drm/i915/skl: Adjust assert_sprites_disabled()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
1ae0d137 103static void chv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415{
416 struct drm_device *dev = crtc->dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, crtc, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
1b894b59
CW
426static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427 int refclk)
2c07245f 428{
b91ad0ec 429 struct drm_device *dev = crtc->dev;
2c07245f 430 const intel_limit_t *limit;
b91ad0ec
ZW
431
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 433 if (intel_is_dual_link_lvds(dev)) {
1b894b59 434 if (refclk == 100000)
b91ad0ec
ZW
435 limit = &intel_limits_ironlake_dual_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_dual_lvds;
438 } else {
1b894b59 439 if (refclk == 100000)
b91ad0ec
ZW
440 limit = &intel_limits_ironlake_single_lvds_100m;
441 else
442 limit = &intel_limits_ironlake_single_lvds;
443 }
c6bb3538 444 } else
b91ad0ec 445 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
446
447 return limit;
448}
449
044c7c41
ML
450static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451{
452 struct drm_device *dev = crtc->dev;
044c7c41
ML
453 const intel_limit_t *limit;
454
455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 456 if (intel_is_dual_link_lvds(dev))
e4b36699 457 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 458 else
e4b36699 459 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 462 limit = &intel_limits_g4x_hdmi;
044c7c41 463 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 464 limit = &intel_limits_g4x_sdvo;
044c7c41 465 } else /* The option is for other outputs */
e4b36699 466 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
467
468 return limit;
469}
470
1b894b59 471static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
472{
473 struct drm_device *dev = crtc->dev;
474 const intel_limit_t *limit;
475
bad720ff 476 if (HAS_PCH_SPLIT(dev))
1b894b59 477 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 478 else if (IS_G4X(dev)) {
044c7c41 479 limit = intel_g4x_limit(crtc);
f2b115e6 480 } else if (IS_PINEVIEW(dev)) {
2177832f 481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 482 limit = &intel_limits_pineview_lvds;
2177832f 483 else
f2b115e6 484 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
485 } else if (IS_CHERRYVIEW(dev)) {
486 limit = &intel_limits_chv;
a0c4da24 487 } else if (IS_VALLEYVIEW(dev)) {
dc730512 488 limit = &intel_limits_vlv;
a6c45cf0
CW
489 } else if (!IS_GEN2(dev)) {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491 limit = &intel_limits_i9xx_lvds;
492 else
493 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
494 } else {
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 496 limit = &intel_limits_i8xx_lvds;
5d536e28 497 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 498 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
499 else
500 limit = &intel_limits_i8xx_dac;
79e53945
JB
501 }
502 return limit;
503}
504
f2b115e6
AJ
505/* m1 is reserved as 0 in Pineview, n is a ring counter */
506static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 507{
2177832f
SL
508 clock->m = clock->m2 + 2;
509 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
510 if (WARN_ON(clock->n == 0 || clock->p == 0))
511 return;
fb03ac01
VS
512 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
514}
515
7429e9d4
DV
516static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517{
518 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519}
520
ac58c3f0 521static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 522{
7429e9d4 523 clock->m = i9xx_dpll_compute_m(clock);
79e53945 524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
529}
530
ef9348c8
CML
531static void chv_clock(int refclk, intel_clock_t *clock)
532{
533 clock->m = clock->m1 * clock->m2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
536 return;
537 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538 clock->n << 22);
539 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540}
541
7c04d1d9 542#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
543/**
544 * Returns whether the given set of divisors are valid for a given refclk with
545 * the given connectors.
546 */
547
1b894b59
CW
548static bool intel_PLL_is_valid(struct drm_device *dev,
549 const intel_limit_t *limit,
550 const intel_clock_t *clock)
79e53945 551{
f01b7962
VS
552 if (clock->n < limit->n.min || limit->n.max < clock->n)
553 INTELPllInvalid("n out of range\n");
79e53945 554 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 555 INTELPllInvalid("p1 out of range\n");
79e53945 556 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 557 INTELPllInvalid("m2 out of range\n");
79e53945 558 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 559 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
560
561 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562 if (clock->m1 <= clock->m2)
563 INTELPllInvalid("m1 <= m2\n");
564
565 if (!IS_VALLEYVIEW(dev)) {
566 if (clock->p < limit->p.min || limit->p.max < clock->p)
567 INTELPllInvalid("p out of range\n");
568 if (clock->m < limit->m.min || limit->m.max < clock->m)
569 INTELPllInvalid("m out of range\n");
570 }
571
79e53945 572 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 573 INTELPllInvalid("vco out of range\n");
79e53945
JB
574 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575 * connector, etc., rather than just a single range.
576 */
577 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 578 INTELPllInvalid("dot out of range\n");
79e53945
JB
579
580 return true;
581}
582
d4906093 583static bool
ee9300bb 584i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
585 int target, int refclk, intel_clock_t *match_clock,
586 intel_clock_t *best_clock)
79e53945
JB
587{
588 struct drm_device *dev = crtc->dev;
79e53945 589 intel_clock_t clock;
79e53945
JB
590 int err = target;
591
a210b028 592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 593 /*
a210b028
DV
594 * For LVDS just rely on its current settings for dual-channel.
595 * We haven't figured out how to reliably set up different
596 * single/dual channel state, if we even can.
79e53945 597 */
1974cad0 598 if (intel_is_dual_link_lvds(dev))
79e53945
JB
599 clock.p2 = limit->p2.p2_fast;
600 else
601 clock.p2 = limit->p2.p2_slow;
602 } else {
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
605 else
606 clock.p2 = limit->p2.p2_fast;
607 }
608
0206e353 609 memset(best_clock, 0, sizeof(*best_clock));
79e53945 610
42158660
ZY
611 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612 clock.m1++) {
613 for (clock.m2 = limit->m2.min;
614 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 615 if (clock.m2 >= clock.m1)
42158660
ZY
616 break;
617 for (clock.n = limit->n.min;
618 clock.n <= limit->n.max; clock.n++) {
619 for (clock.p1 = limit->p1.min;
620 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
621 int this_err;
622
ac58c3f0
DV
623 i9xx_clock(refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627 if (match_clock &&
628 clock.p != match_clock->p)
629 continue;
630
631 this_err = abs(clock.dot - target);
632 if (this_err < err) {
633 *best_clock = clock;
634 err = this_err;
635 }
636 }
637 }
638 }
639 }
640
641 return (err != target);
642}
643
644static bool
ee9300bb
DV
645pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646 int target, int refclk, intel_clock_t *match_clock,
647 intel_clock_t *best_clock)
79e53945
JB
648{
649 struct drm_device *dev = crtc->dev;
79e53945 650 intel_clock_t clock;
79e53945
JB
651 int err = target;
652
a210b028 653 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 654 /*
a210b028
DV
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
79e53945 658 */
1974cad0 659 if (intel_is_dual_link_lvds(dev))
79e53945
JB
660 clock.p2 = limit->p2.p2_fast;
661 else
662 clock.p2 = limit->p2.p2_slow;
663 } else {
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
666 else
667 clock.p2 = limit->p2.p2_fast;
668 }
669
0206e353 670 memset(best_clock, 0, sizeof(*best_clock));
79e53945 671
42158660
ZY
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673 clock.m1++) {
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
676 for (clock.n = limit->n.min;
677 clock.n <= limit->n.max; clock.n++) {
678 for (clock.p1 = limit->p1.min;
679 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
680 int this_err;
681
ac58c3f0 682 pineview_clock(refclk, &clock);
1b894b59
CW
683 if (!intel_PLL_is_valid(dev, limit,
684 &clock))
79e53945 685 continue;
cec2f356
SP
686 if (match_clock &&
687 clock.p != match_clock->p)
688 continue;
79e53945
JB
689
690 this_err = abs(clock.dot - target);
691 if (this_err < err) {
692 *best_clock = clock;
693 err = this_err;
694 }
695 }
696 }
697 }
698 }
699
700 return (err != target);
701}
702
d4906093 703static bool
ee9300bb
DV
704g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
d4906093
ML
707{
708 struct drm_device *dev = crtc->dev;
d4906093
ML
709 intel_clock_t clock;
710 int max_n;
711 bool found;
6ba770dc
AJ
712 /* approximately equals target * 0.00585 */
713 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
714 found = false;
715
716 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 717 if (intel_is_dual_link_lvds(dev))
d4906093
ML
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
f77f13e2 730 /* based on hardware requirement, prefer smaller n to precision */
d4906093 731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 732 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
ac58c3f0 741 i9xx_clock(refclk, &clock);
1b894b59
CW
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
d4906093 744 continue;
1b894b59
CW
745
746 this_err = abs(clock.dot - target);
d4906093
ML
747 if (this_err < err_most) {
748 *best_clock = clock;
749 err_most = this_err;
750 max_n = clock.n;
751 found = true;
752 }
753 }
754 }
755 }
756 }
2c07245f
ZW
757 return found;
758}
759
a0c4da24 760static bool
ee9300bb
DV
761vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
a0c4da24 764{
f01b7962 765 struct drm_device *dev = crtc->dev;
6b4bf1c4 766 intel_clock_t clock;
69e4f900 767 unsigned int bestppm = 1000000;
27e639bf
VS
768 /* min update 19.2 MHz */
769 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 770 bool found = false;
a0c4da24 771
6b4bf1c4
VS
772 target *= 5; /* fast clock */
773
774 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
775
776 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 778 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 779 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 780 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 781 clock.p = clock.p1 * clock.p2;
a0c4da24 782 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
784 unsigned int ppm, diff;
785
6b4bf1c4
VS
786 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787 refclk * clock.m1);
788
789 vlv_clock(refclk, &clock);
43b0ac53 790
f01b7962
VS
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
43b0ac53
VS
793 continue;
794
6b4bf1c4
VS
795 diff = abs(clock.dot - target);
796 ppm = div_u64(1000000ULL * diff, target);
797
798 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 799 bestppm = 0;
6b4bf1c4 800 *best_clock = clock;
49e497ef 801 found = true;
43b0ac53 802 }
6b4bf1c4 803
c686122c 804 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 805 bestppm = ppm;
6b4bf1c4 806 *best_clock = clock;
49e497ef 807 found = true;
a0c4da24
JB
808 }
809 }
810 }
811 }
812 }
a0c4da24 813
49e497ef 814 return found;
a0c4da24 815}
a4fc5ed6 816
ef9348c8
CML
817static bool
818chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819 int target, int refclk, intel_clock_t *match_clock,
820 intel_clock_t *best_clock)
821{
822 struct drm_device *dev = crtc->dev;
823 intel_clock_t clock;
824 uint64_t m2;
825 int found = false;
826
827 memset(best_clock, 0, sizeof(*best_clock));
828
829 /*
830 * Based on hardware doc, the n always set to 1, and m1 always
831 * set to 2. If requires to support 200Mhz refclk, we need to
832 * revisit this because n may not 1 anymore.
833 */
834 clock.n = 1, clock.m1 = 2;
835 target *= 5; /* fast clock */
836
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast;
839 clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842 clock.p = clock.p1 * clock.p2;
843
844 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845 clock.n) << 22, refclk * clock.m1);
846
847 if (m2 > INT_MAX/clock.m1)
848 continue;
849
850 clock.m2 = m2;
851
852 chv_clock(refclk, &clock);
853
854 if (!intel_PLL_is_valid(dev, limit, &clock))
855 continue;
856
857 /* based on hardware requirement, prefer bigger p
858 */
859 if (clock.p > best_clock->p) {
860 *best_clock = clock;
861 found = true;
862 }
863 }
864 }
865
866 return found;
867}
868
20ddf665
VS
869bool intel_crtc_active(struct drm_crtc *crtc)
870{
871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873 /* Be paranoid as we can arrive here with only partial
874 * state retrieved from the hardware during setup.
875 *
241bfc38 876 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
877 * as Haswell has gained clock readout/fastboot support.
878 *
66e514c1 879 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
880 * properly reconstruct framebuffers.
881 */
f4510a27 882 return intel_crtc->active && crtc->primary->fb &&
241bfc38 883 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
884}
885
a5c961d1
PZ
886enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887 enum pipe pipe)
888{
889 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
3b117c8f 892 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
893}
894
57e22f4a 895static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
896{
897 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 898 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
899
900 frame = I915_READ(frame_reg);
901
902 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
31e4b89a
DL
903 WARN(1, "vblank wait on pipe %c timed out\n",
904 pipe_name(pipe));
a928d536
PZ
905}
906
9d0498a2
JB
907/**
908 * intel_wait_for_vblank - wait for vblank on a given pipe
909 * @dev: drm device
910 * @pipe: pipe to wait for
911 *
912 * Wait for vblank to occur on a given pipe. Needed for various bits of
913 * mode setting code.
914 */
915void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 916{
9d0498a2 917 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 918 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 919
57e22f4a
VS
920 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
921 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
922 return;
923 }
924
300387c0
CW
925 /* Clear existing vblank status. Note this will clear any other
926 * sticky status fields as well.
927 *
928 * This races with i915_driver_irq_handler() with the result
929 * that either function could miss a vblank event. Here it is not
930 * fatal, as we will either wait upon the next vblank interrupt or
931 * timeout. Generally speaking intel_wait_for_vblank() is only
932 * called during modeset at which time the GPU should be idle and
933 * should *not* be performing page flips and thus not waiting on
934 * vblanks...
935 * Currently, the result of us stealing a vblank from the irq
936 * handler is that a single frame will be skipped during swapbuffers.
937 */
938 I915_WRITE(pipestat_reg,
939 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
940
9d0498a2 941 /* Wait for vblank interrupt bit to set */
481b6af3
CW
942 if (wait_for(I915_READ(pipestat_reg) &
943 PIPE_VBLANK_INTERRUPT_STATUS,
944 50))
31e4b89a
DL
945 DRM_DEBUG_KMS("vblank wait on pipe %c timed out\n",
946 pipe_name(pipe));
9d0498a2
JB
947}
948
fbf49ea2
VS
949static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
950{
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 reg = PIPEDSL(pipe);
953 u32 line1, line2;
954 u32 line_mask;
955
956 if (IS_GEN2(dev))
957 line_mask = DSL_LINEMASK_GEN2;
958 else
959 line_mask = DSL_LINEMASK_GEN3;
960
961 line1 = I915_READ(reg) & line_mask;
962 mdelay(5);
963 line2 = I915_READ(reg) & line_mask;
964
965 return line1 == line2;
966}
967
ab7ad7f6
KP
968/*
969 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 970 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
971 *
972 * After disabling a pipe, we can't wait for vblank in the usual way,
973 * spinning on the vblank interrupt status bit, since we won't actually
974 * see an interrupt when the pipe is disabled.
975 *
ab7ad7f6
KP
976 * On Gen4 and above:
977 * wait for the pipe register state bit to turn off
978 *
979 * Otherwise:
980 * wait for the display line value to settle (it usually
981 * ends up stopping at the start of the next frame).
58e10eb9 982 *
9d0498a2 983 */
575f7ab7 984static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 985{
575f7ab7 986 struct drm_device *dev = crtc->base.dev;
9d0498a2 987 struct drm_i915_private *dev_priv = dev->dev_private;
575f7ab7
VS
988 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
989 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
990
991 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 992 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
993
994 /* Wait for the Pipe State to go off */
58e10eb9
CW
995 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
996 100))
284637d9 997 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 998 } else {
ab7ad7f6 999 /* Wait for the display line to settle */
fbf49ea2 1000 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1001 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1002 }
79e53945
JB
1003}
1004
b0ea7d37
DL
1005/*
1006 * ibx_digital_port_connected - is the specified port connected?
1007 * @dev_priv: i915 private structure
1008 * @port: the port to test
1009 *
1010 * Returns true if @port is connected, false otherwise.
1011 */
1012bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1013 struct intel_digital_port *port)
1014{
1015 u32 bit;
1016
c36346e3 1017 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1018 switch (port->port) {
c36346e3
DL
1019 case PORT_B:
1020 bit = SDE_PORTB_HOTPLUG;
1021 break;
1022 case PORT_C:
1023 bit = SDE_PORTC_HOTPLUG;
1024 break;
1025 case PORT_D:
1026 bit = SDE_PORTD_HOTPLUG;
1027 break;
1028 default:
1029 return true;
1030 }
1031 } else {
eba905b2 1032 switch (port->port) {
c36346e3
DL
1033 case PORT_B:
1034 bit = SDE_PORTB_HOTPLUG_CPT;
1035 break;
1036 case PORT_C:
1037 bit = SDE_PORTC_HOTPLUG_CPT;
1038 break;
1039 case PORT_D:
1040 bit = SDE_PORTD_HOTPLUG_CPT;
1041 break;
1042 default:
1043 return true;
1044 }
b0ea7d37
DL
1045 }
1046
1047 return I915_READ(SDEISR) & bit;
1048}
1049
b24e7179
JB
1050static const char *state_string(bool enabled)
1051{
1052 return enabled ? "on" : "off";
1053}
1054
1055/* Only for pre-ILK configs */
55607e8a
DV
1056void assert_pll(struct drm_i915_private *dev_priv,
1057 enum pipe pipe, bool state)
b24e7179
JB
1058{
1059 int reg;
1060 u32 val;
1061 bool cur_state;
1062
1063 reg = DPLL(pipe);
1064 val = I915_READ(reg);
1065 cur_state = !!(val & DPLL_VCO_ENABLE);
1066 WARN(cur_state != state,
1067 "PLL state assertion failure (expected %s, current %s)\n",
1068 state_string(state), state_string(cur_state));
1069}
b24e7179 1070
23538ef1
JN
1071/* XXX: the dsi pll is shared between MIPI DSI ports */
1072static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1073{
1074 u32 val;
1075 bool cur_state;
1076
1077 mutex_lock(&dev_priv->dpio_lock);
1078 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1079 mutex_unlock(&dev_priv->dpio_lock);
1080
1081 cur_state = val & DSI_PLL_VCO_EN;
1082 WARN(cur_state != state,
1083 "DSI PLL state assertion failure (expected %s, current %s)\n",
1084 state_string(state), state_string(cur_state));
1085}
1086#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1087#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1088
55607e8a 1089struct intel_shared_dpll *
e2b78267
DV
1090intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1091{
1092 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1093
a43f6e0f 1094 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1095 return NULL;
1096
a43f6e0f 1097 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1098}
1099
040484af 1100/* For ILK+ */
55607e8a
DV
1101void assert_shared_dpll(struct drm_i915_private *dev_priv,
1102 struct intel_shared_dpll *pll,
1103 bool state)
040484af 1104{
040484af 1105 bool cur_state;
5358901f 1106 struct intel_dpll_hw_state hw_state;
040484af 1107
92b27b08 1108 if (WARN (!pll,
46edb027 1109 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1110 return;
ee7b9f93 1111
5358901f 1112 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1113 WARN(cur_state != state,
5358901f
DV
1114 "%s assertion failure (expected %s, current %s)\n",
1115 pll->name, state_string(state), state_string(cur_state));
040484af 1116}
040484af
JB
1117
1118static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1119 enum pipe pipe, bool state)
1120{
1121 int reg;
1122 u32 val;
1123 bool cur_state;
ad80a810
PZ
1124 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1125 pipe);
040484af 1126
affa9354
PZ
1127 if (HAS_DDI(dev_priv->dev)) {
1128 /* DDI does not have a specific FDI_TX register */
ad80a810 1129 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1130 val = I915_READ(reg);
ad80a810 1131 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1132 } else {
1133 reg = FDI_TX_CTL(pipe);
1134 val = I915_READ(reg);
1135 cur_state = !!(val & FDI_TX_ENABLE);
1136 }
040484af
JB
1137 WARN(cur_state != state,
1138 "FDI TX state assertion failure (expected %s, current %s)\n",
1139 state_string(state), state_string(cur_state));
1140}
1141#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1142#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1143
1144static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146{
1147 int reg;
1148 u32 val;
1149 bool cur_state;
1150
d63fa0dc
PZ
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1154 WARN(cur_state != state,
1155 "FDI RX state assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1157}
1158#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1159#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1160
1161static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1162 enum pipe pipe)
1163{
1164 int reg;
1165 u32 val;
1166
1167 /* ILK FDI PLL is always enabled */
3d13ef2e 1168 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1169 return;
1170
bf507ef7 1171 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1172 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1173 return;
1174
040484af
JB
1175 reg = FDI_TX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1178}
1179
55607e8a
DV
1180void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1181 enum pipe pipe, bool state)
040484af
JB
1182{
1183 int reg;
1184 u32 val;
55607e8a 1185 bool cur_state;
040484af
JB
1186
1187 reg = FDI_RX_CTL(pipe);
1188 val = I915_READ(reg);
55607e8a
DV
1189 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1190 WARN(cur_state != state,
1191 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1192 state_string(state), state_string(cur_state));
040484af
JB
1193}
1194
ea0760cf
JB
1195static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1196 enum pipe pipe)
1197{
bedd4dba
JN
1198 struct drm_device *dev = dev_priv->dev;
1199 int pp_reg;
ea0760cf
JB
1200 u32 val;
1201 enum pipe panel_pipe = PIPE_A;
0de3b485 1202 bool locked = true;
ea0760cf 1203
bedd4dba
JN
1204 if (WARN_ON(HAS_DDI(dev)))
1205 return;
1206
1207 if (HAS_PCH_SPLIT(dev)) {
1208 u32 port_sel;
1209
ea0760cf 1210 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1211 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1212
1213 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1214 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1215 panel_pipe = PIPE_B;
1216 /* XXX: else fix for eDP */
1217 } else if (IS_VALLEYVIEW(dev)) {
1218 /* presumably write lock depends on pipe, not port select */
1219 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1220 panel_pipe = pipe;
ea0760cf
JB
1221 } else {
1222 pp_reg = PP_CONTROL;
bedd4dba
JN
1223 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1224 panel_pipe = PIPE_B;
ea0760cf
JB
1225 }
1226
1227 val = I915_READ(pp_reg);
1228 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1229 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1230 locked = false;
1231
ea0760cf
JB
1232 WARN(panel_pipe == pipe && locked,
1233 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1234 pipe_name(pipe));
ea0760cf
JB
1235}
1236
93ce0ba6
JN
1237static void assert_cursor(struct drm_i915_private *dev_priv,
1238 enum pipe pipe, bool state)
1239{
1240 struct drm_device *dev = dev_priv->dev;
1241 bool cur_state;
1242
d9d82081 1243 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1244 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1245 else
5efb3e28 1246 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1247
1248 WARN(cur_state != state,
1249 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1251}
1252#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1253#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1254
b840d907
JB
1255void assert_pipe(struct drm_i915_private *dev_priv,
1256 enum pipe pipe, bool state)
b24e7179
JB
1257{
1258 int reg;
1259 u32 val;
63d7bbe9 1260 bool cur_state;
702e7a56
PZ
1261 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1262 pipe);
b24e7179 1263
b6b5d049
VS
1264 /* if we need the pipe quirk it must be always on */
1265 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1266 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1267 state = true;
1268
da7e29bd 1269 if (!intel_display_power_enabled(dev_priv,
b97186f0 1270 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1271 cur_state = false;
1272 } else {
1273 reg = PIPECONF(cpu_transcoder);
1274 val = I915_READ(reg);
1275 cur_state = !!(val & PIPECONF_ENABLE);
1276 }
1277
63d7bbe9
JB
1278 WARN(cur_state != state,
1279 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1280 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1281}
1282
931872fc
CW
1283static void assert_plane(struct drm_i915_private *dev_priv,
1284 enum plane plane, bool state)
b24e7179
JB
1285{
1286 int reg;
1287 u32 val;
931872fc 1288 bool cur_state;
b24e7179
JB
1289
1290 reg = DSPCNTR(plane);
1291 val = I915_READ(reg);
931872fc
CW
1292 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1293 WARN(cur_state != state,
1294 "plane %c assertion failure (expected %s, current %s)\n",
1295 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1296}
1297
931872fc
CW
1298#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1299#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1300
b24e7179
JB
1301static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1302 enum pipe pipe)
1303{
653e1026 1304 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1305 int reg, i;
1306 u32 val;
1307 int cur_pipe;
1308
653e1026
VS
1309 /* Primary planes are fixed to pipes on gen4+ */
1310 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1311 reg = DSPCNTR(pipe);
1312 val = I915_READ(reg);
83f26f16 1313 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1314 "plane %c assertion failure, should be disabled but not\n",
1315 plane_name(pipe));
19ec1358 1316 return;
28c05794 1317 }
19ec1358 1318
b24e7179 1319 /* Need to check both planes against the pipe */
055e393f 1320 for_each_pipe(dev_priv, i) {
b24e7179
JB
1321 reg = DSPCNTR(i);
1322 val = I915_READ(reg);
1323 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1324 DISPPLANE_SEL_PIPE_SHIFT;
1325 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1326 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1327 plane_name(i), pipe_name(pipe));
b24e7179
JB
1328 }
1329}
1330
19332d7a
JB
1331static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe)
1333{
20674eef 1334 struct drm_device *dev = dev_priv->dev;
1fe47785 1335 int reg, sprite;
19332d7a
JB
1336 u32 val;
1337
7feb8b88
DL
1338 if (INTEL_INFO(dev)->gen >= 9) {
1339 for_each_sprite(pipe, sprite) {
1340 val = I915_READ(PLANE_CTL(pipe, sprite));
1341 WARN(val & PLANE_CTL_ENABLE,
1342 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1343 sprite, pipe_name(pipe));
1344 }
1345 } else if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1346 for_each_sprite(pipe, sprite) {
1347 reg = SPCNTR(pipe, sprite);
20674eef 1348 val = I915_READ(reg);
83f26f16 1349 WARN(val & SP_ENABLE,
20674eef 1350 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1351 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1352 }
1353 } else if (INTEL_INFO(dev)->gen >= 7) {
1354 reg = SPRCTL(pipe);
19332d7a 1355 val = I915_READ(reg);
83f26f16 1356 WARN(val & SPRITE_ENABLE,
06da8da2 1357 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1358 plane_name(pipe), pipe_name(pipe));
1359 } else if (INTEL_INFO(dev)->gen >= 5) {
1360 reg = DVSCNTR(pipe);
19332d7a 1361 val = I915_READ(reg);
83f26f16 1362 WARN(val & DVS_ENABLE,
06da8da2 1363 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1364 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1365 }
1366}
1367
08c71e5e
VS
1368static void assert_vblank_disabled(struct drm_crtc *crtc)
1369{
1370 if (WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1371 drm_crtc_vblank_put(crtc);
1372}
1373
89eff4be 1374static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1375{
1376 u32 val;
1377 bool enabled;
1378
89eff4be 1379 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1380
92f2584a
JB
1381 val = I915_READ(PCH_DREF_CONTROL);
1382 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1383 DREF_SUPERSPREAD_SOURCE_MASK));
1384 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1385}
1386
ab9412ba
DV
1387static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe)
92f2584a
JB
1389{
1390 int reg;
1391 u32 val;
1392 bool enabled;
1393
ab9412ba 1394 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1395 val = I915_READ(reg);
1396 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1397 WARN(enabled,
1398 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1399 pipe_name(pipe));
92f2584a
JB
1400}
1401
4e634389
KP
1402static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1403 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1404{
1405 if ((val & DP_PORT_EN) == 0)
1406 return false;
1407
1408 if (HAS_PCH_CPT(dev_priv->dev)) {
1409 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1410 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1411 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1412 return false;
44f37d1f
CML
1413 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1414 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1415 return false;
f0575e92
KP
1416 } else {
1417 if ((val & DP_PIPE_MASK) != (pipe << 30))
1418 return false;
1419 }
1420 return true;
1421}
1422
1519b995
KP
1423static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1424 enum pipe pipe, u32 val)
1425{
dc0fa718 1426 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1427 return false;
1428
1429 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1430 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1431 return false;
44f37d1f
CML
1432 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1433 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1434 return false;
1519b995 1435 } else {
dc0fa718 1436 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1437 return false;
1438 }
1439 return true;
1440}
1441
1442static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1443 enum pipe pipe, u32 val)
1444{
1445 if ((val & LVDS_PORT_EN) == 0)
1446 return false;
1447
1448 if (HAS_PCH_CPT(dev_priv->dev)) {
1449 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1450 return false;
1451 } else {
1452 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1453 return false;
1454 }
1455 return true;
1456}
1457
1458static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1459 enum pipe pipe, u32 val)
1460{
1461 if ((val & ADPA_DAC_ENABLE) == 0)
1462 return false;
1463 if (HAS_PCH_CPT(dev_priv->dev)) {
1464 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1465 return false;
1466 } else {
1467 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1468 return false;
1469 }
1470 return true;
1471}
1472
291906f1 1473static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1474 enum pipe pipe, int reg, u32 port_sel)
291906f1 1475{
47a05eca 1476 u32 val = I915_READ(reg);
4e634389 1477 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1478 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1479 reg, pipe_name(pipe));
de9a35ab 1480
75c5da27
DV
1481 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1482 && (val & DP_PIPEB_SELECT),
de9a35ab 1483 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1484}
1485
1486static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1487 enum pipe pipe, int reg)
1488{
47a05eca 1489 u32 val = I915_READ(reg);
b70ad586 1490 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1491 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1492 reg, pipe_name(pipe));
de9a35ab 1493
dc0fa718 1494 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1495 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1496 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1497}
1498
1499static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1500 enum pipe pipe)
1501{
1502 int reg;
1503 u32 val;
291906f1 1504
f0575e92
KP
1505 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1506 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1507 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1508
1509 reg = PCH_ADPA;
1510 val = I915_READ(reg);
b70ad586 1511 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1512 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1513 pipe_name(pipe));
291906f1
JB
1514
1515 reg = PCH_LVDS;
1516 val = I915_READ(reg);
b70ad586 1517 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1518 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1519 pipe_name(pipe));
291906f1 1520
e2debe91
PZ
1521 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1522 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1523 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1524}
1525
40e9cf64
JB
1526static void intel_init_dpio(struct drm_device *dev)
1527{
1528 struct drm_i915_private *dev_priv = dev->dev_private;
1529
1530 if (!IS_VALLEYVIEW(dev))
1531 return;
1532
a09caddd
CML
1533 /*
1534 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1535 * CHV x1 PHY (DP/HDMI D)
1536 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1537 */
1538 if (IS_CHERRYVIEW(dev)) {
1539 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1540 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1541 } else {
1542 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1543 }
5382f5f3
JB
1544}
1545
426115cf 1546static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1547{
426115cf
DV
1548 struct drm_device *dev = crtc->base.dev;
1549 struct drm_i915_private *dev_priv = dev->dev_private;
1550 int reg = DPLL(crtc->pipe);
1551 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1552
426115cf 1553 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1554
1555 /* No really, not for ILK+ */
1556 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1557
1558 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1559 if (IS_MOBILE(dev_priv->dev))
426115cf 1560 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1561
426115cf
DV
1562 I915_WRITE(reg, dpll);
1563 POSTING_READ(reg);
1564 udelay(150);
1565
1566 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1567 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1568
1569 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1570 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1571
1572 /* We do this three times for luck */
426115cf 1573 I915_WRITE(reg, dpll);
87442f73
DV
1574 POSTING_READ(reg);
1575 udelay(150); /* wait for warmup */
426115cf 1576 I915_WRITE(reg, dpll);
87442f73
DV
1577 POSTING_READ(reg);
1578 udelay(150); /* wait for warmup */
426115cf 1579 I915_WRITE(reg, dpll);
87442f73
DV
1580 POSTING_READ(reg);
1581 udelay(150); /* wait for warmup */
1582}
1583
9d556c99
CML
1584static void chv_enable_pll(struct intel_crtc *crtc)
1585{
1586 struct drm_device *dev = crtc->base.dev;
1587 struct drm_i915_private *dev_priv = dev->dev_private;
1588 int pipe = crtc->pipe;
1589 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1590 u32 tmp;
1591
1592 assert_pipe_disabled(dev_priv, crtc->pipe);
1593
1594 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1595
1596 mutex_lock(&dev_priv->dpio_lock);
1597
1598 /* Enable back the 10bit clock to display controller */
1599 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1600 tmp |= DPIO_DCLKP_EN;
1601 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1602
1603 /*
1604 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1605 */
1606 udelay(1);
1607
1608 /* Enable PLL */
a11b0703 1609 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1610
1611 /* Check PLL is locked */
a11b0703 1612 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1613 DRM_ERROR("PLL %d failed to lock\n", pipe);
1614
a11b0703
VS
1615 /* not sure when this should be written */
1616 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1617 POSTING_READ(DPLL_MD(pipe));
1618
9d556c99
CML
1619 mutex_unlock(&dev_priv->dpio_lock);
1620}
1621
66e3d5c0 1622static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1623{
66e3d5c0
DV
1624 struct drm_device *dev = crtc->base.dev;
1625 struct drm_i915_private *dev_priv = dev->dev_private;
1626 int reg = DPLL(crtc->pipe);
1627 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1628
66e3d5c0 1629 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1630
63d7bbe9 1631 /* No really, not for ILK+ */
3d13ef2e 1632 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1633
1634 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1635 if (IS_MOBILE(dev) && !IS_I830(dev))
1636 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1637
66e3d5c0
DV
1638 I915_WRITE(reg, dpll);
1639
1640 /* Wait for the clocks to stabilize. */
1641 POSTING_READ(reg);
1642 udelay(150);
1643
1644 if (INTEL_INFO(dev)->gen >= 4) {
1645 I915_WRITE(DPLL_MD(crtc->pipe),
1646 crtc->config.dpll_hw_state.dpll_md);
1647 } else {
1648 /* The pixel multiplier can only be updated once the
1649 * DPLL is enabled and the clocks are stable.
1650 *
1651 * So write it again.
1652 */
1653 I915_WRITE(reg, dpll);
1654 }
63d7bbe9
JB
1655
1656 /* We do this three times for luck */
66e3d5c0 1657 I915_WRITE(reg, dpll);
63d7bbe9
JB
1658 POSTING_READ(reg);
1659 udelay(150); /* wait for warmup */
66e3d5c0 1660 I915_WRITE(reg, dpll);
63d7bbe9
JB
1661 POSTING_READ(reg);
1662 udelay(150); /* wait for warmup */
66e3d5c0 1663 I915_WRITE(reg, dpll);
63d7bbe9
JB
1664 POSTING_READ(reg);
1665 udelay(150); /* wait for warmup */
1666}
1667
1668/**
50b44a44 1669 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1670 * @dev_priv: i915 private structure
1671 * @pipe: pipe PLL to disable
1672 *
1673 * Disable the PLL for @pipe, making sure the pipe is off first.
1674 *
1675 * Note! This is for pre-ILK only.
1676 */
50b44a44 1677static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1678{
b6b5d049
VS
1679 /* Don't disable pipe or pipe PLLs if needed */
1680 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1681 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1682 return;
1683
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
1686
50b44a44
DV
1687 I915_WRITE(DPLL(pipe), 0);
1688 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1689}
1690
f6071166
JB
1691static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1692{
1693 u32 val = 0;
1694
1695 /* Make sure the pipe isn't still relying on us */
1696 assert_pipe_disabled(dev_priv, pipe);
1697
e5cbfbfb
ID
1698 /*
1699 * Leave integrated clock source and reference clock enabled for pipe B.
1700 * The latter is needed for VGA hotplug / manual detection.
1701 */
f6071166 1702 if (pipe == PIPE_B)
e5cbfbfb 1703 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1704 I915_WRITE(DPLL(pipe), val);
1705 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1706
1707}
1708
1709static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1710{
d752048d 1711 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1712 u32 val;
1713
a11b0703
VS
1714 /* Make sure the pipe isn't still relying on us */
1715 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1716
a11b0703 1717 /* Set PLL en = 0 */
d17ec4ce 1718 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1719 if (pipe != PIPE_A)
1720 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
d752048d
VS
1723
1724 mutex_lock(&dev_priv->dpio_lock);
1725
1726 /* Disable 10bit clock to display controller */
1727 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1728 val &= ~DPIO_DCLKP_EN;
1729 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1730
61407f6d
VS
1731 /* disable left/right clock distribution */
1732 if (pipe != PIPE_B) {
1733 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1734 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1735 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1736 } else {
1737 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1738 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1739 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1740 }
1741
d752048d 1742 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1743}
1744
e4607fcf
CML
1745void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1746 struct intel_digital_port *dport)
89b667f8
JB
1747{
1748 u32 port_mask;
00fc31b7 1749 int dpll_reg;
89b667f8 1750
e4607fcf
CML
1751 switch (dport->port) {
1752 case PORT_B:
89b667f8 1753 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1754 dpll_reg = DPLL(0);
e4607fcf
CML
1755 break;
1756 case PORT_C:
89b667f8 1757 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1758 dpll_reg = DPLL(0);
1759 break;
1760 case PORT_D:
1761 port_mask = DPLL_PORTD_READY_MASK;
1762 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1763 break;
1764 default:
1765 BUG();
1766 }
89b667f8 1767
00fc31b7 1768 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1769 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1770 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1771}
1772
b14b1055
DV
1773static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1774{
1775 struct drm_device *dev = crtc->base.dev;
1776 struct drm_i915_private *dev_priv = dev->dev_private;
1777 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1778
be19f0ff
CW
1779 if (WARN_ON(pll == NULL))
1780 return;
1781
b14b1055
DV
1782 WARN_ON(!pll->refcount);
1783 if (pll->active == 0) {
1784 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1785 WARN_ON(pll->on);
1786 assert_shared_dpll_disabled(dev_priv, pll);
1787
1788 pll->mode_set(dev_priv, pll);
1789 }
1790}
1791
92f2584a 1792/**
85b3894f 1793 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1794 * @dev_priv: i915 private structure
1795 * @pipe: pipe PLL to enable
1796 *
1797 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1798 * drives the transcoder clock.
1799 */
85b3894f 1800static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1801{
3d13ef2e
DL
1802 struct drm_device *dev = crtc->base.dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1804 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1805
87a875bb 1806 if (WARN_ON(pll == NULL))
48da64a8
CW
1807 return;
1808
1809 if (WARN_ON(pll->refcount == 0))
1810 return;
ee7b9f93 1811
74dd6928 1812 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1813 pll->name, pll->active, pll->on,
e2b78267 1814 crtc->base.base.id);
92f2584a 1815
cdbd2316
DV
1816 if (pll->active++) {
1817 WARN_ON(!pll->on);
e9d6944e 1818 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1819 return;
1820 }
f4a091c7 1821 WARN_ON(pll->on);
ee7b9f93 1822
bd2bb1b9
PZ
1823 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1824
46edb027 1825 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1826 pll->enable(dev_priv, pll);
ee7b9f93 1827 pll->on = true;
92f2584a
JB
1828}
1829
f6daaec2 1830static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1831{
3d13ef2e
DL
1832 struct drm_device *dev = crtc->base.dev;
1833 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1834 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1835
92f2584a 1836 /* PCH only available on ILK+ */
3d13ef2e 1837 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1838 if (WARN_ON(pll == NULL))
ee7b9f93 1839 return;
92f2584a 1840
48da64a8
CW
1841 if (WARN_ON(pll->refcount == 0))
1842 return;
7a419866 1843
46edb027
DV
1844 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1845 pll->name, pll->active, pll->on,
e2b78267 1846 crtc->base.base.id);
7a419866 1847
48da64a8 1848 if (WARN_ON(pll->active == 0)) {
e9d6944e 1849 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1850 return;
1851 }
1852
e9d6944e 1853 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1854 WARN_ON(!pll->on);
cdbd2316 1855 if (--pll->active)
7a419866 1856 return;
ee7b9f93 1857
46edb027 1858 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1859 pll->disable(dev_priv, pll);
ee7b9f93 1860 pll->on = false;
bd2bb1b9
PZ
1861
1862 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1863}
1864
b8a4f404
PZ
1865static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1866 enum pipe pipe)
040484af 1867{
23670b32 1868 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1869 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1871 uint32_t reg, val, pipeconf_val;
040484af
JB
1872
1873 /* PCH only available on ILK+ */
55522f37 1874 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1875
1876 /* Make sure PCH DPLL is enabled */
e72f9fbf 1877 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1878 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1879
1880 /* FDI must be feeding us bits for PCH ports */
1881 assert_fdi_tx_enabled(dev_priv, pipe);
1882 assert_fdi_rx_enabled(dev_priv, pipe);
1883
23670b32
DV
1884 if (HAS_PCH_CPT(dev)) {
1885 /* Workaround: Set the timing override bit before enabling the
1886 * pch transcoder. */
1887 reg = TRANS_CHICKEN2(pipe);
1888 val = I915_READ(reg);
1889 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1890 I915_WRITE(reg, val);
59c859d6 1891 }
23670b32 1892
ab9412ba 1893 reg = PCH_TRANSCONF(pipe);
040484af 1894 val = I915_READ(reg);
5f7f726d 1895 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1896
1897 if (HAS_PCH_IBX(dev_priv->dev)) {
1898 /*
1899 * make the BPC in transcoder be consistent with
1900 * that in pipeconf reg.
1901 */
dfd07d72
DV
1902 val &= ~PIPECONF_BPC_MASK;
1903 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1904 }
5f7f726d
PZ
1905
1906 val &= ~TRANS_INTERLACE_MASK;
1907 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1908 if (HAS_PCH_IBX(dev_priv->dev) &&
1909 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1910 val |= TRANS_LEGACY_INTERLACED_ILK;
1911 else
1912 val |= TRANS_INTERLACED;
5f7f726d
PZ
1913 else
1914 val |= TRANS_PROGRESSIVE;
1915
040484af
JB
1916 I915_WRITE(reg, val | TRANS_ENABLE);
1917 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1918 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1919}
1920
8fb033d7 1921static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1922 enum transcoder cpu_transcoder)
040484af 1923{
8fb033d7 1924 u32 val, pipeconf_val;
8fb033d7
PZ
1925
1926 /* PCH only available on ILK+ */
55522f37 1927 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1928
8fb033d7 1929 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1930 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1931 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1932
223a6fdf
PZ
1933 /* Workaround: set timing override bit. */
1934 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1935 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1936 I915_WRITE(_TRANSA_CHICKEN2, val);
1937
25f3ef11 1938 val = TRANS_ENABLE;
937bb610 1939 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1940
9a76b1c6
PZ
1941 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1942 PIPECONF_INTERLACED_ILK)
a35f2679 1943 val |= TRANS_INTERLACED;
8fb033d7
PZ
1944 else
1945 val |= TRANS_PROGRESSIVE;
1946
ab9412ba
DV
1947 I915_WRITE(LPT_TRANSCONF, val);
1948 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1949 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1950}
1951
b8a4f404
PZ
1952static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1953 enum pipe pipe)
040484af 1954{
23670b32
DV
1955 struct drm_device *dev = dev_priv->dev;
1956 uint32_t reg, val;
040484af
JB
1957
1958 /* FDI relies on the transcoder */
1959 assert_fdi_tx_disabled(dev_priv, pipe);
1960 assert_fdi_rx_disabled(dev_priv, pipe);
1961
291906f1
JB
1962 /* Ports must be off as well */
1963 assert_pch_ports_disabled(dev_priv, pipe);
1964
ab9412ba 1965 reg = PCH_TRANSCONF(pipe);
040484af
JB
1966 val = I915_READ(reg);
1967 val &= ~TRANS_ENABLE;
1968 I915_WRITE(reg, val);
1969 /* wait for PCH transcoder off, transcoder state */
1970 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1971 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1972
1973 if (!HAS_PCH_IBX(dev)) {
1974 /* Workaround: Clear the timing override chicken bit again. */
1975 reg = TRANS_CHICKEN2(pipe);
1976 val = I915_READ(reg);
1977 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1978 I915_WRITE(reg, val);
1979 }
040484af
JB
1980}
1981
ab4d966c 1982static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1983{
8fb033d7
PZ
1984 u32 val;
1985
ab9412ba 1986 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1987 val &= ~TRANS_ENABLE;
ab9412ba 1988 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1989 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1990 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1991 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1992
1993 /* Workaround: clear timing override bit. */
1994 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1995 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1996 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1997}
1998
b24e7179 1999/**
309cfea8 2000 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2001 * @crtc: crtc responsible for the pipe
b24e7179 2002 *
0372264a 2003 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2004 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2005 */
e1fdc473 2006static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2007{
0372264a
PZ
2008 struct drm_device *dev = crtc->base.dev;
2009 struct drm_i915_private *dev_priv = dev->dev_private;
2010 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2011 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2012 pipe);
1a240d4d 2013 enum pipe pch_transcoder;
b24e7179
JB
2014 int reg;
2015 u32 val;
2016
58c6eaa2 2017 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2018 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2019 assert_sprites_disabled(dev_priv, pipe);
2020
681e5811 2021 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2022 pch_transcoder = TRANSCODER_A;
2023 else
2024 pch_transcoder = pipe;
2025
b24e7179
JB
2026 /*
2027 * A pipe without a PLL won't actually be able to drive bits from
2028 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2029 * need the check.
2030 */
2031 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2032 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2033 assert_dsi_pll_enabled(dev_priv);
2034 else
2035 assert_pll_enabled(dev_priv, pipe);
040484af 2036 else {
30421c4f 2037 if (crtc->config.has_pch_encoder) {
040484af 2038 /* if driving the PCH, we need FDI enabled */
cc391bbb 2039 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2040 assert_fdi_tx_pll_enabled(dev_priv,
2041 (enum pipe) cpu_transcoder);
040484af
JB
2042 }
2043 /* FIXME: assert CPU port conditions for SNB+ */
2044 }
b24e7179 2045
702e7a56 2046 reg = PIPECONF(cpu_transcoder);
b24e7179 2047 val = I915_READ(reg);
7ad25d48 2048 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2049 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2050 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2051 return;
7ad25d48 2052 }
00d70b15
CW
2053
2054 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2055 POSTING_READ(reg);
b24e7179
JB
2056}
2057
2058/**
309cfea8 2059 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2060 * @crtc: crtc whose pipes is to be disabled
b24e7179 2061 *
575f7ab7
VS
2062 * Disable the pipe of @crtc, making sure that various hardware
2063 * specific requirements are met, if applicable, e.g. plane
2064 * disabled, panel fitter off, etc.
b24e7179
JB
2065 *
2066 * Will wait until the pipe has shut down before returning.
2067 */
575f7ab7 2068static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2069{
575f7ab7
VS
2070 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2071 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2072 enum pipe pipe = crtc->pipe;
b24e7179
JB
2073 int reg;
2074 u32 val;
2075
2076 /*
2077 * Make sure planes won't keep trying to pump pixels to us,
2078 * or we might hang the display.
2079 */
2080 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2081 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2082 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2083
702e7a56 2084 reg = PIPECONF(cpu_transcoder);
b24e7179 2085 val = I915_READ(reg);
00d70b15
CW
2086 if ((val & PIPECONF_ENABLE) == 0)
2087 return;
2088
67adc644
VS
2089 /*
2090 * Double wide has implications for planes
2091 * so best keep it disabled when not needed.
2092 */
2093 if (crtc->config.double_wide)
2094 val &= ~PIPECONF_DOUBLE_WIDE;
2095
2096 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2097 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2098 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2099 val &= ~PIPECONF_ENABLE;
2100
2101 I915_WRITE(reg, val);
2102 if ((val & PIPECONF_ENABLE) == 0)
2103 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2104}
2105
d74362c9
KP
2106/*
2107 * Plane regs are double buffered, going from enabled->disabled needs a
2108 * trigger in order to latch. The display address reg provides this.
2109 */
1dba99f4
VS
2110void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2111 enum plane plane)
d74362c9 2112{
3d13ef2e
DL
2113 struct drm_device *dev = dev_priv->dev;
2114 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2115
2116 I915_WRITE(reg, I915_READ(reg));
2117 POSTING_READ(reg);
d74362c9
KP
2118}
2119
b24e7179 2120/**
262ca2b0 2121 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
fdd508a6
VS
2122 * @plane: plane to be enabled
2123 * @crtc: crtc for the plane
b24e7179 2124 *
fdd508a6 2125 * Enable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2126 */
fdd508a6
VS
2127static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2128 struct drm_crtc *crtc)
b24e7179 2129{
fdd508a6
VS
2130 struct drm_device *dev = plane->dev;
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b24e7179
JB
2133
2134 /* If the pipe isn't enabled, we can't pump pixels and may hang */
fdd508a6 2135 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2136
98ec7739
VS
2137 if (intel_crtc->primary_enabled)
2138 return;
0037f71c 2139
4c445e0e 2140 intel_crtc->primary_enabled = true;
939c2fe8 2141
fdd508a6
VS
2142 dev_priv->display.update_primary_plane(crtc, plane->fb,
2143 crtc->x, crtc->y);
33c3b0d1
VS
2144
2145 /*
2146 * BDW signals flip done immediately if the plane
2147 * is disabled, even if the plane enable is already
2148 * armed to occur at the next vblank :(
2149 */
2150 if (IS_BROADWELL(dev))
2151 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2152}
2153
b24e7179 2154/**
262ca2b0 2155 * intel_disable_primary_hw_plane - disable the primary hardware plane
fdd508a6
VS
2156 * @plane: plane to be disabled
2157 * @crtc: crtc for the plane
b24e7179 2158 *
fdd508a6 2159 * Disable @plane on @crtc, making sure that the pipe is running first.
b24e7179 2160 */
fdd508a6
VS
2161static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2162 struct drm_crtc *crtc)
b24e7179 2163{
fdd508a6
VS
2164 struct drm_device *dev = plane->dev;
2165 struct drm_i915_private *dev_priv = dev->dev_private;
2166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2167
2168 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
b24e7179 2169
98ec7739
VS
2170 if (!intel_crtc->primary_enabled)
2171 return;
0037f71c 2172
4c445e0e 2173 intel_crtc->primary_enabled = false;
939c2fe8 2174
fdd508a6
VS
2175 dev_priv->display.update_primary_plane(crtc, plane->fb,
2176 crtc->x, crtc->y);
b24e7179
JB
2177}
2178
693db184
CW
2179static bool need_vtd_wa(struct drm_device *dev)
2180{
2181#ifdef CONFIG_INTEL_IOMMU
2182 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2183 return true;
2184#endif
2185 return false;
2186}
2187
a57ce0b2
JB
2188static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2189{
2190 int tile_height;
2191
2192 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2193 return ALIGN(height, tile_height);
2194}
2195
127bd2ac 2196int
48b956c5 2197intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2198 struct drm_i915_gem_object *obj,
a4872ba6 2199 struct intel_engine_cs *pipelined)
6b95a207 2200{
ce453d81 2201 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2202 u32 alignment;
2203 int ret;
2204
ebcdd39e
MR
2205 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2206
05394f39 2207 switch (obj->tiling_mode) {
6b95a207 2208 case I915_TILING_NONE:
1fada4cc
DL
2209 if (INTEL_INFO(dev)->gen >= 9)
2210 alignment = 256 * 1024;
2211 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
534843da 2212 alignment = 128 * 1024;
a6c45cf0 2213 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2214 alignment = 4 * 1024;
2215 else
2216 alignment = 64 * 1024;
6b95a207
KH
2217 break;
2218 case I915_TILING_X:
1fada4cc
DL
2219 if (INTEL_INFO(dev)->gen >= 9)
2220 alignment = 256 * 1024;
2221 else {
2222 /* pin() will align the object as required by fence */
2223 alignment = 0;
2224 }
6b95a207
KH
2225 break;
2226 case I915_TILING_Y:
80075d49 2227 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2228 return -EINVAL;
2229 default:
2230 BUG();
2231 }
2232
693db184
CW
2233 /* Note that the w/a also requires 64 PTE of padding following the
2234 * bo. We currently fill all unused PTE with the shadow page and so
2235 * we should always have valid PTE following the scanout preventing
2236 * the VT-d warning.
2237 */
2238 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2239 alignment = 256 * 1024;
2240
d6dd6843
PZ
2241 /*
2242 * Global gtt pte registers are special registers which actually forward
2243 * writes to a chunk of system memory. Which means that there is no risk
2244 * that the register values disappear as soon as we call
2245 * intel_runtime_pm_put(), so it is correct to wrap only the
2246 * pin/unpin/fence and not more.
