drm/i915: Calculate watermark related members in the crtc_state, v4.
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
fd8e058a
AG
47#include <linux/reservation.h>
48#include <linux/dma-buf.h>
79e53945 49
465c120c 50/* Primary plane formats for gen <= 3 */
568db4f2 51static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
52 DRM_FORMAT_C8,
53 DRM_FORMAT_RGB565,
465c120c 54 DRM_FORMAT_XRGB1555,
67fe7dc5 55 DRM_FORMAT_XRGB8888,
465c120c
MR
56};
57
58/* Primary plane formats for gen >= 4 */
568db4f2 59static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
60 DRM_FORMAT_C8,
61 DRM_FORMAT_RGB565,
62 DRM_FORMAT_XRGB8888,
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_XRGB2101010,
65 DRM_FORMAT_XBGR2101010,
66};
67
68static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
69 DRM_FORMAT_C8,
70 DRM_FORMAT_RGB565,
71 DRM_FORMAT_XRGB8888,
465c120c 72 DRM_FORMAT_XBGR8888,
67fe7dc5 73 DRM_FORMAT_ARGB8888,
465c120c
MR
74 DRM_FORMAT_ABGR8888,
75 DRM_FORMAT_XRGB2101010,
465c120c 76 DRM_FORMAT_XBGR2101010,
ea916ea0
KM
77 DRM_FORMAT_YUYV,
78 DRM_FORMAT_YVYU,
79 DRM_FORMAT_UYVY,
80 DRM_FORMAT_VYUY,
465c120c
MR
81};
82
3d7d6510
MR
83/* Cursor formats */
84static const uint32_t intel_cursor_formats[] = {
85 DRM_FORMAT_ARGB8888,
86};
87
6b383a7f 88static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 89
f1f644dc 90static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 91 struct intel_crtc_state *pipe_config);
18442d08 92static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 93 struct intel_crtc_state *pipe_config);
f1f644dc 94
eb1bfe80
JB
95static int intel_framebuffer_init(struct drm_device *dev,
96 struct intel_framebuffer *ifb,
97 struct drm_mode_fb_cmd2 *mode_cmd,
98 struct drm_i915_gem_object *obj);
5b18e57c
DV
99static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
100static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 101static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
102 struct intel_link_m_n *m_n,
103 struct intel_link_m_n *m2_n2);
29407aab 104static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
105static void haswell_set_pipeconf(struct drm_crtc *crtc);
106static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 107static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 108 const struct intel_crtc_state *pipe_config);
d288f65f 109static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 110 const struct intel_crtc_state *pipe_config);
613d2b27
ML
111static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
113static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114 struct intel_crtc_state *crtc_state);
5ab7b0b7
ID
115static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
116 int num_connectors);
bfd16b2a
ML
117static void skylake_pfit_enable(struct intel_crtc *crtc);
118static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
119static void ironlake_pfit_enable(struct intel_crtc *crtc);
043e9bda 120static void intel_modeset_setup_hw_state(struct drm_device *dev);
e7457a9a 121
79e53945 122typedef struct {
0206e353 123 int min, max;
79e53945
JB
124} intel_range_t;
125
126typedef struct {
0206e353
AJ
127 int dot_limit;
128 int p2_slow, p2_fast;
79e53945
JB
129} intel_p2_t;
130
d4906093
ML
131typedef struct intel_limit intel_limit_t;
132struct intel_limit {
0206e353
AJ
133 intel_range_t dot, vco, n, m, m1, m2, p, p1;
134 intel_p2_t p2;
d4906093 135};
79e53945 136
bfa7df01
VS
137/* returns HPLL frequency in kHz */
138static int valleyview_get_vco(struct drm_i915_private *dev_priv)
139{
140 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
141
142 /* Obtain SKU information */
143 mutex_lock(&dev_priv->sb_lock);
144 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
145 CCK_FUSE_HPLL_FREQ_MASK;
146 mutex_unlock(&dev_priv->sb_lock);
147
148 return vco_freq[hpll_freq] * 1000;
149}
150
151static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
152 const char *name, u32 reg)
153{
154 u32 val;
155 int divider;
156
157 if (dev_priv->hpll_freq == 0)
158 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
159
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
170 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
171}
172
d2acd215
DV
173int
174intel_pch_rawclk(struct drm_device *dev)
175{
176 struct drm_i915_private *dev_priv = dev->dev_private;
177
178 WARN_ON(!HAS_PCH_SPLIT(dev));
179
180 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
181}
182
79e50a4f
JN
183/* hrawclock is 1/4 the FSB frequency */
184int intel_hrawclk(struct drm_device *dev)
185{
186 struct drm_i915_private *dev_priv = dev->dev_private;
187 uint32_t clkcfg;
188
189 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
190 if (IS_VALLEYVIEW(dev))
191 return 200;
192
193 clkcfg = I915_READ(CLKCFG);
194 switch (clkcfg & CLKCFG_FSB_MASK) {
195 case CLKCFG_FSB_400:
196 return 100;
197 case CLKCFG_FSB_533:
198 return 133;
199 case CLKCFG_FSB_667:
200 return 166;
201 case CLKCFG_FSB_800:
202 return 200;
203 case CLKCFG_FSB_1067:
204 return 266;
205 case CLKCFG_FSB_1333:
206 return 333;
207 /* these two are just a guess; one of them might be right */
208 case CLKCFG_FSB_1600:
209 case CLKCFG_FSB_1600_ALT:
210 return 400;
211 default:
212 return 133;
213 }
214}
215
bfa7df01
VS
216static void intel_update_czclk(struct drm_i915_private *dev_priv)
217{
218 if (!IS_VALLEYVIEW(dev_priv))
219 return;
220
221 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
222 CCK_CZ_CLOCK_CONTROL);
223
224 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
225}
226
021357ac
CW
227static inline u32 /* units of 100MHz */
228intel_fdi_link_freq(struct drm_device *dev)
229{
8b99e68c
CW
230 if (IS_GEN5(dev)) {
231 struct drm_i915_private *dev_priv = dev->dev_private;
232 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
233 } else
234 return 27;
021357ac
CW
235}
236
5d536e28 237static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 238 .dot = { .min = 25000, .max = 350000 },
9c333719 239 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 240 .n = { .min = 2, .max = 16 },
0206e353
AJ
241 .m = { .min = 96, .max = 140 },
242 .m1 = { .min = 18, .max = 26 },
243 .m2 = { .min = 6, .max = 16 },
244 .p = { .min = 4, .max = 128 },
245 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
246 .p2 = { .dot_limit = 165000,
247 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
248};
249
5d536e28
DV
250static const intel_limit_t intel_limits_i8xx_dvo = {
251 .dot = { .min = 25000, .max = 350000 },
9c333719 252 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 253 .n = { .min = 2, .max = 16 },
5d536e28
DV
254 .m = { .min = 96, .max = 140 },
255 .m1 = { .min = 18, .max = 26 },
256 .m2 = { .min = 6, .max = 16 },
257 .p = { .min = 4, .max = 128 },
258 .p1 = { .min = 2, .max = 33 },
259 .p2 = { .dot_limit = 165000,
260 .p2_slow = 4, .p2_fast = 4 },
261};
262
e4b36699 263static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 264 .dot = { .min = 25000, .max = 350000 },
9c333719 265 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 266 .n = { .min = 2, .max = 16 },
0206e353
AJ
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 14, .p2_fast = 7 },
e4b36699 274};
273e27ca 275
e4b36699 276static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1400000, .max = 2800000 },
279 .n = { .min = 1, .max = 6 },
280 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
281 .m1 = { .min = 8, .max = 18 },
282 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
283 .p = { .min = 5, .max = 80 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 200000,
286 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
287};
288
289static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
290 .dot = { .min = 20000, .max = 400000 },
291 .vco = { .min = 1400000, .max = 2800000 },
292 .n = { .min = 1, .max = 6 },
293 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
294 .m1 = { .min = 8, .max = 18 },
295 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
296 .p = { .min = 7, .max = 98 },
297 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
298 .p2 = { .dot_limit = 112000,
299 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
300};
301
273e27ca 302
e4b36699 303static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 270000 },
305 .vco = { .min = 1750000, .max = 3500000},
306 .n = { .min = 1, .max = 4 },
307 .m = { .min = 104, .max = 138 },
308 .m1 = { .min = 17, .max = 23 },
309 .m2 = { .min = 5, .max = 11 },
310 .p = { .min = 10, .max = 30 },
311 .p1 = { .min = 1, .max = 3},
312 .p2 = { .dot_limit = 270000,
313 .p2_slow = 10,
314 .p2_fast = 10
044c7c41 315 },
e4b36699
KP
316};
317
318static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
319 .dot = { .min = 22000, .max = 400000 },
320 .vco = { .min = 1750000, .max = 3500000},
321 .n = { .min = 1, .max = 4 },
322 .m = { .min = 104, .max = 138 },
323 .m1 = { .min = 16, .max = 23 },
324 .m2 = { .min = 5, .max = 11 },
325 .p = { .min = 5, .max = 80 },
326 .p1 = { .min = 1, .max = 8},
327 .p2 = { .dot_limit = 165000,
328 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
329};
330
331static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
332 .dot = { .min = 20000, .max = 115000 },
333 .vco = { .min = 1750000, .max = 3500000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 104, .max = 138 },
336 .m1 = { .min = 17, .max = 23 },
337 .m2 = { .min = 5, .max = 11 },
338 .p = { .min = 28, .max = 112 },
339 .p1 = { .min = 2, .max = 8 },
340 .p2 = { .dot_limit = 0,
341 .p2_slow = 14, .p2_fast = 14
044c7c41 342 },
e4b36699
KP
343};
344
345static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
346 .dot = { .min = 80000, .max = 224000 },
347 .vco = { .min = 1750000, .max = 3500000 },
348 .n = { .min = 1, .max = 3 },
349 .m = { .min = 104, .max = 138 },
350 .m1 = { .min = 17, .max = 23 },
351 .m2 = { .min = 5, .max = 11 },
352 .p = { .min = 14, .max = 42 },
353 .p1 = { .min = 2, .max = 6 },
354 .p2 = { .dot_limit = 0,
355 .p2_slow = 7, .p2_fast = 7
044c7c41 356 },
e4b36699
KP
357};
358
f2b115e6 359static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
360 .dot = { .min = 20000, .max = 400000},
361 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 362 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
363 .n = { .min = 3, .max = 6 },
364 .m = { .min = 2, .max = 256 },
273e27ca 365 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
366 .m1 = { .min = 0, .max = 0 },
367 .m2 = { .min = 0, .max = 254 },
368 .p = { .min = 5, .max = 80 },
369 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
370 .p2 = { .dot_limit = 200000,
371 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
372};
373
f2b115e6 374static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
375 .dot = { .min = 20000, .max = 400000 },
376 .vco = { .min = 1700000, .max = 3500000 },
377 .n = { .min = 3, .max = 6 },
378 .m = { .min = 2, .max = 256 },
379 .m1 = { .min = 0, .max = 0 },
380 .m2 = { .min = 0, .max = 254 },
381 .p = { .min = 7, .max = 112 },
382 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
383 .p2 = { .dot_limit = 112000,
384 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
385};
386
273e27ca
EA
387/* Ironlake / Sandybridge
388 *
389 * We calculate clock using (register_value + 2) for N/M1/M2, so here
390 * the range value for them is (actual_value - 2).
391 */
b91ad0ec 392static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
393 .dot = { .min = 25000, .max = 350000 },
394 .vco = { .min = 1760000, .max = 3510000 },
395 .n = { .min = 1, .max = 5 },
396 .m = { .min = 79, .max = 127 },
397 .m1 = { .min = 12, .max = 22 },
398 .m2 = { .min = 5, .max = 9 },
399 .p = { .min = 5, .max = 80 },
400 .p1 = { .min = 1, .max = 8 },
401 .p2 = { .dot_limit = 225000,
402 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
403};
404
b91ad0ec 405static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
406 .dot = { .min = 25000, .max = 350000 },
407 .vco = { .min = 1760000, .max = 3510000 },
408 .n = { .min = 1, .max = 3 },
409 .m = { .min = 79, .max = 118 },
410 .m1 = { .min = 12, .max = 22 },
411 .m2 = { .min = 5, .max = 9 },
412 .p = { .min = 28, .max = 112 },
413 .p1 = { .min = 2, .max = 8 },
414 .p2 = { .dot_limit = 225000,
415 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
416};
417
418static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 3 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 14, .max = 56 },
426 .p1 = { .min = 2, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
429};
430
273e27ca 431/* LVDS 100mhz refclk limits. */
b91ad0ec 432static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
433 .dot = { .min = 25000, .max = 350000 },
434 .vco = { .min = 1760000, .max = 3510000 },
435 .n = { .min = 1, .max = 2 },
436 .m = { .min = 79, .max = 126 },
437 .m1 = { .min = 12, .max = 22 },
438 .m2 = { .min = 5, .max = 9 },
439 .p = { .min = 28, .max = 112 },
0206e353 440 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
441 .p2 = { .dot_limit = 225000,
442 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
443};
444
445static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
446 .dot = { .min = 25000, .max = 350000 },
447 .vco = { .min = 1760000, .max = 3510000 },
448 .n = { .min = 1, .max = 3 },
449 .m = { .min = 79, .max = 126 },
450 .m1 = { .min = 12, .max = 22 },
451 .m2 = { .min = 5, .max = 9 },
452 .p = { .min = 14, .max = 42 },
0206e353 453 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
454 .p2 = { .dot_limit = 225000,
455 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
456};
457
dc730512 458static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
459 /*
460 * These are the data rate limits (measured in fast clocks)
461 * since those are the strictest limits we have. The fast
462 * clock and actual rate limits are more relaxed, so checking
463 * them would make no difference.
464 */
465 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 466 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 467 .n = { .min = 1, .max = 7 },
a0c4da24
JB
468 .m1 = { .min = 2, .max = 3 },
469 .m2 = { .min = 11, .max = 156 },
b99ab663 470 .p1 = { .min = 2, .max = 3 },
5fdc9c49 471 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
472};
473
ef9348c8
CML
474static const intel_limit_t intel_limits_chv = {
475 /*
476 * These are the data rate limits (measured in fast clocks)
477 * since those are the strictest limits we have. The fast
478 * clock and actual rate limits are more relaxed, so checking
479 * them would make no difference.
480 */
481 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 482 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
483 .n = { .min = 1, .max = 1 },
484 .m1 = { .min = 2, .max = 2 },
485 .m2 = { .min = 24 << 22, .max = 175 << 22 },
486 .p1 = { .min = 2, .max = 4 },
487 .p2 = { .p2_slow = 1, .p2_fast = 14 },
488};
489
5ab7b0b7
ID
490static const intel_limit_t intel_limits_bxt = {
491 /* FIXME: find real dot limits */
492 .dot = { .min = 0, .max = INT_MAX },
e6292556 493 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
494 .n = { .min = 1, .max = 1 },
495 .m1 = { .min = 2, .max = 2 },
496 /* FIXME: find real m2 limits */
497 .m2 = { .min = 2 << 22, .max = 255 << 22 },
498 .p1 = { .min = 2, .max = 4 },
499 .p2 = { .p2_slow = 1, .p2_fast = 20 },
500};
501
cdba954e
ACO
502static bool
503needs_modeset(struct drm_crtc_state *state)
504{
fc596660 505 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
506}
507
e0638cdf
PZ
508/**
509 * Returns whether any output on the specified pipe is of the specified type
510 */
4093561b 511bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 512{
409ee761 513 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
514 struct intel_encoder *encoder;
515
409ee761 516 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
517 if (encoder->type == type)
518 return true;
519
520 return false;
521}
522
d0737e1d
ACO
523/**
524 * Returns whether any output on the specified pipe will have the specified
525 * type after a staged modeset is complete, i.e., the same as
526 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
527 * encoder->crtc.
528 */
a93e255f
ACO
529static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
530 int type)
d0737e1d 531{
a93e255f 532 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 533 struct drm_connector *connector;
a93e255f 534 struct drm_connector_state *connector_state;
d0737e1d 535 struct intel_encoder *encoder;
a93e255f
ACO
536 int i, num_connectors = 0;
537
da3ced29 538 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
539 if (connector_state->crtc != crtc_state->base.crtc)
540 continue;
541
542 num_connectors++;
d0737e1d 543
a93e255f
ACO
544 encoder = to_intel_encoder(connector_state->best_encoder);
545 if (encoder->type == type)
d0737e1d 546 return true;
a93e255f
ACO
547 }
548
549 WARN_ON(num_connectors == 0);
d0737e1d
ACO
550
551 return false;
552}
553
a93e255f
ACO
554static const intel_limit_t *
555intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 556{
a93e255f 557 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 558 const intel_limit_t *limit;
b91ad0ec 559
a93e255f 560 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 561 if (intel_is_dual_link_lvds(dev)) {
1b894b59 562 if (refclk == 100000)
b91ad0ec
ZW
563 limit = &intel_limits_ironlake_dual_lvds_100m;
564 else
565 limit = &intel_limits_ironlake_dual_lvds;
566 } else {
1b894b59 567 if (refclk == 100000)
b91ad0ec
ZW
568 limit = &intel_limits_ironlake_single_lvds_100m;
569 else
570 limit = &intel_limits_ironlake_single_lvds;
571 }
c6bb3538 572 } else
b91ad0ec 573 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
574
575 return limit;
576}
577
a93e255f
ACO
578static const intel_limit_t *
579intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 580{
a93e255f 581 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
582 const intel_limit_t *limit;
583
a93e255f 584 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 585 if (intel_is_dual_link_lvds(dev))
e4b36699 586 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 587 else
e4b36699 588 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
589 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
590 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 591 limit = &intel_limits_g4x_hdmi;
a93e255f 592 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 593 limit = &intel_limits_g4x_sdvo;
044c7c41 594 } else /* The option is for other outputs */
e4b36699 595 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
596
597 return limit;
598}
599
a93e255f
ACO
600static const intel_limit_t *
601intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 602{
a93e255f 603 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
604 const intel_limit_t *limit;
605
5ab7b0b7
ID
606 if (IS_BROXTON(dev))
607 limit = &intel_limits_bxt;
608 else if (HAS_PCH_SPLIT(dev))
a93e255f 609 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 610 else if (IS_G4X(dev)) {
a93e255f 611 limit = intel_g4x_limit(crtc_state);
f2b115e6 612 } else if (IS_PINEVIEW(dev)) {
a93e255f 613 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 614 limit = &intel_limits_pineview_lvds;
2177832f 615 else
f2b115e6 616 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
617 } else if (IS_CHERRYVIEW(dev)) {
618 limit = &intel_limits_chv;
a0c4da24 619 } else if (IS_VALLEYVIEW(dev)) {
dc730512 620 limit = &intel_limits_vlv;
a6c45cf0 621 } else if (!IS_GEN2(dev)) {
a93e255f 622 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
623 limit = &intel_limits_i9xx_lvds;
624 else
625 limit = &intel_limits_i9xx_sdvo;
79e53945 626 } else {
a93e255f 627 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 628 limit = &intel_limits_i8xx_lvds;
a93e255f 629 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 630 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
631 else
632 limit = &intel_limits_i8xx_dac;
79e53945
JB
633 }
634 return limit;
635}
636
dccbea3b
ID
637/*
638 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
639 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
640 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
641 * The helpers' return value is the rate of the clock that is fed to the
642 * display engine's pipe which can be the above fast dot clock rate or a
643 * divided-down version of it.
644 */
f2b115e6 645/* m1 is reserved as 0 in Pineview, n is a ring counter */
dccbea3b 646static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
79e53945 647{
2177832f
SL
648 clock->m = clock->m2 + 2;
649 clock->p = clock->p1 * clock->p2;
ed5ca77e 650 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 651 return 0;
fb03ac01
VS
652 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
653 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
654
655 return clock->dot;
2177832f
SL
656}
657
7429e9d4
DV
658static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
659{
660 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
661}
662
dccbea3b 663static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
2177832f 664{
7429e9d4 665 clock->m = i9xx_dpll_compute_m(clock);
79e53945 666 clock->p = clock->p1 * clock->p2;
ed5ca77e 667 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 668 return 0;
fb03ac01
VS
669 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
670 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
671
672 return clock->dot;
79e53945
JB
673}
674
dccbea3b 675static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
589eca67
ID
676{
677 clock->m = clock->m1 * clock->m2;
678 clock->p = clock->p1 * clock->p2;
679 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 680 return 0;
589eca67
ID
681 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
682 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
683
684 return clock->dot / 5;
589eca67
ID
685}
686
dccbea3b 687int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
ef9348c8
CML
688{
689 clock->m = clock->m1 * clock->m2;
690 clock->p = clock->p1 * clock->p2;
691 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 692 return 0;
ef9348c8
CML
693 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
694 clock->n << 22);
695 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
696
697 return clock->dot / 5;
ef9348c8
CML
698}
699
7c04d1d9 700#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
701/**
702 * Returns whether the given set of divisors are valid for a given refclk with
703 * the given connectors.
704 */
705
1b894b59
CW
706static bool intel_PLL_is_valid(struct drm_device *dev,
707 const intel_limit_t *limit,
708 const intel_clock_t *clock)
79e53945 709{
f01b7962
VS
710 if (clock->n < limit->n.min || limit->n.max < clock->n)
711 INTELPllInvalid("n out of range\n");
79e53945 712 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 713 INTELPllInvalid("p1 out of range\n");
79e53945 714 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 715 INTELPllInvalid("m2 out of range\n");
79e53945 716 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 717 INTELPllInvalid("m1 out of range\n");
f01b7962 718
5ab7b0b7 719 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
720 if (clock->m1 <= clock->m2)
721 INTELPllInvalid("m1 <= m2\n");
722
5ab7b0b7 723 if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
724 if (clock->p < limit->p.min || limit->p.max < clock->p)
725 INTELPllInvalid("p out of range\n");
726 if (clock->m < limit->m.min || limit->m.max < clock->m)
727 INTELPllInvalid("m out of range\n");
728 }
729
79e53945 730 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 731 INTELPllInvalid("vco out of range\n");
79e53945
JB
732 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
733 * connector, etc., rather than just a single range.
734 */
735 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 736 INTELPllInvalid("dot out of range\n");
79e53945
JB
737
738 return true;
739}
740
3b1429d9
VS
741static int
742i9xx_select_p2_div(const intel_limit_t *limit,
743 const struct intel_crtc_state *crtc_state,
744 int target)
79e53945 745{
3b1429d9 746 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 747
a93e255f 748 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 749 /*
a210b028
DV
750 * For LVDS just rely on its current settings for dual-channel.
751 * We haven't figured out how to reliably set up different
752 * single/dual channel state, if we even can.
79e53945 753 */
1974cad0 754 if (intel_is_dual_link_lvds(dev))
3b1429d9 755 return limit->p2.p2_fast;
79e53945 756 else
3b1429d9 757 return limit->p2.p2_slow;
79e53945
JB
758 } else {
759 if (target < limit->p2.dot_limit)
3b1429d9 760 return limit->p2.p2_slow;
79e53945 761 else
3b1429d9 762 return limit->p2.p2_fast;
79e53945 763 }
3b1429d9
VS
764}
765
766static bool
767i9xx_find_best_dpll(const intel_limit_t *limit,
768 struct intel_crtc_state *crtc_state,
769 int target, int refclk, intel_clock_t *match_clock,
770 intel_clock_t *best_clock)
771{
772 struct drm_device *dev = crtc_state->base.crtc->dev;
773 intel_clock_t clock;
774 int err = target;
79e53945 775
0206e353 776 memset(best_clock, 0, sizeof(*best_clock));
79e53945 777
3b1429d9
VS
778 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
779
42158660
ZY
780 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
781 clock.m1++) {
782 for (clock.m2 = limit->m2.min;
783 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 784 if (clock.m2 >= clock.m1)
42158660
ZY
785 break;
786 for (clock.n = limit->n.min;
787 clock.n <= limit->n.max; clock.n++) {
788 for (clock.p1 = limit->p1.min;
789 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
790 int this_err;
791
dccbea3b 792 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
793 if (!intel_PLL_is_valid(dev, limit,
794 &clock))
795 continue;
796 if (match_clock &&
797 clock.p != match_clock->p)
798 continue;
799
800 this_err = abs(clock.dot - target);
801 if (this_err < err) {
802 *best_clock = clock;
803 err = this_err;
804 }
805 }
806 }
807 }
808 }
809
810 return (err != target);
811}
812
813static bool
a93e255f
ACO
814pnv_find_best_dpll(const intel_limit_t *limit,
815 struct intel_crtc_state *crtc_state,
ee9300bb
DV
816 int target, int refclk, intel_clock_t *match_clock,
817 intel_clock_t *best_clock)
79e53945 818{
3b1429d9 819 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 820 intel_clock_t clock;
79e53945
JB
821 int err = target;
822
0206e353 823 memset(best_clock, 0, sizeof(*best_clock));
79e53945 824
3b1429d9
VS
825 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
826
42158660
ZY
827 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
828 clock.m1++) {
829 for (clock.m2 = limit->m2.min;
830 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
831 for (clock.n = limit->n.min;
832 clock.n <= limit->n.max; clock.n++) {
833 for (clock.p1 = limit->p1.min;
834 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
835 int this_err;
836
dccbea3b 837 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
838 if (!intel_PLL_is_valid(dev, limit,
839 &clock))
79e53945 840 continue;
cec2f356
SP
841 if (match_clock &&
842 clock.p != match_clock->p)
843 continue;
79e53945
JB
844
845 this_err = abs(clock.dot - target);
846 if (this_err < err) {
847 *best_clock = clock;
848 err = this_err;
849 }
850 }
851 }
852 }
853 }
854
855 return (err != target);
856}
857
d4906093 858static bool
a93e255f
ACO
859g4x_find_best_dpll(const intel_limit_t *limit,
860 struct intel_crtc_state *crtc_state,
ee9300bb
DV
861 int target, int refclk, intel_clock_t *match_clock,
862 intel_clock_t *best_clock)
d4906093 863{
3b1429d9 864 struct drm_device *dev = crtc_state->base.crtc->dev;
d4906093
ML
865 intel_clock_t clock;
866 int max_n;
3b1429d9 867 bool found = false;
6ba770dc
AJ
868 /* approximately equals target * 0.00585 */
869 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
870
871 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
872
873 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
874
d4906093 875 max_n = limit->n.max;
f77f13e2 876 /* based on hardware requirement, prefer smaller n to precision */
d4906093 877 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 878 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
879 for (clock.m1 = limit->m1.max;
880 clock.m1 >= limit->m1.min; clock.m1--) {
881 for (clock.m2 = limit->m2.max;
882 clock.m2 >= limit->m2.min; clock.m2--) {
883 for (clock.p1 = limit->p1.max;
884 clock.p1 >= limit->p1.min; clock.p1--) {
885 int this_err;
886
dccbea3b 887 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
888 if (!intel_PLL_is_valid(dev, limit,
889 &clock))
d4906093 890 continue;
1b894b59
CW
891
892 this_err = abs(clock.dot - target);
d4906093
ML
893 if (this_err < err_most) {
894 *best_clock = clock;
895 err_most = this_err;
896 max_n = clock.n;
897 found = true;
898 }
899 }
900 }
901 }
902 }
2c07245f
ZW
903 return found;
904}
905
d5dd62bd
ID
906/*
907 * Check if the calculated PLL configuration is more optimal compared to the
908 * best configuration and error found so far. Return the calculated error.
909 */
910static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
911 const intel_clock_t *calculated_clock,
912 const intel_clock_t *best_clock,
913 unsigned int best_error_ppm,
914 unsigned int *error_ppm)
915{
9ca3ba01
ID
916 /*
917 * For CHV ignore the error and consider only the P value.
918 * Prefer a bigger P value based on HW requirements.
919 */
920 if (IS_CHERRYVIEW(dev)) {
921 *error_ppm = 0;
922
923 return calculated_clock->p > best_clock->p;
924 }
925
24be4e46
ID
926 if (WARN_ON_ONCE(!target_freq))
927 return false;
928
d5dd62bd
ID
929 *error_ppm = div_u64(1000000ULL *
930 abs(target_freq - calculated_clock->dot),
931 target_freq);
932 /*
933 * Prefer a better P value over a better (smaller) error if the error
934 * is small. Ensure this preference for future configurations too by
935 * setting the error to 0.
936 */
937 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
938 *error_ppm = 0;
939
940 return true;
941 }
942
943 return *error_ppm + 10 < best_error_ppm;
944}
945
a0c4da24 946static bool
a93e255f
ACO
947vlv_find_best_dpll(const intel_limit_t *limit,
948 struct intel_crtc_state *crtc_state,
ee9300bb
DV
949 int target, int refclk, intel_clock_t *match_clock,
950 intel_clock_t *best_clock)
a0c4da24 951{
a93e255f 952 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 953 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 954 intel_clock_t clock;
69e4f900 955 unsigned int bestppm = 1000000;
27e639bf
VS
956 /* min update 19.2 MHz */
957 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 958 bool found = false;
a0c4da24 959
6b4bf1c4
VS
960 target *= 5; /* fast clock */
961
962 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
963
964 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 965 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 966 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 967 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 968 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 969 clock.p = clock.p1 * clock.p2;
a0c4da24 970 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 971 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 972 unsigned int ppm;
69e4f900 973
6b4bf1c4
VS
974 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
975 refclk * clock.m1);
976
dccbea3b 977 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 978
f01b7962
VS
979 if (!intel_PLL_is_valid(dev, limit,
980 &clock))
43b0ac53
VS
981 continue;
982
d5dd62bd
ID
983 if (!vlv_PLL_is_optimal(dev, target,
984 &clock,
985 best_clock,
986 bestppm, &ppm))
987 continue;
6b4bf1c4 988
d5dd62bd
ID
989 *best_clock = clock;
990 bestppm = ppm;
991 found = true;
a0c4da24
JB
992 }
993 }
994 }
995 }
a0c4da24 996
49e497ef 997 return found;
a0c4da24 998}
a4fc5ed6 999
ef9348c8 1000static bool
a93e255f
ACO
1001chv_find_best_dpll(const intel_limit_t *limit,
1002 struct intel_crtc_state *crtc_state,
ef9348c8
CML
1003 int target, int refclk, intel_clock_t *match_clock,
1004 intel_clock_t *best_clock)
1005{
a93e255f 1006 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 1007 struct drm_device *dev = crtc->base.dev;
9ca3ba01 1008 unsigned int best_error_ppm;
ef9348c8
CML
1009 intel_clock_t clock;
1010 uint64_t m2;
1011 int found = false;
1012
1013 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 1014 best_error_ppm = 1000000;
ef9348c8
CML
1015
1016 /*
1017 * Based on hardware doc, the n always set to 1, and m1 always
1018 * set to 2. If requires to support 200Mhz refclk, we need to
1019 * revisit this because n may not 1 anymore.
1020 */
1021 clock.n = 1, clock.m1 = 2;
1022 target *= 5; /* fast clock */
1023
1024 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1025 for (clock.p2 = limit->p2.p2_fast;
1026 clock.p2 >= limit->p2.p2_slow;
1027 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 1028 unsigned int error_ppm;
ef9348c8
CML
1029
1030 clock.p = clock.p1 * clock.p2;
1031
1032 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1033 clock.n) << 22, refclk * clock.m1);
1034
1035 if (m2 > INT_MAX/clock.m1)
1036 continue;
1037
1038 clock.m2 = m2;
1039
dccbea3b 1040 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
1041
1042 if (!intel_PLL_is_valid(dev, limit, &clock))
1043 continue;
1044
9ca3ba01
ID
1045 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1046 best_error_ppm, &error_ppm))
1047 continue;
1048
1049 *best_clock = clock;
1050 best_error_ppm = error_ppm;
1051 found = true;
ef9348c8
CML
1052 }
1053 }
1054
1055 return found;
1056}
1057
5ab7b0b7
ID
1058bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1059 intel_clock_t *best_clock)
1060{
1061 int refclk = i9xx_get_refclk(crtc_state, 0);
1062
1063 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1064 target_clock, refclk, NULL, best_clock);
1065}
1066
20ddf665
VS
1067bool intel_crtc_active(struct drm_crtc *crtc)
1068{
1069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1070
1071 /* Be paranoid as we can arrive here with only partial
1072 * state retrieved from the hardware during setup.
1073 *
241bfc38 1074 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
1075 * as Haswell has gained clock readout/fastboot support.
1076 *
66e514c1 1077 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 1078 * properly reconstruct framebuffers.
c3d1f436
MR
1079 *
1080 * FIXME: The intel_crtc->active here should be switched to
1081 * crtc->state->active once we have proper CRTC states wired up
1082 * for atomic.
20ddf665 1083 */
c3d1f436 1084 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1085 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1086}
1087
a5c961d1
PZ
1088enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1089 enum pipe pipe)
1090{
1091 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1092 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1093
6e3c9717 1094 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1095}
1096
fbf49ea2
VS
1097static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1098{
1099 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1100 i915_reg_t reg = PIPEDSL(pipe);
fbf49ea2
VS
1101 u32 line1, line2;
1102 u32 line_mask;
1103
1104 if (IS_GEN2(dev))
1105 line_mask = DSL_LINEMASK_GEN2;
1106 else
1107 line_mask = DSL_LINEMASK_GEN3;
1108
1109 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1110 msleep(5);
fbf49ea2
VS
1111 line2 = I915_READ(reg) & line_mask;
1112
1113 return line1 == line2;
1114}
1115
ab7ad7f6
KP
1116/*
1117 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1118 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1119 *
1120 * After disabling a pipe, we can't wait for vblank in the usual way,
1121 * spinning on the vblank interrupt status bit, since we won't actually
1122 * see an interrupt when the pipe is disabled.
1123 *
ab7ad7f6
KP
1124 * On Gen4 and above:
1125 * wait for the pipe register state bit to turn off
1126 *
1127 * Otherwise:
1128 * wait for the display line value to settle (it usually
1129 * ends up stopping at the start of the next frame).
58e10eb9 1130 *
9d0498a2 1131 */
575f7ab7 1132static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1133{
575f7ab7 1134 struct drm_device *dev = crtc->base.dev;
9d0498a2 1135 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1136 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1137 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1138
1139 if (INTEL_INFO(dev)->gen >= 4) {
f0f59a00 1140 i915_reg_t reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1141
1142 /* Wait for the Pipe State to go off */
58e10eb9
CW
1143 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1144 100))
284637d9 1145 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1146 } else {
ab7ad7f6 1147 /* Wait for the display line to settle */
fbf49ea2 1148 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1149 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1150 }
79e53945
JB
1151}
1152
b24e7179
JB
1153static const char *state_string(bool enabled)
1154{
1155 return enabled ? "on" : "off";
1156}
1157
1158/* Only for pre-ILK configs */
55607e8a
DV
1159void assert_pll(struct drm_i915_private *dev_priv,
1160 enum pipe pipe, bool state)
b24e7179 1161{
b24e7179
JB
1162 u32 val;
1163 bool cur_state;
1164
649636ef 1165 val = I915_READ(DPLL(pipe));
b24e7179 1166 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1167 I915_STATE_WARN(cur_state != state,
b24e7179
JB
1168 "PLL state assertion failure (expected %s, current %s)\n",
1169 state_string(state), state_string(cur_state));
1170}
b24e7179 1171
23538ef1
JN
1172/* XXX: the dsi pll is shared between MIPI DSI ports */
1173static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1174{
1175 u32 val;
1176 bool cur_state;
1177
a580516d 1178 mutex_lock(&dev_priv->sb_lock);
23538ef1 1179 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1180 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1181
1182 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1183 I915_STATE_WARN(cur_state != state,
23538ef1
JN
1184 "DSI PLL state assertion failure (expected %s, current %s)\n",
1185 state_string(state), state_string(cur_state));
1186}
1187#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1188#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1189
55607e8a 1190struct intel_shared_dpll *
e2b78267
DV
1191intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1192{
1193 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1194
6e3c9717 1195 if (crtc->config->shared_dpll < 0)
e2b78267
DV
1196 return NULL;
1197
6e3c9717 1198 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
e2b78267
DV
1199}
1200
040484af 1201/* For ILK+ */
55607e8a
DV
1202void assert_shared_dpll(struct drm_i915_private *dev_priv,
1203 struct intel_shared_dpll *pll,
1204 bool state)
040484af 1205{
040484af 1206 bool cur_state;
5358901f 1207 struct intel_dpll_hw_state hw_state;
040484af 1208
92b27b08 1209 if (WARN (!pll,
46edb027 1210 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1211 return;
ee7b9f93 1212
5358901f 1213 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
e2c719b7 1214 I915_STATE_WARN(cur_state != state,
5358901f
DV
1215 "%s assertion failure (expected %s, current %s)\n",
1216 pll->name, state_string(state), state_string(cur_state));
040484af 1217}
040484af
JB
1218
1219static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1220 enum pipe pipe, bool state)
1221{
040484af 1222 bool cur_state;
ad80a810
PZ
1223 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1224 pipe);
040484af 1225
affa9354
PZ
1226 if (HAS_DDI(dev_priv->dev)) {
1227 /* DDI does not have a specific FDI_TX register */
649636ef 1228 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
ad80a810 1229 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7 1230 } else {
649636ef 1231 u32 val = I915_READ(FDI_TX_CTL(pipe));
bf507ef7
ED
1232 cur_state = !!(val & FDI_TX_ENABLE);
1233 }
e2c719b7 1234 I915_STATE_WARN(cur_state != state,
040484af
JB
1235 "FDI TX state assertion failure (expected %s, current %s)\n",
1236 state_string(state), state_string(cur_state));
1237}
1238#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1239#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1240
1241static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1242 enum pipe pipe, bool state)
1243{
040484af
JB
1244 u32 val;
1245 bool cur_state;
1246
649636ef 1247 val = I915_READ(FDI_RX_CTL(pipe));
d63fa0dc 1248 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1249 I915_STATE_WARN(cur_state != state,
040484af
JB
1250 "FDI RX state assertion failure (expected %s, current %s)\n",
1251 state_string(state), state_string(cur_state));
1252}
1253#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1254#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1255
1256static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1257 enum pipe pipe)
1258{
040484af
JB
1259 u32 val;
1260
1261 /* ILK FDI PLL is always enabled */
3d13ef2e 1262 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1263 return;
1264
bf507ef7 1265 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1266 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1267 return;
1268
649636ef 1269 val = I915_READ(FDI_TX_CTL(pipe));
e2c719b7 1270 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1271}
1272
55607e8a
DV
1273void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1274 enum pipe pipe, bool state)
040484af 1275{
040484af 1276 u32 val;
55607e8a 1277 bool cur_state;
040484af 1278
649636ef 1279 val = I915_READ(FDI_RX_CTL(pipe));
55607e8a 1280 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1281 I915_STATE_WARN(cur_state != state,
55607e8a
DV
1282 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1283 state_string(state), state_string(cur_state));
040484af
JB
1284}
1285
b680c37a
DV
1286void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1287 enum pipe pipe)
ea0760cf 1288{
bedd4dba 1289 struct drm_device *dev = dev_priv->dev;
f0f59a00 1290 i915_reg_t pp_reg;
ea0760cf
JB
1291 u32 val;
1292 enum pipe panel_pipe = PIPE_A;
0de3b485 1293 bool locked = true;
ea0760cf 1294
bedd4dba
JN
1295 if (WARN_ON(HAS_DDI(dev)))
1296 return;
1297
1298 if (HAS_PCH_SPLIT(dev)) {
1299 u32 port_sel;
1300
ea0760cf 1301 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1302 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1303
1304 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1305 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1306 panel_pipe = PIPE_B;
1307 /* XXX: else fix for eDP */
1308 } else if (IS_VALLEYVIEW(dev)) {
1309 /* presumably write lock depends on pipe, not port select */
1310 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1311 panel_pipe = pipe;
ea0760cf
JB
1312 } else {
1313 pp_reg = PP_CONTROL;
bedd4dba
JN
1314 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1315 panel_pipe = PIPE_B;
ea0760cf
JB
1316 }
1317
1318 val = I915_READ(pp_reg);
1319 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1320 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1321 locked = false;
1322
e2c719b7 1323 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1324 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1325 pipe_name(pipe));
ea0760cf
JB
1326}
1327
93ce0ba6
JN
1328static void assert_cursor(struct drm_i915_private *dev_priv,
1329 enum pipe pipe, bool state)
1330{
1331 struct drm_device *dev = dev_priv->dev;
1332 bool cur_state;
1333
d9d82081 1334 if (IS_845G(dev) || IS_I865G(dev))
0b87c24e 1335 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
d9d82081 1336 else
5efb3e28 1337 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1338
e2c719b7 1339 I915_STATE_WARN(cur_state != state,
93ce0ba6
JN
1340 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1341 pipe_name(pipe), state_string(state), state_string(cur_state));
1342}
1343#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1344#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1345
b840d907
JB
1346void assert_pipe(struct drm_i915_private *dev_priv,
1347 enum pipe pipe, bool state)
b24e7179 1348{
63d7bbe9 1349 bool cur_state;
702e7a56
PZ
1350 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1351 pipe);
b24e7179 1352
b6b5d049
VS
1353 /* if we need the pipe quirk it must be always on */
1354 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1355 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1356 state = true;
1357
f458ebbc 1358 if (!intel_display_power_is_enabled(dev_priv,
b97186f0 1359 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1360 cur_state = false;
1361 } else {
649636ef 1362 u32 val = I915_READ(PIPECONF(cpu_transcoder));
69310161
PZ
1363 cur_state = !!(val & PIPECONF_ENABLE);
1364 }
1365
e2c719b7 1366 I915_STATE_WARN(cur_state != state,
63d7bbe9 1367 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1368 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1369}
1370
931872fc
CW
1371static void assert_plane(struct drm_i915_private *dev_priv,
1372 enum plane plane, bool state)
b24e7179 1373{
b24e7179 1374 u32 val;
931872fc 1375 bool cur_state;
b24e7179 1376
649636ef 1377 val = I915_READ(DSPCNTR(plane));
931872fc 1378 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1379 I915_STATE_WARN(cur_state != state,
931872fc
CW
1380 "plane %c assertion failure (expected %s, current %s)\n",
1381 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1382}
1383
931872fc
CW
1384#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1385#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1386
b24e7179
JB
1387static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe)
1389{
653e1026 1390 struct drm_device *dev = dev_priv->dev;
649636ef 1391 int i;
b24e7179 1392
653e1026
VS
1393 /* Primary planes are fixed to pipes on gen4+ */
1394 if (INTEL_INFO(dev)->gen >= 4) {
649636ef 1395 u32 val = I915_READ(DSPCNTR(pipe));
e2c719b7 1396 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1397 "plane %c assertion failure, should be disabled but not\n",
1398 plane_name(pipe));
19ec1358 1399 return;
28c05794 1400 }
19ec1358 1401
b24e7179 1402 /* Need to check both planes against the pipe */
055e393f 1403 for_each_pipe(dev_priv, i) {
649636ef
VS
1404 u32 val = I915_READ(DSPCNTR(i));
1405 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
b24e7179 1406 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1407 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1408 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1409 plane_name(i), pipe_name(pipe));
b24e7179
JB
1410 }
1411}
1412
19332d7a
JB
1413static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1414 enum pipe pipe)
1415{
20674eef 1416 struct drm_device *dev = dev_priv->dev;
649636ef 1417 int sprite;
19332d7a 1418
7feb8b88 1419 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1420 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1421 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1422 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1423 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1424 sprite, pipe_name(pipe));
1425 }
1426 } else if (IS_VALLEYVIEW(dev)) {
3bdcfc0c 1427 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1428 u32 val = I915_READ(SPCNTR(pipe, sprite));
e2c719b7 1429 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1430 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1431 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1432 }
1433 } else if (INTEL_INFO(dev)->gen >= 7) {
649636ef 1434 u32 val = I915_READ(SPRCTL(pipe));
e2c719b7 1435 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1436 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1437 plane_name(pipe), pipe_name(pipe));
1438 } else if (INTEL_INFO(dev)->gen >= 5) {
649636ef 1439 u32 val = I915_READ(DVSCNTR(pipe));
e2c719b7 1440 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1441 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1442 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1443 }
1444}
1445
08c71e5e
VS
1446static void assert_vblank_disabled(struct drm_crtc *crtc)
1447{
e2c719b7 1448 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1449 drm_crtc_vblank_put(crtc);
1450}
1451
89eff4be 1452static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1453{
1454 u32 val;
1455 bool enabled;
1456
e2c719b7 1457 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1458
92f2584a
JB
1459 val = I915_READ(PCH_DREF_CONTROL);
1460 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1461 DREF_SUPERSPREAD_SOURCE_MASK));
e2c719b7 1462 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
92f2584a
JB
1463}
1464
ab9412ba
DV
1465static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1466 enum pipe pipe)
92f2584a 1467{
92f2584a
JB
1468 u32 val;
1469 bool enabled;
1470
649636ef 1471 val = I915_READ(PCH_TRANSCONF(pipe));
92f2584a 1472 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1473 I915_STATE_WARN(enabled,
9db4a9c7
JB
1474 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1475 pipe_name(pipe));
92f2584a
JB
1476}
1477
4e634389
KP
1478static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1479 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1480{
1481 if ((val & DP_PORT_EN) == 0)
1482 return false;
1483
1484 if (HAS_PCH_CPT(dev_priv->dev)) {
f0f59a00 1485 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
f0575e92
KP
1486 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1487 return false;
44f37d1f
CML
1488 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1489 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1490 return false;
f0575e92
KP
1491 } else {
1492 if ((val & DP_PIPE_MASK) != (pipe << 30))
1493 return false;
1494 }
1495 return true;
1496}
1497
1519b995
KP
1498static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1499 enum pipe pipe, u32 val)
1500{
dc0fa718 1501 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1502 return false;
1503
1504 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1505 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1506 return false;
44f37d1f
CML
1507 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1508 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1509 return false;
1519b995 1510 } else {
dc0fa718 1511 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1512 return false;
1513 }
1514 return true;
1515}
1516
1517static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1518 enum pipe pipe, u32 val)
1519{
1520 if ((val & LVDS_PORT_EN) == 0)
1521 return false;
1522
1523 if (HAS_PCH_CPT(dev_priv->dev)) {
1524 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1525 return false;
1526 } else {
1527 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1528 return false;
1529 }
1530 return true;
1531}
1532
1533static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1534 enum pipe pipe, u32 val)
1535{
1536 if ((val & ADPA_DAC_ENABLE) == 0)
1537 return false;
1538 if (HAS_PCH_CPT(dev_priv->dev)) {
1539 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1540 return false;
1541 } else {
1542 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1543 return false;
1544 }
1545 return true;
1546}
1547
291906f1 1548static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0f59a00
VS
1549 enum pipe pipe, i915_reg_t reg,
1550 u32 port_sel)
291906f1 1551{
47a05eca 1552 u32 val = I915_READ(reg);
e2c719b7 1553 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1554 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1555 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1556
e2c719b7 1557 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1558 && (val & DP_PIPEB_SELECT),
de9a35ab 1559 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1560}
1561
1562static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
f0f59a00 1563 enum pipe pipe, i915_reg_t reg)
291906f1 1564{
47a05eca 1565 u32 val = I915_READ(reg);
e2c719b7 1566 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1567 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1568 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1569
e2c719b7 1570 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1571 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1572 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1573}
1574
1575static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1576 enum pipe pipe)
1577{
291906f1 1578 u32 val;
291906f1 1579
f0575e92
KP
1580 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1581 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1582 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1 1583
649636ef 1584 val = I915_READ(PCH_ADPA);
e2c719b7 1585 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1586 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1587 pipe_name(pipe));
291906f1 1588
649636ef 1589 val = I915_READ(PCH_LVDS);
e2c719b7 1590 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1591 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1592 pipe_name(pipe));
291906f1 1593
e2debe91
PZ
1594 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1595 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1596 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1597}
1598
d288f65f 1599static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1600 const struct intel_crtc_state *pipe_config)
87442f73 1601{
426115cf
DV
1602 struct drm_device *dev = crtc->base.dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1604 i915_reg_t reg = DPLL(crtc->pipe);
d288f65f 1605 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1606
426115cf 1607 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1608
1609 /* No really, not for ILK+ */
1610 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1611
1612 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1613 if (IS_MOBILE(dev_priv->dev))
426115cf 1614 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1615
426115cf
DV
1616 I915_WRITE(reg, dpll);
1617 POSTING_READ(reg);
1618 udelay(150);
1619
1620 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1621 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1622
d288f65f 1623 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1624 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1625
1626 /* We do this three times for luck */
426115cf 1627 I915_WRITE(reg, dpll);
87442f73
DV
1628 POSTING_READ(reg);
1629 udelay(150); /* wait for warmup */
426115cf 1630 I915_WRITE(reg, dpll);
87442f73
DV
1631 POSTING_READ(reg);
1632 udelay(150); /* wait for warmup */
426115cf 1633 I915_WRITE(reg, dpll);
87442f73
DV
1634 POSTING_READ(reg);
1635 udelay(150); /* wait for warmup */
1636}
1637
d288f65f 1638static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1639 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1640{
1641 struct drm_device *dev = crtc->base.dev;
1642 struct drm_i915_private *dev_priv = dev->dev_private;
1643 int pipe = crtc->pipe;
1644 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1645 u32 tmp;
1646
1647 assert_pipe_disabled(dev_priv, crtc->pipe);
1648
1649 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1650
a580516d 1651 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1652
1653 /* Enable back the 10bit clock to display controller */
1654 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1655 tmp |= DPIO_DCLKP_EN;
1656 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1657
54433e91
VS
1658 mutex_unlock(&dev_priv->sb_lock);
1659
9d556c99
CML
1660 /*
1661 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1662 */
1663 udelay(1);
1664
1665 /* Enable PLL */
d288f65f 1666 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1667
1668 /* Check PLL is locked */
a11b0703 1669 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1670 DRM_ERROR("PLL %d failed to lock\n", pipe);
1671
a11b0703 1672 /* not sure when this should be written */
d288f65f 1673 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703 1674 POSTING_READ(DPLL_MD(pipe));
9d556c99
CML
1675}
1676
1c4e0274
VS
1677static int intel_num_dvo_pipes(struct drm_device *dev)
1678{
1679 struct intel_crtc *crtc;
1680 int count = 0;
1681
1682 for_each_intel_crtc(dev, crtc)
3538b9df 1683 count += crtc->base.state->active &&
409ee761 1684 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1685
1686 return count;
1687}
1688
66e3d5c0 1689static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1690{
66e3d5c0
DV
1691 struct drm_device *dev = crtc->base.dev;
1692 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1693 i915_reg_t reg = DPLL(crtc->pipe);
6e3c9717 1694 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1695
66e3d5c0 1696 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1697
63d7bbe9 1698 /* No really, not for ILK+ */
3d13ef2e 1699 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1700
1701 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1702 if (IS_MOBILE(dev) && !IS_I830(dev))
1703 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1704
1c4e0274
VS
1705 /* Enable DVO 2x clock on both PLLs if necessary */
1706 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1707 /*
1708 * It appears to be important that we don't enable this
1709 * for the current pipe before otherwise configuring the
1710 * PLL. No idea how this should be handled if multiple
1711 * DVO outputs are enabled simultaneosly.
1712 */
1713 dpll |= DPLL_DVO_2X_MODE;
1714 I915_WRITE(DPLL(!crtc->pipe),
1715 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1716 }
66e3d5c0 1717
c2b63374
VS
1718 /*
1719 * Apparently we need to have VGA mode enabled prior to changing
1720 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1721 * dividers, even though the register value does change.
1722 */
1723 I915_WRITE(reg, 0);
1724
8e7a65aa
VS
1725 I915_WRITE(reg, dpll);
1726
66e3d5c0
DV
1727 /* Wait for the clocks to stabilize. */
1728 POSTING_READ(reg);
1729 udelay(150);
1730
1731 if (INTEL_INFO(dev)->gen >= 4) {
1732 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1733 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1734 } else {
1735 /* The pixel multiplier can only be updated once the
1736 * DPLL is enabled and the clocks are stable.
1737 *
1738 * So write it again.
1739 */
1740 I915_WRITE(reg, dpll);
1741 }
63d7bbe9
JB
1742
1743 /* We do this three times for luck */
66e3d5c0 1744 I915_WRITE(reg, dpll);
63d7bbe9
JB
1745 POSTING_READ(reg);
1746 udelay(150); /* wait for warmup */
66e3d5c0 1747 I915_WRITE(reg, dpll);
63d7bbe9
JB
1748 POSTING_READ(reg);
1749 udelay(150); /* wait for warmup */
66e3d5c0 1750 I915_WRITE(reg, dpll);
63d7bbe9
JB
1751 POSTING_READ(reg);
1752 udelay(150); /* wait for warmup */
1753}
1754
1755/**
50b44a44 1756 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1757 * @dev_priv: i915 private structure
1758 * @pipe: pipe PLL to disable
1759 *
1760 * Disable the PLL for @pipe, making sure the pipe is off first.
1761 *
1762 * Note! This is for pre-ILK only.
1763 */
1c4e0274 1764static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1765{
1c4e0274
VS
1766 struct drm_device *dev = crtc->base.dev;
1767 struct drm_i915_private *dev_priv = dev->dev_private;
1768 enum pipe pipe = crtc->pipe;
1769
1770 /* Disable DVO 2x clock on both PLLs if necessary */
1771 if (IS_I830(dev) &&
409ee761 1772 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
3538b9df 1773 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1774 I915_WRITE(DPLL(PIPE_B),
1775 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1776 I915_WRITE(DPLL(PIPE_A),
1777 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1778 }
1779
b6b5d049
VS
1780 /* Don't disable pipe or pipe PLLs if needed */
1781 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1782 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1783 return;
1784
1785 /* Make sure the pipe isn't still relying on us */
1786 assert_pipe_disabled(dev_priv, pipe);
1787
b8afb911 1788 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1789 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1790}
1791
f6071166
JB
1792static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1793{
b8afb911 1794 u32 val;
f6071166
JB
1795
1796 /* Make sure the pipe isn't still relying on us */
1797 assert_pipe_disabled(dev_priv, pipe);
1798
e5cbfbfb
ID
1799 /*
1800 * Leave integrated clock source and reference clock enabled for pipe B.
1801 * The latter is needed for VGA hotplug / manual detection.
1802 */
b8afb911 1803 val = DPLL_VGA_MODE_DIS;
f6071166 1804 if (pipe == PIPE_B)
60bfe44f 1805 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
f6071166
JB
1806 I915_WRITE(DPLL(pipe), val);
1807 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1808
1809}
1810
1811static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1812{
d752048d 1813 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1814 u32 val;
1815
a11b0703
VS
1816 /* Make sure the pipe isn't still relying on us */
1817 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1818
a11b0703 1819 /* Set PLL en = 0 */
60bfe44f
VS
1820 val = DPLL_SSC_REF_CLK_CHV |
1821 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1822 if (pipe != PIPE_A)
1823 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1824 I915_WRITE(DPLL(pipe), val);
1825 POSTING_READ(DPLL(pipe));
d752048d 1826
a580516d 1827 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1828
1829 /* Disable 10bit clock to display controller */
1830 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1831 val &= ~DPIO_DCLKP_EN;
1832 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1833
a580516d 1834 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1835}
1836
e4607fcf 1837void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1838 struct intel_digital_port *dport,
1839 unsigned int expected_mask)
89b667f8
JB
1840{
1841 u32 port_mask;
f0f59a00 1842 i915_reg_t dpll_reg;
89b667f8 1843
e4607fcf
CML
1844 switch (dport->port) {
1845 case PORT_B:
89b667f8 1846 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1847 dpll_reg = DPLL(0);
e4607fcf
CML
1848 break;
1849 case PORT_C:
89b667f8 1850 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1851 dpll_reg = DPLL(0);
9b6de0a1 1852 expected_mask <<= 4;
00fc31b7
CML
1853 break;
1854 case PORT_D:
1855 port_mask = DPLL_PORTD_READY_MASK;
1856 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1857 break;
1858 default:
1859 BUG();
1860 }
89b667f8 1861
9b6de0a1
VS
1862 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1863 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1864 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1865}
1866
b14b1055
DV
1867static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1868{
1869 struct drm_device *dev = crtc->base.dev;
1870 struct drm_i915_private *dev_priv = dev->dev_private;
1871 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1872
be19f0ff
CW
1873 if (WARN_ON(pll == NULL))
1874 return;
1875
3e369b76 1876 WARN_ON(!pll->config.crtc_mask);
b14b1055
DV
1877 if (pll->active == 0) {
1878 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1879 WARN_ON(pll->on);
1880 assert_shared_dpll_disabled(dev_priv, pll);
1881
1882 pll->mode_set(dev_priv, pll);
1883 }
1884}
1885
92f2584a 1886/**
85b3894f 1887 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1888 * @dev_priv: i915 private structure
1889 * @pipe: pipe PLL to enable
1890 *
1891 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1892 * drives the transcoder clock.
1893 */
85b3894f 1894static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1895{
3d13ef2e
DL
1896 struct drm_device *dev = crtc->base.dev;
1897 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1898 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1899
87a875bb 1900 if (WARN_ON(pll == NULL))
48da64a8
CW
1901 return;
1902
3e369b76 1903 if (WARN_ON(pll->config.crtc_mask == 0))
48da64a8 1904 return;
ee7b9f93 1905
74dd6928 1906 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1907 pll->name, pll->active, pll->on,
e2b78267 1908 crtc->base.base.id);
92f2584a 1909
cdbd2316
DV
1910 if (pll->active++) {
1911 WARN_ON(!pll->on);
e9d6944e 1912 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1913 return;
1914 }
f4a091c7 1915 WARN_ON(pll->on);
ee7b9f93 1916
bd2bb1b9
PZ
1917 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1918
46edb027 1919 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1920 pll->enable(dev_priv, pll);
ee7b9f93 1921 pll->on = true;
92f2584a
JB
1922}
1923
f6daaec2 1924static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1925{
3d13ef2e
DL
1926 struct drm_device *dev = crtc->base.dev;
1927 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1928 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1929
92f2584a 1930 /* PCH only available on ILK+ */
80aa9312
JB
1931 if (INTEL_INFO(dev)->gen < 5)
1932 return;
1933
eddfcbcd
ML
1934 if (pll == NULL)
1935 return;
92f2584a 1936
eddfcbcd 1937 if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
48da64a8 1938 return;
7a419866 1939
46edb027
DV
1940 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1941 pll->name, pll->active, pll->on,
e2b78267 1942 crtc->base.base.id);
7a419866 1943
48da64a8 1944 if (WARN_ON(pll->active == 0)) {
e9d6944e 1945 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1946 return;
1947 }
1948
e9d6944e 1949 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1950 WARN_ON(!pll->on);
cdbd2316 1951 if (--pll->active)
7a419866 1952 return;
ee7b9f93 1953
46edb027 1954 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1955 pll->disable(dev_priv, pll);
ee7b9f93 1956 pll->on = false;
bd2bb1b9
PZ
1957
1958 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1959}
1960
b8a4f404
PZ
1961static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1962 enum pipe pipe)
040484af 1963{
23670b32 1964 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1965 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f0f59a00
VS
1967 i915_reg_t reg;
1968 uint32_t val, pipeconf_val;
040484af
JB
1969
1970 /* PCH only available on ILK+ */
55522f37 1971 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1972
1973 /* Make sure PCH DPLL is enabled */
e72f9fbf 1974 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1975 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1976
1977 /* FDI must be feeding us bits for PCH ports */
1978 assert_fdi_tx_enabled(dev_priv, pipe);
1979 assert_fdi_rx_enabled(dev_priv, pipe);
1980
23670b32
DV
1981 if (HAS_PCH_CPT(dev)) {
1982 /* Workaround: Set the timing override bit before enabling the
1983 * pch transcoder. */
1984 reg = TRANS_CHICKEN2(pipe);
1985 val = I915_READ(reg);
1986 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1987 I915_WRITE(reg, val);
59c859d6 1988 }
23670b32 1989
ab9412ba 1990 reg = PCH_TRANSCONF(pipe);
040484af 1991 val = I915_READ(reg);
5f7f726d 1992 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1993
1994 if (HAS_PCH_IBX(dev_priv->dev)) {
1995 /*
c5de7c6f
VS
1996 * Make the BPC in transcoder be consistent with
1997 * that in pipeconf reg. For HDMI we must use 8bpc
1998 * here for both 8bpc and 12bpc.
e9bcff5c 1999 */
dfd07d72 2000 val &= ~PIPECONF_BPC_MASK;
c5de7c6f
VS
2001 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2002 val |= PIPECONF_8BPC;
2003 else
2004 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 2005 }
5f7f726d
PZ
2006
2007 val &= ~TRANS_INTERLACE_MASK;
2008 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 2009 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 2010 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
2011 val |= TRANS_LEGACY_INTERLACED_ILK;
2012 else
2013 val |= TRANS_INTERLACED;
5f7f726d
PZ
2014 else
2015 val |= TRANS_PROGRESSIVE;
2016
040484af
JB
2017 I915_WRITE(reg, val | TRANS_ENABLE);
2018 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 2019 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
2020}
2021
8fb033d7 2022static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 2023 enum transcoder cpu_transcoder)
040484af 2024{
8fb033d7 2025 u32 val, pipeconf_val;
8fb033d7
PZ
2026
2027 /* PCH only available on ILK+ */
55522f37 2028 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 2029
8fb033d7 2030 /* FDI must be feeding us bits for PCH ports */
1a240d4d 2031 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 2032 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 2033
223a6fdf 2034 /* Workaround: set timing override bit. */
36c0d0cf 2035 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 2036 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 2037 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
223a6fdf 2038
25f3ef11 2039 val = TRANS_ENABLE;
937bb610 2040 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 2041
9a76b1c6
PZ
2042 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2043 PIPECONF_INTERLACED_ILK)
a35f2679 2044 val |= TRANS_INTERLACED;
8fb033d7
PZ
2045 else
2046 val |= TRANS_PROGRESSIVE;
2047
ab9412ba
DV
2048 I915_WRITE(LPT_TRANSCONF, val);
2049 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 2050 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
2051}
2052
b8a4f404
PZ
2053static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2054 enum pipe pipe)
040484af 2055{
23670b32 2056 struct drm_device *dev = dev_priv->dev;
f0f59a00
VS
2057 i915_reg_t reg;
2058 uint32_t val;
040484af
JB
2059
2060 /* FDI relies on the transcoder */
2061 assert_fdi_tx_disabled(dev_priv, pipe);
2062 assert_fdi_rx_disabled(dev_priv, pipe);
2063
291906f1
JB
2064 /* Ports must be off as well */
2065 assert_pch_ports_disabled(dev_priv, pipe);
2066
ab9412ba 2067 reg = PCH_TRANSCONF(pipe);
040484af
JB
2068 val = I915_READ(reg);
2069 val &= ~TRANS_ENABLE;
2070 I915_WRITE(reg, val);
2071 /* wait for PCH transcoder off, transcoder state */
2072 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 2073 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32 2074
c465613b 2075 if (HAS_PCH_CPT(dev)) {
23670b32
DV
2076 /* Workaround: Clear the timing override chicken bit again. */
2077 reg = TRANS_CHICKEN2(pipe);
2078 val = I915_READ(reg);
2079 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2080 I915_WRITE(reg, val);
2081 }
040484af
JB
2082}
2083
ab4d966c 2084static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 2085{
8fb033d7
PZ
2086 u32 val;
2087
ab9412ba 2088 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2089 val &= ~TRANS_ENABLE;
ab9412ba 2090 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2091 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2092 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2093 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2094
2095 /* Workaround: clear timing override bit. */
36c0d0cf 2096 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 2097 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 2098 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
040484af
JB
2099}
2100
b24e7179 2101/**
309cfea8 2102 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2103 * @crtc: crtc responsible for the pipe
b24e7179 2104 *
0372264a 2105 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2106 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2107 */
e1fdc473 2108static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2109{
0372264a
PZ
2110 struct drm_device *dev = crtc->base.dev;
2111 struct drm_i915_private *dev_priv = dev->dev_private;
2112 enum pipe pipe = crtc->pipe;
1a70a728 2113 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1a240d4d 2114 enum pipe pch_transcoder;
f0f59a00 2115 i915_reg_t reg;
b24e7179
JB
2116 u32 val;
2117
9e2ee2dd
VS
2118 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2119
58c6eaa2 2120 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2121 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2122 assert_sprites_disabled(dev_priv, pipe);
2123
681e5811 2124 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2125 pch_transcoder = TRANSCODER_A;
2126 else
2127 pch_transcoder = pipe;
2128
b24e7179
JB
2129 /*
2130 * A pipe without a PLL won't actually be able to drive bits from
2131 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2132 * need the check.
