have
4141 * the right LVDS enable sequence. */
85b3894f 4142 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4143
d9b6cb56
JB
4144 /* set transcoder timing, panel must allow it */
4145 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4146 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4147
303b81e0 4148 intel_fdi_normal_train(crtc);
5e84e1a4 4149
c98e9dcf 4150 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4151 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
dfd07d72 4152 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
4153 reg = TRANS_DP_CTL(pipe);
4154 temp = I915_READ(reg);
4155 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4156 TRANS_DP_SYNC_MASK |
4157 TRANS_DP_BPC_MASK);
e3ef4479 4158 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4159 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
4160
4161 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4162 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 4163 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4164 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4165
4166 switch (intel_trans_dp_port_sel(crtc)) {
4167 case PCH_DP_B:
5eddb70b 4168 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
4169 break;
4170 case PCH_DP_C:
5eddb70b 4171 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
4172 break;
4173 case PCH_DP_D:
5eddb70b 4174 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4175 break;
4176 default:
e95d41e1 4177 BUG();
32f9d658 4178 }
2c07245f 4179
5eddb70b 4180 I915_WRITE(reg, temp);
6be4a607 4181 }
b52eb4dc 4182
b8a4f404 4183 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4184}
4185
1507e5bd
PZ
4186static void lpt_pch_enable(struct drm_crtc *crtc)
4187{
4188 struct drm_device *dev = crtc->dev;
4189 struct drm_i915_private *dev_priv = dev->dev_private;
4190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4191 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4192
ab9412ba 4193 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4194
8c52b5e8 4195 lpt_program_iclkip(crtc);
1507e5bd 4196
0540e488 4197 /* Set transcoder timing. */
275f01b2 4198 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4199
937bb610 4200 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4201}
4202
716c2e55 4203void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 4204{
e2b78267 4205 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
4206
4207 if (pll == NULL)
4208 return;
4209
3e369b76 4210 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
1e6f2ddc 4211 WARN(1, "bad %s crtc mask\n", pll->name);
ee7b9f93
JB
4212 return;
4213 }
4214
3e369b76
ACO
4215 pll->config.crtc_mask &= ~(1 << crtc->pipe);
4216 if (pll->config.crtc_mask == 0) {
f4a091c7
DV
4217 WARN_ON(pll->on);
4218 WARN_ON(pll->active);
4219 }
4220
6e3c9717 4221 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
4222}
4223
190f68c5
ACO
4224struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4225 struct intel_crtc_state *crtc_state)
ee7b9f93 4226{
e2b78267 4227 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4228 struct intel_shared_dpll *pll;
e2b78267 4229 enum intel_dpll_id i;
ee7b9f93 4230
98b6bd99
DV
4231 if (HAS_PCH_IBX(dev_priv->dev)) {
4232 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4233 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4234 pll = &dev_priv->shared_dplls[i];
98b6bd99 4235
46edb027
DV
4236 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4237 crtc->base.base.id, pll->name);
98b6bd99 4238
8bd31e67 4239 WARN_ON(pll->new_config->crtc_mask);
f2a69f44 4240
98b6bd99
DV
4241 goto found;
4242 }
4243
bcddf610
S
4244 if (IS_BROXTON(dev_priv->dev)) {
4245 /* PLL is attached to port in bxt */
4246 struct intel_encoder *encoder;
4247 struct intel_digital_port *intel_dig_port;
4248
4249 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4250 if (WARN_ON(!encoder))
4251 return NULL;
4252
4253 intel_dig_port = enc_to_dig_port(&encoder->base);
4254 /* 1:1 mapping between ports and PLLs */
4255 i = (enum intel_dpll_id)intel_dig_port->port;
4256 pll = &dev_priv->shared_dplls[i];
4257 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4258 crtc->base.base.id, pll->name);
4259 WARN_ON(pll->new_config->crtc_mask);
4260
4261 goto found;
4262 }
4263
e72f9fbf
DV
4264 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4265 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4266
4267 /* Only want to check enabled timings first */
8bd31e67 4268 if (pll->new_config->crtc_mask == 0)
ee7b9f93
JB
4269 continue;
4270
190f68c5 4271 if (memcmp(&crtc_state->dpll_hw_state,
8bd31e67
ACO
4272 &pll->new_config->hw_state,
4273 sizeof(pll->new_config->hw_state)) == 0) {
4274 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4275 crtc->base.base.id, pll->name,
8bd31e67
ACO
4276 pll->new_config->crtc_mask,
4277 pll->active);
ee7b9f93
JB
4278 goto found;
4279 }
4280 }
4281
4282 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4283 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4284 pll = &dev_priv->shared_dplls[i];
8bd31e67 4285 if (pll->new_config->crtc_mask == 0) {
46edb027
DV
4286 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4287 crtc->base.base.id, pll->name);
ee7b9f93
JB
4288 goto found;
4289 }
4290 }
4291
4292 return NULL;
4293
4294found:
8bd31e67 4295 if (pll->new_config->crtc_mask == 0)
190f68c5 4296 pll->new_config->hw_state = crtc_state->dpll_hw_state;
f2a69f44 4297
190f68c5 4298 crtc_state->shared_dpll = i;
46edb027
DV
4299 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4300 pipe_name(crtc->pipe));
ee7b9f93 4301
8bd31e67 4302 pll->new_config->crtc_mask |= 1 << crtc->pipe;
e04c7350 4303
ee7b9f93
JB
4304 return pll;
4305}
4306
8bd31e67
ACO
4307/**
4308 * intel_shared_dpll_start_config - start a new PLL staged config
4309 * @dev_priv: DRM device
4310 * @clear_pipes: mask of pipes that will have their PLLs freed
4311 *
4312 * Starts a new PLL staged config, copying the current config but
4313 * releasing the references of pipes specified in clear_pipes.
4314 */
4315static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4316 unsigned clear_pipes)
4317{
4318 struct intel_shared_dpll *pll;
4319 enum intel_dpll_id i;
4320
4321 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4322 pll = &dev_priv->shared_dplls[i];
4323
4324 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4325 GFP_KERNEL);
4326 if (!pll->new_config)
4327 goto cleanup;
4328
4329 pll->new_config->crtc_mask &= ~clear_pipes;
4330 }
4331
4332 return 0;
4333
4334cleanup:
4335 while (--i >= 0) {
4336 pll = &dev_priv->shared_dplls[i];
f354d733 4337 kfree(pll->new_config);
8bd31e67
ACO
4338 pll->new_config = NULL;
4339 }
4340
4341 return -ENOMEM;
4342}
4343
4344static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4345{
4346 struct intel_shared_dpll *pll;
4347 enum intel_dpll_id i;
4348
4349 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4350 pll = &dev_priv->shared_dplls[i];
4351
4352 WARN_ON(pll->new_config == &pll->config);
4353
4354 pll->config = *pll->new_config;
4355 kfree(pll->new_config);
4356 pll->new_config = NULL;
4357 }
4358}
4359
4360static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4361{
4362 struct intel_shared_dpll *pll;
4363 enum intel_dpll_id i;
4364
4365 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4366 pll = &dev_priv->shared_dplls[i];
4367
4368 WARN_ON(pll->new_config == &pll->config);
4369
4370 kfree(pll->new_config);
4371 pll->new_config = NULL;
4372 }
4373}
4374
a1520318 4375static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4376{
4377 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 4378 int dslreg = PIPEDSL(pipe);
d4270e57
JB
4379 u32 temp;
4380
4381 temp = I915_READ(dslreg);
4382 udelay(500);
4383 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4384 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4385 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4386 }
4387}
4388
a1b2278e
CK
4389/**
4390 * skl_update_scaler_users - Stages update to crtc's scaler state
4391 * @intel_crtc: crtc
4392 * @crtc_state: crtc_state
4393 * @plane: plane (NULL indicates crtc is requesting update)
4394 * @plane_state: plane's state
4395 * @force_detach: request unconditional detachment of scaler
4396 *
4397 * This function updates scaler state for requested plane or crtc.
4398 * To request scaler usage update for a plane, caller shall pass plane pointer.
4399 * To request scaler usage update for crtc, caller shall pass plane pointer
4400 * as NULL.
4401 *
4402 * Return
4403 * 0 - scaler_usage updated successfully
4404 * error - requested scaling cannot be supported or other error condition
4405 */
4406int
4407skl_update_scaler_users(
4408 struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4409 struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4410 int force_detach)
4411{
4412 int need_scaling;
4413 int idx;
4414 int src_w, src_h, dst_w, dst_h;
4415 int *scaler_id;
4416 struct drm_framebuffer *fb;
4417 struct intel_crtc_scaler_state *scaler_state;
6156a456 4418 unsigned int rotation;
a1b2278e
CK
4419
4420 if (!intel_crtc || !crtc_state)
4421 return 0;
4422
4423 scaler_state = &crtc_state->scaler_state;
4424
4425 idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4426 fb = intel_plane ? plane_state->base.fb : NULL;
4427
4428 if (intel_plane) {
4429 src_w = drm_rect_width(&plane_state->src) >> 16;
4430 src_h = drm_rect_height(&plane_state->src) >> 16;
4431 dst_w = drm_rect_width(&plane_state->dst);
4432 dst_h = drm_rect_height(&plane_state->dst);
4433 scaler_id = &plane_state->scaler_id;
6156a456 4434 rotation = plane_state->base.rotation;
a1b2278e
CK
4435 } else {
4436 struct drm_display_mode *adjusted_mode =
4437 &crtc_state->base.adjusted_mode;
4438 src_w = crtc_state->pipe_src_w;
4439 src_h = crtc_state->pipe_src_h;
4440 dst_w = adjusted_mode->hdisplay;
4441 dst_h = adjusted_mode->vdisplay;
4442 scaler_id = &scaler_state->scaler_id;
6156a456 4443 rotation = DRM_ROTATE_0;
a1b2278e 4444 }
6156a456
CK
4445
4446 need_scaling = intel_rotation_90_or_270(rotation) ?
4447 (src_h != dst_w || src_w != dst_h):
4448 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4449
4450 /*
4451 * if plane is being disabled or scaler is no more required or force detach
4452 * - free scaler binded to this plane/crtc
4453 * - in order to do this, update crtc->scaler_usage
4454 *
4455 * Here scaler state in crtc_state is set free so that
4456 * scaler can be assigned to other user. Actual register
4457 * update to free the scaler is done in plane/panel-fit programming.
4458 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4459 */
4460 if (force_detach || !need_scaling || (intel_plane &&
4461 (!fb || !plane_state->visible))) {
4462 if (*scaler_id >= 0) {
4463 scaler_state->scaler_users &= ~(1 << idx);
4464 scaler_state->scalers[*scaler_id].in_use = 0;
4465
4466 DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4467 "crtc_state = %p scaler_users = 0x%x\n",
4468 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4469 intel_plane ? intel_plane->base.base.id :
4470 intel_crtc->base.base.id, crtc_state,
4471 scaler_state->scaler_users);
4472 *scaler_id = -1;
4473 }
4474 return 0;
4475 }
4476
4477 /* range checks */
4478 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4479 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4480
4481 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4482 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4483 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4484 "size is out of scaler range\n",
4485 intel_plane ? "PLANE" : "CRTC",
4486 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4487 intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4488 return -EINVAL;
4489 }
4490
4491 /* check colorkey */
225c228a
CK
4492 if (WARN_ON(intel_plane &&
4493 intel_plane->ckey.flags != I915_SET_COLORKEY_NONE)) {
4494 DRM_DEBUG_KMS("PLANE:%d scaling %ux%u->%ux%u not allowed with colorkey",
4495 intel_plane->base.base.id, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4496 return -EINVAL;
4497 }
4498
4499 /* Check src format */
4500 if (intel_plane) {
4501 switch (fb->pixel_format) {
4502 case DRM_FORMAT_RGB565:
4503 case DRM_FORMAT_XBGR8888:
4504 case DRM_FORMAT_XRGB8888:
4505 case DRM_FORMAT_ABGR8888:
4506 case DRM_FORMAT_ARGB8888:
4507 case DRM_FORMAT_XRGB2101010:
a1b2278e 4508 case DRM_FORMAT_XBGR2101010:
a1b2278e
CK
4509 case DRM_FORMAT_YUYV:
4510 case DRM_FORMAT_YVYU:
4511 case DRM_FORMAT_UYVY:
4512 case DRM_FORMAT_VYUY:
4513 break;
4514 default:
4515 DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4516 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4517 return -EINVAL;
4518 }
4519 }
4520
4521 /* mark this plane as a scaler user in crtc_state */
4522 scaler_state->scaler_users |= (1 << idx);
4523 DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4524 "crtc_state = %p scaler_users = 0x%x\n",
4525 intel_plane ? "PLANE" : "CRTC",
4526 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4527 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4528 return 0;
4529}
4530
4531static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
bd2e244f
JB
4532{
4533 struct drm_device *dev = crtc->base.dev;
4534 struct drm_i915_private *dev_priv = dev->dev_private;
4535 int pipe = crtc->pipe;
a1b2278e
CK
4536 struct intel_crtc_scaler_state *scaler_state =
4537 &crtc->config->scaler_state;
4538
4539 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4540
4541 /* To update pfit, first update scaler state */
4542 skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4543 intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4544 skl_detach_scalers(crtc);
4545 if (!enable)
4546 return;
bd2e244f 4547
6e3c9717 4548 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4549 int id;
4550
4551 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4552 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4553 return;
4554 }
4555
4556 id = scaler_state->scaler_id;
4557 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4558 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4559 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4560 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4561
4562 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4563 }
4564}
4565
b074cec8
JB
4566static void ironlake_pfit_enable(struct intel_crtc *crtc)
4567{
4568 struct drm_device *dev = crtc->base.dev;
4569 struct drm_i915_private *dev_priv = dev->dev_private;
4570 int pipe = crtc->pipe;
4571
6e3c9717 4572 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4573 /* Force use of hard-coded filter coefficients
4574 * as some pre-programmed values are broken,
4575 * e.g. x201.
4576 */
4577 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4578 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4579 PF_PIPE_SEL_IVB(pipe));
4580 else
4581 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4582 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4583 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4584 }
4585}
4586
4a3b8769 4587static void intel_enable_sprite_planes(struct drm_crtc *crtc)
bb53d4ae
VS
4588{
4589 struct drm_device *dev = crtc->dev;
4590 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 4591 struct drm_plane *plane;
bb53d4ae
VS
4592 struct intel_plane *intel_plane;
4593
af2b653b
MR
4594 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4595 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
4596 if (intel_plane->pipe == pipe)
4597 intel_plane_restore(&intel_plane->base);
af2b653b 4598 }
bb53d4ae
VS
4599}
4600
20bc8673 4601void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4602{
cea165c3
VS
4603 struct drm_device *dev = crtc->base.dev;
4604 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4605
6e3c9717 4606 if (!crtc->config->ips_enabled)
d77e4531
PZ
4607 return;
4608
cea165c3
VS
4609 /* We can only enable IPS after we enable a plane and wait for a vblank */
4610 intel_wait_for_vblank(dev, crtc->pipe);
4611
d77e4531 4612 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4613 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4614 mutex_lock(&dev_priv->rps.hw_lock);
4615 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4616 mutex_unlock(&dev_priv->rps.hw_lock);
4617 /* Quoting Art Runyan: "its not safe to expect any particular
4618 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4619 * mailbox." Moreover, the mailbox may return a bogus state,
4620 * so we need to just enable it and continue on.
2a114cc1
BW
4621 */
4622 } else {
4623 I915_WRITE(IPS_CTL, IPS_ENABLE);
4624 /* The bit only becomes 1 in the next vblank, so this wait here
4625 * is essentially intel_wait_for_vblank. If we don't have this
4626 * and don't wait for vblanks until the end of crtc_enable, then
4627 * the HW state readout code will complain that the expected
4628 * IPS_CTL value is not the one we read. */
4629 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4630 DRM_ERROR("Timed out waiting for IPS enable\n");
4631 }
d77e4531
PZ
4632}
4633
20bc8673 4634void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4635{
4636 struct drm_device *dev = crtc->base.dev;
4637 struct drm_i915_private *dev_priv = dev->dev_private;
4638
6e3c9717 4639 if (!crtc->config->ips_enabled)
d77e4531
PZ
4640 return;
4641
4642 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4643 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4644 mutex_lock(&dev_priv->rps.hw_lock);
4645 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4646 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4647 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4648 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4649 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4650 } else {
2a114cc1 4651 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4652 POSTING_READ(IPS_CTL);
4653 }
d77e4531
PZ
4654
4655 /* We need to wait for a vblank before we can disable the plane. */
4656 intel_wait_for_vblank(dev, crtc->pipe);
4657}
4658
4659/** Loads the palette/gamma unit for the CRTC with the prepared values */
4660static void intel_crtc_load_lut(struct drm_crtc *crtc)
4661{
4662 struct drm_device *dev = crtc->dev;
4663 struct drm_i915_private *dev_priv = dev->dev_private;
4664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4665 enum pipe pipe = intel_crtc->pipe;
4666 int palreg = PALETTE(pipe);
4667 int i;
4668 bool reenable_ips = false;
4669
4670 /* The clocks have to be on to load the palette. */
83d65738 4671 if (!crtc->state->enable || !intel_crtc->active)
d77e4531
PZ
4672 return;
4673
50360403 4674 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
409ee761 4675 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
d77e4531
PZ
4676 assert_dsi_pll_enabled(dev_priv);
4677 else
4678 assert_pll_enabled(dev_priv, pipe);
4679 }
4680
4681 /* use legacy palette for Ironlake */
7a1db49a 4682 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4683 palreg = LGC_PALETTE(pipe);
4684
4685 /* Workaround : Do not read or write the pipe palette/gamma data while
4686 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4687 */
6e3c9717 4688 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4689 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4690 GAMMA_MODE_MODE_SPLIT)) {
4691 hsw_disable_ips(intel_crtc);
4692 reenable_ips = true;
4693 }
4694
4695 for (i = 0; i < 256; i++) {
4696 I915_WRITE(palreg + 4 * i,
4697 (intel_crtc->lut_r[i] << 16) |
4698 (intel_crtc->lut_g[i] << 8) |
4699 intel_crtc->lut_b[i]);
4700 }
4701
4702 if (reenable_ips)
4703 hsw_enable_ips(intel_crtc);
4704}
4705
7cac945f 4706static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4707{
7cac945f 4708 if (intel_crtc->overlay) {
d3eedb1a
VS
4709 struct drm_device *dev = intel_crtc->base.dev;
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711
4712 mutex_lock(&dev->struct_mutex);
4713 dev_priv->mm.interruptible = false;
4714 (void) intel_overlay_switch_off(intel_crtc->overlay);
4715 dev_priv->mm.interruptible = true;
4716 mutex_unlock(&dev->struct_mutex);
4717 }
4718
4719 /* Let userspace switch the overlay on again. In most cases userspace
4720 * has to recompute where to put it anyway.
4721 */
4722}
4723
87d4300a
ML
4724/**
4725 * intel_post_enable_primary - Perform operations after enabling primary plane
4726 * @crtc: the CRTC whose primary plane was just enabled
4727 *
4728 * Performs potentially sleeping operations that must be done after the primary
4729 * plane is enabled, such as updating FBC and IPS. Note that this may be
4730 * called due to an explicit primary plane update, or due to an implicit
4731 * re-enable that is caused when a sprite plane is updated to no longer
4732 * completely hide the primary plane.
4733 */
4734static void
4735intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4736{
4737 struct drm_device *dev = crtc->dev;
87d4300a 4738 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4740 int pipe = intel_crtc->pipe;
a5c4d7bc 4741
87d4300a
ML
4742 /*
4743 * BDW signals flip done immediately if the plane
4744 * is disabled, even if the plane enable is already
4745 * armed to occur at the next vblank :(
4746 */
4747 if (IS_BROADWELL(dev))
4748 intel_wait_for_vblank(dev, pipe);
a5c4d7bc 4749
87d4300a
ML
4750 /*
4751 * FIXME IPS should be fine as long as one plane is
4752 * enabled, but in practice it seems to have problems
4753 * when going from primary only to sprite only and vice
4754 * versa.
4755 */
a5c4d7bc
VS
4756 hsw_enable_ips(intel_crtc);
4757
4758 mutex_lock(&dev->struct_mutex);
7ff0ebcc 4759 intel_fbc_update(dev);
a5c4d7bc 4760 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4761
4762 /*
87d4300a
ML
4763 * Gen2 reports pipe underruns whenever all planes are disabled.
4764 * So don't enable underrun reporting before at least some planes
4765 * are enabled.
4766 * FIXME: Need to fix the logic to work when we turn off all planes
4767 * but leave the pipe running.
f99d7069 4768 */
87d4300a
ML
4769 if (IS_GEN2(dev))
4770 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4771
4772 /* Underruns don't raise interrupts, so check manually. */
4773 if (HAS_GMCH_DISPLAY(dev))
4774 i9xx_check_fifo_underruns(dev_priv);
a5c4d7bc
VS
4775}
4776
87d4300a
ML
4777/**
4778 * intel_pre_disable_primary - Perform operations before disabling primary plane
4779 * @crtc: the CRTC whose primary plane is to be disabled
4780 *
4781 * Performs potentially sleeping operations that must be done before the
4782 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4783 * be called due to an explicit primary plane update, or due to an implicit
4784 * disable that is caused when a sprite plane completely hides the primary
4785 * plane.
4786 */
4787static void
4788intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4789{
4790 struct drm_device *dev = crtc->dev;
4791 struct drm_i915_private *dev_priv = dev->dev_private;
4792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4793 int pipe = intel_crtc->pipe;
a5c4d7bc 4794
87d4300a
ML
4795 /*
4796 * Gen2 reports pipe underruns whenever all planes are disabled.
4797 * So diasble underrun reporting before all the planes get disabled.
4798 * FIXME: Need to fix the logic to work when we turn off all planes
4799 * but leave the pipe running.
4800 */
4801 if (IS_GEN2(dev))
4802 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4803
87d4300a
ML
4804 /*
4805 * Vblank time updates from the shadow to live plane control register
4806 * are blocked if the memory self-refresh mode is active at that
4807 * moment. So to make sure the plane gets truly disabled, disable
4808 * first the self-refresh mode. The self-refresh enable bit in turn
4809 * will be checked/applied by the HW only at the next frame start
4810 * event which is after the vblank start event, so we need to have a
4811 * wait-for-vblank between disabling the plane and the pipe.
4812 */
4813 if (HAS_GMCH_DISPLAY(dev))
4814 intel_set_memory_cxsr(dev_priv, false);
4815
4816 mutex_lock(&dev->struct_mutex);
e35fef21 4817 if (dev_priv->fbc.crtc == intel_crtc)
7ff0ebcc 4818 intel_fbc_disable(dev);
87d4300a 4819 mutex_unlock(&dev->struct_mutex);
a5c4d7bc 4820
87d4300a
ML
4821 /*
4822 * FIXME IPS should be fine as long as one plane is
4823 * enabled, but in practice it seems to have problems
4824 * when going from primary only to sprite only and vice
4825 * versa.
4826 */
a5c4d7bc 4827 hsw_disable_ips(intel_crtc);
87d4300a
ML
4828}
4829
4830static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4831{
2d847d45
RV
4832 struct drm_device *dev = crtc->dev;
4833 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4834 int pipe = intel_crtc->pipe;
4835
87d4300a
ML
4836 intel_enable_primary_hw_plane(crtc->primary, crtc);
4837 intel_enable_sprite_planes(crtc);
4838 intel_crtc_update_cursor(crtc, true);
87d4300a
ML
4839
4840 intel_post_enable_primary(crtc);
2d847d45
RV
4841
4842 /*
4843 * FIXME: Once we grow proper nuclear flip support out of this we need
4844 * to compute the mask of flip planes precisely. For the time being
4845 * consider this a flip to a NULL plane.
4846 */
4847 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
87d4300a
ML
4848}
4849
4850static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4851{
4852 struct drm_device *dev = crtc->dev;
4853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854 struct intel_plane *intel_plane;
4855 int pipe = intel_crtc->pipe;
4856
63fef06a
DV
4857 if (!intel_crtc->active)
4858 return;
4859
87d4300a
ML
4860 intel_crtc_wait_for_pending_flips(crtc);
4861
4862 intel_pre_disable_primary(crtc);
a5c4d7bc 4863
7cac945f 4864 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8
ML
4865 for_each_intel_plane(dev, intel_plane) {
4866 if (intel_plane->pipe == pipe) {
4867 struct drm_crtc *from = intel_plane->base.crtc;
4868
4869 intel_plane->disable_plane(&intel_plane->base,
4870 from ?: crtc, true);
4871 }
4872 }
f98551ae 4873
f99d7069
DV
4874 /*
4875 * FIXME: Once we grow proper nuclear flip support out of this we need
4876 * to compute the mask of flip planes precisely. For the time being
4877 * consider this a flip to a NULL plane.
4878 */
4879 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4880}
4881
f67a559d
JB
4882static void ironlake_crtc_enable(struct drm_crtc *crtc)
4883{
4884 struct drm_device *dev = crtc->dev;
4885 struct drm_i915_private *dev_priv = dev->dev_private;
4886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4887 struct intel_encoder *encoder;
f67a559d 4888 int pipe = intel_crtc->pipe;
f67a559d 4889
83d65738 4890 WARN_ON(!crtc->state->enable);
08a48469 4891
f67a559d
JB
4892 if (intel_crtc->active)
4893 return;
4894
6e3c9717 4895 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4896 intel_prepare_shared_dpll(intel_crtc);
4897
6e3c9717 4898 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4899 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4900
4901 intel_set_pipe_timings(intel_crtc);
4902
6e3c9717 4903 if (intel_crtc->config->has_pch_encoder) {
29407aab 4904 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4905 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4906 }
4907
4908 ironlake_set_pipeconf(crtc);
4909
f67a559d 4910 intel_crtc->active = true;
8664281b 4911
a72e4c9f
DV
4912 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4913 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4914
f6736a1a 4915 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4916 if (encoder->pre_enable)
4917 encoder->pre_enable(encoder);
f67a559d 4918
6e3c9717 4919 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4920 /* Note: FDI PLL enabling _must_ be done before we enable the
4921 * cpu pipes, hence this is separate from all the other fdi/pch
4922 * enabling. */
88cefb6c 4923 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4924 } else {
4925 assert_fdi_tx_disabled(dev_priv, pipe);
4926 assert_fdi_rx_disabled(dev_priv, pipe);
4927 }
f67a559d 4928
b074cec8 4929 ironlake_pfit_enable(intel_crtc);
f67a559d 4930
9c54c0dd
JB
4931 /*
4932 * On ILK+ LUT must be loaded before the pipe is running but with
4933 * clocks enabled
4934 */
4935 intel_crtc_load_lut(crtc);
4936
f37fcc2a 4937 intel_update_watermarks(crtc);
e1fdc473 4938 intel_enable_pipe(intel_crtc);
f67a559d 4939
6e3c9717 4940 if (intel_crtc->config->has_pch_encoder)
f67a559d 4941 ironlake_pch_enable(crtc);
c98e9dcf 4942
f9b61ff6
DV
4943 assert_vblank_disabled(crtc);
4944 drm_crtc_vblank_on(crtc);
4945
fa5c73b1
DV
4946 for_each_encoder_on_crtc(dev, crtc, encoder)
4947 encoder->enable(encoder);
61b77ddd
DV
4948
4949 if (HAS_PCH_CPT(dev))
a1520318 4950 cpt_verify_modeset(dev, intel_crtc->pipe);
6be4a607
JB
4951}
4952
42db64ef
PZ
4953/* IPS only exists on ULT machines and is tied to pipe A. */
4954static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4955{
f5adf94e 4956 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4957}
4958
e4916946
PZ
4959/*
4960 * This implements the workaround described in the "notes" section of the mode
4961 * set sequence documentation. When going from no pipes or single pipe to
4962 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4963 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4964 */
4965static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4966{
4967 struct drm_device *dev = crtc->base.dev;
4968 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4969
4970 /* We want to get the other_active_crtc only if there's only 1 other
4971 * active crtc. */
d3fcc808 4972 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4973 if (!crtc_it->active || crtc_it == crtc)
4974 continue;
4975
4976 if (other_active_crtc)
4977 return;
4978
4979 other_active_crtc = crtc_it;
4980 }
4981 if (!other_active_crtc)
4982 return;
4983
4984 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4985 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4986}
4987
4f771f10
PZ
4988static void haswell_crtc_enable(struct drm_crtc *crtc)
4989{
4990 struct drm_device *dev = crtc->dev;
4991 struct drm_i915_private *dev_priv = dev->dev_private;
4992 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4993 struct intel_encoder *encoder;
4994 int pipe = intel_crtc->pipe;
4f771f10 4995
83d65738 4996 WARN_ON(!crtc->state->enable);
4f771f10
PZ
4997
4998 if (intel_crtc->active)
4999 return;
5000
df8ad70c
DV
5001 if (intel_crtc_to_shared_dpll(intel_crtc))
5002 intel_enable_shared_dpll(intel_crtc);
5003
6e3c9717 5004 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 5005 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
5006
5007 intel_set_pipe_timings(intel_crtc);
5008
6e3c9717
ACO
5009 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
5010 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
5011 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
5012 }
5013
6e3c9717 5014 if (intel_crtc->config->has_pch_encoder) {
229fca97 5015 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 5016 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
5017 }
5018
5019 haswell_set_pipeconf(crtc);
5020
5021 intel_set_pipe_csc(crtc);
5022
4f771f10 5023 intel_crtc->active = true;
8664281b 5024
a72e4c9f 5025 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4f771f10
PZ
5026 for_each_encoder_on_crtc(dev, crtc, encoder)
5027 if (encoder->pre_enable)
5028 encoder->pre_enable(encoder);
5029
6e3c9717 5030 if (intel_crtc->config->has_pch_encoder) {
a72e4c9f
DV
5031 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5032 true);
4fe9467d
ID
5033 dev_priv->display.fdi_link_train(crtc);
5034 }
5035
1f544388 5036 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 5037
ff6d9f55 5038 if (INTEL_INFO(dev)->gen == 9)
a1b2278e 5039 skylake_pfit_update(intel_crtc, 1);
ff6d9f55 5040 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 5041 ironlake_pfit_enable(intel_crtc);
ff6d9f55
JB
5042 else
5043 MISSING_CASE(INTEL_INFO(dev)->gen);
4f771f10
PZ
5044
5045 /*
5046 * On ILK+ LUT must be loaded before the pipe is running but with
5047 * clocks enabled
5048 */
5049 intel_crtc_load_lut(crtc);
5050
1f544388 5051 intel_ddi_set_pipe_settings(crtc);
8228c251 5052 intel_ddi_enable_transcoder_func(crtc);
4f771f10 5053
f37fcc2a 5054 intel_update_watermarks(crtc);
e1fdc473 5055 intel_enable_pipe(intel_crtc);
42db64ef 5056
6e3c9717 5057 if (intel_crtc->config->has_pch_encoder)
1507e5bd 5058 lpt_pch_enable(crtc);
4f771f10 5059
6e3c9717 5060 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
5061 intel_ddi_set_vc_payload_alloc(crtc, true);
5062
f9b61ff6
DV
5063 assert_vblank_disabled(crtc);
5064 drm_crtc_vblank_on(crtc);
5065
8807e55b 5066 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 5067 encoder->enable(encoder);
8807e55b
JN
5068 intel_opregion_notify_encoder(encoder, true);
5069 }
4f771f10 5070
e4916946
PZ
5071 /* If we change the relative order between pipe/planes enabling, we need
5072 * to change the workaround. */
5073 haswell_mode_set_planes_workaround(intel_crtc);
4f771f10
PZ
5074}
5075
3f8dce3a
DV
5076static void ironlake_pfit_disable(struct intel_crtc *crtc)
5077{
5078 struct drm_device *dev = crtc->base.dev;
5079 struct drm_i915_private *dev_priv = dev->dev_private;
5080 int pipe = crtc->pipe;
5081
5082 /* To avoid upsetting the power well on haswell only disable the pfit if
5083 * it's in use. The hw state code will make sure we get this right. */
6e3c9717 5084 if (crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
5085 I915_WRITE(PF_CTL(pipe), 0);
5086 I915_WRITE(PF_WIN_POS(pipe), 0);
5087 I915_WRITE(PF_WIN_SZ(pipe), 0);
5088 }
5089}
5090
6be4a607
JB
5091static void ironlake_crtc_disable(struct drm_crtc *crtc)
5092{
5093 struct drm_device *dev = crtc->dev;
5094 struct drm_i915_private *dev_priv = dev->dev_private;
5095 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5096 struct intel_encoder *encoder;
6be4a607 5097 int pipe = intel_crtc->pipe;
5eddb70b 5098 u32 reg, temp;
b52eb4dc 5099
f7abfe8b
CW
5100 if (!intel_crtc->active)
5101 return;
5102
ea9d758d
DV
5103 for_each_encoder_on_crtc(dev, crtc, encoder)
5104 encoder->disable(encoder);
5105
f9b61ff6
DV
5106 drm_crtc_vblank_off(crtc);
5107 assert_vblank_disabled(crtc);
5108
6e3c9717 5109 if (intel_crtc->config->has_pch_encoder)
a72e4c9f 5110 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
d925c59a 5111
575f7ab7 5112 intel_disable_pipe(intel_crtc);
32f9d658 5113
3f8dce3a 5114 ironlake_pfit_disable(intel_crtc);
2c07245f 5115
5a74f70a
VS
5116 if (intel_crtc->config->has_pch_encoder)
5117 ironlake_fdi_disable(crtc);
5118
bf49ec8c
DV
5119 for_each_encoder_on_crtc(dev, crtc, encoder)
5120 if (encoder->post_disable)
5121 encoder->post_disable(encoder);
2c07245f 5122
6e3c9717 5123 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5124 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5125
d925c59a
DV
5126 if (HAS_PCH_CPT(dev)) {
5127 /* disable TRANS_DP_CTL */
5128 reg = TRANS_DP_CTL(pipe);
5129 temp = I915_READ(reg);
5130 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5131 TRANS_DP_PORT_SEL_MASK);
5132 temp |= TRANS_DP_PORT_SEL_NONE;
5133 I915_WRITE(reg, temp);
5134
5135 /* disable DPLL_SEL */
5136 temp = I915_READ(PCH_DPLL_SEL);
11887397 5137 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5138 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5139 }
e3421a18 5140
d925c59a 5141 /* disable PCH DPLL */
e72f9fbf 5142 intel_disable_shared_dpll(intel_crtc);
8db9d77b 5143
d925c59a
DV
5144 ironlake_fdi_pll_disable(intel_crtc);
5145 }
6b383a7f 5146
f7abfe8b 5147 intel_crtc->active = false;
46ba614c 5148 intel_update_watermarks(crtc);
d1ebd816
BW
5149
5150 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5151 intel_fbc_update(dev);
d1ebd816 5152 mutex_unlock(&dev->struct_mutex);
6be4a607 5153}
1b3c7a47 5154
4f771f10 5155static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5156{
4f771f10
PZ
5157 struct drm_device *dev = crtc->dev;
5158 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5159 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5160 struct intel_encoder *encoder;
6e3c9717 5161 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5162
4f771f10
PZ
5163 if (!intel_crtc->active)
5164 return;
5165
8807e55b
JN
5166 for_each_encoder_on_crtc(dev, crtc, encoder) {
5167 intel_opregion_notify_encoder(encoder, false);
4f771f10 5168 encoder->disable(encoder);
8807e55b 5169 }
4f771f10 5170
f9b61ff6
DV
5171 drm_crtc_vblank_off(crtc);
5172 assert_vblank_disabled(crtc);
5173
6e3c9717 5174 if (intel_crtc->config->has_pch_encoder)
a72e4c9f
DV
5175 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5176 false);
575f7ab7 5177 intel_disable_pipe(intel_crtc);
4f771f10 5178
6e3c9717 5179 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5180 intel_ddi_set_vc_payload_alloc(crtc, false);
5181
ad80a810 5182 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5183
ff6d9f55 5184 if (INTEL_INFO(dev)->gen == 9)
a1b2278e 5185 skylake_pfit_update(intel_crtc, 0);
ff6d9f55 5186 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 5187 ironlake_pfit_disable(intel_crtc);
ff6d9f55
JB
5188 else
5189 MISSING_CASE(INTEL_INFO(dev)->gen);
4f771f10 5190
1f544388 5191 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5192
6e3c9717 5193 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 5194 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 5195 intel_ddi_fdi_disable(crtc);
83616634 5196 }
4f771f10 5197
97b040aa
ID
5198 for_each_encoder_on_crtc(dev, crtc, encoder)
5199 if (encoder->post_disable)
5200 encoder->post_disable(encoder);
5201
4f771f10 5202 intel_crtc->active = false;
46ba614c 5203 intel_update_watermarks(crtc);
4f771f10
PZ
5204
5205 mutex_lock(&dev->struct_mutex);
7ff0ebcc 5206 intel_fbc_update(dev);
4f771f10 5207 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
5208
5209 if (intel_crtc_to_shared_dpll(intel_crtc))
5210 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
5211}
5212
ee7b9f93
JB
5213static void ironlake_crtc_off(struct drm_crtc *crtc)
5214{
5215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 5216 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
5217}
5218
6441ab5f 5219
2dd24552
JB
5220static void i9xx_pfit_enable(struct intel_crtc *crtc)
5221{
5222 struct drm_device *dev = crtc->base.dev;
5223 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5224 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5225
681a8504 5226 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5227 return;
5228
2dd24552 5229 /*
c0b03411
DV
5230 * The panel fitter should only be adjusted whilst the pipe is disabled,
5231 * according to register description and PRM.
2dd24552 5232 */
c0b03411
DV
5233 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5234 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5235
b074cec8
JB
5236 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5237 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5238
5239 /* Border color in case we don't scale up to the full screen. Black by
5240 * default, change to something else for debugging. */
5241 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5242}
5243
d05410f9
DA
5244static enum intel_display_power_domain port_to_power_domain(enum port port)
5245{
5246 switch (port) {
5247 case PORT_A:
5248 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5249 case PORT_B:
5250 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5251 case PORT_C:
5252 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5253 case PORT_D:
5254 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5255 default:
5256 WARN_ON_ONCE(1);
5257 return POWER_DOMAIN_PORT_OTHER;
5258 }
5259}
5260
77d22dca
ID
5261#define for_each_power_domain(domain, mask) \
5262 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
5263 if ((1 << (domain)) & (mask))
5264
319be8ae
ID
5265enum intel_display_power_domain
5266intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5267{
5268 struct drm_device *dev = intel_encoder->base.dev;
5269 struct intel_digital_port *intel_dig_port;
5270
5271 switch (intel_encoder->type) {
5272 case INTEL_OUTPUT_UNKNOWN:
5273 /* Only DDI platforms should ever use this output type */
5274 WARN_ON_ONCE(!HAS_DDI(dev));
5275 case INTEL_OUTPUT_DISPLAYPORT:
5276 case INTEL_OUTPUT_HDMI:
5277 case INTEL_OUTPUT_EDP:
5278 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5279 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5280 case INTEL_OUTPUT_DP_MST:
5281 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5282 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5283 case INTEL_OUTPUT_ANALOG:
5284 return POWER_DOMAIN_PORT_CRT;
5285 case INTEL_OUTPUT_DSI:
5286 return POWER_DOMAIN_PORT_DSI;
5287 default:
5288 return POWER_DOMAIN_PORT_OTHER;
5289 }
5290}
5291
5292static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5293{
319be8ae
ID
5294 struct drm_device *dev = crtc->dev;
5295 struct intel_encoder *intel_encoder;
5296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5297 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
5298 unsigned long mask;
5299 enum transcoder transcoder;
5300
5301 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5302
5303 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5304 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
5305 if (intel_crtc->config->pch_pfit.enabled ||
5306 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
5307 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5308
319be8ae
ID
5309 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5310 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5311
77d22dca
ID
5312 return mask;
5313}
5314
679dacd4 5315static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
77d22dca 5316{
679dacd4 5317 struct drm_device *dev = state->dev;
77d22dca
ID
5318 struct drm_i915_private *dev_priv = dev->dev_private;
5319 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5320 struct intel_crtc *crtc;
5321
5322 /*
5323 * First get all needed power domains, then put all unneeded, to avoid
5324 * any unnecessary toggling of the power wells.
5325 */
d3fcc808 5326 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
5327 enum intel_display_power_domain domain;
5328
83d65738 5329 if (!crtc->base.state->enable)
77d22dca
ID
5330 continue;
5331
319be8ae 5332 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
5333
5334 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5335 intel_display_power_get(dev_priv, domain);
5336 }
5337
50f6e502 5338 if (dev_priv->display.modeset_global_resources)
679dacd4 5339 dev_priv->display.modeset_global_resources(state);
50f6e502 5340
d3fcc808 5341 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
5342 enum intel_display_power_domain domain;
5343
5344 for_each_power_domain(domain, crtc->enabled_power_domains)
5345 intel_display_power_put(dev_priv, domain);
5346
5347 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5348 }
5349
5350 intel_display_set_init_power(dev_priv, false);
5351}
5352
f8437dd1
VK
5353void broxton_set_cdclk(struct drm_device *dev, int frequency)
5354{
5355 struct drm_i915_private *dev_priv = dev->dev_private;
5356 uint32_t divider;
5357 uint32_t ratio;
5358 uint32_t current_freq;
5359 int ret;
5360
5361 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5362 switch (frequency) {
5363 case 144000:
5364 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5365 ratio = BXT_DE_PLL_RATIO(60);
5366 break;
5367 case 288000:
5368 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5369 ratio = BXT_DE_PLL_RATIO(60);
5370 break;
5371 case 384000:
5372 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5373 ratio = BXT_DE_PLL_RATIO(60);
5374 break;
5375 case 576000:
5376 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5377 ratio = BXT_DE_PLL_RATIO(60);
5378 break;
5379 case 624000:
5380 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5381 ratio = BXT_DE_PLL_RATIO(65);
5382 break;
5383 case 19200:
5384 /*
5385 * Bypass frequency with DE PLL disabled. Init ratio, divider
5386 * to suppress GCC warning.
5387 */
5388 ratio = 0;
5389 divider = 0;
5390 break;
5391 default:
5392 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5393
5394 return;
5395 }
5396
5397 mutex_lock(&dev_priv->rps.hw_lock);
5398 /* Inform power controller of upcoming frequency change */
5399 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5400 0x80000000);
5401 mutex_unlock(&dev_priv->rps.hw_lock);
5402
5403 if (ret) {
5404 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5405 ret, frequency);
5406 return;
5407 }
5408
5409 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5410 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5411 current_freq = current_freq * 500 + 1000;
5412
5413 /*
5414 * DE PLL has to be disabled when
5415 * - setting to 19.2MHz (bypass, PLL isn't used)
5416 * - before setting to 624MHz (PLL needs toggling)
5417 * - before setting to any frequency from 624MHz (PLL needs toggling)
5418 */
5419 if (frequency == 19200 || frequency == 624000 ||
5420 current_freq == 624000) {
5421 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5422 /* Timeout 200us */
5423 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5424 1))
5425 DRM_ERROR("timout waiting for DE PLL unlock\n");
5426 }
5427
5428 if (frequency != 19200) {
5429 uint32_t val;
5430
5431 val = I915_READ(BXT_DE_PLL_CTL);
5432 val &= ~BXT_DE_PLL_RATIO_MASK;
5433 val |= ratio;
5434 I915_WRITE(BXT_DE_PLL_CTL, val);
5435
5436 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5437 /* Timeout 200us */
5438 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5439 DRM_ERROR("timeout waiting for DE PLL lock\n");
5440
5441 val = I915_READ(CDCLK_CTL);
5442 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5443 val |= divider;
5444 /*
5445 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5446 * enable otherwise.
5447 */
5448 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5449 if (frequency >= 500000)
5450 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5451
5452 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5453 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5454 val |= (frequency - 1000) / 500;
5455 I915_WRITE(CDCLK_CTL, val);
5456 }
5457
5458 mutex_lock(&dev_priv->rps.hw_lock);
5459 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5460 DIV_ROUND_UP(frequency, 25000));
5461 mutex_unlock(&dev_priv->rps.hw_lock);
5462
5463 if (ret) {
5464 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5465 ret, frequency);
5466 return;
5467 }
5468
5469 dev_priv->cdclk_freq = frequency;
5470}
5471
5472void broxton_init_cdclk(struct drm_device *dev)
5473{
5474 struct drm_i915_private *dev_priv = dev->dev_private;
5475 uint32_t val;
5476
5477 /*
5478 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5479 * or else the reset will hang because there is no PCH to respond.
5480 * Move the handshake programming to initialization sequence.
5481 * Previously was left up to BIOS.
5482 */
5483 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5484 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5485 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5486
5487 /* Enable PG1 for cdclk */
5488 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5489
5490 /* check if cd clock is enabled */
5491 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5492 DRM_DEBUG_KMS("Display already initialized\n");
5493 return;
5494 }
5495
5496 /*
5497 * FIXME:
5498 * - The initial CDCLK needs to be read from VBT.
5499 * Need to make this change after VBT has changes for BXT.
5500 * - check if setting the max (or any) cdclk freq is really necessary
5501 * here, it belongs to modeset time
5502 */
5503 broxton_set_cdclk(dev, 624000);
5504
5505 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5506 POSTING_READ(DBUF_CTL);
5507
f8437dd1
VK
5508 udelay(10);
5509
5510 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5511 DRM_ERROR("DBuf power enable timeout!\n");
5512}
5513
5514void broxton_uninit_cdclk(struct drm_device *dev)
5515{
5516 struct drm_i915_private *dev_priv = dev->dev_private;
5517
5518 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5519 POSTING_READ(DBUF_CTL);
5520
f8437dd1
VK
5521 udelay(10);
5522
5523 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5524 DRM_ERROR("DBuf power disable timeout!\n");
5525
5526 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5527 broxton_set_cdclk(dev, 19200);
5528
5529 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5530}
5531
5d96d8af
DL
5532static const struct skl_cdclk_entry {
5533 unsigned int freq;
5534 unsigned int vco;
5535} skl_cdclk_frequencies[] = {
5536 { .freq = 308570, .vco = 8640 },
5537 { .freq = 337500, .vco = 8100 },
5538 { .freq = 432000, .vco = 8640 },
5539 { .freq = 450000, .vco = 8100 },
5540 { .freq = 540000, .vco = 8100 },
5541 { .freq = 617140, .vco = 8640 },
5542 { .freq = 675000, .vco = 8100 },
5543};
5544
5545static unsigned int skl_cdclk_decimal(unsigned int freq)
5546{
5547 return (freq - 1000) / 500;
5548}
5549
5550static unsigned int skl_cdclk_get_vco(unsigned int freq)
5551{
5552 unsigned int i;
5553
5554 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5555 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5556
5557 if (e->freq == freq)
5558 return e->vco;
5559 }
5560
5561 return 8100;
5562}
5563
5564static void
5565skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5566{
5567 unsigned int min_freq;
5568 u32 val;
5569
5570 /* select the minimum CDCLK before enabling DPLL 0 */
5571 val = I915_READ(CDCLK_CTL);
5572 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5573 val |= CDCLK_FREQ_337_308;
5574
5575 if (required_vco == 8640)
5576 min_freq = 308570;
5577 else
5578 min_freq = 337500;
5579
5580 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5581
5582 I915_WRITE(CDCLK_CTL, val);
5583 POSTING_READ(CDCLK_CTL);
5584
5585 /*
5586 * We always enable DPLL0 with the lowest link rate possible, but still
5587 * taking into account the VCO required to operate the eDP panel at the
5588 * desired frequency. The usual DP link rates operate with a VCO of
5589 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5590 * The modeset code is responsible for the selection of the exact link
5591 * rate later on, with the constraint of choosing a frequency that
5592 * works with required_vco.