2247 */
2248 intel_runtime_pm_get(dev_priv);
2249
ce453d81 2250 dev_priv->mm.interruptible = false;
2da3b9b9 2251 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2252 if (ret)
ce453d81 2253 goto err_interruptible;
6b95a207
KH
2254
2255 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2256 * fence, whereas 965+ only requires a fence if using
2257 * framebuffer compression. For simplicity, we always install
2258 * a fence as the cost is not that onerous.
2259 */
06d98131 2260 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2261 if (ret)
2262 goto err_unpin;
1690e1eb 2263
9a5a53b3 2264 i915_gem_object_pin_fence(obj);
6b95a207 2265
ce453d81 2266 dev_priv->mm.interruptible = true;
d6dd6843 2267 intel_runtime_pm_put(dev_priv);
6b95a207 2268 return 0;
48b956c5
CW
2269
2270err_unpin:
cc98b413 2271 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2272err_interruptible:
2273 dev_priv->mm.interruptible = true;
d6dd6843 2274 intel_runtime_pm_put(dev_priv);
48b956c5 2275 return ret;
6b95a207
KH
2276}
2277
1690e1eb
CW
2278void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2279{
ebcdd39e
MR
2280 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2281
1690e1eb 2282 i915_gem_object_unpin_fence(obj);
cc98b413 2283 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2284}
2285
c2c75131
DV
2286/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2287 * is assumed to be a power-of-two. */
bc752862
CW
2288unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2289 unsigned int tiling_mode,
2290 unsigned int cpp,
2291 unsigned int pitch)
c2c75131 2292{
bc752862
CW
2293 if (tiling_mode != I915_TILING_NONE) {
2294 unsigned int tile_rows, tiles;
c2c75131 2295
bc752862
CW
2296 tile_rows = *y / 8;
2297 *y %= 8;
c2c75131 2298
bc752862
CW
2299 tiles = *x / (512/cpp);
2300 *x %= 512/cpp;
2301
2302 return tile_rows * pitch * 8 + tiles * 4096;
2303 } else {
2304 unsigned int offset;
2305
2306 offset = *y * pitch + *x * cpp;
2307 *y = 0;
2308 *x = (offset & 4095) / cpp;
2309 return offset & -4096;
2310 }
c2c75131
DV
2311}
2312
46f297fb
JB
2313int intel_format_to_fourcc(int format)
2314{
2315 switch (format) {
2316 case DISPPLANE_8BPP:
2317 return DRM_FORMAT_C8;
2318 case DISPPLANE_BGRX555:
2319 return DRM_FORMAT_XRGB1555;
2320 case DISPPLANE_BGRX565:
2321 return DRM_FORMAT_RGB565;
2322 default:
2323 case DISPPLANE_BGRX888:
2324 return DRM_FORMAT_XRGB8888;
2325 case DISPPLANE_RGBX888:
2326 return DRM_FORMAT_XBGR8888;
2327 case DISPPLANE_BGRX101010:
2328 return DRM_FORMAT_XRGB2101010;
2329 case DISPPLANE_RGBX101010:
2330 return DRM_FORMAT_XBGR2101010;
2331 }
2332}
2333
484b41dd 2334static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2335 struct intel_plane_config *plane_config)
2336{
2337 struct drm_device *dev = crtc->base.dev;
2338 struct drm_i915_gem_object *obj = NULL;
2339 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2340 u32 base = plane_config->base;
2341
ff2652ea
CW
2342 if (plane_config->size == 0)
2343 return false;
2344
46f297fb
JB
2345 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2346 plane_config->size);
2347 if (!obj)
484b41dd 2348 return false;
46f297fb
JB
2349
2350 if (plane_config->tiled) {
2351 obj->tiling_mode = I915_TILING_X;
66e514c1 2352 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2353 }
2354
66e514c1
DA
2355 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2356 mode_cmd.width = crtc->base.primary->fb->width;
2357 mode_cmd.height = crtc->base.primary->fb->height;
2358 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2359
2360 mutex_lock(&dev->struct_mutex);
2361
66e514c1 2362 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2363 &mode_cmd, obj)) {
46f297fb
JB
2364 DRM_DEBUG_KMS("intel fb init failed\n");
2365 goto out_unref_obj;
2366 }
2367
a071fa00 2368 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2369 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2370
2371 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2372 return true;
46f297fb
JB
2373
2374out_unref_obj:
2375 drm_gem_object_unreference(&obj->base);
2376 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2377 return false;
2378}
2379
2380static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2381 struct intel_plane_config *plane_config)
2382{
2383 struct drm_device *dev = intel_crtc->base.dev;
2384 struct drm_crtc *c;
2385 struct intel_crtc *i;
2ff8fde1 2386 struct drm_i915_gem_object *obj;
484b41dd 2387
66e514c1 2388 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2389 return;
2390
2391 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2392 return;
2393
66e514c1
DA
2394 kfree(intel_crtc->base.primary->fb);
2395 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2396
2397 /*
2398 * Failed to alloc the obj, check to see if we should share
2399 * an fb with another CRTC instead
2400 */
70e1e0ec 2401 for_each_crtc(dev, c) {
484b41dd
JB
2402 i = to_intel_crtc(c);
2403
2404 if (c == &intel_crtc->base)
2405 continue;
2406
2ff8fde1
MR
2407 if (!i->active)
2408 continue;
2409
2410 obj = intel_fb_obj(c->primary->fb);
2411 if (obj == NULL)
484b41dd
JB
2412 continue;
2413
2ff8fde1 2414 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2415 drm_framebuffer_reference(c->primary->fb);
2416 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2417 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2418 break;
2419 }
2420 }
46f297fb
JB
2421}
2422
29b9bde6
DV
2423static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2424 struct drm_framebuffer *fb,
2425 int x, int y)
81255565
JB
2426{
2427 struct drm_device *dev = crtc->dev;
2428 struct drm_i915_private *dev_priv = dev->dev_private;
2429 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2430 struct drm_i915_gem_object *obj;
81255565 2431 int plane = intel_crtc->plane;
e506a0c6 2432 unsigned long linear_offset;
81255565 2433 u32 dspcntr;
f45651ba 2434 u32 reg = DSPCNTR(plane);
48404c1e 2435 int pixel_size;
f45651ba 2436
fdd508a6
VS
2437 if (!intel_crtc->primary_enabled) {
2438 I915_WRITE(reg, 0);
2439 if (INTEL_INFO(dev)->gen >= 4)
2440 I915_WRITE(DSPSURF(plane), 0);
2441 else
2442 I915_WRITE(DSPADDR(plane), 0);
2443 POSTING_READ(reg);
2444 return;
2445 }
2446
c9ba6fad
VS
2447 obj = intel_fb_obj(fb);
2448 if (WARN_ON(obj == NULL))
2449 return;
2450
2451 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2452
f45651ba
VS
2453 dspcntr = DISPPLANE_GAMMA_ENABLE;
2454
fdd508a6 2455 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2456
2457 if (INTEL_INFO(dev)->gen < 4) {
2458 if (intel_crtc->pipe == PIPE_B)
2459 dspcntr |= DISPPLANE_SEL_PIPE_B;
2460
2461 /* pipesrc and dspsize control the size that is scaled from,
2462 * which should always be the user's requested size.
2463 */
2464 I915_WRITE(DSPSIZE(plane),
2465 ((intel_crtc->config.pipe_src_h - 1) << 16) |
2466 (intel_crtc->config.pipe_src_w - 1));
2467 I915_WRITE(DSPPOS(plane), 0);
2468 }
81255565 2469
57779d06
VS
2470 switch (fb->pixel_format) {
2471 case DRM_FORMAT_C8:
81255565
JB
2472 dspcntr |= DISPPLANE_8BPP;
2473 break;
57779d06
VS
2474 case DRM_FORMAT_XRGB1555:
2475 case DRM_FORMAT_ARGB1555:
2476 dspcntr |= DISPPLANE_BGRX555;
81255565 2477 break;
57779d06
VS
2478 case DRM_FORMAT_RGB565:
2479 dspcntr |= DISPPLANE_BGRX565;
2480 break;
2481 case DRM_FORMAT_XRGB8888:
2482 case DRM_FORMAT_ARGB8888:
2483 dspcntr |= DISPPLANE_BGRX888;
2484 break;
2485 case DRM_FORMAT_XBGR8888:
2486 case DRM_FORMAT_ABGR8888:
2487 dspcntr |= DISPPLANE_RGBX888;
2488 break;
2489 case DRM_FORMAT_XRGB2101010:
2490 case DRM_FORMAT_ARGB2101010:
2491 dspcntr |= DISPPLANE_BGRX101010;
2492 break;
2493 case DRM_FORMAT_XBGR2101010:
2494 case DRM_FORMAT_ABGR2101010:
2495 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2496 break;
2497 default:
baba133a 2498 BUG();
81255565 2499 }
57779d06 2500
f45651ba
VS
2501 if (INTEL_INFO(dev)->gen >= 4 &&
2502 obj->tiling_mode != I915_TILING_NONE)
2503 dspcntr |= DISPPLANE_TILED;
81255565 2504
de1aa629
VS
2505 if (IS_G4X(dev))
2506 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2507
b9897127 2508 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2509
c2c75131
DV
2510 if (INTEL_INFO(dev)->gen >= 4) {
2511 intel_crtc->dspaddr_offset =
bc752862 2512 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2513 pixel_size,
bc752862 2514 fb->pitches[0]);
c2c75131
DV
2515 linear_offset -= intel_crtc->dspaddr_offset;
2516 } else {
e506a0c6 2517 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2518 }
e506a0c6 2519
48404c1e
SJ
2520 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2521 dspcntr |= DISPPLANE_ROTATE_180;
2522
2523 x += (intel_crtc->config.pipe_src_w - 1);
2524 y += (intel_crtc->config.pipe_src_h - 1);
2525
2526 /* Finding the last pixel of the last line of the display
2527 data and adding to linear_offset*/
2528 linear_offset +=
2529 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2530 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2531 }
2532
2533 I915_WRITE(reg, dspcntr);
2534
f343c5f6
BW
2535 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2536 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2537 fb->pitches[0]);
01f2c773 2538 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2539 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2540 I915_WRITE(DSPSURF(plane),
2541 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2542 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2543 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2544 } else
f343c5f6 2545 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2546 POSTING_READ(reg);
17638cd6
JB
2547}
2548
29b9bde6
DV
2549static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2550 struct drm_framebuffer *fb,
2551 int x, int y)
17638cd6
JB
2552{
2553 struct drm_device *dev = crtc->dev;
2554 struct drm_i915_private *dev_priv = dev->dev_private;
2555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c9ba6fad 2556 struct drm_i915_gem_object *obj;
17638cd6 2557 int plane = intel_crtc->plane;
e506a0c6 2558 unsigned long linear_offset;
17638cd6 2559 u32 dspcntr;
f45651ba 2560 u32 reg = DSPCNTR(plane);
48404c1e 2561 int pixel_size;
f45651ba 2562
fdd508a6
VS
2563 if (!intel_crtc->primary_enabled) {
2564 I915_WRITE(reg, 0);
2565 I915_WRITE(DSPSURF(plane), 0);
2566 POSTING_READ(reg);
2567 return;
2568 }
2569
c9ba6fad
VS
2570 obj = intel_fb_obj(fb);
2571 if (WARN_ON(obj == NULL))
2572 return;
2573
2574 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2575
f45651ba
VS
2576 dspcntr = DISPPLANE_GAMMA_ENABLE;
2577
fdd508a6 2578 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2579
2580 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2581 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2582
57779d06
VS
2583 switch (fb->pixel_format) {
2584 case DRM_FORMAT_C8:
17638cd6
JB
2585 dspcntr |= DISPPLANE_8BPP;
2586 break;
57779d06
VS
2587 case DRM_FORMAT_RGB565:
2588 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2589 break;
57779d06
VS
2590 case DRM_FORMAT_XRGB8888:
2591 case DRM_FORMAT_ARGB8888:
2592 dspcntr |= DISPPLANE_BGRX888;
2593 break;
2594 case DRM_FORMAT_XBGR8888:
2595 case DRM_FORMAT_ABGR8888:
2596 dspcntr |= DISPPLANE_RGBX888;
2597 break;
2598 case DRM_FORMAT_XRGB2101010:
2599 case DRM_FORMAT_ARGB2101010:
2600 dspcntr |= DISPPLANE_BGRX101010;
2601 break;
2602 case DRM_FORMAT_XBGR2101010:
2603 case DRM_FORMAT_ABGR2101010:
2604 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2605 break;
2606 default:
baba133a 2607 BUG();
17638cd6
JB
2608 }
2609
2610 if (obj->tiling_mode != I915_TILING_NONE)
2611 dspcntr |= DISPPLANE_TILED;
17638cd6 2612
f45651ba 2613 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2614 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2615
b9897127 2616 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2617 intel_crtc->dspaddr_offset =
bc752862 2618 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
b9897127 2619 pixel_size,
bc752862 2620 fb->pitches[0]);
c2c75131 2621 linear_offset -= intel_crtc->dspaddr_offset;
48404c1e
SJ
2622 if (to_intel_plane(crtc->primary)->rotation == BIT(DRM_ROTATE_180)) {
2623 dspcntr |= DISPPLANE_ROTATE_180;
2624
2625 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2626 x += (intel_crtc->config.pipe_src_w - 1);
2627 y += (intel_crtc->config.pipe_src_h - 1);
2628
2629 /* Finding the last pixel of the last line of the display
2630 data and adding to linear_offset*/
2631 linear_offset +=
2632 (intel_crtc->config.pipe_src_h - 1) * fb->pitches[0] +
2633 (intel_crtc->config.pipe_src_w - 1) * pixel_size;
2634 }
2635 }
2636
2637 I915_WRITE(reg, dspcntr);
17638cd6 2638
f343c5f6
BW
2639 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2640 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2641 fb->pitches[0]);
01f2c773 2642 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2643 I915_WRITE(DSPSURF(plane),
2644 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2645 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2646 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2647 } else {
2648 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2649 I915_WRITE(DSPLINOFF(plane), linear_offset);
2650 }
17638cd6 2651 POSTING_READ(reg);
17638cd6
JB
2652}
2653
70d21f0e
DL
2654static void skylake_update_primary_plane(struct drm_crtc *crtc,
2655 struct drm_framebuffer *fb,
2656 int x, int y)
2657{
2658 struct drm_device *dev = crtc->dev;
2659 struct drm_i915_private *dev_priv = dev->dev_private;
2660 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2661 struct intel_framebuffer *intel_fb;
2662 struct drm_i915_gem_object *obj;
2663 int pipe = intel_crtc->pipe;
2664 u32 plane_ctl, stride;
2665
2666 if (!intel_crtc->primary_enabled) {
2667 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2668 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2669 POSTING_READ(PLANE_CTL(pipe, 0));
2670 return;
2671 }
2672
2673 plane_ctl = PLANE_CTL_ENABLE |
2674 PLANE_CTL_PIPE_GAMMA_ENABLE |
2675 PLANE_CTL_PIPE_CSC_ENABLE;
2676
2677 switch (fb->pixel_format) {
2678 case DRM_FORMAT_RGB565:
2679 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2680 break;
2681 case DRM_FORMAT_XRGB8888:
2682 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2683 break;
2684 case DRM_FORMAT_XBGR8888:
2685 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2686 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2687 break;
2688 case DRM_FORMAT_XRGB2101010:
2689 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2690 break;
2691 case DRM_FORMAT_XBGR2101010:
2692 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2693 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2694 break;
2695 default:
2696 BUG();
2697 }
2698
2699 intel_fb = to_intel_framebuffer(fb);
2700 obj = intel_fb->obj;
2701
2702 /*
2703 * The stride is either expressed as a multiple of 64 bytes chunks for
2704 * linear buffers or in number of tiles for tiled buffers.
2705 */
2706 switch (obj->tiling_mode) {
2707 case I915_TILING_NONE:
2708 stride = fb->pitches[0] >> 6;
2709 break;
2710 case I915_TILING_X:
2711 plane_ctl |= PLANE_CTL_TILED_X;
2712 stride = fb->pitches[0] >> 9;
2713 break;
2714 default:
2715 BUG();
2716 }
2717
2718 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2719
2720 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2721
2722 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2723 i915_gem_obj_ggtt_offset(obj),
2724 x, y, fb->width, fb->height,
2725 fb->pitches[0]);
2726
2727 I915_WRITE(PLANE_POS(pipe, 0), 0);
2728 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2729 I915_WRITE(PLANE_SIZE(pipe, 0),
2730 (intel_crtc->config.pipe_src_h - 1) << 16 |
2731 (intel_crtc->config.pipe_src_w - 1));
2732 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2733 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2734
2735 POSTING_READ(PLANE_SURF(pipe, 0));
2736}
2737
17638cd6
JB
2738/* Assume fb object is pinned & idle & fenced and just update base pointers */
2739static int
2740intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2741 int x, int y, enum mode_set_atomic state)
2742{
2743 struct drm_device *dev = crtc->dev;
2744 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2745
6b8e6ed0
CW
2746 if (dev_priv->display.disable_fbc)
2747 dev_priv->display.disable_fbc(dev);
cc36513c 2748 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2749
29b9bde6
DV
2750 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2751
2752 return 0;
81255565
JB
2753}
2754
96a02917
VS
2755void intel_display_handle_reset(struct drm_device *dev)
2756{
2757 struct drm_i915_private *dev_priv = dev->dev_private;
2758 struct drm_crtc *crtc;
2759
2760 /*
2761 * Flips in the rings have been nuked by the reset,
2762 * so complete all pending flips so that user space
2763 * will get its events and not get stuck.
2764 *
2765 * Also update the base address of all primary
2766 * planes to the the last fb to make sure we're
2767 * showing the correct fb after a reset.
2768 *
2769 * Need to make two loops over the crtcs so that we
2770 * don't try to grab a crtc mutex before the
2771 * pending_flip_queue really got woken up.
2772 */
2773
70e1e0ec 2774 for_each_crtc(dev, crtc) {
96a02917
VS
2775 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2776 enum plane plane = intel_crtc->plane;
2777
2778 intel_prepare_page_flip(dev, plane);
2779 intel_finish_page_flip_plane(dev, plane);
2780 }
2781
70e1e0ec 2782 for_each_crtc(dev, crtc) {
96a02917
VS
2783 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2784
51fd371b 2785 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2786 /*
2787 * FIXME: Once we have proper support for primary planes (and
2788 * disabling them without disabling the entire crtc) allow again
66e514c1 2789 * a NULL crtc->primary->fb.
947fdaad 2790 */
f4510a27 2791 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2792 dev_priv->display.update_primary_plane(crtc,
66e514c1 2793 crtc->primary->fb,
262ca2b0
MR
2794 crtc->x,
2795 crtc->y);
51fd371b 2796 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2797 }
2798}
2799
14667a4b
CW
2800static int
2801intel_finish_fb(struct drm_framebuffer *old_fb)
2802{
2ff8fde1 2803 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2804 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2805 bool was_interruptible = dev_priv->mm.interruptible;
2806 int ret;
2807
14667a4b
CW
2808 /* Big Hammer, we also need to ensure that any pending
2809 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2810 * current scanout is retired before unpinning the old
2811 * framebuffer.
2812 *
2813 * This should only fail upon a hung GPU, in which case we
2814 * can safely continue.
2815 */
2816 dev_priv->mm.interruptible = false;
2817 ret = i915_gem_object_finish_gpu(obj);
2818 dev_priv->mm.interruptible = was_interruptible;
2819
2820 return ret;
2821}
2822
7d5e3799
CW
2823static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2824{
2825 struct drm_device *dev = crtc->dev;
2826 struct drm_i915_private *dev_priv = dev->dev_private;
2827 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2828 unsigned long flags;
2829 bool pending;
2830
2831 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2832 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2833 return false;
2834
2835 spin_lock_irqsave(&dev->event_lock, flags);
2836 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2837 spin_unlock_irqrestore(&dev->event_lock, flags);
2838
2839 return pending;
2840}
2841
5c3b82e2 2842static int
3c4fdcfb 2843intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2844 struct drm_framebuffer *fb)
79e53945
JB
2845{
2846 struct drm_device *dev = crtc->dev;
6b8e6ed0 2847 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2849 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2850 struct drm_framebuffer *old_fb = crtc->primary->fb;
2851 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2852 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2853 int ret;
79e53945 2854
7d5e3799
CW
2855 if (intel_crtc_has_pending_flip(crtc)) {
2856 DRM_ERROR("pipe is still busy with an old pageflip\n");
2857 return -EBUSY;
2858 }
2859
79e53945 2860 /* no fb bound */
94352cf9 2861 if (!fb) {
a5071c2f 2862 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2863 return 0;
2864 }
2865
7eb552ae 2866 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2867 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2868 plane_name(intel_crtc->plane),
2869 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2870 return -EINVAL;
79e53945
JB
2871 }
2872
5c3b82e2 2873 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2874 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2875 if (ret == 0)
91565c85 2876 i915_gem_track_fb(old_obj, obj,
a071fa00 2877 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2878 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2879 if (ret != 0) {
a5071c2f 2880 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2881 return ret;
2882 }
79e53945 2883
bb2043de
DL
2884 /*
2885 * Update pipe size and adjust fitter if needed: the reason for this is
2886 * that in compute_mode_changes we check the native mode (not the pfit
2887 * mode) to see if we can flip rather than do a full mode set. In the
2888 * fastboot case, we'll flip, but if we don't update the pipesrc and
2889 * pfit state, we'll end up with a big fb scanned out into the wrong
2890 * sized surface.
2891 *
2892 * To fix this properly, we need to hoist the checks up into
2893 * compute_mode_changes (or above), check the actual pfit state and
2894 * whether the platform allows pfit disable with pipe active, and only
2895 * then update the pipesrc and pfit state, even on the flip path.
2896 */
d330a953 2897 if (i915.fastboot) {
d7bf63f2
DL
2898 const struct drm_display_mode *adjusted_mode =
2899 &intel_crtc->config.adjusted_mode;
2900
4d6a3e63 2901 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2902 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2903 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2904 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2905 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2906 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2907 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2908 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2909 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2910 }
0637d60d
JB
2911 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2912 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2913 }
2914
29b9bde6 2915 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2916
f99d7069
DV
2917 if (intel_crtc->active)
2918 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2919
f4510a27 2920 crtc->primary->fb = fb;
6c4c86f5
DV
2921 crtc->x = x;
2922 crtc->y = y;
94352cf9 2923
b7f1de28 2924 if (old_fb) {
d7697eea
DV
2925 if (intel_crtc->active && old_fb != fb)
2926 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2927 mutex_lock(&dev->struct_mutex);
2ff8fde1 2928 intel_unpin_fb_obj(old_obj);
8ac36ec1 2929 mutex_unlock(&dev->struct_mutex);
b7f1de28 2930 }
652c393a 2931
8ac36ec1 2932 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2933 intel_update_fbc(dev);
5c3b82e2 2934 mutex_unlock(&dev->struct_mutex);
79e53945 2935
5c3b82e2 2936 return 0;
79e53945
JB
2937}
2938
5e84e1a4
ZW
2939static void intel_fdi_normal_train(struct drm_crtc *crtc)
2940{
2941 struct drm_device *dev = crtc->dev;
2942 struct drm_i915_private *dev_priv = dev->dev_private;
2943 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2944 int pipe = intel_crtc->pipe;
2945 u32 reg, temp;
2946
2947 /* enable normal train */
2948 reg = FDI_TX_CTL(pipe);
2949 temp = I915_READ(reg);
61e499bf 2950 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2951 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2952 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2953 } else {
2954 temp &= ~FDI_LINK_TRAIN_NONE;
2955 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2956 }
5e84e1a4
ZW
2957 I915_WRITE(reg, temp);
2958
2959 reg = FDI_RX_CTL(pipe);
2960 temp = I915_READ(reg);
2961 if (HAS_PCH_CPT(dev)) {
2962 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2963 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2964 } else {
2965 temp &= ~FDI_LINK_TRAIN_NONE;
2966 temp |= FDI_LINK_TRAIN_NONE;
2967 }
2968 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2969
2970 /* wait one idle pattern time */
2971 POSTING_READ(reg);
2972 udelay(1000);
357555c0
JB
2973
2974 /* IVB wants error correction enabled */
2975 if (IS_IVYBRIDGE(dev))
2976 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2977 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2978}
2979
1fbc0d78 2980static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2981{
1fbc0d78
DV
2982 return crtc->base.enabled && crtc->active &&
2983 crtc->config.has_pch_encoder;
1e833f40
DV
2984}
2985
01a415fd
DV
2986static void ivb_modeset_global_resources(struct drm_device *dev)
2987{
2988 struct drm_i915_private *dev_priv = dev->dev_private;
2989 struct intel_crtc *pipe_B_crtc =
2990 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2991 struct intel_crtc *pipe_C_crtc =
2992 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2993 uint32_t temp;
2994
1e833f40
DV
2995 /*
2996 * When everything is off disable fdi C so that we could enable fdi B
2997 * with all lanes. Note that we don't care about enabled pipes without
2998 * an enabled pch encoder.
2999 */
3000 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3001 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
3002 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3003 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3004
3005 temp = I915_READ(SOUTH_CHICKEN1);
3006 temp &= ~FDI_BC_BIFURCATION_SELECT;
3007 DRM_DEBUG_KMS("disabling fdi C rx\n");
3008 I915_WRITE(SOUTH_CHICKEN1, temp);
3009 }
3010}
3011
8db9d77b
ZW
3012/* The FDI link training functions for ILK/Ibexpeak. */
3013static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3014{
3015 struct drm_device *dev = crtc->dev;
3016 struct drm_i915_private *dev_priv = dev->dev_private;
3017 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3018 int pipe = intel_crtc->pipe;
5eddb70b 3019 u32 reg, temp, tries;
8db9d77b 3020
1c8562f6 3021 /* FDI needs bits from pipe first */
0fc932b8 3022 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3023
e1a44743
AJ
3024 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3025 for train result */
5eddb70b
CW
3026 reg = FDI_RX_IMR(pipe);
3027 temp = I915_READ(reg);
e1a44743
AJ
3028 temp &= ~FDI_RX_SYMBOL_LOCK;
3029 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3030 I915_WRITE(reg, temp);
3031 I915_READ(reg);
e1a44743
AJ
3032 udelay(150);
3033
8db9d77b 3034 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3035 reg = FDI_TX_CTL(pipe);
3036 temp = I915_READ(reg);
627eb5a3
DV
3037 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3038 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3039 temp &= ~FDI_LINK_TRAIN_NONE;
3040 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3041 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3042
5eddb70b
CW
3043 reg = FDI_RX_CTL(pipe);
3044 temp = I915_READ(reg);
8db9d77b
ZW
3045 temp &= ~FDI_LINK_TRAIN_NONE;
3046 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3047 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3048
3049 POSTING_READ(reg);
8db9d77b
ZW
3050 udelay(150);
3051
5b2adf89 3052 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3053 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3054 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3055 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3056
5eddb70b 3057 reg = FDI_RX_IIR(pipe);
e1a44743 3058 for (tries = 0; tries < 5; tries++) {
5eddb70b 3059 temp = I915_READ(reg);
8db9d77b
ZW
3060 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3061
3062 if ((temp & FDI_RX_BIT_LOCK)) {
3063 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3064 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3065 break;
3066 }
8db9d77b 3067 }
e1a44743 3068 if (tries == 5)
5eddb70b 3069 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3070
3071 /* Train 2 */
5eddb70b
CW
3072 reg = FDI_TX_CTL(pipe);
3073 temp = I915_READ(reg);
8db9d77b
ZW
3074 temp &= ~FDI_LINK_TRAIN_NONE;
3075 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3076 I915_WRITE(reg, temp);
8db9d77b 3077
5eddb70b
CW
3078 reg = FDI_RX_CTL(pipe);
3079 temp = I915_READ(reg);
8db9d77b
ZW
3080 temp &= ~FDI_LINK_TRAIN_NONE;
3081 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3082 I915_WRITE(reg, temp);
8db9d77b 3083
5eddb70b
CW
3084 POSTING_READ(reg);
3085 udelay(150);
8db9d77b 3086
5eddb70b 3087 reg = FDI_RX_IIR(pipe);
e1a44743 3088 for (tries = 0; tries < 5; tries++) {
5eddb70b 3089 temp = I915_READ(reg);
8db9d77b
ZW
3090 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3091
3092 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3093 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3094 DRM_DEBUG_KMS("FDI train 2 done.\n");
3095 break;
3096 }
8db9d77b 3097 }
e1a44743 3098 if (tries == 5)
5eddb70b 3099 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3100
3101 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3102
8db9d77b
ZW
3103}
3104
0206e353 3105static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3106 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3107 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3108 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3109 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3110};
3111
3112/* The FDI link training functions for SNB/Cougarpoint. */
3113static void gen6_fdi_link_train(struct drm_crtc *crtc)
3114{
3115 struct drm_device *dev = crtc->dev;
3116 struct drm_i915_private *dev_priv = dev->dev_private;
3117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3118 int pipe = intel_crtc->pipe;
fa37d39e 3119 u32 reg, temp, i, retry;
8db9d77b 3120
e1a44743
AJ
3121 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3122 for train result */
5eddb70b
CW
3123 reg = FDI_RX_IMR(pipe);
3124 temp = I915_READ(reg);
e1a44743
AJ
3125 temp &= ~FDI_RX_SYMBOL_LOCK;
3126 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3127 I915_WRITE(reg, temp);
3128
3129 POSTING_READ(reg);
e1a44743
AJ
3130 udelay(150);
3131
8db9d77b 3132 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3133 reg = FDI_TX_CTL(pipe);
3134 temp = I915_READ(reg);
627eb5a3
DV
3135 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3136 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
3137 temp &= ~FDI_LINK_TRAIN_NONE;
3138 temp |= FDI_LINK_TRAIN_PATTERN_1;
3139 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3140 /* SNB-B */
3141 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3142 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3143
d74cf324
DV
3144 I915_WRITE(FDI_RX_MISC(pipe),
3145 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3146
5eddb70b
CW
3147 reg = FDI_RX_CTL(pipe);
3148 temp = I915_READ(reg);
8db9d77b
ZW
3149 if (HAS_PCH_CPT(dev)) {
3150 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3151 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3152 } else {
3153 temp &= ~FDI_LINK_TRAIN_NONE;
3154 temp |= FDI_LINK_TRAIN_PATTERN_1;
3155 }
5eddb70b
CW
3156 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3157
3158 POSTING_READ(reg);
8db9d77b
ZW
3159 udelay(150);
3160
0206e353 3161 for (i = 0; i < 4; i++) {
5eddb70b
CW
3162 reg = FDI_TX_CTL(pipe);
3163 temp = I915_READ(reg);
8db9d77b
ZW
3164 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3165 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3166 I915_WRITE(reg, temp);
3167
3168 POSTING_READ(reg);
8db9d77b
ZW
3169 udelay(500);
3170
fa37d39e
SP
3171 for (retry = 0; retry < 5; retry++) {
3172 reg = FDI_RX_IIR(pipe);
3173 temp = I915_READ(reg);
3174 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3175 if (temp & FDI_RX_BIT_LOCK) {
3176 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3177 DRM_DEBUG_KMS("FDI train 1 done.\n");
3178 break;
3179 }
3180 udelay(50);
8db9d77b 3181 }
fa37d39e
SP
3182 if (retry < 5)
3183 break;
8db9d77b
ZW
3184 }
3185 if (i == 4)
5eddb70b 3186 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3187
3188 /* Train 2 */
5eddb70b
CW
3189 reg = FDI_TX_CTL(pipe);
3190 temp = I915_READ(reg);
8db9d77b
ZW
3191 temp &= ~FDI_LINK_TRAIN_NONE;
3192 temp |= FDI_LINK_TRAIN_PATTERN_2;
3193 if (IS_GEN6(dev)) {
3194 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3195 /* SNB-B */
3196 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3197 }
5eddb70b 3198 I915_WRITE(reg, temp);
8db9d77b 3199
5eddb70b
CW
3200 reg = FDI_RX_CTL(pipe);
3201 temp = I915_READ(reg);
8db9d77b
ZW
3202 if (HAS_PCH_CPT(dev)) {
3203 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3204 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3205 } else {
3206 temp &= ~FDI_LINK_TRAIN_NONE;
3207 temp |= FDI_LINK_TRAIN_PATTERN_2;
3208 }
5eddb70b
CW
3209 I915_WRITE(reg, temp);
3210
3211 POSTING_READ(reg);
8db9d77b
ZW
3212 udelay(150);
3213
0206e353 3214 for (i = 0; i < 4; i++) {
5eddb70b
CW
3215 reg = FDI_TX_CTL(pipe);
3216 temp = I915_READ(reg);
8db9d77b
ZW
3217 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3218 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3219 I915_WRITE(reg, temp);
3220
3221 POSTING_READ(reg);
8db9d77b
ZW
3222 udelay(500);
3223
fa37d39e
SP
3224 for (retry = 0; retry < 5; retry++) {
3225 reg = FDI_RX_IIR(pipe);
3226 temp = I915_READ(reg);
3227 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3228 if (temp & FDI_RX_SYMBOL_LOCK) {
3229 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3230 DRM_DEBUG_KMS("FDI train 2 done.\n");
3231 break;
3232 }
3233 udelay(50);
8db9d77b 3234 }
fa37d39e
SP
3235 if (retry < 5)
3236 break;
8db9d77b
ZW
3237 }
3238 if (i == 4)
5eddb70b 3239 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3240
3241 DRM_DEBUG_KMS("FDI train done.\n");
3242}
3243
357555c0
JB
3244/* Manual link training for Ivy Bridge A0 parts */
3245static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3246{
3247 struct drm_device *dev = crtc->dev;
3248 struct drm_i915_private *dev_priv = dev->dev_private;
3249 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3250 int pipe = intel_crtc->pipe;
139ccd3f 3251 u32 reg, temp, i, j;
357555c0
JB
3252
3253 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3254 for train result */
3255 reg = FDI_RX_IMR(pipe);
3256 temp = I915_READ(reg);
3257 temp &= ~FDI_RX_SYMBOL_LOCK;
3258 temp &= ~FDI_RX_BIT_LOCK;
3259 I915_WRITE(reg, temp);
3260
3261 POSTING_READ(reg);
3262 udelay(150);
3263
01a415fd
DV
3264 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3265 I915_READ(FDI_RX_IIR(pipe)));
3266
139ccd3f
JB
3267 /* Try each vswing and preemphasis setting twice before moving on */
3268 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3269 /* disable first in case we need to retry */
3270 reg = FDI_TX_CTL(pipe);
3271 temp = I915_READ(reg);
3272 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3273 temp &= ~FDI_TX_ENABLE;
3274 I915_WRITE(reg, temp);
357555c0 3275
139ccd3f
JB
3276 reg = FDI_RX_CTL(pipe);
3277 temp = I915_READ(reg);
3278 temp &= ~FDI_LINK_TRAIN_AUTO;
3279 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3280 temp &= ~FDI_RX_ENABLE;
3281 I915_WRITE(reg, temp);
357555c0 3282
139ccd3f 3283 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3284 reg = FDI_TX_CTL(pipe);
3285 temp = I915_READ(reg);
139ccd3f
JB
3286 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3287 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3288 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3289 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3290 temp |= snb_b_fdi_train_param[j/2];
3291 temp |= FDI_COMPOSITE_SYNC;
3292 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3293
139ccd3f
JB
3294 I915_WRITE(FDI_RX_MISC(pipe),
3295 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3296
139ccd3f 3297 reg = FDI_RX_CTL(pipe);
357555c0 3298 temp = I915_READ(reg);
139ccd3f
JB
3299 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3300 temp |= FDI_COMPOSITE_SYNC;
3301 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3302
139ccd3f
JB
3303 POSTING_READ(reg);
3304 udelay(1); /* should be 0.5us */
357555c0 3305
139ccd3f
JB
3306 for (i = 0; i < 4; i++) {
3307 reg = FDI_RX_IIR(pipe);
3308 temp = I915_READ(reg);
3309 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3310
139ccd3f
JB
3311 if (temp & FDI_RX_BIT_LOCK ||
3312 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3313 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3314 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3315 i);
3316 break;
3317 }
3318 udelay(1); /* should be 0.5us */
3319 }
3320 if (i == 4) {
3321 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3322 continue;
3323 }
357555c0 3324
139ccd3f 3325 /* Train 2 */
357555c0
JB
3326 reg = FDI_TX_CTL(pipe);
3327 temp = I915_READ(reg);
139ccd3f
JB
3328 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3329 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3330 I915_WRITE(reg, temp);
3331
3332 reg = FDI_RX_CTL(pipe);
3333 temp = I915_READ(reg);
3334 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3335 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3336 I915_WRITE(reg, temp);
3337
3338 POSTING_READ(reg);
139ccd3f 3339 udelay(2); /* should be 1.5us */
357555c0 3340
139ccd3f
JB
3341 for (i = 0; i < 4; i++) {
3342 reg = FDI_RX_IIR(pipe);
3343 temp = I915_READ(reg);
3344 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3345
139ccd3f
JB
3346 if (temp & FDI_RX_SYMBOL_LOCK ||
3347 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3348 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3349 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3350 i);
3351 goto train_done;
3352 }
3353 udelay(2); /* should be 1.5us */
357555c0 3354 }
139ccd3f
JB
3355 if (i == 4)
3356 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3357 }
357555c0 3358
139ccd3f 3359train_done:
357555c0
JB
3360 DRM_DEBUG_KMS("FDI train done.\n");
3361}
3362
88cefb6c 3363static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3364{
88cefb6c 3365 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3366 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3367 int pipe = intel_crtc->pipe;
5eddb70b 3368 u32 reg, temp;
79e53945 3369
c64e311e 3370
c98e9dcf 3371 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3372 reg = FDI_RX_CTL(pipe);
3373 temp = I915_READ(reg);
627eb5a3
DV
3374 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3375 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3376 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3377 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3378
3379 POSTING_READ(reg);
c98e9dcf
JB
3380 udelay(200);
3381
3382 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3383 temp = I915_READ(reg);
3384 I915_WRITE(reg, temp | FDI_PCDCLK);
3385
3386 POSTING_READ(reg);
c98e9dcf
JB
3387 udelay(200);
3388
20749730
PZ
3389 /* Enable CPU FDI TX PLL, always on for Ironlake */
3390 reg = FDI_TX_CTL(pipe);
3391 temp = I915_READ(reg);
3392 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3393 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3394
20749730
PZ
3395 POSTING_READ(reg);
3396 udelay(100);
6be4a607 3397 }
0e23b99d
JB
3398}
3399
88cefb6c
DV
3400static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3401{
3402 struct drm_device *dev = intel_crtc->base.dev;
3403 struct drm_i915_private *dev_priv = dev->dev_private;
3404 int pipe = intel_crtc->pipe;
3405 u32 reg, temp;
3406
3407 /* Switch from PCDclk to Rawclk */
3408 reg = FDI_RX_CTL(pipe);
3409 temp = I915_READ(reg);
3410 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3411
3412 /* Disable CPU FDI TX PLL */
3413 reg = FDI_TX_CTL(pipe);
3414 temp = I915_READ(reg);
3415 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3416
3417 POSTING_READ(reg);
3418 udelay(100);
3419
3420 reg = FDI_RX_CTL(pipe);
3421 temp = I915_READ(reg);
3422 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3423
3424 /* Wait for the clocks to turn off. */
3425 POSTING_READ(reg);
3426 udelay(100);
3427}
3428
0fc932b8
JB
3429static void ironlake_fdi_disable(struct drm_crtc *crtc)
3430{
3431 struct drm_device *dev = crtc->dev;
3432 struct drm_i915_private *dev_priv = dev->dev_private;
3433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3434 int pipe = intel_crtc->pipe;
3435 u32 reg, temp;
3436
3437 /* disable CPU FDI tx and PCH FDI rx */
3438 reg = FDI_TX_CTL(pipe);
3439 temp = I915_READ(reg);
3440 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3441 POSTING_READ(reg);
3442
3443 reg = FDI_RX_CTL(pipe);
3444 temp = I915_READ(reg);
3445 temp &= ~(0x7 << 16);
dfd07d72 3446 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3447 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3448
3449 POSTING_READ(reg);
3450 udelay(100);
3451
3452 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3453 if (HAS_PCH_IBX(dev))
6f06ce18 3454 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3455
3456 /* still set train pattern 1 */
3457 reg = FDI_TX_CTL(pipe);
3458 temp = I915_READ(reg);
3459 temp &= ~FDI_LINK_TRAIN_NONE;
3460 temp |= FDI_LINK_TRAIN_PATTERN_1;
3461 I915_WRITE(reg, temp);
3462
3463 reg = FDI_RX_CTL(pipe);
3464 temp = I915_READ(reg);
3465 if (HAS_PCH_CPT(dev)) {
3466 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3467 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3468 } else {
3469 temp &= ~FDI_LINK_TRAIN_NONE;
3470 temp |= FDI_LINK_TRAIN_PATTERN_1;
3471 }
3472 /* BPC in FDI rx is consistent with that in PIPECONF */
3473 temp &= ~(0x07 << 16);
dfd07d72 3474 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3475 I915_WRITE(reg, temp);
3476
3477 POSTING_READ(reg);
3478 udelay(100);
3479}
3480
5dce5b93
CW
3481bool intel_has_pending_fb_unpin(struct drm_device *dev)
3482{
3483 struct intel_crtc *crtc;
3484
3485 /* Note that we don't need to be called with mode_config.lock here
3486 * as our list of CRTC objects is static for the lifetime of the
3487 * device and so cannot disappear as we iterate. Similarly, we can
3488 * happily treat the predicates as racy, atomic checks as userspace
3489 * cannot claim and pin a new fb without at least acquring the
3490 * struct_mutex and so serialising with us.
3491 */
d3fcc808 3492 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3493 if (atomic_read(&crtc->unpin_work_count) == 0)
3494 continue;
3495
3496 if (crtc->unpin_work)
3497 intel_wait_for_vblank(dev, crtc->pipe);
3498
3499 return true;
3500 }
3501
3502 return false;
3503}
3504
d6bbafa1
CW
3505static void page_flip_completed(struct intel_crtc *intel_crtc)
3506{
3507 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3508 struct intel_unpin_work *work = intel_crtc->unpin_work;
3509
3510 /* ensure that the unpin work is consistent wrt ->pending. */
3511 smp_rmb();
3512 intel_crtc->unpin_work = NULL;
3513
3514 if (work->event)
3515 drm_send_vblank_event(intel_crtc->base.dev,
3516 intel_crtc->pipe,
3517 work->event);
3518
3519 drm_crtc_vblank_put(&intel_crtc->base);
3520
3521 wake_up_all(&dev_priv->pending_flip_queue);
3522 queue_work(dev_priv->wq, &work->work);
3523
3524 trace_i915_flip_complete(intel_crtc->plane,
3525 work->pending_flip_obj);
3526}
3527
46a55d30 3528void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3529{
0f91128d 3530 struct drm_device *dev = crtc->dev;
5bb61643 3531 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3532
2c10d571 3533 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
9c787942
CW
3534 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3535 !intel_crtc_has_pending_flip(crtc),
3536 60*HZ) == 0)) {
3537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3538 unsigned long flags;
2c10d571 3539
9c787942
CW
3540 spin_lock_irqsave(&dev->event_lock, flags);
3541 if (intel_crtc->unpin_work) {
3542 WARN_ONCE(1, "Removing stuck page flip\n");
3543 page_flip_completed(intel_crtc);
3544 }
3545 spin_unlock_irqrestore(&dev->event_lock, flags);
3546 }
5bb61643 3547
975d568a
CW
3548 if (crtc->primary->fb) {
3549 mutex_lock(&dev->struct_mutex);
3550 intel_finish_fb(crtc->primary->fb);
3551 mutex_unlock(&dev->struct_mutex);
3552 }
e6c3a2a6
CW
3553}
3554
e615efe4
ED
3555/* Program iCLKIP clock to the desired frequency */
3556static void lpt_program_iclkip(struct drm_crtc *crtc)
3557{
3558 struct drm_device *dev = crtc->dev;
3559 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3560 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3561 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3562 u32 temp;
3563
09153000
DV
3564 mutex_lock(&dev_priv->dpio_lock);
3565
e615efe4
ED
3566 /* It is necessary to ungate the pixclk gate prior to programming
3567 * the divisors, and gate it back when it is done.
3568 */
3569 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3570
3571 /* Disable SSCCTL */
3572 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3573 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3574 SBI_SSCCTL_DISABLE,
3575 SBI_ICLK);
e615efe4
ED
3576
3577 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3578 if (clock == 20000) {
e615efe4
ED
3579 auxdiv = 1;
3580 divsel = 0x41;
3581 phaseinc = 0x20;
3582 } else {
3583 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3584 * but the adjusted_mode->crtc_clock in in KHz. To get the
3585 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3586 * convert the virtual clock precision to KHz here for higher
3587 * precision.
3588 */
3589 u32 iclk_virtual_root_freq = 172800 * 1000;
3590 u32 iclk_pi_range = 64;
3591 u32 desired_divisor, msb_divisor_value, pi_value;
3592
12d7ceed 3593 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3594 msb_divisor_value = desired_divisor / iclk_pi_range;
3595 pi_value = desired_divisor % iclk_pi_range;
3596
3597 auxdiv = 0;
3598 divsel = msb_divisor_value - 2;
3599 phaseinc = pi_value;
3600 }
3601
3602 /* This should not happen with any sane values */
3603 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3604 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3605 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3606 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3607
3608 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3609 clock,
e615efe4
ED
3610 auxdiv,
3611 divsel,
3612 phasedir,
3613 phaseinc);
3614
3615 /* Program SSCDIVINTPHASE6 */
988d6ee8 3616 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3617 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3618 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3619 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3620 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3621 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3622 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3623 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3624
3625 /* Program SSCAUXDIV */
988d6ee8 3626 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3627 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3628 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3629 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3630
3631 /* Enable modulator and associated divider */
988d6ee8 3632 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3633 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3634 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3635
3636 /* Wait for initialization time */
3637 udelay(24);
3638
3639 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3640
3641 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3642}
3643
275f01b2
DV
3644static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3645 enum pipe pch_transcoder)
3646{
3647 struct drm_device *dev = crtc->base.dev;
3648 struct drm_i915_private *dev_priv = dev->dev_private;
3649 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3650
3651 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3652 I915_READ(HTOTAL(cpu_transcoder)));
3653 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3654 I915_READ(HBLANK(cpu_transcoder)));
3655 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3656 I915_READ(HSYNC(cpu_transcoder)));
3657
3658 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3659 I915_READ(VTOTAL(cpu_transcoder)));
3660 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3661 I915_READ(VBLANK(cpu_transcoder)));
3662 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3663 I915_READ(VSYNC(cpu_transcoder)));
3664 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3665 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3666}
3667
1fbc0d78
DV
3668static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3669{
3670 struct drm_i915_private *dev_priv = dev->dev_private;
3671 uint32_t temp;
3672
3673 temp = I915_READ(SOUTH_CHICKEN1);
3674 if (temp & FDI_BC_BIFURCATION_SELECT)
3675 return;
3676
3677 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3678 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3679
3680 temp |= FDI_BC_BIFURCATION_SELECT;
3681 DRM_DEBUG_KMS("enabling fdi C rx\n");
3682 I915_WRITE(SOUTH_CHICKEN1, temp);
3683 POSTING_READ(SOUTH_CHICKEN1);
3684}
3685
3686static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3687{
3688 struct drm_device *dev = intel_crtc->base.dev;
3689 struct drm_i915_private *dev_priv = dev->dev_private;
3690
3691 switch (intel_crtc->pipe) {
3692 case PIPE_A:
3693 break;
3694 case PIPE_B:
3695 if (intel_crtc->config.fdi_lanes > 2)
3696 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3697 else
3698 cpt_enable_fdi_bc_bifurcation(dev);
3699
3700 break;
3701 case PIPE_C:
3702 cpt_enable_fdi_bc_bifurcation(dev);
3703
3704 break;
3705 default:
3706 BUG();
3707 }
3708}
3709
f67a559d
JB
3710/*
3711 * Enable PCH resources required for PCH ports:
3712 * - PCH PLLs
3713 * - FDI training & RX/TX
3714 * - update transcoder timings
3715 * - DP transcoding bits
3716 * - transcoder
3717 */
3718static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3719{
3720 struct drm_device *dev = crtc->dev;
3721 struct drm_i915_private *dev_priv = dev->dev_private;
3722 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3723 int pipe = intel_crtc->pipe;
ee7b9f93 3724 u32 reg, temp;
2c07245f 3725
ab9412ba 3726 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3727
1fbc0d78
DV
3728 if (IS_IVYBRIDGE(dev))
3729 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3730
cd986abb
DV
3731 /* Write the TU size bits before fdi link training, so that error
3732 * detection works. */
3733 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3734 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3735
c98e9dcf 3736 /* For PCH output, training FDI link */
674cf967 3737 dev_priv->display.fdi_link_train(crtc);
2c07245f 3738
3ad8a208
DV
3739 /* We need to program the right clock selection before writing the pixel
3740 * mutliplier into the DPLL. */
303b81e0 3741 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3742 u32 sel;
4b645f14 3743
c98e9dcf 3744 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3745 temp |= TRANS_DPLL_ENABLE(pipe);
3746 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3747 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3748 temp |= sel;
3749 else
3750 temp &= ~sel;
c98e9dcf 3751 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3752 }
5eddb70b 3753
3ad8a208
DV
3754 /* XXX: pch pll's can be enabled any time before we enable the PCH
3755 * transcoder, and we actually should do this to not upset any PCH
3756 * transcoder that already use the clock when we share it.
3757 *
3758 * Note that enable_shared_dpll tries to do the right thing, but
3759 * get_shared_dpll unconditionally resets the pll - we need that to have
3760 * the right LVDS enable sequence. */
85b3894f 3761 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3762
d9b6cb56
JB
3763 /* set transcoder timing, panel must allow it */
3764 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3765 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3766
303b81e0 3767 intel_fdi_normal_train(crtc);
5e84e1a4 3768
c98e9dcf
JB
3769 /* For PCH DP, enable TRANS_DP_CTL */
3770 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3771 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3772 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3773 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3774 reg = TRANS_DP_CTL(pipe);
3775 temp = I915_READ(reg);
3776 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3777 TRANS_DP_SYNC_MASK |
3778 TRANS_DP_BPC_MASK);
5eddb70b
CW
3779 temp |= (TRANS_DP_OUTPUT_ENABLE |
3780 TRANS_DP_ENH_FRAMING);
9325c9f0 3781 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3782
3783 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3784 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3785 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3786 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3787
3788 switch (intel_trans_dp_port_sel(crtc)) {
3789 case PCH_DP_B:
5eddb70b 3790 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3791 break;
3792 case PCH_DP_C:
5eddb70b 3793 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3794 break;
3795 case PCH_DP_D:
5eddb70b 3796 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3797 break;
3798 default:
e95d41e1 3799 BUG();
32f9d658 3800 }
2c07245f 3801
5eddb70b 3802 I915_WRITE(reg, temp);
6be4a607 3803 }
b52eb4dc 3804
b8a4f404 3805 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3806}
3807
1507e5bd
PZ
3808static void lpt_pch_enable(struct drm_crtc *crtc)
3809{
3810 struct drm_device *dev = crtc->dev;
3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3813 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3814
ab9412ba 3815 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3816
8c52b5e8 3817 lpt_program_iclkip(crtc);
1507e5bd 3818
0540e488 3819 /* Set transcoder timing. */
275f01b2 3820 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3821
937bb610 3822 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3823}
3824
716c2e55 3825void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3826{
e2b78267 3827 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3828
3829 if (pll == NULL)
3830 return;
3831
3832 if (pll->refcount == 0) {
46edb027 3833 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3834 return;
3835 }
3836
f4a091c7
DV
3837 if (--pll->refcount == 0) {
3838 WARN_ON(pll->on);
3839 WARN_ON(pll->active);
3840 }
3841
a43f6e0f 3842 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3843}
3844
716c2e55 3845struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3846{
e2b78267
DV
3847 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3848 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3849 enum intel_dpll_id i;
ee7b9f93 3850
ee7b9f93 3851 if (pll) {
46edb027
DV
3852 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3853 crtc->base.base.id, pll->name);
e2b78267 3854 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3855 }
3856
98b6bd99
DV
3857 if (HAS_PCH_IBX(dev_priv->dev)) {
3858 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3859 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3860 pll = &dev_priv->shared_dplls[i];
98b6bd99 3861
46edb027
DV
3862 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3863 crtc->base.base.id, pll->name);
98b6bd99 3864
f2a69f44
DV
3865 WARN_ON(pll->refcount);
3866
98b6bd99
DV
3867 goto found;
3868 }
3869
e72f9fbf
DV
3870 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3871 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3872
3873 /* Only want to check enabled timings first */
3874 if (pll->refcount == 0)
3875 continue;
3876
b89a1d39
DV
3877 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3878 sizeof(pll->hw_state)) == 0) {
46edb027 3879 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3880 crtc->base.base.id,
46edb027 3881 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3882
3883 goto found;
3884 }
3885 }
3886
3887 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3888 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3889 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3890 if (pll->refcount == 0) {
46edb027
DV
3891 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3892 crtc->base.base.id, pll->name);
ee7b9f93
JB
3893 goto found;
3894 }
3895 }
3896
3897 return NULL;
3898
3899found:
f2a69f44
DV
3900 if (pll->refcount == 0)
3901 pll->hw_state = crtc->config.dpll_hw_state;
3902
a43f6e0f 3903 crtc->config.shared_dpll = i;
46edb027
DV
3904 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3905 pipe_name(crtc->pipe));
ee7b9f93 3906
cdbd2316 3907 pll->refcount++;
e04c7350 3908
ee7b9f93
JB
3909 return pll;
3910}
3911
a1520318 3912static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3913{
3914 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3915 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3916 u32 temp;
3917
3918 temp = I915_READ(dslreg);
3919 udelay(500);
3920 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3921 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3922 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3923 }
3924}
3925
b074cec8
JB
3926static void ironlake_pfit_enable(struct intel_crtc *crtc)
3927{
3928 struct drm_device *dev = crtc->base.dev;
3929 struct drm_i915_private *dev_priv = dev->dev_private;
3930 int pipe = crtc->pipe;
3931
fd4daa9c 3932 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3933 /* Force use of hard-coded filter coefficients
3934 * as some pre-programmed values are broken,
3935 * e.g. x201.