2133 */
50360403 2134 if (HAS_GMCH_DISPLAY(dev_priv->dev))
a65347ba 2135 if (crtc->config->has_dsi_encoder)
23538ef1
JN
2136 assert_dsi_pll_enabled(dev_priv);
2137 else
2138 assert_pll_enabled(dev_priv, pipe);
040484af 2139 else {
6e3c9717 2140 if (crtc->config->has_pch_encoder) {
040484af 2141 /* if driving the PCH, we need FDI enabled */
cc391bbb 2142 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2143 assert_fdi_tx_pll_enabled(dev_priv,
2144 (enum pipe) cpu_transcoder);
040484af
JB
2145 }
2146 /* FIXME: assert CPU port conditions for SNB+ */
2147 }
b24e7179 2148
702e7a56 2149 reg = PIPECONF(cpu_transcoder);
b24e7179 2150 val = I915_READ(reg);
7ad25d48 2151 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2152 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2153 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2154 return;
7ad25d48 2155 }
00d70b15
CW
2156
2157 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2158 POSTING_READ(reg);
b24e7179
JB
2159}
2160
2161/**
309cfea8 2162 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2163 * @crtc: crtc whose pipes is to be disabled
b24e7179 2164 *
575f7ab7
VS
2165 * Disable the pipe of @crtc, making sure that various hardware
2166 * specific requirements are met, if applicable, e.g. plane
2167 * disabled, panel fitter off, etc.
b24e7179
JB
2168 *
2169 * Will wait until the pipe has shut down before returning.
2170 */
575f7ab7 2171static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2172{
575f7ab7 2173 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2174 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2175 enum pipe pipe = crtc->pipe;
f0f59a00 2176 i915_reg_t reg;
b24e7179
JB
2177 u32 val;
2178
9e2ee2dd
VS
2179 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2180
b24e7179
JB
2181 /*
2182 * Make sure planes won't keep trying to pump pixels to us,
2183 * or we might hang the display.
2184 */
2185 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2186 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2187 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2188
702e7a56 2189 reg = PIPECONF(cpu_transcoder);
b24e7179 2190 val = I915_READ(reg);
00d70b15
CW
2191 if ((val & PIPECONF_ENABLE) == 0)
2192 return;
2193
67adc644
VS
2194 /*
2195 * Double wide has implications for planes
2196 * so best keep it disabled when not needed.
2197 */
6e3c9717 2198 if (crtc->config->double_wide)
67adc644
VS
2199 val &= ~PIPECONF_DOUBLE_WIDE;
2200
2201 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2202 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2203 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2204 val &= ~PIPECONF_ENABLE;
2205
2206 I915_WRITE(reg, val);
2207 if ((val & PIPECONF_ENABLE) == 0)
2208 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2209}
2210
693db184
CW
2211static bool need_vtd_wa(struct drm_device *dev)
2212{
2213#ifdef CONFIG_INTEL_IOMMU
2214 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2215 return true;
2216#endif
2217 return false;
2218}
2219
50470bb0 2220unsigned int
6761dd31 2221intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
fe47ea0c 2222 uint64_t fb_format_modifier, unsigned int plane)
a57ce0b2 2223{
6761dd31
TU
2224 unsigned int tile_height;
2225 uint32_t pixel_bytes;
a57ce0b2 2226
b5d0e9bf
DL
2227 switch (fb_format_modifier) {
2228 case DRM_FORMAT_MOD_NONE:
2229 tile_height = 1;
2230 break;
2231 case I915_FORMAT_MOD_X_TILED:
2232 tile_height = IS_GEN2(dev) ? 16 : 8;
2233 break;
2234 case I915_FORMAT_MOD_Y_TILED:
2235 tile_height = 32;
2236 break;
2237 case I915_FORMAT_MOD_Yf_TILED:
fe47ea0c 2238 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
6761dd31 2239 switch (pixel_bytes) {
b5d0e9bf 2240 default:
6761dd31 2241 case 1:
b5d0e9bf
DL
2242 tile_height = 64;
2243 break;
6761dd31
TU
2244 case 2:
2245 case 4:
b5d0e9bf
DL
2246 tile_height = 32;
2247 break;
6761dd31 2248 case 8:
b5d0e9bf
DL
2249 tile_height = 16;
2250 break;
6761dd31 2251 case 16:
b5d0e9bf
DL
2252 WARN_ONCE(1,
2253 "128-bit pixels are not supported for display!");
2254 tile_height = 16;
2255 break;
2256 }
2257 break;
2258 default:
2259 MISSING_CASE(fb_format_modifier);
2260 tile_height = 1;
2261 break;
2262 }
091df6cb 2263
6761dd31
TU
2264 return tile_height;
2265}
2266
2267unsigned int
2268intel_fb_align_height(struct drm_device *dev, unsigned int height,
2269 uint32_t pixel_format, uint64_t fb_format_modifier)
2270{
2271 return ALIGN(height, intel_tile_height(dev, pixel_format,
fe47ea0c 2272 fb_format_modifier, 0));
a57ce0b2
JB
2273}
2274
75c82a53 2275static void
f64b98cd
TU
2276intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2277 const struct drm_plane_state *plane_state)
2278{
a6d09186 2279 struct intel_rotation_info *info = &view->params.rotation_info;
84fe03f7 2280 unsigned int tile_height, tile_pitch;
50470bb0 2281
f64b98cd
TU
2282 *view = i915_ggtt_view_normal;
2283
50470bb0 2284 if (!plane_state)
75c82a53 2285 return;
50470bb0 2286
121920fa 2287 if (!intel_rotation_90_or_270(plane_state->rotation))
75c82a53 2288 return;
50470bb0 2289
9abc4648 2290 *view = i915_ggtt_view_rotated;
50470bb0
TU
2291
2292 info->height = fb->height;
2293 info->pixel_format = fb->pixel_format;
2294 info->pitch = fb->pitches[0];
89e3e142 2295 info->uv_offset = fb->offsets[1];
50470bb0
TU
2296 info->fb_modifier = fb->modifier[0];
2297
84fe03f7 2298 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
fe47ea0c 2299 fb->modifier[0], 0);
84fe03f7
TU
2300 tile_pitch = PAGE_SIZE / tile_height;
2301 info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2302 info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2303 info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2304
89e3e142
TU
2305 if (info->pixel_format == DRM_FORMAT_NV12) {
2306 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2307 fb->modifier[0], 1);
2308 tile_pitch = PAGE_SIZE / tile_height;
2309 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2310 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2311 tile_height);
2312 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2313 PAGE_SIZE;
2314 }
f64b98cd
TU
2315}
2316
4e9a86b6
VS
2317static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2318{
2319 if (INTEL_INFO(dev_priv)->gen >= 9)
2320 return 256 * 1024;
985b8bb4
VS
2321 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2322 IS_VALLEYVIEW(dev_priv))
4e9a86b6
VS
2323 return 128 * 1024;
2324 else if (INTEL_INFO(dev_priv)->gen >= 4)
2325 return 4 * 1024;
2326 else
44c5905e 2327 return 0;
4e9a86b6
VS
2328}
2329
127bd2ac 2330int
850c4cdc
TU
2331intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2332 struct drm_framebuffer *fb,
7580d774 2333 const struct drm_plane_state *plane_state)
6b95a207 2334{
850c4cdc 2335 struct drm_device *dev = fb->dev;
ce453d81 2336 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2337 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2338 struct i915_ggtt_view view;
6b95a207
KH
2339 u32 alignment;
2340 int ret;
2341
ebcdd39e
MR
2342 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2343
7b911adc
TU
2344 switch (fb->modifier[0]) {
2345 case DRM_FORMAT_MOD_NONE:
4e9a86b6 2346 alignment = intel_linear_alignment(dev_priv);
6b95a207 2347 break;
7b911adc 2348 case I915_FORMAT_MOD_X_TILED:
1fada4cc
DL
2349 if (INTEL_INFO(dev)->gen >= 9)
2350 alignment = 256 * 1024;
2351 else {
2352 /* pin() will align the object as required by fence */
2353 alignment = 0;
2354 }
6b95a207 2355 break;
7b911adc 2356 case I915_FORMAT_MOD_Y_TILED:
1327b9a1
DL
2357 case I915_FORMAT_MOD_Yf_TILED:
2358 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2359 "Y tiling bo slipped through, driver bug!\n"))
2360 return -EINVAL;
2361 alignment = 1 * 1024 * 1024;
2362 break;
6b95a207 2363 default:
7b911adc
TU
2364 MISSING_CASE(fb->modifier[0]);
2365 return -EINVAL;
6b95a207
KH
2366 }
2367
75c82a53 2368 intel_fill_fb_ggtt_view(&view, fb, plane_state);
f64b98cd 2369
693db184
CW
2370 /* Note that the w/a also requires 64 PTE of padding following the
2371 * bo. We currently fill all unused PTE with the shadow page and so
2372 * we should always have valid PTE following the scanout preventing
2373 * the VT-d warning.
2374 */
2375 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2376 alignment = 256 * 1024;
2377
d6dd6843
PZ
2378 /*
2379 * Global gtt pte registers are special registers which actually forward
2380 * writes to a chunk of system memory. Which means that there is no risk
2381 * that the register values disappear as soon as we call
2382 * intel_runtime_pm_put(), so it is correct to wrap only the
2383 * pin/unpin/fence and not more.
2384 */
2385 intel_runtime_pm_get(dev_priv);
2386
7580d774
ML
2387 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2388 &view);
48b956c5 2389 if (ret)
b26a6b35 2390 goto err_pm;
6b95a207
KH
2391
2392 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2393 * fence, whereas 965+ only requires a fence if using
2394 * framebuffer compression. For simplicity, we always install
2395 * a fence as the cost is not that onerous.
2396 */
9807216f
VK
2397 if (view.type == I915_GGTT_VIEW_NORMAL) {
2398 ret = i915_gem_object_get_fence(obj);
2399 if (ret == -EDEADLK) {
2400 /*
2401 * -EDEADLK means there are no free fences
2402 * no pending flips.
2403 *
2404 * This is propagated to atomic, but it uses
2405 * -EDEADLK to force a locking recovery, so
2406 * change the returned error to -EBUSY.
2407 */
2408 ret = -EBUSY;
2409 goto err_unpin;
2410 } else if (ret)
2411 goto err_unpin;
1690e1eb 2412
9807216f
VK
2413 i915_gem_object_pin_fence(obj);
2414 }
6b95a207 2415
d6dd6843 2416 intel_runtime_pm_put(dev_priv);
6b95a207 2417 return 0;
48b956c5
CW
2418
2419err_unpin:
f64b98cd 2420 i915_gem_object_unpin_from_display_plane(obj, &view);
b26a6b35 2421err_pm:
d6dd6843 2422 intel_runtime_pm_put(dev_priv);
48b956c5 2423 return ret;
6b95a207
KH
2424}
2425
82bc3b2d
TU
2426static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2427 const struct drm_plane_state *plane_state)
1690e1eb 2428{
82bc3b2d 2429 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2430 struct i915_ggtt_view view;
82bc3b2d 2431
ebcdd39e
MR
2432 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2433
75c82a53 2434 intel_fill_fb_ggtt_view(&view, fb, plane_state);
f64b98cd 2435
9807216f
VK
2436 if (view.type == I915_GGTT_VIEW_NORMAL)
2437 i915_gem_object_unpin_fence(obj);
2438
f64b98cd 2439 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2440}
2441
c2c75131
DV
2442/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2443 * is assumed to be a power-of-two. */
4e9a86b6
VS
2444unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2445 int *x, int *y,
bc752862
CW
2446 unsigned int tiling_mode,
2447 unsigned int cpp,
2448 unsigned int pitch)
c2c75131 2449{
bc752862
CW
2450 if (tiling_mode != I915_TILING_NONE) {
2451 unsigned int tile_rows, tiles;
c2c75131 2452
bc752862
CW
2453 tile_rows = *y / 8;
2454 *y %= 8;
c2c75131 2455
bc752862
CW
2456 tiles = *x / (512/cpp);
2457 *x %= 512/cpp;
2458
2459 return tile_rows * pitch * 8 + tiles * 4096;
2460 } else {
4e9a86b6 2461 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
bc752862
CW
2462 unsigned int offset;
2463
2464 offset = *y * pitch + *x * cpp;
4e9a86b6
VS
2465 *y = (offset & alignment) / pitch;
2466 *x = ((offset & alignment) - *y * pitch) / cpp;
2467 return offset & ~alignment;
bc752862 2468 }
c2c75131
DV
2469}
2470
b35d63fa 2471static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2472{
2473 switch (format) {
2474 case DISPPLANE_8BPP:
2475 return DRM_FORMAT_C8;
2476 case DISPPLANE_BGRX555:
2477 return DRM_FORMAT_XRGB1555;
2478 case DISPPLANE_BGRX565:
2479 return DRM_FORMAT_RGB565;
2480 default:
2481 case DISPPLANE_BGRX888:
2482 return DRM_FORMAT_XRGB8888;
2483 case DISPPLANE_RGBX888:
2484 return DRM_FORMAT_XBGR8888;
2485 case DISPPLANE_BGRX101010:
2486 return DRM_FORMAT_XRGB2101010;
2487 case DISPPLANE_RGBX101010:
2488 return DRM_FORMAT_XBGR2101010;
2489 }
2490}
2491
bc8d7dff
DL
2492static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2493{
2494 switch (format) {
2495 case PLANE_CTL_FORMAT_RGB_565:
2496 return DRM_FORMAT_RGB565;
2497 default:
2498 case PLANE_CTL_FORMAT_XRGB_8888:
2499 if (rgb_order) {
2500 if (alpha)
2501 return DRM_FORMAT_ABGR8888;
2502 else
2503 return DRM_FORMAT_XBGR8888;
2504 } else {
2505 if (alpha)
2506 return DRM_FORMAT_ARGB8888;
2507 else
2508 return DRM_FORMAT_XRGB8888;
2509 }
2510 case PLANE_CTL_FORMAT_XRGB_2101010:
2511 if (rgb_order)
2512 return DRM_FORMAT_XBGR2101010;
2513 else
2514 return DRM_FORMAT_XRGB2101010;
2515 }
2516}
2517
5724dbd1 2518static bool
f6936e29
DV
2519intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2520 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2521{
2522 struct drm_device *dev = crtc->base.dev;
3badb49f 2523 struct drm_i915_private *dev_priv = to_i915(dev);
46f297fb
JB
2524 struct drm_i915_gem_object *obj = NULL;
2525 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2526 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2527 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2528 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2529 PAGE_SIZE);
2530
2531 size_aligned -= base_aligned;
46f297fb 2532
ff2652ea
CW
2533 if (plane_config->size == 0)
2534 return false;
2535
3badb49f
PZ
2536 /* If the FB is too big, just don't use it since fbdev is not very
2537 * important and we should probably use that space with FBC or other
2538 * features. */
2539 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2540 return false;
2541
f37b5c2b
DV
2542 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2543 base_aligned,
2544 base_aligned,
2545 size_aligned);
46f297fb 2546 if (!obj)
484b41dd 2547 return false;
46f297fb 2548
49af449b
DL
2549 obj->tiling_mode = plane_config->tiling;
2550 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2551 obj->stride = fb->pitches[0];
46f297fb 2552
6bf129df
DL
2553 mode_cmd.pixel_format = fb->pixel_format;
2554 mode_cmd.width = fb->width;
2555 mode_cmd.height = fb->height;
2556 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2557 mode_cmd.modifier[0] = fb->modifier[0];
2558 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb
JB
2559
2560 mutex_lock(&dev->struct_mutex);
6bf129df 2561 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2562 &mode_cmd, obj)) {
46f297fb
JB
2563 DRM_DEBUG_KMS("intel fb init failed\n");
2564 goto out_unref_obj;
2565 }
46f297fb 2566 mutex_unlock(&dev->struct_mutex);
484b41dd 2567
f6936e29 2568 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2569 return true;
46f297fb
JB
2570
2571out_unref_obj:
2572 drm_gem_object_unreference(&obj->base);
2573 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2574 return false;
2575}
2576
afd65eb4
MR
2577/* Update plane->state->fb to match plane->fb after driver-internal updates */
2578static void
2579update_state_fb(struct drm_plane *plane)
2580{
2581 if (plane->fb == plane->state->fb)
2582 return;
2583
2584 if (plane->state->fb)
2585 drm_framebuffer_unreference(plane->state->fb);
2586 plane->state->fb = plane->fb;
2587 if (plane->state->fb)
2588 drm_framebuffer_reference(plane->state->fb);
2589}
2590
5724dbd1 2591static void
f6936e29
DV
2592intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2593 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2594{
2595 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2596 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2597 struct drm_crtc *c;
2598 struct intel_crtc *i;
2ff8fde1 2599 struct drm_i915_gem_object *obj;
88595ac9 2600 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2601 struct drm_plane_state *plane_state = primary->state;
88595ac9 2602 struct drm_framebuffer *fb;
484b41dd 2603
2d14030b 2604 if (!plane_config->fb)
484b41dd
JB
2605 return;
2606
f6936e29 2607 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2608 fb = &plane_config->fb->base;
2609 goto valid_fb;
f55548b5 2610 }
484b41dd 2611
2d14030b 2612 kfree(plane_config->fb);
484b41dd
JB
2613
2614 /*
2615 * Failed to alloc the obj, check to see if we should share
2616 * an fb with another CRTC instead
2617 */
70e1e0ec 2618 for_each_crtc(dev, c) {
484b41dd
JB
2619 i = to_intel_crtc(c);
2620
2621 if (c == &intel_crtc->base)
2622 continue;
2623
2ff8fde1
MR
2624 if (!i->active)
2625 continue;
2626
88595ac9
DV
2627 fb = c->primary->fb;
2628 if (!fb)
484b41dd
JB
2629 continue;
2630
88595ac9 2631 obj = intel_fb_obj(fb);
2ff8fde1 2632 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2633 drm_framebuffer_reference(fb);
2634 goto valid_fb;
484b41dd
JB
2635 }
2636 }
88595ac9
DV
2637
2638 return;
2639
2640valid_fb:
f44e2659
VS
2641 plane_state->src_x = 0;
2642 plane_state->src_y = 0;
be5651f2
ML
2643 plane_state->src_w = fb->width << 16;
2644 plane_state->src_h = fb->height << 16;
2645
f44e2659
VS
2646 plane_state->crtc_x = 0;
2647 plane_state->crtc_y = 0;
be5651f2
ML
2648 plane_state->crtc_w = fb->width;
2649 plane_state->crtc_h = fb->height;
2650
88595ac9
DV
2651 obj = intel_fb_obj(fb);
2652 if (obj->tiling_mode != I915_TILING_NONE)
2653 dev_priv->preserve_bios_swizzle = true;
2654
be5651f2
ML
2655 drm_framebuffer_reference(fb);
2656 primary->fb = primary->state->fb = fb;
36750f28 2657 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2658 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
a9ff8714 2659 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
46f297fb
JB
2660}
2661
29b9bde6
DV
2662static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2663 struct drm_framebuffer *fb,
2664 int x, int y)
81255565
JB
2665{
2666 struct drm_device *dev = crtc->dev;
2667 struct drm_i915_private *dev_priv = dev->dev_private;
2668 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2669 struct drm_plane *primary = crtc->primary;
2670 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2671 struct drm_i915_gem_object *obj;
81255565 2672 int plane = intel_crtc->plane;
e506a0c6 2673 unsigned long linear_offset;
81255565 2674 u32 dspcntr;
f0f59a00 2675 i915_reg_t reg = DSPCNTR(plane);
48404c1e 2676 int pixel_size;
f45651ba 2677
b70709a6 2678 if (!visible || !fb) {
fdd508a6
VS
2679 I915_WRITE(reg, 0);
2680 if (INTEL_INFO(dev)->gen >= 4)
2681 I915_WRITE(DSPSURF(plane), 0);
2682 else
2683 I915_WRITE(DSPADDR(plane), 0);
2684 POSTING_READ(reg);
2685 return;
2686 }
2687
c9ba6fad
VS
2688 obj = intel_fb_obj(fb);
2689 if (WARN_ON(obj == NULL))
2690 return;
2691
2692 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2693
f45651ba
VS
2694 dspcntr = DISPPLANE_GAMMA_ENABLE;
2695
fdd508a6 2696 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2697
2698 if (INTEL_INFO(dev)->gen < 4) {
2699 if (intel_crtc->pipe == PIPE_B)
2700 dspcntr |= DISPPLANE_SEL_PIPE_B;
2701
2702 /* pipesrc and dspsize control the size that is scaled from,
2703 * which should always be the user's requested size.
2704 */
2705 I915_WRITE(DSPSIZE(plane),
6e3c9717
ACO
2706 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2707 (intel_crtc->config->pipe_src_w - 1));
f45651ba 2708 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2709 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2710 I915_WRITE(PRIMSIZE(plane),
6e3c9717
ACO
2711 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2712 (intel_crtc->config->pipe_src_w - 1));
c14b0485
VS
2713 I915_WRITE(PRIMPOS(plane), 0);
2714 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2715 }
81255565 2716
57779d06
VS
2717 switch (fb->pixel_format) {
2718 case DRM_FORMAT_C8:
81255565
JB
2719 dspcntr |= DISPPLANE_8BPP;
2720 break;
57779d06 2721 case DRM_FORMAT_XRGB1555:
57779d06 2722 dspcntr |= DISPPLANE_BGRX555;
81255565 2723 break;
57779d06
VS
2724 case DRM_FORMAT_RGB565:
2725 dspcntr |= DISPPLANE_BGRX565;
2726 break;
2727 case DRM_FORMAT_XRGB8888:
57779d06
VS
2728 dspcntr |= DISPPLANE_BGRX888;
2729 break;
2730 case DRM_FORMAT_XBGR8888:
57779d06
VS
2731 dspcntr |= DISPPLANE_RGBX888;
2732 break;
2733 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2734 dspcntr |= DISPPLANE_BGRX101010;
2735 break;
2736 case DRM_FORMAT_XBGR2101010:
57779d06 2737 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2738 break;
2739 default:
baba133a 2740 BUG();
81255565 2741 }
57779d06 2742
f45651ba
VS
2743 if (INTEL_INFO(dev)->gen >= 4 &&
2744 obj->tiling_mode != I915_TILING_NONE)
2745 dspcntr |= DISPPLANE_TILED;
81255565 2746
de1aa629
VS
2747 if (IS_G4X(dev))
2748 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2749
b9897127 2750 linear_offset = y * fb->pitches[0] + x * pixel_size;
81255565 2751
c2c75131
DV
2752 if (INTEL_INFO(dev)->gen >= 4) {
2753 intel_crtc->dspaddr_offset =
4e9a86b6
VS
2754 intel_gen4_compute_page_offset(dev_priv,
2755 &x, &y, obj->tiling_mode,
b9897127 2756 pixel_size,
bc752862 2757 fb->pitches[0]);
c2c75131
DV
2758 linear_offset -= intel_crtc->dspaddr_offset;
2759 } else {
e506a0c6 2760 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2761 }
e506a0c6 2762
8e7d688b 2763 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2764 dspcntr |= DISPPLANE_ROTATE_180;
2765
6e3c9717
ACO
2766 x += (intel_crtc->config->pipe_src_w - 1);
2767 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2768
2769 /* Finding the last pixel of the last line of the display
2770 data and adding to linear_offset*/
2771 linear_offset +=
6e3c9717
ACO
2772 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2773 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2774 }
2775
2db3366b
PZ
2776 intel_crtc->adjusted_x = x;
2777 intel_crtc->adjusted_y = y;
2778
48404c1e
SJ
2779 I915_WRITE(reg, dspcntr);
2780
01f2c773 2781 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2782 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2783 I915_WRITE(DSPSURF(plane),
2784 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2785 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2786 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2787 } else
f343c5f6 2788 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2789 POSTING_READ(reg);
17638cd6
JB
2790}
2791
29b9bde6
DV
2792static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2793 struct drm_framebuffer *fb,
2794 int x, int y)
17638cd6
JB
2795{
2796 struct drm_device *dev = crtc->dev;
2797 struct drm_i915_private *dev_priv = dev->dev_private;
2798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
2799 struct drm_plane *primary = crtc->primary;
2800 bool visible = to_intel_plane_state(primary->state)->visible;
c9ba6fad 2801 struct drm_i915_gem_object *obj;
17638cd6 2802 int plane = intel_crtc->plane;
e506a0c6 2803 unsigned long linear_offset;
17638cd6 2804 u32 dspcntr;
f0f59a00 2805 i915_reg_t reg = DSPCNTR(plane);
48404c1e 2806 int pixel_size;
f45651ba 2807
b70709a6 2808 if (!visible || !fb) {
fdd508a6
VS
2809 I915_WRITE(reg, 0);
2810 I915_WRITE(DSPSURF(plane), 0);
2811 POSTING_READ(reg);
2812 return;
2813 }
2814
c9ba6fad
VS
2815 obj = intel_fb_obj(fb);
2816 if (WARN_ON(obj == NULL))
2817 return;
2818
2819 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2820
f45651ba
VS
2821 dspcntr = DISPPLANE_GAMMA_ENABLE;
2822
fdd508a6 2823 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2824
2825 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2826 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2827
57779d06
VS
2828 switch (fb->pixel_format) {
2829 case DRM_FORMAT_C8:
17638cd6
JB
2830 dspcntr |= DISPPLANE_8BPP;
2831 break;
57779d06
VS
2832 case DRM_FORMAT_RGB565:
2833 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2834 break;
57779d06 2835 case DRM_FORMAT_XRGB8888:
57779d06
VS
2836 dspcntr |= DISPPLANE_BGRX888;
2837 break;
2838 case DRM_FORMAT_XBGR8888:
57779d06
VS
2839 dspcntr |= DISPPLANE_RGBX888;
2840 break;
2841 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2842 dspcntr |= DISPPLANE_BGRX101010;
2843 break;
2844 case DRM_FORMAT_XBGR2101010:
57779d06 2845 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2846 break;
2847 default:
baba133a 2848 BUG();
17638cd6
JB
2849 }
2850
2851 if (obj->tiling_mode != I915_TILING_NONE)
2852 dspcntr |= DISPPLANE_TILED;
17638cd6 2853
f45651ba 2854 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2855 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2856
b9897127 2857 linear_offset = y * fb->pitches[0] + x * pixel_size;
c2c75131 2858 intel_crtc->dspaddr_offset =
4e9a86b6
VS
2859 intel_gen4_compute_page_offset(dev_priv,
2860 &x, &y, obj->tiling_mode,
b9897127 2861 pixel_size,
bc752862 2862 fb->pitches[0]);
c2c75131 2863 linear_offset -= intel_crtc->dspaddr_offset;
8e7d688b 2864 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2865 dspcntr |= DISPPLANE_ROTATE_180;
2866
2867 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
6e3c9717
ACO
2868 x += (intel_crtc->config->pipe_src_w - 1);
2869 y += (intel_crtc->config->pipe_src_h - 1);
48404c1e
SJ
2870
2871 /* Finding the last pixel of the last line of the display
2872 data and adding to linear_offset*/
2873 linear_offset +=
6e3c9717
ACO
2874 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2875 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
48404c1e
SJ
2876 }
2877 }
2878
2db3366b
PZ
2879 intel_crtc->adjusted_x = x;
2880 intel_crtc->adjusted_y = y;
2881
48404c1e 2882 I915_WRITE(reg, dspcntr);
17638cd6 2883
01f2c773 2884 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2885 I915_WRITE(DSPSURF(plane),
2886 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2887 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2888 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2889 } else {
2890 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2891 I915_WRITE(DSPLINOFF(plane), linear_offset);
2892 }
17638cd6 2893 POSTING_READ(reg);
17638cd6
JB
2894}
2895
b321803d
DL
2896u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2897 uint32_t pixel_format)
2898{
2899 u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2900
2901 /*
2902 * The stride is either expressed as a multiple of 64 bytes
2903 * chunks for linear buffers or in number of tiles for tiled
2904 * buffers.
2905 */
2906 switch (fb_modifier) {
2907 case DRM_FORMAT_MOD_NONE:
2908 return 64;
2909 case I915_FORMAT_MOD_X_TILED:
2910 if (INTEL_INFO(dev)->gen == 2)
2911 return 128;
2912 return 512;
2913 case I915_FORMAT_MOD_Y_TILED:
2914 /* No need to check for old gens and Y tiling since this is
2915 * about the display engine and those will be blocked before
2916 * we get here.
2917 */
2918 return 128;
2919 case I915_FORMAT_MOD_Yf_TILED:
2920 if (bits_per_pixel == 8)
2921 return 64;
2922 else
2923 return 128;
2924 default:
2925 MISSING_CASE(fb_modifier);
2926 return 64;
2927 }
2928}
2929
44eb0cb9
MK
2930u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2931 struct drm_i915_gem_object *obj,
2932 unsigned int plane)
121920fa 2933{
ce7f1728 2934 struct i915_ggtt_view view;
dedf278c 2935 struct i915_vma *vma;
44eb0cb9 2936 u64 offset;
121920fa 2937
ce7f1728
DV
2938 intel_fill_fb_ggtt_view(&view, intel_plane->base.fb,
2939 intel_plane->base.state);
121920fa 2940
ce7f1728 2941 vma = i915_gem_obj_to_ggtt_view(obj, &view);
dedf278c 2942 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
ce7f1728 2943 view.type))
dedf278c
TU
2944 return -1;
2945
44eb0cb9 2946 offset = vma->node.start;
dedf278c
TU
2947
2948 if (plane == 1) {
a6d09186 2949 offset += vma->ggtt_view.params.rotation_info.uv_start_page *
dedf278c
TU
2950 PAGE_SIZE;
2951 }
2952
44eb0cb9
MK
2953 WARN_ON(upper_32_bits(offset));
2954
2955 return lower_32_bits(offset);
121920fa
TU
2956}
2957
e435d6e5
ML
2958static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2959{
2960 struct drm_device *dev = intel_crtc->base.dev;
2961 struct drm_i915_private *dev_priv = dev->dev_private;
2962
2963 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2964 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2965 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
e435d6e5
ML
2966}
2967
a1b2278e
CK
2968/*
2969 * This function detaches (aka. unbinds) unused scalers in hardware
2970 */
0583236e 2971static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 2972{
a1b2278e
CK
2973 struct intel_crtc_scaler_state *scaler_state;
2974 int i;
2975
a1b2278e
CK
2976 scaler_state = &intel_crtc->config->scaler_state;
2977
2978 /* loop through and disable scalers that aren't in use */
2979 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
2980 if (!scaler_state->scalers[i].in_use)
2981 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
2982 }
2983}
2984
6156a456 2985u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2986{
6156a456 2987 switch (pixel_format) {
d161cf7a 2988 case DRM_FORMAT_C8:
c34ce3d1 2989 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2990 case DRM_FORMAT_RGB565:
c34ce3d1 2991 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2992 case DRM_FORMAT_XBGR8888:
c34ce3d1 2993 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2994 case DRM_FORMAT_XRGB8888:
c34ce3d1 2995 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2996 /*
2997 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2998 * to be already pre-multiplied. We need to add a knob (or a different
2999 * DRM_FORMAT) for user-space to configure that.
3000 */
f75fb42a 3001 case DRM_FORMAT_ABGR8888:
c34ce3d1 3002 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 3003 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 3004 case DRM_FORMAT_ARGB8888:
c34ce3d1 3005 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 3006 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 3007 case DRM_FORMAT_XRGB2101010:
c34ce3d1 3008 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 3009 case DRM_FORMAT_XBGR2101010:
c34ce3d1 3010 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 3011 case DRM_FORMAT_YUYV:
c34ce3d1 3012 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 3013 case DRM_FORMAT_YVYU:
c34ce3d1 3014 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 3015 case DRM_FORMAT_UYVY:
c34ce3d1 3016 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 3017 case DRM_FORMAT_VYUY:
c34ce3d1 3018 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 3019 default:
4249eeef 3020 MISSING_CASE(pixel_format);
70d21f0e 3021 }
8cfcba41 3022
c34ce3d1 3023 return 0;
6156a456 3024}
70d21f0e 3025
6156a456
CK
3026u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3027{
6156a456 3028 switch (fb_modifier) {
30af77c4 3029 case DRM_FORMAT_MOD_NONE:
70d21f0e 3030 break;
30af77c4 3031 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 3032 return PLANE_CTL_TILED_X;
b321803d 3033 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 3034 return PLANE_CTL_TILED_Y;
b321803d 3035 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 3036 return PLANE_CTL_TILED_YF;
70d21f0e 3037 default:
6156a456 3038 MISSING_CASE(fb_modifier);
70d21f0e 3039 }
8cfcba41 3040
c34ce3d1 3041 return 0;
6156a456 3042}
70d21f0e 3043
6156a456
CK
3044u32 skl_plane_ctl_rotation(unsigned int rotation)
3045{
3b7a5119 3046 switch (rotation) {
6156a456
CK
3047 case BIT(DRM_ROTATE_0):
3048 break;
1e8df167
SJ
3049 /*
3050 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3051 * while i915 HW rotation is clockwise, thats why this swapping.
3052 */
3b7a5119 3053 case BIT(DRM_ROTATE_90):
1e8df167 3054 return PLANE_CTL_ROTATE_270;
3b7a5119 3055 case BIT(DRM_ROTATE_180):
c34ce3d1 3056 return PLANE_CTL_ROTATE_180;
3b7a5119 3057 case BIT(DRM_ROTATE_270):
1e8df167 3058 return PLANE_CTL_ROTATE_90;
6156a456
CK
3059 default:
3060 MISSING_CASE(rotation);
3061 }
3062
c34ce3d1 3063 return 0;
6156a456
CK
3064}
3065
3066static void skylake_update_primary_plane(struct drm_crtc *crtc,
3067 struct drm_framebuffer *fb,
3068 int x, int y)
3069{
3070 struct drm_device *dev = crtc->dev;
3071 struct drm_i915_private *dev_priv = dev->dev_private;
3072 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
b70709a6
ML
3073 struct drm_plane *plane = crtc->primary;
3074 bool visible = to_intel_plane_state(plane->state)->visible;
6156a456
CK
3075 struct drm_i915_gem_object *obj;
3076 int pipe = intel_crtc->pipe;
3077 u32 plane_ctl, stride_div, stride;
3078 u32 tile_height, plane_offset, plane_size;
3079 unsigned int rotation;
3080 int x_offset, y_offset;
44eb0cb9 3081 u32 surf_addr;
6156a456
CK
3082 struct intel_crtc_state *crtc_state = intel_crtc->config;
3083 struct intel_plane_state *plane_state;
3084 int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3085 int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3086 int scaler_id = -1;
3087
6156a456
CK
3088 plane_state = to_intel_plane_state(plane->state);
3089
b70709a6 3090 if (!visible || !fb) {
6156a456
CK
3091 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3092 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3093 POSTING_READ(PLANE_CTL(pipe, 0));
3094 return;
3b7a5119 3095 }
70d21f0e 3096
6156a456
CK
3097 plane_ctl = PLANE_CTL_ENABLE |
3098 PLANE_CTL_PIPE_GAMMA_ENABLE |
3099 PLANE_CTL_PIPE_CSC_ENABLE;
3100
3101 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3102 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3103 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3104
3105 rotation = plane->state->rotation;
3106 plane_ctl |= skl_plane_ctl_rotation(rotation);
3107
b321803d
DL
3108 obj = intel_fb_obj(fb);
3109 stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3110 fb->pixel_format);
dedf278c 3111 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3b7a5119 3112
a42e5a23
PZ
3113 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3114
3115 scaler_id = plane_state->scaler_id;
3116 src_x = plane_state->src.x1 >> 16;
3117 src_y = plane_state->src.y1 >> 16;
3118 src_w = drm_rect_width(&plane_state->src) >> 16;
3119 src_h = drm_rect_height(&plane_state->src) >> 16;
3120 dst_x = plane_state->dst.x1;
3121 dst_y = plane_state->dst.y1;
3122 dst_w = drm_rect_width(&plane_state->dst);
3123 dst_h = drm_rect_height(&plane_state->dst);
3124
3125 WARN_ON(x != src_x || y != src_y);
6156a456 3126
3b7a5119
SJ
3127 if (intel_rotation_90_or_270(rotation)) {
3128 /* stride = Surface height in tiles */
2614f17d 3129 tile_height = intel_tile_height(dev, fb->pixel_format,
fe47ea0c 3130 fb->modifier[0], 0);
3b7a5119 3131 stride = DIV_ROUND_UP(fb->height, tile_height);
6156a456 3132 x_offset = stride * tile_height - y - src_h;
3b7a5119 3133 y_offset = x;
6156a456 3134 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3135 } else {
3136 stride = fb->pitches[0] / stride_div;
3137 x_offset = x;
3138 y_offset = y;
6156a456 3139 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3140 }
3141 plane_offset = y_offset << 16 | x_offset;
b321803d 3142
2db3366b
PZ
3143 intel_crtc->adjusted_x = x_offset;
3144 intel_crtc->adjusted_y = y_offset;
3145
70d21f0e 3146 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3147 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3148 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3149 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3150
3151 if (scaler_id >= 0) {
3152 uint32_t ps_ctrl = 0;
3153
3154 WARN_ON(!dst_w || !dst_h);
3155 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3156 crtc_state->scaler_state.scalers[scaler_id].mode;
3157 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3158 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3159 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3160 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3161 I915_WRITE(PLANE_POS(pipe, 0), 0);
3162 } else {
3163 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3164 }
3165
121920fa 3166 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3167
3168 POSTING_READ(PLANE_SURF(pipe, 0));
3169}
3170
17638cd6
JB
3171/* Assume fb object is pinned & idle & fenced and just update base pointers */
3172static int
3173intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3174 int x, int y, enum mode_set_atomic state)
3175{
3176 struct drm_device *dev = crtc->dev;
3177 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 3178
0e631adc
PZ
3179 if (dev_priv->fbc.deactivate)
3180 dev_priv->fbc.deactivate(dev_priv);
81255565 3181
29b9bde6
DV
3182 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3183
3184 return 0;
81255565
JB
3185}
3186
7514747d 3187static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3188{
96a02917
VS
3189 struct drm_crtc *crtc;
3190
70e1e0ec 3191 for_each_crtc(dev, crtc) {
96a02917
VS
3192 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3193 enum plane plane = intel_crtc->plane;
3194
3195 intel_prepare_page_flip(dev, plane);
3196 intel_finish_page_flip_plane(dev, plane);
3197 }
7514747d
VS
3198}
3199
3200static void intel_update_primary_planes(struct drm_device *dev)
3201{
7514747d 3202 struct drm_crtc *crtc;
96a02917 3203
70e1e0ec 3204 for_each_crtc(dev, crtc) {
11c22da6
ML
3205 struct intel_plane *plane = to_intel_plane(crtc->primary);
3206 struct intel_plane_state *plane_state;
96a02917 3207
11c22da6 3208 drm_modeset_lock_crtc(crtc, &plane->base);
11c22da6
ML
3209 plane_state = to_intel_plane_state(plane->base.state);
3210
f029ee82 3211 if (crtc->state->active && plane_state->base.fb)
11c22da6
ML
3212 plane->commit_plane(&plane->base, plane_state);
3213
3214 drm_modeset_unlock_crtc(crtc);
96a02917
VS
3215 }
3216}
3217
7514747d
VS
3218void intel_prepare_reset(struct drm_device *dev)
3219{
3220 /* no reset support for gen2 */
3221 if (IS_GEN2(dev))
3222 return;
3223
3224 /* reset doesn't touch the display */
3225 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3226 return;
3227
3228 drm_modeset_lock_all(dev);
f98ce92f
VS
3229 /*
3230 * Disabling the crtcs gracefully seems nicer. Also the
3231 * g33 docs say we should at least disable all the planes.
3232 */
6b72d486 3233 intel_display_suspend(dev);
7514747d
VS
3234}
3235
3236void intel_finish_reset(struct drm_device *dev)
3237{
3238 struct drm_i915_private *dev_priv = to_i915(dev);
3239
3240 /*
3241 * Flips in the rings will be nuked by the reset,
3242 * so complete all pending flips so that user space
3243 * will get its events and not get stuck.
3244 */
3245 intel_complete_page_flips(dev);
3246
3247 /* no reset support for gen2 */
3248 if (IS_GEN2(dev))
3249 return;
3250
3251 /* reset doesn't touch the display */
3252 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3253 /*
3254 * Flips in the rings have been nuked by the reset,
3255 * so update the base address of all primary
3256 * planes to the the last fb to make sure we're
3257 * showing the correct fb after a reset.
11c22da6
ML
3258 *
3259 * FIXME: Atomic will make this obsolete since we won't schedule
3260 * CS-based flips (which might get lost in gpu resets) any more.
7514747d
VS
3261 */
3262 intel_update_primary_planes(dev);
3263 return;
3264 }
3265
3266 /*
3267 * The display has been reset as well,
3268 * so need a full re-initialization.
3269 */
3270 intel_runtime_pm_disable_interrupts(dev_priv);
3271 intel_runtime_pm_enable_interrupts(dev_priv);
3272
3273 intel_modeset_init_hw(dev);
3274
3275 spin_lock_irq(&dev_priv->irq_lock);
3276 if (dev_priv->display.hpd_irq_setup)
3277 dev_priv->display.hpd_irq_setup(dev);
3278 spin_unlock_irq(&dev_priv->irq_lock);
3279
043e9bda 3280 intel_display_resume(dev);
7514747d
VS
3281
3282 intel_hpd_init(dev_priv);
3283
3284 drm_modeset_unlock_all(dev);
3285}
3286
7d5e3799
CW
3287static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3288{
3289 struct drm_device *dev = crtc->dev;
3290 struct drm_i915_private *dev_priv = dev->dev_private;
3291 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3292 bool pending;
3293
3294 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3295 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3296 return false;
3297
5e2d7afc 3298 spin_lock_irq(&dev->event_lock);
7d5e3799 3299 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3300 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3301
3302 return pending;
3303}
3304
bfd16b2a
ML
3305static void intel_update_pipe_config(struct intel_crtc *crtc,
3306 struct intel_crtc_state *old_crtc_state)
e30e8f75
GP
3307{
3308 struct drm_device *dev = crtc->base.dev;
3309 struct drm_i915_private *dev_priv = dev->dev_private;
bfd16b2a
ML
3310 struct intel_crtc_state *pipe_config =
3311 to_intel_crtc_state(crtc->base.state);
e30e8f75 3312
bfd16b2a
ML
3313 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3314 crtc->base.mode = crtc->base.state->mode;
3315
3316 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3317 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3318 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
e30e8f75 3319
44522d85
ML
3320 if (HAS_DDI(dev))
3321 intel_set_pipe_csc(&crtc->base);
3322
e30e8f75
GP
3323 /*
3324 * Update pipe size and adjust fitter if needed: the reason for this is
3325 * that in compute_mode_changes we check the native mode (not the pfit
3326 * mode) to see if we can flip rather than do a full mode set. In the
3327 * fastboot case, we'll flip, but if we don't update the pipesrc and
3328 * pfit state, we'll end up with a big fb scanned out into the wrong
3329 * sized surface.
e30e8f75
GP
3330 */
3331
e30e8f75 3332 I915_WRITE(PIPESRC(crtc->pipe),
bfd16b2a
ML
3333 ((pipe_config->pipe_src_w - 1) << 16) |
3334 (pipe_config->pipe_src_h - 1));
3335
3336 /* on skylake this is done by detaching scalers */
3337 if (INTEL_INFO(dev)->gen >= 9) {
3338 skl_detach_scalers(crtc);
3339
3340 if (pipe_config->pch_pfit.enabled)
3341 skylake_pfit_enable(crtc);
3342 } else if (HAS_PCH_SPLIT(dev)) {
3343 if (pipe_config->pch_pfit.enabled)
3344 ironlake_pfit_enable(crtc);
3345 else if (old_crtc_state->pch_pfit.enabled)
3346 ironlake_pfit_disable(crtc, true);
e30e8f75 3347 }
e30e8f75
GP
3348}
3349
5e84e1a4
ZW
3350static void intel_fdi_normal_train(struct drm_crtc *crtc)
3351{
3352 struct drm_device *dev = crtc->dev;
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3355 int pipe = intel_crtc->pipe;
f0f59a00
VS
3356 i915_reg_t reg;
3357 u32 temp;
5e84e1a4
ZW
3358
3359 /* enable normal train */
3360 reg = FDI_TX_CTL(pipe);
3361 temp = I915_READ(reg);
61e499bf 3362 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3363 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3364 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3365 } else {
3366 temp &= ~FDI_LINK_TRAIN_NONE;
3367 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3368 }
5e84e1a4
ZW
3369 I915_WRITE(reg, temp);
3370
3371 reg = FDI_RX_CTL(pipe);
3372 temp = I915_READ(reg);
3373 if (HAS_PCH_CPT(dev)) {
3374 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3375 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3376 } else {
3377 temp &= ~FDI_LINK_TRAIN_NONE;
3378 temp |= FDI_LINK_TRAIN_NONE;
3379 }
3380 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3381
3382 /* wait one idle pattern time */
3383 POSTING_READ(reg);
3384 udelay(1000);
357555c0
JB
3385
3386 /* IVB wants error correction enabled */
3387 if (IS_IVYBRIDGE(dev))
3388 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3389 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3390}
3391
8db9d77b
ZW
3392/* The FDI link training functions for ILK/Ibexpeak. */
3393static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3394{
3395 struct drm_device *dev = crtc->dev;
3396 struct drm_i915_private *dev_priv = dev->dev_private;
3397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3398 int pipe = intel_crtc->pipe;
f0f59a00
VS
3399 i915_reg_t reg;
3400 u32 temp, tries;
8db9d77b 3401
1c8562f6 3402 /* FDI needs bits from pipe first */
0fc932b8 3403 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3404
e1a44743
AJ
3405 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3406 for train result */
5eddb70b
CW
3407 reg = FDI_RX_IMR(pipe);
3408 temp = I915_READ(reg);
e1a44743
AJ
3409 temp &= ~FDI_RX_SYMBOL_LOCK;
3410 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3411 I915_WRITE(reg, temp);
3412 I915_READ(reg);
e1a44743
AJ
3413 udelay(150);
3414
8db9d77b 3415 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3416 reg = FDI_TX_CTL(pipe);
3417 temp = I915_READ(reg);
627eb5a3 3418 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3419 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3420 temp &= ~FDI_LINK_TRAIN_NONE;
3421 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3422 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3423
5eddb70b
CW
3424 reg = FDI_RX_CTL(pipe);
3425 temp = I915_READ(reg);
8db9d77b
ZW
3426 temp &= ~FDI_LINK_TRAIN_NONE;
3427 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3428 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3429
3430 POSTING_READ(reg);
8db9d77b
ZW
3431 udelay(150);
3432
5b2adf89 3433 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3434 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3435 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3436 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3437
5eddb70b 3438 reg = FDI_RX_IIR(pipe);
e1a44743 3439 for (tries = 0; tries < 5; tries++) {
5eddb70b 3440 temp = I915_READ(reg);
8db9d77b
ZW
3441 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3442
3443 if ((temp & FDI_RX_BIT_LOCK)) {
3444 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3445 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3446 break;
3447 }
8db9d77b 3448 }
e1a44743 3449 if (tries == 5)
5eddb70b 3450 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3451
3452 /* Train 2 */
5eddb70b
CW
3453 reg = FDI_TX_CTL(pipe);
3454 temp = I915_READ(reg);
8db9d77b
ZW
3455 temp &= ~FDI_LINK_TRAIN_NONE;
3456 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3457 I915_WRITE(reg, temp);
8db9d77b 3458
5eddb70b
CW
3459 reg = FDI_RX_CTL(pipe);
3460 temp = I915_READ(reg);
8db9d77b
ZW
3461 temp &= ~FDI_LINK_TRAIN_NONE;
3462 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3463 I915_WRITE(reg, temp);
8db9d77b 3464
5eddb70b
CW
3465 POSTING_READ(reg);
3466 udelay(150);
8db9d77b 3467
5eddb70b 3468 reg = FDI_RX_IIR(pipe);
e1a44743 3469 for (tries = 0; tries < 5; tries++) {
5eddb70b 3470 temp = I915_READ(reg);
8db9d77b
ZW
3471 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3472
3473 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3474 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3475 DRM_DEBUG_KMS("FDI train 2 done.\n");
3476 break;
3477 }
8db9d77b 3478 }
e1a44743 3479 if (tries == 5)
5eddb70b 3480 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3481
3482 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3483
8db9d77b
ZW
3484}
3485
0206e353 3486static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3487 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3488 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3489 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3490 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3491};
3492
3493/* The FDI link training functions for SNB/Cougarpoint. */
3494static void gen6_fdi_link_train(struct drm_crtc *crtc)
3495{
3496 struct drm_device *dev = crtc->dev;
3497 struct drm_i915_private *dev_priv = dev->dev_private;
3498 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3499 int pipe = intel_crtc->pipe;
f0f59a00
VS
3500 i915_reg_t reg;
3501 u32 temp, i, retry;
8db9d77b 3502
e1a44743
AJ
3503 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3504 for train result */
5eddb70b
CW
3505 reg = FDI_RX_IMR(pipe);
3506 temp = I915_READ(reg);
e1a44743
AJ
3507 temp &= ~FDI_RX_SYMBOL_LOCK;
3508 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3509 I915_WRITE(reg, temp);
3510
3511 POSTING_READ(reg);
e1a44743
AJ
3512 udelay(150);
3513
8db9d77b 3514 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3515 reg = FDI_TX_CTL(pipe);
3516 temp = I915_READ(reg);
627eb5a3 3517 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3518 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3519 temp &= ~FDI_LINK_TRAIN_NONE;
3520 temp |= FDI_LINK_TRAIN_PATTERN_1;
3521 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3522 /* SNB-B */
3523 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3524 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3525
d74cf324
DV
3526 I915_WRITE(FDI_RX_MISC(pipe),
3527 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3528
5eddb70b
CW
3529 reg = FDI_RX_CTL(pipe);
3530 temp = I915_READ(reg);
8db9d77b
ZW
3531 if (HAS_PCH_CPT(dev)) {
3532 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3533 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3534 } else {
3535 temp &= ~FDI_LINK_TRAIN_NONE;
3536 temp |= FDI_LINK_TRAIN_PATTERN_1;
3537 }
5eddb70b
CW
3538 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3539
3540 POSTING_READ(reg);
8db9d77b
ZW
3541 udelay(150);
3542
0206e353 3543 for (i = 0; i < 4; i++) {
5eddb70b
CW
3544 reg = FDI_TX_CTL(pipe);
3545 temp = I915_READ(reg);
8db9d77b
ZW
3546 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3547 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3548 I915_WRITE(reg, temp);
3549
3550 POSTING_READ(reg);
8db9d77b
ZW
3551 udelay(500);
3552
fa37d39e
SP
3553 for (retry = 0; retry < 5; retry++) {
3554 reg = FDI_RX_IIR(pipe);
3555 temp = I915_READ(reg);
3556 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3557 if (temp & FDI_RX_BIT_LOCK) {
3558 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3559 DRM_DEBUG_KMS("FDI train 1 done.\n");
3560 break;
3561 }
3562 udelay(50);
8db9d77b 3563 }
fa37d39e
SP
3564 if (retry < 5)
3565 break;
8db9d77b
ZW
3566 }
3567 if (i == 4)
5eddb70b 3568 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3569
3570 /* Train 2 */
5eddb70b
CW
3571 reg = FDI_TX_CTL(pipe);
3572 temp = I915_READ(reg);
8db9d77b
ZW
3573 temp &= ~FDI_LINK_TRAIN_NONE;
3574 temp |= FDI_LINK_TRAIN_PATTERN_2;
3575 if (IS_GEN6(dev)) {
3576 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3577 /* SNB-B */
3578 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3579 }
5eddb70b 3580 I915_WRITE(reg, temp);
8db9d77b 3581
5eddb70b
CW
3582 reg = FDI_RX_CTL(pipe);
3583 temp = I915_READ(reg);
8db9d77b
ZW
3584 if (HAS_PCH_CPT(dev)) {
3585 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3586 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3587 } else {
3588 temp &= ~FDI_LINK_TRAIN_NONE;
3589 temp |= FDI_LINK_TRAIN_PATTERN_2;
3590 }
5eddb70b
CW
3591 I915_WRITE(reg, temp);
3592
3593 POSTING_READ(reg);
8db9d77b
ZW
3594 udelay(150);
3595
0206e353 3596 for (i = 0; i < 4; i++) {
5eddb70b
CW
3597 reg = FDI_TX_CTL(pipe);
3598 temp = I915_READ(reg);
8db9d77b
ZW
3599 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3600 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3601 I915_WRITE(reg, temp);
3602
3603 POSTING_READ(reg);
8db9d77b
ZW
3604 udelay(500);
3605
fa37d39e
SP
3606 for (retry = 0; retry < 5; retry++) {
3607 reg = FDI_RX_IIR(pipe);
3608 temp = I915_READ(reg);
3609 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3610 if (temp & FDI_RX_SYMBOL_LOCK) {
3611 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3612 DRM_DEBUG_KMS("FDI train 2 done.\n");
3613 break;
3614 }
3615 udelay(50);
8db9d77b 3616 }
fa37d39e
SP
3617 if (retry < 5)
3618 break;
8db9d77b
ZW
3619 }
3620 if (i == 4)
5eddb70b 3621 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3622
3623 DRM_DEBUG_KMS("FDI train done.\n");
3624}
3625
357555c0
JB
3626/* Manual link training for Ivy Bridge A0 parts */
3627static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3628{
3629 struct drm_device *dev = crtc->dev;
3630 struct drm_i915_private *dev_priv = dev->dev_private;
3631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3632 int pipe = intel_crtc->pipe;
f0f59a00
VS
3633 i915_reg_t reg;
3634 u32 temp, i, j;
357555c0
JB
3635
3636 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3637 for train result */
3638 reg = FDI_RX_IMR(pipe);
3639 temp = I915_READ(reg);
3640 temp &= ~FDI_RX_SYMBOL_LOCK;
3641 temp &= ~FDI_RX_BIT_LOCK;
3642 I915_WRITE(reg, temp);
3643
3644 POSTING_READ(reg);
3645 udelay(150);
3646
01a415fd
DV
3647 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3648 I915_READ(FDI_RX_IIR(pipe)));
3649
139ccd3f
JB
3650 /* Try each vswing and preemphasis setting twice before moving on */
3651 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3652 /* disable first in case we need to retry */
3653 reg = FDI_TX_CTL(pipe);
3654 temp = I915_READ(reg);
3655 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3656 temp &= ~FDI_TX_ENABLE;
3657 I915_WRITE(reg, temp);
357555c0 3658
139ccd3f
JB
3659 reg = FDI_RX_CTL(pipe);
3660 temp = I915_READ(reg);
3661 temp &= ~FDI_LINK_TRAIN_AUTO;
3662 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3663 temp &= ~FDI_RX_ENABLE;
3664 I915_WRITE(reg, temp);
357555c0 3665
139ccd3f 3666 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3667 reg = FDI_TX_CTL(pipe);
3668 temp = I915_READ(reg);
139ccd3f 3669 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3670 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3671 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3672 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3673 temp |= snb_b_fdi_train_param[j/2];
3674 temp |= FDI_COMPOSITE_SYNC;
3675 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3676
139ccd3f
JB
3677 I915_WRITE(FDI_RX_MISC(pipe),
3678 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3679
139ccd3f 3680 reg = FDI_RX_CTL(pipe);
357555c0 3681 temp = I915_READ(reg);
139ccd3f
JB
3682 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3683 temp |= FDI_COMPOSITE_SYNC;
3684 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3685
139ccd3f
JB
3686 POSTING_READ(reg);
3687 udelay(1); /* should be 0.5us */
357555c0 3688
139ccd3f
JB
3689 for (i = 0; i < 4; i++) {
3690 reg = FDI_RX_IIR(pipe);
3691 temp = I915_READ(reg);
3692 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3693
139ccd3f
JB
3694 if (temp & FDI_RX_BIT_LOCK ||
3695 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3696 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3697 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3698 i);
3699 break;
3700 }
3701 udelay(1); /* should be 0.5us */
3702 }
3703 if (i == 4) {
3704 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3705 continue;
3706 }
357555c0 3707
139ccd3f 3708 /* Train 2 */
357555c0
JB
3709 reg = FDI_TX_CTL(pipe);
3710 temp = I915_READ(reg);
139ccd3f
JB
3711 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3712 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3713 I915_WRITE(reg, temp);
3714
3715 reg = FDI_RX_CTL(pipe);
3716 temp = I915_READ(reg);
3717 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3718 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3719 I915_WRITE(reg, temp);
3720
3721 POSTING_READ(reg);
139ccd3f 3722 udelay(2); /* should be 1.5us */
357555c0 3723
139ccd3f
JB
3724 for (i = 0; i < 4; i++) {
3725 reg = FDI_RX_IIR(pipe);
3726 temp = I915_READ(reg);
3727 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3728
139ccd3f
JB
3729 if (temp & FDI_RX_SYMBOL_LOCK ||
3730 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3731 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3732 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3733 i);
3734 goto train_done;
3735 }
3736 udelay(2); /* should be 1.5us */
357555c0 3737 }
139ccd3f
JB
3738 if (i == 4)
3739 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3740 }
357555c0 3741
139ccd3f 3742train_done:
357555c0
JB
3743 DRM_DEBUG_KMS("FDI train done.\n");
3744}
3745
88cefb6c 3746static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3747{
88cefb6c 3748 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3749 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3750 int pipe = intel_crtc->pipe;
f0f59a00
VS
3751 i915_reg_t reg;
3752 u32 temp;
c64e311e 3753
c98e9dcf 3754 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3755 reg = FDI_RX_CTL(pipe);
3756 temp = I915_READ(reg);
627eb5a3 3757 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3758 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3759 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3760 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3761
3762 POSTING_READ(reg);
c98e9dcf
JB
3763 udelay(200);
3764
3765 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3766 temp = I915_READ(reg);
3767 I915_WRITE(reg, temp | FDI_PCDCLK);
3768
3769 POSTING_READ(reg);
c98e9dcf
JB
3770 udelay(200);
3771
20749730
PZ
3772 /* Enable CPU FDI TX PLL, always on for Ironlake */
3773 reg = FDI_TX_CTL(pipe);
3774 temp = I915_READ(reg);
3775 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3776 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3777
20749730
PZ
3778 POSTING_READ(reg);
3779 udelay(100);
6be4a607 3780 }
0e23b99d
JB
3781}
3782
88cefb6c
DV
3783static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3784{
3785 struct drm_device *dev = intel_crtc->base.dev;
3786 struct drm_i915_private *dev_priv = dev->dev_private;
3787 int pipe = intel_crtc->pipe;
f0f59a00
VS
3788 i915_reg_t reg;
3789 u32 temp;
88cefb6c
DV
3790
3791 /* Switch from PCDclk to Rawclk */
3792 reg = FDI_RX_CTL(pipe);
3793 temp = I915_READ(reg);
3794 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3795
3796 /* Disable CPU FDI TX PLL */
3797 reg = FDI_TX_CTL(pipe);
3798 temp = I915_READ(reg);
3799 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3800
3801 POSTING_READ(reg);
3802 udelay(100);
3803
3804 reg = FDI_RX_CTL(pipe);
3805 temp = I915_READ(reg);
3806 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3807
3808 /* Wait for the clocks to turn off. */
3809 POSTING_READ(reg);
3810 udelay(100);
3811}
3812
0fc932b8
JB
3813static void ironlake_fdi_disable(struct drm_crtc *crtc)
3814{
3815 struct drm_device *dev = crtc->dev;
3816 struct drm_i915_private *dev_priv = dev->dev_private;
3817 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3818 int pipe = intel_crtc->pipe;
f0f59a00
VS
3819 i915_reg_t reg;
3820 u32 temp;
0fc932b8
JB
3821
3822 /* disable CPU FDI tx and PCH FDI rx */
3823 reg = FDI_TX_CTL(pipe);
3824 temp = I915_READ(reg);
3825 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3826 POSTING_READ(reg);
3827
3828 reg = FDI_RX_CTL(pipe);
3829 temp = I915_READ(reg);
3830 temp &= ~(0x7 << 16);
dfd07d72 3831 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3832 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3833
3834 POSTING_READ(reg);
3835 udelay(100);
3836
3837 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3838 if (HAS_PCH_IBX(dev))
6f06ce18 3839 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3840
3841 /* still set train pattern 1 */
3842 reg = FDI_TX_CTL(pipe);
3843 temp = I915_READ(reg);
3844 temp &= ~FDI_LINK_TRAIN_NONE;
3845 temp |= FDI_LINK_TRAIN_PATTERN_1;
3846 I915_WRITE(reg, temp);
3847
3848 reg = FDI_RX_CTL(pipe);
3849 temp = I915_READ(reg);
3850 if (HAS_PCH_CPT(dev)) {
3851 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3852 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3853 } else {
3854 temp &= ~FDI_LINK_TRAIN_NONE;
3855 temp |= FDI_LINK_TRAIN_PATTERN_1;
3856 }
3857 /* BPC in FDI rx is consistent with that in PIPECONF */
3858 temp &= ~(0x07 << 16);
dfd07d72 3859 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3860 I915_WRITE(reg, temp);
3861
3862 POSTING_READ(reg);
3863 udelay(100);
3864}
3865
5dce5b93
CW
3866bool intel_has_pending_fb_unpin(struct drm_device *dev)
3867{
3868 struct intel_crtc *crtc;
3869
3870 /* Note that we don't need to be called with mode_config.lock here
3871 * as our list of CRTC objects is static for the lifetime of the
3872 * device and so cannot disappear as we iterate. Similarly, we can
3873 * happily treat the predicates as racy, atomic checks as userspace
3874 * cannot claim and pin a new fb without at least acquring the
3875 * struct_mutex and so serialising with us.
3876 */
d3fcc808 3877 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3878 if (atomic_read(&crtc->unpin_work_count) == 0)
3879 continue;
3880
3881 if (crtc->unpin_work)
3882 intel_wait_for_vblank(dev, crtc->pipe);
3883
3884 return true;
3885 }
3886
3887 return false;
3888}
3889
d6bbafa1
CW
3890static void page_flip_completed(struct intel_crtc *intel_crtc)
3891{
3892 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3893 struct intel_unpin_work *work = intel_crtc->unpin_work;
3894
3895 /* ensure that the unpin work is consistent wrt ->pending. */
3896 smp_rmb();
3897 intel_crtc->unpin_work = NULL;
3898
3899 if (work->event)
3900 drm_send_vblank_event(intel_crtc->base.dev,
3901 intel_crtc->pipe,
3902 work->event);
3903
3904 drm_crtc_vblank_put(&intel_crtc->base);
3905
3906 wake_up_all(&dev_priv->pending_flip_queue);
3907 queue_work(dev_priv->wq, &work->work);
3908
3909 trace_i915_flip_complete(intel_crtc->plane,
3910 work->pending_flip_obj);
3911}
3912
5008e874 3913static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3914{
0f91128d 3915 struct drm_device *dev = crtc->dev;
5bb61643 3916 struct drm_i915_private *dev_priv = dev->dev_private;
5008e874 3917 long ret;
e6c3a2a6 3918
2c10d571 3919 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5008e874
ML
3920
3921 ret = wait_event_interruptible_timeout(
3922 dev_priv->pending_flip_queue,
3923 !intel_crtc_has_pending_flip(crtc),
3924 60*HZ);
3925
3926 if (ret < 0)
3927 return ret;
3928
3929 if (ret == 0) {
9c787942 3930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3931
5e2d7afc 3932 spin_lock_irq(&dev->event_lock);
9c787942
CW
3933 if (intel_crtc->unpin_work) {
3934 WARN_ONCE(1, "Removing stuck page flip\n");
3935 page_flip_completed(intel_crtc);
3936 }
5e2d7afc 3937 spin_unlock_irq(&dev->event_lock);
9c787942 3938 }
5bb61643 3939
5008e874 3940 return 0;
e6c3a2a6
CW
3941}
3942
e615efe4
ED
3943/* Program iCLKIP clock to the desired frequency */
3944static void lpt_program_iclkip(struct drm_crtc *crtc)
3945{
3946 struct drm_device *dev = crtc->dev;
3947 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3948 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3949 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3950 u32 temp;
3951
a580516d 3952 mutex_lock(&dev_priv->sb_lock);
09153000 3953
e615efe4
ED
3954 /* It is necessary to ungate the pixclk gate prior to programming
3955 * the divisors, and gate it back when it is done.
3956 */
3957 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3958
3959 /* Disable SSCCTL */
3960 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3961 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3962 SBI_SSCCTL_DISABLE,
3963 SBI_ICLK);
e615efe4
ED
3964
3965 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3966 if (clock == 20000) {
e615efe4
ED
3967 auxdiv = 1;
3968 divsel = 0x41;
3969 phaseinc = 0x20;
3970 } else {
3971 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3972 * but the adjusted_mode->crtc_clock in in KHz. To get the
3973 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3974 * convert the virtual clock precision to KHz here for higher
3975 * precision.