5593 */
5594 val = I915_READ(DPLL_CTRL1);
5595
5596 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5597 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5598 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5599 if (required_vco == 8640)
5600 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5601 SKL_DPLL0);
5602 else
5603 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5604 SKL_DPLL0);
5605
5606 I915_WRITE(DPLL_CTRL1, val);
5607 POSTING_READ(DPLL_CTRL1);
5608
5609 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5610
5611 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5612 DRM_ERROR("DPLL0 not locked\n");
5613}
5614
5615static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5616{
5617 int ret;
5618 u32 val;
5619
5620 /* inform PCU we want to change CDCLK */
5621 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5622 mutex_lock(&dev_priv->rps.hw_lock);
5623 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5624 mutex_unlock(&dev_priv->rps.hw_lock);
5625
5626 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5627}
5628
5629static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5630{
5631 unsigned int i;
5632
5633 for (i = 0; i < 15; i++) {
5634 if (skl_cdclk_pcu_ready(dev_priv))
5635 return true;
5636 udelay(10);
5637 }
5638
5639 return false;
5640}
5641
5642static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5643{
5644 u32 freq_select, pcu_ack;
5645
5646 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5647
5648 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5649 DRM_ERROR("failed to inform PCU about cdclk change\n");
5650 return;
5651 }
5652
5653 /* set CDCLK_CTL */
5654 switch(freq) {
5655 case 450000:
5656 case 432000:
5657 freq_select = CDCLK_FREQ_450_432;
5658 pcu_ack = 1;
5659 break;
5660 case 540000:
5661 freq_select = CDCLK_FREQ_540;
5662 pcu_ack = 2;
5663 break;
5664 case 308570:
5665 case 337500:
5666 default:
5667 freq_select = CDCLK_FREQ_337_308;
5668 pcu_ack = 0;
5669 break;
5670 case 617140:
5671 case 675000:
5672 freq_select = CDCLK_FREQ_675_617;
5673 pcu_ack = 3;
5674 break;
5675 }
5676
5677 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5678 POSTING_READ(CDCLK_CTL);
5679
5680 /* inform PCU of the change */
5681 mutex_lock(&dev_priv->rps.hw_lock);
5682 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5683 mutex_unlock(&dev_priv->rps.hw_lock);
5684}
5685
5686void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5687{
5688 /* disable DBUF power */
5689 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5690 POSTING_READ(DBUF_CTL);
5691
5692 udelay(10);
5693
5694 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5695 DRM_ERROR("DBuf power disable timeout\n");
5696
5697 /* disable DPLL0 */
5698 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5699 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5700 DRM_ERROR("Couldn't disable DPLL0\n");
5701
5702 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5703}
5704
5705void skl_init_cdclk(struct drm_i915_private *dev_priv)
5706{
5707 u32 val;
5708 unsigned int required_vco;
5709
5710 /* enable PCH reset handshake */
5711 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5712 I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5713
5714 /* enable PG1 and Misc I/O */
5715 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5716
5717 /* DPLL0 already enabed !? */
5718 if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5719 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5720 return;
5721 }
5722
5723 /* enable DPLL0 */
5724 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5725 skl_dpll0_enable(dev_priv, required_vco);
5726
5727 /* set CDCLK to the frequency the BIOS chose */
5728 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5729
5730 /* enable DBUF power */
5731 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5732 POSTING_READ(DBUF_CTL);
5733
5734 udelay(10);
5735
5736 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5737 DRM_ERROR("DBuf power enable timeout\n");
5738}
5739
dfcab17e 5740/* returns HPLL frequency in kHz */
f8bf63fd 5741static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 5742{
586f49dc 5743 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 5744
586f49dc 5745 /* Obtain SKU information */
a580516d 5746 mutex_lock(&dev_priv->sb_lock);
586f49dc
JB
5747 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5748 CCK_FUSE_HPLL_FREQ_MASK;
a580516d 5749 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5750
dfcab17e 5751 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
5752}
5753
f8bf63fd
VS
5754static void vlv_update_cdclk(struct drm_device *dev)
5755{
5756 struct drm_i915_private *dev_priv = dev->dev_private;
5757
164dfd28 5758 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
43dc52c3 5759 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
164dfd28 5760 dev_priv->cdclk_freq);
f8bf63fd
VS
5761
5762 /*
5763 * Program the gmbus_freq based on the cdclk frequency.
5764 * BSpec erroneously claims we should aim for 4MHz, but
5765 * in fact 1MHz is the correct frequency.
5766 */
164dfd28 5767 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
f8bf63fd
VS
5768}
5769
30a970c6
JB
5770/* Adjust CDclk dividers to allow high res or save power if possible */
5771static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5772{
5773 struct drm_i915_private *dev_priv = dev->dev_private;
5774 u32 val, cmd;
5775
164dfd28
VK
5776 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5777 != dev_priv->cdclk_freq);
d60c4473 5778
dfcab17e 5779 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5780 cmd = 2;
dfcab17e 5781 else if (cdclk == 266667)
30a970c6
JB
5782 cmd = 1;
5783 else
5784 cmd = 0;
5785
5786 mutex_lock(&dev_priv->rps.hw_lock);
5787 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5788 val &= ~DSPFREQGUAR_MASK;
5789 val |= (cmd << DSPFREQGUAR_SHIFT);
5790 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5791 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5792 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5793 50)) {
5794 DRM_ERROR("timed out waiting for CDclk change\n");
5795 }
5796 mutex_unlock(&dev_priv->rps.hw_lock);
5797
54433e91
VS
5798 mutex_lock(&dev_priv->sb_lock);
5799
dfcab17e 5800 if (cdclk == 400000) {
6bcda4f0 5801 u32 divider;
30a970c6 5802
6bcda4f0 5803 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5804
30a970c6
JB
5805 /* adjust cdclk divider */
5806 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 5807 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
5808 val |= divider;
5809 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5810
5811 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5812 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5813 50))
5814 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5815 }
5816
30a970c6
JB
5817 /* adjust self-refresh exit latency value */
5818 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5819 val &= ~0x7f;
5820
5821 /*
5822 * For high bandwidth configs, we set a higher latency in the bunit
5823 * so that the core display fetch happens in time to avoid underruns.
5824 */
dfcab17e 5825 if (cdclk == 400000)
30a970c6
JB
5826 val |= 4500 / 250; /* 4.5 usec */
5827 else
5828 val |= 3000 / 250; /* 3.0 usec */
5829 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5830
a580516d 5831 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5832
f8bf63fd 5833 vlv_update_cdclk(dev);
30a970c6
JB
5834}
5835
383c5a6a
VS
5836static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5837{
5838 struct drm_i915_private *dev_priv = dev->dev_private;
5839 u32 val, cmd;
5840
164dfd28
VK
5841 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5842 != dev_priv->cdclk_freq);
383c5a6a
VS
5843
5844 switch (cdclk) {
383c5a6a
VS
5845 case 333333:
5846 case 320000:
383c5a6a 5847 case 266667:
383c5a6a 5848 case 200000:
383c5a6a
VS
5849 break;
5850 default:
5f77eeb0 5851 MISSING_CASE(cdclk);
383c5a6a
VS
5852 return;
5853 }
5854
9d0d3fda
VS
5855 /*
5856 * Specs are full of misinformation, but testing on actual
5857 * hardware has shown that we just need to write the desired
5858 * CCK divider into the Punit register.
5859 */
5860 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5861
383c5a6a
VS
5862 mutex_lock(&dev_priv->rps.hw_lock);
5863 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5864 val &= ~DSPFREQGUAR_MASK_CHV;
5865 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5866 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5867 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5868 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5869 50)) {
5870 DRM_ERROR("timed out waiting for CDclk change\n");
5871 }
5872 mutex_unlock(&dev_priv->rps.hw_lock);
5873
5874 vlv_update_cdclk(dev);
5875}
5876
30a970c6
JB
5877static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5878 int max_pixclk)
5879{
6bcda4f0 5880 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5881 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5882
30a970c6
JB
5883 /*
5884 * Really only a few cases to deal with, as only 4 CDclks are supported:
5885 * 200MHz
5886 * 267MHz
29dc7ef3 5887 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5888 * 400MHz (VLV only)
5889 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5890 * of the lower bin and adjust if needed.
e37c67a1
VS
5891 *
5892 * We seem to get an unstable or solid color picture at 200MHz.
5893 * Not sure what's wrong. For now use 200MHz only when all pipes
5894 * are off.
30a970c6 5895 */
6cca3195
VS
5896 if (!IS_CHERRYVIEW(dev_priv) &&
5897 max_pixclk > freq_320*limit/100)
dfcab17e 5898 return 400000;
6cca3195 5899 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5900 return freq_320;
e37c67a1 5901 else if (max_pixclk > 0)
dfcab17e 5902 return 266667;
e37c67a1
VS
5903 else
5904 return 200000;
30a970c6
JB
5905}
5906
f8437dd1
VK
5907static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5908 int max_pixclk)
5909{
5910 /*
5911 * FIXME:
5912 * - remove the guardband, it's not needed on BXT
5913 * - set 19.2MHz bypass frequency if there are no active pipes
5914 */
5915 if (max_pixclk > 576000*9/10)
5916 return 624000;
5917 else if (max_pixclk > 384000*9/10)
5918 return 576000;
5919 else if (max_pixclk > 288000*9/10)
5920 return 384000;
5921 else if (max_pixclk > 144000*9/10)
5922 return 288000;
5923 else
5924 return 144000;
5925}
5926
a821fc46
ACO
5927/* Compute the max pixel clock for new configuration. Uses atomic state if
5928 * that's non-NULL, look at current state otherwise. */
5929static int intel_mode_max_pixclk(struct drm_device *dev,
5930 struct drm_atomic_state *state)
30a970c6 5931{
30a970c6 5932 struct intel_crtc *intel_crtc;
304603f4 5933 struct intel_crtc_state *crtc_state;
30a970c6
JB
5934 int max_pixclk = 0;
5935
d3fcc808 5936 for_each_intel_crtc(dev, intel_crtc) {
a821fc46
ACO
5937 if (state)
5938 crtc_state =
5939 intel_atomic_get_crtc_state(state, intel_crtc);
5940 else
5941 crtc_state = intel_crtc->config;
304603f4
ACO
5942 if (IS_ERR(crtc_state))
5943 return PTR_ERR(crtc_state);
5944
5945 if (!crtc_state->base.enable)
5946 continue;
5947
5948 max_pixclk = max(max_pixclk,
5949 crtc_state->base.adjusted_mode.crtc_clock);
30a970c6
JB
5950 }
5951
5952 return max_pixclk;
5953}
5954
0a9ab303 5955static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
30a970c6 5956{
304603f4 5957 struct drm_i915_private *dev_priv = to_i915(state->dev);
0a9ab303
ACO
5958 struct drm_crtc *crtc;
5959 struct drm_crtc_state *crtc_state;
a821fc46 5960 int max_pixclk = intel_mode_max_pixclk(state->dev, state);
0a9ab303 5961 int cdclk, i;
30a970c6 5962
304603f4
ACO
5963 if (max_pixclk < 0)
5964 return max_pixclk;
30a970c6 5965
f8437dd1
VK
5966 if (IS_VALLEYVIEW(dev_priv))
5967 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5968 else
5969 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5970
5971 if (cdclk == dev_priv->cdclk_freq)
304603f4 5972 return 0;
30a970c6 5973
0a9ab303
ACO
5974 /* add all active pipes to the state */
5975 for_each_crtc(state->dev, crtc) {
5976 if (!crtc->state->enable)
5977 continue;
5978
5979 crtc_state = drm_atomic_get_crtc_state(state, crtc);
5980 if (IS_ERR(crtc_state))
5981 return PTR_ERR(crtc_state);
5982 }
5983
2f2d7aa1 5984 /* disable/enable all currently active pipes while we change cdclk */
0a9ab303
ACO
5985 for_each_crtc_in_state(state, crtc, crtc_state, i)
5986 if (crtc_state->enable)
5987 crtc_state->mode_changed = true;
304603f4
ACO
5988
5989 return 0;
30a970c6
JB
5990}
5991
1e69cd74
VS
5992static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5993{
5994 unsigned int credits, default_credits;
5995
5996 if (IS_CHERRYVIEW(dev_priv))
5997 default_credits = PFI_CREDIT(12);
5998 else
5999 default_credits = PFI_CREDIT(8);
6000
164dfd28 6001 if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
1e69cd74
VS
6002 /* CHV suggested value is 31 or 63 */
6003 if (IS_CHERRYVIEW(dev_priv))
6004 credits = PFI_CREDIT_31;
6005 else
6006 credits = PFI_CREDIT(15);
6007 } else {
6008 credits = default_credits;
6009 }
6010
6011 /*
6012 * WA - write default credits before re-programming
6013 * FIXME: should we also set the resend bit here?
6014 */
6015 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6016 default_credits);
6017
6018 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6019 credits | PFI_CREDIT_RESEND);
6020
6021 /*
6022 * FIXME is this guaranteed to clear
6023 * immediately or should we poll for it?
6024 */
6025 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6026}
6027
a821fc46 6028static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
30a970c6 6029{
a821fc46 6030 struct drm_device *dev = old_state->dev;
30a970c6 6031 struct drm_i915_private *dev_priv = dev->dev_private;
a821fc46 6032 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
304603f4
ACO
6033 int req_cdclk;
6034
a821fc46
ACO
6035 /* The path in intel_mode_max_pixclk() with a NULL atomic state should
6036 * never fail. */
304603f4
ACO
6037 if (WARN_ON(max_pixclk < 0))
6038 return;
30a970c6 6039
304603f4 6040 req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
30a970c6 6041
164dfd28 6042 if (req_cdclk != dev_priv->cdclk_freq) {
738c05c0
ID
6043 /*
6044 * FIXME: We can end up here with all power domains off, yet
6045 * with a CDCLK frequency other than the minimum. To account
6046 * for this take the PIPE-A power domain, which covers the HW
6047 * blocks needed for the following programming. This can be
6048 * removed once it's guaranteed that we get here either with
6049 * the minimum CDCLK set, or the required power domains
6050 * enabled.
6051 */
6052 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6053
383c5a6a
VS
6054 if (IS_CHERRYVIEW(dev))
6055 cherryview_set_cdclk(dev, req_cdclk);
6056 else
6057 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6058
1e69cd74
VS
6059 vlv_program_pfi_credits(dev_priv);
6060
738c05c0 6061 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
383c5a6a 6062 }
30a970c6
JB
6063}
6064
89b667f8
JB
6065static void valleyview_crtc_enable(struct drm_crtc *crtc)
6066{
6067 struct drm_device *dev = crtc->dev;
a72e4c9f 6068 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6070 struct intel_encoder *encoder;
6071 int pipe = intel_crtc->pipe;
23538ef1 6072 bool is_dsi;
89b667f8 6073
83d65738 6074 WARN_ON(!crtc->state->enable);
89b667f8
JB
6075
6076 if (intel_crtc->active)
6077 return;
6078
409ee761 6079 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
8525a235 6080
1ae0d137
VS
6081 if (!is_dsi) {
6082 if (IS_CHERRYVIEW(dev))
6e3c9717 6083 chv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 6084 else
6e3c9717 6085 vlv_prepare_pll(intel_crtc, intel_crtc->config);
1ae0d137 6086 }
5b18e57c 6087
6e3c9717 6088 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6089 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6090
6091 intel_set_pipe_timings(intel_crtc);
6092
c14b0485
VS
6093 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6094 struct drm_i915_private *dev_priv = dev->dev_private;
6095
6096 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6097 I915_WRITE(CHV_CANVAS(pipe), 0);
6098 }
6099
5b18e57c
DV
6100 i9xx_set_pipeconf(intel_crtc);
6101
89b667f8 6102 intel_crtc->active = true;
89b667f8 6103
a72e4c9f 6104 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6105
89b667f8
JB
6106 for_each_encoder_on_crtc(dev, crtc, encoder)
6107 if (encoder->pre_pll_enable)
6108 encoder->pre_pll_enable(encoder);
6109
9d556c99
CML
6110 if (!is_dsi) {
6111 if (IS_CHERRYVIEW(dev))
6e3c9717 6112 chv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6113 else
6e3c9717 6114 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6115 }
89b667f8
JB
6116
6117 for_each_encoder_on_crtc(dev, crtc, encoder)
6118 if (encoder->pre_enable)
6119 encoder->pre_enable(encoder);
6120
2dd24552
JB
6121 i9xx_pfit_enable(intel_crtc);
6122
63cbb074
VS
6123 intel_crtc_load_lut(crtc);
6124
f37fcc2a 6125 intel_update_watermarks(crtc);
e1fdc473 6126 intel_enable_pipe(intel_crtc);
be6a6f8e 6127
4b3a9526
VS
6128 assert_vblank_disabled(crtc);
6129 drm_crtc_vblank_on(crtc);
6130
f9b61ff6
DV
6131 for_each_encoder_on_crtc(dev, crtc, encoder)
6132 encoder->enable(encoder);
89b667f8
JB
6133}
6134
f13c2ef3
DV
6135static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6136{
6137 struct drm_device *dev = crtc->base.dev;
6138 struct drm_i915_private *dev_priv = dev->dev_private;
6139
6e3c9717
ACO
6140 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6141 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6142}
6143
0b8765c6 6144static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6145{
6146 struct drm_device *dev = crtc->dev;
a72e4c9f 6147 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6148 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6149 struct intel_encoder *encoder;
79e53945 6150 int pipe = intel_crtc->pipe;
79e53945 6151
83d65738 6152 WARN_ON(!crtc->state->enable);
08a48469 6153
f7abfe8b
CW
6154 if (intel_crtc->active)
6155 return;
6156
f13c2ef3
DV
6157 i9xx_set_pll_dividers(intel_crtc);
6158
6e3c9717 6159 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6160 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6161
6162 intel_set_pipe_timings(intel_crtc);
6163
5b18e57c
DV
6164 i9xx_set_pipeconf(intel_crtc);
6165
f7abfe8b 6166 intel_crtc->active = true;
6b383a7f 6167
4a3436e8 6168 if (!IS_GEN2(dev))
a72e4c9f 6169 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6170
9d6d9f19
MK
6171 for_each_encoder_on_crtc(dev, crtc, encoder)
6172 if (encoder->pre_enable)
6173 encoder->pre_enable(encoder);
6174
f6736a1a
DV
6175 i9xx_enable_pll(intel_crtc);
6176
2dd24552
JB
6177 i9xx_pfit_enable(intel_crtc);
6178
63cbb074
VS
6179 intel_crtc_load_lut(crtc);
6180
f37fcc2a 6181 intel_update_watermarks(crtc);
e1fdc473 6182 intel_enable_pipe(intel_crtc);
be6a6f8e 6183
4b3a9526
VS
6184 assert_vblank_disabled(crtc);
6185 drm_crtc_vblank_on(crtc);
6186
f9b61ff6
DV
6187 for_each_encoder_on_crtc(dev, crtc, encoder)
6188 encoder->enable(encoder);
0b8765c6 6189}
79e53945 6190
87476d63
DV
6191static void i9xx_pfit_disable(struct intel_crtc *crtc)
6192{
6193 struct drm_device *dev = crtc->base.dev;
6194 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6195
6e3c9717 6196 if (!crtc->config->gmch_pfit.control)
328d8e82 6197 return;
87476d63 6198
328d8e82 6199 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6200
328d8e82
DV
6201 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6202 I915_READ(PFIT_CONTROL));
6203 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6204}
6205
0b8765c6
JB
6206static void i9xx_crtc_disable(struct drm_crtc *crtc)
6207{
6208 struct drm_device *dev = crtc->dev;
6209 struct drm_i915_private *dev_priv = dev->dev_private;
6210 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6211 struct intel_encoder *encoder;
0b8765c6 6212 int pipe = intel_crtc->pipe;
ef9c3aee 6213
f7abfe8b
CW
6214 if (!intel_crtc->active)
6215 return;
6216
6304cd91
VS
6217 /*
6218 * On gen2 planes are double buffered but the pipe isn't, so we must
6219 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
6220 * We also need to wait on all gmch platforms because of the
6221 * self-refresh mode constraint explained above.
6304cd91 6222 */
564ed191 6223 intel_wait_for_vblank(dev, pipe);
6304cd91 6224
4b3a9526
VS
6225 for_each_encoder_on_crtc(dev, crtc, encoder)
6226 encoder->disable(encoder);
6227
f9b61ff6
DV
6228 drm_crtc_vblank_off(crtc);
6229 assert_vblank_disabled(crtc);
6230
575f7ab7 6231 intel_disable_pipe(intel_crtc);
24a1f16d 6232
87476d63 6233 i9xx_pfit_disable(intel_crtc);
24a1f16d 6234
89b667f8
JB
6235 for_each_encoder_on_crtc(dev, crtc, encoder)
6236 if (encoder->post_disable)
6237 encoder->post_disable(encoder);
6238
409ee761 6239 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
076ed3b2
CML
6240 if (IS_CHERRYVIEW(dev))
6241 chv_disable_pll(dev_priv, pipe);
6242 else if (IS_VALLEYVIEW(dev))
6243 vlv_disable_pll(dev_priv, pipe);
6244 else
1c4e0274 6245 i9xx_disable_pll(intel_crtc);
076ed3b2 6246 }
0b8765c6 6247
4a3436e8 6248 if (!IS_GEN2(dev))
a72e4c9f 6249 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4a3436e8 6250
f7abfe8b 6251 intel_crtc->active = false;
46ba614c 6252 intel_update_watermarks(crtc);
f37fcc2a 6253
efa9624e 6254 mutex_lock(&dev->struct_mutex);
7ff0ebcc 6255 intel_fbc_update(dev);
efa9624e 6256 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
6257}
6258
ee7b9f93
JB
6259static void i9xx_crtc_off(struct drm_crtc *crtc)
6260{
6261}
6262
b04c5bd6
BF
6263/* Master function to enable/disable CRTC and corresponding power wells */
6264void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
6265{
6266 struct drm_device *dev = crtc->dev;
6267 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 6268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
6269 enum intel_display_power_domain domain;
6270 unsigned long domains;
976f8a20 6271
0e572fe7
DV
6272 if (enable) {
6273 if (!intel_crtc->active) {
e1e9fb84
DV
6274 domains = get_crtc_power_domains(crtc);
6275 for_each_power_domain(domain, domains)
6276 intel_display_power_get(dev_priv, domain);
6277 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
6278
6279 dev_priv->display.crtc_enable(crtc);
ce22dba9 6280 intel_crtc_enable_planes(crtc);
0e572fe7
DV
6281 }
6282 } else {
6283 if (intel_crtc->active) {
ce22dba9 6284 intel_crtc_disable_planes(crtc);
0e572fe7
DV
6285 dev_priv->display.crtc_disable(crtc);
6286
e1e9fb84
DV
6287 domains = intel_crtc->enabled_power_domains;
6288 for_each_power_domain(domain, domains)
6289 intel_display_power_put(dev_priv, domain);
6290 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
6291 }
6292 }
b04c5bd6
BF
6293}
6294
6295/**
6296 * Sets the power management mode of the pipe and plane.
6297 */
6298void intel_crtc_update_dpms(struct drm_crtc *crtc)
6299{
6300 struct drm_device *dev = crtc->dev;
6301 struct intel_encoder *intel_encoder;
6302 bool enable = false;
6303
6304 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6305 enable |= intel_encoder->connectors_active;
6306
6307 intel_crtc_control(crtc, enable);
0f63cca2
ACO
6308
6309 crtc->state->active = enable;
976f8a20
DV
6310}
6311
cdd59983
CW
6312static void intel_crtc_disable(struct drm_crtc *crtc)
6313{
cdd59983 6314 struct drm_device *dev = crtc->dev;
976f8a20 6315 struct drm_connector *connector;
ee7b9f93 6316 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 6317
ce22dba9 6318 intel_crtc_disable_planes(crtc);
976f8a20 6319 dev_priv->display.crtc_disable(crtc);
ee7b9f93
JB
6320 dev_priv->display.off(crtc);
6321
70a101f8 6322 drm_plane_helper_disable(crtc->primary);
976f8a20
DV
6323
6324 /* Update computed state. */
6325 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6326 if (!connector->encoder || !connector->encoder->crtc)
6327 continue;
6328
6329 if (connector->encoder->crtc != crtc)
6330 continue;
6331
6332 connector->dpms = DRM_MODE_DPMS_OFF;
6333 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
6334 }
6335}
6336
ea5b213a 6337void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6338{
4ef69c7a 6339 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6340
ea5b213a
CW
6341 drm_encoder_cleanup(encoder);
6342 kfree(intel_encoder);
7e7d76c3
JB
6343}
6344
9237329d 6345/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
6346 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6347 * state of the entire output pipe. */
9237329d 6348static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 6349{
5ab432ef
DV
6350 if (mode == DRM_MODE_DPMS_ON) {
6351 encoder->connectors_active = true;
6352
b2cabb0e 6353 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
6354 } else {
6355 encoder->connectors_active = false;
6356
b2cabb0e 6357 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 6358 }
79e53945
JB
6359}
6360
0a91ca29
DV
6361/* Cross check the actual hw state with our own modeset state tracking (and it's
6362 * internal consistency). */
b980514c 6363static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6364{
0a91ca29
DV
6365 if (connector->get_hw_state(connector)) {
6366 struct intel_encoder *encoder = connector->encoder;
6367 struct drm_crtc *crtc;
6368 bool encoder_enabled;
6369 enum pipe pipe;
6370
6371 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6372 connector->base.base.id,
c23cc417 6373 connector->base.name);
0a91ca29 6374
0e32b39c
DA
6375 /* there is no real hw state for MST connectors */
6376 if (connector->mst_port)
6377 return;
6378
e2c719b7 6379 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
0a91ca29 6380 "wrong connector dpms state\n");
e2c719b7 6381 I915_STATE_WARN(connector->base.encoder != &encoder->base,
0a91ca29 6382 "active connector not linked to encoder\n");
0a91ca29 6383
36cd7444 6384 if (encoder) {
e2c719b7 6385 I915_STATE_WARN(!encoder->connectors_active,
36cd7444
DA
6386 "encoder->connectors_active not set\n");
6387
6388 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
e2c719b7
RC
6389 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6390 if (I915_STATE_WARN_ON(!encoder->base.crtc))
36cd7444 6391 return;
0a91ca29 6392
36cd7444 6393 crtc = encoder->base.crtc;
0a91ca29 6394
83d65738
MR
6395 I915_STATE_WARN(!crtc->state->enable,
6396 "crtc not enabled\n");
e2c719b7
RC
6397 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6398 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
36cd7444
DA
6399 "encoder active on the wrong pipe\n");
6400 }
0a91ca29 6401 }
79e53945
JB
6402}
6403
08d9bc92
ACO
6404int intel_connector_init(struct intel_connector *connector)
6405{
6406 struct drm_connector_state *connector_state;
6407
6408 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6409 if (!connector_state)
6410 return -ENOMEM;
6411
6412 connector->base.state = connector_state;
6413 return 0;
6414}
6415
6416struct intel_connector *intel_connector_alloc(void)
6417{
6418 struct intel_connector *connector;
6419
6420 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6421 if (!connector)
6422 return NULL;
6423
6424 if (intel_connector_init(connector) < 0) {
6425 kfree(connector);
6426 return NULL;
6427 }
6428
6429 return connector;
6430}
6431
5ab432ef
DV
6432/* Even simpler default implementation, if there's really no special case to
6433 * consider. */
6434void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 6435{
5ab432ef
DV
6436 /* All the simple cases only support two dpms states. */
6437 if (mode != DRM_MODE_DPMS_ON)
6438 mode = DRM_MODE_DPMS_OFF;
d4270e57 6439
5ab432ef
DV
6440 if (mode == connector->dpms)
6441 return;
6442
6443 connector->dpms = mode;
6444
6445 /* Only need to change hw state when actually enabled */
c9976dcf
CW
6446 if (connector->encoder)
6447 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 6448
b980514c 6449 intel_modeset_check_state(connector->dev);
79e53945
JB
6450}
6451
f0947c37
DV
6452/* Simple connector->get_hw_state implementation for encoders that support only
6453 * one connector and no cloning and hence the encoder state determines the state
6454 * of the connector. */
6455bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6456{
24929352 6457 enum pipe pipe = 0;
f0947c37 6458 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6459
f0947c37 6460 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6461}
6462
6d293983 6463static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6464{
6d293983
ACO
6465 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6466 return crtc_state->fdi_lanes;
d272ddfa
VS
6467
6468 return 0;
6469}
6470
6d293983 6471static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6472 struct intel_crtc_state *pipe_config)
1857e1da 6473{
6d293983
ACO
6474 struct drm_atomic_state *state = pipe_config->base.state;
6475 struct intel_crtc *other_crtc;
6476 struct intel_crtc_state *other_crtc_state;
6477
1857e1da
DV
6478 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6479 pipe_name(pipe), pipe_config->fdi_lanes);
6480 if (pipe_config->fdi_lanes > 4) {
6481 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6482 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6483 return -EINVAL;
1857e1da
DV
6484 }
6485
bafb6553 6486 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6487 if (pipe_config->fdi_lanes > 2) {
6488 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6489 pipe_config->fdi_lanes);
6d293983 6490 return -EINVAL;
1857e1da 6491 } else {
6d293983 6492 return 0;
1857e1da
DV
6493 }
6494 }
6495
6496 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6497 return 0;
1857e1da
DV
6498
6499 /* Ivybridge 3 pipe is really complicated */
6500 switch (pipe) {
6501 case PIPE_A:
6d293983 6502 return 0;
1857e1da 6503 case PIPE_B:
6d293983
ACO
6504 if (pipe_config->fdi_lanes <= 2)
6505 return 0;
6506
6507 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6508 other_crtc_state =
6509 intel_atomic_get_crtc_state(state, other_crtc);
6510 if (IS_ERR(other_crtc_state))
6511 return PTR_ERR(other_crtc_state);
6512
6513 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6514 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6515 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6516 return -EINVAL;
1857e1da 6517 }
6d293983 6518 return 0;
1857e1da 6519 case PIPE_C:
251cc67c
VS
6520 if (pipe_config->fdi_lanes > 2) {
6521 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6522 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6523 return -EINVAL;
251cc67c 6524 }
6d293983
ACO
6525
6526 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6527 other_crtc_state =
6528 intel_atomic_get_crtc_state(state, other_crtc);
6529 if (IS_ERR(other_crtc_state))
6530 return PTR_ERR(other_crtc_state);
6531
6532 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6533 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6534 return -EINVAL;
1857e1da 6535 }
6d293983 6536 return 0;
1857e1da
DV
6537 default:
6538 BUG();
6539 }
6540}
6541
e29c22c0
DV
6542#define RETRY 1
6543static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6544 struct intel_crtc_state *pipe_config)
877d48d5 6545{
1857e1da 6546 struct drm_device *dev = intel_crtc->base.dev;
2d112de7 6547 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6548 int lane, link_bw, fdi_dotclock, ret;
6549 bool needs_recompute = false;
877d48d5 6550
e29c22c0 6551retry:
877d48d5
DV
6552 /* FDI is a binary signal running at ~2.7GHz, encoding
6553 * each output octet as 10 bits. The actual frequency
6554 * is stored as a divider into a 100MHz clock, and the
6555 * mode pixel clock is stored in units of 1KHz.
6556 * Hence the bw of each lane in terms of the mode signal
6557 * is:
6558 */
6559 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6560
241bfc38 6561 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6562
2bd89a07 6563 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6564 pipe_config->pipe_bpp);
6565
6566 pipe_config->fdi_lanes = lane;
6567
2bd89a07 6568 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6569 link_bw, &pipe_config->fdi_m_n);
1857e1da 6570
6d293983
ACO
6571 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6572 intel_crtc->pipe, pipe_config);
6573 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6574 pipe_config->pipe_bpp -= 2*3;
6575 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6576 pipe_config->pipe_bpp);
6577 needs_recompute = true;
6578 pipe_config->bw_constrained = true;
6579
6580 goto retry;
6581 }
6582
6583 if (needs_recompute)
6584 return RETRY;
6585
6d293983 6586 return ret;
877d48d5
DV
6587}
6588
42db64ef 6589static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6590 struct intel_crtc_state *pipe_config)
42db64ef 6591{
d330a953 6592 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 6593 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 6594 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
6595}
6596
a43f6e0f 6597static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6598 struct intel_crtc_state *pipe_config)
79e53945 6599{
a43f6e0f 6600 struct drm_device *dev = crtc->base.dev;
8bd31e67 6601 struct drm_i915_private *dev_priv = dev->dev_private;
2d112de7 6602 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
d03c93d4 6603 int ret;
89749350 6604
ad3a4479 6605 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6606 if (INTEL_INFO(dev)->gen < 4) {
cf532bb2
VS
6607 int clock_limit =
6608 dev_priv->display.get_display_clock_speed(dev);
6609
6610 /*
6611 * Enable pixel doubling when the dot clock
6612 * is > 90% of the (display) core speed.
6613 *
b397c96b
VS
6614 * GDG double wide on either pipe,
6615 * otherwise pipe A only.
cf532bb2 6616 */
b397c96b 6617 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 6618 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 6619 clock_limit *= 2;
cf532bb2 6620 pipe_config->double_wide = true;
ad3a4479
VS
6621 }
6622
241bfc38 6623 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 6624 return -EINVAL;
2c07245f 6625 }
89749350 6626
1d1d0e27
VS
6627 /*
6628 * Pipe horizontal size must be even in:
6629 * - DVO ganged mode
6630 * - LVDS dual channel mode
6631 * - Double wide pipe
6632 */
a93e255f 6633 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6634 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6635 pipe_config->pipe_src_w &= ~1;
6636
8693a824
DL
6637 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6638 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6639 */
6640 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6641 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 6642 return -EINVAL;
44f46b42 6643
f5adf94e 6644 if (HAS_IPS(dev))
a43f6e0f
DV
6645 hsw_compute_ips_config(crtc, pipe_config);
6646
877d48d5 6647 if (pipe_config->has_pch_encoder)
a43f6e0f 6648 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6649
d03c93d4
CK
6650 /* FIXME: remove below call once atomic mode set is place and all crtc
6651 * related checks called from atomic_crtc_check function */
6652 ret = 0;
6653 DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6654 crtc, pipe_config->base.state);
6655 ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6656
6657 return ret;
79e53945
JB
6658}
6659
1652d19e
VS
6660static int skylake_get_display_clock_speed(struct drm_device *dev)
6661{
6662 struct drm_i915_private *dev_priv = to_i915(dev);
6663 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6664 uint32_t cdctl = I915_READ(CDCLK_CTL);
6665 uint32_t linkrate;
6666
6667 if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6668 WARN(1, "LCPLL1 not enabled\n");
6669 return 24000; /* 24MHz is the cd freq with NSSC ref */
6670 }
6671
6672 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6673 return 540000;
6674
6675 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6676 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6677
71cd8423
DL
6678 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6679 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6680 /* vco 8640 */
6681 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6682 case CDCLK_FREQ_450_432:
6683 return 432000;
6684 case CDCLK_FREQ_337_308:
6685 return 308570;
6686 case CDCLK_FREQ_675_617:
6687 return 617140;
6688 default:
6689 WARN(1, "Unknown cd freq selection\n");
6690 }
6691 } else {
6692 /* vco 8100 */
6693 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6694 case CDCLK_FREQ_450_432:
6695 return 450000;
6696 case CDCLK_FREQ_337_308:
6697 return 337500;
6698 case CDCLK_FREQ_675_617:
6699 return 675000;
6700 default:
6701 WARN(1, "Unknown cd freq selection\n");
6702 }
6703 }
6704
6705 /* error case, do as if DPLL0 isn't enabled */
6706 return 24000;
6707}
6708
6709static int broadwell_get_display_clock_speed(struct drm_device *dev)
6710{
6711 struct drm_i915_private *dev_priv = dev->dev_private;
6712 uint32_t lcpll = I915_READ(LCPLL_CTL);
6713 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6714
6715 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6716 return 800000;
6717 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6718 return 450000;
6719 else if (freq == LCPLL_CLK_FREQ_450)
6720 return 450000;
6721 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6722 return 540000;
6723 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6724 return 337500;
6725 else
6726 return 675000;
6727}
6728
6729static int haswell_get_display_clock_speed(struct drm_device *dev)
6730{
6731 struct drm_i915_private *dev_priv = dev->dev_private;
6732 uint32_t lcpll = I915_READ(LCPLL_CTL);
6733 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6734
6735 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6736 return 800000;
6737 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6738 return 450000;
6739 else if (freq == LCPLL_CLK_FREQ_450)
6740 return 450000;
6741 else if (IS_HSW_ULT(dev))
6742 return 337500;
6743 else
6744 return 540000;
79e53945
JB
6745}
6746
25eb05fc
JB
6747static int valleyview_get_display_clock_speed(struct drm_device *dev)
6748{
d197b7d3 6749 struct drm_i915_private *dev_priv = dev->dev_private;
d197b7d3
VS
6750 u32 val;
6751 int divider;
6752
6bcda4f0
VS
6753 if (dev_priv->hpll_freq == 0)
6754 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6755
a580516d 6756 mutex_lock(&dev_priv->sb_lock);
d197b7d3 6757 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
a580516d 6758 mutex_unlock(&dev_priv->sb_lock);
d197b7d3
VS
6759
6760 divider = val & DISPLAY_FREQUENCY_VALUES;
6761
7d007f40
VS
6762 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6763 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6764 "cdclk change in progress\n");
6765
6bcda4f0 6766 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
25eb05fc
JB
6767}
6768
b37a6434
VS
6769static int ilk_get_display_clock_speed(struct drm_device *dev)
6770{
6771 return 450000;
6772}
6773
e70236a8
JB
6774static int i945_get_display_clock_speed(struct drm_device *dev)
6775{
6776 return 400000;
6777}
79e53945 6778
e70236a8 6779static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6780{
e907f170 6781 return 333333;
e70236a8 6782}
79e53945 6783
e70236a8
JB
6784static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6785{
6786 return 200000;
6787}
79e53945 6788
257a7ffc
DV
6789static int pnv_get_display_clock_speed(struct drm_device *dev)
6790{
6791 u16 gcfgc = 0;
6792
6793 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6794
6795 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6796 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6797 return 266667;
257a7ffc 6798 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6799 return 333333;
257a7ffc 6800 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6801 return 444444;
257a7ffc
DV
6802 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6803 return 200000;
6804 default:
6805 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6806 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6807 return 133333;
257a7ffc 6808 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6809 return 166667;
257a7ffc
DV
6810 }
6811}
6812
e70236a8
JB
6813static int i915gm_get_display_clock_speed(struct drm_device *dev)
6814{
6815 u16 gcfgc = 0;
79e53945 6816
e70236a8
JB
6817 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6818
6819 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6820 return 133333;
e70236a8
JB
6821 else {
6822 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6823 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6824 return 333333;
e70236a8
JB
6825 default:
6826 case GC_DISPLAY_CLOCK_190_200_MHZ:
6827 return 190000;
79e53945 6828 }
e70236a8
JB
6829 }
6830}
6831
6832static int i865_get_display_clock_speed(struct drm_device *dev)
6833{
e907f170 6834 return 266667;
e70236a8
JB
6835}
6836
6837static int i855_get_display_clock_speed(struct drm_device *dev)
6838{
6839 u16 hpllcc = 0;
6840 /* Assume that the hardware is in the high speed state. This
6841 * should be the default.
6842 */
6843 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6844 case GC_CLOCK_133_200:
6845 case GC_CLOCK_100_200:
6846 return 200000;
6847 case GC_CLOCK_166_250:
6848 return 250000;
6849 case GC_CLOCK_100_133:
e907f170 6850 return 133333;
e70236a8 6851 }
79e53945 6852
e70236a8
JB
6853 /* Shouldn't happen */
6854 return 0;
6855}
79e53945 6856
e70236a8
JB
6857static int i830_get_display_clock_speed(struct drm_device *dev)
6858{
e907f170 6859 return 133333;
79e53945
JB
6860}
6861
2c07245f 6862static void
a65851af 6863intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 6864{
a65851af
VS
6865 while (*num > DATA_LINK_M_N_MASK ||
6866 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
6867 *num >>= 1;
6868 *den >>= 1;
6869 }
6870}
6871
a65851af
VS
6872static void compute_m_n(unsigned int m, unsigned int n,
6873 uint32_t *ret_m, uint32_t *ret_n)
6874{
6875 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6876 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6877 intel_reduce_m_n_ratio(ret_m, ret_n);
6878}
6879
e69d0bc1
DV
6880void
6881intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6882 int pixel_clock, int link_clock,
6883 struct intel_link_m_n *m_n)
2c07245f 6884{
e69d0bc1 6885 m_n->tu = 64;
a65851af
VS
6886
6887 compute_m_n(bits_per_pixel * pixel_clock,
6888 link_clock * nlanes * 8,
6889 &m_n->gmch_m, &m_n->gmch_n);
6890
6891 compute_m_n(pixel_clock, link_clock,
6892 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
6893}
6894
a7615030
CW
6895static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6896{
d330a953
JN
6897 if (i915.panel_use_ssc >= 0)
6898 return i915.panel_use_ssc != 0;
41aa3448 6899 return dev_priv->vbt.lvds_use_ssc
435793df 6900 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
6901}
6902
a93e255f
ACO
6903static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6904 int num_connectors)
c65d77d8 6905{
a93e255f 6906 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
6907 struct drm_i915_private *dev_priv = dev->dev_private;
6908 int refclk;
6909
a93e255f
ACO
6910 WARN_ON(!crtc_state->base.state);
6911
5ab7b0b7 6912 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
9a0ea498 6913 refclk = 100000;
a93e255f 6914 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 6915 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
6916 refclk = dev_priv->vbt.lvds_ssc_freq;
6917 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
6918 } else if (!IS_GEN2(dev)) {
6919 refclk = 96000;
6920 } else {
6921 refclk = 48000;
6922 }
6923
6924 return refclk;
6925}
6926
7429e9d4 6927static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 6928{
7df00d7a 6929 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 6930}
f47709a9 6931
7429e9d4
DV
6932static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6933{
6934 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
6935}
6936
f47709a9 6937static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 6938 struct intel_crtc_state *crtc_state,
a7516a05
JB
6939 intel_clock_t *reduced_clock)
6940{
f47709a9 6941 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
6942 u32 fp, fp2 = 0;
6943
6944 if (IS_PINEVIEW(dev)) {
190f68c5 6945 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6946 if (reduced_clock)
7429e9d4 6947 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 6948 } else {
190f68c5 6949 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 6950 if (reduced_clock)
7429e9d4 6951 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
6952 }
6953
190f68c5 6954 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 6955
f47709a9 6956 crtc->lowfreq_avail = false;
a93e255f 6957 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 6958 reduced_clock) {
190f68c5 6959 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 6960 crtc->lowfreq_avail = true;
a7516a05 6961 } else {
190f68c5 6962 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
6963 }
6964}
6965
5e69f97f
CML
6966static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6967 pipe)
89b667f8
JB
6968{
6969 u32 reg_val;
6970
6971 /*
6972 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6973 * and set it to a reasonable value instead.
6974 */
ab3c759a 6975 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
6976 reg_val &= 0xffffff00;
6977 reg_val |= 0x00000030;
ab3c759a 6978 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6979
ab3c759a 6980 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6981 reg_val &= 0x8cffffff;
6982 reg_val = 0x8c000000;
ab3c759a 6983 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 6984
ab3c759a 6985 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 6986 reg_val &= 0xffffff00;
ab3c759a 6987 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 6988
ab3c759a 6989 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
6990 reg_val &= 0x00ffffff;
6991 reg_val |= 0xb0000000;
ab3c759a 6992 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
6993}
6994
b551842d
DV
6995static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6996 struct intel_link_m_n *m_n)
6997{
6998 struct drm_device *dev = crtc->base.dev;
6999 struct drm_i915_private *dev_priv = dev->dev_private;
7000 int pipe = crtc->pipe;
7001
e3b95f1e
DV
7002 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7003 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7004 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7005 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7006}
7007
7008static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7009 struct intel_link_m_n *m_n,
7010 struct intel_link_m_n *m2_n2)
b551842d
DV
7011{
7012 struct drm_device *dev = crtc->base.dev;
7013 struct drm_i915_private *dev_priv = dev->dev_private;
7014 int pipe = crtc->pipe;
6e3c9717 7015 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7016
7017 if (INTEL_INFO(dev)->gen >= 5) {
7018 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7019 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7020 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7021 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7022 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7023 * for gen < 8) and if DRRS is supported (to make sure the
7024 * registers are not unnecessarily accessed).
7025 */
44395bfe 7026 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7027 crtc->config->has_drrs) {
f769cd24
VK
7028 I915_WRITE(PIPE_DATA_M2(transcoder),
7029 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7030 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7031 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7032 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7033 }
b551842d 7034 } else {
e3b95f1e
DV
7035 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7036 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7037 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7038 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7039 }
7040}
7041
fe3cd48d 7042void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7043{
fe3cd48d
R
7044 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7045
7046 if (m_n == M1_N1) {
7047 dp_m_n = &crtc->config->dp_m_n;
7048 dp_m2_n2 = &crtc->config->dp_m2_n2;
7049 } else if (m_n == M2_N2) {
7050
7051 /*
7052 * M2_N2 registers are not supported. Hence m2_n2 divider value
7053 * needs to be programmed into M1_N1.
