drm/i915: Give names to the CCK_DISPLAY_CLOCK_CONTROL bits
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void intel_dp_set_m_n(struct intel_crtc *crtc);
95static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
96static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab
DV
97static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
98 struct intel_link_m_n *m_n);
99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 103
79e53945 104typedef struct {
0206e353 105 int min, max;
79e53945
JB
106} intel_range_t;
107
108typedef struct {
0206e353
AJ
109 int dot_limit;
110 int p2_slow, p2_fast;
79e53945
JB
111} intel_p2_t;
112
d4906093
ML
113typedef struct intel_limit intel_limit_t;
114struct intel_limit {
0206e353
AJ
115 intel_range_t dot, vco, n, m, m1, m2, p, p1;
116 intel_p2_t p2;
d4906093 117};
79e53945 118
d2acd215
DV
119int
120intel_pch_rawclk(struct drm_device *dev)
121{
122 struct drm_i915_private *dev_priv = dev->dev_private;
123
124 WARN_ON(!HAS_PCH_SPLIT(dev));
125
126 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
127}
128
021357ac
CW
129static inline u32 /* units of 100MHz */
130intel_fdi_link_freq(struct drm_device *dev)
131{
8b99e68c
CW
132 if (IS_GEN5(dev)) {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
135 } else
136 return 27;
021357ac
CW
137}
138
5d536e28 139static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 140 .dot = { .min = 25000, .max = 350000 },
9c333719 141 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 142 .n = { .min = 2, .max = 16 },
0206e353
AJ
143 .m = { .min = 96, .max = 140 },
144 .m1 = { .min = 18, .max = 26 },
145 .m2 = { .min = 6, .max = 16 },
146 .p = { .min = 4, .max = 128 },
147 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
148 .p2 = { .dot_limit = 165000,
149 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
150};
151
5d536e28
DV
152static const intel_limit_t intel_limits_i8xx_dvo = {
153 .dot = { .min = 25000, .max = 350000 },
9c333719 154 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 155 .n = { .min = 2, .max = 16 },
5d536e28
DV
156 .m = { .min = 96, .max = 140 },
157 .m1 = { .min = 18, .max = 26 },
158 .m2 = { .min = 6, .max = 16 },
159 .p = { .min = 4, .max = 128 },
160 .p1 = { .min = 2, .max = 33 },
161 .p2 = { .dot_limit = 165000,
162 .p2_slow = 4, .p2_fast = 4 },
163};
164
e4b36699 165static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 166 .dot = { .min = 25000, .max = 350000 },
9c333719 167 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 168 .n = { .min = 2, .max = 16 },
0206e353
AJ
169 .m = { .min = 96, .max = 140 },
170 .m1 = { .min = 18, .max = 26 },
171 .m2 = { .min = 6, .max = 16 },
172 .p = { .min = 4, .max = 128 },
173 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
174 .p2 = { .dot_limit = 165000,
175 .p2_slow = 14, .p2_fast = 7 },
e4b36699 176};
273e27ca 177
e4b36699 178static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
179 .dot = { .min = 20000, .max = 400000 },
180 .vco = { .min = 1400000, .max = 2800000 },
181 .n = { .min = 1, .max = 6 },
182 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
183 .m1 = { .min = 8, .max = 18 },
184 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
185 .p = { .min = 5, .max = 80 },
186 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
187 .p2 = { .dot_limit = 200000,
188 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
189};
190
191static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
192 .dot = { .min = 20000, .max = 400000 },
193 .vco = { .min = 1400000, .max = 2800000 },
194 .n = { .min = 1, .max = 6 },
195 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
196 .m1 = { .min = 8, .max = 18 },
197 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
198 .p = { .min = 7, .max = 98 },
199 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
200 .p2 = { .dot_limit = 112000,
201 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
202};
203
273e27ca 204
e4b36699 205static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
206 .dot = { .min = 25000, .max = 270000 },
207 .vco = { .min = 1750000, .max = 3500000},
208 .n = { .min = 1, .max = 4 },
209 .m = { .min = 104, .max = 138 },
210 .m1 = { .min = 17, .max = 23 },
211 .m2 = { .min = 5, .max = 11 },
212 .p = { .min = 10, .max = 30 },
213 .p1 = { .min = 1, .max = 3},
214 .p2 = { .dot_limit = 270000,
215 .p2_slow = 10,
216 .p2_fast = 10
044c7c41 217 },
e4b36699
KP
218};
219
220static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
221 .dot = { .min = 22000, .max = 400000 },
222 .vco = { .min = 1750000, .max = 3500000},
223 .n = { .min = 1, .max = 4 },
224 .m = { .min = 104, .max = 138 },
225 .m1 = { .min = 16, .max = 23 },
226 .m2 = { .min = 5, .max = 11 },
227 .p = { .min = 5, .max = 80 },
228 .p1 = { .min = 1, .max = 8},
229 .p2 = { .dot_limit = 165000,
230 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
234 .dot = { .min = 20000, .max = 115000 },
235 .vco = { .min = 1750000, .max = 3500000 },
236 .n = { .min = 1, .max = 3 },
237 .m = { .min = 104, .max = 138 },
238 .m1 = { .min = 17, .max = 23 },
239 .m2 = { .min = 5, .max = 11 },
240 .p = { .min = 28, .max = 112 },
241 .p1 = { .min = 2, .max = 8 },
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 14, .p2_fast = 14
044c7c41 244 },
e4b36699
KP
245};
246
247static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
248 .dot = { .min = 80000, .max = 224000 },
249 .vco = { .min = 1750000, .max = 3500000 },
250 .n = { .min = 1, .max = 3 },
251 .m = { .min = 104, .max = 138 },
252 .m1 = { .min = 17, .max = 23 },
253 .m2 = { .min = 5, .max = 11 },
254 .p = { .min = 14, .max = 42 },
255 .p1 = { .min = 2, .max = 6 },
256 .p2 = { .dot_limit = 0,
257 .p2_slow = 7, .p2_fast = 7
044c7c41 258 },
e4b36699
KP
259};
260
f2b115e6 261static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
262 .dot = { .min = 20000, .max = 400000},
263 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 264 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
265 .n = { .min = 3, .max = 6 },
266 .m = { .min = 2, .max = 256 },
273e27ca 267 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 5, .max = 80 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 200000,
273 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
274};
275
f2b115e6 276static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
277 .dot = { .min = 20000, .max = 400000 },
278 .vco = { .min = 1700000, .max = 3500000 },
279 .n = { .min = 3, .max = 6 },
280 .m = { .min = 2, .max = 256 },
281 .m1 = { .min = 0, .max = 0 },
282 .m2 = { .min = 0, .max = 254 },
283 .p = { .min = 7, .max = 112 },
284 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
285 .p2 = { .dot_limit = 112000,
286 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
287};
288
273e27ca
EA
289/* Ironlake / Sandybridge
290 *
291 * We calculate clock using (register_value + 2) for N/M1/M2, so here
292 * the range value for them is (actual_value - 2).
293 */
b91ad0ec 294static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
295 .dot = { .min = 25000, .max = 350000 },
296 .vco = { .min = 1760000, .max = 3510000 },
297 .n = { .min = 1, .max = 5 },
298 .m = { .min = 79, .max = 127 },
299 .m1 = { .min = 12, .max = 22 },
300 .m2 = { .min = 5, .max = 9 },
301 .p = { .min = 5, .max = 80 },
302 .p1 = { .min = 1, .max = 8 },
303 .p2 = { .dot_limit = 225000,
304 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
305};
306
b91ad0ec 307static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
308 .dot = { .min = 25000, .max = 350000 },
309 .vco = { .min = 1760000, .max = 3510000 },
310 .n = { .min = 1, .max = 3 },
311 .m = { .min = 79, .max = 118 },
312 .m1 = { .min = 12, .max = 22 },
313 .m2 = { .min = 5, .max = 9 },
314 .p = { .min = 28, .max = 112 },
315 .p1 = { .min = 2, .max = 8 },
316 .p2 = { .dot_limit = 225000,
317 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
318};
319
320static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
331};
332
273e27ca 333/* LVDS 100mhz refclk limits. */
b91ad0ec 334static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
335 .dot = { .min = 25000, .max = 350000 },
336 .vco = { .min = 1760000, .max = 3510000 },
337 .n = { .min = 1, .max = 2 },
338 .m = { .min = 79, .max = 126 },
339 .m1 = { .min = 12, .max = 22 },
340 .m2 = { .min = 5, .max = 9 },
341 .p = { .min = 28, .max = 112 },
0206e353 342 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
343 .p2 = { .dot_limit = 225000,
344 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
0206e353 355 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
358};
359
dc730512 360static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
361 /*
362 * These are the data rate limits (measured in fast clocks)
363 * since those are the strictest limits we have. The fast
364 * clock and actual rate limits are more relaxed, so checking
365 * them would make no difference.
366 */
367 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 368 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 369 .n = { .min = 1, .max = 7 },
a0c4da24
JB
370 .m1 = { .min = 2, .max = 3 },
371 .m2 = { .min = 11, .max = 156 },
b99ab663 372 .p1 = { .min = 2, .max = 3 },
5fdc9c49 373 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
374};
375
ef9348c8
CML
376static const intel_limit_t intel_limits_chv = {
377 /*
378 * These are the data rate limits (measured in fast clocks)
379 * since those are the strictest limits we have. The fast
380 * clock and actual rate limits are more relaxed, so checking
381 * them would make no difference.
382 */
383 .dot = { .min = 25000 * 5, .max = 540000 * 5},
384 .vco = { .min = 4860000, .max = 6700000 },
385 .n = { .min = 1, .max = 1 },
386 .m1 = { .min = 2, .max = 2 },
387 .m2 = { .min = 24 << 22, .max = 175 << 22 },
388 .p1 = { .min = 2, .max = 4 },
389 .p2 = { .p2_slow = 1, .p2_fast = 14 },
390};
391
6b4bf1c4
VS
392static void vlv_clock(int refclk, intel_clock_t *clock)
393{
394 clock->m = clock->m1 * clock->m2;
395 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
396 if (WARN_ON(clock->n == 0 || clock->p == 0))
397 return;
fb03ac01
VS
398 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
399 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
400}
401
e0638cdf
PZ
402/**
403 * Returns whether any output on the specified pipe is of the specified type
404 */
405static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
406{
407 struct drm_device *dev = crtc->dev;
408 struct intel_encoder *encoder;
409
410 for_each_encoder_on_crtc(dev, crtc, encoder)
411 if (encoder->type == type)
412 return true;
413
414 return false;
415}
416
1b894b59
CW
417static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
418 int refclk)
2c07245f 419{
b91ad0ec 420 struct drm_device *dev = crtc->dev;
2c07245f 421 const intel_limit_t *limit;
b91ad0ec
ZW
422
423 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 424 if (intel_is_dual_link_lvds(dev)) {
1b894b59 425 if (refclk == 100000)
b91ad0ec
ZW
426 limit = &intel_limits_ironlake_dual_lvds_100m;
427 else
428 limit = &intel_limits_ironlake_dual_lvds;
429 } else {
1b894b59 430 if (refclk == 100000)
b91ad0ec
ZW
431 limit = &intel_limits_ironlake_single_lvds_100m;
432 else
433 limit = &intel_limits_ironlake_single_lvds;
434 }
c6bb3538 435 } else
b91ad0ec 436 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
437
438 return limit;
439}
440
044c7c41
ML
441static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
442{
443 struct drm_device *dev = crtc->dev;
044c7c41
ML
444 const intel_limit_t *limit;
445
446 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 447 if (intel_is_dual_link_lvds(dev))
e4b36699 448 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 449 else
e4b36699 450 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
451 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
452 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 453 limit = &intel_limits_g4x_hdmi;
044c7c41 454 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 455 limit = &intel_limits_g4x_sdvo;
044c7c41 456 } else /* The option is for other outputs */
e4b36699 457 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
458
459 return limit;
460}
461
1b894b59 462static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
463{
464 struct drm_device *dev = crtc->dev;
465 const intel_limit_t *limit;
466
bad720ff 467 if (HAS_PCH_SPLIT(dev))
1b894b59 468 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 469 else if (IS_G4X(dev)) {
044c7c41 470 limit = intel_g4x_limit(crtc);
f2b115e6 471 } else if (IS_PINEVIEW(dev)) {
2177832f 472 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 473 limit = &intel_limits_pineview_lvds;
2177832f 474 else
f2b115e6 475 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
476 } else if (IS_CHERRYVIEW(dev)) {
477 limit = &intel_limits_chv;
a0c4da24 478 } else if (IS_VALLEYVIEW(dev)) {
dc730512 479 limit = &intel_limits_vlv;
a6c45cf0
CW
480 } else if (!IS_GEN2(dev)) {
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
482 limit = &intel_limits_i9xx_lvds;
483 else
484 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
485 } else {
486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 487 limit = &intel_limits_i8xx_lvds;
5d536e28 488 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 489 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
490 else
491 limit = &intel_limits_i8xx_dac;
79e53945
JB
492 }
493 return limit;
494}
495
f2b115e6
AJ
496/* m1 is reserved as 0 in Pineview, n is a ring counter */
497static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 498{
2177832f
SL
499 clock->m = clock->m2 + 2;
500 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
501 if (WARN_ON(clock->n == 0 || clock->p == 0))
502 return;
fb03ac01
VS
503 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
504 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
505}
506
7429e9d4
DV
507static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
508{
509 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
510}
511
ac58c3f0 512static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 513{
7429e9d4 514 clock->m = i9xx_dpll_compute_m(clock);
79e53945 515 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
516 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
517 return;
fb03ac01
VS
518 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
519 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
520}
521
ef9348c8
CML
522static void chv_clock(int refclk, intel_clock_t *clock)
523{
524 clock->m = clock->m1 * clock->m2;
525 clock->p = clock->p1 * clock->p2;
526 if (WARN_ON(clock->n == 0 || clock->p == 0))
527 return;
528 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
529 clock->n << 22);
530 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
531}
532
7c04d1d9 533#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
534/**
535 * Returns whether the given set of divisors are valid for a given refclk with
536 * the given connectors.
537 */
538
1b894b59
CW
539static bool intel_PLL_is_valid(struct drm_device *dev,
540 const intel_limit_t *limit,
541 const intel_clock_t *clock)
79e53945 542{
f01b7962
VS
543 if (clock->n < limit->n.min || limit->n.max < clock->n)
544 INTELPllInvalid("n out of range\n");
79e53945 545 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 546 INTELPllInvalid("p1 out of range\n");
79e53945 547 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 548 INTELPllInvalid("m2 out of range\n");
79e53945 549 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 550 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
551
552 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
553 if (clock->m1 <= clock->m2)
554 INTELPllInvalid("m1 <= m2\n");
555
556 if (!IS_VALLEYVIEW(dev)) {
557 if (clock->p < limit->p.min || limit->p.max < clock->p)
558 INTELPllInvalid("p out of range\n");
559 if (clock->m < limit->m.min || limit->m.max < clock->m)
560 INTELPllInvalid("m out of range\n");
561 }
562
79e53945 563 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 564 INTELPllInvalid("vco out of range\n");
79e53945
JB
565 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
566 * connector, etc., rather than just a single range.
567 */
568 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 569 INTELPllInvalid("dot out of range\n");
79e53945
JB
570
571 return true;
572}
573
d4906093 574static bool
ee9300bb 575i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
576 int target, int refclk, intel_clock_t *match_clock,
577 intel_clock_t *best_clock)
79e53945
JB
578{
579 struct drm_device *dev = crtc->dev;
79e53945 580 intel_clock_t clock;
79e53945
JB
581 int err = target;
582
a210b028 583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 584 /*
a210b028
DV
585 * For LVDS just rely on its current settings for dual-channel.
586 * We haven't figured out how to reliably set up different
587 * single/dual channel state, if we even can.
79e53945 588 */
1974cad0 589 if (intel_is_dual_link_lvds(dev))
79e53945
JB
590 clock.p2 = limit->p2.p2_fast;
591 else
592 clock.p2 = limit->p2.p2_slow;
593 } else {
594 if (target < limit->p2.dot_limit)
595 clock.p2 = limit->p2.p2_slow;
596 else
597 clock.p2 = limit->p2.p2_fast;
598 }
599
0206e353 600 memset(best_clock, 0, sizeof(*best_clock));
79e53945 601
42158660
ZY
602 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
603 clock.m1++) {
604 for (clock.m2 = limit->m2.min;
605 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 606 if (clock.m2 >= clock.m1)
42158660
ZY
607 break;
608 for (clock.n = limit->n.min;
609 clock.n <= limit->n.max; clock.n++) {
610 for (clock.p1 = limit->p1.min;
611 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
612 int this_err;
613
ac58c3f0
DV
614 i9xx_clock(refclk, &clock);
615 if (!intel_PLL_is_valid(dev, limit,
616 &clock))
617 continue;
618 if (match_clock &&
619 clock.p != match_clock->p)
620 continue;
621
622 this_err = abs(clock.dot - target);
623 if (this_err < err) {
624 *best_clock = clock;
625 err = this_err;
626 }
627 }
628 }
629 }
630 }
631
632 return (err != target);
633}
634
635static bool
ee9300bb
DV
636pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
637 int target, int refclk, intel_clock_t *match_clock,
638 intel_clock_t *best_clock)
79e53945
JB
639{
640 struct drm_device *dev = crtc->dev;
79e53945 641 intel_clock_t clock;
79e53945
JB
642 int err = target;
643
a210b028 644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 645 /*
a210b028
DV
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
79e53945 649 */
1974cad0 650 if (intel_is_dual_link_lvds(dev))
79e53945
JB
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
0206e353 661 memset(best_clock, 0, sizeof(*best_clock));
79e53945 662
42158660
ZY
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
667 for (clock.n = limit->n.min;
668 clock.n <= limit->n.max; clock.n++) {
669 for (clock.p1 = limit->p1.min;
670 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
671 int this_err;
672
ac58c3f0 673 pineview_clock(refclk, &clock);
1b894b59
CW
674 if (!intel_PLL_is_valid(dev, limit,
675 &clock))
79e53945 676 continue;
cec2f356
SP
677 if (match_clock &&
678 clock.p != match_clock->p)
679 continue;
79e53945
JB
680
681 this_err = abs(clock.dot - target);
682 if (this_err < err) {
683 *best_clock = clock;
684 err = this_err;
685 }
686 }
687 }
688 }
689 }
690
691 return (err != target);
692}
693
d4906093 694static bool
ee9300bb
DV
695g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
696 int target, int refclk, intel_clock_t *match_clock,
697 intel_clock_t *best_clock)
d4906093
ML
698{
699 struct drm_device *dev = crtc->dev;
d4906093
ML
700 intel_clock_t clock;
701 int max_n;
702 bool found;
6ba770dc
AJ
703 /* approximately equals target * 0.00585 */
704 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
705 found = false;
706
707 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 708 if (intel_is_dual_link_lvds(dev))
d4906093
ML
709 clock.p2 = limit->p2.p2_fast;
710 else
711 clock.p2 = limit->p2.p2_slow;
712 } else {
713 if (target < limit->p2.dot_limit)
714 clock.p2 = limit->p2.p2_slow;
715 else
716 clock.p2 = limit->p2.p2_fast;
717 }
718
719 memset(best_clock, 0, sizeof(*best_clock));
720 max_n = limit->n.max;
f77f13e2 721 /* based on hardware requirement, prefer smaller n to precision */
d4906093 722 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 723 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
724 for (clock.m1 = limit->m1.max;
725 clock.m1 >= limit->m1.min; clock.m1--) {
726 for (clock.m2 = limit->m2.max;
727 clock.m2 >= limit->m2.min; clock.m2--) {
728 for (clock.p1 = limit->p1.max;
729 clock.p1 >= limit->p1.min; clock.p1--) {
730 int this_err;
731
ac58c3f0 732 i9xx_clock(refclk, &clock);
1b894b59
CW
733 if (!intel_PLL_is_valid(dev, limit,
734 &clock))
d4906093 735 continue;
1b894b59
CW
736
737 this_err = abs(clock.dot - target);
d4906093
ML
738 if (this_err < err_most) {
739 *best_clock = clock;
740 err_most = this_err;
741 max_n = clock.n;
742 found = true;
743 }
744 }
745 }
746 }
747 }
2c07245f
ZW
748 return found;
749}
750
a0c4da24 751static bool
ee9300bb
DV
752vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
753 int target, int refclk, intel_clock_t *match_clock,
754 intel_clock_t *best_clock)
a0c4da24 755{
f01b7962 756 struct drm_device *dev = crtc->dev;
6b4bf1c4 757 intel_clock_t clock;
69e4f900 758 unsigned int bestppm = 1000000;
27e639bf
VS
759 /* min update 19.2 MHz */
760 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 761 bool found = false;
a0c4da24 762
6b4bf1c4
VS
763 target *= 5; /* fast clock */
764
765 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
766
767 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 768 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 769 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 770 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 771 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 772 clock.p = clock.p1 * clock.p2;
a0c4da24 773 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 774 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
775 unsigned int ppm, diff;
776
6b4bf1c4
VS
777 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
778 refclk * clock.m1);
779
780 vlv_clock(refclk, &clock);
43b0ac53 781
f01b7962
VS
782 if (!intel_PLL_is_valid(dev, limit,
783 &clock))
43b0ac53
VS
784 continue;
785
6b4bf1c4
VS
786 diff = abs(clock.dot - target);
787 ppm = div_u64(1000000ULL * diff, target);
788
789 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 790 bestppm = 0;
6b4bf1c4 791 *best_clock = clock;
49e497ef 792 found = true;
43b0ac53 793 }
6b4bf1c4 794
c686122c 795 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 796 bestppm = ppm;
6b4bf1c4 797 *best_clock = clock;
49e497ef 798 found = true;
a0c4da24
JB
799 }
800 }
801 }
802 }
803 }
a0c4da24 804
49e497ef 805 return found;
a0c4da24 806}
a4fc5ed6 807
ef9348c8
CML
808static bool
809chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815 uint64_t m2;
816 int found = false;
817
818 memset(best_clock, 0, sizeof(*best_clock));
819
820 /*
821 * Based on hardware doc, the n always set to 1, and m1 always
822 * set to 2. If requires to support 200Mhz refclk, we need to
823 * revisit this because n may not 1 anymore.
824 */
825 clock.n = 1, clock.m1 = 2;
826 target *= 5; /* fast clock */
827
828 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
829 for (clock.p2 = limit->p2.p2_fast;
830 clock.p2 >= limit->p2.p2_slow;
831 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
832
833 clock.p = clock.p1 * clock.p2;
834
835 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
836 clock.n) << 22, refclk * clock.m1);
837
838 if (m2 > INT_MAX/clock.m1)
839 continue;
840
841 clock.m2 = m2;
842
843 chv_clock(refclk, &clock);
844
845 if (!intel_PLL_is_valid(dev, limit, &clock))
846 continue;
847
848 /* based on hardware requirement, prefer bigger p
849 */
850 if (clock.p > best_clock->p) {
851 *best_clock = clock;
852 found = true;
853 }
854 }
855 }
856
857 return found;
858}
859
20ddf665
VS
860bool intel_crtc_active(struct drm_crtc *crtc)
861{
862 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
863
864 /* Be paranoid as we can arrive here with only partial
865 * state retrieved from the hardware during setup.
866 *
241bfc38 867 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
868 * as Haswell has gained clock readout/fastboot support.
869 *
66e514c1 870 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
871 * properly reconstruct framebuffers.
872 */
f4510a27 873 return intel_crtc->active && crtc->primary->fb &&
241bfc38 874 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
875}
876
a5c961d1
PZ
877enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
878 enum pipe pipe)
879{
880 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
882
3b117c8f 883 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
884}
885
57e22f4a 886static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
887{
888 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 889 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
890
891 frame = I915_READ(frame_reg);
892
893 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 894 WARN(1, "vblank wait timed out\n");
a928d536
PZ
895}
896
9d0498a2
JB
897/**
898 * intel_wait_for_vblank - wait for vblank on a given pipe
899 * @dev: drm device
900 * @pipe: pipe to wait for
901 *
902 * Wait for vblank to occur on a given pipe. Needed for various bits of
903 * mode setting code.
904 */
905void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 906{
9d0498a2 907 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 908 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 909
57e22f4a
VS
910 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
911 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
912 return;
913 }
914
300387c0
CW
915 /* Clear existing vblank status. Note this will clear any other
916 * sticky status fields as well.
917 *
918 * This races with i915_driver_irq_handler() with the result
919 * that either function could miss a vblank event. Here it is not
920 * fatal, as we will either wait upon the next vblank interrupt or
921 * timeout. Generally speaking intel_wait_for_vblank() is only
922 * called during modeset at which time the GPU should be idle and
923 * should *not* be performing page flips and thus not waiting on
924 * vblanks...
925 * Currently, the result of us stealing a vblank from the irq
926 * handler is that a single frame will be skipped during swapbuffers.
927 */
928 I915_WRITE(pipestat_reg,
929 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
930
9d0498a2 931 /* Wait for vblank interrupt bit to set */
481b6af3
CW
932 if (wait_for(I915_READ(pipestat_reg) &
933 PIPE_VBLANK_INTERRUPT_STATUS,
934 50))
9d0498a2
JB
935 DRM_DEBUG_KMS("vblank wait timed out\n");
936}
937
fbf49ea2
VS
938static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
939{
940 struct drm_i915_private *dev_priv = dev->dev_private;
941 u32 reg = PIPEDSL(pipe);
942 u32 line1, line2;
943 u32 line_mask;
944
945 if (IS_GEN2(dev))
946 line_mask = DSL_LINEMASK_GEN2;
947 else
948 line_mask = DSL_LINEMASK_GEN3;
949
950 line1 = I915_READ(reg) & line_mask;
951 mdelay(5);
952 line2 = I915_READ(reg) & line_mask;
953
954 return line1 == line2;
955}
956
ab7ad7f6
KP
957/*
958 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
959 * @dev: drm device
960 * @pipe: pipe to wait for
961 *
962 * After disabling a pipe, we can't wait for vblank in the usual way,
963 * spinning on the vblank interrupt status bit, since we won't actually
964 * see an interrupt when the pipe is disabled.
965 *
ab7ad7f6
KP
966 * On Gen4 and above:
967 * wait for the pipe register state bit to turn off
968 *
969 * Otherwise:
970 * wait for the display line value to settle (it usually
971 * ends up stopping at the start of the next frame).
58e10eb9 972 *
9d0498a2 973 */
58e10eb9 974void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
975{
976 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
977 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
978 pipe);
ab7ad7f6
KP
979
980 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 981 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
982
983 /* Wait for the Pipe State to go off */
58e10eb9
CW
984 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
985 100))
284637d9 986 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 987 } else {
ab7ad7f6 988 /* Wait for the display line to settle */
fbf49ea2 989 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 990 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 991 }
79e53945
JB
992}
993
b0ea7d37
DL
994/*
995 * ibx_digital_port_connected - is the specified port connected?
996 * @dev_priv: i915 private structure
997 * @port: the port to test
998 *
999 * Returns true if @port is connected, false otherwise.
1000 */
1001bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1002 struct intel_digital_port *port)
1003{
1004 u32 bit;
1005
c36346e3 1006 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1007 switch (port->port) {
c36346e3
DL
1008 case PORT_B:
1009 bit = SDE_PORTB_HOTPLUG;
1010 break;
1011 case PORT_C:
1012 bit = SDE_PORTC_HOTPLUG;
1013 break;
1014 case PORT_D:
1015 bit = SDE_PORTD_HOTPLUG;
1016 break;
1017 default:
1018 return true;
1019 }
1020 } else {
eba905b2 1021 switch (port->port) {
c36346e3
DL
1022 case PORT_B:
1023 bit = SDE_PORTB_HOTPLUG_CPT;
1024 break;
1025 case PORT_C:
1026 bit = SDE_PORTC_HOTPLUG_CPT;
1027 break;
1028 case PORT_D:
1029 bit = SDE_PORTD_HOTPLUG_CPT;
1030 break;
1031 default:
1032 return true;
1033 }
b0ea7d37
DL
1034 }
1035
1036 return I915_READ(SDEISR) & bit;
1037}
1038
b24e7179
JB
1039static const char *state_string(bool enabled)
1040{
1041 return enabled ? "on" : "off";
1042}
1043
1044/* Only for pre-ILK configs */
55607e8a
DV
1045void assert_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
b24e7179
JB
1047{
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = DPLL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & DPLL_VCO_ENABLE);
1055 WARN(cur_state != state,
1056 "PLL state assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058}
b24e7179 1059
23538ef1
JN
1060/* XXX: the dsi pll is shared between MIPI DSI ports */
1061static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1062{
1063 u32 val;
1064 bool cur_state;
1065
1066 mutex_lock(&dev_priv->dpio_lock);
1067 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1068 mutex_unlock(&dev_priv->dpio_lock);
1069
1070 cur_state = val & DSI_PLL_VCO_EN;
1071 WARN(cur_state != state,
1072 "DSI PLL state assertion failure (expected %s, current %s)\n",
1073 state_string(state), state_string(cur_state));
1074}
1075#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1076#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1077
55607e8a 1078struct intel_shared_dpll *
e2b78267
DV
1079intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1080{
1081 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1082
a43f6e0f 1083 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1084 return NULL;
1085
a43f6e0f 1086 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1087}
1088
040484af 1089/* For ILK+ */
55607e8a
DV
1090void assert_shared_dpll(struct drm_i915_private *dev_priv,
1091 struct intel_shared_dpll *pll,
1092 bool state)
040484af 1093{
040484af 1094 bool cur_state;
5358901f 1095 struct intel_dpll_hw_state hw_state;
040484af 1096
9d82aa17
ED
1097 if (HAS_PCH_LPT(dev_priv->dev)) {
1098 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1099 return;
1100 }
1101
92b27b08 1102 if (WARN (!pll,
46edb027 1103 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1104 return;
ee7b9f93 1105
5358901f 1106 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1107 WARN(cur_state != state,
5358901f
DV
1108 "%s assertion failure (expected %s, current %s)\n",
1109 pll->name, state_string(state), state_string(cur_state));
040484af 1110}
040484af
JB
1111
1112static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1113 enum pipe pipe, bool state)
1114{
1115 int reg;
1116 u32 val;
1117 bool cur_state;
ad80a810
PZ
1118 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1119 pipe);
040484af 1120
affa9354
PZ
1121 if (HAS_DDI(dev_priv->dev)) {
1122 /* DDI does not have a specific FDI_TX register */
ad80a810 1123 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1124 val = I915_READ(reg);
ad80a810 1125 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1126 } else {
1127 reg = FDI_TX_CTL(pipe);
1128 val = I915_READ(reg);
1129 cur_state = !!(val & FDI_TX_ENABLE);
1130 }
040484af
JB
1131 WARN(cur_state != state,
1132 "FDI TX state assertion failure (expected %s, current %s)\n",
1133 state_string(state), state_string(cur_state));
1134}
1135#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1136#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1137
1138static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1139 enum pipe pipe, bool state)
1140{
1141 int reg;
1142 u32 val;
1143 bool cur_state;
1144
d63fa0dc
PZ
1145 reg = FDI_RX_CTL(pipe);
1146 val = I915_READ(reg);
1147 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1148 WARN(cur_state != state,
1149 "FDI RX state assertion failure (expected %s, current %s)\n",
1150 state_string(state), state_string(cur_state));
1151}
1152#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1153#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1154
1155static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1156 enum pipe pipe)
1157{
1158 int reg;
1159 u32 val;
1160
1161 /* ILK FDI PLL is always enabled */
3d13ef2e 1162 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1163 return;
1164
bf507ef7 1165 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1166 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1167 return;
1168
040484af
JB
1169 reg = FDI_TX_CTL(pipe);
1170 val = I915_READ(reg);
1171 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1172}
1173
55607e8a
DV
1174void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1175 enum pipe pipe, bool state)
040484af
JB
1176{
1177 int reg;
1178 u32 val;
55607e8a 1179 bool cur_state;
040484af
JB
1180
1181 reg = FDI_RX_CTL(pipe);
1182 val = I915_READ(reg);
55607e8a
DV
1183 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1184 WARN(cur_state != state,
1185 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1186 state_string(state), state_string(cur_state));
040484af
JB
1187}
1188
ea0760cf
JB
1189static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1190 enum pipe pipe)
1191{
1192 int pp_reg, lvds_reg;
1193 u32 val;
1194 enum pipe panel_pipe = PIPE_A;
0de3b485 1195 bool locked = true;
ea0760cf
JB
1196
1197 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1198 pp_reg = PCH_PP_CONTROL;
1199 lvds_reg = PCH_LVDS;
1200 } else {
1201 pp_reg = PP_CONTROL;
1202 lvds_reg = LVDS;
1203 }
1204
1205 val = I915_READ(pp_reg);
1206 if (!(val & PANEL_POWER_ON) ||
1207 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1208 locked = false;
1209
1210 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1211 panel_pipe = PIPE_B;
1212
1213 WARN(panel_pipe == pipe && locked,
1214 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1215 pipe_name(pipe));
ea0760cf
JB
1216}
1217
93ce0ba6
JN
1218static void assert_cursor(struct drm_i915_private *dev_priv,
1219 enum pipe pipe, bool state)
1220{
1221 struct drm_device *dev = dev_priv->dev;
1222 bool cur_state;
1223
d9d82081 1224 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1225 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1226 else
5efb3e28 1227 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1228
1229 WARN(cur_state != state,
1230 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1231 pipe_name(pipe), state_string(state), state_string(cur_state));
1232}
1233#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1234#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1235
b840d907
JB
1236void assert_pipe(struct drm_i915_private *dev_priv,
1237 enum pipe pipe, bool state)
b24e7179
JB
1238{
1239 int reg;
1240 u32 val;
63d7bbe9 1241 bool cur_state;
702e7a56
PZ
1242 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1243 pipe);
b24e7179 1244
8e636784
DV
1245 /* if we need the pipe A quirk it must be always on */
1246 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1247 state = true;
1248
da7e29bd 1249 if (!intel_display_power_enabled(dev_priv,
b97186f0 1250 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1251 cur_state = false;
1252 } else {
1253 reg = PIPECONF(cpu_transcoder);
1254 val = I915_READ(reg);
1255 cur_state = !!(val & PIPECONF_ENABLE);
1256 }
1257
63d7bbe9
JB
1258 WARN(cur_state != state,
1259 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1260 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1261}
1262
931872fc
CW
1263static void assert_plane(struct drm_i915_private *dev_priv,
1264 enum plane plane, bool state)
b24e7179
JB
1265{
1266 int reg;
1267 u32 val;
931872fc 1268 bool cur_state;
b24e7179
JB
1269
1270 reg = DSPCNTR(plane);
1271 val = I915_READ(reg);
931872fc
CW
1272 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1273 WARN(cur_state != state,
1274 "plane %c assertion failure (expected %s, current %s)\n",
1275 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1276}
1277
931872fc
CW
1278#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1279#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1280
b24e7179
JB
1281static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1282 enum pipe pipe)
1283{
653e1026 1284 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1285 int reg, i;
1286 u32 val;
1287 int cur_pipe;
1288
653e1026
VS
1289 /* Primary planes are fixed to pipes on gen4+ */
1290 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1291 reg = DSPCNTR(pipe);
1292 val = I915_READ(reg);
83f26f16 1293 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1294 "plane %c assertion failure, should be disabled but not\n",
1295 plane_name(pipe));
19ec1358 1296 return;
28c05794 1297 }
19ec1358 1298
b24e7179 1299 /* Need to check both planes against the pipe */
08e2a7de 1300 for_each_pipe(i) {
b24e7179
JB
1301 reg = DSPCNTR(i);
1302 val = I915_READ(reg);
1303 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1304 DISPPLANE_SEL_PIPE_SHIFT;
1305 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1306 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1307 plane_name(i), pipe_name(pipe));
b24e7179
JB
1308 }
1309}
1310
19332d7a
JB
1311static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1312 enum pipe pipe)
1313{
20674eef 1314 struct drm_device *dev = dev_priv->dev;
1fe47785 1315 int reg, sprite;
19332d7a
JB
1316 u32 val;
1317
20674eef 1318 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1319 for_each_sprite(pipe, sprite) {
1320 reg = SPCNTR(pipe, sprite);
20674eef 1321 val = I915_READ(reg);
83f26f16 1322 WARN(val & SP_ENABLE,
20674eef 1323 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1324 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1325 }
1326 } else if (INTEL_INFO(dev)->gen >= 7) {
1327 reg = SPRCTL(pipe);
19332d7a 1328 val = I915_READ(reg);
83f26f16 1329 WARN(val & SPRITE_ENABLE,
06da8da2 1330 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1331 plane_name(pipe), pipe_name(pipe));
1332 } else if (INTEL_INFO(dev)->gen >= 5) {
1333 reg = DVSCNTR(pipe);
19332d7a 1334 val = I915_READ(reg);
83f26f16 1335 WARN(val & DVS_ENABLE,
06da8da2 1336 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1337 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1338 }
1339}
1340
89eff4be 1341static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1342{
1343 u32 val;
1344 bool enabled;
1345
89eff4be 1346 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1347
92f2584a
JB
1348 val = I915_READ(PCH_DREF_CONTROL);
1349 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1350 DREF_SUPERSPREAD_SOURCE_MASK));
1351 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1352}
1353
ab9412ba
DV
1354static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1355 enum pipe pipe)
92f2584a
JB
1356{
1357 int reg;
1358 u32 val;
1359 bool enabled;
1360
ab9412ba 1361 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1362 val = I915_READ(reg);
1363 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1364 WARN(enabled,
1365 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1366 pipe_name(pipe));
92f2584a
JB
1367}
1368
4e634389
KP
1369static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1370 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1371{
1372 if ((val & DP_PORT_EN) == 0)
1373 return false;
1374
1375 if (HAS_PCH_CPT(dev_priv->dev)) {
1376 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1377 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1378 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1379 return false;
44f37d1f
CML
1380 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1381 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1382 return false;
f0575e92
KP
1383 } else {
1384 if ((val & DP_PIPE_MASK) != (pipe << 30))
1385 return false;
1386 }
1387 return true;
1388}
1389
1519b995
KP
1390static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1391 enum pipe pipe, u32 val)
1392{
dc0fa718 1393 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1394 return false;
1395
1396 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1397 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1398 return false;
44f37d1f
CML
1399 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1400 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1401 return false;
1519b995 1402 } else {
dc0fa718 1403 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1404 return false;
1405 }
1406 return true;
1407}
1408
1409static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, u32 val)
1411{
1412 if ((val & LVDS_PORT_EN) == 0)
1413 return false;
1414
1415 if (HAS_PCH_CPT(dev_priv->dev)) {
1416 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1417 return false;
1418 } else {
1419 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1420 return false;
1421 }
1422 return true;
1423}
1424
1425static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1426 enum pipe pipe, u32 val)
1427{
1428 if ((val & ADPA_DAC_ENABLE) == 0)
1429 return false;
1430 if (HAS_PCH_CPT(dev_priv->dev)) {
1431 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1432 return false;
1433 } else {
1434 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1435 return false;
1436 }
1437 return true;
1438}
1439
291906f1 1440static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1441 enum pipe pipe, int reg, u32 port_sel)
291906f1 1442{
47a05eca 1443 u32 val = I915_READ(reg);
4e634389 1444 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1445 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1446 reg, pipe_name(pipe));
de9a35ab 1447
75c5da27
DV
1448 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1449 && (val & DP_PIPEB_SELECT),
de9a35ab 1450 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1451}
1452
1453static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1454 enum pipe pipe, int reg)
1455{
47a05eca 1456 u32 val = I915_READ(reg);
b70ad586 1457 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1458 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1459 reg, pipe_name(pipe));
de9a35ab 1460
dc0fa718 1461 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1462 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1463 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1464}
1465
1466static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1467 enum pipe pipe)
1468{
1469 int reg;
1470 u32 val;
291906f1 1471
f0575e92
KP
1472 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1473 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1475
1476 reg = PCH_ADPA;
1477 val = I915_READ(reg);
b70ad586 1478 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1479 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1480 pipe_name(pipe));
291906f1
JB
1481
1482 reg = PCH_LVDS;
1483 val = I915_READ(reg);
b70ad586 1484 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1486 pipe_name(pipe));
291906f1 1487
e2debe91
PZ
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1491}
1492
40e9cf64
JB
1493static void intel_init_dpio(struct drm_device *dev)
1494{
1495 struct drm_i915_private *dev_priv = dev->dev_private;
1496
1497 if (!IS_VALLEYVIEW(dev))
1498 return;
1499
a09caddd
CML
1500 /*
1501 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1502 * CHV x1 PHY (DP/HDMI D)
1503 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1504 */
1505 if (IS_CHERRYVIEW(dev)) {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1507 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1508 } else {
1509 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1510 }
5382f5f3
JB
1511}
1512
1513static void intel_reset_dpio(struct drm_device *dev)
1514{
1515 struct drm_i915_private *dev_priv = dev->dev_private;
1516
1517 if (!IS_VALLEYVIEW(dev))
1518 return;
1519
076ed3b2
CML
1520 if (IS_CHERRYVIEW(dev)) {
1521 enum dpio_phy phy;
1522 u32 val;
1523
1524 for (phy = DPIO_PHY0; phy < I915_NUM_PHYS_VLV; phy++) {
1525 /* Poll for phypwrgood signal */
1526 if (wait_for(I915_READ(DISPLAY_PHY_STATUS) &
1527 PHY_POWERGOOD(phy), 1))
1528 DRM_ERROR("Display PHY %d is not power up\n", phy);
1529
1530 /*
1531 * Deassert common lane reset for PHY.
1532 *
1533 * This should only be done on init and resume from S3
1534 * with both PLLs disabled, or we risk losing DPIO and
1535 * PLL synchronization.
1536 */
1537 val = I915_READ(DISPLAY_PHY_CONTROL);
1538 I915_WRITE(DISPLAY_PHY_CONTROL,
1539 PHY_COM_LANE_RESET_DEASSERT(phy, val));
1540 }
1541
1542 } else {
1543 /*
57021059
JB
1544 * If DPIO has already been reset, e.g. by BIOS, just skip all
1545 * this.
076ed3b2 1546 */
57021059
JB
1547 if (I915_READ(DPIO_CTL) & DPIO_CMNRST)
1548 return;
1549
1550 /*
1551 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1552 * Need to assert and de-assert PHY SB reset by gating the
1553 * common lane power, then un-gating it.
1554 * Simply ungating isn't enough to reset the PHY enough to get
1555 * ports and lanes running.
1556 */
1557 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1558 false);
1559 __vlv_set_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC,
1560 true);
076ed3b2 1561 }
40e9cf64
JB
1562}
1563
426115cf 1564static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1565{
426115cf
DV
1566 struct drm_device *dev = crtc->base.dev;
1567 struct drm_i915_private *dev_priv = dev->dev_private;
1568 int reg = DPLL(crtc->pipe);
1569 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1570
426115cf 1571 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1572
1573 /* No really, not for ILK+ */
1574 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1575
1576 /* PLL is protected by panel, make sure we can write it */
1577 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1578 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1579
426115cf
DV
1580 I915_WRITE(reg, dpll);
1581 POSTING_READ(reg);
1582 udelay(150);
1583
1584 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1585 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1586
1587 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1588 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1589
1590 /* We do this three times for luck */
426115cf 1591 I915_WRITE(reg, dpll);
87442f73
DV
1592 POSTING_READ(reg);
1593 udelay(150); /* wait for warmup */
426115cf 1594 I915_WRITE(reg, dpll);
87442f73
DV
1595 POSTING_READ(reg);
1596 udelay(150); /* wait for warmup */
426115cf 1597 I915_WRITE(reg, dpll);
87442f73
DV
1598 POSTING_READ(reg);
1599 udelay(150); /* wait for warmup */
1600}
1601
9d556c99
CML
1602static void chv_enable_pll(struct intel_crtc *crtc)
1603{
1604 struct drm_device *dev = crtc->base.dev;
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606 int pipe = crtc->pipe;
1607 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1608 u32 tmp;
1609
1610 assert_pipe_disabled(dev_priv, crtc->pipe);
1611
1612 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1613
1614 mutex_lock(&dev_priv->dpio_lock);
1615
1616 /* Enable back the 10bit clock to display controller */
1617 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1618 tmp |= DPIO_DCLKP_EN;
1619 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1620
1621 /*
1622 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1623 */
1624 udelay(1);
1625
1626 /* Enable PLL */
a11b0703 1627 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1628
1629 /* Check PLL is locked */
a11b0703 1630 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1631 DRM_ERROR("PLL %d failed to lock\n", pipe);
1632
a11b0703
VS
1633 /* not sure when this should be written */
1634 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1635 POSTING_READ(DPLL_MD(pipe));
1636
9d556c99
CML
1637 mutex_unlock(&dev_priv->dpio_lock);
1638}
1639
66e3d5c0 1640static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1641{
66e3d5c0
DV
1642 struct drm_device *dev = crtc->base.dev;
1643 struct drm_i915_private *dev_priv = dev->dev_private;
1644 int reg = DPLL(crtc->pipe);
1645 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1646
66e3d5c0 1647 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1648
63d7bbe9 1649 /* No really, not for ILK+ */
3d13ef2e 1650 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1651
1652 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1653 if (IS_MOBILE(dev) && !IS_I830(dev))
1654 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1655
66e3d5c0
DV
1656 I915_WRITE(reg, dpll);
1657
1658 /* Wait for the clocks to stabilize. */
1659 POSTING_READ(reg);
1660 udelay(150);
1661
1662 if (INTEL_INFO(dev)->gen >= 4) {
1663 I915_WRITE(DPLL_MD(crtc->pipe),
1664 crtc->config.dpll_hw_state.dpll_md);
1665 } else {
1666 /* The pixel multiplier can only be updated once the
1667 * DPLL is enabled and the clocks are stable.
1668 *
1669 * So write it again.
1670 */
1671 I915_WRITE(reg, dpll);
1672 }
63d7bbe9
JB
1673
1674 /* We do this three times for luck */
66e3d5c0 1675 I915_WRITE(reg, dpll);
63d7bbe9
JB
1676 POSTING_READ(reg);
1677 udelay(150); /* wait for warmup */
66e3d5c0 1678 I915_WRITE(reg, dpll);
63d7bbe9
JB
1679 POSTING_READ(reg);
1680 udelay(150); /* wait for warmup */
66e3d5c0 1681 I915_WRITE(reg, dpll);
63d7bbe9
JB
1682 POSTING_READ(reg);
1683 udelay(150); /* wait for warmup */
1684}
1685
1686/**
50b44a44 1687 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1688 * @dev_priv: i915 private structure
1689 * @pipe: pipe PLL to disable
1690 *
1691 * Disable the PLL for @pipe, making sure the pipe is off first.
1692 *
1693 * Note! This is for pre-ILK only.
1694 */
50b44a44 1695static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1696{
63d7bbe9
JB
1697 /* Don't disable pipe A or pipe A PLLs if needed */
1698 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1699 return;
1700
1701 /* Make sure the pipe isn't still relying on us */
1702 assert_pipe_disabled(dev_priv, pipe);
1703
50b44a44
DV
1704 I915_WRITE(DPLL(pipe), 0);
1705 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1706}
1707
f6071166
JB
1708static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1709{
1710 u32 val = 0;
1711
1712 /* Make sure the pipe isn't still relying on us */
1713 assert_pipe_disabled(dev_priv, pipe);
1714
e5cbfbfb
ID
1715 /*
1716 * Leave integrated clock source and reference clock enabled for pipe B.
1717 * The latter is needed for VGA hotplug / manual detection.
1718 */
f6071166 1719 if (pipe == PIPE_B)
e5cbfbfb 1720 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1721 I915_WRITE(DPLL(pipe), val);
1722 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1723
1724}
1725
1726static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1727{
d752048d 1728 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1729 u32 val;
1730
a11b0703
VS
1731 /* Make sure the pipe isn't still relying on us */
1732 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1733
a11b0703
VS
1734 /* Set PLL en = 0 */
1735 val = DPLL_SSC_REF_CLOCK_CHV;
1736 if (pipe != PIPE_A)
1737 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1738 I915_WRITE(DPLL(pipe), val);
1739 POSTING_READ(DPLL(pipe));
d752048d
VS
1740
1741 mutex_lock(&dev_priv->dpio_lock);
1742
1743 /* Disable 10bit clock to display controller */
1744 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1745 val &= ~DPIO_DCLKP_EN;
1746 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1747
61407f6d
VS
1748 /* disable left/right clock distribution */
1749 if (pipe != PIPE_B) {
1750 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1751 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1752 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1753 } else {
1754 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1755 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1756 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1757 }
1758
d752048d 1759 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1760}
1761
e4607fcf
CML
1762void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1763 struct intel_digital_port *dport)
89b667f8
JB
1764{
1765 u32 port_mask;
00fc31b7 1766 int dpll_reg;
89b667f8 1767
e4607fcf
CML
1768 switch (dport->port) {
1769 case PORT_B:
89b667f8 1770 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1771 dpll_reg = DPLL(0);
e4607fcf
CML
1772 break;
1773 case PORT_C:
89b667f8 1774 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1775 dpll_reg = DPLL(0);
1776 break;
1777 case PORT_D:
1778 port_mask = DPLL_PORTD_READY_MASK;
1779 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1780 break;
1781 default:
1782 BUG();
1783 }
89b667f8 1784
00fc31b7 1785 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1786 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1787 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1788}
1789
b14b1055
DV
1790static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1791{
1792 struct drm_device *dev = crtc->base.dev;
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1795
be19f0ff
CW
1796 if (WARN_ON(pll == NULL))
1797 return;
1798
b14b1055
DV
1799 WARN_ON(!pll->refcount);
1800 if (pll->active == 0) {
1801 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1802 WARN_ON(pll->on);
1803 assert_shared_dpll_disabled(dev_priv, pll);
1804
1805 pll->mode_set(dev_priv, pll);
1806 }
1807}
1808
92f2584a 1809/**
85b3894f 1810 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1811 * @dev_priv: i915 private structure
1812 * @pipe: pipe PLL to enable
1813 *
1814 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1815 * drives the transcoder clock.