3936 */
3937 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3938 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3939 PF_PIPE_SEL_IVB(pipe));
3940 else
3941 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3942 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3943 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3944 }
3945}
3946
bb53d4ae
VS
3947static void intel_enable_planes(struct drm_crtc *crtc)
3948{
3949 struct drm_device *dev = crtc->dev;
3950 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3951 struct drm_plane *plane;
bb53d4ae
VS
3952 struct intel_plane *intel_plane;
3953
af2b653b
MR
3954 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3955 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3956 if (intel_plane->pipe == pipe)
3957 intel_plane_restore(&intel_plane->base);
af2b653b 3958 }
bb53d4ae
VS
3959}
3960
3961static void intel_disable_planes(struct drm_crtc *crtc)
3962{
3963 struct drm_device *dev = crtc->dev;
3964 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3965 struct drm_plane *plane;
bb53d4ae
VS
3966 struct intel_plane *intel_plane;
3967
af2b653b
MR
3968 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3969 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3970 if (intel_plane->pipe == pipe)
3971 intel_plane_disable(&intel_plane->base);
af2b653b 3972 }
bb53d4ae
VS
3973}
3974
20bc8673 3975void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3976{
cea165c3
VS
3977 struct drm_device *dev = crtc->base.dev;
3978 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3979
3980 if (!crtc->config.ips_enabled)
3981 return;
3982
cea165c3
VS
3983 /* We can only enable IPS after we enable a plane and wait for a vblank */
3984 intel_wait_for_vblank(dev, crtc->pipe);
3985
d77e4531 3986 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3987 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3988 mutex_lock(&dev_priv->rps.hw_lock);
3989 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3990 mutex_unlock(&dev_priv->rps.hw_lock);
3991 /* Quoting Art Runyan: "its not safe to expect any particular
3992 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3993 * mailbox." Moreover, the mailbox may return a bogus state,
3994 * so we need to just enable it and continue on.
2a114cc1
BW
3995 */
3996 } else {
3997 I915_WRITE(IPS_CTL, IPS_ENABLE);
3998 /* The bit only becomes 1 in the next vblank, so this wait here
3999 * is essentially intel_wait_for_vblank. If we don't have this
4000 * and don't wait for vblanks until the end of crtc_enable, then
4001 * the HW state readout code will complain that the expected
4002 * IPS_CTL value is not the one we read. */
4003 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4004 DRM_ERROR("Timed out waiting for IPS enable\n");
4005 }
d77e4531
PZ
4006}
4007
20bc8673 4008void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4009{
4010 struct drm_device *dev = crtc->base.dev;
4011 struct drm_i915_private *dev_priv = dev->dev_private;
4012
4013 if (!crtc->config.ips_enabled)
4014 return;
4015
4016 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4017 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4018 mutex_lock(&dev_priv->rps.hw_lock);
4019 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4020 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4021 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4022 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4023 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4024 } else {
2a114cc1 4025 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4026 POSTING_READ(IPS_CTL);
4027 }
d77e4531
PZ
4028
4029 /* We need to wait for a vblank before we can disable the plane. */
4030 intel_wait_for_vblank(dev, crtc->pipe);
4031}
4032
4033/** Loads the palette/gamma unit for the CRTC with the prepared values */
4034static void intel_crtc_load_lut(struct drm_crtc *crtc)
4035{
4036 struct drm_device *dev = crtc->dev;
4037 struct drm_i915_private *dev_priv = dev->dev_private;
4038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4039 enum pipe pipe = intel_crtc->pipe;
4040 int palreg = PALETTE(pipe);
4041 int i;
4042 bool reenable_ips = false;
4043
4044 /* The clocks have to be on to load the palette. */
4045 if (!crtc->enabled || !intel_crtc->active)
4046 return;
4047
4048 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4049 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4050 assert_dsi_pll_enabled(dev_priv);
4051 else
4052 assert_pll_enabled(dev_priv, pipe);
4053 }
4054
4055 /* use legacy palette for Ironlake */
7a1db49a 4056 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
4057 palreg = LGC_PALETTE(pipe);
4058
4059 /* Workaround : Do not read or write the pipe palette/gamma data while
4060 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4061 */
41e6fc4c 4062 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
4063 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4064 GAMMA_MODE_MODE_SPLIT)) {
4065 hsw_disable_ips(intel_crtc);
4066 reenable_ips = true;
4067 }
4068
4069 for (i = 0; i < 256; i++) {
4070 I915_WRITE(palreg + 4 * i,
4071 (intel_crtc->lut_r[i] << 16) |
4072 (intel_crtc->lut_g[i] << 8) |
4073 intel_crtc->lut_b[i]);
4074 }
4075
4076 if (reenable_ips)
4077 hsw_enable_ips(intel_crtc);
4078}
4079
d3eedb1a
VS
4080static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4081{
4082 if (!enable && intel_crtc->overlay) {
4083 struct drm_device *dev = intel_crtc->base.dev;
4084 struct drm_i915_private *dev_priv = dev->dev_private;
4085
4086 mutex_lock(&dev->struct_mutex);
4087 dev_priv->mm.interruptible = false;
4088 (void) intel_overlay_switch_off(intel_crtc->overlay);
4089 dev_priv->mm.interruptible = true;
4090 mutex_unlock(&dev->struct_mutex);
4091 }
4092
4093 /* Let userspace switch the overlay on again. In most cases userspace
4094 * has to recompute where to put it anyway.
4095 */
4096}
4097
d3eedb1a 4098static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4099{
4100 struct drm_device *dev = crtc->dev;
a5c4d7bc
VS
4101 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4102 int pipe = intel_crtc->pipe;
a5c4d7bc 4103
08c71e5e
VS
4104 assert_vblank_disabled(crtc);
4105
f98551ae
VS
4106 drm_vblank_on(dev, pipe);
4107
fdd508a6 4108 intel_enable_primary_hw_plane(crtc->primary, crtc);
a5c4d7bc
VS
4109 intel_enable_planes(crtc);
4110 intel_crtc_update_cursor(crtc, true);
d3eedb1a 4111 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
4112
4113 hsw_enable_ips(intel_crtc);
4114
4115 mutex_lock(&dev->struct_mutex);
4116 intel_update_fbc(dev);
4117 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
4118
4119 /*
4120 * FIXME: Once we grow proper nuclear flip support out of this we need
4121 * to compute the mask of flip planes precisely. For the time being
4122 * consider this a flip from a NULL plane.
4123 */
4124 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4125}
4126
d3eedb1a 4127static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
4128{
4129 struct drm_device *dev = crtc->dev;
4130 struct drm_i915_private *dev_priv = dev->dev_private;
4131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4132 int pipe = intel_crtc->pipe;
4133 int plane = intel_crtc->plane;
4134
4135 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
4136
4137 if (dev_priv->fbc.plane == plane)
4138 intel_disable_fbc(dev);
4139
4140 hsw_disable_ips(intel_crtc);
4141
d3eedb1a 4142 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
4143 intel_crtc_update_cursor(crtc, false);
4144 intel_disable_planes(crtc);
fdd508a6 4145 intel_disable_primary_hw_plane(crtc->primary, crtc);
f98551ae 4146
f99d7069
DV
4147 /*
4148 * FIXME: Once we grow proper nuclear flip support out of this we need
4149 * to compute the mask of flip planes precisely. For the time being
4150 * consider this a flip to a NULL plane.
4151 */
4152 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4153
f98551ae 4154 drm_vblank_off(dev, pipe);
08c71e5e
VS
4155
4156 assert_vblank_disabled(crtc);
a5c4d7bc
VS
4157}
4158
f67a559d
JB
4159static void ironlake_crtc_enable(struct drm_crtc *crtc)
4160{
4161 struct drm_device *dev = crtc->dev;
4162 struct drm_i915_private *dev_priv = dev->dev_private;
4163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4164 struct intel_encoder *encoder;
f67a559d 4165 int pipe = intel_crtc->pipe;
f67a559d 4166
08a48469
DV
4167 WARN_ON(!crtc->enabled);
4168
f67a559d
JB
4169 if (intel_crtc->active)
4170 return;
4171
b14b1055
DV
4172 if (intel_crtc->config.has_pch_encoder)
4173 intel_prepare_shared_dpll(intel_crtc);
4174
29407aab
DV
4175 if (intel_crtc->config.has_dp_encoder)
4176 intel_dp_set_m_n(intel_crtc);
4177
4178 intel_set_pipe_timings(intel_crtc);
4179
4180 if (intel_crtc->config.has_pch_encoder) {
4181 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4182 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
4183 }
4184
4185 ironlake_set_pipeconf(crtc);
4186
f67a559d 4187 intel_crtc->active = true;
8664281b
PZ
4188
4189 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4190 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4191
f6736a1a 4192 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4193 if (encoder->pre_enable)
4194 encoder->pre_enable(encoder);
f67a559d 4195
5bfe2ac0 4196 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4197 /* Note: FDI PLL enabling _must_ be done before we enable the
4198 * cpu pipes, hence this is separate from all the other fdi/pch
4199 * enabling. */
88cefb6c 4200 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4201 } else {
4202 assert_fdi_tx_disabled(dev_priv, pipe);
4203 assert_fdi_rx_disabled(dev_priv, pipe);
4204 }
f67a559d 4205
b074cec8 4206 ironlake_pfit_enable(intel_crtc);
f67a559d 4207
9c54c0dd
JB
4208 /*
4209 * On ILK+ LUT must be loaded before the pipe is running but with
4210 * clocks enabled
4211 */
4212 intel_crtc_load_lut(crtc);
4213
f37fcc2a 4214 intel_update_watermarks(crtc);
e1fdc473 4215 intel_enable_pipe(intel_crtc);
f67a559d 4216
5bfe2ac0 4217 if (intel_crtc->config.has_pch_encoder)
f67a559d 4218 ironlake_pch_enable(crtc);
c98e9dcf 4219
fa5c73b1
DV
4220 for_each_encoder_on_crtc(dev, crtc, encoder)
4221 encoder->enable(encoder);
61b77ddd
DV
4222
4223 if (HAS_PCH_CPT(dev))
a1520318 4224 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4225
d3eedb1a 4226 intel_crtc_enable_planes(crtc);
6be4a607
JB
4227}
4228
42db64ef
PZ
4229/* IPS only exists on ULT machines and is tied to pipe A. */
4230static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4231{
f5adf94e 4232 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4233}
4234
e4916946
PZ
4235/*
4236 * This implements the workaround described in the "notes" section of the mode
4237 * set sequence documentation. When going from no pipes or single pipe to
4238 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4239 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4240 */
4241static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4242{
4243 struct drm_device *dev = crtc->base.dev;
4244 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4245
4246 /* We want to get the other_active_crtc only if there's only 1 other
4247 * active crtc. */
d3fcc808 4248 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4249 if (!crtc_it->active || crtc_it == crtc)
4250 continue;
4251
4252 if (other_active_crtc)
4253 return;
4254
4255 other_active_crtc = crtc_it;
4256 }
4257 if (!other_active_crtc)
4258 return;
4259
4260 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4261 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4262}
4263
4f771f10
PZ
4264static void haswell_crtc_enable(struct drm_crtc *crtc)
4265{
4266 struct drm_device *dev = crtc->dev;
4267 struct drm_i915_private *dev_priv = dev->dev_private;
4268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4269 struct intel_encoder *encoder;
4270 int pipe = intel_crtc->pipe;
4f771f10
PZ
4271
4272 WARN_ON(!crtc->enabled);
4273
4274 if (intel_crtc->active)
4275 return;
4276
df8ad70c
DV
4277 if (intel_crtc_to_shared_dpll(intel_crtc))
4278 intel_enable_shared_dpll(intel_crtc);
4279
229fca97
DV
4280 if (intel_crtc->config.has_dp_encoder)
4281 intel_dp_set_m_n(intel_crtc);
4282
4283 intel_set_pipe_timings(intel_crtc);
4284
4285 if (intel_crtc->config.has_pch_encoder) {
4286 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4287 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4288 }
4289
4290 haswell_set_pipeconf(crtc);
4291
4292 intel_set_pipe_csc(crtc);
4293
4f771f10 4294 intel_crtc->active = true;
8664281b
PZ
4295
4296 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4297 for_each_encoder_on_crtc(dev, crtc, encoder)
4298 if (encoder->pre_enable)
4299 encoder->pre_enable(encoder);
4300
4fe9467d
ID
4301 if (intel_crtc->config.has_pch_encoder) {
4302 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4303 dev_priv->display.fdi_link_train(crtc);
4304 }
4305
1f544388 4306 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4307
b074cec8 4308 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4309
4310 /*
4311 * On ILK+ LUT must be loaded before the pipe is running but with
4312 * clocks enabled
4313 */
4314 intel_crtc_load_lut(crtc);
4315
1f544388 4316 intel_ddi_set_pipe_settings(crtc);
8228c251 4317 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4318
f37fcc2a 4319 intel_update_watermarks(crtc);
e1fdc473 4320 intel_enable_pipe(intel_crtc);
42db64ef 4321
5bfe2ac0 4322 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4323 lpt_pch_enable(crtc);
4f771f10 4324
0e32b39c
DA
4325 if (intel_crtc->config.dp_encoder_is_mst)
4326 intel_ddi_set_vc_payload_alloc(crtc, true);
4327
8807e55b 4328 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4329 encoder->enable(encoder);
8807e55b
JN
4330 intel_opregion_notify_encoder(encoder, true);
4331 }
4f771f10 4332
e4916946
PZ
4333 /* If we change the relative order between pipe/planes enabling, we need
4334 * to change the workaround. */
4335 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4336 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4337}
4338
3f8dce3a
DV
4339static void ironlake_pfit_disable(struct intel_crtc *crtc)
4340{
4341 struct drm_device *dev = crtc->base.dev;
4342 struct drm_i915_private *dev_priv = dev->dev_private;
4343 int pipe = crtc->pipe;
4344
4345 /* To avoid upsetting the power well on haswell only disable the pfit if
4346 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4347 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4348 I915_WRITE(PF_CTL(pipe), 0);
4349 I915_WRITE(PF_WIN_POS(pipe), 0);
4350 I915_WRITE(PF_WIN_SZ(pipe), 0);
4351 }
4352}
4353
6be4a607
JB
4354static void ironlake_crtc_disable(struct drm_crtc *crtc)
4355{
4356 struct drm_device *dev = crtc->dev;
4357 struct drm_i915_private *dev_priv = dev->dev_private;
4358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4359 struct intel_encoder *encoder;
6be4a607 4360 int pipe = intel_crtc->pipe;
5eddb70b 4361 u32 reg, temp;
b52eb4dc 4362
f7abfe8b
CW
4363 if (!intel_crtc->active)
4364 return;
4365
d3eedb1a 4366 intel_crtc_disable_planes(crtc);
a5c4d7bc 4367
ea9d758d
DV
4368 for_each_encoder_on_crtc(dev, crtc, encoder)
4369 encoder->disable(encoder);
4370
d925c59a
DV
4371 if (intel_crtc->config.has_pch_encoder)
4372 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4373
575f7ab7 4374 intel_disable_pipe(intel_crtc);
32f9d658 4375
3f8dce3a 4376 ironlake_pfit_disable(intel_crtc);
2c07245f 4377
bf49ec8c
DV
4378 for_each_encoder_on_crtc(dev, crtc, encoder)
4379 if (encoder->post_disable)
4380 encoder->post_disable(encoder);
2c07245f 4381
d925c59a
DV
4382 if (intel_crtc->config.has_pch_encoder) {
4383 ironlake_fdi_disable(crtc);
913d8d11 4384
d925c59a
DV
4385 ironlake_disable_pch_transcoder(dev_priv, pipe);
4386 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4387
d925c59a
DV
4388 if (HAS_PCH_CPT(dev)) {
4389 /* disable TRANS_DP_CTL */
4390 reg = TRANS_DP_CTL(pipe);
4391 temp = I915_READ(reg);
4392 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4393 TRANS_DP_PORT_SEL_MASK);
4394 temp |= TRANS_DP_PORT_SEL_NONE;
4395 I915_WRITE(reg, temp);
4396
4397 /* disable DPLL_SEL */
4398 temp = I915_READ(PCH_DPLL_SEL);
11887397 4399 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4400 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4401 }
e3421a18 4402
d925c59a 4403 /* disable PCH DPLL */
e72f9fbf 4404 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4405
d925c59a
DV
4406 ironlake_fdi_pll_disable(intel_crtc);
4407 }
6b383a7f 4408
f7abfe8b 4409 intel_crtc->active = false;
46ba614c 4410 intel_update_watermarks(crtc);
d1ebd816
BW
4411
4412 mutex_lock(&dev->struct_mutex);
6b383a7f 4413 intel_update_fbc(dev);
d1ebd816 4414 mutex_unlock(&dev->struct_mutex);
6be4a607 4415}
1b3c7a47 4416
4f771f10 4417static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4418{
4f771f10
PZ
4419 struct drm_device *dev = crtc->dev;
4420 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4421 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 4422 struct intel_encoder *encoder;
3b117c8f 4423 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4424
4f771f10
PZ
4425 if (!intel_crtc->active)
4426 return;
4427
d3eedb1a 4428 intel_crtc_disable_planes(crtc);
dda9a66a 4429
8807e55b
JN
4430 for_each_encoder_on_crtc(dev, crtc, encoder) {
4431 intel_opregion_notify_encoder(encoder, false);
4f771f10 4432 encoder->disable(encoder);
8807e55b 4433 }
4f771f10 4434
8664281b
PZ
4435 if (intel_crtc->config.has_pch_encoder)
4436 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
575f7ab7 4437 intel_disable_pipe(intel_crtc);
4f771f10 4438
a4bf214f
VS
4439 if (intel_crtc->config.dp_encoder_is_mst)
4440 intel_ddi_set_vc_payload_alloc(crtc, false);
4441
ad80a810 4442 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4443
3f8dce3a 4444 ironlake_pfit_disable(intel_crtc);
4f771f10 4445
1f544388 4446 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4447
88adfff1 4448 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4449 lpt_disable_pch_transcoder(dev_priv);
8664281b 4450 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4451 intel_ddi_fdi_disable(crtc);
83616634 4452 }
4f771f10 4453
97b040aa
ID
4454 for_each_encoder_on_crtc(dev, crtc, encoder)
4455 if (encoder->post_disable)
4456 encoder->post_disable(encoder);
4457
4f771f10 4458 intel_crtc->active = false;
46ba614c 4459 intel_update_watermarks(crtc);
4f771f10
PZ
4460
4461 mutex_lock(&dev->struct_mutex);
4462 intel_update_fbc(dev);
4463 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4464
4465 if (intel_crtc_to_shared_dpll(intel_crtc))
4466 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4467}
4468
ee7b9f93
JB
4469static void ironlake_crtc_off(struct drm_crtc *crtc)
4470{
4471 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4472 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4473}
4474
6441ab5f 4475
2dd24552
JB
4476static void i9xx_pfit_enable(struct intel_crtc *crtc)
4477{
4478 struct drm_device *dev = crtc->base.dev;
4479 struct drm_i915_private *dev_priv = dev->dev_private;
4480 struct intel_crtc_config *pipe_config = &crtc->config;
4481
328d8e82 4482 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4483 return;
4484
2dd24552 4485 /*
c0b03411
DV
4486 * The panel fitter should only be adjusted whilst the pipe is disabled,
4487 * according to register description and PRM.
2dd24552 4488 */
c0b03411
DV
4489 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4490 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4491
b074cec8
JB
4492 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4493 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4494
4495 /* Border color in case we don't scale up to the full screen. Black by
4496 * default, change to something else for debugging. */
4497 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4498}
4499
d05410f9
DA
4500static enum intel_display_power_domain port_to_power_domain(enum port port)
4501{
4502 switch (port) {
4503 case PORT_A:
4504 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4505 case PORT_B:
4506 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4507 case PORT_C:
4508 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4509 case PORT_D:
4510 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4511 default:
4512 WARN_ON_ONCE(1);
4513 return POWER_DOMAIN_PORT_OTHER;
4514 }
4515}
4516
77d22dca
ID
4517#define for_each_power_domain(domain, mask) \
4518 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4519 if ((1 << (domain)) & (mask))
4520
319be8ae
ID
4521enum intel_display_power_domain
4522intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4523{
4524 struct drm_device *dev = intel_encoder->base.dev;
4525 struct intel_digital_port *intel_dig_port;
4526
4527 switch (intel_encoder->type) {
4528 case INTEL_OUTPUT_UNKNOWN:
4529 /* Only DDI platforms should ever use this output type */
4530 WARN_ON_ONCE(!HAS_DDI(dev));
4531 case INTEL_OUTPUT_DISPLAYPORT:
4532 case INTEL_OUTPUT_HDMI:
4533 case INTEL_OUTPUT_EDP:
4534 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4535 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4536 case INTEL_OUTPUT_DP_MST:
4537 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4538 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4539 case INTEL_OUTPUT_ANALOG:
4540 return POWER_DOMAIN_PORT_CRT;
4541 case INTEL_OUTPUT_DSI:
4542 return POWER_DOMAIN_PORT_DSI;
4543 default:
4544 return POWER_DOMAIN_PORT_OTHER;
4545 }
4546}
4547
4548static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4549{
319be8ae
ID
4550 struct drm_device *dev = crtc->dev;
4551 struct intel_encoder *intel_encoder;
4552 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4553 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4554 unsigned long mask;
4555 enum transcoder transcoder;
4556
4557 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4558
4559 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4560 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4561 if (intel_crtc->config.pch_pfit.enabled ||
4562 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4563 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4564
319be8ae
ID
4565 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4566 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4567
77d22dca
ID
4568 return mask;
4569}
4570
4571void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4572 bool enable)
4573{
4574 if (dev_priv->power_domains.init_power_on == enable)
4575 return;
4576
4577 if (enable)
4578 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4579 else
4580 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4581
4582 dev_priv->power_domains.init_power_on = enable;
4583}
4584
4585static void modeset_update_crtc_power_domains(struct drm_device *dev)
4586{
4587 struct drm_i915_private *dev_priv = dev->dev_private;
4588 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4589 struct intel_crtc *crtc;
4590
4591 /*
4592 * First get all needed power domains, then put all unneeded, to avoid
4593 * any unnecessary toggling of the power wells.
4594 */
d3fcc808 4595 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4596 enum intel_display_power_domain domain;
4597
4598 if (!crtc->base.enabled)
4599 continue;
4600
319be8ae 4601 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4602
4603 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4604 intel_display_power_get(dev_priv, domain);
4605 }
4606
d3fcc808 4607 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4608 enum intel_display_power_domain domain;
4609
4610 for_each_power_domain(domain, crtc->enabled_power_domains)
4611 intel_display_power_put(dev_priv, domain);
4612
4613 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4614 }
4615
4616 intel_display_set_init_power(dev_priv, false);
4617}
4618
dfcab17e 4619/* returns HPLL frequency in kHz */
f8bf63fd 4620static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4621{
586f49dc 4622 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4623
586f49dc
JB
4624 /* Obtain SKU information */
4625 mutex_lock(&dev_priv->dpio_lock);
4626 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4627 CCK_FUSE_HPLL_FREQ_MASK;
4628 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4629
dfcab17e 4630 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4631}
4632
f8bf63fd
VS
4633static void vlv_update_cdclk(struct drm_device *dev)
4634{
4635 struct drm_i915_private *dev_priv = dev->dev_private;
4636
4637 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4638 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4639 dev_priv->vlv_cdclk_freq);
4640
4641 /*
4642 * Program the gmbus_freq based on the cdclk frequency.
4643 * BSpec erroneously claims we should aim for 4MHz, but
4644 * in fact 1MHz is the correct frequency.
4645 */
4646 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4647}
4648
30a970c6
JB
4649/* Adjust CDclk dividers to allow high res or save power if possible */
4650static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4651{
4652 struct drm_i915_private *dev_priv = dev->dev_private;
4653 u32 val, cmd;
4654
d197b7d3 4655 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4656
dfcab17e 4657 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4658 cmd = 2;
dfcab17e 4659 else if (cdclk == 266667)
30a970c6
JB
4660 cmd = 1;
4661 else
4662 cmd = 0;
4663
4664 mutex_lock(&dev_priv->rps.hw_lock);
4665 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4666 val &= ~DSPFREQGUAR_MASK;
4667 val |= (cmd << DSPFREQGUAR_SHIFT);
4668 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4669 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4670 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4671 50)) {
4672 DRM_ERROR("timed out waiting for CDclk change\n");
4673 }
4674 mutex_unlock(&dev_priv->rps.hw_lock);
4675
dfcab17e 4676 if (cdclk == 400000) {
30a970c6
JB
4677 u32 divider, vco;
4678
4679 vco = valleyview_get_vco(dev_priv);
dfcab17e 4680 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4681
4682 mutex_lock(&dev_priv->dpio_lock);
4683 /* adjust cdclk divider */
4684 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4685 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4686 val |= divider;
4687 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4688
4689 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4690 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4691 50))
4692 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4693 mutex_unlock(&dev_priv->dpio_lock);
4694 }
4695
4696 mutex_lock(&dev_priv->dpio_lock);
4697 /* adjust self-refresh exit latency value */
4698 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4699 val &= ~0x7f;
4700
4701 /*
4702 * For high bandwidth configs, we set a higher latency in the bunit
4703 * so that the core display fetch happens in time to avoid underruns.
4704 */
dfcab17e 4705 if (cdclk == 400000)
30a970c6
JB
4706 val |= 4500 / 250; /* 4.5 usec */
4707 else
4708 val |= 3000 / 250; /* 3.0 usec */
4709 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4710 mutex_unlock(&dev_priv->dpio_lock);
4711
f8bf63fd 4712 vlv_update_cdclk(dev);
30a970c6
JB
4713}
4714
383c5a6a
VS
4715static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4716{
4717 struct drm_i915_private *dev_priv = dev->dev_private;
4718 u32 val, cmd;
4719
4720 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4721
4722 switch (cdclk) {
4723 case 400000:
4724 cmd = 3;
4725 break;
4726 case 333333:
4727 case 320000:
4728 cmd = 2;
4729 break;
4730 case 266667:
4731 cmd = 1;
4732 break;
4733 case 200000:
4734 cmd = 0;
4735 break;
4736 default:
4737 WARN_ON(1);
4738 return;
4739 }
4740
4741 mutex_lock(&dev_priv->rps.hw_lock);
4742 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4743 val &= ~DSPFREQGUAR_MASK_CHV;
4744 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4745 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4746 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4747 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4748 50)) {
4749 DRM_ERROR("timed out waiting for CDclk change\n");
4750 }
4751 mutex_unlock(&dev_priv->rps.hw_lock);
4752
4753 vlv_update_cdclk(dev);
4754}
4755
30a970c6
JB
4756static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4757 int max_pixclk)
4758{
29dc7ef3
VS
4759 int vco = valleyview_get_vco(dev_priv);
4760 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4761
d49a340d
VS
4762 /* FIXME: Punit isn't quite ready yet */
4763 if (IS_CHERRYVIEW(dev_priv->dev))
4764 return 400000;
4765
30a970c6
JB
4766 /*
4767 * Really only a few cases to deal with, as only 4 CDclks are supported:
4768 * 200MHz
4769 * 267MHz
29dc7ef3 4770 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4771 * 400MHz
4772 * So we check to see whether we're above 90% of the lower bin and
4773 * adjust if needed.
e37c67a1
VS
4774 *
4775 * We seem to get an unstable or solid color picture at 200MHz.
4776 * Not sure what's wrong. For now use 200MHz only when all pipes
4777 * are off.
30a970c6 4778 */
29dc7ef3 4779 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4780 return 400000;
4781 else if (max_pixclk > 266667*9/10)
29dc7ef3 4782 return freq_320;
e37c67a1 4783 else if (max_pixclk > 0)
dfcab17e 4784 return 266667;
e37c67a1
VS
4785 else
4786 return 200000;
30a970c6
JB
4787}
4788
2f2d7aa1
VS
4789/* compute the max pixel clock for new configuration */
4790static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4791{
4792 struct drm_device *dev = dev_priv->dev;
4793 struct intel_crtc *intel_crtc;
4794 int max_pixclk = 0;
4795
d3fcc808 4796 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4797 if (intel_crtc->new_enabled)
30a970c6 4798 max_pixclk = max(max_pixclk,
2f2d7aa1 4799 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4800 }
4801
4802 return max_pixclk;
4803}
4804
4805static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4806 unsigned *prepare_pipes)
30a970c6
JB
4807{
4808 struct drm_i915_private *dev_priv = dev->dev_private;
4809 struct intel_crtc *intel_crtc;
2f2d7aa1 4810 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4811
d60c4473
ID
4812 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4813 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4814 return;
4815
2f2d7aa1 4816 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4817 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4818 if (intel_crtc->base.enabled)
4819 *prepare_pipes |= (1 << intel_crtc->pipe);
4820}
4821
4822static void valleyview_modeset_global_resources(struct drm_device *dev)
4823{
4824 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4825 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4826 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4827
383c5a6a
VS
4828 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4829 if (IS_CHERRYVIEW(dev))
4830 cherryview_set_cdclk(dev, req_cdclk);
4831 else
4832 valleyview_set_cdclk(dev, req_cdclk);
4833 }
4834
77961eb9 4835 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4836}
4837
89b667f8
JB
4838static void valleyview_crtc_enable(struct drm_crtc *crtc)
4839{
4840 struct drm_device *dev = crtc->dev;
89b667f8
JB
4841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4842 struct intel_encoder *encoder;
4843 int pipe = intel_crtc->pipe;
23538ef1 4844 bool is_dsi;
89b667f8
JB
4845
4846 WARN_ON(!crtc->enabled);
4847
4848 if (intel_crtc->active)
4849 return;
4850
8525a235
SK
4851 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4852
1ae0d137
VS
4853 if (!is_dsi) {
4854 if (IS_CHERRYVIEW(dev))
4855 chv_prepare_pll(intel_crtc);
4856 else
4857 vlv_prepare_pll(intel_crtc);
4858 }
5b18e57c
DV
4859
4860 if (intel_crtc->config.has_dp_encoder)
4861 intel_dp_set_m_n(intel_crtc);
4862
4863 intel_set_pipe_timings(intel_crtc);
4864
5b18e57c
DV
4865 i9xx_set_pipeconf(intel_crtc);
4866
89b667f8 4867 intel_crtc->active = true;
89b667f8 4868
4a3436e8
VS
4869 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4870
89b667f8
JB
4871 for_each_encoder_on_crtc(dev, crtc, encoder)
4872 if (encoder->pre_pll_enable)
4873 encoder->pre_pll_enable(encoder);
4874
9d556c99
CML
4875 if (!is_dsi) {
4876 if (IS_CHERRYVIEW(dev))
4877 chv_enable_pll(intel_crtc);
4878 else
4879 vlv_enable_pll(intel_crtc);
4880 }
89b667f8
JB
4881
4882 for_each_encoder_on_crtc(dev, crtc, encoder)
4883 if (encoder->pre_enable)
4884 encoder->pre_enable(encoder);
4885
2dd24552
JB
4886 i9xx_pfit_enable(intel_crtc);
4887
63cbb074
VS
4888 intel_crtc_load_lut(crtc);
4889
f37fcc2a 4890 intel_update_watermarks(crtc);
e1fdc473 4891 intel_enable_pipe(intel_crtc);
be6a6f8e 4892
5004945f
JN
4893 for_each_encoder_on_crtc(dev, crtc, encoder)
4894 encoder->enable(encoder);
9ab0460b
VS
4895
4896 intel_crtc_enable_planes(crtc);
d40d9187 4897
56b80e1f
VS
4898 /* Underruns don't raise interrupts, so check manually. */
4899 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4900}
4901
f13c2ef3
DV
4902static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4903{
4904 struct drm_device *dev = crtc->base.dev;
4905 struct drm_i915_private *dev_priv = dev->dev_private;
4906
4907 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4908 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4909}
4910
0b8765c6 4911static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4912{
4913 struct drm_device *dev = crtc->dev;
79e53945 4914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4915 struct intel_encoder *encoder;
79e53945 4916 int pipe = intel_crtc->pipe;
79e53945 4917
08a48469
DV
4918 WARN_ON(!crtc->enabled);
4919
f7abfe8b
CW
4920 if (intel_crtc->active)
4921 return;
4922
f13c2ef3
DV
4923 i9xx_set_pll_dividers(intel_crtc);
4924
5b18e57c
DV
4925 if (intel_crtc->config.has_dp_encoder)
4926 intel_dp_set_m_n(intel_crtc);
4927
4928 intel_set_pipe_timings(intel_crtc);
4929
5b18e57c
DV
4930 i9xx_set_pipeconf(intel_crtc);
4931
f7abfe8b 4932 intel_crtc->active = true;
6b383a7f 4933
4a3436e8
VS
4934 if (!IS_GEN2(dev))
4935 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4936
9d6d9f19
MK
4937 for_each_encoder_on_crtc(dev, crtc, encoder)
4938 if (encoder->pre_enable)
4939 encoder->pre_enable(encoder);
4940
f6736a1a
DV
4941 i9xx_enable_pll(intel_crtc);
4942
2dd24552
JB
4943 i9xx_pfit_enable(intel_crtc);
4944
63cbb074
VS
4945 intel_crtc_load_lut(crtc);
4946
f37fcc2a 4947 intel_update_watermarks(crtc);
e1fdc473 4948 intel_enable_pipe(intel_crtc);
be6a6f8e 4949
fa5c73b1
DV
4950 for_each_encoder_on_crtc(dev, crtc, encoder)
4951 encoder->enable(encoder);
9ab0460b
VS
4952
4953 intel_crtc_enable_planes(crtc);
d40d9187 4954
4a3436e8
VS
4955 /*
4956 * Gen2 reports pipe underruns whenever all planes are disabled.
4957 * So don't enable underrun reporting before at least some planes
4958 * are enabled.
4959 * FIXME: Need to fix the logic to work when we turn off all planes
4960 * but leave the pipe running.
4961 */
4962 if (IS_GEN2(dev))
4963 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4964
56b80e1f
VS
4965 /* Underruns don't raise interrupts, so check manually. */
4966 i9xx_check_fifo_underruns(dev);
0b8765c6 4967}
79e53945 4968
87476d63
DV
4969static void i9xx_pfit_disable(struct intel_crtc *crtc)
4970{
4971 struct drm_device *dev = crtc->base.dev;
4972 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4973
328d8e82
DV
4974 if (!crtc->config.gmch_pfit.control)
4975 return;
87476d63 4976
328d8e82 4977 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4978
328d8e82
DV
4979 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4980 I915_READ(PFIT_CONTROL));
4981 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4982}
4983
0b8765c6
JB
4984static void i9xx_crtc_disable(struct drm_crtc *crtc)
4985{
4986 struct drm_device *dev = crtc->dev;
4987 struct drm_i915_private *dev_priv = dev->dev_private;
4988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4989 struct intel_encoder *encoder;
0b8765c6 4990 int pipe = intel_crtc->pipe;
ef9c3aee 4991
f7abfe8b
CW
4992 if (!intel_crtc->active)
4993 return;
4994
4a3436e8
VS
4995 /*
4996 * Gen2 reports pipe underruns whenever all planes are disabled.
4997 * So diasble underrun reporting before all the planes get disabled.
4998 * FIXME: Need to fix the logic to work when we turn off all planes
4999 * but leave the pipe running.
5000 */
5001 if (IS_GEN2(dev))
5002 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
5003
564ed191
ID
5004 /*
5005 * Vblank time updates from the shadow to live plane control register
5006 * are blocked if the memory self-refresh mode is active at that
5007 * moment. So to make sure the plane gets truly disabled, disable
5008 * first the self-refresh mode. The self-refresh enable bit in turn
5009 * will be checked/applied by the HW only at the next frame start
5010 * event which is after the vblank start event, so we need to have a
5011 * wait-for-vblank between disabling the plane and the pipe.
5012 */
5013 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
5014 intel_crtc_disable_planes(crtc);
5015
ea9d758d
DV
5016 for_each_encoder_on_crtc(dev, crtc, encoder)
5017 encoder->disable(encoder);
5018
6304cd91
VS
5019 /*
5020 * On gen2 planes are double buffered but the pipe isn't, so we must
5021 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
5022 * We also need to wait on all gmch platforms because of the
5023 * self-refresh mode constraint explained above.
6304cd91 5024 */
564ed191 5025 intel_wait_for_vblank(dev, pipe);
6304cd91 5026
575f7ab7 5027 intel_disable_pipe(intel_crtc);
24a1f16d 5028
87476d63 5029 i9xx_pfit_disable(intel_crtc);
24a1f16d 5030
89b667f8
JB
5031 for_each_encoder_on_crtc(dev, crtc, encoder)
5032 if (encoder->post_disable)
5033 encoder->post_disable(encoder);
5034
076ed3b2
CML
5035 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
5036 if (IS_CHERRYVIEW(dev))
5037 chv_disable_pll(dev_priv, pipe);
5038 else if (IS_VALLEYVIEW(dev))
5039 vlv_disable_pll(dev_priv, pipe);
5040 else
5041 i9xx_disable_pll(dev_priv, pipe);
5042 }
0b8765c6 5043
4a3436e8
VS
5044 if (!IS_GEN2(dev))
5045 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
5046
f7abfe8b 5047 intel_crtc->active = false;
46ba614c 5048 intel_update_watermarks(crtc);
f37fcc2a 5049
efa9624e 5050 mutex_lock(&dev->struct_mutex);
6b383a7f 5051 intel_update_fbc(dev);
efa9624e 5052 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
5053}
5054
ee7b9f93
JB
5055static void i9xx_crtc_off(struct drm_crtc *crtc)
5056{
5057}
5058
976f8a20
DV
5059static void intel_crtc_update_sarea(struct drm_crtc *crtc,
5060 bool enabled)
2c07245f
ZW
5061{
5062 struct drm_device *dev = crtc->dev;
5063 struct drm_i915_master_private *master_priv;
5064 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5065 int pipe = intel_crtc->pipe;
79e53945
JB
5066
5067 if (!dev->primary->master)
5068 return;
5069
5070 master_priv = dev->primary->master->driver_priv;
5071 if (!master_priv->sarea_priv)
5072 return;
5073
79e53945
JB
5074 switch (pipe) {
5075 case 0:
5076 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
5077 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
5078 break;
5079 case 1:
5080 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
5081 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
5082 break;
5083 default:
9db4a9c7 5084 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
5085 break;
5086 }
79e53945
JB
5087}
5088
b04c5bd6
BF
5089/* Master function to enable/disable CRTC and corresponding power wells */
5090void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
5091{
5092 struct drm_device *dev = crtc->dev;
5093 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 5094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
5095 enum intel_display_power_domain domain;
5096 unsigned long domains;
976f8a20 5097
0e572fe7
DV
5098 if (enable) {
5099 if (!intel_crtc->active) {
e1e9fb84
DV
5100 domains = get_crtc_power_domains(crtc);
5101 for_each_power_domain(domain, domains)
5102 intel_display_power_get(dev_priv, domain);
5103 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
5104
5105 dev_priv->display.crtc_enable(crtc);
5106 }
5107 } else {
5108 if (intel_crtc->active) {
5109 dev_priv->display.crtc_disable(crtc);
5110
e1e9fb84
DV
5111 domains = intel_crtc->enabled_power_domains;
5112 for_each_power_domain(domain, domains)
5113 intel_display_power_put(dev_priv, domain);
5114 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
5115 }
5116 }
b04c5bd6
BF
5117}
5118
5119/**
5120 * Sets the power management mode of the pipe and plane.
5121 */
5122void intel_crtc_update_dpms(struct drm_crtc *crtc)
5123{
5124 struct drm_device *dev = crtc->dev;
5125 struct intel_encoder *intel_encoder;
5126 bool enable = false;
5127
5128 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5129 enable |= intel_encoder->connectors_active;
5130
5131 intel_crtc_control(crtc, enable);
976f8a20
DV
5132
5133 intel_crtc_update_sarea(crtc, enable);
5134}
5135
cdd59983
CW
5136static void intel_crtc_disable(struct drm_crtc *crtc)
5137{
cdd59983 5138 struct drm_device *dev = crtc->dev;
976f8a20 5139 struct drm_connector *connector;
ee7b9f93 5140 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 5141 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 5142 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 5143
976f8a20
DV
5144 /* crtc should still be enabled when we disable it. */
5145 WARN_ON(!crtc->enabled);
5146
5147 dev_priv->display.crtc_disable(crtc);
5148 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
5149 dev_priv->display.off(crtc);
5150
f4510a27 5151 if (crtc->primary->fb) {
cdd59983 5152 mutex_lock(&dev->struct_mutex);
a071fa00
DV
5153 intel_unpin_fb_obj(old_obj);
5154 i915_gem_track_fb(old_obj, NULL,
5155 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 5156 mutex_unlock(&dev->struct_mutex);
f4510a27 5157 crtc->primary->fb = NULL;
976f8a20
DV
5158 }
5159
5160 /* Update computed state. */
5161 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5162 if (!connector->encoder || !connector->encoder->crtc)
5163 continue;
5164
5165 if (connector->encoder->crtc != crtc)
5166 continue;
5167
5168 connector->dpms = DRM_MODE_DPMS_OFF;
5169 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5170 }
5171}
5172
ea5b213a 5173void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5174{
4ef69c7a 5175 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5176
ea5b213a
CW
5177 drm_encoder_cleanup(encoder);
5178 kfree(intel_encoder);
7e7d76c3
JB
5179}
5180
9237329d 5181/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5182 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5183 * state of the entire output pipe. */
9237329d 5184static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5185{
5ab432ef
DV
5186 if (mode == DRM_MODE_DPMS_ON) {
5187 encoder->connectors_active = true;
5188
b2cabb0e 5189 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5190 } else {
5191 encoder->connectors_active = false;
5192
b2cabb0e 5193 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5194 }
79e53945
JB
5195}
5196
0a91ca29
DV
5197/* Cross check the actual hw state with our own modeset state tracking (and it's
5198 * internal consistency). */
b980514c 5199static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5200{
0a91ca29
DV
5201 if (connector->get_hw_state(connector)) {
5202 struct intel_encoder *encoder = connector->encoder;
5203 struct drm_crtc *crtc;
5204 bool encoder_enabled;
5205 enum pipe pipe;
5206
5207 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5208 connector->base.base.id,
c23cc417 5209 connector->base.name);
0a91ca29 5210
0e32b39c
DA
5211 /* there is no real hw state for MST connectors */
5212 if (connector->mst_port)
5213 return;
5214
0a91ca29
DV
5215 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5216 "wrong connector dpms state\n");
5217 WARN(connector->base.encoder != &encoder->base,
5218 "active connector not linked to encoder\n");
0a91ca29 5219
36cd7444
DA
5220 if (encoder) {
5221 WARN(!encoder->connectors_active,
5222 "encoder->connectors_active not set\n");
5223
5224 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5225 WARN(!encoder_enabled, "encoder not enabled\n");
5226 if (WARN_ON(!encoder->base.crtc))
5227 return;
0a91ca29 5228
36cd7444 5229 crtc = encoder->base.crtc;
0a91ca29 5230
36cd7444
DA
5231 WARN(!crtc->enabled, "crtc not enabled\n");
5232 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5233 WARN(pipe != to_intel_crtc(crtc)->pipe,
5234 "encoder active on the wrong pipe\n");
5235 }
0a91ca29 5236 }
79e53945
JB
5237}
5238
5ab432ef
DV
5239/* Even simpler default implementation, if there's really no special case to
5240 * consider. */
5241void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5242{
5ab432ef
DV
5243 /* All the simple cases only support two dpms states. */
5244 if (mode != DRM_MODE_DPMS_ON)
5245 mode = DRM_MODE_DPMS_OFF;
d4270e57 5246
5ab432ef
DV
5247 if (mode == connector->dpms)
5248 return;
5249
5250 connector->dpms = mode;
5251
5252 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5253 if (connector->encoder)
5254 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5255
b980514c 5256 intel_modeset_check_state(connector->dev);
79e53945
JB
5257}
5258
f0947c37
DV
5259/* Simple connector->get_hw_state implementation for encoders that support only
5260 * one connector and no cloning and hence the encoder state determines the state
5261 * of the connector. */
5262bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5263{
24929352 5264 enum pipe pipe = 0;
f0947c37 5265 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5266
f0947c37 5267 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5268}
5269
1857e1da
DV
5270static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5271 struct intel_crtc_config *pipe_config)
5272{
5273 struct drm_i915_private *dev_priv = dev->dev_private;
5274 struct intel_crtc *pipe_B_crtc =
5275 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5276
5277 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5278 pipe_name(pipe), pipe_config->fdi_lanes);
5279 if (pipe_config->fdi_lanes > 4) {
5280 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5281 pipe_name(pipe), pipe_config->fdi_lanes);
5282 return false;
5283 }
5284
bafb6553 5285 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5286 if (pipe_config->fdi_lanes > 2) {
5287 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5288 pipe_config->fdi_lanes);
5289 return false;
5290 } else {
5291 return true;
5292 }
5293 }
5294
5295 if (INTEL_INFO(dev)->num_pipes == 2)
5296 return true;
5297
5298 /* Ivybridge 3 pipe is really complicated */
5299 switch (pipe) {
5300 case PIPE_A:
5301 return true;
5302 case PIPE_B:
5303 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5304 pipe_config->fdi_lanes > 2) {
5305 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5306 pipe_name(pipe), pipe_config->fdi_lanes);
5307 return false;
5308 }
5309 return true;
5310 case PIPE_C:
1e833f40 5311 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5312 pipe_B_crtc->config.fdi_lanes <= 2) {
5313 if (pipe_config->fdi_lanes > 2) {
5314 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5315 pipe_name(pipe), pipe_config->fdi_lanes);
5316 return false;
5317 }
5318 } else {
5319 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5320 return false;
5321 }
5322 return true;
5323 default:
5324 BUG();
5325 }
5326}
5327
e29c22c0
DV
5328#define RETRY 1
5329static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5330 struct intel_crtc_config *pipe_config)
877d48d5 5331{
1857e1da 5332 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5333 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5334 int lane, link_bw, fdi_dotclock;
e29c22c0 5335 bool setup_ok, needs_recompute = false;
877d48d5 5336
e29c22c0 5337retry:
877d48d5
DV
5338 /* FDI is a binary signal running at ~2.7GHz, encoding
5339 * each output octet as 10 bits. The actual frequency
5340 * is stored as a divider into a 100MHz clock, and the
5341 * mode pixel clock is stored in units of 1KHz.
5342 * Hence the bw of each lane in terms of the mode signal
5343 * is:
5344 */
5345 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5346
241bfc38 5347 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5348
2bd89a07 5349 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5350 pipe_config->pipe_bpp);
5351
5352 pipe_config->fdi_lanes = lane;
5353
2bd89a07 5354 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5355 link_bw, &pipe_config->fdi_m_n);
1857e1da 5356
e29c22c0
DV
5357 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5358 intel_crtc->pipe, pipe_config);
5359 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5360 pipe_config->pipe_bpp -= 2*3;
5361 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5362 pipe_config->pipe_bpp);
5363 needs_recompute = true;
5364 pipe_config->bw_constrained = true;
5365
5366 goto retry;
5367 }
5368
5369 if (needs_recompute)
5370 return RETRY;
5371
5372 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5373}
5374
42db64ef
PZ
5375static void hsw_compute_ips_config(struct intel_crtc *crtc,
5376 struct intel_crtc_config *pipe_config)
5377{
d330a953 5378 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5379 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5380 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5381}
5382
a43f6e0f 5383static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5384 struct intel_crtc_config *pipe_config)
79e53945 5385{
a43f6e0f 5386 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5387 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5388
ad3a4479 5389 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5390 if (INTEL_INFO(dev)->gen < 4) {
5391 struct drm_i915_private *dev_priv = dev->dev_private;
5392 int clock_limit =
5393 dev_priv->display.get_display_clock_speed(dev);
5394
5395 /*
5396 * Enable pixel doubling when the dot clock
5397 * is > 90% of the (display) core speed.
5398 *
b397c96b
VS
5399 * GDG double wide on either pipe,
5400 * otherwise pipe A only.
cf532bb2 5401 */
b397c96b 5402 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5403 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5404 clock_limit *= 2;
cf532bb2 5405 pipe_config->double_wide = true;
ad3a4479
VS
5406 }
5407
241bfc38 5408 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5409 return -EINVAL;
2c07245f 5410 }
89749350 5411
1d1d0e27
VS
5412 /*
5413 * Pipe horizontal size must be even in:
5414 * - DVO ganged mode
5415 * - LVDS dual channel mode
5416 * - Double wide pipe
5417 */
5418 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5419 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5420 pipe_config->pipe_src_w &= ~1;
5421
8693a824
DL
5422 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5423 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5424 */
5425 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5426 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5427 return -EINVAL;
44f46b42 5428
bd080ee5 5429 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5430 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5431 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5432 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5433 * for lvds. */
5434 pipe_config->pipe_bpp = 8*3;
5435 }
5436
f5adf94e 5437 if (HAS_IPS(dev))
a43f6e0f
DV
5438 hsw_compute_ips_config(crtc, pipe_config);
5439
12030431
DV
5440 /*
5441 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5442 * old clock survives for now.