7054 */
7055 dp_m_n = &crtc->config->dp_m2_n2;
7056 } else {
7057 DRM_ERROR("Unsupported divider value\n");
7058 return;
7059 }
7060
6e3c9717
ACO
7061 if (crtc->config->has_pch_encoder)
7062 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7063 else
fe3cd48d 7064 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7065}
7066
d288f65f 7067static void vlv_update_pll(struct intel_crtc *crtc,
5cec258b 7068 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
7069{
7070 u32 dpll, dpll_md;
7071
7072 /*
7073 * Enable DPIO clock input. We should never disable the reference
7074 * clock for pipe B, since VGA hotplug / manual detection depends
7075 * on it.
7076 */
7077 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7078 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7079 /* We should never disable this, set it here for state tracking */
7080 if (crtc->pipe == PIPE_B)
7081 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7082 dpll |= DPLL_VCO_ENABLE;
d288f65f 7083 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 7084
d288f65f 7085 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 7086 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 7087 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
7088}
7089
d288f65f 7090static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7091 const struct intel_crtc_state *pipe_config)
a0c4da24 7092{
f47709a9 7093 struct drm_device *dev = crtc->base.dev;
a0c4da24 7094 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 7095 int pipe = crtc->pipe;
bdd4b6a6 7096 u32 mdiv;
a0c4da24 7097 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7098 u32 coreclk, reg_val;
a0c4da24 7099
a580516d 7100 mutex_lock(&dev_priv->sb_lock);
09153000 7101
d288f65f
VS
7102 bestn = pipe_config->dpll.n;
7103 bestm1 = pipe_config->dpll.m1;
7104 bestm2 = pipe_config->dpll.m2;
7105 bestp1 = pipe_config->dpll.p1;
7106 bestp2 = pipe_config->dpll.p2;
a0c4da24 7107
89b667f8
JB
7108 /* See eDP HDMI DPIO driver vbios notes doc */
7109
7110 /* PLL B needs special handling */
bdd4b6a6 7111 if (pipe == PIPE_B)
5e69f97f 7112 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7113
7114 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7115 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7116
7117 /* Disable target IRef on PLL */
ab3c759a 7118 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7119 reg_val &= 0x00ffffff;
ab3c759a 7120 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7121
7122 /* Disable fast lock */
ab3c759a 7123 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7124
7125 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7126 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7127 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7128 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7129 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7130
7131 /*
7132 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7133 * but we don't support that).
7134 * Note: don't use the DAC post divider as it seems unstable.
7135 */
7136 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7137 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7138
a0c4da24 7139 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7140 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7141
89b667f8 7142 /* Set HBR and RBR LPF coefficients */
d288f65f 7143 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7144 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7145 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7146 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7147 0x009f0003);
89b667f8 7148 else
ab3c759a 7149 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7150 0x00d0000f);
7151
681a8504 7152 if (pipe_config->has_dp_encoder) {
89b667f8 7153 /* Use SSC source */
bdd4b6a6 7154 if (pipe == PIPE_A)
ab3c759a 7155 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7156 0x0df40000);
7157 else
ab3c759a 7158 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7159 0x0df70000);
7160 } else { /* HDMI or VGA */
7161 /* Use bend source */
bdd4b6a6 7162 if (pipe == PIPE_A)
ab3c759a 7163 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7164 0x0df70000);
7165 else
ab3c759a 7166 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7167 0x0df40000);
7168 }
a0c4da24 7169
ab3c759a 7170 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7171 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7172 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7173 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7174 coreclk |= 0x01000000;
ab3c759a 7175 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7176
ab3c759a 7177 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7178 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7179}
7180
d288f65f 7181static void chv_update_pll(struct intel_crtc *crtc,
5cec258b 7182 struct intel_crtc_state *pipe_config)
1ae0d137 7183{
d288f65f 7184 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
1ae0d137
VS
7185 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7186 DPLL_VCO_ENABLE;
7187 if (crtc->pipe != PIPE_A)
d288f65f 7188 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 7189
d288f65f
VS
7190 pipe_config->dpll_hw_state.dpll_md =
7191 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
7192}
7193
d288f65f 7194static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7195 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7196{
7197 struct drm_device *dev = crtc->base.dev;
7198 struct drm_i915_private *dev_priv = dev->dev_private;
7199 int pipe = crtc->pipe;
7200 int dpll_reg = DPLL(crtc->pipe);
7201 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7202 u32 loopfilter, tribuf_calcntr;
9d556c99 7203 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7204 u32 dpio_val;
9cbe40c1 7205 int vco;
9d556c99 7206
d288f65f
VS
7207 bestn = pipe_config->dpll.n;
7208 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7209 bestm1 = pipe_config->dpll.m1;
7210 bestm2 = pipe_config->dpll.m2 >> 22;
7211 bestp1 = pipe_config->dpll.p1;
7212 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7213 vco = pipe_config->dpll.vco;
a945ce7e 7214 dpio_val = 0;
9cbe40c1 7215 loopfilter = 0;
9d556c99
CML
7216
7217 /*
7218 * Enable Refclk and SSC
7219 */
a11b0703 7220 I915_WRITE(dpll_reg,
d288f65f 7221 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703 7222
a580516d 7223 mutex_lock(&dev_priv->sb_lock);
9d556c99 7224
9d556c99
CML
7225 /* p1 and p2 divider */
7226 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7227 5 << DPIO_CHV_S1_DIV_SHIFT |
7228 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7229 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7230 1 << DPIO_CHV_K_DIV_SHIFT);
7231
7232 /* Feedback post-divider - m2 */
7233 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7234
7235 /* Feedback refclk divider - n and m1 */
7236 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7237 DPIO_CHV_M1_DIV_BY_2 |
7238 1 << DPIO_CHV_N_DIV_SHIFT);
7239
7240 /* M2 fraction division */
a945ce7e
VP
7241 if (bestm2_frac)
7242 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7243
7244 /* M2 fraction division enable */
a945ce7e
VP
7245 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7246 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7247 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7248 if (bestm2_frac)
7249 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7250 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7251
de3a0fde
VP
7252 /* Program digital lock detect threshold */
7253 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7254 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7255 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7256 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7257 if (!bestm2_frac)
7258 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7259 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7260
9d556c99 7261 /* Loop filter */
9cbe40c1
VP
7262 if (vco == 5400000) {
7263 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7264 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7265 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7266 tribuf_calcntr = 0x9;
7267 } else if (vco <= 6200000) {
7268 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7269 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7270 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7271 tribuf_calcntr = 0x9;
7272 } else if (vco <= 6480000) {
7273 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7274 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7275 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7276 tribuf_calcntr = 0x8;
7277 } else {
7278 /* Not supported. Apply the same limits as in the max case */
7279 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7280 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7281 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7282 tribuf_calcntr = 0;
7283 }
9d556c99
CML
7284 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7285
968040b2 7286 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7287 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7288 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7289 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7290
9d556c99
CML
7291 /* AFC Recal */
7292 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7293 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7294 DPIO_AFC_RECAL);
7295
a580516d 7296 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7297}
7298
d288f65f
VS
7299/**
7300 * vlv_force_pll_on - forcibly enable just the PLL
7301 * @dev_priv: i915 private structure
7302 * @pipe: pipe PLL to enable
7303 * @dpll: PLL configuration
7304 *
7305 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7306 * in cases where we need the PLL enabled even when @pipe is not going to
7307 * be enabled.
7308 */
7309void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7310 const struct dpll *dpll)
7311{
7312 struct intel_crtc *crtc =
7313 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 7314 struct intel_crtc_state pipe_config = {
a93e255f 7315 .base.crtc = &crtc->base,
d288f65f
VS
7316 .pixel_multiplier = 1,
7317 .dpll = *dpll,
7318 };
7319
7320 if (IS_CHERRYVIEW(dev)) {
7321 chv_update_pll(crtc, &pipe_config);
7322 chv_prepare_pll(crtc, &pipe_config);
7323 chv_enable_pll(crtc, &pipe_config);
7324 } else {
7325 vlv_update_pll(crtc, &pipe_config);
7326 vlv_prepare_pll(crtc, &pipe_config);
7327 vlv_enable_pll(crtc, &pipe_config);
7328 }
7329}
7330
7331/**
7332 * vlv_force_pll_off - forcibly disable just the PLL
7333 * @dev_priv: i915 private structure
7334 * @pipe: pipe PLL to disable
7335 *
7336 * Disable the PLL for @pipe. To be used in cases where we need
7337 * the PLL enabled even when @pipe is not going to be enabled.
7338 */
7339void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7340{
7341 if (IS_CHERRYVIEW(dev))
7342 chv_disable_pll(to_i915(dev), pipe);
7343 else
7344 vlv_disable_pll(to_i915(dev), pipe);
7345}
7346
f47709a9 7347static void i9xx_update_pll(struct intel_crtc *crtc,
190f68c5 7348 struct intel_crtc_state *crtc_state,
f47709a9 7349 intel_clock_t *reduced_clock,
eb1cbe48
DV
7350 int num_connectors)
7351{
f47709a9 7352 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7353 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7354 u32 dpll;
7355 bool is_sdvo;
190f68c5 7356 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7357
190f68c5 7358 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7359
a93e255f
ACO
7360 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7361 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7362
7363 dpll = DPLL_VGA_MODE_DIS;
7364
a93e255f 7365 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7366 dpll |= DPLLB_MODE_LVDS;
7367 else
7368 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7369
ef1b460d 7370 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7371 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7372 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7373 }
198a037f
DV
7374
7375 if (is_sdvo)
4a33e48d 7376 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7377
190f68c5 7378 if (crtc_state->has_dp_encoder)
4a33e48d 7379 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7380
7381 /* compute bitmask from p1 value */
7382 if (IS_PINEVIEW(dev))
7383 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7384 else {
7385 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7386 if (IS_G4X(dev) && reduced_clock)
7387 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7388 }
7389 switch (clock->p2) {
7390 case 5:
7391 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7392 break;
7393 case 7:
7394 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7395 break;
7396 case 10:
7397 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7398 break;
7399 case 14:
7400 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7401 break;
7402 }
7403 if (INTEL_INFO(dev)->gen >= 4)
7404 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7405
190f68c5 7406 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7407 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7408 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7409 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7410 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7411 else
7412 dpll |= PLL_REF_INPUT_DREFCLK;
7413
7414 dpll |= DPLL_VCO_ENABLE;
190f68c5 7415 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7416
eb1cbe48 7417 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7418 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7419 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7420 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7421 }
7422}
7423
f47709a9 7424static void i8xx_update_pll(struct intel_crtc *crtc,
190f68c5 7425 struct intel_crtc_state *crtc_state,
f47709a9 7426 intel_clock_t *reduced_clock,
eb1cbe48
DV
7427 int num_connectors)
7428{
f47709a9 7429 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7430 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7431 u32 dpll;
190f68c5 7432 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7433
190f68c5 7434 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7435
eb1cbe48
DV
7436 dpll = DPLL_VGA_MODE_DIS;
7437
a93e255f 7438 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7439 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7440 } else {
7441 if (clock->p1 == 2)
7442 dpll |= PLL_P1_DIVIDE_BY_TWO;
7443 else
7444 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7445 if (clock->p2 == 4)
7446 dpll |= PLL_P2_DIVIDE_BY_4;
7447 }
7448
a93e255f 7449 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7450 dpll |= DPLL_DVO_2X_MODE;
7451
a93e255f 7452 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7453 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7454 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7455 else
7456 dpll |= PLL_REF_INPUT_DREFCLK;
7457
7458 dpll |= DPLL_VCO_ENABLE;
190f68c5 7459 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7460}
7461
8a654f3b 7462static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7463{
7464 struct drm_device *dev = intel_crtc->base.dev;
7465 struct drm_i915_private *dev_priv = dev->dev_private;
7466 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7467 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8a654f3b 7468 struct drm_display_mode *adjusted_mode =
6e3c9717 7469 &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7470 uint32_t crtc_vtotal, crtc_vblank_end;
7471 int vsyncshift = 0;
4d8a62ea
DV
7472
7473 /* We need to be careful not to changed the adjusted mode, for otherwise
7474 * the hw state checker will get angry at the mismatch. */
7475 crtc_vtotal = adjusted_mode->crtc_vtotal;
7476 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7477
609aeaca 7478 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7479 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7480 crtc_vtotal -= 1;
7481 crtc_vblank_end -= 1;
609aeaca 7482
409ee761 7483 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7484 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7485 else
7486 vsyncshift = adjusted_mode->crtc_hsync_start -
7487 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7488 if (vsyncshift < 0)
7489 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7490 }
7491
7492 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7493 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7494
fe2b8f9d 7495 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7496 (adjusted_mode->crtc_hdisplay - 1) |
7497 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7498 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7499 (adjusted_mode->crtc_hblank_start - 1) |
7500 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7501 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7502 (adjusted_mode->crtc_hsync_start - 1) |
7503 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7504
fe2b8f9d 7505 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7506 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7507 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7508 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7509 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7510 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7511 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7512 (adjusted_mode->crtc_vsync_start - 1) |
7513 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7514
b5e508d4
PZ
7515 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7516 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7517 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7518 * bits. */
7519 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7520 (pipe == PIPE_B || pipe == PIPE_C))
7521 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7522
b0e77b9c
PZ
7523 /* pipesrc controls the size that is scaled from, which should
7524 * always be the user's requested size.
7525 */
7526 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7527 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7528 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7529}
7530
1bd1bd80 7531static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7532 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7533{
7534 struct drm_device *dev = crtc->base.dev;
7535 struct drm_i915_private *dev_priv = dev->dev_private;
7536 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7537 uint32_t tmp;
7538
7539 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7540 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7541 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7542 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7543 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7544 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7545 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7546 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7547 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7548
7549 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7550 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7551 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7552 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7553 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7554 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7555 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7556 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7557 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7558
7559 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7560 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7561 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7562 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7563 }
7564
7565 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7566 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7567 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7568
2d112de7
ACO
7569 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7570 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7571}
7572
f6a83288 7573void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7574 struct intel_crtc_state *pipe_config)
babea61d 7575{
2d112de7
ACO
7576 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7577 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7578 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7579 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7580
2d112de7
ACO
7581 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7582 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7583 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7584 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7585
2d112de7 7586 mode->flags = pipe_config->base.adjusted_mode.flags;
babea61d 7587
2d112de7
ACO
7588 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7589 mode->flags |= pipe_config->base.adjusted_mode.flags;
babea61d
JB
7590}
7591
84b046f3
DV
7592static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7593{
7594 struct drm_device *dev = intel_crtc->base.dev;
7595 struct drm_i915_private *dev_priv = dev->dev_private;
7596 uint32_t pipeconf;
7597
9f11a9e4 7598 pipeconf = 0;
84b046f3 7599
b6b5d049
VS
7600 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7601 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7602 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7603
6e3c9717 7604 if (intel_crtc->config->double_wide)
cf532bb2 7605 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7606
ff9ce46e
DV
7607 /* only g4x and later have fancy bpc/dither controls */
7608 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 7609 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7610 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7611 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7612 PIPECONF_DITHER_TYPE_SP;
84b046f3 7613
6e3c9717 7614 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7615 case 18:
7616 pipeconf |= PIPECONF_6BPC;
7617 break;
7618 case 24:
7619 pipeconf |= PIPECONF_8BPC;
7620 break;
7621 case 30:
7622 pipeconf |= PIPECONF_10BPC;
7623 break;
7624 default:
7625 /* Case prevented by intel_choose_pipe_bpp_dither. */
7626 BUG();
84b046f3
DV
7627 }
7628 }
7629
7630 if (HAS_PIPE_CXSR(dev)) {
7631 if (intel_crtc->lowfreq_avail) {
7632 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7633 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7634 } else {
7635 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7636 }
7637 }
7638
6e3c9717 7639 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7640 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7641 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7642 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7643 else
7644 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7645 } else
84b046f3
DV
7646 pipeconf |= PIPECONF_PROGRESSIVE;
7647
6e3c9717 7648 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 7649 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7650
84b046f3
DV
7651 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7652 POSTING_READ(PIPECONF(intel_crtc->pipe));
7653}
7654
190f68c5
ACO
7655static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7656 struct intel_crtc_state *crtc_state)
79e53945 7657{
c7653199 7658 struct drm_device *dev = crtc->base.dev;
79e53945 7659 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7660 int refclk, num_connectors = 0;
652c393a 7661 intel_clock_t clock, reduced_clock;
a16af721 7662 bool ok, has_reduced_clock = false;
e9fd1c02 7663 bool is_lvds = false, is_dsi = false;
5eddb70b 7664 struct intel_encoder *encoder;
d4906093 7665 const intel_limit_t *limit;
55bb9992 7666 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 7667 struct drm_connector *connector;
55bb9992
ACO
7668 struct drm_connector_state *connector_state;
7669 int i;
79e53945 7670
dd3cd74a
ACO
7671 memset(&crtc_state->dpll_hw_state, 0,
7672 sizeof(crtc_state->dpll_hw_state));
7673
da3ced29 7674 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
7675 if (connector_state->crtc != &crtc->base)
7676 continue;
7677
7678 encoder = to_intel_encoder(connector_state->best_encoder);
7679
5eddb70b 7680 switch (encoder->type) {
79e53945
JB
7681 case INTEL_OUTPUT_LVDS:
7682 is_lvds = true;
7683 break;
e9fd1c02
JN
7684 case INTEL_OUTPUT_DSI:
7685 is_dsi = true;
7686 break;
6847d71b
PZ
7687 default:
7688 break;
79e53945 7689 }
43565a06 7690
c751ce4f 7691 num_connectors++;
79e53945
JB
7692 }
7693
f2335330 7694 if (is_dsi)
5b18e57c 7695 return 0;
f2335330 7696
190f68c5 7697 if (!crtc_state->clock_set) {
a93e255f 7698 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7699
e9fd1c02
JN
7700 /*
7701 * Returns a set of divisors for the desired target clock with
7702 * the given refclk, or FALSE. The returned values represent
7703 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7704 * 2) / p1 / p2.
7705 */
a93e255f
ACO
7706 limit = intel_limit(crtc_state, refclk);
7707 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7708 crtc_state->port_clock,
e9fd1c02 7709 refclk, NULL, &clock);
f2335330 7710 if (!ok) {
e9fd1c02
JN
7711 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7712 return -EINVAL;
7713 }
79e53945 7714
f2335330
JN
7715 if (is_lvds && dev_priv->lvds_downclock_avail) {
7716 /*
7717 * Ensure we match the reduced clock's P to the target
7718 * clock. If the clocks don't match, we can't switch
7719 * the display clock by using the FP0/FP1. In such case
7720 * we will disable the LVDS downclock feature.
7721 */
7722 has_reduced_clock =
a93e255f 7723 dev_priv->display.find_dpll(limit, crtc_state,
f2335330
JN
7724 dev_priv->lvds_downclock,
7725 refclk, &clock,
7726 &reduced_clock);
7727 }
7728 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7729 crtc_state->dpll.n = clock.n;
7730 crtc_state->dpll.m1 = clock.m1;
7731 crtc_state->dpll.m2 = clock.m2;
7732 crtc_state->dpll.p1 = clock.p1;
7733 crtc_state->dpll.p2 = clock.p2;
f47709a9 7734 }
7026d4ac 7735
e9fd1c02 7736 if (IS_GEN2(dev)) {
190f68c5 7737 i8xx_update_pll(crtc, crtc_state,
2a8f64ca
VP
7738 has_reduced_clock ? &reduced_clock : NULL,
7739 num_connectors);
9d556c99 7740 } else if (IS_CHERRYVIEW(dev)) {
190f68c5 7741 chv_update_pll(crtc, crtc_state);
e9fd1c02 7742 } else if (IS_VALLEYVIEW(dev)) {
190f68c5 7743 vlv_update_pll(crtc, crtc_state);
e9fd1c02 7744 } else {
190f68c5 7745 i9xx_update_pll(crtc, crtc_state,
eb1cbe48 7746 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 7747 num_connectors);
e9fd1c02 7748 }
79e53945 7749
c8f7a0db 7750 return 0;
f564048e
EA
7751}
7752
2fa2fe9a 7753static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7754 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7755{
7756 struct drm_device *dev = crtc->base.dev;
7757 struct drm_i915_private *dev_priv = dev->dev_private;
7758 uint32_t tmp;
7759
dc9e7dec
VS
7760 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7761 return;
7762
2fa2fe9a 7763 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
7764 if (!(tmp & PFIT_ENABLE))
7765 return;
2fa2fe9a 7766
06922821 7767 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
7768 if (INTEL_INFO(dev)->gen < 4) {
7769 if (crtc->pipe != PIPE_B)
7770 return;
2fa2fe9a
DV
7771 } else {
7772 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7773 return;
7774 }
7775
06922821 7776 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
7777 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7778 if (INTEL_INFO(dev)->gen < 5)
7779 pipe_config->gmch_pfit.lvds_border_bits =
7780 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7781}
7782
acbec814 7783static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7784 struct intel_crtc_state *pipe_config)
acbec814
JB
7785{
7786 struct drm_device *dev = crtc->base.dev;
7787 struct drm_i915_private *dev_priv = dev->dev_private;
7788 int pipe = pipe_config->cpu_transcoder;
7789 intel_clock_t clock;
7790 u32 mdiv;
662c6ecb 7791 int refclk = 100000;
acbec814 7792
f573de5a
SK
7793 /* In case of MIPI DPLL will not even be used */
7794 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7795 return;
7796
a580516d 7797 mutex_lock(&dev_priv->sb_lock);
ab3c759a 7798 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 7799 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
7800
7801 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7802 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7803 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7804 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7805 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7806
f646628b 7807 vlv_clock(refclk, &clock);
acbec814 7808
f646628b
VS
7809 /* clock.dot is the fast clock */
7810 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
7811}
7812
5724dbd1
DL
7813static void
7814i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7815 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
7816{
7817 struct drm_device *dev = crtc->base.dev;
7818 struct drm_i915_private *dev_priv = dev->dev_private;
7819 u32 val, base, offset;
7820 int pipe = crtc->pipe, plane = crtc->plane;
7821 int fourcc, pixel_format;
6761dd31 7822 unsigned int aligned_height;
b113d5ee 7823 struct drm_framebuffer *fb;
1b842c89 7824 struct intel_framebuffer *intel_fb;
1ad292b5 7825
42a7b088
DL
7826 val = I915_READ(DSPCNTR(plane));
7827 if (!(val & DISPLAY_PLANE_ENABLE))
7828 return;
7829
d9806c9f 7830 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7831 if (!intel_fb) {
1ad292b5
JB
7832 DRM_DEBUG_KMS("failed to alloc fb\n");
7833 return;
7834 }
7835
1b842c89
DL
7836 fb = &intel_fb->base;
7837
18c5247e
DV
7838 if (INTEL_INFO(dev)->gen >= 4) {
7839 if (val & DISPPLANE_TILED) {
49af449b 7840 plane_config->tiling = I915_TILING_X;
18c5247e
DV
7841 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7842 }
7843 }
1ad292b5
JB
7844
7845 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7846 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7847 fb->pixel_format = fourcc;
7848 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
7849
7850 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 7851 if (plane_config->tiling)
1ad292b5
JB
7852 offset = I915_READ(DSPTILEOFF(plane));
7853 else
7854 offset = I915_READ(DSPLINOFF(plane));
7855 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7856 } else {
7857 base = I915_READ(DSPADDR(plane));
7858 }
7859 plane_config->base = base;
7860
7861 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
7862 fb->width = ((val >> 16) & 0xfff) + 1;
7863 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
7864
7865 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 7866 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 7867
b113d5ee 7868 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7869 fb->pixel_format,
7870 fb->modifier[0]);
1ad292b5 7871
f37b5c2b 7872 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 7873
2844a921
DL
7874 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7875 pipe_name(pipe), plane, fb->width, fb->height,
7876 fb->bits_per_pixel, base, fb->pitches[0],
7877 plane_config->size);
1ad292b5 7878
2d14030b 7879 plane_config->fb = intel_fb;
1ad292b5
JB
7880}
7881
70b23a98 7882static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7883 struct intel_crtc_state *pipe_config)
70b23a98
VS
7884{
7885 struct drm_device *dev = crtc->base.dev;
7886 struct drm_i915_private *dev_priv = dev->dev_private;
7887 int pipe = pipe_config->cpu_transcoder;
7888 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7889 intel_clock_t clock;
0d7b6b11 7890 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
7891 int refclk = 100000;
7892
a580516d 7893 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
7894 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7895 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7896 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7897 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 7898 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 7899 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
7900
7901 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
7902 clock.m2 = (pll_dw0 & 0xff) << 22;
7903 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7904 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
7905 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7906 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7907 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7908
7909 chv_clock(refclk, &clock);
7910
7911 /* clock.dot is the fast clock */
7912 pipe_config->port_clock = clock.dot / 5;
7913}
7914
0e8ffe1b 7915static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 7916 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
7917{
7918 struct drm_device *dev = crtc->base.dev;
7919 struct drm_i915_private *dev_priv = dev->dev_private;
7920 uint32_t tmp;
7921
f458ebbc
DV
7922 if (!intel_display_power_is_enabled(dev_priv,
7923 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
7924 return false;
7925
e143a21c 7926 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7927 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7928
0e8ffe1b
DV
7929 tmp = I915_READ(PIPECONF(crtc->pipe));
7930 if (!(tmp & PIPECONF_ENABLE))
7931 return false;
7932
42571aef
VS
7933 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7934 switch (tmp & PIPECONF_BPC_MASK) {
7935 case PIPECONF_6BPC:
7936 pipe_config->pipe_bpp = 18;
7937 break;
7938 case PIPECONF_8BPC:
7939 pipe_config->pipe_bpp = 24;
7940 break;
7941 case PIPECONF_10BPC:
7942 pipe_config->pipe_bpp = 30;
7943 break;
7944 default:
7945 break;
7946 }
7947 }
7948
b5a9fa09
DV
7949 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7950 pipe_config->limited_color_range = true;
7951
282740f7
VS
7952 if (INTEL_INFO(dev)->gen < 4)
7953 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7954
1bd1bd80
DV
7955 intel_get_pipe_timings(crtc, pipe_config);
7956
2fa2fe9a
DV
7957 i9xx_get_pfit_config(crtc, pipe_config);
7958
6c49f241
DV
7959 if (INTEL_INFO(dev)->gen >= 4) {
7960 tmp = I915_READ(DPLL_MD(crtc->pipe));
7961 pipe_config->pixel_multiplier =
7962 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7963 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 7964 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
7965 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7966 tmp = I915_READ(DPLL(crtc->pipe));
7967 pipe_config->pixel_multiplier =
7968 ((tmp & SDVO_MULTIPLIER_MASK)
7969 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7970 } else {
7971 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7972 * port and will be fixed up in the encoder->get_config
7973 * function. */
7974 pipe_config->pixel_multiplier = 1;
7975 }
8bcc2795
DV
7976 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7977 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
7978 /*
7979 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7980 * on 830. Filter it out here so that we don't
7981 * report errors due to that.
7982 */
7983 if (IS_I830(dev))
7984 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7985
8bcc2795
DV
7986 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7987 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
7988 } else {
7989 /* Mask out read-only status bits. */
7990 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7991 DPLL_PORTC_READY_MASK |
7992 DPLL_PORTB_READY_MASK);
8bcc2795 7993 }
6c49f241 7994
70b23a98
VS
7995 if (IS_CHERRYVIEW(dev))
7996 chv_crtc_clock_get(crtc, pipe_config);
7997 else if (IS_VALLEYVIEW(dev))
acbec814
JB
7998 vlv_crtc_clock_get(crtc, pipe_config);
7999 else
8000 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8001
0e8ffe1b
DV
8002 return true;
8003}
8004
dde86e2d 8005static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8006{
8007 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8008 struct intel_encoder *encoder;
74cfd7ac 8009 u32 val, final;
13d83a67 8010 bool has_lvds = false;
199e5d79 8011 bool has_cpu_edp = false;
199e5d79 8012 bool has_panel = false;
99eb6a01
KP
8013 bool has_ck505 = false;
8014 bool can_ssc = false;
13d83a67
JB
8015
8016 /* We need to take the global config into account */
b2784e15 8017 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8018 switch (encoder->type) {
8019 case INTEL_OUTPUT_LVDS:
8020 has_panel = true;
8021 has_lvds = true;
8022 break;
8023 case INTEL_OUTPUT_EDP:
8024 has_panel = true;
2de6905f 8025 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8026 has_cpu_edp = true;
8027 break;
6847d71b
PZ
8028 default:
8029 break;
13d83a67
JB
8030 }
8031 }
8032
99eb6a01 8033 if (HAS_PCH_IBX(dev)) {
41aa3448 8034 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8035 can_ssc = has_ck505;
8036 } else {
8037 has_ck505 = false;
8038 can_ssc = true;
8039 }
8040
2de6905f
ID
8041 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8042 has_panel, has_lvds, has_ck505);
13d83a67
JB
8043
8044 /* Ironlake: try to setup display ref clock before DPLL
8045 * enabling. This is only under driver's control after
8046 * PCH B stepping, previous chipset stepping should be
8047 * ignoring this setting.
8048 */
74cfd7ac
CW
8049 val = I915_READ(PCH_DREF_CONTROL);
8050
8051 /* As we must carefully and slowly disable/enable each source in turn,
8052 * compute the final state we want first and check if we need to
8053 * make any changes at all.
8054 */
8055 final = val;
8056 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8057 if (has_ck505)
8058 final |= DREF_NONSPREAD_CK505_ENABLE;
8059 else
8060 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8061
8062 final &= ~DREF_SSC_SOURCE_MASK;
8063 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8064 final &= ~DREF_SSC1_ENABLE;
8065
8066 if (has_panel) {
8067 final |= DREF_SSC_SOURCE_ENABLE;
8068
8069 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8070 final |= DREF_SSC1_ENABLE;
8071
8072 if (has_cpu_edp) {
8073 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8074 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8075 else
8076 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8077 } else
8078 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8079 } else {
8080 final |= DREF_SSC_SOURCE_DISABLE;
8081 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8082 }
8083
8084 if (final == val)
8085 return;
8086
13d83a67 8087 /* Always enable nonspread source */
74cfd7ac 8088 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8089
99eb6a01 8090 if (has_ck505)
74cfd7ac 8091 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8092 else
74cfd7ac 8093 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8094
199e5d79 8095 if (has_panel) {
74cfd7ac
CW
8096 val &= ~DREF_SSC_SOURCE_MASK;
8097 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8098
199e5d79 8099 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8100 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8101 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8102 val |= DREF_SSC1_ENABLE;
e77166b5 8103 } else
74cfd7ac 8104 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8105
8106 /* Get SSC going before enabling the outputs */
74cfd7ac 8107 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8108 POSTING_READ(PCH_DREF_CONTROL);
8109 udelay(200);
8110
74cfd7ac 8111 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8112
8113 /* Enable CPU source on CPU attached eDP */
199e5d79 8114 if (has_cpu_edp) {
99eb6a01 8115 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8116 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8117 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8118 } else
74cfd7ac 8119 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8120 } else
74cfd7ac 8121 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8122
74cfd7ac 8123 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8124 POSTING_READ(PCH_DREF_CONTROL);
8125 udelay(200);
8126 } else {
8127 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8128
74cfd7ac 8129 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8130
8131 /* Turn off CPU output */
74cfd7ac 8132 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8133
74cfd7ac 8134 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8135 POSTING_READ(PCH_DREF_CONTROL);
8136 udelay(200);
8137
8138 /* Turn off the SSC source */
74cfd7ac
CW
8139 val &= ~DREF_SSC_SOURCE_MASK;
8140 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
8141
8142 /* Turn off SSC1 */
74cfd7ac 8143 val &= ~DREF_SSC1_ENABLE;
199e5d79 8144
74cfd7ac 8145 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
8146 POSTING_READ(PCH_DREF_CONTROL);
8147 udelay(200);
8148 }
74cfd7ac
CW
8149
8150 BUG_ON(val != final);
13d83a67
JB
8151}
8152
f31f2d55 8153static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8154{
f31f2d55 8155 uint32_t tmp;
dde86e2d 8156
0ff066a9
PZ
8157 tmp = I915_READ(SOUTH_CHICKEN2);
8158 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8159 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8160
0ff066a9
PZ
8161 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8162 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8163 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8164
0ff066a9
PZ
8165 tmp = I915_READ(SOUTH_CHICKEN2);
8166 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8167 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8168
0ff066a9
PZ
8169 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8170 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8171 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8172}
8173
8174/* WaMPhyProgramming:hsw */
8175static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8176{
8177 uint32_t tmp;
dde86e2d
PZ
8178
8179 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8180 tmp &= ~(0xFF << 24);
8181 tmp |= (0x12 << 24);
8182 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8183
dde86e2d
PZ
8184 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8185 tmp |= (1 << 11);
8186 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8187
8188 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8189 tmp |= (1 << 11);
8190 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8191
dde86e2d
PZ
8192 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8193 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8194 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8195
8196 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8197 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8198 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8199
0ff066a9
PZ
8200 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8201 tmp &= ~(7 << 13);
8202 tmp |= (5 << 13);
8203 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8204
0ff066a9
PZ
8205 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8206 tmp &= ~(7 << 13);
8207 tmp |= (5 << 13);
8208 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8209
8210 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8211 tmp &= ~0xFF;
8212 tmp |= 0x1C;
8213 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8214
8215 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8216 tmp &= ~0xFF;
8217 tmp |= 0x1C;
8218 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8219
8220 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8221 tmp &= ~(0xFF << 16);
8222 tmp |= (0x1C << 16);
8223 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8224
8225 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8226 tmp &= ~(0xFF << 16);
8227 tmp |= (0x1C << 16);
8228 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8229
0ff066a9
PZ
8230 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8231 tmp |= (1 << 27);
8232 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8233
0ff066a9
PZ
8234 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8235 tmp |= (1 << 27);
8236 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8237
0ff066a9
PZ
8238 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8239 tmp &= ~(0xF << 28);
8240 tmp |= (4 << 28);
8241 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8242
0ff066a9
PZ
8243 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8244 tmp &= ~(0xF << 28);
8245 tmp |= (4 << 28);
8246 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8247}
8248
2fa86a1f
PZ
8249/* Implements 3 different sequences from BSpec chapter "Display iCLK
8250 * Programming" based on the parameters passed:
8251 * - Sequence to enable CLKOUT_DP
8252 * - Sequence to enable CLKOUT_DP without spread
8253 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8254 */
8255static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8256 bool with_fdi)
f31f2d55
PZ
8257{
8258 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8259 uint32_t reg, tmp;
8260
8261 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8262 with_spread = true;
8263 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8264 with_fdi, "LP PCH doesn't have FDI\n"))
8265 with_fdi = false;
f31f2d55 8266
a580516d 8267 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8268
8269 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8270 tmp &= ~SBI_SSCCTL_DISABLE;
8271 tmp |= SBI_SSCCTL_PATHALT;
8272 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8273
8274 udelay(24);
8275
2fa86a1f
PZ
8276 if (with_spread) {
8277 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8278 tmp &= ~SBI_SSCCTL_PATHALT;
8279 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8280
2fa86a1f
PZ
8281 if (with_fdi) {
8282 lpt_reset_fdi_mphy(dev_priv);
8283 lpt_program_fdi_mphy(dev_priv);
8284 }
8285 }
dde86e2d 8286
2fa86a1f
PZ
8287 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8288 SBI_GEN0 : SBI_DBUFF0;
8289 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8290 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8291 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8292
a580516d 8293 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8294}
8295
47701c3b
PZ
8296/* Sequence to disable CLKOUT_DP */
8297static void lpt_disable_clkout_dp(struct drm_device *dev)
8298{
8299 struct drm_i915_private *dev_priv = dev->dev_private;
8300 uint32_t reg, tmp;
8301
a580516d 8302 mutex_lock(&dev_priv->sb_lock);
47701c3b
PZ
8303
8304 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8305 SBI_GEN0 : SBI_DBUFF0;
8306 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8307 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8308 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8309
8310 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8311 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8312 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8313 tmp |= SBI_SSCCTL_PATHALT;
8314 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8315 udelay(32);
8316 }
8317 tmp |= SBI_SSCCTL_DISABLE;
8318 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8319 }
8320
a580516d 8321 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8322}
8323
bf8fa3d3
PZ
8324static void lpt_init_pch_refclk(struct drm_device *dev)
8325{
bf8fa3d3
PZ
8326 struct intel_encoder *encoder;
8327 bool has_vga = false;
8328
b2784e15 8329 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8330 switch (encoder->type) {
8331 case INTEL_OUTPUT_ANALOG:
8332 has_vga = true;
8333 break;
6847d71b
PZ
8334 default:
8335 break;
bf8fa3d3
PZ
8336 }
8337 }
8338
47701c3b
PZ
8339 if (has_vga)
8340 lpt_enable_clkout_dp(dev, true, true);
8341 else
8342 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
8343}
8344
dde86e2d
PZ
8345/*
8346 * Initialize reference clocks when the driver loads
8347 */
8348void intel_init_pch_refclk(struct drm_device *dev)
8349{
8350 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8351 ironlake_init_pch_refclk(dev);
8352 else if (HAS_PCH_LPT(dev))
8353 lpt_init_pch_refclk(dev);
8354}
8355
55bb9992 8356static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8357{
55bb9992 8358 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8359 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8360 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8361 struct drm_connector *connector;
55bb9992 8362 struct drm_connector_state *connector_state;
d9d444cb 8363 struct intel_encoder *encoder;
55bb9992 8364 int num_connectors = 0, i;
d9d444cb
JB
8365 bool is_lvds = false;
8366
da3ced29 8367 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8368 if (connector_state->crtc != crtc_state->base.crtc)
8369 continue;
8370
8371 encoder = to_intel_encoder(connector_state->best_encoder);
8372
d9d444cb
JB
8373 switch (encoder->type) {
8374 case INTEL_OUTPUT_LVDS:
8375 is_lvds = true;
8376 break;
6847d71b
PZ
8377 default:
8378 break;
d9d444cb
JB
8379 }
8380 num_connectors++;
8381 }
8382
8383 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8384 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8385 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8386 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8387 }
8388
8389 return 120000;
8390}
8391
6ff93609 8392static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8393{
c8203565 8394 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8396 int pipe = intel_crtc->pipe;
c8203565
PZ
8397 uint32_t val;
8398
78114071 8399 val = 0;
c8203565 8400
6e3c9717 8401 switch (intel_crtc->config->pipe_bpp) {
c8203565 8402 case 18:
dfd07d72 8403 val |= PIPECONF_6BPC;
c8203565
PZ
8404 break;
8405 case 24:
dfd07d72 8406 val |= PIPECONF_8BPC;
c8203565
PZ
8407 break;
8408 case 30:
dfd07d72 8409 val |= PIPECONF_10BPC;
c8203565
PZ
8410 break;
8411 case 36:
dfd07d72 8412 val |= PIPECONF_12BPC;
c8203565
PZ
8413 break;
8414 default:
cc769b62
PZ
8415 /* Case prevented by intel_choose_pipe_bpp_dither. */
8416 BUG();
c8203565
PZ
8417 }
8418
6e3c9717 8419 if (intel_crtc->config->dither)
c8203565
PZ
8420 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8421
6e3c9717 8422 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8423 val |= PIPECONF_INTERLACED_ILK;
8424 else
8425 val |= PIPECONF_PROGRESSIVE;
8426
6e3c9717 8427 if (intel_crtc->config->limited_color_range)
3685a8f3 8428 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8429
c8203565
PZ
8430 I915_WRITE(PIPECONF(pipe), val);
8431 POSTING_READ(PIPECONF(pipe));
8432}
8433
86d3efce
VS
8434/*
8435 * Set up the pipe CSC unit.
8436 *
8437 * Currently only full range RGB to limited range RGB conversion
8438 * is supported, but eventually this should handle various
8439 * RGB<->YCbCr scenarios as well.
8440 */
50f3b016 8441static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8442{
8443 struct drm_device *dev = crtc->dev;
8444 struct drm_i915_private *dev_priv = dev->dev_private;
8445 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8446 int pipe = intel_crtc->pipe;
8447 uint16_t coeff = 0x7800; /* 1.0 */
8448
8449 /*
8450 * TODO: Check what kind of values actually come out of the pipe
8451 * with these coeff/postoff values and adjust to get the best
8452 * accuracy. Perhaps we even need to take the bpc value into
8453 * consideration.
8454 */
8455
6e3c9717 8456 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8457 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8458
8459 /*
8460 * GY/GU and RY/RU should be the other way around according
8461 * to BSpec, but reality doesn't agree. Just set them up in
8462 * a way that results in the correct picture.
8463 */
8464 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8465 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8466
8467 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8468 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8469
8470 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8471 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8472
8473 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8474 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8475 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8476
8477 if (INTEL_INFO(dev)->gen > 6) {
8478 uint16_t postoff = 0;
8479
6e3c9717 8480 if (intel_crtc->config->limited_color_range)
32cf0cb0 8481 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8482
8483 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8484 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8485 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8486
8487 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8488 } else {
8489 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8490
6e3c9717 8491 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8492 mode |= CSC_BLACK_SCREEN_OFFSET;
8493
8494 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8495 }
8496}
8497
6ff93609 8498static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8499{
756f85cf
PZ
8500 struct drm_device *dev = crtc->dev;
8501 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8502 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8503 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8504 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8505 uint32_t val;
8506
3eff4faa 8507 val = 0;
ee2b0b38 8508
6e3c9717 8509 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8510 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8511
6e3c9717 8512 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8513 val |= PIPECONF_INTERLACED_ILK;
8514 else
8515 val |= PIPECONF_PROGRESSIVE;
8516
702e7a56
PZ
8517 I915_WRITE(PIPECONF(cpu_transcoder), val);
8518 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8519
8520 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8521 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8522
3cdf122c 8523 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8524 val = 0;
8525
6e3c9717 8526 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8527 case 18:
8528 val |= PIPEMISC_DITHER_6_BPC;
8529 break;
8530 case 24:
8531 val |= PIPEMISC_DITHER_8_BPC;
8532 break;
8533 case 30:
8534 val |= PIPEMISC_DITHER_10_BPC;
8535 break;
8536 case 36:
8537 val |= PIPEMISC_DITHER_12_BPC;
8538 break;
8539 default:
8540 /* Case prevented by pipe_config_set_bpp. */
8541 BUG();
8542 }
8543
6e3c9717 8544 if (intel_crtc->config->dither)
756f85cf
PZ
8545 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8546
8547 I915_WRITE(PIPEMISC(pipe), val);
8548 }
ee2b0b38
PZ
8549}
8550
6591c6e4 8551static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8552 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8553 intel_clock_t *clock,
8554 bool *has_reduced_clock,
8555 intel_clock_t *reduced_clock)
8556{
8557 struct drm_device *dev = crtc->dev;
8558 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8559 int refclk;
d4906093 8560 const intel_limit_t *limit;
a16af721 8561 bool ret, is_lvds = false;
79e53945 8562
a93e255f 8563 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
79e53945 8564
55bb9992 8565 refclk = ironlake_get_refclk(crtc_state);
79e53945 8566
d4906093
ML
8567 /*
8568 * Returns a set of divisors for the desired target clock with the given
8569 * refclk, or FALSE. The returned values represent the clock equation:
8570 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8571 */
a93e255f
ACO
8572 limit = intel_limit(crtc_state, refclk);
8573 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8574 crtc_state->port_clock,
ee9300bb 8575 refclk, NULL, clock);
6591c6e4
PZ
8576 if (!ret)
8577 return false;
cda4b7d3 8578
ddc9003c 8579 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
8580 /*
8581 * Ensure we match the reduced clock's P to the target clock.
8582 * If the clocks don't match, we can't switch the display clock
8583 * by using the FP0/FP1. In such case we will disable the LVDS
8584 * downclock feature.
8585 */
ee9300bb 8586 *has_reduced_clock =
a93e255f 8587 dev_priv->display.find_dpll(limit, crtc_state,
ee9300bb
DV
8588 dev_priv->lvds_downclock,
8589 refclk, clock,
8590 reduced_clock);
652c393a 8591 }
61e9653f 8592
6591c6e4
PZ
8593 return true;
8594}
8595
d4b1931c
PZ
8596int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8597{
8598 /*
8599 * Account for spread spectrum to avoid
8600 * oversubscribing the link. Max center spread
8601 * is 2.5%; use 5% for safety's sake.