3976 */
3977 u32 iclk_virtual_root_freq = 172800 * 1000;
3978 u32 iclk_pi_range = 64;
3979 u32 desired_divisor, msb_divisor_value, pi_value;
3980
12d7ceed 3981 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3982 msb_divisor_value = desired_divisor / iclk_pi_range;
3983 pi_value = desired_divisor % iclk_pi_range;
3984
3985 auxdiv = 0;
3986 divsel = msb_divisor_value - 2;
3987 phaseinc = pi_value;
3988 }
3989
3990 /* This should not happen with any sane values */
3991 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3992 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3993 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3994 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3995
3996 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3997 clock,
e615efe4
ED
3998 auxdiv,
3999 divsel,
4000 phasedir,
4001 phaseinc);
4002
4003 /* Program SSCDIVINTPHASE6 */
988d6ee8 4004 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
4005 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4006 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4007 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4008 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4009 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4010 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 4011 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
4012
4013 /* Program SSCAUXDIV */
988d6ee8 4014 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
4015 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4016 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 4017 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
4018
4019 /* Enable modulator and associated divider */
988d6ee8 4020 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 4021 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 4022 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
4023
4024 /* Wait for initialization time */
4025 udelay(24);
4026
4027 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000 4028
a580516d 4029 mutex_unlock(&dev_priv->sb_lock);
e615efe4
ED
4030}
4031
275f01b2
DV
4032static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4033 enum pipe pch_transcoder)
4034{
4035 struct drm_device *dev = crtc->base.dev;
4036 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4037 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4038
4039 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4040 I915_READ(HTOTAL(cpu_transcoder)));
4041 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4042 I915_READ(HBLANK(cpu_transcoder)));
4043 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4044 I915_READ(HSYNC(cpu_transcoder)));
4045
4046 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4047 I915_READ(VTOTAL(cpu_transcoder)));
4048 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4049 I915_READ(VBLANK(cpu_transcoder)));
4050 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4051 I915_READ(VSYNC(cpu_transcoder)));
4052 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4053 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4054}
4055
003632d9 4056static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4057{
4058 struct drm_i915_private *dev_priv = dev->dev_private;
4059 uint32_t temp;
4060
4061 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4062 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4063 return;
4064
4065 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4066 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4067
003632d9
ACO
4068 temp &= ~FDI_BC_BIFURCATION_SELECT;
4069 if (enable)
4070 temp |= FDI_BC_BIFURCATION_SELECT;
4071
4072 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4073 I915_WRITE(SOUTH_CHICKEN1, temp);
4074 POSTING_READ(SOUTH_CHICKEN1);
4075}
4076
4077static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4078{
4079 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4080
4081 switch (intel_crtc->pipe) {
4082 case PIPE_A:
4083 break;
4084 case PIPE_B:
6e3c9717 4085 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4086 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4087 else
003632d9 4088 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4089
4090 break;
4091 case PIPE_C:
003632d9 4092 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4093
4094 break;
4095 default:
4096 BUG();
4097 }
4098}
4099
c48b5305
VS
4100/* Return which DP Port should be selected for Transcoder DP control */
4101static enum port
4102intel_trans_dp_port_sel(struct drm_crtc *crtc)
4103{
4104 struct drm_device *dev = crtc->dev;
4105 struct intel_encoder *encoder;
4106
4107 for_each_encoder_on_crtc(dev, crtc, encoder) {
4108 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4109 encoder->type == INTEL_OUTPUT_EDP)
4110 return enc_to_dig_port(&encoder->base)->port;
4111 }
4112
4113 return -1;
4114}
4115
f67a559d
JB
4116/*
4117 * Enable PCH resources required for PCH ports:
4118 * - PCH PLLs
4119 * - FDI training & RX/TX
4120 * - update transcoder timings
4121 * - DP transcoding bits
4122 * - transcoder
4123 */
4124static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4125{
4126 struct drm_device *dev = crtc->dev;
4127 struct drm_i915_private *dev_priv = dev->dev_private;
4128 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4129 int pipe = intel_crtc->pipe;
f0f59a00 4130 u32 temp;
2c07245f 4131
ab9412ba 4132 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4133
1fbc0d78
DV
4134 if (IS_IVYBRIDGE(dev))
4135 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4136
cd986abb
DV
4137 /* Write the TU size bits before fdi link training, so that error
4138 * detection works. */
4139 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4140 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4141
3860b2ec
VS
4142 /*
4143 * Sometimes spurious CPU pipe underruns happen during FDI
4144 * training, at least with VGA+HDMI cloning. Suppress them.
4145 */
4146 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4147
c98e9dcf 4148 /* For PCH output, training FDI link */
674cf967 4149 dev_priv->display.fdi_link_train(crtc);
2c07245f 4150
3ad8a208
DV
4151 /* We need to program the right clock selection before writing the pixel
4152 * mutliplier into the DPLL. */
303b81e0 4153 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4154 u32 sel;
4b645f14 4155
c98e9dcf 4156 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4157 temp |= TRANS_DPLL_ENABLE(pipe);
4158 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 4159 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
4160 temp |= sel;
4161 else
4162 temp &= ~sel;
c98e9dcf 4163 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4164 }
5eddb70b 4165
3ad8a208
DV
4166 /* XXX: pch pll's can be enabled any time before we enable the PCH
4167 * transcoder, and we actually should do this to not upset any PCH
4168 * transcoder that already use the clock when we share it.
4169 *
4170 * Note that enable_shared_dpll tries to do the right thing, but
4171 * get_shared_dpll unconditionally resets the pll - we need that to have
4172 * the right LVDS enable sequence. */
85b3894f 4173 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4174
d9b6cb56
JB
4175 /* set transcoder timing, panel must allow it */
4176 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4177 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4178
303b81e0 4179 intel_fdi_normal_train(crtc);
5e84e1a4 4180
3860b2ec
VS
4181 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4182
c98e9dcf 4183 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4184 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
9c4edaee
VS
4185 const struct drm_display_mode *adjusted_mode =
4186 &intel_crtc->config->base.adjusted_mode;
dfd07d72 4187 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
f0f59a00 4188 i915_reg_t reg = TRANS_DP_CTL(pipe);
5eddb70b
CW
4189 temp = I915_READ(reg);
4190 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4191 TRANS_DP_SYNC_MASK |
4192 TRANS_DP_BPC_MASK);
e3ef4479 4193 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4194 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf 4195
9c4edaee 4196 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4197 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
9c4edaee 4198 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4199 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4200
4201 switch (intel_trans_dp_port_sel(crtc)) {
c48b5305 4202 case PORT_B:
5eddb70b 4203 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 4204 break;
c48b5305 4205 case PORT_C:
5eddb70b 4206 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf 4207 break;
c48b5305 4208 case PORT_D:
5eddb70b 4209 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4210 break;
4211 default:
e95d41e1 4212 BUG();
32f9d658 4213 }
2c07245f 4214
5eddb70b 4215 I915_WRITE(reg, temp);
6be4a607 4216 }
b52eb4dc 4217
b8a4f404 4218 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4219}
4220
1507e5bd
PZ
4221static void lpt_pch_enable(struct drm_crtc *crtc)
4222{
4223 struct drm_device *dev = crtc->dev;
4224 struct drm_i915_private *dev_priv = dev->dev_private;
4225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4226 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4227
ab9412ba 4228 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4229
8c52b5e8 4230 lpt_program_iclkip(crtc);
1507e5bd 4231
0540e488 4232 /* Set transcoder timing. */
275f01b2 4233 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4234
937bb610 4235 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4236}
4237
190f68c5
ACO
4238struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4239 struct intel_crtc_state *crtc_state)
ee7b9f93 4240{
e2b78267 4241 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8bd31e67 4242 struct intel_shared_dpll *pll;
de419ab6 4243 struct intel_shared_dpll_config *shared_dpll;
e2b78267 4244 enum intel_dpll_id i;
00490c22 4245 int max = dev_priv->num_shared_dpll;
ee7b9f93 4246
de419ab6
ML
4247 shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4248
98b6bd99
DV
4249 if (HAS_PCH_IBX(dev_priv->dev)) {
4250 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 4251 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 4252 pll = &dev_priv->shared_dplls[i];
98b6bd99 4253
46edb027
DV
4254 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4255 crtc->base.base.id, pll->name);
98b6bd99 4256
de419ab6 4257 WARN_ON(shared_dpll[i].crtc_mask);
f2a69f44 4258
98b6bd99
DV
4259 goto found;
4260 }
4261
bcddf610
S
4262 if (IS_BROXTON(dev_priv->dev)) {
4263 /* PLL is attached to port in bxt */
4264 struct intel_encoder *encoder;
4265 struct intel_digital_port *intel_dig_port;
4266
4267 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4268 if (WARN_ON(!encoder))
4269 return NULL;
4270
4271 intel_dig_port = enc_to_dig_port(&encoder->base);
4272 /* 1:1 mapping between ports and PLLs */
4273 i = (enum intel_dpll_id)intel_dig_port->port;
4274 pll = &dev_priv->shared_dplls[i];
4275 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4276 crtc->base.base.id, pll->name);
de419ab6 4277 WARN_ON(shared_dpll[i].crtc_mask);
bcddf610
S
4278
4279 goto found;
00490c22
ML
4280 } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4281 /* Do not consider SPLL */
4282 max = 2;
bcddf610 4283
00490c22 4284 for (i = 0; i < max; i++) {
e72f9fbf 4285 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
4286
4287 /* Only want to check enabled timings first */
de419ab6 4288 if (shared_dpll[i].crtc_mask == 0)
ee7b9f93
JB
4289 continue;
4290
190f68c5 4291 if (memcmp(&crtc_state->dpll_hw_state,
de419ab6
ML
4292 &shared_dpll[i].hw_state,
4293 sizeof(crtc_state->dpll_hw_state)) == 0) {
8bd31e67 4294 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
1e6f2ddc 4295 crtc->base.base.id, pll->name,
de419ab6 4296 shared_dpll[i].crtc_mask,
8bd31e67 4297 pll->active);
ee7b9f93
JB
4298 goto found;
4299 }
4300 }
4301
4302 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
4303 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4304 pll = &dev_priv->shared_dplls[i];
de419ab6 4305 if (shared_dpll[i].crtc_mask == 0) {
46edb027
DV
4306 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4307 crtc->base.base.id, pll->name);
ee7b9f93
JB
4308 goto found;
4309 }
4310 }
4311
4312 return NULL;
4313
4314found:
de419ab6
ML
4315 if (shared_dpll[i].crtc_mask == 0)
4316 shared_dpll[i].hw_state =
4317 crtc_state->dpll_hw_state;
f2a69f44 4318
190f68c5 4319 crtc_state->shared_dpll = i;
46edb027
DV
4320 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4321 pipe_name(crtc->pipe));
ee7b9f93 4322
de419ab6 4323 shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
e04c7350 4324
ee7b9f93
JB
4325 return pll;
4326}
4327
de419ab6 4328static void intel_shared_dpll_commit(struct drm_atomic_state *state)
8bd31e67 4329{
de419ab6
ML
4330 struct drm_i915_private *dev_priv = to_i915(state->dev);
4331 struct intel_shared_dpll_config *shared_dpll;
8bd31e67
ACO
4332 struct intel_shared_dpll *pll;
4333 enum intel_dpll_id i;
4334
de419ab6
ML
4335 if (!to_intel_atomic_state(state)->dpll_set)
4336 return;
8bd31e67 4337
de419ab6 4338 shared_dpll = to_intel_atomic_state(state)->shared_dpll;
8bd31e67
ACO
4339 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4340 pll = &dev_priv->shared_dplls[i];
de419ab6 4341 pll->config = shared_dpll[i];
8bd31e67
ACO
4342 }
4343}
4344
a1520318 4345static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4346{
4347 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 4348 i915_reg_t dslreg = PIPEDSL(pipe);
d4270e57
JB
4349 u32 temp;
4350
4351 temp = I915_READ(dslreg);
4352 udelay(500);
4353 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4354 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4355 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4356 }
4357}
4358
86adf9d7
ML
4359static int
4360skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4361 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4362 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4363{
86adf9d7
ML
4364 struct intel_crtc_scaler_state *scaler_state =
4365 &crtc_state->scaler_state;
4366 struct intel_crtc *intel_crtc =
4367 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4368 int need_scaling;
6156a456
CK
4369
4370 need_scaling = intel_rotation_90_or_270(rotation) ?
4371 (src_h != dst_w || src_w != dst_h):
4372 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4373
4374 /*
4375 * if plane is being disabled or scaler is no more required or force detach
4376 * - free scaler binded to this plane/crtc
4377 * - in order to do this, update crtc->scaler_usage
4378 *
4379 * Here scaler state in crtc_state is set free so that
4380 * scaler can be assigned to other user. Actual register
4381 * update to free the scaler is done in plane/panel-fit programming.
4382 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4383 */
86adf9d7 4384 if (force_detach || !need_scaling) {
a1b2278e 4385 if (*scaler_id >= 0) {
86adf9d7 4386 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4387 scaler_state->scalers[*scaler_id].in_use = 0;
4388
86adf9d7
ML
4389 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4390 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4391 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4392 scaler_state->scaler_users);
4393 *scaler_id = -1;
4394 }
4395 return 0;
4396 }
4397
4398 /* range checks */
4399 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4400 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4401
4402 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4403 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4404 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4405 "size is out of scaler range\n",
86adf9d7 4406 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4407 return -EINVAL;
4408 }
4409
86adf9d7
ML
4410 /* mark this plane as a scaler user in crtc_state */
4411 scaler_state->scaler_users |= (1 << scaler_user);
4412 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4413 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4414 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4415 scaler_state->scaler_users);
4416
4417 return 0;
4418}
4419
4420/**
4421 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4422 *
4423 * @state: crtc's scaler state
86adf9d7
ML
4424 *
4425 * Return
4426 * 0 - scaler_usage updated successfully
4427 * error - requested scaling cannot be supported or other error condition
4428 */
e435d6e5 4429int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4430{
4431 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
7c5f93b0 4432 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
86adf9d7
ML
4433
4434 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4435 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4436
e435d6e5 4437 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
86adf9d7
ML
4438 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4439 state->pipe_src_w, state->pipe_src_h,
aad941d5 4440 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
86adf9d7
ML
4441}
4442
4443/**
4444 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4445 *
4446 * @state: crtc's scaler state
86adf9d7
ML
4447 * @plane_state: atomic plane state to update
4448 *
4449 * Return
4450 * 0 - scaler_usage updated successfully
4451 * error - requested scaling cannot be supported or other error condition
4452 */
da20eabd
ML
4453static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4454 struct intel_plane_state *plane_state)
86adf9d7
ML
4455{
4456
4457 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4458 struct intel_plane *intel_plane =
4459 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4460 struct drm_framebuffer *fb = plane_state->base.fb;
4461 int ret;
4462
4463 bool force_detach = !fb || !plane_state->visible;
4464
4465 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4466 intel_plane->base.base.id, intel_crtc->pipe,
4467 drm_plane_index(&intel_plane->base));
4468
4469 ret = skl_update_scaler(crtc_state, force_detach,
4470 drm_plane_index(&intel_plane->base),
4471 &plane_state->scaler_id,
4472 plane_state->base.rotation,
4473 drm_rect_width(&plane_state->src) >> 16,
4474 drm_rect_height(&plane_state->src) >> 16,
4475 drm_rect_width(&plane_state->dst),
4476 drm_rect_height(&plane_state->dst));
4477
4478 if (ret || plane_state->scaler_id < 0)
4479 return ret;
4480
a1b2278e 4481 /* check colorkey */
818ed961 4482 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
86adf9d7 4483 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
818ed961 4484 intel_plane->base.base.id);
a1b2278e
CK
4485 return -EINVAL;
4486 }
4487
4488 /* Check src format */
86adf9d7
ML
4489 switch (fb->pixel_format) {
4490 case DRM_FORMAT_RGB565:
4491 case DRM_FORMAT_XBGR8888:
4492 case DRM_FORMAT_XRGB8888:
4493 case DRM_FORMAT_ABGR8888:
4494 case DRM_FORMAT_ARGB8888:
4495 case DRM_FORMAT_XRGB2101010:
4496 case DRM_FORMAT_XBGR2101010:
4497 case DRM_FORMAT_YUYV:
4498 case DRM_FORMAT_YVYU:
4499 case DRM_FORMAT_UYVY:
4500 case DRM_FORMAT_VYUY:
4501 break;
4502 default:
4503 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4504 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4505 return -EINVAL;
a1b2278e
CK
4506 }
4507
a1b2278e
CK
4508 return 0;
4509}
4510
e435d6e5
ML
4511static void skylake_scaler_disable(struct intel_crtc *crtc)
4512{
4513 int i;
4514
4515 for (i = 0; i < crtc->num_scalers; i++)
4516 skl_detach_scaler(crtc, i);
4517}
4518
4519static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4520{
4521 struct drm_device *dev = crtc->base.dev;
4522 struct drm_i915_private *dev_priv = dev->dev_private;
4523 int pipe = crtc->pipe;
a1b2278e
CK
4524 struct intel_crtc_scaler_state *scaler_state =
4525 &crtc->config->scaler_state;
4526
4527 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4528
6e3c9717 4529 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4530 int id;
4531
4532 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4533 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4534 return;
4535 }
4536
4537 id = scaler_state->scaler_id;
4538 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4539 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4540 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4541 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4542
4543 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4544 }
4545}
4546
b074cec8
JB
4547static void ironlake_pfit_enable(struct intel_crtc *crtc)
4548{
4549 struct drm_device *dev = crtc->base.dev;
4550 struct drm_i915_private *dev_priv = dev->dev_private;
4551 int pipe = crtc->pipe;
4552
6e3c9717 4553 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4554 /* Force use of hard-coded filter coefficients
4555 * as some pre-programmed values are broken,
4556 * e.g. x201.
4557 */
4558 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4559 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4560 PF_PIPE_SEL_IVB(pipe));
4561 else
4562 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4563 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4564 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4565 }
4566}
4567
20bc8673 4568void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4569{
cea165c3
VS
4570 struct drm_device *dev = crtc->base.dev;
4571 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4572
6e3c9717 4573 if (!crtc->config->ips_enabled)
d77e4531
PZ
4574 return;
4575
cea165c3
VS
4576 /* We can only enable IPS after we enable a plane and wait for a vblank */
4577 intel_wait_for_vblank(dev, crtc->pipe);
4578
d77e4531 4579 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4580 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4581 mutex_lock(&dev_priv->rps.hw_lock);
4582 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4583 mutex_unlock(&dev_priv->rps.hw_lock);
4584 /* Quoting Art Runyan: "its not safe to expect any particular
4585 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4586 * mailbox." Moreover, the mailbox may return a bogus state,
4587 * so we need to just enable it and continue on.
2a114cc1
BW
4588 */
4589 } else {
4590 I915_WRITE(IPS_CTL, IPS_ENABLE);
4591 /* The bit only becomes 1 in the next vblank, so this wait here
4592 * is essentially intel_wait_for_vblank. If we don't have this
4593 * and don't wait for vblanks until the end of crtc_enable, then
4594 * the HW state readout code will complain that the expected
4595 * IPS_CTL value is not the one we read. */
4596 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4597 DRM_ERROR("Timed out waiting for IPS enable\n");
4598 }
d77e4531
PZ
4599}
4600
20bc8673 4601void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4602{
4603 struct drm_device *dev = crtc->base.dev;
4604 struct drm_i915_private *dev_priv = dev->dev_private;
4605
6e3c9717 4606 if (!crtc->config->ips_enabled)
d77e4531
PZ
4607 return;
4608
4609 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4610 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4611 mutex_lock(&dev_priv->rps.hw_lock);
4612 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4613 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4614 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4615 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4616 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4617 } else {
2a114cc1 4618 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4619 POSTING_READ(IPS_CTL);
4620 }
d77e4531
PZ
4621
4622 /* We need to wait for a vblank before we can disable the plane. */
4623 intel_wait_for_vblank(dev, crtc->pipe);
4624}
4625
4626/** Loads the palette/gamma unit for the CRTC with the prepared values */
4627static void intel_crtc_load_lut(struct drm_crtc *crtc)
4628{
4629 struct drm_device *dev = crtc->dev;
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4631 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4632 enum pipe pipe = intel_crtc->pipe;
d77e4531
PZ
4633 int i;
4634 bool reenable_ips = false;
4635
4636 /* The clocks have to be on to load the palette. */
53d9f4e9 4637 if (!crtc->state->active)
d77e4531
PZ
4638 return;
4639
50360403 4640 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
a65347ba 4641 if (intel_crtc->config->has_dsi_encoder)
d77e4531
PZ
4642 assert_dsi_pll_enabled(dev_priv);
4643 else
4644 assert_pll_enabled(dev_priv, pipe);
4645 }
4646
d77e4531
PZ
4647 /* Workaround : Do not read or write the pipe palette/gamma data while
4648 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4649 */
6e3c9717 4650 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4651 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4652 GAMMA_MODE_MODE_SPLIT)) {
4653 hsw_disable_ips(intel_crtc);
4654 reenable_ips = true;
4655 }
4656
4657 for (i = 0; i < 256; i++) {
f0f59a00 4658 i915_reg_t palreg;
f65a9c5b
VS
4659
4660 if (HAS_GMCH_DISPLAY(dev))
4661 palreg = PALETTE(pipe, i);
4662 else
4663 palreg = LGC_PALETTE(pipe, i);
4664
4665 I915_WRITE(palreg,
d77e4531
PZ
4666 (intel_crtc->lut_r[i] << 16) |
4667 (intel_crtc->lut_g[i] << 8) |
4668 intel_crtc->lut_b[i]);
4669 }
4670
4671 if (reenable_ips)
4672 hsw_enable_ips(intel_crtc);
4673}
4674
7cac945f 4675static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4676{
7cac945f 4677 if (intel_crtc->overlay) {
d3eedb1a
VS
4678 struct drm_device *dev = intel_crtc->base.dev;
4679 struct drm_i915_private *dev_priv = dev->dev_private;
4680
4681 mutex_lock(&dev->struct_mutex);
4682 dev_priv->mm.interruptible = false;
4683 (void) intel_overlay_switch_off(intel_crtc->overlay);
4684 dev_priv->mm.interruptible = true;
4685 mutex_unlock(&dev->struct_mutex);
4686 }
4687
4688 /* Let userspace switch the overlay on again. In most cases userspace
4689 * has to recompute where to put it anyway.
4690 */
4691}
4692
87d4300a
ML
4693/**
4694 * intel_post_enable_primary - Perform operations after enabling primary plane
4695 * @crtc: the CRTC whose primary plane was just enabled
4696 *
4697 * Performs potentially sleeping operations that must be done after the primary
4698 * plane is enabled, such as updating FBC and IPS. Note that this may be
4699 * called due to an explicit primary plane update, or due to an implicit
4700 * re-enable that is caused when a sprite plane is updated to no longer
4701 * completely hide the primary plane.
4702 */
4703static void
4704intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4705{
4706 struct drm_device *dev = crtc->dev;
87d4300a 4707 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4709 int pipe = intel_crtc->pipe;
a5c4d7bc 4710
87d4300a
ML
4711 /*
4712 * BDW signals flip done immediately if the plane
4713 * is disabled, even if the plane enable is already
4714 * armed to occur at the next vblank :(
4715 */
4716 if (IS_BROADWELL(dev))
4717 intel_wait_for_vblank(dev, pipe);
a5c4d7bc 4718
87d4300a
ML
4719 /*
4720 * FIXME IPS should be fine as long as one plane is
4721 * enabled, but in practice it seems to have problems
4722 * when going from primary only to sprite only and vice
4723 * versa.
4724 */
a5c4d7bc
VS
4725 hsw_enable_ips(intel_crtc);
4726
f99d7069 4727 /*
87d4300a
ML
4728 * Gen2 reports pipe underruns whenever all planes are disabled.
4729 * So don't enable underrun reporting before at least some planes
4730 * are enabled.
4731 * FIXME: Need to fix the logic to work when we turn off all planes
4732 * but leave the pipe running.
f99d7069 4733 */
87d4300a
ML
4734 if (IS_GEN2(dev))
4735 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4736
aca7b684
VS
4737 /* Underruns don't always raise interrupts, so check manually. */
4738 intel_check_cpu_fifo_underruns(dev_priv);
4739 intel_check_pch_fifo_underruns(dev_priv);
a5c4d7bc
VS
4740}
4741
87d4300a
ML
4742/**
4743 * intel_pre_disable_primary - Perform operations before disabling primary plane
4744 * @crtc: the CRTC whose primary plane is to be disabled
4745 *
4746 * Performs potentially sleeping operations that must be done before the
4747 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4748 * be called due to an explicit primary plane update, or due to an implicit
4749 * disable that is caused when a sprite plane completely hides the primary
4750 * plane.
4751 */
4752static void
4753intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4754{
4755 struct drm_device *dev = crtc->dev;
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4758 int pipe = intel_crtc->pipe;
a5c4d7bc 4759
87d4300a
ML
4760 /*
4761 * Gen2 reports pipe underruns whenever all planes are disabled.
4762 * So diasble underrun reporting before all the planes get disabled.
4763 * FIXME: Need to fix the logic to work when we turn off all planes
4764 * but leave the pipe running.
4765 */
4766 if (IS_GEN2(dev))
4767 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4768
87d4300a
ML
4769 /*
4770 * Vblank time updates from the shadow to live plane control register
4771 * are blocked if the memory self-refresh mode is active at that
4772 * moment. So to make sure the plane gets truly disabled, disable
4773 * first the self-refresh mode. The self-refresh enable bit in turn
4774 * will be checked/applied by the HW only at the next frame start
4775 * event which is after the vblank start event, so we need to have a
4776 * wait-for-vblank between disabling the plane and the pipe.
4777 */
262cd2e1 4778 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 4779 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
4780 dev_priv->wm.vlv.cxsr = false;
4781 intel_wait_for_vblank(dev, pipe);
4782 }
87d4300a 4783
87d4300a
ML
4784 /*
4785 * FIXME IPS should be fine as long as one plane is
4786 * enabled, but in practice it seems to have problems
4787 * when going from primary only to sprite only and vice
4788 * versa.
4789 */
a5c4d7bc 4790 hsw_disable_ips(intel_crtc);
87d4300a
ML
4791}
4792
ac21b225
ML
4793static void intel_post_plane_update(struct intel_crtc *crtc)
4794{
4795 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
92826fcd
ML
4796 struct intel_crtc_state *pipe_config =
4797 to_intel_crtc_state(crtc->base.state);
ac21b225 4798 struct drm_device *dev = crtc->base.dev;
ac21b225
ML
4799
4800 if (atomic->wait_vblank)
4801 intel_wait_for_vblank(dev, crtc->pipe);
4802
4803 intel_frontbuffer_flip(dev, atomic->fb_bits);
4804
ab1d3a0e 4805 crtc->wm.cxsr_allowed = true;
852eb00d 4806
92826fcd 4807 if (pipe_config->wm_changed)
f015c551
VS
4808 intel_update_watermarks(&crtc->base);
4809
c80ac854 4810 if (atomic->update_fbc)
754d1133 4811 intel_fbc_update(crtc);
ac21b225
ML
4812
4813 if (atomic->post_enable_primary)
4814 intel_post_enable_primary(&crtc->base);
4815
ac21b225
ML
4816 memset(atomic, 0, sizeof(*atomic));
4817}
4818
4819static void intel_pre_plane_update(struct intel_crtc *crtc)
4820{
4821 struct drm_device *dev = crtc->base.dev;
eddfcbcd 4822 struct drm_i915_private *dev_priv = dev->dev_private;
ac21b225 4823 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
ab1d3a0e
ML
4824 struct intel_crtc_state *pipe_config =
4825 to_intel_crtc_state(crtc->base.state);
ac21b225 4826
c80ac854 4827 if (atomic->disable_fbc)
d029bcad 4828 intel_fbc_deactivate(crtc);
ac21b225 4829
066cf55b
RV
4830 if (crtc->atomic.disable_ips)
4831 hsw_disable_ips(crtc);
4832
ac21b225
ML
4833 if (atomic->pre_disable_primary)
4834 intel_pre_disable_primary(&crtc->base);
852eb00d 4835
ab1d3a0e 4836 if (pipe_config->disable_cxsr) {
852eb00d
VS
4837 crtc->wm.cxsr_allowed = false;
4838 intel_set_memory_cxsr(dev_priv, false);
4839 }
92826fcd
ML
4840
4841 if (!needs_modeset(&pipe_config->base) && pipe_config->wm_changed)
4842 intel_update_watermarks(&crtc->base);
ac21b225
ML
4843}
4844
d032ffa0 4845static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
4846{
4847 struct drm_device *dev = crtc->dev;
4848 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 4849 struct drm_plane *p;
87d4300a
ML
4850 int pipe = intel_crtc->pipe;
4851
7cac945f 4852 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 4853
d032ffa0
ML
4854 drm_for_each_plane_mask(p, dev, plane_mask)
4855 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 4856
f99d7069
DV
4857 /*
4858 * FIXME: Once we grow proper nuclear flip support out of this we need
4859 * to compute the mask of flip planes precisely. For the time being
4860 * consider this a flip to a NULL plane.
4861 */
4862 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4863}
4864
f67a559d
JB
4865static void ironlake_crtc_enable(struct drm_crtc *crtc)
4866{
4867 struct drm_device *dev = crtc->dev;
4868 struct drm_i915_private *dev_priv = dev->dev_private;
4869 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4870 struct intel_encoder *encoder;
f67a559d 4871 int pipe = intel_crtc->pipe;
f67a559d 4872
53d9f4e9 4873 if (WARN_ON(intel_crtc->active))
f67a559d
JB
4874 return;
4875
81b088ca
VS
4876 if (intel_crtc->config->has_pch_encoder)
4877 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4878
6e3c9717 4879 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4880 intel_prepare_shared_dpll(intel_crtc);
4881
6e3c9717 4882 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4883 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4884
4885 intel_set_pipe_timings(intel_crtc);
4886
6e3c9717 4887 if (intel_crtc->config->has_pch_encoder) {
29407aab 4888 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4889 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4890 }
4891
4892 ironlake_set_pipeconf(crtc);
4893
f67a559d 4894 intel_crtc->active = true;
8664281b 4895
a72e4c9f 4896 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4897
f6736a1a 4898 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4899 if (encoder->pre_enable)
4900 encoder->pre_enable(encoder);
f67a559d 4901
6e3c9717 4902 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4903 /* Note: FDI PLL enabling _must_ be done before we enable the
4904 * cpu pipes, hence this is separate from all the other fdi/pch
4905 * enabling. */
88cefb6c 4906 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4907 } else {
4908 assert_fdi_tx_disabled(dev_priv, pipe);
4909 assert_fdi_rx_disabled(dev_priv, pipe);
4910 }
f67a559d 4911
b074cec8 4912 ironlake_pfit_enable(intel_crtc);
f67a559d 4913
9c54c0dd
JB
4914 /*
4915 * On ILK+ LUT must be loaded before the pipe is running but with
4916 * clocks enabled
4917 */
4918 intel_crtc_load_lut(crtc);
4919
f37fcc2a 4920 intel_update_watermarks(crtc);
e1fdc473 4921 intel_enable_pipe(intel_crtc);
f67a559d 4922
6e3c9717 4923 if (intel_crtc->config->has_pch_encoder)
f67a559d 4924 ironlake_pch_enable(crtc);
c98e9dcf 4925
f9b61ff6
DV
4926 assert_vblank_disabled(crtc);
4927 drm_crtc_vblank_on(crtc);
4928
fa5c73b1
DV
4929 for_each_encoder_on_crtc(dev, crtc, encoder)
4930 encoder->enable(encoder);
61b77ddd
DV
4931
4932 if (HAS_PCH_CPT(dev))
a1520318 4933 cpt_verify_modeset(dev, intel_crtc->pipe);
37ca8d4c
VS
4934
4935 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4936 if (intel_crtc->config->has_pch_encoder)
4937 intel_wait_for_vblank(dev, pipe);
4938 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
d029bcad
PZ
4939
4940 intel_fbc_enable(intel_crtc);
6be4a607
JB
4941}
4942
42db64ef
PZ
4943/* IPS only exists on ULT machines and is tied to pipe A. */
4944static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4945{
f5adf94e 4946 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4947}
4948
4f771f10
PZ
4949static void haswell_crtc_enable(struct drm_crtc *crtc)
4950{
4951 struct drm_device *dev = crtc->dev;
4952 struct drm_i915_private *dev_priv = dev->dev_private;
4953 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4954 struct intel_encoder *encoder;
99d736a2
ML
4955 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4956 struct intel_crtc_state *pipe_config =
4957 to_intel_crtc_state(crtc->state);
4f771f10 4958
53d9f4e9 4959 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
4960 return;
4961
81b088ca
VS
4962 if (intel_crtc->config->has_pch_encoder)
4963 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4964 false);
4965
df8ad70c
DV
4966 if (intel_crtc_to_shared_dpll(intel_crtc))
4967 intel_enable_shared_dpll(intel_crtc);
4968
6e3c9717 4969 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4970 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4971
4972 intel_set_pipe_timings(intel_crtc);
4973
6e3c9717
ACO
4974 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4975 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4976 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4977 }
4978
6e3c9717 4979 if (intel_crtc->config->has_pch_encoder) {
229fca97 4980 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4981 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4982 }
4983
4984 haswell_set_pipeconf(crtc);
4985
4986 intel_set_pipe_csc(crtc);
4987
4f771f10 4988 intel_crtc->active = true;
8664281b 4989
6b698516
DV
4990 if (intel_crtc->config->has_pch_encoder)
4991 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4992 else
4993 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4994
7d4aefd0 4995 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10
PZ
4996 if (encoder->pre_enable)
4997 encoder->pre_enable(encoder);
7d4aefd0 4998 }
4f771f10 4999
d2d65408 5000 if (intel_crtc->config->has_pch_encoder)
4fe9467d 5001 dev_priv->display.fdi_link_train(crtc);
4fe9467d 5002
a65347ba 5003 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5004 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 5005
1c132b44 5006 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5007 skylake_pfit_enable(intel_crtc);
ff6d9f55 5008 else
1c132b44 5009 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
5010
5011 /*
5012 * On ILK+ LUT must be loaded before the pipe is running but with
5013 * clocks enabled
5014 */
5015 intel_crtc_load_lut(crtc);
5016
1f544388 5017 intel_ddi_set_pipe_settings(crtc);
a65347ba 5018 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5019 intel_ddi_enable_transcoder_func(crtc);
4f771f10 5020
f37fcc2a 5021 intel_update_watermarks(crtc);
e1fdc473 5022 intel_enable_pipe(intel_crtc);
42db64ef 5023
6e3c9717 5024 if (intel_crtc->config->has_pch_encoder)
1507e5bd 5025 lpt_pch_enable(crtc);
4f771f10 5026
a65347ba 5027 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
5028 intel_ddi_set_vc_payload_alloc(crtc, true);
5029
f9b61ff6
DV
5030 assert_vblank_disabled(crtc);
5031 drm_crtc_vblank_on(crtc);
5032
8807e55b 5033 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 5034 encoder->enable(encoder);
8807e55b
JN
5035 intel_opregion_notify_encoder(encoder, true);
5036 }
4f771f10 5037
6b698516
DV
5038 if (intel_crtc->config->has_pch_encoder) {
5039 intel_wait_for_vblank(dev, pipe);
5040 intel_wait_for_vblank(dev, pipe);
5041 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
d2d65408
VS
5042 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5043 true);
6b698516 5044 }
d2d65408 5045
e4916946
PZ
5046 /* If we change the relative order between pipe/planes enabling, we need
5047 * to change the workaround. */
99d736a2
ML
5048 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5049 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5050 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5051 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5052 }
d029bcad
PZ
5053
5054 intel_fbc_enable(intel_crtc);
4f771f10
PZ
5055}
5056
bfd16b2a 5057static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
3f8dce3a
DV
5058{
5059 struct drm_device *dev = crtc->base.dev;
5060 struct drm_i915_private *dev_priv = dev->dev_private;
5061 int pipe = crtc->pipe;
5062
5063 /* To avoid upsetting the power well on haswell only disable the pfit if
5064 * it's in use. The hw state code will make sure we get this right. */
bfd16b2a 5065 if (force || crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
5066 I915_WRITE(PF_CTL(pipe), 0);
5067 I915_WRITE(PF_WIN_POS(pipe), 0);
5068 I915_WRITE(PF_WIN_SZ(pipe), 0);
5069 }
5070}
5071
6be4a607
JB
5072static void ironlake_crtc_disable(struct drm_crtc *crtc)
5073{
5074 struct drm_device *dev = crtc->dev;
5075 struct drm_i915_private *dev_priv = dev->dev_private;
5076 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 5077 struct intel_encoder *encoder;
6be4a607 5078 int pipe = intel_crtc->pipe;
b52eb4dc 5079
37ca8d4c
VS
5080 if (intel_crtc->config->has_pch_encoder)
5081 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5082
ea9d758d
DV
5083 for_each_encoder_on_crtc(dev, crtc, encoder)
5084 encoder->disable(encoder);
5085
f9b61ff6
DV
5086 drm_crtc_vblank_off(crtc);
5087 assert_vblank_disabled(crtc);
5088
3860b2ec
VS
5089 /*
5090 * Sometimes spurious CPU pipe underruns happen when the
5091 * pipe is already disabled, but FDI RX/TX is still enabled.
5092 * Happens at least with VGA+HDMI cloning. Suppress them.
5093 */
5094 if (intel_crtc->config->has_pch_encoder)
5095 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5096
575f7ab7 5097 intel_disable_pipe(intel_crtc);
32f9d658 5098
bfd16b2a 5099 ironlake_pfit_disable(intel_crtc, false);
2c07245f 5100
3860b2ec 5101 if (intel_crtc->config->has_pch_encoder) {
5a74f70a 5102 ironlake_fdi_disable(crtc);
3860b2ec
VS
5103 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5104 }
5a74f70a 5105
bf49ec8c
DV
5106 for_each_encoder_on_crtc(dev, crtc, encoder)
5107 if (encoder->post_disable)
5108 encoder->post_disable(encoder);
2c07245f 5109
6e3c9717 5110 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5111 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5112
d925c59a 5113 if (HAS_PCH_CPT(dev)) {
f0f59a00
VS
5114 i915_reg_t reg;
5115 u32 temp;
5116
d925c59a
DV
5117 /* disable TRANS_DP_CTL */
5118 reg = TRANS_DP_CTL(pipe);
5119 temp = I915_READ(reg);
5120 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5121 TRANS_DP_PORT_SEL_MASK);
5122 temp |= TRANS_DP_PORT_SEL_NONE;
5123 I915_WRITE(reg, temp);
5124
5125 /* disable DPLL_SEL */
5126 temp = I915_READ(PCH_DPLL_SEL);
11887397 5127 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5128 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5129 }
e3421a18 5130
d925c59a
DV
5131 ironlake_fdi_pll_disable(intel_crtc);
5132 }
81b088ca
VS
5133
5134 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
d029bcad
PZ
5135
5136 intel_fbc_disable_crtc(intel_crtc);
6be4a607 5137}
1b3c7a47 5138
4f771f10 5139static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5140{
4f771f10
PZ
5141 struct drm_device *dev = crtc->dev;
5142 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5144 struct intel_encoder *encoder;
6e3c9717 5145 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5146
d2d65408
VS
5147 if (intel_crtc->config->has_pch_encoder)
5148 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5149 false);
5150
8807e55b
JN
5151 for_each_encoder_on_crtc(dev, crtc, encoder) {
5152 intel_opregion_notify_encoder(encoder, false);
4f771f10 5153 encoder->disable(encoder);
8807e55b 5154 }
4f771f10 5155
f9b61ff6
DV
5156 drm_crtc_vblank_off(crtc);
5157 assert_vblank_disabled(crtc);
5158
575f7ab7 5159 intel_disable_pipe(intel_crtc);
4f771f10 5160
6e3c9717 5161 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5162 intel_ddi_set_vc_payload_alloc(crtc, false);
5163
a65347ba 5164 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5165 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5166
1c132b44 5167 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5168 skylake_scaler_disable(intel_crtc);
ff6d9f55 5169 else
bfd16b2a 5170 ironlake_pfit_disable(intel_crtc, false);
4f771f10 5171
a65347ba 5172 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5173 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5174
6e3c9717 5175 if (intel_crtc->config->has_pch_encoder) {
ab4d966c 5176 lpt_disable_pch_transcoder(dev_priv);
1ad960f2 5177 intel_ddi_fdi_disable(crtc);
83616634 5178 }
4f771f10 5179
97b040aa
ID
5180 for_each_encoder_on_crtc(dev, crtc, encoder)
5181 if (encoder->post_disable)
5182 encoder->post_disable(encoder);
81b088ca
VS
5183
5184 if (intel_crtc->config->has_pch_encoder)
5185 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5186 true);
d029bcad
PZ
5187
5188 intel_fbc_disable_crtc(intel_crtc);
4f771f10
PZ
5189}
5190
2dd24552
JB
5191static void i9xx_pfit_enable(struct intel_crtc *crtc)
5192{
5193 struct drm_device *dev = crtc->base.dev;
5194 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5195 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5196
681a8504 5197 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5198 return;
5199
2dd24552 5200 /*
c0b03411
DV
5201 * The panel fitter should only be adjusted whilst the pipe is disabled,
5202 * according to register description and PRM.
2dd24552 5203 */
c0b03411
DV
5204 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5205 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5206
b074cec8
JB
5207 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5208 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5209
5210 /* Border color in case we don't scale up to the full screen. Black by
5211 * default, change to something else for debugging. */
5212 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5213}
5214
d05410f9
DA
5215static enum intel_display_power_domain port_to_power_domain(enum port port)
5216{
5217 switch (port) {
5218 case PORT_A:
6331a704 5219 return POWER_DOMAIN_PORT_DDI_A_LANES;
d05410f9 5220 case PORT_B:
6331a704 5221 return POWER_DOMAIN_PORT_DDI_B_LANES;
d05410f9 5222 case PORT_C:
6331a704 5223 return POWER_DOMAIN_PORT_DDI_C_LANES;
d05410f9 5224 case PORT_D:
6331a704 5225 return POWER_DOMAIN_PORT_DDI_D_LANES;
d8e19f99 5226 case PORT_E:
6331a704 5227 return POWER_DOMAIN_PORT_DDI_E_LANES;
d05410f9 5228 default:
b9fec167 5229 MISSING_CASE(port);
d05410f9
DA
5230 return POWER_DOMAIN_PORT_OTHER;
5231 }
5232}
5233
25f78f58
VS
5234static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5235{
5236 switch (port) {
5237 case PORT_A:
5238 return POWER_DOMAIN_AUX_A;
5239 case PORT_B:
5240 return POWER_DOMAIN_AUX_B;
5241 case PORT_C:
5242 return POWER_DOMAIN_AUX_C;
5243 case PORT_D:
5244 return POWER_DOMAIN_AUX_D;
5245 case PORT_E:
5246 /* FIXME: Check VBT for actual wiring of PORT E */
5247 return POWER_DOMAIN_AUX_D;
5248 default:
b9fec167 5249 MISSING_CASE(port);
25f78f58
VS
5250 return POWER_DOMAIN_AUX_A;
5251 }
5252}
5253
319be8ae
ID
5254enum intel_display_power_domain
5255intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5256{
5257 struct drm_device *dev = intel_encoder->base.dev;
5258 struct intel_digital_port *intel_dig_port;
5259
5260 switch (intel_encoder->type) {
5261 case INTEL_OUTPUT_UNKNOWN:
5262 /* Only DDI platforms should ever use this output type */
5263 WARN_ON_ONCE(!HAS_DDI(dev));
5264 case INTEL_OUTPUT_DISPLAYPORT:
5265 case INTEL_OUTPUT_HDMI:
5266 case INTEL_OUTPUT_EDP:
5267 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5268 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5269 case INTEL_OUTPUT_DP_MST:
5270 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5271 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5272 case INTEL_OUTPUT_ANALOG:
5273 return POWER_DOMAIN_PORT_CRT;
5274 case INTEL_OUTPUT_DSI:
5275 return POWER_DOMAIN_PORT_DSI;
5276 default:
5277 return POWER_DOMAIN_PORT_OTHER;
5278 }
5279}
5280
25f78f58
VS
5281enum intel_display_power_domain
5282intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5283{
5284 struct drm_device *dev = intel_encoder->base.dev;
5285 struct intel_digital_port *intel_dig_port;
5286
5287 switch (intel_encoder->type) {
5288 case INTEL_OUTPUT_UNKNOWN:
651174a4
ID
5289 case INTEL_OUTPUT_HDMI:
5290 /*
5291 * Only DDI platforms should ever use these output types.
5292 * We can get here after the HDMI detect code has already set
5293 * the type of the shared encoder. Since we can't be sure
5294 * what's the status of the given connectors, play safe and
5295 * run the DP detection too.
5296 */
25f78f58
VS
5297 WARN_ON_ONCE(!HAS_DDI(dev));
5298 case INTEL_OUTPUT_DISPLAYPORT:
5299 case INTEL_OUTPUT_EDP:
5300 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5301 return port_to_aux_power_domain(intel_dig_port->port);
5302 case INTEL_OUTPUT_DP_MST:
5303 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5304 return port_to_aux_power_domain(intel_dig_port->port);
5305 default:
b9fec167 5306 MISSING_CASE(intel_encoder->type);
25f78f58
VS
5307 return POWER_DOMAIN_AUX_A;
5308 }
5309}
5310
319be8ae 5311static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5312{
319be8ae
ID
5313 struct drm_device *dev = crtc->dev;
5314 struct intel_encoder *intel_encoder;
5315 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5316 enum pipe pipe = intel_crtc->pipe;
77d22dca 5317 unsigned long mask;
1a70a728 5318 enum transcoder transcoder = intel_crtc->config->cpu_transcoder;
77d22dca 5319
292b990e
ML
5320 if (!crtc->state->active)
5321 return 0;
5322
77d22dca
ID
5323 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5324 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6e3c9717
ACO
5325 if (intel_crtc->config->pch_pfit.enabled ||
5326 intel_crtc->config->pch_pfit.force_thru)
77d22dca
ID
5327 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5328
319be8ae
ID
5329 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5330 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5331
77d22dca
ID
5332 return mask;
5333}
5334
292b990e 5335static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 5336{
292b990e
ML
5337 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5338 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5339 enum intel_display_power_domain domain;
5340 unsigned long domains, new_domains, old_domains;
77d22dca 5341
292b990e
ML
5342 old_domains = intel_crtc->enabled_power_domains;
5343 intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
77d22dca 5344
292b990e
ML
5345 domains = new_domains & ~old_domains;
5346
5347 for_each_power_domain(domain, domains)
5348 intel_display_power_get(dev_priv, domain);
5349
5350 return old_domains & ~new_domains;
5351}
5352
5353static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5354 unsigned long domains)
5355{
5356 enum intel_display_power_domain domain;
5357
5358 for_each_power_domain(domain, domains)
5359 intel_display_power_put(dev_priv, domain);
5360}
77d22dca 5361
292b990e
ML
5362static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5363{
5364 struct drm_device *dev = state->dev;
5365 struct drm_i915_private *dev_priv = dev->dev_private;
5366 unsigned long put_domains[I915_MAX_PIPES] = {};
5367 struct drm_crtc_state *crtc_state;
5368 struct drm_crtc *crtc;
5369 int i;
77d22dca 5370
292b990e
ML
5371 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5372 if (needs_modeset(crtc->state))
5373 put_domains[to_intel_crtc(crtc)->pipe] =
5374 modeset_get_crtc_power_domains(crtc);
77d22dca
ID
5375 }
5376
27c329ed
ML
5377 if (dev_priv->display.modeset_commit_cdclk) {
5378 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5379
5380 if (cdclk != dev_priv->cdclk_freq &&
5381 !WARN_ON(!state->allow_modeset))
5382 dev_priv->display.modeset_commit_cdclk(state);
5383 }
50f6e502 5384
292b990e
ML
5385 for (i = 0; i < I915_MAX_PIPES; i++)
5386 if (put_domains[i])
5387 modeset_put_power_domains(dev_priv, put_domains[i]);
77d22dca
ID
5388}
5389
adafdc6f
MK
5390static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5391{
5392 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5393
5394 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5395 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5396 return max_cdclk_freq;
5397 else if (IS_CHERRYVIEW(dev_priv))
5398 return max_cdclk_freq*95/100;
5399 else if (INTEL_INFO(dev_priv)->gen < 4)
5400 return 2*max_cdclk_freq*90/100;
5401 else
5402 return max_cdclk_freq*90/100;
5403}
5404
560a7ae4
DL
5405static void intel_update_max_cdclk(struct drm_device *dev)
5406{
5407 struct drm_i915_private *dev_priv = dev->dev_private;
5408
ef11bdb3 5409 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
560a7ae4
DL
5410 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5411
5412 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5413 dev_priv->max_cdclk_freq = 675000;
5414 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5415 dev_priv->max_cdclk_freq = 540000;
5416 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5417 dev_priv->max_cdclk_freq = 450000;
5418 else
5419 dev_priv->max_cdclk_freq = 337500;
5420 } else if (IS_BROADWELL(dev)) {
5421 /*
5422 * FIXME with extra cooling we can allow
5423 * 540 MHz for ULX and 675 Mhz for ULT.
5424 * How can we know if extra cooling is
5425 * available? PCI ID, VTB, something else?
5426 */
5427 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5428 dev_priv->max_cdclk_freq = 450000;
5429 else if (IS_BDW_ULX(dev))
5430 dev_priv->max_cdclk_freq = 450000;
5431 else if (IS_BDW_ULT(dev))
5432 dev_priv->max_cdclk_freq = 540000;
5433 else
5434 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5435 } else if (IS_CHERRYVIEW(dev)) {
5436 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5437 } else if (IS_VALLEYVIEW(dev)) {
5438 dev_priv->max_cdclk_freq = 400000;
5439 } else {
5440 /* otherwise assume cdclk is fixed */
5441 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5442 }
5443
adafdc6f
MK
5444 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5445
560a7ae4
DL
5446 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5447 dev_priv->max_cdclk_freq);
adafdc6f
MK
5448
5449 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5450 dev_priv->max_dotclk_freq);
560a7ae4
DL
5451}
5452
5453static void intel_update_cdclk(struct drm_device *dev)
5454{
5455 struct drm_i915_private *dev_priv = dev->dev_private;
5456
5457 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5458 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5459 dev_priv->cdclk_freq);
5460
5461 /*
5462 * Program the gmbus_freq based on the cdclk frequency.
5463 * BSpec erroneously claims we should aim for 4MHz, but
5464 * in fact 1MHz is the correct frequency.
5465 */
5466 if (IS_VALLEYVIEW(dev)) {
5467 /*
5468 * Program the gmbus_freq based on the cdclk frequency.
5469 * BSpec erroneously claims we should aim for 4MHz, but
5470 * in fact 1MHz is the correct frequency.
5471 */
5472 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5473 }
5474
5475 if (dev_priv->max_cdclk_freq == 0)
5476 intel_update_max_cdclk(dev);
5477}
5478
70d0c574 5479static void broxton_set_cdclk(struct drm_device *dev, int frequency)
f8437dd1
VK
5480{
5481 struct drm_i915_private *dev_priv = dev->dev_private;
5482 uint32_t divider;
5483 uint32_t ratio;
5484 uint32_t current_freq;
5485 int ret;
5486
5487 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5488 switch (frequency) {
5489 case 144000:
5490 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5491 ratio = BXT_DE_PLL_RATIO(60);
5492 break;
5493 case 288000:
5494 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5495 ratio = BXT_DE_PLL_RATIO(60);
5496 break;
5497 case 384000:
5498 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5499 ratio = BXT_DE_PLL_RATIO(60);
5500 break;
5501 case 576000:
5502 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5503 ratio = BXT_DE_PLL_RATIO(60);
5504 break;
5505 case 624000:
5506 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5507 ratio = BXT_DE_PLL_RATIO(65);
5508 break;
5509 case 19200:
5510 /*
5511 * Bypass frequency with DE PLL disabled. Init ratio, divider
5512 * to suppress GCC warning.
5513 */
5514 ratio = 0;
5515 divider = 0;
5516 break;
5517 default:
5518 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5519
5520 return;
5521 }
5522
5523 mutex_lock(&dev_priv->rps.hw_lock);
5524 /* Inform power controller of upcoming frequency change */
5525 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5526 0x80000000);
5527 mutex_unlock(&dev_priv->rps.hw_lock);
5528
5529 if (ret) {
5530 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5531 ret, frequency);
5532 return;
5533 }
5534
5535 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5536 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5537 current_freq = current_freq * 500 + 1000;
5538
5539 /*
5540 * DE PLL has to be disabled when
5541 * - setting to 19.2MHz (bypass, PLL isn't used)
5542 * - before setting to 624MHz (PLL needs toggling)
5543 * - before setting to any frequency from 624MHz (PLL needs toggling)
5544 */
5545 if (frequency == 19200 || frequency == 624000 ||
5546 current_freq == 624000) {
5547 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5548 /* Timeout 200us */
5549 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5550 1))
5551 DRM_ERROR("timout waiting for DE PLL unlock\n");
5552 }
5553
5554 if (frequency != 19200) {
5555 uint32_t val;
5556
5557 val = I915_READ(BXT_DE_PLL_CTL);
5558 val &= ~BXT_DE_PLL_RATIO_MASK;
5559 val |= ratio;
5560 I915_WRITE(BXT_DE_PLL_CTL, val);
5561
5562 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5563 /* Timeout 200us */
5564 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5565 DRM_ERROR("timeout waiting for DE PLL lock\n");
5566
5567 val = I915_READ(CDCLK_CTL);
5568 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5569 val |= divider;
5570 /*
5571 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5572 * enable otherwise.
5573 */
5574 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5575 if (frequency >= 500000)
5576 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5577
5578 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5579 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5580 val |= (frequency - 1000) / 500;
5581 I915_WRITE(CDCLK_CTL, val);
5582 }
5583
5584 mutex_lock(&dev_priv->rps.hw_lock);
5585 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5586 DIV_ROUND_UP(frequency, 25000));
5587 mutex_unlock(&dev_priv->rps.hw_lock);
5588
5589 if (ret) {
5590 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5591 ret, frequency);
5592 return;
5593 }
5594
a47871bd 5595 intel_update_cdclk(dev);
f8437dd1
VK
5596}
5597
5598void broxton_init_cdclk(struct drm_device *dev)
5599{
5600 struct drm_i915_private *dev_priv = dev->dev_private;
5601 uint32_t val;
5602
5603 /*
5604 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5605 * or else the reset will hang because there is no PCH to respond.
5606 * Move the handshake programming to initialization sequence.
5607 * Previously was left up to BIOS.
5608 */
5609 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5610 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5611 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5612
5613 /* Enable PG1 for cdclk */
5614 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5615
5616 /* check if cd clock is enabled */
5617 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5618 DRM_DEBUG_KMS("Display already initialized\n");
5619 return;
5620 }
5621
5622 /*
5623 * FIXME:
5624 * - The initial CDCLK needs to be read from VBT.
5625 * Need to make this change after VBT has changes for BXT.
5626 * - check if setting the max (or any) cdclk freq is really necessary
5627 * here, it belongs to modeset time
5628 */
5629 broxton_set_cdclk(dev, 624000);
5630
5631 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5632 POSTING_READ(DBUF_CTL);
5633
f8437dd1
VK
5634 udelay(10);
5635
5636 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5637 DRM_ERROR("DBuf power enable timeout!\n");
5638}
5639
5640void broxton_uninit_cdclk(struct drm_device *dev)
5641{
5642 struct drm_i915_private *dev_priv = dev->dev_private;
5643
5644 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5645 POSTING_READ(DBUF_CTL);
5646
f8437dd1
VK
5647 udelay(10);
5648
5649 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5650 DRM_ERROR("DBuf power disable timeout!\n");
5651
5652 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5653 broxton_set_cdclk(dev, 19200);
5654
5655 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5656}
5657
5d96d8af
DL
5658static const struct skl_cdclk_entry {
5659 unsigned int freq;
5660 unsigned int vco;
5661} skl_cdclk_frequencies[] = {
5662 { .freq = 308570, .vco = 8640 },
5663 { .freq = 337500, .vco = 8100 },
5664 { .freq = 432000, .vco = 8640 },
5665 { .freq = 450000, .vco = 8100 },
5666 { .freq = 540000, .vco = 8100 },
5667 { .freq = 617140, .vco = 8640 },
5668 { .freq = 675000, .vco = 8100 },
5669};
5670
5671static unsigned int skl_cdclk_decimal(unsigned int freq)
5672{
5673 return (freq - 1000) / 500;
5674}
5675
5676static unsigned int skl_cdclk_get_vco(unsigned int freq)
5677{
5678 unsigned int i;
5679
5680 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5681 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5682
5683 if (e->freq == freq)
5684 return e->vco;
5685 }
5686
5687 return 8100;
5688}
5689
5690static void
5691skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5692{
5693 unsigned int min_freq;
5694 u32 val;
5695
5696 /* select the minimum CDCLK before enabling DPLL 0 */
5697 val = I915_READ(CDCLK_CTL);
5698 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5699 val |= CDCLK_FREQ_337_308;
5700
5701 if (required_vco == 8640)
5702 min_freq = 308570;
5703 else
5704 min_freq = 337500;
5705
5706 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5707
5708 I915_WRITE(CDCLK_CTL, val);
5709 POSTING_READ(CDCLK_CTL);
5710
5711 /*
5712 * We always enable DPLL0 with the lowest link rate possible, but still
5713 * taking into account the VCO required to operate the eDP panel at the
5714 * desired frequency. The usual DP link rates operate with a VCO of
5715 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5716 * The modeset code is responsible for the selection of the exact link
5717 * rate later on, with the constraint of choosing a frequency that
5718 * works with required_vco.
5719 */
5720 val = I915_READ(DPLL_CTRL1);
5721
5722 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5723 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5724 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5725 if (required_vco == 8640)
5726 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5727 SKL_DPLL0);
5728 else
5729 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5730 SKL_DPLL0);
5731
5732 I915_WRITE(DPLL_CTRL1, val);
5733 POSTING_READ(DPLL_CTRL1);
5734
5735 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5736
5737 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5738 DRM_ERROR("DPLL0 not locked\n");
5739}
5740
5741static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5742{
5743 int ret;
5744 u32 val;
5745
5746 /* inform PCU we want to change CDCLK */
5747 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5748 mutex_lock(&dev_priv->rps.hw_lock);
5749 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5750 mutex_unlock(&dev_priv->rps.hw_lock);
5751
5752 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5753}
5754
5755static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5756{
5757 unsigned int i;
5758
5759 for (i = 0; i < 15; i++) {
5760 if (skl_cdclk_pcu_ready(dev_priv))
5761 return true;
5762 udelay(10);
5763 }
5764
5765 return false;
5766}
5767
5768static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5769{
560a7ae4 5770 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5771 u32 freq_select, pcu_ack;
5772
5773 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5774
5775 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5776 DRM_ERROR("failed to inform PCU about cdclk change\n");
5777 return;
5778 }
5779
5780 /* set CDCLK_CTL */
5781 switch(freq) {
5782 case 450000:
5783 case 432000:
5784 freq_select = CDCLK_FREQ_450_432;
5785 pcu_ack = 1;
5786 break;
5787 case 540000:
5788 freq_select = CDCLK_FREQ_540;
5789 pcu_ack = 2;
5790 break;
5791 case 308570:
5792 case 337500:
5793 default:
5794 freq_select = CDCLK_FREQ_337_308;
5795 pcu_ack = 0;
5796 break;
5797 case 617140:
5798 case 675000:
5799 freq_select = CDCLK_FREQ_675_617;
5800 pcu_ack = 3;
5801 break;
5802 }
5803
5804 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5805 POSTING_READ(CDCLK_CTL);
5806
5807 /* inform PCU of the change */
5808 mutex_lock(&dev_priv->rps.hw_lock);
5809 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5810 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5811
5812 intel_update_cdclk(dev);
5d96d8af
DL
5813}
5814
5815void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5816{
5817 /* disable DBUF power */
5818 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5819 POSTING_READ(DBUF_CTL);
5820
5821 udelay(10);
5822
5823 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5824 DRM_ERROR("DBuf power disable timeout\n");
5825
ab96c1ee
ID
5826 /* disable DPLL0 */
5827 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5828 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5829 DRM_ERROR("Couldn't disable DPLL0\n");
5d96d8af
DL
5830}
5831
5832void skl_init_cdclk(struct drm_i915_private *dev_priv)
5833{
5d96d8af
DL
5834 unsigned int required_vco;
5835
39d9b85a
GW
5836 /* DPLL0 not enabled (happens on early BIOS versions) */
5837 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5838 /* enable DPLL0 */
5839 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5840 skl_dpll0_enable(dev_priv, required_vco);
5d96d8af
DL
5841 }
5842
5d96d8af
DL
5843 /* set CDCLK to the frequency the BIOS chose */
5844 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5845
5846 /* enable DBUF power */
5847 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5848 POSTING_READ(DBUF_CTL);
5849
5850 udelay(10);
5851
5852 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5853 DRM_ERROR("DBuf power enable timeout\n");
5854}
5855
c73666f3
SK
5856int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5857{
5858 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5859 uint32_t cdctl = I915_READ(CDCLK_CTL);
5860 int freq = dev_priv->skl_boot_cdclk;
5861
f1b391a5
SK
5862 /*
5863 * check if the pre-os intialized the display
5864 * There is SWF18 scratchpad register defined which is set by the
5865 * pre-os which can be used by the OS drivers to check the status
5866 */
5867 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5868 goto sanitize;
5869
c73666f3
SK
5870 /* Is PLL enabled and locked ? */
5871 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5872 goto sanitize;
5873
5874 /* DPLL okay; verify the cdclock
5875 *
5876 * Noticed in some instances that the freq selection is correct but
5877 * decimal part is programmed wrong from BIOS where pre-os does not
5878 * enable display. Verify the same as well.
5879 */
5880 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5881 /* All well; nothing to sanitize */
5882 return false;
5883sanitize:
5884 /*
5885 * As of now initialize with max cdclk till
5886 * we get dynamic cdclk support
5887 * */
5888 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5889 skl_init_cdclk(dev_priv);
5890
5891 /* we did have to sanitize */
5892 return true;
5893}
5894
30a970c6
JB
5895/* Adjust CDclk dividers to allow high res or save power if possible */
5896static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5897{
5898 struct drm_i915_private *dev_priv = dev->dev_private;
5899 u32 val, cmd;
5900
164dfd28
VK
5901 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5902 != dev_priv->cdclk_freq);
d60c4473 5903
dfcab17e 5904 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5905 cmd = 2;
dfcab17e 5906 else if (cdclk == 266667)
30a970c6
JB
5907 cmd = 1;
5908 else
5909 cmd = 0;
5910
5911 mutex_lock(&dev_priv->rps.hw_lock);
5912 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5913 val &= ~DSPFREQGUAR_MASK;
5914 val |= (cmd << DSPFREQGUAR_SHIFT);
5915 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5916 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5917 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5918 50)) {
5919 DRM_ERROR("timed out waiting for CDclk change\n");
5920 }
5921 mutex_unlock(&dev_priv->rps.hw_lock);
5922
54433e91
VS
5923 mutex_lock(&dev_priv->sb_lock);
5924
dfcab17e 5925 if (cdclk == 400000) {
6bcda4f0 5926 u32 divider;
30a970c6 5927
6bcda4f0 5928 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5929
30a970c6
JB
5930 /* adjust cdclk divider */
5931 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
87d5d259 5932 val &= ~CCK_FREQUENCY_VALUES;
30a970c6
JB
5933 val |= divider;
5934 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5935
5936 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
87d5d259 5937 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
a877e801
VS
5938 50))
5939 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5940 }
5941
30a970c6
JB
5942 /* adjust self-refresh exit latency value */
5943 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5944 val &= ~0x7f;
5945
5946 /*
5947 * For high bandwidth configs, we set a higher latency in the bunit
5948 * so that the core display fetch happens in time to avoid underruns.
5949 */
dfcab17e 5950 if (cdclk == 400000)
30a970c6
JB
5951 val |= 4500 / 250; /* 4.5 usec */
5952 else
5953 val |= 3000 / 250; /* 3.0 usec */
5954 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5955
a580516d 5956 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5957
b6283055 5958 intel_update_cdclk(dev);
30a970c6
JB
5959}
5960
383c5a6a
VS
5961static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5962{
5963 struct drm_i915_private *dev_priv = dev->dev_private;
5964 u32 val, cmd;
5965
164dfd28
VK
5966 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5967 != dev_priv->cdclk_freq);
383c5a6a
VS
5968
5969 switch (cdclk) {
383c5a6a
VS
5970 case 333333:
5971 case 320000:
383c5a6a 5972 case 266667:
383c5a6a 5973 case 200000:
383c5a6a
VS
5974 break;
5975 default:
5f77eeb0 5976 MISSING_CASE(cdclk);
383c5a6a
VS
5977 return;
5978 }
5979
9d0d3fda
VS
5980 /*
5981 * Specs are full of misinformation, but testing on actual
5982 * hardware has shown that we just need to write the desired
5983 * CCK divider into the Punit register.
5984 */
5985 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5986
383c5a6a
VS
5987 mutex_lock(&dev_priv->rps.hw_lock);
5988 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5989 val &= ~DSPFREQGUAR_MASK_CHV;
5990 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5991 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5992 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5993 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5994 50)) {
5995 DRM_ERROR("timed out waiting for CDclk change\n");
5996 }
5997 mutex_unlock(&dev_priv->rps.hw_lock);
5998
b6283055 5999 intel_update_cdclk(dev);
383c5a6a
VS
6000}
6001
30a970c6
JB
6002static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6003 int max_pixclk)
6004{
6bcda4f0 6005 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 6006 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 6007
30a970c6
JB
6008 /*
6009 * Really only a few cases to deal with, as only 4 CDclks are supported:
6010 * 200MHz
6011 * 267MHz
29dc7ef3 6012 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
6013 * 400MHz (VLV only)
6014 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6015 * of the lower bin and adjust if needed.
e37c67a1
VS
6016 *
6017 * We seem to get an unstable or solid color picture at 200MHz.