1816 */
85b3894f 1817static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1818{
3d13ef2e
DL
1819 struct drm_device *dev = crtc->base.dev;
1820 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1821 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1822
87a875bb 1823 if (WARN_ON(pll == NULL))
48da64a8
CW
1824 return;
1825
1826 if (WARN_ON(pll->refcount == 0))
1827 return;
ee7b9f93 1828
46edb027
DV
1829 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1830 pll->name, pll->active, pll->on,
e2b78267 1831 crtc->base.base.id);
92f2584a 1832
cdbd2316
DV
1833 if (pll->active++) {
1834 WARN_ON(!pll->on);
e9d6944e 1835 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1836 return;
1837 }
f4a091c7 1838 WARN_ON(pll->on);
ee7b9f93 1839
46edb027 1840 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1841 pll->enable(dev_priv, pll);
ee7b9f93 1842 pll->on = true;
92f2584a
JB
1843}
1844
e2b78267 1845static void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1846{
3d13ef2e
DL
1847 struct drm_device *dev = crtc->base.dev;
1848 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1849 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1850
92f2584a 1851 /* PCH only available on ILK+ */
3d13ef2e 1852 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1853 if (WARN_ON(pll == NULL))
ee7b9f93 1854 return;
92f2584a 1855
48da64a8
CW
1856 if (WARN_ON(pll->refcount == 0))
1857 return;
7a419866 1858
46edb027
DV
1859 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1860 pll->name, pll->active, pll->on,
e2b78267 1861 crtc->base.base.id);
7a419866 1862
48da64a8 1863 if (WARN_ON(pll->active == 0)) {
e9d6944e 1864 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1865 return;
1866 }
1867
e9d6944e 1868 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1869 WARN_ON(!pll->on);
cdbd2316 1870 if (--pll->active)
7a419866 1871 return;
ee7b9f93 1872
46edb027 1873 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1874 pll->disable(dev_priv, pll);
ee7b9f93 1875 pll->on = false;
92f2584a
JB
1876}
1877
b8a4f404
PZ
1878static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1879 enum pipe pipe)
040484af 1880{
23670b32 1881 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1882 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1883 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1884 uint32_t reg, val, pipeconf_val;
040484af
JB
1885
1886 /* PCH only available on ILK+ */
3d13ef2e 1887 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1888
1889 /* Make sure PCH DPLL is enabled */
e72f9fbf 1890 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1891 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1892
1893 /* FDI must be feeding us bits for PCH ports */
1894 assert_fdi_tx_enabled(dev_priv, pipe);
1895 assert_fdi_rx_enabled(dev_priv, pipe);
1896
23670b32
DV
1897 if (HAS_PCH_CPT(dev)) {
1898 /* Workaround: Set the timing override bit before enabling the
1899 * pch transcoder. */
1900 reg = TRANS_CHICKEN2(pipe);
1901 val = I915_READ(reg);
1902 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1903 I915_WRITE(reg, val);
59c859d6 1904 }
23670b32 1905
ab9412ba 1906 reg = PCH_TRANSCONF(pipe);
040484af 1907 val = I915_READ(reg);
5f7f726d 1908 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1909
1910 if (HAS_PCH_IBX(dev_priv->dev)) {
1911 /*
1912 * make the BPC in transcoder be consistent with
1913 * that in pipeconf reg.
1914 */
dfd07d72
DV
1915 val &= ~PIPECONF_BPC_MASK;
1916 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1917 }
5f7f726d
PZ
1918
1919 val &= ~TRANS_INTERLACE_MASK;
1920 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1921 if (HAS_PCH_IBX(dev_priv->dev) &&
1922 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1923 val |= TRANS_LEGACY_INTERLACED_ILK;
1924 else
1925 val |= TRANS_INTERLACED;
5f7f726d
PZ
1926 else
1927 val |= TRANS_PROGRESSIVE;
1928
040484af
JB
1929 I915_WRITE(reg, val | TRANS_ENABLE);
1930 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1931 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1932}
1933
8fb033d7 1934static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1935 enum transcoder cpu_transcoder)
040484af 1936{
8fb033d7 1937 u32 val, pipeconf_val;
8fb033d7
PZ
1938
1939 /* PCH only available on ILK+ */
3d13ef2e 1940 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1941
8fb033d7 1942 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1943 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1944 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1945
223a6fdf
PZ
1946 /* Workaround: set timing override bit. */
1947 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1948 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1949 I915_WRITE(_TRANSA_CHICKEN2, val);
1950
25f3ef11 1951 val = TRANS_ENABLE;
937bb610 1952 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1953
9a76b1c6
PZ
1954 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1955 PIPECONF_INTERLACED_ILK)
a35f2679 1956 val |= TRANS_INTERLACED;
8fb033d7
PZ
1957 else
1958 val |= TRANS_PROGRESSIVE;
1959
ab9412ba
DV
1960 I915_WRITE(LPT_TRANSCONF, val);
1961 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1962 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1963}
1964
b8a4f404
PZ
1965static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1966 enum pipe pipe)
040484af 1967{
23670b32
DV
1968 struct drm_device *dev = dev_priv->dev;
1969 uint32_t reg, val;
040484af
JB
1970
1971 /* FDI relies on the transcoder */
1972 assert_fdi_tx_disabled(dev_priv, pipe);
1973 assert_fdi_rx_disabled(dev_priv, pipe);
1974
291906f1
JB
1975 /* Ports must be off as well */
1976 assert_pch_ports_disabled(dev_priv, pipe);
1977
ab9412ba 1978 reg = PCH_TRANSCONF(pipe);
040484af
JB
1979 val = I915_READ(reg);
1980 val &= ~TRANS_ENABLE;
1981 I915_WRITE(reg, val);
1982 /* wait for PCH transcoder off, transcoder state */
1983 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1984 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1985
1986 if (!HAS_PCH_IBX(dev)) {
1987 /* Workaround: Clear the timing override chicken bit again. */
1988 reg = TRANS_CHICKEN2(pipe);
1989 val = I915_READ(reg);
1990 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1991 I915_WRITE(reg, val);
1992 }
040484af
JB
1993}
1994
ab4d966c 1995static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1996{
8fb033d7
PZ
1997 u32 val;
1998
ab9412ba 1999 val = I915_READ(LPT_TRANSCONF);
8fb033d7 2000 val &= ~TRANS_ENABLE;
ab9412ba 2001 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 2002 /* wait for PCH transcoder off, transcoder state */
ab9412ba 2003 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 2004 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
2005
2006 /* Workaround: clear timing override bit. */
2007 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 2008 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 2009 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
2010}
2011
b24e7179 2012/**
309cfea8 2013 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 2014 * @crtc: crtc responsible for the pipe
b24e7179 2015 *
0372264a 2016 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 2017 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 2018 */
e1fdc473 2019static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 2020{
0372264a
PZ
2021 struct drm_device *dev = crtc->base.dev;
2022 struct drm_i915_private *dev_priv = dev->dev_private;
2023 enum pipe pipe = crtc->pipe;
702e7a56
PZ
2024 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2025 pipe);
1a240d4d 2026 enum pipe pch_transcoder;
b24e7179
JB
2027 int reg;
2028 u32 val;
2029
58c6eaa2 2030 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2031 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
2032 assert_sprites_disabled(dev_priv, pipe);
2033
681e5811 2034 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
2035 pch_transcoder = TRANSCODER_A;
2036 else
2037 pch_transcoder = pipe;
2038
b24e7179
JB
2039 /*
2040 * A pipe without a PLL won't actually be able to drive bits from
2041 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2042 * need the check.
2043 */
2044 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2045 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2046 assert_dsi_pll_enabled(dev_priv);
2047 else
2048 assert_pll_enabled(dev_priv, pipe);
040484af 2049 else {
30421c4f 2050 if (crtc->config.has_pch_encoder) {
040484af 2051 /* if driving the PCH, we need FDI enabled */
cc391bbb 2052 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2053 assert_fdi_tx_pll_enabled(dev_priv,
2054 (enum pipe) cpu_transcoder);
040484af
JB
2055 }
2056 /* FIXME: assert CPU port conditions for SNB+ */
2057 }
b24e7179 2058
702e7a56 2059 reg = PIPECONF(cpu_transcoder);
b24e7179 2060 val = I915_READ(reg);
7ad25d48
PZ
2061 if (val & PIPECONF_ENABLE) {
2062 WARN_ON(!(pipe == PIPE_A &&
2063 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2064 return;
7ad25d48 2065 }
00d70b15
CW
2066
2067 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2068 POSTING_READ(reg);
b24e7179
JB
2069}
2070
2071/**
309cfea8 2072 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2073 * @dev_priv: i915 private structure
2074 * @pipe: pipe to disable
2075 *
2076 * Disable @pipe, making sure that various hardware specific requirements
2077 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2078 *
2079 * @pipe should be %PIPE_A or %PIPE_B.
2080 *
2081 * Will wait until the pipe has shut down before returning.
2082 */
2083static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2084 enum pipe pipe)
2085{
702e7a56
PZ
2086 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2087 pipe);
b24e7179
JB
2088 int reg;
2089 u32 val;
2090
2091 /*
2092 * Make sure planes won't keep trying to pump pixels to us,
2093 * or we might hang the display.
2094 */
2095 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2096 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2097 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2098
2099 /* Don't disable pipe A or pipe A PLLs if needed */
2100 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2101 return;
2102
702e7a56 2103 reg = PIPECONF(cpu_transcoder);
b24e7179 2104 val = I915_READ(reg);
00d70b15
CW
2105 if ((val & PIPECONF_ENABLE) == 0)
2106 return;
2107
2108 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2109 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2110}
2111
d74362c9
KP
2112/*
2113 * Plane regs are double buffered, going from enabled->disabled needs a
2114 * trigger in order to latch. The display address reg provides this.
2115 */
1dba99f4
VS
2116void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2117 enum plane plane)
d74362c9 2118{
3d13ef2e
DL
2119 struct drm_device *dev = dev_priv->dev;
2120 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2121
2122 I915_WRITE(reg, I915_READ(reg));
2123 POSTING_READ(reg);
d74362c9
KP
2124}
2125
b24e7179 2126/**
262ca2b0 2127 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2128 * @dev_priv: i915 private structure
2129 * @plane: plane to enable
2130 * @pipe: pipe being fed
2131 *
2132 * Enable @plane on @pipe, making sure that @pipe is running first.
2133 */
262ca2b0
MR
2134static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2135 enum plane plane, enum pipe pipe)
b24e7179 2136{
33c3b0d1 2137 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2138 struct intel_crtc *intel_crtc =
2139 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2140 int reg;
2141 u32 val;
2142
2143 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2144 assert_pipe_enabled(dev_priv, pipe);
2145
98ec7739
VS
2146 if (intel_crtc->primary_enabled)
2147 return;
0037f71c 2148
4c445e0e 2149 intel_crtc->primary_enabled = true;
939c2fe8 2150
b24e7179
JB
2151 reg = DSPCNTR(plane);
2152 val = I915_READ(reg);
10efa932 2153 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2154
2155 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2156 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2157
2158 /*
2159 * BDW signals flip done immediately if the plane
2160 * is disabled, even if the plane enable is already
2161 * armed to occur at the next vblank :(
2162 */
2163 if (IS_BROADWELL(dev))
2164 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2165}
2166
b24e7179 2167/**
262ca2b0 2168 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2169 * @dev_priv: i915 private structure
2170 * @plane: plane to disable
2171 * @pipe: pipe consuming the data
2172 *
2173 * Disable @plane; should be an independent operation.
2174 */
262ca2b0
MR
2175static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2176 enum plane plane, enum pipe pipe)
b24e7179 2177{
939c2fe8
VS
2178 struct intel_crtc *intel_crtc =
2179 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2180 int reg;
2181 u32 val;
2182
98ec7739
VS
2183 if (!intel_crtc->primary_enabled)
2184 return;
0037f71c 2185
4c445e0e 2186 intel_crtc->primary_enabled = false;
939c2fe8 2187
b24e7179
JB
2188 reg = DSPCNTR(plane);
2189 val = I915_READ(reg);
10efa932 2190 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2191
2192 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2193 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2194}
2195
693db184
CW
2196static bool need_vtd_wa(struct drm_device *dev)
2197{
2198#ifdef CONFIG_INTEL_IOMMU
2199 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2200 return true;
2201#endif
2202 return false;
2203}
2204
a57ce0b2
JB
2205static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2206{
2207 int tile_height;
2208
2209 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2210 return ALIGN(height, tile_height);
2211}
2212
127bd2ac 2213int
48b956c5 2214intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2215 struct drm_i915_gem_object *obj,
a4872ba6 2216 struct intel_engine_cs *pipelined)
6b95a207 2217{
ce453d81 2218 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2219 u32 alignment;
2220 int ret;
2221
05394f39 2222 switch (obj->tiling_mode) {
6b95a207 2223 case I915_TILING_NONE:
534843da
CW
2224 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2225 alignment = 128 * 1024;
a6c45cf0 2226 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2227 alignment = 4 * 1024;
2228 else
2229 alignment = 64 * 1024;
6b95a207
KH
2230 break;
2231 case I915_TILING_X:
2232 /* pin() will align the object as required by fence */
2233 alignment = 0;
2234 break;
2235 case I915_TILING_Y:
80075d49 2236 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2237 return -EINVAL;
2238 default:
2239 BUG();
2240 }
2241
693db184
CW
2242 /* Note that the w/a also requires 64 PTE of padding following the
2243 * bo. We currently fill all unused PTE with the shadow page and so
2244 * we should always have valid PTE following the scanout preventing
2245 * the VT-d warning.
2246 */
2247 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2248 alignment = 256 * 1024;
2249
ce453d81 2250 dev_priv->mm.interruptible = false;
2da3b9b9 2251 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2252 if (ret)
ce453d81 2253 goto err_interruptible;
6b95a207
KH
2254
2255 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2256 * fence, whereas 965+ only requires a fence if using
2257 * framebuffer compression. For simplicity, we always install
2258 * a fence as the cost is not that onerous.
2259 */
06d98131 2260 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2261 if (ret)
2262 goto err_unpin;
1690e1eb 2263
9a5a53b3 2264 i915_gem_object_pin_fence(obj);
6b95a207 2265
ce453d81 2266 dev_priv->mm.interruptible = true;
6b95a207 2267 return 0;
48b956c5
CW
2268
2269err_unpin:
cc98b413 2270 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2271err_interruptible:
2272 dev_priv->mm.interruptible = true;
48b956c5 2273 return ret;
6b95a207
KH
2274}
2275
1690e1eb
CW
2276void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2277{
2278 i915_gem_object_unpin_fence(obj);
cc98b413 2279 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2280}
2281
c2c75131
DV
2282/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2283 * is assumed to be a power-of-two. */
bc752862
CW
2284unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2285 unsigned int tiling_mode,
2286 unsigned int cpp,
2287 unsigned int pitch)
c2c75131 2288{
bc752862
CW
2289 if (tiling_mode != I915_TILING_NONE) {
2290 unsigned int tile_rows, tiles;
c2c75131 2291
bc752862
CW
2292 tile_rows = *y / 8;
2293 *y %= 8;
c2c75131 2294
bc752862
CW
2295 tiles = *x / (512/cpp);
2296 *x %= 512/cpp;
2297
2298 return tile_rows * pitch * 8 + tiles * 4096;
2299 } else {
2300 unsigned int offset;
2301
2302 offset = *y * pitch + *x * cpp;
2303 *y = 0;
2304 *x = (offset & 4095) / cpp;
2305 return offset & -4096;
2306 }
c2c75131
DV
2307}
2308
46f297fb
JB
2309int intel_format_to_fourcc(int format)
2310{
2311 switch (format) {
2312 case DISPPLANE_8BPP:
2313 return DRM_FORMAT_C8;
2314 case DISPPLANE_BGRX555:
2315 return DRM_FORMAT_XRGB1555;
2316 case DISPPLANE_BGRX565:
2317 return DRM_FORMAT_RGB565;
2318 default:
2319 case DISPPLANE_BGRX888:
2320 return DRM_FORMAT_XRGB8888;
2321 case DISPPLANE_RGBX888:
2322 return DRM_FORMAT_XBGR8888;
2323 case DISPPLANE_BGRX101010:
2324 return DRM_FORMAT_XRGB2101010;
2325 case DISPPLANE_RGBX101010:
2326 return DRM_FORMAT_XBGR2101010;
2327 }
2328}
2329
484b41dd 2330static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2331 struct intel_plane_config *plane_config)
2332{
2333 struct drm_device *dev = crtc->base.dev;
2334 struct drm_i915_gem_object *obj = NULL;
2335 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2336 u32 base = plane_config->base;
2337
ff2652ea
CW
2338 if (plane_config->size == 0)
2339 return false;
2340
46f297fb
JB
2341 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2342 plane_config->size);
2343 if (!obj)
484b41dd 2344 return false;
46f297fb
JB
2345
2346 if (plane_config->tiled) {
2347 obj->tiling_mode = I915_TILING_X;
66e514c1 2348 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2349 }
2350
66e514c1
DA
2351 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2352 mode_cmd.width = crtc->base.primary->fb->width;
2353 mode_cmd.height = crtc->base.primary->fb->height;
2354 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2355
2356 mutex_lock(&dev->struct_mutex);
2357
66e514c1 2358 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2359 &mode_cmd, obj)) {
46f297fb
JB
2360 DRM_DEBUG_KMS("intel fb init failed\n");
2361 goto out_unref_obj;
2362 }
2363
a071fa00 2364 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2365 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2366
2367 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2368 return true;
46f297fb
JB
2369
2370out_unref_obj:
2371 drm_gem_object_unreference(&obj->base);
2372 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2373 return false;
2374}
2375
2376static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2377 struct intel_plane_config *plane_config)
2378{
2379 struct drm_device *dev = intel_crtc->base.dev;
2380 struct drm_crtc *c;
2381 struct intel_crtc *i;
2382 struct intel_framebuffer *fb;
2383
66e514c1 2384 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2385 return;
2386
2387 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2388 return;
2389
66e514c1
DA
2390 kfree(intel_crtc->base.primary->fb);
2391 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2392
2393 /*
2394 * Failed to alloc the obj, check to see if we should share
2395 * an fb with another CRTC instead
2396 */
70e1e0ec 2397 for_each_crtc(dev, c) {
484b41dd
JB
2398 i = to_intel_crtc(c);
2399
2400 if (c == &intel_crtc->base)
2401 continue;
2402
66e514c1 2403 if (!i->active || !c->primary->fb)
484b41dd
JB
2404 continue;
2405
66e514c1 2406 fb = to_intel_framebuffer(c->primary->fb);
484b41dd 2407 if (i915_gem_obj_ggtt_offset(fb->obj) == plane_config->base) {
66e514c1
DA
2408 drm_framebuffer_reference(c->primary->fb);
2409 intel_crtc->base.primary->fb = c->primary->fb;
a071fa00 2410 fb->obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2411 break;
2412 }
2413 }
46f297fb
JB
2414}
2415
29b9bde6
DV
2416static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2417 struct drm_framebuffer *fb,
2418 int x, int y)
81255565
JB
2419{
2420 struct drm_device *dev = crtc->dev;
2421 struct drm_i915_private *dev_priv = dev->dev_private;
2422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2423 struct intel_framebuffer *intel_fb;
05394f39 2424 struct drm_i915_gem_object *obj;
81255565 2425 int plane = intel_crtc->plane;
e506a0c6 2426 unsigned long linear_offset;
81255565 2427 u32 dspcntr;
5eddb70b 2428 u32 reg;
81255565 2429
81255565
JB
2430 intel_fb = to_intel_framebuffer(fb);
2431 obj = intel_fb->obj;
81255565 2432
5eddb70b
CW
2433 reg = DSPCNTR(plane);
2434 dspcntr = I915_READ(reg);
81255565
JB
2435 /* Mask out pixel format bits in case we change it */
2436 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2437 switch (fb->pixel_format) {
2438 case DRM_FORMAT_C8:
81255565
JB
2439 dspcntr |= DISPPLANE_8BPP;
2440 break;
57779d06
VS
2441 case DRM_FORMAT_XRGB1555:
2442 case DRM_FORMAT_ARGB1555:
2443 dspcntr |= DISPPLANE_BGRX555;
81255565 2444 break;
57779d06
VS
2445 case DRM_FORMAT_RGB565:
2446 dspcntr |= DISPPLANE_BGRX565;
2447 break;
2448 case DRM_FORMAT_XRGB8888:
2449 case DRM_FORMAT_ARGB8888:
2450 dspcntr |= DISPPLANE_BGRX888;
2451 break;
2452 case DRM_FORMAT_XBGR8888:
2453 case DRM_FORMAT_ABGR8888:
2454 dspcntr |= DISPPLANE_RGBX888;
2455 break;
2456 case DRM_FORMAT_XRGB2101010:
2457 case DRM_FORMAT_ARGB2101010:
2458 dspcntr |= DISPPLANE_BGRX101010;
2459 break;
2460 case DRM_FORMAT_XBGR2101010:
2461 case DRM_FORMAT_ABGR2101010:
2462 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2463 break;
2464 default:
baba133a 2465 BUG();
81255565 2466 }
57779d06 2467
a6c45cf0 2468 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2469 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2470 dspcntr |= DISPPLANE_TILED;
2471 else
2472 dspcntr &= ~DISPPLANE_TILED;
2473 }
2474
de1aa629
VS
2475 if (IS_G4X(dev))
2476 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2477
5eddb70b 2478 I915_WRITE(reg, dspcntr);
81255565 2479
e506a0c6 2480 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2481
c2c75131
DV
2482 if (INTEL_INFO(dev)->gen >= 4) {
2483 intel_crtc->dspaddr_offset =
bc752862
CW
2484 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2485 fb->bits_per_pixel / 8,
2486 fb->pitches[0]);
c2c75131
DV
2487 linear_offset -= intel_crtc->dspaddr_offset;
2488 } else {
e506a0c6 2489 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2490 }
e506a0c6 2491
f343c5f6
BW
2492 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2493 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2494 fb->pitches[0]);
01f2c773 2495 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2496 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2497 I915_WRITE(DSPSURF(plane),
2498 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2499 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2500 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2501 } else
f343c5f6 2502 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2503 POSTING_READ(reg);
17638cd6
JB
2504}
2505
29b9bde6
DV
2506static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2507 struct drm_framebuffer *fb,
2508 int x, int y)
17638cd6
JB
2509{
2510 struct drm_device *dev = crtc->dev;
2511 struct drm_i915_private *dev_priv = dev->dev_private;
2512 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2513 struct intel_framebuffer *intel_fb;
2514 struct drm_i915_gem_object *obj;
2515 int plane = intel_crtc->plane;
e506a0c6 2516 unsigned long linear_offset;
17638cd6
JB
2517 u32 dspcntr;
2518 u32 reg;
2519
17638cd6
JB
2520 intel_fb = to_intel_framebuffer(fb);
2521 obj = intel_fb->obj;
2522
2523 reg = DSPCNTR(plane);
2524 dspcntr = I915_READ(reg);
2525 /* Mask out pixel format bits in case we change it */
2526 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2527 switch (fb->pixel_format) {
2528 case DRM_FORMAT_C8:
17638cd6
JB
2529 dspcntr |= DISPPLANE_8BPP;
2530 break;
57779d06
VS
2531 case DRM_FORMAT_RGB565:
2532 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2533 break;
57779d06
VS
2534 case DRM_FORMAT_XRGB8888:
2535 case DRM_FORMAT_ARGB8888:
2536 dspcntr |= DISPPLANE_BGRX888;
2537 break;
2538 case DRM_FORMAT_XBGR8888:
2539 case DRM_FORMAT_ABGR8888:
2540 dspcntr |= DISPPLANE_RGBX888;
2541 break;
2542 case DRM_FORMAT_XRGB2101010:
2543 case DRM_FORMAT_ARGB2101010:
2544 dspcntr |= DISPPLANE_BGRX101010;
2545 break;
2546 case DRM_FORMAT_XBGR2101010:
2547 case DRM_FORMAT_ABGR2101010:
2548 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2549 break;
2550 default:
baba133a 2551 BUG();
17638cd6
JB
2552 }
2553
2554 if (obj->tiling_mode != I915_TILING_NONE)
2555 dspcntr |= DISPPLANE_TILED;
2556 else
2557 dspcntr &= ~DISPPLANE_TILED;
2558
b42c6009 2559 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2560 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2561 else
2562 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2563
2564 I915_WRITE(reg, dspcntr);
2565
e506a0c6 2566 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2567 intel_crtc->dspaddr_offset =
bc752862
CW
2568 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2569 fb->bits_per_pixel / 8,
2570 fb->pitches[0]);
c2c75131 2571 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2572
f343c5f6
BW
2573 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2574 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2575 fb->pitches[0]);
01f2c773 2576 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2577 I915_WRITE(DSPSURF(plane),
2578 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2579 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2580 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2581 } else {
2582 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2583 I915_WRITE(DSPLINOFF(plane), linear_offset);
2584 }
17638cd6 2585 POSTING_READ(reg);
17638cd6
JB
2586}
2587
2588/* Assume fb object is pinned & idle & fenced and just update base pointers */
2589static int
2590intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2591 int x, int y, enum mode_set_atomic state)
2592{
2593 struct drm_device *dev = crtc->dev;
2594 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2595
6b8e6ed0
CW
2596 if (dev_priv->display.disable_fbc)
2597 dev_priv->display.disable_fbc(dev);
cc36513c 2598 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2599
29b9bde6
DV
2600 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2601
2602 return 0;
81255565
JB
2603}
2604
96a02917
VS
2605void intel_display_handle_reset(struct drm_device *dev)
2606{
2607 struct drm_i915_private *dev_priv = dev->dev_private;
2608 struct drm_crtc *crtc;
2609
2610 /*
2611 * Flips in the rings have been nuked by the reset,
2612 * so complete all pending flips so that user space
2613 * will get its events and not get stuck.
2614 *
2615 * Also update the base address of all primary
2616 * planes to the the last fb to make sure we're
2617 * showing the correct fb after a reset.
2618 *
2619 * Need to make two loops over the crtcs so that we
2620 * don't try to grab a crtc mutex before the
2621 * pending_flip_queue really got woken up.
2622 */
2623
70e1e0ec 2624 for_each_crtc(dev, crtc) {
96a02917
VS
2625 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2626 enum plane plane = intel_crtc->plane;
2627
2628 intel_prepare_page_flip(dev, plane);
2629 intel_finish_page_flip_plane(dev, plane);
2630 }
2631
70e1e0ec 2632 for_each_crtc(dev, crtc) {
96a02917
VS
2633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2634
51fd371b 2635 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2636 /*
2637 * FIXME: Once we have proper support for primary planes (and
2638 * disabling them without disabling the entire crtc) allow again
66e514c1 2639 * a NULL crtc->primary->fb.
947fdaad 2640 */
f4510a27 2641 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2642 dev_priv->display.update_primary_plane(crtc,
66e514c1 2643 crtc->primary->fb,
262ca2b0
MR
2644 crtc->x,
2645 crtc->y);
51fd371b 2646 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2647 }
2648}
2649
14667a4b
CW
2650static int
2651intel_finish_fb(struct drm_framebuffer *old_fb)
2652{
2653 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2654 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2655 bool was_interruptible = dev_priv->mm.interruptible;
2656 int ret;
2657
14667a4b
CW
2658 /* Big Hammer, we also need to ensure that any pending
2659 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2660 * current scanout is retired before unpinning the old
2661 * framebuffer.
2662 *
2663 * This should only fail upon a hung GPU, in which case we
2664 * can safely continue.
2665 */
2666 dev_priv->mm.interruptible = false;
2667 ret = i915_gem_object_finish_gpu(obj);
2668 dev_priv->mm.interruptible = was_interruptible;
2669
2670 return ret;
2671}
2672
7d5e3799
CW
2673static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2674{
2675 struct drm_device *dev = crtc->dev;
2676 struct drm_i915_private *dev_priv = dev->dev_private;
2677 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2678 unsigned long flags;
2679 bool pending;
2680
2681 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2682 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2683 return false;
2684
2685 spin_lock_irqsave(&dev->event_lock, flags);
2686 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2687 spin_unlock_irqrestore(&dev->event_lock, flags);
2688
2689 return pending;
2690}
2691
5c3b82e2 2692static int
3c4fdcfb 2693intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2694 struct drm_framebuffer *fb)
79e53945
JB
2695{
2696 struct drm_device *dev = crtc->dev;
6b8e6ed0 2697 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2698 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2699 enum pipe pipe = intel_crtc->pipe;
94352cf9 2700 struct drm_framebuffer *old_fb;
a071fa00 2701 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
91565c85 2702 struct drm_i915_gem_object *old_obj;
5c3b82e2 2703 int ret;
79e53945 2704
7d5e3799
CW
2705 if (intel_crtc_has_pending_flip(crtc)) {
2706 DRM_ERROR("pipe is still busy with an old pageflip\n");
2707 return -EBUSY;
2708 }
2709
79e53945 2710 /* no fb bound */
94352cf9 2711 if (!fb) {
a5071c2f 2712 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2713 return 0;
2714 }
2715
7eb552ae 2716 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2717 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2718 plane_name(intel_crtc->plane),
2719 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2720 return -EINVAL;
79e53945
JB
2721 }
2722
a071fa00 2723 old_fb = crtc->primary->fb;
91565c85 2724 old_obj = old_fb ? to_intel_framebuffer(old_fb)->obj : NULL;
a071fa00 2725
5c3b82e2 2726 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2727 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2728 if (ret == 0)
91565c85 2729 i915_gem_track_fb(old_obj, obj,
a071fa00 2730 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2731 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2732 if (ret != 0) {
a5071c2f 2733 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2734 return ret;
2735 }
79e53945 2736
bb2043de
DL
2737 /*
2738 * Update pipe size and adjust fitter if needed: the reason for this is
2739 * that in compute_mode_changes we check the native mode (not the pfit
2740 * mode) to see if we can flip rather than do a full mode set. In the
2741 * fastboot case, we'll flip, but if we don't update the pipesrc and
2742 * pfit state, we'll end up with a big fb scanned out into the wrong
2743 * sized surface.
2744 *
2745 * To fix this properly, we need to hoist the checks up into
2746 * compute_mode_changes (or above), check the actual pfit state and
2747 * whether the platform allows pfit disable with pipe active, and only
2748 * then update the pipesrc and pfit state, even on the flip path.
2749 */
d330a953 2750 if (i915.fastboot) {
d7bf63f2
DL
2751 const struct drm_display_mode *adjusted_mode =
2752 &intel_crtc->config.adjusted_mode;
2753
4d6a3e63 2754 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2755 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2756 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2757 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2758 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2759 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2760 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2761 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2762 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2763 }
0637d60d
JB
2764 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2765 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2766 }
2767
29b9bde6 2768 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2769
f99d7069
DV
2770 if (intel_crtc->active)
2771 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2772
f4510a27 2773 crtc->primary->fb = fb;
6c4c86f5
DV
2774 crtc->x = x;
2775 crtc->y = y;
94352cf9 2776
b7f1de28 2777 if (old_fb) {
d7697eea
DV
2778 if (intel_crtc->active && old_fb != fb)
2779 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2780 mutex_lock(&dev->struct_mutex);
1690e1eb 2781 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
8ac36ec1 2782 mutex_unlock(&dev->struct_mutex);
b7f1de28 2783 }
652c393a 2784
8ac36ec1 2785 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2786 intel_update_fbc(dev);
5c3b82e2 2787 mutex_unlock(&dev->struct_mutex);
79e53945 2788
5c3b82e2 2789 return 0;
79e53945
JB
2790}
2791
5e84e1a4
ZW
2792static void intel_fdi_normal_train(struct drm_crtc *crtc)
2793{
2794 struct drm_device *dev = crtc->dev;
2795 struct drm_i915_private *dev_priv = dev->dev_private;
2796 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2797 int pipe = intel_crtc->pipe;
2798 u32 reg, temp;
2799
2800 /* enable normal train */
2801 reg = FDI_TX_CTL(pipe);
2802 temp = I915_READ(reg);
61e499bf 2803 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2804 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2805 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2806 } else {
2807 temp &= ~FDI_LINK_TRAIN_NONE;
2808 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2809 }
5e84e1a4
ZW
2810 I915_WRITE(reg, temp);
2811
2812 reg = FDI_RX_CTL(pipe);
2813 temp = I915_READ(reg);
2814 if (HAS_PCH_CPT(dev)) {
2815 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2816 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2817 } else {
2818 temp &= ~FDI_LINK_TRAIN_NONE;
2819 temp |= FDI_LINK_TRAIN_NONE;
2820 }
2821 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2822
2823 /* wait one idle pattern time */
2824 POSTING_READ(reg);
2825 udelay(1000);
357555c0
JB
2826
2827 /* IVB wants error correction enabled */
2828 if (IS_IVYBRIDGE(dev))
2829 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2830 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2831}
2832
1fbc0d78 2833static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2834{
1fbc0d78
DV
2835 return crtc->base.enabled && crtc->active &&
2836 crtc->config.has_pch_encoder;
1e833f40
DV
2837}
2838
01a415fd
DV
2839static void ivb_modeset_global_resources(struct drm_device *dev)
2840{
2841 struct drm_i915_private *dev_priv = dev->dev_private;
2842 struct intel_crtc *pipe_B_crtc =
2843 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2844 struct intel_crtc *pipe_C_crtc =
2845 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2846 uint32_t temp;
2847
1e833f40
DV
2848 /*
2849 * When everything is off disable fdi C so that we could enable fdi B
2850 * with all lanes. Note that we don't care about enabled pipes without
2851 * an enabled pch encoder.
2852 */
2853 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2854 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2855 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2856 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2857
2858 temp = I915_READ(SOUTH_CHICKEN1);
2859 temp &= ~FDI_BC_BIFURCATION_SELECT;
2860 DRM_DEBUG_KMS("disabling fdi C rx\n");
2861 I915_WRITE(SOUTH_CHICKEN1, temp);
2862 }
2863}
2864
8db9d77b
ZW
2865/* The FDI link training functions for ILK/Ibexpeak. */
2866static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2867{
2868 struct drm_device *dev = crtc->dev;
2869 struct drm_i915_private *dev_priv = dev->dev_private;
2870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2871 int pipe = intel_crtc->pipe;
5eddb70b 2872 u32 reg, temp, tries;
8db9d77b 2873
1c8562f6 2874 /* FDI needs bits from pipe first */
0fc932b8 2875 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2876
e1a44743
AJ
2877 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2878 for train result */
5eddb70b
CW
2879 reg = FDI_RX_IMR(pipe);
2880 temp = I915_READ(reg);
e1a44743
AJ
2881 temp &= ~FDI_RX_SYMBOL_LOCK;
2882 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2883 I915_WRITE(reg, temp);
2884 I915_READ(reg);
e1a44743
AJ
2885 udelay(150);
2886
8db9d77b 2887 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2888 reg = FDI_TX_CTL(pipe);
2889 temp = I915_READ(reg);
627eb5a3
DV
2890 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2891 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2892 temp &= ~FDI_LINK_TRAIN_NONE;
2893 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2894 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2895
5eddb70b
CW
2896 reg = FDI_RX_CTL(pipe);
2897 temp = I915_READ(reg);
8db9d77b
ZW
2898 temp &= ~FDI_LINK_TRAIN_NONE;
2899 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2900 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2901
2902 POSTING_READ(reg);
8db9d77b
ZW
2903 udelay(150);
2904
5b2adf89 2905 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2906 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2907 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2908 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2909
5eddb70b 2910 reg = FDI_RX_IIR(pipe);
e1a44743 2911 for (tries = 0; tries < 5; tries++) {
5eddb70b 2912 temp = I915_READ(reg);
8db9d77b
ZW
2913 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2914
2915 if ((temp & FDI_RX_BIT_LOCK)) {
2916 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2917 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2918 break;
2919 }
8db9d77b 2920 }
e1a44743 2921 if (tries == 5)
5eddb70b 2922 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2923
2924 /* Train 2 */
5eddb70b
CW
2925 reg = FDI_TX_CTL(pipe);
2926 temp = I915_READ(reg);
8db9d77b
ZW
2927 temp &= ~FDI_LINK_TRAIN_NONE;
2928 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2929 I915_WRITE(reg, temp);
8db9d77b 2930
5eddb70b
CW
2931 reg = FDI_RX_CTL(pipe);
2932 temp = I915_READ(reg);
8db9d77b
ZW
2933 temp &= ~FDI_LINK_TRAIN_NONE;
2934 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2935 I915_WRITE(reg, temp);
8db9d77b 2936
5eddb70b
CW
2937 POSTING_READ(reg);
2938 udelay(150);
8db9d77b 2939
5eddb70b 2940 reg = FDI_RX_IIR(pipe);
e1a44743 2941 for (tries = 0; tries < 5; tries++) {
5eddb70b 2942 temp = I915_READ(reg);
8db9d77b
ZW
2943 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2944
2945 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2946 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2947 DRM_DEBUG_KMS("FDI train 2 done.\n");
2948 break;
2949 }
8db9d77b 2950 }
e1a44743 2951 if (tries == 5)
5eddb70b 2952 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2953
2954 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2955
8db9d77b
ZW
2956}
2957
0206e353 2958static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2959 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2960 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2961 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2962 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2963};
2964
2965/* The FDI link training functions for SNB/Cougarpoint. */
2966static void gen6_fdi_link_train(struct drm_crtc *crtc)
2967{
2968 struct drm_device *dev = crtc->dev;
2969 struct drm_i915_private *dev_priv = dev->dev_private;
2970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2971 int pipe = intel_crtc->pipe;
fa37d39e 2972 u32 reg, temp, i, retry;
8db9d77b 2973
e1a44743
AJ
2974 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2975 for train result */
5eddb70b
CW
2976 reg = FDI_RX_IMR(pipe);
2977 temp = I915_READ(reg);
e1a44743
AJ
2978 temp &= ~FDI_RX_SYMBOL_LOCK;
2979 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2980 I915_WRITE(reg, temp);
2981
2982 POSTING_READ(reg);
e1a44743
AJ
2983 udelay(150);
2984
8db9d77b 2985 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2986 reg = FDI_TX_CTL(pipe);
2987 temp = I915_READ(reg);
627eb5a3
DV
2988 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2989 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2990 temp &= ~FDI_LINK_TRAIN_NONE;
2991 temp |= FDI_LINK_TRAIN_PATTERN_1;
2992 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2993 /* SNB-B */
2994 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2995 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2996
d74cf324
DV
2997 I915_WRITE(FDI_RX_MISC(pipe),
2998 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2999
5eddb70b
CW
3000 reg = FDI_RX_CTL(pipe);
3001 temp = I915_READ(reg);
8db9d77b
ZW
3002 if (HAS_PCH_CPT(dev)) {
3003 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3004 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3005 } else {
3006 temp &= ~FDI_LINK_TRAIN_NONE;
3007 temp |= FDI_LINK_TRAIN_PATTERN_1;
3008 }
5eddb70b
CW
3009 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3010
3011 POSTING_READ(reg);
8db9d77b
ZW
3012 udelay(150);
3013
0206e353 3014 for (i = 0; i < 4; i++) {
5eddb70b
CW
3015 reg = FDI_TX_CTL(pipe);
3016 temp = I915_READ(reg);
8db9d77b
ZW
3017 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3018 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3019 I915_WRITE(reg, temp);
3020
3021 POSTING_READ(reg);
8db9d77b
ZW
3022 udelay(500);
3023
fa37d39e
SP
3024 for (retry = 0; retry < 5; retry++) {
3025 reg = FDI_RX_IIR(pipe);
3026 temp = I915_READ(reg);
3027 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3028 if (temp & FDI_RX_BIT_LOCK) {
3029 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3030 DRM_DEBUG_KMS("FDI train 1 done.\n");
3031 break;
3032 }
3033 udelay(50);
8db9d77b 3034 }
fa37d39e
SP
3035 if (retry < 5)
3036 break;
8db9d77b
ZW
3037 }
3038 if (i == 4)
5eddb70b 3039 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3040
3041 /* Train 2 */
5eddb70b
CW
3042 reg = FDI_TX_CTL(pipe);
3043 temp = I915_READ(reg);
8db9d77b
ZW
3044 temp &= ~FDI_LINK_TRAIN_NONE;
3045 temp |= FDI_LINK_TRAIN_PATTERN_2;
3046 if (IS_GEN6(dev)) {
3047 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3048 /* SNB-B */
3049 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3050 }
5eddb70b 3051 I915_WRITE(reg, temp);
8db9d77b 3052
5eddb70b
CW
3053 reg = FDI_RX_CTL(pipe);
3054 temp = I915_READ(reg);
8db9d77b
ZW
3055 if (HAS_PCH_CPT(dev)) {
3056 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3057 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3058 } else {
3059 temp &= ~FDI_LINK_TRAIN_NONE;
3060 temp |= FDI_LINK_TRAIN_PATTERN_2;
3061 }
5eddb70b
CW
3062 I915_WRITE(reg, temp);
3063
3064 POSTING_READ(reg);
8db9d77b
ZW
3065 udelay(150);
3066
0206e353 3067 for (i = 0; i < 4; i++) {
5eddb70b
CW
3068 reg = FDI_TX_CTL(pipe);
3069 temp = I915_READ(reg);
8db9d77b
ZW
3070 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3071 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3072 I915_WRITE(reg, temp);
3073
3074 POSTING_READ(reg);
8db9d77b
ZW
3075 udelay(500);
3076
fa37d39e
SP
3077 for (retry = 0; retry < 5; retry++) {
3078 reg = FDI_RX_IIR(pipe);
3079 temp = I915_READ(reg);
3080 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3081 if (temp & FDI_RX_SYMBOL_LOCK) {
3082 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3083 DRM_DEBUG_KMS("FDI train 2 done.\n");
3084 break;
3085 }
3086 udelay(50);
8db9d77b 3087 }
fa37d39e
SP
3088 if (retry < 5)
3089 break;
8db9d77b
ZW
3090 }
3091 if (i == 4)
5eddb70b 3092 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3093
3094 DRM_DEBUG_KMS("FDI train done.\n");
3095}
3096
357555c0
JB
3097/* Manual link training for Ivy Bridge A0 parts */
3098static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3099{
3100 struct drm_device *dev = crtc->dev;
3101 struct drm_i915_private *dev_priv = dev->dev_private;
3102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3103 int pipe = intel_crtc->pipe;
139ccd3f 3104 u32 reg, temp, i, j;
357555c0
JB
3105
3106 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3107 for train result */
3108 reg = FDI_RX_IMR(pipe);
3109 temp = I915_READ(reg);
3110 temp &= ~FDI_RX_SYMBOL_LOCK;
3111 temp &= ~FDI_RX_BIT_LOCK;
3112 I915_WRITE(reg, temp);
3113
3114 POSTING_READ(reg);
3115 udelay(150);
3116
01a415fd
DV
3117 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3118 I915_READ(FDI_RX_IIR(pipe)));
3119
139ccd3f
JB
3120 /* Try each vswing and preemphasis setting twice before moving on */
3121 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3122 /* disable first in case we need to retry */
3123 reg = FDI_TX_CTL(pipe);
3124 temp = I915_READ(reg);
3125 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3126 temp &= ~FDI_TX_ENABLE;
3127 I915_WRITE(reg, temp);
357555c0 3128
139ccd3f
JB
3129 reg = FDI_RX_CTL(pipe);
3130 temp = I915_READ(reg);
3131 temp &= ~FDI_LINK_TRAIN_AUTO;
3132 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3133 temp &= ~FDI_RX_ENABLE;
3134 I915_WRITE(reg, temp);
357555c0 3135
139ccd3f 3136 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3137 reg = FDI_TX_CTL(pipe);
3138 temp = I915_READ(reg);
139ccd3f
JB
3139 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3140 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3141 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3142 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3143 temp |= snb_b_fdi_train_param[j/2];
3144 temp |= FDI_COMPOSITE_SYNC;
3145 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3146
139ccd3f
JB
3147 I915_WRITE(FDI_RX_MISC(pipe),
3148 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3149
139ccd3f 3150 reg = FDI_RX_CTL(pipe);
357555c0 3151 temp = I915_READ(reg);
139ccd3f
JB
3152 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3153 temp |= FDI_COMPOSITE_SYNC;
3154 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3155
139ccd3f
JB
3156 POSTING_READ(reg);
3157 udelay(1); /* should be 0.5us */
357555c0 3158
139ccd3f
JB
3159 for (i = 0; i < 4; i++) {
3160 reg = FDI_RX_IIR(pipe);
3161 temp = I915_READ(reg);
3162 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3163
139ccd3f
JB
3164 if (temp & FDI_RX_BIT_LOCK ||
3165 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3166 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3167 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3168 i);
3169 break;
3170 }
3171 udelay(1); /* should be 0.5us */
3172 }
3173 if (i == 4) {
3174 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3175 continue;
3176 }
357555c0 3177
139ccd3f 3178 /* Train 2 */
357555c0
JB
3179 reg = FDI_TX_CTL(pipe);
3180 temp = I915_READ(reg);
139ccd3f
JB
3181 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3182 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3183 I915_WRITE(reg, temp);
3184
3185 reg = FDI_RX_CTL(pipe);
3186 temp = I915_READ(reg);
3187 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3188 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3189 I915_WRITE(reg, temp);
3190
3191 POSTING_READ(reg);
139ccd3f 3192 udelay(2); /* should be 1.5us */
357555c0 3193
139ccd3f
JB
3194 for (i = 0; i < 4; i++) {
3195 reg = FDI_RX_IIR(pipe);
3196 temp = I915_READ(reg);
3197 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3198
139ccd3f
JB
3199 if (temp & FDI_RX_SYMBOL_LOCK ||
3200 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3201 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3202 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3203 i);
3204 goto train_done;
3205 }
3206 udelay(2); /* should be 1.5us */
357555c0 3207 }
139ccd3f
JB
3208 if (i == 4)
3209 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3210 }
357555c0 3211
139ccd3f 3212train_done:
357555c0
JB
3213 DRM_DEBUG_KMS("FDI train done.\n");
3214}
3215
88cefb6c 3216static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3217{
88cefb6c 3218 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3219 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3220 int pipe = intel_crtc->pipe;
5eddb70b 3221 u32 reg, temp;
79e53945 3222
c64e311e 3223
c98e9dcf 3224 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3225 reg = FDI_RX_CTL(pipe);
3226 temp = I915_READ(reg);
627eb5a3
DV
3227 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3228 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3229 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3230 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3231
3232 POSTING_READ(reg);
c98e9dcf
JB
3233 udelay(200);
3234
3235 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3236 temp = I915_READ(reg);
3237 I915_WRITE(reg, temp | FDI_PCDCLK);
3238
3239 POSTING_READ(reg);
c98e9dcf
JB
3240 udelay(200);
3241
20749730
PZ
3242 /* Enable CPU FDI TX PLL, always on for Ironlake */
3243 reg = FDI_TX_CTL(pipe);
3244 temp = I915_READ(reg);
3245 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3246 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3247
20749730
PZ
3248 POSTING_READ(reg);
3249 udelay(100);
6be4a607 3250 }
0e23b99d
JB
3251}
3252
88cefb6c
DV
3253static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3254{
3255 struct drm_device *dev = intel_crtc->base.dev;
3256 struct drm_i915_private *dev_priv = dev->dev_private;
3257 int pipe = intel_crtc->pipe;
3258 u32 reg, temp;
3259
3260 /* Switch from PCDclk to Rawclk */
3261 reg = FDI_RX_CTL(pipe);
3262 temp = I915_READ(reg);
3263 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3264
3265 /* Disable CPU FDI TX PLL */
3266 reg = FDI_TX_CTL(pipe);
3267 temp = I915_READ(reg);
3268 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3269
3270 POSTING_READ(reg);
3271 udelay(100);
3272
3273 reg = FDI_RX_CTL(pipe);
3274 temp = I915_READ(reg);
3275 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3276
3277 /* Wait for the clocks to turn off. */
3278 POSTING_READ(reg);
3279 udelay(100);
3280}
3281
0fc932b8
JB
3282static void ironlake_fdi_disable(struct drm_crtc *crtc)
3283{
3284 struct drm_device *dev = crtc->dev;
3285 struct drm_i915_private *dev_priv = dev->dev_private;
3286 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3287 int pipe = intel_crtc->pipe;
3288 u32 reg, temp;
3289
3290 /* disable CPU FDI tx and PCH FDI rx */
3291 reg = FDI_TX_CTL(pipe);
3292 temp = I915_READ(reg);
3293 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3294 POSTING_READ(reg);
3295
3296 reg = FDI_RX_CTL(pipe);
3297 temp = I915_READ(reg);
3298 temp &= ~(0x7 << 16);
dfd07d72 3299 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3300 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3301
3302 POSTING_READ(reg);
3303 udelay(100);
3304
3305 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3306 if (HAS_PCH_IBX(dev))
6f06ce18 3307 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3308
3309 /* still set train pattern 1 */
3310 reg = FDI_TX_CTL(pipe);
3311 temp = I915_READ(reg);
3312 temp &= ~FDI_LINK_TRAIN_NONE;
3313 temp |= FDI_LINK_TRAIN_PATTERN_1;
3314 I915_WRITE(reg, temp);
3315
3316 reg = FDI_RX_CTL(pipe);
3317 temp = I915_READ(reg);
3318 if (HAS_PCH_CPT(dev)) {
3319 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3320 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3321 } else {
3322 temp &= ~FDI_LINK_TRAIN_NONE;
3323 temp |= FDI_LINK_TRAIN_PATTERN_1;
3324 }
3325 /* BPC in FDI rx is consistent with that in PIPECONF */
3326 temp &= ~(0x07 << 16);
dfd07d72 3327 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3328 I915_WRITE(reg, temp);
3329
3330 POSTING_READ(reg);
3331 udelay(100);
3332}
3333
5dce5b93
CW
3334bool intel_has_pending_fb_unpin(struct drm_device *dev)
3335{
3336 struct intel_crtc *crtc;
3337
3338 /* Note that we don't need to be called with mode_config.lock here
3339 * as our list of CRTC objects is static for the lifetime of the
3340 * device and so cannot disappear as we iterate. Similarly, we can
3341 * happily treat the predicates as racy, atomic checks as userspace
3342 * cannot claim and pin a new fb without at least acquring the
3343 * struct_mutex and so serialising with us.
3344 */
d3fcc808 3345 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3346 if (atomic_read(&crtc->unpin_work_count) == 0)
3347 continue;
3348
3349 if (crtc->unpin_work)
3350 intel_wait_for_vblank(dev, crtc->pipe);
3351
3352 return true;
3353 }
3354
3355 return false;
3356}
3357
46a55d30 3358void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3359{
0f91128d 3360 struct drm_device *dev = crtc->dev;
5bb61643 3361 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3362
f4510a27 3363 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3364 return;
3365
2c10d571
DV
3366 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3367
eed6d67d
DV
3368 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3369 !intel_crtc_has_pending_flip(crtc),
3370 60*HZ) == 0);
5bb61643 3371
0f91128d 3372 mutex_lock(&dev->struct_mutex);
f4510a27 3373 intel_finish_fb(crtc->primary->fb);
0f91128d 3374 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3375}
3376
e615efe4
ED
3377/* Program iCLKIP clock to the desired frequency */
3378static void lpt_program_iclkip(struct drm_crtc *crtc)
3379{
3380 struct drm_device *dev = crtc->dev;
3381 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3382 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3383 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3384 u32 temp;
3385
09153000
DV
3386 mutex_lock(&dev_priv->dpio_lock);
3387
e615efe4
ED
3388 /* It is necessary to ungate the pixclk gate prior to programming
3389 * the divisors, and gate it back when it is done.