8602 */
8603 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8604 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8605}
8606
7429e9d4 8607static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8608{
7429e9d4 8609 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8610}
8611
de13a2e3 8612static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8613 struct intel_crtc_state *crtc_state,
7429e9d4 8614 u32 *fp,
9a7c7890 8615 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8616{
de13a2e3 8617 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8618 struct drm_device *dev = crtc->dev;
8619 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8620 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8621 struct drm_connector *connector;
55bb9992
ACO
8622 struct drm_connector_state *connector_state;
8623 struct intel_encoder *encoder;
de13a2e3 8624 uint32_t dpll;
55bb9992 8625 int factor, num_connectors = 0, i;
09ede541 8626 bool is_lvds = false, is_sdvo = false;
79e53945 8627
da3ced29 8628 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8629 if (connector_state->crtc != crtc_state->base.crtc)
8630 continue;
8631
8632 encoder = to_intel_encoder(connector_state->best_encoder);
8633
8634 switch (encoder->type) {
79e53945
JB
8635 case INTEL_OUTPUT_LVDS:
8636 is_lvds = true;
8637 break;
8638 case INTEL_OUTPUT_SDVO:
7d57382e 8639 case INTEL_OUTPUT_HDMI:
79e53945 8640 is_sdvo = true;
79e53945 8641 break;
6847d71b
PZ
8642 default:
8643 break;
79e53945 8644 }
43565a06 8645
c751ce4f 8646 num_connectors++;
79e53945 8647 }
79e53945 8648
c1858123 8649 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8650 factor = 21;
8651 if (is_lvds) {
8652 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8653 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8654 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8655 factor = 25;
190f68c5 8656 } else if (crtc_state->sdvo_tv_clock)
8febb297 8657 factor = 20;
c1858123 8658
190f68c5 8659 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8660 *fp |= FP_CB_TUNE;
2c07245f 8661
9a7c7890
DV
8662 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8663 *fp2 |= FP_CB_TUNE;
8664
5eddb70b 8665 dpll = 0;
2c07245f 8666
a07d6787
EA
8667 if (is_lvds)
8668 dpll |= DPLLB_MODE_LVDS;
8669 else
8670 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8671
190f68c5 8672 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8673 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8674
8675 if (is_sdvo)
4a33e48d 8676 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8677 if (crtc_state->has_dp_encoder)
4a33e48d 8678 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8679
a07d6787 8680 /* compute bitmask from p1 value */
190f68c5 8681 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8682 /* also FPA1 */
190f68c5 8683 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8684
190f68c5 8685 switch (crtc_state->dpll.p2) {
a07d6787
EA
8686 case 5:
8687 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8688 break;
8689 case 7:
8690 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8691 break;
8692 case 10:
8693 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8694 break;
8695 case 14:
8696 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8697 break;
79e53945
JB
8698 }
8699
b4c09f3b 8700 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8701 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8702 else
8703 dpll |= PLL_REF_INPUT_DREFCLK;
8704
959e16d6 8705 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8706}
8707
190f68c5
ACO
8708static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8709 struct intel_crtc_state *crtc_state)
de13a2e3 8710{
c7653199 8711 struct drm_device *dev = crtc->base.dev;
de13a2e3 8712 intel_clock_t clock, reduced_clock;
cbbab5bd 8713 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8714 bool ok, has_reduced_clock = false;
8b47047b 8715 bool is_lvds = false;
e2b78267 8716 struct intel_shared_dpll *pll;
de13a2e3 8717
dd3cd74a
ACO
8718 memset(&crtc_state->dpll_hw_state, 0,
8719 sizeof(crtc_state->dpll_hw_state));
8720
409ee761 8721 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
79e53945 8722
5dc5298b
PZ
8723 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8724 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8725
190f68c5 8726 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8727 &has_reduced_clock, &reduced_clock);
190f68c5 8728 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8729 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8730 return -EINVAL;
79e53945 8731 }
f47709a9 8732 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8733 if (!crtc_state->clock_set) {
8734 crtc_state->dpll.n = clock.n;
8735 crtc_state->dpll.m1 = clock.m1;
8736 crtc_state->dpll.m2 = clock.m2;
8737 crtc_state->dpll.p1 = clock.p1;
8738 crtc_state->dpll.p2 = clock.p2;
f47709a9 8739 }
79e53945 8740
5dc5298b 8741 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8742 if (crtc_state->has_pch_encoder) {
8743 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8744 if (has_reduced_clock)
7429e9d4 8745 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8746
190f68c5 8747 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8748 &fp, &reduced_clock,
8749 has_reduced_clock ? &fp2 : NULL);
8750
190f68c5
ACO
8751 crtc_state->dpll_hw_state.dpll = dpll;
8752 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8753 if (has_reduced_clock)
190f68c5 8754 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8755 else
190f68c5 8756 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8757
190f68c5 8758 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 8759 if (pll == NULL) {
84f44ce7 8760 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8761 pipe_name(crtc->pipe));
4b645f14
JB
8762 return -EINVAL;
8763 }
3fb37703 8764 }
79e53945 8765
ab585dea 8766 if (is_lvds && has_reduced_clock)
c7653199 8767 crtc->lowfreq_avail = true;
bcd644e0 8768 else
c7653199 8769 crtc->lowfreq_avail = false;
e2b78267 8770
c8f7a0db 8771 return 0;
79e53945
JB
8772}
8773
eb14cb74
VS
8774static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8775 struct intel_link_m_n *m_n)
8776{
8777 struct drm_device *dev = crtc->base.dev;
8778 struct drm_i915_private *dev_priv = dev->dev_private;
8779 enum pipe pipe = crtc->pipe;
8780
8781 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8782 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8783 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8784 & ~TU_SIZE_MASK;
8785 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8786 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8787 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8788}
8789
8790static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8791 enum transcoder transcoder,
b95af8be
VK
8792 struct intel_link_m_n *m_n,
8793 struct intel_link_m_n *m2_n2)
72419203
DV
8794{
8795 struct drm_device *dev = crtc->base.dev;
8796 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 8797 enum pipe pipe = crtc->pipe;
72419203 8798
eb14cb74
VS
8799 if (INTEL_INFO(dev)->gen >= 5) {
8800 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8801 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8802 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8803 & ~TU_SIZE_MASK;
8804 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8805 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8806 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
8807 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8808 * gen < 8) and if DRRS is supported (to make sure the
8809 * registers are not unnecessarily read).
8810 */
8811 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 8812 crtc->config->has_drrs) {
b95af8be
VK
8813 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8814 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8815 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8816 & ~TU_SIZE_MASK;
8817 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8818 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8819 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8820 }
eb14cb74
VS
8821 } else {
8822 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8823 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8824 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8825 & ~TU_SIZE_MASK;
8826 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8827 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8828 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8829 }
8830}
8831
8832void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 8833 struct intel_crtc_state *pipe_config)
eb14cb74 8834{
681a8504 8835 if (pipe_config->has_pch_encoder)
eb14cb74
VS
8836 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8837 else
8838 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
8839 &pipe_config->dp_m_n,
8840 &pipe_config->dp_m2_n2);
eb14cb74 8841}
72419203 8842
eb14cb74 8843static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 8844 struct intel_crtc_state *pipe_config)
eb14cb74
VS
8845{
8846 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 8847 &pipe_config->fdi_m_n, NULL);
72419203
DV
8848}
8849
bd2e244f 8850static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8851 struct intel_crtc_state *pipe_config)
bd2e244f
JB
8852{
8853 struct drm_device *dev = crtc->base.dev;
8854 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
8855 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8856 uint32_t ps_ctrl = 0;
8857 int id = -1;
8858 int i;
bd2e244f 8859
a1b2278e
CK
8860 /* find scaler attached to this pipe */
8861 for (i = 0; i < crtc->num_scalers; i++) {
8862 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8863 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8864 id = i;
8865 pipe_config->pch_pfit.enabled = true;
8866 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8867 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8868 break;
8869 }
8870 }
bd2e244f 8871
a1b2278e
CK
8872 scaler_state->scaler_id = id;
8873 if (id >= 0) {
8874 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8875 } else {
8876 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
8877 }
8878}
8879
5724dbd1
DL
8880static void
8881skylake_get_initial_plane_config(struct intel_crtc *crtc,
8882 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
8883{
8884 struct drm_device *dev = crtc->base.dev;
8885 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 8886 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
8887 int pipe = crtc->pipe;
8888 int fourcc, pixel_format;
6761dd31 8889 unsigned int aligned_height;
bc8d7dff 8890 struct drm_framebuffer *fb;
1b842c89 8891 struct intel_framebuffer *intel_fb;
bc8d7dff 8892
d9806c9f 8893 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8894 if (!intel_fb) {
bc8d7dff
DL
8895 DRM_DEBUG_KMS("failed to alloc fb\n");
8896 return;
8897 }
8898
1b842c89
DL
8899 fb = &intel_fb->base;
8900
bc8d7dff 8901 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
8902 if (!(val & PLANE_CTL_ENABLE))
8903 goto error;
8904
bc8d7dff
DL
8905 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8906 fourcc = skl_format_to_fourcc(pixel_format,
8907 val & PLANE_CTL_ORDER_RGBX,
8908 val & PLANE_CTL_ALPHA_MASK);
8909 fb->pixel_format = fourcc;
8910 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8911
40f46283
DL
8912 tiling = val & PLANE_CTL_TILED_MASK;
8913 switch (tiling) {
8914 case PLANE_CTL_TILED_LINEAR:
8915 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8916 break;
8917 case PLANE_CTL_TILED_X:
8918 plane_config->tiling = I915_TILING_X;
8919 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8920 break;
8921 case PLANE_CTL_TILED_Y:
8922 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8923 break;
8924 case PLANE_CTL_TILED_YF:
8925 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8926 break;
8927 default:
8928 MISSING_CASE(tiling);
8929 goto error;
8930 }
8931
bc8d7dff
DL
8932 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8933 plane_config->base = base;
8934
8935 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8936
8937 val = I915_READ(PLANE_SIZE(pipe, 0));
8938 fb->height = ((val >> 16) & 0xfff) + 1;
8939 fb->width = ((val >> 0) & 0x1fff) + 1;
8940
8941 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
8942 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8943 fb->pixel_format);
bc8d7dff
DL
8944 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8945
8946 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8947 fb->pixel_format,
8948 fb->modifier[0]);
bc8d7dff 8949
f37b5c2b 8950 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
8951
8952 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8953 pipe_name(pipe), fb->width, fb->height,
8954 fb->bits_per_pixel, base, fb->pitches[0],
8955 plane_config->size);
8956
2d14030b 8957 plane_config->fb = intel_fb;
bc8d7dff
DL
8958 return;
8959
8960error:
8961 kfree(fb);
8962}
8963
2fa2fe9a 8964static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8965 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
8966{
8967 struct drm_device *dev = crtc->base.dev;
8968 struct drm_i915_private *dev_priv = dev->dev_private;
8969 uint32_t tmp;
8970
8971 tmp = I915_READ(PF_CTL(crtc->pipe));
8972
8973 if (tmp & PF_ENABLE) {
fd4daa9c 8974 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
8975 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8976 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
8977
8978 /* We currently do not free assignements of panel fitters on
8979 * ivb/hsw (since we don't use the higher upscaling modes which
8980 * differentiates them) so just WARN about this case for now. */
8981 if (IS_GEN7(dev)) {
8982 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8983 PF_PIPE_SEL_IVB(crtc->pipe));
8984 }
2fa2fe9a 8985 }
79e53945
JB
8986}
8987
5724dbd1
DL
8988static void
8989ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8990 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
8991{
8992 struct drm_device *dev = crtc->base.dev;
8993 struct drm_i915_private *dev_priv = dev->dev_private;
8994 u32 val, base, offset;
aeee5a49 8995 int pipe = crtc->pipe;
4c6baa59 8996 int fourcc, pixel_format;
6761dd31 8997 unsigned int aligned_height;
b113d5ee 8998 struct drm_framebuffer *fb;
1b842c89 8999 struct intel_framebuffer *intel_fb;
4c6baa59 9000
42a7b088
DL
9001 val = I915_READ(DSPCNTR(pipe));
9002 if (!(val & DISPLAY_PLANE_ENABLE))
9003 return;
9004
d9806c9f 9005 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9006 if (!intel_fb) {
4c6baa59
JB
9007 DRM_DEBUG_KMS("failed to alloc fb\n");
9008 return;
9009 }
9010
1b842c89
DL
9011 fb = &intel_fb->base;
9012
18c5247e
DV
9013 if (INTEL_INFO(dev)->gen >= 4) {
9014 if (val & DISPPLANE_TILED) {
49af449b 9015 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9016 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9017 }
9018 }
4c6baa59
JB
9019
9020 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9021 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9022 fb->pixel_format = fourcc;
9023 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9024
aeee5a49 9025 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9026 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9027 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9028 } else {
49af449b 9029 if (plane_config->tiling)
aeee5a49 9030 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9031 else
aeee5a49 9032 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9033 }
9034 plane_config->base = base;
9035
9036 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9037 fb->width = ((val >> 16) & 0xfff) + 1;
9038 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9039
9040 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9041 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9042
b113d5ee 9043 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9044 fb->pixel_format,
9045 fb->modifier[0]);
4c6baa59 9046
f37b5c2b 9047 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9048
2844a921
DL
9049 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9050 pipe_name(pipe), fb->width, fb->height,
9051 fb->bits_per_pixel, base, fb->pitches[0],
9052 plane_config->size);
b113d5ee 9053
2d14030b 9054 plane_config->fb = intel_fb;
4c6baa59
JB
9055}
9056
0e8ffe1b 9057static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9058 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9059{
9060 struct drm_device *dev = crtc->base.dev;
9061 struct drm_i915_private *dev_priv = dev->dev_private;
9062 uint32_t tmp;
9063
f458ebbc
DV
9064 if (!intel_display_power_is_enabled(dev_priv,
9065 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
9066 return false;
9067
e143a21c 9068 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 9069 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 9070
0e8ffe1b
DV
9071 tmp = I915_READ(PIPECONF(crtc->pipe));
9072 if (!(tmp & PIPECONF_ENABLE))
9073 return false;
9074
42571aef
VS
9075 switch (tmp & PIPECONF_BPC_MASK) {
9076 case PIPECONF_6BPC:
9077 pipe_config->pipe_bpp = 18;
9078 break;
9079 case PIPECONF_8BPC:
9080 pipe_config->pipe_bpp = 24;
9081 break;
9082 case PIPECONF_10BPC:
9083 pipe_config->pipe_bpp = 30;
9084 break;
9085 case PIPECONF_12BPC:
9086 pipe_config->pipe_bpp = 36;
9087 break;
9088 default:
9089 break;
9090 }
9091
b5a9fa09
DV
9092 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9093 pipe_config->limited_color_range = true;
9094
ab9412ba 9095 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
9096 struct intel_shared_dpll *pll;
9097
88adfff1
DV
9098 pipe_config->has_pch_encoder = true;
9099
627eb5a3
DV
9100 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9101 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9102 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9103
9104 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9105
c0d43d62 9106 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
9107 pipe_config->shared_dpll =
9108 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9109 } else {
9110 tmp = I915_READ(PCH_DPLL_SEL);
9111 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9112 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9113 else
9114 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9115 }
66e985c0
DV
9116
9117 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9118
9119 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9120 &pipe_config->dpll_hw_state));
c93f54cf
DV
9121
9122 tmp = pipe_config->dpll_hw_state.dpll;
9123 pipe_config->pixel_multiplier =
9124 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9125 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9126
9127 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9128 } else {
9129 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9130 }
9131
1bd1bd80
DV
9132 intel_get_pipe_timings(crtc, pipe_config);
9133
2fa2fe9a
DV
9134 ironlake_get_pfit_config(crtc, pipe_config);
9135
0e8ffe1b
DV
9136 return true;
9137}
9138
be256dc7
PZ
9139static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9140{
9141 struct drm_device *dev = dev_priv->dev;
be256dc7 9142 struct intel_crtc *crtc;
be256dc7 9143
d3fcc808 9144 for_each_intel_crtc(dev, crtc)
e2c719b7 9145 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9146 pipe_name(crtc->pipe));
9147
e2c719b7
RC
9148 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9149 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9150 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9151 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9152 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9153 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9154 "CPU PWM1 enabled\n");
c5107b87 9155 if (IS_HASWELL(dev))
e2c719b7 9156 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9157 "CPU PWM2 enabled\n");
e2c719b7 9158 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9159 "PCH PWM1 enabled\n");
e2c719b7 9160 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9161 "Utility pin enabled\n");
e2c719b7 9162 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9163
9926ada1
PZ
9164 /*
9165 * In theory we can still leave IRQs enabled, as long as only the HPD
9166 * interrupts remain enabled. We used to check for that, but since it's
9167 * gen-specific and since we only disable LCPLL after we fully disable
9168 * the interrupts, the check below should be enough.
9169 */
e2c719b7 9170 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9171}
9172
9ccd5aeb
PZ
9173static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9174{
9175 struct drm_device *dev = dev_priv->dev;
9176
9177 if (IS_HASWELL(dev))
9178 return I915_READ(D_COMP_HSW);
9179 else
9180 return I915_READ(D_COMP_BDW);
9181}
9182
3c4c9b81
PZ
9183static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9184{
9185 struct drm_device *dev = dev_priv->dev;
9186
9187 if (IS_HASWELL(dev)) {
9188 mutex_lock(&dev_priv->rps.hw_lock);
9189 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9190 val))
f475dadf 9191 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9192 mutex_unlock(&dev_priv->rps.hw_lock);
9193 } else {
9ccd5aeb
PZ
9194 I915_WRITE(D_COMP_BDW, val);
9195 POSTING_READ(D_COMP_BDW);
3c4c9b81 9196 }
be256dc7
PZ
9197}
9198
9199/*
9200 * This function implements pieces of two sequences from BSpec:
9201 * - Sequence for display software to disable LCPLL
9202 * - Sequence for display software to allow package C8+
9203 * The steps implemented here are just the steps that actually touch the LCPLL
9204 * register. Callers should take care of disabling all the display engine
9205 * functions, doing the mode unset, fixing interrupts, etc.
9206 */
6ff58d53
PZ
9207static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9208 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9209{
9210 uint32_t val;
9211
9212 assert_can_disable_lcpll(dev_priv);
9213
9214 val = I915_READ(LCPLL_CTL);
9215
9216 if (switch_to_fclk) {
9217 val |= LCPLL_CD_SOURCE_FCLK;
9218 I915_WRITE(LCPLL_CTL, val);
9219
9220 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9221 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9222 DRM_ERROR("Switching to FCLK failed\n");
9223
9224 val = I915_READ(LCPLL_CTL);
9225 }
9226
9227 val |= LCPLL_PLL_DISABLE;
9228 I915_WRITE(LCPLL_CTL, val);
9229 POSTING_READ(LCPLL_CTL);
9230
9231 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9232 DRM_ERROR("LCPLL still locked\n");
9233
9ccd5aeb 9234 val = hsw_read_dcomp(dev_priv);
be256dc7 9235 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9236 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9237 ndelay(100);
9238
9ccd5aeb
PZ
9239 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9240 1))
be256dc7
PZ
9241 DRM_ERROR("D_COMP RCOMP still in progress\n");
9242
9243 if (allow_power_down) {
9244 val = I915_READ(LCPLL_CTL);
9245 val |= LCPLL_POWER_DOWN_ALLOW;
9246 I915_WRITE(LCPLL_CTL, val);
9247 POSTING_READ(LCPLL_CTL);
9248 }
9249}
9250
9251/*
9252 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9253 * source.
9254 */
6ff58d53 9255static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9256{
9257 uint32_t val;
9258
9259 val = I915_READ(LCPLL_CTL);
9260
9261 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9262 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9263 return;
9264
a8a8bd54
PZ
9265 /*
9266 * Make sure we're not on PC8 state before disabling PC8, otherwise
9267 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9268 */
59bad947 9269 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9270
be256dc7
PZ
9271 if (val & LCPLL_POWER_DOWN_ALLOW) {
9272 val &= ~LCPLL_POWER_DOWN_ALLOW;
9273 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9274 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9275 }
9276
9ccd5aeb 9277 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9278 val |= D_COMP_COMP_FORCE;
9279 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9280 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9281
9282 val = I915_READ(LCPLL_CTL);
9283 val &= ~LCPLL_PLL_DISABLE;
9284 I915_WRITE(LCPLL_CTL, val);
9285
9286 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9287 DRM_ERROR("LCPLL not locked yet\n");
9288
9289 if (val & LCPLL_CD_SOURCE_FCLK) {
9290 val = I915_READ(LCPLL_CTL);
9291 val &= ~LCPLL_CD_SOURCE_FCLK;
9292 I915_WRITE(LCPLL_CTL, val);
9293
9294 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9295 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9296 DRM_ERROR("Switching back to LCPLL failed\n");
9297 }
215733fa 9298
59bad947 9299 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
be256dc7
PZ
9300}
9301
765dab67
PZ
9302/*
9303 * Package states C8 and deeper are really deep PC states that can only be
9304 * reached when all the devices on the system allow it, so even if the graphics
9305 * device allows PC8+, it doesn't mean the system will actually get to these
9306 * states. Our driver only allows PC8+ when going into runtime PM.
9307 *
9308 * The requirements for PC8+ are that all the outputs are disabled, the power
9309 * well is disabled and most interrupts are disabled, and these are also
9310 * requirements for runtime PM. When these conditions are met, we manually do
9311 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9312 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9313 * hang the machine.
9314 *
9315 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9316 * the state of some registers, so when we come back from PC8+ we need to
9317 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9318 * need to take care of the registers kept by RC6. Notice that this happens even
9319 * if we don't put the device in PCI D3 state (which is what currently happens
9320 * because of the runtime PM support).
9321 *
9322 * For more, read "Display Sequences for Package C8" on the hardware
9323 * documentation.
9324 */
a14cb6fc 9325void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9326{
c67a470b
PZ
9327 struct drm_device *dev = dev_priv->dev;
9328 uint32_t val;
9329
c67a470b
PZ
9330 DRM_DEBUG_KMS("Enabling package C8+\n");
9331
c67a470b
PZ
9332 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9333 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9334 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9335 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9336 }
9337
9338 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9339 hsw_disable_lcpll(dev_priv, true, true);
9340}
9341
a14cb6fc 9342void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9343{
9344 struct drm_device *dev = dev_priv->dev;
9345 uint32_t val;
9346
c67a470b
PZ
9347 DRM_DEBUG_KMS("Disabling package C8+\n");
9348
9349 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9350 lpt_init_pch_refclk(dev);
9351
9352 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9353 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9354 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9355 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9356 }
9357
9358 intel_prepare_ddi(dev);
c67a470b
PZ
9359}
9360
a821fc46 9361static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
f8437dd1 9362{
a821fc46 9363 struct drm_device *dev = old_state->dev;
f8437dd1 9364 struct drm_i915_private *dev_priv = dev->dev_private;
a821fc46 9365 int max_pixclk = intel_mode_max_pixclk(dev, NULL);
f8437dd1
VK
9366 int req_cdclk;
9367
9368 /* see the comment in valleyview_modeset_global_resources */
9369 if (WARN_ON(max_pixclk < 0))
9370 return;
9371
9372 req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9373
9374 if (req_cdclk != dev_priv->cdclk_freq)
9375 broxton_set_cdclk(dev, req_cdclk);
9376}
9377
190f68c5
ACO
9378static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9379 struct intel_crtc_state *crtc_state)
09b4ddf9 9380{
190f68c5 9381 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 9382 return -EINVAL;
716c2e55 9383
c7653199 9384 crtc->lowfreq_avail = false;
644cef34 9385
c8f7a0db 9386 return 0;
79e53945
JB
9387}
9388
3760b59c
S
9389static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9390 enum port port,
9391 struct intel_crtc_state *pipe_config)
9392{
9393 switch (port) {
9394 case PORT_A:
9395 pipe_config->ddi_pll_sel = SKL_DPLL0;
9396 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9397 break;
9398 case PORT_B:
9399 pipe_config->ddi_pll_sel = SKL_DPLL1;
9400 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9401 break;
9402 case PORT_C:
9403 pipe_config->ddi_pll_sel = SKL_DPLL2;
9404 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9405 break;
9406 default:
9407 DRM_ERROR("Incorrect port type\n");
9408 }
9409}
9410
96b7dfb7
S
9411static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9412 enum port port,
5cec258b 9413 struct intel_crtc_state *pipe_config)
96b7dfb7 9414{
3148ade7 9415 u32 temp, dpll_ctl1;
96b7dfb7
S
9416
9417 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9418 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9419
9420 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
9421 case SKL_DPLL0:
9422 /*
9423 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9424 * of the shared DPLL framework and thus needs to be read out
9425 * separately
9426 */
9427 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9428 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9429 break;
96b7dfb7
S
9430 case SKL_DPLL1:
9431 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9432 break;
9433 case SKL_DPLL2:
9434 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9435 break;
9436 case SKL_DPLL3:
9437 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9438 break;
96b7dfb7
S
9439 }
9440}
9441
7d2c8175
DL
9442static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9443 enum port port,
5cec258b 9444 struct intel_crtc_state *pipe_config)
7d2c8175
DL
9445{
9446 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9447
9448 switch (pipe_config->ddi_pll_sel) {
9449 case PORT_CLK_SEL_WRPLL1:
9450 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9451 break;
9452 case PORT_CLK_SEL_WRPLL2:
9453 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9454 break;
9455 }
9456}
9457
26804afd 9458static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9459 struct intel_crtc_state *pipe_config)
26804afd
DV
9460{
9461 struct drm_device *dev = crtc->base.dev;
9462 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9463 struct intel_shared_dpll *pll;
26804afd
DV
9464 enum port port;
9465 uint32_t tmp;
9466
9467 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9468
9469 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9470
96b7dfb7
S
9471 if (IS_SKYLAKE(dev))
9472 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9473 else if (IS_BROXTON(dev))
9474 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9475 else
9476 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9477
d452c5b6
DV
9478 if (pipe_config->shared_dpll >= 0) {
9479 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9480
9481 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9482 &pipe_config->dpll_hw_state));
9483 }
9484
26804afd
DV
9485 /*
9486 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9487 * DDI E. So just check whether this pipe is wired to DDI E and whether
9488 * the PCH transcoder is on.
9489 */
ca370455
DL
9490 if (INTEL_INFO(dev)->gen < 9 &&
9491 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9492 pipe_config->has_pch_encoder = true;
9493
9494 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9495 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9496 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9497
9498 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9499 }
9500}
9501
0e8ffe1b 9502static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9503 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9504{
9505 struct drm_device *dev = crtc->base.dev;
9506 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 9507 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
9508 uint32_t tmp;
9509
f458ebbc 9510 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
9511 POWER_DOMAIN_PIPE(crtc->pipe)))
9512 return false;
9513
e143a21c 9514 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
9515 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9516
eccb140b
DV
9517 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9518 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9519 enum pipe trans_edp_pipe;
9520 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9521 default:
9522 WARN(1, "unknown pipe linked to edp transcoder\n");
9523 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9524 case TRANS_DDI_EDP_INPUT_A_ON:
9525 trans_edp_pipe = PIPE_A;
9526 break;
9527 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9528 trans_edp_pipe = PIPE_B;
9529 break;
9530 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9531 trans_edp_pipe = PIPE_C;
9532 break;
9533 }
9534
9535 if (trans_edp_pipe == crtc->pipe)
9536 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9537 }
9538
f458ebbc 9539 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 9540 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
9541 return false;
9542
eccb140b 9543 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
9544 if (!(tmp & PIPECONF_ENABLE))
9545 return false;
9546
26804afd 9547 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9548
1bd1bd80
DV
9549 intel_get_pipe_timings(crtc, pipe_config);
9550
a1b2278e
CK
9551 if (INTEL_INFO(dev)->gen >= 9) {
9552 skl_init_scalers(dev, crtc, pipe_config);
9553 }
9554
2fa2fe9a 9555 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
af99ceda
CK
9556
9557 if (INTEL_INFO(dev)->gen >= 9) {
9558 pipe_config->scaler_state.scaler_id = -1;
9559 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9560 }
9561
bd2e244f 9562 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
ff6d9f55 9563 if (INTEL_INFO(dev)->gen == 9)
bd2e244f 9564 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 9565 else if (INTEL_INFO(dev)->gen < 9)
bd2e244f 9566 ironlake_get_pfit_config(crtc, pipe_config);
ff6d9f55
JB
9567 else
9568 MISSING_CASE(INTEL_INFO(dev)->gen);
bd2e244f 9569 }
88adfff1 9570
e59150dc
JB
9571 if (IS_HASWELL(dev))
9572 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9573 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9574
ebb69c95
CT
9575 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9576 pipe_config->pixel_multiplier =
9577 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9578 } else {
9579 pipe_config->pixel_multiplier = 1;
9580 }
6c49f241 9581
0e8ffe1b
DV
9582 return true;
9583}
9584
560b85bb
CW
9585static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9586{
9587 struct drm_device *dev = crtc->dev;
9588 struct drm_i915_private *dev_priv = dev->dev_private;
9589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 9590 uint32_t cntl = 0, size = 0;
560b85bb 9591
dc41c154 9592 if (base) {
3dd512fb
MR
9593 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9594 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
9595 unsigned int stride = roundup_pow_of_two(width) * 4;
9596
9597 switch (stride) {
9598 default:
9599 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9600 width, stride);
9601 stride = 256;
9602 /* fallthrough */
9603 case 256:
9604 case 512:
9605 case 1024:
9606 case 2048:
9607 break;
4b0e333e
CW
9608 }
9609
dc41c154
VS
9610 cntl |= CURSOR_ENABLE |
9611 CURSOR_GAMMA_ENABLE |
9612 CURSOR_FORMAT_ARGB |
9613 CURSOR_STRIDE(stride);
9614
9615 size = (height << 12) | width;
4b0e333e 9616 }
560b85bb 9617
dc41c154
VS
9618 if (intel_crtc->cursor_cntl != 0 &&
9619 (intel_crtc->cursor_base != base ||
9620 intel_crtc->cursor_size != size ||
9621 intel_crtc->cursor_cntl != cntl)) {
9622 /* On these chipsets we can only modify the base/size/stride
9623 * whilst the cursor is disabled.
9624 */
9625 I915_WRITE(_CURACNTR, 0);
4b0e333e 9626 POSTING_READ(_CURACNTR);
dc41c154 9627 intel_crtc->cursor_cntl = 0;
4b0e333e 9628 }
560b85bb 9629
99d1f387 9630 if (intel_crtc->cursor_base != base) {
9db4a9c7 9631 I915_WRITE(_CURABASE, base);
99d1f387
VS
9632 intel_crtc->cursor_base = base;
9633 }
4726e0b0 9634
dc41c154
VS
9635 if (intel_crtc->cursor_size != size) {
9636 I915_WRITE(CURSIZE, size);
9637 intel_crtc->cursor_size = size;
4b0e333e 9638 }
560b85bb 9639
4b0e333e 9640 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
9641 I915_WRITE(_CURACNTR, cntl);
9642 POSTING_READ(_CURACNTR);
4b0e333e 9643 intel_crtc->cursor_cntl = cntl;
560b85bb 9644 }
560b85bb
CW
9645}
9646
560b85bb 9647static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
9648{
9649 struct drm_device *dev = crtc->dev;
9650 struct drm_i915_private *dev_priv = dev->dev_private;
9651 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9652 int pipe = intel_crtc->pipe;
4b0e333e
CW
9653 uint32_t cntl;
9654
9655 cntl = 0;
9656 if (base) {
9657 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 9658 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
9659 case 64:
9660 cntl |= CURSOR_MODE_64_ARGB_AX;
9661 break;
9662 case 128:
9663 cntl |= CURSOR_MODE_128_ARGB_AX;
9664 break;
9665 case 256:
9666 cntl |= CURSOR_MODE_256_ARGB_AX;
9667 break;
9668 default:
3dd512fb 9669 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 9670 return;
65a21cd6 9671 }
4b0e333e 9672 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7
VS
9673
9674 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9675 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 9676 }
65a21cd6 9677
8e7d688b 9678 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
9679 cntl |= CURSOR_ROTATE_180;
9680
4b0e333e
CW
9681 if (intel_crtc->cursor_cntl != cntl) {
9682 I915_WRITE(CURCNTR(pipe), cntl);
9683 POSTING_READ(CURCNTR(pipe));
9684 intel_crtc->cursor_cntl = cntl;
65a21cd6 9685 }
4b0e333e 9686
65a21cd6 9687 /* and commit changes on next vblank */
5efb3e28
VS
9688 I915_WRITE(CURBASE(pipe), base);
9689 POSTING_READ(CURBASE(pipe));
99d1f387
VS
9690
9691 intel_crtc->cursor_base = base;
65a21cd6
JB
9692}
9693
cda4b7d3 9694/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
9695static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9696 bool on)
cda4b7d3
CW
9697{
9698 struct drm_device *dev = crtc->dev;
9699 struct drm_i915_private *dev_priv = dev->dev_private;
9700 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9701 int pipe = intel_crtc->pipe;
3d7d6510
MR
9702 int x = crtc->cursor_x;
9703 int y = crtc->cursor_y;
d6e4db15 9704 u32 base = 0, pos = 0;
cda4b7d3 9705
d6e4db15 9706 if (on)
cda4b7d3 9707 base = intel_crtc->cursor_addr;
cda4b7d3 9708
6e3c9717 9709 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
9710 base = 0;
9711
6e3c9717 9712 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
9713 base = 0;
9714
9715 if (x < 0) {
3dd512fb 9716 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
cda4b7d3
CW
9717 base = 0;
9718
9719 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9720 x = -x;
9721 }
9722 pos |= x << CURSOR_X_SHIFT;
9723
9724 if (y < 0) {
3dd512fb 9725 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
cda4b7d3
CW
9726 base = 0;
9727
9728 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9729 y = -y;
9730 }
9731 pos |= y << CURSOR_Y_SHIFT;
9732
4b0e333e 9733 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
9734 return;
9735
5efb3e28
VS
9736 I915_WRITE(CURPOS(pipe), pos);
9737
4398ad45
VS
9738 /* ILK+ do this automagically */
9739 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 9740 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
3dd512fb
MR
9741 base += (intel_crtc->base.cursor->state->crtc_h *
9742 intel_crtc->base.cursor->state->crtc_w - 1) * 4;
4398ad45
VS
9743 }
9744
8ac54669 9745 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
9746 i845_update_cursor(crtc, base);
9747 else
9748 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
9749}
9750
dc41c154
VS
9751static bool cursor_size_ok(struct drm_device *dev,
9752 uint32_t width, uint32_t height)
9753{
9754 if (width == 0 || height == 0)
9755 return false;
9756
9757 /*
9758 * 845g/865g are special in that they are only limited by
9759 * the width of their cursors, the height is arbitrary up to
9760 * the precision of the register. Everything else requires
9761 * square cursors, limited to a few power-of-two sizes.
9762 */
9763 if (IS_845G(dev) || IS_I865G(dev)) {
9764 if ((width & 63) != 0)
9765 return false;
9766
9767 if (width > (IS_845G(dev) ? 64 : 512))
9768 return false;
9769
9770 if (height > 1023)
9771 return false;
9772 } else {
9773 switch (width | height) {
9774 case 256:
9775 case 128:
9776 if (IS_GEN2(dev))
9777 return false;
9778 case 64:
9779 break;
9780 default:
9781 return false;
9782 }
9783 }
9784
9785 return true;
9786}
9787
79e53945 9788static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 9789 u16 *blue, uint32_t start, uint32_t size)
79e53945 9790{
7203425a 9791 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 9792 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 9793
7203425a 9794 for (i = start; i < end; i++) {
79e53945
JB
9795 intel_crtc->lut_r[i] = red[i] >> 8;
9796 intel_crtc->lut_g[i] = green[i] >> 8;
9797 intel_crtc->lut_b[i] = blue[i] >> 8;
9798 }
9799
9800 intel_crtc_load_lut(crtc);
9801}
9802
79e53945
JB
9803/* VESA 640x480x72Hz mode to set on the pipe */
9804static struct drm_display_mode load_detect_mode = {
9805 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9806 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9807};
9808
a8bb6818
DV
9809struct drm_framebuffer *
9810__intel_framebuffer_create(struct drm_device *dev,
9811 struct drm_mode_fb_cmd2 *mode_cmd,
9812 struct drm_i915_gem_object *obj)
d2dff872
CW
9813{
9814 struct intel_framebuffer *intel_fb;
9815 int ret;
9816
9817 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9818 if (!intel_fb) {
6ccb81f2 9819 drm_gem_object_unreference(&obj->base);
d2dff872
CW
9820 return ERR_PTR(-ENOMEM);
9821 }
9822
9823 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
9824 if (ret)
9825 goto err;
d2dff872
CW
9826
9827 return &intel_fb->base;
dd4916c5 9828err:
6ccb81f2 9829 drm_gem_object_unreference(&obj->base);
dd4916c5
DV
9830 kfree(intel_fb);
9831
9832 return ERR_PTR(ret);
d2dff872
CW
9833}
9834
b5ea642a 9835static struct drm_framebuffer *
a8bb6818
DV
9836intel_framebuffer_create(struct drm_device *dev,
9837 struct drm_mode_fb_cmd2 *mode_cmd,
9838 struct drm_i915_gem_object *obj)
9839{
9840 struct drm_framebuffer *fb;
9841 int ret;
9842
9843 ret = i915_mutex_lock_interruptible(dev);
9844 if (ret)
9845 return ERR_PTR(ret);
9846 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9847 mutex_unlock(&dev->struct_mutex);
9848
9849 return fb;
9850}
9851
d2dff872
CW
9852static u32
9853intel_framebuffer_pitch_for_width(int width, int bpp)
9854{
9855 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9856 return ALIGN(pitch, 64);
9857}
9858
9859static u32
9860intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9861{
9862 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 9863 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
9864}
9865
9866static struct drm_framebuffer *
9867intel_framebuffer_create_for_mode(struct drm_device *dev,
9868 struct drm_display_mode *mode,
9869 int depth, int bpp)
9870{
9871 struct drm_i915_gem_object *obj;
0fed39bd 9872 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
9873
9874 obj = i915_gem_alloc_object(dev,
9875 intel_framebuffer_size_for_mode(mode, bpp));
9876 if (obj == NULL)
9877 return ERR_PTR(-ENOMEM);
9878
9879 mode_cmd.width = mode->hdisplay;
9880 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
9881 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9882 bpp);
5ca0c34a 9883 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
9884
9885 return intel_framebuffer_create(dev, &mode_cmd, obj);
9886}
9887
9888static struct drm_framebuffer *
9889mode_fits_in_fbdev(struct drm_device *dev,
9890 struct drm_display_mode *mode)
9891{
4520f53a 9892#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
9893 struct drm_i915_private *dev_priv = dev->dev_private;
9894 struct drm_i915_gem_object *obj;
9895 struct drm_framebuffer *fb;
9896
4c0e5528 9897 if (!dev_priv->fbdev)
d2dff872
CW
9898 return NULL;
9899
4c0e5528 9900 if (!dev_priv->fbdev->fb)
d2dff872
CW
9901 return NULL;
9902
4c0e5528
DV
9903 obj = dev_priv->fbdev->fb->obj;
9904 BUG_ON(!obj);
9905
8bcd4553 9906 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
9907 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9908 fb->bits_per_pixel))
d2dff872
CW
9909 return NULL;
9910
01f2c773 9911 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
9912 return NULL;
9913
9914 return fb;
4520f53a
DV
9915#else
9916 return NULL;
9917#endif
d2dff872
CW
9918}
9919
d3a40d1b
ACO
9920static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9921 struct drm_crtc *crtc,
9922 struct drm_display_mode *mode,
9923 struct drm_framebuffer *fb,
9924 int x, int y)
9925{
9926 struct drm_plane_state *plane_state;
9927 int hdisplay, vdisplay;
9928 int ret;
9929
9930 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9931 if (IS_ERR(plane_state))
9932 return PTR_ERR(plane_state);
9933
9934 if (mode)
9935 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
9936 else
9937 hdisplay = vdisplay = 0;
9938
9939 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9940 if (ret)
9941 return ret;
9942 drm_atomic_set_fb_for_plane(plane_state, fb);
9943 plane_state->crtc_x = 0;
9944 plane_state->crtc_y = 0;
9945 plane_state->crtc_w = hdisplay;
9946 plane_state->crtc_h = vdisplay;
9947 plane_state->src_x = x << 16;
9948 plane_state->src_y = y << 16;
9949 plane_state->src_w = hdisplay << 16;
9950 plane_state->src_h = vdisplay << 16;
9951
9952 return 0;
9953}
9954
d2434ab7 9955bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 9956 struct drm_display_mode *mode,
51fd371b
RC
9957 struct intel_load_detect_pipe *old,
9958 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
9959{
9960 struct intel_crtc *intel_crtc;
d2434ab7
DV
9961 struct intel_encoder *intel_encoder =
9962 intel_attached_encoder(connector);
79e53945 9963 struct drm_crtc *possible_crtc;
4ef69c7a 9964 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
9965 struct drm_crtc *crtc = NULL;
9966 struct drm_device *dev = encoder->dev;
94352cf9 9967 struct drm_framebuffer *fb;
51fd371b 9968 struct drm_mode_config *config = &dev->mode_config;
83a57153 9969 struct drm_atomic_state *state = NULL;
944b0c76 9970 struct drm_connector_state *connector_state;
4be07317 9971 struct intel_crtc_state *crtc_state;
51fd371b 9972 int ret, i = -1;
79e53945 9973
d2dff872 9974 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 9975 connector->base.id, connector->name,
8e329a03 9976 encoder->base.id, encoder->name);
d2dff872 9977
51fd371b
RC
9978retry:
9979 ret = drm_modeset_lock(&config->connection_mutex, ctx);
9980 if (ret)
9981 goto fail_unlock;
6e9f798d 9982
79e53945
JB
9983 /*
9984 * Algorithm gets a little messy:
7a5e4805 9985 *
79e53945
JB
9986 * - if the connector already has an assigned crtc, use it (but make
9987 * sure it's on first)
7a5e4805 9988 *
79e53945
JB
9989 * - try to find the first unused crtc that can drive this connector,
9990 * and use that if we find one
79e53945
JB
9991 */
9992
9993 /* See if we already have a CRTC for this connector */
9994 if (encoder->crtc) {
9995 crtc = encoder->crtc;
8261b191 9996
51fd371b 9997 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de
DV
9998 if (ret)
9999 goto fail_unlock;
10000 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b
RC
10001 if (ret)
10002 goto fail_unlock;
7b24056b 10003
24218aac 10004 old->dpms_mode = connector->dpms;
8261b191
CW
10005 old->load_detect_temp = false;
10006
10007 /* Make sure the crtc and connector are running */
24218aac
DV
10008 if (connector->dpms != DRM_MODE_DPMS_ON)
10009 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 10010
7173188d 10011 return true;
79e53945
JB
10012 }
10013
10014 /* Find an unused one (if possible) */
70e1e0ec 10015 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10016 i++;
10017 if (!(encoder->possible_crtcs & (1 << i)))
10018 continue;
83d65738 10019 if (possible_crtc->state->enable)
a459249c
VS
10020 continue;
10021 /* This can occur when applying the pipe A quirk on resume. */
10022 if (to_intel_crtc(possible_crtc)->new_enabled)
10023 continue;
10024
10025 crtc = possible_crtc;
10026 break;
79e53945
JB
10027 }
10028
10029 /*
10030 * If we didn't find an unused CRTC, don't use any.
10031 */
10032 if (!crtc) {
7173188d 10033 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 10034 goto fail_unlock;
79e53945
JB
10035 }
10036
51fd371b
RC
10037 ret = drm_modeset_lock(&crtc->mutex, ctx);
10038 if (ret)
4d02e2de
DV
10039 goto fail_unlock;
10040 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10041 if (ret)
51fd371b 10042 goto fail_unlock;
fc303101
DV
10043 intel_encoder->new_crtc = to_intel_crtc(crtc);
10044 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
10045
10046 intel_crtc = to_intel_crtc(crtc);
412b61d8 10047 intel_crtc->new_enabled = true;
24218aac 10048 old->dpms_mode = connector->dpms;
8261b191 10049 old->load_detect_temp = true;
d2dff872 10050 old->release_fb = NULL;
79e53945 10051
83a57153
ACO
10052 state = drm_atomic_state_alloc(dev);
10053 if (!state)
10054 return false;
10055
10056 state->acquire_ctx = ctx;
10057
944b0c76
ACO
10058 connector_state = drm_atomic_get_connector_state(state, connector);
10059 if (IS_ERR(connector_state)) {
10060 ret = PTR_ERR(connector_state);
10061 goto fail;
10062 }
10063
10064 connector_state->crtc = crtc;
10065 connector_state->best_encoder = &intel_encoder->base;
10066
4be07317
ACO
10067 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10068 if (IS_ERR(crtc_state)) {
10069 ret = PTR_ERR(crtc_state);
10070 goto fail;
10071 }
10072
49d6fa21 10073 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10074
6492711d
CW
10075 if (!mode)
10076 mode = &load_detect_mode;
79e53945 10077
d2dff872
CW
10078 /* We need a framebuffer large enough to accommodate all accesses
10079 * that the plane may generate whilst we perform load detection.
10080 * We can not rely on the fbcon either being present (we get called
10081 * during its initialisation to detect all boot displays, or it may
10082 * not even exist) or that it is large enough to satisfy the
10083 * requested mode.