6018 * Not sure what's wrong. For now use 200MHz only when all pipes
6019 * are off.
30a970c6 6020 */
6cca3195
VS
6021 if (!IS_CHERRYVIEW(dev_priv) &&
6022 max_pixclk > freq_320*limit/100)
dfcab17e 6023 return 400000;
6cca3195 6024 else if (max_pixclk > 266667*limit/100)
29dc7ef3 6025 return freq_320;
e37c67a1 6026 else if (max_pixclk > 0)
dfcab17e 6027 return 266667;
e37c67a1
VS
6028 else
6029 return 200000;
30a970c6
JB
6030}
6031
f8437dd1
VK
6032static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6033 int max_pixclk)
6034{
6035 /*
6036 * FIXME:
6037 * - remove the guardband, it's not needed on BXT
6038 * - set 19.2MHz bypass frequency if there are no active pipes
6039 */
6040 if (max_pixclk > 576000*9/10)
6041 return 624000;
6042 else if (max_pixclk > 384000*9/10)
6043 return 576000;
6044 else if (max_pixclk > 288000*9/10)
6045 return 384000;
6046 else if (max_pixclk > 144000*9/10)
6047 return 288000;
6048 else
6049 return 144000;
6050}
6051
a821fc46
ACO
6052/* Compute the max pixel clock for new configuration. Uses atomic state if
6053 * that's non-NULL, look at current state otherwise. */
6054static int intel_mode_max_pixclk(struct drm_device *dev,
6055 struct drm_atomic_state *state)
30a970c6 6056{
30a970c6 6057 struct intel_crtc *intel_crtc;
304603f4 6058 struct intel_crtc_state *crtc_state;
30a970c6
JB
6059 int max_pixclk = 0;
6060
d3fcc808 6061 for_each_intel_crtc(dev, intel_crtc) {
27c329ed 6062 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
304603f4
ACO
6063 if (IS_ERR(crtc_state))
6064 return PTR_ERR(crtc_state);
6065
6066 if (!crtc_state->base.enable)
6067 continue;
6068
6069 max_pixclk = max(max_pixclk,
6070 crtc_state->base.adjusted_mode.crtc_clock);
30a970c6
JB
6071 }
6072
6073 return max_pixclk;
6074}
6075
27c329ed 6076static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 6077{
27c329ed
ML
6078 struct drm_device *dev = state->dev;
6079 struct drm_i915_private *dev_priv = dev->dev_private;
6080 int max_pixclk = intel_mode_max_pixclk(dev, state);
30a970c6 6081
304603f4
ACO
6082 if (max_pixclk < 0)
6083 return max_pixclk;
30a970c6 6084
27c329ed
ML
6085 to_intel_atomic_state(state)->cdclk =
6086 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 6087
27c329ed
ML
6088 return 0;
6089}
304603f4 6090
27c329ed
ML
6091static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6092{
6093 struct drm_device *dev = state->dev;
6094 struct drm_i915_private *dev_priv = dev->dev_private;
6095 int max_pixclk = intel_mode_max_pixclk(dev, state);
85a96e7a 6096
27c329ed
ML
6097 if (max_pixclk < 0)
6098 return max_pixclk;
85a96e7a 6099
27c329ed
ML
6100 to_intel_atomic_state(state)->cdclk =
6101 broxton_calc_cdclk(dev_priv, max_pixclk);
85a96e7a 6102
27c329ed 6103 return 0;
30a970c6
JB
6104}
6105
1e69cd74
VS
6106static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6107{
6108 unsigned int credits, default_credits;
6109
6110 if (IS_CHERRYVIEW(dev_priv))
6111 default_credits = PFI_CREDIT(12);
6112 else
6113 default_credits = PFI_CREDIT(8);
6114
bfa7df01 6115 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
1e69cd74
VS
6116 /* CHV suggested value is 31 or 63 */
6117 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 6118 credits = PFI_CREDIT_63;
1e69cd74
VS
6119 else
6120 credits = PFI_CREDIT(15);
6121 } else {
6122 credits = default_credits;
6123 }
6124
6125 /*
6126 * WA - write default credits before re-programming
6127 * FIXME: should we also set the resend bit here?
6128 */
6129 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6130 default_credits);
6131
6132 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6133 credits | PFI_CREDIT_RESEND);
6134
6135 /*
6136 * FIXME is this guaranteed to clear
6137 * immediately or should we poll for it?
6138 */
6139 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6140}
6141
27c329ed 6142static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 6143{
a821fc46 6144 struct drm_device *dev = old_state->dev;
27c329ed 6145 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
30a970c6 6146 struct drm_i915_private *dev_priv = dev->dev_private;
30a970c6 6147
27c329ed
ML
6148 /*
6149 * FIXME: We can end up here with all power domains off, yet
6150 * with a CDCLK frequency other than the minimum. To account
6151 * for this take the PIPE-A power domain, which covers the HW
6152 * blocks needed for the following programming. This can be
6153 * removed once it's guaranteed that we get here either with
6154 * the minimum CDCLK set, or the required power domains
6155 * enabled.
6156 */
6157 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6158
27c329ed
ML
6159 if (IS_CHERRYVIEW(dev))
6160 cherryview_set_cdclk(dev, req_cdclk);
6161 else
6162 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6163
27c329ed 6164 vlv_program_pfi_credits(dev_priv);
1e69cd74 6165
27c329ed 6166 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6167}
6168
89b667f8
JB
6169static void valleyview_crtc_enable(struct drm_crtc *crtc)
6170{
6171 struct drm_device *dev = crtc->dev;
a72e4c9f 6172 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6173 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6174 struct intel_encoder *encoder;
6175 int pipe = intel_crtc->pipe;
89b667f8 6176
53d9f4e9 6177 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6178 return;
6179
6e3c9717 6180 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6181 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6182
6183 intel_set_pipe_timings(intel_crtc);
6184
c14b0485
VS
6185 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6186 struct drm_i915_private *dev_priv = dev->dev_private;
6187
6188 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6189 I915_WRITE(CHV_CANVAS(pipe), 0);
6190 }
6191
5b18e57c
DV
6192 i9xx_set_pipeconf(intel_crtc);
6193
89b667f8 6194 intel_crtc->active = true;
89b667f8 6195
a72e4c9f 6196 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6197
89b667f8
JB
6198 for_each_encoder_on_crtc(dev, crtc, encoder)
6199 if (encoder->pre_pll_enable)
6200 encoder->pre_pll_enable(encoder);
6201
a65347ba 6202 if (!intel_crtc->config->has_dsi_encoder) {
c0b4c660
VS
6203 if (IS_CHERRYVIEW(dev)) {
6204 chv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6205 chv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660
VS
6206 } else {
6207 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6208 vlv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660 6209 }
9d556c99 6210 }
89b667f8
JB
6211
6212 for_each_encoder_on_crtc(dev, crtc, encoder)
6213 if (encoder->pre_enable)
6214 encoder->pre_enable(encoder);
6215
2dd24552
JB
6216 i9xx_pfit_enable(intel_crtc);
6217
63cbb074
VS
6218 intel_crtc_load_lut(crtc);
6219
e1fdc473 6220 intel_enable_pipe(intel_crtc);
be6a6f8e 6221
4b3a9526
VS
6222 assert_vblank_disabled(crtc);
6223 drm_crtc_vblank_on(crtc);
6224
f9b61ff6
DV
6225 for_each_encoder_on_crtc(dev, crtc, encoder)
6226 encoder->enable(encoder);
89b667f8
JB
6227}
6228
f13c2ef3
DV
6229static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6230{
6231 struct drm_device *dev = crtc->base.dev;
6232 struct drm_i915_private *dev_priv = dev->dev_private;
6233
6e3c9717
ACO
6234 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6235 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6236}
6237
0b8765c6 6238static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6239{
6240 struct drm_device *dev = crtc->dev;
a72e4c9f 6241 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6243 struct intel_encoder *encoder;
79e53945 6244 int pipe = intel_crtc->pipe;
79e53945 6245
53d9f4e9 6246 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6247 return;
6248
f13c2ef3
DV
6249 i9xx_set_pll_dividers(intel_crtc);
6250
6e3c9717 6251 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6252 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6253
6254 intel_set_pipe_timings(intel_crtc);
6255
5b18e57c
DV
6256 i9xx_set_pipeconf(intel_crtc);
6257
f7abfe8b 6258 intel_crtc->active = true;
6b383a7f 6259
4a3436e8 6260 if (!IS_GEN2(dev))
a72e4c9f 6261 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6262
9d6d9f19
MK
6263 for_each_encoder_on_crtc(dev, crtc, encoder)
6264 if (encoder->pre_enable)
6265 encoder->pre_enable(encoder);
6266
f6736a1a
DV
6267 i9xx_enable_pll(intel_crtc);
6268
2dd24552
JB
6269 i9xx_pfit_enable(intel_crtc);
6270
63cbb074
VS
6271 intel_crtc_load_lut(crtc);
6272
f37fcc2a 6273 intel_update_watermarks(crtc);
e1fdc473 6274 intel_enable_pipe(intel_crtc);
be6a6f8e 6275
4b3a9526
VS
6276 assert_vblank_disabled(crtc);
6277 drm_crtc_vblank_on(crtc);
6278
f9b61ff6
DV
6279 for_each_encoder_on_crtc(dev, crtc, encoder)
6280 encoder->enable(encoder);
d029bcad
PZ
6281
6282 intel_fbc_enable(intel_crtc);
0b8765c6 6283}
79e53945 6284
87476d63
DV
6285static void i9xx_pfit_disable(struct intel_crtc *crtc)
6286{
6287 struct drm_device *dev = crtc->base.dev;
6288 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6289
6e3c9717 6290 if (!crtc->config->gmch_pfit.control)
328d8e82 6291 return;
87476d63 6292
328d8e82 6293 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6294
328d8e82
DV
6295 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6296 I915_READ(PFIT_CONTROL));
6297 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6298}
6299
0b8765c6
JB
6300static void i9xx_crtc_disable(struct drm_crtc *crtc)
6301{
6302 struct drm_device *dev = crtc->dev;
6303 struct drm_i915_private *dev_priv = dev->dev_private;
6304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6305 struct intel_encoder *encoder;
0b8765c6 6306 int pipe = intel_crtc->pipe;
ef9c3aee 6307
6304cd91
VS
6308 /*
6309 * On gen2 planes are double buffered but the pipe isn't, so we must
6310 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
6311 * We also need to wait on all gmch platforms because of the
6312 * self-refresh mode constraint explained above.
6304cd91 6313 */
564ed191 6314 intel_wait_for_vblank(dev, pipe);
6304cd91 6315
4b3a9526
VS
6316 for_each_encoder_on_crtc(dev, crtc, encoder)
6317 encoder->disable(encoder);
6318
f9b61ff6
DV
6319 drm_crtc_vblank_off(crtc);
6320 assert_vblank_disabled(crtc);
6321
575f7ab7 6322 intel_disable_pipe(intel_crtc);
24a1f16d 6323
87476d63 6324 i9xx_pfit_disable(intel_crtc);
24a1f16d 6325
89b667f8
JB
6326 for_each_encoder_on_crtc(dev, crtc, encoder)
6327 if (encoder->post_disable)
6328 encoder->post_disable(encoder);
6329
a65347ba 6330 if (!intel_crtc->config->has_dsi_encoder) {
076ed3b2
CML
6331 if (IS_CHERRYVIEW(dev))
6332 chv_disable_pll(dev_priv, pipe);
6333 else if (IS_VALLEYVIEW(dev))
6334 vlv_disable_pll(dev_priv, pipe);
6335 else
1c4e0274 6336 i9xx_disable_pll(intel_crtc);
076ed3b2 6337 }
0b8765c6 6338
d6db995f
VS
6339 for_each_encoder_on_crtc(dev, crtc, encoder)
6340 if (encoder->post_pll_disable)
6341 encoder->post_pll_disable(encoder);
6342
4a3436e8 6343 if (!IS_GEN2(dev))
a72e4c9f 6344 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
d029bcad
PZ
6345
6346 intel_fbc_disable_crtc(intel_crtc);
0b8765c6
JB
6347}
6348
b17d48e2
ML
6349static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6350{
6351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6352 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6353 enum intel_display_power_domain domain;
6354 unsigned long domains;
6355
6356 if (!intel_crtc->active)
6357 return;
6358
a539205a 6359 if (to_intel_plane_state(crtc->primary->state)->visible) {
fc32b1fd
ML
6360 WARN_ON(intel_crtc->unpin_work);
6361
a539205a
ML
6362 intel_pre_disable_primary(crtc);
6363 }
6364
d032ffa0 6365 intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
b17d48e2 6366 dev_priv->display.crtc_disable(crtc);
37d9078b
MR
6367 intel_crtc->active = false;
6368 intel_update_watermarks(crtc);
1f7457b1 6369 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6370
6371 domains = intel_crtc->enabled_power_domains;
6372 for_each_power_domain(domain, domains)
6373 intel_display_power_put(dev_priv, domain);
6374 intel_crtc->enabled_power_domains = 0;
6375}
6376
6b72d486
ML
6377/*
6378 * turn all crtc's off, but do not adjust state
6379 * This has to be paired with a call to intel_modeset_setup_hw_state.
6380 */
70e0bd74 6381int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6382{
70e0bd74
ML
6383 struct drm_mode_config *config = &dev->mode_config;
6384 struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6385 struct drm_atomic_state *state;
6b72d486 6386 struct drm_crtc *crtc;
70e0bd74
ML
6387 unsigned crtc_mask = 0;
6388 int ret = 0;
6389
6390 if (WARN_ON(!ctx))
6391 return 0;
6392
6393 lockdep_assert_held(&ctx->ww_ctx);
6394 state = drm_atomic_state_alloc(dev);
6395 if (WARN_ON(!state))
6396 return -ENOMEM;
6397
6398 state->acquire_ctx = ctx;
6399 state->allow_modeset = true;
6400
6401 for_each_crtc(dev, crtc) {
6402 struct drm_crtc_state *crtc_state =
6403 drm_atomic_get_crtc_state(state, crtc);
6b72d486 6404
70e0bd74
ML
6405 ret = PTR_ERR_OR_ZERO(crtc_state);
6406 if (ret)
6407 goto free;
6408
6409 if (!crtc_state->active)
6410 continue;
6411
6412 crtc_state->active = false;
6413 crtc_mask |= 1 << drm_crtc_index(crtc);
6414 }
6415
6416 if (crtc_mask) {
74c090b1 6417 ret = drm_atomic_commit(state);
70e0bd74
ML
6418
6419 if (!ret) {
6420 for_each_crtc(dev, crtc)
6421 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6422 crtc->state->active = true;
6423
6424 return ret;
6425 }
6426 }
6427
6428free:
6429 if (ret)
6430 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6431 drm_atomic_state_free(state);
6432 return ret;
ee7b9f93
JB
6433}
6434
ea5b213a 6435void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6436{
4ef69c7a 6437 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6438
ea5b213a
CW
6439 drm_encoder_cleanup(encoder);
6440 kfree(intel_encoder);
7e7d76c3
JB
6441}
6442
0a91ca29
DV
6443/* Cross check the actual hw state with our own modeset state tracking (and it's
6444 * internal consistency). */
b980514c 6445static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6446{
35dd3c64
ML
6447 struct drm_crtc *crtc = connector->base.state->crtc;
6448
6449 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6450 connector->base.base.id,
6451 connector->base.name);
6452
0a91ca29 6453 if (connector->get_hw_state(connector)) {
e85376cb 6454 struct intel_encoder *encoder = connector->encoder;
35dd3c64 6455 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6456
35dd3c64
ML
6457 I915_STATE_WARN(!crtc,
6458 "connector enabled without attached crtc\n");
0a91ca29 6459
35dd3c64
ML
6460 if (!crtc)
6461 return;
6462
6463 I915_STATE_WARN(!crtc->state->active,
6464 "connector is active, but attached crtc isn't\n");
6465
e85376cb 6466 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
35dd3c64
ML
6467 return;
6468
e85376cb 6469 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
35dd3c64
ML
6470 "atomic encoder doesn't match attached encoder\n");
6471
e85376cb 6472 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
35dd3c64
ML
6473 "attached encoder crtc differs from connector crtc\n");
6474 } else {
4d688a2a
ML
6475 I915_STATE_WARN(crtc && crtc->state->active,
6476 "attached crtc is active, but connector isn't\n");
35dd3c64
ML
6477 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6478 "best encoder set without crtc!\n");
0a91ca29 6479 }
79e53945
JB
6480}
6481
08d9bc92
ACO
6482int intel_connector_init(struct intel_connector *connector)
6483{
6484 struct drm_connector_state *connector_state;
6485
6486 connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6487 if (!connector_state)
6488 return -ENOMEM;
6489
6490 connector->base.state = connector_state;
6491 return 0;
6492}
6493
6494struct intel_connector *intel_connector_alloc(void)
6495{
6496 struct intel_connector *connector;
6497
6498 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6499 if (!connector)
6500 return NULL;
6501
6502 if (intel_connector_init(connector) < 0) {
6503 kfree(connector);
6504 return NULL;
6505 }
6506
6507 return connector;
6508}
6509
f0947c37
DV
6510/* Simple connector->get_hw_state implementation for encoders that support only
6511 * one connector and no cloning and hence the encoder state determines the state
6512 * of the connector. */
6513bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6514{
24929352 6515 enum pipe pipe = 0;
f0947c37 6516 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6517
f0947c37 6518 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6519}
6520
6d293983 6521static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6522{
6d293983
ACO
6523 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6524 return crtc_state->fdi_lanes;
d272ddfa
VS
6525
6526 return 0;
6527}
6528
6d293983 6529static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6530 struct intel_crtc_state *pipe_config)
1857e1da 6531{
6d293983
ACO
6532 struct drm_atomic_state *state = pipe_config->base.state;
6533 struct intel_crtc *other_crtc;
6534 struct intel_crtc_state *other_crtc_state;
6535
1857e1da
DV
6536 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6537 pipe_name(pipe), pipe_config->fdi_lanes);
6538 if (pipe_config->fdi_lanes > 4) {
6539 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6540 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6541 return -EINVAL;
1857e1da
DV
6542 }
6543
bafb6553 6544 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6545 if (pipe_config->fdi_lanes > 2) {
6546 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6547 pipe_config->fdi_lanes);
6d293983 6548 return -EINVAL;
1857e1da 6549 } else {
6d293983 6550 return 0;
1857e1da
DV
6551 }
6552 }
6553
6554 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6555 return 0;
1857e1da
DV
6556
6557 /* Ivybridge 3 pipe is really complicated */
6558 switch (pipe) {
6559 case PIPE_A:
6d293983 6560 return 0;
1857e1da 6561 case PIPE_B:
6d293983
ACO
6562 if (pipe_config->fdi_lanes <= 2)
6563 return 0;
6564
6565 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6566 other_crtc_state =
6567 intel_atomic_get_crtc_state(state, other_crtc);
6568 if (IS_ERR(other_crtc_state))
6569 return PTR_ERR(other_crtc_state);
6570
6571 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6572 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6573 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6574 return -EINVAL;
1857e1da 6575 }
6d293983 6576 return 0;
1857e1da 6577 case PIPE_C:
251cc67c
VS
6578 if (pipe_config->fdi_lanes > 2) {
6579 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6580 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6581 return -EINVAL;
251cc67c 6582 }
6d293983
ACO
6583
6584 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6585 other_crtc_state =
6586 intel_atomic_get_crtc_state(state, other_crtc);
6587 if (IS_ERR(other_crtc_state))
6588 return PTR_ERR(other_crtc_state);
6589
6590 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6591 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6592 return -EINVAL;
1857e1da 6593 }
6d293983 6594 return 0;
1857e1da
DV
6595 default:
6596 BUG();
6597 }
6598}
6599
e29c22c0
DV
6600#define RETRY 1
6601static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6602 struct intel_crtc_state *pipe_config)
877d48d5 6603{
1857e1da 6604 struct drm_device *dev = intel_crtc->base.dev;
7c5f93b0 6605 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6606 int lane, link_bw, fdi_dotclock, ret;
6607 bool needs_recompute = false;
877d48d5 6608
e29c22c0 6609retry:
877d48d5
DV
6610 /* FDI is a binary signal running at ~2.7GHz, encoding
6611 * each output octet as 10 bits. The actual frequency
6612 * is stored as a divider into a 100MHz clock, and the
6613 * mode pixel clock is stored in units of 1KHz.
6614 * Hence the bw of each lane in terms of the mode signal
6615 * is:
6616 */
6617 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6618
241bfc38 6619 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6620
2bd89a07 6621 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6622 pipe_config->pipe_bpp);
6623
6624 pipe_config->fdi_lanes = lane;
6625
2bd89a07 6626 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6627 link_bw, &pipe_config->fdi_m_n);
1857e1da 6628
6d293983
ACO
6629 ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6630 intel_crtc->pipe, pipe_config);
6631 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6632 pipe_config->pipe_bpp -= 2*3;
6633 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6634 pipe_config->pipe_bpp);
6635 needs_recompute = true;
6636 pipe_config->bw_constrained = true;
6637
6638 goto retry;
6639 }
6640
6641 if (needs_recompute)
6642 return RETRY;
6643
6d293983 6644 return ret;
877d48d5
DV
6645}
6646
8cfb3407
VS
6647static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6648 struct intel_crtc_state *pipe_config)
6649{
6650 if (pipe_config->pipe_bpp > 24)
6651 return false;
6652
6653 /* HSW can handle pixel rate up to cdclk? */
6654 if (IS_HASWELL(dev_priv->dev))
6655 return true;
6656
6657 /*
b432e5cf
VS
6658 * We compare against max which means we must take
6659 * the increased cdclk requirement into account when
6660 * calculating the new cdclk.
6661 *
6662 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6663 */
6664 return ilk_pipe_pixel_rate(pipe_config) <=
6665 dev_priv->max_cdclk_freq * 95 / 100;
6666}
6667
42db64ef 6668static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6669 struct intel_crtc_state *pipe_config)
42db64ef 6670{
8cfb3407
VS
6671 struct drm_device *dev = crtc->base.dev;
6672 struct drm_i915_private *dev_priv = dev->dev_private;
6673
d330a953 6674 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6675 hsw_crtc_supports_ips(crtc) &&
6676 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6677}
6678
39acb4aa
VS
6679static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6680{
6681 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6682
6683 /* GDG double wide on either pipe, otherwise pipe A only */
6684 return INTEL_INFO(dev_priv)->gen < 4 &&
6685 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6686}
6687
a43f6e0f 6688static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6689 struct intel_crtc_state *pipe_config)
79e53945 6690{
a43f6e0f 6691 struct drm_device *dev = crtc->base.dev;
8bd31e67 6692 struct drm_i915_private *dev_priv = dev->dev_private;
7c5f93b0 6693 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 6694
ad3a4479 6695 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6696 if (INTEL_INFO(dev)->gen < 4) {
39acb4aa 6697 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
cf532bb2
VS
6698
6699 /*
39acb4aa 6700 * Enable double wide mode when the dot clock
cf532bb2 6701 * is > 90% of the (display) core speed.
cf532bb2 6702 */
39acb4aa
VS
6703 if (intel_crtc_supports_double_wide(crtc) &&
6704 adjusted_mode->crtc_clock > clock_limit) {
ad3a4479 6705 clock_limit *= 2;
cf532bb2 6706 pipe_config->double_wide = true;
ad3a4479
VS
6707 }
6708
39acb4aa
VS
6709 if (adjusted_mode->crtc_clock > clock_limit) {
6710 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6711 adjusted_mode->crtc_clock, clock_limit,
6712 yesno(pipe_config->double_wide));
e29c22c0 6713 return -EINVAL;
39acb4aa 6714 }
2c07245f 6715 }
89749350 6716
1d1d0e27
VS
6717 /*
6718 * Pipe horizontal size must be even in:
6719 * - DVO ganged mode
6720 * - LVDS dual channel mode
6721 * - Double wide pipe
6722 */
a93e255f 6723 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6724 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6725 pipe_config->pipe_src_w &= ~1;
6726
8693a824
DL
6727 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6728 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6729 */
6730 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
aad941d5 6731 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
e29c22c0 6732 return -EINVAL;
44f46b42 6733
f5adf94e 6734 if (HAS_IPS(dev))
a43f6e0f
DV
6735 hsw_compute_ips_config(crtc, pipe_config);
6736
877d48d5 6737 if (pipe_config->has_pch_encoder)
a43f6e0f 6738 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6739
cf5a15be 6740 return 0;
79e53945
JB
6741}
6742
1652d19e
VS
6743static int skylake_get_display_clock_speed(struct drm_device *dev)
6744{
6745 struct drm_i915_private *dev_priv = to_i915(dev);
6746 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6747 uint32_t cdctl = I915_READ(CDCLK_CTL);
6748 uint32_t linkrate;
6749
414355a7 6750 if (!(lcpll1 & LCPLL_PLL_ENABLE))
1652d19e 6751 return 24000; /* 24MHz is the cd freq with NSSC ref */
1652d19e
VS
6752
6753 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6754 return 540000;
6755
6756 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6757 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6758
71cd8423
DL
6759 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6760 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6761 /* vco 8640 */
6762 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6763 case CDCLK_FREQ_450_432:
6764 return 432000;
6765 case CDCLK_FREQ_337_308:
6766 return 308570;
6767 case CDCLK_FREQ_675_617:
6768 return 617140;
6769 default:
6770 WARN(1, "Unknown cd freq selection\n");
6771 }
6772 } else {
6773 /* vco 8100 */
6774 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6775 case CDCLK_FREQ_450_432:
6776 return 450000;
6777 case CDCLK_FREQ_337_308:
6778 return 337500;
6779 case CDCLK_FREQ_675_617:
6780 return 675000;
6781 default:
6782 WARN(1, "Unknown cd freq selection\n");
6783 }
6784 }
6785
6786 /* error case, do as if DPLL0 isn't enabled */
6787 return 24000;
6788}
6789
acd3f3d3
BP
6790static int broxton_get_display_clock_speed(struct drm_device *dev)
6791{
6792 struct drm_i915_private *dev_priv = to_i915(dev);
6793 uint32_t cdctl = I915_READ(CDCLK_CTL);
6794 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6795 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6796 int cdclk;
6797
6798 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6799 return 19200;
6800
6801 cdclk = 19200 * pll_ratio / 2;
6802
6803 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6804 case BXT_CDCLK_CD2X_DIV_SEL_1:
6805 return cdclk; /* 576MHz or 624MHz */
6806 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6807 return cdclk * 2 / 3; /* 384MHz */
6808 case BXT_CDCLK_CD2X_DIV_SEL_2:
6809 return cdclk / 2; /* 288MHz */
6810 case BXT_CDCLK_CD2X_DIV_SEL_4:
6811 return cdclk / 4; /* 144MHz */
6812 }
6813
6814 /* error case, do as if DE PLL isn't enabled */
6815 return 19200;
6816}
6817
1652d19e
VS
6818static int broadwell_get_display_clock_speed(struct drm_device *dev)
6819{
6820 struct drm_i915_private *dev_priv = dev->dev_private;
6821 uint32_t lcpll = I915_READ(LCPLL_CTL);
6822 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6823
6824 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6825 return 800000;
6826 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6827 return 450000;
6828 else if (freq == LCPLL_CLK_FREQ_450)
6829 return 450000;
6830 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6831 return 540000;
6832 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6833 return 337500;
6834 else
6835 return 675000;
6836}
6837
6838static int haswell_get_display_clock_speed(struct drm_device *dev)
6839{
6840 struct drm_i915_private *dev_priv = dev->dev_private;
6841 uint32_t lcpll = I915_READ(LCPLL_CTL);
6842 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6843
6844 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6845 return 800000;
6846 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6847 return 450000;
6848 else if (freq == LCPLL_CLK_FREQ_450)
6849 return 450000;
6850 else if (IS_HSW_ULT(dev))
6851 return 337500;
6852 else
6853 return 540000;
79e53945
JB
6854}
6855
25eb05fc
JB
6856static int valleyview_get_display_clock_speed(struct drm_device *dev)
6857{
bfa7df01
VS
6858 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6859 CCK_DISPLAY_CLOCK_CONTROL);
25eb05fc
JB
6860}
6861
b37a6434
VS
6862static int ilk_get_display_clock_speed(struct drm_device *dev)
6863{
6864 return 450000;
6865}
6866
e70236a8
JB
6867static int i945_get_display_clock_speed(struct drm_device *dev)
6868{
6869 return 400000;
6870}
79e53945 6871
e70236a8 6872static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6873{
e907f170 6874 return 333333;
e70236a8 6875}
79e53945 6876
e70236a8
JB
6877static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6878{
6879 return 200000;
6880}
79e53945 6881
257a7ffc
DV
6882static int pnv_get_display_clock_speed(struct drm_device *dev)
6883{
6884 u16 gcfgc = 0;
6885
6886 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6887
6888 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6889 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6890 return 266667;
257a7ffc 6891 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6892 return 333333;
257a7ffc 6893 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6894 return 444444;
257a7ffc
DV
6895 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6896 return 200000;
6897 default:
6898 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6899 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6900 return 133333;
257a7ffc 6901 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6902 return 166667;
257a7ffc
DV
6903 }
6904}
6905
e70236a8
JB
6906static int i915gm_get_display_clock_speed(struct drm_device *dev)
6907{
6908 u16 gcfgc = 0;
79e53945 6909
e70236a8
JB
6910 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6911
6912 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6913 return 133333;
e70236a8
JB
6914 else {
6915 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6916 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6917 return 333333;
e70236a8
JB
6918 default:
6919 case GC_DISPLAY_CLOCK_190_200_MHZ:
6920 return 190000;
79e53945 6921 }
e70236a8
JB
6922 }
6923}
6924
6925static int i865_get_display_clock_speed(struct drm_device *dev)
6926{
e907f170 6927 return 266667;
e70236a8
JB
6928}
6929
1b1d2716 6930static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6931{
6932 u16 hpllcc = 0;
1b1d2716 6933
65cd2b3f
VS
6934 /*
6935 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6936 * encoding is different :(
6937 * FIXME is this the right way to detect 852GM/852GMV?
6938 */
6939 if (dev->pdev->revision == 0x1)
6940 return 133333;
6941
1b1d2716
VS
6942 pci_bus_read_config_word(dev->pdev->bus,
6943 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6944
e70236a8
JB
6945 /* Assume that the hardware is in the high speed state. This
6946 * should be the default.
6947 */
6948 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6949 case GC_CLOCK_133_200:
1b1d2716 6950 case GC_CLOCK_133_200_2:
e70236a8
JB
6951 case GC_CLOCK_100_200:
6952 return 200000;
6953 case GC_CLOCK_166_250:
6954 return 250000;
6955 case GC_CLOCK_100_133:
e907f170 6956 return 133333;
1b1d2716
VS
6957 case GC_CLOCK_133_266:
6958 case GC_CLOCK_133_266_2:
6959 case GC_CLOCK_166_266:
6960 return 266667;
e70236a8 6961 }
79e53945 6962
e70236a8
JB
6963 /* Shouldn't happen */
6964 return 0;
6965}
79e53945 6966
e70236a8
JB
6967static int i830_get_display_clock_speed(struct drm_device *dev)
6968{
e907f170 6969 return 133333;
79e53945
JB
6970}
6971
34edce2f
VS
6972static unsigned int intel_hpll_vco(struct drm_device *dev)
6973{
6974 struct drm_i915_private *dev_priv = dev->dev_private;
6975 static const unsigned int blb_vco[8] = {
6976 [0] = 3200000,
6977 [1] = 4000000,
6978 [2] = 5333333,
6979 [3] = 4800000,
6980 [4] = 6400000,
6981 };
6982 static const unsigned int pnv_vco[8] = {
6983 [0] = 3200000,
6984 [1] = 4000000,
6985 [2] = 5333333,
6986 [3] = 4800000,
6987 [4] = 2666667,
6988 };
6989 static const unsigned int cl_vco[8] = {
6990 [0] = 3200000,
6991 [1] = 4000000,
6992 [2] = 5333333,
6993 [3] = 6400000,
6994 [4] = 3333333,
6995 [5] = 3566667,
6996 [6] = 4266667,
6997 };
6998 static const unsigned int elk_vco[8] = {
6999 [0] = 3200000,
7000 [1] = 4000000,
7001 [2] = 5333333,
7002 [3] = 4800000,
7003 };
7004 static const unsigned int ctg_vco[8] = {
7005 [0] = 3200000,
7006 [1] = 4000000,
7007 [2] = 5333333,
7008 [3] = 6400000,
7009 [4] = 2666667,
7010 [5] = 4266667,
7011 };
7012 const unsigned int *vco_table;
7013 unsigned int vco;
7014 uint8_t tmp = 0;
7015
7016 /* FIXME other chipsets? */
7017 if (IS_GM45(dev))
7018 vco_table = ctg_vco;
7019 else if (IS_G4X(dev))
7020 vco_table = elk_vco;
7021 else if (IS_CRESTLINE(dev))
7022 vco_table = cl_vco;
7023 else if (IS_PINEVIEW(dev))
7024 vco_table = pnv_vco;
7025 else if (IS_G33(dev))
7026 vco_table = blb_vco;
7027 else
7028 return 0;
7029
7030 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7031
7032 vco = vco_table[tmp & 0x7];
7033 if (vco == 0)
7034 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7035 else
7036 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7037
7038 return vco;
7039}
7040
7041static int gm45_get_display_clock_speed(struct drm_device *dev)
7042{
7043 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7044 uint16_t tmp = 0;
7045
7046 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7047
7048 cdclk_sel = (tmp >> 12) & 0x1;
7049
7050 switch (vco) {
7051 case 2666667:
7052 case 4000000:
7053 case 5333333:
7054 return cdclk_sel ? 333333 : 222222;
7055 case 3200000:
7056 return cdclk_sel ? 320000 : 228571;
7057 default:
7058 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7059 return 222222;
7060 }
7061}
7062
7063static int i965gm_get_display_clock_speed(struct drm_device *dev)
7064{
7065 static const uint8_t div_3200[] = { 16, 10, 8 };
7066 static const uint8_t div_4000[] = { 20, 12, 10 };
7067 static const uint8_t div_5333[] = { 24, 16, 14 };
7068 const uint8_t *div_table;
7069 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7070 uint16_t tmp = 0;
7071
7072 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7073
7074 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7075
7076 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7077 goto fail;
7078
7079 switch (vco) {
7080 case 3200000:
7081 div_table = div_3200;
7082 break;
7083 case 4000000:
7084 div_table = div_4000;
7085 break;
7086 case 5333333:
7087 div_table = div_5333;
7088 break;
7089 default:
7090 goto fail;
7091 }
7092
7093 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7094
caf4e252 7095fail:
34edce2f
VS
7096 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7097 return 200000;
7098}
7099
7100static int g33_get_display_clock_speed(struct drm_device *dev)
7101{
7102 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7103 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7104 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7105 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7106 const uint8_t *div_table;
7107 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7108 uint16_t tmp = 0;
7109
7110 pci_read_config_word(dev->pdev, GCFGC, &tmp);
7111
7112 cdclk_sel = (tmp >> 4) & 0x7;
7113
7114 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7115 goto fail;
7116
7117 switch (vco) {
7118 case 3200000:
7119 div_table = div_3200;
7120 break;
7121 case 4000000:
7122 div_table = div_4000;
7123 break;
7124 case 4800000:
7125 div_table = div_4800;
7126 break;
7127 case 5333333:
7128 div_table = div_5333;
7129 break;
7130 default:
7131 goto fail;
7132 }
7133
7134 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7135
caf4e252 7136fail:
34edce2f
VS
7137 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7138 return 190476;
7139}
7140
2c07245f 7141static void
a65851af 7142intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7143{
a65851af
VS
7144 while (*num > DATA_LINK_M_N_MASK ||
7145 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7146 *num >>= 1;
7147 *den >>= 1;
7148 }
7149}
7150
a65851af
VS
7151static void compute_m_n(unsigned int m, unsigned int n,
7152 uint32_t *ret_m, uint32_t *ret_n)
7153{
7154 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7155 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7156 intel_reduce_m_n_ratio(ret_m, ret_n);
7157}
7158
e69d0bc1
DV
7159void
7160intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7161 int pixel_clock, int link_clock,
7162 struct intel_link_m_n *m_n)
2c07245f 7163{
e69d0bc1 7164 m_n->tu = 64;
a65851af
VS
7165
7166 compute_m_n(bits_per_pixel * pixel_clock,
7167 link_clock * nlanes * 8,
7168 &m_n->gmch_m, &m_n->gmch_n);
7169
7170 compute_m_n(pixel_clock, link_clock,
7171 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7172}
7173
a7615030
CW
7174static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7175{
d330a953
JN
7176 if (i915.panel_use_ssc >= 0)
7177 return i915.panel_use_ssc != 0;
41aa3448 7178 return dev_priv->vbt.lvds_use_ssc
435793df 7179 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7180}
7181
a93e255f
ACO
7182static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7183 int num_connectors)
c65d77d8 7184{
a93e255f 7185 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
7186 struct drm_i915_private *dev_priv = dev->dev_private;
7187 int refclk;
7188
a93e255f
ACO
7189 WARN_ON(!crtc_state->base.state);
7190
5ab7b0b7 7191 if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
9a0ea498 7192 refclk = 100000;
a93e255f 7193 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 7194 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
7195 refclk = dev_priv->vbt.lvds_ssc_freq;
7196 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
7197 } else if (!IS_GEN2(dev)) {
7198 refclk = 96000;
7199 } else {
7200 refclk = 48000;
7201 }
7202
7203 return refclk;
7204}
7205
7429e9d4 7206static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7207{
7df00d7a 7208 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7209}
f47709a9 7210
7429e9d4
DV
7211static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7212{
7213 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7214}
7215
f47709a9 7216static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7217 struct intel_crtc_state *crtc_state,
a7516a05
JB
7218 intel_clock_t *reduced_clock)
7219{
f47709a9 7220 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7221 u32 fp, fp2 = 0;
7222
7223 if (IS_PINEVIEW(dev)) {
190f68c5 7224 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7225 if (reduced_clock)
7429e9d4 7226 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7227 } else {
190f68c5 7228 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7229 if (reduced_clock)
7429e9d4 7230 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7231 }
7232
190f68c5 7233 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7234
f47709a9 7235 crtc->lowfreq_avail = false;
a93e255f 7236 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7237 reduced_clock) {
190f68c5 7238 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7239 crtc->lowfreq_avail = true;
a7516a05 7240 } else {
190f68c5 7241 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7242 }
7243}
7244
5e69f97f
CML
7245static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7246 pipe)
89b667f8
JB
7247{
7248 u32 reg_val;
7249
7250 /*
7251 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7252 * and set it to a reasonable value instead.
7253 */
ab3c759a 7254 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7255 reg_val &= 0xffffff00;
7256 reg_val |= 0x00000030;
ab3c759a 7257 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7258
ab3c759a 7259 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7260 reg_val &= 0x8cffffff;
7261 reg_val = 0x8c000000;
ab3c759a 7262 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7263
ab3c759a 7264 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7265 reg_val &= 0xffffff00;
ab3c759a 7266 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7267
ab3c759a 7268 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7269 reg_val &= 0x00ffffff;
7270 reg_val |= 0xb0000000;
ab3c759a 7271 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7272}
7273
b551842d
DV
7274static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7275 struct intel_link_m_n *m_n)
7276{
7277 struct drm_device *dev = crtc->base.dev;
7278 struct drm_i915_private *dev_priv = dev->dev_private;
7279 int pipe = crtc->pipe;
7280
e3b95f1e
DV
7281 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7282 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7283 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7284 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7285}
7286
7287static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7288 struct intel_link_m_n *m_n,
7289 struct intel_link_m_n *m2_n2)
b551842d
DV
7290{
7291 struct drm_device *dev = crtc->base.dev;
7292 struct drm_i915_private *dev_priv = dev->dev_private;
7293 int pipe = crtc->pipe;
6e3c9717 7294 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7295
7296 if (INTEL_INFO(dev)->gen >= 5) {
7297 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7298 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7299 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7300 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7301 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7302 * for gen < 8) and if DRRS is supported (to make sure the
7303 * registers are not unnecessarily accessed).
7304 */
44395bfe 7305 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7306 crtc->config->has_drrs) {
f769cd24
VK
7307 I915_WRITE(PIPE_DATA_M2(transcoder),
7308 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7309 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7310 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7311 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7312 }
b551842d 7313 } else {
e3b95f1e
DV
7314 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7315 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7316 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7317 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7318 }
7319}
7320
fe3cd48d 7321void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7322{
fe3cd48d
R
7323 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7324
7325 if (m_n == M1_N1) {
7326 dp_m_n = &crtc->config->dp_m_n;
7327 dp_m2_n2 = &crtc->config->dp_m2_n2;
7328 } else if (m_n == M2_N2) {
7329
7330 /*
7331 * M2_N2 registers are not supported. Hence m2_n2 divider value
7332 * needs to be programmed into M1_N1.
7333 */
7334 dp_m_n = &crtc->config->dp_m2_n2;
7335 } else {
7336 DRM_ERROR("Unsupported divider value\n");
7337 return;
7338 }
7339
6e3c9717
ACO
7340 if (crtc->config->has_pch_encoder)
7341 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7342 else
fe3cd48d 7343 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7344}
7345
251ac862
DV
7346static void vlv_compute_dpll(struct intel_crtc *crtc,
7347 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
7348{
7349 u32 dpll, dpll_md;
7350
7351 /*
7352 * Enable DPIO clock input. We should never disable the reference
7353 * clock for pipe B, since VGA hotplug / manual detection depends
7354 * on it.
7355 */
60bfe44f
VS
7356 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7357 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
bdd4b6a6
DV
7358 /* We should never disable this, set it here for state tracking */
7359 if (crtc->pipe == PIPE_B)
7360 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7361 dpll |= DPLL_VCO_ENABLE;
d288f65f 7362 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 7363
d288f65f 7364 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 7365 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 7366 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
7367}
7368
d288f65f 7369static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7370 const struct intel_crtc_state *pipe_config)
a0c4da24 7371{
f47709a9 7372 struct drm_device *dev = crtc->base.dev;
a0c4da24 7373 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 7374 int pipe = crtc->pipe;
bdd4b6a6 7375 u32 mdiv;
a0c4da24 7376 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7377 u32 coreclk, reg_val;
a0c4da24 7378
a580516d 7379 mutex_lock(&dev_priv->sb_lock);
09153000 7380
d288f65f
VS
7381 bestn = pipe_config->dpll.n;
7382 bestm1 = pipe_config->dpll.m1;
7383 bestm2 = pipe_config->dpll.m2;
7384 bestp1 = pipe_config->dpll.p1;
7385 bestp2 = pipe_config->dpll.p2;
a0c4da24 7386
89b667f8
JB
7387 /* See eDP HDMI DPIO driver vbios notes doc */
7388
7389 /* PLL B needs special handling */
bdd4b6a6 7390 if (pipe == PIPE_B)
5e69f97f 7391 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7392
7393 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7394 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7395
7396 /* Disable target IRef on PLL */
ab3c759a 7397 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7398 reg_val &= 0x00ffffff;
ab3c759a 7399 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7400
7401 /* Disable fast lock */
ab3c759a 7402 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7403
7404 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7405 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7406 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7407 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7408 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7409
7410 /*
7411 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7412 * but we don't support that).
7413 * Note: don't use the DAC post divider as it seems unstable.
7414 */
7415 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7416 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7417
a0c4da24 7418 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7419 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7420
89b667f8 7421 /* Set HBR and RBR LPF coefficients */
d288f65f 7422 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7423 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7424 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7425 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7426 0x009f0003);
89b667f8 7427 else
ab3c759a 7428 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7429 0x00d0000f);
7430
681a8504 7431 if (pipe_config->has_dp_encoder) {
89b667f8 7432 /* Use SSC source */
bdd4b6a6 7433 if (pipe == PIPE_A)
ab3c759a 7434 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7435 0x0df40000);
7436 else
ab3c759a 7437 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7438 0x0df70000);
7439 } else { /* HDMI or VGA */
7440 /* Use bend source */
bdd4b6a6 7441 if (pipe == PIPE_A)
ab3c759a 7442 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7443 0x0df70000);
7444 else
ab3c759a 7445 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7446 0x0df40000);
7447 }
a0c4da24 7448
ab3c759a 7449 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7450 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7451 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7452 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7453 coreclk |= 0x01000000;
ab3c759a 7454 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7455
ab3c759a 7456 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7457 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7458}
7459
251ac862
DV
7460static void chv_compute_dpll(struct intel_crtc *crtc,
7461 struct intel_crtc_state *pipe_config)
1ae0d137 7462{
60bfe44f
VS
7463 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7464 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
1ae0d137
VS
7465 DPLL_VCO_ENABLE;
7466 if (crtc->pipe != PIPE_A)
d288f65f 7467 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 7468
d288f65f
VS
7469 pipe_config->dpll_hw_state.dpll_md =
7470 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
7471}
7472
d288f65f 7473static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7474 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7475{
7476 struct drm_device *dev = crtc->base.dev;
7477 struct drm_i915_private *dev_priv = dev->dev_private;
7478 int pipe = crtc->pipe;
f0f59a00 7479 i915_reg_t dpll_reg = DPLL(crtc->pipe);
9d556c99 7480 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7481 u32 loopfilter, tribuf_calcntr;
9d556c99 7482 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7483 u32 dpio_val;
9cbe40c1 7484 int vco;
9d556c99 7485
d288f65f
VS
7486 bestn = pipe_config->dpll.n;
7487 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7488 bestm1 = pipe_config->dpll.m1;
7489 bestm2 = pipe_config->dpll.m2 >> 22;
7490 bestp1 = pipe_config->dpll.p1;
7491 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7492 vco = pipe_config->dpll.vco;
a945ce7e 7493 dpio_val = 0;
9cbe40c1 7494 loopfilter = 0;
9d556c99
CML
7495
7496 /*
7497 * Enable Refclk and SSC
7498 */
a11b0703 7499 I915_WRITE(dpll_reg,
d288f65f 7500 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703 7501
a580516d 7502 mutex_lock(&dev_priv->sb_lock);
9d556c99 7503
9d556c99
CML
7504 /* p1 and p2 divider */
7505 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7506 5 << DPIO_CHV_S1_DIV_SHIFT |
7507 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7508 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7509 1 << DPIO_CHV_K_DIV_SHIFT);
7510
7511 /* Feedback post-divider - m2 */
7512 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7513
7514 /* Feedback refclk divider - n and m1 */
7515 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7516 DPIO_CHV_M1_DIV_BY_2 |
7517 1 << DPIO_CHV_N_DIV_SHIFT);
7518
7519 /* M2 fraction division */
25a25dfc 7520 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7521
7522 /* M2 fraction division enable */
a945ce7e
VP
7523 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7524 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7525 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7526 if (bestm2_frac)
7527 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7528 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7529
de3a0fde
VP
7530 /* Program digital lock detect threshold */
7531 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7532 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7533 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7534 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7535 if (!bestm2_frac)
7536 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7537 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7538
9d556c99 7539 /* Loop filter */
9cbe40c1
VP
7540 if (vco == 5400000) {
7541 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7542 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7543 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7544 tribuf_calcntr = 0x9;
7545 } else if (vco <= 6200000) {
7546 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7547 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7548 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7549 tribuf_calcntr = 0x9;
7550 } else if (vco <= 6480000) {
7551 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7552 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7553 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7554 tribuf_calcntr = 0x8;
7555 } else {
7556 /* Not supported. Apply the same limits as in the max case */
7557 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7558 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7559 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7560 tribuf_calcntr = 0;
7561 }
9d556c99
CML
7562 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7563
968040b2 7564 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7565 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7566 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7567 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7568
9d556c99
CML
7569 /* AFC Recal */
7570 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7571 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7572 DPIO_AFC_RECAL);
7573
a580516d 7574 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7575}
7576
d288f65f
VS
7577/**
7578 * vlv_force_pll_on - forcibly enable just the PLL
7579 * @dev_priv: i915 private structure
7580 * @pipe: pipe PLL to enable
7581 * @dpll: PLL configuration
7582 *
7583 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7584 * in cases where we need the PLL enabled even when @pipe is not going to
7585 * be enabled.
7586 */
7587void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7588 const struct dpll *dpll)
7589{
7590 struct intel_crtc *crtc =
7591 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
5cec258b 7592 struct intel_crtc_state pipe_config = {
a93e255f 7593 .base.crtc = &crtc->base,
d288f65f
VS
7594 .pixel_multiplier = 1,
7595 .dpll = *dpll,
7596 };
7597
7598 if (IS_CHERRYVIEW(dev)) {
251ac862 7599 chv_compute_dpll(crtc, &pipe_config);
d288f65f
VS
7600 chv_prepare_pll(crtc, &pipe_config);
7601 chv_enable_pll(crtc, &pipe_config);
7602 } else {
251ac862 7603 vlv_compute_dpll(crtc, &pipe_config);
d288f65f
VS
7604 vlv_prepare_pll(crtc, &pipe_config);
7605 vlv_enable_pll(crtc, &pipe_config);
7606 }
7607}
7608
7609/**
7610 * vlv_force_pll_off - forcibly disable just the PLL
7611 * @dev_priv: i915 private structure
7612 * @pipe: pipe PLL to disable
7613 *
7614 * Disable the PLL for @pipe. To be used in cases where we need
7615 * the PLL enabled even when @pipe is not going to be enabled.
7616 */
7617void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7618{
7619 if (IS_CHERRYVIEW(dev))
7620 chv_disable_pll(to_i915(dev), pipe);
7621 else
7622 vlv_disable_pll(to_i915(dev), pipe);
7623}
7624
251ac862
DV
7625static void i9xx_compute_dpll(struct intel_crtc *crtc,
7626 struct intel_crtc_state *crtc_state,
7627 intel_clock_t *reduced_clock,
7628 int num_connectors)
eb1cbe48 7629{
f47709a9 7630 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7631 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7632 u32 dpll;
7633 bool is_sdvo;
190f68c5 7634 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7635
190f68c5 7636 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7637
a93e255f
ACO
7638 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7639 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7640
7641 dpll = DPLL_VGA_MODE_DIS;
7642
a93e255f 7643 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7644 dpll |= DPLLB_MODE_LVDS;
7645 else
7646 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7647
ef1b460d 7648 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7649 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7650 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7651 }
198a037f
DV
7652
7653 if (is_sdvo)
4a33e48d 7654 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7655
190f68c5 7656 if (crtc_state->has_dp_encoder)
4a33e48d 7657 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7658
7659 /* compute bitmask from p1 value */
7660 if (IS_PINEVIEW(dev))
7661 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7662 else {
7663 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7664 if (IS_G4X(dev) && reduced_clock)
7665 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7666 }
7667 switch (clock->p2) {
7668 case 5:
7669 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7670 break;
7671 case 7:
7672 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7673 break;
7674 case 10:
7675 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7676 break;
7677 case 14:
7678 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7679 break;
7680 }
7681 if (INTEL_INFO(dev)->gen >= 4)
7682 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7683
190f68c5 7684 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7685 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7686 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7687 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7688 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7689 else
7690 dpll |= PLL_REF_INPUT_DREFCLK;
7691
7692 dpll |= DPLL_VCO_ENABLE;
190f68c5 7693 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7694
eb1cbe48 7695 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7696 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7697 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7698 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7699 }
7700}
7701
251ac862
DV
7702static void i8xx_compute_dpll(struct intel_crtc *crtc,
7703 struct intel_crtc_state *crtc_state,
7704 intel_clock_t *reduced_clock,
7705 int num_connectors)
eb1cbe48 7706{
f47709a9 7707 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7708 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7709 u32 dpll;
190f68c5 7710 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7711
190f68c5 7712 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7713
eb1cbe48
DV
7714 dpll = DPLL_VGA_MODE_DIS;
7715
a93e255f 7716 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7717 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7718 } else {
7719 if (clock->p1 == 2)
7720 dpll |= PLL_P1_DIVIDE_BY_TWO;
7721 else
7722 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7723 if (clock->p2 == 4)
7724 dpll |= PLL_P2_DIVIDE_BY_4;
7725 }
7726
a93e255f 7727 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7728 dpll |= DPLL_DVO_2X_MODE;
7729
a93e255f 7730 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7731 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7732 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7733 else
7734 dpll |= PLL_REF_INPUT_DREFCLK;
7735
7736 dpll |= DPLL_VCO_ENABLE;
190f68c5 7737 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7738}
7739
8a654f3b 7740static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7741{
7742 struct drm_device *dev = intel_crtc->base.dev;
7743 struct drm_i915_private *dev_priv = dev->dev_private;
7744 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7745 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7c5f93b0 7746 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7747 uint32_t crtc_vtotal, crtc_vblank_end;
7748 int vsyncshift = 0;
4d8a62ea
DV
7749
7750 /* We need to be careful not to changed the adjusted mode, for otherwise
7751 * the hw state checker will get angry at the mismatch. */
7752 crtc_vtotal = adjusted_mode->crtc_vtotal;
7753 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7754
609aeaca 7755 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7756 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7757 crtc_vtotal -= 1;
7758 crtc_vblank_end -= 1;
609aeaca 7759
409ee761 7760 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7761 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7762 else
7763 vsyncshift = adjusted_mode->crtc_hsync_start -
7764 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7765 if (vsyncshift < 0)
7766 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7767 }
7768
7769 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7770 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7771
fe2b8f9d 7772 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7773 (adjusted_mode->crtc_hdisplay - 1) |
7774 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7775 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7776 (adjusted_mode->crtc_hblank_start - 1) |
7777 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7778 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7779 (adjusted_mode->crtc_hsync_start - 1) |
7780 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7781
fe2b8f9d 7782 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7783 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7784 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7785 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7786 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7787 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7788 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7789 (adjusted_mode->crtc_vsync_start - 1) |
7790 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7791
b5e508d4
PZ
7792 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7793 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7794 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7795 * bits. */
7796 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7797 (pipe == PIPE_B || pipe == PIPE_C))
7798 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7799
b0e77b9c
PZ
7800 /* pipesrc controls the size that is scaled from, which should
7801 * always be the user's requested size.
7802 */
7803 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7804 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7805 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7806}
7807
1bd1bd80 7808static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7809 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7810{
7811 struct drm_device *dev = crtc->base.dev;
7812 struct drm_i915_private *dev_priv = dev->dev_private;
7813 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7814 uint32_t tmp;
7815
7816 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7817 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7818 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7819 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7820 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7821 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7822 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7823 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7824 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7825
7826 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7827 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7828 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7829 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7830 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7831 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7832 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7833 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7834 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7835
7836 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7837 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7838 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7839 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7840 }
7841
7842 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7843 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7844 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7845
2d112de7
ACO
7846 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7847 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7848}
7849
f6a83288 7850void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7851 struct intel_crtc_state *pipe_config)
babea61d 7852{
2d112de7
ACO
7853 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7854 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7855 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7856 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7857
2d112de7
ACO
7858 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7859 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7860 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7861 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7862
2d112de7 7863 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 7864 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 7865
2d112de7
ACO
7866 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7867 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
7868
7869 mode->hsync = drm_mode_hsync(mode);
7870 mode->vrefresh = drm_mode_vrefresh(mode);
7871 drm_mode_set_name(mode);
babea61d
JB
7872}
7873
84b046f3
DV
7874static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7875{
7876 struct drm_device *dev = intel_crtc->base.dev;
7877 struct drm_i915_private *dev_priv = dev->dev_private;
7878 uint32_t pipeconf;
7879
9f11a9e4 7880 pipeconf = 0;
84b046f3 7881
b6b5d049
VS
7882 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7883 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7884 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7885
6e3c9717 7886 if (intel_crtc->config->double_wide)
cf532bb2 7887 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7888
ff9ce46e
DV
7889 /* only g4x and later have fancy bpc/dither controls */
7890 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e 7891 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7892 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7893 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7894 PIPECONF_DITHER_TYPE_SP;
84b046f3 7895
6e3c9717 7896 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7897 case 18:
7898 pipeconf |= PIPECONF_6BPC;
7899 break;
7900 case 24:
7901 pipeconf |= PIPECONF_8BPC;
7902 break;
7903 case 30:
7904 pipeconf |= PIPECONF_10BPC;
7905 break;
7906 default:
7907 /* Case prevented by intel_choose_pipe_bpp_dither. */
7908 BUG();
84b046f3
DV
7909 }
7910 }
7911
7912 if (HAS_PIPE_CXSR(dev)) {
7913 if (intel_crtc->lowfreq_avail) {
7914 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7915 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7916 } else {
7917 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7918 }
7919 }
7920
6e3c9717 7921 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7922 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7923 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7924 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7925 else
7926 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7927 } else
84b046f3
DV
7928 pipeconf |= PIPECONF_PROGRESSIVE;
7929
6e3c9717 7930 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
9f11a9e4 7931 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7932
84b046f3
DV
7933 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7934 POSTING_READ(PIPECONF(intel_crtc->pipe));
7935}
7936
190f68c5
ACO
7937static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7938 struct intel_crtc_state *crtc_state)
79e53945 7939{
c7653199 7940 struct drm_device *dev = crtc->base.dev;
79e53945 7941 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7942 int refclk, num_connectors = 0;
c329a4ec
DV
7943 intel_clock_t clock;
7944 bool ok;
d4906093 7945 const intel_limit_t *limit;
55bb9992 7946 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 7947 struct drm_connector *connector;
55bb9992
ACO
7948 struct drm_connector_state *connector_state;
7949 int i;
79e53945 7950
dd3cd74a
ACO
7951 memset(&crtc_state->dpll_hw_state, 0,
7952 sizeof(crtc_state->dpll_hw_state));
7953
a65347ba
JN
7954 if (crtc_state->has_dsi_encoder)
7955 return 0;
43565a06 7956
a65347ba
JN
7957 for_each_connector_in_state(state, connector, connector_state, i) {
7958 if (connector_state->crtc == &crtc->base)
7959 num_connectors++;
79e53945
JB
7960 }
7961
190f68c5 7962 if (!crtc_state->clock_set) {
a93e255f 7963 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7964
e9fd1c02
JN
7965 /*
7966 * Returns a set of divisors for the desired target clock with
7967 * the given refclk, or FALSE. The returned values represent
7968 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7969 * 2) / p1 / p2.
7970 */
a93e255f
ACO
7971 limit = intel_limit(crtc_state, refclk);
7972 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7973 crtc_state->port_clock,
e9fd1c02 7974 refclk, NULL, &clock);
f2335330 7975 if (!ok) {
e9fd1c02
JN
7976 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7977 return -EINVAL;
7978 }
79e53945 7979
f2335330 7980 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7981 crtc_state->dpll.n = clock.n;
7982 crtc_state->dpll.m1 = clock.m1;
7983 crtc_state->dpll.m2 = clock.m2;
7984 crtc_state->dpll.p1 = clock.p1;
7985 crtc_state->dpll.p2 = clock.p2;
f47709a9 7986 }
7026d4ac 7987
e9fd1c02 7988 if (IS_GEN2(dev)) {
c329a4ec 7989 i8xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7990 num_connectors);
9d556c99 7991 } else if (IS_CHERRYVIEW(dev)) {
251ac862 7992 chv_compute_dpll(crtc, crtc_state);
e9fd1c02 7993 } else if (IS_VALLEYVIEW(dev)) {
251ac862 7994 vlv_compute_dpll(crtc, crtc_state);
e9fd1c02 7995 } else {
c329a4ec 7996 i9xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7997 num_connectors);
e9fd1c02 7998 }
79e53945 7999
c8f7a0db 8000 return 0;
f564048e
EA
8001}
8002
2fa2fe9a 8003static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 8004 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
8005{
8006 struct drm_device *dev = crtc->base.dev;
8007 struct drm_i915_private *dev_priv = dev->dev_private;
8008 uint32_t tmp;
8009
dc9e7dec
VS
8010 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8011 return;
8012
2fa2fe9a 8013 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
8014 if (!(tmp & PFIT_ENABLE))
8015 return;
2fa2fe9a 8016
06922821 8017 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
8018 if (INTEL_INFO(dev)->gen < 4) {
8019 if (crtc->pipe != PIPE_B)
8020 return;
2fa2fe9a
DV
8021 } else {
8022 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8023 return;
8024 }
8025
06922821 8026 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
8027 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8028 if (INTEL_INFO(dev)->gen < 5)
8029 pipe_config->gmch_pfit.lvds_border_bits =
8030 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8031}
8032
acbec814 8033static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8034 struct intel_crtc_state *pipe_config)
acbec814
JB
8035{
8036 struct drm_device *dev = crtc->base.dev;
8037 struct drm_i915_private *dev_priv = dev->dev_private;
8038 int pipe = pipe_config->cpu_transcoder;
8039 intel_clock_t clock;
8040 u32 mdiv;
662c6ecb 8041 int refclk = 100000;
acbec814 8042
f573de5a
SK
8043 /* In case of MIPI DPLL will not even be used */
8044 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8045 return;
8046
a580516d 8047 mutex_lock(&dev_priv->sb_lock);
ab3c759a 8048 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 8049 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
8050
8051 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8052 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8053 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8054 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8055 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8056
dccbea3b 8057 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
8058}
8059
5724dbd1
DL
8060static void
8061i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8062 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
8063{
8064 struct drm_device *dev = crtc->base.dev;
8065 struct drm_i915_private *dev_priv = dev->dev_private;
8066 u32 val, base, offset;
8067 int pipe = crtc->pipe, plane = crtc->plane;
8068 int fourcc, pixel_format;
6761dd31 8069 unsigned int aligned_height;
b113d5ee 8070 struct drm_framebuffer *fb;
1b842c89 8071 struct intel_framebuffer *intel_fb;
1ad292b5 8072
42a7b088
DL
8073 val = I915_READ(DSPCNTR(plane));
8074 if (!(val & DISPLAY_PLANE_ENABLE))
8075 return;
8076
d9806c9f 8077 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8078 if (!intel_fb) {
1ad292b5
JB
8079 DRM_DEBUG_KMS("failed to alloc fb\n");
8080 return;
8081 }
8082
1b842c89
DL
8083 fb = &intel_fb->base;
8084
18c5247e
DV
8085 if (INTEL_INFO(dev)->gen >= 4) {
8086 if (val & DISPPLANE_TILED) {
49af449b 8087 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8088 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8089 }
8090 }
1ad292b5
JB
8091
8092 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8093 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8094 fb->pixel_format = fourcc;
8095 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
8096
8097 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 8098 if (plane_config->tiling)
1ad292b5
JB
8099 offset = I915_READ(DSPTILEOFF(plane));
8100 else
8101 offset = I915_READ(DSPLINOFF(plane));
8102 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8103 } else {
8104 base = I915_READ(DSPADDR(plane));
8105 }
8106 plane_config->base = base;
8107
8108 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8109 fb->width = ((val >> 16) & 0xfff) + 1;
8110 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8111
8112 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8113 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8114
b113d5ee 8115 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8116 fb->pixel_format,
8117 fb->modifier[0]);
1ad292b5 8118
f37b5c2b 8119 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8120
2844a921
DL
8121 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8122 pipe_name(pipe), plane, fb->width, fb->height,
8123 fb->bits_per_pixel, base, fb->pitches[0],
8124 plane_config->size);
1ad292b5 8125
2d14030b 8126 plane_config->fb = intel_fb;
1ad292b5
JB
8127}
8128
70b23a98 8129static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8130 struct intel_crtc_state *pipe_config)
70b23a98
VS
8131{
8132 struct drm_device *dev = crtc->base.dev;
8133 struct drm_i915_private *dev_priv = dev->dev_private;
8134 int pipe = pipe_config->cpu_transcoder;
8135 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8136 intel_clock_t clock;
0d7b6b11 8137 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8138 int refclk = 100000;
8139
a580516d 8140 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8141 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8142 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8143 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8144 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8145 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8146 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8147
8148 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8149 clock.m2 = (pll_dw0 & 0xff) << 22;
8150 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8151 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8152 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8153 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8154 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8155
dccbea3b 8156 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8157}
8158
0e8ffe1b 8159static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8160 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8161{
8162 struct drm_device *dev = crtc->base.dev;
8163 struct drm_i915_private *dev_priv = dev->dev_private;
8164 uint32_t tmp;
8165
f458ebbc
DV
8166 if (!intel_display_power_is_enabled(dev_priv,
8167 POWER_DOMAIN_PIPE(crtc->pipe)))
b5482bd0
ID
8168 return false;
8169
e143a21c 8170 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8171 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8172
0e8ffe1b
DV
8173 tmp = I915_READ(PIPECONF(crtc->pipe));
8174 if (!(tmp & PIPECONF_ENABLE))
8175 return false;
8176
42571aef
VS
8177 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8178 switch (tmp & PIPECONF_BPC_MASK) {
8179 case PIPECONF_6BPC:
8180 pipe_config->pipe_bpp = 18;
8181 break;
8182 case PIPECONF_8BPC:
8183 pipe_config->pipe_bpp = 24;
8184 break;
8185 case PIPECONF_10BPC:
8186 pipe_config->pipe_bpp = 30;
8187 break;
8188 default:
8189 break;
8190 }
8191 }
8192
b5a9fa09
DV
8193 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8194 pipe_config->limited_color_range = true;
8195
282740f7
VS
8196 if (INTEL_INFO(dev)->gen < 4)
8197 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8198
1bd1bd80
DV
8199 intel_get_pipe_timings(crtc, pipe_config);
8200
2fa2fe9a
DV
8201 i9xx_get_pfit_config(crtc, pipe_config);
8202
6c49f241
DV
8203 if (INTEL_INFO(dev)->gen >= 4) {
8204 tmp = I915_READ(DPLL_MD(crtc->pipe));
8205 pipe_config->pixel_multiplier =
8206 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8207 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8208 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8209 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8210 tmp = I915_READ(DPLL(crtc->pipe));
8211 pipe_config->pixel_multiplier =
8212 ((tmp & SDVO_MULTIPLIER_MASK)
8213 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8214 } else {
8215 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8216 * port and will be fixed up in the encoder->get_config
8217 * function. */
8218 pipe_config->pixel_multiplier = 1;
8219 }
8bcc2795
DV
8220 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8221 if (!IS_VALLEYVIEW(dev)) {
1c4e0274
VS
8222 /*
8223 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8224 * on 830. Filter it out here so that we don't
8225 * report errors due to that.