3390 */
3391 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3392
3393 /* Disable SSCCTL */
3394 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3395 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3396 SBI_SSCCTL_DISABLE,
3397 SBI_ICLK);
e615efe4
ED
3398
3399 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3400 if (clock == 20000) {
e615efe4
ED
3401 auxdiv = 1;
3402 divsel = 0x41;
3403 phaseinc = 0x20;
3404 } else {
3405 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3406 * but the adjusted_mode->crtc_clock in in KHz. To get the
3407 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3408 * convert the virtual clock precision to KHz here for higher
3409 * precision.
3410 */
3411 u32 iclk_virtual_root_freq = 172800 * 1000;
3412 u32 iclk_pi_range = 64;
3413 u32 desired_divisor, msb_divisor_value, pi_value;
3414
12d7ceed 3415 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3416 msb_divisor_value = desired_divisor / iclk_pi_range;
3417 pi_value = desired_divisor % iclk_pi_range;
3418
3419 auxdiv = 0;
3420 divsel = msb_divisor_value - 2;
3421 phaseinc = pi_value;
3422 }
3423
3424 /* This should not happen with any sane values */
3425 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3426 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3427 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3428 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3429
3430 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3431 clock,
e615efe4
ED
3432 auxdiv,
3433 divsel,
3434 phasedir,
3435 phaseinc);
3436
3437 /* Program SSCDIVINTPHASE6 */
988d6ee8 3438 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3439 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3440 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3441 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3442 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3443 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3444 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3445 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3446
3447 /* Program SSCAUXDIV */
988d6ee8 3448 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3449 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3450 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3451 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3452
3453 /* Enable modulator and associated divider */
988d6ee8 3454 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3455 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3456 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3457
3458 /* Wait for initialization time */
3459 udelay(24);
3460
3461 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3462
3463 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3464}
3465
275f01b2
DV
3466static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3467 enum pipe pch_transcoder)
3468{
3469 struct drm_device *dev = crtc->base.dev;
3470 struct drm_i915_private *dev_priv = dev->dev_private;
3471 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3472
3473 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3474 I915_READ(HTOTAL(cpu_transcoder)));
3475 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3476 I915_READ(HBLANK(cpu_transcoder)));
3477 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3478 I915_READ(HSYNC(cpu_transcoder)));
3479
3480 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3481 I915_READ(VTOTAL(cpu_transcoder)));
3482 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3483 I915_READ(VBLANK(cpu_transcoder)));
3484 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3485 I915_READ(VSYNC(cpu_transcoder)));
3486 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3487 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3488}
3489
1fbc0d78
DV
3490static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3491{
3492 struct drm_i915_private *dev_priv = dev->dev_private;
3493 uint32_t temp;
3494
3495 temp = I915_READ(SOUTH_CHICKEN1);
3496 if (temp & FDI_BC_BIFURCATION_SELECT)
3497 return;
3498
3499 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3500 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3501
3502 temp |= FDI_BC_BIFURCATION_SELECT;
3503 DRM_DEBUG_KMS("enabling fdi C rx\n");
3504 I915_WRITE(SOUTH_CHICKEN1, temp);
3505 POSTING_READ(SOUTH_CHICKEN1);
3506}
3507
3508static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3509{
3510 struct drm_device *dev = intel_crtc->base.dev;
3511 struct drm_i915_private *dev_priv = dev->dev_private;
3512
3513 switch (intel_crtc->pipe) {
3514 case PIPE_A:
3515 break;
3516 case PIPE_B:
3517 if (intel_crtc->config.fdi_lanes > 2)
3518 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3519 else
3520 cpt_enable_fdi_bc_bifurcation(dev);
3521
3522 break;
3523 case PIPE_C:
3524 cpt_enable_fdi_bc_bifurcation(dev);
3525
3526 break;
3527 default:
3528 BUG();
3529 }
3530}
3531
f67a559d
JB
3532/*
3533 * Enable PCH resources required for PCH ports:
3534 * - PCH PLLs
3535 * - FDI training & RX/TX
3536 * - update transcoder timings
3537 * - DP transcoding bits
3538 * - transcoder
3539 */
3540static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3541{
3542 struct drm_device *dev = crtc->dev;
3543 struct drm_i915_private *dev_priv = dev->dev_private;
3544 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3545 int pipe = intel_crtc->pipe;
ee7b9f93 3546 u32 reg, temp;
2c07245f 3547
ab9412ba 3548 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3549
1fbc0d78
DV
3550 if (IS_IVYBRIDGE(dev))
3551 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3552
cd986abb
DV
3553 /* Write the TU size bits before fdi link training, so that error
3554 * detection works. */
3555 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3556 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3557
c98e9dcf 3558 /* For PCH output, training FDI link */
674cf967 3559 dev_priv->display.fdi_link_train(crtc);
2c07245f 3560
3ad8a208
DV
3561 /* We need to program the right clock selection before writing the pixel
3562 * mutliplier into the DPLL. */
303b81e0 3563 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3564 u32 sel;
4b645f14 3565
c98e9dcf 3566 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3567 temp |= TRANS_DPLL_ENABLE(pipe);
3568 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3569 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3570 temp |= sel;
3571 else
3572 temp &= ~sel;
c98e9dcf 3573 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3574 }
5eddb70b 3575
3ad8a208
DV
3576 /* XXX: pch pll's can be enabled any time before we enable the PCH
3577 * transcoder, and we actually should do this to not upset any PCH
3578 * transcoder that already use the clock when we share it.
3579 *
3580 * Note that enable_shared_dpll tries to do the right thing, but
3581 * get_shared_dpll unconditionally resets the pll - we need that to have
3582 * the right LVDS enable sequence. */
85b3894f 3583 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3584
d9b6cb56
JB
3585 /* set transcoder timing, panel must allow it */
3586 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3587 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3588
303b81e0 3589 intel_fdi_normal_train(crtc);
5e84e1a4 3590
c98e9dcf
JB
3591 /* For PCH DP, enable TRANS_DP_CTL */
3592 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3593 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3594 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3595 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3596 reg = TRANS_DP_CTL(pipe);
3597 temp = I915_READ(reg);
3598 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3599 TRANS_DP_SYNC_MASK |
3600 TRANS_DP_BPC_MASK);
5eddb70b
CW
3601 temp |= (TRANS_DP_OUTPUT_ENABLE |
3602 TRANS_DP_ENH_FRAMING);
9325c9f0 3603 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3604
3605 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3606 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3607 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3608 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3609
3610 switch (intel_trans_dp_port_sel(crtc)) {
3611 case PCH_DP_B:
5eddb70b 3612 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3613 break;
3614 case PCH_DP_C:
5eddb70b 3615 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3616 break;
3617 case PCH_DP_D:
5eddb70b 3618 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3619 break;
3620 default:
e95d41e1 3621 BUG();
32f9d658 3622 }
2c07245f 3623
5eddb70b 3624 I915_WRITE(reg, temp);
6be4a607 3625 }
b52eb4dc 3626
b8a4f404 3627 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3628}
3629
1507e5bd
PZ
3630static void lpt_pch_enable(struct drm_crtc *crtc)
3631{
3632 struct drm_device *dev = crtc->dev;
3633 struct drm_i915_private *dev_priv = dev->dev_private;
3634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3635 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3636
ab9412ba 3637 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3638
8c52b5e8 3639 lpt_program_iclkip(crtc);
1507e5bd 3640
0540e488 3641 /* Set transcoder timing. */
275f01b2 3642 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3643
937bb610 3644 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3645}
3646
e2b78267 3647static void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3648{
e2b78267 3649 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3650
3651 if (pll == NULL)
3652 return;
3653
3654 if (pll->refcount == 0) {
46edb027 3655 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3656 return;
3657 }
3658
f4a091c7
DV
3659 if (--pll->refcount == 0) {
3660 WARN_ON(pll->on);
3661 WARN_ON(pll->active);
3662 }
3663
a43f6e0f 3664 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3665}
3666
b89a1d39 3667static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3668{
e2b78267
DV
3669 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3670 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3671 enum intel_dpll_id i;
ee7b9f93 3672
ee7b9f93 3673 if (pll) {
46edb027
DV
3674 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3675 crtc->base.base.id, pll->name);
e2b78267 3676 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3677 }
3678
98b6bd99
DV
3679 if (HAS_PCH_IBX(dev_priv->dev)) {
3680 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3681 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3682 pll = &dev_priv->shared_dplls[i];
98b6bd99 3683
46edb027
DV
3684 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3685 crtc->base.base.id, pll->name);
98b6bd99 3686
f2a69f44
DV
3687 WARN_ON(pll->refcount);
3688
98b6bd99
DV
3689 goto found;
3690 }
3691
e72f9fbf
DV
3692 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3693 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3694
3695 /* Only want to check enabled timings first */
3696 if (pll->refcount == 0)
3697 continue;
3698
b89a1d39
DV
3699 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3700 sizeof(pll->hw_state)) == 0) {
46edb027 3701 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3702 crtc->base.base.id,
46edb027 3703 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3704
3705 goto found;
3706 }
3707 }
3708
3709 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3710 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3711 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3712 if (pll->refcount == 0) {
46edb027
DV
3713 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3714 crtc->base.base.id, pll->name);
ee7b9f93
JB
3715 goto found;
3716 }
3717 }
3718
3719 return NULL;
3720
3721found:
f2a69f44
DV
3722 if (pll->refcount == 0)
3723 pll->hw_state = crtc->config.dpll_hw_state;
3724
a43f6e0f 3725 crtc->config.shared_dpll = i;
46edb027
DV
3726 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3727 pipe_name(crtc->pipe));
ee7b9f93 3728
cdbd2316 3729 pll->refcount++;
e04c7350 3730
ee7b9f93
JB
3731 return pll;
3732}
3733
a1520318 3734static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3735{
3736 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3737 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3738 u32 temp;
3739
3740 temp = I915_READ(dslreg);
3741 udelay(500);
3742 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3743 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3744 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3745 }
3746}
3747
b074cec8
JB
3748static void ironlake_pfit_enable(struct intel_crtc *crtc)
3749{
3750 struct drm_device *dev = crtc->base.dev;
3751 struct drm_i915_private *dev_priv = dev->dev_private;
3752 int pipe = crtc->pipe;
3753
fd4daa9c 3754 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3755 /* Force use of hard-coded filter coefficients
3756 * as some pre-programmed values are broken,
3757 * e.g. x201.
3758 */
3759 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3760 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3761 PF_PIPE_SEL_IVB(pipe));
3762 else
3763 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3764 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3765 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3766 }
3767}
3768
bb53d4ae
VS
3769static void intel_enable_planes(struct drm_crtc *crtc)
3770{
3771 struct drm_device *dev = crtc->dev;
3772 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3773 struct drm_plane *plane;
bb53d4ae
VS
3774 struct intel_plane *intel_plane;
3775
af2b653b
MR
3776 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3777 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3778 if (intel_plane->pipe == pipe)
3779 intel_plane_restore(&intel_plane->base);
af2b653b 3780 }
bb53d4ae
VS
3781}
3782
3783static void intel_disable_planes(struct drm_crtc *crtc)
3784{
3785 struct drm_device *dev = crtc->dev;
3786 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3787 struct drm_plane *plane;
bb53d4ae
VS
3788 struct intel_plane *intel_plane;
3789
af2b653b
MR
3790 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3791 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3792 if (intel_plane->pipe == pipe)
3793 intel_plane_disable(&intel_plane->base);
af2b653b 3794 }
bb53d4ae
VS
3795}
3796
20bc8673 3797void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3798{
cea165c3
VS
3799 struct drm_device *dev = crtc->base.dev;
3800 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3801
3802 if (!crtc->config.ips_enabled)
3803 return;
3804
cea165c3
VS
3805 /* We can only enable IPS after we enable a plane and wait for a vblank */
3806 intel_wait_for_vblank(dev, crtc->pipe);
3807
d77e4531 3808 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3809 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3810 mutex_lock(&dev_priv->rps.hw_lock);
3811 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3812 mutex_unlock(&dev_priv->rps.hw_lock);
3813 /* Quoting Art Runyan: "its not safe to expect any particular
3814 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3815 * mailbox." Moreover, the mailbox may return a bogus state,
3816 * so we need to just enable it and continue on.
2a114cc1
BW
3817 */
3818 } else {
3819 I915_WRITE(IPS_CTL, IPS_ENABLE);
3820 /* The bit only becomes 1 in the next vblank, so this wait here
3821 * is essentially intel_wait_for_vblank. If we don't have this
3822 * and don't wait for vblanks until the end of crtc_enable, then
3823 * the HW state readout code will complain that the expected
3824 * IPS_CTL value is not the one we read. */
3825 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3826 DRM_ERROR("Timed out waiting for IPS enable\n");
3827 }
d77e4531
PZ
3828}
3829
20bc8673 3830void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3831{
3832 struct drm_device *dev = crtc->base.dev;
3833 struct drm_i915_private *dev_priv = dev->dev_private;
3834
3835 if (!crtc->config.ips_enabled)
3836 return;
3837
3838 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3839 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3840 mutex_lock(&dev_priv->rps.hw_lock);
3841 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3842 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3843 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3844 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3845 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3846 } else {
2a114cc1 3847 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3848 POSTING_READ(IPS_CTL);
3849 }
d77e4531
PZ
3850
3851 /* We need to wait for a vblank before we can disable the plane. */
3852 intel_wait_for_vblank(dev, crtc->pipe);
3853}
3854
3855/** Loads the palette/gamma unit for the CRTC with the prepared values */
3856static void intel_crtc_load_lut(struct drm_crtc *crtc)
3857{
3858 struct drm_device *dev = crtc->dev;
3859 struct drm_i915_private *dev_priv = dev->dev_private;
3860 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3861 enum pipe pipe = intel_crtc->pipe;
3862 int palreg = PALETTE(pipe);
3863 int i;
3864 bool reenable_ips = false;
3865
3866 /* The clocks have to be on to load the palette. */
3867 if (!crtc->enabled || !intel_crtc->active)
3868 return;
3869
3870 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3871 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3872 assert_dsi_pll_enabled(dev_priv);
3873 else
3874 assert_pll_enabled(dev_priv, pipe);
3875 }
3876
3877 /* use legacy palette for Ironlake */
3878 if (HAS_PCH_SPLIT(dev))
3879 palreg = LGC_PALETTE(pipe);
3880
3881 /* Workaround : Do not read or write the pipe palette/gamma data while
3882 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3883 */
41e6fc4c 3884 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3885 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3886 GAMMA_MODE_MODE_SPLIT)) {
3887 hsw_disable_ips(intel_crtc);
3888 reenable_ips = true;
3889 }
3890
3891 for (i = 0; i < 256; i++) {
3892 I915_WRITE(palreg + 4 * i,
3893 (intel_crtc->lut_r[i] << 16) |
3894 (intel_crtc->lut_g[i] << 8) |
3895 intel_crtc->lut_b[i]);
3896 }
3897
3898 if (reenable_ips)
3899 hsw_enable_ips(intel_crtc);
3900}
3901
d3eedb1a
VS
3902static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3903{
3904 if (!enable && intel_crtc->overlay) {
3905 struct drm_device *dev = intel_crtc->base.dev;
3906 struct drm_i915_private *dev_priv = dev->dev_private;
3907
3908 mutex_lock(&dev->struct_mutex);
3909 dev_priv->mm.interruptible = false;
3910 (void) intel_overlay_switch_off(intel_crtc->overlay);
3911 dev_priv->mm.interruptible = true;
3912 mutex_unlock(&dev->struct_mutex);
3913 }
3914
3915 /* Let userspace switch the overlay on again. In most cases userspace
3916 * has to recompute where to put it anyway.
3917 */
3918}
3919
3920/**
3921 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3922 * cursor plane briefly if not already running after enabling the display
3923 * plane.
3924 * This workaround avoids occasional blank screens when self refresh is
3925 * enabled.
3926 */
3927static void
3928g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3929{
3930 u32 cntl = I915_READ(CURCNTR(pipe));
3931
3932 if ((cntl & CURSOR_MODE) == 0) {
3933 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3934
3935 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3936 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3937 intel_wait_for_vblank(dev_priv->dev, pipe);
3938 I915_WRITE(CURCNTR(pipe), cntl);
3939 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3940 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3941 }
3942}
3943
3944static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3945{
3946 struct drm_device *dev = crtc->dev;
3947 struct drm_i915_private *dev_priv = dev->dev_private;
3948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3949 int pipe = intel_crtc->pipe;
3950 int plane = intel_crtc->plane;
3951
f98551ae
VS
3952 drm_vblank_on(dev, pipe);
3953
a5c4d7bc
VS
3954 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3955 intel_enable_planes(crtc);
d3eedb1a
VS
3956 /* The fixup needs to happen before cursor is enabled */
3957 if (IS_G4X(dev))
3958 g4x_fixup_plane(dev_priv, pipe);
a5c4d7bc 3959 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3960 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3961
3962 hsw_enable_ips(intel_crtc);
3963
3964 mutex_lock(&dev->struct_mutex);
3965 intel_update_fbc(dev);
3966 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3967
3968 /*
3969 * FIXME: Once we grow proper nuclear flip support out of this we need
3970 * to compute the mask of flip planes precisely. For the time being
3971 * consider this a flip from a NULL plane.
3972 */
3973 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3974}
3975
d3eedb1a 3976static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3977{
3978 struct drm_device *dev = crtc->dev;
3979 struct drm_i915_private *dev_priv = dev->dev_private;
3980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3981 int pipe = intel_crtc->pipe;
3982 int plane = intel_crtc->plane;
3983
3984 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3985
3986 if (dev_priv->fbc.plane == plane)
3987 intel_disable_fbc(dev);
3988
3989 hsw_disable_ips(intel_crtc);
3990
d3eedb1a 3991 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3992 intel_crtc_update_cursor(crtc, false);
3993 intel_disable_planes(crtc);
3994 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3995
f99d7069
DV
3996 /*
3997 * FIXME: Once we grow proper nuclear flip support out of this we need
3998 * to compute the mask of flip planes precisely. For the time being
3999 * consider this a flip to a NULL plane.
4000 */
4001 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4002
f98551ae 4003 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
4004}
4005
f67a559d
JB
4006static void ironlake_crtc_enable(struct drm_crtc *crtc)
4007{
4008 struct drm_device *dev = crtc->dev;
4009 struct drm_i915_private *dev_priv = dev->dev_private;
4010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4011 struct intel_encoder *encoder;
f67a559d 4012 int pipe = intel_crtc->pipe;
29407aab 4013 enum plane plane = intel_crtc->plane;
f67a559d 4014
08a48469
DV
4015 WARN_ON(!crtc->enabled);
4016
f67a559d
JB
4017 if (intel_crtc->active)
4018 return;
4019
b14b1055
DV
4020 if (intel_crtc->config.has_pch_encoder)
4021 intel_prepare_shared_dpll(intel_crtc);
4022
29407aab
DV
4023 if (intel_crtc->config.has_dp_encoder)
4024 intel_dp_set_m_n(intel_crtc);
4025
4026 intel_set_pipe_timings(intel_crtc);
4027
4028 if (intel_crtc->config.has_pch_encoder) {
4029 intel_cpu_transcoder_set_m_n(intel_crtc,
4030 &intel_crtc->config.fdi_m_n);
4031 }
4032
4033 ironlake_set_pipeconf(crtc);
4034
4035 /* Set up the display plane register */
4036 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
4037 POSTING_READ(DSPCNTR(plane));
4038
4039 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4040 crtc->x, crtc->y);
4041
f67a559d 4042 intel_crtc->active = true;
8664281b
PZ
4043
4044 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4045 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
4046
f6736a1a 4047 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4048 if (encoder->pre_enable)
4049 encoder->pre_enable(encoder);
f67a559d 4050
5bfe2ac0 4051 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
4052 /* Note: FDI PLL enabling _must_ be done before we enable the
4053 * cpu pipes, hence this is separate from all the other fdi/pch
4054 * enabling. */
88cefb6c 4055 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4056 } else {
4057 assert_fdi_tx_disabled(dev_priv, pipe);
4058 assert_fdi_rx_disabled(dev_priv, pipe);
4059 }
f67a559d 4060
b074cec8 4061 ironlake_pfit_enable(intel_crtc);
f67a559d 4062
9c54c0dd
JB
4063 /*
4064 * On ILK+ LUT must be loaded before the pipe is running but with
4065 * clocks enabled
4066 */
4067 intel_crtc_load_lut(crtc);
4068
f37fcc2a 4069 intel_update_watermarks(crtc);
e1fdc473 4070 intel_enable_pipe(intel_crtc);
f67a559d 4071
5bfe2ac0 4072 if (intel_crtc->config.has_pch_encoder)
f67a559d 4073 ironlake_pch_enable(crtc);
c98e9dcf 4074
fa5c73b1
DV
4075 for_each_encoder_on_crtc(dev, crtc, encoder)
4076 encoder->enable(encoder);
61b77ddd
DV
4077
4078 if (HAS_PCH_CPT(dev))
a1520318 4079 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4080
d3eedb1a 4081 intel_crtc_enable_planes(crtc);
6be4a607
JB
4082}
4083
42db64ef
PZ
4084/* IPS only exists on ULT machines and is tied to pipe A. */
4085static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4086{
f5adf94e 4087 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4088}
4089
e4916946
PZ
4090/*
4091 * This implements the workaround described in the "notes" section of the mode
4092 * set sequence documentation. When going from no pipes or single pipe to
4093 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4094 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4095 */
4096static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4097{
4098 struct drm_device *dev = crtc->base.dev;
4099 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4100
4101 /* We want to get the other_active_crtc only if there's only 1 other
4102 * active crtc. */
d3fcc808 4103 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4104 if (!crtc_it->active || crtc_it == crtc)
4105 continue;
4106
4107 if (other_active_crtc)
4108 return;
4109
4110 other_active_crtc = crtc_it;
4111 }
4112 if (!other_active_crtc)
4113 return;
4114
4115 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4116 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4117}
4118
4f771f10
PZ
4119static void haswell_crtc_enable(struct drm_crtc *crtc)
4120{
4121 struct drm_device *dev = crtc->dev;
4122 struct drm_i915_private *dev_priv = dev->dev_private;
4123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4124 struct intel_encoder *encoder;
4125 int pipe = intel_crtc->pipe;
229fca97 4126 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4127
4128 WARN_ON(!crtc->enabled);
4129
4130 if (intel_crtc->active)
4131 return;
4132
229fca97
DV
4133 if (intel_crtc->config.has_dp_encoder)
4134 intel_dp_set_m_n(intel_crtc);
4135
4136 intel_set_pipe_timings(intel_crtc);
4137
4138 if (intel_crtc->config.has_pch_encoder) {
4139 intel_cpu_transcoder_set_m_n(intel_crtc,
4140 &intel_crtc->config.fdi_m_n);
4141 }
4142
4143 haswell_set_pipeconf(crtc);
4144
4145 intel_set_pipe_csc(crtc);
4146
4147 /* Set up the display plane register */
4148 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4149 POSTING_READ(DSPCNTR(plane));
4150
4151 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4152 crtc->x, crtc->y);
4153
4f771f10 4154 intel_crtc->active = true;
8664281b
PZ
4155
4156 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4157 if (intel_crtc->config.has_pch_encoder)
4158 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4159
5bfe2ac0 4160 if (intel_crtc->config.has_pch_encoder)
04945641 4161 dev_priv->display.fdi_link_train(crtc);
4f771f10
PZ
4162
4163 for_each_encoder_on_crtc(dev, crtc, encoder)
4164 if (encoder->pre_enable)
4165 encoder->pre_enable(encoder);
4166
1f544388 4167 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4168
b074cec8 4169 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4170
4171 /*
4172 * On ILK+ LUT must be loaded before the pipe is running but with
4173 * clocks enabled
4174 */
4175 intel_crtc_load_lut(crtc);
4176
1f544388 4177 intel_ddi_set_pipe_settings(crtc);
8228c251 4178 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4179
f37fcc2a 4180 intel_update_watermarks(crtc);
e1fdc473 4181 intel_enable_pipe(intel_crtc);
42db64ef 4182
5bfe2ac0 4183 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4184 lpt_pch_enable(crtc);
4f771f10 4185
8807e55b 4186 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4187 encoder->enable(encoder);
8807e55b
JN
4188 intel_opregion_notify_encoder(encoder, true);
4189 }
4f771f10 4190
e4916946
PZ
4191 /* If we change the relative order between pipe/planes enabling, we need
4192 * to change the workaround. */
4193 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4194 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4195}
4196
3f8dce3a
DV
4197static void ironlake_pfit_disable(struct intel_crtc *crtc)
4198{
4199 struct drm_device *dev = crtc->base.dev;
4200 struct drm_i915_private *dev_priv = dev->dev_private;
4201 int pipe = crtc->pipe;
4202
4203 /* To avoid upsetting the power well on haswell only disable the pfit if
4204 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4205 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4206 I915_WRITE(PF_CTL(pipe), 0);
4207 I915_WRITE(PF_WIN_POS(pipe), 0);
4208 I915_WRITE(PF_WIN_SZ(pipe), 0);
4209 }
4210}
4211
6be4a607
JB
4212static void ironlake_crtc_disable(struct drm_crtc *crtc)
4213{
4214 struct drm_device *dev = crtc->dev;
4215 struct drm_i915_private *dev_priv = dev->dev_private;
4216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4217 struct intel_encoder *encoder;
6be4a607 4218 int pipe = intel_crtc->pipe;
5eddb70b 4219 u32 reg, temp;
b52eb4dc 4220
f7abfe8b
CW
4221 if (!intel_crtc->active)
4222 return;
4223
d3eedb1a 4224 intel_crtc_disable_planes(crtc);
a5c4d7bc 4225
ea9d758d
DV
4226 for_each_encoder_on_crtc(dev, crtc, encoder)
4227 encoder->disable(encoder);
4228
d925c59a
DV
4229 if (intel_crtc->config.has_pch_encoder)
4230 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4231
b24e7179 4232 intel_disable_pipe(dev_priv, pipe);
32f9d658 4233
3f8dce3a 4234 ironlake_pfit_disable(intel_crtc);
2c07245f 4235
bf49ec8c
DV
4236 for_each_encoder_on_crtc(dev, crtc, encoder)
4237 if (encoder->post_disable)
4238 encoder->post_disable(encoder);
2c07245f 4239
d925c59a
DV
4240 if (intel_crtc->config.has_pch_encoder) {
4241 ironlake_fdi_disable(crtc);
913d8d11 4242
d925c59a
DV
4243 ironlake_disable_pch_transcoder(dev_priv, pipe);
4244 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4245
d925c59a
DV
4246 if (HAS_PCH_CPT(dev)) {
4247 /* disable TRANS_DP_CTL */
4248 reg = TRANS_DP_CTL(pipe);
4249 temp = I915_READ(reg);
4250 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4251 TRANS_DP_PORT_SEL_MASK);
4252 temp |= TRANS_DP_PORT_SEL_NONE;
4253 I915_WRITE(reg, temp);
4254
4255 /* disable DPLL_SEL */
4256 temp = I915_READ(PCH_DPLL_SEL);
11887397 4257 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4258 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4259 }
e3421a18 4260
d925c59a 4261 /* disable PCH DPLL */
e72f9fbf 4262 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4263
d925c59a
DV
4264 ironlake_fdi_pll_disable(intel_crtc);
4265 }
6b383a7f 4266
f7abfe8b 4267 intel_crtc->active = false;
46ba614c 4268 intel_update_watermarks(crtc);
d1ebd816
BW
4269
4270 mutex_lock(&dev->struct_mutex);
6b383a7f 4271 intel_update_fbc(dev);
d1ebd816 4272 mutex_unlock(&dev->struct_mutex);
6be4a607 4273}
1b3c7a47 4274
4f771f10 4275static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4276{
4f771f10
PZ
4277 struct drm_device *dev = crtc->dev;
4278 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4279 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4280 struct intel_encoder *encoder;
4281 int pipe = intel_crtc->pipe;
3b117c8f 4282 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4283
4f771f10
PZ
4284 if (!intel_crtc->active)
4285 return;
4286
d3eedb1a 4287 intel_crtc_disable_planes(crtc);
dda9a66a 4288
8807e55b
JN
4289 for_each_encoder_on_crtc(dev, crtc, encoder) {
4290 intel_opregion_notify_encoder(encoder, false);
4f771f10 4291 encoder->disable(encoder);
8807e55b 4292 }
4f771f10 4293
8664281b
PZ
4294 if (intel_crtc->config.has_pch_encoder)
4295 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4296 intel_disable_pipe(dev_priv, pipe);
4297
ad80a810 4298 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4299
3f8dce3a 4300 ironlake_pfit_disable(intel_crtc);
4f771f10 4301
1f544388 4302 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10
PZ
4303
4304 for_each_encoder_on_crtc(dev, crtc, encoder)
4305 if (encoder->post_disable)
4306 encoder->post_disable(encoder);
4307
88adfff1 4308 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4309 lpt_disable_pch_transcoder(dev_priv);
8664281b 4310 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4311 intel_ddi_fdi_disable(crtc);
83616634 4312 }
4f771f10
PZ
4313
4314 intel_crtc->active = false;
46ba614c 4315 intel_update_watermarks(crtc);
4f771f10
PZ
4316
4317 mutex_lock(&dev->struct_mutex);
4318 intel_update_fbc(dev);
4319 mutex_unlock(&dev->struct_mutex);
4320}
4321
ee7b9f93
JB
4322static void ironlake_crtc_off(struct drm_crtc *crtc)
4323{
4324 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4325 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4326}
4327
6441ab5f
PZ
4328static void haswell_crtc_off(struct drm_crtc *crtc)
4329{
4330 intel_ddi_put_crtc_pll(crtc);
4331}
4332
2dd24552
JB
4333static void i9xx_pfit_enable(struct intel_crtc *crtc)
4334{
4335 struct drm_device *dev = crtc->base.dev;
4336 struct drm_i915_private *dev_priv = dev->dev_private;
4337 struct intel_crtc_config *pipe_config = &crtc->config;
4338
328d8e82 4339 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4340 return;
4341
2dd24552 4342 /*
c0b03411
DV
4343 * The panel fitter should only be adjusted whilst the pipe is disabled,
4344 * according to register description and PRM.
2dd24552 4345 */
c0b03411
DV
4346 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4347 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4348
b074cec8
JB
4349 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4350 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4351
4352 /* Border color in case we don't scale up to the full screen. Black by
4353 * default, change to something else for debugging. */
4354 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4355}
4356
77d22dca
ID
4357#define for_each_power_domain(domain, mask) \
4358 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4359 if ((1 << (domain)) & (mask))
4360
319be8ae
ID
4361enum intel_display_power_domain
4362intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4363{
4364 struct drm_device *dev = intel_encoder->base.dev;
4365 struct intel_digital_port *intel_dig_port;
4366
4367 switch (intel_encoder->type) {
4368 case INTEL_OUTPUT_UNKNOWN:
4369 /* Only DDI platforms should ever use this output type */
4370 WARN_ON_ONCE(!HAS_DDI(dev));
4371 case INTEL_OUTPUT_DISPLAYPORT:
4372 case INTEL_OUTPUT_HDMI:
4373 case INTEL_OUTPUT_EDP:
4374 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4375 switch (intel_dig_port->port) {
4376 case PORT_A:
4377 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4378 case PORT_B:
4379 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4380 case PORT_C:
4381 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4382 case PORT_D:
4383 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4384 default:
4385 WARN_ON_ONCE(1);
4386 return POWER_DOMAIN_PORT_OTHER;
4387 }
4388 case INTEL_OUTPUT_ANALOG:
4389 return POWER_DOMAIN_PORT_CRT;
4390 case INTEL_OUTPUT_DSI:
4391 return POWER_DOMAIN_PORT_DSI;
4392 default:
4393 return POWER_DOMAIN_PORT_OTHER;
4394 }
4395}
4396
4397static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4398{
319be8ae
ID
4399 struct drm_device *dev = crtc->dev;
4400 struct intel_encoder *intel_encoder;
4401 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4402 enum pipe pipe = intel_crtc->pipe;
4403 bool pfit_enabled = intel_crtc->config.pch_pfit.enabled;
77d22dca
ID
4404 unsigned long mask;
4405 enum transcoder transcoder;
4406
4407 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4408
4409 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4410 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4411 if (pfit_enabled)
4412 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4413
319be8ae
ID
4414 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4415 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4416
77d22dca
ID
4417 return mask;
4418}
4419
4420void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4421 bool enable)
4422{
4423 if (dev_priv->power_domains.init_power_on == enable)
4424 return;
4425
4426 if (enable)
4427 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4428 else
4429 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4430
4431 dev_priv->power_domains.init_power_on = enable;
4432}
4433
4434static void modeset_update_crtc_power_domains(struct drm_device *dev)
4435{
4436 struct drm_i915_private *dev_priv = dev->dev_private;
4437 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4438 struct intel_crtc *crtc;
4439
4440 /*
4441 * First get all needed power domains, then put all unneeded, to avoid
4442 * any unnecessary toggling of the power wells.
4443 */
d3fcc808 4444 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4445 enum intel_display_power_domain domain;
4446
4447 if (!crtc->base.enabled)
4448 continue;
4449
319be8ae 4450 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4451
4452 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4453 intel_display_power_get(dev_priv, domain);
4454 }
4455
d3fcc808 4456 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4457 enum intel_display_power_domain domain;
4458
4459 for_each_power_domain(domain, crtc->enabled_power_domains)
4460 intel_display_power_put(dev_priv, domain);
4461
4462 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4463 }
4464
4465 intel_display_set_init_power(dev_priv, false);
4466}
4467
dfcab17e 4468/* returns HPLL frequency in kHz */
586f49dc 4469int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4470{
586f49dc 4471 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4472
586f49dc
JB
4473 /* Obtain SKU information */
4474 mutex_lock(&dev_priv->dpio_lock);
4475 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4476 CCK_FUSE_HPLL_FREQ_MASK;
4477 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4478
dfcab17e 4479 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4480}
4481
4482/* Adjust CDclk dividers to allow high res or save power if possible */
4483static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4484{
4485 struct drm_i915_private *dev_priv = dev->dev_private;
4486 u32 val, cmd;
4487
d60c4473
ID
4488 WARN_ON(valleyview_cur_cdclk(dev_priv) != dev_priv->vlv_cdclk_freq);
4489 dev_priv->vlv_cdclk_freq = cdclk;
4490
dfcab17e 4491 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4492 cmd = 2;
dfcab17e 4493 else if (cdclk == 266667)
30a970c6
JB
4494 cmd = 1;
4495 else
4496 cmd = 0;
4497
4498 mutex_lock(&dev_priv->rps.hw_lock);
4499 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4500 val &= ~DSPFREQGUAR_MASK;
4501 val |= (cmd << DSPFREQGUAR_SHIFT);
4502 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4503 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4504 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4505 50)) {
4506 DRM_ERROR("timed out waiting for CDclk change\n");
4507 }
4508 mutex_unlock(&dev_priv->rps.hw_lock);
4509
dfcab17e 4510 if (cdclk == 400000) {
30a970c6
JB
4511 u32 divider, vco;
4512
4513 vco = valleyview_get_vco(dev_priv);
dfcab17e 4514 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4515
4516 mutex_lock(&dev_priv->dpio_lock);
4517 /* adjust cdclk divider */
4518 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4519 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4520 val |= divider;
4521 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4522 mutex_unlock(&dev_priv->dpio_lock);
4523 }
4524
4525 mutex_lock(&dev_priv->dpio_lock);
4526 /* adjust self-refresh exit latency value */
4527 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4528 val &= ~0x7f;
4529
4530 /*
4531 * For high bandwidth configs, we set a higher latency in the bunit
4532 * so that the core display fetch happens in time to avoid underruns.
4533 */
dfcab17e 4534 if (cdclk == 400000)
30a970c6
JB
4535 val |= 4500 / 250; /* 4.5 usec */
4536 else
4537 val |= 3000 / 250; /* 3.0 usec */
4538 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4539 mutex_unlock(&dev_priv->dpio_lock);
4540
4541 /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4542 intel_i2c_reset(dev);
4543}
4544
d60c4473 4545int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4546{
4547 int cur_cdclk, vco;
4548 int divider;
4549
4550 vco = valleyview_get_vco(dev_priv);
4551
4552 mutex_lock(&dev_priv->dpio_lock);
4553 divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4554 mutex_unlock(&dev_priv->dpio_lock);
4555
9cf33db5 4556 divider &= DISPLAY_FREQUENCY_VALUES;
30a970c6 4557
dfcab17e 4558 cur_cdclk = DIV_ROUND_CLOSEST(vco << 1, divider + 1);
30a970c6
JB
4559
4560 return cur_cdclk;
4561}
4562
4563static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4564 int max_pixclk)
4565{
30a970c6
JB
4566 /*
4567 * Really only a few cases to deal with, as only 4 CDclks are supported:
4568 * 200MHz
4569 * 267MHz
4570 * 320MHz
4571 * 400MHz
4572 * So we check to see whether we're above 90% of the lower bin and
4573 * adjust if needed.
4574 */
dfcab17e
VS
4575 if (max_pixclk > 320000*9/10)
4576 return 400000;
4577 else if (max_pixclk > 266667*9/10)
4578 return 320000;
4579 else
4580 return 266667;
30a970c6
JB
4581 /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4582}
4583
2f2d7aa1
VS
4584/* compute the max pixel clock for new configuration */
4585static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4586{
4587 struct drm_device *dev = dev_priv->dev;
4588 struct intel_crtc *intel_crtc;
4589 int max_pixclk = 0;
4590
d3fcc808 4591 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4592 if (intel_crtc->new_enabled)
30a970c6 4593 max_pixclk = max(max_pixclk,
2f2d7aa1 4594 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4595 }
4596
4597 return max_pixclk;
4598}
4599
4600static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4601 unsigned *prepare_pipes)
30a970c6
JB
4602{
4603 struct drm_i915_private *dev_priv = dev->dev_private;
4604 struct intel_crtc *intel_crtc;
2f2d7aa1 4605 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4606
d60c4473
ID
4607 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4608 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4609 return;
4610
2f2d7aa1 4611 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4612 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4613 if (intel_crtc->base.enabled)
4614 *prepare_pipes |= (1 << intel_crtc->pipe);
4615}
4616
4617static void valleyview_modeset_global_resources(struct drm_device *dev)
4618{
4619 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4620 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4621 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4622
d60c4473 4623 if (req_cdclk != dev_priv->vlv_cdclk_freq)
30a970c6 4624 valleyview_set_cdclk(dev, req_cdclk);
77961eb9 4625 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4626}
4627
89b667f8
JB
4628static void valleyview_crtc_enable(struct drm_crtc *crtc)
4629{
4630 struct drm_device *dev = crtc->dev;
5b18e57c 4631 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4633 struct intel_encoder *encoder;
4634 int pipe = intel_crtc->pipe;
5b18e57c 4635 int plane = intel_crtc->plane;
23538ef1 4636 bool is_dsi;
5b18e57c 4637 u32 dspcntr;
89b667f8
JB
4638
4639 WARN_ON(!crtc->enabled);
4640
4641 if (intel_crtc->active)
4642 return;
4643
8525a235
SK
4644 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4645
4646 if (!is_dsi && !IS_CHERRYVIEW(dev))
4647 vlv_prepare_pll(intel_crtc);
bdd4b6a6 4648
5b18e57c
DV
4649 /* Set up the display plane register */
4650 dspcntr = DISPPLANE_GAMMA_ENABLE;
4651
4652 if (intel_crtc->config.has_dp_encoder)
4653 intel_dp_set_m_n(intel_crtc);
4654
4655 intel_set_pipe_timings(intel_crtc);
4656
4657 /* pipesrc and dspsize control the size that is scaled from,
4658 * which should always be the user's requested size.
4659 */
4660 I915_WRITE(DSPSIZE(plane),
4661 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4662 (intel_crtc->config.pipe_src_w - 1));
4663 I915_WRITE(DSPPOS(plane), 0);
4664
4665 i9xx_set_pipeconf(intel_crtc);
4666
4667 I915_WRITE(DSPCNTR(plane), dspcntr);
4668 POSTING_READ(DSPCNTR(plane));
4669
4670 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4671 crtc->x, crtc->y);
4672
89b667f8 4673 intel_crtc->active = true;
89b667f8 4674
4a3436e8
VS
4675 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4676
89b667f8
JB
4677 for_each_encoder_on_crtc(dev, crtc, encoder)
4678 if (encoder->pre_pll_enable)
4679 encoder->pre_pll_enable(encoder);
4680
9d556c99
CML
4681 if (!is_dsi) {
4682 if (IS_CHERRYVIEW(dev))
4683 chv_enable_pll(intel_crtc);
4684 else
4685 vlv_enable_pll(intel_crtc);
4686 }
89b667f8
JB
4687
4688 for_each_encoder_on_crtc(dev, crtc, encoder)
4689 if (encoder->pre_enable)
4690 encoder->pre_enable(encoder);
4691
2dd24552
JB
4692 i9xx_pfit_enable(intel_crtc);
4693
63cbb074
VS
4694 intel_crtc_load_lut(crtc);
4695
f37fcc2a 4696 intel_update_watermarks(crtc);
e1fdc473 4697 intel_enable_pipe(intel_crtc);
be6a6f8e 4698
5004945f
JN
4699 for_each_encoder_on_crtc(dev, crtc, encoder)
4700 encoder->enable(encoder);
9ab0460b
VS
4701
4702 intel_crtc_enable_planes(crtc);
d40d9187 4703
56b80e1f
VS
4704 /* Underruns don't raise interrupts, so check manually. */
4705 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4706}
4707
f13c2ef3
DV
4708static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4709{
4710 struct drm_device *dev = crtc->base.dev;
4711 struct drm_i915_private *dev_priv = dev->dev_private;
4712
4713 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4714 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4715}
4716
0b8765c6 4717static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4718{
4719 struct drm_device *dev = crtc->dev;
5b18e57c 4720 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4721 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4722 struct intel_encoder *encoder;
79e53945 4723 int pipe = intel_crtc->pipe;
5b18e57c
DV
4724 int plane = intel_crtc->plane;
4725 u32 dspcntr;
79e53945 4726
08a48469
DV
4727 WARN_ON(!crtc->enabled);
4728
f7abfe8b
CW
4729 if (intel_crtc->active)
4730 return;
4731
f13c2ef3
DV
4732 i9xx_set_pll_dividers(intel_crtc);
4733
5b18e57c
DV
4734 /* Set up the display plane register */
4735 dspcntr = DISPPLANE_GAMMA_ENABLE;
4736
4737 if (pipe == 0)
4738 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4739 else
4740 dspcntr |= DISPPLANE_SEL_PIPE_B;
4741
4742 if (intel_crtc->config.has_dp_encoder)
4743 intel_dp_set_m_n(intel_crtc);
4744
4745 intel_set_pipe_timings(intel_crtc);
4746
4747 /* pipesrc and dspsize control the size that is scaled from,
4748 * which should always be the user's requested size.
4749 */
4750 I915_WRITE(DSPSIZE(plane),
4751 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4752 (intel_crtc->config.pipe_src_w - 1));
4753 I915_WRITE(DSPPOS(plane), 0);
4754
4755 i9xx_set_pipeconf(intel_crtc);
4756
4757 I915_WRITE(DSPCNTR(plane), dspcntr);
4758 POSTING_READ(DSPCNTR(plane));
4759
4760 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4761 crtc->x, crtc->y);
4762
f7abfe8b 4763 intel_crtc->active = true;
6b383a7f 4764
4a3436e8
VS
4765 if (!IS_GEN2(dev))
4766 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4767
9d6d9f19
MK
4768 for_each_encoder_on_crtc(dev, crtc, encoder)
4769 if (encoder->pre_enable)
4770 encoder->pre_enable(encoder);
4771
f6736a1a
DV
4772 i9xx_enable_pll(intel_crtc);
4773
2dd24552
JB
4774 i9xx_pfit_enable(intel_crtc);
4775
63cbb074
VS
4776 intel_crtc_load_lut(crtc);
4777
f37fcc2a 4778 intel_update_watermarks(crtc);
e1fdc473 4779 intel_enable_pipe(intel_crtc);
be6a6f8e 4780
fa5c73b1
DV
4781 for_each_encoder_on_crtc(dev, crtc, encoder)
4782 encoder->enable(encoder);
9ab0460b
VS
4783
4784 intel_crtc_enable_planes(crtc);
d40d9187 4785
4a3436e8
VS
4786 /*
4787 * Gen2 reports pipe underruns whenever all planes are disabled.
4788 * So don't enable underrun reporting before at least some planes
4789 * are enabled.
4790 * FIXME: Need to fix the logic to work when we turn off all planes
4791 * but leave the pipe running.
4792 */
4793 if (IS_GEN2(dev))
4794 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4795
56b80e1f
VS
4796 /* Underruns don't raise interrupts, so check manually. */
4797 i9xx_check_fifo_underruns(dev);
0b8765c6 4798}
79e53945 4799
87476d63
DV
4800static void i9xx_pfit_disable(struct intel_crtc *crtc)
4801{
4802 struct drm_device *dev = crtc->base.dev;
4803 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4804
328d8e82
DV
4805 if (!crtc->config.gmch_pfit.control)
4806 return;
87476d63 4807
328d8e82 4808 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4809
328d8e82
DV
4810 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4811 I915_READ(PFIT_CONTROL));
4812 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4813}
4814
0b8765c6
JB
4815static void i9xx_crtc_disable(struct drm_crtc *crtc)
4816{
4817 struct drm_device *dev = crtc->dev;
4818 struct drm_i915_private *dev_priv = dev->dev_private;
4819 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4820 struct intel_encoder *encoder;
0b8765c6 4821 int pipe = intel_crtc->pipe;
ef9c3aee 4822
f7abfe8b
CW
4823 if (!intel_crtc->active)
4824 return;
4825
4a3436e8
VS
4826 /*
4827 * Gen2 reports pipe underruns whenever all planes are disabled.
4828 * So diasble underrun reporting before all the planes get disabled.
4829 * FIXME: Need to fix the logic to work when we turn off all planes
4830 * but leave the pipe running.
4831 */
4832 if (IS_GEN2(dev))
4833 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4834
9ab0460b
VS
4835 intel_crtc_disable_planes(crtc);
4836
ea9d758d
DV
4837 for_each_encoder_on_crtc(dev, crtc, encoder)
4838 encoder->disable(encoder);
4839
6304cd91
VS
4840 /*
4841 * On gen2 planes are double buffered but the pipe isn't, so we must
4842 * wait for planes to fully turn off before disabling the pipe.
4843 */
4844 if (IS_GEN2(dev))
4845 intel_wait_for_vblank(dev, pipe);
4846
b24e7179 4847 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4848
87476d63 4849 i9xx_pfit_disable(intel_crtc);
24a1f16d 4850
89b667f8
JB
4851 for_each_encoder_on_crtc(dev, crtc, encoder)
4852 if (encoder->post_disable)
4853 encoder->post_disable(encoder);
4854
076ed3b2
CML
4855 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4856 if (IS_CHERRYVIEW(dev))
4857 chv_disable_pll(dev_priv, pipe);
4858 else if (IS_VALLEYVIEW(dev))
4859 vlv_disable_pll(dev_priv, pipe);
4860 else
4861 i9xx_disable_pll(dev_priv, pipe);
4862 }
0b8765c6 4863
4a3436e8
VS
4864 if (!IS_GEN2(dev))
4865 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4866
f7abfe8b 4867 intel_crtc->active = false;
46ba614c 4868 intel_update_watermarks(crtc);
f37fcc2a 4869
efa9624e 4870 mutex_lock(&dev->struct_mutex);
6b383a7f 4871 intel_update_fbc(dev);
efa9624e 4872 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4873}
4874
ee7b9f93
JB
4875static void i9xx_crtc_off(struct drm_crtc *crtc)
4876{
4877}
4878
976f8a20
DV
4879static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4880 bool enabled)
2c07245f
ZW
4881{
4882 struct drm_device *dev = crtc->dev;
4883 struct drm_i915_master_private *master_priv;
4884 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4885 int pipe = intel_crtc->pipe;
79e53945
JB
4886
4887 if (!dev->primary->master)
4888 return;
4889
4890 master_priv = dev->primary->master->driver_priv;
4891 if (!master_priv->sarea_priv)
4892 return;
4893
79e53945
JB
4894 switch (pipe) {
4895 case 0:
4896 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4897 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4898 break;
4899 case 1:
4900 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4901 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4902 break;
4903 default:
9db4a9c7 4904 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4905 break;
4906 }
79e53945
JB
4907}
4908
976f8a20
DV
4909/**
4910 * Sets the power management mode of the pipe and plane.
4911 */
4912void intel_crtc_update_dpms(struct drm_crtc *crtc)
4913{
4914 struct drm_device *dev = crtc->dev;
4915 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4916 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
976f8a20 4917 struct intel_encoder *intel_encoder;
0e572fe7
DV
4918 enum intel_display_power_domain domain;
4919 unsigned long domains;
976f8a20
DV
4920 bool enable = false;
4921
4922 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4923 enable |= intel_encoder->connectors_active;
4924
0e572fe7
DV
4925 if (enable) {
4926 if (!intel_crtc->active) {
4927 /*
4928 * FIXME: DDI plls and relevant code isn't converted
4929 * yet, so do runtime PM for DPMS only for all other
4930 * platforms for now.