10084 */
94352cf9
DV
10085 fb = mode_fits_in_fbdev(dev, mode);
10086 if (fb == NULL) {
d2dff872 10087 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
10088 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10089 old->release_fb = fb;
d2dff872
CW
10090 } else
10091 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10092 if (IS_ERR(fb)) {
d2dff872 10093 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10094 goto fail;
79e53945 10095 }
79e53945 10096
d3a40d1b
ACO
10097 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10098 if (ret)
10099 goto fail;
10100
8c7b5ccb
ACO
10101 drm_mode_copy(&crtc_state->base.mode, mode);
10102
e62d8dc0 10103 if (intel_set_mode(crtc, state, true)) {
6492711d 10104 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
10105 if (old->release_fb)
10106 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 10107 goto fail;
79e53945 10108 }
9128b040 10109 crtc->primary->crtc = crtc;
7173188d 10110
79e53945 10111 /* let the connector get through one full cycle before testing */
9d0498a2 10112 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10113 return true;
412b61d8
VS
10114
10115 fail:
83d65738 10116 intel_crtc->new_enabled = crtc->state->enable;
51fd371b 10117fail_unlock:
e5d958ef
ACO
10118 drm_atomic_state_free(state);
10119 state = NULL;
83a57153 10120
51fd371b
RC
10121 if (ret == -EDEADLK) {
10122 drm_modeset_backoff(ctx);
10123 goto retry;
10124 }
10125
412b61d8 10126 return false;
79e53945
JB
10127}
10128
d2434ab7 10129void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10130 struct intel_load_detect_pipe *old,
10131 struct drm_modeset_acquire_ctx *ctx)
79e53945 10132{
83a57153 10133 struct drm_device *dev = connector->dev;
d2434ab7
DV
10134 struct intel_encoder *intel_encoder =
10135 intel_attached_encoder(connector);
4ef69c7a 10136 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 10137 struct drm_crtc *crtc = encoder->crtc;
412b61d8 10138 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 10139 struct drm_atomic_state *state;
944b0c76 10140 struct drm_connector_state *connector_state;
4be07317 10141 struct intel_crtc_state *crtc_state;
d3a40d1b 10142 int ret;
79e53945 10143
d2dff872 10144 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10145 connector->base.id, connector->name,
8e329a03 10146 encoder->base.id, encoder->name);
d2dff872 10147
8261b191 10148 if (old->load_detect_temp) {
83a57153 10149 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
10150 if (!state)
10151 goto fail;
83a57153
ACO
10152
10153 state->acquire_ctx = ctx;
10154
944b0c76
ACO
10155 connector_state = drm_atomic_get_connector_state(state, connector);
10156 if (IS_ERR(connector_state))
10157 goto fail;
10158
4be07317
ACO
10159 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10160 if (IS_ERR(crtc_state))
10161 goto fail;
10162
fc303101
DV
10163 to_intel_connector(connector)->new_encoder = NULL;
10164 intel_encoder->new_crtc = NULL;
412b61d8 10165 intel_crtc->new_enabled = false;
944b0c76
ACO
10166
10167 connector_state->best_encoder = NULL;
10168 connector_state->crtc = NULL;
10169
49d6fa21 10170 crtc_state->base.enable = crtc_state->base.active = false;
4be07317 10171
d3a40d1b
ACO
10172 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10173 0, 0);
10174 if (ret)
10175 goto fail;
10176
e62d8dc0 10177 ret = intel_set_mode(crtc, state, true);
2bfb4627
ACO
10178 if (ret)
10179 goto fail;
d2dff872 10180
36206361
DV
10181 if (old->release_fb) {
10182 drm_framebuffer_unregister_private(old->release_fb);
10183 drm_framebuffer_unreference(old->release_fb);
10184 }
d2dff872 10185
0622a53c 10186 return;
79e53945
JB
10187 }
10188
c751ce4f 10189 /* Switch crtc and encoder back off if necessary */
24218aac
DV
10190 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10191 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
10192
10193 return;
10194fail:
10195 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10196 drm_atomic_state_free(state);
79e53945
JB
10197}
10198
da4a1efa 10199static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10200 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10201{
10202 struct drm_i915_private *dev_priv = dev->dev_private;
10203 u32 dpll = pipe_config->dpll_hw_state.dpll;
10204
10205 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10206 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10207 else if (HAS_PCH_SPLIT(dev))
10208 return 120000;
10209 else if (!IS_GEN2(dev))
10210 return 96000;
10211 else
10212 return 48000;
10213}
10214
79e53945 10215/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10216static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10217 struct intel_crtc_state *pipe_config)
79e53945 10218{
f1f644dc 10219 struct drm_device *dev = crtc->base.dev;
79e53945 10220 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10221 int pipe = pipe_config->cpu_transcoder;
293623f7 10222 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
10223 u32 fp;
10224 intel_clock_t clock;
da4a1efa 10225 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10226
10227 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10228 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10229 else
293623f7 10230 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10231
10232 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10233 if (IS_PINEVIEW(dev)) {
10234 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10235 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10236 } else {
10237 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10238 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10239 }
10240
a6c45cf0 10241 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10242 if (IS_PINEVIEW(dev))
10243 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10244 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10245 else
10246 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10247 DPLL_FPA01_P1_POST_DIV_SHIFT);
10248
10249 switch (dpll & DPLL_MODE_MASK) {
10250 case DPLLB_MODE_DAC_SERIAL:
10251 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10252 5 : 10;
10253 break;
10254 case DPLLB_MODE_LVDS:
10255 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10256 7 : 14;
10257 break;
10258 default:
28c97730 10259 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10260 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10261 return;
79e53945
JB
10262 }
10263
ac58c3f0 10264 if (IS_PINEVIEW(dev))
da4a1efa 10265 pineview_clock(refclk, &clock);
ac58c3f0 10266 else
da4a1efa 10267 i9xx_clock(refclk, &clock);
79e53945 10268 } else {
0fb58223 10269 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10270 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10271
10272 if (is_lvds) {
10273 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10274 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10275
10276 if (lvds & LVDS_CLKB_POWER_UP)
10277 clock.p2 = 7;
10278 else
10279 clock.p2 = 14;
79e53945
JB
10280 } else {
10281 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10282 clock.p1 = 2;
10283 else {
10284 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10285 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10286 }
10287 if (dpll & PLL_P2_DIVIDE_BY_4)
10288 clock.p2 = 4;
10289 else
10290 clock.p2 = 2;
79e53945 10291 }
da4a1efa
VS
10292
10293 i9xx_clock(refclk, &clock);
79e53945
JB
10294 }
10295
18442d08
VS
10296 /*
10297 * This value includes pixel_multiplier. We will use
241bfc38 10298 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10299 * encoder's get_config() function.
10300 */
10301 pipe_config->port_clock = clock.dot;
f1f644dc
JB
10302}
10303
6878da05
VS
10304int intel_dotclock_calculate(int link_freq,
10305 const struct intel_link_m_n *m_n)
f1f644dc 10306{
f1f644dc
JB
10307 /*
10308 * The calculation for the data clock is:
1041a02f 10309 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10310 * But we want to avoid losing precison if possible, so:
1041a02f 10311 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10312 *
10313 * and the link clock is simpler:
1041a02f 10314 * link_clock = (m * link_clock) / n
f1f644dc
JB
10315 */
10316
6878da05
VS
10317 if (!m_n->link_n)
10318 return 0;
f1f644dc 10319
6878da05
VS
10320 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10321}
f1f644dc 10322
18442d08 10323static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10324 struct intel_crtc_state *pipe_config)
6878da05
VS
10325{
10326 struct drm_device *dev = crtc->base.dev;
79e53945 10327
18442d08
VS
10328 /* read out port_clock from the DPLL */
10329 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10330
f1f644dc 10331 /*
18442d08 10332 * This value does not include pixel_multiplier.
241bfc38 10333 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
10334 * agree once we know their relationship in the encoder's
10335 * get_config() function.
79e53945 10336 */
2d112de7 10337 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
10338 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10339 &pipe_config->fdi_m_n);
79e53945
JB
10340}
10341
10342/** Returns the currently programmed mode of the given pipe. */
10343struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10344 struct drm_crtc *crtc)
10345{
548f245b 10346 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10348 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10349 struct drm_display_mode *mode;
5cec258b 10350 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
10351 int htot = I915_READ(HTOTAL(cpu_transcoder));
10352 int hsync = I915_READ(HSYNC(cpu_transcoder));
10353 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10354 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10355 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10356
10357 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10358 if (!mode)
10359 return NULL;
10360
f1f644dc
JB
10361 /*
10362 * Construct a pipe_config sufficient for getting the clock info
10363 * back out of crtc_clock_get.
10364 *
10365 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10366 * to use a real value here instead.
10367 */
293623f7 10368 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 10369 pipe_config.pixel_multiplier = 1;
293623f7
VS
10370 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10371 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10372 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
10373 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10374
773ae034 10375 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
10376 mode->hdisplay = (htot & 0xffff) + 1;
10377 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10378 mode->hsync_start = (hsync & 0xffff) + 1;
10379 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10380 mode->vdisplay = (vtot & 0xffff) + 1;
10381 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10382 mode->vsync_start = (vsync & 0xffff) + 1;
10383 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10384
10385 drm_mode_set_name(mode);
79e53945
JB
10386
10387 return mode;
10388}
10389
652c393a
JB
10390static void intel_decrease_pllclock(struct drm_crtc *crtc)
10391{
10392 struct drm_device *dev = crtc->dev;
fbee40df 10393 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 10395
baff296c 10396 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
10397 return;
10398
10399 if (!dev_priv->lvds_downclock_avail)
10400 return;
10401
10402 /*
10403 * Since this is called by a timer, we should never get here in
10404 * the manual case.
10405 */
10406 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
10407 int pipe = intel_crtc->pipe;
10408 int dpll_reg = DPLL(pipe);
10409 int dpll;
f6e5b160 10410
44d98a61 10411 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 10412
8ac5a6d5 10413 assert_panel_unlocked(dev_priv, pipe);
652c393a 10414
dc257cf1 10415 dpll = I915_READ(dpll_reg);
652c393a
JB
10416 dpll |= DISPLAY_RATE_SELECT_FPA1;
10417 I915_WRITE(dpll_reg, dpll);
9d0498a2 10418 intel_wait_for_vblank(dev, pipe);
652c393a
JB
10419 dpll = I915_READ(dpll_reg);
10420 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 10421 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
10422 }
10423
10424}
10425
f047e395
CW
10426void intel_mark_busy(struct drm_device *dev)
10427{
c67a470b
PZ
10428 struct drm_i915_private *dev_priv = dev->dev_private;
10429
f62a0076
CW
10430 if (dev_priv->mm.busy)
10431 return;
10432
43694d69 10433 intel_runtime_pm_get(dev_priv);
c67a470b 10434 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10435 if (INTEL_INFO(dev)->gen >= 6)
10436 gen6_rps_busy(dev_priv);
f62a0076 10437 dev_priv->mm.busy = true;
f047e395
CW
10438}
10439
10440void intel_mark_idle(struct drm_device *dev)
652c393a 10441{
c67a470b 10442 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10443 struct drm_crtc *crtc;
652c393a 10444
f62a0076
CW
10445 if (!dev_priv->mm.busy)
10446 return;
10447
10448 dev_priv->mm.busy = false;
10449
70e1e0ec 10450 for_each_crtc(dev, crtc) {
f4510a27 10451 if (!crtc->primary->fb)
652c393a
JB
10452 continue;
10453
725a5b54 10454 intel_decrease_pllclock(crtc);
652c393a 10455 }
b29c19b6 10456
3d13ef2e 10457 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10458 gen6_rps_idle(dev->dev_private);
bb4cdd53 10459
43694d69 10460 intel_runtime_pm_put(dev_priv);
652c393a
JB
10461}
10462
79e53945
JB
10463static void intel_crtc_destroy(struct drm_crtc *crtc)
10464{
10465 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10466 struct drm_device *dev = crtc->dev;
10467 struct intel_unpin_work *work;
67e77c5a 10468
5e2d7afc 10469 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10470 work = intel_crtc->unpin_work;
10471 intel_crtc->unpin_work = NULL;
5e2d7afc 10472 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10473
10474 if (work) {
10475 cancel_work_sync(&work->work);
10476 kfree(work);
10477 }
79e53945
JB
10478
10479 drm_crtc_cleanup(crtc);
67e77c5a 10480
79e53945
JB
10481 kfree(intel_crtc);
10482}
10483
6b95a207
KH
10484static void intel_unpin_work_fn(struct work_struct *__work)
10485{
10486 struct intel_unpin_work *work =
10487 container_of(__work, struct intel_unpin_work, work);
b4a98e57 10488 struct drm_device *dev = work->crtc->dev;
f99d7069 10489 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 10490
b4a98e57 10491 mutex_lock(&dev->struct_mutex);
82bc3b2d 10492 intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
05394f39 10493 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10494
7ff0ebcc 10495 intel_fbc_update(dev);
f06cc1b9
JH
10496
10497 if (work->flip_queued_req)
146d84f0 10498 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10499 mutex_unlock(&dev->struct_mutex);
10500
f99d7069 10501 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
89ed88ba 10502 drm_framebuffer_unreference(work->old_fb);
f99d7069 10503
b4a98e57
CW
10504 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10505 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10506
6b95a207
KH
10507 kfree(work);
10508}
10509
1afe3e9d 10510static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10511 struct drm_crtc *crtc)
6b95a207 10512{
6b95a207
KH
10513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10514 struct intel_unpin_work *work;
6b95a207
KH
10515 unsigned long flags;
10516
10517 /* Ignore early vblank irqs */
10518 if (intel_crtc == NULL)
10519 return;
10520
f326038a
DV
10521 /*
10522 * This is called both by irq handlers and the reset code (to complete
10523 * lost pageflips) so needs the full irqsave spinlocks.
10524 */
6b95a207
KH
10525 spin_lock_irqsave(&dev->event_lock, flags);
10526 work = intel_crtc->unpin_work;
e7d841ca
CW
10527
10528 /* Ensure we don't miss a work->pending update ... */
10529 smp_rmb();
10530
10531 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10532 spin_unlock_irqrestore(&dev->event_lock, flags);
10533 return;
10534 }
10535
d6bbafa1 10536 page_flip_completed(intel_crtc);
0af7e4df 10537
6b95a207 10538 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10539}
10540
1afe3e9d
JB
10541void intel_finish_page_flip(struct drm_device *dev, int pipe)
10542{
fbee40df 10543 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10544 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10545
49b14a5c 10546 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10547}
10548
10549void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10550{
fbee40df 10551 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10552 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10553
49b14a5c 10554 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10555}
10556
75f7f3ec
VS
10557/* Is 'a' after or equal to 'b'? */
10558static bool g4x_flip_count_after_eq(u32 a, u32 b)
10559{
10560 return !((a - b) & 0x80000000);
10561}
10562
10563static bool page_flip_finished(struct intel_crtc *crtc)
10564{
10565 struct drm_device *dev = crtc->base.dev;
10566 struct drm_i915_private *dev_priv = dev->dev_private;
10567
bdfa7542
VS
10568 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10569 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10570 return true;
10571
75f7f3ec
VS
10572 /*
10573 * The relevant registers doen't exist on pre-ctg.
10574 * As the flip done interrupt doesn't trigger for mmio
10575 * flips on gmch platforms, a flip count check isn't
10576 * really needed there. But since ctg has the registers,
10577 * include it in the check anyway.
10578 */
10579 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10580 return true;
10581
10582 /*
10583 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10584 * used the same base address. In that case the mmio flip might
10585 * have completed, but the CS hasn't even executed the flip yet.
10586 *
10587 * A flip count check isn't enough as the CS might have updated
10588 * the base address just after start of vblank, but before we
10589 * managed to process the interrupt. This means we'd complete the
10590 * CS flip too soon.
10591 *
10592 * Combining both checks should get us a good enough result. It may
10593 * still happen that the CS flip has been executed, but has not
10594 * yet actually completed. But in case the base address is the same
10595 * anyway, we don't really care.
10596 */
10597 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10598 crtc->unpin_work->gtt_offset &&
10599 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10600 crtc->unpin_work->flip_count);
10601}
10602
6b95a207
KH
10603void intel_prepare_page_flip(struct drm_device *dev, int plane)
10604{
fbee40df 10605 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
10606 struct intel_crtc *intel_crtc =
10607 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10608 unsigned long flags;
10609
f326038a
DV
10610
10611 /*
10612 * This is called both by irq handlers and the reset code (to complete
10613 * lost pageflips) so needs the full irqsave spinlocks.
10614 *
10615 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10616 * generate a page-flip completion irq, i.e. every modeset
10617 * is also accompanied by a spurious intel_prepare_page_flip().
10618 */
6b95a207 10619 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10620 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10621 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10622 spin_unlock_irqrestore(&dev->event_lock, flags);
10623}
10624
eba905b2 10625static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
10626{
10627 /* Ensure that the work item is consistent when activating it ... */
10628 smp_wmb();
10629 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10630 /* and that it is marked active as soon as the irq could fire. */
10631 smp_wmb();
10632}
10633
8c9f3aaf
JB
10634static int intel_gen2_queue_flip(struct drm_device *dev,
10635 struct drm_crtc *crtc,
10636 struct drm_framebuffer *fb,
ed8d1975 10637 struct drm_i915_gem_object *obj,
a4872ba6 10638 struct intel_engine_cs *ring,
ed8d1975 10639 uint32_t flags)
8c9f3aaf 10640{
8c9f3aaf 10641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10642 u32 flip_mask;
10643 int ret;
10644
6d90c952 10645 ret = intel_ring_begin(ring, 6);
8c9f3aaf 10646 if (ret)
4fa62c89 10647 return ret;
8c9f3aaf
JB
10648
10649 /* Can't queue multiple flips, so wait for the previous
10650 * one to finish before executing the next.
10651 */
10652 if (intel_crtc->plane)
10653 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10654 else
10655 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10656 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10657 intel_ring_emit(ring, MI_NOOP);
10658 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10659 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10660 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10661 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 10662 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
10663
10664 intel_mark_page_flip_active(intel_crtc);
09246732 10665 __intel_ring_advance(ring);
83d4092b 10666 return 0;
8c9f3aaf
JB
10667}
10668
10669static int intel_gen3_queue_flip(struct drm_device *dev,
10670 struct drm_crtc *crtc,
10671 struct drm_framebuffer *fb,
ed8d1975 10672 struct drm_i915_gem_object *obj,
a4872ba6 10673 struct intel_engine_cs *ring,
ed8d1975 10674 uint32_t flags)
8c9f3aaf 10675{
8c9f3aaf 10676 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10677 u32 flip_mask;
10678 int ret;
10679
6d90c952 10680 ret = intel_ring_begin(ring, 6);
8c9f3aaf 10681 if (ret)
4fa62c89 10682 return ret;
8c9f3aaf
JB
10683
10684 if (intel_crtc->plane)
10685 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10686 else
10687 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10688 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10689 intel_ring_emit(ring, MI_NOOP);
10690 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10691 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10692 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10693 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
10694 intel_ring_emit(ring, MI_NOOP);
10695
e7d841ca 10696 intel_mark_page_flip_active(intel_crtc);
09246732 10697 __intel_ring_advance(ring);
83d4092b 10698 return 0;
8c9f3aaf
JB
10699}
10700
10701static int intel_gen4_queue_flip(struct drm_device *dev,
10702 struct drm_crtc *crtc,
10703 struct drm_framebuffer *fb,
ed8d1975 10704 struct drm_i915_gem_object *obj,
a4872ba6 10705 struct intel_engine_cs *ring,
ed8d1975 10706 uint32_t flags)
8c9f3aaf
JB
10707{
10708 struct drm_i915_private *dev_priv = dev->dev_private;
10709 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10710 uint32_t pf, pipesrc;
10711 int ret;
10712
6d90c952 10713 ret = intel_ring_begin(ring, 4);
8c9f3aaf 10714 if (ret)
4fa62c89 10715 return ret;
8c9f3aaf
JB
10716
10717 /* i965+ uses the linear or tiled offsets from the
10718 * Display Registers (which do not change across a page-flip)
10719 * so we need only reprogram the base address.
10720 */
6d90c952
DV
10721 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10722 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10723 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10724 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 10725 obj->tiling_mode);
8c9f3aaf
JB
10726
10727 /* XXX Enabling the panel-fitter across page-flip is so far
10728 * untested on non-native modes, so ignore it for now.
10729 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10730 */
10731 pf = 0;
10732 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 10733 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
10734
10735 intel_mark_page_flip_active(intel_crtc);
09246732 10736 __intel_ring_advance(ring);
83d4092b 10737 return 0;
8c9f3aaf
JB
10738}
10739
10740static int intel_gen6_queue_flip(struct drm_device *dev,
10741 struct drm_crtc *crtc,
10742 struct drm_framebuffer *fb,
ed8d1975 10743 struct drm_i915_gem_object *obj,
a4872ba6 10744 struct intel_engine_cs *ring,
ed8d1975 10745 uint32_t flags)
8c9f3aaf
JB
10746{
10747 struct drm_i915_private *dev_priv = dev->dev_private;
10748 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10749 uint32_t pf, pipesrc;
10750 int ret;
10751
6d90c952 10752 ret = intel_ring_begin(ring, 4);
8c9f3aaf 10753 if (ret)
4fa62c89 10754 return ret;
8c9f3aaf 10755
6d90c952
DV
10756 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10757 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10758 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 10759 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 10760
dc257cf1
DV
10761 /* Contrary to the suggestions in the documentation,
10762 * "Enable Panel Fitter" does not seem to be required when page
10763 * flipping with a non-native mode, and worse causes a normal
10764 * modeset to fail.
10765 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10766 */
10767 pf = 0;
8c9f3aaf 10768 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 10769 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
10770
10771 intel_mark_page_flip_active(intel_crtc);
09246732 10772 __intel_ring_advance(ring);
83d4092b 10773 return 0;
8c9f3aaf
JB
10774}
10775
7c9017e5
JB
10776static int intel_gen7_queue_flip(struct drm_device *dev,
10777 struct drm_crtc *crtc,
10778 struct drm_framebuffer *fb,
ed8d1975 10779 struct drm_i915_gem_object *obj,
a4872ba6 10780 struct intel_engine_cs *ring,
ed8d1975 10781 uint32_t flags)
7c9017e5 10782{
7c9017e5 10783 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 10784 uint32_t plane_bit = 0;
ffe74d75
CW
10785 int len, ret;
10786
eba905b2 10787 switch (intel_crtc->plane) {
cb05d8de
DV
10788 case PLANE_A:
10789 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10790 break;
10791 case PLANE_B:
10792 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10793 break;
10794 case PLANE_C:
10795 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10796 break;
10797 default:
10798 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 10799 return -ENODEV;
cb05d8de
DV
10800 }
10801
ffe74d75 10802 len = 4;
f476828a 10803 if (ring->id == RCS) {
ffe74d75 10804 len += 6;
f476828a
DL
10805 /*
10806 * On Gen 8, SRM is now taking an extra dword to accommodate
10807 * 48bits addresses, and we need a NOOP for the batch size to
10808 * stay even.
10809 */
10810 if (IS_GEN8(dev))
10811 len += 2;
10812 }
ffe74d75 10813
f66fab8e
VS
10814 /*
10815 * BSpec MI_DISPLAY_FLIP for IVB:
10816 * "The full packet must be contained within the same cache line."
10817 *
10818 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10819 * cacheline, if we ever start emitting more commands before
10820 * the MI_DISPLAY_FLIP we may need to first emit everything else,
10821 * then do the cacheline alignment, and finally emit the
10822 * MI_DISPLAY_FLIP.
10823 */
10824 ret = intel_ring_cacheline_align(ring);
10825 if (ret)
4fa62c89 10826 return ret;
f66fab8e 10827
ffe74d75 10828 ret = intel_ring_begin(ring, len);
7c9017e5 10829 if (ret)
4fa62c89 10830 return ret;
7c9017e5 10831
ffe74d75
CW
10832 /* Unmask the flip-done completion message. Note that the bspec says that
10833 * we should do this for both the BCS and RCS, and that we must not unmask
10834 * more than one flip event at any time (or ensure that one flip message
10835 * can be sent by waiting for flip-done prior to queueing new flips).
10836 * Experimentation says that BCS works despite DERRMR masking all
10837 * flip-done completion events and that unmasking all planes at once
10838 * for the RCS also doesn't appear to drop events. Setting the DERRMR
10839 * to zero does lead to lockups within MI_DISPLAY_FLIP.
10840 */
10841 if (ring->id == RCS) {
10842 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10843 intel_ring_emit(ring, DERRMR);
10844 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10845 DERRMR_PIPEB_PRI_FLIP_DONE |
10846 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
10847 if (IS_GEN8(dev))
10848 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10849 MI_SRM_LRM_GLOBAL_GTT);
10850 else
10851 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10852 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
10853 intel_ring_emit(ring, DERRMR);
10854 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
10855 if (IS_GEN8(dev)) {
10856 intel_ring_emit(ring, 0);
10857 intel_ring_emit(ring, MI_NOOP);
10858 }
ffe74d75
CW
10859 }
10860
cb05d8de 10861 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 10862 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 10863 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 10864 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
10865
10866 intel_mark_page_flip_active(intel_crtc);
09246732 10867 __intel_ring_advance(ring);
83d4092b 10868 return 0;
7c9017e5
JB
10869}
10870
84c33a64
SG
10871static bool use_mmio_flip(struct intel_engine_cs *ring,
10872 struct drm_i915_gem_object *obj)
10873{
10874 /*
10875 * This is not being used for older platforms, because
10876 * non-availability of flip done interrupt forces us to use
10877 * CS flips. Older platforms derive flip done using some clever
10878 * tricks involving the flip_pending status bits and vblank irqs.
10879 * So using MMIO flips there would disrupt this mechanism.
10880 */
10881
8e09bf83
CW
10882 if (ring == NULL)
10883 return true;
10884
84c33a64
SG
10885 if (INTEL_INFO(ring->dev)->gen < 5)
10886 return false;
10887
10888 if (i915.use_mmio_flip < 0)
10889 return false;
10890 else if (i915.use_mmio_flip > 0)
10891 return true;
14bf993e
OM
10892 else if (i915.enable_execlists)
10893 return true;
84c33a64 10894 else
b4716185 10895 return ring != i915_gem_request_get_ring(obj->last_write_req);
84c33a64
SG
10896}
10897
ff944564
DL
10898static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10899{
10900 struct drm_device *dev = intel_crtc->base.dev;
10901 struct drm_i915_private *dev_priv = dev->dev_private;
10902 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564
DL
10903 const enum pipe pipe = intel_crtc->pipe;
10904 u32 ctl, stride;
10905
10906 ctl = I915_READ(PLANE_CTL(pipe, 0));
10907 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
10908 switch (fb->modifier[0]) {
10909 case DRM_FORMAT_MOD_NONE:
10910 break;
10911 case I915_FORMAT_MOD_X_TILED:
ff944564 10912 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
10913 break;
10914 case I915_FORMAT_MOD_Y_TILED:
10915 ctl |= PLANE_CTL_TILED_Y;
10916 break;
10917 case I915_FORMAT_MOD_Yf_TILED:
10918 ctl |= PLANE_CTL_TILED_YF;
10919 break;
10920 default:
10921 MISSING_CASE(fb->modifier[0]);
10922 }
ff944564
DL
10923
10924 /*
10925 * The stride is either expressed as a multiple of 64 bytes chunks for
10926 * linear buffers or in number of tiles for tiled buffers.
10927 */
2ebef630
TU
10928 stride = fb->pitches[0] /
10929 intel_fb_stride_alignment(dev, fb->modifier[0],
10930 fb->pixel_format);
ff944564
DL
10931
10932 /*
10933 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10934 * PLANE_SURF updates, the update is then guaranteed to be atomic.
10935 */
10936 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10937 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10938
10939 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10940 POSTING_READ(PLANE_SURF(pipe, 0));
10941}
10942
10943static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
84c33a64
SG
10944{
10945 struct drm_device *dev = intel_crtc->base.dev;
10946 struct drm_i915_private *dev_priv = dev->dev_private;
10947 struct intel_framebuffer *intel_fb =
10948 to_intel_framebuffer(intel_crtc->base.primary->fb);
10949 struct drm_i915_gem_object *obj = intel_fb->obj;
10950 u32 dspcntr;
10951 u32 reg;
10952
84c33a64
SG
10953 reg = DSPCNTR(intel_crtc->plane);
10954 dspcntr = I915_READ(reg);
10955
c5d97472
DL
10956 if (obj->tiling_mode != I915_TILING_NONE)
10957 dspcntr |= DISPPLANE_TILED;
10958 else
10959 dspcntr &= ~DISPPLANE_TILED;
10960
84c33a64
SG
10961 I915_WRITE(reg, dspcntr);
10962
10963 I915_WRITE(DSPSURF(intel_crtc->plane),
10964 intel_crtc->unpin_work->gtt_offset);
10965 POSTING_READ(DSPSURF(intel_crtc->plane));
84c33a64 10966
ff944564
DL
10967}
10968
10969/*
10970 * XXX: This is the temporary way to update the plane registers until we get
10971 * around to using the usual plane update functions for MMIO flips
10972 */
10973static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10974{
10975 struct drm_device *dev = intel_crtc->base.dev;
10976 bool atomic_update;
10977 u32 start_vbl_count;
10978
10979 intel_mark_page_flip_active(intel_crtc);
10980
10981 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10982
10983 if (INTEL_INFO(dev)->gen >= 9)
10984 skl_do_mmio_flip(intel_crtc);
10985 else
10986 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10987 ilk_do_mmio_flip(intel_crtc);
10988
9362c7c5
ACO
10989 if (atomic_update)
10990 intel_pipe_update_end(intel_crtc, start_vbl_count);
84c33a64
SG
10991}
10992
9362c7c5 10993static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 10994{
b2cfe0ab
CW
10995 struct intel_mmio_flip *mmio_flip =
10996 container_of(work, struct intel_mmio_flip, work);
84c33a64 10997
eed29a5b
DV
10998 if (mmio_flip->req)
10999 WARN_ON(__i915_wait_request(mmio_flip->req,
b2cfe0ab 11000 mmio_flip->crtc->reset_counter,
bcafc4e3
CW
11001 false, NULL,
11002 &mmio_flip->i915->rps.mmioflips));
84c33a64 11003
b2cfe0ab
CW
11004 intel_do_mmio_flip(mmio_flip->crtc);
11005
eed29a5b 11006 i915_gem_request_unreference__unlocked(mmio_flip->req);
b2cfe0ab 11007 kfree(mmio_flip);
84c33a64
SG
11008}
11009
11010static int intel_queue_mmio_flip(struct drm_device *dev,
11011 struct drm_crtc *crtc,
11012 struct drm_framebuffer *fb,
11013 struct drm_i915_gem_object *obj,
11014 struct intel_engine_cs *ring,
11015 uint32_t flags)
11016{
b2cfe0ab
CW
11017 struct intel_mmio_flip *mmio_flip;
11018
11019 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11020 if (mmio_flip == NULL)
11021 return -ENOMEM;
84c33a64 11022
bcafc4e3 11023 mmio_flip->i915 = to_i915(dev);
eed29a5b 11024 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
b2cfe0ab 11025 mmio_flip->crtc = to_intel_crtc(crtc);
536f5b5e 11026
b2cfe0ab
CW
11027 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11028 schedule_work(&mmio_flip->work);
84c33a64 11029
84c33a64
SG
11030 return 0;
11031}
11032
8c9f3aaf
JB
11033static int intel_default_queue_flip(struct drm_device *dev,
11034 struct drm_crtc *crtc,
11035 struct drm_framebuffer *fb,
ed8d1975 11036 struct drm_i915_gem_object *obj,
a4872ba6 11037 struct intel_engine_cs *ring,
ed8d1975 11038 uint32_t flags)
8c9f3aaf
JB
11039{
11040 return -ENODEV;
11041}
11042
d6bbafa1
CW
11043static bool __intel_pageflip_stall_check(struct drm_device *dev,
11044 struct drm_crtc *crtc)
11045{
11046 struct drm_i915_private *dev_priv = dev->dev_private;
11047 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11048 struct intel_unpin_work *work = intel_crtc->unpin_work;
11049 u32 addr;
11050
11051 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11052 return true;
11053
11054 if (!work->enable_stall_check)
11055 return false;
11056
11057 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
11058 if (work->flip_queued_req &&
11059 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
11060 return false;
11061
1e3feefd 11062 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
11063 }
11064
1e3feefd 11065 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
11066 return false;
11067
11068 /* Potential stall - if we see that the flip has happened,
11069 * assume a missed interrupt. */
11070 if (INTEL_INFO(dev)->gen >= 4)
11071 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11072 else
11073 addr = I915_READ(DSPADDR(intel_crtc->plane));
11074
11075 /* There is a potential issue here with a false positive after a flip
11076 * to the same address. We could address this by checking for a
11077 * non-incrementing frame counter.
11078 */
11079 return addr == work->gtt_offset;
11080}
11081
11082void intel_check_page_flip(struct drm_device *dev, int pipe)
11083{
11084 struct drm_i915_private *dev_priv = dev->dev_private;
11085 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 11087 struct intel_unpin_work *work;
f326038a 11088
6c51d46f 11089 WARN_ON(!in_interrupt());
d6bbafa1
CW
11090
11091 if (crtc == NULL)
11092 return;
11093
f326038a 11094 spin_lock(&dev->event_lock);
6ad790c0
CW
11095 work = intel_crtc->unpin_work;
11096 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 11097 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 11098 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 11099 page_flip_completed(intel_crtc);
6ad790c0 11100 work = NULL;
d6bbafa1 11101 }
6ad790c0
CW
11102 if (work != NULL &&
11103 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11104 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 11105 spin_unlock(&dev->event_lock);
d6bbafa1
CW
11106}
11107
6b95a207
KH
11108static int intel_crtc_page_flip(struct drm_crtc *crtc,
11109 struct drm_framebuffer *fb,
ed8d1975
KP
11110 struct drm_pending_vblank_event *event,
11111 uint32_t page_flip_flags)
6b95a207
KH
11112{
11113 struct drm_device *dev = crtc->dev;
11114 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 11115 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 11116 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 11117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 11118 struct drm_plane *primary = crtc->primary;
a071fa00 11119 enum pipe pipe = intel_crtc->pipe;
6b95a207 11120 struct intel_unpin_work *work;
a4872ba6 11121 struct intel_engine_cs *ring;
cf5d8a46 11122 bool mmio_flip;
52e68630 11123 int ret;
6b95a207 11124
2ff8fde1
MR
11125 /*
11126 * drm_mode_page_flip_ioctl() should already catch this, but double
11127 * check to be safe. In the future we may enable pageflipping from
11128 * a disabled primary plane.
11129 */
11130 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11131 return -EBUSY;
11132
e6a595d2 11133 /* Can't change pixel format via MI display flips. */
f4510a27 11134 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
11135 return -EINVAL;
11136
11137 /*
11138 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11139 * Note that pitch changes could also affect these register.
11140 */
11141 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
11142 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11143 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
11144 return -EINVAL;
11145
f900db47
CW
11146 if (i915_terminally_wedged(&dev_priv->gpu_error))
11147 goto out_hang;
11148
b14c5679 11149 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
11150 if (work == NULL)
11151 return -ENOMEM;
11152
6b95a207 11153 work->event = event;
b4a98e57 11154 work->crtc = crtc;
ab8d6675 11155 work->old_fb = old_fb;
6b95a207
KH
11156 INIT_WORK(&work->work, intel_unpin_work_fn);
11157
87b6b101 11158 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
11159 if (ret)
11160 goto free_work;
11161
6b95a207 11162 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 11163 spin_lock_irq(&dev->event_lock);
6b95a207 11164 if (intel_crtc->unpin_work) {
d6bbafa1
CW
11165 /* Before declaring the flip queue wedged, check if
11166 * the hardware completed the operation behind our backs.
11167 */
11168 if (__intel_pageflip_stall_check(dev, crtc)) {
11169 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11170 page_flip_completed(intel_crtc);
11171 } else {
11172 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 11173 spin_unlock_irq(&dev->event_lock);
468f0b44 11174
d6bbafa1
CW
11175 drm_crtc_vblank_put(crtc);
11176 kfree(work);
11177 return -EBUSY;
11178 }
6b95a207
KH
11179 }
11180 intel_crtc->unpin_work = work;
5e2d7afc 11181 spin_unlock_irq(&dev->event_lock);
6b95a207 11182
b4a98e57
CW
11183 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11184 flush_workqueue(dev_priv->wq);
11185
75dfca80 11186 /* Reference the objects for the scheduled work. */
ab8d6675 11187 drm_framebuffer_reference(work->old_fb);
05394f39 11188 drm_gem_object_reference(&obj->base);
6b95a207 11189
f4510a27 11190 crtc->primary->fb = fb;
afd65eb4 11191 update_state_fb(crtc->primary);
1ed1f968 11192
e1f99ce6 11193 work->pending_flip_obj = obj;
e1f99ce6 11194
89ed88ba
CW
11195 ret = i915_mutex_lock_interruptible(dev);
11196 if (ret)
11197 goto cleanup;
11198
b4a98e57 11199 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 11200 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 11201
75f7f3ec 11202 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 11203 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 11204
4fa62c89
VS
11205 if (IS_VALLEYVIEW(dev)) {
11206 ring = &dev_priv->ring[BCS];
ab8d6675 11207 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
11208 /* vlv: DISPLAY_FLIP fails to change tiling */
11209 ring = NULL;
48bf5b2d 11210 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 11211 ring = &dev_priv->ring[BCS];
4fa62c89 11212 } else if (INTEL_INFO(dev)->gen >= 7) {
b4716185 11213 ring = i915_gem_request_get_ring(obj->last_write_req);
4fa62c89
VS
11214 if (ring == NULL || ring->id != RCS)
11215 ring = &dev_priv->ring[BCS];
11216 } else {
11217 ring = &dev_priv->ring[RCS];
11218 }
11219
cf5d8a46
CW
11220 mmio_flip = use_mmio_flip(ring, obj);
11221
11222 /* When using CS flips, we want to emit semaphores between rings.
11223 * However, when using mmio flips we will create a task to do the
11224 * synchronisation, so all we want here is to pin the framebuffer
11225 * into the display plane and skip any waits.
11226 */
82bc3b2d 11227 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
cf5d8a46 11228 crtc->primary->state,
b4716185 11229 mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring);
8c9f3aaf
JB
11230 if (ret)
11231 goto cleanup_pending;
6b95a207 11232
121920fa
TU
11233 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11234 + intel_crtc->dspaddr_offset;
4fa62c89 11235
cf5d8a46 11236 if (mmio_flip) {
84c33a64
SG
11237 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11238 page_flip_flags);
d6bbafa1
CW
11239 if (ret)
11240 goto cleanup_unpin;
11241
f06cc1b9
JH
11242 i915_gem_request_assign(&work->flip_queued_req,
11243 obj->last_write_req);
d6bbafa1 11244 } else {
d94b5030
CW
11245 if (obj->last_write_req) {
11246 ret = i915_gem_check_olr(obj->last_write_req);
11247 if (ret)
11248 goto cleanup_unpin;
11249 }
11250
84c33a64 11251 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
11252 page_flip_flags);
11253 if (ret)
11254 goto cleanup_unpin;
11255
f06cc1b9
JH
11256 i915_gem_request_assign(&work->flip_queued_req,
11257 intel_ring_get_request(ring));
d6bbafa1
CW
11258 }
11259
1e3feefd 11260 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11261 work->enable_stall_check = true;
4fa62c89 11262
ab8d6675 11263 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a071fa00
DV
11264 INTEL_FRONTBUFFER_PRIMARY(pipe));
11265
7ff0ebcc 11266 intel_fbc_disable(dev);
f99d7069 11267 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
11268 mutex_unlock(&dev->struct_mutex);
11269
e5510fac
JB
11270 trace_i915_flip_request(intel_crtc->plane, obj);
11271
6b95a207 11272 return 0;
96b099fd 11273
4fa62c89 11274cleanup_unpin:
82bc3b2d 11275 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 11276cleanup_pending:
b4a98e57 11277 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11278 mutex_unlock(&dev->struct_mutex);
11279cleanup:
f4510a27 11280 crtc->primary->fb = old_fb;
afd65eb4 11281 update_state_fb(crtc->primary);
89ed88ba
CW
11282
11283 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11284 drm_framebuffer_unreference(work->old_fb);
96b099fd 11285
5e2d7afc 11286 spin_lock_irq(&dev->event_lock);
96b099fd 11287 intel_crtc->unpin_work = NULL;
5e2d7afc 11288 spin_unlock_irq(&dev->event_lock);
96b099fd 11289
87b6b101 11290 drm_crtc_vblank_put(crtc);
7317c75e 11291free_work:
96b099fd
CW
11292 kfree(work);
11293
f900db47
CW
11294 if (ret == -EIO) {
11295out_hang:
53a366b9 11296 ret = intel_plane_restore(primary);
f0d3dad3 11297 if (ret == 0 && event) {
5e2d7afc 11298 spin_lock_irq(&dev->event_lock);
a071fa00 11299 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 11300 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11301 }
f900db47 11302 }
96b099fd 11303 return ret;
6b95a207
KH
11304}
11305
65b38e0d 11306static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
11307 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11308 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
11309 .atomic_begin = intel_begin_crtc_commit,
11310 .atomic_flush = intel_finish_crtc_commit,
f6e5b160
CW
11311};
11312
9a935856
DV
11313/**
11314 * intel_modeset_update_staged_output_state
11315 *
11316 * Updates the staged output configuration state, e.g. after we've read out the
11317 * current hw state.
11318 */
11319static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 11320{
7668851f 11321 struct intel_crtc *crtc;
9a935856
DV
11322 struct intel_encoder *encoder;
11323 struct intel_connector *connector;
f6e5b160 11324
3a3371ff 11325 for_each_intel_connector(dev, connector) {
9a935856
DV
11326 connector->new_encoder =
11327 to_intel_encoder(connector->base.encoder);
11328 }
f6e5b160 11329
b2784e15 11330 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11331 encoder->new_crtc =
11332 to_intel_crtc(encoder->base.crtc);
11333 }
7668851f 11334
d3fcc808 11335 for_each_intel_crtc(dev, crtc) {
83d65738 11336 crtc->new_enabled = crtc->base.state->enable;
7668851f 11337 }
f6e5b160
CW
11338}
11339
d29b2f9d
ACO
11340/* Transitional helper to copy current connector/encoder state to
11341 * connector->state. This is needed so that code that is partially
11342 * converted to atomic does the right thing.
11343 */
11344static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11345{
11346 struct intel_connector *connector;
11347
11348 for_each_intel_connector(dev, connector) {
11349 if (connector->base.encoder) {
11350 connector->base.state->best_encoder =
11351 connector->base.encoder;
11352 connector->base.state->crtc =
11353 connector->base.encoder->crtc;
11354 } else {
11355 connector->base.state->best_encoder = NULL;
11356 connector->base.state->crtc = NULL;
11357 }
11358 }
11359}
11360
a821fc46 11361/* Fixup legacy state after an atomic state swap.
9a935856 11362 */
a821fc46 11363static void intel_modeset_fixup_state(struct drm_atomic_state *state)
9a935856 11364{
a821fc46 11365 struct intel_crtc *crtc;
9a935856 11366 struct intel_encoder *encoder;
a821fc46 11367 struct intel_connector *connector;
d5432a9d 11368
a821fc46
ACO
11369 for_each_intel_connector(state->dev, connector) {
11370 connector->base.encoder = connector->base.state->best_encoder;
11371 if (connector->base.encoder)
11372 connector->base.encoder->crtc =
11373 connector->base.state->crtc;
9a935856 11374 }
f6e5b160 11375
d5432a9d
ACO
11376 /* Update crtc of disabled encoders */
11377 for_each_intel_encoder(state->dev, encoder) {
11378 int num_connectors = 0;
11379
a821fc46
ACO
11380 for_each_intel_connector(state->dev, connector)
11381 if (connector->base.encoder == &encoder->base)
d5432a9d
ACO
11382 num_connectors++;
11383
11384 if (num_connectors == 0)
11385 encoder->base.crtc = NULL;
9a935856 11386 }
7668851f 11387
a821fc46
ACO
11388 for_each_intel_crtc(state->dev, crtc) {
11389 crtc->base.enabled = crtc->base.state->enable;
11390 crtc->config = to_intel_crtc_state(crtc->base.state);
7668851f 11391 }
9a935856
DV
11392}
11393
050f7aeb 11394static void
eba905b2 11395connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 11396 struct intel_crtc_state *pipe_config)
050f7aeb
DV
11397{
11398 int bpp = pipe_config->pipe_bpp;
11399
11400 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11401 connector->base.base.id,
c23cc417 11402 connector->base.name);
050f7aeb
DV
11403
11404 /* Don't use an invalid EDID bpc value */
11405 if (connector->base.display_info.bpc &&
11406 connector->base.display_info.bpc * 3 < bpp) {
11407 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11408 bpp, connector->base.display_info.bpc*3);
11409 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11410 }
11411
11412 /* Clamp bpp to 8 on screens without EDID 1.4 */
11413 if (connector->base.display_info.bpc == 0 && bpp > 24) {
11414 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11415 bpp);
11416 pipe_config->pipe_bpp = 24;
11417 }
11418}
11419
4e53c2e0 11420static int
050f7aeb 11421compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 11422 struct intel_crtc_state *pipe_config)
4e53c2e0 11423{
050f7aeb 11424 struct drm_device *dev = crtc->base.dev;
1486017f 11425 struct drm_atomic_state *state;
da3ced29
ACO
11426 struct drm_connector *connector;
11427 struct drm_connector_state *connector_state;
1486017f 11428 int bpp, i;
4e53c2e0 11429
d328c9d7 11430 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
4e53c2e0 11431 bpp = 10*3;
d328c9d7
DV
11432 else if (INTEL_INFO(dev)->gen >= 5)
11433 bpp = 12*3;
11434 else
11435 bpp = 8*3;
11436
4e53c2e0 11437
4e53c2e0
DV
11438 pipe_config->pipe_bpp = bpp;
11439
1486017f
ACO
11440 state = pipe_config->base.state;
11441
4e53c2e0 11442 /* Clamp display bpp to EDID value */
da3ced29
ACO
11443 for_each_connector_in_state(state, connector, connector_state, i) {
11444 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
11445 continue;
11446
da3ced29
ACO
11447 connected_sink_compute_bpp(to_intel_connector(connector),
11448 pipe_config);
4e53c2e0
DV
11449 }
11450
11451 return bpp;
11452}
11453
644db711
DV
11454static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11455{
11456 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11457 "type: 0x%x flags: 0x%x\n",
1342830c 11458 mode->crtc_clock,
644db711
DV
11459 mode->crtc_hdisplay, mode->crtc_hsync_start,
11460 mode->crtc_hsync_end, mode->crtc_htotal,
11461 mode->crtc_vdisplay, mode->crtc_vsync_start,
11462 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11463}
11464
c0b03411 11465static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 11466 struct intel_crtc_state *pipe_config,
c0b03411
DV
11467 const char *context)
11468{
6a60cd87
CK
11469 struct drm_device *dev = crtc->base.dev;
11470 struct drm_plane *plane;
11471 struct intel_plane *intel_plane;
11472 struct intel_plane_state *state;
11473 struct drm_framebuffer *fb;
11474
11475 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11476 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
11477
11478 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11479 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11480 pipe_config->pipe_bpp, pipe_config->dither);
11481 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11482 pipe_config->has_pch_encoder,
11483 pipe_config->fdi_lanes,
11484 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11485 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11486 pipe_config->fdi_m_n.tu);
eb14cb74
VS
11487 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11488 pipe_config->has_dp_encoder,
11489 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11490 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11491 pipe_config->dp_m_n.tu);
b95af8be
VK
11492
11493 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11494 pipe_config->has_dp_encoder,
11495 pipe_config->dp_m2_n2.gmch_m,
11496 pipe_config->dp_m2_n2.gmch_n,
11497 pipe_config->dp_m2_n2.link_m,
11498 pipe_config->dp_m2_n2.link_n,
11499 pipe_config->dp_m2_n2.tu);
11500
55072d19
DV
11501 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11502 pipe_config->has_audio,
11503 pipe_config->has_infoframe);
11504
c0b03411 11505 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 11506 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 11507 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
11508 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11509 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 11510 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
11511 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11512 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
11513 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11514 crtc->num_scalers,
11515 pipe_config->scaler_state.scaler_users,
11516 pipe_config->scaler_state.scaler_id);
c0b03411
DV
11517 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11518 pipe_config->gmch_pfit.control,
11519 pipe_config->gmch_pfit.pgm_ratios,
11520 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 11521 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 11522 pipe_config->pch_pfit.pos,
fd4daa9c
CW
11523 pipe_config->pch_pfit.size,
11524 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 11525 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 11526 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 11527
415ff0f6
TU
11528 if (IS_BROXTON(dev)) {
11529 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
11530 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11531 "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
11532 pipe_config->ddi_pll_sel,
11533 pipe_config->dpll_hw_state.ebb0,
11534 pipe_config->dpll_hw_state.pll0,
11535 pipe_config->dpll_hw_state.pll1,
11536 pipe_config->dpll_hw_state.pll2,
11537 pipe_config->dpll_hw_state.pll3,
11538 pipe_config->dpll_hw_state.pll6,
11539 pipe_config->dpll_hw_state.pll8,
11540 pipe_config->dpll_hw_state.pcsdw12);
11541 } else if (IS_SKYLAKE(dev)) {
11542 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11543 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11544 pipe_config->ddi_pll_sel,
11545 pipe_config->dpll_hw_state.ctrl1,
11546 pipe_config->dpll_hw_state.cfgcr1,
11547 pipe_config->dpll_hw_state.cfgcr2);
11548 } else if (HAS_DDI(dev)) {
11549 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11550 pipe_config->ddi_pll_sel,
11551 pipe_config->dpll_hw_state.wrpll);
11552 } else {
11553 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11554 "fp0: 0x%x, fp1: 0x%x\n",
11555 pipe_config->dpll_hw_state.dpll,
11556 pipe_config->dpll_hw_state.dpll_md,
11557 pipe_config->dpll_hw_state.fp0,
11558 pipe_config->dpll_hw_state.fp1);
11559 }
11560
6a60cd87
CK
11561 DRM_DEBUG_KMS("planes on this crtc\n");
11562 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11563 intel_plane = to_intel_plane(plane);
11564 if (intel_plane->pipe != crtc->pipe)
11565 continue;
11566
11567 state = to_intel_plane_state(plane->state);
11568 fb = state->base.fb;
11569 if (!fb) {
11570 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11571 "disabled, scaler_id = %d\n",
11572 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11573 plane->base.id, intel_plane->pipe,
11574 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11575 drm_plane_index(plane), state->scaler_id);
11576 continue;
11577 }
11578
11579 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11580 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11581 plane->base.id, intel_plane->pipe,
11582 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11583 drm_plane_index(plane));
11584 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11585 fb->base.id, fb->width, fb->height, fb->pixel_format);
11586 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11587 state->scaler_id,
11588 state->src.x1 >> 16, state->src.y1 >> 16,
11589 drm_rect_width(&state->src) >> 16,
11590 drm_rect_height(&state->src) >> 16,
11591 state->dst.x1, state->dst.y1,
11592 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11593 }
c0b03411
DV
11594}
11595
bc079e8b
VS
11596static bool encoders_cloneable(const struct intel_encoder *a,
11597 const struct intel_encoder *b)
accfc0c5 11598{
bc079e8b
VS
11599 /* masks could be asymmetric, so check both ways */
11600 return a == b || (a->cloneable & (1 << b->type) &&
11601 b->cloneable & (1 << a->type));
11602}
11603
98a221da
ACO
11604static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11605 struct intel_crtc *crtc,
bc079e8b
VS
11606 struct intel_encoder *encoder)
11607{
bc079e8b 11608 struct intel_encoder *source_encoder;
da3ced29 11609 struct drm_connector *connector;
98a221da
ACO
11610 struct drm_connector_state *connector_state;
11611 int i;
bc079e8b 11612
da3ced29 11613 for_each_connector_in_state(state, connector, connector_state, i) {
98a221da 11614 if (connector_state->crtc != &crtc->base)
bc079e8b
VS
11615 continue;
11616
98a221da
ACO
11617 source_encoder =
11618 to_intel_encoder(connector_state->best_encoder);
bc079e8b
VS
11619 if (!encoders_cloneable(encoder, source_encoder))
11620 return false;
11621 }
11622
11623 return true;
11624}
11625
98a221da
ACO
11626static bool check_encoder_cloning(struct drm_atomic_state *state,
11627 struct intel_crtc *crtc)
bc079e8b 11628{
accfc0c5 11629 struct intel_encoder *encoder;
da3ced29 11630 struct drm_connector *connector;
98a221da
ACO
11631 struct drm_connector_state *connector_state;
11632 int i;
accfc0c5 11633
da3ced29 11634 for_each_connector_in_state(state, connector, connector_state, i) {
98a221da
ACO
11635 if (connector_state->crtc != &crtc->base)
11636 continue;
11637
11638 encoder = to_intel_encoder(connector_state->best_encoder);
11639 if (!check_single_encoder_cloning(state, crtc, encoder))
bc079e8b 11640 return false;
accfc0c5
DV
11641 }
11642
bc079e8b 11643 return true;
accfc0c5
DV
11644}
11645
5448a00d 11646static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 11647{
5448a00d
ACO
11648 struct drm_device *dev = state->dev;
11649 struct intel_encoder *encoder;
da3ced29 11650 struct drm_connector *connector;
5448a00d 11651 struct drm_connector_state *connector_state;
00f0b378 11652 unsigned int used_ports = 0;
5448a00d 11653 int i;
00f0b378
VS
11654
11655 /*
11656 * Walk the connector list instead of the encoder
11657 * list to detect the problem on ddi platforms
11658 * where there's just one encoder per digital port.