8226 */
8227 if (IS_I830(dev))
8228 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8229
8bcc2795
DV
8230 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8231 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8232 } else {
8233 /* Mask out read-only status bits. */
8234 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8235 DPLL_PORTC_READY_MASK |
8236 DPLL_PORTB_READY_MASK);
8bcc2795 8237 }
6c49f241 8238
70b23a98
VS
8239 if (IS_CHERRYVIEW(dev))
8240 chv_crtc_clock_get(crtc, pipe_config);
8241 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8242 vlv_crtc_clock_get(crtc, pipe_config);
8243 else
8244 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8245
0f64614d
VS
8246 /*
8247 * Normally the dotclock is filled in by the encoder .get_config()
8248 * but in case the pipe is enabled w/o any ports we need a sane
8249 * default.
8250 */
8251 pipe_config->base.adjusted_mode.crtc_clock =
8252 pipe_config->port_clock / pipe_config->pixel_multiplier;
8253
0e8ffe1b
DV
8254 return true;
8255}
8256
dde86e2d 8257static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8258{
8259 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8260 struct intel_encoder *encoder;
74cfd7ac 8261 u32 val, final;
13d83a67 8262 bool has_lvds = false;
199e5d79 8263 bool has_cpu_edp = false;
199e5d79 8264 bool has_panel = false;
99eb6a01
KP
8265 bool has_ck505 = false;
8266 bool can_ssc = false;
13d83a67
JB
8267
8268 /* We need to take the global config into account */
b2784e15 8269 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8270 switch (encoder->type) {
8271 case INTEL_OUTPUT_LVDS:
8272 has_panel = true;
8273 has_lvds = true;
8274 break;
8275 case INTEL_OUTPUT_EDP:
8276 has_panel = true;
2de6905f 8277 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8278 has_cpu_edp = true;
8279 break;
6847d71b
PZ
8280 default:
8281 break;
13d83a67
JB
8282 }
8283 }
8284
99eb6a01 8285 if (HAS_PCH_IBX(dev)) {
41aa3448 8286 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8287 can_ssc = has_ck505;
8288 } else {
8289 has_ck505 = false;
8290 can_ssc = true;
8291 }
8292
2de6905f
ID
8293 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8294 has_panel, has_lvds, has_ck505);
13d83a67
JB
8295
8296 /* Ironlake: try to setup display ref clock before DPLL
8297 * enabling. This is only under driver's control after
8298 * PCH B stepping, previous chipset stepping should be
8299 * ignoring this setting.
8300 */
74cfd7ac
CW
8301 val = I915_READ(PCH_DREF_CONTROL);
8302
8303 /* As we must carefully and slowly disable/enable each source in turn,
8304 * compute the final state we want first and check if we need to
8305 * make any changes at all.
8306 */
8307 final = val;
8308 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8309 if (has_ck505)
8310 final |= DREF_NONSPREAD_CK505_ENABLE;
8311 else
8312 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8313
8314 final &= ~DREF_SSC_SOURCE_MASK;
8315 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8316 final &= ~DREF_SSC1_ENABLE;
8317
8318 if (has_panel) {
8319 final |= DREF_SSC_SOURCE_ENABLE;
8320
8321 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8322 final |= DREF_SSC1_ENABLE;
8323
8324 if (has_cpu_edp) {
8325 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8326 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8327 else
8328 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8329 } else
8330 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8331 } else {
8332 final |= DREF_SSC_SOURCE_DISABLE;
8333 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8334 }
8335
8336 if (final == val)
8337 return;
8338
13d83a67 8339 /* Always enable nonspread source */
74cfd7ac 8340 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8341
99eb6a01 8342 if (has_ck505)
74cfd7ac 8343 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8344 else
74cfd7ac 8345 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8346
199e5d79 8347 if (has_panel) {
74cfd7ac
CW
8348 val &= ~DREF_SSC_SOURCE_MASK;
8349 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8350
199e5d79 8351 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8352 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8353 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8354 val |= DREF_SSC1_ENABLE;
e77166b5 8355 } else
74cfd7ac 8356 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8357
8358 /* Get SSC going before enabling the outputs */
74cfd7ac 8359 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8360 POSTING_READ(PCH_DREF_CONTROL);
8361 udelay(200);
8362
74cfd7ac 8363 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8364
8365 /* Enable CPU source on CPU attached eDP */
199e5d79 8366 if (has_cpu_edp) {
99eb6a01 8367 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8368 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8369 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8370 } else
74cfd7ac 8371 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8372 } else
74cfd7ac 8373 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8374
74cfd7ac 8375 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8376 POSTING_READ(PCH_DREF_CONTROL);
8377 udelay(200);
8378 } else {
8379 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8380
74cfd7ac 8381 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8382
8383 /* Turn off CPU output */
74cfd7ac 8384 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8385
74cfd7ac 8386 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8387 POSTING_READ(PCH_DREF_CONTROL);
8388 udelay(200);
8389
8390 /* Turn off the SSC source */
74cfd7ac
CW
8391 val &= ~DREF_SSC_SOURCE_MASK;
8392 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
8393
8394 /* Turn off SSC1 */
74cfd7ac 8395 val &= ~DREF_SSC1_ENABLE;
199e5d79 8396
74cfd7ac 8397 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
8398 POSTING_READ(PCH_DREF_CONTROL);
8399 udelay(200);
8400 }
74cfd7ac
CW
8401
8402 BUG_ON(val != final);
13d83a67
JB
8403}
8404
f31f2d55 8405static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8406{
f31f2d55 8407 uint32_t tmp;
dde86e2d 8408
0ff066a9
PZ
8409 tmp = I915_READ(SOUTH_CHICKEN2);
8410 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8411 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8412
0ff066a9
PZ
8413 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8414 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8415 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8416
0ff066a9
PZ
8417 tmp = I915_READ(SOUTH_CHICKEN2);
8418 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8419 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8420
0ff066a9
PZ
8421 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8422 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8423 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8424}
8425
8426/* WaMPhyProgramming:hsw */
8427static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8428{
8429 uint32_t tmp;
dde86e2d
PZ
8430
8431 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8432 tmp &= ~(0xFF << 24);
8433 tmp |= (0x12 << 24);
8434 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8435
dde86e2d
PZ
8436 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8437 tmp |= (1 << 11);
8438 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8439
8440 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8441 tmp |= (1 << 11);
8442 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8443
dde86e2d
PZ
8444 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8445 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8446 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8447
8448 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8449 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8450 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8451
0ff066a9
PZ
8452 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8453 tmp &= ~(7 << 13);
8454 tmp |= (5 << 13);
8455 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8456
0ff066a9
PZ
8457 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8458 tmp &= ~(7 << 13);
8459 tmp |= (5 << 13);
8460 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8461
8462 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8463 tmp &= ~0xFF;
8464 tmp |= 0x1C;
8465 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8466
8467 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8468 tmp &= ~0xFF;
8469 tmp |= 0x1C;
8470 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8471
8472 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8473 tmp &= ~(0xFF << 16);
8474 tmp |= (0x1C << 16);
8475 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8476
8477 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8478 tmp &= ~(0xFF << 16);
8479 tmp |= (0x1C << 16);
8480 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8481
0ff066a9
PZ
8482 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8483 tmp |= (1 << 27);
8484 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8485
0ff066a9
PZ
8486 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8487 tmp |= (1 << 27);
8488 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8489
0ff066a9
PZ
8490 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8491 tmp &= ~(0xF << 28);
8492 tmp |= (4 << 28);
8493 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8494
0ff066a9
PZ
8495 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8496 tmp &= ~(0xF << 28);
8497 tmp |= (4 << 28);
8498 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8499}
8500
2fa86a1f
PZ
8501/* Implements 3 different sequences from BSpec chapter "Display iCLK
8502 * Programming" based on the parameters passed:
8503 * - Sequence to enable CLKOUT_DP
8504 * - Sequence to enable CLKOUT_DP without spread
8505 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8506 */
8507static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8508 bool with_fdi)
f31f2d55
PZ
8509{
8510 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8511 uint32_t reg, tmp;
8512
8513 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8514 with_spread = true;
c2699524 8515 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
2fa86a1f 8516 with_fdi = false;
f31f2d55 8517
a580516d 8518 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8519
8520 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8521 tmp &= ~SBI_SSCCTL_DISABLE;
8522 tmp |= SBI_SSCCTL_PATHALT;
8523 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8524
8525 udelay(24);
8526
2fa86a1f
PZ
8527 if (with_spread) {
8528 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8529 tmp &= ~SBI_SSCCTL_PATHALT;
8530 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8531
2fa86a1f
PZ
8532 if (with_fdi) {
8533 lpt_reset_fdi_mphy(dev_priv);
8534 lpt_program_fdi_mphy(dev_priv);
8535 }
8536 }
dde86e2d 8537
c2699524 8538 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
2fa86a1f
PZ
8539 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8540 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8541 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8542
a580516d 8543 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8544}
8545
47701c3b
PZ
8546/* Sequence to disable CLKOUT_DP */
8547static void lpt_disable_clkout_dp(struct drm_device *dev)
8548{
8549 struct drm_i915_private *dev_priv = dev->dev_private;
8550 uint32_t reg, tmp;
8551
a580516d 8552 mutex_lock(&dev_priv->sb_lock);
47701c3b 8553
c2699524 8554 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
47701c3b
PZ
8555 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8556 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8557 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8558
8559 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8560 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8561 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8562 tmp |= SBI_SSCCTL_PATHALT;
8563 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8564 udelay(32);
8565 }
8566 tmp |= SBI_SSCCTL_DISABLE;
8567 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8568 }
8569
a580516d 8570 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8571}
8572
bf8fa3d3
PZ
8573static void lpt_init_pch_refclk(struct drm_device *dev)
8574{
bf8fa3d3
PZ
8575 struct intel_encoder *encoder;
8576 bool has_vga = false;
8577
b2784e15 8578 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8579 switch (encoder->type) {
8580 case INTEL_OUTPUT_ANALOG:
8581 has_vga = true;
8582 break;
6847d71b
PZ
8583 default:
8584 break;
bf8fa3d3
PZ
8585 }
8586 }
8587
47701c3b
PZ
8588 if (has_vga)
8589 lpt_enable_clkout_dp(dev, true, true);
8590 else
8591 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
8592}
8593
dde86e2d
PZ
8594/*
8595 * Initialize reference clocks when the driver loads
8596 */
8597void intel_init_pch_refclk(struct drm_device *dev)
8598{
8599 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8600 ironlake_init_pch_refclk(dev);
8601 else if (HAS_PCH_LPT(dev))
8602 lpt_init_pch_refclk(dev);
8603}
8604
55bb9992 8605static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8606{
55bb9992 8607 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8608 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8609 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8610 struct drm_connector *connector;
55bb9992 8611 struct drm_connector_state *connector_state;
d9d444cb 8612 struct intel_encoder *encoder;
55bb9992 8613 int num_connectors = 0, i;
d9d444cb
JB
8614 bool is_lvds = false;
8615
da3ced29 8616 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8617 if (connector_state->crtc != crtc_state->base.crtc)
8618 continue;
8619
8620 encoder = to_intel_encoder(connector_state->best_encoder);
8621
d9d444cb
JB
8622 switch (encoder->type) {
8623 case INTEL_OUTPUT_LVDS:
8624 is_lvds = true;
8625 break;
6847d71b
PZ
8626 default:
8627 break;
d9d444cb
JB
8628 }
8629 num_connectors++;
8630 }
8631
8632 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8633 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8634 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8635 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8636 }
8637
8638 return 120000;
8639}
8640
6ff93609 8641static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8642{
c8203565 8643 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8644 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8645 int pipe = intel_crtc->pipe;
c8203565
PZ
8646 uint32_t val;
8647
78114071 8648 val = 0;
c8203565 8649
6e3c9717 8650 switch (intel_crtc->config->pipe_bpp) {
c8203565 8651 case 18:
dfd07d72 8652 val |= PIPECONF_6BPC;
c8203565
PZ
8653 break;
8654 case 24:
dfd07d72 8655 val |= PIPECONF_8BPC;
c8203565
PZ
8656 break;
8657 case 30:
dfd07d72 8658 val |= PIPECONF_10BPC;
c8203565
PZ
8659 break;
8660 case 36:
dfd07d72 8661 val |= PIPECONF_12BPC;
c8203565
PZ
8662 break;
8663 default:
cc769b62
PZ
8664 /* Case prevented by intel_choose_pipe_bpp_dither. */
8665 BUG();
c8203565
PZ
8666 }
8667
6e3c9717 8668 if (intel_crtc->config->dither)
c8203565
PZ
8669 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8670
6e3c9717 8671 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8672 val |= PIPECONF_INTERLACED_ILK;
8673 else
8674 val |= PIPECONF_PROGRESSIVE;
8675
6e3c9717 8676 if (intel_crtc->config->limited_color_range)
3685a8f3 8677 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8678
c8203565
PZ
8679 I915_WRITE(PIPECONF(pipe), val);
8680 POSTING_READ(PIPECONF(pipe));
8681}
8682
86d3efce
VS
8683/*
8684 * Set up the pipe CSC unit.
8685 *
8686 * Currently only full range RGB to limited range RGB conversion
8687 * is supported, but eventually this should handle various
8688 * RGB<->YCbCr scenarios as well.
8689 */
50f3b016 8690static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8691{
8692 struct drm_device *dev = crtc->dev;
8693 struct drm_i915_private *dev_priv = dev->dev_private;
8694 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8695 int pipe = intel_crtc->pipe;
8696 uint16_t coeff = 0x7800; /* 1.0 */
8697
8698 /*
8699 * TODO: Check what kind of values actually come out of the pipe
8700 * with these coeff/postoff values and adjust to get the best
8701 * accuracy. Perhaps we even need to take the bpc value into
8702 * consideration.
8703 */
8704
6e3c9717 8705 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8706 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8707
8708 /*
8709 * GY/GU and RY/RU should be the other way around according
8710 * to BSpec, but reality doesn't agree. Just set them up in
8711 * a way that results in the correct picture.
8712 */
8713 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8714 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8715
8716 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8717 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8718
8719 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8720 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8721
8722 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8723 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8724 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8725
8726 if (INTEL_INFO(dev)->gen > 6) {
8727 uint16_t postoff = 0;
8728
6e3c9717 8729 if (intel_crtc->config->limited_color_range)
32cf0cb0 8730 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8731
8732 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8733 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8734 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8735
8736 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8737 } else {
8738 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8739
6e3c9717 8740 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8741 mode |= CSC_BLACK_SCREEN_OFFSET;
8742
8743 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8744 }
8745}
8746
6ff93609 8747static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8748{
756f85cf
PZ
8749 struct drm_device *dev = crtc->dev;
8750 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8751 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8752 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8753 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8754 uint32_t val;
8755
3eff4faa 8756 val = 0;
ee2b0b38 8757
6e3c9717 8758 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8759 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8760
6e3c9717 8761 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8762 val |= PIPECONF_INTERLACED_ILK;
8763 else
8764 val |= PIPECONF_PROGRESSIVE;
8765
702e7a56
PZ
8766 I915_WRITE(PIPECONF(cpu_transcoder), val);
8767 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8768
8769 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8770 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8771
3cdf122c 8772 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8773 val = 0;
8774
6e3c9717 8775 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8776 case 18:
8777 val |= PIPEMISC_DITHER_6_BPC;
8778 break;
8779 case 24:
8780 val |= PIPEMISC_DITHER_8_BPC;
8781 break;
8782 case 30:
8783 val |= PIPEMISC_DITHER_10_BPC;
8784 break;
8785 case 36:
8786 val |= PIPEMISC_DITHER_12_BPC;
8787 break;
8788 default:
8789 /* Case prevented by pipe_config_set_bpp. */
8790 BUG();
8791 }
8792
6e3c9717 8793 if (intel_crtc->config->dither)
756f85cf
PZ
8794 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8795
8796 I915_WRITE(PIPEMISC(pipe), val);
8797 }
ee2b0b38
PZ
8798}
8799
6591c6e4 8800static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8801 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8802 intel_clock_t *clock,
8803 bool *has_reduced_clock,
8804 intel_clock_t *reduced_clock)
8805{
8806 struct drm_device *dev = crtc->dev;
8807 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8808 int refclk;
d4906093 8809 const intel_limit_t *limit;
c329a4ec 8810 bool ret;
79e53945 8811
55bb9992 8812 refclk = ironlake_get_refclk(crtc_state);
79e53945 8813
d4906093
ML
8814 /*
8815 * Returns a set of divisors for the desired target clock with the given
8816 * refclk, or FALSE. The returned values represent the clock equation:
8817 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8818 */
a93e255f
ACO
8819 limit = intel_limit(crtc_state, refclk);
8820 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8821 crtc_state->port_clock,
ee9300bb 8822 refclk, NULL, clock);
6591c6e4
PZ
8823 if (!ret)
8824 return false;
cda4b7d3 8825
6591c6e4
PZ
8826 return true;
8827}
8828
d4b1931c
PZ
8829int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8830{
8831 /*
8832 * Account for spread spectrum to avoid
8833 * oversubscribing the link. Max center spread
8834 * is 2.5%; use 5% for safety's sake.
8835 */
8836 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8837 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8838}
8839
7429e9d4 8840static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8841{
7429e9d4 8842 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8843}
8844
de13a2e3 8845static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8846 struct intel_crtc_state *crtc_state,
7429e9d4 8847 u32 *fp,
9a7c7890 8848 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8849{
de13a2e3 8850 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8851 struct drm_device *dev = crtc->dev;
8852 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8853 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8854 struct drm_connector *connector;
55bb9992
ACO
8855 struct drm_connector_state *connector_state;
8856 struct intel_encoder *encoder;
de13a2e3 8857 uint32_t dpll;
55bb9992 8858 int factor, num_connectors = 0, i;
09ede541 8859 bool is_lvds = false, is_sdvo = false;
79e53945 8860
da3ced29 8861 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8862 if (connector_state->crtc != crtc_state->base.crtc)
8863 continue;
8864
8865 encoder = to_intel_encoder(connector_state->best_encoder);
8866
8867 switch (encoder->type) {
79e53945
JB
8868 case INTEL_OUTPUT_LVDS:
8869 is_lvds = true;
8870 break;
8871 case INTEL_OUTPUT_SDVO:
7d57382e 8872 case INTEL_OUTPUT_HDMI:
79e53945 8873 is_sdvo = true;
79e53945 8874 break;
6847d71b
PZ
8875 default:
8876 break;
79e53945 8877 }
43565a06 8878
c751ce4f 8879 num_connectors++;
79e53945 8880 }
79e53945 8881
c1858123 8882 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8883 factor = 21;
8884 if (is_lvds) {
8885 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8886 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8887 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8888 factor = 25;
190f68c5 8889 } else if (crtc_state->sdvo_tv_clock)
8febb297 8890 factor = 20;
c1858123 8891
190f68c5 8892 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8893 *fp |= FP_CB_TUNE;
2c07245f 8894
9a7c7890
DV
8895 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8896 *fp2 |= FP_CB_TUNE;
8897
5eddb70b 8898 dpll = 0;
2c07245f 8899
a07d6787
EA
8900 if (is_lvds)
8901 dpll |= DPLLB_MODE_LVDS;
8902 else
8903 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8904
190f68c5 8905 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8906 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8907
8908 if (is_sdvo)
4a33e48d 8909 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8910 if (crtc_state->has_dp_encoder)
4a33e48d 8911 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8912
a07d6787 8913 /* compute bitmask from p1 value */
190f68c5 8914 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8915 /* also FPA1 */
190f68c5 8916 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8917
190f68c5 8918 switch (crtc_state->dpll.p2) {
a07d6787
EA
8919 case 5:
8920 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8921 break;
8922 case 7:
8923 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8924 break;
8925 case 10:
8926 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8927 break;
8928 case 14:
8929 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8930 break;
79e53945
JB
8931 }
8932
b4c09f3b 8933 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8934 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8935 else
8936 dpll |= PLL_REF_INPUT_DREFCLK;
8937
959e16d6 8938 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8939}
8940
190f68c5
ACO
8941static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8942 struct intel_crtc_state *crtc_state)
de13a2e3 8943{
c7653199 8944 struct drm_device *dev = crtc->base.dev;
de13a2e3 8945 intel_clock_t clock, reduced_clock;
cbbab5bd 8946 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8947 bool ok, has_reduced_clock = false;
8b47047b 8948 bool is_lvds = false;
e2b78267 8949 struct intel_shared_dpll *pll;
de13a2e3 8950
dd3cd74a
ACO
8951 memset(&crtc_state->dpll_hw_state, 0,
8952 sizeof(crtc_state->dpll_hw_state));
8953
7905df29 8954 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
79e53945 8955
5dc5298b
PZ
8956 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8957 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8958
190f68c5 8959 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8960 &has_reduced_clock, &reduced_clock);
190f68c5 8961 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8962 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8963 return -EINVAL;
79e53945 8964 }
f47709a9 8965 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8966 if (!crtc_state->clock_set) {
8967 crtc_state->dpll.n = clock.n;
8968 crtc_state->dpll.m1 = clock.m1;
8969 crtc_state->dpll.m2 = clock.m2;
8970 crtc_state->dpll.p1 = clock.p1;
8971 crtc_state->dpll.p2 = clock.p2;
f47709a9 8972 }
79e53945 8973
5dc5298b 8974 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8975 if (crtc_state->has_pch_encoder) {
8976 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8977 if (has_reduced_clock)
7429e9d4 8978 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8979
190f68c5 8980 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8981 &fp, &reduced_clock,
8982 has_reduced_clock ? &fp2 : NULL);
8983
190f68c5
ACO
8984 crtc_state->dpll_hw_state.dpll = dpll;
8985 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8986 if (has_reduced_clock)
190f68c5 8987 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8988 else
190f68c5 8989 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8990
190f68c5 8991 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 8992 if (pll == NULL) {
84f44ce7 8993 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8994 pipe_name(crtc->pipe));
4b645f14
JB
8995 return -EINVAL;
8996 }
3fb37703 8997 }
79e53945 8998
ab585dea 8999 if (is_lvds && has_reduced_clock)
c7653199 9000 crtc->lowfreq_avail = true;
bcd644e0 9001 else
c7653199 9002 crtc->lowfreq_avail = false;
e2b78267 9003
c8f7a0db 9004 return 0;
79e53945
JB
9005}
9006
eb14cb74
VS
9007static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9008 struct intel_link_m_n *m_n)
9009{
9010 struct drm_device *dev = crtc->base.dev;
9011 struct drm_i915_private *dev_priv = dev->dev_private;
9012 enum pipe pipe = crtc->pipe;
9013
9014 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9015 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9016 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9017 & ~TU_SIZE_MASK;
9018 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9019 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9020 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9021}
9022
9023static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9024 enum transcoder transcoder,
b95af8be
VK
9025 struct intel_link_m_n *m_n,
9026 struct intel_link_m_n *m2_n2)
72419203
DV
9027{
9028 struct drm_device *dev = crtc->base.dev;
9029 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 9030 enum pipe pipe = crtc->pipe;
72419203 9031
eb14cb74
VS
9032 if (INTEL_INFO(dev)->gen >= 5) {
9033 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9034 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9035 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9036 & ~TU_SIZE_MASK;
9037 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9038 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9039 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
9040 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9041 * gen < 8) and if DRRS is supported (to make sure the
9042 * registers are not unnecessarily read).
9043 */
9044 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 9045 crtc->config->has_drrs) {
b95af8be
VK
9046 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9047 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9048 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9049 & ~TU_SIZE_MASK;
9050 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9051 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9052 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9053 }
eb14cb74
VS
9054 } else {
9055 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9056 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9057 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9058 & ~TU_SIZE_MASK;
9059 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9060 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9061 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9062 }
9063}
9064
9065void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9066 struct intel_crtc_state *pipe_config)
eb14cb74 9067{
681a8504 9068 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9069 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9070 else
9071 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9072 &pipe_config->dp_m_n,
9073 &pipe_config->dp_m2_n2);
eb14cb74 9074}
72419203 9075
eb14cb74 9076static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9077 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9078{
9079 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9080 &pipe_config->fdi_m_n, NULL);
72419203
DV
9081}
9082
bd2e244f 9083static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9084 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9085{
9086 struct drm_device *dev = crtc->base.dev;
9087 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
9088 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9089 uint32_t ps_ctrl = 0;
9090 int id = -1;
9091 int i;
bd2e244f 9092
a1b2278e
CK
9093 /* find scaler attached to this pipe */
9094 for (i = 0; i < crtc->num_scalers; i++) {
9095 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9096 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9097 id = i;
9098 pipe_config->pch_pfit.enabled = true;
9099 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9100 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9101 break;
9102 }
9103 }
bd2e244f 9104
a1b2278e
CK
9105 scaler_state->scaler_id = id;
9106 if (id >= 0) {
9107 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9108 } else {
9109 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9110 }
9111}
9112
5724dbd1
DL
9113static void
9114skylake_get_initial_plane_config(struct intel_crtc *crtc,
9115 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9116{
9117 struct drm_device *dev = crtc->base.dev;
9118 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 9119 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9120 int pipe = crtc->pipe;
9121 int fourcc, pixel_format;
6761dd31 9122 unsigned int aligned_height;
bc8d7dff 9123 struct drm_framebuffer *fb;
1b842c89 9124 struct intel_framebuffer *intel_fb;
bc8d7dff 9125
d9806c9f 9126 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9127 if (!intel_fb) {
bc8d7dff
DL
9128 DRM_DEBUG_KMS("failed to alloc fb\n");
9129 return;
9130 }
9131
1b842c89
DL
9132 fb = &intel_fb->base;
9133
bc8d7dff 9134 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9135 if (!(val & PLANE_CTL_ENABLE))
9136 goto error;
9137
bc8d7dff
DL
9138 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9139 fourcc = skl_format_to_fourcc(pixel_format,
9140 val & PLANE_CTL_ORDER_RGBX,
9141 val & PLANE_CTL_ALPHA_MASK);
9142 fb->pixel_format = fourcc;
9143 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9144
40f46283
DL
9145 tiling = val & PLANE_CTL_TILED_MASK;
9146 switch (tiling) {
9147 case PLANE_CTL_TILED_LINEAR:
9148 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9149 break;
9150 case PLANE_CTL_TILED_X:
9151 plane_config->tiling = I915_TILING_X;
9152 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9153 break;
9154 case PLANE_CTL_TILED_Y:
9155 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9156 break;
9157 case PLANE_CTL_TILED_YF:
9158 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9159 break;
9160 default:
9161 MISSING_CASE(tiling);
9162 goto error;
9163 }
9164
bc8d7dff
DL
9165 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9166 plane_config->base = base;
9167
9168 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9169
9170 val = I915_READ(PLANE_SIZE(pipe, 0));
9171 fb->height = ((val >> 16) & 0xfff) + 1;
9172 fb->width = ((val >> 0) & 0x1fff) + 1;
9173
9174 val = I915_READ(PLANE_STRIDE(pipe, 0));
40f46283
DL
9175 stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9176 fb->pixel_format);
bc8d7dff
DL
9177 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9178
9179 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9180 fb->pixel_format,
9181 fb->modifier[0]);
bc8d7dff 9182
f37b5c2b 9183 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9184
9185 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9186 pipe_name(pipe), fb->width, fb->height,
9187 fb->bits_per_pixel, base, fb->pitches[0],
9188 plane_config->size);
9189
2d14030b 9190 plane_config->fb = intel_fb;
bc8d7dff
DL
9191 return;
9192
9193error:
9194 kfree(fb);
9195}
9196
2fa2fe9a 9197static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9198 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9199{
9200 struct drm_device *dev = crtc->base.dev;
9201 struct drm_i915_private *dev_priv = dev->dev_private;
9202 uint32_t tmp;
9203
9204 tmp = I915_READ(PF_CTL(crtc->pipe));
9205
9206 if (tmp & PF_ENABLE) {
fd4daa9c 9207 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9208 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9209 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9210
9211 /* We currently do not free assignements of panel fitters on
9212 * ivb/hsw (since we don't use the higher upscaling modes which
9213 * differentiates them) so just WARN about this case for now. */
9214 if (IS_GEN7(dev)) {
9215 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9216 PF_PIPE_SEL_IVB(crtc->pipe));
9217 }
2fa2fe9a 9218 }
79e53945
JB
9219}
9220
5724dbd1
DL
9221static void
9222ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9223 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9224{
9225 struct drm_device *dev = crtc->base.dev;
9226 struct drm_i915_private *dev_priv = dev->dev_private;
9227 u32 val, base, offset;
aeee5a49 9228 int pipe = crtc->pipe;
4c6baa59 9229 int fourcc, pixel_format;
6761dd31 9230 unsigned int aligned_height;
b113d5ee 9231 struct drm_framebuffer *fb;
1b842c89 9232 struct intel_framebuffer *intel_fb;
4c6baa59 9233
42a7b088
DL
9234 val = I915_READ(DSPCNTR(pipe));
9235 if (!(val & DISPLAY_PLANE_ENABLE))
9236 return;
9237
d9806c9f 9238 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9239 if (!intel_fb) {
4c6baa59
JB
9240 DRM_DEBUG_KMS("failed to alloc fb\n");
9241 return;
9242 }
9243
1b842c89
DL
9244 fb = &intel_fb->base;
9245
18c5247e
DV
9246 if (INTEL_INFO(dev)->gen >= 4) {
9247 if (val & DISPPLANE_TILED) {
49af449b 9248 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9249 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9250 }
9251 }
4c6baa59
JB
9252
9253 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9254 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9255 fb->pixel_format = fourcc;
9256 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9257
aeee5a49 9258 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9259 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9260 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9261 } else {
49af449b 9262 if (plane_config->tiling)
aeee5a49 9263 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9264 else
aeee5a49 9265 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9266 }
9267 plane_config->base = base;
9268
9269 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9270 fb->width = ((val >> 16) & 0xfff) + 1;
9271 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9272
9273 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9274 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9275
b113d5ee 9276 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9277 fb->pixel_format,
9278 fb->modifier[0]);
4c6baa59 9279
f37b5c2b 9280 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9281
2844a921
DL
9282 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9283 pipe_name(pipe), fb->width, fb->height,
9284 fb->bits_per_pixel, base, fb->pitches[0],
9285 plane_config->size);
b113d5ee 9286
2d14030b 9287 plane_config->fb = intel_fb;
4c6baa59
JB
9288}
9289
0e8ffe1b 9290static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9291 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9292{
9293 struct drm_device *dev = crtc->base.dev;
9294 struct drm_i915_private *dev_priv = dev->dev_private;
9295 uint32_t tmp;
9296
f458ebbc
DV
9297 if (!intel_display_power_is_enabled(dev_priv,
9298 POWER_DOMAIN_PIPE(crtc->pipe)))
930e8c9e
PZ
9299 return false;
9300
e143a21c 9301 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 9302 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 9303
0e8ffe1b
DV
9304 tmp = I915_READ(PIPECONF(crtc->pipe));
9305 if (!(tmp & PIPECONF_ENABLE))
9306 return false;
9307
42571aef
VS
9308 switch (tmp & PIPECONF_BPC_MASK) {
9309 case PIPECONF_6BPC:
9310 pipe_config->pipe_bpp = 18;
9311 break;
9312 case PIPECONF_8BPC:
9313 pipe_config->pipe_bpp = 24;
9314 break;
9315 case PIPECONF_10BPC:
9316 pipe_config->pipe_bpp = 30;
9317 break;
9318 case PIPECONF_12BPC:
9319 pipe_config->pipe_bpp = 36;
9320 break;
9321 default:
9322 break;
9323 }
9324
b5a9fa09
DV
9325 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9326 pipe_config->limited_color_range = true;
9327
ab9412ba 9328 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
9329 struct intel_shared_dpll *pll;
9330
88adfff1
DV
9331 pipe_config->has_pch_encoder = true;
9332
627eb5a3
DV
9333 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9334 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9335 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9336
9337 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9338
c0d43d62 9339 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
9340 pipe_config->shared_dpll =
9341 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9342 } else {
9343 tmp = I915_READ(PCH_DPLL_SEL);
9344 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9345 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9346 else
9347 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9348 }
66e985c0
DV
9349
9350 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9351
9352 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9353 &pipe_config->dpll_hw_state));
c93f54cf
DV
9354
9355 tmp = pipe_config->dpll_hw_state.dpll;
9356 pipe_config->pixel_multiplier =
9357 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9358 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9359
9360 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9361 } else {
9362 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9363 }
9364
1bd1bd80
DV
9365 intel_get_pipe_timings(crtc, pipe_config);
9366
2fa2fe9a
DV
9367 ironlake_get_pfit_config(crtc, pipe_config);
9368
0e8ffe1b
DV
9369 return true;
9370}
9371
be256dc7
PZ
9372static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9373{
9374 struct drm_device *dev = dev_priv->dev;
be256dc7 9375 struct intel_crtc *crtc;
be256dc7 9376
d3fcc808 9377 for_each_intel_crtc(dev, crtc)
e2c719b7 9378 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9379 pipe_name(crtc->pipe));
9380
e2c719b7
RC
9381 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9382 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
01403de3
VS
9383 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9384 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
e2c719b7
RC
9385 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9386 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9387 "CPU PWM1 enabled\n");
c5107b87 9388 if (IS_HASWELL(dev))
e2c719b7 9389 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9390 "CPU PWM2 enabled\n");
e2c719b7 9391 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9392 "PCH PWM1 enabled\n");
e2c719b7 9393 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9394 "Utility pin enabled\n");
e2c719b7 9395 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9396
9926ada1
PZ
9397 /*
9398 * In theory we can still leave IRQs enabled, as long as only the HPD
9399 * interrupts remain enabled. We used to check for that, but since it's
9400 * gen-specific and since we only disable LCPLL after we fully disable
9401 * the interrupts, the check below should be enough.
9402 */
e2c719b7 9403 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9404}
9405
9ccd5aeb
PZ
9406static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9407{
9408 struct drm_device *dev = dev_priv->dev;
9409
9410 if (IS_HASWELL(dev))
9411 return I915_READ(D_COMP_HSW);
9412 else
9413 return I915_READ(D_COMP_BDW);
9414}
9415
3c4c9b81
PZ
9416static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9417{
9418 struct drm_device *dev = dev_priv->dev;
9419
9420 if (IS_HASWELL(dev)) {
9421 mutex_lock(&dev_priv->rps.hw_lock);
9422 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9423 val))
f475dadf 9424 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9425 mutex_unlock(&dev_priv->rps.hw_lock);
9426 } else {
9ccd5aeb
PZ
9427 I915_WRITE(D_COMP_BDW, val);
9428 POSTING_READ(D_COMP_BDW);
3c4c9b81 9429 }
be256dc7
PZ
9430}
9431
9432/*
9433 * This function implements pieces of two sequences from BSpec:
9434 * - Sequence for display software to disable LCPLL
9435 * - Sequence for display software to allow package C8+
9436 * The steps implemented here are just the steps that actually touch the LCPLL
9437 * register. Callers should take care of disabling all the display engine
9438 * functions, doing the mode unset, fixing interrupts, etc.
9439 */
6ff58d53
PZ
9440static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9441 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9442{
9443 uint32_t val;
9444
9445 assert_can_disable_lcpll(dev_priv);
9446
9447 val = I915_READ(LCPLL_CTL);
9448
9449 if (switch_to_fclk) {
9450 val |= LCPLL_CD_SOURCE_FCLK;
9451 I915_WRITE(LCPLL_CTL, val);
9452
9453 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9454 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9455 DRM_ERROR("Switching to FCLK failed\n");
9456
9457 val = I915_READ(LCPLL_CTL);
9458 }
9459
9460 val |= LCPLL_PLL_DISABLE;
9461 I915_WRITE(LCPLL_CTL, val);
9462 POSTING_READ(LCPLL_CTL);
9463
9464 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9465 DRM_ERROR("LCPLL still locked\n");
9466
9ccd5aeb 9467 val = hsw_read_dcomp(dev_priv);
be256dc7 9468 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9469 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9470 ndelay(100);
9471
9ccd5aeb
PZ
9472 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9473 1))
be256dc7
PZ
9474 DRM_ERROR("D_COMP RCOMP still in progress\n");
9475
9476 if (allow_power_down) {
9477 val = I915_READ(LCPLL_CTL);
9478 val |= LCPLL_POWER_DOWN_ALLOW;
9479 I915_WRITE(LCPLL_CTL, val);
9480 POSTING_READ(LCPLL_CTL);
9481 }
9482}
9483
9484/*
9485 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9486 * source.
9487 */
6ff58d53 9488static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9489{
9490 uint32_t val;
9491
9492 val = I915_READ(LCPLL_CTL);
9493
9494 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9495 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9496 return;
9497
a8a8bd54
PZ
9498 /*
9499 * Make sure we're not on PC8 state before disabling PC8, otherwise
9500 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9501 */
59bad947 9502 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9503
be256dc7
PZ
9504 if (val & LCPLL_POWER_DOWN_ALLOW) {
9505 val &= ~LCPLL_POWER_DOWN_ALLOW;
9506 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9507 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9508 }
9509
9ccd5aeb 9510 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9511 val |= D_COMP_COMP_FORCE;
9512 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9513 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9514
9515 val = I915_READ(LCPLL_CTL);
9516 val &= ~LCPLL_PLL_DISABLE;
9517 I915_WRITE(LCPLL_CTL, val);
9518
9519 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9520 DRM_ERROR("LCPLL not locked yet\n");
9521
9522 if (val & LCPLL_CD_SOURCE_FCLK) {
9523 val = I915_READ(LCPLL_CTL);
9524 val &= ~LCPLL_CD_SOURCE_FCLK;
9525 I915_WRITE(LCPLL_CTL, val);
9526
9527 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9528 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9529 DRM_ERROR("Switching back to LCPLL failed\n");
9530 }
215733fa 9531
59bad947 9532 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9533 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9534}
9535
765dab67
PZ
9536/*
9537 * Package states C8 and deeper are really deep PC states that can only be
9538 * reached when all the devices on the system allow it, so even if the graphics
9539 * device allows PC8+, it doesn't mean the system will actually get to these
9540 * states. Our driver only allows PC8+ when going into runtime PM.
9541 *
9542 * The requirements for PC8+ are that all the outputs are disabled, the power
9543 * well is disabled and most interrupts are disabled, and these are also
9544 * requirements for runtime PM. When these conditions are met, we manually do
9545 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9546 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9547 * hang the machine.
9548 *
9549 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9550 * the state of some registers, so when we come back from PC8+ we need to
9551 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9552 * need to take care of the registers kept by RC6. Notice that this happens even
9553 * if we don't put the device in PCI D3 state (which is what currently happens
9554 * because of the runtime PM support).
9555 *
9556 * For more, read "Display Sequences for Package C8" on the hardware
9557 * documentation.
9558 */
a14cb6fc 9559void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9560{
c67a470b
PZ
9561 struct drm_device *dev = dev_priv->dev;
9562 uint32_t val;
9563
c67a470b
PZ
9564 DRM_DEBUG_KMS("Enabling package C8+\n");
9565
c2699524 9566 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9567 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9568 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9569 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9570 }
9571
9572 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9573 hsw_disable_lcpll(dev_priv, true, true);
9574}
9575
a14cb6fc 9576void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9577{
9578 struct drm_device *dev = dev_priv->dev;
9579 uint32_t val;
9580
c67a470b
PZ
9581 DRM_DEBUG_KMS("Disabling package C8+\n");
9582
9583 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9584 lpt_init_pch_refclk(dev);
9585
c2699524 9586 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9587 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9588 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9589 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9590 }
9591
9592 intel_prepare_ddi(dev);
c67a470b
PZ
9593}
9594
27c329ed 9595static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 9596{
a821fc46 9597 struct drm_device *dev = old_state->dev;
27c329ed 9598 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
f8437dd1 9599
27c329ed 9600 broxton_set_cdclk(dev, req_cdclk);
f8437dd1
VK
9601}
9602
b432e5cf 9603/* compute the max rate for new configuration */
27c329ed 9604static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 9605{
b432e5cf 9606 struct intel_crtc *intel_crtc;
27c329ed 9607 struct intel_crtc_state *crtc_state;
b432e5cf 9608 int max_pixel_rate = 0;
b432e5cf 9609
27c329ed
ML
9610 for_each_intel_crtc(state->dev, intel_crtc) {
9611 int pixel_rate;
9612
9613 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9614 if (IS_ERR(crtc_state))
9615 return PTR_ERR(crtc_state);
9616
9617 if (!crtc_state->base.enable)
b432e5cf
VS
9618 continue;
9619
27c329ed 9620 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
9621
9622 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
27c329ed 9623 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
b432e5cf
VS
9624 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9625
9626 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9627 }
9628
9629 return max_pixel_rate;
9630}
9631
9632static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9633{
9634 struct drm_i915_private *dev_priv = dev->dev_private;
9635 uint32_t val, data;
9636 int ret;
9637
9638 if (WARN((I915_READ(LCPLL_CTL) &
9639 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9640 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9641 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9642 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9643 "trying to change cdclk frequency with cdclk not enabled\n"))
9644 return;
9645
9646 mutex_lock(&dev_priv->rps.hw_lock);
9647 ret = sandybridge_pcode_write(dev_priv,
9648 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9649 mutex_unlock(&dev_priv->rps.hw_lock);
9650 if (ret) {
9651 DRM_ERROR("failed to inform pcode about cdclk change\n");
9652 return;
9653 }
9654
9655 val = I915_READ(LCPLL_CTL);
9656 val |= LCPLL_CD_SOURCE_FCLK;
9657 I915_WRITE(LCPLL_CTL, val);
9658
9659 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9660 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9661 DRM_ERROR("Switching to FCLK failed\n");
9662
9663 val = I915_READ(LCPLL_CTL);
9664 val &= ~LCPLL_CLK_FREQ_MASK;
9665
9666 switch (cdclk) {
9667 case 450000:
9668 val |= LCPLL_CLK_FREQ_450;
9669 data = 0;
9670 break;
9671 case 540000:
9672 val |= LCPLL_CLK_FREQ_54O_BDW;
9673 data = 1;
9674 break;
9675 case 337500:
9676 val |= LCPLL_CLK_FREQ_337_5_BDW;
9677 data = 2;
9678 break;
9679 case 675000:
9680 val |= LCPLL_CLK_FREQ_675_BDW;
9681 data = 3;
9682 break;
9683 default:
9684 WARN(1, "invalid cdclk frequency\n");
9685 return;
9686 }
9687
9688 I915_WRITE(LCPLL_CTL, val);
9689
9690 val = I915_READ(LCPLL_CTL);
9691 val &= ~LCPLL_CD_SOURCE_FCLK;
9692 I915_WRITE(LCPLL_CTL, val);
9693
9694 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9695 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9696 DRM_ERROR("Switching back to LCPLL failed\n");
9697
9698 mutex_lock(&dev_priv->rps.hw_lock);
9699 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9700 mutex_unlock(&dev_priv->rps.hw_lock);
9701
9702 intel_update_cdclk(dev);
9703
9704 WARN(cdclk != dev_priv->cdclk_freq,
9705 "cdclk requested %d kHz but got %d kHz\n",
9706 cdclk, dev_priv->cdclk_freq);
9707}
9708
27c329ed 9709static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 9710{
27c329ed
ML
9711 struct drm_i915_private *dev_priv = to_i915(state->dev);
9712 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
9713 int cdclk;
9714
9715 /*
9716 * FIXME should also account for plane ratio
9717 * once 64bpp pixel formats are supported.
9718 */
27c329ed 9719 if (max_pixclk > 540000)
b432e5cf 9720 cdclk = 675000;
27c329ed 9721 else if (max_pixclk > 450000)
b432e5cf 9722 cdclk = 540000;
27c329ed 9723 else if (max_pixclk > 337500)
b432e5cf
VS
9724 cdclk = 450000;
9725 else
9726 cdclk = 337500;
9727
b432e5cf 9728 if (cdclk > dev_priv->max_cdclk_freq) {
63ba534e
ML
9729 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9730 cdclk, dev_priv->max_cdclk_freq);
9731 return -EINVAL;
b432e5cf
VS
9732 }
9733
27c329ed 9734 to_intel_atomic_state(state)->cdclk = cdclk;
b432e5cf
VS
9735
9736 return 0;
9737}
9738
27c329ed 9739static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 9740{
27c329ed
ML
9741 struct drm_device *dev = old_state->dev;
9742 unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
b432e5cf 9743
27c329ed 9744 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
9745}
9746
190f68c5
ACO
9747static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9748 struct intel_crtc_state *crtc_state)
09b4ddf9 9749{
190f68c5 9750 if (!intel_ddi_pll_select(crtc, crtc_state))
6441ab5f 9751 return -EINVAL;
716c2e55 9752
c7653199 9753 crtc->lowfreq_avail = false;
644cef34 9754
c8f7a0db 9755 return 0;
79e53945
JB
9756}
9757
3760b59c
S
9758static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9759 enum port port,
9760 struct intel_crtc_state *pipe_config)
9761{
9762 switch (port) {
9763 case PORT_A:
9764 pipe_config->ddi_pll_sel = SKL_DPLL0;
9765 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9766 break;
9767 case PORT_B:
9768 pipe_config->ddi_pll_sel = SKL_DPLL1;
9769 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9770 break;
9771 case PORT_C:
9772 pipe_config->ddi_pll_sel = SKL_DPLL2;
9773 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9774 break;
9775 default:
9776 DRM_ERROR("Incorrect port type\n");
9777 }
9778}
9779
96b7dfb7
S
9780static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9781 enum port port,
5cec258b 9782 struct intel_crtc_state *pipe_config)
96b7dfb7 9783{
3148ade7 9784 u32 temp, dpll_ctl1;
96b7dfb7
S
9785
9786 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9787 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9788
9789 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
9790 case SKL_DPLL0:
9791 /*
9792 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9793 * of the shared DPLL framework and thus needs to be read out
9794 * separately
9795 */
9796 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9797 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9798 break;
96b7dfb7
S
9799 case SKL_DPLL1:
9800 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9801 break;
9802 case SKL_DPLL2:
9803 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9804 break;
9805 case SKL_DPLL3:
9806 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9807 break;
96b7dfb7
S
9808 }
9809}
9810
7d2c8175
DL
9811static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9812 enum port port,
5cec258b 9813 struct intel_crtc_state *pipe_config)
7d2c8175
DL
9814{
9815 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9816
9817 switch (pipe_config->ddi_pll_sel) {
9818 case PORT_CLK_SEL_WRPLL1:
9819 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9820 break;
9821 case PORT_CLK_SEL_WRPLL2:
9822 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9823 break;
00490c22
ML
9824 case PORT_CLK_SEL_SPLL:
9825 pipe_config->shared_dpll = DPLL_ID_SPLL;
79bd23da 9826 break;
7d2c8175
DL
9827 }
9828}
9829
26804afd 9830static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9831 struct intel_crtc_state *pipe_config)
26804afd
DV
9832{
9833 struct drm_device *dev = crtc->base.dev;
9834 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9835 struct intel_shared_dpll *pll;
26804afd
DV
9836 enum port port;
9837 uint32_t tmp;
9838
9839 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9840
9841 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9842
ef11bdb3 9843 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
96b7dfb7 9844 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9845 else if (IS_BROXTON(dev))
9846 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9847 else
9848 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9849
d452c5b6
DV
9850 if (pipe_config->shared_dpll >= 0) {
9851 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9852
9853 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9854 &pipe_config->dpll_hw_state));
9855 }
9856
26804afd
DV
9857 /*
9858 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9859 * DDI E. So just check whether this pipe is wired to DDI E and whether
9860 * the PCH transcoder is on.
9861 */
ca370455
DL
9862 if (INTEL_INFO(dev)->gen < 9 &&
9863 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9864 pipe_config->has_pch_encoder = true;
9865
9866 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9867 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9868 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9869
9870 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9871 }
9872}
9873
0e8ffe1b 9874static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9875 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9876{
9877 struct drm_device *dev = crtc->base.dev;
9878 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 9879 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
9880 uint32_t tmp;
9881
f458ebbc 9882 if (!intel_display_power_is_enabled(dev_priv,
b5482bd0
ID
9883 POWER_DOMAIN_PIPE(crtc->pipe)))
9884 return false;
9885
e143a21c 9886 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
9887 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9888
eccb140b
DV
9889 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9890 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9891 enum pipe trans_edp_pipe;
9892 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9893 default:
9894 WARN(1, "unknown pipe linked to edp transcoder\n");
9895 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9896 case TRANS_DDI_EDP_INPUT_A_ON:
9897 trans_edp_pipe = PIPE_A;
9898 break;
9899 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9900 trans_edp_pipe = PIPE_B;
9901 break;
9902 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9903 trans_edp_pipe = PIPE_C;
9904 break;
9905 }
9906
9907 if (trans_edp_pipe == crtc->pipe)
9908 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9909 }
9910
f458ebbc 9911 if (!intel_display_power_is_enabled(dev_priv,
eccb140b 9912 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
9913 return false;
9914
eccb140b 9915 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
9916 if (!(tmp & PIPECONF_ENABLE))
9917 return false;
9918
26804afd 9919 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9920
1bd1bd80
DV
9921 intel_get_pipe_timings(crtc, pipe_config);
9922
a1b2278e
CK
9923 if (INTEL_INFO(dev)->gen >= 9) {
9924 skl_init_scalers(dev, crtc, pipe_config);
9925 }
9926
2fa2fe9a 9927 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
af99ceda
CK
9928
9929 if (INTEL_INFO(dev)->gen >= 9) {
9930 pipe_config->scaler_state.scaler_id = -1;
9931 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9932 }
9933
bd2e244f 9934 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
1c132b44 9935 if (INTEL_INFO(dev)->gen >= 9)
bd2e244f 9936 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 9937 else
1c132b44 9938 ironlake_get_pfit_config(crtc, pipe_config);
bd2e244f 9939 }
88adfff1 9940
e59150dc
JB
9941 if (IS_HASWELL(dev))
9942 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9943 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9944
ebb69c95
CT
9945 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9946 pipe_config->pixel_multiplier =
9947 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9948 } else {
9949 pipe_config->pixel_multiplier = 1;
9950 }
6c49f241 9951
0e8ffe1b
DV
9952 return true;
9953}
9954
560b85bb
CW
9955static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9956{
9957 struct drm_device *dev = crtc->dev;
9958 struct drm_i915_private *dev_priv = dev->dev_private;
9959 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 9960 uint32_t cntl = 0, size = 0;
560b85bb 9961
dc41c154 9962 if (base) {
3dd512fb
MR
9963 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9964 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
dc41c154
VS
9965 unsigned int stride = roundup_pow_of_two(width) * 4;
9966
9967 switch (stride) {
9968 default:
9969 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9970 width, stride);
9971 stride = 256;
9972 /* fallthrough */
9973 case 256:
9974 case 512:
9975 case 1024:
9976 case 2048:
9977 break;
4b0e333e
CW
9978 }
9979
dc41c154
VS
9980 cntl |= CURSOR_ENABLE |
9981 CURSOR_GAMMA_ENABLE |
9982 CURSOR_FORMAT_ARGB |
9983 CURSOR_STRIDE(stride);
9984
9985 size = (height << 12) | width;
4b0e333e 9986 }
560b85bb 9987
dc41c154
VS
9988 if (intel_crtc->cursor_cntl != 0 &&
9989 (intel_crtc->cursor_base != base ||
9990 intel_crtc->cursor_size != size ||
9991 intel_crtc->cursor_cntl != cntl)) {
9992 /* On these chipsets we can only modify the base/size/stride
9993 * whilst the cursor is disabled.
9994 */
0b87c24e
VS
9995 I915_WRITE(CURCNTR(PIPE_A), 0);
9996 POSTING_READ(CURCNTR(PIPE_A));
dc41c154 9997 intel_crtc->cursor_cntl = 0;
4b0e333e 9998 }
560b85bb 9999
99d1f387 10000 if (intel_crtc->cursor_base != base) {
0b87c24e 10001 I915_WRITE(CURBASE(PIPE_A), base);
99d1f387
VS
10002 intel_crtc->cursor_base = base;
10003 }
4726e0b0 10004
dc41c154
VS
10005 if (intel_crtc->cursor_size != size) {
10006 I915_WRITE(CURSIZE, size);
10007 intel_crtc->cursor_size = size;
4b0e333e 10008 }
560b85bb 10009
4b0e333e 10010 if (intel_crtc->cursor_cntl != cntl) {
0b87c24e
VS
10011 I915_WRITE(CURCNTR(PIPE_A), cntl);
10012 POSTING_READ(CURCNTR(PIPE_A));
4b0e333e 10013 intel_crtc->cursor_cntl = cntl;
560b85bb 10014 }
560b85bb
CW
10015}
10016
560b85bb 10017static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
65a21cd6
JB
10018{
10019 struct drm_device *dev = crtc->dev;
10020 struct drm_i915_private *dev_priv = dev->dev_private;
10021 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10022 int pipe = intel_crtc->pipe;
4b0e333e
CW
10023 uint32_t cntl;
10024
10025 cntl = 0;
10026 if (base) {
10027 cntl = MCURSOR_GAMMA_ENABLE;
3dd512fb 10028 switch (intel_crtc->base.cursor->state->crtc_w) {
4726e0b0
SK
10029 case 64:
10030 cntl |= CURSOR_MODE_64_ARGB_AX;
10031 break;
10032 case 128:
10033 cntl |= CURSOR_MODE_128_ARGB_AX;
10034 break;
10035 case 256:
10036 cntl |= CURSOR_MODE_256_ARGB_AX;
10037 break;
10038 default:
3dd512fb 10039 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
4726e0b0 10040 return;
65a21cd6 10041 }
4b0e333e 10042 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7 10043
fc6f93bc 10044 if (HAS_DDI(dev))
47bf17a7 10045 cntl |= CURSOR_PIPE_CSC_ENABLE;
4b0e333e 10046 }
65a21cd6 10047
8e7d688b 10048 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
4398ad45
VS
10049 cntl |= CURSOR_ROTATE_180;
10050
4b0e333e
CW
10051 if (intel_crtc->cursor_cntl != cntl) {
10052 I915_WRITE(CURCNTR(pipe), cntl);
10053 POSTING_READ(CURCNTR(pipe));
10054 intel_crtc->cursor_cntl = cntl;
65a21cd6 10055 }
4b0e333e 10056
65a21cd6 10057 /* and commit changes on next vblank */
5efb3e28
VS
10058 I915_WRITE(CURBASE(pipe), base);
10059 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10060
10061 intel_crtc->cursor_base = base;
65a21cd6
JB
10062}
10063
cda4b7d3 10064/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
10065static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10066 bool on)
cda4b7d3
CW
10067{
10068 struct drm_device *dev = crtc->dev;
10069 struct drm_i915_private *dev_priv = dev->dev_private;
10070 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10071 int pipe = intel_crtc->pipe;
9b4101be
ML
10072 struct drm_plane_state *cursor_state = crtc->cursor->state;
10073 int x = cursor_state->crtc_x;
10074 int y = cursor_state->crtc_y;
d6e4db15 10075 u32 base = 0, pos = 0;
cda4b7d3 10076
d6e4db15 10077 if (on)
cda4b7d3 10078 base = intel_crtc->cursor_addr;
cda4b7d3 10079
6e3c9717 10080 if (x >= intel_crtc->config->pipe_src_w)
d6e4db15
VS
10081 base = 0;
10082
6e3c9717 10083 if (y >= intel_crtc->config->pipe_src_h)
cda4b7d3
CW
10084 base = 0;
10085
10086 if (x < 0) {
9b4101be 10087 if (x + cursor_state->crtc_w <= 0)
cda4b7d3
CW
10088 base = 0;
10089
10090 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10091 x = -x;
10092 }
10093 pos |= x << CURSOR_X_SHIFT;
10094
10095 if (y < 0) {
9b4101be 10096 if (y + cursor_state->crtc_h <= 0)
cda4b7d3
CW
10097 base = 0;
10098
10099 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10100 y = -y;
10101 }
10102 pos |= y << CURSOR_Y_SHIFT;
10103
4b0e333e 10104 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
10105 return;
10106
5efb3e28
VS
10107 I915_WRITE(CURPOS(pipe), pos);
10108
4398ad45
VS
10109 /* ILK+ do this automagically */
10110 if (HAS_GMCH_DISPLAY(dev) &&
8e7d688b 10111 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9b4101be
ML
10112 base += (cursor_state->crtc_h *
10113 cursor_state->crtc_w - 1) * 4;
4398ad45
VS
10114 }
10115
8ac54669 10116 if (IS_845G(dev) || IS_I865G(dev))
5efb3e28
VS
10117 i845_update_cursor(crtc, base);
10118 else
10119 i9xx_update_cursor(crtc, base);
cda4b7d3
CW
10120}
10121
dc41c154
VS
10122static bool cursor_size_ok(struct drm_device *dev,
10123 uint32_t width, uint32_t height)
10124{
10125 if (width == 0 || height == 0)
10126 return false;
10127
10128 /*
10129 * 845g/865g are special in that they are only limited by
10130 * the width of their cursors, the height is arbitrary up to
10131 * the precision of the register. Everything else requires
10132 * square cursors, limited to a few power-of-two sizes.
10133 */
10134 if (IS_845G(dev) || IS_I865G(dev)) {
10135 if ((width & 63) != 0)
10136 return false;
10137
10138 if (width > (IS_845G(dev) ? 64 : 512))
10139 return false;
10140
10141 if (height > 1023)
10142 return false;
10143 } else {
10144 switch (width | height) {
10145 case 256:
10146 case 128:
10147 if (IS_GEN2(dev))
10148 return false;
10149 case 64:
10150 break;
10151 default:
10152 return false;
10153 }
10154 }
10155
10156 return true;
10157}
10158
79e53945 10159static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 10160 u16 *blue, uint32_t start, uint32_t size)
79e53945 10161{
7203425a 10162 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 10163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 10164
7203425a 10165 for (i = start; i < end; i++) {
79e53945
JB
10166 intel_crtc->lut_r[i] = red[i] >> 8;
10167 intel_crtc->lut_g[i] = green[i] >> 8;
10168 intel_crtc->lut_b[i] = blue[i] >> 8;
10169 }
10170
10171 intel_crtc_load_lut(crtc);
10172}
10173
79e53945
JB
10174/* VESA 640x480x72Hz mode to set on the pipe */
10175static struct drm_display_mode load_detect_mode = {
10176 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10177 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10178};
10179
a8bb6818
DV
10180struct drm_framebuffer *
10181__intel_framebuffer_create(struct drm_device *dev,
10182 struct drm_mode_fb_cmd2 *mode_cmd,
10183 struct drm_i915_gem_object *obj)
d2dff872
CW
10184{
10185 struct intel_framebuffer *intel_fb;
10186 int ret;
10187
10188 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
dcb1394e 10189 if (!intel_fb)
d2dff872 10190 return ERR_PTR(-ENOMEM);
d2dff872
CW
10191
10192 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10193 if (ret)
10194 goto err;
d2dff872
CW
10195
10196 return &intel_fb->base;
dcb1394e 10197
dd4916c5 10198err:
dd4916c5 10199 kfree(intel_fb);
dd4916c5 10200 return ERR_PTR(ret);
d2dff872
CW
10201}
10202
b5ea642a 10203static struct drm_framebuffer *
a8bb6818
DV
10204intel_framebuffer_create(struct drm_device *dev,
10205 struct drm_mode_fb_cmd2 *mode_cmd,
10206 struct drm_i915_gem_object *obj)
10207{
10208 struct drm_framebuffer *fb;
10209 int ret;
10210
10211 ret = i915_mutex_lock_interruptible(dev);
10212 if (ret)
10213 return ERR_PTR(ret);
10214 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10215 mutex_unlock(&dev->struct_mutex);
10216
10217 return fb;
10218}
10219
d2dff872
CW
10220static u32
10221intel_framebuffer_pitch_for_width(int width, int bpp)
10222{
10223 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10224 return ALIGN(pitch, 64);
10225}
10226
10227static u32
10228intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10229{
10230 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10231 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10232}
10233
10234static struct drm_framebuffer *
10235intel_framebuffer_create_for_mode(struct drm_device *dev,
10236 struct drm_display_mode *mode,
10237 int depth, int bpp)
10238{
dcb1394e 10239 struct drm_framebuffer *fb;
d2dff872 10240 struct drm_i915_gem_object *obj;
0fed39bd 10241 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
10242
10243 obj = i915_gem_alloc_object(dev,
10244 intel_framebuffer_size_for_mode(mode, bpp));
10245 if (obj == NULL)
10246 return ERR_PTR(-ENOMEM);
10247
10248 mode_cmd.width = mode->hdisplay;
10249 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10250 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10251 bpp);
5ca0c34a 10252 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872 10253
dcb1394e
LW
10254 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10255 if (IS_ERR(fb))
10256 drm_gem_object_unreference_unlocked(&obj->base);
10257
10258 return fb;
d2dff872
CW
10259}
10260
10261static struct drm_framebuffer *
10262mode_fits_in_fbdev(struct drm_device *dev,
10263 struct drm_display_mode *mode)
10264{
0695726e 10265#ifdef CONFIG_DRM_FBDEV_EMULATION
d2dff872
CW
10266 struct drm_i915_private *dev_priv = dev->dev_private;
10267 struct drm_i915_gem_object *obj;
10268 struct drm_framebuffer *fb;
10269
4c0e5528 10270 if (!dev_priv->fbdev)
d2dff872
CW
10271 return NULL;
10272
4c0e5528 10273 if (!dev_priv->fbdev->fb)
d2dff872
CW
10274 return NULL;
10275
4c0e5528
DV
10276 obj = dev_priv->fbdev->fb->obj;
10277 BUG_ON(!obj);
10278
8bcd4553 10279 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10280 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10281 fb->bits_per_pixel))
d2dff872
CW
10282 return NULL;
10283
01f2c773 10284 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10285 return NULL;
10286
10287 return fb;
4520f53a
DV
10288#else
10289 return NULL;
10290#endif
d2dff872
CW
10291}
10292
d3a40d1b
ACO
10293static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10294 struct drm_crtc *crtc,
10295 struct drm_display_mode *mode,
10296 struct drm_framebuffer *fb,
10297 int x, int y)
10298{
10299 struct drm_plane_state *plane_state;
10300 int hdisplay, vdisplay;
10301 int ret;
10302
10303 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10304 if (IS_ERR(plane_state))
10305 return PTR_ERR(plane_state);
10306
10307 if (mode)
10308 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10309 else
10310 hdisplay = vdisplay = 0;
10311
10312 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10313 if (ret)
10314 return ret;
10315 drm_atomic_set_fb_for_plane(plane_state, fb);
10316 plane_state->crtc_x = 0;
10317 plane_state->crtc_y = 0;
10318 plane_state->crtc_w = hdisplay;
10319 plane_state->crtc_h = vdisplay;
10320 plane_state->src_x = x << 16;
10321 plane_state->src_y = y << 16;
10322 plane_state->src_w = hdisplay << 16;
10323 plane_state->src_h = vdisplay << 16;
10324
10325 return 0;
10326}
10327
d2434ab7 10328bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10329 struct drm_display_mode *mode,
51fd371b
RC
10330 struct intel_load_detect_pipe *old,
10331 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10332{
10333 struct intel_crtc *intel_crtc;
d2434ab7
DV
10334 struct intel_encoder *intel_encoder =
10335 intel_attached_encoder(connector);
79e53945 10336 struct drm_crtc *possible_crtc;
4ef69c7a 10337 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10338 struct drm_crtc *crtc = NULL;
10339 struct drm_device *dev = encoder->dev;
94352cf9 10340 struct drm_framebuffer *fb;
51fd371b 10341 struct drm_mode_config *config = &dev->mode_config;
83a57153 10342 struct drm_atomic_state *state = NULL;
944b0c76 10343 struct drm_connector_state *connector_state;
4be07317 10344 struct intel_crtc_state *crtc_state;
51fd371b 10345 int ret, i = -1;
79e53945 10346
d2dff872 10347 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10348 connector->base.id, connector->name,
8e329a03 10349 encoder->base.id, encoder->name);
d2dff872 10350
51fd371b
RC
10351retry:
10352 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10353 if (ret)
ad3c558f 10354 goto fail;
6e9f798d 10355
79e53945
JB
10356 /*
10357 * Algorithm gets a little messy:
7a5e4805 10358 *
79e53945
JB
10359 * - if the connector already has an assigned crtc, use it (but make
10360 * sure it's on first)
7a5e4805 10361 *
79e53945
JB
10362 * - try to find the first unused crtc that can drive this connector,
10363 * and use that if we find one
79e53945
JB
10364 */
10365
10366 /* See if we already have a CRTC for this connector */
10367 if (encoder->crtc) {
10368 crtc = encoder->crtc;
8261b191 10369
51fd371b 10370 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 10371 if (ret)
ad3c558f 10372 goto fail;
4d02e2de 10373 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
51fd371b 10374 if (ret)
ad3c558f 10375 goto fail;
7b24056b 10376
24218aac 10377 old->dpms_mode = connector->dpms;
8261b191
CW
10378 old->load_detect_temp = false;
10379
10380 /* Make sure the crtc and connector are running */
24218aac
DV
10381 if (connector->dpms != DRM_MODE_DPMS_ON)
10382 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 10383
7173188d 10384 return true;
79e53945
JB
10385 }
10386
10387 /* Find an unused one (if possible) */
70e1e0ec 10388 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10389 i++;
10390 if (!(encoder->possible_crtcs & (1 << i)))
10391 continue;
83d65738 10392 if (possible_crtc->state->enable)
a459249c 10393 continue;
a459249c
VS
10394
10395 crtc = possible_crtc;
10396 break;
79e53945
JB
10397 }
10398
10399 /*
10400 * If we didn't find an unused CRTC, don't use any.