5443 */
5444 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5445 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5446
877d48d5 5447 if (pipe_config->has_pch_encoder)
a43f6e0f 5448 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5449
e29c22c0 5450 return 0;
79e53945
JB
5451}
5452
25eb05fc
JB
5453static int valleyview_get_display_clock_speed(struct drm_device *dev)
5454{
d197b7d3
VS
5455 struct drm_i915_private *dev_priv = dev->dev_private;
5456 int vco = valleyview_get_vco(dev_priv);
5457 u32 val;
5458 int divider;
5459
d49a340d
VS
5460 /* FIXME: Punit isn't quite ready yet */
5461 if (IS_CHERRYVIEW(dev))
5462 return 400000;
5463
d197b7d3
VS
5464 mutex_lock(&dev_priv->dpio_lock);
5465 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5466 mutex_unlock(&dev_priv->dpio_lock);
5467
5468 divider = val & DISPLAY_FREQUENCY_VALUES;
5469
7d007f40
VS
5470 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5471 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5472 "cdclk change in progress\n");
5473
d197b7d3 5474 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5475}
5476
e70236a8
JB
5477static int i945_get_display_clock_speed(struct drm_device *dev)
5478{
5479 return 400000;
5480}
79e53945 5481
e70236a8 5482static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5483{
e70236a8
JB
5484 return 333000;
5485}
79e53945 5486
e70236a8
JB
5487static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5488{
5489 return 200000;
5490}
79e53945 5491
257a7ffc
DV
5492static int pnv_get_display_clock_speed(struct drm_device *dev)
5493{
5494 u16 gcfgc = 0;
5495
5496 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5497
5498 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5499 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5500 return 267000;
5501 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5502 return 333000;
5503 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5504 return 444000;
5505 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5506 return 200000;
5507 default:
5508 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5509 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5510 return 133000;
5511 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5512 return 167000;
5513 }
5514}
5515
e70236a8
JB
5516static int i915gm_get_display_clock_speed(struct drm_device *dev)
5517{
5518 u16 gcfgc = 0;
79e53945 5519
e70236a8
JB
5520 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5521
5522 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5523 return 133000;
5524 else {
5525 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5526 case GC_DISPLAY_CLOCK_333_MHZ:
5527 return 333000;
5528 default:
5529 case GC_DISPLAY_CLOCK_190_200_MHZ:
5530 return 190000;
79e53945 5531 }
e70236a8
JB
5532 }
5533}
5534
5535static int i865_get_display_clock_speed(struct drm_device *dev)
5536{
5537 return 266000;
5538}
5539
5540static int i855_get_display_clock_speed(struct drm_device *dev)
5541{
5542 u16 hpllcc = 0;
5543 /* Assume that the hardware is in the high speed state. This
5544 * should be the default.
5545 */
5546 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5547 case GC_CLOCK_133_200:
5548 case GC_CLOCK_100_200:
5549 return 200000;
5550 case GC_CLOCK_166_250:
5551 return 250000;
5552 case GC_CLOCK_100_133:
79e53945 5553 return 133000;
e70236a8 5554 }
79e53945 5555
e70236a8
JB
5556 /* Shouldn't happen */
5557 return 0;
5558}
79e53945 5559
e70236a8
JB
5560static int i830_get_display_clock_speed(struct drm_device *dev)
5561{
5562 return 133000;
79e53945
JB
5563}
5564
2c07245f 5565static void
a65851af 5566intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5567{
a65851af
VS
5568 while (*num > DATA_LINK_M_N_MASK ||
5569 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5570 *num >>= 1;
5571 *den >>= 1;
5572 }
5573}
5574
a65851af
VS
5575static void compute_m_n(unsigned int m, unsigned int n,
5576 uint32_t *ret_m, uint32_t *ret_n)
5577{
5578 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5579 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5580 intel_reduce_m_n_ratio(ret_m, ret_n);
5581}
5582
e69d0bc1
DV
5583void
5584intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5585 int pixel_clock, int link_clock,
5586 struct intel_link_m_n *m_n)
2c07245f 5587{
e69d0bc1 5588 m_n->tu = 64;
a65851af
VS
5589
5590 compute_m_n(bits_per_pixel * pixel_clock,
5591 link_clock * nlanes * 8,
5592 &m_n->gmch_m, &m_n->gmch_n);
5593
5594 compute_m_n(pixel_clock, link_clock,
5595 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5596}
5597
a7615030
CW
5598static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5599{
d330a953
JN
5600 if (i915.panel_use_ssc >= 0)
5601 return i915.panel_use_ssc != 0;
41aa3448 5602 return dev_priv->vbt.lvds_use_ssc
435793df 5603 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5604}
5605
c65d77d8
JB
5606static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5607{
5608 struct drm_device *dev = crtc->dev;
5609 struct drm_i915_private *dev_priv = dev->dev_private;
5610 int refclk;
5611
a0c4da24 5612 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5613 refclk = 100000;
a0c4da24 5614 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5615 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5616 refclk = dev_priv->vbt.lvds_ssc_freq;
5617 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5618 } else if (!IS_GEN2(dev)) {
5619 refclk = 96000;
5620 } else {
5621 refclk = 48000;
5622 }
5623
5624 return refclk;
5625}
5626
7429e9d4 5627static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5628{
7df00d7a 5629 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5630}
f47709a9 5631
7429e9d4
DV
5632static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5633{
5634 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5635}
5636
f47709a9 5637static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5638 intel_clock_t *reduced_clock)
5639{
f47709a9 5640 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5641 u32 fp, fp2 = 0;
5642
5643 if (IS_PINEVIEW(dev)) {
7429e9d4 5644 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5645 if (reduced_clock)
7429e9d4 5646 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5647 } else {
7429e9d4 5648 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5649 if (reduced_clock)
7429e9d4 5650 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5651 }
5652
8bcc2795 5653 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5654
f47709a9
DV
5655 crtc->lowfreq_avail = false;
5656 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5657 reduced_clock && i915.powersave) {
8bcc2795 5658 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5659 crtc->lowfreq_avail = true;
a7516a05 5660 } else {
8bcc2795 5661 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5662 }
5663}
5664
5e69f97f
CML
5665static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5666 pipe)
89b667f8
JB
5667{
5668 u32 reg_val;
5669
5670 /*
5671 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5672 * and set it to a reasonable value instead.
5673 */
ab3c759a 5674 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5675 reg_val &= 0xffffff00;
5676 reg_val |= 0x00000030;
ab3c759a 5677 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5678
ab3c759a 5679 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5680 reg_val &= 0x8cffffff;
5681 reg_val = 0x8c000000;
ab3c759a 5682 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5683
ab3c759a 5684 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5685 reg_val &= 0xffffff00;
ab3c759a 5686 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5687
ab3c759a 5688 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5689 reg_val &= 0x00ffffff;
5690 reg_val |= 0xb0000000;
ab3c759a 5691 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5692}
5693
b551842d
DV
5694static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5695 struct intel_link_m_n *m_n)
5696{
5697 struct drm_device *dev = crtc->base.dev;
5698 struct drm_i915_private *dev_priv = dev->dev_private;
5699 int pipe = crtc->pipe;
5700
e3b95f1e
DV
5701 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5702 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5703 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5704 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5705}
5706
5707static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5708 struct intel_link_m_n *m_n,
5709 struct intel_link_m_n *m2_n2)
b551842d
DV
5710{
5711 struct drm_device *dev = crtc->base.dev;
5712 struct drm_i915_private *dev_priv = dev->dev_private;
5713 int pipe = crtc->pipe;
5714 enum transcoder transcoder = crtc->config.cpu_transcoder;
5715
5716 if (INTEL_INFO(dev)->gen >= 5) {
5717 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5718 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5719 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5720 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5721 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5722 * for gen < 8) and if DRRS is supported (to make sure the
5723 * registers are not unnecessarily accessed).
5724 */
5725 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5726 crtc->config.has_drrs) {
5727 I915_WRITE(PIPE_DATA_M2(transcoder),
5728 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5729 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5730 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5731 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5732 }
b551842d 5733 } else {
e3b95f1e
DV
5734 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5735 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5736 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5737 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5738 }
5739}
5740
f769cd24 5741void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5742{
5743 if (crtc->config.has_pch_encoder)
5744 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5745 else
f769cd24
VK
5746 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5747 &crtc->config.dp_m2_n2);
03afc4a2
DV
5748}
5749
f47709a9 5750static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5751{
5752 u32 dpll, dpll_md;
5753
5754 /*
5755 * Enable DPIO clock input. We should never disable the reference
5756 * clock for pipe B, since VGA hotplug / manual detection depends
5757 * on it.
5758 */
5759 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5760 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5761 /* We should never disable this, set it here for state tracking */
5762 if (crtc->pipe == PIPE_B)
5763 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5764 dpll |= DPLL_VCO_ENABLE;
5765 crtc->config.dpll_hw_state.dpll = dpll;
5766
5767 dpll_md = (crtc->config.pixel_multiplier - 1)
5768 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5769 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5770}
5771
5772static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5773{
f47709a9 5774 struct drm_device *dev = crtc->base.dev;
a0c4da24 5775 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5776 int pipe = crtc->pipe;
bdd4b6a6 5777 u32 mdiv;
a0c4da24 5778 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5779 u32 coreclk, reg_val;
a0c4da24 5780
09153000
DV
5781 mutex_lock(&dev_priv->dpio_lock);
5782
f47709a9
DV
5783 bestn = crtc->config.dpll.n;
5784 bestm1 = crtc->config.dpll.m1;
5785 bestm2 = crtc->config.dpll.m2;
5786 bestp1 = crtc->config.dpll.p1;
5787 bestp2 = crtc->config.dpll.p2;
a0c4da24 5788
89b667f8
JB
5789 /* See eDP HDMI DPIO driver vbios notes doc */
5790
5791 /* PLL B needs special handling */
bdd4b6a6 5792 if (pipe == PIPE_B)
5e69f97f 5793 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5794
5795 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5796 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5797
5798 /* Disable target IRef on PLL */
ab3c759a 5799 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5800 reg_val &= 0x00ffffff;
ab3c759a 5801 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5802
5803 /* Disable fast lock */
ab3c759a 5804 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5805
5806 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5807 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5808 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5809 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5810 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5811
5812 /*
5813 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5814 * but we don't support that).
5815 * Note: don't use the DAC post divider as it seems unstable.
5816 */
5817 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5818 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5819
a0c4da24 5820 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5821 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5822
89b667f8 5823 /* Set HBR and RBR LPF coefficients */
ff9a6750 5824 if (crtc->config.port_clock == 162000 ||
99750bd4 5825 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5826 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5827 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5828 0x009f0003);
89b667f8 5829 else
ab3c759a 5830 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5831 0x00d0000f);
5832
5833 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5834 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5835 /* Use SSC source */
bdd4b6a6 5836 if (pipe == PIPE_A)
ab3c759a 5837 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5838 0x0df40000);
5839 else
ab3c759a 5840 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5841 0x0df70000);
5842 } else { /* HDMI or VGA */
5843 /* Use bend source */
bdd4b6a6 5844 if (pipe == PIPE_A)
ab3c759a 5845 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5846 0x0df70000);
5847 else
ab3c759a 5848 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5849 0x0df40000);
5850 }
a0c4da24 5851
ab3c759a 5852 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5853 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5854 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5855 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5856 coreclk |= 0x01000000;
ab3c759a 5857 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5858
ab3c759a 5859 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5860 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5861}
5862
9d556c99 5863static void chv_update_pll(struct intel_crtc *crtc)
1ae0d137
VS
5864{
5865 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5866 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5867 DPLL_VCO_ENABLE;
5868 if (crtc->pipe != PIPE_A)
5869 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5870
5871 crtc->config.dpll_hw_state.dpll_md =
5872 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5873}
5874
5875static void chv_prepare_pll(struct intel_crtc *crtc)
9d556c99
CML
5876{
5877 struct drm_device *dev = crtc->base.dev;
5878 struct drm_i915_private *dev_priv = dev->dev_private;
5879 int pipe = crtc->pipe;
5880 int dpll_reg = DPLL(crtc->pipe);
5881 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5882 u32 loopfilter, intcoeff;
9d556c99
CML
5883 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5884 int refclk;
5885
9d556c99
CML
5886 bestn = crtc->config.dpll.n;
5887 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5888 bestm1 = crtc->config.dpll.m1;
5889 bestm2 = crtc->config.dpll.m2 >> 22;
5890 bestp1 = crtc->config.dpll.p1;
5891 bestp2 = crtc->config.dpll.p2;
5892
5893 /*
5894 * Enable Refclk and SSC
5895 */
a11b0703
VS
5896 I915_WRITE(dpll_reg,
5897 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5898
5899 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5900
9d556c99
CML
5901 /* p1 and p2 divider */
5902 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5903 5 << DPIO_CHV_S1_DIV_SHIFT |
5904 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5905 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5906 1 << DPIO_CHV_K_DIV_SHIFT);
5907
5908 /* Feedback post-divider - m2 */
5909 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5910
5911 /* Feedback refclk divider - n and m1 */
5912 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5913 DPIO_CHV_M1_DIV_BY_2 |
5914 1 << DPIO_CHV_N_DIV_SHIFT);
5915
5916 /* M2 fraction division */
5917 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5918
5919 /* M2 fraction division enable */
5920 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5921 DPIO_CHV_FRAC_DIV_EN |
5922 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5923
5924 /* Loop filter */
5925 refclk = i9xx_get_refclk(&crtc->base, 0);
5926 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5927 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5928 if (refclk == 100000)
5929 intcoeff = 11;
5930 else if (refclk == 38400)
5931 intcoeff = 10;
5932 else
5933 intcoeff = 9;
5934 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5935 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5936
5937 /* AFC Recal */
5938 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5939 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5940 DPIO_AFC_RECAL);
5941
5942 mutex_unlock(&dev_priv->dpio_lock);
5943}
5944
f47709a9
DV
5945static void i9xx_update_pll(struct intel_crtc *crtc,
5946 intel_clock_t *reduced_clock,
eb1cbe48
DV
5947 int num_connectors)
5948{
f47709a9 5949 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5950 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5951 u32 dpll;
5952 bool is_sdvo;
f47709a9 5953 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5954
f47709a9 5955 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5956
f47709a9
DV
5957 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5958 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5959
5960 dpll = DPLL_VGA_MODE_DIS;
5961
f47709a9 5962 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5963 dpll |= DPLLB_MODE_LVDS;
5964 else
5965 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5966
ef1b460d 5967 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5968 dpll |= (crtc->config.pixel_multiplier - 1)
5969 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5970 }
198a037f
DV
5971
5972 if (is_sdvo)
4a33e48d 5973 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5974
f47709a9 5975 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5976 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5977
5978 /* compute bitmask from p1 value */
5979 if (IS_PINEVIEW(dev))
5980 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5981 else {
5982 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5983 if (IS_G4X(dev) && reduced_clock)
5984 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5985 }
5986 switch (clock->p2) {
5987 case 5:
5988 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5989 break;
5990 case 7:
5991 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5992 break;
5993 case 10:
5994 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5995 break;
5996 case 14:
5997 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5998 break;
5999 }
6000 if (INTEL_INFO(dev)->gen >= 4)
6001 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6002
09ede541 6003 if (crtc->config.sdvo_tv_clock)
eb1cbe48 6004 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 6005 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6006 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6007 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6008 else
6009 dpll |= PLL_REF_INPUT_DREFCLK;
6010
6011 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
6012 crtc->config.dpll_hw_state.dpll = dpll;
6013
eb1cbe48 6014 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
6015 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
6016 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 6017 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
6018 }
6019}
6020
f47709a9 6021static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 6022 intel_clock_t *reduced_clock,
eb1cbe48
DV
6023 int num_connectors)
6024{
f47709a9 6025 struct drm_device *dev = crtc->base.dev;
eb1cbe48 6026 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 6027 u32 dpll;
f47709a9 6028 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 6029
f47709a9 6030 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 6031
eb1cbe48
DV
6032 dpll = DPLL_VGA_MODE_DIS;
6033
f47709a9 6034 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
6035 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6036 } else {
6037 if (clock->p1 == 2)
6038 dpll |= PLL_P1_DIVIDE_BY_TWO;
6039 else
6040 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6041 if (clock->p2 == 4)
6042 dpll |= PLL_P2_DIVIDE_BY_4;
6043 }
6044
4a33e48d
DV
6045 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
6046 dpll |= DPLL_DVO_2X_MODE;
6047
f47709a9 6048 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
6049 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6050 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6051 else
6052 dpll |= PLL_REF_INPUT_DREFCLK;
6053
6054 dpll |= DPLL_VCO_ENABLE;
8bcc2795 6055 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
6056}
6057
8a654f3b 6058static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
6059{
6060 struct drm_device *dev = intel_crtc->base.dev;
6061 struct drm_i915_private *dev_priv = dev->dev_private;
6062 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6063 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
6064 struct drm_display_mode *adjusted_mode =
6065 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
6066 uint32_t crtc_vtotal, crtc_vblank_end;
6067 int vsyncshift = 0;
4d8a62ea
DV
6068
6069 /* We need to be careful not to changed the adjusted mode, for otherwise
6070 * the hw state checker will get angry at the mismatch. */
6071 crtc_vtotal = adjusted_mode->crtc_vtotal;
6072 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 6073
609aeaca 6074 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 6075 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
6076 crtc_vtotal -= 1;
6077 crtc_vblank_end -= 1;
609aeaca
VS
6078
6079 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6080 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6081 else
6082 vsyncshift = adjusted_mode->crtc_hsync_start -
6083 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
6084 if (vsyncshift < 0)
6085 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
6086 }
6087
6088 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 6089 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 6090
fe2b8f9d 6091 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
6092 (adjusted_mode->crtc_hdisplay - 1) |
6093 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 6094 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
6095 (adjusted_mode->crtc_hblank_start - 1) |
6096 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 6097 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
6098 (adjusted_mode->crtc_hsync_start - 1) |
6099 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6100
fe2b8f9d 6101 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 6102 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 6103 ((crtc_vtotal - 1) << 16));
fe2b8f9d 6104 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 6105 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 6106 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 6107 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
6108 (adjusted_mode->crtc_vsync_start - 1) |
6109 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6110
b5e508d4
PZ
6111 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6112 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6113 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6114 * bits. */
6115 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6116 (pipe == PIPE_B || pipe == PIPE_C))
6117 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6118
b0e77b9c
PZ
6119 /* pipesrc controls the size that is scaled from, which should
6120 * always be the user's requested size.
6121 */
6122 I915_WRITE(PIPESRC(pipe),
37327abd
VS
6123 ((intel_crtc->config.pipe_src_w - 1) << 16) |
6124 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
6125}
6126
1bd1bd80
DV
6127static void intel_get_pipe_timings(struct intel_crtc *crtc,
6128 struct intel_crtc_config *pipe_config)
6129{
6130 struct drm_device *dev = crtc->base.dev;
6131 struct drm_i915_private *dev_priv = dev->dev_private;
6132 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6133 uint32_t tmp;
6134
6135 tmp = I915_READ(HTOTAL(cpu_transcoder));
6136 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6137 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6138 tmp = I915_READ(HBLANK(cpu_transcoder));
6139 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6140 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6141 tmp = I915_READ(HSYNC(cpu_transcoder));
6142 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6143 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6144
6145 tmp = I915_READ(VTOTAL(cpu_transcoder));
6146 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6147 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6148 tmp = I915_READ(VBLANK(cpu_transcoder));
6149 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6150 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6151 tmp = I915_READ(VSYNC(cpu_transcoder));
6152 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6153 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6154
6155 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6156 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6157 pipe_config->adjusted_mode.crtc_vtotal += 1;
6158 pipe_config->adjusted_mode.crtc_vblank_end += 1;
6159 }
6160
6161 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
6162 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6163 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6164
6165 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6166 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6167}
6168
f6a83288
DV
6169void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6170 struct intel_crtc_config *pipe_config)
babea61d 6171{
f6a83288
DV
6172 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6173 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6174 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6175 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6176
f6a83288
DV
6177 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6178 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6179 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6180 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6181
f6a83288 6182 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6183
f6a83288
DV
6184 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6185 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6186}
6187
84b046f3
DV
6188static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6189{
6190 struct drm_device *dev = intel_crtc->base.dev;
6191 struct drm_i915_private *dev_priv = dev->dev_private;
6192 uint32_t pipeconf;
6193
9f11a9e4 6194 pipeconf = 0;
84b046f3 6195
b6b5d049
VS
6196 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6197 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6198 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 6199
cf532bb2
VS
6200 if (intel_crtc->config.double_wide)
6201 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6202
ff9ce46e
DV
6203 /* only g4x and later have fancy bpc/dither controls */
6204 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6205 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6206 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6207 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6208 PIPECONF_DITHER_TYPE_SP;
84b046f3 6209
ff9ce46e
DV
6210 switch (intel_crtc->config.pipe_bpp) {
6211 case 18:
6212 pipeconf |= PIPECONF_6BPC;
6213 break;
6214 case 24:
6215 pipeconf |= PIPECONF_8BPC;
6216 break;
6217 case 30:
6218 pipeconf |= PIPECONF_10BPC;
6219 break;
6220 default:
6221 /* Case prevented by intel_choose_pipe_bpp_dither. */
6222 BUG();
84b046f3
DV
6223 }
6224 }
6225
6226 if (HAS_PIPE_CXSR(dev)) {
6227 if (intel_crtc->lowfreq_avail) {
6228 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6229 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6230 } else {
6231 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6232 }
6233 }
6234
efc2cfff
VS
6235 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6236 if (INTEL_INFO(dev)->gen < 4 ||
6237 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6238 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6239 else
6240 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6241 } else
84b046f3
DV
6242 pipeconf |= PIPECONF_PROGRESSIVE;
6243
9f11a9e4
DV
6244 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6245 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6246
84b046f3
DV
6247 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6248 POSTING_READ(PIPECONF(intel_crtc->pipe));
6249}
6250
f564048e 6251static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6252 int x, int y,
94352cf9 6253 struct drm_framebuffer *fb)
79e53945
JB
6254{
6255 struct drm_device *dev = crtc->dev;
6256 struct drm_i915_private *dev_priv = dev->dev_private;
6257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6258 int refclk, num_connectors = 0;
652c393a 6259 intel_clock_t clock, reduced_clock;
a16af721 6260 bool ok, has_reduced_clock = false;
e9fd1c02 6261 bool is_lvds = false, is_dsi = false;
5eddb70b 6262 struct intel_encoder *encoder;
d4906093 6263 const intel_limit_t *limit;
79e53945 6264
6c2b7c12 6265 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6266 switch (encoder->type) {
79e53945
JB
6267 case INTEL_OUTPUT_LVDS:
6268 is_lvds = true;
6269 break;
e9fd1c02
JN
6270 case INTEL_OUTPUT_DSI:
6271 is_dsi = true;
6272 break;
79e53945 6273 }
43565a06 6274
c751ce4f 6275 num_connectors++;
79e53945
JB
6276 }
6277
f2335330 6278 if (is_dsi)
5b18e57c 6279 return 0;
f2335330
JN
6280
6281 if (!intel_crtc->config.clock_set) {
6282 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6283
e9fd1c02
JN
6284 /*
6285 * Returns a set of divisors for the desired target clock with
6286 * the given refclk, or FALSE. The returned values represent
6287 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6288 * 2) / p1 / p2.
6289 */
6290 limit = intel_limit(crtc, refclk);
6291 ok = dev_priv->display.find_dpll(limit, crtc,
6292 intel_crtc->config.port_clock,
6293 refclk, NULL, &clock);
f2335330 6294 if (!ok) {
e9fd1c02
JN
6295 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6296 return -EINVAL;
6297 }
79e53945 6298
f2335330
JN
6299 if (is_lvds && dev_priv->lvds_downclock_avail) {
6300 /*
6301 * Ensure we match the reduced clock's P to the target
6302 * clock. If the clocks don't match, we can't switch
6303 * the display clock by using the FP0/FP1. In such case
6304 * we will disable the LVDS downclock feature.
6305 */
6306 has_reduced_clock =
6307 dev_priv->display.find_dpll(limit, crtc,
6308 dev_priv->lvds_downclock,
6309 refclk, &clock,
6310 &reduced_clock);
6311 }
6312 /* Compat-code for transition, will disappear. */
f47709a9
DV
6313 intel_crtc->config.dpll.n = clock.n;
6314 intel_crtc->config.dpll.m1 = clock.m1;
6315 intel_crtc->config.dpll.m2 = clock.m2;
6316 intel_crtc->config.dpll.p1 = clock.p1;
6317 intel_crtc->config.dpll.p2 = clock.p2;
6318 }
7026d4ac 6319
e9fd1c02 6320 if (IS_GEN2(dev)) {
8a654f3b 6321 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6322 has_reduced_clock ? &reduced_clock : NULL,
6323 num_connectors);
9d556c99
CML
6324 } else if (IS_CHERRYVIEW(dev)) {
6325 chv_update_pll(intel_crtc);
e9fd1c02 6326 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6327 vlv_update_pll(intel_crtc);
e9fd1c02 6328 } else {
f47709a9 6329 i9xx_update_pll(intel_crtc,
eb1cbe48 6330 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6331 num_connectors);
e9fd1c02 6332 }
79e53945 6333
c8f7a0db 6334 return 0;
f564048e
EA
6335}
6336
2fa2fe9a
DV
6337static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6338 struct intel_crtc_config *pipe_config)
6339{
6340 struct drm_device *dev = crtc->base.dev;
6341 struct drm_i915_private *dev_priv = dev->dev_private;
6342 uint32_t tmp;
6343
dc9e7dec
VS
6344 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6345 return;
6346
2fa2fe9a 6347 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6348 if (!(tmp & PFIT_ENABLE))
6349 return;
2fa2fe9a 6350
06922821 6351 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6352 if (INTEL_INFO(dev)->gen < 4) {
6353 if (crtc->pipe != PIPE_B)
6354 return;
2fa2fe9a
DV
6355 } else {
6356 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6357 return;
6358 }
6359
06922821 6360 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6361 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6362 if (INTEL_INFO(dev)->gen < 5)
6363 pipe_config->gmch_pfit.lvds_border_bits =
6364 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6365}
6366
acbec814
JB
6367static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6368 struct intel_crtc_config *pipe_config)
6369{
6370 struct drm_device *dev = crtc->base.dev;
6371 struct drm_i915_private *dev_priv = dev->dev_private;
6372 int pipe = pipe_config->cpu_transcoder;
6373 intel_clock_t clock;
6374 u32 mdiv;
662c6ecb 6375 int refclk = 100000;
acbec814 6376
f573de5a
SK
6377 /* In case of MIPI DPLL will not even be used */
6378 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6379 return;
6380
acbec814 6381 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6382 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6383 mutex_unlock(&dev_priv->dpio_lock);
6384
6385 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6386 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6387 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6388 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6389 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6390
f646628b 6391 vlv_clock(refclk, &clock);
acbec814 6392
f646628b
VS
6393 /* clock.dot is the fast clock */
6394 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6395}
6396
1ad292b5
JB
6397static void i9xx_get_plane_config(struct intel_crtc *crtc,
6398 struct intel_plane_config *plane_config)
6399{
6400 struct drm_device *dev = crtc->base.dev;
6401 struct drm_i915_private *dev_priv = dev->dev_private;
6402 u32 val, base, offset;
6403 int pipe = crtc->pipe, plane = crtc->plane;
6404 int fourcc, pixel_format;
6405 int aligned_height;
6406
66e514c1
DA
6407 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6408 if (!crtc->base.primary->fb) {
1ad292b5
JB
6409 DRM_DEBUG_KMS("failed to alloc fb\n");
6410 return;
6411 }
6412
6413 val = I915_READ(DSPCNTR(plane));
6414
6415 if (INTEL_INFO(dev)->gen >= 4)
6416 if (val & DISPPLANE_TILED)
6417 plane_config->tiled = true;
6418
6419 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6420 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6421 crtc->base.primary->fb->pixel_format = fourcc;
6422 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6423 drm_format_plane_cpp(fourcc, 0) * 8;
6424
6425 if (INTEL_INFO(dev)->gen >= 4) {
6426 if (plane_config->tiled)
6427 offset = I915_READ(DSPTILEOFF(plane));
6428 else
6429 offset = I915_READ(DSPLINOFF(plane));
6430 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6431 } else {
6432 base = I915_READ(DSPADDR(plane));
6433 }
6434 plane_config->base = base;
6435
6436 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6437 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6438 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6439
6440 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6441 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6442
66e514c1 6443 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6444 plane_config->tiled);
6445
1267a26b
FF
6446 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6447 aligned_height);
1ad292b5
JB
6448
6449 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6450 pipe, plane, crtc->base.primary->fb->width,
6451 crtc->base.primary->fb->height,
6452 crtc->base.primary->fb->bits_per_pixel, base,
6453 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6454 plane_config->size);
6455
6456}
6457
70b23a98
VS
6458static void chv_crtc_clock_get(struct intel_crtc *crtc,
6459 struct intel_crtc_config *pipe_config)
6460{
6461 struct drm_device *dev = crtc->base.dev;
6462 struct drm_i915_private *dev_priv = dev->dev_private;
6463 int pipe = pipe_config->cpu_transcoder;
6464 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6465 intel_clock_t clock;
6466 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6467 int refclk = 100000;
6468
6469 mutex_lock(&dev_priv->dpio_lock);
6470 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6471 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6472 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6473 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6474 mutex_unlock(&dev_priv->dpio_lock);
6475
6476 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6477 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6478 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6479 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6480 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6481
6482 chv_clock(refclk, &clock);
6483
6484 /* clock.dot is the fast clock */
6485 pipe_config->port_clock = clock.dot / 5;
6486}
6487
0e8ffe1b
DV
6488static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6489 struct intel_crtc_config *pipe_config)
6490{
6491 struct drm_device *dev = crtc->base.dev;
6492 struct drm_i915_private *dev_priv = dev->dev_private;
6493 uint32_t tmp;
6494
b5482bd0
ID
6495 if (!intel_display_power_enabled(dev_priv,
6496 POWER_DOMAIN_PIPE(crtc->pipe)))
6497 return false;
6498
e143a21c 6499 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6500 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6501
0e8ffe1b
DV
6502 tmp = I915_READ(PIPECONF(crtc->pipe));
6503 if (!(tmp & PIPECONF_ENABLE))
6504 return false;
6505
42571aef
VS
6506 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6507 switch (tmp & PIPECONF_BPC_MASK) {
6508 case PIPECONF_6BPC:
6509 pipe_config->pipe_bpp = 18;
6510 break;
6511 case PIPECONF_8BPC:
6512 pipe_config->pipe_bpp = 24;
6513 break;
6514 case PIPECONF_10BPC:
6515 pipe_config->pipe_bpp = 30;
6516 break;
6517 default:
6518 break;
6519 }
6520 }
6521
b5a9fa09
DV
6522 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6523 pipe_config->limited_color_range = true;
6524
282740f7
VS
6525 if (INTEL_INFO(dev)->gen < 4)
6526 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6527
1bd1bd80
DV
6528 intel_get_pipe_timings(crtc, pipe_config);
6529
2fa2fe9a
DV
6530 i9xx_get_pfit_config(crtc, pipe_config);
6531
6c49f241
DV
6532 if (INTEL_INFO(dev)->gen >= 4) {
6533 tmp = I915_READ(DPLL_MD(crtc->pipe));
6534 pipe_config->pixel_multiplier =
6535 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6536 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6537 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6538 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6539 tmp = I915_READ(DPLL(crtc->pipe));
6540 pipe_config->pixel_multiplier =
6541 ((tmp & SDVO_MULTIPLIER_MASK)
6542 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6543 } else {
6544 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6545 * port and will be fixed up in the encoder->get_config
6546 * function. */
6547 pipe_config->pixel_multiplier = 1;
6548 }
8bcc2795
DV
6549 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6550 if (!IS_VALLEYVIEW(dev)) {
6551 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6552 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6553 } else {
6554 /* Mask out read-only status bits. */
6555 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6556 DPLL_PORTC_READY_MASK |
6557 DPLL_PORTB_READY_MASK);
8bcc2795 6558 }
6c49f241 6559
70b23a98
VS
6560 if (IS_CHERRYVIEW(dev))
6561 chv_crtc_clock_get(crtc, pipe_config);
6562 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6563 vlv_crtc_clock_get(crtc, pipe_config);
6564 else
6565 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6566
0e8ffe1b
DV
6567 return true;
6568}
6569
dde86e2d 6570static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6571{
6572 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6573 struct intel_encoder *encoder;
74cfd7ac 6574 u32 val, final;
13d83a67 6575 bool has_lvds = false;
199e5d79 6576 bool has_cpu_edp = false;
199e5d79 6577 bool has_panel = false;
99eb6a01
KP
6578 bool has_ck505 = false;
6579 bool can_ssc = false;
13d83a67
JB
6580
6581 /* We need to take the global config into account */
b2784e15 6582 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6583 switch (encoder->type) {
6584 case INTEL_OUTPUT_LVDS:
6585 has_panel = true;
6586 has_lvds = true;
6587 break;
6588 case INTEL_OUTPUT_EDP:
6589 has_panel = true;
2de6905f 6590 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6591 has_cpu_edp = true;
6592 break;
13d83a67
JB
6593 }
6594 }
6595
99eb6a01 6596 if (HAS_PCH_IBX(dev)) {
41aa3448 6597 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6598 can_ssc = has_ck505;
6599 } else {
6600 has_ck505 = false;
6601 can_ssc = true;
6602 }
6603
2de6905f
ID
6604 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6605 has_panel, has_lvds, has_ck505);
13d83a67
JB
6606
6607 /* Ironlake: try to setup display ref clock before DPLL
6608 * enabling. This is only under driver's control after
6609 * PCH B stepping, previous chipset stepping should be
6610 * ignoring this setting.
6611 */
74cfd7ac
CW
6612 val = I915_READ(PCH_DREF_CONTROL);
6613
6614 /* As we must carefully and slowly disable/enable each source in turn,
6615 * compute the final state we want first and check if we need to
6616 * make any changes at all.
6617 */
6618 final = val;
6619 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6620 if (has_ck505)
6621 final |= DREF_NONSPREAD_CK505_ENABLE;
6622 else
6623 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6624
6625 final &= ~DREF_SSC_SOURCE_MASK;
6626 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6627 final &= ~DREF_SSC1_ENABLE;
6628
6629 if (has_panel) {
6630 final |= DREF_SSC_SOURCE_ENABLE;
6631
6632 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6633 final |= DREF_SSC1_ENABLE;
6634
6635 if (has_cpu_edp) {
6636 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6637 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6638 else
6639 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6640 } else
6641 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6642 } else {
6643 final |= DREF_SSC_SOURCE_DISABLE;
6644 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6645 }
6646
6647 if (final == val)
6648 return;
6649
13d83a67 6650 /* Always enable nonspread source */
74cfd7ac 6651 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6652
99eb6a01 6653 if (has_ck505)
74cfd7ac 6654 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6655 else
74cfd7ac 6656 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6657
199e5d79 6658 if (has_panel) {
74cfd7ac
CW
6659 val &= ~DREF_SSC_SOURCE_MASK;
6660 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6661
199e5d79 6662 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6663 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6664 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6665 val |= DREF_SSC1_ENABLE;
e77166b5 6666 } else
74cfd7ac 6667 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6668
6669 /* Get SSC going before enabling the outputs */
74cfd7ac 6670 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6671 POSTING_READ(PCH_DREF_CONTROL);
6672 udelay(200);
6673
74cfd7ac 6674 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6675
6676 /* Enable CPU source on CPU attached eDP */
199e5d79 6677 if (has_cpu_edp) {
99eb6a01 6678 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6679 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6680 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6681 } else
74cfd7ac 6682 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6683 } else
74cfd7ac 6684 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6685
74cfd7ac 6686 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6687 POSTING_READ(PCH_DREF_CONTROL);
6688 udelay(200);
6689 } else {
6690 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6691
74cfd7ac 6692 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6693
6694 /* Turn off CPU output */
74cfd7ac 6695 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6696
74cfd7ac 6697 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6698 POSTING_READ(PCH_DREF_CONTROL);
6699 udelay(200);
6700
6701 /* Turn off the SSC source */
74cfd7ac
CW
6702 val &= ~DREF_SSC_SOURCE_MASK;
6703 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6704
6705 /* Turn off SSC1 */
74cfd7ac 6706 val &= ~DREF_SSC1_ENABLE;
199e5d79 6707
74cfd7ac 6708 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6709 POSTING_READ(PCH_DREF_CONTROL);
6710 udelay(200);
6711 }
74cfd7ac
CW
6712
6713 BUG_ON(val != final);
13d83a67
JB
6714}
6715
f31f2d55 6716static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6717{
f31f2d55 6718 uint32_t tmp;
dde86e2d 6719
0ff066a9
PZ
6720 tmp = I915_READ(SOUTH_CHICKEN2);
6721 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6722 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6723
0ff066a9
PZ
6724 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6725 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6726 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6727
0ff066a9
PZ
6728 tmp = I915_READ(SOUTH_CHICKEN2);
6729 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6730 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6731
0ff066a9
PZ
6732 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6733 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6734 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6735}
6736
6737/* WaMPhyProgramming:hsw */
6738static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6739{
6740 uint32_t tmp;
dde86e2d
PZ
6741
6742 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6743 tmp &= ~(0xFF << 24);
6744 tmp |= (0x12 << 24);
6745 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6746
dde86e2d
PZ
6747 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6748 tmp |= (1 << 11);
6749 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6750
6751 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6752 tmp |= (1 << 11);
6753 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6754
dde86e2d
PZ
6755 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6756 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6757 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6758
6759 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6760 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6761 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6762
0ff066a9
PZ
6763 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6764 tmp &= ~(7 << 13);
6765 tmp |= (5 << 13);
6766 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6767
0ff066a9
PZ
6768 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6769 tmp &= ~(7 << 13);
6770 tmp |= (5 << 13);
6771 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6772
6773 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6774 tmp &= ~0xFF;
6775 tmp |= 0x1C;
6776 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6777
6778 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6779 tmp &= ~0xFF;
6780 tmp |= 0x1C;
6781 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6782
6783 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6784 tmp &= ~(0xFF << 16);
6785 tmp |= (0x1C << 16);
6786 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6787
6788 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6789 tmp &= ~(0xFF << 16);
6790 tmp |= (0x1C << 16);
6791 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6792
0ff066a9
PZ
6793 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6794 tmp |= (1 << 27);
6795 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6796
0ff066a9
PZ
6797 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6798 tmp |= (1 << 27);
6799 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6800
0ff066a9
PZ
6801 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6802 tmp &= ~(0xF << 28);
6803 tmp |= (4 << 28);
6804 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6805
0ff066a9
PZ
6806 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6807 tmp &= ~(0xF << 28);
6808 tmp |= (4 << 28);
6809 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6810}
6811
2fa86a1f
PZ
6812/* Implements 3 different sequences from BSpec chapter "Display iCLK
6813 * Programming" based on the parameters passed:
6814 * - Sequence to enable CLKOUT_DP
6815 * - Sequence to enable CLKOUT_DP without spread
6816 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6817 */
6818static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6819 bool with_fdi)
f31f2d55
PZ
6820{
6821 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6822 uint32_t reg, tmp;
6823
6824 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6825 with_spread = true;
6826 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6827 with_fdi, "LP PCH doesn't have FDI\n"))
6828 with_fdi = false;
f31f2d55
PZ
6829
6830 mutex_lock(&dev_priv->dpio_lock);
6831
6832 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6833 tmp &= ~SBI_SSCCTL_DISABLE;
6834 tmp |= SBI_SSCCTL_PATHALT;
6835 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6836
6837 udelay(24);
6838
2fa86a1f
PZ
6839 if (with_spread) {
6840 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6841 tmp &= ~SBI_SSCCTL_PATHALT;
6842 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6843
2fa86a1f
PZ
6844 if (with_fdi) {
6845 lpt_reset_fdi_mphy(dev_priv);
6846 lpt_program_fdi_mphy(dev_priv);
6847 }
6848 }
dde86e2d 6849
2fa86a1f
PZ
6850 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6851 SBI_GEN0 : SBI_DBUFF0;
6852 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6853 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6854 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6855
6856 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6857}
6858
47701c3b
PZ
6859/* Sequence to disable CLKOUT_DP */
6860static void lpt_disable_clkout_dp(struct drm_device *dev)
6861{
6862 struct drm_i915_private *dev_priv = dev->dev_private;
6863 uint32_t reg, tmp;
6864
6865 mutex_lock(&dev_priv->dpio_lock);
6866
6867 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6868 SBI_GEN0 : SBI_DBUFF0;
6869 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6870 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6871 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6872
6873 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6874 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6875 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6876 tmp |= SBI_SSCCTL_PATHALT;
6877 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6878 udelay(32);
6879 }
6880 tmp |= SBI_SSCCTL_DISABLE;
6881 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6882 }
6883
6884 mutex_unlock(&dev_priv->dpio_lock);
6885}
6886
bf8fa3d3
PZ
6887static void lpt_init_pch_refclk(struct drm_device *dev)
6888{
bf8fa3d3
PZ
6889 struct intel_encoder *encoder;
6890 bool has_vga = false;
6891
b2784e15 6892 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
6893 switch (encoder->type) {
6894 case INTEL_OUTPUT_ANALOG:
6895 has_vga = true;
6896 break;
6897 }
6898 }
6899
47701c3b
PZ
6900 if (has_vga)
6901 lpt_enable_clkout_dp(dev, true, true);
6902 else
6903 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6904}
6905
dde86e2d
PZ
6906/*
6907 * Initialize reference clocks when the driver loads
6908 */
6909void intel_init_pch_refclk(struct drm_device *dev)
6910{
6911 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6912 ironlake_init_pch_refclk(dev);
6913 else if (HAS_PCH_LPT(dev))
6914 lpt_init_pch_refclk(dev);
6915}
6916
d9d444cb
JB
6917static int ironlake_get_refclk(struct drm_crtc *crtc)
6918{
6919 struct drm_device *dev = crtc->dev;
6920 struct drm_i915_private *dev_priv = dev->dev_private;
6921 struct intel_encoder *encoder;
d9d444cb
JB
6922 int num_connectors = 0;
6923 bool is_lvds = false;
6924
6c2b7c12 6925 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6926 switch (encoder->type) {
6927 case INTEL_OUTPUT_LVDS:
6928 is_lvds = true;
6929 break;
d9d444cb
JB
6930 }
6931 num_connectors++;
6932 }
6933
6934 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6935 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6936 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6937 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6938 }
6939
6940 return 120000;
6941}
6942
6ff93609 6943static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6944{
c8203565 6945 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6947 int pipe = intel_crtc->pipe;
c8203565
PZ
6948 uint32_t val;
6949
78114071 6950 val = 0;
c8203565 6951
965e0c48 6952 switch (intel_crtc->config.pipe_bpp) {
c8203565 6953 case 18:
dfd07d72 6954 val |= PIPECONF_6BPC;
c8203565
PZ
6955 break;
6956 case 24:
dfd07d72 6957 val |= PIPECONF_8BPC;
c8203565
PZ
6958 break;
6959 case 30:
dfd07d72 6960 val |= PIPECONF_10BPC;
c8203565
PZ
6961 break;
6962 case 36:
dfd07d72 6963 val |= PIPECONF_12BPC;
c8203565
PZ
6964 break;
6965 default:
cc769b62
PZ
6966 /* Case prevented by intel_choose_pipe_bpp_dither. */
6967 BUG();
c8203565
PZ
6968 }
6969
d8b32247 6970 if (intel_crtc->config.dither)
c8203565
PZ
6971 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6972
6ff93609 6973 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6974 val |= PIPECONF_INTERLACED_ILK;
6975 else
6976 val |= PIPECONF_PROGRESSIVE;
6977
50f3b016 6978 if (intel_crtc->config.limited_color_range)
3685a8f3 6979 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6980
c8203565
PZ
6981 I915_WRITE(PIPECONF(pipe), val);
6982 POSTING_READ(PIPECONF(pipe));
6983}
6984
86d3efce
VS
6985/*
6986 * Set up the pipe CSC unit.
6987 *
6988 * Currently only full range RGB to limited range RGB conversion
6989 * is supported, but eventually this should handle various
6990 * RGB<->YCbCr scenarios as well.
6991 */
50f3b016 6992static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6993{
6994 struct drm_device *dev = crtc->dev;
6995 struct drm_i915_private *dev_priv = dev->dev_private;
6996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6997 int pipe = intel_crtc->pipe;
6998 uint16_t coeff = 0x7800; /* 1.0 */
6999
7000 /*
7001 * TODO: Check what kind of values actually come out of the pipe
7002 * with these coeff/postoff values and adjust to get the best
7003 * accuracy. Perhaps we even need to take the bpc value into
7004 * consideration.
7005 */
7006
50f3b016 7007 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7008 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7009
7010 /*
7011 * GY/GU and RY/RU should be the other way around according
7012 * to BSpec, but reality doesn't agree. Just set them up in
7013 * a way that results in the correct picture.
7014 */
7015 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7016 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7017
7018 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7019 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7020
7021 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7022 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7023
7024 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7025 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7026 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7027
7028 if (INTEL_INFO(dev)->gen > 6) {
7029 uint16_t postoff = 0;
7030
50f3b016 7031 if (intel_crtc->config.limited_color_range)
32cf0cb0 7032 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
7033
7034 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7035 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7036 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7037
7038 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7039 } else {
7040 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7041
50f3b016 7042 if (intel_crtc->config.limited_color_range)
86d3efce
VS
7043 mode |= CSC_BLACK_SCREEN_OFFSET;
7044
7045 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7046 }
7047}
7048
6ff93609 7049static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 7050{
756f85cf
PZ
7051 struct drm_device *dev = crtc->dev;
7052 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 7053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 7054 enum pipe pipe = intel_crtc->pipe;
3b117c8f 7055 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
7056 uint32_t val;
7057
3eff4faa 7058 val = 0;
ee2b0b38 7059
756f85cf 7060 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
7061 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7062
6ff93609 7063 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
7064 val |= PIPECONF_INTERLACED_ILK;
7065 else
7066 val |= PIPECONF_PROGRESSIVE;
7067
702e7a56
PZ
7068 I915_WRITE(PIPECONF(cpu_transcoder), val);
7069 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
7070
7071 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7072 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 7073
3cdf122c 7074 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
7075 val = 0;
7076
7077 switch (intel_crtc->config.pipe_bpp) {
7078 case 18:
7079 val |= PIPEMISC_DITHER_6_BPC;
7080 break;
7081 case 24:
7082 val |= PIPEMISC_DITHER_8_BPC;
7083 break;
7084 case 30:
7085 val |= PIPEMISC_DITHER_10_BPC;
7086 break;
7087 case 36:
7088 val |= PIPEMISC_DITHER_12_BPC;
7089 break;
7090 default:
7091 /* Case prevented by pipe_config_set_bpp. */
7092 BUG();
7093 }
7094
7095 if (intel_crtc->config.dither)
7096 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7097
7098 I915_WRITE(PIPEMISC(pipe), val);
7099 }
ee2b0b38
PZ
7100}
7101
6591c6e4 7102static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
7103 intel_clock_t *clock,
7104 bool *has_reduced_clock,
7105 intel_clock_t *reduced_clock)
7106{
7107 struct drm_device *dev = crtc->dev;
7108 struct drm_i915_private *dev_priv = dev->dev_private;
7109 struct intel_encoder *intel_encoder;
7110 int refclk;
d4906093 7111 const intel_limit_t *limit;
a16af721 7112 bool ret, is_lvds = false;
79e53945 7113
6591c6e4
PZ
7114 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7115 switch (intel_encoder->type) {
79e53945
JB
7116 case INTEL_OUTPUT_LVDS:
7117 is_lvds = true;
7118 break;
79e53945
JB
7119 }
7120 }
7121
d9d444cb 7122 refclk = ironlake_get_refclk(crtc);
79e53945 7123
d4906093
ML
7124 /*
7125 * Returns a set of divisors for the desired target clock with the given
7126 * refclk, or FALSE. The returned values represent the clock equation:
7127 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7128 */
1b894b59 7129 limit = intel_limit(crtc, refclk);
ff9a6750
DV
7130 ret = dev_priv->display.find_dpll(limit, crtc,
7131 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 7132 refclk, NULL, clock);
6591c6e4
PZ
7133 if (!ret)
7134 return false;
cda4b7d3 7135
ddc9003c 7136 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
7137 /*
7138 * Ensure we match the reduced clock's P to the target clock.
7139 * If the clocks don't match, we can't switch the display clock
7140 * by using the FP0/FP1. In such case we will disable the LVDS
7141 * downclock feature.
7142 */
ee9300bb
DV
7143 *has_reduced_clock =
7144 dev_priv->display.find_dpll(limit, crtc,
7145 dev_priv->lvds_downclock,
7146 refclk, clock,
7147 reduced_clock);
652c393a 7148 }
61e9653f 7149
6591c6e4
PZ
7150 return true;
7151}
7152
d4b1931c
PZ
7153int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7154{
7155 /*
7156 * Account for spread spectrum to avoid
7157 * oversubscribing the link. Max center spread
7158 * is 2.5%; use 5% for safety's sake.
7159 */
7160 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 7161 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
7162}
7163
7429e9d4 7164static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7165{
7429e9d4 7166 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7167}
7168
de13a2e3 7169static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7170 u32 *fp,
9a7c7890 7171 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7172{
de13a2e3 7173 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7174 struct drm_device *dev = crtc->dev;
7175 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7176 struct intel_encoder *intel_encoder;
7177 uint32_t dpll;
6cc5f341 7178 int factor, num_connectors = 0;
09ede541 7179 bool is_lvds = false, is_sdvo = false;
79e53945 7180
de13a2e3
PZ
7181 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7182 switch (intel_encoder->type) {
79e53945
JB
7183 case INTEL_OUTPUT_LVDS:
7184 is_lvds = true;
7185 break;
7186 case INTEL_OUTPUT_SDVO:
7d57382e 7187 case INTEL_OUTPUT_HDMI:
79e53945 7188 is_sdvo = true;
79e53945 7189 break;
79e53945 7190 }
43565a06 7191
c751ce4f 7192 num_connectors++;
79e53945 7193 }
79e53945 7194
c1858123 7195 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7196 factor = 21;
7197 if (is_lvds) {
7198 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7199 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7200 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7201 factor = 25;
09ede541 7202 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 7203 factor = 20;
c1858123 7204
7429e9d4 7205 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7206 *fp |= FP_CB_TUNE;
2c07245f 7207
9a7c7890
DV
7208 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7209 *fp2 |= FP_CB_TUNE;
7210
5eddb70b 7211 dpll = 0;
2c07245f 7212
a07d6787
EA
7213 if (is_lvds)
7214 dpll |= DPLLB_MODE_LVDS;
7215 else
7216 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7217
ef1b460d
DV
7218 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7219 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7220
7221 if (is_sdvo)
4a33e48d 7222 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7223 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7224 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7225
a07d6787 7226 /* compute bitmask from p1 value */
7429e9d4 7227 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7228 /* also FPA1 */
7429e9d4 7229 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7230
7429e9d4 7231 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7232 case 5:
7233 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7234 break;
7235 case 7:
7236 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7237 break;
7238 case 10:
7239 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7240 break;
7241 case 14:
7242 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7243 break;
79e53945
JB
7244 }
7245
b4c09f3b 7246 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7247 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7248 else
7249 dpll |= PLL_REF_INPUT_DREFCLK;
7250
959e16d6 7251 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7252}
7253
7254static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7255 int x, int y,
7256 struct drm_framebuffer *fb)
7257{
7258 struct drm_device *dev = crtc->dev;
de13a2e3 7259 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7260 int num_connectors = 0;
7261 intel_clock_t clock, reduced_clock;
cbbab5bd 7262 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7263 bool ok, has_reduced_clock = false;
8b47047b 7264 bool is_lvds = false;
de13a2e3 7265 struct intel_encoder *encoder;
e2b78267 7266 struct intel_shared_dpll *pll;
de13a2e3
PZ
7267
7268 for_each_encoder_on_crtc(dev, crtc, encoder) {
7269 switch (encoder->type) {
7270 case INTEL_OUTPUT_LVDS:
7271 is_lvds = true;
7272 break;
de13a2e3
PZ
7273 }
7274
7275 num_connectors++;
a07d6787 7276 }
79e53945 7277
5dc5298b
PZ
7278 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7279 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7280
ff9a6750 7281 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7282 &has_reduced_clock, &reduced_clock);
ee9300bb 7283 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7284 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7285 return -EINVAL;
79e53945 7286 }
f47709a9
DV
7287 /* Compat-code for transition, will disappear. */
7288 if (!intel_crtc->config.clock_set) {
7289 intel_crtc->config.dpll.n = clock.n;
7290 intel_crtc->config.dpll.m1 = clock.m1;
7291 intel_crtc->config.dpll.m2 = clock.m2;
7292 intel_crtc->config.dpll.p1 = clock.p1;
7293 intel_crtc->config.dpll.p2 = clock.p2;
7294 }
79e53945 7295
5dc5298b 7296 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7297 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7298 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7299 if (has_reduced_clock)
7429e9d4 7300 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7301
7429e9d4 7302 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7303 &fp, &reduced_clock,
7304 has_reduced_clock ? &fp2 : NULL);
7305
959e16d6 7306 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7307 intel_crtc->config.dpll_hw_state.fp0 = fp;
7308 if (has_reduced_clock)
7309 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7310 else
7311 intel_crtc->config.dpll_hw_state.fp1 = fp;
7312
b89a1d39 7313 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7314 if (pll == NULL) {
84f44ce7 7315 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7316 pipe_name(intel_crtc->pipe));
4b645f14
JB
7317 return -EINVAL;
7318 }
ee7b9f93 7319 } else
e72f9fbf 7320 intel_put_shared_dpll(intel_crtc);
79e53945 7321
d330a953 7322 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7323 intel_crtc->lowfreq_avail = true;
7324 else
7325 intel_crtc->lowfreq_avail = false;
e2b78267 7326
c8f7a0db 7327 return 0;
79e53945
JB
7328}
7329
eb14cb74
VS
7330static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7331 struct intel_link_m_n *m_n)
7332{
7333 struct drm_device *dev = crtc->base.dev;
7334 struct drm_i915_private *dev_priv = dev->dev_private;
7335 enum pipe pipe = crtc->pipe;
7336
7337 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7338 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7339 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7340 & ~TU_SIZE_MASK;
7341 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7342 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7343 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7344}
7345
7346static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7347 enum transcoder transcoder,
b95af8be
VK
7348 struct intel_link_m_n *m_n,
7349 struct intel_link_m_n *m2_n2)
72419203
DV
7350{
7351 struct drm_device *dev = crtc->base.dev;
7352 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7353 enum pipe pipe = crtc->pipe;
72419203 7354
eb14cb74
VS
7355 if (INTEL_INFO(dev)->gen >= 5) {
7356 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7357 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7358 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7359 & ~TU_SIZE_MASK;
7360 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7361 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7362 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7363 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7364 * gen < 8) and if DRRS is supported (to make sure the
7365 * registers are not unnecessarily read).