11659 */
da3ced29 11660 for_each_connector_in_state(state, connector, connector_state, i) {
5448a00d 11661 if (!connector_state->best_encoder)
00f0b378
VS
11662 continue;
11663
5448a00d
ACO
11664 encoder = to_intel_encoder(connector_state->best_encoder);
11665
11666 WARN_ON(!connector_state->crtc);
00f0b378
VS
11667
11668 switch (encoder->type) {
11669 unsigned int port_mask;
11670 case INTEL_OUTPUT_UNKNOWN:
11671 if (WARN_ON(!HAS_DDI(dev)))
11672 break;
11673 case INTEL_OUTPUT_DISPLAYPORT:
11674 case INTEL_OUTPUT_HDMI:
11675 case INTEL_OUTPUT_EDP:
11676 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11677
11678 /* the same port mustn't appear more than once */
11679 if (used_ports & port_mask)
11680 return false;
11681
11682 used_ports |= port_mask;
11683 default:
11684 break;
11685 }
11686 }
11687
11688 return true;
11689}
11690
83a57153
ACO
11691static void
11692clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11693{
11694 struct drm_crtc_state tmp_state;
663a3640 11695 struct intel_crtc_scaler_state scaler_state;
4978cc93
ACO
11696 struct intel_dpll_hw_state dpll_hw_state;
11697 enum intel_dpll_id shared_dpll;
8504c74c 11698 uint32_t ddi_pll_sel;
83a57153 11699
7546a384
ACO
11700 /* FIXME: before the switch to atomic started, a new pipe_config was
11701 * kzalloc'd. Code that depends on any field being zero should be
11702 * fixed, so that the crtc_state can be safely duplicated. For now,
11703 * only fields that are know to not cause problems are preserved. */
11704
83a57153 11705 tmp_state = crtc_state->base;
663a3640 11706 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
11707 shared_dpll = crtc_state->shared_dpll;
11708 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 11709 ddi_pll_sel = crtc_state->ddi_pll_sel;
4978cc93 11710
83a57153 11711 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 11712
83a57153 11713 crtc_state->base = tmp_state;
663a3640 11714 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
11715 crtc_state->shared_dpll = shared_dpll;
11716 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 11717 crtc_state->ddi_pll_sel = ddi_pll_sel;
83a57153
ACO
11718}
11719
548ee15b 11720static int
b8cecdf5 11721intel_modeset_pipe_config(struct drm_crtc *crtc,
548ee15b
ACO
11722 struct drm_atomic_state *state,
11723 struct intel_crtc_state *pipe_config)
ee7b9f93 11724{
7758a113 11725 struct intel_encoder *encoder;
da3ced29 11726 struct drm_connector *connector;
0b901879 11727 struct drm_connector_state *connector_state;
d328c9d7 11728 int base_bpp, ret = -EINVAL;
0b901879 11729 int i;
e29c22c0 11730 bool retry = true;
ee7b9f93 11731
98a221da 11732 if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
accfc0c5 11733 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
548ee15b 11734 return -EINVAL;
accfc0c5
DV
11735 }
11736
5448a00d 11737 if (!check_digital_port_conflicts(state)) {
00f0b378 11738 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
548ee15b 11739 return -EINVAL;
00f0b378
VS
11740 }
11741
83a57153 11742 clear_intel_crtc_state(pipe_config);
7758a113 11743
e143a21c
DV
11744 pipe_config->cpu_transcoder =
11745 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 11746
2960bc9c
ID
11747 /*
11748 * Sanitize sync polarity flags based on requested ones. If neither
11749 * positive or negative polarity is requested, treat this as meaning
11750 * negative polarity.
11751 */
2d112de7 11752 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 11753 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 11754 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 11755
2d112de7 11756 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 11757 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 11758 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 11759
050f7aeb
DV
11760 /* Compute a starting value for pipe_config->pipe_bpp taking the source
11761 * plane pixel format and any sink constraints into account. Returns the
11762 * source plane bpp so that dithering can be selected on mismatches
11763 * after encoders and crtc also have had their say. */
d328c9d7
DV
11764 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11765 pipe_config);
11766 if (base_bpp < 0)
4e53c2e0
DV
11767 goto fail;
11768
e41a56be
VS
11769 /*
11770 * Determine the real pipe dimensions. Note that stereo modes can
11771 * increase the actual pipe size due to the frame doubling and
11772 * insertion of additional space for blanks between the frame. This
11773 * is stored in the crtc timings. We use the requested mode to do this
11774 * computation to clearly distinguish it from the adjusted mode, which
11775 * can be changed by the connectors in the below retry loop.
11776 */
2d112de7 11777 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
11778 &pipe_config->pipe_src_w,
11779 &pipe_config->pipe_src_h);
e41a56be 11780
e29c22c0 11781encoder_retry:
ef1b460d 11782 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 11783 pipe_config->port_clock = 0;
ef1b460d 11784 pipe_config->pixel_multiplier = 1;
ff9a6750 11785
135c81b8 11786 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
11787 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11788 CRTC_STEREO_DOUBLE);
135c81b8 11789
7758a113
DV
11790 /* Pass our mode to the connectors and the CRTC to give them a chance to
11791 * adjust it according to limitations or connector properties, and also
11792 * a chance to reject the mode entirely.
47f1c6c9 11793 */
da3ced29 11794 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 11795 if (connector_state->crtc != crtc)
7758a113 11796 continue;
7ae89233 11797
0b901879
ACO
11798 encoder = to_intel_encoder(connector_state->best_encoder);
11799
efea6e8e
DV
11800 if (!(encoder->compute_config(encoder, pipe_config))) {
11801 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
11802 goto fail;
11803 }
ee7b9f93 11804 }
47f1c6c9 11805
ff9a6750
DV
11806 /* Set default port clock if not overwritten by the encoder. Needs to be
11807 * done afterwards in case the encoder adjusts the mode. */
11808 if (!pipe_config->port_clock)
2d112de7 11809 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 11810 * pipe_config->pixel_multiplier;
ff9a6750 11811
a43f6e0f 11812 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 11813 if (ret < 0) {
7758a113
DV
11814 DRM_DEBUG_KMS("CRTC fixup failed\n");
11815 goto fail;
ee7b9f93 11816 }
e29c22c0
DV
11817
11818 if (ret == RETRY) {
11819 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11820 ret = -EINVAL;
11821 goto fail;
11822 }
11823
11824 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11825 retry = false;
11826 goto encoder_retry;
11827 }
11828
d328c9d7 11829 pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
4e53c2e0 11830 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 11831 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 11832
548ee15b 11833 return 0;
7758a113 11834fail:
548ee15b 11835 return ret;
ee7b9f93 11836}
47f1c6c9 11837
ea9d758d 11838static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 11839{
ea9d758d 11840 struct drm_encoder *encoder;
f6e5b160 11841 struct drm_device *dev = crtc->dev;
f6e5b160 11842
ea9d758d
DV
11843 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11844 if (encoder->crtc == crtc)
11845 return true;
11846
11847 return false;
11848}
11849
0a9ab303
ACO
11850static bool
11851needs_modeset(struct drm_crtc_state *state)
11852{
11853 return state->mode_changed || state->active_changed;
11854}
11855
ea9d758d 11856static void
0a9ab303 11857intel_modeset_update_state(struct drm_atomic_state *state)
ea9d758d 11858{
0a9ab303 11859 struct drm_device *dev = state->dev;
ba41c0de 11860 struct drm_i915_private *dev_priv = dev->dev_private;
ea9d758d 11861 struct intel_encoder *intel_encoder;
0a9ab303
ACO
11862 struct drm_crtc *crtc;
11863 struct drm_crtc_state *crtc_state;
ea9d758d 11864 struct drm_connector *connector;
0a9ab303 11865 int i;
ea9d758d 11866
ba41c0de
DV
11867 intel_shared_dpll_commit(dev_priv);
11868
b2784e15 11869 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
11870 if (!intel_encoder->base.crtc)
11871 continue;
11872
9044a81d
ACO
11873 for_each_crtc_in_state(state, crtc, crtc_state, i) {
11874 if (crtc != intel_encoder->base.crtc)
11875 continue;
0a9ab303 11876
9044a81d
ACO
11877 if (crtc_state->enable && needs_modeset(crtc_state))
11878 intel_encoder->connectors_active = false;
ea9d758d 11879
9044a81d
ACO
11880 break;
11881 }
ea9d758d
DV
11882 }
11883
a821fc46
ACO
11884 drm_atomic_helper_swap_state(state->dev, state);
11885 intel_modeset_fixup_state(state);
ea9d758d 11886
7668851f 11887 /* Double check state. */
0a9ab303
ACO
11888 for_each_crtc(dev, crtc) {
11889 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
ea9d758d
DV
11890 }
11891
11892 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11893 if (!connector->encoder || !connector->encoder->crtc)
11894 continue;
11895
9044a81d
ACO
11896 for_each_crtc_in_state(state, crtc, crtc_state, i) {
11897 if (crtc != connector->encoder->crtc)
11898 continue;
0a9ab303 11899
9044a81d
ACO
11900 if (crtc->state->enable && needs_modeset(crtc->state)) {
11901 struct drm_property *dpms_property =
11902 dev->mode_config.dpms_property;
ea9d758d 11903
9044a81d
ACO
11904 connector->dpms = DRM_MODE_DPMS_ON;
11905 drm_object_property_set_value(&connector->base,
11906 dpms_property,
11907 DRM_MODE_DPMS_ON);
68d34720 11908
9044a81d
ACO
11909 intel_encoder = to_intel_encoder(connector->encoder);
11910 intel_encoder->connectors_active = true;
11911 }
ea9d758d 11912
9044a81d 11913 break;
ea9d758d
DV
11914 }
11915 }
11916
11917}
11918
3bd26263 11919static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 11920{
3bd26263 11921 int diff;
f1f644dc
JB
11922
11923 if (clock1 == clock2)
11924 return true;
11925
11926 if (!clock1 || !clock2)
11927 return false;
11928
11929 diff = abs(clock1 - clock2);
11930
11931 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11932 return true;
11933
11934 return false;
11935}
11936
25c5b266
DV
11937#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11938 list_for_each_entry((intel_crtc), \
11939 &(dev)->mode_config.crtc_list, \
11940 base.head) \
0973f18f 11941 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 11942
0e8ffe1b 11943static bool
2fa2fe9a 11944intel_pipe_config_compare(struct drm_device *dev,
5cec258b
ACO
11945 struct intel_crtc_state *current_config,
11946 struct intel_crtc_state *pipe_config)
0e8ffe1b 11947{
66e985c0
DV
11948#define PIPE_CONF_CHECK_X(name) \
11949 if (current_config->name != pipe_config->name) { \
11950 DRM_ERROR("mismatch in " #name " " \
11951 "(expected 0x%08x, found 0x%08x)\n", \
11952 current_config->name, \
11953 pipe_config->name); \
11954 return false; \
11955 }
11956
08a24034
DV
11957#define PIPE_CONF_CHECK_I(name) \
11958 if (current_config->name != pipe_config->name) { \
11959 DRM_ERROR("mismatch in " #name " " \
11960 "(expected %i, found %i)\n", \
11961 current_config->name, \
11962 pipe_config->name); \
11963 return false; \
88adfff1
DV
11964 }
11965
b95af8be
VK
11966/* This is required for BDW+ where there is only one set of registers for
11967 * switching between high and low RR.
11968 * This macro can be used whenever a comparison has to be made between one
11969 * hw state and multiple sw state variables.
11970 */
11971#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11972 if ((current_config->name != pipe_config->name) && \
11973 (current_config->alt_name != pipe_config->name)) { \
11974 DRM_ERROR("mismatch in " #name " " \
11975 "(expected %i or %i, found %i)\n", \
11976 current_config->name, \
11977 current_config->alt_name, \
11978 pipe_config->name); \
11979 return false; \
11980 }
11981
1bd1bd80
DV
11982#define PIPE_CONF_CHECK_FLAGS(name, mask) \
11983 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 11984 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
11985 "(expected %i, found %i)\n", \
11986 current_config->name & (mask), \
11987 pipe_config->name & (mask)); \
11988 return false; \
11989 }
11990
5e550656
VS
11991#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11992 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11993 DRM_ERROR("mismatch in " #name " " \
11994 "(expected %i, found %i)\n", \
11995 current_config->name, \
11996 pipe_config->name); \
11997 return false; \
11998 }
11999
bb760063
DV
12000#define PIPE_CONF_QUIRK(quirk) \
12001 ((current_config->quirks | pipe_config->quirks) & (quirk))
12002
eccb140b
DV
12003 PIPE_CONF_CHECK_I(cpu_transcoder);
12004
08a24034
DV
12005 PIPE_CONF_CHECK_I(has_pch_encoder);
12006 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
12007 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12008 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12009 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12010 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12011 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 12012
eb14cb74 12013 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
12014
12015 if (INTEL_INFO(dev)->gen < 8) {
12016 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12017 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12018 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12019 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12020 PIPE_CONF_CHECK_I(dp_m_n.tu);
12021
12022 if (current_config->has_drrs) {
12023 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12024 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12025 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12026 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12027 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12028 }
12029 } else {
12030 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12031 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12032 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12033 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12034 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12035 }
eb14cb74 12036
2d112de7
ACO
12037 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12038 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12039 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12040 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12041 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12042 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12043
2d112de7
ACO
12044 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12045 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12046 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12047 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12048 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12049 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12050
c93f54cf 12051 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12052 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
12053 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12054 IS_VALLEYVIEW(dev))
12055 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12056 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12057
9ed109a7
DV
12058 PIPE_CONF_CHECK_I(has_audio);
12059
2d112de7 12060 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12061 DRM_MODE_FLAG_INTERLACE);
12062
bb760063 12063 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12064 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12065 DRM_MODE_FLAG_PHSYNC);
2d112de7 12066 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12067 DRM_MODE_FLAG_NHSYNC);
2d112de7 12068 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12069 DRM_MODE_FLAG_PVSYNC);
2d112de7 12070 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12071 DRM_MODE_FLAG_NVSYNC);
12072 }
045ac3b5 12073
37327abd
VS
12074 PIPE_CONF_CHECK_I(pipe_src_w);
12075 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 12076
9953599b
DV
12077 /*
12078 * FIXME: BIOS likes to set up a cloned config with lvds+external
12079 * screen. Since we don't yet re-compute the pipe config when moving
12080 * just the lvds port away to another pipe the sw tracking won't match.
12081 *
12082 * Proper atomic modesets with recomputed global state will fix this.
12083 * Until then just don't check gmch state for inherited modes.
12084 */
12085 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12086 PIPE_CONF_CHECK_I(gmch_pfit.control);
12087 /* pfit ratios are autocomputed by the hw on gen4+ */
12088 if (INTEL_INFO(dev)->gen < 4)
12089 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12090 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12091 }
12092
fd4daa9c
CW
12093 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12094 if (current_config->pch_pfit.enabled) {
12095 PIPE_CONF_CHECK_I(pch_pfit.pos);
12096 PIPE_CONF_CHECK_I(pch_pfit.size);
12097 }
2fa2fe9a 12098
a1b2278e
CK
12099 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12100
e59150dc
JB
12101 /* BDW+ don't expose a synchronous way to read the state */
12102 if (IS_HASWELL(dev))
12103 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12104
282740f7
VS
12105 PIPE_CONF_CHECK_I(double_wide);
12106
26804afd
DV
12107 PIPE_CONF_CHECK_X(ddi_pll_sel);
12108
c0d43d62 12109 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 12110 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12111 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12112 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12113 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12114 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
3f4cd19f
DL
12115 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12116 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12117 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12118
42571aef
VS
12119 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12120 PIPE_CONF_CHECK_I(pipe_bpp);
12121
2d112de7 12122 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12123 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12124
66e985c0 12125#undef PIPE_CONF_CHECK_X
08a24034 12126#undef PIPE_CONF_CHECK_I
b95af8be 12127#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 12128#undef PIPE_CONF_CHECK_FLAGS
5e550656 12129#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12130#undef PIPE_CONF_QUIRK
88adfff1 12131
0e8ffe1b
DV
12132 return true;
12133}
12134
08db6652
DL
12135static void check_wm_state(struct drm_device *dev)
12136{
12137 struct drm_i915_private *dev_priv = dev->dev_private;
12138 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12139 struct intel_crtc *intel_crtc;
12140 int plane;
12141
12142 if (INTEL_INFO(dev)->gen < 9)
12143 return;
12144
12145 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12146 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12147
12148 for_each_intel_crtc(dev, intel_crtc) {
12149 struct skl_ddb_entry *hw_entry, *sw_entry;
12150 const enum pipe pipe = intel_crtc->pipe;
12151
12152 if (!intel_crtc->active)
12153 continue;
12154
12155 /* planes */
dd740780 12156 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
12157 hw_entry = &hw_ddb.plane[pipe][plane];
12158 sw_entry = &sw_ddb->plane[pipe][plane];
12159
12160 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12161 continue;
12162
12163 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12164 "(expected (%u,%u), found (%u,%u))\n",
12165 pipe_name(pipe), plane + 1,
12166 sw_entry->start, sw_entry->end,
12167 hw_entry->start, hw_entry->end);
12168 }
12169
12170 /* cursor */
12171 hw_entry = &hw_ddb.cursor[pipe];
12172 sw_entry = &sw_ddb->cursor[pipe];
12173
12174 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12175 continue;
12176
12177 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12178 "(expected (%u,%u), found (%u,%u))\n",
12179 pipe_name(pipe),
12180 sw_entry->start, sw_entry->end,
12181 hw_entry->start, hw_entry->end);
12182 }
12183}
12184
91d1b4bd
DV
12185static void
12186check_connector_state(struct drm_device *dev)
8af6cf88 12187{
8af6cf88
DV
12188 struct intel_connector *connector;
12189
3a3371ff 12190 for_each_intel_connector(dev, connector) {
8af6cf88
DV
12191 /* This also checks the encoder/connector hw state with the
12192 * ->get_hw_state callbacks. */
12193 intel_connector_check_state(connector);
12194
e2c719b7 12195 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
8af6cf88
DV
12196 "connector's staged encoder doesn't match current encoder\n");
12197 }
91d1b4bd
DV
12198}
12199
12200static void
12201check_encoder_state(struct drm_device *dev)
12202{
12203 struct intel_encoder *encoder;
12204 struct intel_connector *connector;
8af6cf88 12205
b2784e15 12206 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
12207 bool enabled = false;
12208 bool active = false;
12209 enum pipe pipe, tracked_pipe;
12210
12211 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12212 encoder->base.base.id,
8e329a03 12213 encoder->base.name);
8af6cf88 12214
e2c719b7 12215 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
8af6cf88 12216 "encoder's stage crtc doesn't match current crtc\n");
e2c719b7 12217 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
8af6cf88
DV
12218 "encoder's active_connectors set, but no crtc\n");
12219
3a3371ff 12220 for_each_intel_connector(dev, connector) {
8af6cf88
DV
12221 if (connector->base.encoder != &encoder->base)
12222 continue;
12223 enabled = true;
12224 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12225 active = true;
12226 }
0e32b39c
DA
12227 /*
12228 * for MST connectors if we unplug the connector is gone
12229 * away but the encoder is still connected to a crtc
12230 * until a modeset happens in response to the hotplug.
12231 */
12232 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12233 continue;
12234
e2c719b7 12235 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12236 "encoder's enabled state mismatch "
12237 "(expected %i, found %i)\n",
12238 !!encoder->base.crtc, enabled);
e2c719b7 12239 I915_STATE_WARN(active && !encoder->base.crtc,
8af6cf88
DV
12240 "active encoder with no crtc\n");
12241
e2c719b7 12242 I915_STATE_WARN(encoder->connectors_active != active,
8af6cf88
DV
12243 "encoder's computed active state doesn't match tracked active state "
12244 "(expected %i, found %i)\n", active, encoder->connectors_active);
12245
12246 active = encoder->get_hw_state(encoder, &pipe);
e2c719b7 12247 I915_STATE_WARN(active != encoder->connectors_active,
8af6cf88
DV
12248 "encoder's hw state doesn't match sw tracking "
12249 "(expected %i, found %i)\n",
12250 encoder->connectors_active, active);
12251
12252 if (!encoder->base.crtc)
12253 continue;
12254
12255 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
e2c719b7 12256 I915_STATE_WARN(active && pipe != tracked_pipe,
8af6cf88
DV
12257 "active encoder's pipe doesn't match"
12258 "(expected %i, found %i)\n",
12259 tracked_pipe, pipe);
12260
12261 }
91d1b4bd
DV
12262}
12263
12264static void
12265check_crtc_state(struct drm_device *dev)
12266{
fbee40df 12267 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12268 struct intel_crtc *crtc;
12269 struct intel_encoder *encoder;
5cec258b 12270 struct intel_crtc_state pipe_config;
8af6cf88 12271
d3fcc808 12272 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
12273 bool enabled = false;
12274 bool active = false;
12275
045ac3b5
JB
12276 memset(&pipe_config, 0, sizeof(pipe_config));
12277
8af6cf88
DV
12278 DRM_DEBUG_KMS("[CRTC:%d]\n",
12279 crtc->base.base.id);
12280
83d65738 12281 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
8af6cf88
DV
12282 "active crtc, but not enabled in sw tracking\n");
12283
b2784e15 12284 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
12285 if (encoder->base.crtc != &crtc->base)
12286 continue;
12287 enabled = true;
12288 if (encoder->connectors_active)
12289 active = true;
12290 }
6c49f241 12291
e2c719b7 12292 I915_STATE_WARN(active != crtc->active,
8af6cf88
DV
12293 "crtc's computed active state doesn't match tracked active state "
12294 "(expected %i, found %i)\n", active, crtc->active);
83d65738 12295 I915_STATE_WARN(enabled != crtc->base.state->enable,
8af6cf88 12296 "crtc's computed enabled state doesn't match tracked enabled state "
83d65738
MR
12297 "(expected %i, found %i)\n", enabled,
12298 crtc->base.state->enable);
8af6cf88 12299
0e8ffe1b
DV
12300 active = dev_priv->display.get_pipe_config(crtc,
12301 &pipe_config);
d62cf62a 12302
b6b5d049
VS
12303 /* hw state is inconsistent with the pipe quirk */
12304 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12305 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
12306 active = crtc->active;
12307
b2784e15 12308 for_each_intel_encoder(dev, encoder) {
3eaba51c 12309 enum pipe pipe;
6c49f241
DV
12310 if (encoder->base.crtc != &crtc->base)
12311 continue;
1d37b689 12312 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
12313 encoder->get_config(encoder, &pipe_config);
12314 }
12315
e2c719b7 12316 I915_STATE_WARN(crtc->active != active,
0e8ffe1b
DV
12317 "crtc active state doesn't match with hw state "
12318 "(expected %i, found %i)\n", crtc->active, active);
12319
c0b03411 12320 if (active &&
6e3c9717 12321 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
e2c719b7 12322 I915_STATE_WARN(1, "pipe state doesn't match!\n");
c0b03411
DV
12323 intel_dump_pipe_config(crtc, &pipe_config,
12324 "[hw state]");
6e3c9717 12325 intel_dump_pipe_config(crtc, crtc->config,
c0b03411
DV
12326 "[sw state]");
12327 }
8af6cf88
DV
12328 }
12329}
12330
91d1b4bd
DV
12331static void
12332check_shared_dpll_state(struct drm_device *dev)
12333{
fbee40df 12334 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12335 struct intel_crtc *crtc;
12336 struct intel_dpll_hw_state dpll_hw_state;
12337 int i;
5358901f
DV
12338
12339 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12340 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12341 int enabled_crtcs = 0, active_crtcs = 0;
12342 bool active;
12343
12344 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12345
12346 DRM_DEBUG_KMS("%s\n", pll->name);
12347
12348 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12349
e2c719b7 12350 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 12351 "more active pll users than references: %i vs %i\n",
3e369b76 12352 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 12353 I915_STATE_WARN(pll->active && !pll->on,
5358901f 12354 "pll in active use but not on in sw tracking\n");
e2c719b7 12355 I915_STATE_WARN(pll->on && !pll->active,
35c95375 12356 "pll in on but not on in use in sw tracking\n");
e2c719b7 12357 I915_STATE_WARN(pll->on != active,
5358901f
DV
12358 "pll on state mismatch (expected %i, found %i)\n",
12359 pll->on, active);
12360
d3fcc808 12361 for_each_intel_crtc(dev, crtc) {
83d65738 12362 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
12363 enabled_crtcs++;
12364 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12365 active_crtcs++;
12366 }
e2c719b7 12367 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
12368 "pll active crtcs mismatch (expected %i, found %i)\n",
12369 pll->active, active_crtcs);
e2c719b7 12370 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 12371 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 12372 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 12373
e2c719b7 12374 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
12375 sizeof(dpll_hw_state)),
12376 "pll hw state mismatch\n");
5358901f 12377 }
8af6cf88
DV
12378}
12379
91d1b4bd
DV
12380void
12381intel_modeset_check_state(struct drm_device *dev)
12382{
08db6652 12383 check_wm_state(dev);
91d1b4bd
DV
12384 check_connector_state(dev);
12385 check_encoder_state(dev);
12386 check_crtc_state(dev);
12387 check_shared_dpll_state(dev);
12388}
12389
5cec258b 12390void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
12391 int dotclock)
12392{
12393 /*
12394 * FDI already provided one idea for the dotclock.
12395 * Yell if the encoder disagrees.
12396 */
2d112de7 12397 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 12398 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 12399 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
12400}
12401
80715b2f
VS
12402static void update_scanline_offset(struct intel_crtc *crtc)
12403{
12404 struct drm_device *dev = crtc->base.dev;
12405
12406 /*
12407 * The scanline counter increments at the leading edge of hsync.
12408 *
12409 * On most platforms it starts counting from vtotal-1 on the
12410 * first active line. That means the scanline counter value is
12411 * always one less than what we would expect. Ie. just after
12412 * start of vblank, which also occurs at start of hsync (on the
12413 * last active line), the scanline counter will read vblank_start-1.
12414 *
12415 * On gen2 the scanline counter starts counting from 1 instead
12416 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12417 * to keep the value positive), instead of adding one.
12418 *
12419 * On HSW+ the behaviour of the scanline counter depends on the output
12420 * type. For DP ports it behaves like most other platforms, but on HDMI
12421 * there's an extra 1 line difference. So we need to add two instead of
12422 * one to the value.
12423 */
12424 if (IS_GEN2(dev)) {
6e3c9717 12425 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
12426 int vtotal;
12427
12428 vtotal = mode->crtc_vtotal;
12429 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12430 vtotal /= 2;
12431
12432 crtc->scanline_offset = vtotal - 1;
12433 } else if (HAS_DDI(dev) &&
409ee761 12434 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
12435 crtc->scanline_offset = 2;
12436 } else
12437 crtc->scanline_offset = 1;
12438}
12439
5cec258b 12440static struct intel_crtc_state *
7f27126e 12441intel_modeset_compute_config(struct drm_crtc *crtc,
0a9ab303 12442 struct drm_atomic_state *state)
7f27126e 12443{
548ee15b 12444 struct intel_crtc_state *pipe_config;
0b901879
ACO
12445 int ret = 0;
12446
12447 ret = drm_atomic_add_affected_connectors(state, crtc);
12448 if (ret)
12449 return ERR_PTR(ret);
7f27126e 12450
8c7b5ccb
ACO
12451 ret = drm_atomic_helper_check_modeset(state->dev, state);
12452 if (ret)
12453 return ERR_PTR(ret);
7f27126e 12454
7f27126e
JB
12455 /*
12456 * Note this needs changes when we start tracking multiple modes
12457 * and crtcs. At that point we'll need to compute the whole config
12458 * (i.e. one pipe_config for each crtc) rather than just the one
12459 * for this crtc.
12460 */
548ee15b
ACO
12461 pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12462 if (IS_ERR(pipe_config))
12463 return pipe_config;
83a57153 12464
4fed33f6 12465 if (!pipe_config->base.enable)
548ee15b 12466 return pipe_config;
7f27126e 12467
8c7b5ccb 12468 ret = intel_modeset_pipe_config(crtc, state, pipe_config);
548ee15b
ACO
12469 if (ret)
12470 return ERR_PTR(ret);
12471
8d8c9b51
ACO
12472 /* Check things that can only be changed through modeset */
12473 if (pipe_config->has_audio !=
12474 to_intel_crtc(crtc)->config->has_audio)
12475 pipe_config->base.mode_changed = true;
12476
12477 /*
12478 * Note we have an issue here with infoframes: current code
12479 * only updates them on the full mode set path per hw
12480 * requirements. So here we should be checking for any
12481 * required changes and forcing a mode set.
12482 */
12483
548ee15b 12484 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,"[modeset]");
db7542dd 12485
8c7b5ccb
ACO
12486 ret = drm_atomic_helper_check_planes(state->dev, state);
12487 if (ret)
12488 return ERR_PTR(ret);
12489
548ee15b 12490 return pipe_config;
7f27126e
JB
12491}
12492
0a9ab303 12493static int __intel_set_mode_setup_plls(struct drm_atomic_state *state)
ed6739ef 12494{
225da59b 12495 struct drm_device *dev = state->dev;
ed6739ef 12496 struct drm_i915_private *dev_priv = to_i915(dev);
0a9ab303 12497 unsigned clear_pipes = 0;
ed6739ef 12498 struct intel_crtc *intel_crtc;
0a9ab303
ACO
12499 struct intel_crtc_state *intel_crtc_state;
12500 struct drm_crtc *crtc;
12501 struct drm_crtc_state *crtc_state;
ed6739ef 12502 int ret = 0;
0a9ab303 12503 int i;
ed6739ef
ACO
12504
12505 if (!dev_priv->display.crtc_compute_clock)
12506 return 0;
12507
0a9ab303
ACO
12508 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12509 intel_crtc = to_intel_crtc(crtc);
4978cc93 12510 intel_crtc_state = to_intel_crtc_state(crtc_state);
0a9ab303 12511
4978cc93 12512 if (needs_modeset(crtc_state)) {
0a9ab303 12513 clear_pipes |= 1 << intel_crtc->pipe;
4978cc93 12514 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
4978cc93 12515 }
0a9ab303
ACO
12516 }
12517
ed6739ef
ACO
12518 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12519 if (ret)
12520 goto done;
12521
0a9ab303
ACO
12522 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12523 if (!needs_modeset(crtc_state) || !crtc_state->enable)
225da59b
ACO
12524 continue;
12525
0a9ab303
ACO
12526 intel_crtc = to_intel_crtc(crtc);
12527 intel_crtc_state = to_intel_crtc_state(crtc_state);
12528
ed6739ef 12529 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
0a9ab303 12530 intel_crtc_state);
ed6739ef
ACO
12531 if (ret) {
12532 intel_shared_dpll_abort_config(dev_priv);
12533 goto done;
12534 }
12535 }
12536
12537done:
12538 return ret;
12539}
12540
054518dd
ACO
12541/* Code that should eventually be part of atomic_check() */
12542static int __intel_set_mode_checks(struct drm_atomic_state *state)
12543{
12544 struct drm_device *dev = state->dev;
12545 int ret;
12546
12547 /*
12548 * See if the config requires any additional preparation, e.g.
12549 * to adjust global state with pipes off. We need to do this
12550 * here so we can get the modeset_pipe updated config for the new
12551 * mode set on this crtc. For other crtcs we need to use the
12552 * adjusted_mode bits in the crtc directly.
12553 */
12554 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
12555 ret = valleyview_modeset_global_pipes(state);
12556 if (ret)
12557 return ret;
12558 }
12559
12560 ret = __intel_set_mode_setup_plls(state);
12561 if (ret)
12562 return ret;
12563
12564 return 0;
12565}
12566
0a9ab303 12567static int __intel_set_mode(struct drm_crtc *modeset_crtc,
0a9ab303 12568 struct intel_crtc_state *pipe_config)
a6778b3c 12569{
0a9ab303 12570 struct drm_device *dev = modeset_crtc->dev;
fbee40df 12571 struct drm_i915_private *dev_priv = dev->dev_private;
304603f4 12572 struct drm_atomic_state *state = pipe_config->base.state;
0a9ab303
ACO
12573 struct drm_crtc *crtc;
12574 struct drm_crtc_state *crtc_state;
c0c36b94 12575 int ret = 0;
0a9ab303 12576 int i;
a6778b3c 12577
054518dd
ACO
12578 ret = __intel_set_mode_checks(state);
12579 if (ret < 0)
12580 return ret;
12581
d4afb8cc
ACO
12582 ret = drm_atomic_helper_prepare_planes(dev, state);
12583 if (ret)
12584 return ret;
12585
0a9ab303
ACO
12586 for_each_crtc_in_state(state, crtc, crtc_state, i) {
12587 if (!needs_modeset(crtc_state))
12588 continue;
460da916 12589
0a9ab303 12590 if (!crtc_state->enable) {
ccfb8b2e
ML
12591 if (crtc->state->enable)
12592 intel_crtc_disable(crtc);
0a9ab303
ACO
12593 } else if (crtc->state->enable) {
12594 intel_crtc_disable_planes(crtc);
12595 dev_priv->display.crtc_disable(crtc);
ce22dba9 12596 }
ea9d758d 12597 }
a6778b3c 12598
6c4c86f5
DV
12599 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12600 * to set it here already despite that we pass it down the callchain.
7f27126e
JB
12601 *
12602 * Note we'll need to fix this up when we start tracking multiple
12603 * pipes; here we assume a single modeset_pipe and only track the
12604 * single crtc and mode.
f6e5b160 12605 */
0a9ab303 12606 if (pipe_config->base.enable && needs_modeset(&pipe_config->base)) {
8c7b5ccb 12607 modeset_crtc->mode = pipe_config->base.mode;
c326c0a9
VS
12608
12609 /*
12610 * Calculate and store various constants which
12611 * are later needed by vblank and swap-completion
12612 * timestamping. They are derived from true hwmode.
12613 */
0a9ab303 12614 drm_calc_timestamping_constants(modeset_crtc,
2d112de7 12615 &pipe_config->base.adjusted_mode);
b8cecdf5 12616 }
7758a113 12617
ea9d758d
DV
12618 /* Only after disabling all output pipelines that will be changed can we
12619 * update the the output configuration. */
0a9ab303 12620 intel_modeset_update_state(state);
f6e5b160 12621
a821fc46
ACO
12622 /* The state has been swaped above, so state actually contains the
12623 * old state now. */
12624
304603f4 12625 modeset_update_crtc_power_domains(state);
47fab737 12626
d4afb8cc 12627 drm_atomic_helper_commit_planes(dev, state);
a6778b3c
DV
12628
12629 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
0a9ab303 12630 for_each_crtc_in_state(state, crtc, crtc_state, i) {
a821fc46 12631 if (!needs_modeset(crtc->state) || !crtc->state->enable)
0a9ab303
ACO
12632 continue;
12633
12634 update_scanline_offset(to_intel_crtc(crtc));
80715b2f 12635
0a9ab303
ACO
12636 dev_priv->display.crtc_enable(crtc);
12637 intel_crtc_enable_planes(crtc);
80715b2f 12638 }
a6778b3c 12639
a6778b3c 12640 /* FIXME: add subpixel order */
83a57153 12641
d4afb8cc
ACO
12642 drm_atomic_helper_cleanup_planes(dev, state);
12643
2bfb4627
ACO
12644 drm_atomic_state_free(state);
12645
9eb45f22 12646 return 0;
f6e5b160
CW
12647}
12648
0a9ab303 12649static int intel_set_mode_with_config(struct drm_crtc *crtc,
e62d8dc0
ACO
12650 struct intel_crtc_state *pipe_config,
12651 bool force_restore)
f30da187
DV
12652{
12653 int ret;
12654
8c7b5ccb 12655 ret = __intel_set_mode(crtc, pipe_config);
f30da187 12656
0d26fb89
ACO
12657 if (ret == 0 && force_restore) {
12658 intel_modeset_update_staged_output_state(crtc->dev);
f30da187 12659 intel_modeset_check_state(crtc->dev);
0d26fb89 12660 }
f30da187
DV
12661
12662 return ret;
12663}
12664
7f27126e 12665static int intel_set_mode(struct drm_crtc *crtc,
e62d8dc0
ACO
12666 struct drm_atomic_state *state,
12667 bool force_restore)
7f27126e 12668{
5cec258b 12669 struct intel_crtc_state *pipe_config;
83a57153 12670 int ret = 0;
7f27126e 12671
8c7b5ccb 12672 pipe_config = intel_modeset_compute_config(crtc, state);
83a57153
ACO
12673 if (IS_ERR(pipe_config)) {
12674 ret = PTR_ERR(pipe_config);
12675 goto out;
12676 }
12677
e62d8dc0 12678 ret = intel_set_mode_with_config(crtc, pipe_config, force_restore);
83a57153
ACO
12679 if (ret)
12680 goto out;
7f27126e 12681
83a57153
ACO
12682out:
12683 return ret;
7f27126e
JB
12684}
12685
c0c36b94
CW
12686void intel_crtc_restore_mode(struct drm_crtc *crtc)
12687{
83a57153
ACO
12688 struct drm_device *dev = crtc->dev;
12689 struct drm_atomic_state *state;
12690 struct intel_encoder *encoder;
12691 struct intel_connector *connector;
12692 struct drm_connector_state *connector_state;
4be07317 12693 struct intel_crtc_state *crtc_state;
2bfb4627 12694 int ret;
83a57153
ACO
12695
12696 state = drm_atomic_state_alloc(dev);
12697 if (!state) {
12698 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12699 crtc->base.id);
12700 return;
12701 }
12702
12703 state->acquire_ctx = dev->mode_config.acquire_ctx;
12704
12705 /* The force restore path in the HW readout code relies on the staged
12706 * config still keeping the user requested config while the actual
12707 * state has been overwritten by the configuration read from HW. We
12708 * need to copy the staged config to the atomic state, otherwise the
12709 * mode set will just reapply the state the HW is already in. */
12710 for_each_intel_encoder(dev, encoder) {
12711 if (&encoder->new_crtc->base != crtc)
12712 continue;
12713
12714 for_each_intel_connector(dev, connector) {
12715 if (connector->new_encoder != encoder)
12716 continue;
12717
12718 connector_state = drm_atomic_get_connector_state(state, &connector->base);
12719 if (IS_ERR(connector_state)) {
12720 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12721 connector->base.base.id,
12722 connector->base.name,
12723 PTR_ERR(connector_state));
12724 continue;
12725 }
12726
12727 connector_state->crtc = crtc;
12728 connector_state->best_encoder = &encoder->base;
12729 }
12730 }
12731
4ed9fb37
ACO
12732 crtc_state = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12733 if (IS_ERR(crtc_state)) {
12734 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
12735 crtc->base.id, PTR_ERR(crtc_state));
12736 drm_atomic_state_free(state);
12737 return;
12738 }
4be07317 12739
4ed9fb37
ACO
12740 crtc_state->base.active = crtc_state->base.enable =
12741 to_intel_crtc(crtc)->new_enabled;
8c7b5ccb 12742
4ed9fb37 12743 drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
4be07317 12744
d3a40d1b
ACO
12745 intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
12746 crtc->primary->fb, crtc->x, crtc->y);
12747
e62d8dc0 12748 ret = intel_set_mode(crtc, state, false);
2bfb4627
ACO
12749 if (ret)
12750 drm_atomic_state_free(state);
c0c36b94
CW
12751}
12752
25c5b266
DV
12753#undef for_each_intel_crtc_masked
12754
b7885264
ACO
12755static bool intel_connector_in_mode_set(struct intel_connector *connector,
12756 struct drm_mode_set *set)
12757{
12758 int ro;
12759
12760 for (ro = 0; ro < set->num_connectors; ro++)
12761 if (set->connectors[ro] == &connector->base)
12762 return true;
12763
12764 return false;
12765}
12766
2e431051 12767static int
9a935856
DV
12768intel_modeset_stage_output_state(struct drm_device *dev,
12769 struct drm_mode_set *set,
944b0c76 12770 struct drm_atomic_state *state)
50f56119 12771{
9a935856 12772 struct intel_connector *connector;
d5432a9d 12773 struct drm_connector *drm_connector;
944b0c76 12774 struct drm_connector_state *connector_state;
d5432a9d
ACO
12775 struct drm_crtc *crtc;
12776 struct drm_crtc_state *crtc_state;
12777 int i, ret;
50f56119 12778
9abdda74 12779 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
12780 * of connectors. For paranoia, double-check this. */
12781 WARN_ON(!set->fb && (set->num_connectors != 0));
12782 WARN_ON(set->fb && (set->num_connectors == 0));
12783
3a3371ff 12784 for_each_intel_connector(dev, connector) {
b7885264
ACO
12785 bool in_mode_set = intel_connector_in_mode_set(connector, set);
12786
d5432a9d
ACO
12787 if (!in_mode_set && connector->base.state->crtc != set->crtc)
12788 continue;
12789
12790 connector_state =
12791 drm_atomic_get_connector_state(state, &connector->base);
12792 if (IS_ERR(connector_state))
12793 return PTR_ERR(connector_state);
12794
b7885264
ACO
12795 if (in_mode_set) {
12796 int pipe = to_intel_crtc(set->crtc)->pipe;
d5432a9d
ACO
12797 connector_state->best_encoder =
12798 &intel_find_encoder(connector, pipe)->base;
50f56119
DV
12799 }
12800
d5432a9d 12801 if (connector->base.state->crtc != set->crtc)
b7885264
ACO
12802 continue;
12803
9a935856
DV
12804 /* If we disable the crtc, disable all its connectors. Also, if
12805 * the connector is on the changing crtc but not on the new
12806 * connector list, disable it. */
b7885264 12807 if (!set->fb || !in_mode_set) {
d5432a9d 12808 connector_state->best_encoder = NULL;
9a935856
DV
12809
12810 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12811 connector->base.base.id,
c23cc417 12812 connector->base.name);
9a935856 12813 }
50f56119 12814 }
9a935856 12815 /* connector->new_encoder is now updated for all connectors. */
50f56119 12816
d5432a9d
ACO
12817 for_each_connector_in_state(state, drm_connector, connector_state, i) {
12818 connector = to_intel_connector(drm_connector);
12819
12820 if (!connector_state->best_encoder) {
12821 ret = drm_atomic_set_crtc_for_connector(connector_state,
12822 NULL);
12823 if (ret)
12824 return ret;
7668851f 12825
50f56119 12826 continue;
d5432a9d 12827 }
50f56119 12828
d5432a9d
ACO
12829 if (intel_connector_in_mode_set(connector, set)) {
12830 struct drm_crtc *crtc = connector->base.state->crtc;
12831
12832 /* If this connector was in a previous crtc, add it
12833 * to the state. We might need to disable it. */
12834 if (crtc) {
12835 crtc_state =
12836 drm_atomic_get_crtc_state(state, crtc);
12837 if (IS_ERR(crtc_state))
12838 return PTR_ERR(crtc_state);
12839 }
12840
12841 ret = drm_atomic_set_crtc_for_connector(connector_state,
12842 set->crtc);
12843 if (ret)
12844 return ret;
12845 }
50f56119
DV
12846
12847 /* Make sure the new CRTC will work with the encoder */
d5432a9d
ACO
12848 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
12849 connector_state->crtc)) {
5e2b584e 12850 return -EINVAL;
50f56119 12851 }
944b0c76 12852
9a935856
DV
12853 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12854 connector->base.base.id,
c23cc417 12855 connector->base.name,
d5432a9d 12856 connector_state->crtc->base.id);
944b0c76 12857
d5432a9d
ACO
12858 if (connector_state->best_encoder != &connector->encoder->base)
12859 connector->encoder =
12860 to_intel_encoder(connector_state->best_encoder);
0e32b39c 12861 }
7668851f 12862
d5432a9d 12863 for_each_crtc_in_state(state, crtc, crtc_state, i) {
49d6fa21
ML
12864 bool has_connectors;
12865
d5432a9d
ACO
12866 ret = drm_atomic_add_affected_connectors(state, crtc);
12867 if (ret)
12868 return ret;
4be07317 12869
49d6fa21
ML
12870 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
12871 if (has_connectors != crtc_state->enable)
12872 crtc_state->enable =
12873 crtc_state->active = has_connectors;
7668851f
VS
12874 }
12875
8c7b5ccb
ACO
12876 ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
12877 set->fb, set->x, set->y);
12878 if (ret)
12879 return ret;
12880
12881 crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
12882 if (IS_ERR(crtc_state))
12883 return PTR_ERR(crtc_state);
12884
12885 if (set->mode)
12886 drm_mode_copy(&crtc_state->mode, set->mode);
12887
12888 if (set->num_connectors)
12889 crtc_state->active = true;
12890
2e431051
DV
12891 return 0;
12892}
12893
bb546623
ACO
12894static bool primary_plane_visible(struct drm_crtc *crtc)
12895{
12896 struct intel_plane_state *plane_state =
12897 to_intel_plane_state(crtc->primary->state);
12898
12899 return plane_state->visible;
12900}
12901
2e431051
DV
12902static int intel_crtc_set_config(struct drm_mode_set *set)
12903{
12904 struct drm_device *dev;
83a57153 12905 struct drm_atomic_state *state = NULL;
5cec258b 12906 struct intel_crtc_state *pipe_config;
bb546623 12907 bool primary_plane_was_visible;
2e431051 12908 int ret;
2e431051 12909
8d3e375e
DV
12910 BUG_ON(!set);
12911 BUG_ON(!set->crtc);
12912 BUG_ON(!set->crtc->helper_private);
2e431051 12913
7e53f3a4
DV
12914 /* Enforce sane interface api - has been abused by the fb helper. */
12915 BUG_ON(!set->mode && set->fb);
12916 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 12917
2e431051
DV
12918 if (set->fb) {
12919 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12920 set->crtc->base.id, set->fb->base.id,
12921 (int)set->num_connectors, set->x, set->y);
12922 } else {
12923 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
12924 }
12925
12926 dev = set->crtc->dev;
12927
83a57153 12928 state = drm_atomic_state_alloc(dev);
7cbf41d6
ACO
12929 if (!state)
12930 return -ENOMEM;
83a57153
ACO
12931
12932 state->acquire_ctx = dev->mode_config.acquire_ctx;
12933
462a425a 12934 ret = intel_modeset_stage_output_state(dev, set, state);
2e431051 12935 if (ret)
7cbf41d6 12936 goto out;
2e431051 12937
8c7b5ccb 12938 pipe_config = intel_modeset_compute_config(set->crtc, state);
20664591 12939 if (IS_ERR(pipe_config)) {
6ac0483b 12940 ret = PTR_ERR(pipe_config);
7cbf41d6 12941 goto out;
20664591 12942 }
50f52756 12943
1f9954d0
JB
12944 intel_update_pipe_size(to_intel_crtc(set->crtc));
12945
bb546623
ACO
12946 primary_plane_was_visible = primary_plane_visible(set->crtc);
12947
e62d8dc0 12948 ret = intel_set_mode_with_config(set->crtc, pipe_config, true);
bb546623
ACO
12949
12950 if (ret == 0 &&
12951 pipe_config->base.enable &&
12952 pipe_config->base.planes_changed &&
12953 !needs_modeset(&pipe_config->base)) {
3b150f08 12954 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
3b150f08
MR
12955
12956 /*
12957 * We need to make sure the primary plane is re-enabled if it
12958 * has previously been turned off.