10401 */
10402 if (!crtc) {
7173188d 10403 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 10404 goto fail;
79e53945
JB
10405 }
10406
51fd371b
RC
10407 ret = drm_modeset_lock(&crtc->mutex, ctx);
10408 if (ret)
ad3c558f 10409 goto fail;
4d02e2de
DV
10410 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10411 if (ret)
ad3c558f 10412 goto fail;
79e53945
JB
10413
10414 intel_crtc = to_intel_crtc(crtc);
24218aac 10415 old->dpms_mode = connector->dpms;
8261b191 10416 old->load_detect_temp = true;
d2dff872 10417 old->release_fb = NULL;
79e53945 10418
83a57153
ACO
10419 state = drm_atomic_state_alloc(dev);
10420 if (!state)
10421 return false;
10422
10423 state->acquire_ctx = ctx;
10424
944b0c76
ACO
10425 connector_state = drm_atomic_get_connector_state(state, connector);
10426 if (IS_ERR(connector_state)) {
10427 ret = PTR_ERR(connector_state);
10428 goto fail;
10429 }
10430
10431 connector_state->crtc = crtc;
10432 connector_state->best_encoder = &intel_encoder->base;
10433
4be07317
ACO
10434 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10435 if (IS_ERR(crtc_state)) {
10436 ret = PTR_ERR(crtc_state);
10437 goto fail;
10438 }
10439
49d6fa21 10440 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10441
6492711d
CW
10442 if (!mode)
10443 mode = &load_detect_mode;
79e53945 10444
d2dff872
CW
10445 /* We need a framebuffer large enough to accommodate all accesses
10446 * that the plane may generate whilst we perform load detection.
10447 * We can not rely on the fbcon either being present (we get called
10448 * during its initialisation to detect all boot displays, or it may
10449 * not even exist) or that it is large enough to satisfy the
10450 * requested mode.
10451 */
94352cf9
DV
10452 fb = mode_fits_in_fbdev(dev, mode);
10453 if (fb == NULL) {
d2dff872 10454 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
10455 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10456 old->release_fb = fb;
d2dff872
CW
10457 } else
10458 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10459 if (IS_ERR(fb)) {
d2dff872 10460 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10461 goto fail;
79e53945 10462 }
79e53945 10463
d3a40d1b
ACO
10464 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10465 if (ret)
10466 goto fail;
10467
8c7b5ccb
ACO
10468 drm_mode_copy(&crtc_state->base.mode, mode);
10469
74c090b1 10470 if (drm_atomic_commit(state)) {
6492711d 10471 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
10472 if (old->release_fb)
10473 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 10474 goto fail;
79e53945 10475 }
9128b040 10476 crtc->primary->crtc = crtc;
7173188d 10477
79e53945 10478 /* let the connector get through one full cycle before testing */
9d0498a2 10479 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10480 return true;
412b61d8 10481
ad3c558f 10482fail:
e5d958ef
ACO
10483 drm_atomic_state_free(state);
10484 state = NULL;
83a57153 10485
51fd371b
RC
10486 if (ret == -EDEADLK) {
10487 drm_modeset_backoff(ctx);
10488 goto retry;
10489 }
10490
412b61d8 10491 return false;
79e53945
JB
10492}
10493
d2434ab7 10494void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10495 struct intel_load_detect_pipe *old,
10496 struct drm_modeset_acquire_ctx *ctx)
79e53945 10497{
83a57153 10498 struct drm_device *dev = connector->dev;
d2434ab7
DV
10499 struct intel_encoder *intel_encoder =
10500 intel_attached_encoder(connector);
4ef69c7a 10501 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 10502 struct drm_crtc *crtc = encoder->crtc;
412b61d8 10503 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
83a57153 10504 struct drm_atomic_state *state;
944b0c76 10505 struct drm_connector_state *connector_state;
4be07317 10506 struct intel_crtc_state *crtc_state;
d3a40d1b 10507 int ret;
79e53945 10508
d2dff872 10509 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10510 connector->base.id, connector->name,
8e329a03 10511 encoder->base.id, encoder->name);
d2dff872 10512
8261b191 10513 if (old->load_detect_temp) {
83a57153 10514 state = drm_atomic_state_alloc(dev);
944b0c76
ACO
10515 if (!state)
10516 goto fail;
83a57153
ACO
10517
10518 state->acquire_ctx = ctx;
10519
944b0c76
ACO
10520 connector_state = drm_atomic_get_connector_state(state, connector);
10521 if (IS_ERR(connector_state))
10522 goto fail;
10523
4be07317
ACO
10524 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10525 if (IS_ERR(crtc_state))
10526 goto fail;
10527
944b0c76
ACO
10528 connector_state->best_encoder = NULL;
10529 connector_state->crtc = NULL;
10530
49d6fa21 10531 crtc_state->base.enable = crtc_state->base.active = false;
4be07317 10532
d3a40d1b
ACO
10533 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10534 0, 0);
10535 if (ret)
10536 goto fail;
10537
74c090b1 10538 ret = drm_atomic_commit(state);
2bfb4627
ACO
10539 if (ret)
10540 goto fail;
d2dff872 10541
36206361
DV
10542 if (old->release_fb) {
10543 drm_framebuffer_unregister_private(old->release_fb);
10544 drm_framebuffer_unreference(old->release_fb);
10545 }
d2dff872 10546
0622a53c 10547 return;
79e53945
JB
10548 }
10549
c751ce4f 10550 /* Switch crtc and encoder back off if necessary */
24218aac
DV
10551 if (old->dpms_mode != DRM_MODE_DPMS_ON)
10552 connector->funcs->dpms(connector, old->dpms_mode);
944b0c76
ACO
10553
10554 return;
10555fail:
10556 DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10557 drm_atomic_state_free(state);
79e53945
JB
10558}
10559
da4a1efa 10560static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10561 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10562{
10563 struct drm_i915_private *dev_priv = dev->dev_private;
10564 u32 dpll = pipe_config->dpll_hw_state.dpll;
10565
10566 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10567 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10568 else if (HAS_PCH_SPLIT(dev))
10569 return 120000;
10570 else if (!IS_GEN2(dev))
10571 return 96000;
10572 else
10573 return 48000;
10574}
10575
79e53945 10576/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10577static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10578 struct intel_crtc_state *pipe_config)
79e53945 10579{
f1f644dc 10580 struct drm_device *dev = crtc->base.dev;
79e53945 10581 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10582 int pipe = pipe_config->cpu_transcoder;
293623f7 10583 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
10584 u32 fp;
10585 intel_clock_t clock;
dccbea3b 10586 int port_clock;
da4a1efa 10587 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10588
10589 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10590 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10591 else
293623f7 10592 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10593
10594 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10595 if (IS_PINEVIEW(dev)) {
10596 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10597 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10598 } else {
10599 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10600 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10601 }
10602
a6c45cf0 10603 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10604 if (IS_PINEVIEW(dev))
10605 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10606 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10607 else
10608 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10609 DPLL_FPA01_P1_POST_DIV_SHIFT);
10610
10611 switch (dpll & DPLL_MODE_MASK) {
10612 case DPLLB_MODE_DAC_SERIAL:
10613 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10614 5 : 10;
10615 break;
10616 case DPLLB_MODE_LVDS:
10617 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10618 7 : 14;
10619 break;
10620 default:
28c97730 10621 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10622 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10623 return;
79e53945
JB
10624 }
10625
ac58c3f0 10626 if (IS_PINEVIEW(dev))
dccbea3b 10627 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 10628 else
dccbea3b 10629 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 10630 } else {
0fb58223 10631 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10632 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10633
10634 if (is_lvds) {
10635 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10636 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10637
10638 if (lvds & LVDS_CLKB_POWER_UP)
10639 clock.p2 = 7;
10640 else
10641 clock.p2 = 14;
79e53945
JB
10642 } else {
10643 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10644 clock.p1 = 2;
10645 else {
10646 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10647 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10648 }
10649 if (dpll & PLL_P2_DIVIDE_BY_4)
10650 clock.p2 = 4;
10651 else
10652 clock.p2 = 2;
79e53945 10653 }
da4a1efa 10654
dccbea3b 10655 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
10656 }
10657
18442d08
VS
10658 /*
10659 * This value includes pixel_multiplier. We will use
241bfc38 10660 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10661 * encoder's get_config() function.
10662 */
dccbea3b 10663 pipe_config->port_clock = port_clock;
f1f644dc
JB
10664}
10665
6878da05
VS
10666int intel_dotclock_calculate(int link_freq,
10667 const struct intel_link_m_n *m_n)
f1f644dc 10668{
f1f644dc
JB
10669 /*
10670 * The calculation for the data clock is:
1041a02f 10671 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10672 * But we want to avoid losing precison if possible, so:
1041a02f 10673 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10674 *
10675 * and the link clock is simpler:
1041a02f 10676 * link_clock = (m * link_clock) / n
f1f644dc
JB
10677 */
10678
6878da05
VS
10679 if (!m_n->link_n)
10680 return 0;
f1f644dc 10681
6878da05
VS
10682 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10683}
f1f644dc 10684
18442d08 10685static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10686 struct intel_crtc_state *pipe_config)
6878da05
VS
10687{
10688 struct drm_device *dev = crtc->base.dev;
79e53945 10689
18442d08
VS
10690 /* read out port_clock from the DPLL */
10691 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10692
f1f644dc 10693 /*
18442d08 10694 * This value does not include pixel_multiplier.
241bfc38 10695 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
10696 * agree once we know their relationship in the encoder's
10697 * get_config() function.
79e53945 10698 */
2d112de7 10699 pipe_config->base.adjusted_mode.crtc_clock =
18442d08
VS
10700 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10701 &pipe_config->fdi_m_n);
79e53945
JB
10702}
10703
10704/** Returns the currently programmed mode of the given pipe. */
10705struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10706 struct drm_crtc *crtc)
10707{
548f245b 10708 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10709 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10710 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10711 struct drm_display_mode *mode;
5cec258b 10712 struct intel_crtc_state pipe_config;
fe2b8f9d
PZ
10713 int htot = I915_READ(HTOTAL(cpu_transcoder));
10714 int hsync = I915_READ(HSYNC(cpu_transcoder));
10715 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10716 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10717 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10718
10719 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10720 if (!mode)
10721 return NULL;
10722
f1f644dc
JB
10723 /*
10724 * Construct a pipe_config sufficient for getting the clock info
10725 * back out of crtc_clock_get.
10726 *
10727 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10728 * to use a real value here instead.
10729 */
293623f7 10730 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 10731 pipe_config.pixel_multiplier = 1;
293623f7
VS
10732 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10733 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10734 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
10735 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10736
773ae034 10737 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
10738 mode->hdisplay = (htot & 0xffff) + 1;
10739 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10740 mode->hsync_start = (hsync & 0xffff) + 1;
10741 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10742 mode->vdisplay = (vtot & 0xffff) + 1;
10743 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10744 mode->vsync_start = (vsync & 0xffff) + 1;
10745 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10746
10747 drm_mode_set_name(mode);
79e53945
JB
10748
10749 return mode;
10750}
10751
f047e395
CW
10752void intel_mark_busy(struct drm_device *dev)
10753{
c67a470b
PZ
10754 struct drm_i915_private *dev_priv = dev->dev_private;
10755
f62a0076
CW
10756 if (dev_priv->mm.busy)
10757 return;
10758
43694d69 10759 intel_runtime_pm_get(dev_priv);
c67a470b 10760 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10761 if (INTEL_INFO(dev)->gen >= 6)
10762 gen6_rps_busy(dev_priv);
f62a0076 10763 dev_priv->mm.busy = true;
f047e395
CW
10764}
10765
10766void intel_mark_idle(struct drm_device *dev)
652c393a 10767{
c67a470b 10768 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10769
f62a0076
CW
10770 if (!dev_priv->mm.busy)
10771 return;
10772
10773 dev_priv->mm.busy = false;
10774
3d13ef2e 10775 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10776 gen6_rps_idle(dev->dev_private);
bb4cdd53 10777
43694d69 10778 intel_runtime_pm_put(dev_priv);
652c393a
JB
10779}
10780
79e53945
JB
10781static void intel_crtc_destroy(struct drm_crtc *crtc)
10782{
10783 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10784 struct drm_device *dev = crtc->dev;
10785 struct intel_unpin_work *work;
67e77c5a 10786
5e2d7afc 10787 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10788 work = intel_crtc->unpin_work;
10789 intel_crtc->unpin_work = NULL;
5e2d7afc 10790 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10791
10792 if (work) {
10793 cancel_work_sync(&work->work);
10794 kfree(work);
10795 }
79e53945
JB
10796
10797 drm_crtc_cleanup(crtc);
67e77c5a 10798
79e53945
JB
10799 kfree(intel_crtc);
10800}
10801
6b95a207
KH
10802static void intel_unpin_work_fn(struct work_struct *__work)
10803{
10804 struct intel_unpin_work *work =
10805 container_of(__work, struct intel_unpin_work, work);
a9ff8714
VS
10806 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10807 struct drm_device *dev = crtc->base.dev;
10808 struct drm_plane *primary = crtc->base.primary;
6b95a207 10809
b4a98e57 10810 mutex_lock(&dev->struct_mutex);
a9ff8714 10811 intel_unpin_fb_obj(work->old_fb, primary->state);
05394f39 10812 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10813
f06cc1b9 10814 if (work->flip_queued_req)
146d84f0 10815 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10816 mutex_unlock(&dev->struct_mutex);
10817
a9ff8714 10818 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
89ed88ba 10819 drm_framebuffer_unreference(work->old_fb);
f99d7069 10820
a9ff8714
VS
10821 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10822 atomic_dec(&crtc->unpin_work_count);
b4a98e57 10823
6b95a207
KH
10824 kfree(work);
10825}
10826
1afe3e9d 10827static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10828 struct drm_crtc *crtc)
6b95a207 10829{
6b95a207
KH
10830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10831 struct intel_unpin_work *work;
6b95a207
KH
10832 unsigned long flags;
10833
10834 /* Ignore early vblank irqs */
10835 if (intel_crtc == NULL)
10836 return;
10837
f326038a
DV
10838 /*
10839 * This is called both by irq handlers and the reset code (to complete
10840 * lost pageflips) so needs the full irqsave spinlocks.
10841 */
6b95a207
KH
10842 spin_lock_irqsave(&dev->event_lock, flags);
10843 work = intel_crtc->unpin_work;
e7d841ca
CW
10844
10845 /* Ensure we don't miss a work->pending update ... */
10846 smp_rmb();
10847
10848 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10849 spin_unlock_irqrestore(&dev->event_lock, flags);
10850 return;
10851 }
10852
d6bbafa1 10853 page_flip_completed(intel_crtc);
0af7e4df 10854
6b95a207 10855 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10856}
10857
1afe3e9d
JB
10858void intel_finish_page_flip(struct drm_device *dev, int pipe)
10859{
fbee40df 10860 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10861 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10862
49b14a5c 10863 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10864}
10865
10866void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10867{
fbee40df 10868 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10869 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10870
49b14a5c 10871 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10872}
10873
75f7f3ec
VS
10874/* Is 'a' after or equal to 'b'? */
10875static bool g4x_flip_count_after_eq(u32 a, u32 b)
10876{
10877 return !((a - b) & 0x80000000);
10878}
10879
10880static bool page_flip_finished(struct intel_crtc *crtc)
10881{
10882 struct drm_device *dev = crtc->base.dev;
10883 struct drm_i915_private *dev_priv = dev->dev_private;
10884
bdfa7542
VS
10885 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10886 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10887 return true;
10888
75f7f3ec
VS
10889 /*
10890 * The relevant registers doen't exist on pre-ctg.
10891 * As the flip done interrupt doesn't trigger for mmio
10892 * flips on gmch platforms, a flip count check isn't
10893 * really needed there. But since ctg has the registers,
10894 * include it in the check anyway.
10895 */
10896 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10897 return true;
10898
10899 /*
10900 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10901 * used the same base address. In that case the mmio flip might
10902 * have completed, but the CS hasn't even executed the flip yet.
10903 *
10904 * A flip count check isn't enough as the CS might have updated
10905 * the base address just after start of vblank, but before we
10906 * managed to process the interrupt. This means we'd complete the
10907 * CS flip too soon.
10908 *
10909 * Combining both checks should get us a good enough result. It may
10910 * still happen that the CS flip has been executed, but has not
10911 * yet actually completed. But in case the base address is the same
10912 * anyway, we don't really care.
10913 */
10914 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10915 crtc->unpin_work->gtt_offset &&
fd8f507c 10916 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
75f7f3ec
VS
10917 crtc->unpin_work->flip_count);
10918}
10919
6b95a207
KH
10920void intel_prepare_page_flip(struct drm_device *dev, int plane)
10921{
fbee40df 10922 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
10923 struct intel_crtc *intel_crtc =
10924 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10925 unsigned long flags;
10926
f326038a
DV
10927
10928 /*
10929 * This is called both by irq handlers and the reset code (to complete
10930 * lost pageflips) so needs the full irqsave spinlocks.
10931 *
10932 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10933 * generate a page-flip completion irq, i.e. every modeset
10934 * is also accompanied by a spurious intel_prepare_page_flip().
10935 */
6b95a207 10936 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10937 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10938 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10939 spin_unlock_irqrestore(&dev->event_lock, flags);
10940}
10941
6042639c 10942static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
e7d841ca
CW
10943{
10944 /* Ensure that the work item is consistent when activating it ... */
10945 smp_wmb();
6042639c 10946 atomic_set(&work->pending, INTEL_FLIP_PENDING);
e7d841ca
CW
10947 /* and that it is marked active as soon as the irq could fire. */
10948 smp_wmb();
10949}
10950
8c9f3aaf
JB
10951static int intel_gen2_queue_flip(struct drm_device *dev,
10952 struct drm_crtc *crtc,
10953 struct drm_framebuffer *fb,
ed8d1975 10954 struct drm_i915_gem_object *obj,
6258fbe2 10955 struct drm_i915_gem_request *req,
ed8d1975 10956 uint32_t flags)
8c9f3aaf 10957{
6258fbe2 10958 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10959 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10960 u32 flip_mask;
10961 int ret;
10962
5fb9de1a 10963 ret = intel_ring_begin(req, 6);
8c9f3aaf 10964 if (ret)
4fa62c89 10965 return ret;
8c9f3aaf
JB
10966
10967 /* Can't queue multiple flips, so wait for the previous
10968 * one to finish before executing the next.
10969 */
10970 if (intel_crtc->plane)
10971 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10972 else
10973 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10974 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10975 intel_ring_emit(ring, MI_NOOP);
10976 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10977 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10978 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10979 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 10980 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca 10981
6042639c 10982 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 10983 return 0;
8c9f3aaf
JB
10984}
10985
10986static int intel_gen3_queue_flip(struct drm_device *dev,
10987 struct drm_crtc *crtc,
10988 struct drm_framebuffer *fb,
ed8d1975 10989 struct drm_i915_gem_object *obj,
6258fbe2 10990 struct drm_i915_gem_request *req,
ed8d1975 10991 uint32_t flags)
8c9f3aaf 10992{
6258fbe2 10993 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10995 u32 flip_mask;
10996 int ret;
10997
5fb9de1a 10998 ret = intel_ring_begin(req, 6);
8c9f3aaf 10999 if (ret)
4fa62c89 11000 return ret;
8c9f3aaf
JB
11001
11002 if (intel_crtc->plane)
11003 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11004 else
11005 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
11006 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11007 intel_ring_emit(ring, MI_NOOP);
11008 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11009 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11010 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 11011 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
11012 intel_ring_emit(ring, MI_NOOP);
11013
6042639c 11014 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11015 return 0;
8c9f3aaf
JB
11016}
11017
11018static int intel_gen4_queue_flip(struct drm_device *dev,
11019 struct drm_crtc *crtc,
11020 struct drm_framebuffer *fb,
ed8d1975 11021 struct drm_i915_gem_object *obj,
6258fbe2 11022 struct drm_i915_gem_request *req,
ed8d1975 11023 uint32_t flags)
8c9f3aaf 11024{
6258fbe2 11025 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
11026 struct drm_i915_private *dev_priv = dev->dev_private;
11027 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11028 uint32_t pf, pipesrc;
11029 int ret;
11030
5fb9de1a 11031 ret = intel_ring_begin(req, 4);
8c9f3aaf 11032 if (ret)
4fa62c89 11033 return ret;
8c9f3aaf
JB
11034
11035 /* i965+ uses the linear or tiled offsets from the
11036 * Display Registers (which do not change across a page-flip)
11037 * so we need only reprogram the base address.
11038 */
6d90c952
DV
11039 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11040 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11041 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 11042 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 11043 obj->tiling_mode);
8c9f3aaf
JB
11044
11045 /* XXX Enabling the panel-fitter across page-flip is so far
11046 * untested on non-native modes, so ignore it for now.
11047 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11048 */
11049 pf = 0;
11050 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11051 intel_ring_emit(ring, pf | pipesrc);
e7d841ca 11052
6042639c 11053 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11054 return 0;
8c9f3aaf
JB
11055}
11056
11057static int intel_gen6_queue_flip(struct drm_device *dev,
11058 struct drm_crtc *crtc,
11059 struct drm_framebuffer *fb,
ed8d1975 11060 struct drm_i915_gem_object *obj,
6258fbe2 11061 struct drm_i915_gem_request *req,
ed8d1975 11062 uint32_t flags)
8c9f3aaf 11063{
6258fbe2 11064 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
11065 struct drm_i915_private *dev_priv = dev->dev_private;
11066 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11067 uint32_t pf, pipesrc;
11068 int ret;
11069
5fb9de1a 11070 ret = intel_ring_begin(req, 4);
8c9f3aaf 11071 if (ret)
4fa62c89 11072 return ret;
8c9f3aaf 11073
6d90c952
DV
11074 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11075 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11076 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 11077 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 11078
dc257cf1
DV
11079 /* Contrary to the suggestions in the documentation,
11080 * "Enable Panel Fitter" does not seem to be required when page
11081 * flipping with a non-native mode, and worse causes a normal
11082 * modeset to fail.
11083 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11084 */
11085 pf = 0;
8c9f3aaf 11086 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11087 intel_ring_emit(ring, pf | pipesrc);
e7d841ca 11088
6042639c 11089 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11090 return 0;
8c9f3aaf
JB
11091}
11092
7c9017e5
JB
11093static int intel_gen7_queue_flip(struct drm_device *dev,
11094 struct drm_crtc *crtc,
11095 struct drm_framebuffer *fb,
ed8d1975 11096 struct drm_i915_gem_object *obj,
6258fbe2 11097 struct drm_i915_gem_request *req,
ed8d1975 11098 uint32_t flags)
7c9017e5 11099{
6258fbe2 11100 struct intel_engine_cs *ring = req->ring;
7c9017e5 11101 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 11102 uint32_t plane_bit = 0;
ffe74d75
CW
11103 int len, ret;
11104
eba905b2 11105 switch (intel_crtc->plane) {
cb05d8de
DV
11106 case PLANE_A:
11107 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11108 break;
11109 case PLANE_B:
11110 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11111 break;
11112 case PLANE_C:
11113 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11114 break;
11115 default:
11116 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 11117 return -ENODEV;
cb05d8de
DV
11118 }
11119
ffe74d75 11120 len = 4;
f476828a 11121 if (ring->id == RCS) {
ffe74d75 11122 len += 6;
f476828a
DL
11123 /*
11124 * On Gen 8, SRM is now taking an extra dword to accommodate
11125 * 48bits addresses, and we need a NOOP for the batch size to
11126 * stay even.
11127 */
11128 if (IS_GEN8(dev))
11129 len += 2;
11130 }
ffe74d75 11131
f66fab8e
VS
11132 /*
11133 * BSpec MI_DISPLAY_FLIP for IVB:
11134 * "The full packet must be contained within the same cache line."
11135 *
11136 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11137 * cacheline, if we ever start emitting more commands before
11138 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11139 * then do the cacheline alignment, and finally emit the
11140 * MI_DISPLAY_FLIP.
11141 */
bba09b12 11142 ret = intel_ring_cacheline_align(req);
f66fab8e 11143 if (ret)
4fa62c89 11144 return ret;
f66fab8e 11145
5fb9de1a 11146 ret = intel_ring_begin(req, len);
7c9017e5 11147 if (ret)
4fa62c89 11148 return ret;
7c9017e5 11149
ffe74d75
CW
11150 /* Unmask the flip-done completion message. Note that the bspec says that
11151 * we should do this for both the BCS and RCS, and that we must not unmask
11152 * more than one flip event at any time (or ensure that one flip message
11153 * can be sent by waiting for flip-done prior to queueing new flips).
11154 * Experimentation says that BCS works despite DERRMR masking all
11155 * flip-done completion events and that unmasking all planes at once
11156 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11157 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11158 */
11159 if (ring->id == RCS) {
11160 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
f92a9162 11161 intel_ring_emit_reg(ring, DERRMR);
ffe74d75
CW
11162 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11163 DERRMR_PIPEB_PRI_FLIP_DONE |
11164 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a 11165 if (IS_GEN8(dev))
f1afe24f 11166 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
f476828a
DL
11167 MI_SRM_LRM_GLOBAL_GTT);
11168 else
f1afe24f 11169 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
f476828a 11170 MI_SRM_LRM_GLOBAL_GTT);
f92a9162 11171 intel_ring_emit_reg(ring, DERRMR);
ffe74d75 11172 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
11173 if (IS_GEN8(dev)) {
11174 intel_ring_emit(ring, 0);
11175 intel_ring_emit(ring, MI_NOOP);
11176 }
ffe74d75
CW
11177 }
11178
cb05d8de 11179 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 11180 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 11181 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 11182 intel_ring_emit(ring, (MI_NOOP));
e7d841ca 11183
6042639c 11184 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11185 return 0;
7c9017e5
JB
11186}
11187
84c33a64
SG
11188static bool use_mmio_flip(struct intel_engine_cs *ring,
11189 struct drm_i915_gem_object *obj)
11190{
11191 /*
11192 * This is not being used for older platforms, because
11193 * non-availability of flip done interrupt forces us to use
11194 * CS flips. Older platforms derive flip done using some clever
11195 * tricks involving the flip_pending status bits and vblank irqs.
11196 * So using MMIO flips there would disrupt this mechanism.
11197 */
11198
8e09bf83
CW
11199 if (ring == NULL)
11200 return true;
11201
84c33a64
SG
11202 if (INTEL_INFO(ring->dev)->gen < 5)
11203 return false;
11204
11205 if (i915.use_mmio_flip < 0)
11206 return false;
11207 else if (i915.use_mmio_flip > 0)
11208 return true;
14bf993e
OM
11209 else if (i915.enable_execlists)
11210 return true;
fd8e058a
AG
11211 else if (obj->base.dma_buf &&
11212 !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11213 false))
11214 return true;
84c33a64 11215 else
b4716185 11216 return ring != i915_gem_request_get_ring(obj->last_write_req);
84c33a64
SG
11217}
11218
6042639c 11219static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
86efe24a 11220 unsigned int rotation,
6042639c 11221 struct intel_unpin_work *work)
ff944564
DL
11222{
11223 struct drm_device *dev = intel_crtc->base.dev;
11224 struct drm_i915_private *dev_priv = dev->dev_private;
11225 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564 11226 const enum pipe pipe = intel_crtc->pipe;
86efe24a 11227 u32 ctl, stride, tile_height;
ff944564
DL
11228
11229 ctl = I915_READ(PLANE_CTL(pipe, 0));
11230 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
11231 switch (fb->modifier[0]) {
11232 case DRM_FORMAT_MOD_NONE:
11233 break;
11234 case I915_FORMAT_MOD_X_TILED:
ff944564 11235 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
11236 break;
11237 case I915_FORMAT_MOD_Y_TILED:
11238 ctl |= PLANE_CTL_TILED_Y;
11239 break;
11240 case I915_FORMAT_MOD_Yf_TILED:
11241 ctl |= PLANE_CTL_TILED_YF;
11242 break;
11243 default:
11244 MISSING_CASE(fb->modifier[0]);
11245 }
ff944564
DL
11246
11247 /*
11248 * The stride is either expressed as a multiple of 64 bytes chunks for
11249 * linear buffers or in number of tiles for tiled buffers.
11250 */
86efe24a
TU
11251 if (intel_rotation_90_or_270(rotation)) {
11252 /* stride = Surface height in tiles */
11253 tile_height = intel_tile_height(dev, fb->pixel_format,
11254 fb->modifier[0], 0);
11255 stride = DIV_ROUND_UP(fb->height, tile_height);
11256 } else {
11257 stride = fb->pitches[0] /
11258 intel_fb_stride_alignment(dev, fb->modifier[0],
11259 fb->pixel_format);
11260 }
ff944564
DL
11261
11262 /*
11263 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11264 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11265 */
11266 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11267 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11268
6042639c 11269 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
ff944564
DL
11270 POSTING_READ(PLANE_SURF(pipe, 0));
11271}
11272
6042639c
CW
11273static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11274 struct intel_unpin_work *work)
84c33a64
SG
11275{
11276 struct drm_device *dev = intel_crtc->base.dev;
11277 struct drm_i915_private *dev_priv = dev->dev_private;
11278 struct intel_framebuffer *intel_fb =
11279 to_intel_framebuffer(intel_crtc->base.primary->fb);
11280 struct drm_i915_gem_object *obj = intel_fb->obj;
f0f59a00 11281 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
84c33a64 11282 u32 dspcntr;
84c33a64 11283
84c33a64
SG
11284 dspcntr = I915_READ(reg);
11285
c5d97472
DL
11286 if (obj->tiling_mode != I915_TILING_NONE)
11287 dspcntr |= DISPPLANE_TILED;
11288 else
11289 dspcntr &= ~DISPPLANE_TILED;
11290
84c33a64
SG
11291 I915_WRITE(reg, dspcntr);
11292
6042639c 11293 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
84c33a64 11294 POSTING_READ(DSPSURF(intel_crtc->plane));
ff944564
DL
11295}
11296
11297/*
11298 * XXX: This is the temporary way to update the plane registers until we get
11299 * around to using the usual plane update functions for MMIO flips
11300 */
6042639c 11301static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
ff944564 11302{
6042639c
CW
11303 struct intel_crtc *crtc = mmio_flip->crtc;
11304 struct intel_unpin_work *work;
11305
11306 spin_lock_irq(&crtc->base.dev->event_lock);
11307 work = crtc->unpin_work;
11308 spin_unlock_irq(&crtc->base.dev->event_lock);
11309 if (work == NULL)
11310 return;
ff944564 11311
6042639c 11312 intel_mark_page_flip_active(work);
ff944564 11313
6042639c 11314 intel_pipe_update_start(crtc);
ff944564 11315
6042639c 11316 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
86efe24a 11317 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
ff944564
DL
11318 else
11319 /* use_mmio_flip() retricts MMIO flips to ilk+ */
6042639c 11320 ilk_do_mmio_flip(crtc, work);
ff944564 11321
6042639c 11322 intel_pipe_update_end(crtc);
84c33a64
SG
11323}
11324
9362c7c5 11325static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 11326{
b2cfe0ab
CW
11327 struct intel_mmio_flip *mmio_flip =
11328 container_of(work, struct intel_mmio_flip, work);
fd8e058a
AG
11329 struct intel_framebuffer *intel_fb =
11330 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11331 struct drm_i915_gem_object *obj = intel_fb->obj;
84c33a64 11332
6042639c 11333 if (mmio_flip->req) {
eed29a5b 11334 WARN_ON(__i915_wait_request(mmio_flip->req,
b2cfe0ab 11335 mmio_flip->crtc->reset_counter,
bcafc4e3
CW
11336 false, NULL,
11337 &mmio_flip->i915->rps.mmioflips));
6042639c
CW
11338 i915_gem_request_unreference__unlocked(mmio_flip->req);
11339 }
84c33a64 11340
fd8e058a
AG
11341 /* For framebuffer backed by dmabuf, wait for fence */
11342 if (obj->base.dma_buf)
11343 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11344 false, false,
11345 MAX_SCHEDULE_TIMEOUT) < 0);
11346
6042639c 11347 intel_do_mmio_flip(mmio_flip);
b2cfe0ab 11348 kfree(mmio_flip);
84c33a64
SG
11349}
11350
11351static int intel_queue_mmio_flip(struct drm_device *dev,
11352 struct drm_crtc *crtc,
86efe24a 11353 struct drm_i915_gem_object *obj)
84c33a64 11354{
b2cfe0ab
CW
11355 struct intel_mmio_flip *mmio_flip;
11356
11357 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11358 if (mmio_flip == NULL)
11359 return -ENOMEM;
84c33a64 11360
bcafc4e3 11361 mmio_flip->i915 = to_i915(dev);
eed29a5b 11362 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
b2cfe0ab 11363 mmio_flip->crtc = to_intel_crtc(crtc);
86efe24a 11364 mmio_flip->rotation = crtc->primary->state->rotation;
536f5b5e 11365
b2cfe0ab
CW
11366 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11367 schedule_work(&mmio_flip->work);
84c33a64 11368
84c33a64
SG
11369 return 0;
11370}
11371
8c9f3aaf
JB
11372static int intel_default_queue_flip(struct drm_device *dev,
11373 struct drm_crtc *crtc,
11374 struct drm_framebuffer *fb,
ed8d1975 11375 struct drm_i915_gem_object *obj,
6258fbe2 11376 struct drm_i915_gem_request *req,
ed8d1975 11377 uint32_t flags)
8c9f3aaf
JB
11378{
11379 return -ENODEV;
11380}
11381
d6bbafa1
CW
11382static bool __intel_pageflip_stall_check(struct drm_device *dev,
11383 struct drm_crtc *crtc)
11384{
11385 struct drm_i915_private *dev_priv = dev->dev_private;
11386 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11387 struct intel_unpin_work *work = intel_crtc->unpin_work;
11388 u32 addr;
11389
11390 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11391 return true;
11392
908565c2
CW
11393 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11394 return false;
11395
d6bbafa1
CW
11396 if (!work->enable_stall_check)
11397 return false;
11398
11399 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
11400 if (work->flip_queued_req &&
11401 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
11402 return false;
11403
1e3feefd 11404 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
11405 }
11406
1e3feefd 11407 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
11408 return false;
11409
11410 /* Potential stall - if we see that the flip has happened,
11411 * assume a missed interrupt. */
11412 if (INTEL_INFO(dev)->gen >= 4)
11413 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11414 else
11415 addr = I915_READ(DSPADDR(intel_crtc->plane));
11416
11417 /* There is a potential issue here with a false positive after a flip
11418 * to the same address. We could address this by checking for a
11419 * non-incrementing frame counter.
11420 */
11421 return addr == work->gtt_offset;
11422}
11423
11424void intel_check_page_flip(struct drm_device *dev, int pipe)
11425{
11426 struct drm_i915_private *dev_priv = dev->dev_private;
11427 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 11429 struct intel_unpin_work *work;
f326038a 11430
6c51d46f 11431 WARN_ON(!in_interrupt());
d6bbafa1
CW
11432
11433 if (crtc == NULL)
11434 return;
11435
f326038a 11436 spin_lock(&dev->event_lock);
6ad790c0
CW
11437 work = intel_crtc->unpin_work;
11438 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 11439 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 11440 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 11441 page_flip_completed(intel_crtc);
6ad790c0 11442 work = NULL;
d6bbafa1 11443 }
6ad790c0
CW
11444 if (work != NULL &&
11445 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11446 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 11447 spin_unlock(&dev->event_lock);
d6bbafa1
CW
11448}
11449
6b95a207
KH
11450static int intel_crtc_page_flip(struct drm_crtc *crtc,
11451 struct drm_framebuffer *fb,
ed8d1975
KP
11452 struct drm_pending_vblank_event *event,
11453 uint32_t page_flip_flags)
6b95a207
KH
11454{
11455 struct drm_device *dev = crtc->dev;
11456 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 11457 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 11458 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 11459 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 11460 struct drm_plane *primary = crtc->primary;
a071fa00 11461 enum pipe pipe = intel_crtc->pipe;
6b95a207 11462 struct intel_unpin_work *work;
a4872ba6 11463 struct intel_engine_cs *ring;
cf5d8a46 11464 bool mmio_flip;
91af127f 11465 struct drm_i915_gem_request *request = NULL;
52e68630 11466 int ret;
6b95a207 11467
2ff8fde1
MR
11468 /*
11469 * drm_mode_page_flip_ioctl() should already catch this, but double
11470 * check to be safe. In the future we may enable pageflipping from
11471 * a disabled primary plane.
11472 */
11473 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11474 return -EBUSY;
11475
e6a595d2 11476 /* Can't change pixel format via MI display flips. */
f4510a27 11477 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
11478 return -EINVAL;
11479
11480 /*
11481 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11482 * Note that pitch changes could also affect these register.
11483 */
11484 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
11485 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11486 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
11487 return -EINVAL;
11488
f900db47
CW
11489 if (i915_terminally_wedged(&dev_priv->gpu_error))
11490 goto out_hang;
11491
b14c5679 11492 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
11493 if (work == NULL)
11494 return -ENOMEM;
11495
6b95a207 11496 work->event = event;
b4a98e57 11497 work->crtc = crtc;
ab8d6675 11498 work->old_fb = old_fb;
6b95a207
KH
11499 INIT_WORK(&work->work, intel_unpin_work_fn);
11500
87b6b101 11501 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
11502 if (ret)
11503 goto free_work;
11504
6b95a207 11505 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 11506 spin_lock_irq(&dev->event_lock);
6b95a207 11507 if (intel_crtc->unpin_work) {
d6bbafa1
CW
11508 /* Before declaring the flip queue wedged, check if
11509 * the hardware completed the operation behind our backs.
11510 */
11511 if (__intel_pageflip_stall_check(dev, crtc)) {
11512 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11513 page_flip_completed(intel_crtc);
11514 } else {
11515 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 11516 spin_unlock_irq(&dev->event_lock);
468f0b44 11517
d6bbafa1
CW
11518 drm_crtc_vblank_put(crtc);
11519 kfree(work);
11520 return -EBUSY;
11521 }
6b95a207
KH
11522 }
11523 intel_crtc->unpin_work = work;
5e2d7afc 11524 spin_unlock_irq(&dev->event_lock);
6b95a207 11525
b4a98e57
CW
11526 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11527 flush_workqueue(dev_priv->wq);
11528
75dfca80 11529 /* Reference the objects for the scheduled work. */
ab8d6675 11530 drm_framebuffer_reference(work->old_fb);
05394f39 11531 drm_gem_object_reference(&obj->base);
6b95a207 11532
f4510a27 11533 crtc->primary->fb = fb;
afd65eb4 11534 update_state_fb(crtc->primary);
1ed1f968 11535
e1f99ce6 11536 work->pending_flip_obj = obj;
e1f99ce6 11537
89ed88ba
CW
11538 ret = i915_mutex_lock_interruptible(dev);
11539 if (ret)
11540 goto cleanup;
11541
b4a98e57 11542 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 11543 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 11544
75f7f3ec 11545 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
fd8f507c 11546 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
75f7f3ec 11547
4fa62c89
VS
11548 if (IS_VALLEYVIEW(dev)) {
11549 ring = &dev_priv->ring[BCS];
ab8d6675 11550 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
11551 /* vlv: DISPLAY_FLIP fails to change tiling */
11552 ring = NULL;
48bf5b2d 11553 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 11554 ring = &dev_priv->ring[BCS];
4fa62c89 11555 } else if (INTEL_INFO(dev)->gen >= 7) {
b4716185 11556 ring = i915_gem_request_get_ring(obj->last_write_req);
4fa62c89
VS
11557 if (ring == NULL || ring->id != RCS)
11558 ring = &dev_priv->ring[BCS];
11559 } else {
11560 ring = &dev_priv->ring[RCS];
11561 }
11562
cf5d8a46
CW
11563 mmio_flip = use_mmio_flip(ring, obj);
11564
11565 /* When using CS flips, we want to emit semaphores between rings.
11566 * However, when using mmio flips we will create a task to do the
11567 * synchronisation, so all we want here is to pin the framebuffer
11568 * into the display plane and skip any waits.
11569 */
7580d774
ML
11570 if (!mmio_flip) {
11571 ret = i915_gem_object_sync(obj, ring, &request);
11572 if (ret)
11573 goto cleanup_pending;
11574 }
11575
82bc3b2d 11576 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
7580d774 11577 crtc->primary->state);
8c9f3aaf
JB
11578 if (ret)
11579 goto cleanup_pending;
6b95a207 11580
dedf278c
TU
11581 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11582 obj, 0);
11583 work->gtt_offset += intel_crtc->dspaddr_offset;
4fa62c89 11584
cf5d8a46 11585 if (mmio_flip) {
86efe24a 11586 ret = intel_queue_mmio_flip(dev, crtc, obj);
d6bbafa1
CW
11587 if (ret)
11588 goto cleanup_unpin;
11589
f06cc1b9
JH
11590 i915_gem_request_assign(&work->flip_queued_req,
11591 obj->last_write_req);
d6bbafa1 11592 } else {
6258fbe2
JH
11593 if (!request) {
11594 ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11595 if (ret)
11596 goto cleanup_unpin;
11597 }
11598
11599 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
d6bbafa1
CW
11600 page_flip_flags);
11601 if (ret)
11602 goto cleanup_unpin;
11603
6258fbe2 11604 i915_gem_request_assign(&work->flip_queued_req, request);
d6bbafa1
CW
11605 }
11606
91af127f 11607 if (request)
75289874 11608 i915_add_request_no_flush(request);
91af127f 11609
1e3feefd 11610 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11611 work->enable_stall_check = true;
4fa62c89 11612
ab8d6675 11613 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a9ff8714 11614 to_intel_plane(primary)->frontbuffer_bit);
c80ac854 11615 mutex_unlock(&dev->struct_mutex);
a071fa00 11616
d029bcad 11617 intel_fbc_deactivate(intel_crtc);
a9ff8714
VS
11618 intel_frontbuffer_flip_prepare(dev,
11619 to_intel_plane(primary)->frontbuffer_bit);
6b95a207 11620
e5510fac
JB
11621 trace_i915_flip_request(intel_crtc->plane, obj);
11622
6b95a207 11623 return 0;
96b099fd 11624
4fa62c89 11625cleanup_unpin:
82bc3b2d 11626 intel_unpin_fb_obj(fb, crtc->primary->state);
8c9f3aaf 11627cleanup_pending:
91af127f
JH
11628 if (request)
11629 i915_gem_request_cancel(request);
b4a98e57 11630 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11631 mutex_unlock(&dev->struct_mutex);
11632cleanup:
f4510a27 11633 crtc->primary->fb = old_fb;
afd65eb4 11634 update_state_fb(crtc->primary);
89ed88ba
CW
11635
11636 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11637 drm_framebuffer_unreference(work->old_fb);
96b099fd 11638
5e2d7afc 11639 spin_lock_irq(&dev->event_lock);
96b099fd 11640 intel_crtc->unpin_work = NULL;
5e2d7afc 11641 spin_unlock_irq(&dev->event_lock);
96b099fd 11642
87b6b101 11643 drm_crtc_vblank_put(crtc);
7317c75e 11644free_work:
96b099fd
CW
11645 kfree(work);
11646
f900db47 11647 if (ret == -EIO) {
02e0efb5
ML
11648 struct drm_atomic_state *state;
11649 struct drm_plane_state *plane_state;
11650
f900db47 11651out_hang:
02e0efb5
ML
11652 state = drm_atomic_state_alloc(dev);
11653 if (!state)
11654 return -ENOMEM;
11655 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11656
11657retry:
11658 plane_state = drm_atomic_get_plane_state(state, primary);
11659 ret = PTR_ERR_OR_ZERO(plane_state);
11660 if (!ret) {
11661 drm_atomic_set_fb_for_plane(plane_state, fb);
11662
11663 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11664 if (!ret)
11665 ret = drm_atomic_commit(state);
11666 }
11667
11668 if (ret == -EDEADLK) {
11669 drm_modeset_backoff(state->acquire_ctx);
11670 drm_atomic_state_clear(state);
11671 goto retry;
11672 }
11673
11674 if (ret)
11675 drm_atomic_state_free(state);
11676
f0d3dad3 11677 if (ret == 0 && event) {
5e2d7afc 11678 spin_lock_irq(&dev->event_lock);
a071fa00 11679 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 11680 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11681 }
f900db47 11682 }
96b099fd 11683 return ret;
6b95a207
KH
11684}
11685
da20eabd
ML
11686
11687/**
11688 * intel_wm_need_update - Check whether watermarks need updating
11689 * @plane: drm plane
11690 * @state: new plane state
11691 *
11692 * Check current plane state versus the new one to determine whether
11693 * watermarks need to be recalculated.
11694 *
11695 * Returns true or false.
11696 */
11697static bool intel_wm_need_update(struct drm_plane *plane,
11698 struct drm_plane_state *state)
11699{
d21fbe87
MR
11700 struct intel_plane_state *new = to_intel_plane_state(state);
11701 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11702
11703 /* Update watermarks on tiling or size changes. */
92826fcd
ML
11704 if (new->visible != cur->visible)
11705 return true;
11706
11707 if (!cur->base.fb || !new->base.fb)
11708 return false;
11709
11710 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11711 cur->base.rotation != new->base.rotation ||
d21fbe87
MR
11712 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11713 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11714 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11715 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
2791a16c 11716 return true;
7809e5ae 11717
2791a16c 11718 return false;
7809e5ae
MR
11719}
11720
d21fbe87
MR
11721static bool needs_scaling(struct intel_plane_state *state)
11722{
11723 int src_w = drm_rect_width(&state->src) >> 16;
11724 int src_h = drm_rect_height(&state->src) >> 16;
11725 int dst_w = drm_rect_width(&state->dst);
11726 int dst_h = drm_rect_height(&state->dst);
11727
11728 return (src_w != dst_w || src_h != dst_h);
11729}
11730
da20eabd
ML
11731int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11732 struct drm_plane_state *plane_state)
11733{
ab1d3a0e 11734 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
da20eabd
ML
11735 struct drm_crtc *crtc = crtc_state->crtc;
11736 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11737 struct drm_plane *plane = plane_state->plane;
11738 struct drm_device *dev = crtc->dev;
11739 struct drm_i915_private *dev_priv = dev->dev_private;
11740 struct intel_plane_state *old_plane_state =
11741 to_intel_plane_state(plane->state);
11742 int idx = intel_crtc->base.base.id, ret;
11743 int i = drm_plane_index(plane);
11744 bool mode_changed = needs_modeset(crtc_state);
11745 bool was_crtc_enabled = crtc->state->active;
11746 bool is_crtc_enabled = crtc_state->active;
da20eabd
ML
11747 bool turn_off, turn_on, visible, was_visible;
11748 struct drm_framebuffer *fb = plane_state->fb;
11749
11750 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11751 plane->type != DRM_PLANE_TYPE_CURSOR) {
11752 ret = skl_update_scaler_plane(
11753 to_intel_crtc_state(crtc_state),
11754 to_intel_plane_state(plane_state));
11755 if (ret)
11756 return ret;
11757 }
11758
da20eabd
ML
11759 was_visible = old_plane_state->visible;
11760 visible = to_intel_plane_state(plane_state)->visible;
11761
11762 if (!was_crtc_enabled && WARN_ON(was_visible))
11763 was_visible = false;
11764
11765 if (!is_crtc_enabled && WARN_ON(visible))
11766 visible = false;
11767
11768 if (!was_visible && !visible)
11769 return 0;
11770
11771 turn_off = was_visible && (!visible || mode_changed);
11772 turn_on = visible && (!was_visible || mode_changed);
11773
11774 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11775 plane->base.id, fb ? fb->base.id : -1);
11776
11777 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11778 plane->base.id, was_visible, visible,
11779 turn_off, turn_on, mode_changed);
11780
92826fcd
ML
11781 if (turn_on || turn_off) {
11782 pipe_config->wm_changed = true;
11783
852eb00d
VS
11784 /* must disable cxsr around plane enable/disable */
11785 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11786 if (is_crtc_enabled)
11787 intel_crtc->atomic.wait_vblank = true;
ab1d3a0e 11788 pipe_config->disable_cxsr = true;
852eb00d
VS
11789 }
11790 } else if (intel_wm_need_update(plane, plane_state)) {
92826fcd 11791 pipe_config->wm_changed = true;
852eb00d 11792 }
da20eabd 11793
8be6ca85 11794 if (visible || was_visible)
a9ff8714
VS
11795 intel_crtc->atomic.fb_bits |=
11796 to_intel_plane(plane)->frontbuffer_bit;
11797
da20eabd
ML
11798 switch (plane->type) {
11799 case DRM_PLANE_TYPE_PRIMARY:
da20eabd
ML
11800 intel_crtc->atomic.pre_disable_primary = turn_off;
11801 intel_crtc->atomic.post_enable_primary = turn_on;
11802
066cf55b
RV
11803 if (turn_off) {
11804 /*
11805 * FIXME: Actually if we will still have any other
11806 * plane enabled on the pipe we could let IPS enabled
11807 * still, but for now lets consider that when we make
11808 * primary invisible by setting DSPCNTR to 0 on
11809 * update_primary_plane function IPS needs to be
11810 * disable.
11811 */
11812 intel_crtc->atomic.disable_ips = true;
11813
da20eabd 11814 intel_crtc->atomic.disable_fbc = true;
066cf55b 11815 }
da20eabd
ML
11816
11817 /*
11818 * FBC does not work on some platforms for rotated
11819 * planes, so disable it when rotation is not 0 and
11820 * update it when rotation is set back to 0.
11821 *
11822 * FIXME: This is redundant with the fbc update done in
11823 * the primary plane enable function except that that
11824 * one is done too late. We eventually need to unify
11825 * this.
11826 */
11827
11828 if (visible &&
11829 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11830 dev_priv->fbc.crtc == intel_crtc &&
11831 plane_state->rotation != BIT(DRM_ROTATE_0))
11832 intel_crtc->atomic.disable_fbc = true;
11833
11834 /*
11835 * BDW signals flip done immediately if the plane
11836 * is disabled, even if the plane enable is already
11837 * armed to occur at the next vblank :(
11838 */
11839 if (turn_on && IS_BROADWELL(dev))
11840 intel_crtc->atomic.wait_vblank = true;
11841
11842 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11843 break;
11844 case DRM_PLANE_TYPE_CURSOR:
da20eabd
ML
11845 break;
11846 case DRM_PLANE_TYPE_OVERLAY:
d21fbe87
MR
11847 /*
11848 * WaCxSRDisabledForSpriteScaling:ivb
11849 *
11850 * cstate->update_wm was already set above, so this flag will
11851 * take effect when we commit and program watermarks.
11852 */
11853 if (IS_IVYBRIDGE(dev) &&
11854 needs_scaling(to_intel_plane_state(plane_state)) &&
11855 !needs_scaling(old_plane_state)) {
11856 to_intel_crtc_state(crtc_state)->disable_lp_wm = true;
11857 } else if (turn_off && !mode_changed) {
da20eabd
ML
11858 intel_crtc->atomic.wait_vblank = true;
11859 intel_crtc->atomic.update_sprite_watermarks |=
11860 1 << i;
11861 }
d21fbe87
MR
11862
11863 break;
da20eabd
ML
11864 }
11865 return 0;
11866}
11867
6d3a1ce7
ML
11868static bool encoders_cloneable(const struct intel_encoder *a,
11869 const struct intel_encoder *b)
11870{
11871 /* masks could be asymmetric, so check both ways */
11872 return a == b || (a->cloneable & (1 << b->type) &&
11873 b->cloneable & (1 << a->type));
11874}
11875
11876static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11877 struct intel_crtc *crtc,
11878 struct intel_encoder *encoder)
11879{
11880 struct intel_encoder *source_encoder;
11881 struct drm_connector *connector;
11882 struct drm_connector_state *connector_state;
11883 int i;
11884
11885 for_each_connector_in_state(state, connector, connector_state, i) {
11886 if (connector_state->crtc != &crtc->base)
11887 continue;
11888
11889 source_encoder =
11890 to_intel_encoder(connector_state->best_encoder);
11891 if (!encoders_cloneable(encoder, source_encoder))
11892 return false;
11893 }
11894
11895 return true;
11896}
11897
11898static bool check_encoder_cloning(struct drm_atomic_state *state,
11899 struct intel_crtc *crtc)
11900{
11901 struct intel_encoder *encoder;
11902 struct drm_connector *connector;
11903 struct drm_connector_state *connector_state;
11904 int i;
11905
11906 for_each_connector_in_state(state, connector, connector_state, i) {
11907 if (connector_state->crtc != &crtc->base)
11908 continue;
11909
11910 encoder = to_intel_encoder(connector_state->best_encoder);
11911 if (!check_single_encoder_cloning(state, crtc, encoder))
11912 return false;
11913 }
11914
11915 return true;
11916}
11917
11918static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11919 struct drm_crtc_state *crtc_state)
11920{
cf5a15be 11921 struct drm_device *dev = crtc->dev;
ad421372 11922 struct drm_i915_private *dev_priv = dev->dev_private;
6d3a1ce7 11923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
11924 struct intel_crtc_state *pipe_config =
11925 to_intel_crtc_state(crtc_state);
6d3a1ce7 11926 struct drm_atomic_state *state = crtc_state->state;
4d20cd86 11927 int ret;
6d3a1ce7
ML
11928 bool mode_changed = needs_modeset(crtc_state);
11929
11930 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11931 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11932 return -EINVAL;
11933 }
11934
852eb00d 11935 if (mode_changed && !crtc_state->active)
92826fcd 11936 pipe_config->wm_changed = true;
eddfcbcd 11937
ad421372
ML
11938 if (mode_changed && crtc_state->enable &&
11939 dev_priv->display.crtc_compute_clock &&
11940 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11941 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11942 pipe_config);
11943 if (ret)
11944 return ret;
11945 }
11946
e435d6e5 11947 ret = 0;
86c8bbbe
MR
11948 if (dev_priv->display.compute_pipe_wm) {
11949 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
11950 if (ret)
11951 return ret;
11952 }
11953
e435d6e5
ML
11954 if (INTEL_INFO(dev)->gen >= 9) {
11955 if (mode_changed)
11956 ret = skl_update_scaler_crtc(pipe_config);
11957
11958 if (!ret)
11959 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11960 pipe_config);
11961 }
11962
11963 return ret;
6d3a1ce7
ML
11964}
11965
65b38e0d 11966static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
11967 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11968 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
11969 .atomic_begin = intel_begin_crtc_commit,
11970 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 11971 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
11972};
11973
d29b2f9d
ACO
11974static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11975{
11976 struct intel_connector *connector;
11977
11978 for_each_intel_connector(dev, connector) {
11979 if (connector->base.encoder) {
11980 connector->base.state->best_encoder =
11981 connector->base.encoder;
11982 connector->base.state->crtc =
11983 connector->base.encoder->crtc;
11984 } else {
11985 connector->base.state->best_encoder = NULL;
11986 connector->base.state->crtc = NULL;
11987 }
11988 }
11989}
11990
050f7aeb 11991static void
eba905b2 11992connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 11993 struct intel_crtc_state *pipe_config)
050f7aeb
DV
11994{
11995 int bpp = pipe_config->pipe_bpp;
11996
11997 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11998 connector->base.base.id,
c23cc417 11999 connector->base.name);
050f7aeb
DV
12000
12001 /* Don't use an invalid EDID bpc value */
12002 if (connector->base.display_info.bpc &&
12003 connector->base.display_info.bpc * 3 < bpp) {
12004 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12005 bpp, connector->base.display_info.bpc*3);
12006 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12007 }
12008
12009 /* Clamp bpp to 8 on screens without EDID 1.4 */
12010 if (connector->base.display_info.bpc == 0 && bpp > 24) {
12011 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12012 bpp);
12013 pipe_config->pipe_bpp = 24;
12014 }
12015}
12016
4e53c2e0 12017static int
050f7aeb 12018compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 12019 struct intel_crtc_state *pipe_config)
4e53c2e0 12020{
050f7aeb 12021 struct drm_device *dev = crtc->base.dev;
1486017f 12022 struct drm_atomic_state *state;
da3ced29
ACO
12023 struct drm_connector *connector;
12024 struct drm_connector_state *connector_state;
1486017f 12025 int bpp, i;
4e53c2e0 12026
d328c9d7 12027 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
4e53c2e0 12028 bpp = 10*3;
d328c9d7
DV
12029 else if (INTEL_INFO(dev)->gen >= 5)
12030 bpp = 12*3;
12031 else
12032 bpp = 8*3;
12033
4e53c2e0 12034
4e53c2e0
DV
12035 pipe_config->pipe_bpp = bpp;
12036
1486017f
ACO
12037 state = pipe_config->base.state;
12038
4e53c2e0 12039 /* Clamp display bpp to EDID value */
da3ced29
ACO
12040 for_each_connector_in_state(state, connector, connector_state, i) {
12041 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
12042 continue;
12043
da3ced29
ACO
12044 connected_sink_compute_bpp(to_intel_connector(connector),
12045 pipe_config);
4e53c2e0
DV
12046 }
12047
12048 return bpp;
12049}
12050
644db711
DV
12051static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12052{
12053 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12054 "type: 0x%x flags: 0x%x\n",
1342830c 12055 mode->crtc_clock,
644db711
DV
12056 mode->crtc_hdisplay, mode->crtc_hsync_start,
12057 mode->crtc_hsync_end, mode->crtc_htotal,
12058 mode->crtc_vdisplay, mode->crtc_vsync_start,
12059 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12060}
12061
c0b03411 12062static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 12063 struct intel_crtc_state *pipe_config,
c0b03411
DV
12064 const char *context)
12065{
6a60cd87
CK
12066 struct drm_device *dev = crtc->base.dev;
12067 struct drm_plane *plane;
12068 struct intel_plane *intel_plane;
12069 struct intel_plane_state *state;
12070 struct drm_framebuffer *fb;
12071
12072 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12073 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
12074
12075 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12076 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12077 pipe_config->pipe_bpp, pipe_config->dither);
12078 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12079 pipe_config->has_pch_encoder,
12080 pipe_config->fdi_lanes,
12081 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12082 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12083 pipe_config->fdi_m_n.tu);
90a6b7b0 12084 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
eb14cb74 12085 pipe_config->has_dp_encoder,
90a6b7b0 12086 pipe_config->lane_count,
eb14cb74
VS
12087 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12088 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12089 pipe_config->dp_m_n.tu);
b95af8be 12090
90a6b7b0 12091 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
b95af8be 12092 pipe_config->has_dp_encoder,
90a6b7b0 12093 pipe_config->lane_count,
b95af8be
VK
12094 pipe_config->dp_m2_n2.gmch_m,
12095 pipe_config->dp_m2_n2.gmch_n,
12096 pipe_config->dp_m2_n2.link_m,
12097 pipe_config->dp_m2_n2.link_n,
12098 pipe_config->dp_m2_n2.tu);
12099
55072d19
DV
12100 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12101 pipe_config->has_audio,
12102 pipe_config->has_infoframe);
12103
c0b03411 12104 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12105 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12106 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12107 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12108 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12109 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12110 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12111 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12112 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12113 crtc->num_scalers,
12114 pipe_config->scaler_state.scaler_users,
12115 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12116 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12117 pipe_config->gmch_pfit.control,
12118 pipe_config->gmch_pfit.pgm_ratios,
12119 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12120 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12121 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12122 pipe_config->pch_pfit.size,
12123 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12124 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12125 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12126
415ff0f6 12127 if (IS_BROXTON(dev)) {
05712c15 12128 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 12129 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 12130 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6
TU
12131 pipe_config->ddi_pll_sel,
12132 pipe_config->dpll_hw_state.ebb0,
05712c15 12133 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
12134 pipe_config->dpll_hw_state.pll0,
12135 pipe_config->dpll_hw_state.pll1,
12136 pipe_config->dpll_hw_state.pll2,
12137 pipe_config->dpll_hw_state.pll3,
12138 pipe_config->dpll_hw_state.pll6,
12139 pipe_config->dpll_hw_state.pll8,
05712c15 12140 pipe_config->dpll_hw_state.pll9,
c8453338 12141 pipe_config->dpll_hw_state.pll10,
415ff0f6 12142 pipe_config->dpll_hw_state.pcsdw12);
ef11bdb3 12143 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
415ff0f6
TU
12144 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12145 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12146 pipe_config->ddi_pll_sel,
12147 pipe_config->dpll_hw_state.ctrl1,
12148 pipe_config->dpll_hw_state.cfgcr1,
12149 pipe_config->dpll_hw_state.cfgcr2);
12150 } else if (HAS_DDI(dev)) {
00490c22 12151 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
415ff0f6 12152 pipe_config->ddi_pll_sel,
00490c22
ML
12153 pipe_config->dpll_hw_state.wrpll,
12154 pipe_config->dpll_hw_state.spll);
415ff0f6
TU
12155 } else {
12156 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12157 "fp0: 0x%x, fp1: 0x%x\n",
12158 pipe_config->dpll_hw_state.dpll,
12159 pipe_config->dpll_hw_state.dpll_md,
12160 pipe_config->dpll_hw_state.fp0,
12161 pipe_config->dpll_hw_state.fp1);
12162 }
12163
6a60cd87
CK
12164 DRM_DEBUG_KMS("planes on this crtc\n");
12165 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12166 intel_plane = to_intel_plane(plane);
12167 if (intel_plane->pipe != crtc->pipe)
12168 continue;
12169
12170 state = to_intel_plane_state(plane->state);
12171 fb = state->base.fb;
12172 if (!fb) {
12173 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12174 "disabled, scaler_id = %d\n",
12175 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12176 plane->base.id, intel_plane->pipe,
12177 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12178 drm_plane_index(plane), state->scaler_id);
12179 continue;
12180 }
12181
12182 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12183 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12184 plane->base.id, intel_plane->pipe,
12185 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12186 drm_plane_index(plane));
12187 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12188 fb->base.id, fb->width, fb->height, fb->pixel_format);
12189 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12190 state->scaler_id,
12191 state->src.x1 >> 16, state->src.y1 >> 16,
12192 drm_rect_width(&state->src) >> 16,
12193 drm_rect_height(&state->src) >> 16,
12194 state->dst.x1, state->dst.y1,
12195 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12196 }
c0b03411
DV
12197}
12198
5448a00d 12199static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12200{
5448a00d
ACO
12201 struct drm_device *dev = state->dev;
12202 struct intel_encoder *encoder;
da3ced29 12203 struct drm_connector *connector;
5448a00d 12204 struct drm_connector_state *connector_state;
00f0b378 12205 unsigned int used_ports = 0;
5448a00d 12206 int i;
00f0b378
VS
12207
12208 /*
12209 * Walk the connector list instead of the encoder
12210 * list to detect the problem on ddi platforms
12211 * where there's just one encoder per digital port.