7366 */
7367 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7368 crtc->config.has_drrs) {
7369 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7370 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7371 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7372 & ~TU_SIZE_MASK;
7373 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7374 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7375 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7376 }
eb14cb74
VS
7377 } else {
7378 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7379 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7380 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7381 & ~TU_SIZE_MASK;
7382 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7383 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7384 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7385 }
7386}
7387
7388void intel_dp_get_m_n(struct intel_crtc *crtc,
7389 struct intel_crtc_config *pipe_config)
7390{
7391 if (crtc->config.has_pch_encoder)
7392 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7393 else
7394 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7395 &pipe_config->dp_m_n,
7396 &pipe_config->dp_m2_n2);
eb14cb74 7397}
72419203 7398
eb14cb74
VS
7399static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7400 struct intel_crtc_config *pipe_config)
7401{
7402 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7403 &pipe_config->fdi_m_n, NULL);
72419203
DV
7404}
7405
2fa2fe9a
DV
7406static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7407 struct intel_crtc_config *pipe_config)
7408{
7409 struct drm_device *dev = crtc->base.dev;
7410 struct drm_i915_private *dev_priv = dev->dev_private;
7411 uint32_t tmp;
7412
7413 tmp = I915_READ(PF_CTL(crtc->pipe));
7414
7415 if (tmp & PF_ENABLE) {
fd4daa9c 7416 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7417 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7418 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7419
7420 /* We currently do not free assignements of panel fitters on
7421 * ivb/hsw (since we don't use the higher upscaling modes which
7422 * differentiates them) so just WARN about this case for now. */
7423 if (IS_GEN7(dev)) {
7424 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7425 PF_PIPE_SEL_IVB(crtc->pipe));
7426 }
2fa2fe9a 7427 }
79e53945
JB
7428}
7429
4c6baa59
JB
7430static void ironlake_get_plane_config(struct intel_crtc *crtc,
7431 struct intel_plane_config *plane_config)
7432{
7433 struct drm_device *dev = crtc->base.dev;
7434 struct drm_i915_private *dev_priv = dev->dev_private;
7435 u32 val, base, offset;
7436 int pipe = crtc->pipe, plane = crtc->plane;
7437 int fourcc, pixel_format;
7438 int aligned_height;
7439
66e514c1
DA
7440 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7441 if (!crtc->base.primary->fb) {
4c6baa59
JB
7442 DRM_DEBUG_KMS("failed to alloc fb\n");
7443 return;
7444 }
7445
7446 val = I915_READ(DSPCNTR(plane));
7447
7448 if (INTEL_INFO(dev)->gen >= 4)
7449 if (val & DISPPLANE_TILED)
7450 plane_config->tiled = true;
7451
7452 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7453 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7454 crtc->base.primary->fb->pixel_format = fourcc;
7455 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7456 drm_format_plane_cpp(fourcc, 0) * 8;
7457
7458 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7459 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7460 offset = I915_READ(DSPOFFSET(plane));
7461 } else {
7462 if (plane_config->tiled)
7463 offset = I915_READ(DSPTILEOFF(plane));
7464 else
7465 offset = I915_READ(DSPLINOFF(plane));
7466 }
7467 plane_config->base = base;
7468
7469 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7470 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7471 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7472
7473 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7474 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7475
66e514c1 7476 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7477 plane_config->tiled);
7478
1267a26b
FF
7479 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7480 aligned_height);
4c6baa59
JB
7481
7482 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7483 pipe, plane, crtc->base.primary->fb->width,
7484 crtc->base.primary->fb->height,
7485 crtc->base.primary->fb->bits_per_pixel, base,
7486 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7487 plane_config->size);
7488}
7489
0e8ffe1b
DV
7490static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7491 struct intel_crtc_config *pipe_config)
7492{
7493 struct drm_device *dev = crtc->base.dev;
7494 struct drm_i915_private *dev_priv = dev->dev_private;
7495 uint32_t tmp;
7496
930e8c9e
PZ
7497 if (!intel_display_power_enabled(dev_priv,
7498 POWER_DOMAIN_PIPE(crtc->pipe)))
7499 return false;
7500
e143a21c 7501 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7502 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7503
0e8ffe1b
DV
7504 tmp = I915_READ(PIPECONF(crtc->pipe));
7505 if (!(tmp & PIPECONF_ENABLE))
7506 return false;
7507
42571aef
VS
7508 switch (tmp & PIPECONF_BPC_MASK) {
7509 case PIPECONF_6BPC:
7510 pipe_config->pipe_bpp = 18;
7511 break;
7512 case PIPECONF_8BPC:
7513 pipe_config->pipe_bpp = 24;
7514 break;
7515 case PIPECONF_10BPC:
7516 pipe_config->pipe_bpp = 30;
7517 break;
7518 case PIPECONF_12BPC:
7519 pipe_config->pipe_bpp = 36;
7520 break;
7521 default:
7522 break;
7523 }
7524
b5a9fa09
DV
7525 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7526 pipe_config->limited_color_range = true;
7527
ab9412ba 7528 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7529 struct intel_shared_dpll *pll;
7530
88adfff1
DV
7531 pipe_config->has_pch_encoder = true;
7532
627eb5a3
DV
7533 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7534 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7535 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7536
7537 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7538
c0d43d62 7539 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7540 pipe_config->shared_dpll =
7541 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7542 } else {
7543 tmp = I915_READ(PCH_DPLL_SEL);
7544 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7545 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7546 else
7547 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7548 }
66e985c0
DV
7549
7550 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7551
7552 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7553 &pipe_config->dpll_hw_state));
c93f54cf
DV
7554
7555 tmp = pipe_config->dpll_hw_state.dpll;
7556 pipe_config->pixel_multiplier =
7557 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7558 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7559
7560 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7561 } else {
7562 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7563 }
7564
1bd1bd80
DV
7565 intel_get_pipe_timings(crtc, pipe_config);
7566
2fa2fe9a
DV
7567 ironlake_get_pfit_config(crtc, pipe_config);
7568
0e8ffe1b
DV
7569 return true;
7570}
7571
be256dc7
PZ
7572static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7573{
7574 struct drm_device *dev = dev_priv->dev;
be256dc7 7575 struct intel_crtc *crtc;
be256dc7 7576
d3fcc808 7577 for_each_intel_crtc(dev, crtc)
798183c5 7578 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7579 pipe_name(crtc->pipe));
7580
7581 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7582 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7583 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7584 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7585 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7586 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7587 "CPU PWM1 enabled\n");
c5107b87
PZ
7588 if (IS_HASWELL(dev))
7589 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7590 "CPU PWM2 enabled\n");
be256dc7
PZ
7591 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7592 "PCH PWM1 enabled\n");
7593 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7594 "Utility pin enabled\n");
7595 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7596
9926ada1
PZ
7597 /*
7598 * In theory we can still leave IRQs enabled, as long as only the HPD
7599 * interrupts remain enabled. We used to check for that, but since it's
7600 * gen-specific and since we only disable LCPLL after we fully disable
7601 * the interrupts, the check below should be enough.
7602 */
9df7575f 7603 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7604}
7605
9ccd5aeb
PZ
7606static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7607{
7608 struct drm_device *dev = dev_priv->dev;
7609
7610 if (IS_HASWELL(dev))
7611 return I915_READ(D_COMP_HSW);
7612 else
7613 return I915_READ(D_COMP_BDW);
7614}
7615
3c4c9b81
PZ
7616static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7617{
7618 struct drm_device *dev = dev_priv->dev;
7619
7620 if (IS_HASWELL(dev)) {
7621 mutex_lock(&dev_priv->rps.hw_lock);
7622 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7623 val))
f475dadf 7624 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7625 mutex_unlock(&dev_priv->rps.hw_lock);
7626 } else {
9ccd5aeb
PZ
7627 I915_WRITE(D_COMP_BDW, val);
7628 POSTING_READ(D_COMP_BDW);
3c4c9b81 7629 }
be256dc7
PZ
7630}
7631
7632/*
7633 * This function implements pieces of two sequences from BSpec:
7634 * - Sequence for display software to disable LCPLL
7635 * - Sequence for display software to allow package C8+
7636 * The steps implemented here are just the steps that actually touch the LCPLL
7637 * register. Callers should take care of disabling all the display engine
7638 * functions, doing the mode unset, fixing interrupts, etc.
7639 */
6ff58d53
PZ
7640static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7641 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7642{
7643 uint32_t val;
7644
7645 assert_can_disable_lcpll(dev_priv);
7646
7647 val = I915_READ(LCPLL_CTL);
7648
7649 if (switch_to_fclk) {
7650 val |= LCPLL_CD_SOURCE_FCLK;
7651 I915_WRITE(LCPLL_CTL, val);
7652
7653 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7654 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7655 DRM_ERROR("Switching to FCLK failed\n");
7656
7657 val = I915_READ(LCPLL_CTL);
7658 }
7659
7660 val |= LCPLL_PLL_DISABLE;
7661 I915_WRITE(LCPLL_CTL, val);
7662 POSTING_READ(LCPLL_CTL);
7663
7664 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7665 DRM_ERROR("LCPLL still locked\n");
7666
9ccd5aeb 7667 val = hsw_read_dcomp(dev_priv);
be256dc7 7668 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7669 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7670 ndelay(100);
7671
9ccd5aeb
PZ
7672 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7673 1))
be256dc7
PZ
7674 DRM_ERROR("D_COMP RCOMP still in progress\n");
7675
7676 if (allow_power_down) {
7677 val = I915_READ(LCPLL_CTL);
7678 val |= LCPLL_POWER_DOWN_ALLOW;
7679 I915_WRITE(LCPLL_CTL, val);
7680 POSTING_READ(LCPLL_CTL);
7681 }
7682}
7683
7684/*
7685 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7686 * source.
7687 */
6ff58d53 7688static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7689{
7690 uint32_t val;
a8a8bd54 7691 unsigned long irqflags;
be256dc7
PZ
7692
7693 val = I915_READ(LCPLL_CTL);
7694
7695 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7696 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7697 return;
7698
a8a8bd54
PZ
7699 /*
7700 * Make sure we're not on PC8 state before disabling PC8, otherwise
7701 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7702 *
7703 * The other problem is that hsw_restore_lcpll() is called as part of
7704 * the runtime PM resume sequence, so we can't just call
7705 * gen6_gt_force_wake_get() because that function calls
7706 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7707 * while we are on the resume sequence. So to solve this problem we have
7708 * to call special forcewake code that doesn't touch runtime PM and
7709 * doesn't enable the forcewake delayed work.
7710 */
7711 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7712 if (dev_priv->uncore.forcewake_count++ == 0)
7713 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7714 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7715
be256dc7
PZ
7716 if (val & LCPLL_POWER_DOWN_ALLOW) {
7717 val &= ~LCPLL_POWER_DOWN_ALLOW;
7718 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7719 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7720 }
7721
9ccd5aeb 7722 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7723 val |= D_COMP_COMP_FORCE;
7724 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7725 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7726
7727 val = I915_READ(LCPLL_CTL);
7728 val &= ~LCPLL_PLL_DISABLE;
7729 I915_WRITE(LCPLL_CTL, val);
7730
7731 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7732 DRM_ERROR("LCPLL not locked yet\n");
7733
7734 if (val & LCPLL_CD_SOURCE_FCLK) {
7735 val = I915_READ(LCPLL_CTL);
7736 val &= ~LCPLL_CD_SOURCE_FCLK;
7737 I915_WRITE(LCPLL_CTL, val);
7738
7739 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7740 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7741 DRM_ERROR("Switching back to LCPLL failed\n");
7742 }
215733fa 7743
a8a8bd54
PZ
7744 /* See the big comment above. */
7745 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7746 if (--dev_priv->uncore.forcewake_count == 0)
7747 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7748 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7749}
7750
765dab67
PZ
7751/*
7752 * Package states C8 and deeper are really deep PC states that can only be
7753 * reached when all the devices on the system allow it, so even if the graphics
7754 * device allows PC8+, it doesn't mean the system will actually get to these
7755 * states. Our driver only allows PC8+ when going into runtime PM.
7756 *
7757 * The requirements for PC8+ are that all the outputs are disabled, the power
7758 * well is disabled and most interrupts are disabled, and these are also
7759 * requirements for runtime PM. When these conditions are met, we manually do
7760 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7761 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7762 * hang the machine.
7763 *
7764 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7765 * the state of some registers, so when we come back from PC8+ we need to
7766 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7767 * need to take care of the registers kept by RC6. Notice that this happens even
7768 * if we don't put the device in PCI D3 state (which is what currently happens
7769 * because of the runtime PM support).
7770 *
7771 * For more, read "Display Sequences for Package C8" on the hardware
7772 * documentation.
7773 */
a14cb6fc 7774void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7775{
c67a470b
PZ
7776 struct drm_device *dev = dev_priv->dev;
7777 uint32_t val;
7778
c67a470b
PZ
7779 DRM_DEBUG_KMS("Enabling package C8+\n");
7780
c67a470b
PZ
7781 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7782 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7783 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7784 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7785 }
7786
7787 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7788 hsw_disable_lcpll(dev_priv, true, true);
7789}
7790
a14cb6fc 7791void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7792{
7793 struct drm_device *dev = dev_priv->dev;
7794 uint32_t val;
7795
c67a470b
PZ
7796 DRM_DEBUG_KMS("Disabling package C8+\n");
7797
7798 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7799 lpt_init_pch_refclk(dev);
7800
7801 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7802 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7803 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7804 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7805 }
7806
7807 intel_prepare_ddi(dev);
c67a470b
PZ
7808}
7809
9a952a0d
PZ
7810static void snb_modeset_global_resources(struct drm_device *dev)
7811{
7812 modeset_update_crtc_power_domains(dev);
7813}
7814
4f074129
ID
7815static void haswell_modeset_global_resources(struct drm_device *dev)
7816{
da723569 7817 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7818}
7819
09b4ddf9 7820static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7821 int x, int y,
7822 struct drm_framebuffer *fb)
7823{
09b4ddf9 7824 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7825
566b734a 7826 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7827 return -EINVAL;
716c2e55 7828
644cef34
DV
7829 intel_crtc->lowfreq_avail = false;
7830
c8f7a0db 7831 return 0;
79e53945
JB
7832}
7833
7d2c8175
DL
7834static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7835 enum port port,
7836 struct intel_crtc_config *pipe_config)
7837{
7838 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7839
7840 switch (pipe_config->ddi_pll_sel) {
7841 case PORT_CLK_SEL_WRPLL1:
7842 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7843 break;
7844 case PORT_CLK_SEL_WRPLL2:
7845 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7846 break;
7847 }
7848}
7849
26804afd
DV
7850static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7851 struct intel_crtc_config *pipe_config)
7852{
7853 struct drm_device *dev = crtc->base.dev;
7854 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7855 struct intel_shared_dpll *pll;
26804afd
DV
7856 enum port port;
7857 uint32_t tmp;
7858
7859 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7860
7861 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7862
7d2c8175 7863 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7864
d452c5b6
DV
7865 if (pipe_config->shared_dpll >= 0) {
7866 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7867
7868 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7869 &pipe_config->dpll_hw_state));
7870 }
7871
26804afd
DV
7872 /*
7873 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7874 * DDI E. So just check whether this pipe is wired to DDI E and whether
7875 * the PCH transcoder is on.
7876 */
ca370455
DL
7877 if (INTEL_INFO(dev)->gen < 9 &&
7878 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
7879 pipe_config->has_pch_encoder = true;
7880
7881 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7882 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7883 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7884
7885 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7886 }
7887}
7888
0e8ffe1b
DV
7889static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7890 struct intel_crtc_config *pipe_config)
7891{
7892 struct drm_device *dev = crtc->base.dev;
7893 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7894 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7895 uint32_t tmp;
7896
b5482bd0
ID
7897 if (!intel_display_power_enabled(dev_priv,
7898 POWER_DOMAIN_PIPE(crtc->pipe)))
7899 return false;
7900
e143a21c 7901 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7902 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7903
eccb140b
DV
7904 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7905 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7906 enum pipe trans_edp_pipe;
7907 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7908 default:
7909 WARN(1, "unknown pipe linked to edp transcoder\n");
7910 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7911 case TRANS_DDI_EDP_INPUT_A_ON:
7912 trans_edp_pipe = PIPE_A;
7913 break;
7914 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7915 trans_edp_pipe = PIPE_B;
7916 break;
7917 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7918 trans_edp_pipe = PIPE_C;
7919 break;
7920 }
7921
7922 if (trans_edp_pipe == crtc->pipe)
7923 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7924 }
7925
da7e29bd 7926 if (!intel_display_power_enabled(dev_priv,
eccb140b 7927 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7928 return false;
7929
eccb140b 7930 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7931 if (!(tmp & PIPECONF_ENABLE))
7932 return false;
7933
26804afd 7934 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7935
1bd1bd80
DV
7936 intel_get_pipe_timings(crtc, pipe_config);
7937
2fa2fe9a 7938 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7939 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7940 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7941
e59150dc
JB
7942 if (IS_HASWELL(dev))
7943 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7944 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7945
6c49f241
DV
7946 pipe_config->pixel_multiplier = 1;
7947
0e8ffe1b
DV
7948 return true;
7949}
7950
1a91510d
JN
7951static struct {
7952 int clock;
7953 u32 config;
7954} hdmi_audio_clock[] = {
7955 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7956 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7957 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7958 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7959 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7960 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7961 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7962 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7963 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7964 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7965};
7966
7967/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7968static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7969{
7970 int i;
7971
7972 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7973 if (mode->clock == hdmi_audio_clock[i].clock)
7974 break;
7975 }
7976
7977 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7978 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7979 i = 1;
7980 }
7981
7982 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7983 hdmi_audio_clock[i].clock,
7984 hdmi_audio_clock[i].config);
7985
7986 return hdmi_audio_clock[i].config;
7987}
7988
3a9627f4
WF
7989static bool intel_eld_uptodate(struct drm_connector *connector,
7990 int reg_eldv, uint32_t bits_eldv,
7991 int reg_elda, uint32_t bits_elda,
7992 int reg_edid)
7993{
7994 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7995 uint8_t *eld = connector->eld;
7996 uint32_t i;
7997
7998 i = I915_READ(reg_eldv);
7999 i &= bits_eldv;
8000
8001 if (!eld[0])
8002 return !i;
8003
8004 if (!i)
8005 return false;
8006
8007 i = I915_READ(reg_elda);
8008 i &= ~bits_elda;
8009 I915_WRITE(reg_elda, i);
8010
8011 for (i = 0; i < eld[2]; i++)
8012 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
8013 return false;
8014
8015 return true;
8016}
8017
e0dac65e 8018static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
8019 struct drm_crtc *crtc,
8020 struct drm_display_mode *mode)
e0dac65e
WF
8021{
8022 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8023 uint8_t *eld = connector->eld;
8024 uint32_t eldv;
8025 uint32_t len;
8026 uint32_t i;
8027
8028 i = I915_READ(G4X_AUD_VID_DID);
8029
8030 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
8031 eldv = G4X_ELDV_DEVCL_DEVBLC;
8032 else
8033 eldv = G4X_ELDV_DEVCTG;
8034
3a9627f4
WF
8035 if (intel_eld_uptodate(connector,
8036 G4X_AUD_CNTL_ST, eldv,
8037 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
8038 G4X_HDMIW_HDMIEDID))
8039 return;
8040
e0dac65e
WF
8041 i = I915_READ(G4X_AUD_CNTL_ST);
8042 i &= ~(eldv | G4X_ELD_ADDR);
8043 len = (i >> 9) & 0x1f; /* ELD buffer size */
8044 I915_WRITE(G4X_AUD_CNTL_ST, i);
8045
8046 if (!eld[0])
8047 return;
8048
8049 len = min_t(uint8_t, eld[2], len);
8050 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8051 for (i = 0; i < len; i++)
8052 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
8053
8054 i = I915_READ(G4X_AUD_CNTL_ST);
8055 i |= eldv;
8056 I915_WRITE(G4X_AUD_CNTL_ST, i);
8057}
8058
83358c85 8059static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
8060 struct drm_crtc *crtc,
8061 struct drm_display_mode *mode)
83358c85
WX
8062{
8063 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8064 uint8_t *eld = connector->eld;
83358c85
WX
8065 uint32_t eldv;
8066 uint32_t i;
8067 int len;
8068 int pipe = to_intel_crtc(crtc)->pipe;
8069 int tmp;
8070
8071 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
8072 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
8073 int aud_config = HSW_AUD_CFG(pipe);
8074 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
8075
83358c85
WX
8076 /* Audio output enable */
8077 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
8078 tmp = I915_READ(aud_cntrl_st2);
8079 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
8080 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 8081 POSTING_READ(aud_cntrl_st2);
83358c85 8082
c7905792 8083 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
8084
8085 /* Set ELD valid state */
8086 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 8087 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
8088 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
8089 I915_WRITE(aud_cntrl_st2, tmp);
8090 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 8091 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
8092
8093 /* Enable HDMI mode */
8094 tmp = I915_READ(aud_config);
7e7cb34f 8095 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
8096 /* clear N_programing_enable and N_value_index */
8097 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
8098 I915_WRITE(aud_config, tmp);
8099
8100 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
8101
8102 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
8103
8104 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8105 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8106 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
8107 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8108 } else {
8109 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8110 }
83358c85
WX
8111
8112 if (intel_eld_uptodate(connector,
8113 aud_cntrl_st2, eldv,
8114 aud_cntl_st, IBX_ELD_ADDRESS,
8115 hdmiw_hdmiedid))
8116 return;
8117
8118 i = I915_READ(aud_cntrl_st2);
8119 i &= ~eldv;
8120 I915_WRITE(aud_cntrl_st2, i);
8121
8122 if (!eld[0])
8123 return;
8124
8125 i = I915_READ(aud_cntl_st);
8126 i &= ~IBX_ELD_ADDRESS;
8127 I915_WRITE(aud_cntl_st, i);
8128 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
8129 DRM_DEBUG_DRIVER("port num:%d\n", i);
8130
8131 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8132 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8133 for (i = 0; i < len; i++)
8134 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8135
8136 i = I915_READ(aud_cntrl_st2);
8137 i |= eldv;
8138 I915_WRITE(aud_cntrl_st2, i);
8139
8140}
8141
e0dac65e 8142static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
8143 struct drm_crtc *crtc,
8144 struct drm_display_mode *mode)
e0dac65e
WF
8145{
8146 struct drm_i915_private *dev_priv = connector->dev->dev_private;
8147 uint8_t *eld = connector->eld;
8148 uint32_t eldv;
8149 uint32_t i;
8150 int len;
8151 int hdmiw_hdmiedid;
b6daa025 8152 int aud_config;
e0dac65e
WF
8153 int aud_cntl_st;
8154 int aud_cntrl_st2;
9b138a83 8155 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 8156
b3f33cbf 8157 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
8158 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
8159 aud_config = IBX_AUD_CFG(pipe);
8160 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 8161 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
8162 } else if (IS_VALLEYVIEW(connector->dev)) {
8163 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
8164 aud_config = VLV_AUD_CFG(pipe);
8165 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8166 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 8167 } else {
9b138a83
WX
8168 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8169 aud_config = CPT_AUD_CFG(pipe);
8170 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 8171 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
8172 }
8173
9b138a83 8174 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 8175
9ca2fe73
ML
8176 if (IS_VALLEYVIEW(connector->dev)) {
8177 struct intel_encoder *intel_encoder;
8178 struct intel_digital_port *intel_dig_port;
8179
8180 intel_encoder = intel_attached_encoder(connector);
8181 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8182 i = intel_dig_port->port;
8183 } else {
8184 i = I915_READ(aud_cntl_st);
8185 i = (i >> 29) & DIP_PORT_SEL_MASK;
8186 /* DIP_Port_Select, 0x1 = PortB */
8187 }
8188
e0dac65e
WF
8189 if (!i) {
8190 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8191 /* operate blindly on all ports */
1202b4c6
WF
8192 eldv = IBX_ELD_VALIDB;
8193 eldv |= IBX_ELD_VALIDB << 4;
8194 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 8195 } else {
2582a850 8196 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 8197 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
8198 }
8199
3a9627f4
WF
8200 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8201 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8202 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 8203 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8204 } else {
8205 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8206 }
e0dac65e 8207
3a9627f4
WF
8208 if (intel_eld_uptodate(connector,
8209 aud_cntrl_st2, eldv,
8210 aud_cntl_st, IBX_ELD_ADDRESS,
8211 hdmiw_hdmiedid))
8212 return;
8213
e0dac65e
WF
8214 i = I915_READ(aud_cntrl_st2);
8215 i &= ~eldv;
8216 I915_WRITE(aud_cntrl_st2, i);
8217
8218 if (!eld[0])
8219 return;
8220
e0dac65e 8221 i = I915_READ(aud_cntl_st);
1202b4c6 8222 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
8223 I915_WRITE(aud_cntl_st, i);
8224
8225 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8226 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8227 for (i = 0; i < len; i++)
8228 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8229
8230 i = I915_READ(aud_cntrl_st2);
8231 i |= eldv;
8232 I915_WRITE(aud_cntrl_st2, i);
8233}
8234
8235void intel_write_eld(struct drm_encoder *encoder,
8236 struct drm_display_mode *mode)
8237{
8238 struct drm_crtc *crtc = encoder->crtc;
8239 struct drm_connector *connector;
8240 struct drm_device *dev = encoder->dev;
8241 struct drm_i915_private *dev_priv = dev->dev_private;
8242
8243 connector = drm_select_eld(encoder, mode);
8244 if (!connector)
8245 return;
8246
8247 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8248 connector->base.id,
c23cc417 8249 connector->name,
e0dac65e 8250 connector->encoder->base.id,
8e329a03 8251 connector->encoder->name);
e0dac65e
WF
8252
8253 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8254
8255 if (dev_priv->display.write_eld)
34427052 8256 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8257}
8258
560b85bb
CW
8259static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8260{
8261 struct drm_device *dev = crtc->dev;
8262 struct drm_i915_private *dev_priv = dev->dev_private;
8263 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 8264 uint32_t cntl = 0, size = 0;
560b85bb 8265
dc41c154
VS
8266 if (base) {
8267 unsigned int width = intel_crtc->cursor_width;
8268 unsigned int height = intel_crtc->cursor_height;
8269 unsigned int stride = roundup_pow_of_two(width) * 4;
8270
8271 switch (stride) {
8272 default:
8273 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8274 width, stride);
8275 stride = 256;
8276 /* fallthrough */
8277 case 256:
8278 case 512:
8279 case 1024:
8280 case 2048:
8281 break;
4b0e333e
CW
8282 }
8283
dc41c154
VS
8284 cntl |= CURSOR_ENABLE |
8285 CURSOR_GAMMA_ENABLE |
8286 CURSOR_FORMAT_ARGB |
8287 CURSOR_STRIDE(stride);
8288
8289 size = (height << 12) | width;
4b0e333e 8290 }
560b85bb 8291
dc41c154
VS
8292 if (intel_crtc->cursor_cntl != 0 &&
8293 (intel_crtc->cursor_base != base ||
8294 intel_crtc->cursor_size != size ||
8295 intel_crtc->cursor_cntl != cntl)) {
8296 /* On these chipsets we can only modify the base/size/stride
8297 * whilst the cursor is disabled.
8298 */
8299 I915_WRITE(_CURACNTR, 0);
4b0e333e 8300 POSTING_READ(_CURACNTR);
dc41c154 8301 intel_crtc->cursor_cntl = 0;
4b0e333e 8302 }
560b85bb 8303
dc41c154 8304 if (intel_crtc->cursor_base != base)
9db4a9c7 8305 I915_WRITE(_CURABASE, base);
4726e0b0 8306
dc41c154
VS
8307 if (intel_crtc->cursor_size != size) {
8308 I915_WRITE(CURSIZE, size);
8309 intel_crtc->cursor_size = size;
4b0e333e 8310 }
560b85bb 8311
4b0e333e 8312 if (intel_crtc->cursor_cntl != cntl) {
4b0e333e
CW
8313 I915_WRITE(_CURACNTR, cntl);
8314 POSTING_READ(_CURACNTR);
4b0e333e 8315 intel_crtc->cursor_cntl = cntl;
560b85bb 8316 }
560b85bb
CW
8317}
8318
560b85bb 8319static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
8320{
8321 struct drm_device *dev = crtc->dev;
8322 struct drm_i915_private *dev_priv = dev->dev_private;
8323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8324 int pipe = intel_crtc->pipe;
4b0e333e
CW
8325 uint32_t cntl;
8326
8327 cntl = 0;
8328 if (base) {
8329 cntl = MCURSOR_GAMMA_ENABLE;
8330 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8331 case 64:
8332 cntl |= CURSOR_MODE_64_ARGB_AX;
8333 break;
8334 case 128:
8335 cntl |= CURSOR_MODE_128_ARGB_AX;
8336 break;
8337 case 256:
8338 cntl |= CURSOR_MODE_256_ARGB_AX;
8339 break;
8340 default:
8341 WARN_ON(1);
8342 return;
65a21cd6 8343 }
4b0e333e 8344 cntl |= pipe << 28; /* Connect to correct pipe */
4b0e333e
CW
8345 }
8346 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8347 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8348
4b0e333e
CW
8349 if (intel_crtc->cursor_cntl != cntl) {
8350 I915_WRITE(CURCNTR(pipe), cntl);
8351 POSTING_READ(CURCNTR(pipe));
8352 intel_crtc->cursor_cntl = cntl;
65a21cd6 8353 }
4b0e333e 8354
65a21cd6 8355 /* and commit changes on next vblank */
5efb3e28
VS
8356 I915_WRITE(CURBASE(pipe), base);
8357 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8358}
8359
cda4b7d3 8360/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8361static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8362 bool on)
cda4b7d3
CW
8363{
8364 struct drm_device *dev = crtc->dev;
8365 struct drm_i915_private *dev_priv = dev->dev_private;
8366 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8367 int pipe = intel_crtc->pipe;
3d7d6510
MR
8368 int x = crtc->cursor_x;
8369 int y = crtc->cursor_y;
d6e4db15 8370 u32 base = 0, pos = 0;
cda4b7d3 8371
d6e4db15 8372 if (on)
cda4b7d3 8373 base = intel_crtc->cursor_addr;
cda4b7d3 8374
d6e4db15
VS
8375 if (x >= intel_crtc->config.pipe_src_w)
8376 base = 0;
8377
8378 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8379 base = 0;
8380
8381 if (x < 0) {
efc9064e 8382 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8383 base = 0;
8384
8385 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8386 x = -x;
8387 }
8388 pos |= x << CURSOR_X_SHIFT;
8389
8390 if (y < 0) {
efc9064e 8391 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8392 base = 0;
8393
8394 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8395 y = -y;
8396 }
8397 pos |= y << CURSOR_Y_SHIFT;
8398
4b0e333e 8399 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8400 return;
8401
5efb3e28
VS
8402 I915_WRITE(CURPOS(pipe), pos);
8403
8ac54669 8404 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
8405 i845_update_cursor(crtc, base);
8406 else
8407 i9xx_update_cursor(crtc, base);
4b0e333e 8408 intel_crtc->cursor_base = base;
cda4b7d3
CW
8409}
8410
dc41c154
VS
8411static bool cursor_size_ok(struct drm_device *dev,
8412 uint32_t width, uint32_t height)
8413{
8414 if (width == 0 || height == 0)
8415 return false;
8416
8417 /*
8418 * 845g/865g are special in that they are only limited by
8419 * the width of their cursors, the height is arbitrary up to
8420 * the precision of the register. Everything else requires
8421 * square cursors, limited to a few power-of-two sizes.
8422 */
8423 if (IS_845G(dev) || IS_I865G(dev)) {
8424 if ((width & 63) != 0)
8425 return false;
8426
8427 if (width > (IS_845G(dev) ? 64 : 512))
8428 return false;
8429
8430 if (height > 1023)
8431 return false;
8432 } else {
8433 switch (width | height) {
8434 case 256:
8435 case 128:
8436 if (IS_GEN2(dev))
8437 return false;
8438 case 64:
8439 break;
8440 default:
8441 return false;
8442 }
8443 }
8444
8445 return true;
8446}
8447
e3287951
MR
8448/*
8449 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8450 *
8451 * Note that the object's reference will be consumed if the update fails. If
8452 * the update succeeds, the reference of the old object (if any) will be
8453 * consumed.
8454 */
8455static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8456 struct drm_i915_gem_object *obj,
8457 uint32_t width, uint32_t height)
79e53945
JB
8458{
8459 struct drm_device *dev = crtc->dev;
8460 struct drm_i915_private *dev_priv = dev->dev_private;
8461 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8462 enum pipe pipe = intel_crtc->pipe;
dc41c154 8463 unsigned old_width, stride;
cda4b7d3 8464 uint32_t addr;
3f8bc370 8465 int ret;
79e53945 8466
79e53945 8467 /* if we want to turn off the cursor ignore width and height */
e3287951 8468 if (!obj) {
28c97730 8469 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8470 addr = 0;
5004417d 8471 mutex_lock(&dev->struct_mutex);
3f8bc370 8472 goto finish;
79e53945
JB
8473 }
8474
4726e0b0 8475 /* Check for which cursor types we support */
dc41c154 8476 if (!cursor_size_ok(dev, width, height)) {
4726e0b0 8477 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8478 return -EINVAL;
8479 }
8480
dc41c154
VS
8481 stride = roundup_pow_of_two(width) * 4;
8482 if (obj->base.size < stride * height) {
e3287951 8483 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8484 ret = -ENOMEM;
8485 goto fail;
79e53945
JB
8486 }
8487
71acb5eb 8488 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8489 mutex_lock(&dev->struct_mutex);
3d13ef2e 8490 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8491 unsigned alignment;
8492
d9e86c0e 8493 if (obj->tiling_mode) {
3b25b31f 8494 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8495 ret = -EINVAL;
8496 goto fail_locked;
8497 }
8498
d6dd6843
PZ
8499 /*
8500 * Global gtt pte registers are special registers which actually
8501 * forward writes to a chunk of system memory. Which means that
8502 * there is no risk that the register values disappear as soon
8503 * as we call intel_runtime_pm_put(), so it is correct to wrap
8504 * only the pin/unpin/fence and not more.
8505 */
8506 intel_runtime_pm_get(dev_priv);
8507
693db184
CW
8508 /* Note that the w/a also requires 2 PTE of padding following
8509 * the bo. We currently fill all unused PTE with the shadow
8510 * page and so we should always have valid PTE following the
8511 * cursor preventing the VT-d warning.
8512 */
8513 alignment = 0;
8514 if (need_vtd_wa(dev))
8515 alignment = 64*1024;
8516
8517 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8518 if (ret) {
3b25b31f 8519 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
d6dd6843 8520 intel_runtime_pm_put(dev_priv);
2da3b9b9 8521 goto fail_locked;
e7b526bb
CW
8522 }
8523
d9e86c0e
CW
8524 ret = i915_gem_object_put_fence(obj);
8525 if (ret) {
3b25b31f 8526 DRM_DEBUG_KMS("failed to release fence for cursor");
d6dd6843 8527 intel_runtime_pm_put(dev_priv);
d9e86c0e
CW
8528 goto fail_unpin;
8529 }
8530
f343c5f6 8531 addr = i915_gem_obj_ggtt_offset(obj);
d6dd6843
PZ
8532
8533 intel_runtime_pm_put(dev_priv);
71acb5eb 8534 } else {
6eeefaf3 8535 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8536 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8537 if (ret) {
3b25b31f 8538 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8539 goto fail_locked;
71acb5eb 8540 }
00731155 8541 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8542 }
8543
3f8bc370 8544 finish:
3f8bc370 8545 if (intel_crtc->cursor_bo) {
00731155 8546 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8547 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8548 }
80824003 8549
a071fa00
DV
8550 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8551 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8552 mutex_unlock(&dev->struct_mutex);
3f8bc370 8553
64f962e3
CW
8554 old_width = intel_crtc->cursor_width;
8555
3f8bc370 8556 intel_crtc->cursor_addr = addr;
05394f39 8557 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8558 intel_crtc->cursor_width = width;
8559 intel_crtc->cursor_height = height;
8560
64f962e3
CW
8561 if (intel_crtc->active) {
8562 if (old_width != width)
8563 intel_update_watermarks(crtc);
f2f5f771 8564 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8565 }
3f8bc370 8566
f99d7069
DV
8567 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8568
79e53945 8569 return 0;
e7b526bb 8570fail_unpin:
cc98b413 8571 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8572fail_locked:
34b8686e 8573 mutex_unlock(&dev->struct_mutex);
bc9025bd 8574fail:
05394f39 8575 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8576 return ret;
79e53945
JB
8577}
8578
79e53945 8579static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8580 u16 *blue, uint32_t start, uint32_t size)
79e53945 8581{
7203425a 8582 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8583 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8584
7203425a 8585 for (i = start; i < end; i++) {
79e53945
JB
8586 intel_crtc->lut_r[i] = red[i] >> 8;
8587 intel_crtc->lut_g[i] = green[i] >> 8;
8588 intel_crtc->lut_b[i] = blue[i] >> 8;
8589 }
8590
8591 intel_crtc_load_lut(crtc);
8592}
8593
79e53945
JB
8594/* VESA 640x480x72Hz mode to set on the pipe */
8595static struct drm_display_mode load_detect_mode = {
8596 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8597 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8598};
8599
a8bb6818
DV
8600struct drm_framebuffer *
8601__intel_framebuffer_create(struct drm_device *dev,
8602 struct drm_mode_fb_cmd2 *mode_cmd,
8603 struct drm_i915_gem_object *obj)
d2dff872
CW
8604{
8605 struct intel_framebuffer *intel_fb;
8606 int ret;
8607
8608 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8609 if (!intel_fb) {
8610 drm_gem_object_unreference_unlocked(&obj->base);
8611 return ERR_PTR(-ENOMEM);
8612 }
8613
8614 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8615 if (ret)
8616 goto err;
d2dff872
CW
8617
8618 return &intel_fb->base;
dd4916c5
DV
8619err:
8620 drm_gem_object_unreference_unlocked(&obj->base);
8621 kfree(intel_fb);
8622
8623 return ERR_PTR(ret);
d2dff872
CW
8624}
8625
b5ea642a 8626static struct drm_framebuffer *
a8bb6818
DV
8627intel_framebuffer_create(struct drm_device *dev,
8628 struct drm_mode_fb_cmd2 *mode_cmd,
8629 struct drm_i915_gem_object *obj)
8630{
8631 struct drm_framebuffer *fb;
8632 int ret;
8633
8634 ret = i915_mutex_lock_interruptible(dev);
8635 if (ret)
8636 return ERR_PTR(ret);
8637 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8638 mutex_unlock(&dev->struct_mutex);
8639
8640 return fb;
8641}
8642
d2dff872
CW
8643static u32
8644intel_framebuffer_pitch_for_width(int width, int bpp)
8645{
8646 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8647 return ALIGN(pitch, 64);
8648}
8649
8650static u32
8651intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8652{
8653 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8654 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8655}
8656
8657static struct drm_framebuffer *
8658intel_framebuffer_create_for_mode(struct drm_device *dev,
8659 struct drm_display_mode *mode,
8660 int depth, int bpp)
8661{
8662 struct drm_i915_gem_object *obj;
0fed39bd 8663 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8664
8665 obj = i915_gem_alloc_object(dev,
8666 intel_framebuffer_size_for_mode(mode, bpp));
8667 if (obj == NULL)
8668 return ERR_PTR(-ENOMEM);
8669
8670 mode_cmd.width = mode->hdisplay;
8671 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8672 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8673 bpp);
5ca0c34a 8674 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8675
8676 return intel_framebuffer_create(dev, &mode_cmd, obj);
8677}
8678
8679static struct drm_framebuffer *
8680mode_fits_in_fbdev(struct drm_device *dev,
8681 struct drm_display_mode *mode)
8682{
4520f53a 8683#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8684 struct drm_i915_private *dev_priv = dev->dev_private;
8685 struct drm_i915_gem_object *obj;
8686 struct drm_framebuffer *fb;
8687
4c0e5528 8688 if (!dev_priv->fbdev)
d2dff872
CW
8689 return NULL;
8690
4c0e5528 8691 if (!dev_priv->fbdev->fb)
d2dff872
CW
8692 return NULL;
8693
4c0e5528
DV
8694 obj = dev_priv->fbdev->fb->obj;
8695 BUG_ON(!obj);
8696
8bcd4553 8697 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8698 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8699 fb->bits_per_pixel))
d2dff872
CW
8700 return NULL;
8701
01f2c773 8702 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8703 return NULL;
8704
8705 return fb;
4520f53a
DV
8706#else
8707 return NULL;
8708#endif
d2dff872
CW
8709}
8710
d2434ab7 8711bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8712 struct drm_display_mode *mode,
51fd371b
RC
8713 struct intel_load_detect_pipe *old,
8714 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8715{
8716 struct intel_crtc *intel_crtc;
d2434ab7
DV
8717 struct intel_encoder *intel_encoder =
8718 intel_attached_encoder(connector);
79e53945 8719 struct drm_crtc *possible_crtc;
4ef69c7a 8720 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8721 struct drm_crtc *crtc = NULL;
8722 struct drm_device *dev = encoder->dev;
94352cf9 8723 struct drm_framebuffer *fb;
51fd371b
RC
8724 struct drm_mode_config *config = &dev->mode_config;
8725 int ret, i = -1;
79e53945 8726
d2dff872 8727 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8728 connector->base.id, connector->name,
8e329a03 8729 encoder->base.id, encoder->name);
d2dff872 8730
51fd371b
RC
8731retry:
8732 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8733 if (ret)
8734 goto fail_unlock;
6e9f798d 8735
79e53945
JB
8736 /*
8737 * Algorithm gets a little messy:
7a5e4805 8738 *
79e53945
JB
8739 * - if the connector already has an assigned crtc, use it (but make
8740 * sure it's on first)
7a5e4805 8741 *
79e53945
JB
8742 * - try to find the first unused crtc that can drive this connector,
8743 * and use that if we find one
79e53945
JB
8744 */
8745
8746 /* See if we already have a CRTC for this connector */
8747 if (encoder->crtc) {
8748 crtc = encoder->crtc;
8261b191 8749
51fd371b
RC
8750 ret = drm_modeset_lock(&crtc->mutex, ctx);
8751 if (ret)
8752 goto fail_unlock;
7b24056b 8753
24218aac 8754 old->dpms_mode = connector->dpms;
8261b191
CW
8755 old->load_detect_temp = false;
8756
8757 /* Make sure the crtc and connector are running */
24218aac
DV
8758 if (connector->dpms != DRM_MODE_DPMS_ON)
8759 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8760
7173188d 8761 return true;
79e53945
JB
8762 }
8763
8764 /* Find an unused one (if possible) */
70e1e0ec 8765 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8766 i++;
8767 if (!(encoder->possible_crtcs & (1 << i)))
8768 continue;
a459249c
VS
8769 if (possible_crtc->enabled)
8770 continue;
8771 /* This can occur when applying the pipe A quirk on resume. */
8772 if (to_intel_crtc(possible_crtc)->new_enabled)
8773 continue;
8774
8775 crtc = possible_crtc;
8776 break;
79e53945
JB
8777 }
8778
8779 /*
8780 * If we didn't find an unused CRTC, don't use any.
8781 */
8782 if (!crtc) {
7173188d 8783 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8784 goto fail_unlock;
79e53945
JB
8785 }
8786
51fd371b
RC
8787 ret = drm_modeset_lock(&crtc->mutex, ctx);
8788 if (ret)
8789 goto fail_unlock;
fc303101
DV
8790 intel_encoder->new_crtc = to_intel_crtc(crtc);
8791 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8792
8793 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8794 intel_crtc->new_enabled = true;
8795 intel_crtc->new_config = &intel_crtc->config;
24218aac 8796 old->dpms_mode = connector->dpms;
8261b191 8797 old->load_detect_temp = true;
d2dff872 8798 old->release_fb = NULL;
79e53945 8799
6492711d
CW
8800 if (!mode)
8801 mode = &load_detect_mode;
79e53945 8802
d2dff872
CW
8803 /* We need a framebuffer large enough to accommodate all accesses
8804 * that the plane may generate whilst we perform load detection.
8805 * We can not rely on the fbcon either being present (we get called
8806 * during its initialisation to detect all boot displays, or it may
8807 * not even exist) or that it is large enough to satisfy the
8808 * requested mode.
8809 */
94352cf9
DV
8810 fb = mode_fits_in_fbdev(dev, mode);
8811 if (fb == NULL) {
d2dff872 8812 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8813 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8814 old->release_fb = fb;
d2dff872
CW
8815 } else
8816 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8817 if (IS_ERR(fb)) {
d2dff872 8818 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8819 goto fail;
79e53945 8820 }
79e53945 8821
c0c36b94 8822 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8823 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8824 if (old->release_fb)
8825 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8826 goto fail;
79e53945 8827 }
7173188d 8828
79e53945 8829 /* let the connector get through one full cycle before testing */
9d0498a2 8830 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8831 return true;
412b61d8
VS
8832
8833 fail:
8834 intel_crtc->new_enabled = crtc->enabled;
8835 if (intel_crtc->new_enabled)
8836 intel_crtc->new_config = &intel_crtc->config;
8837 else
8838 intel_crtc->new_config = NULL;
51fd371b
RC
8839fail_unlock:
8840 if (ret == -EDEADLK) {
8841 drm_modeset_backoff(ctx);
8842 goto retry;
8843 }
8844
412b61d8 8845 return false;
79e53945
JB
8846}
8847
d2434ab7 8848void intel_release_load_detect_pipe(struct drm_connector *connector,
208bf9fd 8849 struct intel_load_detect_pipe *old)
79e53945 8850{
d2434ab7
DV
8851 struct intel_encoder *intel_encoder =
8852 intel_attached_encoder(connector);
4ef69c7a 8853 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8854 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8855 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8856
d2dff872 8857 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8858 connector->base.id, connector->name,
8e329a03 8859 encoder->base.id, encoder->name);
d2dff872 8860
8261b191 8861 if (old->load_detect_temp) {
fc303101
DV
8862 to_intel_connector(connector)->new_encoder = NULL;
8863 intel_encoder->new_crtc = NULL;
412b61d8
VS
8864 intel_crtc->new_enabled = false;
8865 intel_crtc->new_config = NULL;
fc303101 8866 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8867
36206361
DV
8868 if (old->release_fb) {
8869 drm_framebuffer_unregister_private(old->release_fb);
8870 drm_framebuffer_unreference(old->release_fb);
8871 }
d2dff872 8872
0622a53c 8873 return;
79e53945
JB
8874 }
8875
c751ce4f 8876 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8877 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8878 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
8879}
8880
da4a1efa
VS
8881static int i9xx_pll_refclk(struct drm_device *dev,
8882 const struct intel_crtc_config *pipe_config)
8883{
8884 struct drm_i915_private *dev_priv = dev->dev_private;
8885 u32 dpll = pipe_config->dpll_hw_state.dpll;
8886
8887 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8888 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8889 else if (HAS_PCH_SPLIT(dev))
8890 return 120000;
8891 else if (!IS_GEN2(dev))
8892 return 96000;
8893 else
8894 return 48000;
8895}
8896
79e53945 8897/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8898static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8899 struct intel_crtc_config *pipe_config)
79e53945 8900{
f1f644dc 8901 struct drm_device *dev = crtc->base.dev;
79e53945 8902 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8903 int pipe = pipe_config->cpu_transcoder;
293623f7 8904 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8905 u32 fp;
8906 intel_clock_t clock;
da4a1efa 8907 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8908
8909 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8910 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8911 else
293623f7 8912 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8913
8914 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8915 if (IS_PINEVIEW(dev)) {
8916 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8917 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8918 } else {
8919 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8920 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8921 }
8922
a6c45cf0 8923 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8924 if (IS_PINEVIEW(dev))
8925 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8926 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8927 else
8928 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8929 DPLL_FPA01_P1_POST_DIV_SHIFT);
8930
8931 switch (dpll & DPLL_MODE_MASK) {
8932 case DPLLB_MODE_DAC_SERIAL:
8933 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8934 5 : 10;
8935 break;
8936 case DPLLB_MODE_LVDS:
8937 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8938 7 : 14;
8939 break;
8940 default:
28c97730 8941 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8942 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8943 return;
79e53945
JB
8944 }
8945
ac58c3f0 8946 if (IS_PINEVIEW(dev))
da4a1efa 8947 pineview_clock(refclk, &clock);
ac58c3f0 8948 else
da4a1efa 8949 i9xx_clock(refclk, &clock);
79e53945 8950 } else {
0fb58223 8951 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8952 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8953
8954 if (is_lvds) {
8955 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8956 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8957
8958 if (lvds & LVDS_CLKB_POWER_UP)
8959 clock.p2 = 7;
8960 else
8961 clock.p2 = 14;
79e53945
JB
8962 } else {
8963 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8964 clock.p1 = 2;
8965 else {
8966 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8967 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8968 }
8969 if (dpll & PLL_P2_DIVIDE_BY_4)
8970 clock.p2 = 4;
8971 else
8972 clock.p2 = 2;
79e53945 8973 }
da4a1efa
VS
8974
8975 i9xx_clock(refclk, &clock);
79e53945
JB
8976 }
8977
18442d08
VS
8978 /*
8979 * This value includes pixel_multiplier. We will use
241bfc38 8980 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8981 * encoder's get_config() function.
