drm/i915: Split intel_get_shared_dpll() into smaller functions
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
319c1d42 40#include <drm/drm_atomic.h>
c196e1d6 41#include <drm/drm_atomic_helper.h>
760285e7
DH
42#include <drm/drm_dp_helper.h>
43#include <drm/drm_crtc_helper.h>
465c120c
MR
44#include <drm/drm_plane_helper.h>
45#include <drm/drm_rect.h>
c0f372b3 46#include <linux/dma_remapping.h>
fd8e058a
AG
47#include <linux/reservation.h>
48#include <linux/dma-buf.h>
79e53945 49
465c120c 50/* Primary plane formats for gen <= 3 */
568db4f2 51static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
52 DRM_FORMAT_C8,
53 DRM_FORMAT_RGB565,
465c120c 54 DRM_FORMAT_XRGB1555,
67fe7dc5 55 DRM_FORMAT_XRGB8888,
465c120c
MR
56};
57
58/* Primary plane formats for gen >= 4 */
568db4f2 59static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
60 DRM_FORMAT_C8,
61 DRM_FORMAT_RGB565,
62 DRM_FORMAT_XRGB8888,
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_XRGB2101010,
65 DRM_FORMAT_XBGR2101010,
66};
67
68static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
69 DRM_FORMAT_C8,
70 DRM_FORMAT_RGB565,
71 DRM_FORMAT_XRGB8888,
465c120c 72 DRM_FORMAT_XBGR8888,
67fe7dc5 73 DRM_FORMAT_ARGB8888,
465c120c
MR
74 DRM_FORMAT_ABGR8888,
75 DRM_FORMAT_XRGB2101010,
465c120c 76 DRM_FORMAT_XBGR2101010,
ea916ea0
KM
77 DRM_FORMAT_YUYV,
78 DRM_FORMAT_YVYU,
79 DRM_FORMAT_UYVY,
80 DRM_FORMAT_VYUY,
465c120c
MR
81};
82
3d7d6510
MR
83/* Cursor formats */
84static const uint32_t intel_cursor_formats[] = {
85 DRM_FORMAT_ARGB8888,
86};
87
f1f644dc 88static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 89 struct intel_crtc_state *pipe_config);
18442d08 90static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 91 struct intel_crtc_state *pipe_config);
f1f644dc 92
eb1bfe80
JB
93static int intel_framebuffer_init(struct drm_device *dev,
94 struct intel_framebuffer *ifb,
95 struct drm_mode_fb_cmd2 *mode_cmd,
96 struct drm_i915_gem_object *obj);
5b18e57c
DV
97static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 99static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
100 struct intel_link_m_n *m_n,
101 struct intel_link_m_n *m2_n2);
29407aab 102static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
103static void haswell_set_pipeconf(struct drm_crtc *crtc);
104static void intel_set_pipe_csc(struct drm_crtc *crtc);
d288f65f 105static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 106 const struct intel_crtc_state *pipe_config);
d288f65f 107static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 108 const struct intel_crtc_state *pipe_config);
613d2b27
ML
109static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
111static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112 struct intel_crtc_state *crtc_state);
5ab7b0b7
ID
113static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114 int num_connectors);
bfd16b2a
ML
115static void skylake_pfit_enable(struct intel_crtc *crtc);
116static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117static void ironlake_pfit_enable(struct intel_crtc *crtc);
043e9bda 118static void intel_modeset_setup_hw_state(struct drm_device *dev);
200757f5 119static void intel_pre_disable_primary(struct drm_crtc *crtc);
e7457a9a 120
79e53945 121typedef struct {
0206e353 122 int min, max;
79e53945
JB
123} intel_range_t;
124
125typedef struct {
0206e353
AJ
126 int dot_limit;
127 int p2_slow, p2_fast;
79e53945
JB
128} intel_p2_t;
129
d4906093
ML
130typedef struct intel_limit intel_limit_t;
131struct intel_limit {
0206e353
AJ
132 intel_range_t dot, vco, n, m, m1, m2, p, p1;
133 intel_p2_t p2;
d4906093 134};
79e53945 135
bfa7df01
VS
136/* returns HPLL frequency in kHz */
137static int valleyview_get_vco(struct drm_i915_private *dev_priv)
138{
139 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
140
141 /* Obtain SKU information */
142 mutex_lock(&dev_priv->sb_lock);
143 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
144 CCK_FUSE_HPLL_FREQ_MASK;
145 mutex_unlock(&dev_priv->sb_lock);
146
147 return vco_freq[hpll_freq] * 1000;
148}
149
150static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
151 const char *name, u32 reg)
152{
153 u32 val;
154 int divider;
155
156 if (dev_priv->hpll_freq == 0)
157 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
158
159 mutex_lock(&dev_priv->sb_lock);
160 val = vlv_cck_read(dev_priv, reg);
161 mutex_unlock(&dev_priv->sb_lock);
162
163 divider = val & CCK_FREQUENCY_VALUES;
164
165 WARN((val & CCK_FREQUENCY_STATUS) !=
166 (divider << CCK_FREQUENCY_STATUS_SHIFT),
167 "%s change in progress\n", name);
168
169 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
170}
171
e7dc33f3
VS
172static int
173intel_pch_rawclk(struct drm_i915_private *dev_priv)
d2acd215 174{
e7dc33f3
VS
175 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
176}
d2acd215 177
e7dc33f3
VS
178static int
179intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
180{
35d38d1f
VS
181 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
182 CCK_DISPLAY_REF_CLOCK_CONTROL);
d2acd215
DV
183}
184
e7dc33f3
VS
185static int
186intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
79e50a4f 187{
79e50a4f
JN
188 uint32_t clkcfg;
189
e7dc33f3 190 /* hrawclock is 1/4 the FSB frequency */
79e50a4f
JN
191 clkcfg = I915_READ(CLKCFG);
192 switch (clkcfg & CLKCFG_FSB_MASK) {
193 case CLKCFG_FSB_400:
e7dc33f3 194 return 100000;
79e50a4f 195 case CLKCFG_FSB_533:
e7dc33f3 196 return 133333;
79e50a4f 197 case CLKCFG_FSB_667:
e7dc33f3 198 return 166667;
79e50a4f 199 case CLKCFG_FSB_800:
e7dc33f3 200 return 200000;
79e50a4f 201 case CLKCFG_FSB_1067:
e7dc33f3 202 return 266667;
79e50a4f 203 case CLKCFG_FSB_1333:
e7dc33f3 204 return 333333;
79e50a4f
JN
205 /* these two are just a guess; one of them might be right */
206 case CLKCFG_FSB_1600:
207 case CLKCFG_FSB_1600_ALT:
e7dc33f3 208 return 400000;
79e50a4f 209 default:
e7dc33f3 210 return 133333;
79e50a4f
JN
211 }
212}
213
e7dc33f3
VS
214static void intel_update_rawclk(struct drm_i915_private *dev_priv)
215{
216 if (HAS_PCH_SPLIT(dev_priv))
217 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
218 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
219 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
220 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
221 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
222 else
223 return; /* no rawclk on other platforms, or no need to know it */
224
225 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
226}
227
bfa7df01
VS
228static void intel_update_czclk(struct drm_i915_private *dev_priv)
229{
666a4537 230 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
bfa7df01
VS
231 return;
232
233 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
234 CCK_CZ_CLOCK_CONTROL);
235
236 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
237}
238
021357ac 239static inline u32 /* units of 100MHz */
21a727b3
VS
240intel_fdi_link_freq(struct drm_i915_private *dev_priv,
241 const struct intel_crtc_state *pipe_config)
021357ac 242{
21a727b3
VS
243 if (HAS_DDI(dev_priv))
244 return pipe_config->port_clock; /* SPLL */
245 else if (IS_GEN5(dev_priv))
246 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
e3b247da 247 else
21a727b3 248 return 270000;
021357ac
CW
249}
250
5d536e28 251static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 252 .dot = { .min = 25000, .max = 350000 },
9c333719 253 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 254 .n = { .min = 2, .max = 16 },
0206e353
AJ
255 .m = { .min = 96, .max = 140 },
256 .m1 = { .min = 18, .max = 26 },
257 .m2 = { .min = 6, .max = 16 },
258 .p = { .min = 4, .max = 128 },
259 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
260 .p2 = { .dot_limit = 165000,
261 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
262};
263
5d536e28
DV
264static const intel_limit_t intel_limits_i8xx_dvo = {
265 .dot = { .min = 25000, .max = 350000 },
9c333719 266 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 267 .n = { .min = 2, .max = 16 },
5d536e28
DV
268 .m = { .min = 96, .max = 140 },
269 .m1 = { .min = 18, .max = 26 },
270 .m2 = { .min = 6, .max = 16 },
271 .p = { .min = 4, .max = 128 },
272 .p1 = { .min = 2, .max = 33 },
273 .p2 = { .dot_limit = 165000,
274 .p2_slow = 4, .p2_fast = 4 },
275};
276
e4b36699 277static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 278 .dot = { .min = 25000, .max = 350000 },
9c333719 279 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 280 .n = { .min = 2, .max = 16 },
0206e353
AJ
281 .m = { .min = 96, .max = 140 },
282 .m1 = { .min = 18, .max = 26 },
283 .m2 = { .min = 6, .max = 16 },
284 .p = { .min = 4, .max = 128 },
285 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
286 .p2 = { .dot_limit = 165000,
287 .p2_slow = 14, .p2_fast = 7 },
e4b36699 288};
273e27ca 289
e4b36699 290static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
291 .dot = { .min = 20000, .max = 400000 },
292 .vco = { .min = 1400000, .max = 2800000 },
293 .n = { .min = 1, .max = 6 },
294 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
295 .m1 = { .min = 8, .max = 18 },
296 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
297 .p = { .min = 5, .max = 80 },
298 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
299 .p2 = { .dot_limit = 200000,
300 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
301};
302
303static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
304 .dot = { .min = 20000, .max = 400000 },
305 .vco = { .min = 1400000, .max = 2800000 },
306 .n = { .min = 1, .max = 6 },
307 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
308 .m1 = { .min = 8, .max = 18 },
309 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
310 .p = { .min = 7, .max = 98 },
311 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
312 .p2 = { .dot_limit = 112000,
313 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
314};
315
273e27ca 316
e4b36699 317static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
318 .dot = { .min = 25000, .max = 270000 },
319 .vco = { .min = 1750000, .max = 3500000},
320 .n = { .min = 1, .max = 4 },
321 .m = { .min = 104, .max = 138 },
322 .m1 = { .min = 17, .max = 23 },
323 .m2 = { .min = 5, .max = 11 },
324 .p = { .min = 10, .max = 30 },
325 .p1 = { .min = 1, .max = 3},
326 .p2 = { .dot_limit = 270000,
327 .p2_slow = 10,
328 .p2_fast = 10
044c7c41 329 },
e4b36699
KP
330};
331
332static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
333 .dot = { .min = 22000, .max = 400000 },
334 .vco = { .min = 1750000, .max = 3500000},
335 .n = { .min = 1, .max = 4 },
336 .m = { .min = 104, .max = 138 },
337 .m1 = { .min = 16, .max = 23 },
338 .m2 = { .min = 5, .max = 11 },
339 .p = { .min = 5, .max = 80 },
340 .p1 = { .min = 1, .max = 8},
341 .p2 = { .dot_limit = 165000,
342 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
343};
344
345static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
346 .dot = { .min = 20000, .max = 115000 },
347 .vco = { .min = 1750000, .max = 3500000 },
348 .n = { .min = 1, .max = 3 },
349 .m = { .min = 104, .max = 138 },
350 .m1 = { .min = 17, .max = 23 },
351 .m2 = { .min = 5, .max = 11 },
352 .p = { .min = 28, .max = 112 },
353 .p1 = { .min = 2, .max = 8 },
354 .p2 = { .dot_limit = 0,
355 .p2_slow = 14, .p2_fast = 14
044c7c41 356 },
e4b36699
KP
357};
358
359static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
360 .dot = { .min = 80000, .max = 224000 },
361 .vco = { .min = 1750000, .max = 3500000 },
362 .n = { .min = 1, .max = 3 },
363 .m = { .min = 104, .max = 138 },
364 .m1 = { .min = 17, .max = 23 },
365 .m2 = { .min = 5, .max = 11 },
366 .p = { .min = 14, .max = 42 },
367 .p1 = { .min = 2, .max = 6 },
368 .p2 = { .dot_limit = 0,
369 .p2_slow = 7, .p2_fast = 7
044c7c41 370 },
e4b36699
KP
371};
372
f2b115e6 373static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
374 .dot = { .min = 20000, .max = 400000},
375 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 376 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
377 .n = { .min = 3, .max = 6 },
378 .m = { .min = 2, .max = 256 },
273e27ca 379 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
380 .m1 = { .min = 0, .max = 0 },
381 .m2 = { .min = 0, .max = 254 },
382 .p = { .min = 5, .max = 80 },
383 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
384 .p2 = { .dot_limit = 200000,
385 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
386};
387
f2b115e6 388static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
389 .dot = { .min = 20000, .max = 400000 },
390 .vco = { .min = 1700000, .max = 3500000 },
391 .n = { .min = 3, .max = 6 },
392 .m = { .min = 2, .max = 256 },
393 .m1 = { .min = 0, .max = 0 },
394 .m2 = { .min = 0, .max = 254 },
395 .p = { .min = 7, .max = 112 },
396 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
397 .p2 = { .dot_limit = 112000,
398 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
399};
400
273e27ca
EA
401/* Ironlake / Sandybridge
402 *
403 * We calculate clock using (register_value + 2) for N/M1/M2, so here
404 * the range value for them is (actual_value - 2).
405 */
b91ad0ec 406static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
407 .dot = { .min = 25000, .max = 350000 },
408 .vco = { .min = 1760000, .max = 3510000 },
409 .n = { .min = 1, .max = 5 },
410 .m = { .min = 79, .max = 127 },
411 .m1 = { .min = 12, .max = 22 },
412 .m2 = { .min = 5, .max = 9 },
413 .p = { .min = 5, .max = 80 },
414 .p1 = { .min = 1, .max = 8 },
415 .p2 = { .dot_limit = 225000,
416 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
417};
418
b91ad0ec 419static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
420 .dot = { .min = 25000, .max = 350000 },
421 .vco = { .min = 1760000, .max = 3510000 },
422 .n = { .min = 1, .max = 3 },
423 .m = { .min = 79, .max = 118 },
424 .m1 = { .min = 12, .max = 22 },
425 .m2 = { .min = 5, .max = 9 },
426 .p = { .min = 28, .max = 112 },
427 .p1 = { .min = 2, .max = 8 },
428 .p2 = { .dot_limit = 225000,
429 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
430};
431
432static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
433 .dot = { .min = 25000, .max = 350000 },
434 .vco = { .min = 1760000, .max = 3510000 },
435 .n = { .min = 1, .max = 3 },
436 .m = { .min = 79, .max = 127 },
437 .m1 = { .min = 12, .max = 22 },
438 .m2 = { .min = 5, .max = 9 },
439 .p = { .min = 14, .max = 56 },
440 .p1 = { .min = 2, .max = 8 },
441 .p2 = { .dot_limit = 225000,
442 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
443};
444
273e27ca 445/* LVDS 100mhz refclk limits. */
b91ad0ec 446static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
447 .dot = { .min = 25000, .max = 350000 },
448 .vco = { .min = 1760000, .max = 3510000 },
449 .n = { .min = 1, .max = 2 },
450 .m = { .min = 79, .max = 126 },
451 .m1 = { .min = 12, .max = 22 },
452 .m2 = { .min = 5, .max = 9 },
453 .p = { .min = 28, .max = 112 },
0206e353 454 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
455 .p2 = { .dot_limit = 225000,
456 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
457};
458
459static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
460 .dot = { .min = 25000, .max = 350000 },
461 .vco = { .min = 1760000, .max = 3510000 },
462 .n = { .min = 1, .max = 3 },
463 .m = { .min = 79, .max = 126 },
464 .m1 = { .min = 12, .max = 22 },
465 .m2 = { .min = 5, .max = 9 },
466 .p = { .min = 14, .max = 42 },
0206e353 467 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
468 .p2 = { .dot_limit = 225000,
469 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
470};
471
dc730512 472static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
473 /*
474 * These are the data rate limits (measured in fast clocks)
475 * since those are the strictest limits we have. The fast
476 * clock and actual rate limits are more relaxed, so checking
477 * them would make no difference.
478 */
479 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 480 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 481 .n = { .min = 1, .max = 7 },
a0c4da24
JB
482 .m1 = { .min = 2, .max = 3 },
483 .m2 = { .min = 11, .max = 156 },
b99ab663 484 .p1 = { .min = 2, .max = 3 },
5fdc9c49 485 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
486};
487
ef9348c8
CML
488static const intel_limit_t intel_limits_chv = {
489 /*
490 * These are the data rate limits (measured in fast clocks)
491 * since those are the strictest limits we have. The fast
492 * clock and actual rate limits are more relaxed, so checking
493 * them would make no difference.
494 */
495 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 496 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
497 .n = { .min = 1, .max = 1 },
498 .m1 = { .min = 2, .max = 2 },
499 .m2 = { .min = 24 << 22, .max = 175 << 22 },
500 .p1 = { .min = 2, .max = 4 },
501 .p2 = { .p2_slow = 1, .p2_fast = 14 },
502};
503
5ab7b0b7
ID
504static const intel_limit_t intel_limits_bxt = {
505 /* FIXME: find real dot limits */
506 .dot = { .min = 0, .max = INT_MAX },
e6292556 507 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
508 .n = { .min = 1, .max = 1 },
509 .m1 = { .min = 2, .max = 2 },
510 /* FIXME: find real m2 limits */
511 .m2 = { .min = 2 << 22, .max = 255 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 20 },
514};
515
cdba954e
ACO
516static bool
517needs_modeset(struct drm_crtc_state *state)
518{
fc596660 519 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
520}
521
e0638cdf
PZ
522/**
523 * Returns whether any output on the specified pipe is of the specified type
524 */
4093561b 525bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 526{
409ee761 527 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
528 struct intel_encoder *encoder;
529
409ee761 530 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
531 if (encoder->type == type)
532 return true;
533
534 return false;
535}
536
d0737e1d
ACO
537/**
538 * Returns whether any output on the specified pipe will have the specified
539 * type after a staged modeset is complete, i.e., the same as
540 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
541 * encoder->crtc.
542 */
a93e255f
ACO
543static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
544 int type)
d0737e1d 545{
a93e255f 546 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 547 struct drm_connector *connector;
a93e255f 548 struct drm_connector_state *connector_state;
d0737e1d 549 struct intel_encoder *encoder;
a93e255f
ACO
550 int i, num_connectors = 0;
551
da3ced29 552 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
553 if (connector_state->crtc != crtc_state->base.crtc)
554 continue;
555
556 num_connectors++;
d0737e1d 557
a93e255f
ACO
558 encoder = to_intel_encoder(connector_state->best_encoder);
559 if (encoder->type == type)
d0737e1d 560 return true;
a93e255f
ACO
561 }
562
563 WARN_ON(num_connectors == 0);
d0737e1d
ACO
564
565 return false;
566}
567
a93e255f
ACO
568static const intel_limit_t *
569intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
2c07245f 570{
a93e255f 571 struct drm_device *dev = crtc_state->base.crtc->dev;
2c07245f 572 const intel_limit_t *limit;
b91ad0ec 573
a93e255f 574 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 575 if (intel_is_dual_link_lvds(dev)) {
1b894b59 576 if (refclk == 100000)
b91ad0ec
ZW
577 limit = &intel_limits_ironlake_dual_lvds_100m;
578 else
579 limit = &intel_limits_ironlake_dual_lvds;
580 } else {
1b894b59 581 if (refclk == 100000)
b91ad0ec
ZW
582 limit = &intel_limits_ironlake_single_lvds_100m;
583 else
584 limit = &intel_limits_ironlake_single_lvds;
585 }
c6bb3538 586 } else
b91ad0ec 587 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
588
589 return limit;
590}
591
a93e255f
ACO
592static const intel_limit_t *
593intel_g4x_limit(struct intel_crtc_state *crtc_state)
044c7c41 594{
a93e255f 595 struct drm_device *dev = crtc_state->base.crtc->dev;
044c7c41
ML
596 const intel_limit_t *limit;
597
a93e255f 598 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
1974cad0 599 if (intel_is_dual_link_lvds(dev))
e4b36699 600 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 601 else
e4b36699 602 limit = &intel_limits_g4x_single_channel_lvds;
a93e255f
ACO
603 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
604 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
e4b36699 605 limit = &intel_limits_g4x_hdmi;
a93e255f 606 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
e4b36699 607 limit = &intel_limits_g4x_sdvo;
044c7c41 608 } else /* The option is for other outputs */
e4b36699 609 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
610
611 return limit;
612}
613
a93e255f
ACO
614static const intel_limit_t *
615intel_limit(struct intel_crtc_state *crtc_state, int refclk)
79e53945 616{
a93e255f 617 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945
JB
618 const intel_limit_t *limit;
619
5ab7b0b7
ID
620 if (IS_BROXTON(dev))
621 limit = &intel_limits_bxt;
622 else if (HAS_PCH_SPLIT(dev))
a93e255f 623 limit = intel_ironlake_limit(crtc_state, refclk);
2c07245f 624 else if (IS_G4X(dev)) {
a93e255f 625 limit = intel_g4x_limit(crtc_state);
f2b115e6 626 } else if (IS_PINEVIEW(dev)) {
a93e255f 627 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
f2b115e6 628 limit = &intel_limits_pineview_lvds;
2177832f 629 else
f2b115e6 630 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
631 } else if (IS_CHERRYVIEW(dev)) {
632 limit = &intel_limits_chv;
a0c4da24 633 } else if (IS_VALLEYVIEW(dev)) {
dc730512 634 limit = &intel_limits_vlv;
a6c45cf0 635 } else if (!IS_GEN2(dev)) {
a93e255f 636 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
a6c45cf0
CW
637 limit = &intel_limits_i9xx_lvds;
638 else
639 limit = &intel_limits_i9xx_sdvo;
79e53945 640 } else {
a93e255f 641 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
e4b36699 642 limit = &intel_limits_i8xx_lvds;
a93e255f 643 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
e4b36699 644 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
645 else
646 limit = &intel_limits_i8xx_dac;
79e53945
JB
647 }
648 return limit;
649}
650
dccbea3b
ID
651/*
652 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
653 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
654 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
655 * The helpers' return value is the rate of the clock that is fed to the
656 * display engine's pipe which can be the above fast dot clock rate or a
657 * divided-down version of it.
658 */
f2b115e6 659/* m1 is reserved as 0 in Pineview, n is a ring counter */
dccbea3b 660static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
79e53945 661{
2177832f
SL
662 clock->m = clock->m2 + 2;
663 clock->p = clock->p1 * clock->p2;
ed5ca77e 664 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 665 return 0;
fb03ac01
VS
666 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
667 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
668
669 return clock->dot;
2177832f
SL
670}
671
7429e9d4
DV
672static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
673{
674 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
675}
676
dccbea3b 677static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
2177832f 678{
7429e9d4 679 clock->m = i9xx_dpll_compute_m(clock);
79e53945 680 clock->p = clock->p1 * clock->p2;
ed5ca77e 681 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 682 return 0;
fb03ac01
VS
683 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
684 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
685
686 return clock->dot;
79e53945
JB
687}
688
dccbea3b 689static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
589eca67
ID
690{
691 clock->m = clock->m1 * clock->m2;
692 clock->p = clock->p1 * clock->p2;
693 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 694 return 0;
589eca67
ID
695 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
696 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
697
698 return clock->dot / 5;
589eca67
ID
699}
700
dccbea3b 701int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
ef9348c8
CML
702{
703 clock->m = clock->m1 * clock->m2;
704 clock->p = clock->p1 * clock->p2;
705 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 706 return 0;
ef9348c8
CML
707 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
708 clock->n << 22);
709 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
710
711 return clock->dot / 5;
ef9348c8
CML
712}
713
7c04d1d9 714#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
715/**
716 * Returns whether the given set of divisors are valid for a given refclk with
717 * the given connectors.
718 */
719
1b894b59
CW
720static bool intel_PLL_is_valid(struct drm_device *dev,
721 const intel_limit_t *limit,
722 const intel_clock_t *clock)
79e53945 723{
f01b7962
VS
724 if (clock->n < limit->n.min || limit->n.max < clock->n)
725 INTELPllInvalid("n out of range\n");
79e53945 726 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 727 INTELPllInvalid("p1 out of range\n");
79e53945 728 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 729 INTELPllInvalid("m2 out of range\n");
79e53945 730 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 731 INTELPllInvalid("m1 out of range\n");
f01b7962 732
666a4537
WB
733 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
734 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
735 if (clock->m1 <= clock->m2)
736 INTELPllInvalid("m1 <= m2\n");
737
666a4537 738 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
739 if (clock->p < limit->p.min || limit->p.max < clock->p)
740 INTELPllInvalid("p out of range\n");
741 if (clock->m < limit->m.min || limit->m.max < clock->m)
742 INTELPllInvalid("m out of range\n");
743 }
744
79e53945 745 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 746 INTELPllInvalid("vco out of range\n");
79e53945
JB
747 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
748 * connector, etc., rather than just a single range.