12212 */
da3ced29 12213 for_each_connector_in_state(state, connector, connector_state, i) {
5448a00d 12214 if (!connector_state->best_encoder)
00f0b378
VS
12215 continue;
12216
5448a00d
ACO
12217 encoder = to_intel_encoder(connector_state->best_encoder);
12218
12219 WARN_ON(!connector_state->crtc);
00f0b378
VS
12220
12221 switch (encoder->type) {
12222 unsigned int port_mask;
12223 case INTEL_OUTPUT_UNKNOWN:
12224 if (WARN_ON(!HAS_DDI(dev)))
12225 break;
12226 case INTEL_OUTPUT_DISPLAYPORT:
12227 case INTEL_OUTPUT_HDMI:
12228 case INTEL_OUTPUT_EDP:
12229 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12230
12231 /* the same port mustn't appear more than once */
12232 if (used_ports & port_mask)
12233 return false;
12234
12235 used_ports |= port_mask;
12236 default:
12237 break;
12238 }
12239 }
12240
12241 return true;
12242}
12243
83a57153
ACO
12244static void
12245clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12246{
12247 struct drm_crtc_state tmp_state;
663a3640 12248 struct intel_crtc_scaler_state scaler_state;
4978cc93
ACO
12249 struct intel_dpll_hw_state dpll_hw_state;
12250 enum intel_dpll_id shared_dpll;
8504c74c 12251 uint32_t ddi_pll_sel;
c4e2d043 12252 bool force_thru;
83a57153 12253
7546a384
ACO
12254 /* FIXME: before the switch to atomic started, a new pipe_config was
12255 * kzalloc'd. Code that depends on any field being zero should be
12256 * fixed, so that the crtc_state can be safely duplicated. For now,
12257 * only fields that are know to not cause problems are preserved. */
12258
83a57153 12259 tmp_state = crtc_state->base;
663a3640 12260 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12261 shared_dpll = crtc_state->shared_dpll;
12262 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12263 ddi_pll_sel = crtc_state->ddi_pll_sel;
c4e2d043 12264 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12265
83a57153 12266 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12267
83a57153 12268 crtc_state->base = tmp_state;
663a3640 12269 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12270 crtc_state->shared_dpll = shared_dpll;
12271 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12272 crtc_state->ddi_pll_sel = ddi_pll_sel;
c4e2d043 12273 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12274}
12275
548ee15b 12276static int
b8cecdf5 12277intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12278 struct intel_crtc_state *pipe_config)
ee7b9f93 12279{
b359283a 12280 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12281 struct intel_encoder *encoder;
da3ced29 12282 struct drm_connector *connector;
0b901879 12283 struct drm_connector_state *connector_state;
d328c9d7 12284 int base_bpp, ret = -EINVAL;
0b901879 12285 int i;
e29c22c0 12286 bool retry = true;
ee7b9f93 12287
83a57153 12288 clear_intel_crtc_state(pipe_config);
7758a113 12289
e143a21c
DV
12290 pipe_config->cpu_transcoder =
12291 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12292
2960bc9c
ID
12293 /*
12294 * Sanitize sync polarity flags based on requested ones. If neither
12295 * positive or negative polarity is requested, treat this as meaning
12296 * negative polarity.
12297 */
2d112de7 12298 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12299 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12300 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12301
2d112de7 12302 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12303 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12304 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12305
d328c9d7
DV
12306 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12307 pipe_config);
12308 if (base_bpp < 0)
4e53c2e0
DV
12309 goto fail;
12310
e41a56be
VS
12311 /*
12312 * Determine the real pipe dimensions. Note that stereo modes can
12313 * increase the actual pipe size due to the frame doubling and
12314 * insertion of additional space for blanks between the frame. This
12315 * is stored in the crtc timings. We use the requested mode to do this
12316 * computation to clearly distinguish it from the adjusted mode, which
12317 * can be changed by the connectors in the below retry loop.
12318 */
2d112de7 12319 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12320 &pipe_config->pipe_src_w,
12321 &pipe_config->pipe_src_h);
e41a56be 12322
e29c22c0 12323encoder_retry:
ef1b460d 12324 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12325 pipe_config->port_clock = 0;
ef1b460d 12326 pipe_config->pixel_multiplier = 1;
ff9a6750 12327
135c81b8 12328 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12329 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12330 CRTC_STEREO_DOUBLE);
135c81b8 12331
7758a113
DV
12332 /* Pass our mode to the connectors and the CRTC to give them a chance to
12333 * adjust it according to limitations or connector properties, and also
12334 * a chance to reject the mode entirely.
47f1c6c9 12335 */
da3ced29 12336 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12337 if (connector_state->crtc != crtc)
7758a113 12338 continue;
7ae89233 12339
0b901879
ACO
12340 encoder = to_intel_encoder(connector_state->best_encoder);
12341
efea6e8e
DV
12342 if (!(encoder->compute_config(encoder, pipe_config))) {
12343 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12344 goto fail;
12345 }
ee7b9f93 12346 }
47f1c6c9 12347
ff9a6750
DV
12348 /* Set default port clock if not overwritten by the encoder. Needs to be
12349 * done afterwards in case the encoder adjusts the mode. */
12350 if (!pipe_config->port_clock)
2d112de7 12351 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12352 * pipe_config->pixel_multiplier;
ff9a6750 12353
a43f6e0f 12354 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12355 if (ret < 0) {
7758a113
DV
12356 DRM_DEBUG_KMS("CRTC fixup failed\n");
12357 goto fail;
ee7b9f93 12358 }
e29c22c0
DV
12359
12360 if (ret == RETRY) {
12361 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12362 ret = -EINVAL;
12363 goto fail;
12364 }
12365
12366 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12367 retry = false;
12368 goto encoder_retry;
12369 }
12370
e8fa4270
DV
12371 /* Dithering seems to not pass-through bits correctly when it should, so
12372 * only enable it on 6bpc panels. */
12373 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
62f0ace5 12374 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12375 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12376
7758a113 12377fail:
548ee15b 12378 return ret;
ee7b9f93 12379}
47f1c6c9 12380
ea9d758d 12381static void
4740b0f2 12382intel_modeset_update_crtc_state(struct drm_atomic_state *state)
ea9d758d 12383{
0a9ab303
ACO
12384 struct drm_crtc *crtc;
12385 struct drm_crtc_state *crtc_state;
8a75d157 12386 int i;
ea9d758d 12387
7668851f 12388 /* Double check state. */
8a75d157 12389 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3cb480bc 12390 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
12391
12392 /* Update hwmode for vblank functions */
12393 if (crtc->state->active)
12394 crtc->hwmode = crtc->state->adjusted_mode;
12395 else
12396 crtc->hwmode.crtc_clock = 0;
61067a5e
ML
12397
12398 /*
12399 * Update legacy state to satisfy fbc code. This can
12400 * be removed when fbc uses the atomic state.
12401 */
12402 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12403 struct drm_plane_state *plane_state = crtc->primary->state;
12404
12405 crtc->primary->fb = plane_state->fb;
12406 crtc->x = plane_state->src_x >> 16;
12407 crtc->y = plane_state->src_y >> 16;
12408 }
ea9d758d 12409 }
ea9d758d
DV
12410}
12411
3bd26263 12412static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12413{
3bd26263 12414 int diff;
f1f644dc
JB
12415
12416 if (clock1 == clock2)
12417 return true;
12418
12419 if (!clock1 || !clock2)
12420 return false;
12421
12422 diff = abs(clock1 - clock2);
12423
12424 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12425 return true;
12426
12427 return false;
12428}
12429
25c5b266
DV
12430#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12431 list_for_each_entry((intel_crtc), \
12432 &(dev)->mode_config.crtc_list, \
12433 base.head) \
0973f18f 12434 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12435
cfb23ed6
ML
12436static bool
12437intel_compare_m_n(unsigned int m, unsigned int n,
12438 unsigned int m2, unsigned int n2,
12439 bool exact)
12440{
12441 if (m == m2 && n == n2)
12442 return true;
12443
12444 if (exact || !m || !n || !m2 || !n2)
12445 return false;
12446
12447 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12448
12449 if (m > m2) {
12450 while (m > m2) {
12451 m2 <<= 1;
12452 n2 <<= 1;
12453 }
12454 } else if (m < m2) {
12455 while (m < m2) {
12456 m <<= 1;
12457 n <<= 1;
12458 }
12459 }
12460
12461 return m == m2 && n == n2;
12462}
12463
12464static bool
12465intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12466 struct intel_link_m_n *m2_n2,
12467 bool adjust)
12468{
12469 if (m_n->tu == m2_n2->tu &&
12470 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12471 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12472 intel_compare_m_n(m_n->link_m, m_n->link_n,
12473 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12474 if (adjust)
12475 *m2_n2 = *m_n;
12476
12477 return true;
12478 }
12479
12480 return false;
12481}
12482
0e8ffe1b 12483static bool
2fa2fe9a 12484intel_pipe_config_compare(struct drm_device *dev,
5cec258b 12485 struct intel_crtc_state *current_config,
cfb23ed6
ML
12486 struct intel_crtc_state *pipe_config,
12487 bool adjust)
0e8ffe1b 12488{
cfb23ed6
ML
12489 bool ret = true;
12490
12491#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12492 do { \
12493 if (!adjust) \
12494 DRM_ERROR(fmt, ##__VA_ARGS__); \
12495 else \
12496 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12497 } while (0)
12498
66e985c0
DV
12499#define PIPE_CONF_CHECK_X(name) \
12500 if (current_config->name != pipe_config->name) { \
cfb23ed6 12501 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
12502 "(expected 0x%08x, found 0x%08x)\n", \
12503 current_config->name, \
12504 pipe_config->name); \
cfb23ed6 12505 ret = false; \
66e985c0
DV
12506 }
12507
08a24034
DV
12508#define PIPE_CONF_CHECK_I(name) \
12509 if (current_config->name != pipe_config->name) { \
cfb23ed6 12510 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
12511 "(expected %i, found %i)\n", \
12512 current_config->name, \
12513 pipe_config->name); \
cfb23ed6
ML
12514 ret = false; \
12515 }
12516
12517#define PIPE_CONF_CHECK_M_N(name) \
12518 if (!intel_compare_link_m_n(&current_config->name, \
12519 &pipe_config->name,\
12520 adjust)) { \
12521 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12522 "(expected tu %i gmch %i/%i link %i/%i, " \
12523 "found tu %i, gmch %i/%i link %i/%i)\n", \
12524 current_config->name.tu, \
12525 current_config->name.gmch_m, \
12526 current_config->name.gmch_n, \
12527 current_config->name.link_m, \
12528 current_config->name.link_n, \
12529 pipe_config->name.tu, \
12530 pipe_config->name.gmch_m, \
12531 pipe_config->name.gmch_n, \
12532 pipe_config->name.link_m, \
12533 pipe_config->name.link_n); \
12534 ret = false; \
12535 }
12536
12537#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12538 if (!intel_compare_link_m_n(&current_config->name, \
12539 &pipe_config->name, adjust) && \
12540 !intel_compare_link_m_n(&current_config->alt_name, \
12541 &pipe_config->name, adjust)) { \
12542 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12543 "(expected tu %i gmch %i/%i link %i/%i, " \
12544 "or tu %i gmch %i/%i link %i/%i, " \
12545 "found tu %i, gmch %i/%i link %i/%i)\n", \
12546 current_config->name.tu, \
12547 current_config->name.gmch_m, \
12548 current_config->name.gmch_n, \
12549 current_config->name.link_m, \
12550 current_config->name.link_n, \
12551 current_config->alt_name.tu, \
12552 current_config->alt_name.gmch_m, \
12553 current_config->alt_name.gmch_n, \
12554 current_config->alt_name.link_m, \
12555 current_config->alt_name.link_n, \
12556 pipe_config->name.tu, \
12557 pipe_config->name.gmch_m, \
12558 pipe_config->name.gmch_n, \
12559 pipe_config->name.link_m, \
12560 pipe_config->name.link_n); \
12561 ret = false; \
88adfff1
DV
12562 }
12563
b95af8be
VK
12564/* This is required for BDW+ where there is only one set of registers for
12565 * switching between high and low RR.
12566 * This macro can be used whenever a comparison has to be made between one
12567 * hw state and multiple sw state variables.
12568 */
12569#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12570 if ((current_config->name != pipe_config->name) && \
12571 (current_config->alt_name != pipe_config->name)) { \
cfb23ed6 12572 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
b95af8be
VK
12573 "(expected %i or %i, found %i)\n", \
12574 current_config->name, \
12575 current_config->alt_name, \
12576 pipe_config->name); \
cfb23ed6 12577 ret = false; \
b95af8be
VK
12578 }
12579
1bd1bd80
DV
12580#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12581 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 12582 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12583 "(expected %i, found %i)\n", \
12584 current_config->name & (mask), \
12585 pipe_config->name & (mask)); \
cfb23ed6 12586 ret = false; \
1bd1bd80
DV
12587 }
12588
5e550656
VS
12589#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12590 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 12591 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
12592 "(expected %i, found %i)\n", \
12593 current_config->name, \
12594 pipe_config->name); \
cfb23ed6 12595 ret = false; \
5e550656
VS
12596 }
12597
bb760063
DV
12598#define PIPE_CONF_QUIRK(quirk) \
12599 ((current_config->quirks | pipe_config->quirks) & (quirk))
12600
eccb140b
DV
12601 PIPE_CONF_CHECK_I(cpu_transcoder);
12602
08a24034
DV
12603 PIPE_CONF_CHECK_I(has_pch_encoder);
12604 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 12605 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 12606
eb14cb74 12607 PIPE_CONF_CHECK_I(has_dp_encoder);
90a6b7b0 12608 PIPE_CONF_CHECK_I(lane_count);
b95af8be
VK
12609
12610 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
12611 PIPE_CONF_CHECK_M_N(dp_m_n);
12612
12613 PIPE_CONF_CHECK_I(has_drrs);
12614 if (current_config->has_drrs)
12615 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12616 } else
12617 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 12618
a65347ba
JN
12619 PIPE_CONF_CHECK_I(has_dsi_encoder);
12620
2d112de7
ACO
12621 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12622 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12623 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12624 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12625 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12626 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12627
2d112de7
ACO
12628 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12629 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12630 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12631 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12632 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12633 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12634
c93f54cf 12635 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12636 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
12637 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12638 IS_VALLEYVIEW(dev))
12639 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12640 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12641
9ed109a7
DV
12642 PIPE_CONF_CHECK_I(has_audio);
12643
2d112de7 12644 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12645 DRM_MODE_FLAG_INTERLACE);
12646
bb760063 12647 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12648 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12649 DRM_MODE_FLAG_PHSYNC);
2d112de7 12650 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12651 DRM_MODE_FLAG_NHSYNC);
2d112de7 12652 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12653 DRM_MODE_FLAG_PVSYNC);
2d112de7 12654 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12655 DRM_MODE_FLAG_NVSYNC);
12656 }
045ac3b5 12657
333b8ca8 12658 PIPE_CONF_CHECK_X(gmch_pfit.control);
e2ff2d4a
DV
12659 /* pfit ratios are autocomputed by the hw on gen4+ */
12660 if (INTEL_INFO(dev)->gen < 4)
12661 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
333b8ca8 12662 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
9953599b 12663
bfd16b2a
ML
12664 if (!adjust) {
12665 PIPE_CONF_CHECK_I(pipe_src_w);
12666 PIPE_CONF_CHECK_I(pipe_src_h);
12667
12668 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12669 if (current_config->pch_pfit.enabled) {
12670 PIPE_CONF_CHECK_X(pch_pfit.pos);
12671 PIPE_CONF_CHECK_X(pch_pfit.size);
12672 }
2fa2fe9a 12673
7aefe2b5
ML
12674 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12675 }
a1b2278e 12676
e59150dc
JB
12677 /* BDW+ don't expose a synchronous way to read the state */
12678 if (IS_HASWELL(dev))
12679 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12680
282740f7
VS
12681 PIPE_CONF_CHECK_I(double_wide);
12682
26804afd
DV
12683 PIPE_CONF_CHECK_X(ddi_pll_sel);
12684
c0d43d62 12685 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 12686 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12687 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12688 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12689 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12690 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
00490c22 12691 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
3f4cd19f
DL
12692 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12693 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12694 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12695
42571aef
VS
12696 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12697 PIPE_CONF_CHECK_I(pipe_bpp);
12698
2d112de7 12699 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12700 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12701
66e985c0 12702#undef PIPE_CONF_CHECK_X
08a24034 12703#undef PIPE_CONF_CHECK_I
b95af8be 12704#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 12705#undef PIPE_CONF_CHECK_FLAGS
5e550656 12706#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12707#undef PIPE_CONF_QUIRK
cfb23ed6 12708#undef INTEL_ERR_OR_DBG_KMS
88adfff1 12709
cfb23ed6 12710 return ret;
0e8ffe1b
DV
12711}
12712
08db6652
DL
12713static void check_wm_state(struct drm_device *dev)
12714{
12715 struct drm_i915_private *dev_priv = dev->dev_private;
12716 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12717 struct intel_crtc *intel_crtc;
12718 int plane;
12719
12720 if (INTEL_INFO(dev)->gen < 9)
12721 return;
12722
12723 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12724 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12725
12726 for_each_intel_crtc(dev, intel_crtc) {
12727 struct skl_ddb_entry *hw_entry, *sw_entry;
12728 const enum pipe pipe = intel_crtc->pipe;
12729
12730 if (!intel_crtc->active)
12731 continue;
12732
12733 /* planes */
dd740780 12734 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
12735 hw_entry = &hw_ddb.plane[pipe][plane];
12736 sw_entry = &sw_ddb->plane[pipe][plane];
12737
12738 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12739 continue;
12740
12741 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12742 "(expected (%u,%u), found (%u,%u))\n",
12743 pipe_name(pipe), plane + 1,
12744 sw_entry->start, sw_entry->end,
12745 hw_entry->start, hw_entry->end);
12746 }
12747
12748 /* cursor */
4969d33e
MR
12749 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12750 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
08db6652
DL
12751
12752 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12753 continue;
12754
12755 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12756 "(expected (%u,%u), found (%u,%u))\n",
12757 pipe_name(pipe),
12758 sw_entry->start, sw_entry->end,
12759 hw_entry->start, hw_entry->end);
12760 }
12761}
12762
91d1b4bd 12763static void
35dd3c64
ML
12764check_connector_state(struct drm_device *dev,
12765 struct drm_atomic_state *old_state)
8af6cf88 12766{
35dd3c64
ML
12767 struct drm_connector_state *old_conn_state;
12768 struct drm_connector *connector;
12769 int i;
8af6cf88 12770
35dd3c64
ML
12771 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12772 struct drm_encoder *encoder = connector->encoder;
12773 struct drm_connector_state *state = connector->state;
ad3c558f 12774
8af6cf88
DV
12775 /* This also checks the encoder/connector hw state with the
12776 * ->get_hw_state callbacks. */
35dd3c64 12777 intel_connector_check_state(to_intel_connector(connector));
8af6cf88 12778
ad3c558f 12779 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 12780 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 12781 }
91d1b4bd
DV
12782}
12783
12784static void
12785check_encoder_state(struct drm_device *dev)
12786{
12787 struct intel_encoder *encoder;
12788 struct intel_connector *connector;
8af6cf88 12789
b2784e15 12790 for_each_intel_encoder(dev, encoder) {
8af6cf88 12791 bool enabled = false;
4d20cd86 12792 enum pipe pipe;
8af6cf88
DV
12793
12794 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12795 encoder->base.base.id,
8e329a03 12796 encoder->base.name);
8af6cf88 12797
3a3371ff 12798 for_each_intel_connector(dev, connector) {
4d20cd86 12799 if (connector->base.state->best_encoder != &encoder->base)
8af6cf88
DV
12800 continue;
12801 enabled = true;
ad3c558f
ML
12802
12803 I915_STATE_WARN(connector->base.state->crtc !=
12804 encoder->base.crtc,
12805 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 12806 }
0e32b39c 12807
e2c719b7 12808 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12809 "encoder's enabled state mismatch "
12810 "(expected %i, found %i)\n",
12811 !!encoder->base.crtc, enabled);
7c60d198
ML
12812
12813 if (!encoder->base.crtc) {
4d20cd86 12814 bool active;
7c60d198 12815
4d20cd86
ML
12816 active = encoder->get_hw_state(encoder, &pipe);
12817 I915_STATE_WARN(active,
12818 "encoder detached but still enabled on pipe %c.\n",
12819 pipe_name(pipe));
7c60d198 12820 }
8af6cf88 12821 }
91d1b4bd
DV
12822}
12823
12824static void
4d20cd86 12825check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
91d1b4bd 12826{
fbee40df 12827 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd 12828 struct intel_encoder *encoder;
4d20cd86
ML
12829 struct drm_crtc_state *old_crtc_state;
12830 struct drm_crtc *crtc;
12831 int i;
8af6cf88 12832
4d20cd86
ML
12833 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12835 struct intel_crtc_state *pipe_config, *sw_config;
7b89b8de 12836 bool active;
8af6cf88 12837
bfd16b2a
ML
12838 if (!needs_modeset(crtc->state) &&
12839 !to_intel_crtc_state(crtc->state)->update_pipe)
4d20cd86 12840 continue;
045ac3b5 12841
4d20cd86
ML
12842 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12843 pipe_config = to_intel_crtc_state(old_crtc_state);
12844 memset(pipe_config, 0, sizeof(*pipe_config));
12845 pipe_config->base.crtc = crtc;
12846 pipe_config->base.state = old_state;
8af6cf88 12847
4d20cd86
ML
12848 DRM_DEBUG_KMS("[CRTC:%d]\n",
12849 crtc->base.id);
8af6cf88 12850
4d20cd86
ML
12851 active = dev_priv->display.get_pipe_config(intel_crtc,
12852 pipe_config);
d62cf62a 12853
b6b5d049 12854 /* hw state is inconsistent with the pipe quirk */
4d20cd86
ML
12855 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12856 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12857 active = crtc->state->active;
6c49f241 12858
4d20cd86 12859 I915_STATE_WARN(crtc->state->active != active,
0e8ffe1b 12860 "crtc active state doesn't match with hw state "
4d20cd86 12861 "(expected %i, found %i)\n", crtc->state->active, active);
0e8ffe1b 12862
4d20cd86 12863 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
53d9f4e9 12864 "transitional active state does not match atomic hw state "
4d20cd86
ML
12865 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12866
12867 for_each_encoder_on_crtc(dev, crtc, encoder) {
12868 enum pipe pipe;
12869
12870 active = encoder->get_hw_state(encoder, &pipe);
12871 I915_STATE_WARN(active != crtc->state->active,
12872 "[ENCODER:%i] active %i with crtc active %i\n",
12873 encoder->base.base.id, active, crtc->state->active);
12874
12875 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12876 "Encoder connected to wrong pipe %c\n",
12877 pipe_name(pipe));
12878
12879 if (active)
12880 encoder->get_config(encoder, pipe_config);
12881 }
53d9f4e9 12882
4d20cd86 12883 if (!crtc->state->active)
cfb23ed6
ML
12884 continue;
12885
4d20cd86
ML
12886 sw_config = to_intel_crtc_state(crtc->state);
12887 if (!intel_pipe_config_compare(dev, sw_config,
12888 pipe_config, false)) {
e2c719b7 12889 I915_STATE_WARN(1, "pipe state doesn't match!\n");
4d20cd86 12890 intel_dump_pipe_config(intel_crtc, pipe_config,
c0b03411 12891 "[hw state]");
4d20cd86 12892 intel_dump_pipe_config(intel_crtc, sw_config,
c0b03411
DV
12893 "[sw state]");
12894 }
8af6cf88
DV
12895 }
12896}
12897
91d1b4bd
DV
12898static void
12899check_shared_dpll_state(struct drm_device *dev)
12900{
fbee40df 12901 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12902 struct intel_crtc *crtc;
12903 struct intel_dpll_hw_state dpll_hw_state;
12904 int i;
5358901f
DV
12905
12906 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12907 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12908 int enabled_crtcs = 0, active_crtcs = 0;
12909 bool active;
12910
12911 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12912
12913 DRM_DEBUG_KMS("%s\n", pll->name);
12914
12915 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12916
e2c719b7 12917 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 12918 "more active pll users than references: %i vs %i\n",
3e369b76 12919 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 12920 I915_STATE_WARN(pll->active && !pll->on,
5358901f 12921 "pll in active use but not on in sw tracking\n");
e2c719b7 12922 I915_STATE_WARN(pll->on && !pll->active,
35c95375 12923 "pll in on but not on in use in sw tracking\n");
e2c719b7 12924 I915_STATE_WARN(pll->on != active,
5358901f
DV
12925 "pll on state mismatch (expected %i, found %i)\n",
12926 pll->on, active);
12927
d3fcc808 12928 for_each_intel_crtc(dev, crtc) {
83d65738 12929 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
12930 enabled_crtcs++;
12931 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12932 active_crtcs++;
12933 }
e2c719b7 12934 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
12935 "pll active crtcs mismatch (expected %i, found %i)\n",
12936 pll->active, active_crtcs);
e2c719b7 12937 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 12938 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 12939 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 12940
e2c719b7 12941 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
12942 sizeof(dpll_hw_state)),
12943 "pll hw state mismatch\n");
5358901f 12944 }
8af6cf88
DV
12945}
12946
ee165b1a
ML
12947static void
12948intel_modeset_check_state(struct drm_device *dev,
12949 struct drm_atomic_state *old_state)
91d1b4bd 12950{
08db6652 12951 check_wm_state(dev);
35dd3c64 12952 check_connector_state(dev, old_state);
91d1b4bd 12953 check_encoder_state(dev);
4d20cd86 12954 check_crtc_state(dev, old_state);
91d1b4bd
DV
12955 check_shared_dpll_state(dev);
12956}
12957
5cec258b 12958void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
18442d08
VS
12959 int dotclock)
12960{
12961 /*
12962 * FDI already provided one idea for the dotclock.
12963 * Yell if the encoder disagrees.
12964 */
2d112de7 12965 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
18442d08 12966 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
2d112de7 12967 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
18442d08
VS
12968}
12969
80715b2f
VS
12970static void update_scanline_offset(struct intel_crtc *crtc)
12971{
12972 struct drm_device *dev = crtc->base.dev;
12973
12974 /*
12975 * The scanline counter increments at the leading edge of hsync.
12976 *
12977 * On most platforms it starts counting from vtotal-1 on the
12978 * first active line. That means the scanline counter value is
12979 * always one less than what we would expect. Ie. just after
12980 * start of vblank, which also occurs at start of hsync (on the
12981 * last active line), the scanline counter will read vblank_start-1.
12982 *
12983 * On gen2 the scanline counter starts counting from 1 instead
12984 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12985 * to keep the value positive), instead of adding one.
12986 *
12987 * On HSW+ the behaviour of the scanline counter depends on the output
12988 * type. For DP ports it behaves like most other platforms, but on HDMI
12989 * there's an extra 1 line difference. So we need to add two instead of
12990 * one to the value.
12991 */
12992 if (IS_GEN2(dev)) {
124abe07 12993 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
12994 int vtotal;
12995
124abe07
VS
12996 vtotal = adjusted_mode->crtc_vtotal;
12997 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
80715b2f
VS
12998 vtotal /= 2;
12999
13000 crtc->scanline_offset = vtotal - 1;
13001 } else if (HAS_DDI(dev) &&
409ee761 13002 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
13003 crtc->scanline_offset = 2;
13004 } else
13005 crtc->scanline_offset = 1;
13006}
13007
ad421372 13008static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 13009{
225da59b 13010 struct drm_device *dev = state->dev;
ed6739ef 13011 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 13012 struct intel_shared_dpll_config *shared_dpll = NULL;
ed6739ef 13013 struct intel_crtc *intel_crtc;
0a9ab303
ACO
13014 struct intel_crtc_state *intel_crtc_state;
13015 struct drm_crtc *crtc;
13016 struct drm_crtc_state *crtc_state;
0a9ab303 13017 int i;
ed6739ef
ACO
13018
13019 if (!dev_priv->display.crtc_compute_clock)
ad421372 13020 return;
ed6739ef 13021
0a9ab303 13022 for_each_crtc_in_state(state, crtc, crtc_state, i) {
ad421372
ML
13023 int dpll;
13024
0a9ab303 13025 intel_crtc = to_intel_crtc(crtc);
4978cc93 13026 intel_crtc_state = to_intel_crtc_state(crtc_state);
ad421372 13027 dpll = intel_crtc_state->shared_dpll;
0a9ab303 13028
ad421372 13029 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
225da59b
ACO
13030 continue;
13031
ad421372 13032 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
0a9ab303 13033
ad421372
ML
13034 if (!shared_dpll)
13035 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 13036
ad421372
ML
13037 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13038 }
ed6739ef
ACO
13039}
13040
99d736a2
ML
13041/*
13042 * This implements the workaround described in the "notes" section of the mode
13043 * set sequence documentation. When going from no pipes or single pipe to
13044 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13045 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13046 */
13047static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13048{
13049 struct drm_crtc_state *crtc_state;
13050 struct intel_crtc *intel_crtc;
13051 struct drm_crtc *crtc;
13052 struct intel_crtc_state *first_crtc_state = NULL;
13053 struct intel_crtc_state *other_crtc_state = NULL;
13054 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13055 int i;
13056
13057 /* look at all crtc's that are going to be enabled in during modeset */
13058 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13059 intel_crtc = to_intel_crtc(crtc);
13060
13061 if (!crtc_state->active || !needs_modeset(crtc_state))
13062 continue;
13063
13064 if (first_crtc_state) {
13065 other_crtc_state = to_intel_crtc_state(crtc_state);
13066 break;
13067 } else {
13068 first_crtc_state = to_intel_crtc_state(crtc_state);
13069 first_pipe = intel_crtc->pipe;
13070 }
13071 }
13072
13073 /* No workaround needed? */
13074 if (!first_crtc_state)
13075 return 0;
13076
13077 /* w/a possibly needed, check how many crtc's are already enabled. */
13078 for_each_intel_crtc(state->dev, intel_crtc) {
13079 struct intel_crtc_state *pipe_config;
13080
13081 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13082 if (IS_ERR(pipe_config))
13083 return PTR_ERR(pipe_config);
13084
13085 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13086
13087 if (!pipe_config->base.active ||
13088 needs_modeset(&pipe_config->base))
13089 continue;
13090
13091 /* 2 or more enabled crtcs means no need for w/a */
13092 if (enabled_pipe != INVALID_PIPE)
13093 return 0;
13094
13095 enabled_pipe = intel_crtc->pipe;
13096 }
13097
13098 if (enabled_pipe != INVALID_PIPE)
13099 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13100 else if (other_crtc_state)
13101 other_crtc_state->hsw_workaround_pipe = first_pipe;
13102
13103 return 0;
13104}
13105
27c329ed
ML
13106static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13107{
13108 struct drm_crtc *crtc;
13109 struct drm_crtc_state *crtc_state;
13110 int ret = 0;
13111
13112 /* add all active pipes to the state */
13113 for_each_crtc(state->dev, crtc) {
13114 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13115 if (IS_ERR(crtc_state))
13116 return PTR_ERR(crtc_state);
13117
13118 if (!crtc_state->active || needs_modeset(crtc_state))
13119 continue;
13120
13121 crtc_state->mode_changed = true;
13122
13123 ret = drm_atomic_add_affected_connectors(state, crtc);
13124 if (ret)
13125 break;
13126
13127 ret = drm_atomic_add_affected_planes(state, crtc);
13128 if (ret)
13129 break;
13130 }
13131
13132 return ret;
13133}
13134
c347a676 13135static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd
ACO
13136{
13137 struct drm_device *dev = state->dev;
27c329ed 13138 struct drm_i915_private *dev_priv = dev->dev_private;
054518dd
ACO
13139 int ret;
13140
b359283a
ML
13141 if (!check_digital_port_conflicts(state)) {
13142 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13143 return -EINVAL;
13144 }
13145
054518dd
ACO
13146 /*
13147 * See if the config requires any additional preparation, e.g.
13148 * to adjust global state with pipes off. We need to do this
13149 * here so we can get the modeset_pipe updated config for the new
13150 * mode set on this crtc. For other crtcs we need to use the
13151 * adjusted_mode bits in the crtc directly.
13152 */
27c329ed
ML
13153 if (dev_priv->display.modeset_calc_cdclk) {
13154 unsigned int cdclk;
b432e5cf 13155
27c329ed
ML
13156 ret = dev_priv->display.modeset_calc_cdclk(state);
13157
13158 cdclk = to_intel_atomic_state(state)->cdclk;
13159 if (!ret && cdclk != dev_priv->cdclk_freq)
13160 ret = intel_modeset_all_pipes(state);
13161
13162 if (ret < 0)
054518dd 13163 return ret;
27c329ed
ML
13164 } else
13165 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
054518dd 13166
ad421372 13167 intel_modeset_clear_plls(state);
054518dd 13168
99d736a2 13169 if (IS_HASWELL(dev))
ad421372 13170 return haswell_mode_set_planes_workaround(state);
99d736a2 13171
ad421372 13172 return 0;
c347a676
ACO
13173}
13174
aa363136
MR
13175/*
13176 * Handle calculation of various watermark data at the end of the atomic check
13177 * phase. The code here should be run after the per-crtc and per-plane 'check'
13178 * handlers to ensure that all derived state has been updated.
13179 */
13180static void calc_watermark_data(struct drm_atomic_state *state)
13181{
13182 struct drm_device *dev = state->dev;
13183 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13184 struct drm_crtc *crtc;
13185 struct drm_crtc_state *cstate;
13186 struct drm_plane *plane;
13187 struct drm_plane_state *pstate;
13188
13189 /*
13190 * Calculate watermark configuration details now that derived
13191 * plane/crtc state is all properly updated.
13192 */
13193 drm_for_each_crtc(crtc, dev) {
13194 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13195 crtc->state;
13196
13197 if (cstate->active)
13198 intel_state->wm_config.num_pipes_active++;
13199 }
13200 drm_for_each_legacy_plane(plane, dev) {
13201 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13202 plane->state;
13203
13204 if (!to_intel_plane_state(pstate)->visible)
13205 continue;
13206
13207 intel_state->wm_config.sprites_enabled = true;
13208 if (pstate->crtc_w != pstate->src_w >> 16 ||
13209 pstate->crtc_h != pstate->src_h >> 16)
13210 intel_state->wm_config.sprites_scaled = true;
13211 }
13212}
13213
74c090b1
ML
13214/**
13215 * intel_atomic_check - validate state object
13216 * @dev: drm device
13217 * @state: state to validate
13218 */
13219static int intel_atomic_check(struct drm_device *dev,
13220 struct drm_atomic_state *state)
c347a676 13221{
aa363136 13222 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
c347a676
ACO
13223 struct drm_crtc *crtc;
13224 struct drm_crtc_state *crtc_state;
13225 int ret, i;
61333b60 13226 bool any_ms = false;
c347a676 13227
74c090b1 13228 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13229 if (ret)
13230 return ret;
13231
c347a676 13232 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13233 struct intel_crtc_state *pipe_config =
13234 to_intel_crtc_state(crtc_state);
1ed51de9 13235
ba8af3e5
ML
13236 memset(&to_intel_crtc(crtc)->atomic, 0,
13237 sizeof(struct intel_crtc_atomic_commit));
13238
1ed51de9
DV
13239 /* Catch I915_MODE_FLAG_INHERITED */
13240 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13241 crtc_state->mode_changed = true;
cfb23ed6 13242
61333b60
ML
13243 if (!crtc_state->enable) {
13244 if (needs_modeset(crtc_state))
13245 any_ms = true;
c347a676 13246 continue;
61333b60 13247 }
c347a676 13248
26495481 13249 if (!needs_modeset(crtc_state))
cfb23ed6
ML
13250 continue;
13251
26495481
DV
13252 /* FIXME: For only active_changed we shouldn't need to do any
13253 * state recomputation at all. */
13254
1ed51de9
DV
13255 ret = drm_atomic_add_affected_connectors(state, crtc);
13256 if (ret)
13257 return ret;
b359283a 13258
cfb23ed6 13259 ret = intel_modeset_pipe_config(crtc, pipe_config);
c347a676
ACO
13260 if (ret)
13261 return ret;
13262
73831236
JN
13263 if (i915.fastboot &&
13264 intel_pipe_config_compare(state->dev,
cfb23ed6 13265 to_intel_crtc_state(crtc->state),
1ed51de9 13266 pipe_config, true)) {
26495481 13267 crtc_state->mode_changed = false;
bfd16b2a 13268 to_intel_crtc_state(crtc_state)->update_pipe = true;
26495481
DV
13269 }
13270
13271 if (needs_modeset(crtc_state)) {
13272 any_ms = true;
cfb23ed6
ML
13273
13274 ret = drm_atomic_add_affected_planes(state, crtc);
13275 if (ret)
13276 return ret;
13277 }
61333b60 13278
26495481
DV
13279 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13280 needs_modeset(crtc_state) ?
13281 "[modeset]" : "[fastset]");
c347a676
ACO
13282 }
13283
61333b60
ML
13284 if (any_ms) {
13285 ret = intel_modeset_checks(state);
13286
13287 if (ret)
13288 return ret;
27c329ed 13289 } else
aa363136 13290 intel_state->cdclk = to_i915(state->dev)->cdclk_freq;
76305b1a 13291
aa363136
MR
13292 ret = drm_atomic_helper_check_planes(state->dev, state);
13293 if (ret)
13294 return ret;
13295
13296 calc_watermark_data(state);
13297
13298 return 0;
054518dd
ACO
13299}
13300
5008e874
ML
13301static int intel_atomic_prepare_commit(struct drm_device *dev,
13302 struct drm_atomic_state *state,
13303 bool async)
13304{
7580d774
ML
13305 struct drm_i915_private *dev_priv = dev->dev_private;
13306 struct drm_plane_state *plane_state;
5008e874 13307 struct drm_crtc_state *crtc_state;
7580d774 13308 struct drm_plane *plane;
5008e874
ML
13309 struct drm_crtc *crtc;
13310 int i, ret;
13311
13312 if (async) {
13313 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13314 return -EINVAL;
13315 }
13316
13317 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13318 ret = intel_crtc_wait_for_pending_flips(crtc);
13319 if (ret)
13320 return ret;
7580d774
ML
13321
13322 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13323 flush_workqueue(dev_priv->wq);
5008e874
ML
13324 }
13325
f935675f
ML
13326 ret = mutex_lock_interruptible(&dev->struct_mutex);
13327 if (ret)
13328 return ret;
13329
5008e874 13330 ret = drm_atomic_helper_prepare_planes(dev, state);
7580d774
ML
13331 if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13332 u32 reset_counter;
13333
13334 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13335 mutex_unlock(&dev->struct_mutex);
13336
13337 for_each_plane_in_state(state, plane, plane_state, i) {
13338 struct intel_plane_state *intel_plane_state =
13339 to_intel_plane_state(plane_state);
13340
13341 if (!intel_plane_state->wait_req)
13342 continue;
13343
13344 ret = __i915_wait_request(intel_plane_state->wait_req,
13345 reset_counter, true,
13346 NULL, NULL);
13347
13348 /* Swallow -EIO errors to allow updates during hw lockup. */
13349 if (ret == -EIO)
13350 ret = 0;
13351
13352 if (ret)
13353 break;
13354 }
13355
13356 if (!ret)
13357 return 0;
13358
13359 mutex_lock(&dev->struct_mutex);
13360 drm_atomic_helper_cleanup_planes(dev, state);
13361 }
5008e874 13362
f935675f 13363 mutex_unlock(&dev->struct_mutex);
5008e874
ML
13364 return ret;
13365}
13366
74c090b1
ML
13367/**
13368 * intel_atomic_commit - commit validated state object
13369 * @dev: DRM device
13370 * @state: the top-level driver state object
13371 * @async: asynchronous commit
13372 *
13373 * This function commits a top-level state object that has been validated
13374 * with drm_atomic_helper_check().
13375 *
13376 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13377 * we can only handle plane-related operations and do not yet support
13378 * asynchronous commit.
13379 *
13380 * RETURNS
13381 * Zero for success or -errno.
13382 */
13383static int intel_atomic_commit(struct drm_device *dev,
13384 struct drm_atomic_state *state,
13385 bool async)
a6778b3c 13386{
fbee40df 13387 struct drm_i915_private *dev_priv = dev->dev_private;
0a9ab303 13388 struct drm_crtc_state *crtc_state;
7580d774 13389 struct drm_crtc *crtc;
c0c36b94 13390 int ret = 0;
0a9ab303 13391 int i;
61333b60 13392 bool any_ms = false;
a6778b3c 13393
5008e874 13394 ret = intel_atomic_prepare_commit(dev, state, async);
7580d774
ML
13395 if (ret) {
13396 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
d4afb8cc 13397 return ret;
7580d774 13398 }
d4afb8cc 13399
1c5e19f8 13400 drm_atomic_helper_swap_state(dev, state);
aa363136 13401 dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
1c5e19f8 13402
0a9ab303 13403 for_each_crtc_in_state(state, crtc, crtc_state, i) {
a539205a
ML
13404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13405
61333b60
ML
13406 if (!needs_modeset(crtc->state))
13407 continue;
13408
13409 any_ms = true;
a539205a 13410 intel_pre_plane_update(intel_crtc);
460da916 13411
a539205a
ML
13412 if (crtc_state->active) {
13413 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13414 dev_priv->display.crtc_disable(crtc);
eddfcbcd
ML
13415 intel_crtc->active = false;
13416 intel_disable_shared_dpll(intel_crtc);
9bbc8258
VS
13417
13418 /*
13419 * Underruns don't always raise
13420 * interrupts, so check manually.
13421 */
13422 intel_check_cpu_fifo_underruns(dev_priv);
13423 intel_check_pch_fifo_underruns(dev_priv);
a539205a 13424 }
b8cecdf5 13425 }
7758a113 13426
ea9d758d
DV
13427 /* Only after disabling all output pipelines that will be changed can we
13428 * update the the output configuration. */
4740b0f2 13429 intel_modeset_update_crtc_state(state);
f6e5b160 13430
4740b0f2
ML
13431 if (any_ms) {
13432 intel_shared_dpll_commit(state);
13433
13434 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
61333b60 13435 modeset_update_crtc_power_domains(state);
4740b0f2 13436 }
47fab737 13437
a6778b3c 13438 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
0a9ab303 13439 for_each_crtc_in_state(state, crtc, crtc_state, i) {
f6ac4b2a
ML
13440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13441 bool modeset = needs_modeset(crtc->state);
bfd16b2a
ML
13442 bool update_pipe = !modeset &&
13443 to_intel_crtc_state(crtc->state)->update_pipe;
13444 unsigned long put_domains = 0;
f6ac4b2a 13445
9f836f90
PJ
13446 if (modeset)
13447 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13448
f6ac4b2a 13449 if (modeset && crtc->state->active) {
a539205a
ML
13450 update_scanline_offset(to_intel_crtc(crtc));
13451 dev_priv->display.crtc_enable(crtc);
13452 }
80715b2f 13453
bfd16b2a
ML
13454 if (update_pipe) {
13455 put_domains = modeset_get_crtc_power_domains(crtc);
13456
13457 /* make sure intel_modeset_check_state runs */
13458 any_ms = true;
13459 }
13460
f6ac4b2a
ML
13461 if (!modeset)
13462 intel_pre_plane_update(intel_crtc);
13463
6173ee28
ML
13464 if (crtc->state->active &&
13465 (crtc->state->planes_changed || update_pipe))
62852622 13466 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
bfd16b2a
ML
13467
13468 if (put_domains)
13469 modeset_put_power_domains(dev_priv, put_domains);
13470
f6ac4b2a 13471 intel_post_plane_update(intel_crtc);
9f836f90
PJ
13472
13473 if (modeset)
13474 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
80715b2f 13475 }
a6778b3c 13476
a6778b3c 13477 /* FIXME: add subpixel order */
83a57153 13478
74c090b1 13479 drm_atomic_helper_wait_for_vblanks(dev, state);
f935675f
ML
13480
13481 mutex_lock(&dev->struct_mutex);
d4afb8cc 13482 drm_atomic_helper_cleanup_planes(dev, state);
f935675f 13483 mutex_unlock(&dev->struct_mutex);
2bfb4627 13484
74c090b1 13485 if (any_ms)
ee165b1a
ML
13486 intel_modeset_check_state(dev, state);
13487
13488 drm_atomic_state_free(state);
f30da187 13489
74c090b1 13490 return 0;
7f27126e
JB
13491}
13492
c0c36b94
CW
13493void intel_crtc_restore_mode(struct drm_crtc *crtc)
13494{
83a57153
ACO
13495 struct drm_device *dev = crtc->dev;
13496 struct drm_atomic_state *state;
e694eb02 13497 struct drm_crtc_state *crtc_state;
2bfb4627 13498 int ret;
83a57153
ACO
13499
13500 state = drm_atomic_state_alloc(dev);
13501 if (!state) {
e694eb02 13502 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
83a57153
ACO
13503 crtc->base.id);
13504 return;
13505 }
13506
e694eb02 13507 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 13508
e694eb02
ML
13509retry:
13510 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13511 ret = PTR_ERR_OR_ZERO(crtc_state);
13512 if (!ret) {
13513 if (!crtc_state->active)
13514 goto out;
83a57153 13515
e694eb02 13516 crtc_state->mode_changed = true;
74c090b1 13517 ret = drm_atomic_commit(state);
83a57153
ACO
13518 }
13519
e694eb02
ML
13520 if (ret == -EDEADLK) {
13521 drm_atomic_state_clear(state);
13522 drm_modeset_backoff(state->acquire_ctx);
13523 goto retry;
4ed9fb37 13524 }
4be07317 13525
2bfb4627 13526 if (ret)
e694eb02 13527out:
2bfb4627 13528 drm_atomic_state_free(state);
c0c36b94
CW
13529}
13530
25c5b266
DV
13531#undef for_each_intel_crtc_masked
13532
f6e5b160 13533static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 13534 .gamma_set = intel_crtc_gamma_set,
74c090b1 13535 .set_config = drm_atomic_helper_set_config,
f6e5b160
CW
13536 .destroy = intel_crtc_destroy,
13537 .page_flip = intel_crtc_page_flip,
1356837e
MR
13538 .atomic_duplicate_state = intel_crtc_duplicate_state,
13539 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
13540};
13541
5358901f
DV
13542static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13543 struct intel_shared_dpll *pll,
13544 struct intel_dpll_hw_state *hw_state)
ee7b9f93 13545{
5358901f 13546 uint32_t val;
ee7b9f93 13547
f458ebbc 13548 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
bd2bb1b9
PZ
13549 return false;
13550
5358901f 13551 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
13552 hw_state->dpll = val;
13553 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13554 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
13555
13556 return val & DPLL_VCO_ENABLE;
13557}
13558
15bdd4cf
DV
13559static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13560 struct intel_shared_dpll *pll)
13561{
3e369b76
ACO
13562 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13563 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
15bdd4cf
DV
13564}
13565
e7b903d2
DV
13566static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13567 struct intel_shared_dpll *pll)
13568{
e7b903d2 13569 /* PCH refclock must be enabled first */
89eff4be 13570 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 13571
3e369b76 13572 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf
DV
13573
13574 /* Wait for the clocks to stabilize. */
13575 POSTING_READ(PCH_DPLL(pll->id));
13576 udelay(150);
13577
13578 /* The pixel multiplier can only be updated once the
13579 * DPLL is enabled and the clocks are stable.
13580 *
13581 * So write it again.
13582 */
3e369b76 13583 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
15bdd4cf 13584 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13585 udelay(200);
13586}
13587
13588static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13589 struct intel_shared_dpll *pll)
13590{
13591 struct drm_device *dev = dev_priv->dev;
13592 struct intel_crtc *crtc;
e7b903d2
DV
13593
13594 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 13595 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
13596 if (intel_crtc_to_shared_dpll(crtc) == pll)
13597 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
13598 }
13599
15bdd4cf
DV
13600 I915_WRITE(PCH_DPLL(pll->id), 0);
13601 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
13602 udelay(200);
13603}
13604
46edb027
DV
13605static char *ibx_pch_dpll_names[] = {
13606 "PCH DPLL A",
13607 "PCH DPLL B",
13608};
13609
7c74ade1 13610static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 13611{
e7b903d2 13612 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
13613 int i;
13614
7c74ade1 13615 dev_priv->num_shared_dpll = 2;
ee7b9f93 13616
e72f9fbf 13617 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
13618 dev_priv->shared_dplls[i].id = i;
13619 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 13620 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
13621 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13622 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
13623 dev_priv->shared_dplls[i].get_hw_state =
13624 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
13625 }
13626}
13627
7c74ade1
DV
13628static void intel_shared_dpll_init(struct drm_device *dev)
13629{
e7b903d2 13630 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 13631
9cd86933
DV
13632 if (HAS_DDI(dev))
13633 intel_ddi_pll_init(dev);
13634 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
13635 ibx_pch_dpll_init(dev);
13636 else
13637 dev_priv->num_shared_dpll = 0;
13638
13639 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
13640}
13641
6beb8c23
MR
13642/**
13643 * intel_prepare_plane_fb - Prepare fb for usage on plane
13644 * @plane: drm plane to prepare for
13645 * @fb: framebuffer to prepare for presentation
13646 *
13647 * Prepares a framebuffer for usage on a display plane. Generally this
13648 * involves pinning the underlying object and updating the frontbuffer tracking
13649 * bits. Some older platforms need special physical address handling for
13650 * cursor planes.
13651 *
f935675f
ML
13652 * Must be called with struct_mutex held.
13653 *
6beb8c23
MR
13654 * Returns 0 on success, negative error code on failure.
13655 */
13656int
13657intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee 13658 const struct drm_plane_state *new_state)
465c120c
MR
13659{
13660 struct drm_device *dev = plane->dev;
844f9111 13661 struct drm_framebuffer *fb = new_state->fb;
6beb8c23 13662 struct intel_plane *intel_plane = to_intel_plane(plane);
6beb8c23 13663 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
1ee49399 13664 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
6beb8c23 13665 int ret = 0;
465c120c 13666
1ee49399 13667 if (!obj && !old_obj)
465c120c
MR
13668 return 0;
13669
5008e874
ML
13670 if (old_obj) {
13671 struct drm_crtc_state *crtc_state =
13672 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13673
13674 /* Big Hammer, we also need to ensure that any pending
13675 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13676 * current scanout is retired before unpinning the old
13677 * framebuffer. Note that we rely on userspace rendering
13678 * into the buffer attached to the pipe they are waiting
13679 * on. If not, userspace generates a GPU hang with IPEHR
13680 * point to the MI_WAIT_FOR_EVENT.
13681 *
13682 * This should only fail upon a hung GPU, in which case we
13683 * can safely continue.
13684 */
13685 if (needs_modeset(crtc_state))
13686 ret = i915_gem_object_wait_rendering(old_obj, true);
13687
13688 /* Swallow -EIO errors to allow updates during hw lockup. */
13689 if (ret && ret != -EIO)
f935675f 13690 return ret;
5008e874
ML
13691 }
13692
3c28ff22
AG
13693 /* For framebuffer backed by dmabuf, wait for fence */
13694 if (obj && obj->base.dma_buf) {
13695 ret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13696 false, true,
13697 MAX_SCHEDULE_TIMEOUT);
13698 if (ret == -ERESTARTSYS)
13699 return ret;
13700
13701 WARN_ON(ret < 0);
13702 }
13703
1ee49399
ML
13704 if (!obj) {
13705 ret = 0;
13706 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
6beb8c23
MR
13707 INTEL_INFO(dev)->cursor_needs_physical) {
13708 int align = IS_I830(dev) ? 16 * 1024 : 256;
13709 ret = i915_gem_object_attach_phys(obj, align);
13710 if (ret)
13711 DRM_DEBUG_KMS("failed to attach phys object\n");
13712 } else {
7580d774 13713 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
6beb8c23 13714 }
465c120c 13715
7580d774
ML
13716 if (ret == 0) {
13717 if (obj) {
13718 struct intel_plane_state *plane_state =
13719 to_intel_plane_state(new_state);
13720
13721 i915_gem_request_assign(&plane_state->wait_req,
13722 obj->last_write_req);
13723 }
13724
a9ff8714 13725 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774 13726 }
fdd508a6 13727
6beb8c23
MR
13728 return ret;
13729}
13730
38f3ce3a
MR
13731/**
13732 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13733 * @plane: drm plane to clean up for
13734 * @fb: old framebuffer that was on plane
13735 *
13736 * Cleans up a framebuffer that has just been removed from a plane.
f935675f
ML
13737 *
13738 * Must be called with struct_mutex held.
38f3ce3a
MR
13739 */
13740void
13741intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee 13742 const struct drm_plane_state *old_state)
38f3ce3a
MR
13743{
13744 struct drm_device *dev = plane->dev;
1ee49399 13745 struct intel_plane *intel_plane = to_intel_plane(plane);
7580d774 13746 struct intel_plane_state *old_intel_state;
1ee49399
ML
13747 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13748 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
38f3ce3a 13749
7580d774
ML
13750 old_intel_state = to_intel_plane_state(old_state);
13751
1ee49399 13752 if (!obj && !old_obj)
38f3ce3a
MR
13753 return;
13754
1ee49399
ML
13755 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13756 !INTEL_INFO(dev)->cursor_needs_physical))
844f9111 13757 intel_unpin_fb_obj(old_state->fb, old_state);
1ee49399
ML
13758
13759 /* prepare_fb aborted? */
13760 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13761 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13762 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774
ML
13763
13764 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13765
465c120c
MR
13766}
13767
6156a456
CK
13768int
13769skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13770{
13771 int max_scale;
13772 struct drm_device *dev;
13773 struct drm_i915_private *dev_priv;
13774 int crtc_clock, cdclk;
13775
13776 if (!intel_crtc || !crtc_state)
13777 return DRM_PLANE_HELPER_NO_SCALING;
13778
13779 dev = intel_crtc->base.dev;
13780 dev_priv = dev->dev_private;
13781 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 13782 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456 13783
54bf1ce6 13784 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
6156a456
CK
13785 return DRM_PLANE_HELPER_NO_SCALING;
13786
13787 /*
13788 * skl max scale is lower of:
13789 * close to 3 but not 3, -1 is for that purpose
13790 * or
13791 * cdclk/crtc_clock
13792 */
13793 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13794
13795 return max_scale;
13796}
13797
465c120c 13798static int
3c692a41 13799intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 13800 struct intel_crtc_state *crtc_state,
3c692a41
GP
13801 struct intel_plane_state *state)
13802{
2b875c22
MR
13803 struct drm_crtc *crtc = state->base.crtc;
13804 struct drm_framebuffer *fb = state->base.fb;
6156a456 13805 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
13806 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13807 bool can_position = false;
465c120c 13808
061e4b8d
ML
13809 /* use scaler when colorkey is not required */
13810 if (INTEL_INFO(plane->dev)->gen >= 9 &&
818ed961 13811 state->ckey.flags == I915_SET_COLORKEY_NONE) {
061e4b8d
ML
13812 min_scale = 1;
13813 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
d8106366 13814 can_position = true;
6156a456 13815 }
d8106366 13816
061e4b8d
ML
13817 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13818 &state->dst, &state->clip,
da20eabd
ML
13819 min_scale, max_scale,
13820 can_position, true,
13821 &state->visible);
14af293f
GP
13822}
13823
13824static void
13825intel_commit_primary_plane(struct drm_plane *plane,
13826 struct intel_plane_state *state)
13827{
2b875c22
MR
13828 struct drm_crtc *crtc = state->base.crtc;
13829 struct drm_framebuffer *fb = state->base.fb;
13830 struct drm_device *dev = plane->dev;
14af293f 13831 struct drm_i915_private *dev_priv = dev->dev_private;
14af293f 13832
ea2c67bb 13833 crtc = crtc ? crtc : plane->crtc;
ccc759dc 13834
d4b08630
ML
13835 dev_priv->display.update_primary_plane(crtc, fb,
13836 state->src.x1 >> 16,
13837 state->src.y1 >> 16);
465c120c
MR
13838}
13839
a8ad0d8e
ML
13840static void
13841intel_disable_primary_plane(struct drm_plane *plane,
7fabf5ef 13842 struct drm_crtc *crtc)
a8ad0d8e
ML
13843{
13844 struct drm_device *dev = plane->dev;
13845 struct drm_i915_private *dev_priv = dev->dev_private;
13846
a8ad0d8e
ML
13847 dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13848}
13849
613d2b27
ML
13850static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13851 struct drm_crtc_state *old_crtc_state)
3c692a41 13852{
32b7eeec 13853 struct drm_device *dev = crtc->dev;
3c692a41 13854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bfd16b2a
ML
13855 struct intel_crtc_state *old_intel_state =
13856 to_intel_crtc_state(old_crtc_state);
13857 bool modeset = needs_modeset(crtc->state);
3c692a41 13858
c34c9ee4 13859 /* Perform vblank evasion around commit operation */
62852622 13860 intel_pipe_update_start(intel_crtc);
0583236e 13861
bfd16b2a
ML
13862 if (modeset)
13863 return;
13864
13865 if (to_intel_crtc_state(crtc->state)->update_pipe)
13866 intel_update_pipe_config(intel_crtc, old_intel_state);
13867 else if (INTEL_INFO(dev)->gen >= 9)
0583236e 13868 skl_detach_scalers(intel_crtc);
32b7eeec
MR
13869}
13870
613d2b27
ML
13871static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13872 struct drm_crtc_state *old_crtc_state)
32b7eeec 13873{
32b7eeec 13874 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
32b7eeec 13875
62852622 13876 intel_pipe_update_end(intel_crtc);
3c692a41
GP
13877}
13878
cf4c7c12 13879/**
4a3b8769
MR
13880 * intel_plane_destroy - destroy a plane
13881 * @plane: plane to destroy
cf4c7c12 13882 *
4a3b8769
MR
13883 * Common destruction function for all types of planes (primary, cursor,
13884 * sprite).
cf4c7c12 13885 */
4a3b8769 13886void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13887{
13888 struct intel_plane *intel_plane = to_intel_plane(plane);
13889 drm_plane_cleanup(plane);
13890 kfree(intel_plane);
13891}
13892
65a3fea0 13893const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13894 .update_plane = drm_atomic_helper_update_plane,
13895 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13896 .destroy = intel_plane_destroy,
c196e1d6 13897 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13898 .atomic_get_property = intel_plane_atomic_get_property,
13899 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13900 .atomic_duplicate_state = intel_plane_duplicate_state,
13901 .atomic_destroy_state = intel_plane_destroy_state,
13902
465c120c
MR
13903};
13904
13905static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13906 int pipe)
13907{
13908 struct intel_plane *primary;
8e7d688b 13909 struct intel_plane_state *state;
465c120c 13910 const uint32_t *intel_primary_formats;
45e3743a 13911 unsigned int num_formats;
465c120c
MR
13912
13913 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13914 if (primary == NULL)
13915 return NULL;
13916
8e7d688b
MR
13917 state = intel_create_plane_state(&primary->base);
13918 if (!state) {
ea2c67bb
MR
13919 kfree(primary);
13920 return NULL;
13921 }
8e7d688b 13922 primary->base.state = &state->base;
ea2c67bb 13923
465c120c
MR
13924 primary->can_scale = false;
13925 primary->max_downscale = 1;
6156a456
CK
13926 if (INTEL_INFO(dev)->gen >= 9) {
13927 primary->can_scale = true;
af99ceda 13928 state->scaler_id = -1;
6156a456 13929 }
465c120c
MR
13930 primary->pipe = pipe;
13931 primary->plane = pipe;
a9ff8714 13932 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179
MR
13933 primary->check_plane = intel_check_primary_plane;
13934 primary->commit_plane = intel_commit_primary_plane;
a8ad0d8e 13935 primary->disable_plane = intel_disable_primary_plane;
465c120c
MR
13936 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13937 primary->plane = !pipe;
13938
6c0fd451
DL
13939 if (INTEL_INFO(dev)->gen >= 9) {
13940 intel_primary_formats = skl_primary_formats;
13941 num_formats = ARRAY_SIZE(skl_primary_formats);
13942 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
13943 intel_primary_formats = i965_primary_formats;
13944 num_formats = ARRAY_SIZE(i965_primary_formats);
6c0fd451
DL
13945 } else {
13946 intel_primary_formats = i8xx_primary_formats;
13947 num_formats = ARRAY_SIZE(i8xx_primary_formats);
465c120c
MR
13948 }
13949
13950 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 13951 &intel_plane_funcs,
465c120c
MR
13952 intel_primary_formats, num_formats,
13953 DRM_PLANE_TYPE_PRIMARY);
48404c1e 13954
3b7a5119
SJ
13955 if (INTEL_INFO(dev)->gen >= 4)
13956 intel_create_rotation_property(dev, primary);
48404c1e 13957
ea2c67bb
MR
13958 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13959
465c120c
MR
13960 return &primary->base;
13961}
13962
3b7a5119
SJ
13963void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13964{
13965 if (!dev->mode_config.rotation_property) {
13966 unsigned long flags = BIT(DRM_ROTATE_0) |
13967 BIT(DRM_ROTATE_180);
13968
13969 if (INTEL_INFO(dev)->gen >= 9)
13970 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13971
13972 dev->mode_config.rotation_property =
13973 drm_mode_create_rotation_property(dev, flags);
13974 }
13975 if (dev->mode_config.rotation_property)
13976 drm_object_attach_property(&plane->base.base,
13977 dev->mode_config.rotation_property,
13978 plane->base.state->rotation);
13979}
13980
3d7d6510 13981static int
852e787c 13982intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 13983 struct intel_crtc_state *crtc_state,
852e787c 13984 struct intel_plane_state *state)
3d7d6510 13985{
061e4b8d 13986 struct drm_crtc *crtc = crtc_state->base.crtc;
2b875c22 13987 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 13988 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
757f9a3e
GP
13989 unsigned stride;
13990 int ret;
3d7d6510 13991
061e4b8d
ML
13992 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13993 &state->dst, &state->clip,
3d7d6510
MR
13994 DRM_PLANE_HELPER_NO_SCALING,
13995 DRM_PLANE_HELPER_NO_SCALING,
852e787c 13996 true, true, &state->visible);
757f9a3e
GP
13997 if (ret)
13998 return ret;
13999
757f9a3e
GP
14000 /* if we want to turn off the cursor ignore width and height */
14001 if (!obj)
da20eabd 14002 return 0;
757f9a3e 14003
757f9a3e 14004 /* Check for which cursor types we support */
061e4b8d 14005 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
14006 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14007 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
14008 return -EINVAL;
14009 }
14010
ea2c67bb
MR
14011 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14012 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
14013 DRM_DEBUG_KMS("buffer is too small\n");
14014 return -ENOMEM;
14015 }
14016
3a656b54 14017 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 14018 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 14019 return -EINVAL;
32b7eeec
MR
14020 }
14021
da20eabd 14022 return 0;
852e787c 14023}
3d7d6510 14024
a8ad0d8e
ML
14025static void
14026intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 14027 struct drm_crtc *crtc)
a8ad0d8e 14028{
a8ad0d8e
ML
14029 intel_crtc_update_cursor(crtc, false);
14030}
14031
f4a2cf29 14032static void
852e787c
GP
14033intel_commit_cursor_plane(struct drm_plane *plane,
14034 struct intel_plane_state *state)
14035{
2b875c22 14036 struct drm_crtc *crtc = state->base.crtc;
ea2c67bb
MR
14037 struct drm_device *dev = plane->dev;
14038 struct intel_crtc *intel_crtc;
2b875c22 14039 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 14040 uint32_t addr;
852e787c 14041
ea2c67bb
MR
14042 crtc = crtc ? crtc : plane->crtc;
14043 intel_crtc = to_intel_crtc(crtc);
14044
a912f12f
GP
14045 if (intel_crtc->cursor_bo == obj)
14046 goto update;
4ed91096 14047
f4a2cf29 14048 if (!obj)
a912f12f 14049 addr = 0;
f4a2cf29 14050 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 14051 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 14052 else
a912f12f 14053 addr = obj->phys_handle->busaddr;
852e787c 14054
a912f12f
GP
14055 intel_crtc->cursor_addr = addr;
14056 intel_crtc->cursor_bo = obj;
852e787c 14057
302d19ac 14058update:
62852622 14059 intel_crtc_update_cursor(crtc, state->visible);
852e787c
GP
14060}
14061
3d7d6510
MR
14062static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14063 int pipe)
14064{
14065 struct intel_plane *cursor;
8e7d688b 14066 struct intel_plane_state *state;
3d7d6510
MR
14067
14068 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14069 if (cursor == NULL)
14070 return NULL;
14071
8e7d688b
MR
14072 state = intel_create_plane_state(&cursor->base);
14073 if (!state) {
ea2c67bb
MR
14074 kfree(cursor);
14075 return NULL;
14076 }
8e7d688b 14077 cursor->base.state = &state->base;
ea2c67bb 14078
3d7d6510
MR
14079 cursor->can_scale = false;
14080 cursor->max_downscale = 1;
14081 cursor->pipe = pipe;
14082 cursor->plane = pipe;
a9ff8714 14083 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179
MR
14084 cursor->check_plane = intel_check_cursor_plane;
14085 cursor->commit_plane = intel_commit_cursor_plane;
a8ad0d8e 14086 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510
MR
14087
14088 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 14089 &intel_plane_funcs,
3d7d6510
MR
14090 intel_cursor_formats,
14091 ARRAY_SIZE(intel_cursor_formats),
14092 DRM_PLANE_TYPE_CURSOR);
4398ad45
VS
14093
14094 if (INTEL_INFO(dev)->gen >= 4) {
14095 if (!dev->mode_config.rotation_property)
14096 dev->mode_config.rotation_property =
14097 drm_mode_create_rotation_property(dev,
14098 BIT(DRM_ROTATE_0) |
14099 BIT(DRM_ROTATE_180));
14100 if (dev->mode_config.rotation_property)
14101 drm_object_attach_property(&cursor->base.base,
14102 dev->mode_config.rotation_property,
8e7d688b 14103 state->base.rotation);
4398ad45
VS
14104 }
14105
af99ceda
CK
14106 if (INTEL_INFO(dev)->gen >=9)
14107 state->scaler_id = -1;
14108
ea2c67bb
MR
14109 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14110
3d7d6510
MR
14111 return &cursor->base;
14112}
14113
549e2bfb
CK
14114static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14115 struct intel_crtc_state *crtc_state)
14116{
14117 int i;
14118 struct intel_scaler *intel_scaler;
14119 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14120
14121 for (i = 0; i < intel_crtc->num_scalers; i++) {
14122 intel_scaler = &scaler_state->scalers[i];
14123 intel_scaler->in_use = 0;
549e2bfb
CK
14124 intel_scaler->mode = PS_SCALER_MODE_DYN;
14125 }
14126
14127 scaler_state->scaler_id = -1;
14128}
14129
b358d0a6 14130static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 14131{
fbee40df 14132 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 14133 struct intel_crtc *intel_crtc;
f5de6e07 14134 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
14135 struct drm_plane *primary = NULL;
14136 struct drm_plane *cursor = NULL;
465c120c 14137 int i, ret;
79e53945 14138
955382f3 14139 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
14140 if (intel_crtc == NULL)
14141 return;
14142
f5de6e07
ACO
14143 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14144 if (!crtc_state)
14145 goto fail;
550acefd
ACO
14146 intel_crtc->config = crtc_state;
14147 intel_crtc->base.state = &crtc_state->base;
07878248 14148 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 14149
549e2bfb
CK
14150 /* initialize shared scalers */
14151 if (INTEL_INFO(dev)->gen >= 9) {
14152 if (pipe == PIPE_C)
14153 intel_crtc->num_scalers = 1;
14154 else
14155 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14156
14157 skl_init_scalers(dev, intel_crtc, crtc_state);
14158 }
14159
465c120c 14160 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
14161 if (!primary)
14162 goto fail;
14163
14164 cursor = intel_cursor_plane_create(dev, pipe);
14165 if (!cursor)
14166 goto fail;
14167
465c120c 14168 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
14169 cursor, &intel_crtc_funcs);
14170 if (ret)
14171 goto fail;
79e53945
JB
14172
14173 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
14174 for (i = 0; i < 256; i++) {
14175 intel_crtc->lut_r[i] = i;
14176 intel_crtc->lut_g[i] = i;
14177 intel_crtc->lut_b[i] = i;
14178 }
14179
1f1c2e24
VS
14180 /*
14181 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 14182 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 14183 */
80824003
JB
14184 intel_crtc->pipe = pipe;
14185 intel_crtc->plane = pipe;
3a77c4c4 14186 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 14187 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 14188 intel_crtc->plane = !pipe;
80824003
JB
14189 }
14190
4b0e333e
CW
14191 intel_crtc->cursor_base = ~0;
14192 intel_crtc->cursor_cntl = ~0;
dc41c154 14193 intel_crtc->cursor_size = ~0;
8d7849db 14194
852eb00d
VS
14195 intel_crtc->wm.cxsr_allowed = true;
14196
22fd0fab
JB
14197 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14198 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14199 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14200 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14201
79e53945 14202 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
14203
14204 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
14205 return;
14206
14207fail:
14208 if (primary)
14209 drm_plane_cleanup(primary);
14210 if (cursor)
14211 drm_plane_cleanup(cursor);
f5de6e07 14212 kfree(crtc_state);
3d7d6510 14213 kfree(intel_crtc);
79e53945
JB
14214}
14215
752aa88a
JB
14216enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14217{
14218 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 14219 struct drm_device *dev = connector->base.dev;
752aa88a 14220
51fd371b 14221 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 14222
d3babd3f 14223 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
14224 return INVALID_PIPE;
14225
14226 return to_intel_crtc(encoder->crtc)->pipe;
14227}
14228
08d7b3d1 14229int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 14230 struct drm_file *file)
08d7b3d1 14231{
08d7b3d1 14232 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 14233 struct drm_crtc *drmmode_crtc;
c05422d5 14234 struct intel_crtc *crtc;
08d7b3d1 14235
7707e653 14236 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 14237
7707e653 14238 if (!drmmode_crtc) {
08d7b3d1 14239 DRM_ERROR("no such CRTC id\n");
3f2c2057 14240 return -ENOENT;
08d7b3d1
CW
14241 }
14242
7707e653 14243 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 14244 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 14245
c05422d5 14246 return 0;
08d7b3d1
CW
14247}
14248
66a9278e 14249static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 14250{
66a9278e
DV
14251 struct drm_device *dev = encoder->base.dev;
14252 struct intel_encoder *source_encoder;
79e53945 14253 int index_mask = 0;
79e53945
JB
14254 int entry = 0;
14255
b2784e15 14256 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 14257 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
14258 index_mask |= (1 << entry);
14259
79e53945
JB
14260 entry++;
14261 }
4ef69c7a 14262
79e53945
JB
14263 return index_mask;
14264}
14265
4d302442
CW
14266static bool has_edp_a(struct drm_device *dev)
14267{
14268 struct drm_i915_private *dev_priv = dev->dev_private;
14269
14270 if (!IS_MOBILE(dev))
14271 return false;
14272
14273 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14274 return false;
14275
e3589908 14276 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
14277 return false;
14278
14279 return true;
14280}
14281
84b4e042
JB
14282static bool intel_crt_present(struct drm_device *dev)
14283{
14284 struct drm_i915_private *dev_priv = dev->dev_private;
14285
884497ed
DL
14286 if (INTEL_INFO(dev)->gen >= 9)
14287 return false;
14288
cf404ce4 14289 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
14290 return false;
14291
14292 if (IS_CHERRYVIEW(dev))
14293 return false;
14294
65e472e4
VS
14295 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14296 return false;
14297
70ac54d0
VS
14298 /* DDI E can't be used if DDI A requires 4 lanes */
14299 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14300 return false;
14301
e4abb733 14302 if (!dev_priv->vbt.int_crt_support)
84b4e042
JB
14303 return false;
14304
14305 return true;
14306}
14307
79e53945
JB
14308static void intel_setup_outputs(struct drm_device *dev)
14309{
725e30ad 14310 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 14311 struct intel_encoder *encoder;
cb0953d7 14312 bool dpd_is_edp = false;
79e53945 14313
c9093354 14314 intel_lvds_init(dev);
79e53945 14315
84b4e042 14316 if (intel_crt_present(dev))
79935fca 14317 intel_crt_init(dev);
cb0953d7 14318
c776eb2e
VK
14319 if (IS_BROXTON(dev)) {
14320 /*
14321 * FIXME: Broxton doesn't support port detection via the
14322 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14323 * detect the ports.