8982 */
8983 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8984}
8985
6878da05
VS
8986int intel_dotclock_calculate(int link_freq,
8987 const struct intel_link_m_n *m_n)
f1f644dc 8988{
f1f644dc
JB
8989 /*
8990 * The calculation for the data clock is:
1041a02f 8991 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8992 * But we want to avoid losing precison if possible, so:
1041a02f 8993 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8994 *
8995 * and the link clock is simpler:
1041a02f 8996 * link_clock = (m * link_clock) / n
f1f644dc
JB
8997 */
8998
6878da05
VS
8999 if (!m_n->link_n)
9000 return 0;
f1f644dc 9001
6878da05
VS
9002 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
9003}
f1f644dc 9004
18442d08
VS
9005static void ironlake_pch_clock_get(struct intel_crtc *crtc,
9006 struct intel_crtc_config *pipe_config)
6878da05
VS
9007{
9008 struct drm_device *dev = crtc->base.dev;
79e53945 9009
18442d08
VS
9010 /* read out port_clock from the DPLL */
9011 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 9012
f1f644dc 9013 /*
18442d08 9014 * This value does not include pixel_multiplier.
241bfc38 9015 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
9016 * agree once we know their relationship in the encoder's
9017 * get_config() function.
79e53945 9018 */
241bfc38 9019 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
9020 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
9021 &pipe_config->fdi_m_n);
79e53945
JB
9022}
9023
9024/** Returns the currently programmed mode of the given pipe. */
9025struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
9026 struct drm_crtc *crtc)
9027{
548f245b 9028 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 9029 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 9030 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 9031 struct drm_display_mode *mode;
f1f644dc 9032 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
9033 int htot = I915_READ(HTOTAL(cpu_transcoder));
9034 int hsync = I915_READ(HSYNC(cpu_transcoder));
9035 int vtot = I915_READ(VTOTAL(cpu_transcoder));
9036 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 9037 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
9038
9039 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
9040 if (!mode)
9041 return NULL;
9042
f1f644dc
JB
9043 /*
9044 * Construct a pipe_config sufficient for getting the clock info
9045 * back out of crtc_clock_get.
9046 *
9047 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
9048 * to use a real value here instead.
9049 */
293623f7 9050 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 9051 pipe_config.pixel_multiplier = 1;
293623f7
VS
9052 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
9053 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
9054 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
9055 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
9056
773ae034 9057 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
9058 mode->hdisplay = (htot & 0xffff) + 1;
9059 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9060 mode->hsync_start = (hsync & 0xffff) + 1;
9061 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9062 mode->vdisplay = (vtot & 0xffff) + 1;
9063 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9064 mode->vsync_start = (vsync & 0xffff) + 1;
9065 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9066
9067 drm_mode_set_name(mode);
79e53945
JB
9068
9069 return mode;
9070}
9071
cc36513c
DV
9072static void intel_increase_pllclock(struct drm_device *dev,
9073 enum pipe pipe)
652c393a 9074{
fbee40df 9075 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
9076 int dpll_reg = DPLL(pipe);
9077 int dpll;
652c393a 9078
baff296c 9079 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9080 return;
9081
9082 if (!dev_priv->lvds_downclock_avail)
9083 return;
9084
dbdc6479 9085 dpll = I915_READ(dpll_reg);
652c393a 9086 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 9087 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 9088
8ac5a6d5 9089 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
9090
9091 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
9092 I915_WRITE(dpll_reg, dpll);
9d0498a2 9093 intel_wait_for_vblank(dev, pipe);
dbdc6479 9094
652c393a
JB
9095 dpll = I915_READ(dpll_reg);
9096 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 9097 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 9098 }
652c393a
JB
9099}
9100
9101static void intel_decrease_pllclock(struct drm_crtc *crtc)
9102{
9103 struct drm_device *dev = crtc->dev;
fbee40df 9104 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 9106
baff296c 9107 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
9108 return;
9109
9110 if (!dev_priv->lvds_downclock_avail)
9111 return;
9112
9113 /*
9114 * Since this is called by a timer, we should never get here in
9115 * the manual case.
9116 */
9117 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
9118 int pipe = intel_crtc->pipe;
9119 int dpll_reg = DPLL(pipe);
9120 int dpll;
f6e5b160 9121
44d98a61 9122 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 9123
8ac5a6d5 9124 assert_panel_unlocked(dev_priv, pipe);
652c393a 9125
dc257cf1 9126 dpll = I915_READ(dpll_reg);
652c393a
JB
9127 dpll |= DISPLAY_RATE_SELECT_FPA1;
9128 I915_WRITE(dpll_reg, dpll);
9d0498a2 9129 intel_wait_for_vblank(dev, pipe);
652c393a
JB
9130 dpll = I915_READ(dpll_reg);
9131 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 9132 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
9133 }
9134
9135}
9136
f047e395
CW
9137void intel_mark_busy(struct drm_device *dev)
9138{
c67a470b
PZ
9139 struct drm_i915_private *dev_priv = dev->dev_private;
9140
f62a0076
CW
9141 if (dev_priv->mm.busy)
9142 return;
9143
43694d69 9144 intel_runtime_pm_get(dev_priv);
c67a470b 9145 i915_update_gfx_val(dev_priv);
f62a0076 9146 dev_priv->mm.busy = true;
f047e395
CW
9147}
9148
9149void intel_mark_idle(struct drm_device *dev)
652c393a 9150{
c67a470b 9151 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 9152 struct drm_crtc *crtc;
652c393a 9153
f62a0076
CW
9154 if (!dev_priv->mm.busy)
9155 return;
9156
9157 dev_priv->mm.busy = false;
9158
d330a953 9159 if (!i915.powersave)
bb4cdd53 9160 goto out;
652c393a 9161
70e1e0ec 9162 for_each_crtc(dev, crtc) {
f4510a27 9163 if (!crtc->primary->fb)
652c393a
JB
9164 continue;
9165
725a5b54 9166 intel_decrease_pllclock(crtc);
652c393a 9167 }
b29c19b6 9168
3d13ef2e 9169 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 9170 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
9171
9172out:
43694d69 9173 intel_runtime_pm_put(dev_priv);
652c393a
JB
9174}
9175
7c8f8a70 9176
f99d7069
DV
9177/**
9178 * intel_mark_fb_busy - mark given planes as busy
9179 * @dev: DRM device
9180 * @frontbuffer_bits: bits for the affected planes
9181 * @ring: optional ring for asynchronous commands
9182 *
9183 * This function gets called every time the screen contents change. It can be
9184 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
9185 */
9186static void intel_mark_fb_busy(struct drm_device *dev,
9187 unsigned frontbuffer_bits,
9188 struct intel_engine_cs *ring)
652c393a 9189{
055e393f 9190 struct drm_i915_private *dev_priv = dev->dev_private;
cc36513c 9191 enum pipe pipe;
652c393a 9192
d330a953 9193 if (!i915.powersave)
acb87dfb
CW
9194 return;
9195
055e393f 9196 for_each_pipe(dev_priv, pipe) {
f99d7069 9197 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
9198 continue;
9199
cc36513c 9200 intel_increase_pllclock(dev, pipe);
c65355bb
CW
9201 if (ring && intel_fbc_enabled(dev))
9202 ring->fbc_dirty = true;
652c393a
JB
9203 }
9204}
9205
f99d7069
DV
9206/**
9207 * intel_fb_obj_invalidate - invalidate frontbuffer object
9208 * @obj: GEM object to invalidate
9209 * @ring: set for asynchronous rendering
9210 *
9211 * This function gets called every time rendering on the given object starts and
9212 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9213 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9214 * until the rendering completes or a flip on this frontbuffer plane is
9215 * scheduled.
9216 */
9217void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9218 struct intel_engine_cs *ring)
9219{
9220 struct drm_device *dev = obj->base.dev;
9221 struct drm_i915_private *dev_priv = dev->dev_private;
9222
9223 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9224
9225 if (!obj->frontbuffer_bits)
9226 return;
9227
9228 if (ring) {
9229 mutex_lock(&dev_priv->fb_tracking.lock);
9230 dev_priv->fb_tracking.busy_bits
9231 |= obj->frontbuffer_bits;
9232 dev_priv->fb_tracking.flip_bits
9233 &= ~obj->frontbuffer_bits;
9234 mutex_unlock(&dev_priv->fb_tracking.lock);
9235 }
9236
9237 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9238
9ca15301 9239 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
9240}
9241
9242/**
9243 * intel_frontbuffer_flush - flush frontbuffer
9244 * @dev: DRM device
9245 * @frontbuffer_bits: frontbuffer plane tracking bits
9246 *
9247 * This function gets called every time rendering on the given planes has
9248 * completed and frontbuffer caching can be started again. Flushes will get
9249 * delayed if they're blocked by some oustanding asynchronous rendering.
9250 *
9251 * Can be called without any locks held.
9252 */
9253void intel_frontbuffer_flush(struct drm_device *dev,
9254 unsigned frontbuffer_bits)
9255{
9256 struct drm_i915_private *dev_priv = dev->dev_private;
9257
9258 /* Delay flushing when rings are still busy.*/
9259 mutex_lock(&dev_priv->fb_tracking.lock);
9260 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9261 mutex_unlock(&dev_priv->fb_tracking.lock);
9262
9263 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9264
9ca15301 9265 intel_edp_psr_flush(dev, frontbuffer_bits);
c5ad011d 9266
c317adcd
VS
9267 /*
9268 * FIXME: Unconditional fbc flushing here is a rather gross hack and
9269 * needs to be reworked into a proper frontbuffer tracking scheme like
9270 * psr employs.
9271 */
9272 if (IS_BROADWELL(dev))
c5ad011d 9273 gen8_fbc_sw_flush(dev, FBC_REND_CACHE_CLEAN);
f99d7069
DV
9274}
9275
9276/**
9277 * intel_fb_obj_flush - flush frontbuffer object
9278 * @obj: GEM object to flush
9279 * @retire: set when retiring asynchronous rendering
9280 *
9281 * This function gets called every time rendering on the given object has
9282 * completed and frontbuffer caching can be started again. If @retire is true
9283 * then any delayed flushes will be unblocked.
9284 */
9285void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9286 bool retire)
9287{
9288 struct drm_device *dev = obj->base.dev;
9289 struct drm_i915_private *dev_priv = dev->dev_private;
9290 unsigned frontbuffer_bits;
9291
9292 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9293
9294 if (!obj->frontbuffer_bits)
9295 return;
9296
9297 frontbuffer_bits = obj->frontbuffer_bits;
9298
9299 if (retire) {
9300 mutex_lock(&dev_priv->fb_tracking.lock);
9301 /* Filter out new bits since rendering started. */
9302 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9303
9304 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9305 mutex_unlock(&dev_priv->fb_tracking.lock);
9306 }
9307
9308 intel_frontbuffer_flush(dev, frontbuffer_bits);
9309}
9310
9311/**
9312 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9313 * @dev: DRM device
9314 * @frontbuffer_bits: frontbuffer plane tracking bits
9315 *
9316 * This function gets called after scheduling a flip on @obj. The actual
9317 * frontbuffer flushing will be delayed until completion is signalled with
9318 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9319 * flush will be cancelled.
9320 *
9321 * Can be called without any locks held.
9322 */
9323void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9324 unsigned frontbuffer_bits)
9325{
9326 struct drm_i915_private *dev_priv = dev->dev_private;
9327
9328 mutex_lock(&dev_priv->fb_tracking.lock);
9329 dev_priv->fb_tracking.flip_bits
9330 |= frontbuffer_bits;
9331 mutex_unlock(&dev_priv->fb_tracking.lock);
9332}
9333
9334/**
9335 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9336 * @dev: DRM device
9337 * @frontbuffer_bits: frontbuffer plane tracking bits
9338 *
9339 * This function gets called after the flip has been latched and will complete
9340 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9341 *
9342 * Can be called without any locks held.
9343 */
9344void intel_frontbuffer_flip_complete(struct drm_device *dev,
9345 unsigned frontbuffer_bits)
9346{
9347 struct drm_i915_private *dev_priv = dev->dev_private;
9348
9349 mutex_lock(&dev_priv->fb_tracking.lock);
9350 /* Mask any cancelled flips. */
9351 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9352 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9353 mutex_unlock(&dev_priv->fb_tracking.lock);
9354
9355 intel_frontbuffer_flush(dev, frontbuffer_bits);
9356}
9357
79e53945
JB
9358static void intel_crtc_destroy(struct drm_crtc *crtc)
9359{
9360 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9361 struct drm_device *dev = crtc->dev;
9362 struct intel_unpin_work *work;
9363 unsigned long flags;
9364
9365 spin_lock_irqsave(&dev->event_lock, flags);
9366 work = intel_crtc->unpin_work;
9367 intel_crtc->unpin_work = NULL;
9368 spin_unlock_irqrestore(&dev->event_lock, flags);
9369
9370 if (work) {
9371 cancel_work_sync(&work->work);
9372 kfree(work);
9373 }
79e53945
JB
9374
9375 drm_crtc_cleanup(crtc);
67e77c5a 9376
79e53945
JB
9377 kfree(intel_crtc);
9378}
9379
6b95a207
KH
9380static void intel_unpin_work_fn(struct work_struct *__work)
9381{
9382 struct intel_unpin_work *work =
9383 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9384 struct drm_device *dev = work->crtc->dev;
f99d7069 9385 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9386
b4a98e57 9387 mutex_lock(&dev->struct_mutex);
1690e1eb 9388 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9389 drm_gem_object_unreference(&work->pending_flip_obj->base);
9390 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9391
b4a98e57
CW
9392 intel_update_fbc(dev);
9393 mutex_unlock(&dev->struct_mutex);
9394
f99d7069
DV
9395 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9396
b4a98e57
CW
9397 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9398 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9399
6b95a207
KH
9400 kfree(work);
9401}
9402
1afe3e9d 9403static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9404 struct drm_crtc *crtc)
6b95a207 9405{
6b95a207
KH
9406 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9407 struct intel_unpin_work *work;
6b95a207
KH
9408 unsigned long flags;
9409
9410 /* Ignore early vblank irqs */
9411 if (intel_crtc == NULL)
9412 return;
9413
9414 spin_lock_irqsave(&dev->event_lock, flags);
9415 work = intel_crtc->unpin_work;
e7d841ca
CW
9416
9417 /* Ensure we don't miss a work->pending update ... */
9418 smp_rmb();
9419
9420 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9421 spin_unlock_irqrestore(&dev->event_lock, flags);
9422 return;
9423 }
9424
d6bbafa1 9425 page_flip_completed(intel_crtc);
0af7e4df 9426
6b95a207 9427 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
9428}
9429
1afe3e9d
JB
9430void intel_finish_page_flip(struct drm_device *dev, int pipe)
9431{
fbee40df 9432 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9433 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9434
49b14a5c 9435 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9436}
9437
9438void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9439{
fbee40df 9440 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9441 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9442
49b14a5c 9443 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9444}
9445
75f7f3ec
VS
9446/* Is 'a' after or equal to 'b'? */
9447static bool g4x_flip_count_after_eq(u32 a, u32 b)
9448{
9449 return !((a - b) & 0x80000000);
9450}
9451
9452static bool page_flip_finished(struct intel_crtc *crtc)
9453{
9454 struct drm_device *dev = crtc->base.dev;
9455 struct drm_i915_private *dev_priv = dev->dev_private;
9456
9457 /*
9458 * The relevant registers doen't exist on pre-ctg.
9459 * As the flip done interrupt doesn't trigger for mmio
9460 * flips on gmch platforms, a flip count check isn't
9461 * really needed there. But since ctg has the registers,
9462 * include it in the check anyway.
9463 */
9464 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9465 return true;
9466
9467 /*
9468 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9469 * used the same base address. In that case the mmio flip might
9470 * have completed, but the CS hasn't even executed the flip yet.
9471 *
9472 * A flip count check isn't enough as the CS might have updated
9473 * the base address just after start of vblank, but before we
9474 * managed to process the interrupt. This means we'd complete the
9475 * CS flip too soon.
9476 *
9477 * Combining both checks should get us a good enough result. It may
9478 * still happen that the CS flip has been executed, but has not
9479 * yet actually completed. But in case the base address is the same
9480 * anyway, we don't really care.
9481 */
9482 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9483 crtc->unpin_work->gtt_offset &&
9484 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9485 crtc->unpin_work->flip_count);
9486}
9487
6b95a207
KH
9488void intel_prepare_page_flip(struct drm_device *dev, int plane)
9489{
fbee40df 9490 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9491 struct intel_crtc *intel_crtc =
9492 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9493 unsigned long flags;
9494
e7d841ca
CW
9495 /* NB: An MMIO update of the plane base pointer will also
9496 * generate a page-flip completion irq, i.e. every modeset
9497 * is also accompanied by a spurious intel_prepare_page_flip().
9498 */
6b95a207 9499 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9500 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9501 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9502 spin_unlock_irqrestore(&dev->event_lock, flags);
9503}
9504
eba905b2 9505static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9506{
9507 /* Ensure that the work item is consistent when activating it ... */
9508 smp_wmb();
9509 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9510 /* and that it is marked active as soon as the irq could fire. */
9511 smp_wmb();
9512}
9513
8c9f3aaf
JB
9514static int intel_gen2_queue_flip(struct drm_device *dev,
9515 struct drm_crtc *crtc,
9516 struct drm_framebuffer *fb,
ed8d1975 9517 struct drm_i915_gem_object *obj,
a4872ba6 9518 struct intel_engine_cs *ring,
ed8d1975 9519 uint32_t flags)
8c9f3aaf 9520{
8c9f3aaf 9521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9522 u32 flip_mask;
9523 int ret;
9524
6d90c952 9525 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9526 if (ret)
4fa62c89 9527 return ret;
8c9f3aaf
JB
9528
9529 /* Can't queue multiple flips, so wait for the previous
9530 * one to finish before executing the next.
9531 */
9532 if (intel_crtc->plane)
9533 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9534 else
9535 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9536 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9537 intel_ring_emit(ring, MI_NOOP);
9538 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9539 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9540 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9541 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9542 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9543
9544 intel_mark_page_flip_active(intel_crtc);
09246732 9545 __intel_ring_advance(ring);
83d4092b 9546 return 0;
8c9f3aaf
JB
9547}
9548
9549static int intel_gen3_queue_flip(struct drm_device *dev,
9550 struct drm_crtc *crtc,
9551 struct drm_framebuffer *fb,
ed8d1975 9552 struct drm_i915_gem_object *obj,
a4872ba6 9553 struct intel_engine_cs *ring,
ed8d1975 9554 uint32_t flags)
8c9f3aaf 9555{
8c9f3aaf 9556 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9557 u32 flip_mask;
9558 int ret;
9559
6d90c952 9560 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9561 if (ret)
4fa62c89 9562 return ret;
8c9f3aaf
JB
9563
9564 if (intel_crtc->plane)
9565 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9566 else
9567 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9568 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9569 intel_ring_emit(ring, MI_NOOP);
9570 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9571 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9572 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9573 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9574 intel_ring_emit(ring, MI_NOOP);
9575
e7d841ca 9576 intel_mark_page_flip_active(intel_crtc);
09246732 9577 __intel_ring_advance(ring);
83d4092b 9578 return 0;
8c9f3aaf
JB
9579}
9580
9581static int intel_gen4_queue_flip(struct drm_device *dev,
9582 struct drm_crtc *crtc,
9583 struct drm_framebuffer *fb,
ed8d1975 9584 struct drm_i915_gem_object *obj,
a4872ba6 9585 struct intel_engine_cs *ring,
ed8d1975 9586 uint32_t flags)
8c9f3aaf
JB
9587{
9588 struct drm_i915_private *dev_priv = dev->dev_private;
9589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9590 uint32_t pf, pipesrc;
9591 int ret;
9592
6d90c952 9593 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9594 if (ret)
4fa62c89 9595 return ret;
8c9f3aaf
JB
9596
9597 /* i965+ uses the linear or tiled offsets from the
9598 * Display Registers (which do not change across a page-flip)
9599 * so we need only reprogram the base address.
9600 */
6d90c952
DV
9601 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9602 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9603 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9604 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9605 obj->tiling_mode);
8c9f3aaf
JB
9606
9607 /* XXX Enabling the panel-fitter across page-flip is so far
9608 * untested on non-native modes, so ignore it for now.
9609 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9610 */
9611 pf = 0;
9612 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9613 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9614
9615 intel_mark_page_flip_active(intel_crtc);
09246732 9616 __intel_ring_advance(ring);
83d4092b 9617 return 0;
8c9f3aaf
JB
9618}
9619
9620static int intel_gen6_queue_flip(struct drm_device *dev,
9621 struct drm_crtc *crtc,
9622 struct drm_framebuffer *fb,
ed8d1975 9623 struct drm_i915_gem_object *obj,
a4872ba6 9624 struct intel_engine_cs *ring,
ed8d1975 9625 uint32_t flags)
8c9f3aaf
JB
9626{
9627 struct drm_i915_private *dev_priv = dev->dev_private;
9628 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9629 uint32_t pf, pipesrc;
9630 int ret;
9631
6d90c952 9632 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9633 if (ret)
4fa62c89 9634 return ret;
8c9f3aaf 9635
6d90c952
DV
9636 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9637 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9638 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9639 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9640
dc257cf1
DV
9641 /* Contrary to the suggestions in the documentation,
9642 * "Enable Panel Fitter" does not seem to be required when page
9643 * flipping with a non-native mode, and worse causes a normal
9644 * modeset to fail.
9645 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9646 */
9647 pf = 0;
8c9f3aaf 9648 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9649 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9650
9651 intel_mark_page_flip_active(intel_crtc);
09246732 9652 __intel_ring_advance(ring);
83d4092b 9653 return 0;
8c9f3aaf
JB
9654}
9655
7c9017e5
JB
9656static int intel_gen7_queue_flip(struct drm_device *dev,
9657 struct drm_crtc *crtc,
9658 struct drm_framebuffer *fb,
ed8d1975 9659 struct drm_i915_gem_object *obj,
a4872ba6 9660 struct intel_engine_cs *ring,
ed8d1975 9661 uint32_t flags)
7c9017e5 9662{
7c9017e5 9663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9664 uint32_t plane_bit = 0;
ffe74d75
CW
9665 int len, ret;
9666
eba905b2 9667 switch (intel_crtc->plane) {
cb05d8de
DV
9668 case PLANE_A:
9669 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9670 break;
9671 case PLANE_B:
9672 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9673 break;
9674 case PLANE_C:
9675 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9676 break;
9677 default:
9678 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9679 return -ENODEV;
cb05d8de
DV
9680 }
9681
ffe74d75 9682 len = 4;
f476828a 9683 if (ring->id == RCS) {
ffe74d75 9684 len += 6;
f476828a
DL
9685 /*
9686 * On Gen 8, SRM is now taking an extra dword to accommodate
9687 * 48bits addresses, and we need a NOOP for the batch size to
9688 * stay even.
9689 */
9690 if (IS_GEN8(dev))
9691 len += 2;
9692 }
ffe74d75 9693
f66fab8e
VS
9694 /*
9695 * BSpec MI_DISPLAY_FLIP for IVB:
9696 * "The full packet must be contained within the same cache line."
9697 *
9698 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9699 * cacheline, if we ever start emitting more commands before
9700 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9701 * then do the cacheline alignment, and finally emit the
9702 * MI_DISPLAY_FLIP.
9703 */
9704 ret = intel_ring_cacheline_align(ring);
9705 if (ret)
4fa62c89 9706 return ret;
f66fab8e 9707
ffe74d75 9708 ret = intel_ring_begin(ring, len);
7c9017e5 9709 if (ret)
4fa62c89 9710 return ret;
7c9017e5 9711
ffe74d75
CW
9712 /* Unmask the flip-done completion message. Note that the bspec says that
9713 * we should do this for both the BCS and RCS, and that we must not unmask
9714 * more than one flip event at any time (or ensure that one flip message
9715 * can be sent by waiting for flip-done prior to queueing new flips).
9716 * Experimentation says that BCS works despite DERRMR masking all
9717 * flip-done completion events and that unmasking all planes at once
9718 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9719 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9720 */
9721 if (ring->id == RCS) {
9722 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9723 intel_ring_emit(ring, DERRMR);
9724 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9725 DERRMR_PIPEB_PRI_FLIP_DONE |
9726 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9727 if (IS_GEN8(dev))
9728 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9729 MI_SRM_LRM_GLOBAL_GTT);
9730 else
9731 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9732 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9733 intel_ring_emit(ring, DERRMR);
9734 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9735 if (IS_GEN8(dev)) {
9736 intel_ring_emit(ring, 0);
9737 intel_ring_emit(ring, MI_NOOP);
9738 }
ffe74d75
CW
9739 }
9740
cb05d8de 9741 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9742 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9743 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9744 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9745
9746 intel_mark_page_flip_active(intel_crtc);
09246732 9747 __intel_ring_advance(ring);
83d4092b 9748 return 0;
7c9017e5
JB
9749}
9750
84c33a64
SG
9751static bool use_mmio_flip(struct intel_engine_cs *ring,
9752 struct drm_i915_gem_object *obj)
9753{
9754 /*
9755 * This is not being used for older platforms, because
9756 * non-availability of flip done interrupt forces us to use
9757 * CS flips. Older platforms derive flip done using some clever
9758 * tricks involving the flip_pending status bits and vblank irqs.
9759 * So using MMIO flips there would disrupt this mechanism.
9760 */
9761
8e09bf83
CW
9762 if (ring == NULL)
9763 return true;
9764
84c33a64
SG
9765 if (INTEL_INFO(ring->dev)->gen < 5)
9766 return false;
9767
9768 if (i915.use_mmio_flip < 0)
9769 return false;
9770 else if (i915.use_mmio_flip > 0)
9771 return true;
14bf993e
OM
9772 else if (i915.enable_execlists)
9773 return true;
84c33a64
SG
9774 else
9775 return ring != obj->ring;
9776}
9777
9778static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9779{
9780 struct drm_device *dev = intel_crtc->base.dev;
9781 struct drm_i915_private *dev_priv = dev->dev_private;
9782 struct intel_framebuffer *intel_fb =
9783 to_intel_framebuffer(intel_crtc->base.primary->fb);
9784 struct drm_i915_gem_object *obj = intel_fb->obj;
9785 u32 dspcntr;
9786 u32 reg;
9787
9788 intel_mark_page_flip_active(intel_crtc);
9789
9790 reg = DSPCNTR(intel_crtc->plane);
9791 dspcntr = I915_READ(reg);
9792
9793 if (INTEL_INFO(dev)->gen >= 4) {
9794 if (obj->tiling_mode != I915_TILING_NONE)
9795 dspcntr |= DISPPLANE_TILED;
9796 else
9797 dspcntr &= ~DISPPLANE_TILED;
9798 }
9799 I915_WRITE(reg, dspcntr);
9800
9801 I915_WRITE(DSPSURF(intel_crtc->plane),
9802 intel_crtc->unpin_work->gtt_offset);
9803 POSTING_READ(DSPSURF(intel_crtc->plane));
9804}
9805
9806static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9807{
9808 struct intel_engine_cs *ring;
9809 int ret;
9810
9811 lockdep_assert_held(&obj->base.dev->struct_mutex);
9812
9813 if (!obj->last_write_seqno)
9814 return 0;
9815
9816 ring = obj->ring;
9817
9818 if (i915_seqno_passed(ring->get_seqno(ring, true),
9819 obj->last_write_seqno))
9820 return 0;
9821
9822 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9823 if (ret)
9824 return ret;
9825
9826 if (WARN_ON(!ring->irq_get(ring)))
9827 return 0;
9828
9829 return 1;
9830}
9831
9832void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9833{
9834 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9835 struct intel_crtc *intel_crtc;
9836 unsigned long irq_flags;
9837 u32 seqno;
9838
9839 seqno = ring->get_seqno(ring, false);
9840
9841 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9842 for_each_intel_crtc(ring->dev, intel_crtc) {
9843 struct intel_mmio_flip *mmio_flip;
9844
9845 mmio_flip = &intel_crtc->mmio_flip;
9846 if (mmio_flip->seqno == 0)
9847 continue;
9848
9849 if (ring->id != mmio_flip->ring_id)
9850 continue;
9851
9852 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9853 intel_do_mmio_flip(intel_crtc);
9854 mmio_flip->seqno = 0;
9855 ring->irq_put(ring);
9856 }
9857 }
9858 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9859}
9860
9861static int intel_queue_mmio_flip(struct drm_device *dev,
9862 struct drm_crtc *crtc,
9863 struct drm_framebuffer *fb,
9864 struct drm_i915_gem_object *obj,
9865 struct intel_engine_cs *ring,
9866 uint32_t flags)
9867{
9868 struct drm_i915_private *dev_priv = dev->dev_private;
9869 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9870 unsigned long irq_flags;
9871 int ret;
9872
9873 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9874 return -EBUSY;
9875
9876 ret = intel_postpone_flip(obj);
9877 if (ret < 0)
9878 return ret;
9879 if (ret == 0) {
9880 intel_do_mmio_flip(intel_crtc);
9881 return 0;
9882 }
9883
9884 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9885 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9886 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9887 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9888
9889 /*
9890 * Double check to catch cases where irq fired before
9891 * mmio flip data was ready
9892 */
9893 intel_notify_mmio_flip(obj->ring);
9894 return 0;
9895}
9896
8c9f3aaf
JB
9897static int intel_default_queue_flip(struct drm_device *dev,
9898 struct drm_crtc *crtc,
9899 struct drm_framebuffer *fb,
ed8d1975 9900 struct drm_i915_gem_object *obj,
a4872ba6 9901 struct intel_engine_cs *ring,
ed8d1975 9902 uint32_t flags)
8c9f3aaf
JB
9903{
9904 return -ENODEV;
9905}
9906
d6bbafa1
CW
9907static bool __intel_pageflip_stall_check(struct drm_device *dev,
9908 struct drm_crtc *crtc)
9909{
9910 struct drm_i915_private *dev_priv = dev->dev_private;
9911 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9912 struct intel_unpin_work *work = intel_crtc->unpin_work;
9913 u32 addr;
9914
9915 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9916 return true;
9917
9918 if (!work->enable_stall_check)
9919 return false;
9920
9921 if (work->flip_ready_vblank == 0) {
9922 if (work->flip_queued_ring &&
9923 !i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
9924 work->flip_queued_seqno))
9925 return false;
9926
9927 work->flip_ready_vblank = drm_vblank_count(dev, intel_crtc->pipe);
9928 }
9929
9930 if (drm_vblank_count(dev, intel_crtc->pipe) - work->flip_ready_vblank < 3)
9931 return false;
9932
9933 /* Potential stall - if we see that the flip has happened,
9934 * assume a missed interrupt. */
9935 if (INTEL_INFO(dev)->gen >= 4)
9936 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9937 else
9938 addr = I915_READ(DSPADDR(intel_crtc->plane));
9939
9940 /* There is a potential issue here with a false positive after a flip
9941 * to the same address. We could address this by checking for a
9942 * non-incrementing frame counter.
9943 */
9944 return addr == work->gtt_offset;
9945}
9946
9947void intel_check_page_flip(struct drm_device *dev, int pipe)
9948{
9949 struct drm_i915_private *dev_priv = dev->dev_private;
9950 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9951 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9952 unsigned long flags;
9953
9954 if (crtc == NULL)
9955 return;
9956
9957 spin_lock_irqsave(&dev->event_lock, flags);
9958 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9959 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9960 intel_crtc->unpin_work->flip_queued_vblank, drm_vblank_count(dev, pipe));
9961 page_flip_completed(intel_crtc);
9962 }
9963 spin_unlock_irqrestore(&dev->event_lock, flags);
9964}
9965
6b95a207
KH
9966static int intel_crtc_page_flip(struct drm_crtc *crtc,
9967 struct drm_framebuffer *fb,
ed8d1975
KP
9968 struct drm_pending_vblank_event *event,
9969 uint32_t page_flip_flags)
6b95a207
KH
9970{
9971 struct drm_device *dev = crtc->dev;
9972 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9973 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9974 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9975 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9976 enum pipe pipe = intel_crtc->pipe;
6b95a207 9977 struct intel_unpin_work *work;
a4872ba6 9978 struct intel_engine_cs *ring;
8c9f3aaf 9979 unsigned long flags;
52e68630 9980 int ret;
6b95a207 9981
c76bb61a
DS
9982 //trigger software GT busyness calculation
9983 gen8_flip_interrupt(dev);
9984
2ff8fde1
MR
9985 /*
9986 * drm_mode_page_flip_ioctl() should already catch this, but double
9987 * check to be safe. In the future we may enable pageflipping from
9988 * a disabled primary plane.
9989 */
9990 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9991 return -EBUSY;
9992
e6a595d2 9993 /* Can't change pixel format via MI display flips. */
f4510a27 9994 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9995 return -EINVAL;
9996
9997 /*
9998 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9999 * Note that pitch changes could also affect these register.
10000 */
10001 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
10002 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
10003 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
10004 return -EINVAL;
10005
f900db47
CW
10006 if (i915_terminally_wedged(&dev_priv->gpu_error))
10007 goto out_hang;
10008
b14c5679 10009 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
10010 if (work == NULL)
10011 return -ENOMEM;
10012
6b95a207 10013 work->event = event;
b4a98e57 10014 work->crtc = crtc;
2ff8fde1 10015 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
10016 INIT_WORK(&work->work, intel_unpin_work_fn);
10017
87b6b101 10018 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
10019 if (ret)
10020 goto free_work;
10021
6b95a207
KH
10022 /* We borrow the event spin lock for protecting unpin_work */
10023 spin_lock_irqsave(&dev->event_lock, flags);
10024 if (intel_crtc->unpin_work) {
d6bbafa1
CW
10025 /* Before declaring the flip queue wedged, check if
10026 * the hardware completed the operation behind our backs.
10027 */
10028 if (__intel_pageflip_stall_check(dev, crtc)) {
10029 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
10030 page_flip_completed(intel_crtc);
10031 } else {
10032 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
10033 spin_unlock_irqrestore(&dev->event_lock, flags);
468f0b44 10034
d6bbafa1
CW
10035 drm_crtc_vblank_put(crtc);
10036 kfree(work);
10037 return -EBUSY;
10038 }
6b95a207
KH
10039 }
10040 intel_crtc->unpin_work = work;
10041 spin_unlock_irqrestore(&dev->event_lock, flags);
10042
b4a98e57
CW
10043 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
10044 flush_workqueue(dev_priv->wq);
10045
79158103
CW
10046 ret = i915_mutex_lock_interruptible(dev);
10047 if (ret)
10048 goto cleanup;
6b95a207 10049
75dfca80 10050 /* Reference the objects for the scheduled work. */
05394f39
CW
10051 drm_gem_object_reference(&work->old_fb_obj->base);
10052 drm_gem_object_reference(&obj->base);
6b95a207 10053
f4510a27 10054 crtc->primary->fb = fb;
96b099fd 10055
e1f99ce6 10056 work->pending_flip_obj = obj;
e1f99ce6 10057
b4a98e57 10058 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 10059 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 10060
75f7f3ec 10061 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 10062 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 10063
4fa62c89
VS
10064 if (IS_VALLEYVIEW(dev)) {
10065 ring = &dev_priv->ring[BCS];
8e09bf83
CW
10066 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
10067 /* vlv: DISPLAY_FLIP fails to change tiling */
10068 ring = NULL;
2a92d5bc
CW
10069 } else if (IS_IVYBRIDGE(dev)) {
10070 ring = &dev_priv->ring[BCS];
4fa62c89
VS
10071 } else if (INTEL_INFO(dev)->gen >= 7) {
10072 ring = obj->ring;
10073 if (ring == NULL || ring->id != RCS)
10074 ring = &dev_priv->ring[BCS];
10075 } else {
10076 ring = &dev_priv->ring[RCS];
10077 }
10078
10079 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
10080 if (ret)
10081 goto cleanup_pending;
6b95a207 10082
4fa62c89
VS
10083 work->gtt_offset =
10084 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
10085
d6bbafa1 10086 if (use_mmio_flip(ring, obj)) {
84c33a64
SG
10087 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
10088 page_flip_flags);
d6bbafa1
CW
10089 if (ret)
10090 goto cleanup_unpin;
10091
10092 work->flip_queued_seqno = obj->last_write_seqno;
10093 work->flip_queued_ring = obj->ring;
10094 } else {
84c33a64 10095 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
d6bbafa1
CW
10096 page_flip_flags);
10097 if (ret)
10098 goto cleanup_unpin;
10099
10100 work->flip_queued_seqno = intel_ring_get_seqno(ring);
10101 work->flip_queued_ring = ring;
10102 }
10103
10104 work->flip_queued_vblank = drm_vblank_count(dev, intel_crtc->pipe);
10105 work->enable_stall_check = true;
4fa62c89 10106
a071fa00
DV
10107 i915_gem_track_fb(work->old_fb_obj, obj,
10108 INTEL_FRONTBUFFER_PRIMARY(pipe));
10109
7782de3b 10110 intel_disable_fbc(dev);
f99d7069 10111 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
10112 mutex_unlock(&dev->struct_mutex);
10113
e5510fac
JB
10114 trace_i915_flip_request(intel_crtc->plane, obj);
10115
6b95a207 10116 return 0;
96b099fd 10117
4fa62c89
VS
10118cleanup_unpin:
10119 intel_unpin_fb_obj(obj);
8c9f3aaf 10120cleanup_pending:
b4a98e57 10121 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 10122 crtc->primary->fb = old_fb;
05394f39
CW
10123 drm_gem_object_unreference(&work->old_fb_obj->base);
10124 drm_gem_object_unreference(&obj->base);
96b099fd
CW
10125 mutex_unlock(&dev->struct_mutex);
10126
79158103 10127cleanup:
96b099fd
CW
10128 spin_lock_irqsave(&dev->event_lock, flags);
10129 intel_crtc->unpin_work = NULL;
10130 spin_unlock_irqrestore(&dev->event_lock, flags);
10131
87b6b101 10132 drm_crtc_vblank_put(crtc);
7317c75e 10133free_work:
96b099fd
CW
10134 kfree(work);
10135
f900db47
CW
10136 if (ret == -EIO) {
10137out_hang:
10138 intel_crtc_wait_for_pending_flips(crtc);
10139 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
10140 if (ret == 0 && event)
a071fa00 10141 drm_send_vblank_event(dev, pipe, event);
f900db47 10142 }
96b099fd 10143 return ret;
6b95a207
KH
10144}
10145
f6e5b160 10146static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
10147 .mode_set_base_atomic = intel_pipe_set_base_atomic,
10148 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
10149};
10150
9a935856
DV
10151/**
10152 * intel_modeset_update_staged_output_state
10153 *
10154 * Updates the staged output configuration state, e.g. after we've read out the
10155 * current hw state.
10156 */
10157static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 10158{
7668851f 10159 struct intel_crtc *crtc;
9a935856
DV
10160 struct intel_encoder *encoder;
10161 struct intel_connector *connector;
f6e5b160 10162
9a935856
DV
10163 list_for_each_entry(connector, &dev->mode_config.connector_list,
10164 base.head) {
10165 connector->new_encoder =
10166 to_intel_encoder(connector->base.encoder);
10167 }
f6e5b160 10168
b2784e15 10169 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10170 encoder->new_crtc =
10171 to_intel_crtc(encoder->base.crtc);
10172 }
7668851f 10173
d3fcc808 10174 for_each_intel_crtc(dev, crtc) {
7668851f 10175 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
10176
10177 if (crtc->new_enabled)
10178 crtc->new_config = &crtc->config;
10179 else
10180 crtc->new_config = NULL;
7668851f 10181 }
f6e5b160
CW
10182}
10183
9a935856
DV
10184/**
10185 * intel_modeset_commit_output_state
10186 *
10187 * This function copies the stage display pipe configuration to the real one.
10188 */
10189static void intel_modeset_commit_output_state(struct drm_device *dev)
10190{
7668851f 10191 struct intel_crtc *crtc;
9a935856
DV
10192 struct intel_encoder *encoder;
10193 struct intel_connector *connector;
f6e5b160 10194
9a935856
DV
10195 list_for_each_entry(connector, &dev->mode_config.connector_list,
10196 base.head) {
10197 connector->base.encoder = &connector->new_encoder->base;
10198 }
f6e5b160 10199
b2784e15 10200 for_each_intel_encoder(dev, encoder) {
9a935856
DV
10201 encoder->base.crtc = &encoder->new_crtc->base;
10202 }
7668851f 10203
d3fcc808 10204 for_each_intel_crtc(dev, crtc) {
7668851f
VS
10205 crtc->base.enabled = crtc->new_enabled;
10206 }
9a935856
DV
10207}
10208
050f7aeb 10209static void
eba905b2 10210connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
10211 struct intel_crtc_config *pipe_config)
10212{
10213 int bpp = pipe_config->pipe_bpp;
10214
10215 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10216 connector->base.base.id,
c23cc417 10217 connector->base.name);
050f7aeb
DV
10218
10219 /* Don't use an invalid EDID bpc value */
10220 if (connector->base.display_info.bpc &&
10221 connector->base.display_info.bpc * 3 < bpp) {
10222 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10223 bpp, connector->base.display_info.bpc*3);
10224 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
10225 }
10226
10227 /* Clamp bpp to 8 on screens without EDID 1.4 */
10228 if (connector->base.display_info.bpc == 0 && bpp > 24) {
10229 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10230 bpp);
10231 pipe_config->pipe_bpp = 24;
10232 }
10233}
10234
4e53c2e0 10235static int
050f7aeb
DV
10236compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10237 struct drm_framebuffer *fb,
10238 struct intel_crtc_config *pipe_config)
4e53c2e0 10239{
050f7aeb
DV
10240 struct drm_device *dev = crtc->base.dev;
10241 struct intel_connector *connector;
4e53c2e0
DV
10242 int bpp;
10243
d42264b1
DV
10244 switch (fb->pixel_format) {
10245 case DRM_FORMAT_C8:
4e53c2e0
DV
10246 bpp = 8*3; /* since we go through a colormap */
10247 break;
d42264b1
DV
10248 case DRM_FORMAT_XRGB1555:
10249 case DRM_FORMAT_ARGB1555:
10250 /* checked in intel_framebuffer_init already */
10251 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10252 return -EINVAL;
10253 case DRM_FORMAT_RGB565:
4e53c2e0
DV
10254 bpp = 6*3; /* min is 18bpp */
10255 break;
d42264b1
DV
10256 case DRM_FORMAT_XBGR8888:
10257 case DRM_FORMAT_ABGR8888:
10258 /* checked in intel_framebuffer_init already */
10259 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10260 return -EINVAL;
10261 case DRM_FORMAT_XRGB8888:
10262 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
10263 bpp = 8*3;
10264 break;
d42264b1
DV
10265 case DRM_FORMAT_XRGB2101010:
10266 case DRM_FORMAT_ARGB2101010:
10267 case DRM_FORMAT_XBGR2101010:
10268 case DRM_FORMAT_ABGR2101010:
10269 /* checked in intel_framebuffer_init already */
10270 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10271 return -EINVAL;
4e53c2e0
DV
10272 bpp = 10*3;
10273 break;
baba133a 10274 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10275 default:
10276 DRM_DEBUG_KMS("unsupported depth\n");
10277 return -EINVAL;
10278 }
10279
4e53c2e0
DV
10280 pipe_config->pipe_bpp = bpp;
10281
10282 /* Clamp display bpp to EDID value */
10283 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10284 base.head) {
1b829e05
DV
10285 if (!connector->new_encoder ||
10286 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10287 continue;
10288
050f7aeb 10289 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10290 }
10291
10292 return bpp;
10293}
10294
644db711
DV
10295static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10296{
10297 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10298 "type: 0x%x flags: 0x%x\n",
1342830c 10299 mode->crtc_clock,
644db711
DV
10300 mode->crtc_hdisplay, mode->crtc_hsync_start,
10301 mode->crtc_hsync_end, mode->crtc_htotal,
10302 mode->crtc_vdisplay, mode->crtc_vsync_start,
10303 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10304}
10305
c0b03411
DV
10306static void intel_dump_pipe_config(struct intel_crtc *crtc,
10307 struct intel_crtc_config *pipe_config,
10308 const char *context)
10309{
10310 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10311 context, pipe_name(crtc->pipe));
10312
10313 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10314 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10315 pipe_config->pipe_bpp, pipe_config->dither);
10316 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10317 pipe_config->has_pch_encoder,
10318 pipe_config->fdi_lanes,
10319 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10320 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10321 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10322 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10323 pipe_config->has_dp_encoder,
10324 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10325 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10326 pipe_config->dp_m_n.tu);
b95af8be
VK
10327
10328 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10329 pipe_config->has_dp_encoder,
10330 pipe_config->dp_m2_n2.gmch_m,
10331 pipe_config->dp_m2_n2.gmch_n,
10332 pipe_config->dp_m2_n2.link_m,
10333 pipe_config->dp_m2_n2.link_n,
10334 pipe_config->dp_m2_n2.tu);
10335
c0b03411
DV
10336 DRM_DEBUG_KMS("requested mode:\n");
10337 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10338 DRM_DEBUG_KMS("adjusted mode:\n");
10339 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10340 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10341 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10342 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10343 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10344 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10345 pipe_config->gmch_pfit.control,
10346 pipe_config->gmch_pfit.pgm_ratios,
10347 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10348 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10349 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10350 pipe_config->pch_pfit.size,
10351 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10352 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10353 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10354}
10355
bc079e8b
VS
10356static bool encoders_cloneable(const struct intel_encoder *a,
10357 const struct intel_encoder *b)
accfc0c5 10358{
bc079e8b
VS
10359 /* masks could be asymmetric, so check both ways */
10360 return a == b || (a->cloneable & (1 << b->type) &&
10361 b->cloneable & (1 << a->type));
10362}
10363
10364static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10365 struct intel_encoder *encoder)
10366{
10367 struct drm_device *dev = crtc->base.dev;
10368 struct intel_encoder *source_encoder;
10369
b2784e15 10370 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10371 if (source_encoder->new_crtc != crtc)
10372 continue;
10373
10374 if (!encoders_cloneable(encoder, source_encoder))
10375 return false;
10376 }
10377
10378 return true;
10379}
10380
10381static bool check_encoder_cloning(struct intel_crtc *crtc)
10382{
10383 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10384 struct intel_encoder *encoder;
10385
b2784e15 10386 for_each_intel_encoder(dev, encoder) {
bc079e8b 10387 if (encoder->new_crtc != crtc)
accfc0c5
DV
10388 continue;
10389
bc079e8b
VS
10390 if (!check_single_encoder_cloning(crtc, encoder))
10391 return false;
accfc0c5
DV
10392 }
10393
bc079e8b 10394 return true;
accfc0c5
DV
10395}
10396
b8cecdf5
DV
10397static struct intel_crtc_config *
10398intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10399 struct drm_framebuffer *fb,
b8cecdf5 10400 struct drm_display_mode *mode)
ee7b9f93 10401{
7758a113 10402 struct drm_device *dev = crtc->dev;
7758a113 10403 struct intel_encoder *encoder;
b8cecdf5 10404 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10405 int plane_bpp, ret = -EINVAL;
10406 bool retry = true;
ee7b9f93 10407
bc079e8b 10408 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10409 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10410 return ERR_PTR(-EINVAL);
10411 }
10412
b8cecdf5
DV
10413 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10414 if (!pipe_config)
7758a113
DV
10415 return ERR_PTR(-ENOMEM);
10416
b8cecdf5
DV
10417 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10418 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10419
e143a21c
DV
10420 pipe_config->cpu_transcoder =
10421 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10422 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10423
2960bc9c
ID
10424 /*
10425 * Sanitize sync polarity flags based on requested ones. If neither
10426 * positive or negative polarity is requested, treat this as meaning
10427 * negative polarity.
10428 */
10429 if (!(pipe_config->adjusted_mode.flags &
10430 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10431 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10432
10433 if (!(pipe_config->adjusted_mode.flags &
10434 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10435 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10436
050f7aeb
DV
10437 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10438 * plane pixel format and any sink constraints into account. Returns the
10439 * source plane bpp so that dithering can be selected on mismatches
10440 * after encoders and crtc also have had their say. */
10441 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10442 fb, pipe_config);
4e53c2e0
DV
10443 if (plane_bpp < 0)
10444 goto fail;
10445
e41a56be
VS
10446 /*
10447 * Determine the real pipe dimensions. Note that stereo modes can
10448 * increase the actual pipe size due to the frame doubling and
10449 * insertion of additional space for blanks between the frame. This
10450 * is stored in the crtc timings. We use the requested mode to do this
10451 * computation to clearly distinguish it from the adjusted mode, which
10452 * can be changed by the connectors in the below retry loop.
10453 */
10454 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10455 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10456 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10457
e29c22c0 10458encoder_retry:
ef1b460d 10459 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10460 pipe_config->port_clock = 0;
ef1b460d 10461 pipe_config->pixel_multiplier = 1;
ff9a6750 10462
135c81b8 10463 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10464 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10465
7758a113
DV
10466 /* Pass our mode to the connectors and the CRTC to give them a chance to
10467 * adjust it according to limitations or connector properties, and also
10468 * a chance to reject the mode entirely.
47f1c6c9 10469 */
b2784e15 10470 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10471
7758a113
DV
10472 if (&encoder->new_crtc->base != crtc)
10473 continue;
7ae89233 10474
efea6e8e
DV
10475 if (!(encoder->compute_config(encoder, pipe_config))) {
10476 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10477 goto fail;
10478 }
ee7b9f93 10479 }
47f1c6c9 10480
ff9a6750
DV
10481 /* Set default port clock if not overwritten by the encoder. Needs to be
10482 * done afterwards in case the encoder adjusts the mode. */
10483 if (!pipe_config->port_clock)
241bfc38
DL
10484 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10485 * pipe_config->pixel_multiplier;
ff9a6750 10486
a43f6e0f 10487 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10488 if (ret < 0) {
7758a113
DV
10489 DRM_DEBUG_KMS("CRTC fixup failed\n");
10490 goto fail;
ee7b9f93 10491 }
e29c22c0
DV
10492
10493 if (ret == RETRY) {
10494 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10495 ret = -EINVAL;
10496 goto fail;
10497 }
10498
10499 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10500 retry = false;
10501 goto encoder_retry;
10502 }
10503
4e53c2e0
DV
10504 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10505 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10506 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10507
b8cecdf5 10508 return pipe_config;
7758a113 10509fail:
b8cecdf5 10510 kfree(pipe_config);
e29c22c0 10511 return ERR_PTR(ret);
ee7b9f93 10512}
47f1c6c9 10513
e2e1ed41
DV
10514/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10515 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10516static void
10517intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10518 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10519{
10520 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10521 struct drm_device *dev = crtc->dev;
10522 struct intel_encoder *encoder;
10523 struct intel_connector *connector;
10524 struct drm_crtc *tmp_crtc;
79e53945 10525
e2e1ed41 10526 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10527
e2e1ed41
DV
10528 /* Check which crtcs have changed outputs connected to them, these need
10529 * to be part of the prepare_pipes mask. We don't (yet) support global
10530 * modeset across multiple crtcs, so modeset_pipes will only have one
10531 * bit set at most. */
10532 list_for_each_entry(connector, &dev->mode_config.connector_list,
10533 base.head) {
10534 if (connector->base.encoder == &connector->new_encoder->base)
10535 continue;
79e53945 10536
e2e1ed41
DV
10537 if (connector->base.encoder) {
10538 tmp_crtc = connector->base.encoder->crtc;
10539
10540 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10541 }
10542
10543 if (connector->new_encoder)
10544 *prepare_pipes |=
10545 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10546 }
10547
b2784e15 10548 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10549 if (encoder->base.crtc == &encoder->new_crtc->base)
10550 continue;
10551
10552 if (encoder->base.crtc) {
10553 tmp_crtc = encoder->base.crtc;
10554
10555 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10556 }
10557
10558 if (encoder->new_crtc)
10559 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10560 }
10561
7668851f 10562 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10563 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10564 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10565 continue;
7e7d76c3 10566
7668851f 10567 if (!intel_crtc->new_enabled)
e2e1ed41 10568 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10569 else
10570 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10571 }
10572
e2e1ed41
DV
10573
10574 /* set_mode is also used to update properties on life display pipes. */
10575 intel_crtc = to_intel_crtc(crtc);
7668851f 10576 if (intel_crtc->new_enabled)
e2e1ed41
DV
10577 *prepare_pipes |= 1 << intel_crtc->pipe;
10578
b6c5164d
DV
10579 /*
10580 * For simplicity do a full modeset on any pipe where the output routing
10581 * changed. We could be more clever, but that would require us to be
10582 * more careful with calling the relevant encoder->mode_set functions.