749 */
750 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 751 INTELPllInvalid("dot out of range\n");
79e53945
JB
752
753 return true;
754}
755
3b1429d9
VS
756static int
757i9xx_select_p2_div(const intel_limit_t *limit,
758 const struct intel_crtc_state *crtc_state,
759 int target)
79e53945 760{
3b1429d9 761 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 762
a93e255f 763 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 764 /*
a210b028
DV
765 * For LVDS just rely on its current settings for dual-channel.
766 * We haven't figured out how to reliably set up different
767 * single/dual channel state, if we even can.
79e53945 768 */
1974cad0 769 if (intel_is_dual_link_lvds(dev))
3b1429d9 770 return limit->p2.p2_fast;
79e53945 771 else
3b1429d9 772 return limit->p2.p2_slow;
79e53945
JB
773 } else {
774 if (target < limit->p2.dot_limit)
3b1429d9 775 return limit->p2.p2_slow;
79e53945 776 else
3b1429d9 777 return limit->p2.p2_fast;
79e53945 778 }
3b1429d9
VS
779}
780
781static bool
782i9xx_find_best_dpll(const intel_limit_t *limit,
783 struct intel_crtc_state *crtc_state,
784 int target, int refclk, intel_clock_t *match_clock,
785 intel_clock_t *best_clock)
786{
787 struct drm_device *dev = crtc_state->base.crtc->dev;
788 intel_clock_t clock;
789 int err = target;
79e53945 790
0206e353 791 memset(best_clock, 0, sizeof(*best_clock));
79e53945 792
3b1429d9
VS
793 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
794
42158660
ZY
795 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
796 clock.m1++) {
797 for (clock.m2 = limit->m2.min;
798 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 799 if (clock.m2 >= clock.m1)
42158660
ZY
800 break;
801 for (clock.n = limit->n.min;
802 clock.n <= limit->n.max; clock.n++) {
803 for (clock.p1 = limit->p1.min;
804 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
805 int this_err;
806
dccbea3b 807 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
808 if (!intel_PLL_is_valid(dev, limit,
809 &clock))
810 continue;
811 if (match_clock &&
812 clock.p != match_clock->p)
813 continue;
814
815 this_err = abs(clock.dot - target);
816 if (this_err < err) {
817 *best_clock = clock;
818 err = this_err;
819 }
820 }
821 }
822 }
823 }
824
825 return (err != target);
826}
827
828static bool
a93e255f
ACO
829pnv_find_best_dpll(const intel_limit_t *limit,
830 struct intel_crtc_state *crtc_state,
ee9300bb
DV
831 int target, int refclk, intel_clock_t *match_clock,
832 intel_clock_t *best_clock)
79e53945 833{
3b1429d9 834 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 835 intel_clock_t clock;
79e53945
JB
836 int err = target;
837
0206e353 838 memset(best_clock, 0, sizeof(*best_clock));
79e53945 839
3b1429d9
VS
840 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
841
42158660
ZY
842 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
843 clock.m1++) {
844 for (clock.m2 = limit->m2.min;
845 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
846 for (clock.n = limit->n.min;
847 clock.n <= limit->n.max; clock.n++) {
848 for (clock.p1 = limit->p1.min;
849 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
850 int this_err;
851
dccbea3b 852 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
853 if (!intel_PLL_is_valid(dev, limit,
854 &clock))
79e53945 855 continue;
cec2f356
SP
856 if (match_clock &&
857 clock.p != match_clock->p)
858 continue;
79e53945
JB
859
860 this_err = abs(clock.dot - target);
861 if (this_err < err) {
862 *best_clock = clock;
863 err = this_err;
864 }
865 }
866 }
867 }
868 }
869
870 return (err != target);
871}
872
d4906093 873static bool
a93e255f
ACO
874g4x_find_best_dpll(const intel_limit_t *limit,
875 struct intel_crtc_state *crtc_state,
ee9300bb
DV
876 int target, int refclk, intel_clock_t *match_clock,
877 intel_clock_t *best_clock)
d4906093 878{
3b1429d9 879 struct drm_device *dev = crtc_state->base.crtc->dev;
d4906093
ML
880 intel_clock_t clock;
881 int max_n;
3b1429d9 882 bool found = false;
6ba770dc
AJ
883 /* approximately equals target * 0.00585 */
884 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
885
886 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
887
888 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
889
d4906093 890 max_n = limit->n.max;
f77f13e2 891 /* based on hardware requirement, prefer smaller n to precision */
d4906093 892 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 893 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
894 for (clock.m1 = limit->m1.max;
895 clock.m1 >= limit->m1.min; clock.m1--) {
896 for (clock.m2 = limit->m2.max;
897 clock.m2 >= limit->m2.min; clock.m2--) {
898 for (clock.p1 = limit->p1.max;
899 clock.p1 >= limit->p1.min; clock.p1--) {
900 int this_err;
901
dccbea3b 902 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
903 if (!intel_PLL_is_valid(dev, limit,
904 &clock))
d4906093 905 continue;
1b894b59
CW
906
907 this_err = abs(clock.dot - target);
d4906093
ML
908 if (this_err < err_most) {
909 *best_clock = clock;
910 err_most = this_err;
911 max_n = clock.n;
912 found = true;
913 }
914 }
915 }
916 }
917 }
2c07245f
ZW
918 return found;
919}
920
d5dd62bd
ID
921/*
922 * Check if the calculated PLL configuration is more optimal compared to the
923 * best configuration and error found so far. Return the calculated error.
924 */
925static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
926 const intel_clock_t *calculated_clock,
927 const intel_clock_t *best_clock,
928 unsigned int best_error_ppm,
929 unsigned int *error_ppm)
930{
9ca3ba01
ID
931 /*
932 * For CHV ignore the error and consider only the P value.
933 * Prefer a bigger P value based on HW requirements.
934 */
935 if (IS_CHERRYVIEW(dev)) {
936 *error_ppm = 0;
937
938 return calculated_clock->p > best_clock->p;
939 }
940
24be4e46
ID
941 if (WARN_ON_ONCE(!target_freq))
942 return false;
943
d5dd62bd
ID
944 *error_ppm = div_u64(1000000ULL *
945 abs(target_freq - calculated_clock->dot),
946 target_freq);
947 /*
948 * Prefer a better P value over a better (smaller) error if the error
949 * is small. Ensure this preference for future configurations too by
950 * setting the error to 0.
951 */
952 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
953 *error_ppm = 0;
954
955 return true;
956 }
957
958 return *error_ppm + 10 < best_error_ppm;
959}
960
a0c4da24 961static bool
a93e255f
ACO
962vlv_find_best_dpll(const intel_limit_t *limit,
963 struct intel_crtc_state *crtc_state,
ee9300bb
DV
964 int target, int refclk, intel_clock_t *match_clock,
965 intel_clock_t *best_clock)
a0c4da24 966{
a93e255f 967 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 968 struct drm_device *dev = crtc->base.dev;
6b4bf1c4 969 intel_clock_t clock;
69e4f900 970 unsigned int bestppm = 1000000;
27e639bf
VS
971 /* min update 19.2 MHz */
972 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 973 bool found = false;
a0c4da24 974
6b4bf1c4
VS
975 target *= 5; /* fast clock */
976
977 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
978
979 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 980 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 981 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 982 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 983 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 984 clock.p = clock.p1 * clock.p2;
a0c4da24 985 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 986 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 987 unsigned int ppm;
69e4f900 988
6b4bf1c4
VS
989 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
990 refclk * clock.m1);
991
dccbea3b 992 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 993
f01b7962
VS
994 if (!intel_PLL_is_valid(dev, limit,
995 &clock))
43b0ac53
VS
996 continue;
997
d5dd62bd
ID
998 if (!vlv_PLL_is_optimal(dev, target,
999 &clock,
1000 best_clock,
1001 bestppm, &ppm))
1002 continue;
6b4bf1c4 1003
d5dd62bd
ID
1004 *best_clock = clock;
1005 bestppm = ppm;
1006 found = true;
a0c4da24
JB
1007 }
1008 }
1009 }
1010 }
a0c4da24 1011
49e497ef 1012 return found;
a0c4da24 1013}
a4fc5ed6 1014
ef9348c8 1015static bool
a93e255f
ACO
1016chv_find_best_dpll(const intel_limit_t *limit,
1017 struct intel_crtc_state *crtc_state,
ef9348c8
CML
1018 int target, int refclk, intel_clock_t *match_clock,
1019 intel_clock_t *best_clock)
1020{
a93e255f 1021 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 1022 struct drm_device *dev = crtc->base.dev;
9ca3ba01 1023 unsigned int best_error_ppm;
ef9348c8
CML
1024 intel_clock_t clock;
1025 uint64_t m2;
1026 int found = false;
1027
1028 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 1029 best_error_ppm = 1000000;
ef9348c8
CML
1030
1031 /*
1032 * Based on hardware doc, the n always set to 1, and m1 always
1033 * set to 2. If requires to support 200Mhz refclk, we need to
1034 * revisit this because n may not 1 anymore.
1035 */
1036 clock.n = 1, clock.m1 = 2;
1037 target *= 5; /* fast clock */
1038
1039 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1040 for (clock.p2 = limit->p2.p2_fast;
1041 clock.p2 >= limit->p2.p2_slow;
1042 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 1043 unsigned int error_ppm;
ef9348c8
CML
1044
1045 clock.p = clock.p1 * clock.p2;
1046
1047 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1048 clock.n) << 22, refclk * clock.m1);
1049
1050 if (m2 > INT_MAX/clock.m1)
1051 continue;
1052
1053 clock.m2 = m2;
1054
dccbea3b 1055 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
1056
1057 if (!intel_PLL_is_valid(dev, limit, &clock))
1058 continue;
1059
9ca3ba01
ID
1060 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1061 best_error_ppm, &error_ppm))
1062 continue;
1063
1064 *best_clock = clock;
1065 best_error_ppm = error_ppm;
1066 found = true;
ef9348c8
CML
1067 }
1068 }
1069
1070 return found;
1071}
1072
5ab7b0b7
ID
1073bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1074 intel_clock_t *best_clock)
1075{
1076 int refclk = i9xx_get_refclk(crtc_state, 0);
1077
1078 return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1079 target_clock, refclk, NULL, best_clock);
1080}
1081
20ddf665
VS
1082bool intel_crtc_active(struct drm_crtc *crtc)
1083{
1084 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1085
1086 /* Be paranoid as we can arrive here with only partial
1087 * state retrieved from the hardware during setup.
1088 *
241bfc38 1089 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
1090 * as Haswell has gained clock readout/fastboot support.
1091 *
66e514c1 1092 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 1093 * properly reconstruct framebuffers.
c3d1f436
MR
1094 *
1095 * FIXME: The intel_crtc->active here should be switched to
1096 * crtc->state->active once we have proper CRTC states wired up
1097 * for atomic.
20ddf665 1098 */
c3d1f436 1099 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1100 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1101}
1102
a5c961d1
PZ
1103enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1104 enum pipe pipe)
1105{
1106 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1107 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1108
6e3c9717 1109 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1110}
1111
fbf49ea2
VS
1112static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1113{
1114 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1115 i915_reg_t reg = PIPEDSL(pipe);
fbf49ea2
VS
1116 u32 line1, line2;
1117 u32 line_mask;
1118
1119 if (IS_GEN2(dev))
1120 line_mask = DSL_LINEMASK_GEN2;
1121 else
1122 line_mask = DSL_LINEMASK_GEN3;
1123
1124 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1125 msleep(5);
fbf49ea2
VS
1126 line2 = I915_READ(reg) & line_mask;
1127
1128 return line1 == line2;
1129}
1130
ab7ad7f6
KP
1131/*
1132 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1133 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1134 *
1135 * After disabling a pipe, we can't wait for vblank in the usual way,
1136 * spinning on the vblank interrupt status bit, since we won't actually
1137 * see an interrupt when the pipe is disabled.
1138 *
ab7ad7f6
KP
1139 * On Gen4 and above:
1140 * wait for the pipe register state bit to turn off
1141 *
1142 * Otherwise:
1143 * wait for the display line value to settle (it usually
1144 * ends up stopping at the start of the next frame).
58e10eb9 1145 *
9d0498a2 1146 */
575f7ab7 1147static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1148{
575f7ab7 1149 struct drm_device *dev = crtc->base.dev;
9d0498a2 1150 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1151 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1152 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1153
1154 if (INTEL_INFO(dev)->gen >= 4) {
f0f59a00 1155 i915_reg_t reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1156
1157 /* Wait for the Pipe State to go off */
58e10eb9
CW
1158 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1159 100))
284637d9 1160 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1161 } else {
ab7ad7f6 1162 /* Wait for the display line to settle */
fbf49ea2 1163 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1164 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1165 }
79e53945
JB
1166}
1167
b24e7179 1168/* Only for pre-ILK configs */
55607e8a
DV
1169void assert_pll(struct drm_i915_private *dev_priv,
1170 enum pipe pipe, bool state)
b24e7179 1171{
b24e7179
JB
1172 u32 val;
1173 bool cur_state;
1174
649636ef 1175 val = I915_READ(DPLL(pipe));
b24e7179 1176 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1177 I915_STATE_WARN(cur_state != state,
b24e7179 1178 "PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1179 onoff(state), onoff(cur_state));
b24e7179 1180}
b24e7179 1181
23538ef1
JN
1182/* XXX: the dsi pll is shared between MIPI DSI ports */
1183static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1184{
1185 u32 val;
1186 bool cur_state;
1187
a580516d 1188 mutex_lock(&dev_priv->sb_lock);
23538ef1 1189 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1190 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1191
1192 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1193 I915_STATE_WARN(cur_state != state,
23538ef1 1194 "DSI PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1195 onoff(state), onoff(cur_state));
23538ef1
JN
1196}
1197#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1198#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1199
040484af
JB
1200static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1201 enum pipe pipe, bool state)
1202{
040484af 1203 bool cur_state;
ad80a810
PZ
1204 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1205 pipe);
040484af 1206
affa9354
PZ
1207 if (HAS_DDI(dev_priv->dev)) {
1208 /* DDI does not have a specific FDI_TX register */
649636ef 1209 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
ad80a810 1210 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7 1211 } else {
649636ef 1212 u32 val = I915_READ(FDI_TX_CTL(pipe));
bf507ef7
ED
1213 cur_state = !!(val & FDI_TX_ENABLE);
1214 }
e2c719b7 1215 I915_STATE_WARN(cur_state != state,
040484af 1216 "FDI TX state assertion failure (expected %s, current %s)\n",
87ad3212 1217 onoff(state), onoff(cur_state));
040484af
JB
1218}
1219#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1220#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1221
1222static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1223 enum pipe pipe, bool state)
1224{
040484af
JB
1225 u32 val;
1226 bool cur_state;
1227
649636ef 1228 val = I915_READ(FDI_RX_CTL(pipe));
d63fa0dc 1229 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1230 I915_STATE_WARN(cur_state != state,
040484af 1231 "FDI RX state assertion failure (expected %s, current %s)\n",
87ad3212 1232 onoff(state), onoff(cur_state));
040484af
JB
1233}
1234#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1235#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1236
1237static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1238 enum pipe pipe)
1239{
040484af
JB
1240 u32 val;
1241
1242 /* ILK FDI PLL is always enabled */
3d13ef2e 1243 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1244 return;
1245
bf507ef7 1246 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1247 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1248 return;
1249
649636ef 1250 val = I915_READ(FDI_TX_CTL(pipe));
e2c719b7 1251 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1252}
1253
55607e8a
DV
1254void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1255 enum pipe pipe, bool state)
040484af 1256{
040484af 1257 u32 val;
55607e8a 1258 bool cur_state;
040484af 1259
649636ef 1260 val = I915_READ(FDI_RX_CTL(pipe));
55607e8a 1261 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1262 I915_STATE_WARN(cur_state != state,
55607e8a 1263 "FDI RX PLL assertion failure (expected %s, current %s)\n",
87ad3212 1264 onoff(state), onoff(cur_state));
040484af
JB
1265}
1266
b680c37a
DV
1267void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1268 enum pipe pipe)
ea0760cf 1269{
bedd4dba 1270 struct drm_device *dev = dev_priv->dev;
f0f59a00 1271 i915_reg_t pp_reg;
ea0760cf
JB
1272 u32 val;
1273 enum pipe panel_pipe = PIPE_A;
0de3b485 1274 bool locked = true;
ea0760cf 1275
bedd4dba
JN
1276 if (WARN_ON(HAS_DDI(dev)))
1277 return;
1278
1279 if (HAS_PCH_SPLIT(dev)) {
1280 u32 port_sel;
1281
ea0760cf 1282 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1283 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1284
1285 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1286 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1287 panel_pipe = PIPE_B;
1288 /* XXX: else fix for eDP */
666a4537 1289 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
bedd4dba
JN
1290 /* presumably write lock depends on pipe, not port select */
1291 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1292 panel_pipe = pipe;
ea0760cf
JB
1293 } else {
1294 pp_reg = PP_CONTROL;
bedd4dba
JN
1295 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1296 panel_pipe = PIPE_B;
ea0760cf
JB
1297 }
1298
1299 val = I915_READ(pp_reg);
1300 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1301 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1302 locked = false;
1303
e2c719b7 1304 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1305 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1306 pipe_name(pipe));
ea0760cf
JB
1307}
1308
93ce0ba6
JN
1309static void assert_cursor(struct drm_i915_private *dev_priv,
1310 enum pipe pipe, bool state)
1311{
1312 struct drm_device *dev = dev_priv->dev;
1313 bool cur_state;
1314
d9d82081 1315 if (IS_845G(dev) || IS_I865G(dev))
0b87c24e 1316 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
d9d82081 1317 else
5efb3e28 1318 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1319
e2c719b7 1320 I915_STATE_WARN(cur_state != state,
93ce0ba6 1321 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1322 pipe_name(pipe), onoff(state), onoff(cur_state));
93ce0ba6
JN
1323}
1324#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1325#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1326
b840d907
JB
1327void assert_pipe(struct drm_i915_private *dev_priv,
1328 enum pipe pipe, bool state)
b24e7179 1329{
63d7bbe9 1330 bool cur_state;
702e7a56
PZ
1331 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1332 pipe);
4feed0eb 1333 enum intel_display_power_domain power_domain;
b24e7179 1334
b6b5d049
VS
1335 /* if we need the pipe quirk it must be always on */
1336 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1337 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1338 state = true;
1339
4feed0eb
ID
1340 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1341 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
649636ef 1342 u32 val = I915_READ(PIPECONF(cpu_transcoder));
69310161 1343 cur_state = !!(val & PIPECONF_ENABLE);
4feed0eb
ID
1344
1345 intel_display_power_put(dev_priv, power_domain);
1346 } else {
1347 cur_state = false;
69310161
PZ
1348 }
1349
e2c719b7 1350 I915_STATE_WARN(cur_state != state,
63d7bbe9 1351 "pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1352 pipe_name(pipe), onoff(state), onoff(cur_state));
b24e7179
JB
1353}
1354
931872fc
CW
1355static void assert_plane(struct drm_i915_private *dev_priv,
1356 enum plane plane, bool state)
b24e7179 1357{
b24e7179 1358 u32 val;
931872fc 1359 bool cur_state;
b24e7179 1360
649636ef 1361 val = I915_READ(DSPCNTR(plane));
931872fc 1362 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1363 I915_STATE_WARN(cur_state != state,
931872fc 1364 "plane %c assertion failure (expected %s, current %s)\n",
87ad3212 1365 plane_name(plane), onoff(state), onoff(cur_state));
b24e7179
JB
1366}
1367
931872fc
CW
1368#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1369#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1370
b24e7179
JB
1371static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe)
1373{
653e1026 1374 struct drm_device *dev = dev_priv->dev;
649636ef 1375 int i;
b24e7179 1376
653e1026
VS
1377 /* Primary planes are fixed to pipes on gen4+ */
1378 if (INTEL_INFO(dev)->gen >= 4) {
649636ef 1379 u32 val = I915_READ(DSPCNTR(pipe));
e2c719b7 1380 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1381 "plane %c assertion failure, should be disabled but not\n",
1382 plane_name(pipe));
19ec1358 1383 return;
28c05794 1384 }
19ec1358 1385
b24e7179 1386 /* Need to check both planes against the pipe */
055e393f 1387 for_each_pipe(dev_priv, i) {
649636ef
VS
1388 u32 val = I915_READ(DSPCNTR(i));
1389 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
b24e7179 1390 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1391 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1392 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1393 plane_name(i), pipe_name(pipe));
b24e7179
JB
1394 }
1395}
1396
19332d7a
JB
1397static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399{
20674eef 1400 struct drm_device *dev = dev_priv->dev;
649636ef 1401 int sprite;
19332d7a 1402
7feb8b88 1403 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1404 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1405 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1406 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1407 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1408 sprite, pipe_name(pipe));
1409 }
666a4537 1410 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3bdcfc0c 1411 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1412 u32 val = I915_READ(SPCNTR(pipe, sprite));
e2c719b7 1413 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1414 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1415 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1416 }
1417 } else if (INTEL_INFO(dev)->gen >= 7) {
649636ef 1418 u32 val = I915_READ(SPRCTL(pipe));
e2c719b7 1419 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1420 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1421 plane_name(pipe), pipe_name(pipe));
1422 } else if (INTEL_INFO(dev)->gen >= 5) {
649636ef 1423 u32 val = I915_READ(DVSCNTR(pipe));
e2c719b7 1424 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1425 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1426 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1427 }
1428}
1429
08c71e5e
VS
1430static void assert_vblank_disabled(struct drm_crtc *crtc)
1431{
e2c719b7 1432 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1433 drm_crtc_vblank_put(crtc);
1434}
1435
7abd4b35
ACO
1436void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1437 enum pipe pipe)
92f2584a 1438{
92f2584a
JB
1439 u32 val;
1440 bool enabled;
1441
649636ef 1442 val = I915_READ(PCH_TRANSCONF(pipe));
92f2584a 1443 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1444 I915_STATE_WARN(enabled,
9db4a9c7
JB
1445 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1446 pipe_name(pipe));
92f2584a
JB
1447}
1448
4e634389
KP
1449static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1450 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1451{
1452 if ((val & DP_PORT_EN) == 0)
1453 return false;
1454
1455 if (HAS_PCH_CPT(dev_priv->dev)) {
f0f59a00 1456 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
f0575e92
KP
1457 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1458 return false;
44f37d1f
CML
1459 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1460 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1461 return false;
f0575e92
KP
1462 } else {
1463 if ((val & DP_PIPE_MASK) != (pipe << 30))
1464 return false;
1465 }
1466 return true;
1467}
1468
1519b995
KP
1469static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe, u32 val)
1471{
dc0fa718 1472 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1473 return false;
1474
1475 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1476 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1477 return false;
44f37d1f
CML
1478 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1479 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1480 return false;
1519b995 1481 } else {
dc0fa718 1482 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1483 return false;
1484 }
1485 return true;
1486}
1487
1488static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1489 enum pipe pipe, u32 val)
1490{
1491 if ((val & LVDS_PORT_EN) == 0)
1492 return false;
1493
1494 if (HAS_PCH_CPT(dev_priv->dev)) {
1495 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1496 return false;
1497 } else {
1498 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1499 return false;
1500 }
1501 return true;
1502}
1503
1504static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1505 enum pipe pipe, u32 val)
1506{
1507 if ((val & ADPA_DAC_ENABLE) == 0)
1508 return false;
1509 if (HAS_PCH_CPT(dev_priv->dev)) {
1510 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1511 return false;
1512 } else {
1513 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1514 return false;
1515 }
1516 return true;
1517}
1518
291906f1 1519static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0f59a00
VS
1520 enum pipe pipe, i915_reg_t reg,
1521 u32 port_sel)
291906f1 1522{
47a05eca 1523 u32 val = I915_READ(reg);
e2c719b7 1524 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1525 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1526 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1527
e2c719b7 1528 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
75c5da27 1529 && (val & DP_PIPEB_SELECT),
de9a35ab 1530 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1531}
1532
1533static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
f0f59a00 1534 enum pipe pipe, i915_reg_t reg)
291906f1 1535{
47a05eca 1536 u32 val = I915_READ(reg);
e2c719b7 1537 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1538 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1539 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1540
e2c719b7 1541 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1542 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1543 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1544}
1545
1546static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1547 enum pipe pipe)
1548{
291906f1 1549 u32 val;
291906f1 1550
f0575e92
KP
1551 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1552 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1553 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1 1554
649636ef 1555 val = I915_READ(PCH_ADPA);
e2c719b7 1556 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1557 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1558 pipe_name(pipe));
291906f1 1559
649636ef 1560 val = I915_READ(PCH_LVDS);
e2c719b7 1561 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1562 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1563 pipe_name(pipe));
291906f1 1564
e2debe91
PZ
1565 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1566 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1567 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1568}
1569
d288f65f 1570static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1571 const struct intel_crtc_state *pipe_config)
87442f73 1572{
426115cf
DV
1573 struct drm_device *dev = crtc->base.dev;
1574 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1575 i915_reg_t reg = DPLL(crtc->pipe);
d288f65f 1576 u32 dpll = pipe_config->dpll_hw_state.dpll;
87442f73 1577
426115cf 1578 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73 1579
87442f73 1580 /* PLL is protected by panel, make sure we can write it */
6a9e7363 1581 if (IS_MOBILE(dev_priv->dev))
426115cf 1582 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1583
426115cf
DV
1584 I915_WRITE(reg, dpll);
1585 POSTING_READ(reg);
1586 udelay(150);
1587
1588 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1589 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1590
d288f65f 1591 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
426115cf 1592 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1593
1594 /* We do this three times for luck */
426115cf 1595 I915_WRITE(reg, dpll);
87442f73
DV
1596 POSTING_READ(reg);
1597 udelay(150); /* wait for warmup */
426115cf 1598 I915_WRITE(reg, dpll);
87442f73
DV
1599 POSTING_READ(reg);
1600 udelay(150); /* wait for warmup */
426115cf 1601 I915_WRITE(reg, dpll);
87442f73
DV
1602 POSTING_READ(reg);
1603 udelay(150); /* wait for warmup */
1604}
1605
d288f65f 1606static void chv_enable_pll(struct intel_crtc *crtc,
5cec258b 1607 const struct intel_crtc_state *pipe_config)
9d556c99
CML
1608{
1609 struct drm_device *dev = crtc->base.dev;
1610 struct drm_i915_private *dev_priv = dev->dev_private;
1611 int pipe = crtc->pipe;
1612 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1613 u32 tmp;
1614
1615 assert_pipe_disabled(dev_priv, crtc->pipe);
1616
a580516d 1617 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1618
1619 /* Enable back the 10bit clock to display controller */
1620 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1621 tmp |= DPIO_DCLKP_EN;
1622 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1623
54433e91
VS
1624 mutex_unlock(&dev_priv->sb_lock);
1625
9d556c99
CML
1626 /*
1627 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1628 */
1629 udelay(1);
1630
1631 /* Enable PLL */
d288f65f 1632 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1633
1634 /* Check PLL is locked */
a11b0703 1635 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1636 DRM_ERROR("PLL %d failed to lock\n", pipe);
1637
a11b0703 1638 /* not sure when this should be written */
d288f65f 1639 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
a11b0703 1640 POSTING_READ(DPLL_MD(pipe));
9d556c99
CML
1641}
1642
1c4e0274
VS
1643static int intel_num_dvo_pipes(struct drm_device *dev)
1644{
1645 struct intel_crtc *crtc;
1646 int count = 0;
1647
1648 for_each_intel_crtc(dev, crtc)
3538b9df 1649 count += crtc->base.state->active &&
409ee761 1650 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1651
1652 return count;
1653}
1654
66e3d5c0 1655static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1656{
66e3d5c0
DV
1657 struct drm_device *dev = crtc->base.dev;
1658 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1659 i915_reg_t reg = DPLL(crtc->pipe);
6e3c9717 1660 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1661
66e3d5c0 1662 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1663
63d7bbe9 1664 /* No really, not for ILK+ */
3d13ef2e 1665 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1666
1667 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1668 if (IS_MOBILE(dev) && !IS_I830(dev))
1669 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1670
1c4e0274
VS
1671 /* Enable DVO 2x clock on both PLLs if necessary */
1672 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1673 /*
1674 * It appears to be important that we don't enable this
1675 * for the current pipe before otherwise configuring the
1676 * PLL. No idea how this should be handled if multiple
1677 * DVO outputs are enabled simultaneosly.