4931 */
4932 if (!HAS_DDI(dev)) {
4933 domains = get_crtc_power_domains(crtc);
4934 for_each_power_domain(domain, domains)
4935 intel_display_power_get(dev_priv, domain);
4936 intel_crtc->enabled_power_domains = domains;
4937 }
4938
4939 dev_priv->display.crtc_enable(crtc);
4940 }
4941 } else {
4942 if (intel_crtc->active) {
4943 dev_priv->display.crtc_disable(crtc);
4944
4945 if (!HAS_DDI(dev)) {
4946 domains = intel_crtc->enabled_power_domains;
4947 for_each_power_domain(domain, domains)
4948 intel_display_power_put(dev_priv, domain);
4949 intel_crtc->enabled_power_domains = 0;
4950 }
4951 }
4952 }
976f8a20
DV
4953
4954 intel_crtc_update_sarea(crtc, enable);
4955}
4956
cdd59983
CW
4957static void intel_crtc_disable(struct drm_crtc *crtc)
4958{
cdd59983 4959 struct drm_device *dev = crtc->dev;
976f8a20 4960 struct drm_connector *connector;
ee7b9f93 4961 struct drm_i915_private *dev_priv = dev->dev_private;
a071fa00
DV
4962 struct drm_i915_gem_object *old_obj;
4963 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4964
976f8a20
DV
4965 /* crtc should still be enabled when we disable it. */
4966 WARN_ON(!crtc->enabled);
4967
4968 dev_priv->display.crtc_disable(crtc);
4969 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4970 dev_priv->display.off(crtc);
4971
931872fc 4972 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
a071fa00
DV
4973 assert_cursor_disabled(dev_priv, pipe);
4974 assert_pipe_disabled(dev->dev_private, pipe);
cdd59983 4975
f4510a27 4976 if (crtc->primary->fb) {
a071fa00 4977 old_obj = to_intel_framebuffer(crtc->primary->fb)->obj;
cdd59983 4978 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4979 intel_unpin_fb_obj(old_obj);
4980 i915_gem_track_fb(old_obj, NULL,
4981 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4982 mutex_unlock(&dev->struct_mutex);
f4510a27 4983 crtc->primary->fb = NULL;
976f8a20
DV
4984 }
4985
4986 /* Update computed state. */
4987 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4988 if (!connector->encoder || !connector->encoder->crtc)
4989 continue;
4990
4991 if (connector->encoder->crtc != crtc)
4992 continue;
4993
4994 connector->dpms = DRM_MODE_DPMS_OFF;
4995 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
4996 }
4997}
4998
ea5b213a 4999void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5000{
4ef69c7a 5001 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5002
ea5b213a
CW
5003 drm_encoder_cleanup(encoder);
5004 kfree(intel_encoder);
7e7d76c3
JB
5005}
5006
9237329d 5007/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5008 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5009 * state of the entire output pipe. */
9237329d 5010static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5011{
5ab432ef
DV
5012 if (mode == DRM_MODE_DPMS_ON) {
5013 encoder->connectors_active = true;
5014
b2cabb0e 5015 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5016 } else {
5017 encoder->connectors_active = false;
5018
b2cabb0e 5019 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5020 }
79e53945
JB
5021}
5022
0a91ca29
DV
5023/* Cross check the actual hw state with our own modeset state tracking (and it's
5024 * internal consistency). */
b980514c 5025static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5026{
0a91ca29
DV
5027 if (connector->get_hw_state(connector)) {
5028 struct intel_encoder *encoder = connector->encoder;
5029 struct drm_crtc *crtc;
5030 bool encoder_enabled;
5031 enum pipe pipe;
5032
5033 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5034 connector->base.base.id,
c23cc417 5035 connector->base.name);
0a91ca29
DV
5036
5037 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5038 "wrong connector dpms state\n");
5039 WARN(connector->base.encoder != &encoder->base,
5040 "active connector not linked to encoder\n");
5041 WARN(!encoder->connectors_active,
5042 "encoder->connectors_active not set\n");
5043
5044 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5045 WARN(!encoder_enabled, "encoder not enabled\n");
5046 if (WARN_ON(!encoder->base.crtc))
5047 return;
5048
5049 crtc = encoder->base.crtc;
5050
5051 WARN(!crtc->enabled, "crtc not enabled\n");
5052 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5053 WARN(pipe != to_intel_crtc(crtc)->pipe,
5054 "encoder active on the wrong pipe\n");
5055 }
79e53945
JB
5056}
5057
5ab432ef
DV
5058/* Even simpler default implementation, if there's really no special case to
5059 * consider. */
5060void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5061{
5ab432ef
DV
5062 /* All the simple cases only support two dpms states. */
5063 if (mode != DRM_MODE_DPMS_ON)
5064 mode = DRM_MODE_DPMS_OFF;
d4270e57 5065
5ab432ef
DV
5066 if (mode == connector->dpms)
5067 return;
5068
5069 connector->dpms = mode;
5070
5071 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5072 if (connector->encoder)
5073 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5074
b980514c 5075 intel_modeset_check_state(connector->dev);
79e53945
JB
5076}
5077
f0947c37
DV
5078/* Simple connector->get_hw_state implementation for encoders that support only
5079 * one connector and no cloning and hence the encoder state determines the state
5080 * of the connector. */
5081bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5082{
24929352 5083 enum pipe pipe = 0;
f0947c37 5084 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5085
f0947c37 5086 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5087}
5088
1857e1da
DV
5089static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5090 struct intel_crtc_config *pipe_config)
5091{
5092 struct drm_i915_private *dev_priv = dev->dev_private;
5093 struct intel_crtc *pipe_B_crtc =
5094 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5095
5096 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5097 pipe_name(pipe), pipe_config->fdi_lanes);
5098 if (pipe_config->fdi_lanes > 4) {
5099 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5100 pipe_name(pipe), pipe_config->fdi_lanes);
5101 return false;
5102 }
5103
bafb6553 5104 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5105 if (pipe_config->fdi_lanes > 2) {
5106 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5107 pipe_config->fdi_lanes);
5108 return false;
5109 } else {
5110 return true;
5111 }
5112 }
5113
5114 if (INTEL_INFO(dev)->num_pipes == 2)
5115 return true;
5116
5117 /* Ivybridge 3 pipe is really complicated */
5118 switch (pipe) {
5119 case PIPE_A:
5120 return true;
5121 case PIPE_B:
5122 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5123 pipe_config->fdi_lanes > 2) {
5124 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5125 pipe_name(pipe), pipe_config->fdi_lanes);
5126 return false;
5127 }
5128 return true;
5129 case PIPE_C:
1e833f40 5130 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5131 pipe_B_crtc->config.fdi_lanes <= 2) {
5132 if (pipe_config->fdi_lanes > 2) {
5133 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5134 pipe_name(pipe), pipe_config->fdi_lanes);
5135 return false;
5136 }
5137 } else {
5138 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5139 return false;
5140 }
5141 return true;
5142 default:
5143 BUG();
5144 }
5145}
5146
e29c22c0
DV
5147#define RETRY 1
5148static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5149 struct intel_crtc_config *pipe_config)
877d48d5 5150{
1857e1da 5151 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5152 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5153 int lane, link_bw, fdi_dotclock;
e29c22c0 5154 bool setup_ok, needs_recompute = false;
877d48d5 5155
e29c22c0 5156retry:
877d48d5
DV
5157 /* FDI is a binary signal running at ~2.7GHz, encoding
5158 * each output octet as 10 bits. The actual frequency
5159 * is stored as a divider into a 100MHz clock, and the
5160 * mode pixel clock is stored in units of 1KHz.
5161 * Hence the bw of each lane in terms of the mode signal
5162 * is:
5163 */
5164 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5165
241bfc38 5166 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5167
2bd89a07 5168 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5169 pipe_config->pipe_bpp);
5170
5171 pipe_config->fdi_lanes = lane;
5172
2bd89a07 5173 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5174 link_bw, &pipe_config->fdi_m_n);
1857e1da 5175
e29c22c0
DV
5176 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5177 intel_crtc->pipe, pipe_config);
5178 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5179 pipe_config->pipe_bpp -= 2*3;
5180 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5181 pipe_config->pipe_bpp);
5182 needs_recompute = true;
5183 pipe_config->bw_constrained = true;
5184
5185 goto retry;
5186 }
5187
5188 if (needs_recompute)
5189 return RETRY;
5190
5191 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5192}
5193
42db64ef
PZ
5194static void hsw_compute_ips_config(struct intel_crtc *crtc,
5195 struct intel_crtc_config *pipe_config)
5196{
d330a953 5197 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5198 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5199 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5200}
5201
a43f6e0f 5202static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5203 struct intel_crtc_config *pipe_config)
79e53945 5204{
a43f6e0f 5205 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5206 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5207
ad3a4479 5208 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5209 if (INTEL_INFO(dev)->gen < 4) {
5210 struct drm_i915_private *dev_priv = dev->dev_private;
5211 int clock_limit =
5212 dev_priv->display.get_display_clock_speed(dev);
5213
5214 /*
5215 * Enable pixel doubling when the dot clock
5216 * is > 90% of the (display) core speed.
5217 *
b397c96b
VS
5218 * GDG double wide on either pipe,
5219 * otherwise pipe A only.
cf532bb2 5220 */
b397c96b 5221 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5222 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5223 clock_limit *= 2;
cf532bb2 5224 pipe_config->double_wide = true;
ad3a4479
VS
5225 }
5226
241bfc38 5227 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5228 return -EINVAL;
2c07245f 5229 }
89749350 5230
1d1d0e27
VS
5231 /*
5232 * Pipe horizontal size must be even in:
5233 * - DVO ganged mode
5234 * - LVDS dual channel mode
5235 * - Double wide pipe
5236 */
5237 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5238 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5239 pipe_config->pipe_src_w &= ~1;
5240
8693a824
DL
5241 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5242 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5243 */
5244 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5245 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5246 return -EINVAL;
44f46b42 5247
bd080ee5 5248 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5249 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5250 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5251 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5252 * for lvds. */
5253 pipe_config->pipe_bpp = 8*3;
5254 }
5255
f5adf94e 5256 if (HAS_IPS(dev))
a43f6e0f
DV
5257 hsw_compute_ips_config(crtc, pipe_config);
5258
5259 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
5260 * clock survives for now. */
5261 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5262 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5263
877d48d5 5264 if (pipe_config->has_pch_encoder)
a43f6e0f 5265 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5266
e29c22c0 5267 return 0;
79e53945
JB
5268}
5269
25eb05fc
JB
5270static int valleyview_get_display_clock_speed(struct drm_device *dev)
5271{
5272 return 400000; /* FIXME */
5273}
5274
e70236a8
JB
5275static int i945_get_display_clock_speed(struct drm_device *dev)
5276{
5277 return 400000;
5278}
79e53945 5279
e70236a8 5280static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5281{
e70236a8
JB
5282 return 333000;
5283}
79e53945 5284
e70236a8
JB
5285static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5286{
5287 return 200000;
5288}
79e53945 5289
257a7ffc
DV
5290static int pnv_get_display_clock_speed(struct drm_device *dev)
5291{
5292 u16 gcfgc = 0;
5293
5294 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5295
5296 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5297 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5298 return 267000;
5299 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5300 return 333000;
5301 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5302 return 444000;
5303 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5304 return 200000;
5305 default:
5306 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5307 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5308 return 133000;
5309 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5310 return 167000;
5311 }
5312}
5313
e70236a8
JB
5314static int i915gm_get_display_clock_speed(struct drm_device *dev)
5315{
5316 u16 gcfgc = 0;
79e53945 5317
e70236a8
JB
5318 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5319
5320 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5321 return 133000;
5322 else {
5323 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5324 case GC_DISPLAY_CLOCK_333_MHZ:
5325 return 333000;
5326 default:
5327 case GC_DISPLAY_CLOCK_190_200_MHZ:
5328 return 190000;
79e53945 5329 }
e70236a8
JB
5330 }
5331}
5332
5333static int i865_get_display_clock_speed(struct drm_device *dev)
5334{
5335 return 266000;
5336}
5337
5338static int i855_get_display_clock_speed(struct drm_device *dev)
5339{
5340 u16 hpllcc = 0;
5341 /* Assume that the hardware is in the high speed state. This
5342 * should be the default.
5343 */
5344 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5345 case GC_CLOCK_133_200:
5346 case GC_CLOCK_100_200:
5347 return 200000;
5348 case GC_CLOCK_166_250:
5349 return 250000;
5350 case GC_CLOCK_100_133:
79e53945 5351 return 133000;
e70236a8 5352 }
79e53945 5353
e70236a8
JB
5354 /* Shouldn't happen */
5355 return 0;
5356}
79e53945 5357
e70236a8
JB
5358static int i830_get_display_clock_speed(struct drm_device *dev)
5359{
5360 return 133000;
79e53945
JB
5361}
5362
2c07245f 5363static void
a65851af 5364intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5365{
a65851af
VS
5366 while (*num > DATA_LINK_M_N_MASK ||
5367 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5368 *num >>= 1;
5369 *den >>= 1;
5370 }
5371}
5372
a65851af
VS
5373static void compute_m_n(unsigned int m, unsigned int n,
5374 uint32_t *ret_m, uint32_t *ret_n)
5375{
5376 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5377 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5378 intel_reduce_m_n_ratio(ret_m, ret_n);
5379}
5380
e69d0bc1
DV
5381void
5382intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5383 int pixel_clock, int link_clock,
5384 struct intel_link_m_n *m_n)
2c07245f 5385{
e69d0bc1 5386 m_n->tu = 64;
a65851af
VS
5387
5388 compute_m_n(bits_per_pixel * pixel_clock,
5389 link_clock * nlanes * 8,
5390 &m_n->gmch_m, &m_n->gmch_n);
5391
5392 compute_m_n(pixel_clock, link_clock,
5393 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5394}
5395
a7615030
CW
5396static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5397{
d330a953
JN
5398 if (i915.panel_use_ssc >= 0)
5399 return i915.panel_use_ssc != 0;
41aa3448 5400 return dev_priv->vbt.lvds_use_ssc
435793df 5401 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5402}
5403
c65d77d8
JB
5404static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5405{
5406 struct drm_device *dev = crtc->dev;
5407 struct drm_i915_private *dev_priv = dev->dev_private;
5408 int refclk;
5409
a0c4da24 5410 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5411 refclk = 100000;
a0c4da24 5412 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5413 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5414 refclk = dev_priv->vbt.lvds_ssc_freq;
5415 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5416 } else if (!IS_GEN2(dev)) {
5417 refclk = 96000;
5418 } else {
5419 refclk = 48000;
5420 }
5421
5422 return refclk;
5423}
5424
7429e9d4 5425static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5426{
7df00d7a 5427 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5428}
f47709a9 5429
7429e9d4
DV
5430static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5431{
5432 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5433}
5434
f47709a9 5435static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5436 intel_clock_t *reduced_clock)
5437{
f47709a9 5438 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5439 u32 fp, fp2 = 0;
5440
5441 if (IS_PINEVIEW(dev)) {
7429e9d4 5442 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5443 if (reduced_clock)
7429e9d4 5444 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5445 } else {
7429e9d4 5446 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5447 if (reduced_clock)
7429e9d4 5448 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5449 }
5450
8bcc2795 5451 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5452
f47709a9
DV
5453 crtc->lowfreq_avail = false;
5454 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5455 reduced_clock && i915.powersave) {
8bcc2795 5456 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5457 crtc->lowfreq_avail = true;
a7516a05 5458 } else {
8bcc2795 5459 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5460 }
5461}
5462
5e69f97f
CML
5463static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5464 pipe)
89b667f8
JB
5465{
5466 u32 reg_val;
5467
5468 /*
5469 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5470 * and set it to a reasonable value instead.
5471 */
ab3c759a 5472 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5473 reg_val &= 0xffffff00;
5474 reg_val |= 0x00000030;
ab3c759a 5475 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5476
ab3c759a 5477 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5478 reg_val &= 0x8cffffff;
5479 reg_val = 0x8c000000;
ab3c759a 5480 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5481
ab3c759a 5482 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5483 reg_val &= 0xffffff00;
ab3c759a 5484 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5485
ab3c759a 5486 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5487 reg_val &= 0x00ffffff;
5488 reg_val |= 0xb0000000;
ab3c759a 5489 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5490}
5491
b551842d
DV
5492static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5493 struct intel_link_m_n *m_n)
5494{
5495 struct drm_device *dev = crtc->base.dev;
5496 struct drm_i915_private *dev_priv = dev->dev_private;
5497 int pipe = crtc->pipe;
5498
e3b95f1e
DV
5499 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5500 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5501 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5502 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5503}
5504
5505static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5506 struct intel_link_m_n *m_n)
5507{
5508 struct drm_device *dev = crtc->base.dev;
5509 struct drm_i915_private *dev_priv = dev->dev_private;
5510 int pipe = crtc->pipe;
5511 enum transcoder transcoder = crtc->config.cpu_transcoder;
5512
5513 if (INTEL_INFO(dev)->gen >= 5) {
5514 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5515 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5516 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5517 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5518 } else {
e3b95f1e
DV
5519 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5520 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5521 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5522 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5523 }
5524}
5525
03afc4a2
DV
5526static void intel_dp_set_m_n(struct intel_crtc *crtc)
5527{
5528 if (crtc->config.has_pch_encoder)
5529 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5530 else
5531 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5532}
5533
f47709a9 5534static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5535{
5536 u32 dpll, dpll_md;
5537
5538 /*
5539 * Enable DPIO clock input. We should never disable the reference
5540 * clock for pipe B, since VGA hotplug / manual detection depends
5541 * on it.
5542 */
5543 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5544 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5545 /* We should never disable this, set it here for state tracking */
5546 if (crtc->pipe == PIPE_B)
5547 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5548 dpll |= DPLL_VCO_ENABLE;
5549 crtc->config.dpll_hw_state.dpll = dpll;
5550
5551 dpll_md = (crtc->config.pixel_multiplier - 1)
5552 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5553 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5554}
5555
5556static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5557{
f47709a9 5558 struct drm_device *dev = crtc->base.dev;
a0c4da24 5559 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5560 int pipe = crtc->pipe;
bdd4b6a6 5561 u32 mdiv;
a0c4da24 5562 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5563 u32 coreclk, reg_val;
a0c4da24 5564
09153000
DV
5565 mutex_lock(&dev_priv->dpio_lock);
5566
f47709a9
DV
5567 bestn = crtc->config.dpll.n;
5568 bestm1 = crtc->config.dpll.m1;
5569 bestm2 = crtc->config.dpll.m2;
5570 bestp1 = crtc->config.dpll.p1;
5571 bestp2 = crtc->config.dpll.p2;
a0c4da24 5572
89b667f8
JB
5573 /* See eDP HDMI DPIO driver vbios notes doc */
5574
5575 /* PLL B needs special handling */
bdd4b6a6 5576 if (pipe == PIPE_B)
5e69f97f 5577 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5578
5579 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5580 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5581
5582 /* Disable target IRef on PLL */
ab3c759a 5583 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5584 reg_val &= 0x00ffffff;
ab3c759a 5585 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5586
5587 /* Disable fast lock */
ab3c759a 5588 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5589
5590 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5591 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5592 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5593 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5594 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5595
5596 /*
5597 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5598 * but we don't support that).
5599 * Note: don't use the DAC post divider as it seems unstable.
5600 */
5601 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5602 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5603
a0c4da24 5604 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5605 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5606
89b667f8 5607 /* Set HBR and RBR LPF coefficients */
ff9a6750 5608 if (crtc->config.port_clock == 162000 ||
99750bd4 5609 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5610 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5611 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5612 0x009f0003);
89b667f8 5613 else
ab3c759a 5614 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5615 0x00d0000f);
5616
5617 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5618 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5619 /* Use SSC source */
bdd4b6a6 5620 if (pipe == PIPE_A)
ab3c759a 5621 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5622 0x0df40000);
5623 else
ab3c759a 5624 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5625 0x0df70000);
5626 } else { /* HDMI or VGA */
5627 /* Use bend source */
bdd4b6a6 5628 if (pipe == PIPE_A)
ab3c759a 5629 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5630 0x0df70000);
5631 else
ab3c759a 5632 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5633 0x0df40000);
5634 }
a0c4da24 5635
ab3c759a 5636 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5637 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5638 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5639 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5640 coreclk |= 0x01000000;
ab3c759a 5641 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5642
ab3c759a 5643 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5644 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5645}
5646
9d556c99
CML
5647static void chv_update_pll(struct intel_crtc *crtc)
5648{
5649 struct drm_device *dev = crtc->base.dev;
5650 struct drm_i915_private *dev_priv = dev->dev_private;
5651 int pipe = crtc->pipe;
5652 int dpll_reg = DPLL(crtc->pipe);
5653 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5654 u32 loopfilter, intcoeff;
9d556c99
CML
5655 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5656 int refclk;
5657
a11b0703
VS
5658 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5659 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5660 DPLL_VCO_ENABLE;
5661 if (pipe != PIPE_A)
5662 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5663
5664 crtc->config.dpll_hw_state.dpll_md =
5665 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
9d556c99
CML
5666
5667 bestn = crtc->config.dpll.n;
5668 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5669 bestm1 = crtc->config.dpll.m1;
5670 bestm2 = crtc->config.dpll.m2 >> 22;
5671 bestp1 = crtc->config.dpll.p1;
5672 bestp2 = crtc->config.dpll.p2;
5673
5674 /*
5675 * Enable Refclk and SSC
5676 */
a11b0703
VS
5677 I915_WRITE(dpll_reg,
5678 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5679
5680 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5681
9d556c99
CML
5682 /* p1 and p2 divider */
5683 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5684 5 << DPIO_CHV_S1_DIV_SHIFT |
5685 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5686 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5687 1 << DPIO_CHV_K_DIV_SHIFT);
5688
5689 /* Feedback post-divider - m2 */
5690 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5691
5692 /* Feedback refclk divider - n and m1 */
5693 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5694 DPIO_CHV_M1_DIV_BY_2 |
5695 1 << DPIO_CHV_N_DIV_SHIFT);
5696
5697 /* M2 fraction division */
5698 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5699
5700 /* M2 fraction division enable */
5701 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5702 DPIO_CHV_FRAC_DIV_EN |
5703 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5704
5705 /* Loop filter */
5706 refclk = i9xx_get_refclk(&crtc->base, 0);
5707 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5708 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5709 if (refclk == 100000)
5710 intcoeff = 11;
5711 else if (refclk == 38400)
5712 intcoeff = 10;
5713 else
5714 intcoeff = 9;
5715 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5716 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5717
5718 /* AFC Recal */
5719 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5720 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5721 DPIO_AFC_RECAL);
5722
5723 mutex_unlock(&dev_priv->dpio_lock);
5724}
5725
f47709a9
DV
5726static void i9xx_update_pll(struct intel_crtc *crtc,
5727 intel_clock_t *reduced_clock,
eb1cbe48
DV
5728 int num_connectors)
5729{
f47709a9 5730 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5731 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5732 u32 dpll;
5733 bool is_sdvo;
f47709a9 5734 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5735
f47709a9 5736 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5737
f47709a9
DV
5738 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5739 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5740
5741 dpll = DPLL_VGA_MODE_DIS;
5742
f47709a9 5743 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5744 dpll |= DPLLB_MODE_LVDS;
5745 else
5746 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5747
ef1b460d 5748 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5749 dpll |= (crtc->config.pixel_multiplier - 1)
5750 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5751 }
198a037f
DV
5752
5753 if (is_sdvo)
4a33e48d 5754 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5755
f47709a9 5756 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5757 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5758
5759 /* compute bitmask from p1 value */
5760 if (IS_PINEVIEW(dev))
5761 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5762 else {
5763 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5764 if (IS_G4X(dev) && reduced_clock)
5765 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5766 }
5767 switch (clock->p2) {
5768 case 5:
5769 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5770 break;
5771 case 7:
5772 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5773 break;
5774 case 10:
5775 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5776 break;
5777 case 14:
5778 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5779 break;
5780 }
5781 if (INTEL_INFO(dev)->gen >= 4)
5782 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5783
09ede541 5784 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5785 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5786 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5787 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5788 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5789 else
5790 dpll |= PLL_REF_INPUT_DREFCLK;
5791
5792 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5793 crtc->config.dpll_hw_state.dpll = dpll;
5794
eb1cbe48 5795 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5796 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5797 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5798 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5799 }
5800}
5801
f47709a9 5802static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5803 intel_clock_t *reduced_clock,
eb1cbe48
DV
5804 int num_connectors)
5805{
f47709a9 5806 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5807 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5808 u32 dpll;
f47709a9 5809 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5810
f47709a9 5811 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5812
eb1cbe48
DV
5813 dpll = DPLL_VGA_MODE_DIS;
5814
f47709a9 5815 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5816 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5817 } else {
5818 if (clock->p1 == 2)
5819 dpll |= PLL_P1_DIVIDE_BY_TWO;
5820 else
5821 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5822 if (clock->p2 == 4)
5823 dpll |= PLL_P2_DIVIDE_BY_4;
5824 }
5825
4a33e48d
DV
5826 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5827 dpll |= DPLL_DVO_2X_MODE;
5828
f47709a9 5829 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5830 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5831 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5832 else
5833 dpll |= PLL_REF_INPUT_DREFCLK;
5834
5835 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5836 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5837}
5838
8a654f3b 5839static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5840{
5841 struct drm_device *dev = intel_crtc->base.dev;
5842 struct drm_i915_private *dev_priv = dev->dev_private;
5843 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5844 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5845 struct drm_display_mode *adjusted_mode =
5846 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5847 uint32_t crtc_vtotal, crtc_vblank_end;
5848 int vsyncshift = 0;
4d8a62ea
DV
5849
5850 /* We need to be careful not to changed the adjusted mode, for otherwise
5851 * the hw state checker will get angry at the mismatch. */
5852 crtc_vtotal = adjusted_mode->crtc_vtotal;
5853 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5854
609aeaca 5855 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5856 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5857 crtc_vtotal -= 1;
5858 crtc_vblank_end -= 1;
609aeaca
VS
5859
5860 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5861 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5862 else
5863 vsyncshift = adjusted_mode->crtc_hsync_start -
5864 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5865 if (vsyncshift < 0)
5866 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5867 }
5868
5869 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5870 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5871
fe2b8f9d 5872 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5873 (adjusted_mode->crtc_hdisplay - 1) |
5874 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5875 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5876 (adjusted_mode->crtc_hblank_start - 1) |
5877 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5878 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5879 (adjusted_mode->crtc_hsync_start - 1) |
5880 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5881
fe2b8f9d 5882 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5883 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5884 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5885 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5886 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5887 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5888 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5889 (adjusted_mode->crtc_vsync_start - 1) |
5890 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5891
b5e508d4
PZ
5892 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5893 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5894 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5895 * bits. */
5896 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5897 (pipe == PIPE_B || pipe == PIPE_C))
5898 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5899
b0e77b9c
PZ
5900 /* pipesrc controls the size that is scaled from, which should
5901 * always be the user's requested size.
5902 */
5903 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5904 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5905 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5906}
5907
1bd1bd80
DV
5908static void intel_get_pipe_timings(struct intel_crtc *crtc,
5909 struct intel_crtc_config *pipe_config)
5910{
5911 struct drm_device *dev = crtc->base.dev;
5912 struct drm_i915_private *dev_priv = dev->dev_private;
5913 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5914 uint32_t tmp;
5915
5916 tmp = I915_READ(HTOTAL(cpu_transcoder));
5917 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5918 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5919 tmp = I915_READ(HBLANK(cpu_transcoder));
5920 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5921 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5922 tmp = I915_READ(HSYNC(cpu_transcoder));
5923 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5924 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5925
5926 tmp = I915_READ(VTOTAL(cpu_transcoder));
5927 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5928 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5929 tmp = I915_READ(VBLANK(cpu_transcoder));
5930 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5931 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5932 tmp = I915_READ(VSYNC(cpu_transcoder));
5933 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5934 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5935
5936 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5937 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5938 pipe_config->adjusted_mode.crtc_vtotal += 1;
5939 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5940 }
5941
5942 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5943 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5944 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5945
5946 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5947 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
5948}
5949
f6a83288
DV
5950void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5951 struct intel_crtc_config *pipe_config)
babea61d 5952{
f6a83288
DV
5953 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5954 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
5955 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5956 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 5957
f6a83288
DV
5958 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5959 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5960 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5961 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 5962
f6a83288 5963 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 5964
f6a83288
DV
5965 mode->clock = pipe_config->adjusted_mode.crtc_clock;
5966 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
5967}
5968
84b046f3
DV
5969static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5970{
5971 struct drm_device *dev = intel_crtc->base.dev;
5972 struct drm_i915_private *dev_priv = dev->dev_private;
5973 uint32_t pipeconf;
5974
9f11a9e4 5975 pipeconf = 0;
84b046f3 5976
67c72a12
DV
5977 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5978 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5979 pipeconf |= PIPECONF_ENABLE;
5980
cf532bb2
VS
5981 if (intel_crtc->config.double_wide)
5982 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 5983
ff9ce46e
DV
5984 /* only g4x and later have fancy bpc/dither controls */
5985 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
5986 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5987 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5988 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 5989 PIPECONF_DITHER_TYPE_SP;
84b046f3 5990
ff9ce46e
DV
5991 switch (intel_crtc->config.pipe_bpp) {
5992 case 18:
5993 pipeconf |= PIPECONF_6BPC;
5994 break;
5995 case 24:
5996 pipeconf |= PIPECONF_8BPC;
5997 break;
5998 case 30:
5999 pipeconf |= PIPECONF_10BPC;
6000 break;
6001 default:
6002 /* Case prevented by intel_choose_pipe_bpp_dither. */
6003 BUG();
84b046f3
DV
6004 }
6005 }
6006
6007 if (HAS_PIPE_CXSR(dev)) {
6008 if (intel_crtc->lowfreq_avail) {
6009 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6010 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6011 } else {
6012 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6013 }
6014 }
6015
efc2cfff
VS
6016 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6017 if (INTEL_INFO(dev)->gen < 4 ||
6018 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6019 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6020 else
6021 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6022 } else
84b046f3
DV
6023 pipeconf |= PIPECONF_PROGRESSIVE;
6024
9f11a9e4
DV
6025 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6026 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6027
84b046f3
DV
6028 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6029 POSTING_READ(PIPECONF(intel_crtc->pipe));
6030}
6031
f564048e 6032static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6033 int x, int y,
94352cf9 6034 struct drm_framebuffer *fb)
79e53945
JB
6035{
6036 struct drm_device *dev = crtc->dev;
6037 struct drm_i915_private *dev_priv = dev->dev_private;
6038 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6039 int refclk, num_connectors = 0;
652c393a 6040 intel_clock_t clock, reduced_clock;
a16af721 6041 bool ok, has_reduced_clock = false;
e9fd1c02 6042 bool is_lvds = false, is_dsi = false;
5eddb70b 6043 struct intel_encoder *encoder;
d4906093 6044 const intel_limit_t *limit;
79e53945 6045
6c2b7c12 6046 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6047 switch (encoder->type) {
79e53945
JB
6048 case INTEL_OUTPUT_LVDS:
6049 is_lvds = true;
6050 break;
e9fd1c02
JN
6051 case INTEL_OUTPUT_DSI:
6052 is_dsi = true;
6053 break;
79e53945 6054 }
43565a06 6055
c751ce4f 6056 num_connectors++;
79e53945
JB
6057 }
6058
f2335330 6059 if (is_dsi)
5b18e57c 6060 return 0;
f2335330
JN
6061
6062 if (!intel_crtc->config.clock_set) {
6063 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6064
e9fd1c02
JN
6065 /*
6066 * Returns a set of divisors for the desired target clock with
6067 * the given refclk, or FALSE. The returned values represent
6068 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6069 * 2) / p1 / p2.
6070 */
6071 limit = intel_limit(crtc, refclk);
6072 ok = dev_priv->display.find_dpll(limit, crtc,
6073 intel_crtc->config.port_clock,
6074 refclk, NULL, &clock);
f2335330 6075 if (!ok) {
e9fd1c02
JN
6076 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6077 return -EINVAL;
6078 }
79e53945 6079
f2335330
JN
6080 if (is_lvds && dev_priv->lvds_downclock_avail) {
6081 /*
6082 * Ensure we match the reduced clock's P to the target
6083 * clock. If the clocks don't match, we can't switch
6084 * the display clock by using the FP0/FP1. In such case
6085 * we will disable the LVDS downclock feature.
6086 */
6087 has_reduced_clock =
6088 dev_priv->display.find_dpll(limit, crtc,
6089 dev_priv->lvds_downclock,
6090 refclk, &clock,
6091 &reduced_clock);
6092 }
6093 /* Compat-code for transition, will disappear. */
f47709a9
DV
6094 intel_crtc->config.dpll.n = clock.n;
6095 intel_crtc->config.dpll.m1 = clock.m1;
6096 intel_crtc->config.dpll.m2 = clock.m2;
6097 intel_crtc->config.dpll.p1 = clock.p1;
6098 intel_crtc->config.dpll.p2 = clock.p2;
6099 }
7026d4ac 6100
e9fd1c02 6101 if (IS_GEN2(dev)) {
8a654f3b 6102 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6103 has_reduced_clock ? &reduced_clock : NULL,
6104 num_connectors);
9d556c99
CML
6105 } else if (IS_CHERRYVIEW(dev)) {
6106 chv_update_pll(intel_crtc);
e9fd1c02 6107 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6108 vlv_update_pll(intel_crtc);
e9fd1c02 6109 } else {
f47709a9 6110 i9xx_update_pll(intel_crtc,
eb1cbe48 6111 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6112 num_connectors);
e9fd1c02 6113 }
79e53945 6114
c8f7a0db 6115 return 0;
f564048e
EA
6116}
6117
2fa2fe9a
DV
6118static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6119 struct intel_crtc_config *pipe_config)
6120{
6121 struct drm_device *dev = crtc->base.dev;
6122 struct drm_i915_private *dev_priv = dev->dev_private;
6123 uint32_t tmp;
6124
dc9e7dec
VS
6125 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6126 return;
6127
2fa2fe9a 6128 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6129 if (!(tmp & PFIT_ENABLE))
6130 return;
2fa2fe9a 6131
06922821 6132 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6133 if (INTEL_INFO(dev)->gen < 4) {
6134 if (crtc->pipe != PIPE_B)
6135 return;
2fa2fe9a
DV
6136 } else {
6137 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6138 return;
6139 }
6140
06922821 6141 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6142 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6143 if (INTEL_INFO(dev)->gen < 5)
6144 pipe_config->gmch_pfit.lvds_border_bits =
6145 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6146}
6147
acbec814
JB
6148static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6149 struct intel_crtc_config *pipe_config)
6150{
6151 struct drm_device *dev = crtc->base.dev;
6152 struct drm_i915_private *dev_priv = dev->dev_private;
6153 int pipe = pipe_config->cpu_transcoder;
6154 intel_clock_t clock;
6155 u32 mdiv;
662c6ecb 6156 int refclk = 100000;
acbec814
JB
6157
6158 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6159 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6160 mutex_unlock(&dev_priv->dpio_lock);
6161
6162 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6163 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6164 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6165 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6166 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6167
f646628b 6168 vlv_clock(refclk, &clock);
acbec814 6169
f646628b
VS
6170 /* clock.dot is the fast clock */
6171 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6172}
6173
1ad292b5
JB
6174static void i9xx_get_plane_config(struct intel_crtc *crtc,
6175 struct intel_plane_config *plane_config)
6176{
6177 struct drm_device *dev = crtc->base.dev;
6178 struct drm_i915_private *dev_priv = dev->dev_private;
6179 u32 val, base, offset;
6180 int pipe = crtc->pipe, plane = crtc->plane;
6181 int fourcc, pixel_format;
6182 int aligned_height;
6183
66e514c1
DA
6184 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6185 if (!crtc->base.primary->fb) {
1ad292b5
JB
6186 DRM_DEBUG_KMS("failed to alloc fb\n");
6187 return;
6188 }
6189
6190 val = I915_READ(DSPCNTR(plane));
6191
6192 if (INTEL_INFO(dev)->gen >= 4)
6193 if (val & DISPPLANE_TILED)
6194 plane_config->tiled = true;
6195
6196 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6197 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6198 crtc->base.primary->fb->pixel_format = fourcc;
6199 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6200 drm_format_plane_cpp(fourcc, 0) * 8;
6201
6202 if (INTEL_INFO(dev)->gen >= 4) {
6203 if (plane_config->tiled)
6204 offset = I915_READ(DSPTILEOFF(plane));
6205 else
6206 offset = I915_READ(DSPLINOFF(plane));
6207 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6208 } else {
6209 base = I915_READ(DSPADDR(plane));
6210 }
6211 plane_config->base = base;
6212
6213 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6214 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6215 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6216
6217 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 6218 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
1ad292b5 6219
66e514c1 6220 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6221 plane_config->tiled);
6222
1267a26b
FF
6223 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6224 aligned_height);
1ad292b5
JB
6225
6226 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6227 pipe, plane, crtc->base.primary->fb->width,
6228 crtc->base.primary->fb->height,
6229 crtc->base.primary->fb->bits_per_pixel, base,
6230 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6231 plane_config->size);
6232
6233}
6234
70b23a98
VS
6235static void chv_crtc_clock_get(struct intel_crtc *crtc,
6236 struct intel_crtc_config *pipe_config)
6237{
6238 struct drm_device *dev = crtc->base.dev;
6239 struct drm_i915_private *dev_priv = dev->dev_private;
6240 int pipe = pipe_config->cpu_transcoder;
6241 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6242 intel_clock_t clock;
6243 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6244 int refclk = 100000;
6245
6246 mutex_lock(&dev_priv->dpio_lock);
6247 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6248 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6249 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6250 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6251 mutex_unlock(&dev_priv->dpio_lock);
6252
6253 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6254 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6255 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6256 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6257 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6258
6259 chv_clock(refclk, &clock);
6260
6261 /* clock.dot is the fast clock */
6262 pipe_config->port_clock = clock.dot / 5;
6263}
6264
0e8ffe1b
DV
6265static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6266 struct intel_crtc_config *pipe_config)
6267{
6268 struct drm_device *dev = crtc->base.dev;
6269 struct drm_i915_private *dev_priv = dev->dev_private;
6270 uint32_t tmp;
6271
b5482bd0
ID
6272 if (!intel_display_power_enabled(dev_priv,
6273 POWER_DOMAIN_PIPE(crtc->pipe)))
6274 return false;
6275
e143a21c 6276 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6277 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6278
0e8ffe1b
DV
6279 tmp = I915_READ(PIPECONF(crtc->pipe));
6280 if (!(tmp & PIPECONF_ENABLE))
6281 return false;
6282
42571aef
VS
6283 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6284 switch (tmp & PIPECONF_BPC_MASK) {
6285 case PIPECONF_6BPC:
6286 pipe_config->pipe_bpp = 18;
6287 break;
6288 case PIPECONF_8BPC:
6289 pipe_config->pipe_bpp = 24;
6290 break;
6291 case PIPECONF_10BPC:
6292 pipe_config->pipe_bpp = 30;
6293 break;
6294 default:
6295 break;
6296 }
6297 }
6298
b5a9fa09
DV
6299 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6300 pipe_config->limited_color_range = true;
6301
282740f7
VS
6302 if (INTEL_INFO(dev)->gen < 4)
6303 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6304
1bd1bd80
DV
6305 intel_get_pipe_timings(crtc, pipe_config);
6306
2fa2fe9a
DV
6307 i9xx_get_pfit_config(crtc, pipe_config);
6308
6c49f241
DV
6309 if (INTEL_INFO(dev)->gen >= 4) {
6310 tmp = I915_READ(DPLL_MD(crtc->pipe));
6311 pipe_config->pixel_multiplier =
6312 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6313 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6314 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6315 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6316 tmp = I915_READ(DPLL(crtc->pipe));
6317 pipe_config->pixel_multiplier =
6318 ((tmp & SDVO_MULTIPLIER_MASK)
6319 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6320 } else {
6321 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6322 * port and will be fixed up in the encoder->get_config
6323 * function. */
6324 pipe_config->pixel_multiplier = 1;
6325 }
8bcc2795
DV
6326 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6327 if (!IS_VALLEYVIEW(dev)) {
6328 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6329 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6330 } else {
6331 /* Mask out read-only status bits. */
6332 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6333 DPLL_PORTC_READY_MASK |
6334 DPLL_PORTB_READY_MASK);
8bcc2795 6335 }
6c49f241 6336
70b23a98
VS
6337 if (IS_CHERRYVIEW(dev))
6338 chv_crtc_clock_get(crtc, pipe_config);
6339 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6340 vlv_crtc_clock_get(crtc, pipe_config);
6341 else
6342 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6343
0e8ffe1b
DV
6344 return true;
6345}
6346
dde86e2d 6347static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6348{
6349 struct drm_i915_private *dev_priv = dev->dev_private;
6350 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 6351 struct intel_encoder *encoder;
74cfd7ac 6352 u32 val, final;
13d83a67 6353 bool has_lvds = false;
199e5d79 6354 bool has_cpu_edp = false;
199e5d79 6355 bool has_panel = false;
99eb6a01
KP
6356 bool has_ck505 = false;
6357 bool can_ssc = false;
13d83a67
JB
6358
6359 /* We need to take the global config into account */
199e5d79
KP
6360 list_for_each_entry(encoder, &mode_config->encoder_list,
6361 base.head) {
6362 switch (encoder->type) {
6363 case INTEL_OUTPUT_LVDS:
6364 has_panel = true;
6365 has_lvds = true;
6366 break;
6367 case INTEL_OUTPUT_EDP:
6368 has_panel = true;
2de6905f 6369 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6370 has_cpu_edp = true;
6371 break;
13d83a67
JB
6372 }
6373 }
6374
99eb6a01 6375 if (HAS_PCH_IBX(dev)) {
41aa3448 6376 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6377 can_ssc = has_ck505;
6378 } else {
6379 has_ck505 = false;
6380 can_ssc = true;
6381 }
6382
2de6905f
ID
6383 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6384 has_panel, has_lvds, has_ck505);
13d83a67
JB
6385
6386 /* Ironlake: try to setup display ref clock before DPLL
6387 * enabling. This is only under driver's control after
6388 * PCH B stepping, previous chipset stepping should be
6389 * ignoring this setting.
6390 */
74cfd7ac
CW
6391 val = I915_READ(PCH_DREF_CONTROL);
6392
6393 /* As we must carefully and slowly disable/enable each source in turn,
6394 * compute the final state we want first and check if we need to
6395 * make any changes at all.
6396 */
6397 final = val;
6398 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6399 if (has_ck505)
6400 final |= DREF_NONSPREAD_CK505_ENABLE;
6401 else
6402 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6403
6404 final &= ~DREF_SSC_SOURCE_MASK;
6405 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6406 final &= ~DREF_SSC1_ENABLE;
6407
6408 if (has_panel) {
6409 final |= DREF_SSC_SOURCE_ENABLE;
6410
6411 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6412 final |= DREF_SSC1_ENABLE;
6413
6414 if (has_cpu_edp) {
6415 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6416 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6417 else
6418 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6419 } else
6420 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6421 } else {
6422 final |= DREF_SSC_SOURCE_DISABLE;
6423 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6424 }
6425
6426 if (final == val)
6427 return;
6428
13d83a67 6429 /* Always enable nonspread source */
74cfd7ac 6430 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6431
99eb6a01 6432 if (has_ck505)
74cfd7ac 6433 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6434 else
74cfd7ac 6435 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6436
199e5d79 6437 if (has_panel) {
74cfd7ac
CW
6438 val &= ~DREF_SSC_SOURCE_MASK;
6439 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6440
199e5d79 6441 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6442 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6443 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6444 val |= DREF_SSC1_ENABLE;
e77166b5 6445 } else
74cfd7ac 6446 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6447
6448 /* Get SSC going before enabling the outputs */
74cfd7ac 6449 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6450 POSTING_READ(PCH_DREF_CONTROL);
6451 udelay(200);
6452
74cfd7ac 6453 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6454
6455 /* Enable CPU source on CPU attached eDP */
199e5d79 6456 if (has_cpu_edp) {
99eb6a01 6457 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6458 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6459 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6460 } else
74cfd7ac 6461 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6462 } else
74cfd7ac 6463 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6464
74cfd7ac 6465 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6466 POSTING_READ(PCH_DREF_CONTROL);
6467 udelay(200);
6468 } else {
6469 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6470
74cfd7ac 6471 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6472
6473 /* Turn off CPU output */
74cfd7ac 6474 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6475
74cfd7ac 6476 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6477 POSTING_READ(PCH_DREF_CONTROL);
6478 udelay(200);
6479
6480 /* Turn off the SSC source */
74cfd7ac
CW
6481 val &= ~DREF_SSC_SOURCE_MASK;
6482 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6483
6484 /* Turn off SSC1 */
74cfd7ac 6485 val &= ~DREF_SSC1_ENABLE;
199e5d79 6486
74cfd7ac 6487 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6488 POSTING_READ(PCH_DREF_CONTROL);
6489 udelay(200);
6490 }
74cfd7ac
CW
6491
6492 BUG_ON(val != final);
13d83a67
JB
6493}
6494
f31f2d55 6495static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6496{
f31f2d55 6497 uint32_t tmp;
dde86e2d 6498
0ff066a9
PZ
6499 tmp = I915_READ(SOUTH_CHICKEN2);
6500 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6501 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6502
0ff066a9
PZ
6503 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6504 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6505 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6506
0ff066a9
PZ
6507 tmp = I915_READ(SOUTH_CHICKEN2);
6508 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6509 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6510
0ff066a9
PZ
6511 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6512 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6513 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6514}
6515
6516/* WaMPhyProgramming:hsw */
6517static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6518{
6519 uint32_t tmp;
dde86e2d
PZ
6520
6521 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6522 tmp &= ~(0xFF << 24);
6523 tmp |= (0x12 << 24);
6524 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6525
dde86e2d
PZ
6526 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6527 tmp |= (1 << 11);
6528 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6529
6530 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6531 tmp |= (1 << 11);
6532 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6533
dde86e2d
PZ
6534 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6535 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6536 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6537
6538 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6539 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6540 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6541
0ff066a9
PZ
6542 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6543 tmp &= ~(7 << 13);
6544 tmp |= (5 << 13);
6545 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6546
0ff066a9
PZ
6547 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6548 tmp &= ~(7 << 13);
6549 tmp |= (5 << 13);
6550 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6551
6552 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6553 tmp &= ~0xFF;
6554 tmp |= 0x1C;
6555 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6556
6557 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6558 tmp &= ~0xFF;
6559 tmp |= 0x1C;
6560 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6561
6562 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6563 tmp &= ~(0xFF << 16);
6564 tmp |= (0x1C << 16);
6565 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6566
6567 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6568 tmp &= ~(0xFF << 16);
6569 tmp |= (0x1C << 16);
6570 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6571
0ff066a9
PZ
6572 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6573 tmp |= (1 << 27);
6574 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6575
0ff066a9
PZ
6576 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6577 tmp |= (1 << 27);
6578 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6579
0ff066a9
PZ
6580 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6581 tmp &= ~(0xF << 28);
6582 tmp |= (4 << 28);
6583 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6584
0ff066a9
PZ
6585 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6586 tmp &= ~(0xF << 28);
6587 tmp |= (4 << 28);
6588 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6589}
6590
2fa86a1f
PZ
6591/* Implements 3 different sequences from BSpec chapter "Display iCLK
6592 * Programming" based on the parameters passed:
6593 * - Sequence to enable CLKOUT_DP
6594 * - Sequence to enable CLKOUT_DP without spread
6595 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6596 */
6597static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6598 bool with_fdi)
f31f2d55
PZ
6599{
6600 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6601 uint32_t reg, tmp;
6602
6603 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6604 with_spread = true;
6605 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6606 with_fdi, "LP PCH doesn't have FDI\n"))
6607 with_fdi = false;
f31f2d55
PZ
6608
6609 mutex_lock(&dev_priv->dpio_lock);
6610
6611 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6612 tmp &= ~SBI_SSCCTL_DISABLE;
6613 tmp |= SBI_SSCCTL_PATHALT;
6614 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6615
6616 udelay(24);
6617
2fa86a1f
PZ
6618 if (with_spread) {
6619 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6620 tmp &= ~SBI_SSCCTL_PATHALT;
6621 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6622
2fa86a1f
PZ
6623 if (with_fdi) {
6624 lpt_reset_fdi_mphy(dev_priv);
6625 lpt_program_fdi_mphy(dev_priv);
6626 }
6627 }
dde86e2d 6628
2fa86a1f
PZ
6629 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6630 SBI_GEN0 : SBI_DBUFF0;
6631 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6632 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6633 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6634
6635 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6636}
6637
47701c3b
PZ
6638/* Sequence to disable CLKOUT_DP */
6639static void lpt_disable_clkout_dp(struct drm_device *dev)
6640{
6641 struct drm_i915_private *dev_priv = dev->dev_private;
6642 uint32_t reg, tmp;
6643
6644 mutex_lock(&dev_priv->dpio_lock);
6645
6646 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6647 SBI_GEN0 : SBI_DBUFF0;
6648 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6649 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6650 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6651
6652 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6653 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6654 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6655 tmp |= SBI_SSCCTL_PATHALT;
6656 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6657 udelay(32);
6658 }
6659 tmp |= SBI_SSCCTL_DISABLE;
6660 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6661 }
6662
6663 mutex_unlock(&dev_priv->dpio_lock);
6664}
6665
bf8fa3d3
PZ
6666static void lpt_init_pch_refclk(struct drm_device *dev)
6667{
6668 struct drm_mode_config *mode_config = &dev->mode_config;
6669 struct intel_encoder *encoder;
6670 bool has_vga = false;
6671
6672 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
6673 switch (encoder->type) {
6674 case INTEL_OUTPUT_ANALOG:
6675 has_vga = true;
6676 break;
6677 }
6678 }
6679
47701c3b
PZ
6680 if (has_vga)
6681 lpt_enable_clkout_dp(dev, true, true);
6682 else
6683 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6684}
6685
dde86e2d
PZ
6686/*
6687 * Initialize reference clocks when the driver loads
6688 */
6689void intel_init_pch_refclk(struct drm_device *dev)
6690{
6691 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6692 ironlake_init_pch_refclk(dev);
6693 else if (HAS_PCH_LPT(dev))
6694 lpt_init_pch_refclk(dev);
6695}
6696
d9d444cb
JB
6697static int ironlake_get_refclk(struct drm_crtc *crtc)
6698{
6699 struct drm_device *dev = crtc->dev;
6700 struct drm_i915_private *dev_priv = dev->dev_private;
6701 struct intel_encoder *encoder;
d9d444cb
JB
6702 int num_connectors = 0;
6703 bool is_lvds = false;
6704
6c2b7c12 6705 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6706 switch (encoder->type) {
6707 case INTEL_OUTPUT_LVDS:
6708 is_lvds = true;
6709 break;
d9d444cb
JB
6710 }
6711 num_connectors++;
6712 }
6713
6714 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6715 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6716 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6717 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6718 }
6719
6720 return 120000;
6721}
6722
6ff93609 6723static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6724{
c8203565 6725 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6726 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6727 int pipe = intel_crtc->pipe;
c8203565
PZ
6728 uint32_t val;
6729
78114071 6730 val = 0;
c8203565 6731
965e0c48 6732 switch (intel_crtc->config.pipe_bpp) {
c8203565 6733 case 18:
dfd07d72 6734 val |= PIPECONF_6BPC;
c8203565
PZ
6735 break;
6736 case 24:
dfd07d72 6737 val |= PIPECONF_8BPC;
c8203565
PZ
6738 break;
6739 case 30:
dfd07d72 6740 val |= PIPECONF_10BPC;
c8203565
PZ
6741 break;
6742 case 36:
dfd07d72 6743 val |= PIPECONF_12BPC;
c8203565
PZ
6744 break;
6745 default:
cc769b62
PZ
6746 /* Case prevented by intel_choose_pipe_bpp_dither. */
6747 BUG();
c8203565
PZ
6748 }
6749
d8b32247 6750 if (intel_crtc->config.dither)
c8203565
PZ
6751 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6752
6ff93609 6753 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6754 val |= PIPECONF_INTERLACED_ILK;
6755 else
6756 val |= PIPECONF_PROGRESSIVE;
6757
50f3b016 6758 if (intel_crtc->config.limited_color_range)
3685a8f3 6759 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6760
c8203565
PZ
6761 I915_WRITE(PIPECONF(pipe), val);
6762 POSTING_READ(PIPECONF(pipe));
6763}
6764
86d3efce
VS
6765/*
6766 * Set up the pipe CSC unit.