10583 */
e2e1ed41
DV
10584 if (*prepare_pipes)
10585 *modeset_pipes = *prepare_pipes;
10586
10587 /* ... and mask these out. */
10588 *modeset_pipes &= ~(*disable_pipes);
10589 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10590
10591 /*
10592 * HACK: We don't (yet) fully support global modesets. intel_set_config
10593 * obies this rule, but the modeset restore mode of
10594 * intel_modeset_setup_hw_state does not.
10595 */
10596 *modeset_pipes &= 1 << intel_crtc->pipe;
10597 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10598
10599 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10600 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10601}
79e53945 10602
ea9d758d 10603static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10604{
ea9d758d 10605 struct drm_encoder *encoder;
f6e5b160 10606 struct drm_device *dev = crtc->dev;
f6e5b160 10607
ea9d758d
DV
10608 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10609 if (encoder->crtc == crtc)
10610 return true;
10611
10612 return false;
10613}
10614
10615static void
10616intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10617{
10618 struct intel_encoder *intel_encoder;
10619 struct intel_crtc *intel_crtc;
10620 struct drm_connector *connector;
10621
b2784e15 10622 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10623 if (!intel_encoder->base.crtc)
10624 continue;
10625
10626 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10627
10628 if (prepare_pipes & (1 << intel_crtc->pipe))
10629 intel_encoder->connectors_active = false;
10630 }
10631
10632 intel_modeset_commit_output_state(dev);
10633
7668851f 10634 /* Double check state. */
d3fcc808 10635 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10636 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10637 WARN_ON(intel_crtc->new_config &&
10638 intel_crtc->new_config != &intel_crtc->config);
10639 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10640 }
10641
10642 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10643 if (!connector->encoder || !connector->encoder->crtc)
10644 continue;
10645
10646 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10647
10648 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10649 struct drm_property *dpms_property =
10650 dev->mode_config.dpms_property;
10651
ea9d758d 10652 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10653 drm_object_property_set_value(&connector->base,
68d34720
DV
10654 dpms_property,
10655 DRM_MODE_DPMS_ON);
ea9d758d
DV
10656
10657 intel_encoder = to_intel_encoder(connector->encoder);
10658 intel_encoder->connectors_active = true;
10659 }
10660 }
10661
10662}
10663
3bd26263 10664static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10665{
3bd26263 10666 int diff;
f1f644dc
JB
10667
10668 if (clock1 == clock2)
10669 return true;
10670
10671 if (!clock1 || !clock2)
10672 return false;
10673
10674 diff = abs(clock1 - clock2);
10675
10676 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10677 return true;
10678
10679 return false;
10680}
10681
25c5b266
DV
10682#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10683 list_for_each_entry((intel_crtc), \
10684 &(dev)->mode_config.crtc_list, \
10685 base.head) \
0973f18f 10686 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10687
0e8ffe1b 10688static bool
2fa2fe9a
DV
10689intel_pipe_config_compare(struct drm_device *dev,
10690 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10691 struct intel_crtc_config *pipe_config)
10692{
66e985c0
DV
10693#define PIPE_CONF_CHECK_X(name) \
10694 if (current_config->name != pipe_config->name) { \
10695 DRM_ERROR("mismatch in " #name " " \
10696 "(expected 0x%08x, found 0x%08x)\n", \
10697 current_config->name, \
10698 pipe_config->name); \
10699 return false; \
10700 }
10701
08a24034
DV
10702#define PIPE_CONF_CHECK_I(name) \
10703 if (current_config->name != pipe_config->name) { \
10704 DRM_ERROR("mismatch in " #name " " \
10705 "(expected %i, found %i)\n", \
10706 current_config->name, \
10707 pipe_config->name); \
10708 return false; \
88adfff1
DV
10709 }
10710
b95af8be
VK
10711/* This is required for BDW+ where there is only one set of registers for
10712 * switching between high and low RR.
10713 * This macro can be used whenever a comparison has to be made between one
10714 * hw state and multiple sw state variables.
10715 */
10716#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10717 if ((current_config->name != pipe_config->name) && \
10718 (current_config->alt_name != pipe_config->name)) { \
10719 DRM_ERROR("mismatch in " #name " " \
10720 "(expected %i or %i, found %i)\n", \
10721 current_config->name, \
10722 current_config->alt_name, \
10723 pipe_config->name); \
10724 return false; \
10725 }
10726
1bd1bd80
DV
10727#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10728 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10729 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10730 "(expected %i, found %i)\n", \
10731 current_config->name & (mask), \
10732 pipe_config->name & (mask)); \
10733 return false; \
10734 }
10735
5e550656
VS
10736#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10737 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10738 DRM_ERROR("mismatch in " #name " " \
10739 "(expected %i, found %i)\n", \
10740 current_config->name, \
10741 pipe_config->name); \
10742 return false; \
10743 }
10744
bb760063
DV
10745#define PIPE_CONF_QUIRK(quirk) \
10746 ((current_config->quirks | pipe_config->quirks) & (quirk))
10747
eccb140b
DV
10748 PIPE_CONF_CHECK_I(cpu_transcoder);
10749
08a24034
DV
10750 PIPE_CONF_CHECK_I(has_pch_encoder);
10751 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10752 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10753 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10754 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10755 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10756 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10757
eb14cb74 10758 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10759
10760 if (INTEL_INFO(dev)->gen < 8) {
10761 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10762 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10763 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10764 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10765 PIPE_CONF_CHECK_I(dp_m_n.tu);
10766
10767 if (current_config->has_drrs) {
10768 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10769 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10770 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10771 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10772 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10773 }
10774 } else {
10775 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10776 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10777 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10778 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10779 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10780 }
eb14cb74 10781
1bd1bd80
DV
10782 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10783 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10784 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10785 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10786 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10787 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10788
10789 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10790 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10791 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10792 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10793 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10794 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10795
c93f54cf 10796 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10797 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10798 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10799 IS_VALLEYVIEW(dev))
10800 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10801
9ed109a7
DV
10802 PIPE_CONF_CHECK_I(has_audio);
10803
1bd1bd80
DV
10804 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10805 DRM_MODE_FLAG_INTERLACE);
10806
bb760063
DV
10807 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10808 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10809 DRM_MODE_FLAG_PHSYNC);
10810 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10811 DRM_MODE_FLAG_NHSYNC);
10812 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10813 DRM_MODE_FLAG_PVSYNC);
10814 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10815 DRM_MODE_FLAG_NVSYNC);
10816 }
045ac3b5 10817
37327abd
VS
10818 PIPE_CONF_CHECK_I(pipe_src_w);
10819 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10820
9953599b
DV
10821 /*
10822 * FIXME: BIOS likes to set up a cloned config with lvds+external
10823 * screen. Since we don't yet re-compute the pipe config when moving
10824 * just the lvds port away to another pipe the sw tracking won't match.
10825 *
10826 * Proper atomic modesets with recomputed global state will fix this.
10827 * Until then just don't check gmch state for inherited modes.
10828 */
10829 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10830 PIPE_CONF_CHECK_I(gmch_pfit.control);
10831 /* pfit ratios are autocomputed by the hw on gen4+ */
10832 if (INTEL_INFO(dev)->gen < 4)
10833 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10834 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10835 }
10836
fd4daa9c
CW
10837 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10838 if (current_config->pch_pfit.enabled) {
10839 PIPE_CONF_CHECK_I(pch_pfit.pos);
10840 PIPE_CONF_CHECK_I(pch_pfit.size);
10841 }
2fa2fe9a 10842
e59150dc
JB
10843 /* BDW+ don't expose a synchronous way to read the state */
10844 if (IS_HASWELL(dev))
10845 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10846
282740f7
VS
10847 PIPE_CONF_CHECK_I(double_wide);
10848
26804afd
DV
10849 PIPE_CONF_CHECK_X(ddi_pll_sel);
10850
c0d43d62 10851 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10852 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10853 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10854 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10855 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10856 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10857
42571aef
VS
10858 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10859 PIPE_CONF_CHECK_I(pipe_bpp);
10860
a9a7e98a
JB
10861 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10862 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10863
66e985c0 10864#undef PIPE_CONF_CHECK_X
08a24034 10865#undef PIPE_CONF_CHECK_I
b95af8be 10866#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10867#undef PIPE_CONF_CHECK_FLAGS
5e550656 10868#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10869#undef PIPE_CONF_QUIRK
88adfff1 10870
0e8ffe1b
DV
10871 return true;
10872}
10873
91d1b4bd
DV
10874static void
10875check_connector_state(struct drm_device *dev)
8af6cf88 10876{
8af6cf88
DV
10877 struct intel_connector *connector;
10878
10879 list_for_each_entry(connector, &dev->mode_config.connector_list,
10880 base.head) {
10881 /* This also checks the encoder/connector hw state with the
10882 * ->get_hw_state callbacks. */
10883 intel_connector_check_state(connector);
10884
10885 WARN(&connector->new_encoder->base != connector->base.encoder,
10886 "connector's staged encoder doesn't match current encoder\n");
10887 }
91d1b4bd
DV
10888}
10889
10890static void
10891check_encoder_state(struct drm_device *dev)
10892{
10893 struct intel_encoder *encoder;
10894 struct intel_connector *connector;
8af6cf88 10895
b2784e15 10896 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10897 bool enabled = false;
10898 bool active = false;
10899 enum pipe pipe, tracked_pipe;
10900
10901 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10902 encoder->base.base.id,
8e329a03 10903 encoder->base.name);
8af6cf88
DV
10904
10905 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10906 "encoder's stage crtc doesn't match current crtc\n");
10907 WARN(encoder->connectors_active && !encoder->base.crtc,
10908 "encoder's active_connectors set, but no crtc\n");
10909
10910 list_for_each_entry(connector, &dev->mode_config.connector_list,
10911 base.head) {
10912 if (connector->base.encoder != &encoder->base)
10913 continue;
10914 enabled = true;
10915 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10916 active = true;
10917 }
0e32b39c
DA
10918 /*
10919 * for MST connectors if we unplug the connector is gone
10920 * away but the encoder is still connected to a crtc
10921 * until a modeset happens in response to the hotplug.
10922 */
10923 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10924 continue;
10925
8af6cf88
DV
10926 WARN(!!encoder->base.crtc != enabled,
10927 "encoder's enabled state mismatch "
10928 "(expected %i, found %i)\n",
10929 !!encoder->base.crtc, enabled);
10930 WARN(active && !encoder->base.crtc,
10931 "active encoder with no crtc\n");
10932
10933 WARN(encoder->connectors_active != active,
10934 "encoder's computed active state doesn't match tracked active state "
10935 "(expected %i, found %i)\n", active, encoder->connectors_active);
10936
10937 active = encoder->get_hw_state(encoder, &pipe);
10938 WARN(active != encoder->connectors_active,
10939 "encoder's hw state doesn't match sw tracking "
10940 "(expected %i, found %i)\n",
10941 encoder->connectors_active, active);
10942
10943 if (!encoder->base.crtc)
10944 continue;
10945
10946 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10947 WARN(active && pipe != tracked_pipe,
10948 "active encoder's pipe doesn't match"
10949 "(expected %i, found %i)\n",
10950 tracked_pipe, pipe);
10951
10952 }
91d1b4bd
DV
10953}
10954
10955static void
10956check_crtc_state(struct drm_device *dev)
10957{
fbee40df 10958 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10959 struct intel_crtc *crtc;
10960 struct intel_encoder *encoder;
10961 struct intel_crtc_config pipe_config;
8af6cf88 10962
d3fcc808 10963 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10964 bool enabled = false;
10965 bool active = false;
10966
045ac3b5
JB
10967 memset(&pipe_config, 0, sizeof(pipe_config));
10968
8af6cf88
DV
10969 DRM_DEBUG_KMS("[CRTC:%d]\n",
10970 crtc->base.base.id);
10971
10972 WARN(crtc->active && !crtc->base.enabled,
10973 "active crtc, but not enabled in sw tracking\n");
10974
b2784e15 10975 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10976 if (encoder->base.crtc != &crtc->base)
10977 continue;
10978 enabled = true;
10979 if (encoder->connectors_active)
10980 active = true;
10981 }
6c49f241 10982
8af6cf88
DV
10983 WARN(active != crtc->active,
10984 "crtc's computed active state doesn't match tracked active state "
10985 "(expected %i, found %i)\n", active, crtc->active);
10986 WARN(enabled != crtc->base.enabled,
10987 "crtc's computed enabled state doesn't match tracked enabled state "
10988 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10989
0e8ffe1b
DV
10990 active = dev_priv->display.get_pipe_config(crtc,
10991 &pipe_config);
d62cf62a 10992
b6b5d049
VS
10993 /* hw state is inconsistent with the pipe quirk */
10994 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10995 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
d62cf62a
DV
10996 active = crtc->active;
10997
b2784e15 10998 for_each_intel_encoder(dev, encoder) {
3eaba51c 10999 enum pipe pipe;
6c49f241
DV
11000 if (encoder->base.crtc != &crtc->base)
11001 continue;
1d37b689 11002 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
11003 encoder->get_config(encoder, &pipe_config);
11004 }
11005
0e8ffe1b
DV
11006 WARN(crtc->active != active,
11007 "crtc active state doesn't match with hw state "
11008 "(expected %i, found %i)\n", crtc->active, active);
11009
c0b03411
DV
11010 if (active &&
11011 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
11012 WARN(1, "pipe state doesn't match!\n");
11013 intel_dump_pipe_config(crtc, &pipe_config,
11014 "[hw state]");
11015 intel_dump_pipe_config(crtc, &crtc->config,
11016 "[sw state]");
11017 }
8af6cf88
DV
11018 }
11019}
11020
91d1b4bd
DV
11021static void
11022check_shared_dpll_state(struct drm_device *dev)
11023{
fbee40df 11024 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
11025 struct intel_crtc *crtc;
11026 struct intel_dpll_hw_state dpll_hw_state;
11027 int i;
5358901f
DV
11028
11029 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11030 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11031 int enabled_crtcs = 0, active_crtcs = 0;
11032 bool active;
11033
11034 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11035
11036 DRM_DEBUG_KMS("%s\n", pll->name);
11037
11038 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
11039
11040 WARN(pll->active > pll->refcount,
11041 "more active pll users than references: %i vs %i\n",
11042 pll->active, pll->refcount);
11043 WARN(pll->active && !pll->on,
11044 "pll in active use but not on in sw tracking\n");
35c95375
DV
11045 WARN(pll->on && !pll->active,
11046 "pll in on but not on in use in sw tracking\n");
5358901f
DV
11047 WARN(pll->on != active,
11048 "pll on state mismatch (expected %i, found %i)\n",
11049 pll->on, active);
11050
d3fcc808 11051 for_each_intel_crtc(dev, crtc) {
5358901f
DV
11052 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
11053 enabled_crtcs++;
11054 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11055 active_crtcs++;
11056 }
11057 WARN(pll->active != active_crtcs,
11058 "pll active crtcs mismatch (expected %i, found %i)\n",
11059 pll->active, active_crtcs);
11060 WARN(pll->refcount != enabled_crtcs,
11061 "pll enabled crtcs mismatch (expected %i, found %i)\n",
11062 pll->refcount, enabled_crtcs);
66e985c0
DV
11063
11064 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
11065 sizeof(dpll_hw_state)),
11066 "pll hw state mismatch\n");
5358901f 11067 }
8af6cf88
DV
11068}
11069
91d1b4bd
DV
11070void
11071intel_modeset_check_state(struct drm_device *dev)
11072{
11073 check_connector_state(dev);
11074 check_encoder_state(dev);
11075 check_crtc_state(dev);
11076 check_shared_dpll_state(dev);
11077}
11078
18442d08
VS
11079void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
11080 int dotclock)
11081{
11082 /*
11083 * FDI already provided one idea for the dotclock.
11084 * Yell if the encoder disagrees.
11085 */
241bfc38 11086 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 11087 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 11088 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
11089}
11090
80715b2f
VS
11091static void update_scanline_offset(struct intel_crtc *crtc)
11092{
11093 struct drm_device *dev = crtc->base.dev;
11094
11095 /*
11096 * The scanline counter increments at the leading edge of hsync.
11097 *
11098 * On most platforms it starts counting from vtotal-1 on the
11099 * first active line. That means the scanline counter value is
11100 * always one less than what we would expect. Ie. just after
11101 * start of vblank, which also occurs at start of hsync (on the
11102 * last active line), the scanline counter will read vblank_start-1.
11103 *
11104 * On gen2 the scanline counter starts counting from 1 instead
11105 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11106 * to keep the value positive), instead of adding one.
11107 *
11108 * On HSW+ the behaviour of the scanline counter depends on the output
11109 * type. For DP ports it behaves like most other platforms, but on HDMI
11110 * there's an extra 1 line difference. So we need to add two instead of
11111 * one to the value.
11112 */
11113 if (IS_GEN2(dev)) {
11114 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
11115 int vtotal;
11116
11117 vtotal = mode->crtc_vtotal;
11118 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
11119 vtotal /= 2;
11120
11121 crtc->scanline_offset = vtotal - 1;
11122 } else if (HAS_DDI(dev) &&
11123 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
11124 crtc->scanline_offset = 2;
11125 } else
11126 crtc->scanline_offset = 1;
11127}
11128
f30da187
DV
11129static int __intel_set_mode(struct drm_crtc *crtc,
11130 struct drm_display_mode *mode,
11131 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
11132{
11133 struct drm_device *dev = crtc->dev;
fbee40df 11134 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 11135 struct drm_display_mode *saved_mode;
b8cecdf5 11136 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
11137 struct intel_crtc *intel_crtc;
11138 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 11139 int ret = 0;
a6778b3c 11140
4b4b9238 11141 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
11142 if (!saved_mode)
11143 return -ENOMEM;
a6778b3c 11144
e2e1ed41 11145 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
11146 &prepare_pipes, &disable_pipes);
11147
3ac18232 11148 *saved_mode = crtc->mode;
a6778b3c 11149
25c5b266
DV
11150 /* Hack: Because we don't (yet) support global modeset on multiple
11151 * crtcs, we don't keep track of the new mode for more than one crtc.
11152 * Hence simply check whether any bit is set in modeset_pipes in all the
11153 * pieces of code that are not yet converted to deal with mutliple crtcs
11154 * changing their mode at the same time. */
25c5b266 11155 if (modeset_pipes) {
4e53c2e0 11156 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
11157 if (IS_ERR(pipe_config)) {
11158 ret = PTR_ERR(pipe_config);
11159 pipe_config = NULL;
11160
3ac18232 11161 goto out;
25c5b266 11162 }
c0b03411
DV
11163 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11164 "[modeset]");
50741abc 11165 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 11166 }
a6778b3c 11167
30a970c6
JB
11168 /*
11169 * See if the config requires any additional preparation, e.g.
11170 * to adjust global state with pipes off. We need to do this
11171 * here so we can get the modeset_pipe updated config for the new
11172 * mode set on this crtc. For other crtcs we need to use the
11173 * adjusted_mode bits in the crtc directly.
11174 */
c164f833 11175 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 11176 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 11177
c164f833
VS
11178 /* may have added more to prepare_pipes than we should */
11179 prepare_pipes &= ~disable_pipes;
11180 }
11181
460da916
DV
11182 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11183 intel_crtc_disable(&intel_crtc->base);
11184
ea9d758d
DV
11185 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11186 if (intel_crtc->base.enabled)
11187 dev_priv->display.crtc_disable(&intel_crtc->base);
11188 }
a6778b3c 11189
6c4c86f5
DV
11190 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11191 * to set it here already despite that we pass it down the callchain.
f6e5b160 11192 */
b8cecdf5 11193 if (modeset_pipes) {
25c5b266 11194 crtc->mode = *mode;
b8cecdf5
DV
11195 /* mode_set/enable/disable functions rely on a correct pipe
11196 * config. */
11197 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 11198 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
11199
11200 /*
11201 * Calculate and store various constants which
11202 * are later needed by vblank and swap-completion
11203 * timestamping. They are derived from true hwmode.
11204 */
11205 drm_calc_timestamping_constants(crtc,
11206 &pipe_config->adjusted_mode);
b8cecdf5 11207 }
7758a113 11208
ea9d758d
DV
11209 /* Only after disabling all output pipelines that will be changed can we
11210 * update the the output configuration. */
11211 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 11212
47fab737
DV
11213 if (dev_priv->display.modeset_global_resources)
11214 dev_priv->display.modeset_global_resources(dev);
11215
a6778b3c
DV
11216 /* Set up the DPLL and any encoders state that needs to adjust or depend
11217 * on the DPLL.
f6e5b160 11218 */
25c5b266 11219 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
11220 struct drm_framebuffer *old_fb = crtc->primary->fb;
11221 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
11222 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
11223
11224 mutex_lock(&dev->struct_mutex);
11225 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 11226 obj,
4c10794f
DV
11227 NULL);
11228 if (ret != 0) {
11229 DRM_ERROR("pin & fence failed\n");
11230 mutex_unlock(&dev->struct_mutex);
11231 goto done;
11232 }
2ff8fde1 11233 if (old_fb)
a071fa00 11234 intel_unpin_fb_obj(old_obj);
a071fa00
DV
11235 i915_gem_track_fb(old_obj, obj,
11236 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
11237 mutex_unlock(&dev->struct_mutex);
11238
11239 crtc->primary->fb = fb;
11240 crtc->x = x;
11241 crtc->y = y;
11242
4271b753
DV
11243 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
11244 x, y, fb);
c0c36b94
CW
11245 if (ret)
11246 goto done;
a6778b3c
DV
11247 }
11248
11249 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
11250 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11251 update_scanline_offset(intel_crtc);
11252
25c5b266 11253 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 11254 }
a6778b3c 11255
a6778b3c
DV
11256 /* FIXME: add subpixel order */
11257done:
4b4b9238 11258 if (ret && crtc->enabled)
3ac18232 11259 crtc->mode = *saved_mode;
a6778b3c 11260
3ac18232 11261out:
b8cecdf5 11262 kfree(pipe_config);
3ac18232 11263 kfree(saved_mode);
a6778b3c 11264 return ret;
f6e5b160
CW
11265}
11266
e7457a9a
DL
11267static int intel_set_mode(struct drm_crtc *crtc,
11268 struct drm_display_mode *mode,
11269 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
11270{
11271 int ret;
11272
11273 ret = __intel_set_mode(crtc, mode, x, y, fb);
11274
11275 if (ret == 0)
11276 intel_modeset_check_state(crtc->dev);
11277
11278 return ret;
11279}
11280
c0c36b94
CW
11281void intel_crtc_restore_mode(struct drm_crtc *crtc)
11282{
f4510a27 11283 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11284}
11285
25c5b266
DV
11286#undef for_each_intel_crtc_masked
11287
d9e55608
DV
11288static void intel_set_config_free(struct intel_set_config *config)
11289{
11290 if (!config)
11291 return;
11292
1aa4b628
DV
11293 kfree(config->save_connector_encoders);
11294 kfree(config->save_encoder_crtcs);
7668851f 11295 kfree(config->save_crtc_enabled);
d9e55608
DV
11296 kfree(config);
11297}
11298
85f9eb71
DV
11299static int intel_set_config_save_state(struct drm_device *dev,
11300 struct intel_set_config *config)
11301{
7668851f 11302 struct drm_crtc *crtc;
85f9eb71
DV
11303 struct drm_encoder *encoder;
11304 struct drm_connector *connector;
11305 int count;
11306
7668851f
VS
11307 config->save_crtc_enabled =
11308 kcalloc(dev->mode_config.num_crtc,
11309 sizeof(bool), GFP_KERNEL);
11310 if (!config->save_crtc_enabled)
11311 return -ENOMEM;
11312
1aa4b628
DV
11313 config->save_encoder_crtcs =
11314 kcalloc(dev->mode_config.num_encoder,
11315 sizeof(struct drm_crtc *), GFP_KERNEL);
11316 if (!config->save_encoder_crtcs)
85f9eb71
DV
11317 return -ENOMEM;
11318
1aa4b628
DV
11319 config->save_connector_encoders =
11320 kcalloc(dev->mode_config.num_connector,
11321 sizeof(struct drm_encoder *), GFP_KERNEL);
11322 if (!config->save_connector_encoders)
85f9eb71
DV
11323 return -ENOMEM;
11324
11325 /* Copy data. Note that driver private data is not affected.
11326 * Should anything bad happen only the expected state is
11327 * restored, not the drivers personal bookkeeping.
11328 */
7668851f 11329 count = 0;
70e1e0ec 11330 for_each_crtc(dev, crtc) {
7668851f
VS
11331 config->save_crtc_enabled[count++] = crtc->enabled;
11332 }
11333
85f9eb71
DV
11334 count = 0;
11335 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11336 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11337 }
11338
11339 count = 0;
11340 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11341 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11342 }
11343
11344 return 0;
11345}
11346
11347static void intel_set_config_restore_state(struct drm_device *dev,
11348 struct intel_set_config *config)
11349{
7668851f 11350 struct intel_crtc *crtc;
9a935856
DV
11351 struct intel_encoder *encoder;
11352 struct intel_connector *connector;
85f9eb71
DV
11353 int count;
11354
7668851f 11355 count = 0;
d3fcc808 11356 for_each_intel_crtc(dev, crtc) {
7668851f 11357 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11358
11359 if (crtc->new_enabled)
11360 crtc->new_config = &crtc->config;
11361 else
11362 crtc->new_config = NULL;
7668851f
VS
11363 }
11364
85f9eb71 11365 count = 0;
b2784e15 11366 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11367 encoder->new_crtc =
11368 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11369 }
11370
11371 count = 0;
9a935856
DV
11372 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11373 connector->new_encoder =
11374 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11375 }
11376}
11377
e3de42b6 11378static bool
2e57f47d 11379is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11380{
11381 int i;
11382
2e57f47d
CW
11383 if (set->num_connectors == 0)
11384 return false;
11385
11386 if (WARN_ON(set->connectors == NULL))
11387 return false;
11388
11389 for (i = 0; i < set->num_connectors; i++)
11390 if (set->connectors[i]->encoder &&
11391 set->connectors[i]->encoder->crtc == set->crtc &&
11392 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11393 return true;
11394
11395 return false;
11396}
11397
5e2b584e
DV
11398static void
11399intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11400 struct intel_set_config *config)
11401{
11402
11403 /* We should be able to check here if the fb has the same properties
11404 * and then just flip_or_move it */
2e57f47d
CW
11405 if (is_crtc_connector_off(set)) {
11406 config->mode_changed = true;
f4510a27 11407 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11408 /*
11409 * If we have no fb, we can only flip as long as the crtc is
11410 * active, otherwise we need a full mode set. The crtc may
11411 * be active if we've only disabled the primary plane, or
11412 * in fastboot situations.
11413 */
f4510a27 11414 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11415 struct intel_crtc *intel_crtc =
11416 to_intel_crtc(set->crtc);
11417
3b150f08 11418 if (intel_crtc->active) {
319d9827
JB
11419 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11420 config->fb_changed = true;
11421 } else {
11422 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11423 config->mode_changed = true;
11424 }
5e2b584e
DV
11425 } else if (set->fb == NULL) {
11426 config->mode_changed = true;
72f4901e 11427 } else if (set->fb->pixel_format !=
f4510a27 11428 set->crtc->primary->fb->pixel_format) {
5e2b584e 11429 config->mode_changed = true;
e3de42b6 11430 } else {
5e2b584e 11431 config->fb_changed = true;
e3de42b6 11432 }
5e2b584e
DV
11433 }
11434
835c5873 11435 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11436 config->fb_changed = true;
11437
11438 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11439 DRM_DEBUG_KMS("modes are different, full mode set\n");
11440 drm_mode_debug_printmodeline(&set->crtc->mode);
11441 drm_mode_debug_printmodeline(set->mode);
11442 config->mode_changed = true;
11443 }
a1d95703
CW
11444
11445 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11446 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11447}
11448
2e431051 11449static int
9a935856
DV
11450intel_modeset_stage_output_state(struct drm_device *dev,
11451 struct drm_mode_set *set,
11452 struct intel_set_config *config)
50f56119 11453{
9a935856
DV
11454 struct intel_connector *connector;
11455 struct intel_encoder *encoder;
7668851f 11456 struct intel_crtc *crtc;
f3f08572 11457 int ro;
50f56119 11458
9abdda74 11459 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11460 * of connectors. For paranoia, double-check this. */
11461 WARN_ON(!set->fb && (set->num_connectors != 0));
11462 WARN_ON(set->fb && (set->num_connectors == 0));
11463
9a935856
DV
11464 list_for_each_entry(connector, &dev->mode_config.connector_list,
11465 base.head) {
11466 /* Otherwise traverse passed in connector list and get encoders
11467 * for them. */
50f56119 11468 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11469 if (set->connectors[ro] == &connector->base) {
0e32b39c 11470 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11471 break;
11472 }
11473 }
11474
9a935856
DV
11475 /* If we disable the crtc, disable all its connectors. Also, if
11476 * the connector is on the changing crtc but not on the new
11477 * connector list, disable it. */
11478 if ((!set->fb || ro == set->num_connectors) &&
11479 connector->base.encoder &&
11480 connector->base.encoder->crtc == set->crtc) {
11481 connector->new_encoder = NULL;
11482
11483 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11484 connector->base.base.id,
c23cc417 11485 connector->base.name);
9a935856
DV
11486 }
11487
11488
11489 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11490 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11491 config->mode_changed = true;
50f56119
DV
11492 }
11493 }
9a935856 11494 /* connector->new_encoder is now updated for all connectors. */
50f56119 11495
9a935856 11496 /* Update crtc of enabled connectors. */
9a935856
DV
11497 list_for_each_entry(connector, &dev->mode_config.connector_list,
11498 base.head) {
7668851f
VS
11499 struct drm_crtc *new_crtc;
11500
9a935856 11501 if (!connector->new_encoder)
50f56119
DV
11502 continue;
11503
9a935856 11504 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11505
11506 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11507 if (set->connectors[ro] == &connector->base)
50f56119
DV
11508 new_crtc = set->crtc;
11509 }
11510
11511 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11512 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11513 new_crtc)) {
5e2b584e 11514 return -EINVAL;
50f56119 11515 }
0e32b39c 11516 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11517
11518 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11519 connector->base.base.id,
c23cc417 11520 connector->base.name,
9a935856
DV
11521 new_crtc->base.id);
11522 }
11523
11524 /* Check for any encoders that needs to be disabled. */
b2784e15 11525 for_each_intel_encoder(dev, encoder) {
5a65f358 11526 int num_connectors = 0;
9a935856
DV
11527 list_for_each_entry(connector,
11528 &dev->mode_config.connector_list,
11529 base.head) {
11530 if (connector->new_encoder == encoder) {
11531 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11532 num_connectors++;
9a935856
DV
11533 }
11534 }
5a65f358
PZ
11535
11536 if (num_connectors == 0)
11537 encoder->new_crtc = NULL;
11538 else if (num_connectors > 1)
11539 return -EINVAL;
11540
9a935856
DV
11541 /* Only now check for crtc changes so we don't miss encoders
11542 * that will be disabled. */
11543 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11544 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11545 config->mode_changed = true;
50f56119
DV
11546 }
11547 }
9a935856 11548 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11549 list_for_each_entry(connector, &dev->mode_config.connector_list,
11550 base.head) {
11551 if (connector->new_encoder)
11552 if (connector->new_encoder != connector->encoder)
11553 connector->encoder = connector->new_encoder;
11554 }
d3fcc808 11555 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11556 crtc->new_enabled = false;
11557
b2784e15 11558 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11559 if (encoder->new_crtc == crtc) {
11560 crtc->new_enabled = true;
11561 break;
11562 }
11563 }
11564
11565 if (crtc->new_enabled != crtc->base.enabled) {
11566 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11567 crtc->new_enabled ? "en" : "dis");
11568 config->mode_changed = true;
11569 }
7bd0a8e7
VS
11570
11571 if (crtc->new_enabled)
11572 crtc->new_config = &crtc->config;
11573 else
11574 crtc->new_config = NULL;
7668851f
VS
11575 }
11576
2e431051
DV
11577 return 0;
11578}
11579
7d00a1f5
VS
11580static void disable_crtc_nofb(struct intel_crtc *crtc)
11581{
11582 struct drm_device *dev = crtc->base.dev;
11583 struct intel_encoder *encoder;
11584 struct intel_connector *connector;
11585
11586 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11587 pipe_name(crtc->pipe));
11588
11589 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11590 if (connector->new_encoder &&
11591 connector->new_encoder->new_crtc == crtc)
11592 connector->new_encoder = NULL;
11593 }
11594
b2784e15 11595 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11596 if (encoder->new_crtc == crtc)
11597 encoder->new_crtc = NULL;
11598 }
11599
11600 crtc->new_enabled = false;
7bd0a8e7 11601 crtc->new_config = NULL;
7d00a1f5
VS
11602}
11603
2e431051
DV
11604static int intel_crtc_set_config(struct drm_mode_set *set)
11605{
11606 struct drm_device *dev;
2e431051
DV
11607 struct drm_mode_set save_set;
11608 struct intel_set_config *config;
11609 int ret;
2e431051 11610
8d3e375e
DV
11611 BUG_ON(!set);
11612 BUG_ON(!set->crtc);
11613 BUG_ON(!set->crtc->helper_private);
2e431051 11614
7e53f3a4
DV
11615 /* Enforce sane interface api - has been abused by the fb helper. */
11616 BUG_ON(!set->mode && set->fb);
11617 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11618
2e431051
DV
11619 if (set->fb) {
11620 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11621 set->crtc->base.id, set->fb->base.id,
11622 (int)set->num_connectors, set->x, set->y);
11623 } else {
11624 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11625 }
11626
11627 dev = set->crtc->dev;
11628
11629 ret = -ENOMEM;
11630 config = kzalloc(sizeof(*config), GFP_KERNEL);
11631 if (!config)
11632 goto out_config;
11633
11634 ret = intel_set_config_save_state(dev, config);
11635 if (ret)
11636 goto out_config;
11637
11638 save_set.crtc = set->crtc;
11639 save_set.mode = &set->crtc->mode;
11640 save_set.x = set->crtc->x;
11641 save_set.y = set->crtc->y;
f4510a27 11642 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11643
11644 /* Compute whether we need a full modeset, only an fb base update or no
11645 * change at all. In the future we might also check whether only the
11646 * mode changed, e.g. for LVDS where we only change the panel fitter in
11647 * such cases. */
11648 intel_set_config_compute_mode_changes(set, config);
11649
9a935856 11650 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11651 if (ret)
11652 goto fail;
11653
5e2b584e 11654 if (config->mode_changed) {
c0c36b94
CW
11655 ret = intel_set_mode(set->crtc, set->mode,
11656 set->x, set->y, set->fb);
5e2b584e 11657 } else if (config->fb_changed) {
3b150f08
MR
11658 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11659
4878cae2
VS
11660 intel_crtc_wait_for_pending_flips(set->crtc);
11661
4f660f49 11662 ret = intel_pipe_set_base(set->crtc,
94352cf9 11663 set->x, set->y, set->fb);
3b150f08
MR
11664
11665 /*
11666 * We need to make sure the primary plane is re-enabled if it
11667 * has previously been turned off.
11668 */
11669 if (!intel_crtc->primary_enabled && ret == 0) {
11670 WARN_ON(!intel_crtc->active);
fdd508a6 11671 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
3b150f08
MR
11672 }
11673
7ca51a3a
JB
11674 /*
11675 * In the fastboot case this may be our only check of the
11676 * state after boot. It would be better to only do it on
11677 * the first update, but we don't have a nice way of doing that
11678 * (and really, set_config isn't used much for high freq page
11679 * flipping, so increasing its cost here shouldn't be a big
11680 * deal).
11681 */
d330a953 11682 if (i915.fastboot && ret == 0)
7ca51a3a 11683 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11684 }
11685
2d05eae1 11686 if (ret) {
bf67dfeb
DV
11687 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11688 set->crtc->base.id, ret);
50f56119 11689fail:
2d05eae1 11690 intel_set_config_restore_state(dev, config);
50f56119 11691
7d00a1f5
VS
11692 /*
11693 * HACK: if the pipe was on, but we didn't have a framebuffer,
11694 * force the pipe off to avoid oopsing in the modeset code
11695 * due to fb==NULL. This should only happen during boot since
11696 * we don't yet reconstruct the FB from the hardware state.
11697 */
11698 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11699 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11700
2d05eae1
CW
11701 /* Try to restore the config */
11702 if (config->mode_changed &&
11703 intel_set_mode(save_set.crtc, save_set.mode,
11704 save_set.x, save_set.y, save_set.fb))
11705 DRM_ERROR("failed to restore config after modeset failure\n");
11706 }
50f56119 11707
d9e55608
DV
11708out_config:
11709 intel_set_config_free(config);
50f56119
DV
11710 return ret;
11711}
f6e5b160
CW
11712
11713static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11714 .gamma_set = intel_crtc_gamma_set,
50f56119 11715 .set_config = intel_crtc_set_config,
f6e5b160
CW
11716 .destroy = intel_crtc_destroy,
11717 .page_flip = intel_crtc_page_flip,
11718};
11719
5358901f
DV
11720static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11721 struct intel_shared_dpll *pll,
11722 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11723{
5358901f 11724 uint32_t val;
ee7b9f93 11725
bd2bb1b9
PZ
11726 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11727 return false;
11728
5358901f 11729 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11730 hw_state->dpll = val;
11731 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11732 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11733
11734 return val & DPLL_VCO_ENABLE;
11735}
11736
15bdd4cf
DV
11737static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11738 struct intel_shared_dpll *pll)
11739{
11740 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11741 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11742}
11743
e7b903d2
DV
11744static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11745 struct intel_shared_dpll *pll)
11746{
e7b903d2 11747 /* PCH refclock must be enabled first */
89eff4be 11748 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11749
15bdd4cf
DV
11750 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11751
11752 /* Wait for the clocks to stabilize. */
11753 POSTING_READ(PCH_DPLL(pll->id));
11754 udelay(150);
11755
11756 /* The pixel multiplier can only be updated once the
11757 * DPLL is enabled and the clocks are stable.
11758 *
11759 * So write it again.
11760 */
11761 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11762 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11763 udelay(200);
11764}
11765
11766static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11767 struct intel_shared_dpll *pll)
11768{
11769 struct drm_device *dev = dev_priv->dev;
11770 struct intel_crtc *crtc;
e7b903d2
DV
11771
11772 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11773 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11774 if (intel_crtc_to_shared_dpll(crtc) == pll)
11775 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11776 }
11777
15bdd4cf
DV
11778 I915_WRITE(PCH_DPLL(pll->id), 0);
11779 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11780 udelay(200);
11781}
11782
46edb027
DV
11783static char *ibx_pch_dpll_names[] = {
11784 "PCH DPLL A",
11785 "PCH DPLL B",
11786};
11787
7c74ade1 11788static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11789{
e7b903d2 11790 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11791 int i;
11792
7c74ade1 11793 dev_priv->num_shared_dpll = 2;
ee7b9f93 11794
e72f9fbf 11795 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11796 dev_priv->shared_dplls[i].id = i;
11797 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11798 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11799 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11800 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11801 dev_priv->shared_dplls[i].get_hw_state =
11802 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11803 }
11804}
11805
7c74ade1
DV
11806static void intel_shared_dpll_init(struct drm_device *dev)
11807{
e7b903d2 11808 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11809
9cd86933
DV
11810 if (HAS_DDI(dev))
11811 intel_ddi_pll_init(dev);
11812 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11813 ibx_pch_dpll_init(dev);
11814 else
11815 dev_priv->num_shared_dpll = 0;
11816
11817 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11818}
11819
465c120c
MR
11820static int
11821intel_primary_plane_disable(struct drm_plane *plane)
11822{
11823 struct drm_device *dev = plane->dev;
465c120c
MR
11824 struct intel_crtc *intel_crtc;
11825
11826 if (!plane->fb)
11827 return 0;
11828
11829 BUG_ON(!plane->crtc);
11830
11831 intel_crtc = to_intel_crtc(plane->crtc);
11832
11833 /*
11834 * Even though we checked plane->fb above, it's still possible that
11835 * the primary plane has been implicitly disabled because the crtc
11836 * coordinates given weren't visible, or because we detected
11837 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11838 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11839 * In either case, we need to unpin the FB and let the fb pointer get
11840 * updated, but otherwise we don't need to touch the hardware.
11841 */
11842 if (!intel_crtc->primary_enabled)
11843 goto disable_unpin;
11844
11845 intel_crtc_wait_for_pending_flips(plane->crtc);
fdd508a6
VS
11846 intel_disable_primary_hw_plane(plane, plane->crtc);
11847
465c120c 11848disable_unpin:
4c34574f 11849 mutex_lock(&dev->struct_mutex);
2ff8fde1 11850 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11851 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11852 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11853 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11854 plane->fb = NULL;
11855
11856 return 0;
11857}
11858
11859static int
11860intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11861 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11862 unsigned int crtc_w, unsigned int crtc_h,
11863 uint32_t src_x, uint32_t src_y,
11864 uint32_t src_w, uint32_t src_h)
11865{
11866 struct drm_device *dev = crtc->dev;
48404c1e 11867 struct drm_i915_private *dev_priv = dev->dev_private;
465c120c 11868 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1
MR
11869 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11870 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11871 struct drm_rect dest = {
11872 /* integer pixels */
11873 .x1 = crtc_x,
11874 .y1 = crtc_y,
11875 .x2 = crtc_x + crtc_w,
11876 .y2 = crtc_y + crtc_h,
11877 };
11878 struct drm_rect src = {
11879 /* 16.16 fixed point */
11880 .x1 = src_x,
11881 .y1 = src_y,
11882 .x2 = src_x + src_w,
11883 .y2 = src_y + src_h,
11884 };
11885 const struct drm_rect clip = {
11886 /* integer pixels */
11887 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11888 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11889 };
ce54d85a
SJ
11890 const struct {
11891 int crtc_x, crtc_y;
11892 unsigned int crtc_w, crtc_h;
11893 uint32_t src_x, src_y, src_w, src_h;
11894 } orig = {
11895 .crtc_x = crtc_x,
11896 .crtc_y = crtc_y,
11897 .crtc_w = crtc_w,
11898 .crtc_h = crtc_h,
11899 .src_x = src_x,
11900 .src_y = src_y,
11901 .src_w = src_w,
11902 .src_h = src_h,
11903 };
11904 struct intel_plane *intel_plane = to_intel_plane(plane);
465c120c
MR
11905 bool visible;
11906 int ret;
11907
11908 ret = drm_plane_helper_check_update(plane, crtc, fb,
11909 &src, &dest, &clip,
11910 DRM_PLANE_HELPER_NO_SCALING,
11911 DRM_PLANE_HELPER_NO_SCALING,
11912 false, true, &visible);
11913
11914 if (ret)
11915 return ret;
11916
11917 /*
11918 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11919 * updating the fb pointer, and returning without touching the
11920 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11921 * turn on the display with all planes setup as desired.
11922 */
11923 if (!crtc->enabled) {
4c34574f
MR
11924 mutex_lock(&dev->struct_mutex);
11925
465c120c
MR
11926 /*
11927 * If we already called setplane while the crtc was disabled,
11928 * we may have an fb pinned; unpin it.
11929 */
11930 if (plane->fb)
a071fa00
DV
11931 intel_unpin_fb_obj(old_obj);
11932
11933 i915_gem_track_fb(old_obj, obj,
11934 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11935
11936 /* Pin and return without programming hardware */
4c34574f
MR
11937 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11938 mutex_unlock(&dev->struct_mutex);
11939
11940 return ret;
465c120c
MR
11941 }
11942
11943 intel_crtc_wait_for_pending_flips(crtc);
11944
11945 /*
11946 * If clipping results in a non-visible primary plane, we'll disable
11947 * the primary plane. Note that this is a bit different than what
11948 * happens if userspace explicitly disables the plane by passing fb=0
11949 * because plane->fb still gets set and pinned.
11950 */
11951 if (!visible) {
4c34574f
MR
11952 mutex_lock(&dev->struct_mutex);
11953
465c120c
MR
11954 /*
11955 * Try to pin the new fb first so that we can bail out if we
11956 * fail.
11957 */
11958 if (plane->fb != fb) {
a071fa00 11959 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11960 if (ret) {
11961 mutex_unlock(&dev->struct_mutex);
465c120c 11962 return ret;
4c34574f 11963 }
465c120c
MR
11964 }
11965
a071fa00
DV
11966 i915_gem_track_fb(old_obj, obj,
11967 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11968
465c120c 11969 if (intel_crtc->primary_enabled)
fdd508a6 11970 intel_disable_primary_hw_plane(plane, crtc);
465c120c
MR
11971
11972
11973 if (plane->fb != fb)
11974 if (plane->fb)
a071fa00 11975 intel_unpin_fb_obj(old_obj);
465c120c 11976
4c34574f
MR
11977 mutex_unlock(&dev->struct_mutex);
11978
ce54d85a 11979 } else {
48404c1e
SJ
11980 if (intel_crtc && intel_crtc->active &&
11981 intel_crtc->primary_enabled) {
11982 /*
11983 * FBC does not work on some platforms for rotated
11984 * planes, so disable it when rotation is not 0 and
11985 * update it when rotation is set back to 0.
11986 *
11987 * FIXME: This is redundant with the fbc update done in
11988 * the primary plane enable function except that that
11989 * one is done too late. We eventually need to unify
11990 * this.