1678 */
1679 dpll |= DPLL_DVO_2X_MODE;
1680 I915_WRITE(DPLL(!crtc->pipe),
1681 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1682 }
66e3d5c0 1683
c2b63374
VS
1684 /*
1685 * Apparently we need to have VGA mode enabled prior to changing
1686 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1687 * dividers, even though the register value does change.
1688 */
1689 I915_WRITE(reg, 0);
1690
8e7a65aa
VS
1691 I915_WRITE(reg, dpll);
1692
66e3d5c0
DV
1693 /* Wait for the clocks to stabilize. */
1694 POSTING_READ(reg);
1695 udelay(150);
1696
1697 if (INTEL_INFO(dev)->gen >= 4) {
1698 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1699 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1700 } else {
1701 /* The pixel multiplier can only be updated once the
1702 * DPLL is enabled and the clocks are stable.
1703 *
1704 * So write it again.
1705 */
1706 I915_WRITE(reg, dpll);
1707 }
63d7bbe9
JB
1708
1709 /* We do this three times for luck */
66e3d5c0 1710 I915_WRITE(reg, dpll);
63d7bbe9
JB
1711 POSTING_READ(reg);
1712 udelay(150); /* wait for warmup */
66e3d5c0 1713 I915_WRITE(reg, dpll);
63d7bbe9
JB
1714 POSTING_READ(reg);
1715 udelay(150); /* wait for warmup */
66e3d5c0 1716 I915_WRITE(reg, dpll);
63d7bbe9
JB
1717 POSTING_READ(reg);
1718 udelay(150); /* wait for warmup */
1719}
1720
1721/**
50b44a44 1722 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1723 * @dev_priv: i915 private structure
1724 * @pipe: pipe PLL to disable
1725 *
1726 * Disable the PLL for @pipe, making sure the pipe is off first.
1727 *
1728 * Note! This is for pre-ILK only.
1729 */
1c4e0274 1730static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1731{
1c4e0274
VS
1732 struct drm_device *dev = crtc->base.dev;
1733 struct drm_i915_private *dev_priv = dev->dev_private;
1734 enum pipe pipe = crtc->pipe;
1735
1736 /* Disable DVO 2x clock on both PLLs if necessary */
1737 if (IS_I830(dev) &&
409ee761 1738 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
3538b9df 1739 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1740 I915_WRITE(DPLL(PIPE_B),
1741 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1742 I915_WRITE(DPLL(PIPE_A),
1743 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1744 }
1745
b6b5d049
VS
1746 /* Don't disable pipe or pipe PLLs if needed */
1747 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1748 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1749 return;
1750
1751 /* Make sure the pipe isn't still relying on us */
1752 assert_pipe_disabled(dev_priv, pipe);
1753
b8afb911 1754 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1755 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1756}
1757
f6071166
JB
1758static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1759{
b8afb911 1760 u32 val;
f6071166
JB
1761
1762 /* Make sure the pipe isn't still relying on us */
1763 assert_pipe_disabled(dev_priv, pipe);
1764
e5cbfbfb
ID
1765 /*
1766 * Leave integrated clock source and reference clock enabled for pipe B.
1767 * The latter is needed for VGA hotplug / manual detection.
1768 */
b8afb911 1769 val = DPLL_VGA_MODE_DIS;
f6071166 1770 if (pipe == PIPE_B)
60bfe44f 1771 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
f6071166
JB
1772 I915_WRITE(DPLL(pipe), val);
1773 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1774
1775}
1776
1777static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1778{
d752048d 1779 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1780 u32 val;
1781
a11b0703
VS
1782 /* Make sure the pipe isn't still relying on us */
1783 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1784
a11b0703 1785 /* Set PLL en = 0 */
60bfe44f
VS
1786 val = DPLL_SSC_REF_CLK_CHV |
1787 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1788 if (pipe != PIPE_A)
1789 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1790 I915_WRITE(DPLL(pipe), val);
1791 POSTING_READ(DPLL(pipe));
d752048d 1792
a580516d 1793 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1794
1795 /* Disable 10bit clock to display controller */
1796 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1797 val &= ~DPIO_DCLKP_EN;
1798 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1799
a580516d 1800 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1801}
1802
e4607fcf 1803void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1804 struct intel_digital_port *dport,
1805 unsigned int expected_mask)
89b667f8
JB
1806{
1807 u32 port_mask;
f0f59a00 1808 i915_reg_t dpll_reg;
89b667f8 1809
e4607fcf
CML
1810 switch (dport->port) {
1811 case PORT_B:
89b667f8 1812 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1813 dpll_reg = DPLL(0);
e4607fcf
CML
1814 break;
1815 case PORT_C:
89b667f8 1816 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1817 dpll_reg = DPLL(0);
9b6de0a1 1818 expected_mask <<= 4;
00fc31b7
CML
1819 break;
1820 case PORT_D:
1821 port_mask = DPLL_PORTD_READY_MASK;
1822 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1823 break;
1824 default:
1825 BUG();
1826 }
89b667f8 1827
9b6de0a1
VS
1828 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1829 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1830 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1831}
1832
b8a4f404
PZ
1833static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1834 enum pipe pipe)
040484af 1835{
23670b32 1836 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1837 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f0f59a00
VS
1839 i915_reg_t reg;
1840 uint32_t val, pipeconf_val;
040484af
JB
1841
1842 /* PCH only available on ILK+ */
55522f37 1843 BUG_ON(!HAS_PCH_SPLIT(dev));
040484af
JB
1844
1845 /* Make sure PCH DPLL is enabled */
e72f9fbf 1846 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1847 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1848
1849 /* FDI must be feeding us bits for PCH ports */
1850 assert_fdi_tx_enabled(dev_priv, pipe);
1851 assert_fdi_rx_enabled(dev_priv, pipe);
1852
23670b32
DV
1853 if (HAS_PCH_CPT(dev)) {
1854 /* Workaround: Set the timing override bit before enabling the
1855 * pch transcoder. */
1856 reg = TRANS_CHICKEN2(pipe);
1857 val = I915_READ(reg);
1858 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1859 I915_WRITE(reg, val);
59c859d6 1860 }
23670b32 1861
ab9412ba 1862 reg = PCH_TRANSCONF(pipe);
040484af 1863 val = I915_READ(reg);
5f7f726d 1864 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1865
1866 if (HAS_PCH_IBX(dev_priv->dev)) {
1867 /*
c5de7c6f
VS
1868 * Make the BPC in transcoder be consistent with
1869 * that in pipeconf reg. For HDMI we must use 8bpc
1870 * here for both 8bpc and 12bpc.
e9bcff5c 1871 */
dfd07d72 1872 val &= ~PIPECONF_BPC_MASK;
c5de7c6f
VS
1873 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1874 val |= PIPECONF_8BPC;
1875 else
1876 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1877 }
5f7f726d
PZ
1878
1879 val &= ~TRANS_INTERLACE_MASK;
1880 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6 1881 if (HAS_PCH_IBX(dev_priv->dev) &&
409ee761 1882 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1883 val |= TRANS_LEGACY_INTERLACED_ILK;
1884 else
1885 val |= TRANS_INTERLACED;
5f7f726d
PZ
1886 else
1887 val |= TRANS_PROGRESSIVE;
1888
040484af
JB
1889 I915_WRITE(reg, val | TRANS_ENABLE);
1890 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1891 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1892}
1893
8fb033d7 1894static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1895 enum transcoder cpu_transcoder)
040484af 1896{
8fb033d7 1897 u32 val, pipeconf_val;
8fb033d7
PZ
1898
1899 /* PCH only available on ILK+ */
55522f37 1900 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
8fb033d7 1901
8fb033d7 1902 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1903 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1904 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1905
223a6fdf 1906 /* Workaround: set timing override bit. */
36c0d0cf 1907 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1908 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1909 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
223a6fdf 1910
25f3ef11 1911 val = TRANS_ENABLE;
937bb610 1912 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1913
9a76b1c6
PZ
1914 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1915 PIPECONF_INTERLACED_ILK)
a35f2679 1916 val |= TRANS_INTERLACED;
8fb033d7
PZ
1917 else
1918 val |= TRANS_PROGRESSIVE;
1919
ab9412ba
DV
1920 I915_WRITE(LPT_TRANSCONF, val);
1921 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1922 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1923}
1924
b8a4f404
PZ
1925static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1926 enum pipe pipe)
040484af 1927{
23670b32 1928 struct drm_device *dev = dev_priv->dev;
f0f59a00
VS
1929 i915_reg_t reg;
1930 uint32_t val;
040484af
JB
1931
1932 /* FDI relies on the transcoder */
1933 assert_fdi_tx_disabled(dev_priv, pipe);
1934 assert_fdi_rx_disabled(dev_priv, pipe);
1935
291906f1
JB
1936 /* Ports must be off as well */
1937 assert_pch_ports_disabled(dev_priv, pipe);
1938
ab9412ba 1939 reg = PCH_TRANSCONF(pipe);
040484af
JB
1940 val = I915_READ(reg);
1941 val &= ~TRANS_ENABLE;
1942 I915_WRITE(reg, val);
1943 /* wait for PCH transcoder off, transcoder state */
1944 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1945 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32 1946
c465613b 1947 if (HAS_PCH_CPT(dev)) {
23670b32
DV
1948 /* Workaround: Clear the timing override chicken bit again. */
1949 reg = TRANS_CHICKEN2(pipe);
1950 val = I915_READ(reg);
1951 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1952 I915_WRITE(reg, val);
1953 }
040484af
JB
1954}
1955
ab4d966c 1956static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1957{
8fb033d7
PZ
1958 u32 val;
1959
ab9412ba 1960 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1961 val &= ~TRANS_ENABLE;
ab9412ba 1962 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1963 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1964 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1965 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1966
1967 /* Workaround: clear timing override bit. */
36c0d0cf 1968 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1969 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1970 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
040484af
JB
1971}
1972
b24e7179 1973/**
309cfea8 1974 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1975 * @crtc: crtc responsible for the pipe
b24e7179 1976 *
0372264a 1977 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1978 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1979 */
e1fdc473 1980static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1981{
0372264a
PZ
1982 struct drm_device *dev = crtc->base.dev;
1983 struct drm_i915_private *dev_priv = dev->dev_private;
1984 enum pipe pipe = crtc->pipe;
1a70a728 1985 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1a240d4d 1986 enum pipe pch_transcoder;
f0f59a00 1987 i915_reg_t reg;
b24e7179
JB
1988 u32 val;
1989
9e2ee2dd
VS
1990 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1991
58c6eaa2 1992 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1993 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1994 assert_sprites_disabled(dev_priv, pipe);
1995
681e5811 1996 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
1997 pch_transcoder = TRANSCODER_A;
1998 else
1999 pch_transcoder = pipe;
2000
b24e7179
JB
2001 /*
2002 * A pipe without a PLL won't actually be able to drive bits from
2003 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2004 * need the check.
2005 */
50360403 2006 if (HAS_GMCH_DISPLAY(dev_priv->dev))
a65347ba 2007 if (crtc->config->has_dsi_encoder)
23538ef1
JN
2008 assert_dsi_pll_enabled(dev_priv);
2009 else
2010 assert_pll_enabled(dev_priv, pipe);
040484af 2011 else {
6e3c9717 2012 if (crtc->config->has_pch_encoder) {
040484af 2013 /* if driving the PCH, we need FDI enabled */
cc391bbb 2014 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2015 assert_fdi_tx_pll_enabled(dev_priv,
2016 (enum pipe) cpu_transcoder);
040484af
JB
2017 }
2018 /* FIXME: assert CPU port conditions for SNB+ */
2019 }
b24e7179 2020
702e7a56 2021 reg = PIPECONF(cpu_transcoder);
b24e7179 2022 val = I915_READ(reg);
7ad25d48 2023 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
2024 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2025 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2026 return;
7ad25d48 2027 }
00d70b15
CW
2028
2029 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2030 POSTING_READ(reg);
b7792d8b
VS
2031
2032 /*
2033 * Until the pipe starts DSL will read as 0, which would cause
2034 * an apparent vblank timestamp jump, which messes up also the
2035 * frame count when it's derived from the timestamps. So let's
2036 * wait for the pipe to start properly before we call
2037 * drm_crtc_vblank_on()
2038 */
2039 if (dev->max_vblank_count == 0 &&
2040 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2041 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
b24e7179
JB
2042}
2043
2044/**
309cfea8 2045 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2046 * @crtc: crtc whose pipes is to be disabled
b24e7179 2047 *
575f7ab7
VS
2048 * Disable the pipe of @crtc, making sure that various hardware
2049 * specific requirements are met, if applicable, e.g. plane
2050 * disabled, panel fitter off, etc.
b24e7179
JB
2051 *
2052 * Will wait until the pipe has shut down before returning.
2053 */
575f7ab7 2054static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2055{
575f7ab7 2056 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2057 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2058 enum pipe pipe = crtc->pipe;
f0f59a00 2059 i915_reg_t reg;
b24e7179
JB
2060 u32 val;
2061
9e2ee2dd
VS
2062 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2063
b24e7179
JB
2064 /*
2065 * Make sure planes won't keep trying to pump pixels to us,
2066 * or we might hang the display.
2067 */
2068 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2069 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2070 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2071
702e7a56 2072 reg = PIPECONF(cpu_transcoder);
b24e7179 2073 val = I915_READ(reg);
00d70b15
CW
2074 if ((val & PIPECONF_ENABLE) == 0)
2075 return;
2076
67adc644
VS
2077 /*
2078 * Double wide has implications for planes
2079 * so best keep it disabled when not needed.
2080 */
6e3c9717 2081 if (crtc->config->double_wide)
67adc644
VS
2082 val &= ~PIPECONF_DOUBLE_WIDE;
2083
2084 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2085 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2086 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2087 val &= ~PIPECONF_ENABLE;
2088
2089 I915_WRITE(reg, val);
2090 if ((val & PIPECONF_ENABLE) == 0)
2091 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2092}
2093
693db184
CW
2094static bool need_vtd_wa(struct drm_device *dev)
2095{
2096#ifdef CONFIG_INTEL_IOMMU
2097 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2098 return true;
2099#endif
2100 return false;
2101}
2102
832be82f
VS
2103static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2104{
2105 return IS_GEN2(dev_priv) ? 2048 : 4096;
2106}
2107
27ba3910
VS
2108static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2109 uint64_t fb_modifier, unsigned int cpp)
7b49f948
VS
2110{
2111 switch (fb_modifier) {
2112 case DRM_FORMAT_MOD_NONE:
2113 return cpp;
2114 case I915_FORMAT_MOD_X_TILED:
2115 if (IS_GEN2(dev_priv))
2116 return 128;
2117 else
2118 return 512;
2119 case I915_FORMAT_MOD_Y_TILED:
2120 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2121 return 128;
2122 else
2123 return 512;
2124 case I915_FORMAT_MOD_Yf_TILED:
2125 switch (cpp) {
2126 case 1:
2127 return 64;
2128 case 2:
2129 case 4:
2130 return 128;
2131 case 8:
2132 case 16:
2133 return 256;
2134 default:
2135 MISSING_CASE(cpp);
2136 return cpp;
2137 }
2138 break;
2139 default:
2140 MISSING_CASE(fb_modifier);
2141 return cpp;
2142 }
2143}
2144
832be82f
VS
2145unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2146 uint64_t fb_modifier, unsigned int cpp)
a57ce0b2 2147{
832be82f
VS
2148 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2149 return 1;
2150 else
2151 return intel_tile_size(dev_priv) /
27ba3910 2152 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
6761dd31
TU
2153}
2154
8d0deca8
VS
2155/* Return the tile dimensions in pixel units */
2156static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2157 unsigned int *tile_width,
2158 unsigned int *tile_height,
2159 uint64_t fb_modifier,
2160 unsigned int cpp)
2161{
2162 unsigned int tile_width_bytes =
2163 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2164
2165 *tile_width = tile_width_bytes / cpp;
2166 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2167}
2168
6761dd31
TU
2169unsigned int
2170intel_fb_align_height(struct drm_device *dev, unsigned int height,
832be82f 2171 uint32_t pixel_format, uint64_t fb_modifier)
6761dd31 2172{
832be82f
VS
2173 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2174 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2175
2176 return ALIGN(height, tile_height);
a57ce0b2
JB
2177}
2178
1663b9d6
VS
2179unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2180{
2181 unsigned int size = 0;
2182 int i;
2183
2184 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2185 size += rot_info->plane[i].width * rot_info->plane[i].height;
2186
2187 return size;
2188}
2189
75c82a53 2190static void
3465c580
VS
2191intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2192 const struct drm_framebuffer *fb,
2193 unsigned int rotation)
f64b98cd 2194{
2d7a215f
VS
2195 if (intel_rotation_90_or_270(rotation)) {
2196 *view = i915_ggtt_view_rotated;
2197 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2198 } else {
2199 *view = i915_ggtt_view_normal;
2200 }
2201}
50470bb0 2202
2d7a215f
VS
2203static void
2204intel_fill_fb_info(struct drm_i915_private *dev_priv,
2205 struct drm_framebuffer *fb)
2206{
2207 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2208 unsigned int tile_size, tile_width, tile_height, cpp;
50470bb0 2209
d9b3288e
VS
2210 tile_size = intel_tile_size(dev_priv);
2211
2212 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
8d0deca8
VS
2213 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2214 fb->modifier[0], cpp);
d9b3288e 2215
1663b9d6
VS
2216 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2217 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
84fe03f7 2218
89e3e142 2219 if (info->pixel_format == DRM_FORMAT_NV12) {
832be82f 2220 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
8d0deca8
VS
2221 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2222 fb->modifier[1], cpp);
d9b3288e 2223
2d7a215f 2224 info->uv_offset = fb->offsets[1];
1663b9d6
VS
2225 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2226 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
89e3e142 2227 }
f64b98cd
TU
2228}
2229
603525d7 2230static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
4e9a86b6
VS
2231{
2232 if (INTEL_INFO(dev_priv)->gen >= 9)
2233 return 256 * 1024;
985b8bb4 2234 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
666a4537 2235 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4e9a86b6
VS
2236 return 128 * 1024;
2237 else if (INTEL_INFO(dev_priv)->gen >= 4)
2238 return 4 * 1024;
2239 else
44c5905e 2240 return 0;
4e9a86b6
VS
2241}
2242
603525d7
VS
2243static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2244 uint64_t fb_modifier)
2245{
2246 switch (fb_modifier) {
2247 case DRM_FORMAT_MOD_NONE:
2248 return intel_linear_alignment(dev_priv);
2249 case I915_FORMAT_MOD_X_TILED:
2250 if (INTEL_INFO(dev_priv)->gen >= 9)
2251 return 256 * 1024;
2252 return 0;
2253 case I915_FORMAT_MOD_Y_TILED:
2254 case I915_FORMAT_MOD_Yf_TILED:
2255 return 1 * 1024 * 1024;
2256 default:
2257 MISSING_CASE(fb_modifier);
2258 return 0;
2259 }
2260}
2261
127bd2ac 2262int
3465c580
VS
2263intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2264 unsigned int rotation)
6b95a207 2265{
850c4cdc 2266 struct drm_device *dev = fb->dev;
ce453d81 2267 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2268 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2269 struct i915_ggtt_view view;
6b95a207
KH
2270 u32 alignment;
2271 int ret;
2272
ebcdd39e
MR
2273 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2274
603525d7 2275 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
6b95a207 2276
3465c580 2277 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2278
693db184
CW
2279 /* Note that the w/a also requires 64 PTE of padding following the
2280 * bo. We currently fill all unused PTE with the shadow page and so
2281 * we should always have valid PTE following the scanout preventing
2282 * the VT-d warning.
2283 */
2284 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2285 alignment = 256 * 1024;
2286
d6dd6843
PZ
2287 /*
2288 * Global gtt pte registers are special registers which actually forward
2289 * writes to a chunk of system memory. Which means that there is no risk
2290 * that the register values disappear as soon as we call
2291 * intel_runtime_pm_put(), so it is correct to wrap only the
2292 * pin/unpin/fence and not more.
2293 */
2294 intel_runtime_pm_get(dev_priv);
2295
7580d774
ML
2296 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2297 &view);
48b956c5 2298 if (ret)
b26a6b35 2299 goto err_pm;
6b95a207
KH
2300
2301 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2302 * fence, whereas 965+ only requires a fence if using
2303 * framebuffer compression. For simplicity, we always install
2304 * a fence as the cost is not that onerous.
2305 */
9807216f
VK
2306 if (view.type == I915_GGTT_VIEW_NORMAL) {
2307 ret = i915_gem_object_get_fence(obj);
2308 if (ret == -EDEADLK) {
2309 /*
2310 * -EDEADLK means there are no free fences
2311 * no pending flips.
2312 *
2313 * This is propagated to atomic, but it uses
2314 * -EDEADLK to force a locking recovery, so
2315 * change the returned error to -EBUSY.
2316 */
2317 ret = -EBUSY;
2318 goto err_unpin;
2319 } else if (ret)
2320 goto err_unpin;
1690e1eb 2321
9807216f
VK
2322 i915_gem_object_pin_fence(obj);
2323 }
6b95a207 2324
d6dd6843 2325 intel_runtime_pm_put(dev_priv);
6b95a207 2326 return 0;
48b956c5
CW
2327
2328err_unpin:
f64b98cd 2329 i915_gem_object_unpin_from_display_plane(obj, &view);
b26a6b35 2330err_pm:
d6dd6843 2331 intel_runtime_pm_put(dev_priv);
48b956c5 2332 return ret;
6b95a207
KH
2333}
2334
3465c580 2335static void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
1690e1eb 2336{
82bc3b2d 2337 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2338 struct i915_ggtt_view view;
82bc3b2d 2339
ebcdd39e
MR
2340 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2341
3465c580 2342 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2343
9807216f
VK
2344 if (view.type == I915_GGTT_VIEW_NORMAL)
2345 i915_gem_object_unpin_fence(obj);
2346
f64b98cd 2347 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2348}
2349
29cf9491
VS
2350/*
2351 * Adjust the tile offset by moving the difference into
2352 * the x/y offsets.
2353 *
2354 * Input tile dimensions and pitch must already be
2355 * rotated to match x and y, and in pixel units.
2356 */
2357static u32 intel_adjust_tile_offset(int *x, int *y,
2358 unsigned int tile_width,
2359 unsigned int tile_height,
2360 unsigned int tile_size,
2361 unsigned int pitch_tiles,
2362 u32 old_offset,
2363 u32 new_offset)
2364{
2365 unsigned int tiles;
2366
2367 WARN_ON(old_offset & (tile_size - 1));
2368 WARN_ON(new_offset & (tile_size - 1));
2369 WARN_ON(new_offset > old_offset);
2370
2371 tiles = (old_offset - new_offset) / tile_size;
2372
2373 *y += tiles / pitch_tiles * tile_height;
2374 *x += tiles % pitch_tiles * tile_width;
2375
2376 return new_offset;
2377}
2378
8d0deca8
VS
2379/*
2380 * Computes the linear offset to the base tile and adjusts
2381 * x, y. bytes per pixel is assumed to be a power-of-two.