6767 *
6768 * Currently only full range RGB to limited range RGB conversion
6769 * is supported, but eventually this should handle various
6770 * RGB<->YCbCr scenarios as well.
6771 */
50f3b016 6772static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6773{
6774 struct drm_device *dev = crtc->dev;
6775 struct drm_i915_private *dev_priv = dev->dev_private;
6776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6777 int pipe = intel_crtc->pipe;
6778 uint16_t coeff = 0x7800; /* 1.0 */
6779
6780 /*
6781 * TODO: Check what kind of values actually come out of the pipe
6782 * with these coeff/postoff values and adjust to get the best
6783 * accuracy. Perhaps we even need to take the bpc value into
6784 * consideration.
6785 */
6786
50f3b016 6787 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6788 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6789
6790 /*
6791 * GY/GU and RY/RU should be the other way around according
6792 * to BSpec, but reality doesn't agree. Just set them up in
6793 * a way that results in the correct picture.
6794 */
6795 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6796 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6797
6798 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6799 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6800
6801 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6802 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6803
6804 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6805 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6806 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6807
6808 if (INTEL_INFO(dev)->gen > 6) {
6809 uint16_t postoff = 0;
6810
50f3b016 6811 if (intel_crtc->config.limited_color_range)
32cf0cb0 6812 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6813
6814 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6815 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6816 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6817
6818 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6819 } else {
6820 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6821
50f3b016 6822 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6823 mode |= CSC_BLACK_SCREEN_OFFSET;
6824
6825 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6826 }
6827}
6828
6ff93609 6829static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6830{
756f85cf
PZ
6831 struct drm_device *dev = crtc->dev;
6832 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6833 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6834 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6835 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6836 uint32_t val;
6837
3eff4faa 6838 val = 0;
ee2b0b38 6839
756f85cf 6840 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6841 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6842
6ff93609 6843 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6844 val |= PIPECONF_INTERLACED_ILK;
6845 else
6846 val |= PIPECONF_PROGRESSIVE;
6847
702e7a56
PZ
6848 I915_WRITE(PIPECONF(cpu_transcoder), val);
6849 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6850
6851 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6852 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6853
6854 if (IS_BROADWELL(dev)) {
6855 val = 0;
6856
6857 switch (intel_crtc->config.pipe_bpp) {
6858 case 18:
6859 val |= PIPEMISC_DITHER_6_BPC;
6860 break;
6861 case 24:
6862 val |= PIPEMISC_DITHER_8_BPC;
6863 break;
6864 case 30:
6865 val |= PIPEMISC_DITHER_10_BPC;
6866 break;
6867 case 36:
6868 val |= PIPEMISC_DITHER_12_BPC;
6869 break;
6870 default:
6871 /* Case prevented by pipe_config_set_bpp. */
6872 BUG();
6873 }
6874
6875 if (intel_crtc->config.dither)
6876 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6877
6878 I915_WRITE(PIPEMISC(pipe), val);
6879 }
ee2b0b38
PZ
6880}
6881
6591c6e4 6882static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6883 intel_clock_t *clock,
6884 bool *has_reduced_clock,
6885 intel_clock_t *reduced_clock)
6886{
6887 struct drm_device *dev = crtc->dev;
6888 struct drm_i915_private *dev_priv = dev->dev_private;
6889 struct intel_encoder *intel_encoder;
6890 int refclk;
d4906093 6891 const intel_limit_t *limit;
a16af721 6892 bool ret, is_lvds = false;
79e53945 6893
6591c6e4
PZ
6894 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6895 switch (intel_encoder->type) {
79e53945
JB
6896 case INTEL_OUTPUT_LVDS:
6897 is_lvds = true;
6898 break;
79e53945
JB
6899 }
6900 }
6901
d9d444cb 6902 refclk = ironlake_get_refclk(crtc);
79e53945 6903
d4906093
ML
6904 /*
6905 * Returns a set of divisors for the desired target clock with the given
6906 * refclk, or FALSE. The returned values represent the clock equation:
6907 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6908 */
1b894b59 6909 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6910 ret = dev_priv->display.find_dpll(limit, crtc,
6911 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6912 refclk, NULL, clock);
6591c6e4
PZ
6913 if (!ret)
6914 return false;
cda4b7d3 6915
ddc9003c 6916 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6917 /*
6918 * Ensure we match the reduced clock's P to the target clock.
6919 * If the clocks don't match, we can't switch the display clock
6920 * by using the FP0/FP1. In such case we will disable the LVDS
6921 * downclock feature.
6922 */
ee9300bb
DV
6923 *has_reduced_clock =
6924 dev_priv->display.find_dpll(limit, crtc,
6925 dev_priv->lvds_downclock,
6926 refclk, clock,
6927 reduced_clock);
652c393a 6928 }
61e9653f 6929
6591c6e4
PZ
6930 return true;
6931}
6932
d4b1931c
PZ
6933int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6934{
6935 /*
6936 * Account for spread spectrum to avoid
6937 * oversubscribing the link. Max center spread
6938 * is 2.5%; use 5% for safety's sake.
6939 */
6940 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6941 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6942}
6943
7429e9d4 6944static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 6945{
7429e9d4 6946 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
6947}
6948
de13a2e3 6949static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 6950 u32 *fp,
9a7c7890 6951 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 6952{
de13a2e3 6953 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
6954 struct drm_device *dev = crtc->dev;
6955 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
6956 struct intel_encoder *intel_encoder;
6957 uint32_t dpll;
6cc5f341 6958 int factor, num_connectors = 0;
09ede541 6959 bool is_lvds = false, is_sdvo = false;
79e53945 6960
de13a2e3
PZ
6961 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6962 switch (intel_encoder->type) {
79e53945
JB
6963 case INTEL_OUTPUT_LVDS:
6964 is_lvds = true;
6965 break;
6966 case INTEL_OUTPUT_SDVO:
7d57382e 6967 case INTEL_OUTPUT_HDMI:
79e53945 6968 is_sdvo = true;
79e53945 6969 break;
79e53945 6970 }
43565a06 6971
c751ce4f 6972 num_connectors++;
79e53945 6973 }
79e53945 6974
c1858123 6975 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
6976 factor = 21;
6977 if (is_lvds) {
6978 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 6979 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 6980 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 6981 factor = 25;
09ede541 6982 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 6983 factor = 20;
c1858123 6984
7429e9d4 6985 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 6986 *fp |= FP_CB_TUNE;
2c07245f 6987
9a7c7890
DV
6988 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6989 *fp2 |= FP_CB_TUNE;
6990
5eddb70b 6991 dpll = 0;
2c07245f 6992
a07d6787
EA
6993 if (is_lvds)
6994 dpll |= DPLLB_MODE_LVDS;
6995 else
6996 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 6997
ef1b460d
DV
6998 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6999 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7000
7001 if (is_sdvo)
4a33e48d 7002 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7003 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7004 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7005
a07d6787 7006 /* compute bitmask from p1 value */
7429e9d4 7007 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7008 /* also FPA1 */
7429e9d4 7009 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7010
7429e9d4 7011 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7012 case 5:
7013 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7014 break;
7015 case 7:
7016 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7017 break;
7018 case 10:
7019 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7020 break;
7021 case 14:
7022 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7023 break;
79e53945
JB
7024 }
7025
b4c09f3b 7026 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7027 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7028 else
7029 dpll |= PLL_REF_INPUT_DREFCLK;
7030
959e16d6 7031 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7032}
7033
7034static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7035 int x, int y,
7036 struct drm_framebuffer *fb)
7037{
7038 struct drm_device *dev = crtc->dev;
de13a2e3 7039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7040 int num_connectors = 0;
7041 intel_clock_t clock, reduced_clock;
cbbab5bd 7042 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7043 bool ok, has_reduced_clock = false;
8b47047b 7044 bool is_lvds = false;
de13a2e3 7045 struct intel_encoder *encoder;
e2b78267 7046 struct intel_shared_dpll *pll;
de13a2e3
PZ
7047
7048 for_each_encoder_on_crtc(dev, crtc, encoder) {
7049 switch (encoder->type) {
7050 case INTEL_OUTPUT_LVDS:
7051 is_lvds = true;
7052 break;
de13a2e3
PZ
7053 }
7054
7055 num_connectors++;
a07d6787 7056 }
79e53945 7057
5dc5298b
PZ
7058 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7059 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7060
ff9a6750 7061 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7062 &has_reduced_clock, &reduced_clock);
ee9300bb 7063 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7064 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7065 return -EINVAL;
79e53945 7066 }
f47709a9
DV
7067 /* Compat-code for transition, will disappear. */
7068 if (!intel_crtc->config.clock_set) {
7069 intel_crtc->config.dpll.n = clock.n;
7070 intel_crtc->config.dpll.m1 = clock.m1;
7071 intel_crtc->config.dpll.m2 = clock.m2;
7072 intel_crtc->config.dpll.p1 = clock.p1;
7073 intel_crtc->config.dpll.p2 = clock.p2;
7074 }
79e53945 7075
5dc5298b 7076 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7077 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7078 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7079 if (has_reduced_clock)
7429e9d4 7080 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7081
7429e9d4 7082 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7083 &fp, &reduced_clock,
7084 has_reduced_clock ? &fp2 : NULL);
7085
959e16d6 7086 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7087 intel_crtc->config.dpll_hw_state.fp0 = fp;
7088 if (has_reduced_clock)
7089 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7090 else
7091 intel_crtc->config.dpll_hw_state.fp1 = fp;
7092
b89a1d39 7093 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7094 if (pll == NULL) {
84f44ce7 7095 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7096 pipe_name(intel_crtc->pipe));
4b645f14
JB
7097 return -EINVAL;
7098 }
ee7b9f93 7099 } else
e72f9fbf 7100 intel_put_shared_dpll(intel_crtc);
79e53945 7101
d330a953 7102 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7103 intel_crtc->lowfreq_avail = true;
7104 else
7105 intel_crtc->lowfreq_avail = false;
e2b78267 7106
c8f7a0db 7107 return 0;
79e53945
JB
7108}
7109
eb14cb74
VS
7110static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7111 struct intel_link_m_n *m_n)
7112{
7113 struct drm_device *dev = crtc->base.dev;
7114 struct drm_i915_private *dev_priv = dev->dev_private;
7115 enum pipe pipe = crtc->pipe;
7116
7117 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7118 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7119 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7120 & ~TU_SIZE_MASK;
7121 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7122 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7123 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7124}
7125
7126static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7127 enum transcoder transcoder,
7128 struct intel_link_m_n *m_n)
72419203
DV
7129{
7130 struct drm_device *dev = crtc->base.dev;
7131 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7132 enum pipe pipe = crtc->pipe;
72419203 7133
eb14cb74
VS
7134 if (INTEL_INFO(dev)->gen >= 5) {
7135 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7136 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7137 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7138 & ~TU_SIZE_MASK;
7139 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7140 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7141 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7142 } else {
7143 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7144 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7145 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7146 & ~TU_SIZE_MASK;
7147 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7148 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7149 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7150 }
7151}
7152
7153void intel_dp_get_m_n(struct intel_crtc *crtc,
7154 struct intel_crtc_config *pipe_config)
7155{
7156 if (crtc->config.has_pch_encoder)
7157 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7158 else
7159 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7160 &pipe_config->dp_m_n);
7161}
72419203 7162
eb14cb74
VS
7163static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7164 struct intel_crtc_config *pipe_config)
7165{
7166 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7167 &pipe_config->fdi_m_n);
72419203
DV
7168}
7169
2fa2fe9a
DV
7170static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7171 struct intel_crtc_config *pipe_config)
7172{
7173 struct drm_device *dev = crtc->base.dev;
7174 struct drm_i915_private *dev_priv = dev->dev_private;
7175 uint32_t tmp;
7176
7177 tmp = I915_READ(PF_CTL(crtc->pipe));
7178
7179 if (tmp & PF_ENABLE) {
fd4daa9c 7180 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7181 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7182 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7183
7184 /* We currently do not free assignements of panel fitters on
7185 * ivb/hsw (since we don't use the higher upscaling modes which
7186 * differentiates them) so just WARN about this case for now. */
7187 if (IS_GEN7(dev)) {
7188 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7189 PF_PIPE_SEL_IVB(crtc->pipe));
7190 }
2fa2fe9a 7191 }
79e53945
JB
7192}
7193
4c6baa59
JB
7194static void ironlake_get_plane_config(struct intel_crtc *crtc,
7195 struct intel_plane_config *plane_config)
7196{
7197 struct drm_device *dev = crtc->base.dev;
7198 struct drm_i915_private *dev_priv = dev->dev_private;
7199 u32 val, base, offset;
7200 int pipe = crtc->pipe, plane = crtc->plane;
7201 int fourcc, pixel_format;
7202 int aligned_height;
7203
66e514c1
DA
7204 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7205 if (!crtc->base.primary->fb) {
4c6baa59
JB
7206 DRM_DEBUG_KMS("failed to alloc fb\n");
7207 return;
7208 }
7209
7210 val = I915_READ(DSPCNTR(plane));
7211
7212 if (INTEL_INFO(dev)->gen >= 4)
7213 if (val & DISPPLANE_TILED)
7214 plane_config->tiled = true;
7215
7216 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7217 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7218 crtc->base.primary->fb->pixel_format = fourcc;
7219 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7220 drm_format_plane_cpp(fourcc, 0) * 8;
7221
7222 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7223 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7224 offset = I915_READ(DSPOFFSET(plane));
7225 } else {
7226 if (plane_config->tiled)
7227 offset = I915_READ(DSPTILEOFF(plane));
7228 else
7229 offset = I915_READ(DSPLINOFF(plane));
7230 }
7231 plane_config->base = base;
7232
7233 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7234 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7235 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7236
7237 val = I915_READ(DSPSTRIDE(pipe));
66e514c1 7238 crtc->base.primary->fb->pitches[0] = val & 0xffffff80;
4c6baa59 7239
66e514c1 7240 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7241 plane_config->tiled);
7242
1267a26b
FF
7243 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7244 aligned_height);
4c6baa59
JB
7245
7246 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7247 pipe, plane, crtc->base.primary->fb->width,
7248 crtc->base.primary->fb->height,
7249 crtc->base.primary->fb->bits_per_pixel, base,
7250 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7251 plane_config->size);
7252}
7253
0e8ffe1b
DV
7254static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7255 struct intel_crtc_config *pipe_config)
7256{
7257 struct drm_device *dev = crtc->base.dev;
7258 struct drm_i915_private *dev_priv = dev->dev_private;
7259 uint32_t tmp;
7260
e143a21c 7261 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7262 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7263
0e8ffe1b
DV
7264 tmp = I915_READ(PIPECONF(crtc->pipe));
7265 if (!(tmp & PIPECONF_ENABLE))
7266 return false;
7267
42571aef
VS
7268 switch (tmp & PIPECONF_BPC_MASK) {
7269 case PIPECONF_6BPC:
7270 pipe_config->pipe_bpp = 18;
7271 break;
7272 case PIPECONF_8BPC:
7273 pipe_config->pipe_bpp = 24;
7274 break;
7275 case PIPECONF_10BPC:
7276 pipe_config->pipe_bpp = 30;
7277 break;
7278 case PIPECONF_12BPC:
7279 pipe_config->pipe_bpp = 36;
7280 break;
7281 default:
7282 break;
7283 }
7284
b5a9fa09
DV
7285 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7286 pipe_config->limited_color_range = true;
7287
ab9412ba 7288 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7289 struct intel_shared_dpll *pll;
7290
88adfff1
DV
7291 pipe_config->has_pch_encoder = true;
7292
627eb5a3
DV
7293 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7294 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7295 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7296
7297 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7298
c0d43d62 7299 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7300 pipe_config->shared_dpll =
7301 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7302 } else {
7303 tmp = I915_READ(PCH_DPLL_SEL);
7304 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7305 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7306 else
7307 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7308 }
66e985c0
DV
7309
7310 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7311
7312 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7313 &pipe_config->dpll_hw_state));
c93f54cf
DV
7314
7315 tmp = pipe_config->dpll_hw_state.dpll;
7316 pipe_config->pixel_multiplier =
7317 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7318 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7319
7320 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7321 } else {
7322 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7323 }
7324
1bd1bd80
DV
7325 intel_get_pipe_timings(crtc, pipe_config);
7326
2fa2fe9a
DV
7327 ironlake_get_pfit_config(crtc, pipe_config);
7328
0e8ffe1b
DV
7329 return true;
7330}
7331
be256dc7
PZ
7332static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7333{
7334 struct drm_device *dev = dev_priv->dev;
7335 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
7336 struct intel_crtc *crtc;
be256dc7 7337
d3fcc808 7338 for_each_intel_crtc(dev, crtc)
798183c5 7339 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7340 pipe_name(crtc->pipe));
7341
7342 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7343 WARN(plls->spll_refcount, "SPLL enabled\n");
7344 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
7345 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
7346 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7347 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7348 "CPU PWM1 enabled\n");
7349 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7350 "CPU PWM2 enabled\n");
7351 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7352 "PCH PWM1 enabled\n");
7353 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7354 "Utility pin enabled\n");
7355 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7356
9926ada1
PZ
7357 /*
7358 * In theory we can still leave IRQs enabled, as long as only the HPD
7359 * interrupts remain enabled. We used to check for that, but since it's
7360 * gen-specific and since we only disable LCPLL after we fully disable
7361 * the interrupts, the check below should be enough.
7362 */
7363 WARN(!dev_priv->pm.irqs_disabled, "IRQs enabled\n");
be256dc7
PZ
7364}
7365
3c4c9b81
PZ
7366static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7367{
7368 struct drm_device *dev = dev_priv->dev;
7369
7370 if (IS_HASWELL(dev)) {
7371 mutex_lock(&dev_priv->rps.hw_lock);
7372 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7373 val))
7374 DRM_ERROR("Failed to disable D_COMP\n");
7375 mutex_unlock(&dev_priv->rps.hw_lock);
7376 } else {
7377 I915_WRITE(D_COMP, val);
7378 }
7379 POSTING_READ(D_COMP);
be256dc7
PZ
7380}
7381
7382/*
7383 * This function implements pieces of two sequences from BSpec:
7384 * - Sequence for display software to disable LCPLL
7385 * - Sequence for display software to allow package C8+
7386 * The steps implemented here are just the steps that actually touch the LCPLL
7387 * register. Callers should take care of disabling all the display engine
7388 * functions, doing the mode unset, fixing interrupts, etc.
7389 */
6ff58d53
PZ
7390static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7391 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7392{
7393 uint32_t val;
7394
7395 assert_can_disable_lcpll(dev_priv);
7396
7397 val = I915_READ(LCPLL_CTL);
7398
7399 if (switch_to_fclk) {
7400 val |= LCPLL_CD_SOURCE_FCLK;
7401 I915_WRITE(LCPLL_CTL, val);
7402
7403 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7404 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7405 DRM_ERROR("Switching to FCLK failed\n");
7406
7407 val = I915_READ(LCPLL_CTL);
7408 }
7409
7410 val |= LCPLL_PLL_DISABLE;
7411 I915_WRITE(LCPLL_CTL, val);
7412 POSTING_READ(LCPLL_CTL);
7413
7414 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7415 DRM_ERROR("LCPLL still locked\n");
7416
7417 val = I915_READ(D_COMP);
7418 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7419 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7420 ndelay(100);
7421
7422 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
7423 DRM_ERROR("D_COMP RCOMP still in progress\n");
7424
7425 if (allow_power_down) {
7426 val = I915_READ(LCPLL_CTL);
7427 val |= LCPLL_POWER_DOWN_ALLOW;
7428 I915_WRITE(LCPLL_CTL, val);
7429 POSTING_READ(LCPLL_CTL);
7430 }
7431}
7432
7433/*
7434 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7435 * source.
7436 */
6ff58d53 7437static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7438{
7439 uint32_t val;
a8a8bd54 7440 unsigned long irqflags;
be256dc7
PZ
7441
7442 val = I915_READ(LCPLL_CTL);
7443
7444 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7445 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7446 return;
7447
a8a8bd54
PZ
7448 /*
7449 * Make sure we're not on PC8 state before disabling PC8, otherwise
7450 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7451 *
7452 * The other problem is that hsw_restore_lcpll() is called as part of
7453 * the runtime PM resume sequence, so we can't just call
7454 * gen6_gt_force_wake_get() because that function calls
7455 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7456 * while we are on the resume sequence. So to solve this problem we have
7457 * to call special forcewake code that doesn't touch runtime PM and
7458 * doesn't enable the forcewake delayed work.
7459 */
7460 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7461 if (dev_priv->uncore.forcewake_count++ == 0)
7462 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7463 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7464
be256dc7
PZ
7465 if (val & LCPLL_POWER_DOWN_ALLOW) {
7466 val &= ~LCPLL_POWER_DOWN_ALLOW;
7467 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7468 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7469 }
7470
7471 val = I915_READ(D_COMP);
7472 val |= D_COMP_COMP_FORCE;
7473 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7474 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7475
7476 val = I915_READ(LCPLL_CTL);
7477 val &= ~LCPLL_PLL_DISABLE;
7478 I915_WRITE(LCPLL_CTL, val);
7479
7480 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7481 DRM_ERROR("LCPLL not locked yet\n");
7482
7483 if (val & LCPLL_CD_SOURCE_FCLK) {
7484 val = I915_READ(LCPLL_CTL);
7485 val &= ~LCPLL_CD_SOURCE_FCLK;
7486 I915_WRITE(LCPLL_CTL, val);
7487
7488 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7489 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7490 DRM_ERROR("Switching back to LCPLL failed\n");
7491 }
215733fa 7492
a8a8bd54
PZ
7493 /* See the big comment above. */
7494 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7495 if (--dev_priv->uncore.forcewake_count == 0)
7496 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7497 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7498}
7499
765dab67
PZ
7500/*
7501 * Package states C8 and deeper are really deep PC states that can only be
7502 * reached when all the devices on the system allow it, so even if the graphics
7503 * device allows PC8+, it doesn't mean the system will actually get to these
7504 * states. Our driver only allows PC8+ when going into runtime PM.
7505 *
7506 * The requirements for PC8+ are that all the outputs are disabled, the power
7507 * well is disabled and most interrupts are disabled, and these are also
7508 * requirements for runtime PM. When these conditions are met, we manually do
7509 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7510 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7511 * hang the machine.
7512 *
7513 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7514 * the state of some registers, so when we come back from PC8+ we need to
7515 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7516 * need to take care of the registers kept by RC6. Notice that this happens even
7517 * if we don't put the device in PCI D3 state (which is what currently happens
7518 * because of the runtime PM support).
7519 *
7520 * For more, read "Display Sequences for Package C8" on the hardware
7521 * documentation.
7522 */
a14cb6fc 7523void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7524{
c67a470b
PZ
7525 struct drm_device *dev = dev_priv->dev;
7526 uint32_t val;
7527
c67a470b
PZ
7528 DRM_DEBUG_KMS("Enabling package C8+\n");
7529
c67a470b
PZ
7530 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7531 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7532 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7533 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7534 }
7535
7536 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7537 hsw_disable_lcpll(dev_priv, true, true);
7538}
7539
a14cb6fc 7540void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7541{
7542 struct drm_device *dev = dev_priv->dev;
7543 uint32_t val;
7544
c67a470b
PZ
7545 DRM_DEBUG_KMS("Disabling package C8+\n");
7546
7547 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7548 lpt_init_pch_refclk(dev);
7549
7550 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7551 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7552 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7553 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7554 }
7555
7556 intel_prepare_ddi(dev);
c67a470b
PZ
7557}
7558
9a952a0d
PZ
7559static void snb_modeset_global_resources(struct drm_device *dev)
7560{
7561 modeset_update_crtc_power_domains(dev);
7562}
7563
4f074129
ID
7564static void haswell_modeset_global_resources(struct drm_device *dev)
7565{
da723569 7566 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7567}
7568
09b4ddf9 7569static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7570 int x, int y,
7571 struct drm_framebuffer *fb)
7572{
09b4ddf9 7573 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7574
566b734a 7575 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7576 return -EINVAL;
566b734a 7577 intel_ddi_pll_enable(intel_crtc);
6441ab5f 7578
644cef34
DV
7579 intel_crtc->lowfreq_avail = false;
7580
c8f7a0db 7581 return 0;
79e53945
JB
7582}
7583
0e8ffe1b
DV
7584static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7585 struct intel_crtc_config *pipe_config)
7586{
7587 struct drm_device *dev = crtc->base.dev;
7588 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7589 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7590 uint32_t tmp;
7591
b5482bd0
ID
7592 if (!intel_display_power_enabled(dev_priv,
7593 POWER_DOMAIN_PIPE(crtc->pipe)))
7594 return false;
7595
e143a21c 7596 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7597 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7598
eccb140b
DV
7599 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7600 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7601 enum pipe trans_edp_pipe;
7602 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7603 default:
7604 WARN(1, "unknown pipe linked to edp transcoder\n");
7605 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7606 case TRANS_DDI_EDP_INPUT_A_ON:
7607 trans_edp_pipe = PIPE_A;
7608 break;
7609 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7610 trans_edp_pipe = PIPE_B;
7611 break;
7612 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7613 trans_edp_pipe = PIPE_C;
7614 break;
7615 }
7616
7617 if (trans_edp_pipe == crtc->pipe)
7618 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7619 }
7620
da7e29bd 7621 if (!intel_display_power_enabled(dev_priv,
eccb140b 7622 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7623 return false;
7624
eccb140b 7625 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7626 if (!(tmp & PIPECONF_ENABLE))
7627 return false;
7628
88adfff1 7629 /*
f196e6be 7630 * Haswell has only FDI/PCH transcoder A. It is which is connected to
88adfff1
DV
7631 * DDI E. So just check whether this pipe is wired to DDI E and whether
7632 * the PCH transcoder is on.
7633 */
eccb140b 7634 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
88adfff1 7635 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
ab9412ba 7636 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
88adfff1
DV
7637 pipe_config->has_pch_encoder = true;
7638
627eb5a3
DV
7639 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7640 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7641 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7642
7643 ironlake_get_fdi_m_n_config(crtc, pipe_config);
627eb5a3
DV
7644 }
7645
1bd1bd80
DV
7646 intel_get_pipe_timings(crtc, pipe_config);
7647
2fa2fe9a 7648 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7649 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7650 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7651
e59150dc
JB
7652 if (IS_HASWELL(dev))
7653 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7654 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7655
6c49f241
DV
7656 pipe_config->pixel_multiplier = 1;
7657
0e8ffe1b
DV
7658 return true;
7659}
7660
1a91510d
JN
7661static struct {
7662 int clock;
7663 u32 config;
7664} hdmi_audio_clock[] = {
7665 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7666 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7667 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7668 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7669 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7670 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7671 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7672 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7673 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7674 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7675};
7676
7677/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7678static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7679{
7680 int i;
7681
7682 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7683 if (mode->clock == hdmi_audio_clock[i].clock)
7684 break;
7685 }
7686
7687 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7688 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7689 i = 1;
7690 }
7691
7692 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7693 hdmi_audio_clock[i].clock,
7694 hdmi_audio_clock[i].config);
7695
7696 return hdmi_audio_clock[i].config;
7697}
7698
3a9627f4
WF
7699static bool intel_eld_uptodate(struct drm_connector *connector,
7700 int reg_eldv, uint32_t bits_eldv,
7701 int reg_elda, uint32_t bits_elda,
7702 int reg_edid)
7703{
7704 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7705 uint8_t *eld = connector->eld;
7706 uint32_t i;
7707
7708 i = I915_READ(reg_eldv);
7709 i &= bits_eldv;
7710
7711 if (!eld[0])
7712 return !i;
7713
7714 if (!i)
7715 return false;
7716
7717 i = I915_READ(reg_elda);
7718 i &= ~bits_elda;
7719 I915_WRITE(reg_elda, i);
7720
7721 for (i = 0; i < eld[2]; i++)
7722 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7723 return false;
7724
7725 return true;
7726}
7727
e0dac65e 7728static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7729 struct drm_crtc *crtc,
7730 struct drm_display_mode *mode)
e0dac65e
WF
7731{
7732 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7733 uint8_t *eld = connector->eld;
7734 uint32_t eldv;
7735 uint32_t len;
7736 uint32_t i;
7737
7738 i = I915_READ(G4X_AUD_VID_DID);
7739
7740 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7741 eldv = G4X_ELDV_DEVCL_DEVBLC;
7742 else
7743 eldv = G4X_ELDV_DEVCTG;
7744
3a9627f4
WF
7745 if (intel_eld_uptodate(connector,
7746 G4X_AUD_CNTL_ST, eldv,
7747 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7748 G4X_HDMIW_HDMIEDID))
7749 return;
7750
e0dac65e
WF
7751 i = I915_READ(G4X_AUD_CNTL_ST);
7752 i &= ~(eldv | G4X_ELD_ADDR);
7753 len = (i >> 9) & 0x1f; /* ELD buffer size */
7754 I915_WRITE(G4X_AUD_CNTL_ST, i);
7755
7756 if (!eld[0])
7757 return;
7758
7759 len = min_t(uint8_t, eld[2], len);
7760 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7761 for (i = 0; i < len; i++)
7762 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7763
7764 i = I915_READ(G4X_AUD_CNTL_ST);
7765 i |= eldv;
7766 I915_WRITE(G4X_AUD_CNTL_ST, i);
7767}
7768
83358c85 7769static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7770 struct drm_crtc *crtc,
7771 struct drm_display_mode *mode)
83358c85
WX
7772{
7773 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7774 uint8_t *eld = connector->eld;
83358c85
WX
7775 uint32_t eldv;
7776 uint32_t i;
7777 int len;
7778 int pipe = to_intel_crtc(crtc)->pipe;
7779 int tmp;
7780
7781 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7782 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7783 int aud_config = HSW_AUD_CFG(pipe);
7784 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7785
83358c85
WX
7786 /* Audio output enable */
7787 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7788 tmp = I915_READ(aud_cntrl_st2);
7789 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7790 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7791 POSTING_READ(aud_cntrl_st2);
83358c85 7792
c7905792 7793 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7794
7795 /* Set ELD valid state */
7796 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7797 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7798 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7799 I915_WRITE(aud_cntrl_st2, tmp);
7800 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7801 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7802
7803 /* Enable HDMI mode */
7804 tmp = I915_READ(aud_config);
7e7cb34f 7805 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7806 /* clear N_programing_enable and N_value_index */
7807 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7808 I915_WRITE(aud_config, tmp);
7809
7810 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7811
7812 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7813
7814 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7815 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7816 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7817 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7818 } else {
7819 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7820 }
83358c85
WX
7821
7822 if (intel_eld_uptodate(connector,
7823 aud_cntrl_st2, eldv,
7824 aud_cntl_st, IBX_ELD_ADDRESS,
7825 hdmiw_hdmiedid))
7826 return;
7827
7828 i = I915_READ(aud_cntrl_st2);
7829 i &= ~eldv;
7830 I915_WRITE(aud_cntrl_st2, i);
7831
7832 if (!eld[0])
7833 return;
7834
7835 i = I915_READ(aud_cntl_st);
7836 i &= ~IBX_ELD_ADDRESS;
7837 I915_WRITE(aud_cntl_st, i);
7838 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7839 DRM_DEBUG_DRIVER("port num:%d\n", i);
7840
7841 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7842 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7843 for (i = 0; i < len; i++)
7844 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7845
7846 i = I915_READ(aud_cntrl_st2);
7847 i |= eldv;
7848 I915_WRITE(aud_cntrl_st2, i);
7849
7850}
7851
e0dac65e 7852static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7853 struct drm_crtc *crtc,
7854 struct drm_display_mode *mode)
e0dac65e
WF
7855{
7856 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7857 uint8_t *eld = connector->eld;
7858 uint32_t eldv;
7859 uint32_t i;
7860 int len;
7861 int hdmiw_hdmiedid;
b6daa025 7862 int aud_config;
e0dac65e
WF
7863 int aud_cntl_st;
7864 int aud_cntrl_st2;
9b138a83 7865 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7866
b3f33cbf 7867 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7868 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7869 aud_config = IBX_AUD_CFG(pipe);
7870 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7871 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7872 } else if (IS_VALLEYVIEW(connector->dev)) {
7873 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7874 aud_config = VLV_AUD_CFG(pipe);
7875 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7876 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 7877 } else {
9b138a83
WX
7878 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7879 aud_config = CPT_AUD_CFG(pipe);
7880 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 7881 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
7882 }
7883
9b138a83 7884 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 7885
9ca2fe73
ML
7886 if (IS_VALLEYVIEW(connector->dev)) {
7887 struct intel_encoder *intel_encoder;
7888 struct intel_digital_port *intel_dig_port;
7889
7890 intel_encoder = intel_attached_encoder(connector);
7891 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7892 i = intel_dig_port->port;
7893 } else {
7894 i = I915_READ(aud_cntl_st);
7895 i = (i >> 29) & DIP_PORT_SEL_MASK;
7896 /* DIP_Port_Select, 0x1 = PortB */
7897 }
7898
e0dac65e
WF
7899 if (!i) {
7900 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7901 /* operate blindly on all ports */
1202b4c6
WF
7902 eldv = IBX_ELD_VALIDB;
7903 eldv |= IBX_ELD_VALIDB << 4;
7904 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 7905 } else {
2582a850 7906 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 7907 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
7908 }
7909
3a9627f4
WF
7910 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7911 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7912 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 7913 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7914 } else {
7915 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7916 }
e0dac65e 7917
3a9627f4
WF
7918 if (intel_eld_uptodate(connector,
7919 aud_cntrl_st2, eldv,
7920 aud_cntl_st, IBX_ELD_ADDRESS,
7921 hdmiw_hdmiedid))
7922 return;
7923
e0dac65e
WF
7924 i = I915_READ(aud_cntrl_st2);
7925 i &= ~eldv;
7926 I915_WRITE(aud_cntrl_st2, i);
7927
7928 if (!eld[0])
7929 return;
7930
e0dac65e 7931 i = I915_READ(aud_cntl_st);
1202b4c6 7932 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
7933 I915_WRITE(aud_cntl_st, i);
7934
7935 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7936 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7937 for (i = 0; i < len; i++)
7938 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7939
7940 i = I915_READ(aud_cntrl_st2);
7941 i |= eldv;
7942 I915_WRITE(aud_cntrl_st2, i);
7943}
7944
7945void intel_write_eld(struct drm_encoder *encoder,
7946 struct drm_display_mode *mode)
7947{
7948 struct drm_crtc *crtc = encoder->crtc;
7949 struct drm_connector *connector;
7950 struct drm_device *dev = encoder->dev;
7951 struct drm_i915_private *dev_priv = dev->dev_private;
7952
7953 connector = drm_select_eld(encoder, mode);
7954 if (!connector)
7955 return;
7956
7957 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7958 connector->base.id,
c23cc417 7959 connector->name,
e0dac65e 7960 connector->encoder->base.id,
8e329a03 7961 connector->encoder->name);
e0dac65e
WF
7962
7963 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7964
7965 if (dev_priv->display.write_eld)
34427052 7966 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
7967}
7968
560b85bb
CW
7969static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7970{
7971 struct drm_device *dev = crtc->dev;
7972 struct drm_i915_private *dev_priv = dev->dev_private;
7973 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 7974 uint32_t cntl;
560b85bb 7975
4b0e333e 7976 if (base != intel_crtc->cursor_base) {
560b85bb
CW
7977 /* On these chipsets we can only modify the base whilst
7978 * the cursor is disabled.
7979 */
4b0e333e
CW
7980 if (intel_crtc->cursor_cntl) {
7981 I915_WRITE(_CURACNTR, 0);
7982 POSTING_READ(_CURACNTR);
7983 intel_crtc->cursor_cntl = 0;
7984 }
7985
9db4a9c7 7986 I915_WRITE(_CURABASE, base);
4b0e333e
CW
7987 POSTING_READ(_CURABASE);
7988 }
560b85bb 7989
4b0e333e
CW
7990 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7991 cntl = 0;
7992 if (base)
7993 cntl = (CURSOR_ENABLE |
560b85bb 7994 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
7995 CURSOR_FORMAT_ARGB);
7996 if (intel_crtc->cursor_cntl != cntl) {
7997 I915_WRITE(_CURACNTR, cntl);
7998 POSTING_READ(_CURACNTR);
7999 intel_crtc->cursor_cntl = cntl;
8000 }
560b85bb
CW
8001}
8002
8003static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8004{
8005 struct drm_device *dev = crtc->dev;
8006 struct drm_i915_private *dev_priv = dev->dev_private;
8007 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8008 int pipe = intel_crtc->pipe;
4b0e333e 8009 uint32_t cntl;
4726e0b0 8010
4b0e333e
CW
8011 cntl = 0;
8012 if (base) {
8013 cntl = MCURSOR_GAMMA_ENABLE;
8014 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8015 case 64:
8016 cntl |= CURSOR_MODE_64_ARGB_AX;
8017 break;
8018 case 128:
8019 cntl |= CURSOR_MODE_128_ARGB_AX;
8020 break;
8021 case 256:
8022 cntl |= CURSOR_MODE_256_ARGB_AX;
8023 break;
8024 default:
8025 WARN_ON(1);
8026 return;
560b85bb 8027 }
4b0e333e
CW
8028 cntl |= pipe << 28; /* Connect to correct pipe */
8029 }
8030 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8031 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8032 POSTING_READ(CURCNTR(pipe));
8033 intel_crtc->cursor_cntl = cntl;
560b85bb 8034 }
4b0e333e 8035
560b85bb 8036 /* and commit changes on next vblank */
9db4a9c7 8037 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8038 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8039}
8040
65a21cd6
JB
8041static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8042{
8043 struct drm_device *dev = crtc->dev;
8044 struct drm_i915_private *dev_priv = dev->dev_private;
8045 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8046 int pipe = intel_crtc->pipe;
4b0e333e
CW
8047 uint32_t cntl;
8048
8049 cntl = 0;
8050 if (base) {
8051 cntl = MCURSOR_GAMMA_ENABLE;
8052 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8053 case 64:
8054 cntl |= CURSOR_MODE_64_ARGB_AX;
8055 break;
8056 case 128:
8057 cntl |= CURSOR_MODE_128_ARGB_AX;
8058 break;
8059 case 256:
8060 cntl |= CURSOR_MODE_256_ARGB_AX;
8061 break;
8062 default:
8063 WARN_ON(1);
8064 return;
65a21cd6 8065 }
4b0e333e
CW
8066 }
8067 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8068 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8069
4b0e333e
CW
8070 if (intel_crtc->cursor_cntl != cntl) {
8071 I915_WRITE(CURCNTR(pipe), cntl);
8072 POSTING_READ(CURCNTR(pipe));
8073 intel_crtc->cursor_cntl = cntl;
65a21cd6 8074 }
4b0e333e 8075
65a21cd6 8076 /* and commit changes on next vblank */
5efb3e28
VS
8077 I915_WRITE(CURBASE(pipe), base);
8078 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8079}
8080
cda4b7d3 8081/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8082static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8083 bool on)
cda4b7d3
CW
8084{
8085 struct drm_device *dev = crtc->dev;
8086 struct drm_i915_private *dev_priv = dev->dev_private;
8087 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8088 int pipe = intel_crtc->pipe;
3d7d6510
MR
8089 int x = crtc->cursor_x;
8090 int y = crtc->cursor_y;
d6e4db15 8091 u32 base = 0, pos = 0;
cda4b7d3 8092
d6e4db15 8093 if (on)
cda4b7d3 8094 base = intel_crtc->cursor_addr;
cda4b7d3 8095
d6e4db15
VS
8096 if (x >= intel_crtc->config.pipe_src_w)
8097 base = 0;
8098
8099 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8100 base = 0;
8101
8102 if (x < 0) {
efc9064e 8103 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8104 base = 0;
8105
8106 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8107 x = -x;
8108 }
8109 pos |= x << CURSOR_X_SHIFT;
8110
8111 if (y < 0) {
efc9064e 8112 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8113 base = 0;
8114
8115 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8116 y = -y;
8117 }
8118 pos |= y << CURSOR_Y_SHIFT;
8119
4b0e333e 8120 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8121 return;
8122
5efb3e28
VS
8123 I915_WRITE(CURPOS(pipe), pos);
8124
8125 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8126 ivb_update_cursor(crtc, base);
5efb3e28
VS
8127 else if (IS_845G(dev) || IS_I865G(dev))
8128 i845_update_cursor(crtc, base);
8129 else
8130 i9xx_update_cursor(crtc, base);
4b0e333e 8131 intel_crtc->cursor_base = base;
cda4b7d3
CW
8132}
8133
e3287951
MR
8134/*
8135 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8136 *
8137 * Note that the object's reference will be consumed if the update fails. If
8138 * the update succeeds, the reference of the old object (if any) will be
8139 * consumed.
8140 */
8141static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8142 struct drm_i915_gem_object *obj,
8143 uint32_t width, uint32_t height)
79e53945
JB
8144{
8145 struct drm_device *dev = crtc->dev;
8146 struct drm_i915_private *dev_priv = dev->dev_private;
8147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8148 enum pipe pipe = intel_crtc->pipe;
64f962e3 8149 unsigned old_width;
cda4b7d3 8150 uint32_t addr;
3f8bc370 8151 int ret;
79e53945 8152
79e53945 8153 /* if we want to turn off the cursor ignore width and height */
e3287951 8154 if (!obj) {
28c97730 8155 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8156 addr = 0;
05394f39 8157 obj = NULL;
5004417d 8158 mutex_lock(&dev->struct_mutex);
3f8bc370 8159 goto finish;
79e53945
JB
8160 }
8161
4726e0b0
SK
8162 /* Check for which cursor types we support */
8163 if (!((width == 64 && height == 64) ||
8164 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8165 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8166 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8167 return -EINVAL;
8168 }
8169
05394f39 8170 if (obj->base.size < width * height * 4) {
e3287951 8171 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8172 ret = -ENOMEM;
8173 goto fail;
79e53945
JB
8174 }
8175
71acb5eb 8176 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8177 mutex_lock(&dev->struct_mutex);
3d13ef2e 8178 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8179 unsigned alignment;
8180
d9e86c0e 8181 if (obj->tiling_mode) {
3b25b31f 8182 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8183 ret = -EINVAL;
8184 goto fail_locked;
8185 }
8186
693db184
CW
8187 /* Note that the w/a also requires 2 PTE of padding following
8188 * the bo. We currently fill all unused PTE with the shadow
8189 * page and so we should always have valid PTE following the
8190 * cursor preventing the VT-d warning.
8191 */
8192 alignment = 0;
8193 if (need_vtd_wa(dev))
8194 alignment = 64*1024;
8195
8196 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8197 if (ret) {
3b25b31f 8198 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8199 goto fail_locked;
e7b526bb
CW
8200 }
8201
d9e86c0e
CW
8202 ret = i915_gem_object_put_fence(obj);
8203 if (ret) {
3b25b31f 8204 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8205 goto fail_unpin;
8206 }
8207
f343c5f6 8208 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8209 } else {
6eeefaf3 8210 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8211 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8212 if (ret) {
3b25b31f 8213 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8214 goto fail_locked;
71acb5eb 8215 }
00731155 8216 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8217 }
8218
a6c45cf0 8219 if (IS_GEN2(dev))
14b60391
JB
8220 I915_WRITE(CURSIZE, (height << 12) | width);
8221
3f8bc370 8222 finish:
3f8bc370 8223 if (intel_crtc->cursor_bo) {
00731155 8224 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8225 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8226 }
80824003 8227
a071fa00
DV
8228 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8229 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8230 mutex_unlock(&dev->struct_mutex);
3f8bc370 8231
64f962e3
CW
8232 old_width = intel_crtc->cursor_width;
8233
3f8bc370 8234 intel_crtc->cursor_addr = addr;
05394f39 8235 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8236 intel_crtc->cursor_width = width;
8237 intel_crtc->cursor_height = height;
8238
64f962e3
CW
8239 if (intel_crtc->active) {
8240 if (old_width != width)
8241 intel_update_watermarks(crtc);
f2f5f771 8242 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8243 }
3f8bc370 8244
f99d7069
DV
8245 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8246
79e53945 8247 return 0;
e7b526bb 8248fail_unpin:
cc98b413 8249 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8250fail_locked:
34b8686e 8251 mutex_unlock(&dev->struct_mutex);
bc9025bd 8252fail:
05394f39 8253 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8254 return ret;
79e53945
JB
8255}
8256
79e53945 8257static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8258 u16 *blue, uint32_t start, uint32_t size)
79e53945 8259{
7203425a 8260 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8262
7203425a 8263 for (i = start; i < end; i++) {
79e53945
JB
8264 intel_crtc->lut_r[i] = red[i] >> 8;
8265 intel_crtc->lut_g[i] = green[i] >> 8;
8266 intel_crtc->lut_b[i] = blue[i] >> 8;
8267 }
8268
8269 intel_crtc_load_lut(crtc);
8270}
8271
79e53945
JB
8272/* VESA 640x480x72Hz mode to set on the pipe */
8273static struct drm_display_mode load_detect_mode = {
8274 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8275 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8276};
8277
a8bb6818
DV
8278struct drm_framebuffer *
8279__intel_framebuffer_create(struct drm_device *dev,
8280 struct drm_mode_fb_cmd2 *mode_cmd,
8281 struct drm_i915_gem_object *obj)
d2dff872
CW
8282{
8283 struct intel_framebuffer *intel_fb;
8284 int ret;
8285
8286 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8287 if (!intel_fb) {
8288 drm_gem_object_unreference_unlocked(&obj->base);
8289 return ERR_PTR(-ENOMEM);
8290 }
8291
8292 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8293 if (ret)
8294 goto err;
d2dff872
CW
8295
8296 return &intel_fb->base;
dd4916c5
DV
8297err:
8298 drm_gem_object_unreference_unlocked(&obj->base);
8299 kfree(intel_fb);
8300
8301 return ERR_PTR(ret);
d2dff872
CW
8302}
8303
b5ea642a 8304static struct drm_framebuffer *
a8bb6818
DV
8305intel_framebuffer_create(struct drm_device *dev,
8306 struct drm_mode_fb_cmd2 *mode_cmd,
8307 struct drm_i915_gem_object *obj)
8308{
8309 struct drm_framebuffer *fb;
8310 int ret;
8311
8312 ret = i915_mutex_lock_interruptible(dev);
8313 if (ret)
8314 return ERR_PTR(ret);
8315 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8316 mutex_unlock(&dev->struct_mutex);
8317
8318 return fb;
8319}
8320
d2dff872
CW
8321static u32
8322intel_framebuffer_pitch_for_width(int width, int bpp)
8323{
8324 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8325 return ALIGN(pitch, 64);
8326}
8327
8328static u32
8329intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8330{
8331 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8332 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8333}
8334
8335static struct drm_framebuffer *
8336intel_framebuffer_create_for_mode(struct drm_device *dev,
8337 struct drm_display_mode *mode,
8338 int depth, int bpp)
8339{
8340 struct drm_i915_gem_object *obj;
0fed39bd 8341 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8342
8343 obj = i915_gem_alloc_object(dev,
8344 intel_framebuffer_size_for_mode(mode, bpp));
8345 if (obj == NULL)
8346 return ERR_PTR(-ENOMEM);
8347
8348 mode_cmd.width = mode->hdisplay;
8349 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8350 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8351 bpp);
5ca0c34a 8352 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8353
8354 return intel_framebuffer_create(dev, &mode_cmd, obj);
8355}
8356
8357static struct drm_framebuffer *
8358mode_fits_in_fbdev(struct drm_device *dev,
8359 struct drm_display_mode *mode)
8360{
4520f53a 8361#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8362 struct drm_i915_private *dev_priv = dev->dev_private;
8363 struct drm_i915_gem_object *obj;
8364 struct drm_framebuffer *fb;
8365
4c0e5528 8366 if (!dev_priv->fbdev)
d2dff872
CW
8367 return NULL;
8368
4c0e5528 8369 if (!dev_priv->fbdev->fb)
d2dff872
CW
8370 return NULL;
8371
4c0e5528
DV
8372 obj = dev_priv->fbdev->fb->obj;
8373 BUG_ON(!obj);
8374
8bcd4553 8375 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8376 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8377 fb->bits_per_pixel))
d2dff872
CW
8378 return NULL;
8379
01f2c773 8380 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8381 return NULL;
8382
8383 return fb;
4520f53a
DV
8384#else
8385 return NULL;
8386#endif
d2dff872
CW
8387}
8388
d2434ab7 8389bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8390 struct drm_display_mode *mode,
51fd371b
RC
8391 struct intel_load_detect_pipe *old,
8392 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8393{
8394 struct intel_crtc *intel_crtc;
d2434ab7
DV
8395 struct intel_encoder *intel_encoder =
8396 intel_attached_encoder(connector);
79e53945 8397 struct drm_crtc *possible_crtc;
4ef69c7a 8398 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8399 struct drm_crtc *crtc = NULL;
8400 struct drm_device *dev = encoder->dev;
94352cf9 8401 struct drm_framebuffer *fb;
51fd371b
RC
8402 struct drm_mode_config *config = &dev->mode_config;
8403 int ret, i = -1;
79e53945 8404
d2dff872 8405 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8406 connector->base.id, connector->name,
8e329a03 8407 encoder->base.id, encoder->name);
d2dff872 8408
51fd371b
RC
8409 drm_modeset_acquire_init(ctx, 0);
8410
8411retry:
8412 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8413 if (ret)
8414 goto fail_unlock;
6e9f798d 8415
79e53945
JB
8416 /*
8417 * Algorithm gets a little messy:
7a5e4805 8418 *
79e53945
JB
8419 * - if the connector already has an assigned crtc, use it (but make
8420 * sure it's on first)
7a5e4805 8421 *
79e53945
JB
8422 * - try to find the first unused crtc that can drive this connector,
8423 * and use that if we find one
79e53945
JB
8424 */
8425
8426 /* See if we already have a CRTC for this connector */
8427 if (encoder->crtc) {
8428 crtc = encoder->crtc;
8261b191 8429
51fd371b
RC
8430 ret = drm_modeset_lock(&crtc->mutex, ctx);
8431 if (ret)
8432 goto fail_unlock;
7b24056b 8433
24218aac 8434 old->dpms_mode = connector->dpms;
8261b191
CW
8435 old->load_detect_temp = false;
8436
8437 /* Make sure the crtc and connector are running */
24218aac
DV
8438 if (connector->dpms != DRM_MODE_DPMS_ON)
8439 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8440
7173188d 8441 return true;
79e53945
JB
8442 }
8443
8444 /* Find an unused one (if possible) */
70e1e0ec 8445 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8446 i++;
8447 if (!(encoder->possible_crtcs & (1 << i)))
8448 continue;
8449 if (!possible_crtc->enabled) {
8450 crtc = possible_crtc;
8451 break;
8452 }
79e53945
JB
8453 }
8454
8455 /*
8456 * If we didn't find an unused CRTC, don't use any.