12959 */
bb546623
ACO
12960 if (ret == 0 && !primary_plane_was_visible &&
12961 primary_plane_visible(set->crtc)) {
3b150f08 12962 WARN_ON(!intel_crtc->active);
87d4300a 12963 intel_post_enable_primary(set->crtc);
3b150f08
MR
12964 }
12965
7ca51a3a
JB
12966 /*
12967 * In the fastboot case this may be our only check of the
12968 * state after boot. It would be better to only do it on
12969 * the first update, but we don't have a nice way of doing that
12970 * (and really, set_config isn't used much for high freq page
12971 * flipping, so increasing its cost here shouldn't be a big
12972 * deal).
12973 */
d330a953 12974 if (i915.fastboot && ret == 0)
7ca51a3a 12975 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
12976 }
12977
2d05eae1 12978 if (ret) {
bf67dfeb
DV
12979 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12980 set->crtc->base.id, ret);
2d05eae1 12981 }
50f56119 12982
7cbf41d6 12983out:
2bfb4627
ACO
12984 if (ret)
12985 drm_atomic_state_free(state);
50f56119
DV
12986 return ret;
12987}
f6e5b160
CW
12988
12989static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 12990 .gamma_set = intel_crtc_gamma_set,
50f56119 12991 .set_config = intel_crtc_set_config,
f6e5b160
CW
12992 .destroy = intel_crtc_destroy,
12993 .page_flip = intel_crtc_page_flip,
1356837e
MR
12994 .atomic_duplicate_state = intel_crtc_duplicate_state,
12995 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
12996};
12997
5358901f
DV
12998static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12999 struct intel_shared_dpll *pll,
13000 struct intel_dpll_hw_state *hw_state)
ee7b9f93 13001{
5358901f 13002 uint32_t val;
ee7b9f93 13003
f458ebbc 13004 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
13005 return false;
13006
5358901f 13007 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
13008 hw_state->dpll = val;
13009 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13010 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
13011
13012 return val & DPLL_VCO_ENABLE;
13013}
13014
15bdd4cf
DV
13015static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13016 struct intel_shared_dpll *pll)
13017{
3e369b76
ACO
13018 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13019 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
13020}
13021
e7b903d2
DV
13022static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13023 struct intel_shared_dpll *pll)
13024{
e7b903d2 13025 /* PCH refclock must be enabled first */
89eff4be 13026 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 13027
3e369b76 13028 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
13029
13030 /* Wait for the clocks to stabilize. */
13031 POSTING_READ(PCH_DPLL(pll->id));
13032 udelay(150);
13033
13034 /* The pixel multiplier can only be updated once the
13035 * DPLL is enabled and the clocks are stable.
13036 *
13037 * So write it again.
13038 */
3e369b76 13039 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 13040 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13041 udelay(200);
13042}
13043
13044static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13045 struct intel_shared_dpll *pll)
13046{
13047 struct drm_device *dev = dev_priv->dev;
13048 struct intel_crtc *crtc;
e7b903d2
DV
13049
13050 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 13051 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
13052 if (intel_crtc_to_shared_dpll(crtc) == pll)
13053 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
13054 }
13055
15bdd4cf
DV
13056 I915_WRITE(PCH_DPLL(pll->id), 0);
13057 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13058 udelay(200);
13059}
13060
46edb027
DV
13061static char *ibx_pch_dpll_names[] = {
13062 "PCH DPLL A",
13063 "PCH DPLL B",
13064};
13065
7c74ade1 13066static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 13067{
e7b903d2 13068 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
13069 int i;
13070
7c74ade1 13071 dev_priv->num_shared_dpll = 2;
ee7b9f93 13072
e72f9fbf 13073 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
13074 dev_priv->shared_dplls[i].id = i;
13075 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 13076 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
13077 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13078 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
13079 dev_priv->shared_dplls[i].get_hw_state =
13080 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
13081 }
13082}
13083
7c74ade1
DV
13084static void intel_shared_dpll_init(struct drm_device *dev)
13085{
e7b903d2 13086 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 13087
9cd86933
DV
13088 if (HAS_DDI(dev))
13089 intel_ddi_pll_init(dev);
13090 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
13091 ibx_pch_dpll_init(dev);
13092 else
13093 dev_priv->num_shared_dpll = 0;
13094
13095 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
13096}
13097
1fc0a8f7
TU
13098/**
13099 * intel_wm_need_update - Check whether watermarks need updating
13100 * @plane: drm plane
13101 * @state: new plane state
13102 *
13103 * Check current plane state versus the new one to determine whether
13104 * watermarks need to be recalculated.
13105 *
13106 * Returns true or false.
13107 */
13108bool intel_wm_need_update(struct drm_plane *plane,
13109 struct drm_plane_state *state)
13110{
13111 /* Update watermarks on tiling changes. */
13112 if (!plane->state->fb || !state->fb ||
13113 plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13114 plane->state->rotation != state->rotation)
13115 return true;
13116
13117 return false;
13118}
13119
6beb8c23
MR
13120/**
13121 * intel_prepare_plane_fb - Prepare fb for usage on plane
13122 * @plane: drm plane to prepare for
13123 * @fb: framebuffer to prepare for presentation
13124 *
13125 * Prepares a framebuffer for usage on a display plane. Generally this
13126 * involves pinning the underlying object and updating the frontbuffer tracking
13127 * bits. Some older platforms need special physical address handling for
13128 * cursor planes.
13129 *
13130 * Returns 0 on success, negative error code on failure.
13131 */
13132int
13133intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee
TU
13134 struct drm_framebuffer *fb,
13135 const struct drm_plane_state *new_state)
465c120c
MR
13136{
13137 struct drm_device *dev = plane->dev;
6beb8c23
MR
13138 struct intel_plane *intel_plane = to_intel_plane(plane);
13139 enum pipe pipe = intel_plane->pipe;
13140 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13141 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13142 unsigned frontbuffer_bits = 0;
13143 int ret = 0;
465c120c 13144
ea2c67bb 13145 if (!obj)
465c120c
MR
13146 return 0;
13147
6beb8c23
MR
13148 switch (plane->type) {
13149 case DRM_PLANE_TYPE_PRIMARY:
13150 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13151 break;
13152 case DRM_PLANE_TYPE_CURSOR:
13153 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13154 break;
13155 case DRM_PLANE_TYPE_OVERLAY:
13156 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13157 break;
13158 }
465c120c 13159
6beb8c23 13160 mutex_lock(&dev->struct_mutex);
465c120c 13161
6beb8c23
MR
13162 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13163 INTEL_INFO(dev)->cursor_needs_physical) {
13164 int align = IS_I830(dev) ? 16 * 1024 : 256;
13165 ret = i915_gem_object_attach_phys(obj, align);
13166 if (ret)
13167 DRM_DEBUG_KMS("failed to attach phys object\n");
13168 } else {
82bc3b2d 13169 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
6beb8c23 13170 }
465c120c 13171
6beb8c23
MR
13172 if (ret == 0)
13173 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
fdd508a6 13174
4c34574f 13175 mutex_unlock(&dev->struct_mutex);
465c120c 13176
6beb8c23
MR
13177 return ret;
13178}
13179
38f3ce3a
MR
13180/**
13181 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13182 * @plane: drm plane to clean up for
13183 * @fb: old framebuffer that was on plane
13184 *
13185 * Cleans up a framebuffer that has just been removed from a plane.
13186 */
13187void
13188intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee
TU
13189 struct drm_framebuffer *fb,
13190 const struct drm_plane_state *old_state)
38f3ce3a
MR
13191{
13192 struct drm_device *dev = plane->dev;
13193 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13194
13195 if (WARN_ON(!obj))
13196 return;
13197
13198 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13199 !INTEL_INFO(dev)->cursor_needs_physical) {
13200 mutex_lock(&dev->struct_mutex);
82bc3b2d 13201 intel_unpin_fb_obj(fb, old_state);
38f3ce3a
MR
13202 mutex_unlock(&dev->struct_mutex);
13203 }
465c120c
MR
13204}
13205
6156a456
CK
13206int
13207skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13208{
13209 int max_scale;
13210 struct drm_device *dev;
13211 struct drm_i915_private *dev_priv;
13212 int crtc_clock, cdclk;
13213
13214 if (!intel_crtc || !crtc_state)
13215 return DRM_PLANE_HELPER_NO_SCALING;
13216
13217 dev = intel_crtc->base.dev;
13218 dev_priv = dev->dev_private;
13219 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13220 cdclk = dev_priv->display.get_display_clock_speed(dev);
13221
13222 if (!crtc_clock || !cdclk)
13223 return DRM_PLANE_HELPER_NO_SCALING;
13224
13225 /*
13226 * skl max scale is lower of:
13227 * close to 3 but not 3, -1 is for that purpose
13228 * or
13229 * cdclk/crtc_clock
13230 */
13231 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13232
13233 return max_scale;
13234}
13235
465c120c 13236static int
3c692a41
GP
13237intel_check_primary_plane(struct drm_plane *plane,
13238 struct intel_plane_state *state)
13239{
32b7eeec
MR
13240 struct drm_device *dev = plane->dev;
13241 struct drm_i915_private *dev_priv = dev->dev_private;
2b875c22 13242 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 13243 struct intel_crtc *intel_crtc;
6156a456 13244 struct intel_crtc_state *crtc_state;
2b875c22 13245 struct drm_framebuffer *fb = state->base.fb;
3c692a41
GP
13246 struct drm_rect *dest = &state->dst;
13247 struct drm_rect *src = &state->src;
13248 const struct drm_rect *clip = &state->clip;
d8106366 13249 bool can_position = false;
6156a456
CK
13250 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13251 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
465c120c
MR
13252 int ret;
13253
ea2c67bb
MR
13254 crtc = crtc ? crtc : plane->crtc;
13255 intel_crtc = to_intel_crtc(crtc);
6156a456
CK
13256 crtc_state = state->base.state ?
13257 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
ea2c67bb 13258
6156a456 13259 if (INTEL_INFO(dev)->gen >= 9) {
225c228a
CK
13260 /* use scaler when colorkey is not required */
13261 if (to_intel_plane(plane)->ckey.flags == I915_SET_COLORKEY_NONE) {
13262 min_scale = 1;
13263 max_scale = skl_max_scale(intel_crtc, crtc_state);
13264 }
d8106366 13265 can_position = true;
6156a456 13266 }
d8106366 13267
c59cb179
MR
13268 ret = drm_plane_helper_check_update(plane, crtc, fb,
13269 src, dest, clip,
6156a456
CK
13270 min_scale,
13271 max_scale,
d8106366
SJ
13272 can_position, true,
13273 &state->visible);
c59cb179
MR
13274 if (ret)
13275 return ret;
465c120c 13276
bbf47020 13277 if (crtc_state ? crtc_state->base.active : intel_crtc->active) {
b70709a6
ML
13278 struct intel_plane_state *old_state =
13279 to_intel_plane_state(plane->state);
13280
32b7eeec
MR
13281 intel_crtc->atomic.wait_for_flips = true;
13282
13283 /*
13284 * FBC does not work on some platforms for rotated
13285 * planes, so disable it when rotation is not 0 and
13286 * update it when rotation is set back to 0.
13287 *
13288 * FIXME: This is redundant with the fbc update done in
13289 * the primary plane enable function except that that
13290 * one is done too late. We eventually need to unify
13291 * this.
13292 */
b70709a6 13293 if (state->visible &&
32b7eeec 13294 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
e35fef21 13295 dev_priv->fbc.crtc == intel_crtc &&
8e7d688b 13296 state->base.rotation != BIT(DRM_ROTATE_0)) {
32b7eeec
MR
13297 intel_crtc->atomic.disable_fbc = true;
13298 }
13299
b70709a6 13300 if (state->visible && !old_state->visible) {
32b7eeec
MR
13301 /*
13302 * BDW signals flip done immediately if the plane
13303 * is disabled, even if the plane enable is already
13304 * armed to occur at the next vblank :(
13305 */
b70709a6 13306 if (IS_BROADWELL(dev))
32b7eeec
MR
13307 intel_crtc->atomic.wait_vblank = true;
13308 }
13309
ac88cd73
RV
13310 /*
13311 * FIXME: Actually if we will still have any other plane enabled
13312 * on the pipe we could let IPS enabled still, but for
13313 * now lets consider that when we make primary invisible
13314 * by setting DSPCNTR to 0 on update_primary_plane function
13315 * IPS needs to be disable.
13316 */
13317 if (!state->visible || !fb)
13318 intel_crtc->atomic.disable_ips = true;
13319
32b7eeec
MR
13320 intel_crtc->atomic.fb_bits |=
13321 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13322
13323 intel_crtc->atomic.update_fbc = true;
0fda6568 13324
1fc0a8f7 13325 if (intel_wm_need_update(plane, &state->base))
0fda6568 13326 intel_crtc->atomic.update_wm = true;
ccc759dc
GP
13327 }
13328
6156a456
CK
13329 if (INTEL_INFO(dev)->gen >= 9) {
13330 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13331 to_intel_plane(plane), state, 0);
13332 if (ret)
13333 return ret;
13334 }
13335
14af293f
GP
13336 return 0;
13337}
13338
13339static void
13340intel_commit_primary_plane(struct drm_plane *plane,
13341 struct intel_plane_state *state)
13342{
2b875c22
MR
13343 struct drm_crtc *crtc = state->base.crtc;
13344 struct drm_framebuffer *fb = state->base.fb;
13345 struct drm_device *dev = plane->dev;
14af293f 13346 struct drm_i915_private *dev_priv = dev->dev_private;
ea2c67bb 13347 struct intel_crtc *intel_crtc;
14af293f
GP
13348 struct drm_rect *src = &state->src;
13349
ea2c67bb
MR
13350 crtc = crtc ? crtc : plane->crtc;
13351 intel_crtc = to_intel_crtc(crtc);
cf4c7c12
MR
13352
13353 plane->fb = fb;
9dc806fc
MR
13354 crtc->x = src->x1 >> 16;
13355 crtc->y = src->y1 >> 16;
ccc759dc 13356
ccc759dc 13357 if (intel_crtc->active) {
27321ae8 13358 if (state->visible)
ccc759dc
GP
13359 /* FIXME: kill this fastboot hack */
13360 intel_update_pipe_size(intel_crtc);
465c120c 13361
27321ae8
ML
13362 dev_priv->display.update_primary_plane(crtc, plane->fb,
13363 crtc->x, crtc->y);
ccc759dc 13364 }
465c120c
MR
13365}
13366
a8ad0d8e
ML
13367static void
13368intel_disable_primary_plane(struct drm_plane *plane,
13369 struct drm_crtc *crtc,
13370 bool force)
13371{
13372 struct drm_device *dev = plane->dev;
13373 struct drm_i915_private *dev_priv = dev->dev_private;
13374
a8ad0d8e
ML
13375 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13376}
13377
32b7eeec 13378static void intel_begin_crtc_commit(struct drm_crtc *crtc)
3c692a41 13379{
32b7eeec 13380 struct drm_device *dev = crtc->dev;
140fd38d 13381 struct drm_i915_private *dev_priv = dev->dev_private;
3c692a41 13382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb
MR
13383 struct intel_plane *intel_plane;
13384 struct drm_plane *p;
13385 unsigned fb_bits = 0;
13386
13387 /* Track fb's for any planes being disabled */
13388 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13389 intel_plane = to_intel_plane(p);
13390
13391 if (intel_crtc->atomic.disabled_planes &
13392 (1 << drm_plane_index(p))) {
13393 switch (p->type) {
13394 case DRM_PLANE_TYPE_PRIMARY:
13395 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13396 break;
13397 case DRM_PLANE_TYPE_CURSOR:
13398 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13399 break;
13400 case DRM_PLANE_TYPE_OVERLAY:
13401 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13402 break;
13403 }
3c692a41 13404
ea2c67bb
MR
13405 mutex_lock(&dev->struct_mutex);
13406 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13407 mutex_unlock(&dev->struct_mutex);
13408 }
13409 }
3c692a41 13410
32b7eeec
MR
13411 if (intel_crtc->atomic.wait_for_flips)
13412 intel_crtc_wait_for_pending_flips(crtc);
3c692a41 13413
32b7eeec
MR
13414 if (intel_crtc->atomic.disable_fbc)
13415 intel_fbc_disable(dev);
3c692a41 13416
ac88cd73
RV
13417 if (intel_crtc->atomic.disable_ips)
13418 hsw_disable_ips(intel_crtc);
13419
32b7eeec
MR
13420 if (intel_crtc->atomic.pre_disable_primary)
13421 intel_pre_disable_primary(crtc);
3c692a41 13422
32b7eeec
MR
13423 if (intel_crtc->atomic.update_wm)
13424 intel_update_watermarks(crtc);
3c692a41 13425
32b7eeec 13426 intel_runtime_pm_get(dev_priv);
3c692a41 13427
c34c9ee4
MR
13428 /* Perform vblank evasion around commit operation */
13429 if (intel_crtc->active)
13430 intel_crtc->atomic.evade =
13431 intel_pipe_update_start(intel_crtc,
13432 &intel_crtc->atomic.start_vbl_count);
32b7eeec
MR
13433}
13434
13435static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13436{
13437 struct drm_device *dev = crtc->dev;
13438 struct drm_i915_private *dev_priv = dev->dev_private;
13439 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13440 struct drm_plane *p;
13441
c34c9ee4
MR
13442 if (intel_crtc->atomic.evade)
13443 intel_pipe_update_end(intel_crtc,
13444 intel_crtc->atomic.start_vbl_count);
3c692a41 13445
140fd38d 13446 intel_runtime_pm_put(dev_priv);
3c692a41 13447
32b7eeec
MR
13448 if (intel_crtc->atomic.wait_vblank)
13449 intel_wait_for_vblank(dev, intel_crtc->pipe);
13450
13451 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13452
13453 if (intel_crtc->atomic.update_fbc) {
ccc759dc 13454 mutex_lock(&dev->struct_mutex);
7ff0ebcc 13455 intel_fbc_update(dev);
ccc759dc 13456 mutex_unlock(&dev->struct_mutex);
38f3ce3a 13457 }
3c692a41 13458
32b7eeec
MR
13459 if (intel_crtc->atomic.post_enable_primary)
13460 intel_post_enable_primary(crtc);
3c692a41 13461
32b7eeec
MR
13462 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13463 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13464 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13465 false, false);
13466
13467 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
3c692a41
GP
13468}
13469
cf4c7c12 13470/**
4a3b8769
MR
13471 * intel_plane_destroy - destroy a plane
13472 * @plane: plane to destroy
cf4c7c12 13473 *
4a3b8769
MR
13474 * Common destruction function for all types of planes (primary, cursor,
13475 * sprite).
cf4c7c12 13476 */
4a3b8769 13477void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13478{
13479 struct intel_plane *intel_plane = to_intel_plane(plane);
13480 drm_plane_cleanup(plane);
13481 kfree(intel_plane);
13482}
13483
65a3fea0 13484const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13485 .update_plane = drm_atomic_helper_update_plane,
13486 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13487 .destroy = intel_plane_destroy,
c196e1d6 13488 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13489 .atomic_get_property = intel_plane_atomic_get_property,
13490 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13491 .atomic_duplicate_state = intel_plane_duplicate_state,
13492 .atomic_destroy_state = intel_plane_destroy_state,
13493
465c120c
MR
13494};
13495
13496static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13497 int pipe)
13498{
13499 struct intel_plane *primary;
8e7d688b 13500 struct intel_plane_state *state;
465c120c
MR
13501 const uint32_t *intel_primary_formats;
13502 int num_formats;
13503
13504 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13505 if (primary == NULL)
13506 return NULL;
13507
8e7d688b
MR
13508 state = intel_create_plane_state(&primary->base);
13509 if (!state) {
ea2c67bb
MR
13510 kfree(primary);
13511 return NULL;
13512 }
8e7d688b 13513 primary->base.state = &state->base;
ea2c67bb 13514
465c120c
MR
13515 primary->can_scale = false;
13516 primary->max_downscale = 1;
6156a456
CK
13517 if (INTEL_INFO(dev)->gen >= 9) {
13518 primary->can_scale = true;
af99ceda 13519 state->scaler_id = -1;
6156a456 13520 }
465c120c
MR
13521 primary->pipe = pipe;
13522 primary->plane = pipe;
c59cb179
MR
13523 primary->check_plane = intel_check_primary_plane;
13524 primary->commit_plane = intel_commit_primary_plane;
a8ad0d8e 13525 primary->disable_plane = intel_disable_primary_plane;
08e221fb 13526 primary->ckey.flags = I915_SET_COLORKEY_NONE;
465c120c
MR
13527 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13528 primary->plane = !pipe;
13529
6c0fd451
DL
13530 if (INTEL_INFO(dev)->gen >= 9) {
13531 intel_primary_formats = skl_primary_formats;
13532 num_formats = ARRAY_SIZE(skl_primary_formats);
13533 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
13534 intel_primary_formats = i965_primary_formats;
13535 num_formats = ARRAY_SIZE(i965_primary_formats);
6c0fd451
DL
13536 } else {
13537 intel_primary_formats = i8xx_primary_formats;
13538 num_formats = ARRAY_SIZE(i8xx_primary_formats);
465c120c
MR
13539 }
13540
13541 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 13542 &intel_plane_funcs,
465c120c
MR
13543 intel_primary_formats, num_formats,
13544 DRM_PLANE_TYPE_PRIMARY);
48404c1e 13545
3b7a5119
SJ
13546 if (INTEL_INFO(dev)->gen >= 4)
13547 intel_create_rotation_property(dev, primary);
48404c1e 13548
ea2c67bb
MR
13549 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13550
465c120c
MR
13551 return &primary->base;
13552}
13553
3b7a5119
SJ
13554void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13555{
13556 if (!dev->mode_config.rotation_property) {
13557 unsigned long flags = BIT(DRM_ROTATE_0) |
13558 BIT(DRM_ROTATE_180);
13559
13560 if (INTEL_INFO(dev)->gen >= 9)
13561 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13562
13563 dev->mode_config.rotation_property =
13564 drm_mode_create_rotation_property(dev, flags);
13565 }
13566 if (dev->mode_config.rotation_property)
13567 drm_object_attach_property(&plane->base.base,
13568 dev->mode_config.rotation_property,
13569 plane->base.state->rotation);
13570}
13571
3d7d6510 13572static int
852e787c
GP
13573intel_check_cursor_plane(struct drm_plane *plane,
13574 struct intel_plane_state *state)
3d7d6510 13575{
2b875c22 13576 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb 13577 struct drm_device *dev = plane->dev;
2b875c22 13578 struct drm_framebuffer *fb = state->base.fb;
852e787c
GP
13579 struct drm_rect *dest = &state->dst;
13580 struct drm_rect *src = &state->src;
13581 const struct drm_rect *clip = &state->clip;
757f9a3e 13582 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
ea2c67bb 13583 struct intel_crtc *intel_crtc;
757f9a3e
GP
13584 unsigned stride;
13585 int ret;
3d7d6510 13586
ea2c67bb
MR
13587 crtc = crtc ? crtc : plane->crtc;
13588 intel_crtc = to_intel_crtc(crtc);
13589
757f9a3e 13590 ret = drm_plane_helper_check_update(plane, crtc, fb,
852e787c 13591 src, dest, clip,
3d7d6510
MR
13592 DRM_PLANE_HELPER_NO_SCALING,
13593 DRM_PLANE_HELPER_NO_SCALING,
852e787c 13594 true, true, &state->visible);
757f9a3e
GP
13595 if (ret)
13596 return ret;
13597
13598
13599 /* if we want to turn off the cursor ignore width and height */
13600 if (!obj)
32b7eeec 13601 goto finish;
757f9a3e 13602
757f9a3e 13603 /* Check for which cursor types we support */
ea2c67bb
MR
13604 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13605 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13606 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
13607 return -EINVAL;
13608 }
13609
ea2c67bb
MR
13610 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13611 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
13612 DRM_DEBUG_KMS("buffer is too small\n");
13613 return -ENOMEM;
13614 }
13615
3a656b54 13616 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e
GP
13617 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13618 ret = -EINVAL;
13619 }
757f9a3e 13620
32b7eeec
MR
13621finish:
13622 if (intel_crtc->active) {
3749f463 13623 if (plane->state->crtc_w != state->base.crtc_w)
32b7eeec
MR
13624 intel_crtc->atomic.update_wm = true;
13625
13626 intel_crtc->atomic.fb_bits |=
13627 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13628 }
13629
757f9a3e 13630 return ret;
852e787c 13631}
3d7d6510 13632
a8ad0d8e
ML
13633static void
13634intel_disable_cursor_plane(struct drm_plane *plane,
13635 struct drm_crtc *crtc,
13636 bool force)
13637{
13638 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13639
13640 if (!force) {
13641 plane->fb = NULL;
13642 intel_crtc->cursor_bo = NULL;
13643 intel_crtc->cursor_addr = 0;
13644 }
13645
13646 intel_crtc_update_cursor(crtc, false);
13647}
13648
f4a2cf29 13649static void
852e787c
GP
13650intel_commit_cursor_plane(struct drm_plane *plane,
13651 struct intel_plane_state *state)
13652{
2b875c22 13653 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
13654 struct drm_device *dev = plane->dev;
13655 struct intel_crtc *intel_crtc;
2b875c22 13656 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 13657 uint32_t addr;
852e787c 13658
ea2c67bb
MR
13659 crtc = crtc ? crtc : plane->crtc;
13660 intel_crtc = to_intel_crtc(crtc);
13661
2b875c22 13662 plane->fb = state->base.fb;
ea2c67bb
MR
13663 crtc->cursor_x = state->base.crtc_x;
13664 crtc->cursor_y = state->base.crtc_y;
13665
a912f12f
GP
13666 if (intel_crtc->cursor_bo == obj)
13667 goto update;
4ed91096 13668
f4a2cf29 13669 if (!obj)
a912f12f 13670 addr = 0;
f4a2cf29 13671 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 13672 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 13673 else
a912f12f 13674 addr = obj->phys_handle->busaddr;
852e787c 13675
a912f12f
GP
13676 intel_crtc->cursor_addr = addr;
13677 intel_crtc->cursor_bo = obj;
13678update:
852e787c 13679
32b7eeec 13680 if (intel_crtc->active)
a912f12f 13681 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
13682}
13683
3d7d6510
MR
13684static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13685 int pipe)
13686{
13687 struct intel_plane *cursor;
8e7d688b 13688 struct intel_plane_state *state;
3d7d6510
MR
13689
13690 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13691 if (cursor == NULL)
13692 return NULL;
13693
8e7d688b
MR
13694 state = intel_create_plane_state(&cursor->base);
13695 if (!state) {
ea2c67bb
MR
13696 kfree(cursor);
13697 return NULL;
13698 }
8e7d688b 13699 cursor->base.state = &state->base;
ea2c67bb 13700
3d7d6510
MR
13701 cursor->can_scale = false;
13702 cursor->max_downscale = 1;
13703 cursor->pipe = pipe;
13704 cursor->plane = pipe;
c59cb179
MR
13705 cursor->check_plane = intel_check_cursor_plane;
13706 cursor->commit_plane = intel_commit_cursor_plane;
a8ad0d8e 13707 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510
MR
13708
13709 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 13710 &intel_plane_funcs,
3d7d6510
MR
13711 intel_cursor_formats,
13712 ARRAY_SIZE(intel_cursor_formats),
13713 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
13714
13715 if (INTEL_INFO(dev)->gen >= 4) {
13716 if (!dev->mode_config.rotation_property)
13717 dev->mode_config.rotation_property =
13718 drm_mode_create_rotation_property(dev,
13719 BIT(DRM_ROTATE_0) |
13720 BIT(DRM_ROTATE_180));
13721 if (dev->mode_config.rotation_property)
13722 drm_object_attach_property(&cursor->base.base,
13723 dev->mode_config.rotation_property,
8e7d688b 13724 state->base.rotation);
4398ad45
VS
13725 }
13726
af99ceda
CK
13727 if (INTEL_INFO(dev)->gen >=9)
13728 state->scaler_id = -1;
13729
ea2c67bb
MR
13730 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13731
3d7d6510
MR
13732 return &cursor->base;
13733}
13734
549e2bfb
CK
13735static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13736 struct intel_crtc_state *crtc_state)
13737{
13738 int i;
13739 struct intel_scaler *intel_scaler;
13740 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13741
13742 for (i = 0; i < intel_crtc->num_scalers; i++) {
13743 intel_scaler = &scaler_state->scalers[i];
13744 intel_scaler->in_use = 0;
13745 intel_scaler->id = i;
13746
13747 intel_scaler->mode = PS_SCALER_MODE_DYN;
13748 }
13749
13750 scaler_state->scaler_id = -1;
13751}
13752
b358d0a6 13753static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 13754{
fbee40df 13755 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 13756 struct intel_crtc *intel_crtc;
f5de6e07 13757 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
13758 struct drm_plane *primary = NULL;
13759 struct drm_plane *cursor = NULL;
465c120c 13760 int i, ret;
79e53945 13761
955382f3 13762 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
13763 if (intel_crtc == NULL)
13764 return;
13765
f5de6e07
ACO
13766 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13767 if (!crtc_state)
13768 goto fail;
550acefd
ACO
13769 intel_crtc->config = crtc_state;
13770 intel_crtc->base.state = &crtc_state->base;
07878248 13771 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 13772
549e2bfb
CK
13773 /* initialize shared scalers */
13774 if (INTEL_INFO(dev)->gen >= 9) {
13775 if (pipe == PIPE_C)
13776 intel_crtc->num_scalers = 1;
13777 else
13778 intel_crtc->num_scalers = SKL_NUM_SCALERS;
13779
13780 skl_init_scalers(dev, intel_crtc, crtc_state);
13781 }
13782
465c120c 13783 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
13784 if (!primary)
13785 goto fail;
13786
13787 cursor = intel_cursor_plane_create(dev, pipe);
13788 if (!cursor)
13789 goto fail;
13790
465c120c 13791 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
13792 cursor, &intel_crtc_funcs);
13793 if (ret)
13794 goto fail;
79e53945
JB
13795
13796 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
13797 for (i = 0; i < 256; i++) {
13798 intel_crtc->lut_r[i] = i;
13799 intel_crtc->lut_g[i] = i;
13800 intel_crtc->lut_b[i] = i;
13801 }
13802
1f1c2e24
VS
13803 /*
13804 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 13805 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 13806 */
80824003
JB
13807 intel_crtc->pipe = pipe;
13808 intel_crtc->plane = pipe;
3a77c4c4 13809 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 13810 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 13811 intel_crtc->plane = !pipe;
80824003
JB
13812 }
13813
4b0e333e
CW
13814 intel_crtc->cursor_base = ~0;
13815 intel_crtc->cursor_cntl = ~0;
dc41c154 13816 intel_crtc->cursor_size = ~0;
8d7849db 13817
22fd0fab
JB
13818 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13819 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13820 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13821 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13822
79e53945 13823 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
13824
13825 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
13826 return;
13827
13828fail:
13829 if (primary)
13830 drm_plane_cleanup(primary);
13831 if (cursor)
13832 drm_plane_cleanup(cursor);
f5de6e07 13833 kfree(crtc_state);
3d7d6510 13834 kfree(intel_crtc);
79e53945
JB
13835}
13836
752aa88a
JB
13837enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13838{
13839 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 13840 struct drm_device *dev = connector->base.dev;
752aa88a 13841
51fd371b 13842 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 13843
d3babd3f 13844 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
13845 return INVALID_PIPE;
13846
13847 return to_intel_crtc(encoder->crtc)->pipe;
13848}
13849
08d7b3d1 13850int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 13851 struct drm_file *file)
08d7b3d1 13852{
08d7b3d1 13853 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 13854 struct drm_crtc *drmmode_crtc;
c05422d5 13855 struct intel_crtc *crtc;
08d7b3d1 13856
7707e653 13857 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 13858
7707e653 13859 if (!drmmode_crtc) {
08d7b3d1 13860 DRM_ERROR("no such CRTC id\n");
3f2c2057 13861 return -ENOENT;
08d7b3d1
CW
13862 }
13863
7707e653 13864 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 13865 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 13866
c05422d5 13867 return 0;
08d7b3d1
CW
13868}
13869
66a9278e 13870static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 13871{
66a9278e
DV
13872 struct drm_device *dev = encoder->base.dev;
13873 struct intel_encoder *source_encoder;
79e53945 13874 int index_mask = 0;
79e53945
JB
13875 int entry = 0;
13876
b2784e15 13877 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 13878 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
13879 index_mask |= (1 << entry);
13880
79e53945
JB
13881 entry++;
13882 }
4ef69c7a 13883
79e53945
JB
13884 return index_mask;
13885}
13886
4d302442
CW
13887static bool has_edp_a(struct drm_device *dev)
13888{
13889 struct drm_i915_private *dev_priv = dev->dev_private;
13890
13891 if (!IS_MOBILE(dev))
13892 return false;
13893
13894 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13895 return false;
13896
e3589908 13897 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
13898 return false;
13899
13900 return true;
13901}
13902
84b4e042
JB
13903static bool intel_crt_present(struct drm_device *dev)
13904{
13905 struct drm_i915_private *dev_priv = dev->dev_private;
13906
884497ed
DL
13907 if (INTEL_INFO(dev)->gen >= 9)
13908 return false;
13909
cf404ce4 13910 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
13911 return false;
13912
13913 if (IS_CHERRYVIEW(dev))
13914 return false;
13915
13916 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13917 return false;
13918
13919 return true;
13920}
13921
79e53945
JB
13922static void intel_setup_outputs(struct drm_device *dev)
13923{
725e30ad 13924 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 13925 struct intel_encoder *encoder;
cb0953d7 13926 bool dpd_is_edp = false;
79e53945 13927
c9093354 13928 intel_lvds_init(dev);
79e53945 13929
84b4e042 13930 if (intel_crt_present(dev))
79935fca 13931 intel_crt_init(dev);
cb0953d7 13932
c776eb2e
VK
13933 if (IS_BROXTON(dev)) {
13934 /*
13935 * FIXME: Broxton doesn't support port detection via the
13936 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13937 * detect the ports.
13938 */
13939 intel_ddi_init(dev, PORT_A);
13940 intel_ddi_init(dev, PORT_B);
13941 intel_ddi_init(dev, PORT_C);
13942 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
13943 int found;
13944
de31facd
JB
13945 /*
13946 * Haswell uses DDI functions to detect digital outputs.
13947 * On SKL pre-D0 the strap isn't connected, so we assume
13948 * it's there.
13949 */
0e72a5b5 13950 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
de31facd
JB
13951 /* WaIgnoreDDIAStrap: skl */
13952 if (found ||
13953 (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
0e72a5b5
ED
13954 intel_ddi_init(dev, PORT_A);
13955
13956 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13957 * register */
13958 found = I915_READ(SFUSE_STRAP);
13959
13960 if (found & SFUSE_STRAP_DDIB_DETECTED)
13961 intel_ddi_init(dev, PORT_B);
13962 if (found & SFUSE_STRAP_DDIC_DETECTED)
13963 intel_ddi_init(dev, PORT_C);
13964 if (found & SFUSE_STRAP_DDID_DETECTED)
13965 intel_ddi_init(dev, PORT_D);
13966 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 13967 int found;
5d8a7752 13968 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
13969
13970 if (has_edp_a(dev))
13971 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 13972
dc0fa718 13973 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 13974 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 13975 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 13976 if (!found)
e2debe91 13977 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 13978 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 13979 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
13980 }
13981
dc0fa718 13982 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 13983 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 13984
dc0fa718 13985 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 13986 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 13987
5eb08b69 13988 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 13989 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 13990
270b3042 13991 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 13992 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 13993 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
13994 /*
13995 * The DP_DETECTED bit is the latched state of the DDC
13996 * SDA pin at boot. However since eDP doesn't require DDC
13997 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13998 * eDP ports may have been muxed to an alternate function.
13999 * Thus we can't rely on the DP_DETECTED bit alone to detect
14000 * eDP ports. Consult the VBT as well as DP_DETECTED to
14001 * detect eDP ports.
14002 */
d2182a66
VS
14003 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14004 !intel_dp_is_edp(dev, PORT_B))
585a94b8
AB
14005 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14006 PORT_B);
e17ac6db
VS
14007 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14008 intel_dp_is_edp(dev, PORT_B))
14009 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
585a94b8 14010
d2182a66
VS
14011 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14012 !intel_dp_is_edp(dev, PORT_C))
6f6005a5
JB
14013 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14014 PORT_C);
e17ac6db
VS
14015 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14016 intel_dp_is_edp(dev, PORT_C))
14017 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
19c03924 14018
9418c1f1 14019 if (IS_CHERRYVIEW(dev)) {
e17ac6db 14020 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
9418c1f1
VS
14021 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14022 PORT_D);
e17ac6db
VS
14023 /* eDP not supported on port D, so don't check VBT */
14024 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14025 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
9418c1f1
VS
14026 }
14027
3cfca973 14028 intel_dsi_init(dev);
103a196f 14029 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 14030 bool found = false;
7d57382e 14031
e2debe91 14032 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14033 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 14034 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
14035 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14036 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14037 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14038 }
27185ae1 14039
e7281eab 14040 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 14041 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14042 }
13520b05
KH
14043
14044 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14045
e2debe91 14046 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14047 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 14048 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 14049 }
27185ae1 14050
e2debe91 14051 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14052
b01f2c3a
JB
14053 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14054 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14055 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14056 }
e7281eab 14057 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 14058 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14059 }
27185ae1 14060
b01f2c3a 14061 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 14062 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14063 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14064 } else if (IS_GEN2(dev))
79e53945
JB
14065 intel_dvo_init(dev);
14066
103a196f 14067 if (SUPPORTS_TV(dev))
79e53945
JB
14068 intel_tv_init(dev);
14069
0bc12bcb 14070 intel_psr_init(dev);
7c8f8a70 14071
b2784e15 14072 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14073 encoder->base.possible_crtcs = encoder->crtc_mask;
14074 encoder->base.possible_clones =
66a9278e 14075 intel_encoder_clones(encoder);
79e53945 14076 }
47356eb6 14077
dde86e2d 14078 intel_init_pch_refclk(dev);
270b3042
DV
14079
14080 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14081}
14082
14083static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14084{
60a5ca01 14085 struct drm_device *dev = fb->dev;
79e53945 14086 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14087
ef2d633e 14088 drm_framebuffer_cleanup(fb);
60a5ca01 14089 mutex_lock(&dev->struct_mutex);
ef2d633e 14090 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14091 drm_gem_object_unreference(&intel_fb->obj->base);
14092 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14093 kfree(intel_fb);
14094}
14095
14096static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14097 struct drm_file *file,
79e53945
JB
14098 unsigned int *handle)
14099{
14100 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14101 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14102
05394f39 14103 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14104}
14105
14106static const struct drm_framebuffer_funcs intel_fb_funcs = {
14107 .destroy = intel_user_framebuffer_destroy,
14108 .create_handle = intel_user_framebuffer_create_handle,
14109};
14110
b321803d
DL
14111static
14112u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14113 uint32_t pixel_format)
14114{
14115 u32 gen = INTEL_INFO(dev)->gen;
14116
14117 if (gen >= 9) {
14118 /* "The stride in bytes must not exceed the of the size of 8K
14119 * pixels and 32K bytes."