2382 *
2383 * In the 90/270 rotated case, x and y are assumed
2384 * to be already rotated to match the rotated GTT view, and
2385 * pitch is the tile_height aligned framebuffer height.
2386 */
4f2d9934
VS
2387u32 intel_compute_tile_offset(int *x, int *y,
2388 const struct drm_framebuffer *fb, int plane,
8d0deca8
VS
2389 unsigned int pitch,
2390 unsigned int rotation)
c2c75131 2391{
4f2d9934
VS
2392 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2393 uint64_t fb_modifier = fb->modifier[plane];
2394 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
29cf9491
VS
2395 u32 offset, offset_aligned, alignment;
2396
2397 alignment = intel_surf_alignment(dev_priv, fb_modifier);
2398 if (alignment)
2399 alignment--;
2400
b5c65338 2401 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
8d0deca8
VS
2402 unsigned int tile_size, tile_width, tile_height;
2403 unsigned int tile_rows, tiles, pitch_tiles;
c2c75131 2404
d843310d 2405 tile_size = intel_tile_size(dev_priv);
8d0deca8
VS
2406 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2407 fb_modifier, cpp);
2408
2409 if (intel_rotation_90_or_270(rotation)) {
2410 pitch_tiles = pitch / tile_height;
2411 swap(tile_width, tile_height);
2412 } else {
2413 pitch_tiles = pitch / (tile_width * cpp);
2414 }
d843310d
VS
2415
2416 tile_rows = *y / tile_height;
2417 *y %= tile_height;
c2c75131 2418
8d0deca8
VS
2419 tiles = *x / tile_width;
2420 *x %= tile_width;
bc752862 2421
29cf9491
VS
2422 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2423 offset_aligned = offset & ~alignment;
bc752862 2424
29cf9491
VS
2425 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2426 tile_size, pitch_tiles,
2427 offset, offset_aligned);
2428 } else {
bc752862 2429 offset = *y * pitch + *x * cpp;
29cf9491
VS
2430 offset_aligned = offset & ~alignment;
2431
4e9a86b6
VS
2432 *y = (offset & alignment) / pitch;
2433 *x = ((offset & alignment) - *y * pitch) / cpp;
bc752862 2434 }
29cf9491
VS
2435
2436 return offset_aligned;
c2c75131
DV
2437}
2438
b35d63fa 2439static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2440{
2441 switch (format) {
2442 case DISPPLANE_8BPP:
2443 return DRM_FORMAT_C8;
2444 case DISPPLANE_BGRX555:
2445 return DRM_FORMAT_XRGB1555;
2446 case DISPPLANE_BGRX565:
2447 return DRM_FORMAT_RGB565;
2448 default:
2449 case DISPPLANE_BGRX888:
2450 return DRM_FORMAT_XRGB8888;
2451 case DISPPLANE_RGBX888:
2452 return DRM_FORMAT_XBGR8888;
2453 case DISPPLANE_BGRX101010:
2454 return DRM_FORMAT_XRGB2101010;
2455 case DISPPLANE_RGBX101010:
2456 return DRM_FORMAT_XBGR2101010;
2457 }
2458}
2459
bc8d7dff
DL
2460static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2461{
2462 switch (format) {
2463 case PLANE_CTL_FORMAT_RGB_565:
2464 return DRM_FORMAT_RGB565;
2465 default:
2466 case PLANE_CTL_FORMAT_XRGB_8888:
2467 if (rgb_order) {
2468 if (alpha)
2469 return DRM_FORMAT_ABGR8888;
2470 else
2471 return DRM_FORMAT_XBGR8888;
2472 } else {
2473 if (alpha)
2474 return DRM_FORMAT_ARGB8888;
2475 else
2476 return DRM_FORMAT_XRGB8888;
2477 }
2478 case PLANE_CTL_FORMAT_XRGB_2101010:
2479 if (rgb_order)
2480 return DRM_FORMAT_XBGR2101010;
2481 else
2482 return DRM_FORMAT_XRGB2101010;
2483 }
2484}
2485
5724dbd1 2486static bool
f6936e29
DV
2487intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2488 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2489{
2490 struct drm_device *dev = crtc->base.dev;
3badb49f 2491 struct drm_i915_private *dev_priv = to_i915(dev);
46f297fb
JB
2492 struct drm_i915_gem_object *obj = NULL;
2493 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2494 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2495 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2496 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2497 PAGE_SIZE);
2498
2499 size_aligned -= base_aligned;
46f297fb 2500
ff2652ea
CW
2501 if (plane_config->size == 0)
2502 return false;
2503
3badb49f
PZ
2504 /* If the FB is too big, just don't use it since fbdev is not very
2505 * important and we should probably use that space with FBC or other
2506 * features. */
2507 if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2508 return false;
2509
12c83d99
TU
2510 mutex_lock(&dev->struct_mutex);
2511
f37b5c2b
DV
2512 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2513 base_aligned,
2514 base_aligned,
2515 size_aligned);
12c83d99
TU
2516 if (!obj) {
2517 mutex_unlock(&dev->struct_mutex);
484b41dd 2518 return false;
12c83d99 2519 }
46f297fb 2520
49af449b
DL
2521 obj->tiling_mode = plane_config->tiling;
2522 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2523 obj->stride = fb->pitches[0];
46f297fb 2524
6bf129df
DL
2525 mode_cmd.pixel_format = fb->pixel_format;
2526 mode_cmd.width = fb->width;
2527 mode_cmd.height = fb->height;
2528 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2529 mode_cmd.modifier[0] = fb->modifier[0];
2530 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb 2531
6bf129df 2532 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2533 &mode_cmd, obj)) {
46f297fb
JB
2534 DRM_DEBUG_KMS("intel fb init failed\n");
2535 goto out_unref_obj;
2536 }
12c83d99 2537
46f297fb 2538 mutex_unlock(&dev->struct_mutex);
484b41dd 2539
f6936e29 2540 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2541 return true;
46f297fb
JB
2542
2543out_unref_obj:
2544 drm_gem_object_unreference(&obj->base);
2545 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2546 return false;
2547}
2548
afd65eb4
MR
2549/* Update plane->state->fb to match plane->fb after driver-internal updates */
2550static void
2551update_state_fb(struct drm_plane *plane)
2552{
2553 if (plane->fb == plane->state->fb)
2554 return;
2555
2556 if (plane->state->fb)
2557 drm_framebuffer_unreference(plane->state->fb);
2558 plane->state->fb = plane->fb;
2559 if (plane->state->fb)
2560 drm_framebuffer_reference(plane->state->fb);
2561}
2562
5724dbd1 2563static void
f6936e29
DV
2564intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2565 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2566{
2567 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2568 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2569 struct drm_crtc *c;
2570 struct intel_crtc *i;
2ff8fde1 2571 struct drm_i915_gem_object *obj;
88595ac9 2572 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2573 struct drm_plane_state *plane_state = primary->state;
200757f5
MR
2574 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2575 struct intel_plane *intel_plane = to_intel_plane(primary);
0a8d8a86
MR
2576 struct intel_plane_state *intel_state =
2577 to_intel_plane_state(plane_state);
88595ac9 2578 struct drm_framebuffer *fb;
484b41dd 2579
2d14030b 2580 if (!plane_config->fb)
484b41dd
JB
2581 return;
2582
f6936e29 2583 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2584 fb = &plane_config->fb->base;
2585 goto valid_fb;
f55548b5 2586 }
484b41dd 2587
2d14030b 2588 kfree(plane_config->fb);
484b41dd
JB
2589
2590 /*
2591 * Failed to alloc the obj, check to see if we should share
2592 * an fb with another CRTC instead
2593 */
70e1e0ec 2594 for_each_crtc(dev, c) {
484b41dd
JB
2595 i = to_intel_crtc(c);
2596
2597 if (c == &intel_crtc->base)
2598 continue;
2599
2ff8fde1
MR
2600 if (!i->active)
2601 continue;
2602
88595ac9
DV
2603 fb = c->primary->fb;
2604 if (!fb)
484b41dd
JB
2605 continue;
2606
88595ac9 2607 obj = intel_fb_obj(fb);
2ff8fde1 2608 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2609 drm_framebuffer_reference(fb);
2610 goto valid_fb;
484b41dd
JB
2611 }
2612 }
88595ac9 2613
200757f5
MR
2614 /*
2615 * We've failed to reconstruct the BIOS FB. Current display state
2616 * indicates that the primary plane is visible, but has a NULL FB,
2617 * which will lead to problems later if we don't fix it up. The
2618 * simplest solution is to just disable the primary plane now and
2619 * pretend the BIOS never had it enabled.
2620 */
2621 to_intel_plane_state(plane_state)->visible = false;
2622 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2623 intel_pre_disable_primary(&intel_crtc->base);
2624 intel_plane->disable_plane(primary, &intel_crtc->base);
2625
88595ac9
DV
2626 return;
2627
2628valid_fb:
f44e2659
VS
2629 plane_state->src_x = 0;
2630 plane_state->src_y = 0;
be5651f2
ML
2631 plane_state->src_w = fb->width << 16;
2632 plane_state->src_h = fb->height << 16;
2633
f44e2659
VS
2634 plane_state->crtc_x = 0;
2635 plane_state->crtc_y = 0;
be5651f2
ML
2636 plane_state->crtc_w = fb->width;
2637 plane_state->crtc_h = fb->height;
2638
0a8d8a86
MR
2639 intel_state->src.x1 = plane_state->src_x;
2640 intel_state->src.y1 = plane_state->src_y;
2641 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2642 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2643 intel_state->dst.x1 = plane_state->crtc_x;
2644 intel_state->dst.y1 = plane_state->crtc_y;
2645 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2646 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2647
88595ac9
DV
2648 obj = intel_fb_obj(fb);
2649 if (obj->tiling_mode != I915_TILING_NONE)
2650 dev_priv->preserve_bios_swizzle = true;
2651
be5651f2
ML
2652 drm_framebuffer_reference(fb);
2653 primary->fb = primary->state->fb = fb;
36750f28 2654 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2655 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
a9ff8714 2656 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
46f297fb
JB
2657}
2658
a8d201af
ML
2659static void i9xx_update_primary_plane(struct drm_plane *primary,
2660 const struct intel_crtc_state *crtc_state,
2661 const struct intel_plane_state *plane_state)
81255565 2662{
a8d201af 2663 struct drm_device *dev = primary->dev;
81255565 2664 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
2665 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2666 struct drm_framebuffer *fb = plane_state->base.fb;
2667 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2668 int plane = intel_crtc->plane;
54ea9da8 2669 u32 linear_offset;
81255565 2670 u32 dspcntr;
f0f59a00 2671 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2672 unsigned int rotation = plane_state->base.rotation;
ac484963 2673 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
54ea9da8
VS
2674 int x = plane_state->src.x1 >> 16;
2675 int y = plane_state->src.y1 >> 16;
c9ba6fad 2676
f45651ba
VS
2677 dspcntr = DISPPLANE_GAMMA_ENABLE;
2678
fdd508a6 2679 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2680
2681 if (INTEL_INFO(dev)->gen < 4) {
2682 if (intel_crtc->pipe == PIPE_B)
2683 dspcntr |= DISPPLANE_SEL_PIPE_B;
2684
2685 /* pipesrc and dspsize control the size that is scaled from,
2686 * which should always be the user's requested size.
2687 */
2688 I915_WRITE(DSPSIZE(plane),
a8d201af
ML
2689 ((crtc_state->pipe_src_h - 1) << 16) |
2690 (crtc_state->pipe_src_w - 1));
f45651ba 2691 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2692 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2693 I915_WRITE(PRIMSIZE(plane),
a8d201af
ML
2694 ((crtc_state->pipe_src_h - 1) << 16) |
2695 (crtc_state->pipe_src_w - 1));
c14b0485
VS
2696 I915_WRITE(PRIMPOS(plane), 0);
2697 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2698 }
81255565 2699
57779d06
VS
2700 switch (fb->pixel_format) {
2701 case DRM_FORMAT_C8:
81255565
JB
2702 dspcntr |= DISPPLANE_8BPP;
2703 break;
57779d06 2704 case DRM_FORMAT_XRGB1555:
57779d06 2705 dspcntr |= DISPPLANE_BGRX555;
81255565 2706 break;
57779d06
VS
2707 case DRM_FORMAT_RGB565:
2708 dspcntr |= DISPPLANE_BGRX565;
2709 break;
2710 case DRM_FORMAT_XRGB8888:
57779d06
VS
2711 dspcntr |= DISPPLANE_BGRX888;
2712 break;
2713 case DRM_FORMAT_XBGR8888:
57779d06
VS
2714 dspcntr |= DISPPLANE_RGBX888;
2715 break;
2716 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2717 dspcntr |= DISPPLANE_BGRX101010;
2718 break;
2719 case DRM_FORMAT_XBGR2101010:
57779d06 2720 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2721 break;
2722 default:
baba133a 2723 BUG();
81255565 2724 }
57779d06 2725
f45651ba
VS
2726 if (INTEL_INFO(dev)->gen >= 4 &&
2727 obj->tiling_mode != I915_TILING_NONE)
2728 dspcntr |= DISPPLANE_TILED;
81255565 2729
de1aa629
VS
2730 if (IS_G4X(dev))
2731 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2732
ac484963 2733 linear_offset = y * fb->pitches[0] + x * cpp;
81255565 2734
c2c75131
DV
2735 if (INTEL_INFO(dev)->gen >= 4) {
2736 intel_crtc->dspaddr_offset =
4f2d9934 2737 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2738 fb->pitches[0], rotation);
c2c75131
DV
2739 linear_offset -= intel_crtc->dspaddr_offset;
2740 } else {
e506a0c6 2741 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2742 }
e506a0c6 2743
8d0deca8 2744 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2745 dspcntr |= DISPPLANE_ROTATE_180;
2746
a8d201af
ML
2747 x += (crtc_state->pipe_src_w - 1);
2748 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2749
2750 /* Finding the last pixel of the last line of the display
2751 data and adding to linear_offset*/
2752 linear_offset +=
a8d201af 2753 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2754 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2755 }
2756
2db3366b
PZ
2757 intel_crtc->adjusted_x = x;
2758 intel_crtc->adjusted_y = y;
2759
48404c1e
SJ
2760 I915_WRITE(reg, dspcntr);
2761
01f2c773 2762 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2763 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2764 I915_WRITE(DSPSURF(plane),
2765 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2766 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2767 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2768 } else
f343c5f6 2769 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2770 POSTING_READ(reg);
17638cd6
JB
2771}
2772
a8d201af
ML
2773static void i9xx_disable_primary_plane(struct drm_plane *primary,
2774 struct drm_crtc *crtc)
17638cd6
JB
2775{
2776 struct drm_device *dev = crtc->dev;
2777 struct drm_i915_private *dev_priv = dev->dev_private;
2778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
17638cd6 2779 int plane = intel_crtc->plane;
f45651ba 2780
a8d201af
ML
2781 I915_WRITE(DSPCNTR(plane), 0);
2782 if (INTEL_INFO(dev_priv)->gen >= 4)
fdd508a6 2783 I915_WRITE(DSPSURF(plane), 0);
a8d201af
ML
2784 else
2785 I915_WRITE(DSPADDR(plane), 0);
2786 POSTING_READ(DSPCNTR(plane));
2787}
c9ba6fad 2788
a8d201af
ML
2789static void ironlake_update_primary_plane(struct drm_plane *primary,
2790 const struct intel_crtc_state *crtc_state,
2791 const struct intel_plane_state *plane_state)
2792{
2793 struct drm_device *dev = primary->dev;
2794 struct drm_i915_private *dev_priv = dev->dev_private;
2795 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2796 struct drm_framebuffer *fb = plane_state->base.fb;
2797 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2798 int plane = intel_crtc->plane;
54ea9da8 2799 u32 linear_offset;
a8d201af
ML
2800 u32 dspcntr;
2801 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2802 unsigned int rotation = plane_state->base.rotation;
ac484963 2803 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
a8d201af
ML
2804 int x = plane_state->src.x1 >> 16;
2805 int y = plane_state->src.y1 >> 16;
c9ba6fad 2806
f45651ba 2807 dspcntr = DISPPLANE_GAMMA_ENABLE;
fdd508a6 2808 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2809
2810 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2811 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2812
57779d06
VS
2813 switch (fb->pixel_format) {
2814 case DRM_FORMAT_C8:
17638cd6
JB
2815 dspcntr |= DISPPLANE_8BPP;
2816 break;
57779d06
VS
2817 case DRM_FORMAT_RGB565:
2818 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2819 break;
57779d06 2820 case DRM_FORMAT_XRGB8888:
57779d06
VS
2821 dspcntr |= DISPPLANE_BGRX888;
2822 break;
2823 case DRM_FORMAT_XBGR8888:
57779d06
VS
2824 dspcntr |= DISPPLANE_RGBX888;
2825 break;
2826 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2827 dspcntr |= DISPPLANE_BGRX101010;
2828 break;
2829 case DRM_FORMAT_XBGR2101010:
57779d06 2830 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2831 break;
2832 default:
baba133a 2833 BUG();
17638cd6
JB
2834 }
2835
2836 if (obj->tiling_mode != I915_TILING_NONE)
2837 dspcntr |= DISPPLANE_TILED;
17638cd6 2838
f45651ba 2839 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2840 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2841
ac484963 2842 linear_offset = y * fb->pitches[0] + x * cpp;
c2c75131 2843 intel_crtc->dspaddr_offset =
4f2d9934 2844 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2845 fb->pitches[0], rotation);
c2c75131 2846 linear_offset -= intel_crtc->dspaddr_offset;
8d0deca8 2847 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2848 dspcntr |= DISPPLANE_ROTATE_180;
2849
2850 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
a8d201af
ML
2851 x += (crtc_state->pipe_src_w - 1);
2852 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2853
2854 /* Finding the last pixel of the last line of the display
2855 data and adding to linear_offset*/
2856 linear_offset +=
a8d201af 2857 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2858 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2859 }
2860 }
2861
2db3366b
PZ
2862 intel_crtc->adjusted_x = x;
2863 intel_crtc->adjusted_y = y;
2864
48404c1e 2865 I915_WRITE(reg, dspcntr);
17638cd6 2866
01f2c773 2867 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2868 I915_WRITE(DSPSURF(plane),
2869 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2870 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2871 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2872 } else {
2873 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2874 I915_WRITE(DSPLINOFF(plane), linear_offset);
2875 }
17638cd6 2876 POSTING_READ(reg);
17638cd6
JB
2877}
2878
7b49f948
VS
2879u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2880 uint64_t fb_modifier, uint32_t pixel_format)
b321803d 2881{
7b49f948 2882 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
b321803d 2883 return 64;
7b49f948
VS
2884 } else {
2885 int cpp = drm_format_plane_cpp(pixel_format, 0);
2886
27ba3910 2887 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
b321803d
DL
2888 }
2889}
2890
44eb0cb9
MK
2891u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2892 struct drm_i915_gem_object *obj,
2893 unsigned int plane)
121920fa 2894{
ce7f1728 2895 struct i915_ggtt_view view;
dedf278c 2896 struct i915_vma *vma;
44eb0cb9 2897 u64 offset;
121920fa 2898
e7941294 2899 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
3465c580 2900 intel_plane->base.state->rotation);
121920fa 2901
ce7f1728 2902 vma = i915_gem_obj_to_ggtt_view(obj, &view);
dedf278c 2903 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
ce7f1728 2904 view.type))
dedf278c
TU
2905 return -1;
2906
44eb0cb9 2907 offset = vma->node.start;
dedf278c
TU
2908
2909 if (plane == 1) {
7723f47d 2910 offset += vma->ggtt_view.params.rotated.uv_start_page *
dedf278c
TU
2911 PAGE_SIZE;
2912 }
2913
44eb0cb9
MK
2914 WARN_ON(upper_32_bits(offset));
2915
2916 return lower_32_bits(offset);
121920fa
TU
2917}
2918
e435d6e5
ML
2919static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2920{
2921 struct drm_device *dev = intel_crtc->base.dev;
2922 struct drm_i915_private *dev_priv = dev->dev_private;
2923
2924 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2925 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2926 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
e435d6e5
ML
2927}
2928
a1b2278e
CK
2929/*
2930 * This function detaches (aka. unbinds) unused scalers in hardware
2931 */
0583236e 2932static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 2933{
a1b2278e
CK
2934 struct intel_crtc_scaler_state *scaler_state;
2935 int i;
2936
a1b2278e
CK
2937 scaler_state = &intel_crtc->config->scaler_state;
2938
2939 /* loop through and disable scalers that aren't in use */
2940 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
2941 if (!scaler_state->scalers[i].in_use)
2942 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
2943 }
2944}
2945
6156a456 2946u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2947{
6156a456 2948 switch (pixel_format) {
d161cf7a 2949 case DRM_FORMAT_C8:
c34ce3d1 2950 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2951 case DRM_FORMAT_RGB565:
c34ce3d1 2952 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2953 case DRM_FORMAT_XBGR8888:
c34ce3d1 2954 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2955 case DRM_FORMAT_XRGB8888:
c34ce3d1 2956 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2957 /*
2958 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2959 * to be already pre-multiplied. We need to add a knob (or a different
2960 * DRM_FORMAT) for user-space to configure that.
2961 */
f75fb42a 2962 case DRM_FORMAT_ABGR8888:
c34ce3d1 2963 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 2964 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 2965 case DRM_FORMAT_ARGB8888:
c34ce3d1 2966 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 2967 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 2968 case DRM_FORMAT_XRGB2101010:
c34ce3d1 2969 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 2970 case DRM_FORMAT_XBGR2101010:
c34ce3d1 2971 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 2972 case DRM_FORMAT_YUYV:
c34ce3d1 2973 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 2974 case DRM_FORMAT_YVYU:
c34ce3d1 2975 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 2976 case DRM_FORMAT_UYVY:
c34ce3d1 2977 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 2978 case DRM_FORMAT_VYUY:
c34ce3d1 2979 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 2980 default:
4249eeef 2981 MISSING_CASE(pixel_format);
70d21f0e 2982 }
8cfcba41 2983
c34ce3d1 2984 return 0;
6156a456 2985}
70d21f0e 2986
6156a456
CK
2987u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2988{
6156a456 2989 switch (fb_modifier) {
30af77c4 2990 case DRM_FORMAT_MOD_NONE:
70d21f0e 2991 break;
30af77c4 2992 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 2993 return PLANE_CTL_TILED_X;
b321803d 2994 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 2995 return PLANE_CTL_TILED_Y;
b321803d 2996 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 2997 return PLANE_CTL_TILED_YF;
70d21f0e 2998 default:
6156a456 2999 MISSING_CASE(fb_modifier);
70d21f0e 3000 }
8cfcba41 3001
c34ce3d1 3002 return 0;
6156a456 3003}
70d21f0e 3004
6156a456
CK
3005u32 skl_plane_ctl_rotation(unsigned int rotation)
3006{
3b7a5119 3007 switch (rotation) {
6156a456
CK
3008 case BIT(DRM_ROTATE_0):
3009 break;
1e8df167
SJ
3010 /*
3011 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3012 * while i915 HW rotation is clockwise, thats why this swapping.