8457 */
8458 if (!crtc) {
7173188d 8459 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8460 goto fail_unlock;
79e53945
JB
8461 }
8462
51fd371b
RC
8463 ret = drm_modeset_lock(&crtc->mutex, ctx);
8464 if (ret)
8465 goto fail_unlock;
fc303101
DV
8466 intel_encoder->new_crtc = to_intel_crtc(crtc);
8467 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8468
8469 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8470 intel_crtc->new_enabled = true;
8471 intel_crtc->new_config = &intel_crtc->config;
24218aac 8472 old->dpms_mode = connector->dpms;
8261b191 8473 old->load_detect_temp = true;
d2dff872 8474 old->release_fb = NULL;
79e53945 8475
6492711d
CW
8476 if (!mode)
8477 mode = &load_detect_mode;
79e53945 8478
d2dff872
CW
8479 /* We need a framebuffer large enough to accommodate all accesses
8480 * that the plane may generate whilst we perform load detection.
8481 * We can not rely on the fbcon either being present (we get called
8482 * during its initialisation to detect all boot displays, or it may
8483 * not even exist) or that it is large enough to satisfy the
8484 * requested mode.
8485 */
94352cf9
DV
8486 fb = mode_fits_in_fbdev(dev, mode);
8487 if (fb == NULL) {
d2dff872 8488 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8489 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8490 old->release_fb = fb;
d2dff872
CW
8491 } else
8492 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8493 if (IS_ERR(fb)) {
d2dff872 8494 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8495 goto fail;
79e53945 8496 }
79e53945 8497
c0c36b94 8498 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8499 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8500 if (old->release_fb)
8501 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8502 goto fail;
79e53945 8503 }
7173188d 8504
79e53945 8505 /* let the connector get through one full cycle before testing */
9d0498a2 8506 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8507 return true;
412b61d8
VS
8508
8509 fail:
8510 intel_crtc->new_enabled = crtc->enabled;
8511 if (intel_crtc->new_enabled)
8512 intel_crtc->new_config = &intel_crtc->config;
8513 else
8514 intel_crtc->new_config = NULL;
51fd371b
RC
8515fail_unlock:
8516 if (ret == -EDEADLK) {
8517 drm_modeset_backoff(ctx);
8518 goto retry;
8519 }
8520
8521 drm_modeset_drop_locks(ctx);
8522 drm_modeset_acquire_fini(ctx);
6e9f798d 8523
412b61d8 8524 return false;
79e53945
JB
8525}
8526
d2434ab7 8527void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8528 struct intel_load_detect_pipe *old,
8529 struct drm_modeset_acquire_ctx *ctx)
79e53945 8530{
d2434ab7
DV
8531 struct intel_encoder *intel_encoder =
8532 intel_attached_encoder(connector);
4ef69c7a 8533 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8534 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8535 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8536
d2dff872 8537 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8538 connector->base.id, connector->name,
8e329a03 8539 encoder->base.id, encoder->name);
d2dff872 8540
8261b191 8541 if (old->load_detect_temp) {
fc303101
DV
8542 to_intel_connector(connector)->new_encoder = NULL;
8543 intel_encoder->new_crtc = NULL;
412b61d8
VS
8544 intel_crtc->new_enabled = false;
8545 intel_crtc->new_config = NULL;
fc303101 8546 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8547
36206361
DV
8548 if (old->release_fb) {
8549 drm_framebuffer_unregister_private(old->release_fb);
8550 drm_framebuffer_unreference(old->release_fb);
8551 }
d2dff872 8552
51fd371b 8553 goto unlock;
0622a53c 8554 return;
79e53945
JB
8555 }
8556
c751ce4f 8557 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8558 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8559 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8560
51fd371b
RC
8561unlock:
8562 drm_modeset_drop_locks(ctx);
8563 drm_modeset_acquire_fini(ctx);
79e53945
JB
8564}
8565
da4a1efa
VS
8566static int i9xx_pll_refclk(struct drm_device *dev,
8567 const struct intel_crtc_config *pipe_config)
8568{
8569 struct drm_i915_private *dev_priv = dev->dev_private;
8570 u32 dpll = pipe_config->dpll_hw_state.dpll;
8571
8572 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8573 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8574 else if (HAS_PCH_SPLIT(dev))
8575 return 120000;
8576 else if (!IS_GEN2(dev))
8577 return 96000;
8578 else
8579 return 48000;
8580}
8581
79e53945 8582/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8583static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8584 struct intel_crtc_config *pipe_config)
79e53945 8585{
f1f644dc 8586 struct drm_device *dev = crtc->base.dev;
79e53945 8587 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8588 int pipe = pipe_config->cpu_transcoder;
293623f7 8589 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8590 u32 fp;
8591 intel_clock_t clock;
da4a1efa 8592 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8593
8594 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8595 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8596 else
293623f7 8597 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8598
8599 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8600 if (IS_PINEVIEW(dev)) {
8601 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8602 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8603 } else {
8604 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8605 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8606 }
8607
a6c45cf0 8608 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8609 if (IS_PINEVIEW(dev))
8610 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8611 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8612 else
8613 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8614 DPLL_FPA01_P1_POST_DIV_SHIFT);
8615
8616 switch (dpll & DPLL_MODE_MASK) {
8617 case DPLLB_MODE_DAC_SERIAL:
8618 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8619 5 : 10;
8620 break;
8621 case DPLLB_MODE_LVDS:
8622 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8623 7 : 14;
8624 break;
8625 default:
28c97730 8626 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8627 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8628 return;
79e53945
JB
8629 }
8630
ac58c3f0 8631 if (IS_PINEVIEW(dev))
da4a1efa 8632 pineview_clock(refclk, &clock);
ac58c3f0 8633 else
da4a1efa 8634 i9xx_clock(refclk, &clock);
79e53945 8635 } else {
0fb58223 8636 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8637 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8638
8639 if (is_lvds) {
8640 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8641 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8642
8643 if (lvds & LVDS_CLKB_POWER_UP)
8644 clock.p2 = 7;
8645 else
8646 clock.p2 = 14;
79e53945
JB
8647 } else {
8648 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8649 clock.p1 = 2;
8650 else {
8651 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8652 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8653 }
8654 if (dpll & PLL_P2_DIVIDE_BY_4)
8655 clock.p2 = 4;
8656 else
8657 clock.p2 = 2;
79e53945 8658 }
da4a1efa
VS
8659
8660 i9xx_clock(refclk, &clock);
79e53945
JB
8661 }
8662
18442d08
VS
8663 /*
8664 * This value includes pixel_multiplier. We will use
241bfc38 8665 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8666 * encoder's get_config() function.
8667 */
8668 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8669}
8670
6878da05
VS
8671int intel_dotclock_calculate(int link_freq,
8672 const struct intel_link_m_n *m_n)
f1f644dc 8673{
f1f644dc
JB
8674 /*
8675 * The calculation for the data clock is:
1041a02f 8676 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8677 * But we want to avoid losing precison if possible, so:
1041a02f 8678 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8679 *
8680 * and the link clock is simpler:
1041a02f 8681 * link_clock = (m * link_clock) / n
f1f644dc
JB
8682 */
8683
6878da05
VS
8684 if (!m_n->link_n)
8685 return 0;
f1f644dc 8686
6878da05
VS
8687 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8688}
f1f644dc 8689
18442d08
VS
8690static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8691 struct intel_crtc_config *pipe_config)
6878da05
VS
8692{
8693 struct drm_device *dev = crtc->base.dev;
79e53945 8694
18442d08
VS
8695 /* read out port_clock from the DPLL */
8696 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8697
f1f644dc 8698 /*
18442d08 8699 * This value does not include pixel_multiplier.
241bfc38 8700 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8701 * agree once we know their relationship in the encoder's
8702 * get_config() function.
79e53945 8703 */
241bfc38 8704 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8705 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8706 &pipe_config->fdi_m_n);
79e53945
JB
8707}
8708
8709/** Returns the currently programmed mode of the given pipe. */
8710struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8711 struct drm_crtc *crtc)
8712{
548f245b 8713 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8714 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8715 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8716 struct drm_display_mode *mode;
f1f644dc 8717 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8718 int htot = I915_READ(HTOTAL(cpu_transcoder));
8719 int hsync = I915_READ(HSYNC(cpu_transcoder));
8720 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8721 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8722 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8723
8724 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8725 if (!mode)
8726 return NULL;
8727
f1f644dc
JB
8728 /*
8729 * Construct a pipe_config sufficient for getting the clock info
8730 * back out of crtc_clock_get.
8731 *
8732 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8733 * to use a real value here instead.
8734 */
293623f7 8735 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8736 pipe_config.pixel_multiplier = 1;
293623f7
VS
8737 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8738 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8739 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8740 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8741
773ae034 8742 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8743 mode->hdisplay = (htot & 0xffff) + 1;
8744 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8745 mode->hsync_start = (hsync & 0xffff) + 1;
8746 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8747 mode->vdisplay = (vtot & 0xffff) + 1;
8748 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8749 mode->vsync_start = (vsync & 0xffff) + 1;
8750 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8751
8752 drm_mode_set_name(mode);
79e53945
JB
8753
8754 return mode;
8755}
8756
cc36513c
DV
8757static void intel_increase_pllclock(struct drm_device *dev,
8758 enum pipe pipe)
652c393a 8759{
fbee40df 8760 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8761 int dpll_reg = DPLL(pipe);
8762 int dpll;
652c393a 8763
bad720ff 8764 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8765 return;
8766
8767 if (!dev_priv->lvds_downclock_avail)
8768 return;
8769
dbdc6479 8770 dpll = I915_READ(dpll_reg);
652c393a 8771 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8772 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8773
8ac5a6d5 8774 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8775
8776 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8777 I915_WRITE(dpll_reg, dpll);
9d0498a2 8778 intel_wait_for_vblank(dev, pipe);
dbdc6479 8779
652c393a
JB
8780 dpll = I915_READ(dpll_reg);
8781 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8782 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8783 }
652c393a
JB
8784}
8785
8786static void intel_decrease_pllclock(struct drm_crtc *crtc)
8787{
8788 struct drm_device *dev = crtc->dev;
fbee40df 8789 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8791
bad720ff 8792 if (HAS_PCH_SPLIT(dev))
652c393a
JB
8793 return;
8794
8795 if (!dev_priv->lvds_downclock_avail)
8796 return;
8797
8798 /*
8799 * Since this is called by a timer, we should never get here in
8800 * the manual case.
8801 */
8802 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8803 int pipe = intel_crtc->pipe;
8804 int dpll_reg = DPLL(pipe);
8805 int dpll;
f6e5b160 8806
44d98a61 8807 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8808
8ac5a6d5 8809 assert_panel_unlocked(dev_priv, pipe);
652c393a 8810
dc257cf1 8811 dpll = I915_READ(dpll_reg);
652c393a
JB
8812 dpll |= DISPLAY_RATE_SELECT_FPA1;
8813 I915_WRITE(dpll_reg, dpll);
9d0498a2 8814 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8815 dpll = I915_READ(dpll_reg);
8816 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8817 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8818 }
8819
8820}
8821
f047e395
CW
8822void intel_mark_busy(struct drm_device *dev)
8823{
c67a470b
PZ
8824 struct drm_i915_private *dev_priv = dev->dev_private;
8825
f62a0076
CW
8826 if (dev_priv->mm.busy)
8827 return;
8828
43694d69 8829 intel_runtime_pm_get(dev_priv);
c67a470b 8830 i915_update_gfx_val(dev_priv);
f62a0076 8831 dev_priv->mm.busy = true;
f047e395
CW
8832}
8833
8834void intel_mark_idle(struct drm_device *dev)
652c393a 8835{
c67a470b 8836 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8837 struct drm_crtc *crtc;
652c393a 8838
f62a0076
CW
8839 if (!dev_priv->mm.busy)
8840 return;
8841
8842 dev_priv->mm.busy = false;
8843
d330a953 8844 if (!i915.powersave)
bb4cdd53 8845 goto out;
652c393a 8846
70e1e0ec 8847 for_each_crtc(dev, crtc) {
f4510a27 8848 if (!crtc->primary->fb)
652c393a
JB
8849 continue;
8850
725a5b54 8851 intel_decrease_pllclock(crtc);
652c393a 8852 }
b29c19b6 8853
3d13ef2e 8854 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8855 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8856
8857out:
43694d69 8858 intel_runtime_pm_put(dev_priv);
652c393a
JB
8859}
8860
7c8f8a70 8861
f99d7069
DV
8862/**
8863 * intel_mark_fb_busy - mark given planes as busy
8864 * @dev: DRM device
8865 * @frontbuffer_bits: bits for the affected planes
8866 * @ring: optional ring for asynchronous commands
8867 *
8868 * This function gets called every time the screen contents change. It can be
8869 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8870 */
8871static void intel_mark_fb_busy(struct drm_device *dev,
8872 unsigned frontbuffer_bits,
8873 struct intel_engine_cs *ring)
652c393a 8874{
cc36513c 8875 enum pipe pipe;
652c393a 8876
d330a953 8877 if (!i915.powersave)
acb87dfb
CW
8878 return;
8879
cc36513c 8880 for_each_pipe(pipe) {
f99d7069 8881 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
8882 continue;
8883
cc36513c 8884 intel_increase_pllclock(dev, pipe);
c65355bb
CW
8885 if (ring && intel_fbc_enabled(dev))
8886 ring->fbc_dirty = true;
652c393a
JB
8887 }
8888}
8889
f99d7069
DV
8890/**
8891 * intel_fb_obj_invalidate - invalidate frontbuffer object
8892 * @obj: GEM object to invalidate
8893 * @ring: set for asynchronous rendering
8894 *
8895 * This function gets called every time rendering on the given object starts and
8896 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
8897 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
8898 * until the rendering completes or a flip on this frontbuffer plane is
8899 * scheduled.
8900 */
8901void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
8902 struct intel_engine_cs *ring)
8903{
8904 struct drm_device *dev = obj->base.dev;
8905 struct drm_i915_private *dev_priv = dev->dev_private;
8906
8907 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8908
8909 if (!obj->frontbuffer_bits)
8910 return;
8911
8912 if (ring) {
8913 mutex_lock(&dev_priv->fb_tracking.lock);
8914 dev_priv->fb_tracking.busy_bits
8915 |= obj->frontbuffer_bits;
8916 dev_priv->fb_tracking.flip_bits
8917 &= ~obj->frontbuffer_bits;
8918 mutex_unlock(&dev_priv->fb_tracking.lock);
8919 }
8920
8921 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
8922
8923 intel_edp_psr_exit(dev);
8924}
8925
8926/**
8927 * intel_frontbuffer_flush - flush frontbuffer
8928 * @dev: DRM device
8929 * @frontbuffer_bits: frontbuffer plane tracking bits
8930 *
8931 * This function gets called every time rendering on the given planes has
8932 * completed and frontbuffer caching can be started again. Flushes will get
8933 * delayed if they're blocked by some oustanding asynchronous rendering.
8934 *
8935 * Can be called without any locks held.
8936 */
8937void intel_frontbuffer_flush(struct drm_device *dev,
8938 unsigned frontbuffer_bits)
8939{
8940 struct drm_i915_private *dev_priv = dev->dev_private;
8941
8942 /* Delay flushing when rings are still busy.*/
8943 mutex_lock(&dev_priv->fb_tracking.lock);
8944 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
8945 mutex_unlock(&dev_priv->fb_tracking.lock);
8946
8947 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
8948
8949 intel_edp_psr_exit(dev);
8950}
8951
8952/**
8953 * intel_fb_obj_flush - flush frontbuffer object
8954 * @obj: GEM object to flush
8955 * @retire: set when retiring asynchronous rendering
8956 *
8957 * This function gets called every time rendering on the given object has
8958 * completed and frontbuffer caching can be started again. If @retire is true
8959 * then any delayed flushes will be unblocked.
8960 */
8961void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
8962 bool retire)
8963{
8964 struct drm_device *dev = obj->base.dev;
8965 struct drm_i915_private *dev_priv = dev->dev_private;
8966 unsigned frontbuffer_bits;
8967
8968 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
8969
8970 if (!obj->frontbuffer_bits)
8971 return;
8972
8973 frontbuffer_bits = obj->frontbuffer_bits;
8974
8975 if (retire) {
8976 mutex_lock(&dev_priv->fb_tracking.lock);
8977 /* Filter out new bits since rendering started. */
8978 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
8979
8980 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
8981 mutex_unlock(&dev_priv->fb_tracking.lock);
8982 }
8983
8984 intel_frontbuffer_flush(dev, frontbuffer_bits);
8985}
8986
8987/**
8988 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
8989 * @dev: DRM device
8990 * @frontbuffer_bits: frontbuffer plane tracking bits
8991 *
8992 * This function gets called after scheduling a flip on @obj. The actual
8993 * frontbuffer flushing will be delayed until completion is signalled with
8994 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
8995 * flush will be cancelled.
8996 *
8997 * Can be called without any locks held.
8998 */
8999void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9000 unsigned frontbuffer_bits)
9001{
9002 struct drm_i915_private *dev_priv = dev->dev_private;
9003
9004 mutex_lock(&dev_priv->fb_tracking.lock);
9005 dev_priv->fb_tracking.flip_bits
9006 |= frontbuffer_bits;
9007 mutex_unlock(&dev_priv->fb_tracking.lock);
9008}
9009
9010/**
9011 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9012 * @dev: DRM device
9013 * @frontbuffer_bits: frontbuffer plane tracking bits
9014 *
9015 * This function gets called after the flip has been latched and will complete
9016 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9017 *
9018 * Can be called without any locks held.
9019 */
9020void intel_frontbuffer_flip_complete(struct drm_device *dev,
9021 unsigned frontbuffer_bits)
9022{
9023 struct drm_i915_private *dev_priv = dev->dev_private;
9024
9025 mutex_lock(&dev_priv->fb_tracking.lock);
9026 /* Mask any cancelled flips. */
9027 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9028 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9029 mutex_unlock(&dev_priv->fb_tracking.lock);
9030
9031 intel_frontbuffer_flush(dev, frontbuffer_bits);
9032}
9033
79e53945
JB
9034static void intel_crtc_destroy(struct drm_crtc *crtc)
9035{
9036 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9037 struct drm_device *dev = crtc->dev;
9038 struct intel_unpin_work *work;
9039 unsigned long flags;
9040
9041 spin_lock_irqsave(&dev->event_lock, flags);
9042 work = intel_crtc->unpin_work;
9043 intel_crtc->unpin_work = NULL;
9044 spin_unlock_irqrestore(&dev->event_lock, flags);
9045
9046 if (work) {
9047 cancel_work_sync(&work->work);
9048 kfree(work);
9049 }
79e53945
JB
9050
9051 drm_crtc_cleanup(crtc);
67e77c5a 9052
79e53945
JB
9053 kfree(intel_crtc);
9054}
9055
6b95a207
KH
9056static void intel_unpin_work_fn(struct work_struct *__work)
9057{
9058 struct intel_unpin_work *work =
9059 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9060 struct drm_device *dev = work->crtc->dev;
f99d7069 9061 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9062
b4a98e57 9063 mutex_lock(&dev->struct_mutex);
1690e1eb 9064 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9065 drm_gem_object_unreference(&work->pending_flip_obj->base);
9066 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9067
b4a98e57
CW
9068 intel_update_fbc(dev);
9069 mutex_unlock(&dev->struct_mutex);
9070
f99d7069
DV
9071 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9072
b4a98e57
CW
9073 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9074 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9075
6b95a207
KH
9076 kfree(work);
9077}
9078
1afe3e9d 9079static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9080 struct drm_crtc *crtc)
6b95a207 9081{
fbee40df 9082 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9083 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9084 struct intel_unpin_work *work;
6b95a207
KH
9085 unsigned long flags;
9086
9087 /* Ignore early vblank irqs */
9088 if (intel_crtc == NULL)
9089 return;
9090
9091 spin_lock_irqsave(&dev->event_lock, flags);
9092 work = intel_crtc->unpin_work;
e7d841ca
CW
9093
9094 /* Ensure we don't miss a work->pending update ... */
9095 smp_rmb();
9096
9097 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9098 spin_unlock_irqrestore(&dev->event_lock, flags);
9099 return;
9100 }
9101
e7d841ca
CW
9102 /* and that the unpin work is consistent wrt ->pending. */
9103 smp_rmb();
9104
6b95a207 9105 intel_crtc->unpin_work = NULL;
6b95a207 9106
45a066eb
RC
9107 if (work->event)
9108 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9109
87b6b101 9110 drm_crtc_vblank_put(crtc);
0af7e4df 9111
6b95a207
KH
9112 spin_unlock_irqrestore(&dev->event_lock, flags);
9113
2c10d571 9114 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9115
9116 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9117
9118 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9119}
9120
1afe3e9d
JB
9121void intel_finish_page_flip(struct drm_device *dev, int pipe)
9122{
fbee40df 9123 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9124 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9125
49b14a5c 9126 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9127}
9128
9129void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9130{
fbee40df 9131 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9132 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9133
49b14a5c 9134 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9135}
9136
75f7f3ec
VS
9137/* Is 'a' after or equal to 'b'? */
9138static bool g4x_flip_count_after_eq(u32 a, u32 b)
9139{
9140 return !((a - b) & 0x80000000);
9141}
9142
9143static bool page_flip_finished(struct intel_crtc *crtc)
9144{
9145 struct drm_device *dev = crtc->base.dev;
9146 struct drm_i915_private *dev_priv = dev->dev_private;
9147
9148 /*
9149 * The relevant registers doen't exist on pre-ctg.
9150 * As the flip done interrupt doesn't trigger for mmio
9151 * flips on gmch platforms, a flip count check isn't
9152 * really needed there. But since ctg has the registers,
9153 * include it in the check anyway.
9154 */
9155 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9156 return true;
9157
9158 /*
9159 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9160 * used the same base address. In that case the mmio flip might
9161 * have completed, but the CS hasn't even executed the flip yet.
9162 *
9163 * A flip count check isn't enough as the CS might have updated
9164 * the base address just after start of vblank, but before we
9165 * managed to process the interrupt. This means we'd complete the
9166 * CS flip too soon.
9167 *
9168 * Combining both checks should get us a good enough result. It may
9169 * still happen that the CS flip has been executed, but has not
9170 * yet actually completed. But in case the base address is the same
9171 * anyway, we don't really care.
9172 */
9173 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9174 crtc->unpin_work->gtt_offset &&
9175 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9176 crtc->unpin_work->flip_count);
9177}
9178
6b95a207
KH
9179void intel_prepare_page_flip(struct drm_device *dev, int plane)
9180{
fbee40df 9181 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9182 struct intel_crtc *intel_crtc =
9183 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9184 unsigned long flags;
9185
e7d841ca
CW
9186 /* NB: An MMIO update of the plane base pointer will also
9187 * generate a page-flip completion irq, i.e. every modeset
9188 * is also accompanied by a spurious intel_prepare_page_flip().
9189 */
6b95a207 9190 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9191 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9192 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9193 spin_unlock_irqrestore(&dev->event_lock, flags);
9194}
9195
eba905b2 9196static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9197{
9198 /* Ensure that the work item is consistent when activating it ... */
9199 smp_wmb();
9200 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9201 /* and that it is marked active as soon as the irq could fire. */
9202 smp_wmb();
9203}
9204
8c9f3aaf
JB
9205static int intel_gen2_queue_flip(struct drm_device *dev,
9206 struct drm_crtc *crtc,
9207 struct drm_framebuffer *fb,
ed8d1975 9208 struct drm_i915_gem_object *obj,
a4872ba6 9209 struct intel_engine_cs *ring,
ed8d1975 9210 uint32_t flags)
8c9f3aaf 9211{
8c9f3aaf 9212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9213 u32 flip_mask;
9214 int ret;
9215
6d90c952 9216 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9217 if (ret)
4fa62c89 9218 return ret;
8c9f3aaf
JB
9219
9220 /* Can't queue multiple flips, so wait for the previous
9221 * one to finish before executing the next.
9222 */
9223 if (intel_crtc->plane)
9224 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9225 else
9226 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9227 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9228 intel_ring_emit(ring, MI_NOOP);
9229 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9230 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9231 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9232 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9233 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9234
9235 intel_mark_page_flip_active(intel_crtc);
09246732 9236 __intel_ring_advance(ring);
83d4092b 9237 return 0;
8c9f3aaf
JB
9238}
9239
9240static int intel_gen3_queue_flip(struct drm_device *dev,
9241 struct drm_crtc *crtc,
9242 struct drm_framebuffer *fb,
ed8d1975 9243 struct drm_i915_gem_object *obj,
a4872ba6 9244 struct intel_engine_cs *ring,
ed8d1975 9245 uint32_t flags)
8c9f3aaf 9246{
8c9f3aaf 9247 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9248 u32 flip_mask;
9249 int ret;
9250
6d90c952 9251 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9252 if (ret)
4fa62c89 9253 return ret;
8c9f3aaf
JB
9254
9255 if (intel_crtc->plane)
9256 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9257 else
9258 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9259 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9260 intel_ring_emit(ring, MI_NOOP);
9261 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9262 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9263 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9264 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9265 intel_ring_emit(ring, MI_NOOP);
9266
e7d841ca 9267 intel_mark_page_flip_active(intel_crtc);
09246732 9268 __intel_ring_advance(ring);
83d4092b 9269 return 0;
8c9f3aaf
JB
9270}
9271
9272static int intel_gen4_queue_flip(struct drm_device *dev,
9273 struct drm_crtc *crtc,
9274 struct drm_framebuffer *fb,
ed8d1975 9275 struct drm_i915_gem_object *obj,
a4872ba6 9276 struct intel_engine_cs *ring,
ed8d1975 9277 uint32_t flags)
8c9f3aaf
JB
9278{
9279 struct drm_i915_private *dev_priv = dev->dev_private;
9280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9281 uint32_t pf, pipesrc;
9282 int ret;
9283
6d90c952 9284 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9285 if (ret)
4fa62c89 9286 return ret;
8c9f3aaf
JB
9287
9288 /* i965+ uses the linear or tiled offsets from the
9289 * Display Registers (which do not change across a page-flip)
9290 * so we need only reprogram the base address.
9291 */
6d90c952
DV
9292 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9293 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9294 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9295 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9296 obj->tiling_mode);
8c9f3aaf
JB
9297
9298 /* XXX Enabling the panel-fitter across page-flip is so far
9299 * untested on non-native modes, so ignore it for now.
9300 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9301 */
9302 pf = 0;
9303 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9304 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9305
9306 intel_mark_page_flip_active(intel_crtc);
09246732 9307 __intel_ring_advance(ring);
83d4092b 9308 return 0;
8c9f3aaf
JB
9309}
9310
9311static int intel_gen6_queue_flip(struct drm_device *dev,
9312 struct drm_crtc *crtc,
9313 struct drm_framebuffer *fb,
ed8d1975 9314 struct drm_i915_gem_object *obj,
a4872ba6 9315 struct intel_engine_cs *ring,
ed8d1975 9316 uint32_t flags)
8c9f3aaf
JB
9317{
9318 struct drm_i915_private *dev_priv = dev->dev_private;
9319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9320 uint32_t pf, pipesrc;
9321 int ret;
9322
6d90c952 9323 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9324 if (ret)
4fa62c89 9325 return ret;
8c9f3aaf 9326
6d90c952
DV
9327 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9328 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9329 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9330 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9331
dc257cf1
DV
9332 /* Contrary to the suggestions in the documentation,
9333 * "Enable Panel Fitter" does not seem to be required when page
9334 * flipping with a non-native mode, and worse causes a normal
9335 * modeset to fail.
9336 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9337 */
9338 pf = 0;
8c9f3aaf 9339 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9340 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9341
9342 intel_mark_page_flip_active(intel_crtc);
09246732 9343 __intel_ring_advance(ring);
83d4092b 9344 return 0;
8c9f3aaf
JB
9345}
9346
7c9017e5
JB
9347static int intel_gen7_queue_flip(struct drm_device *dev,
9348 struct drm_crtc *crtc,
9349 struct drm_framebuffer *fb,
ed8d1975 9350 struct drm_i915_gem_object *obj,
a4872ba6 9351 struct intel_engine_cs *ring,
ed8d1975 9352 uint32_t flags)
7c9017e5 9353{
7c9017e5 9354 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9355 uint32_t plane_bit = 0;
ffe74d75
CW
9356 int len, ret;
9357
eba905b2 9358 switch (intel_crtc->plane) {
cb05d8de
DV
9359 case PLANE_A:
9360 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9361 break;
9362 case PLANE_B:
9363 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9364 break;
9365 case PLANE_C:
9366 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9367 break;
9368 default:
9369 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9370 return -ENODEV;
cb05d8de
DV
9371 }
9372
ffe74d75 9373 len = 4;
f476828a 9374 if (ring->id == RCS) {
ffe74d75 9375 len += 6;
f476828a
DL
9376 /*
9377 * On Gen 8, SRM is now taking an extra dword to accommodate
9378 * 48bits addresses, and we need a NOOP for the batch size to
9379 * stay even.
9380 */
9381 if (IS_GEN8(dev))
9382 len += 2;
9383 }
ffe74d75 9384
f66fab8e
VS
9385 /*
9386 * BSpec MI_DISPLAY_FLIP for IVB:
9387 * "The full packet must be contained within the same cache line."
9388 *
9389 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9390 * cacheline, if we ever start emitting more commands before
9391 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9392 * then do the cacheline alignment, and finally emit the
9393 * MI_DISPLAY_FLIP.
9394 */
9395 ret = intel_ring_cacheline_align(ring);
9396 if (ret)
4fa62c89 9397 return ret;
f66fab8e 9398
ffe74d75 9399 ret = intel_ring_begin(ring, len);
7c9017e5 9400 if (ret)
4fa62c89 9401 return ret;
7c9017e5 9402
ffe74d75
CW
9403 /* Unmask the flip-done completion message. Note that the bspec says that
9404 * we should do this for both the BCS and RCS, and that we must not unmask
9405 * more than one flip event at any time (or ensure that one flip message
9406 * can be sent by waiting for flip-done prior to queueing new flips).
9407 * Experimentation says that BCS works despite DERRMR masking all
9408 * flip-done completion events and that unmasking all planes at once
9409 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9410 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9411 */
9412 if (ring->id == RCS) {
9413 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9414 intel_ring_emit(ring, DERRMR);
9415 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9416 DERRMR_PIPEB_PRI_FLIP_DONE |
9417 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9418 if (IS_GEN8(dev))
9419 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9420 MI_SRM_LRM_GLOBAL_GTT);
9421 else
9422 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9423 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9424 intel_ring_emit(ring, DERRMR);
9425 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9426 if (IS_GEN8(dev)) {
9427 intel_ring_emit(ring, 0);
9428 intel_ring_emit(ring, MI_NOOP);
9429 }
ffe74d75
CW
9430 }
9431
cb05d8de 9432 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9433 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9434 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9435 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9436
9437 intel_mark_page_flip_active(intel_crtc);
09246732 9438 __intel_ring_advance(ring);
83d4092b 9439 return 0;
7c9017e5
JB
9440}
9441
84c33a64
SG
9442static bool use_mmio_flip(struct intel_engine_cs *ring,
9443 struct drm_i915_gem_object *obj)
9444{
9445 /*
9446 * This is not being used for older platforms, because
9447 * non-availability of flip done interrupt forces us to use
9448 * CS flips. Older platforms derive flip done using some clever
9449 * tricks involving the flip_pending status bits and vblank irqs.
9450 * So using MMIO flips there would disrupt this mechanism.
9451 */
9452
9453 if (INTEL_INFO(ring->dev)->gen < 5)
9454 return false;
9455
9456 if (i915.use_mmio_flip < 0)
9457 return false;
9458 else if (i915.use_mmio_flip > 0)
9459 return true;
9460 else
9461 return ring != obj->ring;
9462}
9463
9464static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9465{
9466 struct drm_device *dev = intel_crtc->base.dev;
9467 struct drm_i915_private *dev_priv = dev->dev_private;
9468 struct intel_framebuffer *intel_fb =
9469 to_intel_framebuffer(intel_crtc->base.primary->fb);
9470 struct drm_i915_gem_object *obj = intel_fb->obj;
9471 u32 dspcntr;
9472 u32 reg;
9473
9474 intel_mark_page_flip_active(intel_crtc);
9475
9476 reg = DSPCNTR(intel_crtc->plane);
9477 dspcntr = I915_READ(reg);
9478
9479 if (INTEL_INFO(dev)->gen >= 4) {
9480 if (obj->tiling_mode != I915_TILING_NONE)
9481 dspcntr |= DISPPLANE_TILED;
9482 else
9483 dspcntr &= ~DISPPLANE_TILED;
9484 }
9485 I915_WRITE(reg, dspcntr);
9486
9487 I915_WRITE(DSPSURF(intel_crtc->plane),
9488 intel_crtc->unpin_work->gtt_offset);
9489 POSTING_READ(DSPSURF(intel_crtc->plane));
9490}
9491
9492static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9493{
9494 struct intel_engine_cs *ring;
9495 int ret;
9496
9497 lockdep_assert_held(&obj->base.dev->struct_mutex);
9498
9499 if (!obj->last_write_seqno)
9500 return 0;
9501
9502 ring = obj->ring;
9503
9504 if (i915_seqno_passed(ring->get_seqno(ring, true),
9505 obj->last_write_seqno))
9506 return 0;
9507
9508 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9509 if (ret)
9510 return ret;
9511
9512 if (WARN_ON(!ring->irq_get(ring)))
9513 return 0;
9514
9515 return 1;
9516}
9517
9518void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9519{
9520 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9521 struct intel_crtc *intel_crtc;
9522 unsigned long irq_flags;
9523 u32 seqno;
9524
9525 seqno = ring->get_seqno(ring, false);
9526
9527 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9528 for_each_intel_crtc(ring->dev, intel_crtc) {
9529 struct intel_mmio_flip *mmio_flip;
9530
9531 mmio_flip = &intel_crtc->mmio_flip;
9532 if (mmio_flip->seqno == 0)
9533 continue;
9534
9535 if (ring->id != mmio_flip->ring_id)
9536 continue;
9537
9538 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9539 intel_do_mmio_flip(intel_crtc);
9540 mmio_flip->seqno = 0;
9541 ring->irq_put(ring);
9542 }
9543 }
9544 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9545}
9546
9547static int intel_queue_mmio_flip(struct drm_device *dev,
9548 struct drm_crtc *crtc,
9549 struct drm_framebuffer *fb,
9550 struct drm_i915_gem_object *obj,
9551 struct intel_engine_cs *ring,
9552 uint32_t flags)
9553{
9554 struct drm_i915_private *dev_priv = dev->dev_private;
9555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9556 unsigned long irq_flags;
9557 int ret;
9558
9559 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9560 return -EBUSY;
9561
9562 ret = intel_postpone_flip(obj);
9563 if (ret < 0)
9564 return ret;
9565 if (ret == 0) {
9566 intel_do_mmio_flip(intel_crtc);
9567 return 0;
9568 }
9569
9570 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9571 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9572 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9573 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9574
9575 /*
9576 * Double check to catch cases where irq fired before
9577 * mmio flip data was ready
9578 */
9579 intel_notify_mmio_flip(obj->ring);
9580 return 0;
9581}
9582
8c9f3aaf
JB
9583static int intel_default_queue_flip(struct drm_device *dev,
9584 struct drm_crtc *crtc,
9585 struct drm_framebuffer *fb,
ed8d1975 9586 struct drm_i915_gem_object *obj,
a4872ba6 9587 struct intel_engine_cs *ring,
ed8d1975 9588 uint32_t flags)
8c9f3aaf
JB
9589{
9590 return -ENODEV;
9591}
9592
6b95a207
KH
9593static int intel_crtc_page_flip(struct drm_crtc *crtc,
9594 struct drm_framebuffer *fb,
ed8d1975
KP
9595 struct drm_pending_vblank_event *event,
9596 uint32_t page_flip_flags)
6b95a207
KH
9597{
9598 struct drm_device *dev = crtc->dev;
9599 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9600 struct drm_framebuffer *old_fb = crtc->primary->fb;
4a35f83b 9601 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
6b95a207 9602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9603 enum pipe pipe = intel_crtc->pipe;
6b95a207 9604 struct intel_unpin_work *work;
a4872ba6 9605 struct intel_engine_cs *ring;
8c9f3aaf 9606 unsigned long flags;
52e68630 9607 int ret;
6b95a207 9608
e6a595d2 9609 /* Can't change pixel format via MI display flips. */
f4510a27 9610 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9611 return -EINVAL;
9612
9613 /*
9614 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9615 * Note that pitch changes could also affect these register.
9616 */
9617 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9618 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9619 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9620 return -EINVAL;
9621
f900db47
CW
9622 if (i915_terminally_wedged(&dev_priv->gpu_error))
9623 goto out_hang;
9624
b14c5679 9625 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9626 if (work == NULL)
9627 return -ENOMEM;
9628
6b95a207 9629 work->event = event;
b4a98e57 9630 work->crtc = crtc;
4a35f83b 9631 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
6b95a207
KH
9632 INIT_WORK(&work->work, intel_unpin_work_fn);
9633
87b6b101 9634 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9635 if (ret)
9636 goto free_work;
9637
6b95a207
KH
9638 /* We borrow the event spin lock for protecting unpin_work */
9639 spin_lock_irqsave(&dev->event_lock, flags);
9640 if (intel_crtc->unpin_work) {
9641 spin_unlock_irqrestore(&dev->event_lock, flags);
9642 kfree(work);
87b6b101 9643 drm_crtc_vblank_put(crtc);
468f0b44
CW
9644
9645 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9646 return -EBUSY;
9647 }
9648 intel_crtc->unpin_work = work;
9649 spin_unlock_irqrestore(&dev->event_lock, flags);
9650
b4a98e57
CW
9651 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9652 flush_workqueue(dev_priv->wq);
9653
79158103
CW
9654 ret = i915_mutex_lock_interruptible(dev);
9655 if (ret)
9656 goto cleanup;
6b95a207 9657
75dfca80 9658 /* Reference the objects for the scheduled work. */
05394f39
CW
9659 drm_gem_object_reference(&work->old_fb_obj->base);
9660 drm_gem_object_reference(&obj->base);
6b95a207 9661
f4510a27 9662 crtc->primary->fb = fb;
96b099fd 9663
e1f99ce6 9664 work->pending_flip_obj = obj;
e1f99ce6 9665
4e5359cd
SF
9666 work->enable_stall_check = true;
9667
b4a98e57 9668 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9669 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9670
75f7f3ec 9671 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9672 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9673
4fa62c89
VS
9674 if (IS_VALLEYVIEW(dev)) {
9675 ring = &dev_priv->ring[BCS];
9676 } else if (INTEL_INFO(dev)->gen >= 7) {
9677 ring = obj->ring;
9678 if (ring == NULL || ring->id != RCS)
9679 ring = &dev_priv->ring[BCS];
9680 } else {
9681 ring = &dev_priv->ring[RCS];
9682 }
9683
9684 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9685 if (ret)
9686 goto cleanup_pending;
6b95a207 9687
4fa62c89
VS
9688 work->gtt_offset =
9689 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9690
84c33a64
SG
9691 if (use_mmio_flip(ring, obj))
9692 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9693 page_flip_flags);
9694 else
9695 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9696 page_flip_flags);
4fa62c89
VS
9697 if (ret)
9698 goto cleanup_unpin;
9699
a071fa00
DV
9700 i915_gem_track_fb(work->old_fb_obj, obj,
9701 INTEL_FRONTBUFFER_PRIMARY(pipe));
9702
7782de3b 9703 intel_disable_fbc(dev);
f99d7069 9704 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9705 mutex_unlock(&dev->struct_mutex);
9706
e5510fac
JB
9707 trace_i915_flip_request(intel_crtc->plane, obj);
9708
6b95a207 9709 return 0;
96b099fd 9710
4fa62c89
VS
9711cleanup_unpin:
9712 intel_unpin_fb_obj(obj);
8c9f3aaf 9713cleanup_pending:
b4a98e57 9714 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9715 crtc->primary->fb = old_fb;
05394f39
CW
9716 drm_gem_object_unreference(&work->old_fb_obj->base);
9717 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9718 mutex_unlock(&dev->struct_mutex);
9719
79158103 9720cleanup:
96b099fd
CW
9721 spin_lock_irqsave(&dev->event_lock, flags);
9722 intel_crtc->unpin_work = NULL;
9723 spin_unlock_irqrestore(&dev->event_lock, flags);
9724
87b6b101 9725 drm_crtc_vblank_put(crtc);
7317c75e 9726free_work:
96b099fd
CW
9727 kfree(work);
9728
f900db47
CW
9729 if (ret == -EIO) {
9730out_hang:
9731 intel_crtc_wait_for_pending_flips(crtc);
9732 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9733 if (ret == 0 && event)
a071fa00 9734 drm_send_vblank_event(dev, pipe, event);
f900db47 9735 }
96b099fd 9736 return ret;
6b95a207
KH
9737}
9738
f6e5b160 9739static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9740 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9741 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9742};
9743
9a935856
DV
9744/**
9745 * intel_modeset_update_staged_output_state
9746 *
9747 * Updates the staged output configuration state, e.g. after we've read out the
9748 * current hw state.
9749 */
9750static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9751{
7668851f 9752 struct intel_crtc *crtc;
9a935856
DV
9753 struct intel_encoder *encoder;
9754 struct intel_connector *connector;
f6e5b160 9755
9a935856
DV
9756 list_for_each_entry(connector, &dev->mode_config.connector_list,
9757 base.head) {
9758 connector->new_encoder =
9759 to_intel_encoder(connector->base.encoder);
9760 }
f6e5b160 9761
9a935856
DV
9762 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9763 base.head) {
9764 encoder->new_crtc =
9765 to_intel_crtc(encoder->base.crtc);
9766 }
7668851f 9767
d3fcc808 9768 for_each_intel_crtc(dev, crtc) {
7668851f 9769 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9770
9771 if (crtc->new_enabled)
9772 crtc->new_config = &crtc->config;
9773 else
9774 crtc->new_config = NULL;
7668851f 9775 }
f6e5b160
CW
9776}
9777
9a935856
DV
9778/**
9779 * intel_modeset_commit_output_state
9780 *
9781 * This function copies the stage display pipe configuration to the real one.
9782 */
9783static void intel_modeset_commit_output_state(struct drm_device *dev)
9784{
7668851f 9785 struct intel_crtc *crtc;
9a935856
DV
9786 struct intel_encoder *encoder;
9787 struct intel_connector *connector;
f6e5b160 9788
9a935856
DV
9789 list_for_each_entry(connector, &dev->mode_config.connector_list,
9790 base.head) {
9791 connector->base.encoder = &connector->new_encoder->base;
9792 }
f6e5b160 9793
9a935856
DV
9794 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9795 base.head) {
9796 encoder->base.crtc = &encoder->new_crtc->base;
9797 }
7668851f 9798
d3fcc808 9799 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9800 crtc->base.enabled = crtc->new_enabled;
9801 }
9a935856
DV
9802}
9803
050f7aeb 9804static void
eba905b2 9805connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9806 struct intel_crtc_config *pipe_config)
9807{
9808 int bpp = pipe_config->pipe_bpp;
9809
9810 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9811 connector->base.base.id,
c23cc417 9812 connector->base.name);
050f7aeb
DV
9813
9814 /* Don't use an invalid EDID bpc value */
9815 if (connector->base.display_info.bpc &&
9816 connector->base.display_info.bpc * 3 < bpp) {
9817 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9818 bpp, connector->base.display_info.bpc*3);
9819 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9820 }
9821
9822 /* Clamp bpp to 8 on screens without EDID 1.4 */
9823 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9824 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9825 bpp);
9826 pipe_config->pipe_bpp = 24;
9827 }
9828}
9829
4e53c2e0 9830static int
050f7aeb
DV
9831compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9832 struct drm_framebuffer *fb,
9833 struct intel_crtc_config *pipe_config)
4e53c2e0 9834{
050f7aeb
DV
9835 struct drm_device *dev = crtc->base.dev;
9836 struct intel_connector *connector;
4e53c2e0
DV
9837 int bpp;
9838
d42264b1
DV
9839 switch (fb->pixel_format) {
9840 case DRM_FORMAT_C8:
4e53c2e0
DV
9841 bpp = 8*3; /* since we go through a colormap */
9842 break;
d42264b1
DV
9843 case DRM_FORMAT_XRGB1555:
9844 case DRM_FORMAT_ARGB1555:
9845 /* checked in intel_framebuffer_init already */
9846 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9847 return -EINVAL;
9848 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9849 bpp = 6*3; /* min is 18bpp */
9850 break;
d42264b1
DV
9851 case DRM_FORMAT_XBGR8888:
9852 case DRM_FORMAT_ABGR8888:
9853 /* checked in intel_framebuffer_init already */
9854 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9855 return -EINVAL;
9856 case DRM_FORMAT_XRGB8888:
9857 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9858 bpp = 8*3;
9859 break;
d42264b1
DV
9860 case DRM_FORMAT_XRGB2101010:
9861 case DRM_FORMAT_ARGB2101010:
9862 case DRM_FORMAT_XBGR2101010:
9863 case DRM_FORMAT_ABGR2101010:
9864 /* checked in intel_framebuffer_init already */
9865 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 9866 return -EINVAL;
4e53c2e0
DV
9867 bpp = 10*3;
9868 break;
baba133a 9869 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
9870 default:
9871 DRM_DEBUG_KMS("unsupported depth\n");
9872 return -EINVAL;
9873 }
9874
4e53c2e0
DV
9875 pipe_config->pipe_bpp = bpp;
9876
9877 /* Clamp display bpp to EDID value */
9878 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 9879 base.head) {
1b829e05
DV
9880 if (!connector->new_encoder ||
9881 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
9882 continue;
9883
050f7aeb 9884 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
9885 }
9886
9887 return bpp;
9888}
9889
644db711
DV
9890static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
9891{
9892 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
9893 "type: 0x%x flags: 0x%x\n",
1342830c 9894 mode->crtc_clock,
644db711
DV
9895 mode->crtc_hdisplay, mode->crtc_hsync_start,
9896 mode->crtc_hsync_end, mode->crtc_htotal,
9897 mode->crtc_vdisplay, mode->crtc_vsync_start,
9898 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
9899}
9900
c0b03411
DV
9901static void intel_dump_pipe_config(struct intel_crtc *crtc,
9902 struct intel_crtc_config *pipe_config,
9903 const char *context)
9904{
9905 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
9906 context, pipe_name(crtc->pipe));
9907
9908 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
9909 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
9910 pipe_config->pipe_bpp, pipe_config->dither);
9911 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9912 pipe_config->has_pch_encoder,
9913 pipe_config->fdi_lanes,
9914 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
9915 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
9916 pipe_config->fdi_m_n.tu);
eb14cb74
VS
9917 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
9918 pipe_config->has_dp_encoder,
9919 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
9920 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
9921 pipe_config->dp_m_n.tu);
c0b03411
DV
9922 DRM_DEBUG_KMS("requested mode:\n");
9923 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
9924 DRM_DEBUG_KMS("adjusted mode:\n");
9925 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 9926 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 9927 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
9928 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
9929 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
9930 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
9931 pipe_config->gmch_pfit.control,
9932 pipe_config->gmch_pfit.pgm_ratios,
9933 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 9934 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 9935 pipe_config->pch_pfit.pos,
fd4daa9c
CW
9936 pipe_config->pch_pfit.size,
9937 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 9938 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 9939 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
9940}
9941
bc079e8b
VS
9942static bool encoders_cloneable(const struct intel_encoder *a,
9943 const struct intel_encoder *b)
accfc0c5 9944{
bc079e8b
VS
9945 /* masks could be asymmetric, so check both ways */
9946 return a == b || (a->cloneable & (1 << b->type) &&
9947 b->cloneable & (1 << a->type));
9948}
9949
9950static bool check_single_encoder_cloning(struct intel_crtc *crtc,
9951 struct intel_encoder *encoder)
9952{
9953 struct drm_device *dev = crtc->base.dev;
9954 struct intel_encoder *source_encoder;
9955
9956 list_for_each_entry(source_encoder,
9957 &dev->mode_config.encoder_list, base.head) {
9958 if (source_encoder->new_crtc != crtc)
9959 continue;
9960
9961 if (!encoders_cloneable(encoder, source_encoder))
9962 return false;
9963 }
9964
9965 return true;
9966}
9967
9968static bool check_encoder_cloning(struct intel_crtc *crtc)
9969{
9970 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
9971 struct intel_encoder *encoder;
9972
bc079e8b
VS
9973 list_for_each_entry(encoder,
9974 &dev->mode_config.encoder_list, base.head) {
9975 if (encoder->new_crtc != crtc)
accfc0c5
DV
9976 continue;
9977
bc079e8b
VS
9978 if (!check_single_encoder_cloning(crtc, encoder))
9979 return false;
accfc0c5
DV
9980 }
9981
bc079e8b 9982 return true;
accfc0c5
DV
9983}
9984
b8cecdf5
DV
9985static struct intel_crtc_config *
9986intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 9987 struct drm_framebuffer *fb,
b8cecdf5 9988 struct drm_display_mode *mode)
ee7b9f93 9989{
7758a113 9990 struct drm_device *dev = crtc->dev;
7758a113 9991 struct intel_encoder *encoder;
b8cecdf5 9992 struct intel_crtc_config *pipe_config;
e29c22c0
DV
9993 int plane_bpp, ret = -EINVAL;
9994 bool retry = true;
ee7b9f93 9995
bc079e8b 9996 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
9997 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
9998 return ERR_PTR(-EINVAL);
9999 }
10000
b8cecdf5
DV
10001 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10002 if (!pipe_config)
7758a113
DV
10003 return ERR_PTR(-ENOMEM);
10004
b8cecdf5
DV
10005 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10006 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10007
e143a21c
DV
10008 pipe_config->cpu_transcoder =
10009 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10010 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10011
2960bc9c
ID
10012 /*
10013 * Sanitize sync polarity flags based on requested ones. If neither
10014 * positive or negative polarity is requested, treat this as meaning
10015 * negative polarity.
10016 */
10017 if (!(pipe_config->adjusted_mode.flags &
10018 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10019 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10020
10021 if (!(pipe_config->adjusted_mode.flags &
10022 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10023 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10024
050f7aeb
DV
10025 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10026 * plane pixel format and any sink constraints into account. Returns the
10027 * source plane bpp so that dithering can be selected on mismatches
10028 * after encoders and crtc also have had their say. */
10029 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10030 fb, pipe_config);
4e53c2e0
DV
10031 if (plane_bpp < 0)
10032 goto fail;
10033
e41a56be
VS
10034 /*
10035 * Determine the real pipe dimensions. Note that stereo modes can
10036 * increase the actual pipe size due to the frame doubling and
10037 * insertion of additional space for blanks between the frame. This
10038 * is stored in the crtc timings. We use the requested mode to do this
10039 * computation to clearly distinguish it from the adjusted mode, which
10040 * can be changed by the connectors in the below retry loop.