14120 */
14121 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14122 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14123 return 32*1024;
14124 } else if (gen >= 4) {
14125 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14126 return 16*1024;
14127 else
14128 return 32*1024;
14129 } else if (gen >= 3) {
14130 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14131 return 8*1024;
14132 else
14133 return 16*1024;
14134 } else {
14135 /* XXX DSPC is limited to 4k tiled */
14136 return 8*1024;
14137 }
14138}
14139
b5ea642a
DV
14140static int intel_framebuffer_init(struct drm_device *dev,
14141 struct intel_framebuffer *intel_fb,
14142 struct drm_mode_fb_cmd2 *mode_cmd,
14143 struct drm_i915_gem_object *obj)
79e53945 14144{
6761dd31 14145 unsigned int aligned_height;
79e53945 14146 int ret;
b321803d 14147 u32 pitch_limit, stride_alignment;
79e53945 14148
dd4916c5
DV
14149 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14150
2a80eada
DV
14151 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14152 /* Enforce that fb modifier and tiling mode match, but only for
14153 * X-tiled. This is needed for FBC. */
14154 if (!!(obj->tiling_mode == I915_TILING_X) !=
14155 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14156 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14157 return -EINVAL;
14158 }
14159 } else {
14160 if (obj->tiling_mode == I915_TILING_X)
14161 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14162 else if (obj->tiling_mode == I915_TILING_Y) {
14163 DRM_DEBUG("No Y tiling for legacy addfb\n");
14164 return -EINVAL;
14165 }
14166 }
14167
9a8f0a12
TU
14168 /* Passed in modifier sanity checking. */
14169 switch (mode_cmd->modifier[0]) {
14170 case I915_FORMAT_MOD_Y_TILED:
14171 case I915_FORMAT_MOD_Yf_TILED:
14172 if (INTEL_INFO(dev)->gen < 9) {
14173 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14174 mode_cmd->modifier[0]);
14175 return -EINVAL;
14176 }
14177 case DRM_FORMAT_MOD_NONE:
14178 case I915_FORMAT_MOD_X_TILED:
14179 break;
14180 default:
c0f40428
JB
14181 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14182 mode_cmd->modifier[0]);
57cd6508 14183 return -EINVAL;
c16ed4be 14184 }
57cd6508 14185
b321803d
DL
14186 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14187 mode_cmd->pixel_format);
14188 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14189 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14190 mode_cmd->pitches[0], stride_alignment);
57cd6508 14191 return -EINVAL;
c16ed4be 14192 }
57cd6508 14193
b321803d
DL
14194 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14195 mode_cmd->pixel_format);
a35cdaa0 14196 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
14197 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14198 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 14199 "tiled" : "linear",
a35cdaa0 14200 mode_cmd->pitches[0], pitch_limit);
5d7bd705 14201 return -EINVAL;
c16ed4be 14202 }
5d7bd705 14203
2a80eada 14204 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
14205 mode_cmd->pitches[0] != obj->stride) {
14206 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14207 mode_cmd->pitches[0], obj->stride);
5d7bd705 14208 return -EINVAL;
c16ed4be 14209 }
5d7bd705 14210
57779d06 14211 /* Reject formats not supported by any plane early. */
308e5bcb 14212 switch (mode_cmd->pixel_format) {
57779d06 14213 case DRM_FORMAT_C8:
04b3924d
VS
14214 case DRM_FORMAT_RGB565:
14215 case DRM_FORMAT_XRGB8888:
14216 case DRM_FORMAT_ARGB8888:
57779d06
VS
14217 break;
14218 case DRM_FORMAT_XRGB1555:
c16ed4be 14219 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
14220 DRM_DEBUG("unsupported pixel format: %s\n",
14221 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14222 return -EINVAL;
c16ed4be 14223 }
57779d06 14224 break;
57779d06 14225 case DRM_FORMAT_ABGR8888:
6c0fd451
DL
14226 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14227 DRM_DEBUG("unsupported pixel format: %s\n",
14228 drm_get_format_name(mode_cmd->pixel_format));
14229 return -EINVAL;
14230 }
14231 break;
14232 case DRM_FORMAT_XBGR8888:
04b3924d 14233 case DRM_FORMAT_XRGB2101010:
57779d06 14234 case DRM_FORMAT_XBGR2101010:
c16ed4be 14235 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
14236 DRM_DEBUG("unsupported pixel format: %s\n",
14237 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14238 return -EINVAL;
c16ed4be 14239 }
b5626747 14240 break;
7531208b
DL
14241 case DRM_FORMAT_ABGR2101010:
14242 if (!IS_VALLEYVIEW(dev)) {
14243 DRM_DEBUG("unsupported pixel format: %s\n",
14244 drm_get_format_name(mode_cmd->pixel_format));
14245 return -EINVAL;
14246 }
14247 break;
04b3924d
VS
14248 case DRM_FORMAT_YUYV:
14249 case DRM_FORMAT_UYVY:
14250 case DRM_FORMAT_YVYU:
14251 case DRM_FORMAT_VYUY:
c16ed4be 14252 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14253 DRM_DEBUG("unsupported pixel format: %s\n",
14254 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14255 return -EINVAL;
c16ed4be 14256 }
57cd6508
CW
14257 break;
14258 default:
4ee62c76
VS
14259 DRM_DEBUG("unsupported pixel format: %s\n",
14260 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14261 return -EINVAL;
14262 }
14263
90f9a336
VS
14264 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14265 if (mode_cmd->offsets[0] != 0)
14266 return -EINVAL;
14267
ec2c981e 14268 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14269 mode_cmd->pixel_format,
14270 mode_cmd->modifier[0]);
53155c0a
DV
14271 /* FIXME drm helper for size checks (especially planar formats)? */
14272 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14273 return -EINVAL;
14274
c7d73f6a
DV
14275 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14276 intel_fb->obj = obj;
80075d49 14277 intel_fb->obj->framebuffer_references++;
c7d73f6a 14278
79e53945
JB
14279 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14280 if (ret) {
14281 DRM_ERROR("framebuffer init failed %d\n", ret);
14282 return ret;
14283 }
14284
79e53945
JB
14285 return 0;
14286}
14287
79e53945
JB
14288static struct drm_framebuffer *
14289intel_user_framebuffer_create(struct drm_device *dev,
14290 struct drm_file *filp,
308e5bcb 14291 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 14292{
05394f39 14293 struct drm_i915_gem_object *obj;
79e53945 14294
308e5bcb
JB
14295 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14296 mode_cmd->handles[0]));
c8725226 14297 if (&obj->base == NULL)
cce13ff7 14298 return ERR_PTR(-ENOENT);
79e53945 14299
d2dff872 14300 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
14301}
14302
4520f53a 14303#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 14304static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14305{
14306}
14307#endif
14308
79e53945 14309static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14310 .fb_create = intel_user_framebuffer_create,
0632fef6 14311 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14312 .atomic_check = intel_atomic_check,
14313 .atomic_commit = intel_atomic_commit,
79e53945
JB
14314};
14315
e70236a8
JB
14316/* Set up chip specific display functions */
14317static void intel_init_display(struct drm_device *dev)
14318{
14319 struct drm_i915_private *dev_priv = dev->dev_private;
14320
ee9300bb
DV
14321 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14322 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14323 else if (IS_CHERRYVIEW(dev))
14324 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14325 else if (IS_VALLEYVIEW(dev))
14326 dev_priv->display.find_dpll = vlv_find_best_dpll;
14327 else if (IS_PINEVIEW(dev))
14328 dev_priv->display.find_dpll = pnv_find_best_dpll;
14329 else
14330 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14331
bc8d7dff
DL
14332 if (INTEL_INFO(dev)->gen >= 9) {
14333 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14334 dev_priv->display.get_initial_plane_config =
14335 skylake_get_initial_plane_config;
bc8d7dff
DL
14336 dev_priv->display.crtc_compute_clock =
14337 haswell_crtc_compute_clock;
14338 dev_priv->display.crtc_enable = haswell_crtc_enable;
14339 dev_priv->display.crtc_disable = haswell_crtc_disable;
14340 dev_priv->display.off = ironlake_crtc_off;
14341 dev_priv->display.update_primary_plane =
14342 skylake_update_primary_plane;
14343 } else if (HAS_DDI(dev)) {
0e8ffe1b 14344 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14345 dev_priv->display.get_initial_plane_config =
14346 ironlake_get_initial_plane_config;
797d0259
ACO
14347 dev_priv->display.crtc_compute_clock =
14348 haswell_crtc_compute_clock;
4f771f10
PZ
14349 dev_priv->display.crtc_enable = haswell_crtc_enable;
14350 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 14351 dev_priv->display.off = ironlake_crtc_off;
bc8d7dff
DL
14352 dev_priv->display.update_primary_plane =
14353 ironlake_update_primary_plane;
09b4ddf9 14354 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14355 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14356 dev_priv->display.get_initial_plane_config =
14357 ironlake_get_initial_plane_config;
3fb37703
ACO
14358 dev_priv->display.crtc_compute_clock =
14359 ironlake_crtc_compute_clock;
76e5a89c
DV
14360 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14361 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 14362 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
14363 dev_priv->display.update_primary_plane =
14364 ironlake_update_primary_plane;
89b667f8
JB
14365 } else if (IS_VALLEYVIEW(dev)) {
14366 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14367 dev_priv->display.get_initial_plane_config =
14368 i9xx_get_initial_plane_config;
d6dfee7a 14369 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14370 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14371 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14372 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
14373 dev_priv->display.update_primary_plane =
14374 i9xx_update_primary_plane;
f564048e 14375 } else {
0e8ffe1b 14376 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14377 dev_priv->display.get_initial_plane_config =
14378 i9xx_get_initial_plane_config;
d6dfee7a 14379 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14380 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14381 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 14382 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
14383 dev_priv->display.update_primary_plane =
14384 i9xx_update_primary_plane;
f564048e 14385 }
e70236a8 14386
e70236a8 14387 /* Returns the core display clock speed */
1652d19e
VS
14388 if (IS_SKYLAKE(dev))
14389 dev_priv->display.get_display_clock_speed =
14390 skylake_get_display_clock_speed;
14391 else if (IS_BROADWELL(dev))
14392 dev_priv->display.get_display_clock_speed =
14393 broadwell_get_display_clock_speed;
14394 else if (IS_HASWELL(dev))
14395 dev_priv->display.get_display_clock_speed =
14396 haswell_get_display_clock_speed;
14397 else if (IS_VALLEYVIEW(dev))
25eb05fc
JB
14398 dev_priv->display.get_display_clock_speed =
14399 valleyview_get_display_clock_speed;
b37a6434
VS
14400 else if (IS_GEN5(dev))
14401 dev_priv->display.get_display_clock_speed =
14402 ilk_get_display_clock_speed;
a7c66cd8
VS
14403 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14404 IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
14405 dev_priv->display.get_display_clock_speed =
14406 i945_get_display_clock_speed;
14407 else if (IS_I915G(dev))
14408 dev_priv->display.get_display_clock_speed =
14409 i915_get_display_clock_speed;
257a7ffc 14410 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14411 dev_priv->display.get_display_clock_speed =
14412 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
14413 else if (IS_PINEVIEW(dev))
14414 dev_priv->display.get_display_clock_speed =
14415 pnv_get_display_clock_speed;
e70236a8
JB
14416 else if (IS_I915GM(dev))
14417 dev_priv->display.get_display_clock_speed =
14418 i915gm_get_display_clock_speed;
14419 else if (IS_I865G(dev))
14420 dev_priv->display.get_display_clock_speed =
14421 i865_get_display_clock_speed;
f0f8a9ce 14422 else if (IS_I85X(dev))
e70236a8
JB
14423 dev_priv->display.get_display_clock_speed =
14424 i855_get_display_clock_speed;
14425 else /* 852, 830 */
14426 dev_priv->display.get_display_clock_speed =
14427 i830_get_display_clock_speed;
14428
7c10a2b5 14429 if (IS_GEN5(dev)) {
3bb11b53 14430 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14431 } else if (IS_GEN6(dev)) {
14432 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14433 } else if (IS_IVYBRIDGE(dev)) {
14434 /* FIXME: detect B0+ stepping and use auto training */
14435 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14436 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14437 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
30a970c6
JB
14438 } else if (IS_VALLEYVIEW(dev)) {
14439 dev_priv->display.modeset_global_resources =
14440 valleyview_modeset_global_resources;
f8437dd1
VK
14441 } else if (IS_BROXTON(dev)) {
14442 dev_priv->display.modeset_global_resources =
14443 broxton_modeset_global_resources;
e70236a8 14444 }
8c9f3aaf 14445
8c9f3aaf
JB
14446 switch (INTEL_INFO(dev)->gen) {
14447 case 2:
14448 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14449 break;
14450
14451 case 3:
14452 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14453 break;
14454
14455 case 4:
14456 case 5:
14457 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14458 break;
14459
14460 case 6:
14461 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14462 break;
7c9017e5 14463 case 7:
4e0bbc31 14464 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14465 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14466 break;
830c81db 14467 case 9:
ba343e02
TU
14468 /* Drop through - unsupported since execlist only. */
14469 default:
14470 /* Default just returns -ENODEV to indicate unsupported */
14471 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14472 }
7bd688cd
JN
14473
14474 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
14475
14476 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14477}
14478
b690e96c
JB
14479/*
14480 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14481 * resume, or other times. This quirk makes sure that's the case for
14482 * affected systems.
14483 */
0206e353 14484static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
14485{
14486 struct drm_i915_private *dev_priv = dev->dev_private;
14487
14488 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 14489 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
14490}
14491
b6b5d049
VS
14492static void quirk_pipeb_force(struct drm_device *dev)
14493{
14494 struct drm_i915_private *dev_priv = dev->dev_private;
14495
14496 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14497 DRM_INFO("applying pipe b force quirk\n");
14498}
14499
435793df
KP
14500/*
14501 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14502 */
14503static void quirk_ssc_force_disable(struct drm_device *dev)
14504{
14505 struct drm_i915_private *dev_priv = dev->dev_private;
14506 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 14507 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
14508}
14509
4dca20ef 14510/*
5a15ab5b
CE
14511 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14512 * brightness value
4dca20ef
CE
14513 */
14514static void quirk_invert_brightness(struct drm_device *dev)
14515{
14516 struct drm_i915_private *dev_priv = dev->dev_private;
14517 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 14518 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
14519}
14520
9c72cc6f
SD
14521/* Some VBT's incorrectly indicate no backlight is present */
14522static void quirk_backlight_present(struct drm_device *dev)
14523{
14524 struct drm_i915_private *dev_priv = dev->dev_private;
14525 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14526 DRM_INFO("applying backlight present quirk\n");
14527}
14528
b690e96c
JB
14529struct intel_quirk {
14530 int device;
14531 int subsystem_vendor;
14532 int subsystem_device;
14533 void (*hook)(struct drm_device *dev);
14534};
14535
5f85f176
EE
14536/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14537struct intel_dmi_quirk {
14538 void (*hook)(struct drm_device *dev);
14539 const struct dmi_system_id (*dmi_id_list)[];
14540};
14541
14542static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14543{
14544 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14545 return 1;
14546}
14547
14548static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14549 {
14550 .dmi_id_list = &(const struct dmi_system_id[]) {
14551 {
14552 .callback = intel_dmi_reverse_brightness,
14553 .ident = "NCR Corporation",
14554 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14555 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14556 },
14557 },
14558 { } /* terminating entry */
14559 },
14560 .hook = quirk_invert_brightness,
14561 },
14562};
14563
c43b5634 14564static struct intel_quirk intel_quirks[] = {
b690e96c
JB
14565 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14566 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14567
b690e96c
JB
14568 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14569 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14570
5f080c0f
VS
14571 /* 830 needs to leave pipe A & dpll A up */
14572 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14573
b6b5d049
VS
14574 /* 830 needs to leave pipe B & dpll B up */
14575 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14576
435793df
KP
14577 /* Lenovo U160 cannot use SSC on LVDS */
14578 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
14579
14580 /* Sony Vaio Y cannot use SSC on LVDS */
14581 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 14582
be505f64
AH
14583 /* Acer Aspire 5734Z must invert backlight brightness */
14584 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14585
14586 /* Acer/eMachines G725 */
14587 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14588
14589 /* Acer/eMachines e725 */
14590 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14591
14592 /* Acer/Packard Bell NCL20 */
14593 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14594
14595 /* Acer Aspire 4736Z */
14596 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
14597
14598 /* Acer Aspire 5336 */
14599 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
14600
14601 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14602 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 14603
dfb3d47b
SD
14604 /* Acer C720 Chromebook (Core i3 4005U) */
14605 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14606
b2a9601c 14607 /* Apple Macbook 2,1 (Core 2 T7400) */
14608 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14609
d4967d8c
SD
14610 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14611 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
14612
14613 /* HP Chromebook 14 (Celeron 2955U) */
14614 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
14615
14616 /* Dell Chromebook 11 */
14617 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
14618};
14619
14620static void intel_init_quirks(struct drm_device *dev)
14621{
14622 struct pci_dev *d = dev->pdev;
14623 int i;
14624
14625 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14626 struct intel_quirk *q = &intel_quirks[i];
14627
14628 if (d->device == q->device &&
14629 (d->subsystem_vendor == q->subsystem_vendor ||
14630 q->subsystem_vendor == PCI_ANY_ID) &&
14631 (d->subsystem_device == q->subsystem_device ||
14632 q->subsystem_device == PCI_ANY_ID))
14633 q->hook(dev);
14634 }
5f85f176
EE
14635 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14636 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14637 intel_dmi_quirks[i].hook(dev);
14638 }
b690e96c
JB
14639}
14640
9cce37f4
JB
14641/* Disable the VGA plane that we never use */
14642static void i915_disable_vga(struct drm_device *dev)
14643{
14644 struct drm_i915_private *dev_priv = dev->dev_private;
14645 u8 sr1;
766aa1c4 14646 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 14647
2b37c616 14648 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 14649 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 14650 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
14651 sr1 = inb(VGA_SR_DATA);
14652 outb(sr1 | 1<<5, VGA_SR_DATA);
14653 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14654 udelay(300);
14655
01f5a626 14656 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
14657 POSTING_READ(vga_reg);
14658}
14659
f817586c
DV
14660void intel_modeset_init_hw(struct drm_device *dev)
14661{
a8f78b58
ED
14662 intel_prepare_ddi(dev);
14663
f8bf63fd
VS
14664 if (IS_VALLEYVIEW(dev))
14665 vlv_update_cdclk(dev);
14666
f817586c
DV
14667 intel_init_clock_gating(dev);
14668
8090c6b9 14669 intel_enable_gt_powersave(dev);
f817586c
DV
14670}
14671
79e53945
JB
14672void intel_modeset_init(struct drm_device *dev)
14673{
652c393a 14674 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 14675 int sprite, ret;
8cc87b75 14676 enum pipe pipe;
46f297fb 14677 struct intel_crtc *crtc;
79e53945
JB
14678
14679 drm_mode_config_init(dev);
14680
14681 dev->mode_config.min_width = 0;
14682 dev->mode_config.min_height = 0;
14683
019d96cb
DA
14684 dev->mode_config.preferred_depth = 24;
14685 dev->mode_config.prefer_shadow = 1;
14686
25bab385
TU
14687 dev->mode_config.allow_fb_modifiers = true;
14688
e6ecefaa 14689 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 14690
b690e96c
JB
14691 intel_init_quirks(dev);
14692
1fa61106
ED
14693 intel_init_pm(dev);
14694
e3c74757
BW
14695 if (INTEL_INFO(dev)->num_pipes == 0)
14696 return;
14697
e70236a8 14698 intel_init_display(dev);
7c10a2b5 14699 intel_init_audio(dev);
e70236a8 14700
a6c45cf0
CW
14701 if (IS_GEN2(dev)) {
14702 dev->mode_config.max_width = 2048;
14703 dev->mode_config.max_height = 2048;
14704 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
14705 dev->mode_config.max_width = 4096;
14706 dev->mode_config.max_height = 4096;
79e53945 14707 } else {
a6c45cf0
CW
14708 dev->mode_config.max_width = 8192;
14709 dev->mode_config.max_height = 8192;
79e53945 14710 }
068be561 14711
dc41c154
VS
14712 if (IS_845G(dev) || IS_I865G(dev)) {
14713 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14714 dev->mode_config.cursor_height = 1023;
14715 } else if (IS_GEN2(dev)) {
068be561
DL
14716 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14717 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14718 } else {
14719 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14720 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14721 }
14722
5d4545ae 14723 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 14724
28c97730 14725 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
14726 INTEL_INFO(dev)->num_pipes,
14727 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 14728
055e393f 14729 for_each_pipe(dev_priv, pipe) {
8cc87b75 14730 intel_crtc_init(dev, pipe);
3bdcfc0c 14731 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 14732 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 14733 if (ret)
06da8da2 14734 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 14735 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 14736 }
79e53945
JB
14737 }
14738
f42bb70d
JB
14739 intel_init_dpio(dev);
14740
e72f9fbf 14741 intel_shared_dpll_init(dev);
ee7b9f93 14742
9cce37f4
JB
14743 /* Just disable it once at startup */
14744 i915_disable_vga(dev);
79e53945 14745 intel_setup_outputs(dev);
11be49eb
CW
14746
14747 /* Just in case the BIOS is doing something questionable. */
7ff0ebcc 14748 intel_fbc_disable(dev);
fa9fa083 14749
6e9f798d 14750 drm_modeset_lock_all(dev);
fa9fa083 14751 intel_modeset_setup_hw_state(dev, false);
6e9f798d 14752 drm_modeset_unlock_all(dev);
46f297fb 14753
d3fcc808 14754 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
14755 if (!crtc->active)
14756 continue;
14757
46f297fb 14758 /*
46f297fb
JB
14759 * Note that reserving the BIOS fb up front prevents us
14760 * from stuffing other stolen allocations like the ring
14761 * on top. This prevents some ugliness at boot time, and
14762 * can even allow for smooth boot transitions if the BIOS
14763 * fb is large enough for the active pipe configuration.
14764 */
5724dbd1
DL
14765 if (dev_priv->display.get_initial_plane_config) {
14766 dev_priv->display.get_initial_plane_config(crtc,
46f297fb
JB
14767 &crtc->plane_config);
14768 /*
14769 * If the fb is shared between multiple heads, we'll
14770 * just get the first one.
14771 */
f6936e29 14772 intel_find_initial_plane_obj(crtc, &crtc->plane_config);
46f297fb 14773 }
46f297fb 14774 }
2c7111db
CW
14775}
14776
7fad798e
DV
14777static void intel_enable_pipe_a(struct drm_device *dev)
14778{
14779 struct intel_connector *connector;
14780 struct drm_connector *crt = NULL;
14781 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 14782 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
14783
14784 /* We can't just switch on the pipe A, we need to set things up with a
14785 * proper mode and output configuration. As a gross hack, enable pipe A
14786 * by enabling the load detect pipe once. */
3a3371ff 14787 for_each_intel_connector(dev, connector) {
7fad798e
DV
14788 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14789 crt = &connector->base;
14790 break;
14791 }
14792 }
14793
14794 if (!crt)
14795 return;
14796
208bf9fd 14797 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 14798 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
14799}
14800
fa555837
DV
14801static bool
14802intel_check_plane_mapping(struct intel_crtc *crtc)
14803{
7eb552ae
BW
14804 struct drm_device *dev = crtc->base.dev;
14805 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
14806 u32 reg, val;
14807
7eb552ae 14808 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
14809 return true;
14810
14811 reg = DSPCNTR(!crtc->plane);
14812 val = I915_READ(reg);
14813
14814 if ((val & DISPLAY_PLANE_ENABLE) &&
14815 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14816 return false;
14817
14818 return true;
14819}
14820
24929352
DV
14821static void intel_sanitize_crtc(struct intel_crtc *crtc)
14822{
14823 struct drm_device *dev = crtc->base.dev;
14824 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 14825 u32 reg;
24929352 14826
24929352 14827 /* Clear any frame start delays used for debugging left by the BIOS */
6e3c9717 14828 reg = PIPECONF(crtc->config->cpu_transcoder);
24929352
DV
14829 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14830
d3eaf884 14831 /* restore vblank interrupts to correct state */
9625604c 14832 drm_crtc_vblank_reset(&crtc->base);
d297e103
VS
14833 if (crtc->active) {
14834 update_scanline_offset(crtc);
9625604c
DV
14835 drm_crtc_vblank_on(&crtc->base);
14836 }
d3eaf884 14837
24929352 14838 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
14839 * disable the crtc (and hence change the state) if it is wrong. Note
14840 * that gen4+ has a fixed plane -> pipe mapping. */
14841 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
14842 struct intel_connector *connector;
14843 bool plane;
14844
24929352
DV
14845 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14846 crtc->base.base.id);
14847
14848 /* Pipe has the wrong plane attached and the plane is active.
14849 * Temporarily change the plane mapping and disable everything
14850 * ... */
14851 plane = crtc->plane;
b70709a6 14852 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 14853 crtc->plane = !plane;
ce22dba9 14854 intel_crtc_disable_planes(&crtc->base);
24929352
DV
14855 dev_priv->display.crtc_disable(&crtc->base);
14856 crtc->plane = plane;
14857
14858 /* ... and break all links. */
3a3371ff 14859 for_each_intel_connector(dev, connector) {
24929352
DV
14860 if (connector->encoder->base.crtc != &crtc->base)
14861 continue;
14862
7f1950fb
EE
14863 connector->base.dpms = DRM_MODE_DPMS_OFF;
14864 connector->base.encoder = NULL;
24929352 14865 }
7f1950fb
EE
14866 /* multiple connectors may have the same encoder:
14867 * handle them and break crtc link separately */
3a3371ff 14868 for_each_intel_connector(dev, connector)
7f1950fb
EE
14869 if (connector->encoder->base.crtc == &crtc->base) {
14870 connector->encoder->base.crtc = NULL;
14871 connector->encoder->connectors_active = false;
14872 }
24929352
DV
14873
14874 WARN_ON(crtc->active);
83d65738 14875 crtc->base.state->enable = false;
49d6fa21 14876 crtc->base.state->active = false;
24929352
DV
14877 crtc->base.enabled = false;
14878 }
24929352 14879
7fad798e
DV
14880 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14881 crtc->pipe == PIPE_A && !crtc->active) {
14882 /* BIOS forgot to enable pipe A, this mostly happens after
14883 * resume. Force-enable the pipe to fix this, the update_dpms
14884 * call below we restore the pipe to the right state, but leave
14885 * the required bits on. */
14886 intel_enable_pipe_a(dev);
14887 }
14888
24929352
DV
14889 /* Adjust the state of the output pipe according to whether we
14890 * have active connectors/encoders. */
14891 intel_crtc_update_dpms(&crtc->base);
14892
83d65738 14893 if (crtc->active != crtc->base.state->enable) {
24929352
DV
14894 struct intel_encoder *encoder;
14895
14896 /* This can happen either due to bugs in the get_hw_state
14897 * functions or because the pipe is force-enabled due to the
14898 * pipe A quirk. */
14899 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14900 crtc->base.base.id,
83d65738 14901 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
14902 crtc->active ? "enabled" : "disabled");
14903
83d65738 14904 crtc->base.state->enable = crtc->active;
49d6fa21 14905 crtc->base.state->active = crtc->active;
24929352
DV
14906 crtc->base.enabled = crtc->active;
14907
14908 /* Because we only establish the connector -> encoder ->
14909 * crtc links if something is active, this means the
14910 * crtc is now deactivated. Break the links. connector
14911 * -> encoder links are only establish when things are
14912 * actually up, hence no need to break them. */
14913 WARN_ON(crtc->active);
14914
14915 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14916 WARN_ON(encoder->connectors_active);
14917 encoder->base.crtc = NULL;
14918 }
14919 }
c5ab3bc0 14920
a3ed6aad 14921 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
14922 /*
14923 * We start out with underrun reporting disabled to avoid races.
14924 * For correct bookkeeping mark this on active crtcs.
14925 *
c5ab3bc0
DV
14926 * Also on gmch platforms we dont have any hardware bits to
14927 * disable the underrun reporting. Which means we need to start
14928 * out with underrun reporting disabled also on inactive pipes,
14929 * since otherwise we'll complain about the garbage we read when
14930 * e.g. coming up after runtime pm.
14931 *
4cc31489
DV
14932 * No protection against concurrent access is required - at
14933 * worst a fifo underrun happens which also sets this to false.
14934 */
14935 crtc->cpu_fifo_underrun_disabled = true;
14936 crtc->pch_fifo_underrun_disabled = true;
14937 }
24929352
DV
14938}
14939
14940static void intel_sanitize_encoder(struct intel_encoder *encoder)
14941{
14942 struct intel_connector *connector;
14943 struct drm_device *dev = encoder->base.dev;
14944
14945 /* We need to check both for a crtc link (meaning that the
14946 * encoder is active and trying to read from a pipe) and the
14947 * pipe itself being active. */
14948 bool has_active_crtc = encoder->base.crtc &&
14949 to_intel_crtc(encoder->base.crtc)->active;
14950
14951 if (encoder->connectors_active && !has_active_crtc) {
14952 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14953 encoder->base.base.id,
8e329a03 14954 encoder->base.name);
24929352
DV
14955
14956 /* Connector is active, but has no active pipe. This is
14957 * fallout from our resume register restoring. Disable
14958 * the encoder manually again. */
14959 if (encoder->base.crtc) {
14960 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14961 encoder->base.base.id,
8e329a03 14962 encoder->base.name);
24929352 14963 encoder->disable(encoder);
a62d1497
VS
14964 if (encoder->post_disable)
14965 encoder->post_disable(encoder);
24929352 14966 }
7f1950fb
EE
14967 encoder->base.crtc = NULL;
14968 encoder->connectors_active = false;
24929352
DV
14969
14970 /* Inconsistent output/port/pipe state happens presumably due to
14971 * a bug in one of the get_hw_state functions. Or someplace else
14972 * in our code, like the register restore mess on resume. Clamp
14973 * things to off as a safer default. */
3a3371ff 14974 for_each_intel_connector(dev, connector) {
24929352
DV
14975 if (connector->encoder != encoder)
14976 continue;
7f1950fb
EE
14977 connector->base.dpms = DRM_MODE_DPMS_OFF;
14978 connector->base.encoder = NULL;
24929352
DV
14979 }
14980 }
14981 /* Enabled encoders without active connectors will be fixed in
14982 * the crtc fixup. */
14983}
14984
04098753 14985void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
14986{
14987 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 14988 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 14989
04098753
ID
14990 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14991 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14992 i915_disable_vga(dev);
14993 }
14994}
14995
14996void i915_redisable_vga(struct drm_device *dev)
14997{
14998 struct drm_i915_private *dev_priv = dev->dev_private;
14999
8dc8a27c
PZ
15000 /* This function can be called both from intel_modeset_setup_hw_state or
15001 * at a very early point in our resume sequence, where the power well
15002 * structures are not yet restored. Since this function is at a very
15003 * paranoid "someone might have enabled VGA while we were not looking"
15004 * level, just check if the power well is enabled instead of trying to
15005 * follow the "don't touch the power well if we don't need it" policy
15006 * the rest of the driver uses. */
f458ebbc 15007 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15008 return;
15009
04098753 15010 i915_redisable_vga_power_on(dev);
0fde901f
KM
15011}
15012
98ec7739
VS
15013static bool primary_get_hw_state(struct intel_crtc *crtc)
15014{
15015 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15016
15017 if (!crtc->active)
15018 return false;
15019
15020 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
15021}
15022
30e984df 15023static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
15024{
15025 struct drm_i915_private *dev_priv = dev->dev_private;
15026 enum pipe pipe;
24929352
DV
15027 struct intel_crtc *crtc;
15028 struct intel_encoder *encoder;
15029 struct intel_connector *connector;
5358901f 15030 int i;
24929352 15031
d3fcc808 15032 for_each_intel_crtc(dev, crtc) {
b70709a6
ML
15033 struct drm_plane *primary = crtc->base.primary;
15034 struct intel_plane_state *plane_state;
15035
6e3c9717 15036 memset(crtc->config, 0, sizeof(*crtc->config));
3b117c8f 15037
6e3c9717 15038 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
9953599b 15039
0e8ffe1b 15040 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 15041 crtc->config);
24929352 15042
83d65738 15043 crtc->base.state->enable = crtc->active;
49d6fa21 15044 crtc->base.state->active = crtc->active;
24929352 15045 crtc->base.enabled = crtc->active;
b70709a6
ML
15046
15047 plane_state = to_intel_plane_state(primary->state);
15048 plane_state->visible = primary_get_hw_state(crtc);
24929352
DV
15049
15050 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15051 crtc->base.base.id,
15052 crtc->active ? "enabled" : "disabled");
15053 }
15054
5358901f
DV
15055 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15056 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15057
3e369b76
ACO
15058 pll->on = pll->get_hw_state(dev_priv, pll,
15059 &pll->config.hw_state);
5358901f 15060 pll->active = 0;
3e369b76 15061 pll->config.crtc_mask = 0;
d3fcc808 15062 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 15063 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 15064 pll->active++;
3e369b76 15065 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 15066 }
5358901f 15067 }
5358901f 15068
1e6f2ddc 15069 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 15070 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 15071
3e369b76 15072 if (pll->config.crtc_mask)
bd2bb1b9 15073 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
15074 }
15075
b2784e15 15076 for_each_intel_encoder(dev, encoder) {
24929352
DV
15077 pipe = 0;
15078
15079 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
15080 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15081 encoder->base.crtc = &crtc->base;
6e3c9717 15082 encoder->get_config(encoder, crtc->config);
24929352
DV
15083 } else {
15084 encoder->base.crtc = NULL;
15085 }
15086
15087 encoder->connectors_active = false;
6f2bcceb 15088 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 15089 encoder->base.base.id,
8e329a03 15090 encoder->base.name,
24929352 15091 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 15092 pipe_name(pipe));
24929352
DV
15093 }
15094
3a3371ff 15095 for_each_intel_connector(dev, connector) {
24929352
DV
15096 if (connector->get_hw_state(connector)) {
15097 connector->base.dpms = DRM_MODE_DPMS_ON;
15098 connector->encoder->connectors_active = true;
15099 connector->base.encoder = &connector->encoder->base;
15100 } else {
15101 connector->base.dpms = DRM_MODE_DPMS_OFF;
15102 connector->base.encoder = NULL;
15103 }
15104 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15105 connector->base.base.id,
c23cc417 15106 connector->base.name,
24929352
DV
15107 connector->base.encoder ? "enabled" : "disabled");
15108 }
30e984df
DV
15109}
15110
15111/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15112 * and i915 state tracking structures. */
15113void intel_modeset_setup_hw_state(struct drm_device *dev,
15114 bool force_restore)
15115{
15116 struct drm_i915_private *dev_priv = dev->dev_private;
15117 enum pipe pipe;
30e984df
DV
15118 struct intel_crtc *crtc;
15119 struct intel_encoder *encoder;
35c95375 15120 int i;
30e984df
DV
15121
15122 intel_modeset_readout_hw_state(dev);
24929352 15123
babea61d
JB
15124 /*
15125 * Now that we have the config, copy it to each CRTC struct
15126 * Note that this could go away if we move to using crtc_config
15127 * checking everywhere.
15128 */
d3fcc808 15129 for_each_intel_crtc(dev, crtc) {
d330a953 15130 if (crtc->active && i915.fastboot) {
6e3c9717
ACO
15131 intel_mode_from_pipe_config(&crtc->base.mode,
15132 crtc->config);
babea61d
JB
15133 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15134 crtc->base.base.id);
15135 drm_mode_debug_printmodeline(&crtc->base.mode);
15136 }
15137 }
15138
24929352 15139 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 15140 for_each_intel_encoder(dev, encoder) {
24929352
DV
15141 intel_sanitize_encoder(encoder);
15142 }
15143
055e393f 15144 for_each_pipe(dev_priv, pipe) {
24929352
DV
15145 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15146 intel_sanitize_crtc(crtc);
6e3c9717
ACO
15147 intel_dump_pipe_config(crtc, crtc->config,
15148 "[setup_hw_state]");
24929352 15149 }
9a935856 15150
d29b2f9d
ACO
15151 intel_modeset_update_connector_atomic_state(dev);
15152
35c95375
DV
15153 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15154 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15155
15156 if (!pll->on || pll->active)
15157 continue;
15158
15159 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15160
15161 pll->disable(dev_priv, pll);
15162 pll->on = false;
15163 }
15164
3078999f
PB
15165 if (IS_GEN9(dev))
15166 skl_wm_get_hw_state(dev);
15167 else if (HAS_PCH_SPLIT(dev))
243e6a44
VS
15168 ilk_wm_get_hw_state(dev);
15169
45e2b5f6 15170 if (force_restore) {
7d0bc1ea
VS
15171 i915_redisable_vga(dev);
15172
f30da187
DV
15173 /*
15174 * We need to use raw interfaces for restoring state to avoid
15175 * checking (bogus) intermediate states.
15176 */
055e393f 15177 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
15178 struct drm_crtc *crtc =
15179 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187 15180
83a57153 15181 intel_crtc_restore_mode(crtc);
45e2b5f6
DV
15182 }
15183 } else {
15184 intel_modeset_update_staged_output_state(dev);
15185 }
8af6cf88
DV
15186
15187 intel_modeset_check_state(dev);
2c7111db
CW
15188}
15189
15190void intel_modeset_gem_init(struct drm_device *dev)
15191{
92122789 15192 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd 15193 struct drm_crtc *c;
2ff8fde1 15194 struct drm_i915_gem_object *obj;
e0d6149b 15195 int ret;
484b41dd 15196
ae48434c
ID
15197 mutex_lock(&dev->struct_mutex);
15198 intel_init_gt_powersave(dev);
15199 mutex_unlock(&dev->struct_mutex);
15200
92122789
JB
15201 /*
15202 * There may be no VBT; and if the BIOS enabled SSC we can
15203 * just keep using it to avoid unnecessary flicker. Whereas if the
15204 * BIOS isn't using it, don't assume it will work even if the VBT
15205 * indicates as much.
15206 */
15207 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15208 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15209 DREF_SSC1_ENABLE);
15210
1833b134 15211 intel_modeset_init_hw(dev);
02e792fb
DV
15212
15213 intel_setup_overlay(dev);
484b41dd
JB
15214
15215 /*
15216 * Make sure any fbs we allocated at startup are properly
15217 * pinned & fenced. When we do the allocation it's too early
15218 * for this.
15219 */
70e1e0ec 15220 for_each_crtc(dev, c) {
2ff8fde1
MR
15221 obj = intel_fb_obj(c->primary->fb);
15222 if (obj == NULL)
484b41dd
JB
15223 continue;
15224
e0d6149b
TU
15225 mutex_lock(&dev->struct_mutex);
15226 ret = intel_pin_and_fence_fb_obj(c->primary,
15227 c->primary->fb,
15228 c->primary->state,
15229 NULL);
15230 mutex_unlock(&dev->struct_mutex);
15231 if (ret) {
484b41dd
JB
15232 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15233 to_intel_crtc(c)->pipe);
66e514c1
DA
15234 drm_framebuffer_unreference(c->primary->fb);
15235 c->primary->fb = NULL;
afd65eb4 15236 update_state_fb(c->primary);
484b41dd
JB
15237 }
15238 }
0962c3c9
VS
15239
15240 intel_backlight_register(dev);
79e53945
JB
15241}
15242
4932e2c3
ID
15243void intel_connector_unregister(struct intel_connector *intel_connector)
15244{
15245 struct drm_connector *connector = &intel_connector->base;
15246
15247 intel_panel_destroy_backlight(connector);
34ea3d38 15248 drm_connector_unregister(connector);
4932e2c3
ID
15249}
15250
79e53945
JB
15251void intel_modeset_cleanup(struct drm_device *dev)
15252{
652c393a 15253 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 15254 struct drm_connector *connector;
652c393a 15255
2eb5252e
ID
15256 intel_disable_gt_powersave(dev);
15257
0962c3c9
VS
15258 intel_backlight_unregister(dev);
15259
fd0c0642
DV
15260 /*
15261 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15262 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
15263 * experience fancy races otherwise.
15264 */
2aeb7d3a 15265 intel_irq_uninstall(dev_priv);
eb21b92b 15266
fd0c0642
DV
15267 /*
15268 * Due to the hpd irq storm handling the hotplug work can re-arm the
15269 * poll handlers. Hence disable polling after hpd handling is shut down.
15270 */
f87ea761 15271 drm_kms_helper_poll_fini(dev);
fd0c0642 15272
652c393a
JB
15273 mutex_lock(&dev->struct_mutex);
15274
723bfd70
JB
15275 intel_unregister_dsm_handler();
15276
7ff0ebcc 15277 intel_fbc_disable(dev);
e70236a8 15278
69341a5e
KH
15279 mutex_unlock(&dev->struct_mutex);
15280
1630fe75
CW
15281 /* flush any delayed tasks or pending work */
15282 flush_scheduled_work();
15283
db31af1d
JN
15284 /* destroy the backlight and sysfs files before encoders/connectors */
15285 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
15286 struct intel_connector *intel_connector;
15287
15288 intel_connector = to_intel_connector(connector);
15289 intel_connector->unregister(intel_connector);
db31af1d 15290 }
d9255d57 15291
79e53945 15292 drm_mode_config_cleanup(dev);
4d7bb011
DV
15293
15294 intel_cleanup_overlay(dev);
ae48434c
ID
15295
15296 mutex_lock(&dev->struct_mutex);
15297 intel_cleanup_gt_powersave(dev);
15298 mutex_unlock(&dev->struct_mutex);
79e53945
JB
15299}
15300
f1c79df3
ZW
15301/*
15302 * Return which encoder is currently attached for connector.
15303 */
df0e9248 15304struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 15305{
df0e9248
CW
15306 return &intel_attached_encoder(connector)->base;
15307}
f1c79df3 15308
df0e9248
CW
15309void intel_connector_attach_encoder(struct intel_connector *connector,
15310 struct intel_encoder *encoder)
15311{
15312 connector->encoder = encoder;
15313 drm_mode_connector_attach_encoder(&connector->base,
15314 &encoder->base);
79e53945 15315}
28d52043
DA
15316
15317/*
15318 * set vga decode state - true == enable VGA decode
15319 */
15320int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15321{
15322 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 15323 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
15324 u16 gmch_ctrl;
15325
75fa041d
CW
15326 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15327 DRM_ERROR("failed to read control word\n");
15328 return -EIO;
15329 }
15330
c0cc8a55
CW
15331 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15332 return 0;
15333
28d52043
DA
15334 if (state)
15335 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15336 else
15337 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
15338
15339 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15340 DRM_ERROR("failed to write control word\n");
15341 return -EIO;
15342 }
15343
28d52043
DA
15344 return 0;
15345}
c4a1d9e4 15346
c4a1d9e4 15347struct intel_display_error_state {
ff57f1b0
PZ
15348
15349 u32 power_well_driver;
15350
63b66e5b
CW
15351 int num_transcoders;
15352
c4a1d9e4
CW
15353 struct intel_cursor_error_state {
15354 u32 control;
15355 u32 position;
15356 u32 base;
15357 u32 size;
52331309 15358 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
15359
15360 struct intel_pipe_error_state {
ddf9c536 15361 bool power_domain_on;
c4a1d9e4 15362 u32 source;
f301b1e1 15363 u32 stat;
52331309 15364 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
15365
15366 struct intel_plane_error_state {
15367 u32 control;
15368 u32 stride;
15369 u32 size;
15370 u32 pos;
15371 u32 addr;
15372 u32 surface;
15373 u32 tile_offset;
52331309 15374 } plane[I915_MAX_PIPES];
63b66e5b
CW
15375
15376 struct intel_transcoder_error_state {
ddf9c536 15377 bool power_domain_on;
63b66e5b
CW
15378 enum transcoder cpu_transcoder;
15379
15380 u32 conf;
15381
15382 u32 htotal;
15383 u32 hblank;
15384 u32 hsync;
15385 u32 vtotal;
15386 u32 vblank;
15387 u32 vsync;
15388 } transcoder[4];
c4a1d9e4
CW
15389};
15390
15391struct intel_display_error_state *
15392intel_display_capture_error_state(struct drm_device *dev)
15393{
fbee40df 15394 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 15395 struct intel_display_error_state *error;
63b66e5b
CW
15396 int transcoders[] = {
15397 TRANSCODER_A,
15398 TRANSCODER_B,
15399 TRANSCODER_C,
15400 TRANSCODER_EDP,
15401 };
c4a1d9e4
CW
15402 int i;
15403
63b66e5b
CW
15404 if (INTEL_INFO(dev)->num_pipes == 0)
15405 return NULL;
15406
9d1cb914 15407 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
15408 if (error == NULL)
15409 return NULL;
15410
190be112 15411 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
15412 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15413
055e393f 15414 for_each_pipe(dev_priv, i) {
ddf9c536 15415 error->pipe[i].power_domain_on =
f458ebbc
DV
15416 __intel_display_power_is_enabled(dev_priv,
15417 POWER_DOMAIN_PIPE(i));
ddf9c536 15418 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
15419 continue;
15420
5efb3e28
VS
15421 error->cursor[i].control = I915_READ(CURCNTR(i));
15422 error->cursor[i].position = I915_READ(CURPOS(i));
15423 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
15424
15425 error->plane[i].control = I915_READ(DSPCNTR(i));
15426 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 15427 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 15428 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
15429 error->plane[i].pos = I915_READ(DSPPOS(i));
15430 }
ca291363
PZ
15431 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15432 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
15433 if (INTEL_INFO(dev)->gen >= 4) {
15434 error->plane[i].surface = I915_READ(DSPSURF(i));
15435 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15436 }
15437
c4a1d9e4 15438 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 15439
3abfce77 15440 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 15441 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
15442 }
15443
15444 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15445 if (HAS_DDI(dev_priv->dev))
15446 error->num_transcoders++; /* Account for eDP. */
15447
15448 for (i = 0; i < error->num_transcoders; i++) {
15449 enum transcoder cpu_transcoder = transcoders[i];
15450
ddf9c536 15451 error->transcoder[i].power_domain_on =
f458ebbc 15452 __intel_display_power_is_enabled(dev_priv,
38cc1daf 15453 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 15454 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
15455 continue;
15456
63b66e5b
CW
15457 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15458
15459 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15460 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15461 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15462 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15463 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15464 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15465 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
15466 }
15467
15468 return error;
15469}
15470
edc3d884
MK
15471#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15472
c4a1d9e4 15473void
edc3d884 15474intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
15475 struct drm_device *dev,
15476 struct intel_display_error_state *error)
15477{
055e393f 15478 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
15479 int i;
15480
63b66e5b
CW
15481 if (!error)
15482 return;
15483
edc3d884 15484 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 15485 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 15486 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 15487 error->power_well_driver);
055e393f 15488 for_each_pipe(dev_priv, i) {
edc3d884 15489 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
15490 err_printf(m, " Power: %s\n",
15491 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 15492 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 15493 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
15494
15495 err_printf(m, "Plane [%d]:\n", i);
15496 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15497 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 15498 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
15499 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15500 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 15501 }
4b71a570 15502 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 15503 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 15504 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
15505 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15506 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
15507 }
15508
edc3d884
MK
15509 err_printf(m, "Cursor [%d]:\n", i);
15510 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15511 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15512 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 15513 }
63b66e5b
CW
15514
15515 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 15516 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 15517 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
15518 err_printf(m, " Power: %s\n",
15519 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
15520 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15521 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15522 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15523 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15524 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15525 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15526 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15527 }
c4a1d9e4 15528}
e2fcdaa9
VS
15529
15530void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15531{
15532 struct intel_crtc *crtc;
15533
15534 for_each_intel_crtc(dev, crtc) {
15535 struct intel_unpin_work *work;
e2fcdaa9 15536
5e2d7afc 15537 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
15538
15539 work = crtc->unpin_work;
15540
15541 if (work && work->event &&
15542 work->event->base.file_priv == file) {
15543 kfree(work->event);
15544 work->event = NULL;
15545 }
15546
5e2d7afc 15547 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
15548 }
15549}
This page took 4.196926 seconds and 5 git commands to generate.