3013 */
3b7a5119 3014 case BIT(DRM_ROTATE_90):
1e8df167 3015 return PLANE_CTL_ROTATE_270;
3b7a5119 3016 case BIT(DRM_ROTATE_180):
c34ce3d1 3017 return PLANE_CTL_ROTATE_180;
3b7a5119 3018 case BIT(DRM_ROTATE_270):
1e8df167 3019 return PLANE_CTL_ROTATE_90;
6156a456
CK
3020 default:
3021 MISSING_CASE(rotation);
3022 }
3023
c34ce3d1 3024 return 0;
6156a456
CK
3025}
3026
a8d201af
ML
3027static void skylake_update_primary_plane(struct drm_plane *plane,
3028 const struct intel_crtc_state *crtc_state,
3029 const struct intel_plane_state *plane_state)
6156a456 3030{
a8d201af 3031 struct drm_device *dev = plane->dev;
6156a456 3032 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
3033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3034 struct drm_framebuffer *fb = plane_state->base.fb;
3035 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6156a456
CK
3036 int pipe = intel_crtc->pipe;
3037 u32 plane_ctl, stride_div, stride;
3038 u32 tile_height, plane_offset, plane_size;
a8d201af 3039 unsigned int rotation = plane_state->base.rotation;
6156a456 3040 int x_offset, y_offset;
44eb0cb9 3041 u32 surf_addr;
a8d201af
ML
3042 int scaler_id = plane_state->scaler_id;
3043 int src_x = plane_state->src.x1 >> 16;
3044 int src_y = plane_state->src.y1 >> 16;
3045 int src_w = drm_rect_width(&plane_state->src) >> 16;
3046 int src_h = drm_rect_height(&plane_state->src) >> 16;
3047 int dst_x = plane_state->dst.x1;
3048 int dst_y = plane_state->dst.y1;
3049 int dst_w = drm_rect_width(&plane_state->dst);
3050 int dst_h = drm_rect_height(&plane_state->dst);
70d21f0e 3051
6156a456
CK
3052 plane_ctl = PLANE_CTL_ENABLE |
3053 PLANE_CTL_PIPE_GAMMA_ENABLE |
3054 PLANE_CTL_PIPE_CSC_ENABLE;
3055
3056 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3057 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3058 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
6156a456
CK
3059 plane_ctl |= skl_plane_ctl_rotation(rotation);
3060
7b49f948 3061 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
b321803d 3062 fb->pixel_format);
dedf278c 3063 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3b7a5119 3064
a42e5a23
PZ
3065 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3066
3b7a5119 3067 if (intel_rotation_90_or_270(rotation)) {
832be82f
VS
3068 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3069
3b7a5119 3070 /* stride = Surface height in tiles */
832be82f 3071 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3b7a5119 3072 stride = DIV_ROUND_UP(fb->height, tile_height);
a8d201af
ML
3073 x_offset = stride * tile_height - src_y - src_h;
3074 y_offset = src_x;
6156a456 3075 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3076 } else {
3077 stride = fb->pitches[0] / stride_div;
a8d201af
ML
3078 x_offset = src_x;
3079 y_offset = src_y;
6156a456 3080 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3081 }
3082 plane_offset = y_offset << 16 | x_offset;
b321803d 3083
2db3366b
PZ
3084 intel_crtc->adjusted_x = x_offset;
3085 intel_crtc->adjusted_y = y_offset;
3086
70d21f0e 3087 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3088 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3089 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3090 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3091
3092 if (scaler_id >= 0) {
3093 uint32_t ps_ctrl = 0;
3094
3095 WARN_ON(!dst_w || !dst_h);
3096 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3097 crtc_state->scaler_state.scalers[scaler_id].mode;
3098 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3099 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3100 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3101 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3102 I915_WRITE(PLANE_POS(pipe, 0), 0);
3103 } else {
3104 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3105 }
3106
121920fa 3107 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3108
3109 POSTING_READ(PLANE_SURF(pipe, 0));
3110}
3111
a8d201af
ML
3112static void skylake_disable_primary_plane(struct drm_plane *primary,
3113 struct drm_crtc *crtc)
17638cd6
JB
3114{
3115 struct drm_device *dev = crtc->dev;
3116 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af 3117 int pipe = to_intel_crtc(crtc)->pipe;
17638cd6 3118
a8d201af
ML
3119 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3120 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3121 POSTING_READ(PLANE_SURF(pipe, 0));
3122}
29b9bde6 3123
a8d201af
ML
3124/* Assume fb object is pinned & idle & fenced and just update base pointers */
3125static int
3126intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3127 int x, int y, enum mode_set_atomic state)
3128{
3129 /* Support for kgdboc is disabled, this needs a major rework. */
3130 DRM_ERROR("legacy panic handler not supported any more.\n");
3131
3132 return -ENODEV;
81255565
JB
3133}
3134
7514747d 3135static void intel_complete_page_flips(struct drm_device *dev)
96a02917 3136{
96a02917
VS
3137 struct drm_crtc *crtc;
3138
70e1e0ec 3139 for_each_crtc(dev, crtc) {
96a02917
VS
3140 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3141 enum plane plane = intel_crtc->plane;
3142
3143 intel_prepare_page_flip(dev, plane);
3144 intel_finish_page_flip_plane(dev, plane);
3145 }
7514747d
VS
3146}
3147
3148static void intel_update_primary_planes(struct drm_device *dev)
3149{
7514747d 3150 struct drm_crtc *crtc;
96a02917 3151
70e1e0ec 3152 for_each_crtc(dev, crtc) {
11c22da6
ML
3153 struct intel_plane *plane = to_intel_plane(crtc->primary);
3154 struct intel_plane_state *plane_state;
96a02917 3155
11c22da6 3156 drm_modeset_lock_crtc(crtc, &plane->base);
11c22da6
ML
3157 plane_state = to_intel_plane_state(plane->base.state);
3158
a8d201af
ML
3159 if (plane_state->visible)
3160 plane->update_plane(&plane->base,
3161 to_intel_crtc_state(crtc->state),
3162 plane_state);
11c22da6
ML
3163
3164 drm_modeset_unlock_crtc(crtc);
96a02917
VS
3165 }
3166}
3167
7514747d
VS
3168void intel_prepare_reset(struct drm_device *dev)
3169{
3170 /* no reset support for gen2 */
3171 if (IS_GEN2(dev))
3172 return;
3173
3174 /* reset doesn't touch the display */
3175 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3176 return;
3177
3178 drm_modeset_lock_all(dev);
f98ce92f
VS
3179 /*
3180 * Disabling the crtcs gracefully seems nicer. Also the
3181 * g33 docs say we should at least disable all the planes.
3182 */
6b72d486 3183 intel_display_suspend(dev);
7514747d
VS
3184}
3185
3186void intel_finish_reset(struct drm_device *dev)
3187{
3188 struct drm_i915_private *dev_priv = to_i915(dev);
3189
3190 /*
3191 * Flips in the rings will be nuked by the reset,
3192 * so complete all pending flips so that user space
3193 * will get its events and not get stuck.
3194 */
3195 intel_complete_page_flips(dev);
3196
3197 /* no reset support for gen2 */
3198 if (IS_GEN2(dev))
3199 return;
3200
3201 /* reset doesn't touch the display */
3202 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3203 /*
3204 * Flips in the rings have been nuked by the reset,
3205 * so update the base address of all primary
3206 * planes to the the last fb to make sure we're
3207 * showing the correct fb after a reset.
11c22da6
ML
3208 *
3209 * FIXME: Atomic will make this obsolete since we won't schedule
3210 * CS-based flips (which might get lost in gpu resets) any more.
7514747d
VS
3211 */
3212 intel_update_primary_planes(dev);
3213 return;
3214 }
3215
3216 /*
3217 * The display has been reset as well,
3218 * so need a full re-initialization.
3219 */
3220 intel_runtime_pm_disable_interrupts(dev_priv);
3221 intel_runtime_pm_enable_interrupts(dev_priv);
3222
3223 intel_modeset_init_hw(dev);
3224
3225 spin_lock_irq(&dev_priv->irq_lock);
3226 if (dev_priv->display.hpd_irq_setup)
3227 dev_priv->display.hpd_irq_setup(dev);
3228 spin_unlock_irq(&dev_priv->irq_lock);
3229
043e9bda 3230 intel_display_resume(dev);
7514747d
VS
3231
3232 intel_hpd_init(dev_priv);
3233
3234 drm_modeset_unlock_all(dev);
3235}
3236
7d5e3799
CW
3237static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3238{
3239 struct drm_device *dev = crtc->dev;
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7d5e3799
CW
3242 bool pending;
3243
3244 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3245 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3246 return false;
3247
5e2d7afc 3248 spin_lock_irq(&dev->event_lock);
7d5e3799 3249 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3250 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3251
3252 return pending;
3253}
3254
bfd16b2a
ML
3255static void intel_update_pipe_config(struct intel_crtc *crtc,
3256 struct intel_crtc_state *old_crtc_state)
e30e8f75
GP
3257{
3258 struct drm_device *dev = crtc->base.dev;
3259 struct drm_i915_private *dev_priv = dev->dev_private;
bfd16b2a
ML
3260 struct intel_crtc_state *pipe_config =
3261 to_intel_crtc_state(crtc->base.state);
e30e8f75 3262
bfd16b2a
ML
3263 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3264 crtc->base.mode = crtc->base.state->mode;
3265
3266 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3267 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3268 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
e30e8f75 3269
44522d85
ML
3270 if (HAS_DDI(dev))
3271 intel_set_pipe_csc(&crtc->base);
3272
e30e8f75
GP
3273 /*
3274 * Update pipe size and adjust fitter if needed: the reason for this is
3275 * that in compute_mode_changes we check the native mode (not the pfit
3276 * mode) to see if we can flip rather than do a full mode set. In the
3277 * fastboot case, we'll flip, but if we don't update the pipesrc and
3278 * pfit state, we'll end up with a big fb scanned out into the wrong
3279 * sized surface.
e30e8f75
GP
3280 */
3281
e30e8f75 3282 I915_WRITE(PIPESRC(crtc->pipe),
bfd16b2a
ML
3283 ((pipe_config->pipe_src_w - 1) << 16) |
3284 (pipe_config->pipe_src_h - 1));
3285
3286 /* on skylake this is done by detaching scalers */
3287 if (INTEL_INFO(dev)->gen >= 9) {
3288 skl_detach_scalers(crtc);
3289
3290 if (pipe_config->pch_pfit.enabled)
3291 skylake_pfit_enable(crtc);
3292 } else if (HAS_PCH_SPLIT(dev)) {
3293 if (pipe_config->pch_pfit.enabled)
3294 ironlake_pfit_enable(crtc);
3295 else if (old_crtc_state->pch_pfit.enabled)
3296 ironlake_pfit_disable(crtc, true);
e30e8f75 3297 }
e30e8f75
GP
3298}
3299
5e84e1a4
ZW
3300static void intel_fdi_normal_train(struct drm_crtc *crtc)
3301{
3302 struct drm_device *dev = crtc->dev;
3303 struct drm_i915_private *dev_priv = dev->dev_private;
3304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3305 int pipe = intel_crtc->pipe;
f0f59a00
VS
3306 i915_reg_t reg;
3307 u32 temp;
5e84e1a4
ZW
3308
3309 /* enable normal train */
3310 reg = FDI_TX_CTL(pipe);
3311 temp = I915_READ(reg);
61e499bf 3312 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3313 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3314 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3315 } else {
3316 temp &= ~FDI_LINK_TRAIN_NONE;
3317 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3318 }
5e84e1a4
ZW
3319 I915_WRITE(reg, temp);
3320
3321 reg = FDI_RX_CTL(pipe);
3322 temp = I915_READ(reg);
3323 if (HAS_PCH_CPT(dev)) {
3324 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3325 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3326 } else {
3327 temp &= ~FDI_LINK_TRAIN_NONE;
3328 temp |= FDI_LINK_TRAIN_NONE;
3329 }
3330 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3331
3332 /* wait one idle pattern time */
3333 POSTING_READ(reg);
3334 udelay(1000);
357555c0
JB
3335
3336 /* IVB wants error correction enabled */
3337 if (IS_IVYBRIDGE(dev))
3338 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3339 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3340}
3341
8db9d77b
ZW
3342/* The FDI link training functions for ILK/Ibexpeak. */
3343static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3344{
3345 struct drm_device *dev = crtc->dev;
3346 struct drm_i915_private *dev_priv = dev->dev_private;
3347 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3348 int pipe = intel_crtc->pipe;
f0f59a00
VS
3349 i915_reg_t reg;
3350 u32 temp, tries;
8db9d77b 3351
1c8562f6 3352 /* FDI needs bits from pipe first */
0fc932b8 3353 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3354
e1a44743
AJ
3355 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3356 for train result */
5eddb70b
CW
3357 reg = FDI_RX_IMR(pipe);
3358 temp = I915_READ(reg);
e1a44743
AJ
3359 temp &= ~FDI_RX_SYMBOL_LOCK;
3360 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3361 I915_WRITE(reg, temp);
3362 I915_READ(reg);
e1a44743
AJ
3363 udelay(150);
3364
8db9d77b 3365 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3366 reg = FDI_TX_CTL(pipe);
3367 temp = I915_READ(reg);
627eb5a3 3368 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3369 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3370 temp &= ~FDI_LINK_TRAIN_NONE;
3371 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3372 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3373
5eddb70b
CW
3374 reg = FDI_RX_CTL(pipe);
3375 temp = I915_READ(reg);
8db9d77b
ZW
3376 temp &= ~FDI_LINK_TRAIN_NONE;
3377 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3378 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3379
3380 POSTING_READ(reg);
8db9d77b
ZW
3381 udelay(150);
3382
5b2adf89 3383 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3384 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3385 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3386 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3387
5eddb70b 3388 reg = FDI_RX_IIR(pipe);
e1a44743 3389 for (tries = 0; tries < 5; tries++) {
5eddb70b 3390 temp = I915_READ(reg);
8db9d77b
ZW
3391 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3392
3393 if ((temp & FDI_RX_BIT_LOCK)) {
3394 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3395 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3396 break;
3397 }
8db9d77b 3398 }
e1a44743 3399 if (tries == 5)
5eddb70b 3400 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3401
3402 /* Train 2 */
5eddb70b
CW
3403 reg = FDI_TX_CTL(pipe);
3404 temp = I915_READ(reg);
8db9d77b
ZW
3405 temp &= ~FDI_LINK_TRAIN_NONE;
3406 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3407 I915_WRITE(reg, temp);
8db9d77b 3408
5eddb70b
CW
3409 reg = FDI_RX_CTL(pipe);
3410 temp = I915_READ(reg);
8db9d77b
ZW
3411 temp &= ~FDI_LINK_TRAIN_NONE;
3412 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3413 I915_WRITE(reg, temp);
8db9d77b 3414
5eddb70b
CW
3415 POSTING_READ(reg);
3416 udelay(150);
8db9d77b 3417
5eddb70b 3418 reg = FDI_RX_IIR(pipe);
e1a44743 3419 for (tries = 0; tries < 5; tries++) {
5eddb70b 3420 temp = I915_READ(reg);
8db9d77b
ZW
3421 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3422
3423 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3424 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3425 DRM_DEBUG_KMS("FDI train 2 done.\n");
3426 break;
3427 }
8db9d77b 3428 }
e1a44743 3429 if (tries == 5)
5eddb70b 3430 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3431
3432 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3433
8db9d77b
ZW
3434}
3435
0206e353 3436static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3437 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3438 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3439 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3440 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3441};
3442
3443/* The FDI link training functions for SNB/Cougarpoint. */
3444static void gen6_fdi_link_train(struct drm_crtc *crtc)
3445{
3446 struct drm_device *dev = crtc->dev;
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3448 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3449 int pipe = intel_crtc->pipe;
f0f59a00
VS
3450 i915_reg_t reg;
3451 u32 temp, i, retry;
8db9d77b 3452
e1a44743
AJ
3453 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3454 for train result */
5eddb70b
CW
3455 reg = FDI_RX_IMR(pipe);
3456 temp = I915_READ(reg);
e1a44743
AJ
3457 temp &= ~FDI_RX_SYMBOL_LOCK;
3458 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3459 I915_WRITE(reg, temp);
3460
3461 POSTING_READ(reg);
e1a44743
AJ
3462 udelay(150);
3463
8db9d77b 3464 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3465 reg = FDI_TX_CTL(pipe);
3466 temp = I915_READ(reg);
627eb5a3 3467 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3468 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3469 temp &= ~FDI_LINK_TRAIN_NONE;
3470 temp |= FDI_LINK_TRAIN_PATTERN_1;
3471 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3472 /* SNB-B */
3473 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3474 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3475
d74cf324
DV
3476 I915_WRITE(FDI_RX_MISC(pipe),
3477 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3478
5eddb70b
CW
3479 reg = FDI_RX_CTL(pipe);
3480 temp = I915_READ(reg);
8db9d77b
ZW
3481 if (HAS_PCH_CPT(dev)) {
3482 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3483 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3484 } else {
3485 temp &= ~FDI_LINK_TRAIN_NONE;
3486 temp |= FDI_LINK_TRAIN_PATTERN_1;
3487 }
5eddb70b
CW
3488 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3489
3490 POSTING_READ(reg);
8db9d77b
ZW
3491 udelay(150);
3492
0206e353 3493 for (i = 0; i < 4; i++) {
5eddb70b
CW
3494 reg = FDI_TX_CTL(pipe);
3495 temp = I915_READ(reg);
8db9d77b
ZW
3496 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3497 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3498 I915_WRITE(reg, temp);
3499
3500 POSTING_READ(reg);
8db9d77b
ZW
3501 udelay(500);
3502
fa37d39e
SP
3503 for (retry = 0; retry < 5; retry++) {
3504 reg = FDI_RX_IIR(pipe);
3505 temp = I915_READ(reg);
3506 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3507 if (temp & FDI_RX_BIT_LOCK) {
3508 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3509 DRM_DEBUG_KMS("FDI train 1 done.\n");
3510 break;
3511 }
3512 udelay(50);
8db9d77b 3513 }
fa37d39e
SP
3514 if (retry < 5)
3515 break;
8db9d77b
ZW
3516 }
3517 if (i == 4)
5eddb70b 3518 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3519
3520 /* Train 2 */
5eddb70b
CW
3521 reg = FDI_TX_CTL(pipe);
3522 temp = I915_READ(reg);
8db9d77b
ZW
3523 temp &= ~FDI_LINK_TRAIN_NONE;
3524 temp |= FDI_LINK_TRAIN_PATTERN_2;
3525 if (IS_GEN6(dev)) {
3526 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3527 /* SNB-B */
3528 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3529 }
5eddb70b 3530 I915_WRITE(reg, temp);
8db9d77b 3531
5eddb70b
CW
3532 reg = FDI_RX_CTL(pipe);
3533 temp = I915_READ(reg);
8db9d77b
ZW
3534 if (HAS_PCH_CPT(dev)) {
3535 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3536 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3537 } else {
3538 temp &= ~FDI_LINK_TRAIN_NONE;
3539 temp |= FDI_LINK_TRAIN_PATTERN_2;
3540 }
5eddb70b
CW
3541 I915_WRITE(reg, temp);
3542
3543 POSTING_READ(reg);
8db9d77b
ZW
3544 udelay(150);
3545
0206e353 3546 for (i = 0; i < 4; i++) {
5eddb70b
CW
3547 reg = FDI_TX_CTL(pipe);
3548 temp = I915_READ(reg);
8db9d77b
ZW
3549 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3550 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3551 I915_WRITE(reg, temp);
3552
3553 POSTING_READ(reg);
8db9d77b
ZW
3554 udelay(500);
3555
fa37d39e
SP
3556 for (retry = 0; retry < 5; retry++) {
3557 reg = FDI_RX_IIR(pipe);
3558 temp = I915_READ(reg);
3559 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3560 if (temp & FDI_RX_SYMBOL_LOCK) {
3561 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3562 DRM_DEBUG_KMS("FDI train 2 done.\n");
3563 break;
3564 }
3565 udelay(50);
8db9d77b 3566 }
fa37d39e
SP
3567 if (retry < 5)
3568 break;
8db9d77b
ZW
3569 }
3570 if (i == 4)
5eddb70b 3571 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3572
3573 DRM_DEBUG_KMS("FDI train done.\n");
3574}
3575
357555c0
JB
3576/* Manual link training for Ivy Bridge A0 parts */
3577static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3578{
3579 struct drm_device *dev = crtc->dev;
3580 struct drm_i915_private *dev_priv = dev->dev_private;
3581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3582 int pipe = intel_crtc->pipe;
f0f59a00
VS
3583 i915_reg_t reg;
3584 u32 temp, i, j;
357555c0
JB
3585
3586 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3587 for train result */
3588 reg = FDI_RX_IMR(pipe);
3589 temp = I915_READ(reg);
3590 temp &= ~FDI_RX_SYMBOL_LOCK;
3591 temp &= ~FDI_RX_BIT_LOCK;
3592 I915_WRITE(reg, temp);
3593
3594 POSTING_READ(reg);
3595 udelay(150);
3596
01a415fd
DV
3597 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3598 I915_READ(FDI_RX_IIR(pipe)));
3599
139ccd3f
JB
3600 /* Try each vswing and preemphasis setting twice before moving on */
3601 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3602 /* disable first in case we need to retry */
3603 reg = FDI_TX_CTL(pipe);
3604 temp = I915_READ(reg);
3605 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3606 temp &= ~FDI_TX_ENABLE;
3607 I915_WRITE(reg, temp);
357555c0 3608
139ccd3f
JB
3609 reg = FDI_RX_CTL(pipe);
3610 temp = I915_READ(reg);
3611 temp &= ~FDI_LINK_TRAIN_AUTO;
3612 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3613 temp &= ~FDI_RX_ENABLE;
3614 I915_WRITE(reg, temp);
357555c0 3615
139ccd3f 3616 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3617 reg = FDI_TX_CTL(pipe);
3618 temp = I915_READ(reg);
139ccd3f 3619 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3620 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3621 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3622 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3623 temp |= snb_b_fdi_train_param[j/2];
3624 temp |= FDI_COMPOSITE_SYNC;
3625 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3626
139ccd3f
JB
3627 I915_WRITE(FDI_RX_MISC(pipe),
3628 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3629
139ccd3f 3630 reg = FDI_RX_CTL(pipe);
357555c0 3631 temp = I915_READ(reg);
139ccd3f
JB
3632 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3633 temp |= FDI_COMPOSITE_SYNC;
3634 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3635
139ccd3f
JB
3636 POSTING_READ(reg);
3637 udelay(1); /* should be 0.5us */
357555c0 3638
139ccd3f
JB
3639 for (i = 0; i < 4; i++) {
3640 reg = FDI_RX_IIR(pipe);
3641 temp = I915_READ(reg);
3642 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3643
139ccd3f
JB
3644 if (temp & FDI_RX_BIT_LOCK ||
3645 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3646 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3647 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3648 i);
3649 break;
3650 }
3651 udelay(1); /* should be 0.5us */
3652 }
3653 if (i == 4) {
3654 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3655 continue;
3656 }
357555c0 3657
139ccd3f 3658 /* Train 2 */
357555c0
JB
3659 reg = FDI_TX_CTL(pipe);
3660 temp = I915_READ(reg);
139ccd3f
JB
3661 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3662 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3663 I915_WRITE(reg, temp);
3664
3665 reg = FDI_RX_CTL(pipe);
3666 temp = I915_READ(reg);
3667 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3668 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3669 I915_WRITE(reg, temp);
3670
3671 POSTING_READ(reg);
139ccd3f 3672 udelay(2); /* should be 1.5us */
357555c0 3673
139ccd3f
JB
3674 for (i = 0; i < 4; i++) {
3675 reg = FDI_RX_IIR(pipe);
3676 temp = I915_READ(reg);
3677 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3678
139ccd3f
JB
3679 if (temp & FDI_RX_SYMBOL_LOCK ||
3680 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3681 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3682 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3683 i);
3684 goto train_done;
3685 }
3686 udelay(2); /* should be 1.5us */
357555c0 3687 }
139ccd3f
JB
3688 if (i == 4)
3689 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3690 }
357555c0 3691
139ccd3f 3692train_done:
357555c0
JB
3693 DRM_DEBUG_KMS("FDI train done.\n");
3694}
3695
88cefb6c 3696static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3697{
88cefb6c 3698 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3699 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3700 int pipe = intel_crtc->pipe;
f0f59a00
VS
3701 i915_reg_t reg;
3702 u32 temp;
c64e311e 3703
c98e9dcf 3704 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3705 reg = FDI_RX_CTL(pipe);
3706 temp = I915_READ(reg);
627eb5a3 3707 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3708 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3709 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3710 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3711
3712 POSTING_READ(reg);
c98e9dcf
JB
3713 udelay(200);
3714
3715 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3716 temp = I915_READ(reg);
3717 I915_WRITE(reg, temp | FDI_PCDCLK);
3718
3719 POSTING_READ(reg);
c98e9dcf
JB
3720 udelay(200);
3721
20749730
PZ
3722 /* Enable CPU FDI TX PLL, always on for Ironlake */
3723 reg = FDI_TX_CTL(pipe);
3724 temp = I915_READ(reg);
3725 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3726 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3727
20749730
PZ
3728 POSTING_READ(reg);
3729 udelay(100);
6be4a607 3730 }
0e23b99d
JB
3731}
3732
88cefb6c
DV
3733static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3734{
3735 struct drm_device *dev = intel_crtc->base.dev;
3736 struct drm_i915_private *dev_priv = dev->dev_private;
3737 int pipe = intel_crtc->pipe;
f0f59a00
VS
3738 i915_reg_t reg;
3739 u32 temp;
88cefb6c
DV
3740
3741 /* Switch from PCDclk to Rawclk */
3742 reg = FDI_RX_CTL(pipe);
3743 temp = I915_READ(reg);
3744 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3745
3746 /* Disable CPU FDI TX PLL */
3747 reg = FDI_TX_CTL(pipe);
3748 temp = I915_READ(reg);
3749 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3750
3751 POSTING_READ(reg);
3752 udelay(100);
3753
3754 reg = FDI_RX_CTL(pipe);
3755 temp = I915_READ(reg);
3756 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3757
3758 /* Wait for the clocks to turn off. */
3759 POSTING_READ(reg);
3760 udelay(100);
3761}
3762
0fc932b8
JB
3763static void ironlake_fdi_disable(struct drm_crtc *crtc)
3764{
3765 struct drm_device *dev = crtc->dev;
3766 struct drm_i915_private *dev_priv = dev->dev_private;
3767 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3768 int pipe = intel_crtc->pipe;
f0f59a00
VS
3769 i915_reg_t reg;
3770 u32 temp;
0fc932b8
JB
3771
3772 /* disable CPU FDI tx and PCH FDI rx */
3773 reg = FDI_TX_CTL(pipe);
3774 temp = I915_READ(reg);
3775 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3776 POSTING_READ(reg);
3777
3778 reg = FDI_RX_CTL(pipe);
3779 temp = I915_READ(reg);
3780 temp &= ~(0x7 << 16);
dfd07d72 3781 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3782 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3783
3784 POSTING_READ(reg);
3785 udelay(100);
3786
3787 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3788 if (HAS_PCH_IBX(dev))
6f06ce18 3789 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3790
3791 /* still set train pattern 1 */
3792 reg = FDI_TX_CTL(pipe);
3793 temp = I915_READ(reg);
3794 temp &= ~FDI_LINK_TRAIN_NONE;
3795 temp |= FDI_LINK_TRAIN_PATTERN_1;
3796 I915_WRITE(reg, temp);
3797
3798 reg = FDI_RX_CTL(pipe);
3799 temp = I915_READ(reg);
3800 if (HAS_PCH_CPT(dev)) {
3801 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3802 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3803 } else {
3804 temp &= ~FDI_LINK_TRAIN_NONE;
3805 temp |= FDI_LINK_TRAIN_PATTERN_1;
3806 }
3807 /* BPC in FDI rx is consistent with that in PIPECONF */
3808 temp &= ~(0x07 << 16);
dfd07d72 3809 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3810 I915_WRITE(reg, temp);
3811
3812 POSTING_READ(reg);
3813 udelay(100);
3814}
3815
5dce5b93
CW
3816bool intel_has_pending_fb_unpin(struct drm_device *dev)
3817{
3818 struct intel_crtc *crtc;
3819
3820 /* Note that we don't need to be called with mode_config.lock here
3821 * as our list of CRTC objects is static for the lifetime of the
3822 * device and so cannot disappear as we iterate. Similarly, we can
3823 * happily treat the predicates as racy, atomic checks as userspace
3824 * cannot claim and pin a new fb without at least acquring the
3825 * struct_mutex and so serialising with us.