14324 */
14325 intel_ddi_init(dev, PORT_A);
14326 intel_ddi_init(dev, PORT_B);
14327 intel_ddi_init(dev, PORT_C);
14328 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
14329 int found;
14330
de31facd
JB
14331 /*
14332 * Haswell uses DDI functions to detect digital outputs.
14333 * On SKL pre-D0 the strap isn't connected, so we assume
14334 * it's there.
14335 */
77179400 14336 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
de31facd 14337 /* WaIgnoreDDIAStrap: skl */
ef11bdb3 14338 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
0e72a5b5
ED
14339 intel_ddi_init(dev, PORT_A);
14340
14341 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14342 * register */
14343 found = I915_READ(SFUSE_STRAP);
14344
14345 if (found & SFUSE_STRAP_DDIB_DETECTED)
14346 intel_ddi_init(dev, PORT_B);
14347 if (found & SFUSE_STRAP_DDIC_DETECTED)
14348 intel_ddi_init(dev, PORT_C);
14349 if (found & SFUSE_STRAP_DDID_DETECTED)
14350 intel_ddi_init(dev, PORT_D);
2800e4c2
RV
14351 /*
14352 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14353 */
ef11bdb3 14354 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
2800e4c2
RV
14355 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14356 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14357 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14358 intel_ddi_init(dev, PORT_E);
14359
0e72a5b5 14360 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14361 int found;
5d8a7752 14362 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14363
14364 if (has_edp_a(dev))
14365 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14366
dc0fa718 14367 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14368 /* PCH SDVOB multiplex with HDMIB */
2a5c0832 14369 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
30ad48b7 14370 if (!found)
e2debe91 14371 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14372 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14373 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14374 }
14375
dc0fa718 14376 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14377 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14378
dc0fa718 14379 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14380 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14381
5eb08b69 14382 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14383 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14384
270b3042 14385 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14386 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 14387 } else if (IS_VALLEYVIEW(dev)) {
e17ac6db
VS
14388 /*
14389 * The DP_DETECTED bit is the latched state of the DDC
14390 * SDA pin at boot. However since eDP doesn't require DDC
14391 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14392 * eDP ports may have been muxed to an alternate function.
14393 * Thus we can't rely on the DP_DETECTED bit alone to detect
14394 * eDP ports. Consult the VBT as well as DP_DETECTED to
14395 * detect eDP ports.
14396 */
e66eb81d 14397 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
d2182a66 14398 !intel_dp_is_edp(dev, PORT_B))
e66eb81d
VS
14399 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14400 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
e17ac6db 14401 intel_dp_is_edp(dev, PORT_B))
e66eb81d 14402 intel_dp_init(dev, VLV_DP_B, PORT_B);
585a94b8 14403
e66eb81d 14404 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
d2182a66 14405 !intel_dp_is_edp(dev, PORT_C))
e66eb81d
VS
14406 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14407 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
e17ac6db 14408 intel_dp_is_edp(dev, PORT_C))
e66eb81d 14409 intel_dp_init(dev, VLV_DP_C, PORT_C);
19c03924 14410
9418c1f1 14411 if (IS_CHERRYVIEW(dev)) {
e17ac6db 14412 /* eDP not supported on port D, so don't check VBT */
e66eb81d
VS
14413 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14414 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14415 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14416 intel_dp_init(dev, CHV_DP_D, PORT_D);
9418c1f1
VS
14417 }
14418
3cfca973 14419 intel_dsi_init(dev);
09da55dc 14420 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 14421 bool found = false;
7d57382e 14422
e2debe91 14423 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14424 DRM_DEBUG_KMS("probing SDVOB\n");
2a5c0832 14425 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
3fec3d2f 14426 if (!found && IS_G4X(dev)) {
b01f2c3a 14427 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14428 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14429 }
27185ae1 14430
3fec3d2f 14431 if (!found && IS_G4X(dev))
ab9d7c30 14432 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14433 }
13520b05
KH
14434
14435 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14436
e2debe91 14437 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14438 DRM_DEBUG_KMS("probing SDVOC\n");
2a5c0832 14439 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
b01f2c3a 14440 }
27185ae1 14441
e2debe91 14442 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14443
3fec3d2f 14444 if (IS_G4X(dev)) {
b01f2c3a 14445 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14446 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14447 }
3fec3d2f 14448 if (IS_G4X(dev))
ab9d7c30 14449 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14450 }
27185ae1 14451
3fec3d2f 14452 if (IS_G4X(dev) &&
e7281eab 14453 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14454 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14455 } else if (IS_GEN2(dev))
79e53945
JB
14456 intel_dvo_init(dev);
14457
103a196f 14458 if (SUPPORTS_TV(dev))
79e53945
JB
14459 intel_tv_init(dev);
14460
0bc12bcb 14461 intel_psr_init(dev);
7c8f8a70 14462
b2784e15 14463 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14464 encoder->base.possible_crtcs = encoder->crtc_mask;
14465 encoder->base.possible_clones =
66a9278e 14466 intel_encoder_clones(encoder);
79e53945 14467 }
47356eb6 14468
dde86e2d 14469 intel_init_pch_refclk(dev);
270b3042
DV
14470
14471 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14472}
14473
14474static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14475{
60a5ca01 14476 struct drm_device *dev = fb->dev;
79e53945 14477 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14478
ef2d633e 14479 drm_framebuffer_cleanup(fb);
60a5ca01 14480 mutex_lock(&dev->struct_mutex);
ef2d633e 14481 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14482 drm_gem_object_unreference(&intel_fb->obj->base);
14483 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14484 kfree(intel_fb);
14485}
14486
14487static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14488 struct drm_file *file,
79e53945
JB
14489 unsigned int *handle)
14490{
14491 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14492 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14493
cc917ab4
CW
14494 if (obj->userptr.mm) {
14495 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14496 return -EINVAL;
14497 }
14498
05394f39 14499 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14500}
14501
86c98588
RV
14502static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14503 struct drm_file *file,
14504 unsigned flags, unsigned color,
14505 struct drm_clip_rect *clips,
14506 unsigned num_clips)
14507{
14508 struct drm_device *dev = fb->dev;
14509 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14510 struct drm_i915_gem_object *obj = intel_fb->obj;
14511
14512 mutex_lock(&dev->struct_mutex);
74b4ea1e 14513 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
14514 mutex_unlock(&dev->struct_mutex);
14515
14516 return 0;
14517}
14518
79e53945
JB
14519static const struct drm_framebuffer_funcs intel_fb_funcs = {
14520 .destroy = intel_user_framebuffer_destroy,
14521 .create_handle = intel_user_framebuffer_create_handle,
86c98588 14522 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
14523};
14524
b321803d
DL
14525static
14526u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14527 uint32_t pixel_format)
14528{
14529 u32 gen = INTEL_INFO(dev)->gen;
14530
14531 if (gen >= 9) {
14532 /* "The stride in bytes must not exceed the of the size of 8K
14533 * pixels and 32K bytes."
14534 */
14535 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14536 } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14537 return 32*1024;
14538 } else if (gen >= 4) {
14539 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14540 return 16*1024;
14541 else
14542 return 32*1024;
14543 } else if (gen >= 3) {
14544 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14545 return 8*1024;
14546 else
14547 return 16*1024;
14548 } else {
14549 /* XXX DSPC is limited to 4k tiled */
14550 return 8*1024;
14551 }
14552}
14553
b5ea642a
DV
14554static int intel_framebuffer_init(struct drm_device *dev,
14555 struct intel_framebuffer *intel_fb,
14556 struct drm_mode_fb_cmd2 *mode_cmd,
14557 struct drm_i915_gem_object *obj)
79e53945 14558{
6761dd31 14559 unsigned int aligned_height;
79e53945 14560 int ret;
b321803d 14561 u32 pitch_limit, stride_alignment;
79e53945 14562
dd4916c5
DV
14563 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14564
2a80eada
DV
14565 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14566 /* Enforce that fb modifier and tiling mode match, but only for
14567 * X-tiled. This is needed for FBC. */
14568 if (!!(obj->tiling_mode == I915_TILING_X) !=
14569 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14570 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14571 return -EINVAL;
14572 }
14573 } else {
14574 if (obj->tiling_mode == I915_TILING_X)
14575 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14576 else if (obj->tiling_mode == I915_TILING_Y) {
14577 DRM_DEBUG("No Y tiling for legacy addfb\n");
14578 return -EINVAL;
14579 }
14580 }
14581
9a8f0a12
TU
14582 /* Passed in modifier sanity checking. */
14583 switch (mode_cmd->modifier[0]) {
14584 case I915_FORMAT_MOD_Y_TILED:
14585 case I915_FORMAT_MOD_Yf_TILED:
14586 if (INTEL_INFO(dev)->gen < 9) {
14587 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14588 mode_cmd->modifier[0]);
14589 return -EINVAL;
14590 }
14591 case DRM_FORMAT_MOD_NONE:
14592 case I915_FORMAT_MOD_X_TILED:
14593 break;
14594 default:
c0f40428
JB
14595 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14596 mode_cmd->modifier[0]);
57cd6508 14597 return -EINVAL;
c16ed4be 14598 }
57cd6508 14599
b321803d
DL
14600 stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14601 mode_cmd->pixel_format);
14602 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14603 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14604 mode_cmd->pitches[0], stride_alignment);
57cd6508 14605 return -EINVAL;
c16ed4be 14606 }
57cd6508 14607
b321803d
DL
14608 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14609 mode_cmd->pixel_format);
a35cdaa0 14610 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
14611 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14612 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 14613 "tiled" : "linear",
a35cdaa0 14614 mode_cmd->pitches[0], pitch_limit);
5d7bd705 14615 return -EINVAL;
c16ed4be 14616 }
5d7bd705 14617
2a80eada 14618 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
14619 mode_cmd->pitches[0] != obj->stride) {
14620 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14621 mode_cmd->pitches[0], obj->stride);
5d7bd705 14622 return -EINVAL;
c16ed4be 14623 }
5d7bd705 14624
57779d06 14625 /* Reject formats not supported by any plane early. */
308e5bcb 14626 switch (mode_cmd->pixel_format) {
57779d06 14627 case DRM_FORMAT_C8:
04b3924d
VS
14628 case DRM_FORMAT_RGB565:
14629 case DRM_FORMAT_XRGB8888:
14630 case DRM_FORMAT_ARGB8888:
57779d06
VS
14631 break;
14632 case DRM_FORMAT_XRGB1555:
c16ed4be 14633 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
14634 DRM_DEBUG("unsupported pixel format: %s\n",
14635 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14636 return -EINVAL;
c16ed4be 14637 }
57779d06 14638 break;
57779d06 14639 case DRM_FORMAT_ABGR8888:
6c0fd451
DL
14640 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14641 DRM_DEBUG("unsupported pixel format: %s\n",
14642 drm_get_format_name(mode_cmd->pixel_format));
14643 return -EINVAL;
14644 }
14645 break;
14646 case DRM_FORMAT_XBGR8888:
04b3924d 14647 case DRM_FORMAT_XRGB2101010:
57779d06 14648 case DRM_FORMAT_XBGR2101010:
c16ed4be 14649 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
14650 DRM_DEBUG("unsupported pixel format: %s\n",
14651 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14652 return -EINVAL;
c16ed4be 14653 }
b5626747 14654 break;
7531208b
DL
14655 case DRM_FORMAT_ABGR2101010:
14656 if (!IS_VALLEYVIEW(dev)) {
14657 DRM_DEBUG("unsupported pixel format: %s\n",
14658 drm_get_format_name(mode_cmd->pixel_format));
14659 return -EINVAL;
14660 }
14661 break;
04b3924d
VS
14662 case DRM_FORMAT_YUYV:
14663 case DRM_FORMAT_UYVY:
14664 case DRM_FORMAT_YVYU:
14665 case DRM_FORMAT_VYUY:
c16ed4be 14666 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14667 DRM_DEBUG("unsupported pixel format: %s\n",
14668 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14669 return -EINVAL;
c16ed4be 14670 }
57cd6508
CW
14671 break;
14672 default:
4ee62c76
VS
14673 DRM_DEBUG("unsupported pixel format: %s\n",
14674 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14675 return -EINVAL;
14676 }
14677
90f9a336
VS
14678 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14679 if (mode_cmd->offsets[0] != 0)
14680 return -EINVAL;
14681
ec2c981e 14682 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14683 mode_cmd->pixel_format,
14684 mode_cmd->modifier[0]);
53155c0a
DV
14685 /* FIXME drm helper for size checks (especially planar formats)? */
14686 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14687 return -EINVAL;
14688
c7d73f6a
DV
14689 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14690 intel_fb->obj = obj;
80075d49 14691 intel_fb->obj->framebuffer_references++;
c7d73f6a 14692
79e53945
JB
14693 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14694 if (ret) {
14695 DRM_ERROR("framebuffer init failed %d\n", ret);
14696 return ret;
14697 }
14698
79e53945
JB
14699 return 0;
14700}
14701
79e53945
JB
14702static struct drm_framebuffer *
14703intel_user_framebuffer_create(struct drm_device *dev,
14704 struct drm_file *filp,
76dc3769 14705 struct drm_mode_fb_cmd2 *user_mode_cmd)
79e53945 14706{
dcb1394e 14707 struct drm_framebuffer *fb;
05394f39 14708 struct drm_i915_gem_object *obj;
76dc3769 14709 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
79e53945 14710
308e5bcb 14711 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
76dc3769 14712 mode_cmd.handles[0]));
c8725226 14713 if (&obj->base == NULL)
cce13ff7 14714 return ERR_PTR(-ENOENT);
79e53945 14715
92907cbb 14716 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
dcb1394e
LW
14717 if (IS_ERR(fb))
14718 drm_gem_object_unreference_unlocked(&obj->base);
14719
14720 return fb;
79e53945
JB
14721}
14722
0695726e 14723#ifndef CONFIG_DRM_FBDEV_EMULATION
0632fef6 14724static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14725{
14726}
14727#endif
14728
79e53945 14729static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14730 .fb_create = intel_user_framebuffer_create,
0632fef6 14731 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14732 .atomic_check = intel_atomic_check,
14733 .atomic_commit = intel_atomic_commit,
de419ab6
ML
14734 .atomic_state_alloc = intel_atomic_state_alloc,
14735 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
14736};
14737
e70236a8
JB
14738/* Set up chip specific display functions */
14739static void intel_init_display(struct drm_device *dev)
14740{
14741 struct drm_i915_private *dev_priv = dev->dev_private;
14742
ee9300bb
DV
14743 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14744 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14745 else if (IS_CHERRYVIEW(dev))
14746 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14747 else if (IS_VALLEYVIEW(dev))
14748 dev_priv->display.find_dpll = vlv_find_best_dpll;
14749 else if (IS_PINEVIEW(dev))
14750 dev_priv->display.find_dpll = pnv_find_best_dpll;
14751 else
14752 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14753
bc8d7dff
DL
14754 if (INTEL_INFO(dev)->gen >= 9) {
14755 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14756 dev_priv->display.get_initial_plane_config =
14757 skylake_get_initial_plane_config;
bc8d7dff
DL
14758 dev_priv->display.crtc_compute_clock =
14759 haswell_crtc_compute_clock;
14760 dev_priv->display.crtc_enable = haswell_crtc_enable;
14761 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff
DL
14762 dev_priv->display.update_primary_plane =
14763 skylake_update_primary_plane;
14764 } else if (HAS_DDI(dev)) {
0e8ffe1b 14765 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14766 dev_priv->display.get_initial_plane_config =
14767 ironlake_get_initial_plane_config;
797d0259
ACO
14768 dev_priv->display.crtc_compute_clock =
14769 haswell_crtc_compute_clock;
4f771f10
PZ
14770 dev_priv->display.crtc_enable = haswell_crtc_enable;
14771 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff
DL
14772 dev_priv->display.update_primary_plane =
14773 ironlake_update_primary_plane;
09b4ddf9 14774 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14775 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14776 dev_priv->display.get_initial_plane_config =
14777 ironlake_get_initial_plane_config;
3fb37703
ACO
14778 dev_priv->display.crtc_compute_clock =
14779 ironlake_crtc_compute_clock;
76e5a89c
DV
14780 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14781 dev_priv->display.crtc_disable = ironlake_crtc_disable;
262ca2b0
MR
14782 dev_priv->display.update_primary_plane =
14783 ironlake_update_primary_plane;
89b667f8
JB
14784 } else if (IS_VALLEYVIEW(dev)) {
14785 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14786 dev_priv->display.get_initial_plane_config =
14787 i9xx_get_initial_plane_config;
d6dfee7a 14788 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14789 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14790 dev_priv->display.crtc_disable = i9xx_crtc_disable;
262ca2b0
MR
14791 dev_priv->display.update_primary_plane =
14792 i9xx_update_primary_plane;
f564048e 14793 } else {
0e8ffe1b 14794 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14795 dev_priv->display.get_initial_plane_config =
14796 i9xx_get_initial_plane_config;
d6dfee7a 14797 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14798 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14799 dev_priv->display.crtc_disable = i9xx_crtc_disable;
262ca2b0
MR
14800 dev_priv->display.update_primary_plane =
14801 i9xx_update_primary_plane;
f564048e 14802 }
e70236a8 14803
e70236a8 14804 /* Returns the core display clock speed */
ef11bdb3 14805 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1652d19e
VS
14806 dev_priv->display.get_display_clock_speed =
14807 skylake_get_display_clock_speed;
acd3f3d3
BP
14808 else if (IS_BROXTON(dev))
14809 dev_priv->display.get_display_clock_speed =
14810 broxton_get_display_clock_speed;
1652d19e
VS
14811 else if (IS_BROADWELL(dev))
14812 dev_priv->display.get_display_clock_speed =
14813 broadwell_get_display_clock_speed;
14814 else if (IS_HASWELL(dev))
14815 dev_priv->display.get_display_clock_speed =
14816 haswell_get_display_clock_speed;
14817 else if (IS_VALLEYVIEW(dev))
25eb05fc
JB
14818 dev_priv->display.get_display_clock_speed =
14819 valleyview_get_display_clock_speed;
b37a6434
VS
14820 else if (IS_GEN5(dev))
14821 dev_priv->display.get_display_clock_speed =
14822 ilk_get_display_clock_speed;
a7c66cd8 14823 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
34edce2f 14824 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
e70236a8
JB
14825 dev_priv->display.get_display_clock_speed =
14826 i945_get_display_clock_speed;
34edce2f
VS
14827 else if (IS_GM45(dev))
14828 dev_priv->display.get_display_clock_speed =
14829 gm45_get_display_clock_speed;
14830 else if (IS_CRESTLINE(dev))
14831 dev_priv->display.get_display_clock_speed =
14832 i965gm_get_display_clock_speed;
14833 else if (IS_PINEVIEW(dev))
14834 dev_priv->display.get_display_clock_speed =
14835 pnv_get_display_clock_speed;
14836 else if (IS_G33(dev) || IS_G4X(dev))
14837 dev_priv->display.get_display_clock_speed =
14838 g33_get_display_clock_speed;
e70236a8
JB
14839 else if (IS_I915G(dev))
14840 dev_priv->display.get_display_clock_speed =
14841 i915_get_display_clock_speed;
257a7ffc 14842 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14843 dev_priv->display.get_display_clock_speed =
14844 i9xx_misc_get_display_clock_speed;
14845 else if (IS_I915GM(dev))
14846 dev_priv->display.get_display_clock_speed =
14847 i915gm_get_display_clock_speed;
14848 else if (IS_I865G(dev))
14849 dev_priv->display.get_display_clock_speed =
14850 i865_get_display_clock_speed;
f0f8a9ce 14851 else if (IS_I85X(dev))
e70236a8 14852 dev_priv->display.get_display_clock_speed =
1b1d2716 14853 i85x_get_display_clock_speed;
623e01e5
VS
14854 else { /* 830 */
14855 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
14856 dev_priv->display.get_display_clock_speed =
14857 i830_get_display_clock_speed;
623e01e5 14858 }
e70236a8 14859
7c10a2b5 14860 if (IS_GEN5(dev)) {
3bb11b53 14861 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14862 } else if (IS_GEN6(dev)) {
14863 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14864 } else if (IS_IVYBRIDGE(dev)) {
14865 /* FIXME: detect B0+ stepping and use auto training */
14866 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14867 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14868 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
27c329ed
ML
14869 if (IS_BROADWELL(dev)) {
14870 dev_priv->display.modeset_commit_cdclk =
14871 broadwell_modeset_commit_cdclk;
14872 dev_priv->display.modeset_calc_cdclk =
14873 broadwell_modeset_calc_cdclk;
14874 }
30a970c6 14875 } else if (IS_VALLEYVIEW(dev)) {
27c329ed
ML
14876 dev_priv->display.modeset_commit_cdclk =
14877 valleyview_modeset_commit_cdclk;
14878 dev_priv->display.modeset_calc_cdclk =
14879 valleyview_modeset_calc_cdclk;
f8437dd1 14880 } else if (IS_BROXTON(dev)) {
27c329ed
ML
14881 dev_priv->display.modeset_commit_cdclk =
14882 broxton_modeset_commit_cdclk;
14883 dev_priv->display.modeset_calc_cdclk =
14884 broxton_modeset_calc_cdclk;
e70236a8 14885 }
8c9f3aaf 14886
8c9f3aaf
JB
14887 switch (INTEL_INFO(dev)->gen) {
14888 case 2:
14889 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14890 break;
14891
14892 case 3:
14893 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14894 break;
14895
14896 case 4:
14897 case 5:
14898 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14899 break;
14900
14901 case 6:
14902 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14903 break;
7c9017e5 14904 case 7:
4e0bbc31 14905 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14906 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14907 break;
830c81db 14908 case 9:
ba343e02
TU
14909 /* Drop through - unsupported since execlist only. */
14910 default:
14911 /* Default just returns -ENODEV to indicate unsupported */
14912 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14913 }
7bd688cd 14914
e39b999a 14915 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14916}
14917
b690e96c
JB
14918/*
14919 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14920 * resume, or other times. This quirk makes sure that's the case for
14921 * affected systems.
14922 */
0206e353 14923static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
14924{
14925 struct drm_i915_private *dev_priv = dev->dev_private;
14926
14927 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 14928 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
14929}
14930
b6b5d049
VS
14931static void quirk_pipeb_force(struct drm_device *dev)
14932{
14933 struct drm_i915_private *dev_priv = dev->dev_private;
14934
14935 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14936 DRM_INFO("applying pipe b force quirk\n");
14937}
14938
435793df
KP
14939/*
14940 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14941 */
14942static void quirk_ssc_force_disable(struct drm_device *dev)
14943{
14944 struct drm_i915_private *dev_priv = dev->dev_private;
14945 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 14946 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
14947}
14948
4dca20ef 14949/*
5a15ab5b
CE
14950 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14951 * brightness value
4dca20ef
CE
14952 */
14953static void quirk_invert_brightness(struct drm_device *dev)
14954{
14955 struct drm_i915_private *dev_priv = dev->dev_private;
14956 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 14957 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
14958}
14959
9c72cc6f
SD
14960/* Some VBT's incorrectly indicate no backlight is present */
14961static void quirk_backlight_present(struct drm_device *dev)
14962{
14963 struct drm_i915_private *dev_priv = dev->dev_private;
14964 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14965 DRM_INFO("applying backlight present quirk\n");
14966}
14967
b690e96c
JB
14968struct intel_quirk {
14969 int device;
14970 int subsystem_vendor;
14971 int subsystem_device;
14972 void (*hook)(struct drm_device *dev);
14973};
14974
5f85f176
EE
14975/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14976struct intel_dmi_quirk {
14977 void (*hook)(struct drm_device *dev);
14978 const struct dmi_system_id (*dmi_id_list)[];
14979};
14980
14981static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14982{
14983 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14984 return 1;
14985}
14986
14987static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14988 {
14989 .dmi_id_list = &(const struct dmi_system_id[]) {
14990 {
14991 .callback = intel_dmi_reverse_brightness,
14992 .ident = "NCR Corporation",
14993 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14994 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14995 },
14996 },
14997 { } /* terminating entry */
14998 },
14999 .hook = quirk_invert_brightness,
15000 },
15001};
15002
c43b5634 15003static struct intel_quirk intel_quirks[] = {
b690e96c
JB
15004 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15005 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15006
b690e96c
JB
15007 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15008 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15009
5f080c0f
VS
15010 /* 830 needs to leave pipe A & dpll A up */
15011 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15012
b6b5d049
VS
15013 /* 830 needs to leave pipe B & dpll B up */
15014 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15015
435793df
KP
15016 /* Lenovo U160 cannot use SSC on LVDS */
15017 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
15018
15019 /* Sony Vaio Y cannot use SSC on LVDS */
15020 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 15021
be505f64
AH
15022 /* Acer Aspire 5734Z must invert backlight brightness */
15023 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15024
15025 /* Acer/eMachines G725 */
15026 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15027
15028 /* Acer/eMachines e725 */
15029 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15030
15031 /* Acer/Packard Bell NCL20 */
15032 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15033
15034 /* Acer Aspire 4736Z */
15035 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
15036
15037 /* Acer Aspire 5336 */
15038 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
15039
15040 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15041 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 15042
dfb3d47b
SD
15043 /* Acer C720 Chromebook (Core i3 4005U) */
15044 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15045
b2a9601c 15046 /* Apple Macbook 2,1 (Core 2 T7400) */
15047 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15048
1b9448b0
JN
15049 /* Apple Macbook 4,1 */
15050 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15051
d4967d8c
SD
15052 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15053 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
15054
15055 /* HP Chromebook 14 (Celeron 2955U) */
15056 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
15057
15058 /* Dell Chromebook 11 */
15059 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
9be64eee
JN
15060
15061 /* Dell Chromebook 11 (2015 version) */
15062 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
15063};
15064
15065static void intel_init_quirks(struct drm_device *dev)
15066{
15067 struct pci_dev *d = dev->pdev;
15068 int i;
15069
15070 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15071 struct intel_quirk *q = &intel_quirks[i];
15072
15073 if (d->device == q->device &&
15074 (d->subsystem_vendor == q->subsystem_vendor ||
15075 q->subsystem_vendor == PCI_ANY_ID) &&
15076 (d->subsystem_device == q->subsystem_device ||
15077 q->subsystem_device == PCI_ANY_ID))
15078 q->hook(dev);
15079 }
5f85f176
EE
15080 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15081 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15082 intel_dmi_quirks[i].hook(dev);
15083 }
b690e96c
JB
15084}
15085
9cce37f4
JB
15086/* Disable the VGA plane that we never use */
15087static void i915_disable_vga(struct drm_device *dev)
15088{
15089 struct drm_i915_private *dev_priv = dev->dev_private;
15090 u8 sr1;
f0f59a00 15091 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 15092
2b37c616 15093 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 15094 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 15095 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
15096 sr1 = inb(VGA_SR_DATA);
15097 outb(sr1 | 1<<5, VGA_SR_DATA);
15098 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15099 udelay(300);
15100
01f5a626 15101 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
15102 POSTING_READ(vga_reg);
15103}
15104
f817586c
DV
15105void intel_modeset_init_hw(struct drm_device *dev)
15106{
b6283055 15107 intel_update_cdclk(dev);
a8f78b58 15108 intel_prepare_ddi(dev);
f817586c 15109 intel_init_clock_gating(dev);
8090c6b9 15110 intel_enable_gt_powersave(dev);
f817586c
DV
15111}
15112
79e53945
JB
15113void intel_modeset_init(struct drm_device *dev)
15114{
652c393a 15115 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 15116 int sprite, ret;
8cc87b75 15117 enum pipe pipe;
46f297fb 15118 struct intel_crtc *crtc;
79e53945
JB
15119
15120 drm_mode_config_init(dev);
15121
15122 dev->mode_config.min_width = 0;
15123 dev->mode_config.min_height = 0;
15124
019d96cb
DA
15125 dev->mode_config.preferred_depth = 24;
15126 dev->mode_config.prefer_shadow = 1;
15127
25bab385
TU
15128 dev->mode_config.allow_fb_modifiers = true;
15129
e6ecefaa 15130 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 15131
b690e96c
JB
15132 intel_init_quirks(dev);
15133
1fa61106
ED
15134 intel_init_pm(dev);
15135
e3c74757
BW
15136 if (INTEL_INFO(dev)->num_pipes == 0)
15137 return;
15138
69f92f67
LW
15139 /*
15140 * There may be no VBT; and if the BIOS enabled SSC we can
15141 * just keep using it to avoid unnecessary flicker. Whereas if the
15142 * BIOS isn't using it, don't assume it will work even if the VBT
15143 * indicates as much.
15144 */
15145 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15146 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15147 DREF_SSC1_ENABLE);
15148
15149 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15150 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15151 bios_lvds_use_ssc ? "en" : "dis",
15152 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15153 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15154 }
15155 }
15156
e70236a8 15157 intel_init_display(dev);
7c10a2b5 15158 intel_init_audio(dev);
e70236a8 15159
a6c45cf0
CW
15160 if (IS_GEN2(dev)) {
15161 dev->mode_config.max_width = 2048;
15162 dev->mode_config.max_height = 2048;
15163 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
15164 dev->mode_config.max_width = 4096;
15165 dev->mode_config.max_height = 4096;
79e53945 15166 } else {
a6c45cf0
CW
15167 dev->mode_config.max_width = 8192;
15168 dev->mode_config.max_height = 8192;
79e53945 15169 }
068be561 15170
dc41c154
VS
15171 if (IS_845G(dev) || IS_I865G(dev)) {
15172 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15173 dev->mode_config.cursor_height = 1023;
15174 } else if (IS_GEN2(dev)) {
068be561
DL
15175 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15176 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15177 } else {
15178 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15179 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15180 }
15181
5d4545ae 15182 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 15183
28c97730 15184 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
15185 INTEL_INFO(dev)->num_pipes,
15186 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 15187
055e393f 15188 for_each_pipe(dev_priv, pipe) {
8cc87b75 15189 intel_crtc_init(dev, pipe);
3bdcfc0c 15190 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 15191 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 15192 if (ret)
06da8da2 15193 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 15194 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 15195 }
79e53945
JB
15196 }
15197
bfa7df01
VS
15198 intel_update_czclk(dev_priv);
15199 intel_update_cdclk(dev);
15200
e72f9fbf 15201 intel_shared_dpll_init(dev);
ee7b9f93 15202
9cce37f4
JB
15203 /* Just disable it once at startup */
15204 i915_disable_vga(dev);
79e53945 15205 intel_setup_outputs(dev);
11be49eb 15206
6e9f798d 15207 drm_modeset_lock_all(dev);
043e9bda 15208 intel_modeset_setup_hw_state(dev);
6e9f798d 15209 drm_modeset_unlock_all(dev);
46f297fb 15210
d3fcc808 15211 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
15212 struct intel_initial_plane_config plane_config = {};
15213
46f297fb
JB
15214 if (!crtc->active)
15215 continue;
15216
46f297fb 15217 /*
46f297fb
JB
15218 * Note that reserving the BIOS fb up front prevents us
15219 * from stuffing other stolen allocations like the ring
15220 * on top. This prevents some ugliness at boot time, and
15221 * can even allow for smooth boot transitions if the BIOS
15222 * fb is large enough for the active pipe configuration.
15223 */
eeebeac5
ML
15224 dev_priv->display.get_initial_plane_config(crtc,
15225 &plane_config);
15226
15227 /*
15228 * If the fb is shared between multiple heads, we'll
15229 * just get the first one.
15230 */
15231 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 15232 }
2c7111db
CW
15233}
15234
7fad798e
DV
15235static void intel_enable_pipe_a(struct drm_device *dev)
15236{
15237 struct intel_connector *connector;
15238 struct drm_connector *crt = NULL;
15239 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 15240 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
15241
15242 /* We can't just switch on the pipe A, we need to set things up with a
15243 * proper mode and output configuration. As a gross hack, enable pipe A
15244 * by enabling the load detect pipe once. */
3a3371ff 15245 for_each_intel_connector(dev, connector) {
7fad798e
DV
15246 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15247 crt = &connector->base;
15248 break;
15249 }
15250 }
15251
15252 if (!crt)
15253 return;
15254
208bf9fd 15255 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 15256 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
15257}
15258
fa555837
DV
15259static bool
15260intel_check_plane_mapping(struct intel_crtc *crtc)
15261{
7eb552ae
BW
15262 struct drm_device *dev = crtc->base.dev;
15263 struct drm_i915_private *dev_priv = dev->dev_private;
649636ef 15264 u32 val;
fa555837 15265
7eb552ae 15266 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
15267 return true;
15268
649636ef 15269 val = I915_READ(DSPCNTR(!crtc->plane));
fa555837
DV
15270
15271 if ((val & DISPLAY_PLANE_ENABLE) &&
15272 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15273 return false;
15274
15275 return true;
15276}
15277
02e93c35
VS
15278static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15279{
15280 struct drm_device *dev = crtc->base.dev;
15281 struct intel_encoder *encoder;
15282
15283 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15284 return true;
15285
15286 return false;
15287}
15288
24929352
DV
15289static void intel_sanitize_crtc(struct intel_crtc *crtc)
15290{
15291 struct drm_device *dev = crtc->base.dev;
15292 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15293 i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
24929352 15294
24929352 15295 /* Clear any frame start delays used for debugging left by the BIOS */
24929352
DV
15296 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15297
d3eaf884 15298 /* restore vblank interrupts to correct state */
9625604c 15299 drm_crtc_vblank_reset(&crtc->base);
d297e103 15300 if (crtc->active) {
f9cd7b88
VS
15301 struct intel_plane *plane;
15302
9625604c 15303 drm_crtc_vblank_on(&crtc->base);
f9cd7b88
VS
15304
15305 /* Disable everything but the primary plane */
15306 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15307 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15308 continue;
15309
15310 plane->disable_plane(&plane->base, &crtc->base);
15311 }
9625604c 15312 }
d3eaf884 15313
24929352 15314 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
15315 * disable the crtc (and hence change the state) if it is wrong. Note
15316 * that gen4+ has a fixed plane -> pipe mapping. */
15317 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
15318 bool plane;
15319
24929352
DV
15320 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15321 crtc->base.base.id);
15322
15323 /* Pipe has the wrong plane attached and the plane is active.
15324 * Temporarily change the plane mapping and disable everything
15325 * ... */
15326 plane = crtc->plane;
b70709a6 15327 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 15328 crtc->plane = !plane;
b17d48e2 15329 intel_crtc_disable_noatomic(&crtc->base);
24929352 15330 crtc->plane = plane;
24929352 15331 }
24929352 15332
7fad798e
DV
15333 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15334 crtc->pipe == PIPE_A && !crtc->active) {
15335 /* BIOS forgot to enable pipe A, this mostly happens after
15336 * resume. Force-enable the pipe to fix this, the update_dpms
15337 * call below we restore the pipe to the right state, but leave
15338 * the required bits on. */
15339 intel_enable_pipe_a(dev);
15340 }
15341
24929352
DV
15342 /* Adjust the state of the output pipe according to whether we
15343 * have active connectors/encoders. */
02e93c35 15344 if (!intel_crtc_has_encoders(crtc))
b17d48e2 15345 intel_crtc_disable_noatomic(&crtc->base);
24929352 15346
53d9f4e9 15347 if (crtc->active != crtc->base.state->active) {
02e93c35 15348 struct intel_encoder *encoder;
24929352
DV
15349
15350 /* This can happen either due to bugs in the get_hw_state
b17d48e2
ML
15351 * functions or because of calls to intel_crtc_disable_noatomic,
15352 * or because the pipe is force-enabled due to the
24929352
DV
15353 * pipe A quirk. */
15354 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15355 crtc->base.base.id,
83d65738 15356 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
15357 crtc->active ? "enabled" : "disabled");
15358
4be40c98 15359 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
49d6fa21 15360 crtc->base.state->active = crtc->active;
24929352
DV
15361 crtc->base.enabled = crtc->active;
15362
15363 /* Because we only establish the connector -> encoder ->
15364 * crtc links if something is active, this means the
15365 * crtc is now deactivated. Break the links. connector
15366 * -> encoder links are only establish when things are
15367 * actually up, hence no need to break them. */
15368 WARN_ON(crtc->active);
15369
2d406bb0 15370 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
24929352 15371 encoder->base.crtc = NULL;
24929352 15372 }
c5ab3bc0 15373
a3ed6aad 15374 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15375 /*
15376 * We start out with underrun reporting disabled to avoid races.
15377 * For correct bookkeeping mark this on active crtcs.
15378 *
c5ab3bc0
DV
15379 * Also on gmch platforms we dont have any hardware bits to
15380 * disable the underrun reporting. Which means we need to start
15381 * out with underrun reporting disabled also on inactive pipes,
15382 * since otherwise we'll complain about the garbage we read when
15383 * e.g. coming up after runtime pm.
15384 *
4cc31489
DV
15385 * No protection against concurrent access is required - at
15386 * worst a fifo underrun happens which also sets this to false.
15387 */
15388 crtc->cpu_fifo_underrun_disabled = true;
15389 crtc->pch_fifo_underrun_disabled = true;
15390 }
24929352
DV
15391}
15392
15393static void intel_sanitize_encoder(struct intel_encoder *encoder)
15394{
15395 struct intel_connector *connector;
15396 struct drm_device *dev = encoder->base.dev;
873ffe69 15397 bool active = false;
24929352
DV
15398
15399 /* We need to check both for a crtc link (meaning that the
15400 * encoder is active and trying to read from a pipe) and the
15401 * pipe itself being active. */
15402 bool has_active_crtc = encoder->base.crtc &&
15403 to_intel_crtc(encoder->base.crtc)->active;
15404
873ffe69
ML
15405 for_each_intel_connector(dev, connector) {
15406 if (connector->base.encoder != &encoder->base)
15407 continue;
15408
15409 active = true;
15410 break;
15411 }
15412
15413 if (active && !has_active_crtc) {
24929352
DV
15414 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15415 encoder->base.base.id,
8e329a03 15416 encoder->base.name);
24929352
DV
15417
15418 /* Connector is active, but has no active pipe. This is
15419 * fallout from our resume register restoring. Disable
15420 * the encoder manually again. */
15421 if (encoder->base.crtc) {
15422 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15423 encoder->base.base.id,
8e329a03 15424 encoder->base.name);
24929352 15425 encoder->disable(encoder);
a62d1497
VS
15426 if (encoder->post_disable)
15427 encoder->post_disable(encoder);
24929352 15428 }
7f1950fb 15429 encoder->base.crtc = NULL;
24929352
DV
15430
15431 /* Inconsistent output/port/pipe state happens presumably due to
15432 * a bug in one of the get_hw_state functions. Or someplace else
15433 * in our code, like the register restore mess on resume. Clamp
15434 * things to off as a safer default. */
3a3371ff 15435 for_each_intel_connector(dev, connector) {
24929352
DV
15436 if (connector->encoder != encoder)
15437 continue;
7f1950fb
EE
15438 connector->base.dpms = DRM_MODE_DPMS_OFF;
15439 connector->base.encoder = NULL;
24929352
DV
15440 }
15441 }
15442 /* Enabled encoders without active connectors will be fixed in
15443 * the crtc fixup. */
15444}
15445
04098753 15446void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15447{
15448 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15449 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15450
04098753
ID
15451 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15452 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15453 i915_disable_vga(dev);
15454 }
15455}
15456
15457void i915_redisable_vga(struct drm_device *dev)
15458{
15459 struct drm_i915_private *dev_priv = dev->dev_private;
15460
8dc8a27c
PZ
15461 /* This function can be called both from intel_modeset_setup_hw_state or
15462 * at a very early point in our resume sequence, where the power well
15463 * structures are not yet restored. Since this function is at a very
15464 * paranoid "someone might have enabled VGA while we were not looking"
15465 * level, just check if the power well is enabled instead of trying to
15466 * follow the "don't touch the power well if we don't need it" policy
15467 * the rest of the driver uses. */
f458ebbc 15468 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15469 return;
15470
04098753 15471 i915_redisable_vga_power_on(dev);
0fde901f
KM
15472}
15473
f9cd7b88 15474static bool primary_get_hw_state(struct intel_plane *plane)
98ec7739 15475{
f9cd7b88 15476 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
98ec7739 15477
f9cd7b88 15478 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
d032ffa0
ML
15479}
15480
f9cd7b88
VS
15481/* FIXME read out full plane state for all planes */
15482static void readout_plane_state(struct intel_crtc *crtc)
d032ffa0 15483{
b26d3ea3 15484 struct drm_plane *primary = crtc->base.primary;
f9cd7b88 15485 struct intel_plane_state *plane_state =
b26d3ea3 15486 to_intel_plane_state(primary->state);
d032ffa0 15487
19b8d387 15488 plane_state->visible = crtc->active &&
b26d3ea3
ML
15489 primary_get_hw_state(to_intel_plane(primary));
15490
15491 if (plane_state->visible)
15492 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
98ec7739
VS
15493}
15494
30e984df 15495static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
15496{
15497 struct drm_i915_private *dev_priv = dev->dev_private;
15498 enum pipe pipe;
24929352
DV
15499 struct intel_crtc *crtc;
15500 struct intel_encoder *encoder;
15501 struct intel_connector *connector;
5358901f 15502 int i;
24929352 15503
d3fcc808 15504 for_each_intel_crtc(dev, crtc) {
b06f8b0d 15505 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
6e3c9717 15506 memset(crtc->config, 0, sizeof(*crtc->config));
f7217905 15507 crtc->config->base.crtc = &crtc->base;
3b117c8f 15508
0e8ffe1b 15509 crtc->active = dev_priv->display.get_pipe_config(crtc,
6e3c9717 15510 crtc->config);
24929352 15511
49d6fa21 15512 crtc->base.state->active = crtc->active;
24929352 15513 crtc->base.enabled = crtc->active;
b70709a6 15514
f9cd7b88 15515 readout_plane_state(crtc);
24929352
DV
15516
15517 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15518 crtc->base.base.id,
15519 crtc->active ? "enabled" : "disabled");
15520 }
15521
5358901f
DV
15522 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15523 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15524
3e369b76
ACO
15525 pll->on = pll->get_hw_state(dev_priv, pll,
15526 &pll->config.hw_state);
5358901f 15527 pll->active = 0;
3e369b76 15528 pll->config.crtc_mask = 0;
d3fcc808 15529 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 15530 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 15531 pll->active++;
3e369b76 15532 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 15533 }
5358901f 15534 }
5358901f 15535
1e6f2ddc 15536 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 15537 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 15538
3e369b76 15539 if (pll->config.crtc_mask)
bd2bb1b9 15540 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
15541 }
15542
b2784e15 15543 for_each_intel_encoder(dev, encoder) {
24929352
DV
15544 pipe = 0;
15545
15546 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
15547 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15548 encoder->base.crtc = &crtc->base;
6e3c9717 15549 encoder->get_config(encoder, crtc->config);
24929352
DV
15550 } else {
15551 encoder->base.crtc = NULL;
15552 }
15553
6f2bcceb 15554 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 15555 encoder->base.base.id,
8e329a03 15556 encoder->base.name,
24929352 15557 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 15558 pipe_name(pipe));
24929352
DV
15559 }
15560
3a3371ff 15561 for_each_intel_connector(dev, connector) {
24929352
DV
15562 if (connector->get_hw_state(connector)) {
15563 connector->base.dpms = DRM_MODE_DPMS_ON;
24929352
DV
15564 connector->base.encoder = &connector->encoder->base;
15565 } else {
15566 connector->base.dpms = DRM_MODE_DPMS_OFF;
15567 connector->base.encoder = NULL;
15568 }
15569 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15570 connector->base.base.id,
c23cc417 15571 connector->base.name,
24929352
DV
15572 connector->base.encoder ? "enabled" : "disabled");
15573 }
7f4c6284
VS
15574
15575 for_each_intel_crtc(dev, crtc) {
15576 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15577
15578 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15579 if (crtc->base.state->active) {
15580 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15581 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15582 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15583
15584 /*
15585 * The initial mode needs to be set in order to keep
15586 * the atomic core happy. It wants a valid mode if the
15587 * crtc's enabled, so we do the above call.
15588 *
15589 * At this point some state updated by the connectors
15590 * in their ->detect() callback has not run yet, so
15591 * no recalculation can be done yet.
15592 *
15593 * Even if we could do a recalculation and modeset
15594 * right now it would cause a double modeset if
15595 * fbdev or userspace chooses a different initial mode.
15596 *
15597 * If that happens, someone indicated they wanted a
15598 * mode change, which means it's safe to do a full
15599 * recalculation.
15600 */
15601 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
9eca6832
VS
15602
15603 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15604 update_scanline_offset(crtc);
7f4c6284
VS
15605 }
15606 }
30e984df
DV
15607}
15608
043e9bda
ML
15609/* Scan out the current hw modeset state,
15610 * and sanitizes it to the current state
15611 */
15612static void
15613intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df
DV
15614{
15615 struct drm_i915_private *dev_priv = dev->dev_private;
15616 enum pipe pipe;
30e984df
DV
15617 struct intel_crtc *crtc;
15618 struct intel_encoder *encoder;
35c95375 15619 int i;
30e984df
DV
15620
15621 intel_modeset_readout_hw_state(dev);
24929352
DV
15622
15623 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 15624 for_each_intel_encoder(dev, encoder) {
24929352
DV
15625 intel_sanitize_encoder(encoder);
15626 }
15627
055e393f 15628 for_each_pipe(dev_priv, pipe) {
24929352
DV
15629 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15630 intel_sanitize_crtc(crtc);
6e3c9717
ACO
15631 intel_dump_pipe_config(crtc, crtc->config,
15632 "[setup_hw_state]");
24929352 15633 }
9a935856 15634
d29b2f9d
ACO
15635 intel_modeset_update_connector_atomic_state(dev);
15636
35c95375
DV
15637 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15638 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15639
15640 if (!pll->on || pll->active)
15641 continue;
15642
15643 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15644
15645 pll->disable(dev_priv, pll);
15646 pll->on = false;
15647 }
15648
26e1fe4f 15649 if (IS_VALLEYVIEW(dev))
6eb1a681
VS
15650 vlv_wm_get_hw_state(dev);
15651 else if (IS_GEN9(dev))
3078999f
PB
15652 skl_wm_get_hw_state(dev);
15653 else if (HAS_PCH_SPLIT(dev))
243e6a44 15654 ilk_wm_get_hw_state(dev);
292b990e
ML
15655
15656 for_each_intel_crtc(dev, crtc) {
15657 unsigned long put_domains;
15658
15659 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15660 if (WARN_ON(put_domains))
15661 modeset_put_power_domains(dev_priv, put_domains);
15662 }
15663 intel_display_set_init_power(dev_priv, false);
043e9bda 15664}
7d0bc1ea 15665
043e9bda
ML
15666void intel_display_resume(struct drm_device *dev)
15667{
15668 struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15669 struct intel_connector *conn;
15670 struct intel_plane *plane;
15671 struct drm_crtc *crtc;
15672 int ret;
f30da187 15673
043e9bda
ML
15674 if (!state)
15675 return;
15676
15677 state->acquire_ctx = dev->mode_config.acquire_ctx;
15678
15679 /* preserve complete old state, including dpll */
15680 intel_atomic_get_shared_dpll_state(state);
15681
15682 for_each_crtc(dev, crtc) {
15683 struct drm_crtc_state *crtc_state =
15684 drm_atomic_get_crtc_state(state, crtc);
15685
15686 ret = PTR_ERR_OR_ZERO(crtc_state);
15687 if (ret)
15688 goto err;
15689
15690 /* force a restore */
15691 crtc_state->mode_changed = true;
45e2b5f6 15692 }
8af6cf88 15693
043e9bda
ML
15694 for_each_intel_plane(dev, plane) {
15695 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15696 if (ret)
15697 goto err;
15698 }
15699
15700 for_each_intel_connector(dev, conn) {
15701 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15702 if (ret)
15703 goto err;
15704 }
15705
15706 intel_modeset_setup_hw_state(dev);
15707
15708 i915_redisable_vga(dev);
74c090b1 15709 ret = drm_atomic_commit(state);
043e9bda
ML
15710 if (!ret)
15711 return;
15712
15713err:
15714 DRM_ERROR("Restoring old state failed with %i\n", ret);
15715 drm_atomic_state_free(state);
2c7111db
CW
15716}
15717
15718void intel_modeset_gem_init(struct drm_device *dev)
15719{
484b41dd 15720 struct drm_crtc *c;
2ff8fde1 15721 struct drm_i915_gem_object *obj;
e0d6149b 15722 int ret;
484b41dd 15723
ae48434c
ID
15724 mutex_lock(&dev->struct_mutex);
15725 intel_init_gt_powersave(dev);
15726 mutex_unlock(&dev->struct_mutex);
15727
1833b134 15728 intel_modeset_init_hw(dev);
02e792fb
DV
15729
15730 intel_setup_overlay(dev);
484b41dd
JB
15731
15732 /*
15733 * Make sure any fbs we allocated at startup are properly
15734 * pinned & fenced. When we do the allocation it's too early
15735 * for this.
15736 */
70e1e0ec 15737 for_each_crtc(dev, c) {
2ff8fde1
MR
15738 obj = intel_fb_obj(c->primary->fb);
15739 if (obj == NULL)
484b41dd
JB
15740 continue;
15741
e0d6149b
TU
15742 mutex_lock(&dev->struct_mutex);
15743 ret = intel_pin_and_fence_fb_obj(c->primary,
15744 c->primary->fb,
7580d774 15745 c->primary->state);
e0d6149b
TU
15746 mutex_unlock(&dev->struct_mutex);
15747 if (ret) {
484b41dd
JB
15748 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15749 to_intel_crtc(c)->pipe);
66e514c1
DA
15750 drm_framebuffer_unreference(c->primary->fb);
15751 c->primary->fb = NULL;
36750f28 15752 c->primary->crtc = c->primary->state->crtc = NULL;
afd65eb4 15753 update_state_fb(c->primary);
36750f28 15754 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
15755 }
15756 }
0962c3c9
VS
15757
15758 intel_backlight_register(dev);
79e53945
JB
15759}
15760
4932e2c3
ID
15761void intel_connector_unregister(struct intel_connector *intel_connector)
15762{
15763 struct drm_connector *connector = &intel_connector->base;
15764
15765 intel_panel_destroy_backlight(connector);
34ea3d38 15766 drm_connector_unregister(connector);
4932e2c3
ID
15767}
15768
79e53945
JB
15769void intel_modeset_cleanup(struct drm_device *dev)
15770{
652c393a 15771 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 15772 struct drm_connector *connector;
652c393a 15773
2eb5252e
ID
15774 intel_disable_gt_powersave(dev);
15775
0962c3c9
VS
15776 intel_backlight_unregister(dev);
15777
fd0c0642
DV
15778 /*
15779 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15780 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
15781 * experience fancy races otherwise.
15782 */
2aeb7d3a 15783 intel_irq_uninstall(dev_priv);
eb21b92b 15784
fd0c0642
DV
15785 /*
15786 * Due to the hpd irq storm handling the hotplug work can re-arm the
15787 * poll handlers. Hence disable polling after hpd handling is shut down.
15788 */
f87ea761 15789 drm_kms_helper_poll_fini(dev);
fd0c0642 15790
723bfd70
JB
15791 intel_unregister_dsm_handler();
15792
7733b49b 15793 intel_fbc_disable(dev_priv);
69341a5e 15794
1630fe75
CW
15795 /* flush any delayed tasks or pending work */
15796 flush_scheduled_work();
15797
db31af1d
JN
15798 /* destroy the backlight and sysfs files before encoders/connectors */
15799 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
15800 struct intel_connector *intel_connector;
15801
15802 intel_connector = to_intel_connector(connector);
15803 intel_connector->unregister(intel_connector);
db31af1d 15804 }
d9255d57 15805
79e53945 15806 drm_mode_config_cleanup(dev);
4d7bb011
DV
15807
15808 intel_cleanup_overlay(dev);
ae48434c
ID
15809
15810 mutex_lock(&dev->struct_mutex);
15811 intel_cleanup_gt_powersave(dev);
15812 mutex_unlock(&dev->struct_mutex);
79e53945
JB
15813}
15814
f1c79df3
ZW
15815/*
15816 * Return which encoder is currently attached for connector.
15817 */
df0e9248 15818struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 15819{
df0e9248
CW
15820 return &intel_attached_encoder(connector)->base;
15821}
f1c79df3 15822
df0e9248
CW
15823void intel_connector_attach_encoder(struct intel_connector *connector,
15824 struct intel_encoder *encoder)
15825{
15826 connector->encoder = encoder;
15827 drm_mode_connector_attach_encoder(&connector->base,
15828 &encoder->base);
79e53945 15829}
28d52043
DA
15830
15831/*
15832 * set vga decode state - true == enable VGA decode
15833 */
15834int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15835{
15836 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 15837 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
15838 u16 gmch_ctrl;
15839
75fa041d
CW
15840 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15841 DRM_ERROR("failed to read control word\n");
15842 return -EIO;
15843 }
15844
c0cc8a55
CW
15845 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15846 return 0;
15847
28d52043
DA
15848 if (state)
15849 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15850 else
15851 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
15852
15853 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15854 DRM_ERROR("failed to write control word\n");
15855 return -EIO;
15856 }
15857
28d52043
DA
15858 return 0;
15859}
c4a1d9e4 15860
c4a1d9e4 15861struct intel_display_error_state {
ff57f1b0
PZ
15862
15863 u32 power_well_driver;
15864
63b66e5b
CW
15865 int num_transcoders;
15866
c4a1d9e4
CW
15867 struct intel_cursor_error_state {
15868 u32 control;
15869 u32 position;
15870 u32 base;
15871 u32 size;
52331309 15872 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
15873
15874 struct intel_pipe_error_state {
ddf9c536 15875 bool power_domain_on;
c4a1d9e4 15876 u32 source;
f301b1e1 15877 u32 stat;
52331309 15878 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
15879
15880 struct intel_plane_error_state {
15881 u32 control;
15882 u32 stride;
15883 u32 size;
15884 u32 pos;
15885 u32 addr;
15886 u32 surface;
15887 u32 tile_offset;
52331309 15888 } plane[I915_MAX_PIPES];
63b66e5b
CW
15889
15890 struct intel_transcoder_error_state {
ddf9c536 15891 bool power_domain_on;
63b66e5b
CW
15892 enum transcoder cpu_transcoder;
15893
15894 u32 conf;
15895
15896 u32 htotal;
15897 u32 hblank;
15898 u32 hsync;
15899 u32 vtotal;
15900 u32 vblank;
15901 u32 vsync;
15902 } transcoder[4];
c4a1d9e4
CW
15903};
15904
15905struct intel_display_error_state *
15906intel_display_capture_error_state(struct drm_device *dev)
15907{
fbee40df 15908 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 15909 struct intel_display_error_state *error;
63b66e5b
CW
15910 int transcoders[] = {
15911 TRANSCODER_A,
15912 TRANSCODER_B,
15913 TRANSCODER_C,
15914 TRANSCODER_EDP,
15915 };
c4a1d9e4
CW
15916 int i;
15917
63b66e5b
CW
15918 if (INTEL_INFO(dev)->num_pipes == 0)
15919 return NULL;
15920
9d1cb914 15921 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
15922 if (error == NULL)
15923 return NULL;
15924
190be112 15925 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
15926 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15927
055e393f 15928 for_each_pipe(dev_priv, i) {
ddf9c536 15929 error->pipe[i].power_domain_on =
f458ebbc
DV
15930 __intel_display_power_is_enabled(dev_priv,
15931 POWER_DOMAIN_PIPE(i));
ddf9c536 15932 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
15933 continue;
15934
5efb3e28
VS
15935 error->cursor[i].control = I915_READ(CURCNTR(i));
15936 error->cursor[i].position = I915_READ(CURPOS(i));
15937 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
15938
15939 error->plane[i].control = I915_READ(DSPCNTR(i));
15940 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 15941 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 15942 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
15943 error->plane[i].pos = I915_READ(DSPPOS(i));
15944 }
ca291363
PZ
15945 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15946 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
15947 if (INTEL_INFO(dev)->gen >= 4) {
15948 error->plane[i].surface = I915_READ(DSPSURF(i));
15949 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15950 }
15951
c4a1d9e4 15952 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 15953
3abfce77 15954 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 15955 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
15956 }
15957
15958 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15959 if (HAS_DDI(dev_priv->dev))
15960 error->num_transcoders++; /* Account for eDP. */
15961
15962 for (i = 0; i < error->num_transcoders; i++) {
15963 enum transcoder cpu_transcoder = transcoders[i];
15964
ddf9c536 15965 error->transcoder[i].power_domain_on =
f458ebbc 15966 __intel_display_power_is_enabled(dev_priv,
38cc1daf 15967 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 15968 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
15969 continue;
15970
63b66e5b
CW
15971 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15972
15973 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15974 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15975 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15976 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15977 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15978 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15979 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
15980 }
15981
15982 return error;
15983}
15984
edc3d884
MK
15985#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15986
c4a1d9e4 15987void
edc3d884 15988intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
15989 struct drm_device *dev,
15990 struct intel_display_error_state *error)
15991{
055e393f 15992 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
15993 int i;
15994
63b66e5b
CW
15995 if (!error)
15996 return;
15997
edc3d884 15998 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 15999 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 16000 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 16001 error->power_well_driver);
055e393f 16002 for_each_pipe(dev_priv, i) {
edc3d884 16003 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
16004 err_printf(m, " Power: %s\n",
16005 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 16006 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 16007 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
16008
16009 err_printf(m, "Plane [%d]:\n", i);
16010 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16011 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 16012 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
16013 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16014 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 16015 }
4b71a570 16016 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 16017 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 16018 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
16019 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16020 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
16021 }
16022
edc3d884
MK
16023 err_printf(m, "Cursor [%d]:\n", i);
16024 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16025 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16026 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 16027 }
63b66e5b
CW
16028
16029 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 16030 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 16031 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
16032 err_printf(m, " Power: %s\n",
16033 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
16034 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16035 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16036 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16037 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16038 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16039 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16040 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16041 }
c4a1d9e4 16042}
e2fcdaa9
VS
16043
16044void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
16045{
16046 struct intel_crtc *crtc;
16047
16048 for_each_intel_crtc(dev, crtc) {
16049 struct intel_unpin_work *work;
e2fcdaa9 16050
5e2d7afc 16051 spin_lock_irq(&dev->event_lock);
e2fcdaa9
VS
16052
16053 work = crtc->unpin_work;
16054
16055 if (work && work->event &&
16056 work->event->base.file_priv == file) {
16057 kfree(work->event);
16058 work->event = NULL;
16059 }
16060
5e2d7afc 16061 spin_unlock_irq(&dev->event_lock);
e2fcdaa9
VS
16062 }
16063}
This page took 4.704063 seconds and 5 git commands to generate.