11991 */
11992 if (INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11993 dev_priv->fbc.plane == intel_crtc->plane &&
11994 intel_plane->rotation != BIT(DRM_ROTATE_0)) {
11995 intel_disable_fbc(dev);
11996 }
11997 }
ce54d85a
SJ
11998 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11999 if (ret)
12000 return ret;
465c120c 12001
ce54d85a
SJ
12002 if (!intel_crtc->primary_enabled)
12003 intel_enable_primary_hw_plane(plane, crtc);
12004 }
465c120c 12005
ce54d85a
SJ
12006 intel_plane->crtc_x = orig.crtc_x;
12007 intel_plane->crtc_y = orig.crtc_y;
12008 intel_plane->crtc_w = orig.crtc_w;
12009 intel_plane->crtc_h = orig.crtc_h;
12010 intel_plane->src_x = orig.src_x;
12011 intel_plane->src_y = orig.src_y;
12012 intel_plane->src_w = orig.src_w;
12013 intel_plane->src_h = orig.src_h;
12014 intel_plane->obj = obj;
465c120c
MR
12015
12016 return 0;
12017}
12018
3d7d6510
MR
12019/* Common destruction function for both primary and cursor planes */
12020static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
12021{
12022 struct intel_plane *intel_plane = to_intel_plane(plane);
12023 drm_plane_cleanup(plane);
12024 kfree(intel_plane);
12025}
12026
12027static const struct drm_plane_funcs intel_primary_plane_funcs = {
12028 .update_plane = intel_primary_plane_setplane,
12029 .disable_plane = intel_primary_plane_disable,
3d7d6510 12030 .destroy = intel_plane_destroy,
48404c1e 12031 .set_property = intel_plane_set_property
465c120c
MR
12032};
12033
12034static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12035 int pipe)
12036{
12037 struct intel_plane *primary;
12038 const uint32_t *intel_primary_formats;
12039 int num_formats;
12040
12041 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12042 if (primary == NULL)
12043 return NULL;
12044
12045 primary->can_scale = false;
12046 primary->max_downscale = 1;
12047 primary->pipe = pipe;
12048 primary->plane = pipe;
48404c1e 12049 primary->rotation = BIT(DRM_ROTATE_0);
465c120c
MR
12050 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12051 primary->plane = !pipe;
12052
12053 if (INTEL_INFO(dev)->gen <= 3) {
12054 intel_primary_formats = intel_primary_formats_gen2;
12055 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12056 } else {
12057 intel_primary_formats = intel_primary_formats_gen4;
12058 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12059 }
12060
12061 drm_universal_plane_init(dev, &primary->base, 0,
12062 &intel_primary_plane_funcs,
12063 intel_primary_formats, num_formats,
12064 DRM_PLANE_TYPE_PRIMARY);
48404c1e
SJ
12065
12066 if (INTEL_INFO(dev)->gen >= 4) {
12067 if (!dev->mode_config.rotation_property)
12068 dev->mode_config.rotation_property =
12069 drm_mode_create_rotation_property(dev,
12070 BIT(DRM_ROTATE_0) |
12071 BIT(DRM_ROTATE_180));
12072 if (dev->mode_config.rotation_property)
12073 drm_object_attach_property(&primary->base.base,
12074 dev->mode_config.rotation_property,
12075 primary->rotation);
12076 }
12077
465c120c
MR
12078 return &primary->base;
12079}
12080
3d7d6510
MR
12081static int
12082intel_cursor_plane_disable(struct drm_plane *plane)
12083{
12084 if (!plane->fb)
12085 return 0;
12086
12087 BUG_ON(!plane->crtc);
12088
12089 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
12090}
12091
12092static int
12093intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
12094 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
12095 unsigned int crtc_w, unsigned int crtc_h,
12096 uint32_t src_x, uint32_t src_y,
12097 uint32_t src_w, uint32_t src_h)
12098{
12099 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12100 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12101 struct drm_i915_gem_object *obj = intel_fb->obj;
12102 struct drm_rect dest = {
12103 /* integer pixels */
12104 .x1 = crtc_x,
12105 .y1 = crtc_y,
12106 .x2 = crtc_x + crtc_w,
12107 .y2 = crtc_y + crtc_h,
12108 };
12109 struct drm_rect src = {
12110 /* 16.16 fixed point */
12111 .x1 = src_x,
12112 .y1 = src_y,
12113 .x2 = src_x + src_w,
12114 .y2 = src_y + src_h,
12115 };
12116 const struct drm_rect clip = {
12117 /* integer pixels */
1add143c
VS
12118 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
12119 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
3d7d6510
MR
12120 };
12121 bool visible;
12122 int ret;
12123
12124 ret = drm_plane_helper_check_update(plane, crtc, fb,
12125 &src, &dest, &clip,
12126 DRM_PLANE_HELPER_NO_SCALING,
12127 DRM_PLANE_HELPER_NO_SCALING,
12128 true, true, &visible);
12129 if (ret)
12130 return ret;
12131
12132 crtc->cursor_x = crtc_x;
12133 crtc->cursor_y = crtc_y;
12134 if (fb != crtc->cursor->fb) {
12135 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
12136 } else {
12137 intel_crtc_update_cursor(crtc, visible);
4ed91096
DV
12138
12139 intel_frontbuffer_flip(crtc->dev,
12140 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe));
12141
3d7d6510
MR
12142 return 0;
12143 }
12144}
12145static const struct drm_plane_funcs intel_cursor_plane_funcs = {
12146 .update_plane = intel_cursor_plane_update,
12147 .disable_plane = intel_cursor_plane_disable,
12148 .destroy = intel_plane_destroy,
12149};
12150
12151static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12152 int pipe)
12153{
12154 struct intel_plane *cursor;
12155
12156 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12157 if (cursor == NULL)
12158 return NULL;
12159
12160 cursor->can_scale = false;
12161 cursor->max_downscale = 1;
12162 cursor->pipe = pipe;
12163 cursor->plane = pipe;
12164
12165 drm_universal_plane_init(dev, &cursor->base, 0,
12166 &intel_cursor_plane_funcs,
12167 intel_cursor_formats,
12168 ARRAY_SIZE(intel_cursor_formats),
12169 DRM_PLANE_TYPE_CURSOR);
12170 return &cursor->base;
12171}
12172
b358d0a6 12173static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 12174{
fbee40df 12175 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 12176 struct intel_crtc *intel_crtc;
3d7d6510
MR
12177 struct drm_plane *primary = NULL;
12178 struct drm_plane *cursor = NULL;
465c120c 12179 int i, ret;
79e53945 12180
955382f3 12181 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
12182 if (intel_crtc == NULL)
12183 return;
12184
465c120c 12185 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
12186 if (!primary)
12187 goto fail;
12188
12189 cursor = intel_cursor_plane_create(dev, pipe);
12190 if (!cursor)
12191 goto fail;
12192
465c120c 12193 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
12194 cursor, &intel_crtc_funcs);
12195 if (ret)
12196 goto fail;
79e53945
JB
12197
12198 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
12199 for (i = 0; i < 256; i++) {
12200 intel_crtc->lut_r[i] = i;
12201 intel_crtc->lut_g[i] = i;
12202 intel_crtc->lut_b[i] = i;
12203 }
12204
1f1c2e24
VS
12205 /*
12206 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 12207 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 12208 */
80824003
JB
12209 intel_crtc->pipe = pipe;
12210 intel_crtc->plane = pipe;
3a77c4c4 12211 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 12212 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 12213 intel_crtc->plane = !pipe;
80824003
JB
12214 }
12215
4b0e333e
CW
12216 intel_crtc->cursor_base = ~0;
12217 intel_crtc->cursor_cntl = ~0;
dc41c154 12218 intel_crtc->cursor_size = ~0;
8d7849db 12219
22fd0fab
JB
12220 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12221 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12222 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12223 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12224
79e53945 12225 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
12226
12227 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
12228 return;
12229
12230fail:
12231 if (primary)
12232 drm_plane_cleanup(primary);
12233 if (cursor)
12234 drm_plane_cleanup(cursor);
12235 kfree(intel_crtc);
79e53945
JB
12236}
12237
752aa88a
JB
12238enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12239{
12240 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 12241 struct drm_device *dev = connector->base.dev;
752aa88a 12242
51fd371b 12243 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
12244
12245 if (!encoder)
12246 return INVALID_PIPE;
12247
12248 return to_intel_crtc(encoder->crtc)->pipe;
12249}
12250
08d7b3d1 12251int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 12252 struct drm_file *file)
08d7b3d1 12253{
08d7b3d1 12254 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 12255 struct drm_crtc *drmmode_crtc;
c05422d5 12256 struct intel_crtc *crtc;
08d7b3d1 12257
1cff8f6b
DV
12258 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12259 return -ENODEV;
08d7b3d1 12260
7707e653 12261 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 12262
7707e653 12263 if (!drmmode_crtc) {
08d7b3d1 12264 DRM_ERROR("no such CRTC id\n");
3f2c2057 12265 return -ENOENT;
08d7b3d1
CW
12266 }
12267
7707e653 12268 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 12269 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 12270
c05422d5 12271 return 0;
08d7b3d1
CW
12272}
12273
66a9278e 12274static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 12275{
66a9278e
DV
12276 struct drm_device *dev = encoder->base.dev;
12277 struct intel_encoder *source_encoder;
79e53945 12278 int index_mask = 0;
79e53945
JB
12279 int entry = 0;
12280
b2784e15 12281 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 12282 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
12283 index_mask |= (1 << entry);
12284
79e53945
JB
12285 entry++;
12286 }
4ef69c7a 12287
79e53945
JB
12288 return index_mask;
12289}
12290
4d302442
CW
12291static bool has_edp_a(struct drm_device *dev)
12292{
12293 struct drm_i915_private *dev_priv = dev->dev_private;
12294
12295 if (!IS_MOBILE(dev))
12296 return false;
12297
12298 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12299 return false;
12300
e3589908 12301 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
12302 return false;
12303
12304 return true;
12305}
12306
ba0fbca4
DL
12307const char *intel_output_name(int output)
12308{
12309 static const char *names[] = {
12310 [INTEL_OUTPUT_UNUSED] = "Unused",
12311 [INTEL_OUTPUT_ANALOG] = "Analog",
12312 [INTEL_OUTPUT_DVO] = "DVO",
12313 [INTEL_OUTPUT_SDVO] = "SDVO",
12314 [INTEL_OUTPUT_LVDS] = "LVDS",
12315 [INTEL_OUTPUT_TVOUT] = "TV",
12316 [INTEL_OUTPUT_HDMI] = "HDMI",
12317 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
12318 [INTEL_OUTPUT_EDP] = "eDP",
12319 [INTEL_OUTPUT_DSI] = "DSI",
12320 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
12321 };
12322
12323 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12324 return "Invalid";
12325
12326 return names[output];
12327}
12328
84b4e042
JB
12329static bool intel_crt_present(struct drm_device *dev)
12330{
12331 struct drm_i915_private *dev_priv = dev->dev_private;
12332
884497ed
DL
12333 if (INTEL_INFO(dev)->gen >= 9)
12334 return false;
12335
84b4e042
JB
12336 if (IS_ULT(dev))
12337 return false;
12338
12339 if (IS_CHERRYVIEW(dev))
12340 return false;
12341
12342 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12343 return false;
12344
12345 return true;
12346}
12347
79e53945
JB
12348static void intel_setup_outputs(struct drm_device *dev)
12349{
725e30ad 12350 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12351 struct intel_encoder *encoder;
cb0953d7 12352 bool dpd_is_edp = false;
79e53945 12353
c9093354 12354 intel_lvds_init(dev);
79e53945 12355
84b4e042 12356 if (intel_crt_present(dev))
79935fca 12357 intel_crt_init(dev);
cb0953d7 12358
affa9354 12359 if (HAS_DDI(dev)) {
0e72a5b5
ED
12360 int found;
12361
12362 /* Haswell uses DDI functions to detect digital outputs */
12363 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12364 /* DDI A only supports eDP */
12365 if (found)
12366 intel_ddi_init(dev, PORT_A);
12367
12368 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12369 * register */
12370 found = I915_READ(SFUSE_STRAP);
12371
12372 if (found & SFUSE_STRAP_DDIB_DETECTED)
12373 intel_ddi_init(dev, PORT_B);
12374 if (found & SFUSE_STRAP_DDIC_DETECTED)
12375 intel_ddi_init(dev, PORT_C);
12376 if (found & SFUSE_STRAP_DDID_DETECTED)
12377 intel_ddi_init(dev, PORT_D);
12378 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12379 int found;
5d8a7752 12380 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12381
12382 if (has_edp_a(dev))
12383 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12384
dc0fa718 12385 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12386 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12387 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12388 if (!found)
e2debe91 12389 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12390 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12391 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12392 }
12393
dc0fa718 12394 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12395 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12396
dc0fa718 12397 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12398 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12399
5eb08b69 12400 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12401 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12402
270b3042 12403 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12404 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12405 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
12406 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12407 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12408 PORT_B);
12409 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12410 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12411 }
12412
6f6005a5
JB
12413 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12414 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12415 PORT_C);
12416 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12417 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12418 }
19c03924 12419
9418c1f1
VS
12420 if (IS_CHERRYVIEW(dev)) {
12421 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12422 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12423 PORT_D);
12424 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12425 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12426 }
12427 }
12428
3cfca973 12429 intel_dsi_init(dev);
103a196f 12430 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12431 bool found = false;
7d57382e 12432
e2debe91 12433 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12434 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12435 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12436 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12437 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12438 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12439 }
27185ae1 12440
e7281eab 12441 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12442 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12443 }
13520b05
KH
12444
12445 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12446
e2debe91 12447 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12448 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12449 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12450 }
27185ae1 12451
e2debe91 12452 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12453
b01f2c3a
JB
12454 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12455 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12456 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12457 }
e7281eab 12458 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12459 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12460 }
27185ae1 12461
b01f2c3a 12462 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12463 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12464 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12465 } else if (IS_GEN2(dev))
79e53945
JB
12466 intel_dvo_init(dev);
12467
103a196f 12468 if (SUPPORTS_TV(dev))
79e53945
JB
12469 intel_tv_init(dev);
12470
7c8f8a70
RV
12471 intel_edp_psr_init(dev);
12472
b2784e15 12473 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12474 encoder->base.possible_crtcs = encoder->crtc_mask;
12475 encoder->base.possible_clones =
66a9278e 12476 intel_encoder_clones(encoder);
79e53945 12477 }
47356eb6 12478
dde86e2d 12479 intel_init_pch_refclk(dev);
270b3042
DV
12480
12481 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12482}
12483
12484static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12485{
60a5ca01 12486 struct drm_device *dev = fb->dev;
79e53945 12487 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12488
ef2d633e 12489 drm_framebuffer_cleanup(fb);
60a5ca01 12490 mutex_lock(&dev->struct_mutex);
ef2d633e 12491 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12492 drm_gem_object_unreference(&intel_fb->obj->base);
12493 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12494 kfree(intel_fb);
12495}
12496
12497static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12498 struct drm_file *file,
79e53945
JB
12499 unsigned int *handle)
12500{
12501 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12502 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12503
05394f39 12504 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12505}
12506
12507static const struct drm_framebuffer_funcs intel_fb_funcs = {
12508 .destroy = intel_user_framebuffer_destroy,
12509 .create_handle = intel_user_framebuffer_create_handle,
12510};
12511
b5ea642a
DV
12512static int intel_framebuffer_init(struct drm_device *dev,
12513 struct intel_framebuffer *intel_fb,
12514 struct drm_mode_fb_cmd2 *mode_cmd,
12515 struct drm_i915_gem_object *obj)
79e53945 12516{
a57ce0b2 12517 int aligned_height;
a35cdaa0 12518 int pitch_limit;
79e53945
JB
12519 int ret;
12520
dd4916c5
DV
12521 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12522
c16ed4be
CW
12523 if (obj->tiling_mode == I915_TILING_Y) {
12524 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12525 return -EINVAL;
c16ed4be 12526 }
57cd6508 12527
c16ed4be
CW
12528 if (mode_cmd->pitches[0] & 63) {
12529 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12530 mode_cmd->pitches[0]);
57cd6508 12531 return -EINVAL;
c16ed4be 12532 }
57cd6508 12533
a35cdaa0
CW
12534 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12535 pitch_limit = 32*1024;
12536 } else if (INTEL_INFO(dev)->gen >= 4) {
12537 if (obj->tiling_mode)
12538 pitch_limit = 16*1024;
12539 else
12540 pitch_limit = 32*1024;
12541 } else if (INTEL_INFO(dev)->gen >= 3) {
12542 if (obj->tiling_mode)
12543 pitch_limit = 8*1024;
12544 else
12545 pitch_limit = 16*1024;
12546 } else
12547 /* XXX DSPC is limited to 4k tiled */
12548 pitch_limit = 8*1024;
12549
12550 if (mode_cmd->pitches[0] > pitch_limit) {
12551 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12552 obj->tiling_mode ? "tiled" : "linear",
12553 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12554 return -EINVAL;
c16ed4be 12555 }
5d7bd705
VS
12556
12557 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12558 mode_cmd->pitches[0] != obj->stride) {
12559 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12560 mode_cmd->pitches[0], obj->stride);
5d7bd705 12561 return -EINVAL;
c16ed4be 12562 }
5d7bd705 12563
57779d06 12564 /* Reject formats not supported by any plane early. */
308e5bcb 12565 switch (mode_cmd->pixel_format) {
57779d06 12566 case DRM_FORMAT_C8:
04b3924d
VS
12567 case DRM_FORMAT_RGB565:
12568 case DRM_FORMAT_XRGB8888:
12569 case DRM_FORMAT_ARGB8888:
57779d06
VS
12570 break;
12571 case DRM_FORMAT_XRGB1555:
12572 case DRM_FORMAT_ARGB1555:
c16ed4be 12573 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12574 DRM_DEBUG("unsupported pixel format: %s\n",
12575 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12576 return -EINVAL;
c16ed4be 12577 }
57779d06
VS
12578 break;
12579 case DRM_FORMAT_XBGR8888:
12580 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12581 case DRM_FORMAT_XRGB2101010:
12582 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12583 case DRM_FORMAT_XBGR2101010:
12584 case DRM_FORMAT_ABGR2101010:
c16ed4be 12585 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12586 DRM_DEBUG("unsupported pixel format: %s\n",
12587 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12588 return -EINVAL;
c16ed4be 12589 }
b5626747 12590 break;
04b3924d
VS
12591 case DRM_FORMAT_YUYV:
12592 case DRM_FORMAT_UYVY:
12593 case DRM_FORMAT_YVYU:
12594 case DRM_FORMAT_VYUY:
c16ed4be 12595 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12596 DRM_DEBUG("unsupported pixel format: %s\n",
12597 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12598 return -EINVAL;
c16ed4be 12599 }
57cd6508
CW
12600 break;
12601 default:
4ee62c76
VS
12602 DRM_DEBUG("unsupported pixel format: %s\n",
12603 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12604 return -EINVAL;
12605 }
12606
90f9a336
VS
12607 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12608 if (mode_cmd->offsets[0] != 0)
12609 return -EINVAL;
12610
a57ce0b2
JB
12611 aligned_height = intel_align_height(dev, mode_cmd->height,
12612 obj->tiling_mode);
53155c0a
DV
12613 /* FIXME drm helper for size checks (especially planar formats)? */
12614 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12615 return -EINVAL;
12616
c7d73f6a
DV
12617 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12618 intel_fb->obj = obj;
80075d49 12619 intel_fb->obj->framebuffer_references++;
c7d73f6a 12620
79e53945
JB
12621 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12622 if (ret) {
12623 DRM_ERROR("framebuffer init failed %d\n", ret);
12624 return ret;
12625 }
12626
79e53945
JB
12627 return 0;
12628}
12629
79e53945
JB
12630static struct drm_framebuffer *
12631intel_user_framebuffer_create(struct drm_device *dev,
12632 struct drm_file *filp,
308e5bcb 12633 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12634{
05394f39 12635 struct drm_i915_gem_object *obj;
79e53945 12636
308e5bcb
JB
12637 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12638 mode_cmd->handles[0]));
c8725226 12639 if (&obj->base == NULL)
cce13ff7 12640 return ERR_PTR(-ENOENT);
79e53945 12641
d2dff872 12642 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12643}
12644
4520f53a 12645#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12646static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12647{
12648}
12649#endif
12650
79e53945 12651static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12652 .fb_create = intel_user_framebuffer_create,
0632fef6 12653 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12654};
12655
e70236a8
JB
12656/* Set up chip specific display functions */
12657static void intel_init_display(struct drm_device *dev)
12658{
12659 struct drm_i915_private *dev_priv = dev->dev_private;
12660
ee9300bb
DV
12661 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12662 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12663 else if (IS_CHERRYVIEW(dev))
12664 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12665 else if (IS_VALLEYVIEW(dev))
12666 dev_priv->display.find_dpll = vlv_find_best_dpll;
12667 else if (IS_PINEVIEW(dev))
12668 dev_priv->display.find_dpll = pnv_find_best_dpll;
12669 else
12670 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12671
affa9354 12672 if (HAS_DDI(dev)) {
0e8ffe1b 12673 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12674 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12675 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12676 dev_priv->display.crtc_enable = haswell_crtc_enable;
12677 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12678 dev_priv->display.off = ironlake_crtc_off;
70d21f0e
DL
12679 if (INTEL_INFO(dev)->gen >= 9)
12680 dev_priv->display.update_primary_plane =
12681 skylake_update_primary_plane;
12682 else
12683 dev_priv->display.update_primary_plane =
12684 ironlake_update_primary_plane;
09b4ddf9 12685 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12686 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12687 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12688 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12689 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12690 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12691 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12692 dev_priv->display.update_primary_plane =
12693 ironlake_update_primary_plane;
89b667f8
JB
12694 } else if (IS_VALLEYVIEW(dev)) {
12695 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12696 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12697 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12698 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12699 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12700 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12701 dev_priv->display.update_primary_plane =
12702 i9xx_update_primary_plane;
f564048e 12703 } else {
0e8ffe1b 12704 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12705 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12706 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12707 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12708 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12709 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12710 dev_priv->display.update_primary_plane =
12711 i9xx_update_primary_plane;
f564048e 12712 }
e70236a8 12713
e70236a8 12714 /* Returns the core display clock speed */
25eb05fc
JB
12715 if (IS_VALLEYVIEW(dev))
12716 dev_priv->display.get_display_clock_speed =
12717 valleyview_get_display_clock_speed;
12718 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12719 dev_priv->display.get_display_clock_speed =
12720 i945_get_display_clock_speed;
12721 else if (IS_I915G(dev))
12722 dev_priv->display.get_display_clock_speed =
12723 i915_get_display_clock_speed;
257a7ffc 12724 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12725 dev_priv->display.get_display_clock_speed =
12726 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12727 else if (IS_PINEVIEW(dev))
12728 dev_priv->display.get_display_clock_speed =
12729 pnv_get_display_clock_speed;
e70236a8
JB
12730 else if (IS_I915GM(dev))
12731 dev_priv->display.get_display_clock_speed =
12732 i915gm_get_display_clock_speed;
12733 else if (IS_I865G(dev))
12734 dev_priv->display.get_display_clock_speed =
12735 i865_get_display_clock_speed;
f0f8a9ce 12736 else if (IS_I85X(dev))
e70236a8
JB
12737 dev_priv->display.get_display_clock_speed =
12738 i855_get_display_clock_speed;
12739 else /* 852, 830 */
12740 dev_priv->display.get_display_clock_speed =
12741 i830_get_display_clock_speed;
12742
3bb11b53 12743 if (IS_G4X(dev)) {
e0dac65e 12744 dev_priv->display.write_eld = g4x_write_eld;
3bb11b53
SJ
12745 } else if (IS_GEN5(dev)) {
12746 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12747 dev_priv->display.write_eld = ironlake_write_eld;
12748 } else if (IS_GEN6(dev)) {
12749 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12750 dev_priv->display.write_eld = ironlake_write_eld;
12751 dev_priv->display.modeset_global_resources =
12752 snb_modeset_global_resources;
12753 } else if (IS_IVYBRIDGE(dev)) {
12754 /* FIXME: detect B0+ stepping and use auto training */
12755 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12756 dev_priv->display.write_eld = ironlake_write_eld;
12757 dev_priv->display.modeset_global_resources =
12758 ivb_modeset_global_resources;
059b2fe9 12759 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53
SJ
12760 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12761 dev_priv->display.write_eld = haswell_write_eld;
12762 dev_priv->display.modeset_global_resources =
12763 haswell_modeset_global_resources;
30a970c6
JB
12764 } else if (IS_VALLEYVIEW(dev)) {
12765 dev_priv->display.modeset_global_resources =
12766 valleyview_modeset_global_resources;
9ca2fe73 12767 dev_priv->display.write_eld = ironlake_write_eld;
02c29259
S
12768 } else if (INTEL_INFO(dev)->gen >= 9) {
12769 dev_priv->display.write_eld = haswell_write_eld;
12770 dev_priv->display.modeset_global_resources =
12771 haswell_modeset_global_resources;
e70236a8 12772 }
8c9f3aaf
JB
12773
12774 /* Default just returns -ENODEV to indicate unsupported */
12775 dev_priv->display.queue_flip = intel_default_queue_flip;
12776
12777 switch (INTEL_INFO(dev)->gen) {
12778 case 2:
12779 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12780 break;
12781
12782 case 3:
12783 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12784 break;
12785
12786 case 4:
12787 case 5:
12788 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12789 break;
12790
12791 case 6:
12792 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12793 break;
7c9017e5 12794 case 7:
4e0bbc31 12795 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12796 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12797 break;
8c9f3aaf 12798 }
7bd688cd
JN
12799
12800 intel_panel_init_backlight_funcs(dev);
e39b999a
VS
12801
12802 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
12803}
12804
b690e96c
JB
12805/*
12806 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12807 * resume, or other times. This quirk makes sure that's the case for
12808 * affected systems.
12809 */
0206e353 12810static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12811{
12812 struct drm_i915_private *dev_priv = dev->dev_private;
12813
12814 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12815 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12816}
12817
b6b5d049
VS
12818static void quirk_pipeb_force(struct drm_device *dev)
12819{
12820 struct drm_i915_private *dev_priv = dev->dev_private;
12821
12822 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
12823 DRM_INFO("applying pipe b force quirk\n");
12824}
12825
435793df
KP
12826/*
12827 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12828 */
12829static void quirk_ssc_force_disable(struct drm_device *dev)
12830{
12831 struct drm_i915_private *dev_priv = dev->dev_private;
12832 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12833 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12834}
12835
4dca20ef 12836/*
5a15ab5b
CE
12837 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12838 * brightness value
4dca20ef
CE
12839 */
12840static void quirk_invert_brightness(struct drm_device *dev)
12841{
12842 struct drm_i915_private *dev_priv = dev->dev_private;
12843 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12844 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12845}
12846
9c72cc6f
SD
12847/* Some VBT's incorrectly indicate no backlight is present */
12848static void quirk_backlight_present(struct drm_device *dev)
12849{
12850 struct drm_i915_private *dev_priv = dev->dev_private;
12851 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12852 DRM_INFO("applying backlight present quirk\n");
12853}
12854
b690e96c
JB
12855struct intel_quirk {
12856 int device;
12857 int subsystem_vendor;
12858 int subsystem_device;
12859 void (*hook)(struct drm_device *dev);
12860};
12861
5f85f176
EE
12862/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12863struct intel_dmi_quirk {
12864 void (*hook)(struct drm_device *dev);
12865 const struct dmi_system_id (*dmi_id_list)[];
12866};
12867
12868static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12869{
12870 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12871 return 1;
12872}
12873
12874static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12875 {
12876 .dmi_id_list = &(const struct dmi_system_id[]) {
12877 {
12878 .callback = intel_dmi_reverse_brightness,
12879 .ident = "NCR Corporation",
12880 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12881 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12882 },
12883 },
12884 { } /* terminating entry */
12885 },
12886 .hook = quirk_invert_brightness,
12887 },
12888};
12889
c43b5634 12890static struct intel_quirk intel_quirks[] = {
b690e96c 12891 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12892 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12893
b690e96c
JB
12894 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12895 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12896
b690e96c
JB
12897 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12898 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12899
5f080c0f
VS
12900 /* 830 needs to leave pipe A & dpll A up */
12901 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
12902
b6b5d049
VS
12903 /* 830 needs to leave pipe B & dpll B up */
12904 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
12905
435793df
KP
12906 /* Lenovo U160 cannot use SSC on LVDS */
12907 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12908
12909 /* Sony Vaio Y cannot use SSC on LVDS */
12910 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12911
be505f64
AH
12912 /* Acer Aspire 5734Z must invert backlight brightness */
12913 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12914
12915 /* Acer/eMachines G725 */
12916 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12917
12918 /* Acer/eMachines e725 */
12919 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12920
12921 /* Acer/Packard Bell NCL20 */
12922 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12923
12924 /* Acer Aspire 4736Z */
12925 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12926
12927 /* Acer Aspire 5336 */
12928 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12929
12930 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12931 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 12932
dfb3d47b
SD
12933 /* Acer C720 Chromebook (Core i3 4005U) */
12934 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
12935
d4967d8c
SD
12936 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12937 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12938
12939 /* HP Chromebook 14 (Celeron 2955U) */
12940 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12941};
12942
12943static void intel_init_quirks(struct drm_device *dev)
12944{
12945 struct pci_dev *d = dev->pdev;
12946 int i;
12947
12948 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12949 struct intel_quirk *q = &intel_quirks[i];
12950
12951 if (d->device == q->device &&
12952 (d->subsystem_vendor == q->subsystem_vendor ||
12953 q->subsystem_vendor == PCI_ANY_ID) &&
12954 (d->subsystem_device == q->subsystem_device ||
12955 q->subsystem_device == PCI_ANY_ID))
12956 q->hook(dev);
12957 }
5f85f176
EE
12958 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12959 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12960 intel_dmi_quirks[i].hook(dev);
12961 }
b690e96c
JB
12962}
12963
9cce37f4
JB
12964/* Disable the VGA plane that we never use */
12965static void i915_disable_vga(struct drm_device *dev)
12966{
12967 struct drm_i915_private *dev_priv = dev->dev_private;
12968 u8 sr1;
766aa1c4 12969 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12970
2b37c616 12971 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12972 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12973 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12974 sr1 = inb(VGA_SR_DATA);
12975 outb(sr1 | 1<<5, VGA_SR_DATA);
12976 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12977 udelay(300);
12978
69769f9a
VS
12979 /*
12980 * Fujitsu-Siemens Lifebook S6010 (830) has problems resuming
12981 * from S3 without preserving (some of?) the other bits.
12982 */
12983 I915_WRITE(vga_reg, dev_priv->bios_vgacntr | VGA_DISP_DISABLE);
9cce37f4
JB
12984 POSTING_READ(vga_reg);
12985}
12986
f817586c
DV
12987void intel_modeset_init_hw(struct drm_device *dev)
12988{
a8f78b58
ED
12989 intel_prepare_ddi(dev);
12990
f8bf63fd
VS
12991 if (IS_VALLEYVIEW(dev))
12992 vlv_update_cdclk(dev);
12993
f817586c
DV
12994 intel_init_clock_gating(dev);
12995
8090c6b9 12996 intel_enable_gt_powersave(dev);
f817586c
DV
12997}
12998
7d708ee4
ID
12999void intel_modeset_suspend_hw(struct drm_device *dev)
13000{
13001 intel_suspend_hw(dev);
13002}
13003
79e53945
JB
13004void intel_modeset_init(struct drm_device *dev)
13005{
652c393a 13006 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 13007 int sprite, ret;
8cc87b75 13008 enum pipe pipe;
46f297fb 13009 struct intel_crtc *crtc;
79e53945
JB
13010
13011 drm_mode_config_init(dev);
13012
13013 dev->mode_config.min_width = 0;
13014 dev->mode_config.min_height = 0;
13015
019d96cb
DA
13016 dev->mode_config.preferred_depth = 24;
13017 dev->mode_config.prefer_shadow = 1;
13018
e6ecefaa 13019 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 13020
b690e96c
JB
13021 intel_init_quirks(dev);
13022
1fa61106
ED
13023 intel_init_pm(dev);
13024
e3c74757
BW
13025 if (INTEL_INFO(dev)->num_pipes == 0)
13026 return;
13027
e70236a8
JB
13028 intel_init_display(dev);
13029
a6c45cf0
CW
13030 if (IS_GEN2(dev)) {
13031 dev->mode_config.max_width = 2048;
13032 dev->mode_config.max_height = 2048;
13033 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
13034 dev->mode_config.max_width = 4096;
13035 dev->mode_config.max_height = 4096;
79e53945 13036 } else {
a6c45cf0
CW
13037 dev->mode_config.max_width = 8192;
13038 dev->mode_config.max_height = 8192;
79e53945 13039 }
068be561 13040
dc41c154
VS
13041 if (IS_845G(dev) || IS_I865G(dev)) {
13042 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13043 dev->mode_config.cursor_height = 1023;
13044 } else if (IS_GEN2(dev)) {
068be561
DL
13045 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13046 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13047 } else {
13048 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13049 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13050 }
13051
5d4545ae 13052 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 13053
28c97730 13054 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
13055 INTEL_INFO(dev)->num_pipes,
13056 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 13057
055e393f 13058 for_each_pipe(dev_priv, pipe) {
8cc87b75 13059 intel_crtc_init(dev, pipe);
1fe47785
DL
13060 for_each_sprite(pipe, sprite) {
13061 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 13062 if (ret)
06da8da2 13063 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 13064 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 13065 }
79e53945
JB
13066 }
13067
f42bb70d
JB
13068 intel_init_dpio(dev);
13069
e72f9fbf 13070 intel_shared_dpll_init(dev);
ee7b9f93 13071
69769f9a
VS
13072 /* save the BIOS value before clobbering it */
13073 dev_priv->bios_vgacntr = I915_READ(i915_vgacntrl_reg(dev));
9cce37f4
JB
13074 /* Just disable it once at startup */
13075 i915_disable_vga(dev);
79e53945 13076 intel_setup_outputs(dev);
11be49eb
CW
13077
13078 /* Just in case the BIOS is doing something questionable. */
13079 intel_disable_fbc(dev);
fa9fa083 13080
6e9f798d 13081 drm_modeset_lock_all(dev);
fa9fa083 13082 intel_modeset_setup_hw_state(dev, false);
6e9f798d 13083 drm_modeset_unlock_all(dev);
46f297fb 13084
d3fcc808 13085 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
13086 if (!crtc->active)
13087 continue;
13088
46f297fb 13089 /*
46f297fb
JB
13090 * Note that reserving the BIOS fb up front prevents us
13091 * from stuffing other stolen allocations like the ring
13092 * on top. This prevents some ugliness at boot time, and
13093 * can even allow for smooth boot transitions if the BIOS
13094 * fb is large enough for the active pipe configuration.
13095 */
13096 if (dev_priv->display.get_plane_config) {
13097 dev_priv->display.get_plane_config(crtc,
13098 &crtc->plane_config);
13099 /*
13100 * If the fb is shared between multiple heads, we'll
13101 * just get the first one.
13102 */
484b41dd 13103 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 13104 }
46f297fb 13105 }
2c7111db
CW
13106}
13107
7fad798e
DV
13108static void intel_enable_pipe_a(struct drm_device *dev)
13109{
13110 struct intel_connector *connector;
13111 struct drm_connector *crt = NULL;
13112 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 13113 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
13114
13115 /* We can't just switch on the pipe A, we need to set things up with a
13116 * proper mode and output configuration. As a gross hack, enable pipe A
13117 * by enabling the load detect pipe once. */
13118 list_for_each_entry(connector,
13119 &dev->mode_config.connector_list,
13120 base.head) {
13121 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13122 crt = &connector->base;
13123 break;
13124 }
13125 }
13126
13127 if (!crt)
13128 return;
13129
208bf9fd
VS
13130 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13131 intel_release_load_detect_pipe(crt, &load_detect_temp);
7fad798e
DV
13132}
13133
fa555837
DV
13134static bool
13135intel_check_plane_mapping(struct intel_crtc *crtc)
13136{
7eb552ae
BW
13137 struct drm_device *dev = crtc->base.dev;
13138 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
13139 u32 reg, val;
13140
7eb552ae 13141 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
13142 return true;
13143
13144 reg = DSPCNTR(!crtc->plane);
13145 val = I915_READ(reg);
13146
13147 if ((val & DISPLAY_PLANE_ENABLE) &&
13148 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13149 return false;
13150
13151 return true;
13152}
13153
24929352
DV
13154static void intel_sanitize_crtc(struct intel_crtc *crtc)
13155{
13156 struct drm_device *dev = crtc->base.dev;
13157 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 13158 u32 reg;
24929352 13159
24929352 13160 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 13161 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
13162 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13163
d3eaf884 13164 /* restore vblank interrupts to correct state */
d297e103
VS
13165 if (crtc->active) {
13166 update_scanline_offset(crtc);
d3eaf884 13167 drm_vblank_on(dev, crtc->pipe);
d297e103 13168 } else
d3eaf884
VS
13169 drm_vblank_off(dev, crtc->pipe);
13170
24929352 13171 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
13172 * disable the crtc (and hence change the state) if it is wrong. Note
13173 * that gen4+ has a fixed plane -> pipe mapping. */
13174 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
13175 struct intel_connector *connector;
13176 bool plane;
13177
24929352
DV
13178 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13179 crtc->base.base.id);
13180
13181 /* Pipe has the wrong plane attached and the plane is active.
13182 * Temporarily change the plane mapping and disable everything
13183 * ... */
13184 plane = crtc->plane;
13185 crtc->plane = !plane;
9c8958bc 13186 crtc->primary_enabled = true;
24929352
DV
13187 dev_priv->display.crtc_disable(&crtc->base);
13188 crtc->plane = plane;
13189
13190 /* ... and break all links. */
13191 list_for_each_entry(connector, &dev->mode_config.connector_list,
13192 base.head) {
13193 if (connector->encoder->base.crtc != &crtc->base)
13194 continue;
13195
7f1950fb
EE
13196 connector->base.dpms = DRM_MODE_DPMS_OFF;
13197 connector->base.encoder = NULL;
24929352 13198 }
7f1950fb
EE
13199 /* multiple connectors may have the same encoder:
13200 * handle them and break crtc link separately */
13201 list_for_each_entry(connector, &dev->mode_config.connector_list,
13202 base.head)
13203 if (connector->encoder->base.crtc == &crtc->base) {
13204 connector->encoder->base.crtc = NULL;
13205 connector->encoder->connectors_active = false;
13206 }
24929352
DV
13207
13208 WARN_ON(crtc->active);
13209 crtc->base.enabled = false;
13210 }
24929352 13211
7fad798e
DV
13212 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13213 crtc->pipe == PIPE_A && !crtc->active) {
13214 /* BIOS forgot to enable pipe A, this mostly happens after
13215 * resume. Force-enable the pipe to fix this, the update_dpms
13216 * call below we restore the pipe to the right state, but leave
13217 * the required bits on. */
13218 intel_enable_pipe_a(dev);
13219 }
13220
24929352
DV
13221 /* Adjust the state of the output pipe according to whether we
13222 * have active connectors/encoders. */
13223 intel_crtc_update_dpms(&crtc->base);
13224
13225 if (crtc->active != crtc->base.enabled) {
13226 struct intel_encoder *encoder;
13227
13228 /* This can happen either due to bugs in the get_hw_state
13229 * functions or because the pipe is force-enabled due to the
13230 * pipe A quirk. */
13231 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13232 crtc->base.base.id,
13233 crtc->base.enabled ? "enabled" : "disabled",
13234 crtc->active ? "enabled" : "disabled");
13235
13236 crtc->base.enabled = crtc->active;
13237
13238 /* Because we only establish the connector -> encoder ->
13239 * crtc links if something is active, this means the
13240 * crtc is now deactivated. Break the links. connector
13241 * -> encoder links are only establish when things are
13242 * actually up, hence no need to break them. */
13243 WARN_ON(crtc->active);
13244
13245 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13246 WARN_ON(encoder->connectors_active);
13247 encoder->base.crtc = NULL;
13248 }
13249 }
c5ab3bc0 13250
a3ed6aad 13251 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
13252 /*
13253 * We start out with underrun reporting disabled to avoid races.
13254 * For correct bookkeeping mark this on active crtcs.
13255 *
c5ab3bc0
DV
13256 * Also on gmch platforms we dont have any hardware bits to
13257 * disable the underrun reporting. Which means we need to start
13258 * out with underrun reporting disabled also on inactive pipes,
13259 * since otherwise we'll complain about the garbage we read when
13260 * e.g. coming up after runtime pm.
13261 *
4cc31489
DV
13262 * No protection against concurrent access is required - at
13263 * worst a fifo underrun happens which also sets this to false.
13264 */
13265 crtc->cpu_fifo_underrun_disabled = true;
13266 crtc->pch_fifo_underrun_disabled = true;
13267 }
24929352
DV
13268}
13269
13270static void intel_sanitize_encoder(struct intel_encoder *encoder)
13271{
13272 struct intel_connector *connector;
13273 struct drm_device *dev = encoder->base.dev;
13274
13275 /* We need to check both for a crtc link (meaning that the
13276 * encoder is active and trying to read from a pipe) and the
13277 * pipe itself being active. */
13278 bool has_active_crtc = encoder->base.crtc &&
13279 to_intel_crtc(encoder->base.crtc)->active;
13280
13281 if (encoder->connectors_active && !has_active_crtc) {
13282 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13283 encoder->base.base.id,
8e329a03 13284 encoder->base.name);
24929352
DV
13285
13286 /* Connector is active, but has no active pipe. This is
13287 * fallout from our resume register restoring. Disable
13288 * the encoder manually again. */
13289 if (encoder->base.crtc) {
13290 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13291 encoder->base.base.id,
8e329a03 13292 encoder->base.name);
24929352 13293 encoder->disable(encoder);
a62d1497
VS
13294 if (encoder->post_disable)
13295 encoder->post_disable(encoder);
24929352 13296 }
7f1950fb
EE
13297 encoder->base.crtc = NULL;
13298 encoder->connectors_active = false;
24929352
DV
13299
13300 /* Inconsistent output/port/pipe state happens presumably due to
13301 * a bug in one of the get_hw_state functions. Or someplace else
13302 * in our code, like the register restore mess on resume. Clamp
13303 * things to off as a safer default. */
13304 list_for_each_entry(connector,
13305 &dev->mode_config.connector_list,
13306 base.head) {
13307 if (connector->encoder != encoder)
13308 continue;
7f1950fb
EE
13309 connector->base.dpms = DRM_MODE_DPMS_OFF;
13310 connector->base.encoder = NULL;
24929352
DV
13311 }
13312 }
13313 /* Enabled encoders without active connectors will be fixed in
13314 * the crtc fixup. */
13315}
13316
04098753 13317void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
13318{
13319 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 13320 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 13321
04098753
ID
13322 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13323 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13324 i915_disable_vga(dev);
13325 }
13326}
13327
13328void i915_redisable_vga(struct drm_device *dev)
13329{
13330 struct drm_i915_private *dev_priv = dev->dev_private;
13331
8dc8a27c
PZ
13332 /* This function can be called both from intel_modeset_setup_hw_state or
13333 * at a very early point in our resume sequence, where the power well
13334 * structures are not yet restored. Since this function is at a very
13335 * paranoid "someone might have enabled VGA while we were not looking"
13336 * level, just check if the power well is enabled instead of trying to
13337 * follow the "don't touch the power well if we don't need it" policy
13338 * the rest of the driver uses. */
04098753 13339 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
13340 return;
13341
04098753 13342 i915_redisable_vga_power_on(dev);
0fde901f
KM
13343}
13344
98ec7739
VS
13345static bool primary_get_hw_state(struct intel_crtc *crtc)
13346{
13347 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13348
13349 if (!crtc->active)
13350 return false;
13351
13352 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13353}
13354
30e984df 13355static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13356{
13357 struct drm_i915_private *dev_priv = dev->dev_private;
13358 enum pipe pipe;
24929352
DV
13359 struct intel_crtc *crtc;
13360 struct intel_encoder *encoder;
13361 struct intel_connector *connector;
5358901f 13362 int i;
24929352 13363
d3fcc808 13364 for_each_intel_crtc(dev, crtc) {
88adfff1 13365 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13366
9953599b
DV
13367 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13368
0e8ffe1b
DV
13369 crtc->active = dev_priv->display.get_pipe_config(crtc,
13370 &crtc->config);
24929352
DV
13371
13372 crtc->base.enabled = crtc->active;
98ec7739 13373 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13374
13375 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13376 crtc->base.base.id,
13377 crtc->active ? "enabled" : "disabled");
13378 }
13379
5358901f
DV
13380 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13381 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13382
13383 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13384 pll->active = 0;
d3fcc808 13385 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13386 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13387 pll->active++;
13388 }
13389 pll->refcount = pll->active;
13390
35c95375
DV
13391 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13392 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13393
13394 if (pll->refcount)
13395 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13396 }
13397
b2784e15 13398 for_each_intel_encoder(dev, encoder) {
24929352
DV
13399 pipe = 0;
13400
13401 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13402 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13403 encoder->base.crtc = &crtc->base;
1d37b689 13404 encoder->get_config(encoder, &crtc->config);
24929352
DV
13405 } else {
13406 encoder->base.crtc = NULL;
13407 }
13408
13409 encoder->connectors_active = false;
6f2bcceb 13410 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13411 encoder->base.base.id,
8e329a03 13412 encoder->base.name,
24929352 13413 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13414 pipe_name(pipe));
24929352
DV
13415 }
13416
13417 list_for_each_entry(connector, &dev->mode_config.connector_list,
13418 base.head) {
13419 if (connector->get_hw_state(connector)) {
13420 connector->base.dpms = DRM_MODE_DPMS_ON;
13421 connector->encoder->connectors_active = true;
13422 connector->base.encoder = &connector->encoder->base;
13423 } else {
13424 connector->base.dpms = DRM_MODE_DPMS_OFF;
13425 connector->base.encoder = NULL;
13426 }
13427 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13428 connector->base.base.id,
c23cc417 13429 connector->base.name,
24929352
DV
13430 connector->base.encoder ? "enabled" : "disabled");
13431 }
30e984df
DV
13432}
13433
13434/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13435 * and i915 state tracking structures. */
13436void intel_modeset_setup_hw_state(struct drm_device *dev,
13437 bool force_restore)
13438{
13439 struct drm_i915_private *dev_priv = dev->dev_private;
13440 enum pipe pipe;
30e984df
DV
13441 struct intel_crtc *crtc;
13442 struct intel_encoder *encoder;
35c95375 13443 int i;
30e984df
DV
13444
13445 intel_modeset_readout_hw_state(dev);
24929352 13446
babea61d
JB
13447 /*
13448 * Now that we have the config, copy it to each CRTC struct
13449 * Note that this could go away if we move to using crtc_config
13450 * checking everywhere.
13451 */
d3fcc808 13452 for_each_intel_crtc(dev, crtc) {
d330a953 13453 if (crtc->active && i915.fastboot) {
f6a83288 13454 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13455 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13456 crtc->base.base.id);
13457 drm_mode_debug_printmodeline(&crtc->base.mode);
13458 }
13459 }
13460
24929352 13461 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13462 for_each_intel_encoder(dev, encoder) {
24929352
DV
13463 intel_sanitize_encoder(encoder);
13464 }
13465
055e393f 13466 for_each_pipe(dev_priv, pipe) {
24929352
DV
13467 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13468 intel_sanitize_crtc(crtc);
c0b03411 13469 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13470 }
9a935856 13471
35c95375
DV
13472 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13473 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13474
13475 if (!pll->on || pll->active)
13476 continue;
13477
13478 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13479
13480 pll->disable(dev_priv, pll);
13481 pll->on = false;
13482 }
13483
96f90c54 13484 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13485 ilk_wm_get_hw_state(dev);
13486
45e2b5f6 13487 if (force_restore) {
7d0bc1ea
VS
13488 i915_redisable_vga(dev);
13489
f30da187
DV
13490 /*
13491 * We need to use raw interfaces for restoring state to avoid
13492 * checking (bogus) intermediate states.
13493 */
055e393f 13494 for_each_pipe(dev_priv, pipe) {
b5644d05
JB
13495 struct drm_crtc *crtc =
13496 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13497
13498 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13499 crtc->primary->fb);
45e2b5f6
DV
13500 }
13501 } else {
13502 intel_modeset_update_staged_output_state(dev);
13503 }
8af6cf88
DV
13504
13505 intel_modeset_check_state(dev);
2c7111db
CW
13506}
13507
13508void intel_modeset_gem_init(struct drm_device *dev)
13509{
484b41dd 13510 struct drm_crtc *c;
2ff8fde1 13511 struct drm_i915_gem_object *obj;
484b41dd 13512
ae48434c
ID
13513 mutex_lock(&dev->struct_mutex);
13514 intel_init_gt_powersave(dev);
13515 mutex_unlock(&dev->struct_mutex);
13516
1833b134 13517 intel_modeset_init_hw(dev);
02e792fb
DV
13518
13519 intel_setup_overlay(dev);
484b41dd
JB
13520
13521 /*
13522 * Make sure any fbs we allocated at startup are properly
13523 * pinned & fenced. When we do the allocation it's too early
13524 * for this.
13525 */
13526 mutex_lock(&dev->struct_mutex);
70e1e0ec 13527 for_each_crtc(dev, c) {
2ff8fde1
MR
13528 obj = intel_fb_obj(c->primary->fb);
13529 if (obj == NULL)
484b41dd
JB
13530 continue;
13531
2ff8fde1 13532 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13533 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13534 to_intel_crtc(c)->pipe);
66e514c1
DA
13535 drm_framebuffer_unreference(c->primary->fb);
13536 c->primary->fb = NULL;
484b41dd
JB
13537 }
13538 }
13539 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13540}
13541
4932e2c3
ID
13542void intel_connector_unregister(struct intel_connector *intel_connector)
13543{
13544 struct drm_connector *connector = &intel_connector->base;
13545
13546 intel_panel_destroy_backlight(connector);
34ea3d38 13547 drm_connector_unregister(connector);
4932e2c3
ID
13548}
13549
79e53945
JB
13550void intel_modeset_cleanup(struct drm_device *dev)
13551{
652c393a 13552 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13553 struct drm_connector *connector;
652c393a 13554
fd0c0642
DV
13555 /*
13556 * Interrupts and polling as the first thing to avoid creating havoc.
13557 * Too much stuff here (turning of rps, connectors, ...) would
13558 * experience fancy races otherwise.
13559 */
13560 drm_irq_uninstall(dev);
1d0d343a 13561 intel_hpd_cancel_work(dev_priv);
eb21b92b
JB
13562 dev_priv->pm._irqs_disabled = true;
13563
fd0c0642
DV
13564 /*
13565 * Due to the hpd irq storm handling the hotplug work can re-arm the
13566 * poll handlers. Hence disable polling after hpd handling is shut down.
13567 */
f87ea761 13568 drm_kms_helper_poll_fini(dev);
fd0c0642 13569
652c393a
JB
13570 mutex_lock(&dev->struct_mutex);
13571
723bfd70
JB
13572 intel_unregister_dsm_handler();
13573
973d04f9 13574 intel_disable_fbc(dev);
e70236a8 13575
8090c6b9 13576 intel_disable_gt_powersave(dev);
0cdab21f 13577
930ebb46
DV
13578 ironlake_teardown_rc6(dev);
13579
69341a5e
KH
13580 mutex_unlock(&dev->struct_mutex);
13581
1630fe75
CW
13582 /* flush any delayed tasks or pending work */
13583 flush_scheduled_work();
13584
db31af1d
JN
13585 /* destroy the backlight and sysfs files before encoders/connectors */
13586 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13587 struct intel_connector *intel_connector;
13588
13589 intel_connector = to_intel_connector(connector);
13590 intel_connector->unregister(intel_connector);
db31af1d 13591 }
d9255d57 13592
79e53945 13593 drm_mode_config_cleanup(dev);
4d7bb011
DV
13594
13595 intel_cleanup_overlay(dev);
ae48434c
ID
13596
13597 mutex_lock(&dev->struct_mutex);
13598 intel_cleanup_gt_powersave(dev);
13599 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13600}
13601
f1c79df3
ZW
13602/*
13603 * Return which encoder is currently attached for connector.
13604 */
df0e9248 13605struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13606{
df0e9248
CW
13607 return &intel_attached_encoder(connector)->base;
13608}
f1c79df3 13609
df0e9248
CW
13610void intel_connector_attach_encoder(struct intel_connector *connector,
13611 struct intel_encoder *encoder)
13612{
13613 connector->encoder = encoder;
13614 drm_mode_connector_attach_encoder(&connector->base,
13615 &encoder->base);
79e53945 13616}
28d52043
DA
13617
13618/*
13619 * set vga decode state - true == enable VGA decode
13620 */
13621int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13622{
13623 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13624 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13625 u16 gmch_ctrl;
13626
75fa041d
CW
13627 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13628 DRM_ERROR("failed to read control word\n");
13629 return -EIO;
13630 }
13631
c0cc8a55
CW
13632 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13633 return 0;
13634
28d52043
DA
13635 if (state)
13636 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13637 else
13638 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13639
13640 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13641 DRM_ERROR("failed to write control word\n");
13642 return -EIO;
13643 }
13644
28d52043
DA
13645 return 0;
13646}
c4a1d9e4 13647
c4a1d9e4 13648struct intel_display_error_state {
ff57f1b0
PZ
13649
13650 u32 power_well_driver;
13651
63b66e5b
CW
13652 int num_transcoders;
13653
c4a1d9e4
CW
13654 struct intel_cursor_error_state {
13655 u32 control;
13656 u32 position;
13657 u32 base;
13658 u32 size;
52331309 13659 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13660
13661 struct intel_pipe_error_state {
ddf9c536 13662 bool power_domain_on;
c4a1d9e4 13663 u32 source;
f301b1e1 13664 u32 stat;
52331309 13665 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13666
13667 struct intel_plane_error_state {
13668 u32 control;
13669 u32 stride;
13670 u32 size;
13671 u32 pos;
13672 u32 addr;
13673 u32 surface;
13674 u32 tile_offset;
52331309 13675 } plane[I915_MAX_PIPES];
63b66e5b
CW
13676
13677 struct intel_transcoder_error_state {
ddf9c536 13678 bool power_domain_on;
63b66e5b
CW
13679 enum transcoder cpu_transcoder;
13680
13681 u32 conf;
13682
13683 u32 htotal;
13684 u32 hblank;
13685 u32 hsync;
13686 u32 vtotal;
13687 u32 vblank;
13688 u32 vsync;
13689 } transcoder[4];
c4a1d9e4
CW
13690};
13691
13692struct intel_display_error_state *
13693intel_display_capture_error_state(struct drm_device *dev)
13694{
fbee40df 13695 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13696 struct intel_display_error_state *error;
63b66e5b
CW
13697 int transcoders[] = {
13698 TRANSCODER_A,
13699 TRANSCODER_B,
13700 TRANSCODER_C,
13701 TRANSCODER_EDP,
13702 };
c4a1d9e4
CW
13703 int i;
13704
63b66e5b
CW
13705 if (INTEL_INFO(dev)->num_pipes == 0)
13706 return NULL;
13707
9d1cb914 13708 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13709 if (error == NULL)
13710 return NULL;
13711
190be112 13712 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13713 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13714
055e393f 13715 for_each_pipe(dev_priv, i) {
ddf9c536 13716 error->pipe[i].power_domain_on =
bfafe93a
ID
13717 intel_display_power_enabled_unlocked(dev_priv,
13718 POWER_DOMAIN_PIPE(i));
ddf9c536 13719 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13720 continue;
13721
5efb3e28
VS
13722 error->cursor[i].control = I915_READ(CURCNTR(i));
13723 error->cursor[i].position = I915_READ(CURPOS(i));
13724 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13725
13726 error->plane[i].control = I915_READ(DSPCNTR(i));
13727 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13728 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13729 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13730 error->plane[i].pos = I915_READ(DSPPOS(i));
13731 }
ca291363
PZ
13732 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13733 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13734 if (INTEL_INFO(dev)->gen >= 4) {
13735 error->plane[i].surface = I915_READ(DSPSURF(i));
13736 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13737 }
13738
c4a1d9e4 13739 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13740
3abfce77 13741 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13742 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13743 }
13744
13745 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13746 if (HAS_DDI(dev_priv->dev))
13747 error->num_transcoders++; /* Account for eDP. */
13748
13749 for (i = 0; i < error->num_transcoders; i++) {
13750 enum transcoder cpu_transcoder = transcoders[i];
13751
ddf9c536 13752 error->transcoder[i].power_domain_on =
bfafe93a 13753 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13754 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13755 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13756 continue;
13757
63b66e5b
CW
13758 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13759
13760 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13761 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13762 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13763 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13764 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13765 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13766 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13767 }
13768
13769 return error;
13770}
13771
edc3d884
MK
13772#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13773
c4a1d9e4 13774void
edc3d884 13775intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13776 struct drm_device *dev,
13777 struct intel_display_error_state *error)
13778{
055e393f 13779 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
13780 int i;
13781
63b66e5b
CW
13782 if (!error)
13783 return;
13784
edc3d884 13785 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13786 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13787 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13788 error->power_well_driver);
055e393f 13789 for_each_pipe(dev_priv, i) {
edc3d884 13790 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13791 err_printf(m, " Power: %s\n",
13792 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13793 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13794 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13795
13796 err_printf(m, "Plane [%d]:\n", i);
13797 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13798 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13799 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13800 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13801 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13802 }
4b71a570 13803 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13804 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13805 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13806 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13807 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13808 }
13809
edc3d884
MK
13810 err_printf(m, "Cursor [%d]:\n", i);
13811 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13812 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13813 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13814 }
63b66e5b
CW
13815
13816 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13817 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13818 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13819 err_printf(m, " Power: %s\n",
13820 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13821 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13822 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13823 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13824 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13825 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13826 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13827 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13828 }
c4a1d9e4 13829}
e2fcdaa9
VS
13830
13831void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
13832{
13833 struct intel_crtc *crtc;
13834
13835 for_each_intel_crtc(dev, crtc) {
13836 struct intel_unpin_work *work;
13837 unsigned long irqflags;
13838
13839 spin_lock_irqsave(&dev->event_lock, irqflags);
13840
13841 work = crtc->unpin_work;
13842
13843 if (work && work->event &&
13844 work->event->base.file_priv == file) {
13845 kfree(work->event);
13846 work->event = NULL;
13847 }
13848
13849 spin_unlock_irqrestore(&dev->event_lock, irqflags);
13850 }
13851}
This page took 3.988112 seconds and 5 git commands to generate.