3826 */
d3fcc808 3827 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3828 if (atomic_read(&crtc->unpin_work_count) == 0)
3829 continue;
3830
3831 if (crtc->unpin_work)
3832 intel_wait_for_vblank(dev, crtc->pipe);
3833
3834 return true;
3835 }
3836
3837 return false;
3838}
3839
d6bbafa1
CW
3840static void page_flip_completed(struct intel_crtc *intel_crtc)
3841{
3842 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3843 struct intel_unpin_work *work = intel_crtc->unpin_work;
3844
3845 /* ensure that the unpin work is consistent wrt ->pending. */
3846 smp_rmb();
3847 intel_crtc->unpin_work = NULL;
3848
3849 if (work->event)
3850 drm_send_vblank_event(intel_crtc->base.dev,
3851 intel_crtc->pipe,
3852 work->event);
3853
3854 drm_crtc_vblank_put(&intel_crtc->base);
3855
3856 wake_up_all(&dev_priv->pending_flip_queue);
3857 queue_work(dev_priv->wq, &work->work);
3858
3859 trace_i915_flip_complete(intel_crtc->plane,
3860 work->pending_flip_obj);
3861}
3862
5008e874 3863static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3864{
0f91128d 3865 struct drm_device *dev = crtc->dev;
5bb61643 3866 struct drm_i915_private *dev_priv = dev->dev_private;
5008e874 3867 long ret;
e6c3a2a6 3868
2c10d571 3869 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5008e874
ML
3870
3871 ret = wait_event_interruptible_timeout(
3872 dev_priv->pending_flip_queue,
3873 !intel_crtc_has_pending_flip(crtc),
3874 60*HZ);
3875
3876 if (ret < 0)
3877 return ret;
3878
3879 if (ret == 0) {
9c787942 3880 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3881
5e2d7afc 3882 spin_lock_irq(&dev->event_lock);
9c787942
CW
3883 if (intel_crtc->unpin_work) {
3884 WARN_ONCE(1, "Removing stuck page flip\n");
3885 page_flip_completed(intel_crtc);
3886 }
5e2d7afc 3887 spin_unlock_irq(&dev->event_lock);
9c787942 3888 }
5bb61643 3889
5008e874 3890 return 0;
e6c3a2a6
CW
3891}
3892
060f02d8
VS
3893static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3894{
3895 u32 temp;
3896
3897 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3898
3899 mutex_lock(&dev_priv->sb_lock);
3900
3901 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3902 temp |= SBI_SSCCTL_DISABLE;
3903 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3904
3905 mutex_unlock(&dev_priv->sb_lock);
3906}
3907
e615efe4
ED
3908/* Program iCLKIP clock to the desired frequency */
3909static void lpt_program_iclkip(struct drm_crtc *crtc)
3910{
64b46a06 3911 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6e3c9717 3912 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3913 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3914 u32 temp;
3915
060f02d8 3916 lpt_disable_iclkip(dev_priv);
e615efe4 3917
64b46a06
VS
3918 /* The iCLK virtual clock root frequency is in MHz,
3919 * but the adjusted_mode->crtc_clock in in KHz. To get the
3920 * divisors, it is necessary to divide one by another, so we
3921 * convert the virtual clock precision to KHz here for higher
3922 * precision.
3923 */
3924 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
e615efe4
ED
3925 u32 iclk_virtual_root_freq = 172800 * 1000;
3926 u32 iclk_pi_range = 64;
64b46a06 3927 u32 desired_divisor;
e615efe4 3928
64b46a06
VS
3929 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3930 clock << auxdiv);
3931 divsel = (desired_divisor / iclk_pi_range) - 2;
3932 phaseinc = desired_divisor % iclk_pi_range;
e615efe4 3933
64b46a06
VS
3934 /*
3935 * Near 20MHz is a corner case which is
3936 * out of range for the 7-bit divisor
3937 */
3938 if (divsel <= 0x7f)
3939 break;
e615efe4
ED
3940 }
3941
3942 /* This should not happen with any sane values */
3943 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3944 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3945 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3946 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3947
3948 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3949 clock,
e615efe4
ED
3950 auxdiv,
3951 divsel,
3952 phasedir,
3953 phaseinc);
3954
060f02d8
VS
3955 mutex_lock(&dev_priv->sb_lock);
3956
e615efe4 3957 /* Program SSCDIVINTPHASE6 */
988d6ee8 3958 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3959 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3960 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3961 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3962 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3963 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3964 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3965 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3966
3967 /* Program SSCAUXDIV */
988d6ee8 3968 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3969 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3970 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3971 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3972
3973 /* Enable modulator and associated divider */
988d6ee8 3974 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3975 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3976 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4 3977
060f02d8
VS
3978 mutex_unlock(&dev_priv->sb_lock);
3979
e615efe4
ED
3980 /* Wait for initialization time */
3981 udelay(24);
3982
3983 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3984}
3985
8802e5b6
VS
3986int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3987{
3988 u32 divsel, phaseinc, auxdiv;
3989 u32 iclk_virtual_root_freq = 172800 * 1000;
3990 u32 iclk_pi_range = 64;
3991 u32 desired_divisor;
3992 u32 temp;
3993
3994 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3995 return 0;
3996
3997 mutex_lock(&dev_priv->sb_lock);
3998
3999 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4000 if (temp & SBI_SSCCTL_DISABLE) {
4001 mutex_unlock(&dev_priv->sb_lock);
4002 return 0;
4003 }
4004
4005 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4006 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4007 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4008 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4009 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4010
4011 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4012 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4013 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4014
4015 mutex_unlock(&dev_priv->sb_lock);
4016
4017 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4018
4019 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4020 desired_divisor << auxdiv);
4021}
4022
275f01b2
DV
4023static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4024 enum pipe pch_transcoder)
4025{
4026 struct drm_device *dev = crtc->base.dev;
4027 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 4028 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
4029
4030 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4031 I915_READ(HTOTAL(cpu_transcoder)));
4032 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4033 I915_READ(HBLANK(cpu_transcoder)));
4034 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4035 I915_READ(HSYNC(cpu_transcoder)));
4036
4037 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4038 I915_READ(VTOTAL(cpu_transcoder)));
4039 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4040 I915_READ(VBLANK(cpu_transcoder)));
4041 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4042 I915_READ(VSYNC(cpu_transcoder)));
4043 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4044 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4045}
4046
003632d9 4047static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4048{
4049 struct drm_i915_private *dev_priv = dev->dev_private;
4050 uint32_t temp;
4051
4052 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4053 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4054 return;
4055
4056 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4057 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4058
003632d9
ACO
4059 temp &= ~FDI_BC_BIFURCATION_SELECT;
4060 if (enable)
4061 temp |= FDI_BC_BIFURCATION_SELECT;
4062
4063 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4064 I915_WRITE(SOUTH_CHICKEN1, temp);
4065 POSTING_READ(SOUTH_CHICKEN1);
4066}
4067
4068static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4069{
4070 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4071
4072 switch (intel_crtc->pipe) {
4073 case PIPE_A:
4074 break;
4075 case PIPE_B:
6e3c9717 4076 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4077 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4078 else
003632d9 4079 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4080
4081 break;
4082 case PIPE_C:
003632d9 4083 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4084
4085 break;
4086 default:
4087 BUG();
4088 }
4089}
4090
c48b5305
VS
4091/* Return which DP Port should be selected for Transcoder DP control */
4092static enum port
4093intel_trans_dp_port_sel(struct drm_crtc *crtc)
4094{
4095 struct drm_device *dev = crtc->dev;
4096 struct intel_encoder *encoder;
4097
4098 for_each_encoder_on_crtc(dev, crtc, encoder) {
4099 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4100 encoder->type == INTEL_OUTPUT_EDP)
4101 return enc_to_dig_port(&encoder->base)->port;
4102 }
4103
4104 return -1;
4105}
4106
f67a559d
JB
4107/*
4108 * Enable PCH resources required for PCH ports:
4109 * - PCH PLLs
4110 * - FDI training & RX/TX
4111 * - update transcoder timings
4112 * - DP transcoding bits
4113 * - transcoder
4114 */
4115static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4116{
4117 struct drm_device *dev = crtc->dev;
4118 struct drm_i915_private *dev_priv = dev->dev_private;
4119 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4120 int pipe = intel_crtc->pipe;
f0f59a00 4121 u32 temp;
2c07245f 4122
ab9412ba 4123 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4124
1fbc0d78
DV
4125 if (IS_IVYBRIDGE(dev))
4126 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4127
cd986abb
DV
4128 /* Write the TU size bits before fdi link training, so that error
4129 * detection works. */
4130 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4131 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4132
3860b2ec
VS
4133 /*
4134 * Sometimes spurious CPU pipe underruns happen during FDI
4135 * training, at least with VGA+HDMI cloning. Suppress them.
4136 */
4137 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4138
c98e9dcf 4139 /* For PCH output, training FDI link */
674cf967 4140 dev_priv->display.fdi_link_train(crtc);
2c07245f 4141
3ad8a208
DV
4142 /* We need to program the right clock selection before writing the pixel
4143 * mutliplier into the DPLL. */
303b81e0 4144 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4145 u32 sel;
4b645f14 4146
c98e9dcf 4147 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4148 temp |= TRANS_DPLL_ENABLE(pipe);
4149 sel = TRANS_DPLLB_SEL(pipe);
6e3c9717 4150 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
4151 temp |= sel;
4152 else
4153 temp &= ~sel;
c98e9dcf 4154 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4155 }
5eddb70b 4156
3ad8a208
DV
4157 /* XXX: pch pll's can be enabled any time before we enable the PCH
4158 * transcoder, and we actually should do this to not upset any PCH
4159 * transcoder that already use the clock when we share it.
4160 *
4161 * Note that enable_shared_dpll tries to do the right thing, but
4162 * get_shared_dpll unconditionally resets the pll - we need that to have
4163 * the right LVDS enable sequence. */
85b3894f 4164 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4165
d9b6cb56
JB
4166 /* set transcoder timing, panel must allow it */
4167 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4168 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4169
303b81e0 4170 intel_fdi_normal_train(crtc);
5e84e1a4 4171
3860b2ec
VS
4172 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4173
c98e9dcf 4174 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4175 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
9c4edaee
VS
4176 const struct drm_display_mode *adjusted_mode =
4177 &intel_crtc->config->base.adjusted_mode;
dfd07d72 4178 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
f0f59a00 4179 i915_reg_t reg = TRANS_DP_CTL(pipe);
5eddb70b
CW
4180 temp = I915_READ(reg);
4181 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4182 TRANS_DP_SYNC_MASK |
4183 TRANS_DP_BPC_MASK);
e3ef4479 4184 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4185 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf 4186
9c4edaee 4187 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4188 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
9c4edaee 4189 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4190 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4191
4192 switch (intel_trans_dp_port_sel(crtc)) {
c48b5305 4193 case PORT_B:
5eddb70b 4194 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 4195 break;
c48b5305 4196 case PORT_C:
5eddb70b 4197 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf 4198 break;
c48b5305 4199 case PORT_D:
5eddb70b 4200 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4201 break;
4202 default:
e95d41e1 4203 BUG();
32f9d658 4204 }
2c07245f 4205
5eddb70b 4206 I915_WRITE(reg, temp);
6be4a607 4207 }
b52eb4dc 4208
b8a4f404 4209 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4210}
4211
1507e5bd
PZ
4212static void lpt_pch_enable(struct drm_crtc *crtc)
4213{
4214 struct drm_device *dev = crtc->dev;
4215 struct drm_i915_private *dev_priv = dev->dev_private;
4216 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4217 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4218
ab9412ba 4219 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4220
8c52b5e8 4221 lpt_program_iclkip(crtc);
1507e5bd 4222
0540e488 4223 /* Set transcoder timing. */
275f01b2 4224 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4225
937bb610 4226 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4227}
4228
a1520318 4229static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4230{
4231 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 4232 i915_reg_t dslreg = PIPEDSL(pipe);
d4270e57
JB
4233 u32 temp;
4234
4235 temp = I915_READ(dslreg);
4236 udelay(500);
4237 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4238 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4239 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4240 }
4241}
4242
86adf9d7
ML
4243static int
4244skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4245 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4246 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4247{
86adf9d7
ML
4248 struct intel_crtc_scaler_state *scaler_state =
4249 &crtc_state->scaler_state;
4250 struct intel_crtc *intel_crtc =
4251 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4252 int need_scaling;
6156a456
CK
4253
4254 need_scaling = intel_rotation_90_or_270(rotation) ?
4255 (src_h != dst_w || src_w != dst_h):
4256 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4257
4258 /*
4259 * if plane is being disabled or scaler is no more required or force detach
4260 * - free scaler binded to this plane/crtc
4261 * - in order to do this, update crtc->scaler_usage
4262 *
4263 * Here scaler state in crtc_state is set free so that
4264 * scaler can be assigned to other user. Actual register
4265 * update to free the scaler is done in plane/panel-fit programming.
4266 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4267 */
86adf9d7 4268 if (force_detach || !need_scaling) {
a1b2278e 4269 if (*scaler_id >= 0) {
86adf9d7 4270 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4271 scaler_state->scalers[*scaler_id].in_use = 0;
4272
86adf9d7
ML
4273 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4274 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4275 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4276 scaler_state->scaler_users);
4277 *scaler_id = -1;
4278 }
4279 return 0;
4280 }
4281
4282 /* range checks */
4283 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4284 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4285
4286 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4287 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4288 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4289 "size is out of scaler range\n",
86adf9d7 4290 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4291 return -EINVAL;
4292 }
4293
86adf9d7
ML
4294 /* mark this plane as a scaler user in crtc_state */
4295 scaler_state->scaler_users |= (1 << scaler_user);
4296 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4297 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4298 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4299 scaler_state->scaler_users);
4300
4301 return 0;
4302}
4303
4304/**
4305 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4306 *
4307 * @state: crtc's scaler state
86adf9d7
ML
4308 *
4309 * Return
4310 * 0 - scaler_usage updated successfully
4311 * error - requested scaling cannot be supported or other error condition
4312 */
e435d6e5 4313int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4314{
4315 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
7c5f93b0 4316 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
86adf9d7
ML
4317
4318 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4319 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4320
e435d6e5 4321 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
fa5a7970 4322 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
86adf9d7 4323 state->pipe_src_w, state->pipe_src_h,
aad941d5 4324 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
86adf9d7
ML
4325}
4326
4327/**
4328 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4329 *
4330 * @state: crtc's scaler state
86adf9d7
ML
4331 * @plane_state: atomic plane state to update
4332 *
4333 * Return
4334 * 0 - scaler_usage updated successfully
4335 * error - requested scaling cannot be supported or other error condition
4336 */
da20eabd
ML
4337static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4338 struct intel_plane_state *plane_state)
86adf9d7
ML
4339{
4340
4341 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4342 struct intel_plane *intel_plane =
4343 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4344 struct drm_framebuffer *fb = plane_state->base.fb;
4345 int ret;
4346
4347 bool force_detach = !fb || !plane_state->visible;
4348
4349 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4350 intel_plane->base.base.id, intel_crtc->pipe,
4351 drm_plane_index(&intel_plane->base));
4352
4353 ret = skl_update_scaler(crtc_state, force_detach,
4354 drm_plane_index(&intel_plane->base),
4355 &plane_state->scaler_id,
4356 plane_state->base.rotation,
4357 drm_rect_width(&plane_state->src) >> 16,
4358 drm_rect_height(&plane_state->src) >> 16,
4359 drm_rect_width(&plane_state->dst),
4360 drm_rect_height(&plane_state->dst));
4361
4362 if (ret || plane_state->scaler_id < 0)
4363 return ret;
4364
a1b2278e 4365 /* check colorkey */
818ed961 4366 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
86adf9d7 4367 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
818ed961 4368 intel_plane->base.base.id);
a1b2278e
CK
4369 return -EINVAL;
4370 }
4371
4372 /* Check src format */
86adf9d7
ML
4373 switch (fb->pixel_format) {
4374 case DRM_FORMAT_RGB565:
4375 case DRM_FORMAT_XBGR8888:
4376 case DRM_FORMAT_XRGB8888:
4377 case DRM_FORMAT_ABGR8888:
4378 case DRM_FORMAT_ARGB8888:
4379 case DRM_FORMAT_XRGB2101010:
4380 case DRM_FORMAT_XBGR2101010:
4381 case DRM_FORMAT_YUYV:
4382 case DRM_FORMAT_YVYU:
4383 case DRM_FORMAT_UYVY:
4384 case DRM_FORMAT_VYUY:
4385 break;
4386 default:
4387 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4388 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4389 return -EINVAL;
a1b2278e
CK
4390 }
4391
a1b2278e
CK
4392 return 0;
4393}
4394
e435d6e5
ML
4395static void skylake_scaler_disable(struct intel_crtc *crtc)
4396{
4397 int i;
4398
4399 for (i = 0; i < crtc->num_scalers; i++)
4400 skl_detach_scaler(crtc, i);
4401}
4402
4403static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4404{
4405 struct drm_device *dev = crtc->base.dev;
4406 struct drm_i915_private *dev_priv = dev->dev_private;
4407 int pipe = crtc->pipe;
a1b2278e
CK
4408 struct intel_crtc_scaler_state *scaler_state =
4409 &crtc->config->scaler_state;
4410
4411 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4412
6e3c9717 4413 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4414 int id;
4415
4416 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4417 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4418 return;
4419 }
4420
4421 id = scaler_state->scaler_id;
4422 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4423 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4424 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4425 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4426
4427 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4428 }
4429}
4430
b074cec8
JB
4431static void ironlake_pfit_enable(struct intel_crtc *crtc)
4432{
4433 struct drm_device *dev = crtc->base.dev;
4434 struct drm_i915_private *dev_priv = dev->dev_private;
4435 int pipe = crtc->pipe;
4436
6e3c9717 4437 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4438 /* Force use of hard-coded filter coefficients
4439 * as some pre-programmed values are broken,
4440 * e.g. x201.
4441 */
4442 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4443 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4444 PF_PIPE_SEL_IVB(pipe));
4445 else
4446 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4447 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4448 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4449 }
4450}
4451
20bc8673 4452void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4453{
cea165c3
VS
4454 struct drm_device *dev = crtc->base.dev;
4455 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4456
6e3c9717 4457 if (!crtc->config->ips_enabled)
d77e4531
PZ
4458 return;
4459
cea165c3
VS
4460 /* We can only enable IPS after we enable a plane and wait for a vblank */
4461 intel_wait_for_vblank(dev, crtc->pipe);
4462
d77e4531 4463 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4464 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4465 mutex_lock(&dev_priv->rps.hw_lock);
4466 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4467 mutex_unlock(&dev_priv->rps.hw_lock);
4468 /* Quoting Art Runyan: "its not safe to expect any particular
4469 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4470 * mailbox." Moreover, the mailbox may return a bogus state,
4471 * so we need to just enable it and continue on.
2a114cc1
BW
4472 */
4473 } else {
4474 I915_WRITE(IPS_CTL, IPS_ENABLE);
4475 /* The bit only becomes 1 in the next vblank, so this wait here
4476 * is essentially intel_wait_for_vblank. If we don't have this
4477 * and don't wait for vblanks until the end of crtc_enable, then
4478 * the HW state readout code will complain that the expected
4479 * IPS_CTL value is not the one we read. */
4480 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4481 DRM_ERROR("Timed out waiting for IPS enable\n");
4482 }
d77e4531
PZ
4483}
4484
20bc8673 4485void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4486{
4487 struct drm_device *dev = crtc->base.dev;
4488 struct drm_i915_private *dev_priv = dev->dev_private;
4489
6e3c9717 4490 if (!crtc->config->ips_enabled)
d77e4531
PZ
4491 return;
4492
4493 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4494 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4495 mutex_lock(&dev_priv->rps.hw_lock);
4496 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4497 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4498 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4499 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4500 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4501 } else {
2a114cc1 4502 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4503 POSTING_READ(IPS_CTL);
4504 }
d77e4531
PZ
4505
4506 /* We need to wait for a vblank before we can disable the plane. */
4507 intel_wait_for_vblank(dev, crtc->pipe);
4508}
4509
4510/** Loads the palette/gamma unit for the CRTC with the prepared values */
4511static void intel_crtc_load_lut(struct drm_crtc *crtc)
4512{
4513 struct drm_device *dev = crtc->dev;
4514 struct drm_i915_private *dev_priv = dev->dev_private;
4515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4516 enum pipe pipe = intel_crtc->pipe;
d77e4531
PZ
4517 int i;
4518 bool reenable_ips = false;
4519
4520 /* The clocks have to be on to load the palette. */
53d9f4e9 4521 if (!crtc->state->active)
d77e4531
PZ
4522 return;
4523
50360403 4524 if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
a65347ba 4525 if (intel_crtc->config->has_dsi_encoder)
d77e4531
PZ
4526 assert_dsi_pll_enabled(dev_priv);
4527 else
4528 assert_pll_enabled(dev_priv, pipe);
4529 }
4530
d77e4531
PZ
4531 /* Workaround : Do not read or write the pipe palette/gamma data while
4532 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4533 */
6e3c9717 4534 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
d77e4531
PZ
4535 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4536 GAMMA_MODE_MODE_SPLIT)) {
4537 hsw_disable_ips(intel_crtc);
4538 reenable_ips = true;
4539 }
4540
4541 for (i = 0; i < 256; i++) {
f0f59a00 4542 i915_reg_t palreg;
f65a9c5b
VS
4543
4544 if (HAS_GMCH_DISPLAY(dev))
4545 palreg = PALETTE(pipe, i);
4546 else
4547 palreg = LGC_PALETTE(pipe, i);
4548
4549 I915_WRITE(palreg,
d77e4531
PZ
4550 (intel_crtc->lut_r[i] << 16) |
4551 (intel_crtc->lut_g[i] << 8) |
4552 intel_crtc->lut_b[i]);
4553 }
4554
4555 if (reenable_ips)
4556 hsw_enable_ips(intel_crtc);
4557}
4558
7cac945f 4559static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4560{
7cac945f 4561 if (intel_crtc->overlay) {
d3eedb1a
VS
4562 struct drm_device *dev = intel_crtc->base.dev;
4563 struct drm_i915_private *dev_priv = dev->dev_private;
4564
4565 mutex_lock(&dev->struct_mutex);
4566 dev_priv->mm.interruptible = false;
4567 (void) intel_overlay_switch_off(intel_crtc->overlay);
4568 dev_priv->mm.interruptible = true;
4569 mutex_unlock(&dev->struct_mutex);
4570 }
4571
4572 /* Let userspace switch the overlay on again. In most cases userspace
4573 * has to recompute where to put it anyway.
4574 */
4575}
4576
87d4300a
ML
4577/**
4578 * intel_post_enable_primary - Perform operations after enabling primary plane
4579 * @crtc: the CRTC whose primary plane was just enabled
4580 *
4581 * Performs potentially sleeping operations that must be done after the primary
4582 * plane is enabled, such as updating FBC and IPS. Note that this may be
4583 * called due to an explicit primary plane update, or due to an implicit
4584 * re-enable that is caused when a sprite plane is updated to no longer
4585 * completely hide the primary plane.
4586 */
4587static void
4588intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4589{
4590 struct drm_device *dev = crtc->dev;
87d4300a 4591 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4593 int pipe = intel_crtc->pipe;
a5c4d7bc 4594
87d4300a
ML
4595 /*
4596 * FIXME IPS should be fine as long as one plane is
4597 * enabled, but in practice it seems to have problems
4598 * when going from primary only to sprite only and vice
4599 * versa.
4600 */
a5c4d7bc
VS
4601 hsw_enable_ips(intel_crtc);
4602
f99d7069 4603 /*
87d4300a
ML
4604 * Gen2 reports pipe underruns whenever all planes are disabled.
4605 * So don't enable underrun reporting before at least some planes
4606 * are enabled.