10041 */
10042 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10043 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10044 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10045
e29c22c0 10046encoder_retry:
ef1b460d 10047 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10048 pipe_config->port_clock = 0;
ef1b460d 10049 pipe_config->pixel_multiplier = 1;
ff9a6750 10050
135c81b8 10051 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10052 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10053
7758a113
DV
10054 /* Pass our mode to the connectors and the CRTC to give them a chance to
10055 * adjust it according to limitations or connector properties, and also
10056 * a chance to reject the mode entirely.
47f1c6c9 10057 */
7758a113
DV
10058 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10059 base.head) {
47f1c6c9 10060
7758a113
DV
10061 if (&encoder->new_crtc->base != crtc)
10062 continue;
7ae89233 10063
efea6e8e
DV
10064 if (!(encoder->compute_config(encoder, pipe_config))) {
10065 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10066 goto fail;
10067 }
ee7b9f93 10068 }
47f1c6c9 10069
ff9a6750
DV
10070 /* Set default port clock if not overwritten by the encoder. Needs to be
10071 * done afterwards in case the encoder adjusts the mode. */
10072 if (!pipe_config->port_clock)
241bfc38
DL
10073 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10074 * pipe_config->pixel_multiplier;
ff9a6750 10075
a43f6e0f 10076 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10077 if (ret < 0) {
7758a113
DV
10078 DRM_DEBUG_KMS("CRTC fixup failed\n");
10079 goto fail;
ee7b9f93 10080 }
e29c22c0
DV
10081
10082 if (ret == RETRY) {
10083 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10084 ret = -EINVAL;
10085 goto fail;
10086 }
10087
10088 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10089 retry = false;
10090 goto encoder_retry;
10091 }
10092
4e53c2e0
DV
10093 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10094 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10095 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10096
b8cecdf5 10097 return pipe_config;
7758a113 10098fail:
b8cecdf5 10099 kfree(pipe_config);
e29c22c0 10100 return ERR_PTR(ret);
ee7b9f93 10101}
47f1c6c9 10102
e2e1ed41
DV
10103/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10104 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10105static void
10106intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10107 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10108{
10109 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10110 struct drm_device *dev = crtc->dev;
10111 struct intel_encoder *encoder;
10112 struct intel_connector *connector;
10113 struct drm_crtc *tmp_crtc;
79e53945 10114
e2e1ed41 10115 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10116
e2e1ed41
DV
10117 /* Check which crtcs have changed outputs connected to them, these need
10118 * to be part of the prepare_pipes mask. We don't (yet) support global
10119 * modeset across multiple crtcs, so modeset_pipes will only have one
10120 * bit set at most. */
10121 list_for_each_entry(connector, &dev->mode_config.connector_list,
10122 base.head) {
10123 if (connector->base.encoder == &connector->new_encoder->base)
10124 continue;
79e53945 10125
e2e1ed41
DV
10126 if (connector->base.encoder) {
10127 tmp_crtc = connector->base.encoder->crtc;
10128
10129 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10130 }
10131
10132 if (connector->new_encoder)
10133 *prepare_pipes |=
10134 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10135 }
10136
e2e1ed41
DV
10137 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10138 base.head) {
10139 if (encoder->base.crtc == &encoder->new_crtc->base)
10140 continue;
10141
10142 if (encoder->base.crtc) {
10143 tmp_crtc = encoder->base.crtc;
10144
10145 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10146 }
10147
10148 if (encoder->new_crtc)
10149 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10150 }
10151
7668851f 10152 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10153 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10154 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10155 continue;
7e7d76c3 10156
7668851f 10157 if (!intel_crtc->new_enabled)
e2e1ed41 10158 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10159 else
10160 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10161 }
10162
e2e1ed41
DV
10163
10164 /* set_mode is also used to update properties on life display pipes. */
10165 intel_crtc = to_intel_crtc(crtc);
7668851f 10166 if (intel_crtc->new_enabled)
e2e1ed41
DV
10167 *prepare_pipes |= 1 << intel_crtc->pipe;
10168
b6c5164d
DV
10169 /*
10170 * For simplicity do a full modeset on any pipe where the output routing
10171 * changed. We could be more clever, but that would require us to be
10172 * more careful with calling the relevant encoder->mode_set functions.
10173 */
e2e1ed41
DV
10174 if (*prepare_pipes)
10175 *modeset_pipes = *prepare_pipes;
10176
10177 /* ... and mask these out. */
10178 *modeset_pipes &= ~(*disable_pipes);
10179 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10180
10181 /*
10182 * HACK: We don't (yet) fully support global modesets. intel_set_config
10183 * obies this rule, but the modeset restore mode of
10184 * intel_modeset_setup_hw_state does not.
10185 */
10186 *modeset_pipes &= 1 << intel_crtc->pipe;
10187 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10188
10189 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10190 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10191}
79e53945 10192
ea9d758d 10193static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10194{
ea9d758d 10195 struct drm_encoder *encoder;
f6e5b160 10196 struct drm_device *dev = crtc->dev;
f6e5b160 10197
ea9d758d
DV
10198 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10199 if (encoder->crtc == crtc)
10200 return true;
10201
10202 return false;
10203}
10204
10205static void
10206intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10207{
10208 struct intel_encoder *intel_encoder;
10209 struct intel_crtc *intel_crtc;
10210 struct drm_connector *connector;
10211
10212 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
10213 base.head) {
10214 if (!intel_encoder->base.crtc)
10215 continue;
10216
10217 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10218
10219 if (prepare_pipes & (1 << intel_crtc->pipe))
10220 intel_encoder->connectors_active = false;
10221 }
10222
10223 intel_modeset_commit_output_state(dev);
10224
7668851f 10225 /* Double check state. */
d3fcc808 10226 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10227 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10228 WARN_ON(intel_crtc->new_config &&
10229 intel_crtc->new_config != &intel_crtc->config);
10230 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10231 }
10232
10233 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10234 if (!connector->encoder || !connector->encoder->crtc)
10235 continue;
10236
10237 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10238
10239 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10240 struct drm_property *dpms_property =
10241 dev->mode_config.dpms_property;
10242
ea9d758d 10243 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10244 drm_object_property_set_value(&connector->base,
68d34720
DV
10245 dpms_property,
10246 DRM_MODE_DPMS_ON);
ea9d758d
DV
10247
10248 intel_encoder = to_intel_encoder(connector->encoder);
10249 intel_encoder->connectors_active = true;
10250 }
10251 }
10252
10253}
10254
3bd26263 10255static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10256{
3bd26263 10257 int diff;
f1f644dc
JB
10258
10259 if (clock1 == clock2)
10260 return true;
10261
10262 if (!clock1 || !clock2)
10263 return false;
10264
10265 diff = abs(clock1 - clock2);
10266
10267 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10268 return true;
10269
10270 return false;
10271}
10272
25c5b266
DV
10273#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10274 list_for_each_entry((intel_crtc), \
10275 &(dev)->mode_config.crtc_list, \
10276 base.head) \
0973f18f 10277 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10278
0e8ffe1b 10279static bool
2fa2fe9a
DV
10280intel_pipe_config_compare(struct drm_device *dev,
10281 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10282 struct intel_crtc_config *pipe_config)
10283{
66e985c0
DV
10284#define PIPE_CONF_CHECK_X(name) \
10285 if (current_config->name != pipe_config->name) { \
10286 DRM_ERROR("mismatch in " #name " " \
10287 "(expected 0x%08x, found 0x%08x)\n", \
10288 current_config->name, \
10289 pipe_config->name); \
10290 return false; \
10291 }
10292
08a24034
DV
10293#define PIPE_CONF_CHECK_I(name) \
10294 if (current_config->name != pipe_config->name) { \
10295 DRM_ERROR("mismatch in " #name " " \
10296 "(expected %i, found %i)\n", \
10297 current_config->name, \
10298 pipe_config->name); \
10299 return false; \
88adfff1
DV
10300 }
10301
1bd1bd80
DV
10302#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10303 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10304 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10305 "(expected %i, found %i)\n", \
10306 current_config->name & (mask), \
10307 pipe_config->name & (mask)); \
10308 return false; \
10309 }
10310
5e550656
VS
10311#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10312 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10313 DRM_ERROR("mismatch in " #name " " \
10314 "(expected %i, found %i)\n", \
10315 current_config->name, \
10316 pipe_config->name); \
10317 return false; \
10318 }
10319
bb760063
DV
10320#define PIPE_CONF_QUIRK(quirk) \
10321 ((current_config->quirks | pipe_config->quirks) & (quirk))
10322
eccb140b
DV
10323 PIPE_CONF_CHECK_I(cpu_transcoder);
10324
08a24034
DV
10325 PIPE_CONF_CHECK_I(has_pch_encoder);
10326 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10327 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10328 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10329 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10330 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10331 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10332
eb14cb74
VS
10333 PIPE_CONF_CHECK_I(has_dp_encoder);
10334 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10335 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10336 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10337 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10338 PIPE_CONF_CHECK_I(dp_m_n.tu);
10339
1bd1bd80
DV
10340 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10341 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10342 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10343 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10344 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10345 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10346
10347 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10348 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10349 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10350 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10351 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10352 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10353
c93f54cf 10354 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10355 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10356 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10357 IS_VALLEYVIEW(dev))
10358 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10359
9ed109a7
DV
10360 PIPE_CONF_CHECK_I(has_audio);
10361
1bd1bd80
DV
10362 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10363 DRM_MODE_FLAG_INTERLACE);
10364
bb760063
DV
10365 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10366 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10367 DRM_MODE_FLAG_PHSYNC);
10368 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10369 DRM_MODE_FLAG_NHSYNC);
10370 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10371 DRM_MODE_FLAG_PVSYNC);
10372 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10373 DRM_MODE_FLAG_NVSYNC);
10374 }
045ac3b5 10375
37327abd
VS
10376 PIPE_CONF_CHECK_I(pipe_src_w);
10377 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10378
9953599b
DV
10379 /*
10380 * FIXME: BIOS likes to set up a cloned config with lvds+external
10381 * screen. Since we don't yet re-compute the pipe config when moving
10382 * just the lvds port away to another pipe the sw tracking won't match.
10383 *
10384 * Proper atomic modesets with recomputed global state will fix this.
10385 * Until then just don't check gmch state for inherited modes.
10386 */
10387 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10388 PIPE_CONF_CHECK_I(gmch_pfit.control);
10389 /* pfit ratios are autocomputed by the hw on gen4+ */
10390 if (INTEL_INFO(dev)->gen < 4)
10391 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10392 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10393 }
10394
fd4daa9c
CW
10395 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10396 if (current_config->pch_pfit.enabled) {
10397 PIPE_CONF_CHECK_I(pch_pfit.pos);
10398 PIPE_CONF_CHECK_I(pch_pfit.size);
10399 }
2fa2fe9a 10400
e59150dc
JB
10401 /* BDW+ don't expose a synchronous way to read the state */
10402 if (IS_HASWELL(dev))
10403 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10404
282740f7
VS
10405 PIPE_CONF_CHECK_I(double_wide);
10406
c0d43d62 10407 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10408 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10409 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10410 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10411 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
c0d43d62 10412
42571aef
VS
10413 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10414 PIPE_CONF_CHECK_I(pipe_bpp);
10415
a9a7e98a
JB
10416 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10417 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10418
66e985c0 10419#undef PIPE_CONF_CHECK_X
08a24034 10420#undef PIPE_CONF_CHECK_I
1bd1bd80 10421#undef PIPE_CONF_CHECK_FLAGS
5e550656 10422#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10423#undef PIPE_CONF_QUIRK
88adfff1 10424
0e8ffe1b
DV
10425 return true;
10426}
10427
91d1b4bd
DV
10428static void
10429check_connector_state(struct drm_device *dev)
8af6cf88 10430{
8af6cf88
DV
10431 struct intel_connector *connector;
10432
10433 list_for_each_entry(connector, &dev->mode_config.connector_list,
10434 base.head) {
10435 /* This also checks the encoder/connector hw state with the
10436 * ->get_hw_state callbacks. */
10437 intel_connector_check_state(connector);
10438
10439 WARN(&connector->new_encoder->base != connector->base.encoder,
10440 "connector's staged encoder doesn't match current encoder\n");
10441 }
91d1b4bd
DV
10442}
10443
10444static void
10445check_encoder_state(struct drm_device *dev)
10446{
10447 struct intel_encoder *encoder;
10448 struct intel_connector *connector;
8af6cf88
DV
10449
10450 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10451 base.head) {
10452 bool enabled = false;
10453 bool active = false;
10454 enum pipe pipe, tracked_pipe;
10455
10456 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10457 encoder->base.base.id,
8e329a03 10458 encoder->base.name);
8af6cf88
DV
10459
10460 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10461 "encoder's stage crtc doesn't match current crtc\n");
10462 WARN(encoder->connectors_active && !encoder->base.crtc,
10463 "encoder's active_connectors set, but no crtc\n");
10464
10465 list_for_each_entry(connector, &dev->mode_config.connector_list,
10466 base.head) {
10467 if (connector->base.encoder != &encoder->base)
10468 continue;
10469 enabled = true;
10470 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10471 active = true;
10472 }
10473 WARN(!!encoder->base.crtc != enabled,
10474 "encoder's enabled state mismatch "
10475 "(expected %i, found %i)\n",
10476 !!encoder->base.crtc, enabled);
10477 WARN(active && !encoder->base.crtc,
10478 "active encoder with no crtc\n");
10479
10480 WARN(encoder->connectors_active != active,
10481 "encoder's computed active state doesn't match tracked active state "
10482 "(expected %i, found %i)\n", active, encoder->connectors_active);
10483
10484 active = encoder->get_hw_state(encoder, &pipe);
10485 WARN(active != encoder->connectors_active,
10486 "encoder's hw state doesn't match sw tracking "
10487 "(expected %i, found %i)\n",
10488 encoder->connectors_active, active);
10489
10490 if (!encoder->base.crtc)
10491 continue;
10492
10493 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10494 WARN(active && pipe != tracked_pipe,
10495 "active encoder's pipe doesn't match"
10496 "(expected %i, found %i)\n",
10497 tracked_pipe, pipe);
10498
10499 }
91d1b4bd
DV
10500}
10501
10502static void
10503check_crtc_state(struct drm_device *dev)
10504{
fbee40df 10505 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10506 struct intel_crtc *crtc;
10507 struct intel_encoder *encoder;
10508 struct intel_crtc_config pipe_config;
8af6cf88 10509
d3fcc808 10510 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10511 bool enabled = false;
10512 bool active = false;
10513
045ac3b5
JB
10514 memset(&pipe_config, 0, sizeof(pipe_config));
10515
8af6cf88
DV
10516 DRM_DEBUG_KMS("[CRTC:%d]\n",
10517 crtc->base.base.id);
10518
10519 WARN(crtc->active && !crtc->base.enabled,
10520 "active crtc, but not enabled in sw tracking\n");
10521
10522 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10523 base.head) {
10524 if (encoder->base.crtc != &crtc->base)
10525 continue;
10526 enabled = true;
10527 if (encoder->connectors_active)
10528 active = true;
10529 }
6c49f241 10530
8af6cf88
DV
10531 WARN(active != crtc->active,
10532 "crtc's computed active state doesn't match tracked active state "
10533 "(expected %i, found %i)\n", active, crtc->active);
10534 WARN(enabled != crtc->base.enabled,
10535 "crtc's computed enabled state doesn't match tracked enabled state "
10536 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10537
0e8ffe1b
DV
10538 active = dev_priv->display.get_pipe_config(crtc,
10539 &pipe_config);
d62cf62a
DV
10540
10541 /* hw state is inconsistent with the pipe A quirk */
10542 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10543 active = crtc->active;
10544
6c49f241
DV
10545 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10546 base.head) {
3eaba51c 10547 enum pipe pipe;
6c49f241
DV
10548 if (encoder->base.crtc != &crtc->base)
10549 continue;
1d37b689 10550 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10551 encoder->get_config(encoder, &pipe_config);
10552 }
10553
0e8ffe1b
DV
10554 WARN(crtc->active != active,
10555 "crtc active state doesn't match with hw state "
10556 "(expected %i, found %i)\n", crtc->active, active);
10557
c0b03411
DV
10558 if (active &&
10559 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10560 WARN(1, "pipe state doesn't match!\n");
10561 intel_dump_pipe_config(crtc, &pipe_config,
10562 "[hw state]");
10563 intel_dump_pipe_config(crtc, &crtc->config,
10564 "[sw state]");
10565 }
8af6cf88
DV
10566 }
10567}
10568
91d1b4bd
DV
10569static void
10570check_shared_dpll_state(struct drm_device *dev)
10571{
fbee40df 10572 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10573 struct intel_crtc *crtc;
10574 struct intel_dpll_hw_state dpll_hw_state;
10575 int i;
5358901f
DV
10576
10577 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10578 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10579 int enabled_crtcs = 0, active_crtcs = 0;
10580 bool active;
10581
10582 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10583
10584 DRM_DEBUG_KMS("%s\n", pll->name);
10585
10586 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10587
10588 WARN(pll->active > pll->refcount,
10589 "more active pll users than references: %i vs %i\n",
10590 pll->active, pll->refcount);
10591 WARN(pll->active && !pll->on,
10592 "pll in active use but not on in sw tracking\n");
35c95375
DV
10593 WARN(pll->on && !pll->active,
10594 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10595 WARN(pll->on != active,
10596 "pll on state mismatch (expected %i, found %i)\n",
10597 pll->on, active);
10598
d3fcc808 10599 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10600 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10601 enabled_crtcs++;
10602 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10603 active_crtcs++;
10604 }
10605 WARN(pll->active != active_crtcs,
10606 "pll active crtcs mismatch (expected %i, found %i)\n",
10607 pll->active, active_crtcs);
10608 WARN(pll->refcount != enabled_crtcs,
10609 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10610 pll->refcount, enabled_crtcs);
66e985c0
DV
10611
10612 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10613 sizeof(dpll_hw_state)),
10614 "pll hw state mismatch\n");
5358901f 10615 }
8af6cf88
DV
10616}
10617
91d1b4bd
DV
10618void
10619intel_modeset_check_state(struct drm_device *dev)
10620{
10621 check_connector_state(dev);
10622 check_encoder_state(dev);
10623 check_crtc_state(dev);
10624 check_shared_dpll_state(dev);
10625}
10626
18442d08
VS
10627void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10628 int dotclock)
10629{
10630 /*
10631 * FDI already provided one idea for the dotclock.
10632 * Yell if the encoder disagrees.
10633 */
241bfc38 10634 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10635 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10636 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10637}
10638
80715b2f
VS
10639static void update_scanline_offset(struct intel_crtc *crtc)
10640{
10641 struct drm_device *dev = crtc->base.dev;
10642
10643 /*
10644 * The scanline counter increments at the leading edge of hsync.
10645 *
10646 * On most platforms it starts counting from vtotal-1 on the
10647 * first active line. That means the scanline counter value is
10648 * always one less than what we would expect. Ie. just after
10649 * start of vblank, which also occurs at start of hsync (on the
10650 * last active line), the scanline counter will read vblank_start-1.
10651 *
10652 * On gen2 the scanline counter starts counting from 1 instead
10653 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10654 * to keep the value positive), instead of adding one.
10655 *
10656 * On HSW+ the behaviour of the scanline counter depends on the output
10657 * type. For DP ports it behaves like most other platforms, but on HDMI
10658 * there's an extra 1 line difference. So we need to add two instead of
10659 * one to the value.
10660 */
10661 if (IS_GEN2(dev)) {
10662 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10663 int vtotal;
10664
10665 vtotal = mode->crtc_vtotal;
10666 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10667 vtotal /= 2;
10668
10669 crtc->scanline_offset = vtotal - 1;
10670 } else if (HAS_DDI(dev) &&
10671 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10672 crtc->scanline_offset = 2;
10673 } else
10674 crtc->scanline_offset = 1;
10675}
10676
f30da187
DV
10677static int __intel_set_mode(struct drm_crtc *crtc,
10678 struct drm_display_mode *mode,
10679 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10680{
10681 struct drm_device *dev = crtc->dev;
fbee40df 10682 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10683 struct drm_display_mode *saved_mode;
b8cecdf5 10684 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10685 struct intel_crtc *intel_crtc;
10686 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10687 int ret = 0;
a6778b3c 10688
4b4b9238 10689 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10690 if (!saved_mode)
10691 return -ENOMEM;
a6778b3c 10692
e2e1ed41 10693 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10694 &prepare_pipes, &disable_pipes);
10695
3ac18232 10696 *saved_mode = crtc->mode;
a6778b3c 10697
25c5b266
DV
10698 /* Hack: Because we don't (yet) support global modeset on multiple
10699 * crtcs, we don't keep track of the new mode for more than one crtc.
10700 * Hence simply check whether any bit is set in modeset_pipes in all the
10701 * pieces of code that are not yet converted to deal with mutliple crtcs
10702 * changing their mode at the same time. */
25c5b266 10703 if (modeset_pipes) {
4e53c2e0 10704 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10705 if (IS_ERR(pipe_config)) {
10706 ret = PTR_ERR(pipe_config);
10707 pipe_config = NULL;
10708
3ac18232 10709 goto out;
25c5b266 10710 }
c0b03411
DV
10711 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10712 "[modeset]");
50741abc 10713 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10714 }
a6778b3c 10715
30a970c6
JB
10716 /*
10717 * See if the config requires any additional preparation, e.g.
10718 * to adjust global state with pipes off. We need to do this
10719 * here so we can get the modeset_pipe updated config for the new
10720 * mode set on this crtc. For other crtcs we need to use the
10721 * adjusted_mode bits in the crtc directly.
10722 */
c164f833 10723 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10724 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10725
c164f833
VS
10726 /* may have added more to prepare_pipes than we should */
10727 prepare_pipes &= ~disable_pipes;
10728 }
10729
460da916
DV
10730 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10731 intel_crtc_disable(&intel_crtc->base);
10732
ea9d758d
DV
10733 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10734 if (intel_crtc->base.enabled)
10735 dev_priv->display.crtc_disable(&intel_crtc->base);
10736 }
a6778b3c 10737
6c4c86f5
DV
10738 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10739 * to set it here already despite that we pass it down the callchain.
f6e5b160 10740 */
b8cecdf5 10741 if (modeset_pipes) {
25c5b266 10742 crtc->mode = *mode;
b8cecdf5
DV
10743 /* mode_set/enable/disable functions rely on a correct pipe
10744 * config. */
10745 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10746 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10747
10748 /*
10749 * Calculate and store various constants which
10750 * are later needed by vblank and swap-completion
10751 * timestamping. They are derived from true hwmode.
10752 */
10753 drm_calc_timestamping_constants(crtc,
10754 &pipe_config->adjusted_mode);
b8cecdf5 10755 }
7758a113 10756
ea9d758d
DV
10757 /* Only after disabling all output pipelines that will be changed can we
10758 * update the the output configuration. */
10759 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10760
47fab737
DV
10761 if (dev_priv->display.modeset_global_resources)
10762 dev_priv->display.modeset_global_resources(dev);
10763
a6778b3c
DV
10764 /* Set up the DPLL and any encoders state that needs to adjust or depend
10765 * on the DPLL.
f6e5b160 10766 */
25c5b266 10767 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
4c10794f 10768 struct drm_framebuffer *old_fb;
a071fa00
DV
10769 struct drm_i915_gem_object *old_obj = NULL;
10770 struct drm_i915_gem_object *obj =
10771 to_intel_framebuffer(fb)->obj;
4c10794f
DV
10772
10773 mutex_lock(&dev->struct_mutex);
10774 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10775 obj,
4c10794f
DV
10776 NULL);
10777 if (ret != 0) {
10778 DRM_ERROR("pin & fence failed\n");
10779 mutex_unlock(&dev->struct_mutex);
10780 goto done;
10781 }
10782 old_fb = crtc->primary->fb;
a071fa00
DV
10783 if (old_fb) {
10784 old_obj = to_intel_framebuffer(old_fb)->obj;
10785 intel_unpin_fb_obj(old_obj);
10786 }
10787 i915_gem_track_fb(old_obj, obj,
10788 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10789 mutex_unlock(&dev->struct_mutex);
10790
10791 crtc->primary->fb = fb;
10792 crtc->x = x;
10793 crtc->y = y;
10794
4271b753
DV
10795 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10796 x, y, fb);
c0c36b94
CW
10797 if (ret)
10798 goto done;
a6778b3c
DV
10799 }
10800
10801 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10802 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10803 update_scanline_offset(intel_crtc);
10804
25c5b266 10805 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10806 }
a6778b3c 10807
a6778b3c
DV
10808 /* FIXME: add subpixel order */
10809done:
4b4b9238 10810 if (ret && crtc->enabled)
3ac18232 10811 crtc->mode = *saved_mode;
a6778b3c 10812
3ac18232 10813out:
b8cecdf5 10814 kfree(pipe_config);
3ac18232 10815 kfree(saved_mode);
a6778b3c 10816 return ret;
f6e5b160
CW
10817}
10818
e7457a9a
DL
10819static int intel_set_mode(struct drm_crtc *crtc,
10820 struct drm_display_mode *mode,
10821 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
10822{
10823 int ret;
10824
10825 ret = __intel_set_mode(crtc, mode, x, y, fb);
10826
10827 if (ret == 0)
10828 intel_modeset_check_state(crtc->dev);
10829
10830 return ret;
10831}
10832
c0c36b94
CW
10833void intel_crtc_restore_mode(struct drm_crtc *crtc)
10834{
f4510a27 10835 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
10836}
10837
25c5b266
DV
10838#undef for_each_intel_crtc_masked
10839
d9e55608
DV
10840static void intel_set_config_free(struct intel_set_config *config)
10841{
10842 if (!config)
10843 return;
10844
1aa4b628
DV
10845 kfree(config->save_connector_encoders);
10846 kfree(config->save_encoder_crtcs);
7668851f 10847 kfree(config->save_crtc_enabled);
d9e55608
DV
10848 kfree(config);
10849}
10850
85f9eb71
DV
10851static int intel_set_config_save_state(struct drm_device *dev,
10852 struct intel_set_config *config)
10853{
7668851f 10854 struct drm_crtc *crtc;
85f9eb71
DV
10855 struct drm_encoder *encoder;
10856 struct drm_connector *connector;
10857 int count;
10858
7668851f
VS
10859 config->save_crtc_enabled =
10860 kcalloc(dev->mode_config.num_crtc,
10861 sizeof(bool), GFP_KERNEL);
10862 if (!config->save_crtc_enabled)
10863 return -ENOMEM;
10864
1aa4b628
DV
10865 config->save_encoder_crtcs =
10866 kcalloc(dev->mode_config.num_encoder,
10867 sizeof(struct drm_crtc *), GFP_KERNEL);
10868 if (!config->save_encoder_crtcs)
85f9eb71
DV
10869 return -ENOMEM;
10870
1aa4b628
DV
10871 config->save_connector_encoders =
10872 kcalloc(dev->mode_config.num_connector,
10873 sizeof(struct drm_encoder *), GFP_KERNEL);
10874 if (!config->save_connector_encoders)
85f9eb71
DV
10875 return -ENOMEM;
10876
10877 /* Copy data. Note that driver private data is not affected.
10878 * Should anything bad happen only the expected state is
10879 * restored, not the drivers personal bookkeeping.
10880 */
7668851f 10881 count = 0;
70e1e0ec 10882 for_each_crtc(dev, crtc) {
7668851f
VS
10883 config->save_crtc_enabled[count++] = crtc->enabled;
10884 }
10885
85f9eb71
DV
10886 count = 0;
10887 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 10888 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
10889 }
10890
10891 count = 0;
10892 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 10893 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
10894 }
10895
10896 return 0;
10897}
10898
10899static void intel_set_config_restore_state(struct drm_device *dev,
10900 struct intel_set_config *config)
10901{
7668851f 10902 struct intel_crtc *crtc;
9a935856
DV
10903 struct intel_encoder *encoder;
10904 struct intel_connector *connector;
85f9eb71
DV
10905 int count;
10906
7668851f 10907 count = 0;
d3fcc808 10908 for_each_intel_crtc(dev, crtc) {
7668851f 10909 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
10910
10911 if (crtc->new_enabled)
10912 crtc->new_config = &crtc->config;
10913 else
10914 crtc->new_config = NULL;
7668851f
VS
10915 }
10916
85f9eb71 10917 count = 0;
9a935856
DV
10918 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10919 encoder->new_crtc =
10920 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
10921 }
10922
10923 count = 0;
9a935856
DV
10924 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
10925 connector->new_encoder =
10926 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
10927 }
10928}
10929
e3de42b6 10930static bool
2e57f47d 10931is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
10932{
10933 int i;
10934
2e57f47d
CW
10935 if (set->num_connectors == 0)
10936 return false;
10937
10938 if (WARN_ON(set->connectors == NULL))
10939 return false;
10940
10941 for (i = 0; i < set->num_connectors; i++)
10942 if (set->connectors[i]->encoder &&
10943 set->connectors[i]->encoder->crtc == set->crtc &&
10944 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
10945 return true;
10946
10947 return false;
10948}
10949
5e2b584e
DV
10950static void
10951intel_set_config_compute_mode_changes(struct drm_mode_set *set,
10952 struct intel_set_config *config)
10953{
10954
10955 /* We should be able to check here if the fb has the same properties
10956 * and then just flip_or_move it */
2e57f47d
CW
10957 if (is_crtc_connector_off(set)) {
10958 config->mode_changed = true;
f4510a27 10959 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
10960 /*
10961 * If we have no fb, we can only flip as long as the crtc is
10962 * active, otherwise we need a full mode set. The crtc may
10963 * be active if we've only disabled the primary plane, or
10964 * in fastboot situations.
10965 */
f4510a27 10966 if (set->crtc->primary->fb == NULL) {
319d9827
JB
10967 struct intel_crtc *intel_crtc =
10968 to_intel_crtc(set->crtc);
10969
3b150f08 10970 if (intel_crtc->active) {
319d9827
JB
10971 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
10972 config->fb_changed = true;
10973 } else {
10974 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
10975 config->mode_changed = true;
10976 }
5e2b584e
DV
10977 } else if (set->fb == NULL) {
10978 config->mode_changed = true;
72f4901e 10979 } else if (set->fb->pixel_format !=
f4510a27 10980 set->crtc->primary->fb->pixel_format) {
5e2b584e 10981 config->mode_changed = true;
e3de42b6 10982 } else {
5e2b584e 10983 config->fb_changed = true;
e3de42b6 10984 }
5e2b584e
DV
10985 }
10986
835c5873 10987 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
10988 config->fb_changed = true;
10989
10990 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
10991 DRM_DEBUG_KMS("modes are different, full mode set\n");
10992 drm_mode_debug_printmodeline(&set->crtc->mode);
10993 drm_mode_debug_printmodeline(set->mode);
10994 config->mode_changed = true;
10995 }
a1d95703
CW
10996
10997 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
10998 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
10999}
11000
2e431051 11001static int
9a935856
DV
11002intel_modeset_stage_output_state(struct drm_device *dev,
11003 struct drm_mode_set *set,
11004 struct intel_set_config *config)
50f56119 11005{
9a935856
DV
11006 struct intel_connector *connector;
11007 struct intel_encoder *encoder;
7668851f 11008 struct intel_crtc *crtc;
f3f08572 11009 int ro;
50f56119 11010
9abdda74 11011 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11012 * of connectors. For paranoia, double-check this. */
11013 WARN_ON(!set->fb && (set->num_connectors != 0));
11014 WARN_ON(set->fb && (set->num_connectors == 0));
11015
9a935856
DV
11016 list_for_each_entry(connector, &dev->mode_config.connector_list,
11017 base.head) {
11018 /* Otherwise traverse passed in connector list and get encoders
11019 * for them. */
50f56119 11020 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
11021 if (set->connectors[ro] == &connector->base) {
11022 connector->new_encoder = connector->encoder;
50f56119
DV
11023 break;
11024 }
11025 }
11026
9a935856
DV
11027 /* If we disable the crtc, disable all its connectors. Also, if
11028 * the connector is on the changing crtc but not on the new
11029 * connector list, disable it. */
11030 if ((!set->fb || ro == set->num_connectors) &&
11031 connector->base.encoder &&
11032 connector->base.encoder->crtc == set->crtc) {
11033 connector->new_encoder = NULL;
11034
11035 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11036 connector->base.base.id,
c23cc417 11037 connector->base.name);
9a935856
DV
11038 }
11039
11040
11041 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11042 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11043 config->mode_changed = true;
50f56119
DV
11044 }
11045 }
9a935856 11046 /* connector->new_encoder is now updated for all connectors. */
50f56119 11047
9a935856 11048 /* Update crtc of enabled connectors. */
9a935856
DV
11049 list_for_each_entry(connector, &dev->mode_config.connector_list,
11050 base.head) {
7668851f
VS
11051 struct drm_crtc *new_crtc;
11052
9a935856 11053 if (!connector->new_encoder)
50f56119
DV
11054 continue;
11055
9a935856 11056 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11057
11058 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11059 if (set->connectors[ro] == &connector->base)
50f56119
DV
11060 new_crtc = set->crtc;
11061 }
11062
11063 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11064 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11065 new_crtc)) {
5e2b584e 11066 return -EINVAL;
50f56119 11067 }
9a935856
DV
11068 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
11069
11070 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11071 connector->base.base.id,
c23cc417 11072 connector->base.name,
9a935856
DV
11073 new_crtc->base.id);
11074 }
11075
11076 /* Check for any encoders that needs to be disabled. */
11077 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11078 base.head) {
5a65f358 11079 int num_connectors = 0;
9a935856
DV
11080 list_for_each_entry(connector,
11081 &dev->mode_config.connector_list,
11082 base.head) {
11083 if (connector->new_encoder == encoder) {
11084 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11085 num_connectors++;
9a935856
DV
11086 }
11087 }
5a65f358
PZ
11088
11089 if (num_connectors == 0)
11090 encoder->new_crtc = NULL;
11091 else if (num_connectors > 1)
11092 return -EINVAL;
11093
9a935856
DV
11094 /* Only now check for crtc changes so we don't miss encoders
11095 * that will be disabled. */
11096 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11097 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11098 config->mode_changed = true;
50f56119
DV
11099 }
11100 }
9a935856 11101 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 11102
d3fcc808 11103 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11104 crtc->new_enabled = false;
11105
11106 list_for_each_entry(encoder,
11107 &dev->mode_config.encoder_list,
11108 base.head) {
11109 if (encoder->new_crtc == crtc) {
11110 crtc->new_enabled = true;
11111 break;
11112 }
11113 }
11114
11115 if (crtc->new_enabled != crtc->base.enabled) {
11116 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11117 crtc->new_enabled ? "en" : "dis");
11118 config->mode_changed = true;
11119 }
7bd0a8e7
VS
11120
11121 if (crtc->new_enabled)
11122 crtc->new_config = &crtc->config;
11123 else
11124 crtc->new_config = NULL;
7668851f
VS
11125 }
11126
2e431051
DV
11127 return 0;
11128}
11129
7d00a1f5
VS
11130static void disable_crtc_nofb(struct intel_crtc *crtc)
11131{
11132 struct drm_device *dev = crtc->base.dev;
11133 struct intel_encoder *encoder;
11134 struct intel_connector *connector;
11135
11136 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11137 pipe_name(crtc->pipe));
11138
11139 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11140 if (connector->new_encoder &&
11141 connector->new_encoder->new_crtc == crtc)
11142 connector->new_encoder = NULL;
11143 }
11144
11145 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11146 if (encoder->new_crtc == crtc)
11147 encoder->new_crtc = NULL;
11148 }
11149
11150 crtc->new_enabled = false;
7bd0a8e7 11151 crtc->new_config = NULL;
7d00a1f5
VS
11152}
11153
2e431051
DV
11154static int intel_crtc_set_config(struct drm_mode_set *set)
11155{
11156 struct drm_device *dev;
2e431051
DV
11157 struct drm_mode_set save_set;
11158 struct intel_set_config *config;
11159 int ret;
2e431051 11160
8d3e375e
DV
11161 BUG_ON(!set);
11162 BUG_ON(!set->crtc);
11163 BUG_ON(!set->crtc->helper_private);
2e431051 11164
7e53f3a4
DV
11165 /* Enforce sane interface api - has been abused by the fb helper. */
11166 BUG_ON(!set->mode && set->fb);
11167 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11168
2e431051
DV
11169 if (set->fb) {
11170 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11171 set->crtc->base.id, set->fb->base.id,
11172 (int)set->num_connectors, set->x, set->y);
11173 } else {
11174 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11175 }
11176
11177 dev = set->crtc->dev;
11178
11179 ret = -ENOMEM;
11180 config = kzalloc(sizeof(*config), GFP_KERNEL);
11181 if (!config)
11182 goto out_config;
11183
11184 ret = intel_set_config_save_state(dev, config);
11185 if (ret)
11186 goto out_config;
11187
11188 save_set.crtc = set->crtc;
11189 save_set.mode = &set->crtc->mode;
11190 save_set.x = set->crtc->x;
11191 save_set.y = set->crtc->y;
f4510a27 11192 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11193
11194 /* Compute whether we need a full modeset, only an fb base update or no
11195 * change at all. In the future we might also check whether only the
11196 * mode changed, e.g. for LVDS where we only change the panel fitter in
11197 * such cases. */
11198 intel_set_config_compute_mode_changes(set, config);
11199
9a935856 11200 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11201 if (ret)
11202 goto fail;
11203
5e2b584e 11204 if (config->mode_changed) {
c0c36b94
CW
11205 ret = intel_set_mode(set->crtc, set->mode,
11206 set->x, set->y, set->fb);
5e2b584e 11207 } else if (config->fb_changed) {
3b150f08
MR
11208 struct drm_i915_private *dev_priv = dev->dev_private;
11209 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11210
4878cae2
VS
11211 intel_crtc_wait_for_pending_flips(set->crtc);
11212
4f660f49 11213 ret = intel_pipe_set_base(set->crtc,
94352cf9 11214 set->x, set->y, set->fb);
3b150f08
MR
11215
11216 /*
11217 * We need to make sure the primary plane is re-enabled if it
11218 * has previously been turned off.
11219 */
11220 if (!intel_crtc->primary_enabled && ret == 0) {
11221 WARN_ON(!intel_crtc->active);
11222 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11223 intel_crtc->pipe);
11224 }
11225
7ca51a3a
JB
11226 /*
11227 * In the fastboot case this may be our only check of the
11228 * state after boot. It would be better to only do it on
11229 * the first update, but we don't have a nice way of doing that
11230 * (and really, set_config isn't used much for high freq page
11231 * flipping, so increasing its cost here shouldn't be a big
11232 * deal).
11233 */
d330a953 11234 if (i915.fastboot && ret == 0)
7ca51a3a 11235 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11236 }
11237
2d05eae1 11238 if (ret) {
bf67dfeb
DV
11239 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11240 set->crtc->base.id, ret);
50f56119 11241fail:
2d05eae1 11242 intel_set_config_restore_state(dev, config);
50f56119 11243
7d00a1f5
VS
11244 /*
11245 * HACK: if the pipe was on, but we didn't have a framebuffer,
11246 * force the pipe off to avoid oopsing in the modeset code
11247 * due to fb==NULL. This should only happen during boot since
11248 * we don't yet reconstruct the FB from the hardware state.
11249 */
11250 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11251 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11252
2d05eae1
CW
11253 /* Try to restore the config */
11254 if (config->mode_changed &&
11255 intel_set_mode(save_set.crtc, save_set.mode,
11256 save_set.x, save_set.y, save_set.fb))
11257 DRM_ERROR("failed to restore config after modeset failure\n");
11258 }
50f56119 11259
d9e55608
DV
11260out_config:
11261 intel_set_config_free(config);
50f56119
DV
11262 return ret;
11263}
f6e5b160
CW
11264
11265static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11266 .gamma_set = intel_crtc_gamma_set,
50f56119 11267 .set_config = intel_crtc_set_config,
f6e5b160
CW
11268 .destroy = intel_crtc_destroy,
11269 .page_flip = intel_crtc_page_flip,
11270};
11271
79f689aa
PZ
11272static void intel_cpu_pll_init(struct drm_device *dev)
11273{
affa9354 11274 if (HAS_DDI(dev))
79f689aa
PZ
11275 intel_ddi_pll_init(dev);
11276}
11277
5358901f
DV
11278static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11279 struct intel_shared_dpll *pll,
11280 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11281{
5358901f 11282 uint32_t val;
ee7b9f93 11283
5358901f 11284 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11285 hw_state->dpll = val;
11286 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11287 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11288
11289 return val & DPLL_VCO_ENABLE;
11290}
11291
15bdd4cf
DV
11292static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11293 struct intel_shared_dpll *pll)
11294{
11295 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11296 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11297}
11298
e7b903d2
DV
11299static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11300 struct intel_shared_dpll *pll)
11301{
e7b903d2 11302 /* PCH refclock must be enabled first */
89eff4be 11303 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11304
15bdd4cf
DV
11305 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11306
11307 /* Wait for the clocks to stabilize. */
11308 POSTING_READ(PCH_DPLL(pll->id));
11309 udelay(150);
11310
11311 /* The pixel multiplier can only be updated once the
11312 * DPLL is enabled and the clocks are stable.
11313 *
11314 * So write it again.
11315 */
11316 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11317 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11318 udelay(200);
11319}
11320
11321static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11322 struct intel_shared_dpll *pll)
11323{
11324 struct drm_device *dev = dev_priv->dev;
11325 struct intel_crtc *crtc;
e7b903d2
DV
11326
11327 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11328 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11329 if (intel_crtc_to_shared_dpll(crtc) == pll)
11330 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11331 }
11332
15bdd4cf
DV
11333 I915_WRITE(PCH_DPLL(pll->id), 0);
11334 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11335 udelay(200);
11336}
11337
46edb027
DV
11338static char *ibx_pch_dpll_names[] = {
11339 "PCH DPLL A",
11340 "PCH DPLL B",
11341};
11342
7c74ade1 11343static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11344{
e7b903d2 11345 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11346 int i;
11347
7c74ade1 11348 dev_priv->num_shared_dpll = 2;
ee7b9f93 11349
e72f9fbf 11350 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11351 dev_priv->shared_dplls[i].id = i;
11352 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11353 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11354 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11355 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11356 dev_priv->shared_dplls[i].get_hw_state =
11357 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11358 }
11359}
11360
7c74ade1
DV
11361static void intel_shared_dpll_init(struct drm_device *dev)
11362{
e7b903d2 11363 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1
DV
11364
11365 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11366 ibx_pch_dpll_init(dev);
11367 else
11368 dev_priv->num_shared_dpll = 0;
11369
11370 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11371}
11372
465c120c
MR
11373static int
11374intel_primary_plane_disable(struct drm_plane *plane)
11375{
11376 struct drm_device *dev = plane->dev;
11377 struct drm_i915_private *dev_priv = dev->dev_private;
11378 struct intel_plane *intel_plane = to_intel_plane(plane);
11379 struct intel_crtc *intel_crtc;
11380
11381 if (!plane->fb)
11382 return 0;
11383
11384 BUG_ON(!plane->crtc);
11385
11386 intel_crtc = to_intel_crtc(plane->crtc);
11387
11388 /*
11389 * Even though we checked plane->fb above, it's still possible that
11390 * the primary plane has been implicitly disabled because the crtc
11391 * coordinates given weren't visible, or because we detected
11392 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11393 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11394 * In either case, we need to unpin the FB and let the fb pointer get
11395 * updated, but otherwise we don't need to touch the hardware.
11396 */
11397 if (!intel_crtc->primary_enabled)
11398 goto disable_unpin;
11399
11400 intel_crtc_wait_for_pending_flips(plane->crtc);
11401 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11402 intel_plane->pipe);
465c120c 11403disable_unpin:
a071fa00
DV
11404 i915_gem_track_fb(to_intel_framebuffer(plane->fb)->obj, NULL,
11405 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11406 intel_unpin_fb_obj(to_intel_framebuffer(plane->fb)->obj);
11407 plane->fb = NULL;
11408
11409 return 0;
11410}
11411
11412static int
11413intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11414 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11415 unsigned int crtc_w, unsigned int crtc_h,
11416 uint32_t src_x, uint32_t src_y,
11417 uint32_t src_w, uint32_t src_h)
11418{
11419 struct drm_device *dev = crtc->dev;
11420 struct drm_i915_private *dev_priv = dev->dev_private;
11421 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11422 struct intel_plane *intel_plane = to_intel_plane(plane);
a071fa00 11423 struct drm_i915_gem_object *obj, *old_obj = NULL;
465c120c
MR
11424 struct drm_rect dest = {
11425 /* integer pixels */
11426 .x1 = crtc_x,
11427 .y1 = crtc_y,
11428 .x2 = crtc_x + crtc_w,
11429 .y2 = crtc_y + crtc_h,
11430 };
11431 struct drm_rect src = {
11432 /* 16.16 fixed point */
11433 .x1 = src_x,
11434 .y1 = src_y,
11435 .x2 = src_x + src_w,
11436 .y2 = src_y + src_h,
11437 };
11438 const struct drm_rect clip = {
11439 /* integer pixels */
11440 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11441 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11442 };
11443 bool visible;
11444 int ret;
11445
11446 ret = drm_plane_helper_check_update(plane, crtc, fb,
11447 &src, &dest, &clip,
11448 DRM_PLANE_HELPER_NO_SCALING,
11449 DRM_PLANE_HELPER_NO_SCALING,
11450 false, true, &visible);
11451
11452 if (ret)
11453 return ret;
11454
a071fa00
DV
11455 if (plane->fb)
11456 old_obj = to_intel_framebuffer(plane->fb)->obj;
11457 obj = to_intel_framebuffer(fb)->obj;
11458
465c120c
MR
11459 /*
11460 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11461 * updating the fb pointer, and returning without touching the
11462 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11463 * turn on the display with all planes setup as desired.
11464 */
11465 if (!crtc->enabled) {
11466 /*
11467 * If we already called setplane while the crtc was disabled,
11468 * we may have an fb pinned; unpin it.
11469 */
11470 if (plane->fb)
a071fa00
DV
11471 intel_unpin_fb_obj(old_obj);
11472
11473 i915_gem_track_fb(old_obj, obj,
11474 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11475
11476 /* Pin and return without programming hardware */
a071fa00 11477 return intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11478 }
11479
11480 intel_crtc_wait_for_pending_flips(crtc);
11481
11482 /*
11483 * If clipping results in a non-visible primary plane, we'll disable
11484 * the primary plane. Note that this is a bit different than what
11485 * happens if userspace explicitly disables the plane by passing fb=0
11486 * because plane->fb still gets set and pinned.
11487 */
11488 if (!visible) {
11489 /*
11490 * Try to pin the new fb first so that we can bail out if we
11491 * fail.