4607 * FIXME: Need to fix the logic to work when we turn off all planes
4608 * but leave the pipe running.
f99d7069 4609 */
87d4300a
ML
4610 if (IS_GEN2(dev))
4611 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4612
aca7b684
VS
4613 /* Underruns don't always raise interrupts, so check manually. */
4614 intel_check_cpu_fifo_underruns(dev_priv);
4615 intel_check_pch_fifo_underruns(dev_priv);
a5c4d7bc
VS
4616}
4617
87d4300a
ML
4618/**
4619 * intel_pre_disable_primary - Perform operations before disabling primary plane
4620 * @crtc: the CRTC whose primary plane is to be disabled
4621 *
4622 * Performs potentially sleeping operations that must be done before the
4623 * primary plane is disabled, such as updating FBC and IPS. Note that this may
4624 * be called due to an explicit primary plane update, or due to an implicit
4625 * disable that is caused when a sprite plane completely hides the primary
4626 * plane.
4627 */
4628static void
4629intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4630{
4631 struct drm_device *dev = crtc->dev;
4632 struct drm_i915_private *dev_priv = dev->dev_private;
4633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4634 int pipe = intel_crtc->pipe;
a5c4d7bc 4635
87d4300a
ML
4636 /*
4637 * Gen2 reports pipe underruns whenever all planes are disabled.
4638 * So diasble underrun reporting before all the planes get disabled.
4639 * FIXME: Need to fix the logic to work when we turn off all planes
4640 * but leave the pipe running.
4641 */
4642 if (IS_GEN2(dev))
4643 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4644
87d4300a
ML
4645 /*
4646 * Vblank time updates from the shadow to live plane control register
4647 * are blocked if the memory self-refresh mode is active at that
4648 * moment. So to make sure the plane gets truly disabled, disable
4649 * first the self-refresh mode. The self-refresh enable bit in turn
4650 * will be checked/applied by the HW only at the next frame start
4651 * event which is after the vblank start event, so we need to have a
4652 * wait-for-vblank between disabling the plane and the pipe.
4653 */
262cd2e1 4654 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 4655 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
4656 dev_priv->wm.vlv.cxsr = false;
4657 intel_wait_for_vblank(dev, pipe);
4658 }
87d4300a 4659
87d4300a
ML
4660 /*
4661 * FIXME IPS should be fine as long as one plane is
4662 * enabled, but in practice it seems to have problems
4663 * when going from primary only to sprite only and vice
4664 * versa.
4665 */
a5c4d7bc 4666 hsw_disable_ips(intel_crtc);
87d4300a
ML
4667}
4668
ac21b225
ML
4669static void intel_post_plane_update(struct intel_crtc *crtc)
4670{
4671 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
92826fcd
ML
4672 struct intel_crtc_state *pipe_config =
4673 to_intel_crtc_state(crtc->base.state);
ac21b225 4674 struct drm_device *dev = crtc->base.dev;
ac21b225 4675
ac21b225
ML
4676 intel_frontbuffer_flip(dev, atomic->fb_bits);
4677
ab1d3a0e 4678 crtc->wm.cxsr_allowed = true;
852eb00d 4679
b9001114 4680 if (pipe_config->wm_changed && pipe_config->base.active)
f015c551
VS
4681 intel_update_watermarks(&crtc->base);
4682
c80ac854 4683 if (atomic->update_fbc)
1eb52238 4684 intel_fbc_post_update(crtc);
ac21b225
ML
4685
4686 if (atomic->post_enable_primary)
4687 intel_post_enable_primary(&crtc->base);
4688
ac21b225
ML
4689 memset(atomic, 0, sizeof(*atomic));
4690}
4691
5c74cd73 4692static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
ac21b225 4693{
5c74cd73 4694 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
ac21b225 4695 struct drm_device *dev = crtc->base.dev;
eddfcbcd 4696 struct drm_i915_private *dev_priv = dev->dev_private;
ac21b225 4697 struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
ab1d3a0e
ML
4698 struct intel_crtc_state *pipe_config =
4699 to_intel_crtc_state(crtc->base.state);
5c74cd73
ML
4700 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4701 struct drm_plane *primary = crtc->base.primary;
4702 struct drm_plane_state *old_pri_state =
4703 drm_atomic_get_existing_plane_state(old_state, primary);
4704 bool modeset = needs_modeset(&pipe_config->base);
ac21b225 4705
1eb52238
PZ
4706 if (atomic->update_fbc)
4707 intel_fbc_pre_update(crtc);
ac21b225 4708
5c74cd73
ML
4709 if (old_pri_state) {
4710 struct intel_plane_state *primary_state =
4711 to_intel_plane_state(primary->state);
4712 struct intel_plane_state *old_primary_state =
4713 to_intel_plane_state(old_pri_state);
4714
4715 if (old_primary_state->visible &&
4716 (modeset || !primary_state->visible))
4717 intel_pre_disable_primary(&crtc->base);
4718 }
852eb00d 4719
ab1d3a0e 4720 if (pipe_config->disable_cxsr) {
852eb00d 4721 crtc->wm.cxsr_allowed = false;
2dfd178d
ML
4722
4723 if (old_crtc_state->base.active)
4724 intel_set_memory_cxsr(dev_priv, false);
852eb00d 4725 }
92826fcd 4726
ed4a6a7c
MR
4727 /*
4728 * IVB workaround: must disable low power watermarks for at least
4729 * one frame before enabling scaling. LP watermarks can be re-enabled
4730 * when scaling is disabled.
4731 *
4732 * WaCxSRDisabledForSpriteScaling:ivb
4733 */
4734 if (pipe_config->disable_lp_wm) {
4735 ilk_disable_lp_wm(dev);
4736 intel_wait_for_vblank(dev, crtc->pipe);
4737 }
4738
4739 /*
4740 * If we're doing a modeset, we're done. No need to do any pre-vblank
4741 * watermark programming here.
4742 */
4743 if (needs_modeset(&pipe_config->base))
4744 return;
4745
4746 /*
4747 * For platforms that support atomic watermarks, program the
4748 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
4749 * will be the intermediate values that are safe for both pre- and
4750 * post- vblank; when vblank happens, the 'active' values will be set
4751 * to the final 'target' values and we'll do this again to get the
4752 * optimal watermarks. For gen9+ platforms, the values we program here
4753 * will be the final target values which will get automatically latched
4754 * at vblank time; no further programming will be necessary.
4755 *
4756 * If a platform hasn't been transitioned to atomic watermarks yet,
4757 * we'll continue to update watermarks the old way, if flags tell
4758 * us to.
4759 */
4760 if (dev_priv->display.initial_watermarks != NULL)
4761 dev_priv->display.initial_watermarks(pipe_config);
4762 else if (pipe_config->wm_changed)
92826fcd 4763 intel_update_watermarks(&crtc->base);
ac21b225
ML
4764}
4765
d032ffa0 4766static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
4767{
4768 struct drm_device *dev = crtc->dev;
4769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 4770 struct drm_plane *p;
87d4300a
ML
4771 int pipe = intel_crtc->pipe;
4772
7cac945f 4773 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 4774
d032ffa0
ML
4775 drm_for_each_plane_mask(p, dev, plane_mask)
4776 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 4777
f99d7069
DV
4778 /*
4779 * FIXME: Once we grow proper nuclear flip support out of this we need
4780 * to compute the mask of flip planes precisely. For the time being
4781 * consider this a flip to a NULL plane.
4782 */
4783 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4784}
4785
f67a559d
JB
4786static void ironlake_crtc_enable(struct drm_crtc *crtc)
4787{
4788 struct drm_device *dev = crtc->dev;
4789 struct drm_i915_private *dev_priv = dev->dev_private;
4790 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4791 struct intel_encoder *encoder;
f67a559d 4792 int pipe = intel_crtc->pipe;
f67a559d 4793
53d9f4e9 4794 if (WARN_ON(intel_crtc->active))
f67a559d
JB
4795 return;
4796
81b088ca
VS
4797 if (intel_crtc->config->has_pch_encoder)
4798 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4799
6e3c9717 4800 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4801 intel_prepare_shared_dpll(intel_crtc);
4802
6e3c9717 4803 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4804 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4805
4806 intel_set_pipe_timings(intel_crtc);
4807
6e3c9717 4808 if (intel_crtc->config->has_pch_encoder) {
29407aab 4809 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4810 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4811 }
4812
4813 ironlake_set_pipeconf(crtc);
4814
f67a559d 4815 intel_crtc->active = true;
8664281b 4816
a72e4c9f 4817 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
8664281b 4818
f6736a1a 4819 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4820 if (encoder->pre_enable)
4821 encoder->pre_enable(encoder);
f67a559d 4822
6e3c9717 4823 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4824 /* Note: FDI PLL enabling _must_ be done before we enable the
4825 * cpu pipes, hence this is separate from all the other fdi/pch
4826 * enabling. */
88cefb6c 4827 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4828 } else {
4829 assert_fdi_tx_disabled(dev_priv, pipe);
4830 assert_fdi_rx_disabled(dev_priv, pipe);
4831 }
f67a559d 4832
b074cec8 4833 ironlake_pfit_enable(intel_crtc);
f67a559d 4834
9c54c0dd
JB
4835 /*
4836 * On ILK+ LUT must be loaded before the pipe is running but with
4837 * clocks enabled
4838 */
4839 intel_crtc_load_lut(crtc);
4840
1d5bf5d9
ID
4841 if (dev_priv->display.initial_watermarks != NULL)
4842 dev_priv->display.initial_watermarks(intel_crtc->config);
e1fdc473 4843 intel_enable_pipe(intel_crtc);
f67a559d 4844
6e3c9717 4845 if (intel_crtc->config->has_pch_encoder)
f67a559d 4846 ironlake_pch_enable(crtc);
c98e9dcf 4847
f9b61ff6
DV
4848 assert_vblank_disabled(crtc);
4849 drm_crtc_vblank_on(crtc);
4850
fa5c73b1
DV
4851 for_each_encoder_on_crtc(dev, crtc, encoder)
4852 encoder->enable(encoder);
61b77ddd
DV
4853
4854 if (HAS_PCH_CPT(dev))
a1520318 4855 cpt_verify_modeset(dev, intel_crtc->pipe);
37ca8d4c
VS
4856
4857 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4858 if (intel_crtc->config->has_pch_encoder)
4859 intel_wait_for_vblank(dev, pipe);
4860 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607
JB
4861}
4862
42db64ef
PZ
4863/* IPS only exists on ULT machines and is tied to pipe A. */
4864static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4865{
f5adf94e 4866 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4867}
4868
4f771f10
PZ
4869static void haswell_crtc_enable(struct drm_crtc *crtc)
4870{
4871 struct drm_device *dev = crtc->dev;
4872 struct drm_i915_private *dev_priv = dev->dev_private;
4873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4874 struct intel_encoder *encoder;
99d736a2
ML
4875 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4876 struct intel_crtc_state *pipe_config =
4877 to_intel_crtc_state(crtc->state);
4f771f10 4878
53d9f4e9 4879 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
4880 return;
4881
81b088ca
VS
4882 if (intel_crtc->config->has_pch_encoder)
4883 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4884 false);
4885
df8ad70c
DV
4886 if (intel_crtc_to_shared_dpll(intel_crtc))
4887 intel_enable_shared_dpll(intel_crtc);
4888
6e3c9717 4889 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4890 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97
DV
4891
4892 intel_set_pipe_timings(intel_crtc);
4893
6e3c9717
ACO
4894 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4895 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4896 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4897 }
4898
6e3c9717 4899 if (intel_crtc->config->has_pch_encoder) {
229fca97 4900 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4901 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4902 }
4903
4904 haswell_set_pipeconf(crtc);
4905
4906 intel_set_pipe_csc(crtc);
4907
4f771f10 4908 intel_crtc->active = true;
8664281b 4909
6b698516
DV
4910 if (intel_crtc->config->has_pch_encoder)
4911 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4912 else
4913 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4914
7d4aefd0 4915 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10
PZ
4916 if (encoder->pre_enable)
4917 encoder->pre_enable(encoder);
7d4aefd0 4918 }
4f771f10 4919
d2d65408 4920 if (intel_crtc->config->has_pch_encoder)
4fe9467d 4921 dev_priv->display.fdi_link_train(crtc);
4fe9467d 4922
a65347ba 4923 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4924 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4925
1c132b44 4926 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 4927 skylake_pfit_enable(intel_crtc);
ff6d9f55 4928 else
1c132b44 4929 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4930
4931 /*
4932 * On ILK+ LUT must be loaded before the pipe is running but with
4933 * clocks enabled
4934 */
4935 intel_crtc_load_lut(crtc);
4936
1f544388 4937 intel_ddi_set_pipe_settings(crtc);
a65347ba 4938 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4939 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4940
1d5bf5d9
ID
4941 if (dev_priv->display.initial_watermarks != NULL)
4942 dev_priv->display.initial_watermarks(pipe_config);
4943 else
4944 intel_update_watermarks(crtc);
e1fdc473 4945 intel_enable_pipe(intel_crtc);
42db64ef 4946
6e3c9717 4947 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4948 lpt_pch_enable(crtc);
4f771f10 4949
a65347ba 4950 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4951 intel_ddi_set_vc_payload_alloc(crtc, true);
4952
f9b61ff6
DV
4953 assert_vblank_disabled(crtc);
4954 drm_crtc_vblank_on(crtc);
4955
8807e55b 4956 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4957 encoder->enable(encoder);
8807e55b
JN
4958 intel_opregion_notify_encoder(encoder, true);
4959 }
4f771f10 4960
6b698516
DV
4961 if (intel_crtc->config->has_pch_encoder) {
4962 intel_wait_for_vblank(dev, pipe);
4963 intel_wait_for_vblank(dev, pipe);
4964 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
d2d65408
VS
4965 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4966 true);
6b698516 4967 }
d2d65408 4968
e4916946
PZ
4969 /* If we change the relative order between pipe/planes enabling, we need
4970 * to change the workaround. */
99d736a2
ML
4971 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4972 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4973 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4974 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4975 }
4f771f10
PZ
4976}
4977
bfd16b2a 4978static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
3f8dce3a
DV
4979{
4980 struct drm_device *dev = crtc->base.dev;
4981 struct drm_i915_private *dev_priv = dev->dev_private;
4982 int pipe = crtc->pipe;
4983
4984 /* To avoid upsetting the power well on haswell only disable the pfit if
4985 * it's in use. The hw state code will make sure we get this right. */
bfd16b2a 4986 if (force || crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4987 I915_WRITE(PF_CTL(pipe), 0);
4988 I915_WRITE(PF_WIN_POS(pipe), 0);
4989 I915_WRITE(PF_WIN_SZ(pipe), 0);
4990 }
4991}
4992
6be4a607
JB
4993static void ironlake_crtc_disable(struct drm_crtc *crtc)
4994{
4995 struct drm_device *dev = crtc->dev;
4996 struct drm_i915_private *dev_priv = dev->dev_private;
4997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4998 struct intel_encoder *encoder;
6be4a607 4999 int pipe = intel_crtc->pipe;
b52eb4dc 5000
37ca8d4c
VS
5001 if (intel_crtc->config->has_pch_encoder)
5002 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5003
ea9d758d
DV
5004 for_each_encoder_on_crtc(dev, crtc, encoder)
5005 encoder->disable(encoder);
5006
f9b61ff6
DV
5007 drm_crtc_vblank_off(crtc);
5008 assert_vblank_disabled(crtc);
5009
3860b2ec
VS
5010 /*
5011 * Sometimes spurious CPU pipe underruns happen when the
5012 * pipe is already disabled, but FDI RX/TX is still enabled.
5013 * Happens at least with VGA+HDMI cloning. Suppress them.
5014 */
5015 if (intel_crtc->config->has_pch_encoder)
5016 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5017
575f7ab7 5018 intel_disable_pipe(intel_crtc);
32f9d658 5019
bfd16b2a 5020 ironlake_pfit_disable(intel_crtc, false);
2c07245f 5021
3860b2ec 5022 if (intel_crtc->config->has_pch_encoder) {
5a74f70a 5023 ironlake_fdi_disable(crtc);
3860b2ec
VS
5024 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5025 }
5a74f70a 5026
bf49ec8c
DV
5027 for_each_encoder_on_crtc(dev, crtc, encoder)
5028 if (encoder->post_disable)
5029 encoder->post_disable(encoder);
2c07245f 5030
6e3c9717 5031 if (intel_crtc->config->has_pch_encoder) {
d925c59a 5032 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 5033
d925c59a 5034 if (HAS_PCH_CPT(dev)) {
f0f59a00
VS
5035 i915_reg_t reg;
5036 u32 temp;
5037
d925c59a
DV
5038 /* disable TRANS_DP_CTL */
5039 reg = TRANS_DP_CTL(pipe);
5040 temp = I915_READ(reg);
5041 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5042 TRANS_DP_PORT_SEL_MASK);
5043 temp |= TRANS_DP_PORT_SEL_NONE;
5044 I915_WRITE(reg, temp);
5045
5046 /* disable DPLL_SEL */
5047 temp = I915_READ(PCH_DPLL_SEL);
11887397 5048 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5049 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5050 }
e3421a18 5051
d925c59a
DV
5052 ironlake_fdi_pll_disable(intel_crtc);
5053 }
81b088ca
VS
5054
5055 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 5056}
1b3c7a47 5057
4f771f10 5058static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5059{
4f771f10
PZ
5060 struct drm_device *dev = crtc->dev;
5061 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5062 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5063 struct intel_encoder *encoder;
6e3c9717 5064 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5065
d2d65408
VS
5066 if (intel_crtc->config->has_pch_encoder)
5067 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5068 false);
5069
8807e55b
JN
5070 for_each_encoder_on_crtc(dev, crtc, encoder) {
5071 intel_opregion_notify_encoder(encoder, false);
4f771f10 5072 encoder->disable(encoder);
8807e55b 5073 }
4f771f10 5074
f9b61ff6
DV
5075 drm_crtc_vblank_off(crtc);
5076 assert_vblank_disabled(crtc);
5077
575f7ab7 5078 intel_disable_pipe(intel_crtc);
4f771f10 5079
6e3c9717 5080 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5081 intel_ddi_set_vc_payload_alloc(crtc, false);
5082
a65347ba 5083 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5084 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5085
1c132b44 5086 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5087 skylake_scaler_disable(intel_crtc);
ff6d9f55 5088 else
bfd16b2a 5089 ironlake_pfit_disable(intel_crtc, false);
4f771f10 5090
a65347ba 5091 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5092 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5093
97b040aa
ID
5094 for_each_encoder_on_crtc(dev, crtc, encoder)
5095 if (encoder->post_disable)
5096 encoder->post_disable(encoder);
81b088ca 5097
92966a37
VS
5098 if (intel_crtc->config->has_pch_encoder) {
5099 lpt_disable_pch_transcoder(dev_priv);
503a74e9 5100 lpt_disable_iclkip(dev_priv);
92966a37
VS
5101 intel_ddi_fdi_disable(crtc);
5102
81b088ca
VS
5103 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5104 true);
92966a37 5105 }
4f771f10
PZ
5106}
5107
2dd24552
JB
5108static void i9xx_pfit_enable(struct intel_crtc *crtc)
5109{
5110 struct drm_device *dev = crtc->base.dev;
5111 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5112 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5113
681a8504 5114 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5115 return;
5116
2dd24552 5117 /*
c0b03411
DV
5118 * The panel fitter should only be adjusted whilst the pipe is disabled,
5119 * according to register description and PRM.
2dd24552 5120 */
c0b03411
DV
5121 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5122 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5123
b074cec8
JB
5124 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5125 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5126
5127 /* Border color in case we don't scale up to the full screen. Black by
5128 * default, change to something else for debugging. */
5129 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5130}
5131
d05410f9
DA
5132static enum intel_display_power_domain port_to_power_domain(enum port port)
5133{
5134 switch (port) {
5135 case PORT_A:
6331a704 5136 return POWER_DOMAIN_PORT_DDI_A_LANES;
d05410f9 5137 case PORT_B:
6331a704 5138 return POWER_DOMAIN_PORT_DDI_B_LANES;
d05410f9 5139 case PORT_C:
6331a704 5140 return POWER_DOMAIN_PORT_DDI_C_LANES;
d05410f9 5141 case PORT_D:
6331a704 5142 return POWER_DOMAIN_PORT_DDI_D_LANES;
d8e19f99 5143 case PORT_E:
6331a704 5144 return POWER_DOMAIN_PORT_DDI_E_LANES;
d05410f9 5145 default:
b9fec167 5146 MISSING_CASE(port);
d05410f9
DA
5147 return POWER_DOMAIN_PORT_OTHER;
5148 }
5149}
5150
25f78f58
VS
5151static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5152{
5153 switch (port) {
5154 case PORT_A:
5155 return POWER_DOMAIN_AUX_A;
5156 case PORT_B:
5157 return POWER_DOMAIN_AUX_B;
5158 case PORT_C:
5159 return POWER_DOMAIN_AUX_C;
5160 case PORT_D:
5161 return POWER_DOMAIN_AUX_D;
5162 case PORT_E:
5163 /* FIXME: Check VBT for actual wiring of PORT E */
5164 return POWER_DOMAIN_AUX_D;
5165 default:
b9fec167 5166 MISSING_CASE(port);
25f78f58
VS
5167 return POWER_DOMAIN_AUX_A;
5168 }
5169}
5170
319be8ae
ID
5171enum intel_display_power_domain
5172intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5173{
5174 struct drm_device *dev = intel_encoder->base.dev;
5175 struct intel_digital_port *intel_dig_port;
5176
5177 switch (intel_encoder->type) {
5178 case INTEL_OUTPUT_UNKNOWN:
5179 /* Only DDI platforms should ever use this output type */
5180 WARN_ON_ONCE(!HAS_DDI(dev));
5181 case INTEL_OUTPUT_DISPLAYPORT:
5182 case INTEL_OUTPUT_HDMI:
5183 case INTEL_OUTPUT_EDP:
5184 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5185 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5186 case INTEL_OUTPUT_DP_MST:
5187 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5188 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5189 case INTEL_OUTPUT_ANALOG:
5190 return POWER_DOMAIN_PORT_CRT;
5191 case INTEL_OUTPUT_DSI:
5192 return POWER_DOMAIN_PORT_DSI;
5193 default:
5194 return POWER_DOMAIN_PORT_OTHER;
5195 }
5196}
5197
25f78f58
VS
5198enum intel_display_power_domain
5199intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5200{
5201 struct drm_device *dev = intel_encoder->base.dev;
5202 struct intel_digital_port *intel_dig_port;
5203
5204 switch (intel_encoder->type) {
5205 case INTEL_OUTPUT_UNKNOWN:
651174a4
ID
5206 case INTEL_OUTPUT_HDMI:
5207 /*
5208 * Only DDI platforms should ever use these output types.
5209 * We can get here after the HDMI detect code has already set
5210 * the type of the shared encoder. Since we can't be sure
5211 * what's the status of the given connectors, play safe and
5212 * run the DP detection too.
5213 */
25f78f58
VS
5214 WARN_ON_ONCE(!HAS_DDI(dev));
5215 case INTEL_OUTPUT_DISPLAYPORT:
5216 case INTEL_OUTPUT_EDP:
5217 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5218 return port_to_aux_power_domain(intel_dig_port->port);
5219 case INTEL_OUTPUT_DP_MST:
5220 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5221 return port_to_aux_power_domain(intel_dig_port->port);
5222 default:
b9fec167 5223 MISSING_CASE(intel_encoder->type);
25f78f58
VS
5224 return POWER_DOMAIN_AUX_A;
5225 }
5226}
5227
74bff5f9
ML
5228static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5229 struct intel_crtc_state *crtc_state)
77d22dca 5230{
319be8ae 5231 struct drm_device *dev = crtc->dev;
74bff5f9 5232 struct drm_encoder *encoder;
319be8ae
ID
5233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5234 enum pipe pipe = intel_crtc->pipe;
77d22dca 5235 unsigned long mask;
74bff5f9 5236 enum transcoder transcoder = crtc_state->cpu_transcoder;
77d22dca 5237
74bff5f9 5238 if (!crtc_state->base.active)
292b990e
ML
5239 return 0;
5240
77d22dca
ID
5241 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5242 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
74bff5f9
ML
5243 if (crtc_state->pch_pfit.enabled ||
5244 crtc_state->pch_pfit.force_thru)
77d22dca
ID
5245 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5246
74bff5f9
ML
5247 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5248 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5249
319be8ae 5250 mask |= BIT(intel_display_port_power_domain(intel_encoder));
74bff5f9 5251 }
319be8ae 5252
77d22dca
ID
5253 return mask;
5254}
5255
74bff5f9
ML
5256static unsigned long
5257modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5258 struct intel_crtc_state *crtc_state)
77d22dca 5259{
292b990e
ML
5260 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5262 enum intel_display_power_domain domain;
5263 unsigned long domains, new_domains, old_domains;
77d22dca 5264
292b990e 5265 old_domains = intel_crtc->enabled_power_domains;
74bff5f9
ML
5266 intel_crtc->enabled_power_domains = new_domains =
5267 get_crtc_power_domains(crtc, crtc_state);
77d22dca 5268
292b990e
ML
5269 domains = new_domains & ~old_domains;
5270
5271 for_each_power_domain(domain, domains)
5272 intel_display_power_get(dev_priv, domain);
5273
5274 return old_domains & ~new_domains;
5275}
5276
5277static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5278 unsigned long domains)
5279{
5280 enum intel_display_power_domain domain;
5281
5282 for_each_power_domain(domain, domains)
5283 intel_display_power_put(dev_priv, domain);
5284}
77d22dca 5285
adafdc6f
MK
5286static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5287{
5288 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5289
5290 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5291 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5292 return max_cdclk_freq;
5293 else if (IS_CHERRYVIEW(dev_priv))
5294 return max_cdclk_freq*95/100;
5295 else if (INTEL_INFO(dev_priv)->gen < 4)
5296 return 2*max_cdclk_freq*90/100;
5297 else
5298 return max_cdclk_freq*90/100;
5299}
5300
560a7ae4
DL
5301static void intel_update_max_cdclk(struct drm_device *dev)
5302{
5303 struct drm_i915_private *dev_priv = dev->dev_private;
5304
ef11bdb3 5305 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
560a7ae4
DL
5306 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5307
5308 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5309 dev_priv->max_cdclk_freq = 675000;
5310 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5311 dev_priv->max_cdclk_freq = 540000;
5312 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5313 dev_priv->max_cdclk_freq = 450000;
5314 else
5315 dev_priv->max_cdclk_freq = 337500;
5316 } else if (IS_BROADWELL(dev)) {
5317 /*
5318 * FIXME with extra cooling we can allow
5319 * 540 MHz for ULX and 675 Mhz for ULT.