11492 */
11493 if (plane->fb != fb) {
a071fa00 11494 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
465c120c
MR
11495 if (ret)
11496 return ret;
11497 }
11498
a071fa00
DV
11499 i915_gem_track_fb(old_obj, obj,
11500 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11501
465c120c
MR
11502 if (intel_crtc->primary_enabled)
11503 intel_disable_primary_hw_plane(dev_priv,
11504 intel_plane->plane,
11505 intel_plane->pipe);
11506
11507
11508 if (plane->fb != fb)
11509 if (plane->fb)
a071fa00 11510 intel_unpin_fb_obj(old_obj);
465c120c
MR
11511
11512 return 0;
11513 }
11514
11515 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11516 if (ret)
11517 return ret;
11518
11519 if (!intel_crtc->primary_enabled)
11520 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11521 intel_crtc->pipe);
11522
11523 return 0;
11524}
11525
3d7d6510
MR
11526/* Common destruction function for both primary and cursor planes */
11527static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11528{
11529 struct intel_plane *intel_plane = to_intel_plane(plane);
11530 drm_plane_cleanup(plane);
11531 kfree(intel_plane);
11532}
11533
11534static const struct drm_plane_funcs intel_primary_plane_funcs = {
11535 .update_plane = intel_primary_plane_setplane,
11536 .disable_plane = intel_primary_plane_disable,
3d7d6510 11537 .destroy = intel_plane_destroy,
465c120c
MR
11538};
11539
11540static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11541 int pipe)
11542{
11543 struct intel_plane *primary;
11544 const uint32_t *intel_primary_formats;
11545 int num_formats;
11546
11547 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11548 if (primary == NULL)
11549 return NULL;
11550
11551 primary->can_scale = false;
11552 primary->max_downscale = 1;
11553 primary->pipe = pipe;
11554 primary->plane = pipe;
11555 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11556 primary->plane = !pipe;
11557
11558 if (INTEL_INFO(dev)->gen <= 3) {
11559 intel_primary_formats = intel_primary_formats_gen2;
11560 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11561 } else {
11562 intel_primary_formats = intel_primary_formats_gen4;
11563 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11564 }
11565
11566 drm_universal_plane_init(dev, &primary->base, 0,
11567 &intel_primary_plane_funcs,
11568 intel_primary_formats, num_formats,
11569 DRM_PLANE_TYPE_PRIMARY);
11570 return &primary->base;
11571}
11572
3d7d6510
MR
11573static int
11574intel_cursor_plane_disable(struct drm_plane *plane)
11575{
11576 if (!plane->fb)
11577 return 0;
11578
11579 BUG_ON(!plane->crtc);
11580
11581 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11582}
11583
11584static int
11585intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11586 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11587 unsigned int crtc_w, unsigned int crtc_h,
11588 uint32_t src_x, uint32_t src_y,
11589 uint32_t src_w, uint32_t src_h)
11590{
11591 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11592 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11593 struct drm_i915_gem_object *obj = intel_fb->obj;
11594 struct drm_rect dest = {
11595 /* integer pixels */
11596 .x1 = crtc_x,
11597 .y1 = crtc_y,
11598 .x2 = crtc_x + crtc_w,
11599 .y2 = crtc_y + crtc_h,
11600 };
11601 struct drm_rect src = {
11602 /* 16.16 fixed point */
11603 .x1 = src_x,
11604 .y1 = src_y,
11605 .x2 = src_x + src_w,
11606 .y2 = src_y + src_h,
11607 };
11608 const struct drm_rect clip = {
11609 /* integer pixels */
11610 .x2 = intel_crtc->config.pipe_src_w,
11611 .y2 = intel_crtc->config.pipe_src_h,
11612 };
11613 bool visible;
11614 int ret;
11615
11616 ret = drm_plane_helper_check_update(plane, crtc, fb,
11617 &src, &dest, &clip,
11618 DRM_PLANE_HELPER_NO_SCALING,
11619 DRM_PLANE_HELPER_NO_SCALING,
11620 true, true, &visible);
11621 if (ret)
11622 return ret;
11623
11624 crtc->cursor_x = crtc_x;
11625 crtc->cursor_y = crtc_y;
11626 if (fb != crtc->cursor->fb) {
11627 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11628 } else {
11629 intel_crtc_update_cursor(crtc, visible);
11630 return 0;
11631 }
11632}
11633static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11634 .update_plane = intel_cursor_plane_update,
11635 .disable_plane = intel_cursor_plane_disable,
11636 .destroy = intel_plane_destroy,
11637};
11638
11639static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11640 int pipe)
11641{
11642 struct intel_plane *cursor;
11643
11644 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11645 if (cursor == NULL)
11646 return NULL;
11647
11648 cursor->can_scale = false;
11649 cursor->max_downscale = 1;
11650 cursor->pipe = pipe;
11651 cursor->plane = pipe;
11652
11653 drm_universal_plane_init(dev, &cursor->base, 0,
11654 &intel_cursor_plane_funcs,
11655 intel_cursor_formats,
11656 ARRAY_SIZE(intel_cursor_formats),
11657 DRM_PLANE_TYPE_CURSOR);
11658 return &cursor->base;
11659}
11660
b358d0a6 11661static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11662{
fbee40df 11663 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11664 struct intel_crtc *intel_crtc;
3d7d6510
MR
11665 struct drm_plane *primary = NULL;
11666 struct drm_plane *cursor = NULL;
465c120c 11667 int i, ret;
79e53945 11668
955382f3 11669 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11670 if (intel_crtc == NULL)
11671 return;
11672
465c120c 11673 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11674 if (!primary)
11675 goto fail;
11676
11677 cursor = intel_cursor_plane_create(dev, pipe);
11678 if (!cursor)
11679 goto fail;
11680
465c120c 11681 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11682 cursor, &intel_crtc_funcs);
11683 if (ret)
11684 goto fail;
79e53945
JB
11685
11686 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11687 for (i = 0; i < 256; i++) {
11688 intel_crtc->lut_r[i] = i;
11689 intel_crtc->lut_g[i] = i;
11690 intel_crtc->lut_b[i] = i;
11691 }
11692
1f1c2e24
VS
11693 /*
11694 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11695 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11696 */
80824003
JB
11697 intel_crtc->pipe = pipe;
11698 intel_crtc->plane = pipe;
3a77c4c4 11699 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11700 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11701 intel_crtc->plane = !pipe;
80824003
JB
11702 }
11703
4b0e333e
CW
11704 intel_crtc->cursor_base = ~0;
11705 intel_crtc->cursor_cntl = ~0;
11706
8d7849db
VS
11707 init_waitqueue_head(&intel_crtc->vbl_wait);
11708
22fd0fab
JB
11709 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11710 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11711 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11712 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11713
79e53945 11714 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11715
11716 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11717 return;
11718
11719fail:
11720 if (primary)
11721 drm_plane_cleanup(primary);
11722 if (cursor)
11723 drm_plane_cleanup(cursor);
11724 kfree(intel_crtc);
79e53945
JB
11725}
11726
752aa88a
JB
11727enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11728{
11729 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11730 struct drm_device *dev = connector->base.dev;
752aa88a 11731
51fd371b 11732 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11733
11734 if (!encoder)
11735 return INVALID_PIPE;
11736
11737 return to_intel_crtc(encoder->crtc)->pipe;
11738}
11739
08d7b3d1 11740int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11741 struct drm_file *file)
08d7b3d1 11742{
08d7b3d1 11743 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
11744 struct drm_mode_object *drmmode_obj;
11745 struct intel_crtc *crtc;
08d7b3d1 11746
1cff8f6b
DV
11747 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11748 return -ENODEV;
08d7b3d1 11749
c05422d5
DV
11750 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
11751 DRM_MODE_OBJECT_CRTC);
08d7b3d1 11752
c05422d5 11753 if (!drmmode_obj) {
08d7b3d1 11754 DRM_ERROR("no such CRTC id\n");
3f2c2057 11755 return -ENOENT;
08d7b3d1
CW
11756 }
11757
c05422d5
DV
11758 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
11759 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11760
c05422d5 11761 return 0;
08d7b3d1
CW
11762}
11763
66a9278e 11764static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11765{
66a9278e
DV
11766 struct drm_device *dev = encoder->base.dev;
11767 struct intel_encoder *source_encoder;
79e53945 11768 int index_mask = 0;
79e53945
JB
11769 int entry = 0;
11770
66a9278e
DV
11771 list_for_each_entry(source_encoder,
11772 &dev->mode_config.encoder_list, base.head) {
bc079e8b 11773 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11774 index_mask |= (1 << entry);
11775
79e53945
JB
11776 entry++;
11777 }
4ef69c7a 11778
79e53945
JB
11779 return index_mask;
11780}
11781
4d302442
CW
11782static bool has_edp_a(struct drm_device *dev)
11783{
11784 struct drm_i915_private *dev_priv = dev->dev_private;
11785
11786 if (!IS_MOBILE(dev))
11787 return false;
11788
11789 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11790 return false;
11791
e3589908 11792 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11793 return false;
11794
11795 return true;
11796}
11797
ba0fbca4
DL
11798const char *intel_output_name(int output)
11799{
11800 static const char *names[] = {
11801 [INTEL_OUTPUT_UNUSED] = "Unused",
11802 [INTEL_OUTPUT_ANALOG] = "Analog",
11803 [INTEL_OUTPUT_DVO] = "DVO",
11804 [INTEL_OUTPUT_SDVO] = "SDVO",
11805 [INTEL_OUTPUT_LVDS] = "LVDS",
11806 [INTEL_OUTPUT_TVOUT] = "TV",
11807 [INTEL_OUTPUT_HDMI] = "HDMI",
11808 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11809 [INTEL_OUTPUT_EDP] = "eDP",
11810 [INTEL_OUTPUT_DSI] = "DSI",
11811 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11812 };
11813
11814 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
11815 return "Invalid";
11816
11817 return names[output];
11818}
11819
84b4e042
JB
11820static bool intel_crt_present(struct drm_device *dev)
11821{
11822 struct drm_i915_private *dev_priv = dev->dev_private;
11823
11824 if (IS_ULT(dev))
11825 return false;
11826
11827 if (IS_CHERRYVIEW(dev))
11828 return false;
11829
11830 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
11831 return false;
11832
11833 return true;
11834}
11835
79e53945
JB
11836static void intel_setup_outputs(struct drm_device *dev)
11837{
725e30ad 11838 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 11839 struct intel_encoder *encoder;
cb0953d7 11840 bool dpd_is_edp = false;
79e53945 11841
c9093354 11842 intel_lvds_init(dev);
79e53945 11843
84b4e042 11844 if (intel_crt_present(dev))
79935fca 11845 intel_crt_init(dev);
cb0953d7 11846
affa9354 11847 if (HAS_DDI(dev)) {
0e72a5b5
ED
11848 int found;
11849
11850 /* Haswell uses DDI functions to detect digital outputs */
11851 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
11852 /* DDI A only supports eDP */
11853 if (found)
11854 intel_ddi_init(dev, PORT_A);
11855
11856 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
11857 * register */
11858 found = I915_READ(SFUSE_STRAP);
11859
11860 if (found & SFUSE_STRAP_DDIB_DETECTED)
11861 intel_ddi_init(dev, PORT_B);
11862 if (found & SFUSE_STRAP_DDIC_DETECTED)
11863 intel_ddi_init(dev, PORT_C);
11864 if (found & SFUSE_STRAP_DDID_DETECTED)
11865 intel_ddi_init(dev, PORT_D);
11866 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 11867 int found;
5d8a7752 11868 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
11869
11870 if (has_edp_a(dev))
11871 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 11872
dc0fa718 11873 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 11874 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 11875 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 11876 if (!found)
e2debe91 11877 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 11878 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 11879 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
11880 }
11881
dc0fa718 11882 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 11883 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 11884
dc0fa718 11885 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 11886 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 11887
5eb08b69 11888 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 11889 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 11890
270b3042 11891 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 11892 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 11893 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
11894 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
11895 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
11896 PORT_B);
11897 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
11898 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
11899 }
11900
6f6005a5
JB
11901 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
11902 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
11903 PORT_C);
11904 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 11905 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 11906 }
19c03924 11907
9418c1f1
VS
11908 if (IS_CHERRYVIEW(dev)) {
11909 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
11910 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
11911 PORT_D);
11912 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
11913 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
11914 }
11915 }
11916
3cfca973 11917 intel_dsi_init(dev);
103a196f 11918 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 11919 bool found = false;
7d57382e 11920
e2debe91 11921 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11922 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 11923 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
11924 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
11925 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 11926 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 11927 }
27185ae1 11928
e7281eab 11929 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11930 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 11931 }
13520b05
KH
11932
11933 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 11934
e2debe91 11935 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 11936 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 11937 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 11938 }
27185ae1 11939
e2debe91 11940 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 11941
b01f2c3a
JB
11942 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
11943 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 11944 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 11945 }
e7281eab 11946 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 11947 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 11948 }
27185ae1 11949
b01f2c3a 11950 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 11951 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 11952 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 11953 } else if (IS_GEN2(dev))
79e53945
JB
11954 intel_dvo_init(dev);
11955
103a196f 11956 if (SUPPORTS_TV(dev))
79e53945
JB
11957 intel_tv_init(dev);
11958
7c8f8a70
RV
11959 intel_edp_psr_init(dev);
11960
4ef69c7a
CW
11961 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
11962 encoder->base.possible_crtcs = encoder->crtc_mask;
11963 encoder->base.possible_clones =
66a9278e 11964 intel_encoder_clones(encoder);
79e53945 11965 }
47356eb6 11966
dde86e2d 11967 intel_init_pch_refclk(dev);
270b3042
DV
11968
11969 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
11970}
11971
11972static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
11973{
60a5ca01 11974 struct drm_device *dev = fb->dev;
79e53945 11975 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 11976
ef2d633e 11977 drm_framebuffer_cleanup(fb);
60a5ca01 11978 mutex_lock(&dev->struct_mutex);
ef2d633e 11979 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
11980 drm_gem_object_unreference(&intel_fb->obj->base);
11981 mutex_unlock(&dev->struct_mutex);
79e53945
JB
11982 kfree(intel_fb);
11983}
11984
11985static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 11986 struct drm_file *file,
79e53945
JB
11987 unsigned int *handle)
11988{
11989 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 11990 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 11991
05394f39 11992 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
11993}
11994
11995static const struct drm_framebuffer_funcs intel_fb_funcs = {
11996 .destroy = intel_user_framebuffer_destroy,
11997 .create_handle = intel_user_framebuffer_create_handle,
11998};
11999
b5ea642a
DV
12000static int intel_framebuffer_init(struct drm_device *dev,
12001 struct intel_framebuffer *intel_fb,
12002 struct drm_mode_fb_cmd2 *mode_cmd,
12003 struct drm_i915_gem_object *obj)
79e53945 12004{
a57ce0b2 12005 int aligned_height;
a35cdaa0 12006 int pitch_limit;
79e53945
JB
12007 int ret;
12008
dd4916c5
DV
12009 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12010
c16ed4be
CW
12011 if (obj->tiling_mode == I915_TILING_Y) {
12012 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12013 return -EINVAL;
c16ed4be 12014 }
57cd6508 12015
c16ed4be
CW
12016 if (mode_cmd->pitches[0] & 63) {
12017 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12018 mode_cmd->pitches[0]);
57cd6508 12019 return -EINVAL;
c16ed4be 12020 }
57cd6508 12021
a35cdaa0
CW
12022 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12023 pitch_limit = 32*1024;
12024 } else if (INTEL_INFO(dev)->gen >= 4) {
12025 if (obj->tiling_mode)
12026 pitch_limit = 16*1024;
12027 else
12028 pitch_limit = 32*1024;
12029 } else if (INTEL_INFO(dev)->gen >= 3) {
12030 if (obj->tiling_mode)
12031 pitch_limit = 8*1024;
12032 else
12033 pitch_limit = 16*1024;
12034 } else
12035 /* XXX DSPC is limited to 4k tiled */
12036 pitch_limit = 8*1024;
12037
12038 if (mode_cmd->pitches[0] > pitch_limit) {
12039 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12040 obj->tiling_mode ? "tiled" : "linear",
12041 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12042 return -EINVAL;
c16ed4be 12043 }
5d7bd705
VS
12044
12045 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12046 mode_cmd->pitches[0] != obj->stride) {
12047 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12048 mode_cmd->pitches[0], obj->stride);
5d7bd705 12049 return -EINVAL;
c16ed4be 12050 }
5d7bd705 12051
57779d06 12052 /* Reject formats not supported by any plane early. */
308e5bcb 12053 switch (mode_cmd->pixel_format) {
57779d06 12054 case DRM_FORMAT_C8:
04b3924d
VS
12055 case DRM_FORMAT_RGB565:
12056 case DRM_FORMAT_XRGB8888:
12057 case DRM_FORMAT_ARGB8888:
57779d06
VS
12058 break;
12059 case DRM_FORMAT_XRGB1555:
12060 case DRM_FORMAT_ARGB1555:
c16ed4be 12061 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12062 DRM_DEBUG("unsupported pixel format: %s\n",
12063 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12064 return -EINVAL;
c16ed4be 12065 }
57779d06
VS
12066 break;
12067 case DRM_FORMAT_XBGR8888:
12068 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12069 case DRM_FORMAT_XRGB2101010:
12070 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12071 case DRM_FORMAT_XBGR2101010:
12072 case DRM_FORMAT_ABGR2101010:
c16ed4be 12073 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12074 DRM_DEBUG("unsupported pixel format: %s\n",
12075 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12076 return -EINVAL;
c16ed4be 12077 }
b5626747 12078 break;
04b3924d
VS
12079 case DRM_FORMAT_YUYV:
12080 case DRM_FORMAT_UYVY:
12081 case DRM_FORMAT_YVYU:
12082 case DRM_FORMAT_VYUY:
c16ed4be 12083 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12084 DRM_DEBUG("unsupported pixel format: %s\n",
12085 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12086 return -EINVAL;
c16ed4be 12087 }
57cd6508
CW
12088 break;
12089 default:
4ee62c76
VS
12090 DRM_DEBUG("unsupported pixel format: %s\n",
12091 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12092 return -EINVAL;
12093 }
12094
90f9a336
VS
12095 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12096 if (mode_cmd->offsets[0] != 0)
12097 return -EINVAL;
12098
a57ce0b2
JB
12099 aligned_height = intel_align_height(dev, mode_cmd->height,
12100 obj->tiling_mode);
53155c0a
DV
12101 /* FIXME drm helper for size checks (especially planar formats)? */
12102 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12103 return -EINVAL;
12104
c7d73f6a
DV
12105 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12106 intel_fb->obj = obj;
80075d49 12107 intel_fb->obj->framebuffer_references++;
c7d73f6a 12108
79e53945
JB
12109 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12110 if (ret) {
12111 DRM_ERROR("framebuffer init failed %d\n", ret);
12112 return ret;
12113 }
12114
79e53945
JB
12115 return 0;
12116}
12117
79e53945
JB
12118static struct drm_framebuffer *
12119intel_user_framebuffer_create(struct drm_device *dev,
12120 struct drm_file *filp,
308e5bcb 12121 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12122{
05394f39 12123 struct drm_i915_gem_object *obj;
79e53945 12124
308e5bcb
JB
12125 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12126 mode_cmd->handles[0]));
c8725226 12127 if (&obj->base == NULL)
cce13ff7 12128 return ERR_PTR(-ENOENT);
79e53945 12129
d2dff872 12130 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12131}
12132
4520f53a 12133#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12134static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12135{
12136}
12137#endif
12138
79e53945 12139static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12140 .fb_create = intel_user_framebuffer_create,
0632fef6 12141 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12142};
12143
e70236a8
JB
12144/* Set up chip specific display functions */
12145static void intel_init_display(struct drm_device *dev)
12146{
12147 struct drm_i915_private *dev_priv = dev->dev_private;
12148
ee9300bb
DV
12149 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12150 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12151 else if (IS_CHERRYVIEW(dev))
12152 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12153 else if (IS_VALLEYVIEW(dev))
12154 dev_priv->display.find_dpll = vlv_find_best_dpll;
12155 else if (IS_PINEVIEW(dev))
12156 dev_priv->display.find_dpll = pnv_find_best_dpll;
12157 else
12158 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12159
affa9354 12160 if (HAS_DDI(dev)) {
0e8ffe1b 12161 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12162 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12163 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12164 dev_priv->display.crtc_enable = haswell_crtc_enable;
12165 dev_priv->display.crtc_disable = haswell_crtc_disable;
6441ab5f 12166 dev_priv->display.off = haswell_crtc_off;
262ca2b0
MR
12167 dev_priv->display.update_primary_plane =
12168 ironlake_update_primary_plane;
09b4ddf9 12169 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12170 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12171 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12172 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12173 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12174 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12175 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12176 dev_priv->display.update_primary_plane =
12177 ironlake_update_primary_plane;
89b667f8
JB
12178 } else if (IS_VALLEYVIEW(dev)) {
12179 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12180 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12181 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12182 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12183 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12184 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12185 dev_priv->display.update_primary_plane =
12186 i9xx_update_primary_plane;
f564048e 12187 } else {
0e8ffe1b 12188 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12189 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12190 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12191 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12192 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12193 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12194 dev_priv->display.update_primary_plane =
12195 i9xx_update_primary_plane;
f564048e 12196 }
e70236a8 12197
e70236a8 12198 /* Returns the core display clock speed */
25eb05fc
JB
12199 if (IS_VALLEYVIEW(dev))
12200 dev_priv->display.get_display_clock_speed =
12201 valleyview_get_display_clock_speed;
12202 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12203 dev_priv->display.get_display_clock_speed =
12204 i945_get_display_clock_speed;
12205 else if (IS_I915G(dev))
12206 dev_priv->display.get_display_clock_speed =
12207 i915_get_display_clock_speed;
257a7ffc 12208 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12209 dev_priv->display.get_display_clock_speed =
12210 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12211 else if (IS_PINEVIEW(dev))
12212 dev_priv->display.get_display_clock_speed =
12213 pnv_get_display_clock_speed;
e70236a8
JB
12214 else if (IS_I915GM(dev))
12215 dev_priv->display.get_display_clock_speed =
12216 i915gm_get_display_clock_speed;
12217 else if (IS_I865G(dev))
12218 dev_priv->display.get_display_clock_speed =
12219 i865_get_display_clock_speed;
f0f8a9ce 12220 else if (IS_I85X(dev))
e70236a8
JB
12221 dev_priv->display.get_display_clock_speed =
12222 i855_get_display_clock_speed;
12223 else /* 852, 830 */
12224 dev_priv->display.get_display_clock_speed =
12225 i830_get_display_clock_speed;
12226
7f8a8569 12227 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12228 if (IS_GEN5(dev)) {
674cf967 12229 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12230 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12231 } else if (IS_GEN6(dev)) {
674cf967 12232 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12233 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12234 dev_priv->display.modeset_global_resources =
12235 snb_modeset_global_resources;
357555c0
JB
12236 } else if (IS_IVYBRIDGE(dev)) {
12237 /* FIXME: detect B0+ stepping and use auto training */
12238 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12239 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12240 dev_priv->display.modeset_global_resources =
12241 ivb_modeset_global_resources;
4e0bbc31 12242 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12243 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12244 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12245 dev_priv->display.modeset_global_resources =
12246 haswell_modeset_global_resources;
a0e63c22 12247 }
6067aaea 12248 } else if (IS_G4X(dev)) {
e0dac65e 12249 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12250 } else if (IS_VALLEYVIEW(dev)) {
12251 dev_priv->display.modeset_global_resources =
12252 valleyview_modeset_global_resources;
9ca2fe73 12253 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12254 }
8c9f3aaf
JB
12255
12256 /* Default just returns -ENODEV to indicate unsupported */
12257 dev_priv->display.queue_flip = intel_default_queue_flip;
12258
12259 switch (INTEL_INFO(dev)->gen) {
12260 case 2:
12261 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12262 break;
12263
12264 case 3:
12265 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12266 break;
12267
12268 case 4:
12269 case 5:
12270 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12271 break;
12272
12273 case 6:
12274 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12275 break;
7c9017e5 12276 case 7:
4e0bbc31 12277 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12278 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12279 break;
8c9f3aaf 12280 }
7bd688cd
JN
12281
12282 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12283}
12284
b690e96c
JB
12285/*
12286 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12287 * resume, or other times. This quirk makes sure that's the case for
12288 * affected systems.
12289 */
0206e353 12290static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12291{
12292 struct drm_i915_private *dev_priv = dev->dev_private;
12293
12294 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12295 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12296}
12297
435793df
KP
12298/*
12299 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12300 */
12301static void quirk_ssc_force_disable(struct drm_device *dev)
12302{
12303 struct drm_i915_private *dev_priv = dev->dev_private;
12304 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12305 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12306}
12307
4dca20ef 12308/*
5a15ab5b
CE
12309 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12310 * brightness value
4dca20ef
CE
12311 */
12312static void quirk_invert_brightness(struct drm_device *dev)
12313{
12314 struct drm_i915_private *dev_priv = dev->dev_private;
12315 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12316 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12317}
12318
b690e96c
JB
12319struct intel_quirk {
12320 int device;
12321 int subsystem_vendor;
12322 int subsystem_device;
12323 void (*hook)(struct drm_device *dev);
12324};
12325
5f85f176
EE
12326/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12327struct intel_dmi_quirk {
12328 void (*hook)(struct drm_device *dev);
12329 const struct dmi_system_id (*dmi_id_list)[];
12330};
12331
12332static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12333{
12334 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12335 return 1;
12336}
12337
12338static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12339 {
12340 .dmi_id_list = &(const struct dmi_system_id[]) {
12341 {
12342 .callback = intel_dmi_reverse_brightness,
12343 .ident = "NCR Corporation",
12344 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12345 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12346 },
12347 },
12348 { } /* terminating entry */
12349 },
12350 .hook = quirk_invert_brightness,
12351 },
12352};
12353
c43b5634 12354static struct intel_quirk intel_quirks[] = {
b690e96c 12355 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12356 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12357
b690e96c
JB
12358 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12359 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12360
b690e96c
JB
12361 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12362 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12363
435793df
KP
12364 /* Lenovo U160 cannot use SSC on LVDS */
12365 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12366
12367 /* Sony Vaio Y cannot use SSC on LVDS */
12368 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12369
be505f64
AH
12370 /* Acer Aspire 5734Z must invert backlight brightness */
12371 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12372
12373 /* Acer/eMachines G725 */
12374 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12375
12376 /* Acer/eMachines e725 */
12377 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12378
12379 /* Acer/Packard Bell NCL20 */
12380 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12381
12382 /* Acer Aspire 4736Z */
12383 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12384
12385 /* Acer Aspire 5336 */
12386 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
b690e96c
JB
12387};
12388
12389static void intel_init_quirks(struct drm_device *dev)
12390{
12391 struct pci_dev *d = dev->pdev;
12392 int i;
12393
12394 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12395 struct intel_quirk *q = &intel_quirks[i];
12396
12397 if (d->device == q->device &&
12398 (d->subsystem_vendor == q->subsystem_vendor ||
12399 q->subsystem_vendor == PCI_ANY_ID) &&
12400 (d->subsystem_device == q->subsystem_device ||
12401 q->subsystem_device == PCI_ANY_ID))
12402 q->hook(dev);
12403 }
5f85f176
EE
12404 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12405 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12406 intel_dmi_quirks[i].hook(dev);
12407 }
b690e96c
JB
12408}
12409
9cce37f4
JB
12410/* Disable the VGA plane that we never use */
12411static void i915_disable_vga(struct drm_device *dev)
12412{
12413 struct drm_i915_private *dev_priv = dev->dev_private;
12414 u8 sr1;
766aa1c4 12415 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12416
2b37c616 12417 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12418 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12419 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12420 sr1 = inb(VGA_SR_DATA);
12421 outb(sr1 | 1<<5, VGA_SR_DATA);
12422 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12423 udelay(300);
12424
12425 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12426 POSTING_READ(vga_reg);
12427}
12428
f817586c
DV
12429void intel_modeset_init_hw(struct drm_device *dev)
12430{
a8f78b58
ED
12431 intel_prepare_ddi(dev);
12432
f817586c
DV
12433 intel_init_clock_gating(dev);
12434
5382f5f3 12435 intel_reset_dpio(dev);
40e9cf64 12436
8090c6b9 12437 intel_enable_gt_powersave(dev);
f817586c
DV
12438}
12439
7d708ee4
ID
12440void intel_modeset_suspend_hw(struct drm_device *dev)
12441{
12442 intel_suspend_hw(dev);
12443}
12444
79e53945
JB
12445void intel_modeset_init(struct drm_device *dev)
12446{
652c393a 12447 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12448 int sprite, ret;
8cc87b75 12449 enum pipe pipe;
46f297fb 12450 struct intel_crtc *crtc;
79e53945
JB
12451
12452 drm_mode_config_init(dev);
12453
12454 dev->mode_config.min_width = 0;
12455 dev->mode_config.min_height = 0;
12456
019d96cb
DA
12457 dev->mode_config.preferred_depth = 24;
12458 dev->mode_config.prefer_shadow = 1;
12459
e6ecefaa 12460 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12461
b690e96c
JB
12462 intel_init_quirks(dev);
12463
1fa61106
ED
12464 intel_init_pm(dev);
12465
e3c74757
BW
12466 if (INTEL_INFO(dev)->num_pipes == 0)
12467 return;
12468
e70236a8
JB
12469 intel_init_display(dev);
12470
a6c45cf0
CW
12471 if (IS_GEN2(dev)) {
12472 dev->mode_config.max_width = 2048;
12473 dev->mode_config.max_height = 2048;
12474 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12475 dev->mode_config.max_width = 4096;
12476 dev->mode_config.max_height = 4096;
79e53945 12477 } else {
a6c45cf0
CW
12478 dev->mode_config.max_width = 8192;
12479 dev->mode_config.max_height = 8192;
79e53945 12480 }
068be561
DL
12481
12482 if (IS_GEN2(dev)) {
12483 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12484 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12485 } else {
12486 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12487 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12488 }
12489
5d4545ae 12490 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12491
28c97730 12492 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12493 INTEL_INFO(dev)->num_pipes,
12494 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12495
8cc87b75
DL
12496 for_each_pipe(pipe) {
12497 intel_crtc_init(dev, pipe);
1fe47785
DL
12498 for_each_sprite(pipe, sprite) {
12499 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12500 if (ret)
06da8da2 12501 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12502 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12503 }
79e53945
JB
12504 }
12505
f42bb70d 12506 intel_init_dpio(dev);
5382f5f3 12507 intel_reset_dpio(dev);
f42bb70d 12508
79f689aa 12509 intel_cpu_pll_init(dev);
e72f9fbf 12510 intel_shared_dpll_init(dev);
ee7b9f93 12511
9cce37f4
JB
12512 /* Just disable it once at startup */
12513 i915_disable_vga(dev);
79e53945 12514 intel_setup_outputs(dev);
11be49eb
CW
12515
12516 /* Just in case the BIOS is doing something questionable. */
12517 intel_disable_fbc(dev);
fa9fa083 12518
6e9f798d 12519 drm_modeset_lock_all(dev);
fa9fa083 12520 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12521 drm_modeset_unlock_all(dev);
46f297fb 12522
d3fcc808 12523 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12524 if (!crtc->active)
12525 continue;
12526
46f297fb 12527 /*
46f297fb
JB
12528 * Note that reserving the BIOS fb up front prevents us
12529 * from stuffing other stolen allocations like the ring
12530 * on top. This prevents some ugliness at boot time, and
12531 * can even allow for smooth boot transitions if the BIOS
12532 * fb is large enough for the active pipe configuration.
12533 */
12534 if (dev_priv->display.get_plane_config) {
12535 dev_priv->display.get_plane_config(crtc,
12536 &crtc->plane_config);
12537 /*
12538 * If the fb is shared between multiple heads, we'll
12539 * just get the first one.
12540 */
484b41dd 12541 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12542 }
46f297fb 12543 }
2c7111db
CW
12544}
12545
7fad798e
DV
12546static void intel_enable_pipe_a(struct drm_device *dev)
12547{
12548 struct intel_connector *connector;
12549 struct drm_connector *crt = NULL;
12550 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12551 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12552
12553 /* We can't just switch on the pipe A, we need to set things up with a
12554 * proper mode and output configuration. As a gross hack, enable pipe A
12555 * by enabling the load detect pipe once. */
12556 list_for_each_entry(connector,
12557 &dev->mode_config.connector_list,
12558 base.head) {
12559 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12560 crt = &connector->base;
12561 break;
12562 }
12563 }
12564
12565 if (!crt)
12566 return;
12567
51fd371b
RC
12568 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12569 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12570
652c393a 12571
7fad798e
DV
12572}
12573
fa555837
DV
12574static bool
12575intel_check_plane_mapping(struct intel_crtc *crtc)
12576{
7eb552ae
BW
12577 struct drm_device *dev = crtc->base.dev;
12578 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12579 u32 reg, val;
12580
7eb552ae 12581 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12582 return true;
12583
12584 reg = DSPCNTR(!crtc->plane);
12585 val = I915_READ(reg);
12586
12587 if ((val & DISPLAY_PLANE_ENABLE) &&
12588 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12589 return false;
12590
12591 return true;
12592}
12593
24929352
DV
12594static void intel_sanitize_crtc(struct intel_crtc *crtc)
12595{
12596 struct drm_device *dev = crtc->base.dev;
12597 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12598 u32 reg;
24929352 12599
24929352 12600 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12601 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12602 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12603
d3eaf884
VS
12604 /* restore vblank interrupts to correct state */
12605 if (crtc->active)
12606 drm_vblank_on(dev, crtc->pipe);
12607 else
12608 drm_vblank_off(dev, crtc->pipe);
12609
24929352 12610 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12611 * disable the crtc (and hence change the state) if it is wrong. Note
12612 * that gen4+ has a fixed plane -> pipe mapping. */
12613 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12614 struct intel_connector *connector;
12615 bool plane;
12616
24929352
DV
12617 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12618 crtc->base.base.id);
12619
12620 /* Pipe has the wrong plane attached and the plane is active.
12621 * Temporarily change the plane mapping and disable everything
12622 * ... */
12623 plane = crtc->plane;
12624 crtc->plane = !plane;
12625 dev_priv->display.crtc_disable(&crtc->base);
12626 crtc->plane = plane;
12627
12628 /* ... and break all links. */
12629 list_for_each_entry(connector, &dev->mode_config.connector_list,
12630 base.head) {
12631 if (connector->encoder->base.crtc != &crtc->base)
12632 continue;
12633
7f1950fb
EE
12634 connector->base.dpms = DRM_MODE_DPMS_OFF;
12635 connector->base.encoder = NULL;
24929352 12636 }
7f1950fb
EE
12637 /* multiple connectors may have the same encoder:
12638 * handle them and break crtc link separately */
12639 list_for_each_entry(connector, &dev->mode_config.connector_list,
12640 base.head)
12641 if (connector->encoder->base.crtc == &crtc->base) {
12642 connector->encoder->base.crtc = NULL;
12643 connector->encoder->connectors_active = false;
12644 }
24929352
DV
12645
12646 WARN_ON(crtc->active);
12647 crtc->base.enabled = false;
12648 }
24929352 12649
7fad798e
DV
12650 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12651 crtc->pipe == PIPE_A && !crtc->active) {
12652 /* BIOS forgot to enable pipe A, this mostly happens after
12653 * resume. Force-enable the pipe to fix this, the update_dpms
12654 * call below we restore the pipe to the right state, but leave
12655 * the required bits on. */
12656 intel_enable_pipe_a(dev);
12657 }
12658
24929352
DV
12659 /* Adjust the state of the output pipe according to whether we
12660 * have active connectors/encoders. */
12661 intel_crtc_update_dpms(&crtc->base);
12662
12663 if (crtc->active != crtc->base.enabled) {
12664 struct intel_encoder *encoder;
12665
12666 /* This can happen either due to bugs in the get_hw_state
12667 * functions or because the pipe is force-enabled due to the
12668 * pipe A quirk. */
12669 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12670 crtc->base.base.id,
12671 crtc->base.enabled ? "enabled" : "disabled",
12672 crtc->active ? "enabled" : "disabled");
12673
12674 crtc->base.enabled = crtc->active;
12675
12676 /* Because we only establish the connector -> encoder ->
12677 * crtc links if something is active, this means the
12678 * crtc is now deactivated. Break the links. connector
12679 * -> encoder links are only establish when things are
12680 * actually up, hence no need to break them. */
12681 WARN_ON(crtc->active);
12682
12683 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12684 WARN_ON(encoder->connectors_active);
12685 encoder->base.crtc = NULL;
12686 }
12687 }
c5ab3bc0
DV
12688
12689 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12690 /*
12691 * We start out with underrun reporting disabled to avoid races.
12692 * For correct bookkeeping mark this on active crtcs.
12693 *
c5ab3bc0
DV
12694 * Also on gmch platforms we dont have any hardware bits to
12695 * disable the underrun reporting. Which means we need to start
12696 * out with underrun reporting disabled also on inactive pipes,
12697 * since otherwise we'll complain about the garbage we read when
12698 * e.g. coming up after runtime pm.
12699 *
4cc31489
DV
12700 * No protection against concurrent access is required - at
12701 * worst a fifo underrun happens which also sets this to false.
12702 */
12703 crtc->cpu_fifo_underrun_disabled = true;
12704 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12705
12706 update_scanline_offset(crtc);
4cc31489 12707 }
24929352
DV
12708}
12709
12710static void intel_sanitize_encoder(struct intel_encoder *encoder)
12711{
12712 struct intel_connector *connector;
12713 struct drm_device *dev = encoder->base.dev;
12714
12715 /* We need to check both for a crtc link (meaning that the
12716 * encoder is active and trying to read from a pipe) and the
12717 * pipe itself being active. */
12718 bool has_active_crtc = encoder->base.crtc &&
12719 to_intel_crtc(encoder->base.crtc)->active;
12720
12721 if (encoder->connectors_active && !has_active_crtc) {
12722 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12723 encoder->base.base.id,
8e329a03 12724 encoder->base.name);
24929352
DV
12725
12726 /* Connector is active, but has no active pipe. This is
12727 * fallout from our resume register restoring. Disable
12728 * the encoder manually again. */
12729 if (encoder->base.crtc) {
12730 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12731 encoder->base.base.id,
8e329a03 12732 encoder->base.name);
24929352
DV
12733 encoder->disable(encoder);
12734 }
7f1950fb
EE
12735 encoder->base.crtc = NULL;
12736 encoder->connectors_active = false;
24929352
DV
12737
12738 /* Inconsistent output/port/pipe state happens presumably due to
12739 * a bug in one of the get_hw_state functions. Or someplace else
12740 * in our code, like the register restore mess on resume. Clamp
12741 * things to off as a safer default. */
12742 list_for_each_entry(connector,
12743 &dev->mode_config.connector_list,
12744 base.head) {
12745 if (connector->encoder != encoder)
12746 continue;
7f1950fb
EE
12747 connector->base.dpms = DRM_MODE_DPMS_OFF;
12748 connector->base.encoder = NULL;
24929352
DV
12749 }
12750 }
12751 /* Enabled encoders without active connectors will be fixed in
12752 * the crtc fixup. */
12753}
12754
04098753 12755void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12756{
12757 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12758 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12759
04098753
ID
12760 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12761 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12762 i915_disable_vga(dev);
12763 }
12764}
12765
12766void i915_redisable_vga(struct drm_device *dev)
12767{
12768 struct drm_i915_private *dev_priv = dev->dev_private;
12769
8dc8a27c
PZ
12770 /* This function can be called both from intel_modeset_setup_hw_state or
12771 * at a very early point in our resume sequence, where the power well
12772 * structures are not yet restored. Since this function is at a very
12773 * paranoid "someone might have enabled VGA while we were not looking"
12774 * level, just check if the power well is enabled instead of trying to
12775 * follow the "don't touch the power well if we don't need it" policy
12776 * the rest of the driver uses. */
04098753 12777 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12778 return;
12779
04098753 12780 i915_redisable_vga_power_on(dev);
0fde901f
KM
12781}
12782
98ec7739
VS
12783static bool primary_get_hw_state(struct intel_crtc *crtc)
12784{
12785 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12786
12787 if (!crtc->active)
12788 return false;
12789
12790 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12791}
12792
30e984df 12793static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
12794{
12795 struct drm_i915_private *dev_priv = dev->dev_private;
12796 enum pipe pipe;
24929352
DV
12797 struct intel_crtc *crtc;
12798 struct intel_encoder *encoder;
12799 struct intel_connector *connector;
5358901f 12800 int i;
24929352 12801
d3fcc808 12802 for_each_intel_crtc(dev, crtc) {
88adfff1 12803 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 12804
9953599b
DV
12805 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
12806
0e8ffe1b
DV
12807 crtc->active = dev_priv->display.get_pipe_config(crtc,
12808 &crtc->config);
24929352
DV
12809
12810 crtc->base.enabled = crtc->active;
98ec7739 12811 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
12812
12813 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
12814 crtc->base.base.id,
12815 crtc->active ? "enabled" : "disabled");
12816 }
12817
5358901f 12818 /* FIXME: Smash this into the new shared dpll infrastructure. */
affa9354 12819 if (HAS_DDI(dev))
6441ab5f
PZ
12820 intel_ddi_setup_hw_pll_state(dev);
12821
5358901f
DV
12822 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12823 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12824
12825 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
12826 pll->active = 0;
d3fcc808 12827 for_each_intel_crtc(dev, crtc) {
5358901f
DV
12828 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12829 pll->active++;
12830 }
12831 pll->refcount = pll->active;
12832
35c95375
DV
12833 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
12834 pll->name, pll->refcount, pll->on);
5358901f
DV
12835 }
12836
24929352
DV
12837 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12838 base.head) {
12839 pipe = 0;
12840
12841 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
12842 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12843 encoder->base.crtc = &crtc->base;
1d37b689 12844 encoder->get_config(encoder, &crtc->config);
24929352
DV
12845 } else {
12846 encoder->base.crtc = NULL;
12847 }
12848
12849 encoder->connectors_active = false;
6f2bcceb 12850 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 12851 encoder->base.base.id,
8e329a03 12852 encoder->base.name,
24929352 12853 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 12854 pipe_name(pipe));
24929352
DV
12855 }
12856
12857 list_for_each_entry(connector, &dev->mode_config.connector_list,
12858 base.head) {
12859 if (connector->get_hw_state(connector)) {
12860 connector->base.dpms = DRM_MODE_DPMS_ON;
12861 connector->encoder->connectors_active = true;
12862 connector->base.encoder = &connector->encoder->base;
12863 } else {
12864 connector->base.dpms = DRM_MODE_DPMS_OFF;
12865 connector->base.encoder = NULL;
12866 }
12867 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
12868 connector->base.base.id,
c23cc417 12869 connector->base.name,
24929352
DV
12870 connector->base.encoder ? "enabled" : "disabled");
12871 }
30e984df
DV
12872}
12873
12874/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
12875 * and i915 state tracking structures. */
12876void intel_modeset_setup_hw_state(struct drm_device *dev,
12877 bool force_restore)
12878{
12879 struct drm_i915_private *dev_priv = dev->dev_private;
12880 enum pipe pipe;
30e984df
DV
12881 struct intel_crtc *crtc;
12882 struct intel_encoder *encoder;
35c95375 12883 int i;
30e984df
DV
12884
12885 intel_modeset_readout_hw_state(dev);
24929352 12886
babea61d
JB
12887 /*
12888 * Now that we have the config, copy it to each CRTC struct
12889 * Note that this could go away if we move to using crtc_config
12890 * checking everywhere.
12891 */
d3fcc808 12892 for_each_intel_crtc(dev, crtc) {
d330a953 12893 if (crtc->active && i915.fastboot) {
f6a83288 12894 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
12895 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
12896 crtc->base.base.id);
12897 drm_mode_debug_printmodeline(&crtc->base.mode);
12898 }
12899 }
12900
24929352
DV
12901 /* HW state is read out, now we need to sanitize this mess. */
12902 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
12903 base.head) {
12904 intel_sanitize_encoder(encoder);
12905 }
12906
12907 for_each_pipe(pipe) {
12908 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
12909 intel_sanitize_crtc(crtc);
c0b03411 12910 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 12911 }
9a935856 12912
35c95375
DV
12913 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12914 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12915
12916 if (!pll->on || pll->active)
12917 continue;
12918
12919 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
12920
12921 pll->disable(dev_priv, pll);
12922 pll->on = false;
12923 }
12924
96f90c54 12925 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
12926 ilk_wm_get_hw_state(dev);
12927
45e2b5f6 12928 if (force_restore) {
7d0bc1ea
VS
12929 i915_redisable_vga(dev);
12930
f30da187
DV
12931 /*
12932 * We need to use raw interfaces for restoring state to avoid
12933 * checking (bogus) intermediate states.
12934 */
45e2b5f6 12935 for_each_pipe(pipe) {
b5644d05
JB
12936 struct drm_crtc *crtc =
12937 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
12938
12939 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 12940 crtc->primary->fb);
45e2b5f6
DV
12941 }
12942 } else {
12943 intel_modeset_update_staged_output_state(dev);
12944 }
8af6cf88
DV
12945
12946 intel_modeset_check_state(dev);
2c7111db
CW
12947}
12948
12949void intel_modeset_gem_init(struct drm_device *dev)
12950{
484b41dd
JB
12951 struct drm_crtc *c;
12952 struct intel_framebuffer *fb;
12953
ae48434c
ID
12954 mutex_lock(&dev->struct_mutex);
12955 intel_init_gt_powersave(dev);
12956 mutex_unlock(&dev->struct_mutex);
12957
1833b134 12958 intel_modeset_init_hw(dev);
02e792fb
DV
12959
12960 intel_setup_overlay(dev);
484b41dd
JB
12961
12962 /*
12963 * Make sure any fbs we allocated at startup are properly
12964 * pinned & fenced. When we do the allocation it's too early
12965 * for this.
12966 */
12967 mutex_lock(&dev->struct_mutex);
70e1e0ec 12968 for_each_crtc(dev, c) {
66e514c1 12969 if (!c->primary->fb)
484b41dd
JB
12970 continue;
12971
66e514c1 12972 fb = to_intel_framebuffer(c->primary->fb);
484b41dd
JB
12973 if (intel_pin_and_fence_fb_obj(dev, fb->obj, NULL)) {
12974 DRM_ERROR("failed to pin boot fb on pipe %d\n",
12975 to_intel_crtc(c)->pipe);
66e514c1
DA
12976 drm_framebuffer_unreference(c->primary->fb);
12977 c->primary->fb = NULL;
484b41dd
JB
12978 }
12979 }
12980 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12981}
12982
4932e2c3
ID
12983void intel_connector_unregister(struct intel_connector *intel_connector)
12984{
12985 struct drm_connector *connector = &intel_connector->base;
12986
12987 intel_panel_destroy_backlight(connector);
12988 drm_sysfs_connector_remove(connector);
12989}
12990
79e53945
JB
12991void intel_modeset_cleanup(struct drm_device *dev)
12992{
652c393a 12993 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 12994 struct drm_connector *connector;
652c393a 12995
fd0c0642
DV
12996 /*
12997 * Interrupts and polling as the first thing to avoid creating havoc.
12998 * Too much stuff here (turning of rps, connectors, ...) would
12999 * experience fancy races otherwise.
13000 */
13001 drm_irq_uninstall(dev);
13002 cancel_work_sync(&dev_priv->hotplug_work);
13003 /*
13004 * Due to the hpd irq storm handling the hotplug work can re-arm the
13005 * poll handlers. Hence disable polling after hpd handling is shut down.
13006 */
f87ea761 13007 drm_kms_helper_poll_fini(dev);
fd0c0642 13008
652c393a
JB
13009 mutex_lock(&dev->struct_mutex);
13010
723bfd70
JB
13011 intel_unregister_dsm_handler();
13012
973d04f9 13013 intel_disable_fbc(dev);
e70236a8 13014
8090c6b9 13015 intel_disable_gt_powersave(dev);
0cdab21f 13016
930ebb46
DV
13017 ironlake_teardown_rc6(dev);
13018
69341a5e
KH
13019 mutex_unlock(&dev->struct_mutex);
13020
1630fe75
CW
13021 /* flush any delayed tasks or pending work */
13022 flush_scheduled_work();
13023
db31af1d
JN
13024 /* destroy the backlight and sysfs files before encoders/connectors */
13025 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13026 struct intel_connector *intel_connector;
13027
13028 intel_connector = to_intel_connector(connector);
13029 intel_connector->unregister(intel_connector);
db31af1d 13030 }
d9255d57 13031
79e53945 13032 drm_mode_config_cleanup(dev);
4d7bb011
DV
13033
13034 intel_cleanup_overlay(dev);
ae48434c
ID
13035
13036 mutex_lock(&dev->struct_mutex);
13037 intel_cleanup_gt_powersave(dev);
13038 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13039}
13040
f1c79df3
ZW
13041/*
13042 * Return which encoder is currently attached for connector.
13043 */
df0e9248 13044struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13045{
df0e9248
CW
13046 return &intel_attached_encoder(connector)->base;
13047}
f1c79df3 13048
df0e9248
CW
13049void intel_connector_attach_encoder(struct intel_connector *connector,
13050 struct intel_encoder *encoder)
13051{
13052 connector->encoder = encoder;
13053 drm_mode_connector_attach_encoder(&connector->base,
13054 &encoder->base);
79e53945 13055}
28d52043
DA
13056
13057/*
13058 * set vga decode state - true == enable VGA decode
13059 */
13060int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13061{
13062 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13063 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13064 u16 gmch_ctrl;
13065
75fa041d
CW
13066 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13067 DRM_ERROR("failed to read control word\n");
13068 return -EIO;
13069 }
13070
c0cc8a55
CW
13071 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13072 return 0;
13073
28d52043
DA
13074 if (state)
13075 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13076 else
13077 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13078
13079 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13080 DRM_ERROR("failed to write control word\n");
13081 return -EIO;
13082 }
13083
28d52043
DA
13084 return 0;
13085}
c4a1d9e4 13086
c4a1d9e4 13087struct intel_display_error_state {
ff57f1b0
PZ
13088
13089 u32 power_well_driver;
13090
63b66e5b
CW
13091 int num_transcoders;
13092
c4a1d9e4
CW
13093 struct intel_cursor_error_state {
13094 u32 control;
13095 u32 position;
13096 u32 base;
13097 u32 size;
52331309 13098 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13099
13100 struct intel_pipe_error_state {
ddf9c536 13101 bool power_domain_on;
c4a1d9e4 13102 u32 source;
f301b1e1 13103 u32 stat;
52331309 13104 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13105
13106 struct intel_plane_error_state {
13107 u32 control;
13108 u32 stride;
13109 u32 size;
13110 u32 pos;
13111 u32 addr;
13112 u32 surface;
13113 u32 tile_offset;
52331309 13114 } plane[I915_MAX_PIPES];
63b66e5b
CW
13115
13116 struct intel_transcoder_error_state {
ddf9c536 13117 bool power_domain_on;
63b66e5b
CW
13118 enum transcoder cpu_transcoder;
13119
13120 u32 conf;
13121
13122 u32 htotal;
13123 u32 hblank;
13124 u32 hsync;
13125 u32 vtotal;
13126 u32 vblank;
13127 u32 vsync;
13128 } transcoder[4];
c4a1d9e4
CW
13129};
13130
13131struct intel_display_error_state *
13132intel_display_capture_error_state(struct drm_device *dev)
13133{
fbee40df 13134 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13135 struct intel_display_error_state *error;
63b66e5b
CW
13136 int transcoders[] = {
13137 TRANSCODER_A,
13138 TRANSCODER_B,
13139 TRANSCODER_C,
13140 TRANSCODER_EDP,
13141 };
c4a1d9e4
CW
13142 int i;
13143
63b66e5b
CW
13144 if (INTEL_INFO(dev)->num_pipes == 0)
13145 return NULL;
13146
9d1cb914 13147 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13148 if (error == NULL)
13149 return NULL;
13150
190be112 13151 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13152 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13153
52331309 13154 for_each_pipe(i) {
ddf9c536 13155 error->pipe[i].power_domain_on =
bfafe93a
ID
13156 intel_display_power_enabled_unlocked(dev_priv,
13157 POWER_DOMAIN_PIPE(i));
ddf9c536 13158 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13159 continue;
13160
5efb3e28
VS
13161 error->cursor[i].control = I915_READ(CURCNTR(i));
13162 error->cursor[i].position = I915_READ(CURPOS(i));
13163 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13164
13165 error->plane[i].control = I915_READ(DSPCNTR(i));
13166 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13167 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13168 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13169 error->plane[i].pos = I915_READ(DSPPOS(i));
13170 }
ca291363
PZ
13171 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13172 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13173 if (INTEL_INFO(dev)->gen >= 4) {
13174 error->plane[i].surface = I915_READ(DSPSURF(i));
13175 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13176 }
13177
c4a1d9e4 13178 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1
ID
13179
13180 if (!HAS_PCH_SPLIT(dev))
13181 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13182 }
13183
13184 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13185 if (HAS_DDI(dev_priv->dev))
13186 error->num_transcoders++; /* Account for eDP. */
13187
13188 for (i = 0; i < error->num_transcoders; i++) {
13189 enum transcoder cpu_transcoder = transcoders[i];
13190
ddf9c536 13191 error->transcoder[i].power_domain_on =
bfafe93a 13192 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13193 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13194 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13195 continue;
13196
63b66e5b
CW
13197 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13198
13199 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13200 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13201 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13202 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13203 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13204 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13205 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13206 }
13207
13208 return error;
13209}
13210
edc3d884
MK
13211#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13212
c4a1d9e4 13213void
edc3d884 13214intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13215 struct drm_device *dev,
13216 struct intel_display_error_state *error)
13217{
13218 int i;
13219
63b66e5b
CW
13220 if (!error)
13221 return;
13222
edc3d884 13223 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13224 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13225 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13226 error->power_well_driver);
52331309 13227 for_each_pipe(i) {
edc3d884 13228 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13229 err_printf(m, " Power: %s\n",
13230 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13231 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13232 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13233
13234 err_printf(m, "Plane [%d]:\n", i);
13235 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13236 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13237 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13238 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13239 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13240 }
4b71a570 13241 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13242 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13243 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13244 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13245 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13246 }
13247
edc3d884
MK
13248 err_printf(m, "Cursor [%d]:\n", i);
13249 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13250 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13251 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13252 }
63b66e5b
CW
13253
13254 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13255 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13256 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13257 err_printf(m, " Power: %s\n",
13258 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13259 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13260 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13261 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13262 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13263 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13264 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13265 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13266 }
c4a1d9e4 13267}
This page took 2.253463 seconds and 5 git commands to generate.