5320 * How can we know if extra cooling is
5321 * available? PCI ID, VTB, something else?
5322 */
5323 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5324 dev_priv->max_cdclk_freq = 450000;
5325 else if (IS_BDW_ULX(dev))
5326 dev_priv->max_cdclk_freq = 450000;
5327 else if (IS_BDW_ULT(dev))
5328 dev_priv->max_cdclk_freq = 540000;
5329 else
5330 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5331 } else if (IS_CHERRYVIEW(dev)) {
5332 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5333 } else if (IS_VALLEYVIEW(dev)) {
5334 dev_priv->max_cdclk_freq = 400000;
5335 } else {
5336 /* otherwise assume cdclk is fixed */
5337 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5338 }
5339
adafdc6f
MK
5340 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5341
560a7ae4
DL
5342 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5343 dev_priv->max_cdclk_freq);
adafdc6f
MK
5344
5345 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5346 dev_priv->max_dotclk_freq);
560a7ae4
DL
5347}
5348
5349static void intel_update_cdclk(struct drm_device *dev)
5350{
5351 struct drm_i915_private *dev_priv = dev->dev_private;
5352
5353 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5354 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5355 dev_priv->cdclk_freq);
5356
5357 /*
5358 * Program the gmbus_freq based on the cdclk frequency.
5359 * BSpec erroneously claims we should aim for 4MHz, but
5360 * in fact 1MHz is the correct frequency.
5361 */
666a4537 5362 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
560a7ae4
DL
5363 /*
5364 * Program the gmbus_freq based on the cdclk frequency.
5365 * BSpec erroneously claims we should aim for 4MHz, but
5366 * in fact 1MHz is the correct frequency.
5367 */
5368 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5369 }
5370
5371 if (dev_priv->max_cdclk_freq == 0)
5372 intel_update_max_cdclk(dev);
5373}
5374
70d0c574 5375static void broxton_set_cdclk(struct drm_device *dev, int frequency)
f8437dd1
VK
5376{
5377 struct drm_i915_private *dev_priv = dev->dev_private;
5378 uint32_t divider;
5379 uint32_t ratio;
5380 uint32_t current_freq;
5381 int ret;
5382
5383 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5384 switch (frequency) {
5385 case 144000:
5386 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5387 ratio = BXT_DE_PLL_RATIO(60);
5388 break;
5389 case 288000:
5390 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5391 ratio = BXT_DE_PLL_RATIO(60);
5392 break;
5393 case 384000:
5394 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5395 ratio = BXT_DE_PLL_RATIO(60);
5396 break;
5397 case 576000:
5398 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5399 ratio = BXT_DE_PLL_RATIO(60);
5400 break;
5401 case 624000:
5402 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5403 ratio = BXT_DE_PLL_RATIO(65);
5404 break;
5405 case 19200:
5406 /*
5407 * Bypass frequency with DE PLL disabled. Init ratio, divider
5408 * to suppress GCC warning.
5409 */
5410 ratio = 0;
5411 divider = 0;
5412 break;
5413 default:
5414 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5415
5416 return;
5417 }
5418
5419 mutex_lock(&dev_priv->rps.hw_lock);
5420 /* Inform power controller of upcoming frequency change */
5421 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5422 0x80000000);
5423 mutex_unlock(&dev_priv->rps.hw_lock);
5424
5425 if (ret) {
5426 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5427 ret, frequency);
5428 return;
5429 }
5430
5431 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5432 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5433 current_freq = current_freq * 500 + 1000;
5434
5435 /*
5436 * DE PLL has to be disabled when
5437 * - setting to 19.2MHz (bypass, PLL isn't used)
5438 * - before setting to 624MHz (PLL needs toggling)
5439 * - before setting to any frequency from 624MHz (PLL needs toggling)
5440 */
5441 if (frequency == 19200 || frequency == 624000 ||
5442 current_freq == 624000) {
5443 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5444 /* Timeout 200us */
5445 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5446 1))
5447 DRM_ERROR("timout waiting for DE PLL unlock\n");
5448 }
5449
5450 if (frequency != 19200) {
5451 uint32_t val;
5452
5453 val = I915_READ(BXT_DE_PLL_CTL);
5454 val &= ~BXT_DE_PLL_RATIO_MASK;
5455 val |= ratio;
5456 I915_WRITE(BXT_DE_PLL_CTL, val);
5457
5458 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5459 /* Timeout 200us */
5460 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5461 DRM_ERROR("timeout waiting for DE PLL lock\n");
5462
5463 val = I915_READ(CDCLK_CTL);
5464 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5465 val |= divider;
5466 /*
5467 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5468 * enable otherwise.
5469 */
5470 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5471 if (frequency >= 500000)
5472 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5473
5474 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5475 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5476 val |= (frequency - 1000) / 500;
5477 I915_WRITE(CDCLK_CTL, val);
5478 }
5479
5480 mutex_lock(&dev_priv->rps.hw_lock);
5481 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5482 DIV_ROUND_UP(frequency, 25000));
5483 mutex_unlock(&dev_priv->rps.hw_lock);
5484
5485 if (ret) {
5486 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5487 ret, frequency);
5488 return;
5489 }
5490
a47871bd 5491 intel_update_cdclk(dev);
f8437dd1
VK
5492}
5493
5494void broxton_init_cdclk(struct drm_device *dev)
5495{
5496 struct drm_i915_private *dev_priv = dev->dev_private;
5497 uint32_t val;
5498
5499 /*
5500 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5501 * or else the reset will hang because there is no PCH to respond.
5502 * Move the handshake programming to initialization sequence.
5503 * Previously was left up to BIOS.
5504 */
5505 val = I915_READ(HSW_NDE_RSTWRN_OPT);
5506 val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5507 I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5508
5509 /* Enable PG1 for cdclk */
5510 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5511
5512 /* check if cd clock is enabled */
5513 if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5514 DRM_DEBUG_KMS("Display already initialized\n");
5515 return;
5516 }
5517
5518 /*
5519 * FIXME:
5520 * - The initial CDCLK needs to be read from VBT.
5521 * Need to make this change after VBT has changes for BXT.
5522 * - check if setting the max (or any) cdclk freq is really necessary
5523 * here, it belongs to modeset time
5524 */
5525 broxton_set_cdclk(dev, 624000);
5526
5527 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5528 POSTING_READ(DBUF_CTL);
5529
f8437dd1
VK
5530 udelay(10);
5531
5532 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5533 DRM_ERROR("DBuf power enable timeout!\n");
5534}
5535
5536void broxton_uninit_cdclk(struct drm_device *dev)
5537{
5538 struct drm_i915_private *dev_priv = dev->dev_private;
5539
5540 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5541 POSTING_READ(DBUF_CTL);
5542
f8437dd1
VK
5543 udelay(10);
5544
5545 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5546 DRM_ERROR("DBuf power disable timeout!\n");
5547
5548 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5549 broxton_set_cdclk(dev, 19200);
5550
5551 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5552}
5553
5d96d8af
DL
5554static const struct skl_cdclk_entry {
5555 unsigned int freq;
5556 unsigned int vco;
5557} skl_cdclk_frequencies[] = {
5558 { .freq = 308570, .vco = 8640 },
5559 { .freq = 337500, .vco = 8100 },
5560 { .freq = 432000, .vco = 8640 },
5561 { .freq = 450000, .vco = 8100 },
5562 { .freq = 540000, .vco = 8100 },
5563 { .freq = 617140, .vco = 8640 },
5564 { .freq = 675000, .vco = 8100 },
5565};
5566
5567static unsigned int skl_cdclk_decimal(unsigned int freq)
5568{
5569 return (freq - 1000) / 500;
5570}
5571
5572static unsigned int skl_cdclk_get_vco(unsigned int freq)
5573{
5574 unsigned int i;
5575
5576 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5577 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5578
5579 if (e->freq == freq)
5580 return e->vco;
5581 }
5582
5583 return 8100;
5584}
5585
5586static void
5587skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5588{
5589 unsigned int min_freq;
5590 u32 val;
5591
5592 /* select the minimum CDCLK before enabling DPLL 0 */
5593 val = I915_READ(CDCLK_CTL);
5594 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5595 val |= CDCLK_FREQ_337_308;
5596
5597 if (required_vco == 8640)
5598 min_freq = 308570;
5599 else
5600 min_freq = 337500;
5601
5602 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5603
5604 I915_WRITE(CDCLK_CTL, val);
5605 POSTING_READ(CDCLK_CTL);
5606
5607 /*
5608 * We always enable DPLL0 with the lowest link rate possible, but still
5609 * taking into account the VCO required to operate the eDP panel at the
5610 * desired frequency. The usual DP link rates operate with a VCO of
5611 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5612 * The modeset code is responsible for the selection of the exact link
5613 * rate later on, with the constraint of choosing a frequency that
5614 * works with required_vco.
5615 */
5616 val = I915_READ(DPLL_CTRL1);
5617
5618 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5619 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5620 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5621 if (required_vco == 8640)
5622 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5623 SKL_DPLL0);
5624 else
5625 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5626 SKL_DPLL0);
5627
5628 I915_WRITE(DPLL_CTRL1, val);
5629 POSTING_READ(DPLL_CTRL1);
5630
5631 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5632
5633 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5634 DRM_ERROR("DPLL0 not locked\n");
5635}
5636
5637static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5638{
5639 int ret;
5640 u32 val;
5641
5642 /* inform PCU we want to change CDCLK */
5643 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5644 mutex_lock(&dev_priv->rps.hw_lock);
5645 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5646 mutex_unlock(&dev_priv->rps.hw_lock);
5647
5648 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5649}
5650
5651static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5652{
5653 unsigned int i;
5654
5655 for (i = 0; i < 15; i++) {
5656 if (skl_cdclk_pcu_ready(dev_priv))
5657 return true;
5658 udelay(10);
5659 }
5660
5661 return false;
5662}
5663
5664static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5665{
560a7ae4 5666 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5667 u32 freq_select, pcu_ack;
5668
5669 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5670
5671 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5672 DRM_ERROR("failed to inform PCU about cdclk change\n");
5673 return;
5674 }
5675
5676 /* set CDCLK_CTL */
5677 switch(freq) {
5678 case 450000:
5679 case 432000:
5680 freq_select = CDCLK_FREQ_450_432;
5681 pcu_ack = 1;
5682 break;
5683 case 540000:
5684 freq_select = CDCLK_FREQ_540;
5685 pcu_ack = 2;
5686 break;
5687 case 308570:
5688 case 337500:
5689 default:
5690 freq_select = CDCLK_FREQ_337_308;
5691 pcu_ack = 0;
5692 break;
5693 case 617140:
5694 case 675000:
5695 freq_select = CDCLK_FREQ_675_617;
5696 pcu_ack = 3;
5697 break;
5698 }
5699
5700 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5701 POSTING_READ(CDCLK_CTL);
5702
5703 /* inform PCU of the change */
5704 mutex_lock(&dev_priv->rps.hw_lock);
5705 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5706 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5707
5708 intel_update_cdclk(dev);
5d96d8af
DL
5709}
5710
5711void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5712{
5713 /* disable DBUF power */
5714 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5715 POSTING_READ(DBUF_CTL);
5716
5717 udelay(10);
5718
5719 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5720 DRM_ERROR("DBuf power disable timeout\n");
5721
ab96c1ee
ID
5722 /* disable DPLL0 */
5723 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5724 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5725 DRM_ERROR("Couldn't disable DPLL0\n");
5d96d8af
DL
5726}
5727
5728void skl_init_cdclk(struct drm_i915_private *dev_priv)
5729{
5d96d8af
DL
5730 unsigned int required_vco;
5731
39d9b85a
GW
5732 /* DPLL0 not enabled (happens on early BIOS versions) */
5733 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5734 /* enable DPLL0 */
5735 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5736 skl_dpll0_enable(dev_priv, required_vco);
5d96d8af
DL
5737 }
5738
5d96d8af
DL
5739 /* set CDCLK to the frequency the BIOS chose */
5740 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5741
5742 /* enable DBUF power */
5743 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5744 POSTING_READ(DBUF_CTL);
5745
5746 udelay(10);
5747
5748 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5749 DRM_ERROR("DBuf power enable timeout\n");
5750}
5751
c73666f3
SK
5752int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5753{
5754 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5755 uint32_t cdctl = I915_READ(CDCLK_CTL);
5756 int freq = dev_priv->skl_boot_cdclk;
5757
f1b391a5
SK
5758 /*
5759 * check if the pre-os intialized the display
5760 * There is SWF18 scratchpad register defined which is set by the
5761 * pre-os which can be used by the OS drivers to check the status
5762 */
5763 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5764 goto sanitize;
5765
c73666f3
SK
5766 /* Is PLL enabled and locked ? */
5767 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5768 goto sanitize;
5769
5770 /* DPLL okay; verify the cdclock
5771 *
5772 * Noticed in some instances that the freq selection is correct but
5773 * decimal part is programmed wrong from BIOS where pre-os does not
5774 * enable display. Verify the same as well.
5775 */
5776 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5777 /* All well; nothing to sanitize */
5778 return false;
5779sanitize:
5780 /*
5781 * As of now initialize with max cdclk till
5782 * we get dynamic cdclk support
5783 * */
5784 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5785 skl_init_cdclk(dev_priv);
5786
5787 /* we did have to sanitize */
5788 return true;
5789}
5790
30a970c6
JB
5791/* Adjust CDclk dividers to allow high res or save power if possible */
5792static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5793{
5794 struct drm_i915_private *dev_priv = dev->dev_private;
5795 u32 val, cmd;
5796
164dfd28
VK
5797 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5798 != dev_priv->cdclk_freq);
d60c4473 5799
dfcab17e 5800 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5801 cmd = 2;
dfcab17e 5802 else if (cdclk == 266667)
30a970c6
JB
5803 cmd = 1;
5804 else
5805 cmd = 0;
5806
5807 mutex_lock(&dev_priv->rps.hw_lock);
5808 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5809 val &= ~DSPFREQGUAR_MASK;
5810 val |= (cmd << DSPFREQGUAR_SHIFT);
5811 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5812 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5813 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5814 50)) {
5815 DRM_ERROR("timed out waiting for CDclk change\n");
5816 }
5817 mutex_unlock(&dev_priv->rps.hw_lock);
5818
54433e91
VS
5819 mutex_lock(&dev_priv->sb_lock);
5820
dfcab17e 5821 if (cdclk == 400000) {
6bcda4f0 5822 u32 divider;
30a970c6 5823
6bcda4f0 5824 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5825
30a970c6
JB
5826 /* adjust cdclk divider */
5827 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
87d5d259 5828 val &= ~CCK_FREQUENCY_VALUES;
30a970c6
JB
5829 val |= divider;
5830 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5831
5832 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
87d5d259 5833 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
a877e801
VS
5834 50))
5835 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5836 }
5837
30a970c6
JB
5838 /* adjust self-refresh exit latency value */
5839 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5840 val &= ~0x7f;
5841
5842 /*
5843 * For high bandwidth configs, we set a higher latency in the bunit
5844 * so that the core display fetch happens in time to avoid underruns.
5845 */
dfcab17e 5846 if (cdclk == 400000)
30a970c6
JB
5847 val |= 4500 / 250; /* 4.5 usec */
5848 else
5849 val |= 3000 / 250; /* 3.0 usec */
5850 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5851
a580516d 5852 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5853
b6283055 5854 intel_update_cdclk(dev);
30a970c6
JB
5855}
5856
383c5a6a
VS
5857static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5858{
5859 struct drm_i915_private *dev_priv = dev->dev_private;
5860 u32 val, cmd;
5861
164dfd28
VK
5862 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5863 != dev_priv->cdclk_freq);
383c5a6a
VS
5864
5865 switch (cdclk) {
383c5a6a
VS
5866 case 333333:
5867 case 320000:
383c5a6a 5868 case 266667:
383c5a6a 5869 case 200000:
383c5a6a
VS
5870 break;
5871 default:
5f77eeb0 5872 MISSING_CASE(cdclk);
383c5a6a
VS
5873 return;
5874 }
5875
9d0d3fda
VS
5876 /*
5877 * Specs are full of misinformation, but testing on actual
5878 * hardware has shown that we just need to write the desired
5879 * CCK divider into the Punit register.
5880 */
5881 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5882
383c5a6a
VS
5883 mutex_lock(&dev_priv->rps.hw_lock);
5884 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5885 val &= ~DSPFREQGUAR_MASK_CHV;
5886 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5887 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5888 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5889 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5890 50)) {
5891 DRM_ERROR("timed out waiting for CDclk change\n");
5892 }
5893 mutex_unlock(&dev_priv->rps.hw_lock);
5894
b6283055 5895 intel_update_cdclk(dev);
383c5a6a
VS
5896}
5897
30a970c6
JB
5898static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5899 int max_pixclk)
5900{
6bcda4f0 5901 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5902 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5903
30a970c6
JB
5904 /*
5905 * Really only a few cases to deal with, as only 4 CDclks are supported:
5906 * 200MHz
5907 * 267MHz
29dc7ef3 5908 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5909 * 400MHz (VLV only)
5910 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5911 * of the lower bin and adjust if needed.
e37c67a1
VS
5912 *
5913 * We seem to get an unstable or solid color picture at 200MHz.
5914 * Not sure what's wrong. For now use 200MHz only when all pipes
5915 * are off.
30a970c6 5916 */
6cca3195
VS
5917 if (!IS_CHERRYVIEW(dev_priv) &&
5918 max_pixclk > freq_320*limit/100)
dfcab17e 5919 return 400000;
6cca3195 5920 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5921 return freq_320;
e37c67a1 5922 else if (max_pixclk > 0)
dfcab17e 5923 return 266667;
e37c67a1
VS
5924 else
5925 return 200000;
30a970c6
JB
5926}
5927
f8437dd1
VK
5928static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5929 int max_pixclk)
5930{
5931 /*
5932 * FIXME:
5933 * - remove the guardband, it's not needed on BXT
5934 * - set 19.2MHz bypass frequency if there are no active pipes
5935 */
5936 if (max_pixclk > 576000*9/10)
5937 return 624000;
5938 else if (max_pixclk > 384000*9/10)
5939 return 576000;
5940 else if (max_pixclk > 288000*9/10)
5941 return 384000;
5942 else if (max_pixclk > 144000*9/10)
5943 return 288000;
5944 else
5945 return 144000;
5946}
5947
e8788cbc 5948/* Compute the max pixel clock for new configuration. */
a821fc46
ACO
5949static int intel_mode_max_pixclk(struct drm_device *dev,
5950 struct drm_atomic_state *state)
30a970c6 5951{
565602d7
ML
5952 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5953 struct drm_i915_private *dev_priv = dev->dev_private;
5954 struct drm_crtc *crtc;
5955 struct drm_crtc_state *crtc_state;
5956 unsigned max_pixclk = 0, i;
5957 enum pipe pipe;
30a970c6 5958
565602d7
ML
5959 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5960 sizeof(intel_state->min_pixclk));
304603f4 5961
565602d7
ML
5962 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5963 int pixclk = 0;
5964
5965 if (crtc_state->enable)
5966 pixclk = crtc_state->adjusted_mode.crtc_clock;
304603f4 5967
565602d7 5968 intel_state->min_pixclk[i] = pixclk;
30a970c6
JB
5969 }
5970
565602d7
ML
5971 for_each_pipe(dev_priv, pipe)
5972 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5973
30a970c6
JB
5974 return max_pixclk;
5975}
5976
27c329ed 5977static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 5978{
27c329ed
ML
5979 struct drm_device *dev = state->dev;
5980 struct drm_i915_private *dev_priv = dev->dev_private;
5981 int max_pixclk = intel_mode_max_pixclk(dev, state);
1a617b77
ML
5982 struct intel_atomic_state *intel_state =
5983 to_intel_atomic_state(state);
30a970c6 5984
304603f4
ACO
5985 if (max_pixclk < 0)
5986 return max_pixclk;
30a970c6 5987
1a617b77 5988 intel_state->cdclk = intel_state->dev_cdclk =
27c329ed 5989 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 5990
1a617b77
ML
5991 if (!intel_state->active_crtcs)
5992 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5993
27c329ed
ML
5994 return 0;
5995}
304603f4 5996
27c329ed
ML
5997static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5998{
5999 struct drm_device *dev = state->dev;
6000 struct drm_i915_private *dev_priv = dev->dev_private;
6001 int max_pixclk = intel_mode_max_pixclk(dev, state);
1a617b77
ML
6002 struct intel_atomic_state *intel_state =
6003 to_intel_atomic_state(state);
85a96e7a 6004
27c329ed
ML
6005 if (max_pixclk < 0)
6006 return max_pixclk;
85a96e7a 6007
1a617b77 6008 intel_state->cdclk = intel_state->dev_cdclk =
27c329ed 6009 broxton_calc_cdclk(dev_priv, max_pixclk);
85a96e7a 6010
1a617b77
ML
6011 if (!intel_state->active_crtcs)
6012 intel_state->dev_cdclk = broxton_calc_cdclk(dev_priv, 0);
6013
27c329ed 6014 return 0;
30a970c6
JB
6015}
6016
1e69cd74
VS
6017static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6018{
6019 unsigned int credits, default_credits;
6020
6021 if (IS_CHERRYVIEW(dev_priv))
6022 default_credits = PFI_CREDIT(12);
6023 else
6024 default_credits = PFI_CREDIT(8);
6025
bfa7df01 6026 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
1e69cd74
VS
6027 /* CHV suggested value is 31 or 63 */
6028 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 6029 credits = PFI_CREDIT_63;
1e69cd74
VS
6030 else
6031 credits = PFI_CREDIT(15);
6032 } else {
6033 credits = default_credits;
6034 }
6035
6036 /*
6037 * WA - write default credits before re-programming
6038 * FIXME: should we also set the resend bit here?
6039 */
6040 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6041 default_credits);
6042
6043 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6044 credits | PFI_CREDIT_RESEND);
6045
6046 /*
6047 * FIXME is this guaranteed to clear
6048 * immediately or should we poll for it?
6049 */
6050 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6051}
6052
27c329ed 6053static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 6054{
a821fc46 6055 struct drm_device *dev = old_state->dev;
30a970c6 6056 struct drm_i915_private *dev_priv = dev->dev_private;
1a617b77
ML
6057 struct intel_atomic_state *old_intel_state =
6058 to_intel_atomic_state(old_state);
6059 unsigned req_cdclk = old_intel_state->dev_cdclk;
30a970c6 6060
27c329ed
ML
6061 /*
6062 * FIXME: We can end up here with all power domains off, yet
6063 * with a CDCLK frequency other than the minimum. To account
6064 * for this take the PIPE-A power domain, which covers the HW
6065 * blocks needed for the following programming. This can be
6066 * removed once it's guaranteed that we get here either with
6067 * the minimum CDCLK set, or the required power domains
6068 * enabled.
6069 */
6070 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6071
27c329ed
ML
6072 if (IS_CHERRYVIEW(dev))
6073 cherryview_set_cdclk(dev, req_cdclk);
6074 else
6075 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6076
27c329ed 6077 vlv_program_pfi_credits(dev_priv);
1e69cd74 6078
27c329ed 6079 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6080}
6081
89b667f8
JB
6082static void valleyview_crtc_enable(struct drm_crtc *crtc)
6083{
6084 struct drm_device *dev = crtc->dev;
a72e4c9f 6085 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6086 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6087 struct intel_encoder *encoder;
6088 int pipe = intel_crtc->pipe;
89b667f8 6089
53d9f4e9 6090 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6091 return;
6092
6e3c9717 6093 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6094 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6095
6096 intel_set_pipe_timings(intel_crtc);
6097
c14b0485
VS
6098 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6099 struct drm_i915_private *dev_priv = dev->dev_private;
6100
6101 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6102 I915_WRITE(CHV_CANVAS(pipe), 0);
6103 }
6104
5b18e57c
DV
6105 i9xx_set_pipeconf(intel_crtc);
6106
89b667f8 6107 intel_crtc->active = true;
89b667f8 6108
a72e4c9f 6109 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6110
89b667f8
JB
6111 for_each_encoder_on_crtc(dev, crtc, encoder)
6112 if (encoder->pre_pll_enable)
6113 encoder->pre_pll_enable(encoder);
6114
a65347ba 6115 if (!intel_crtc->config->has_dsi_encoder) {
c0b4c660
VS
6116 if (IS_CHERRYVIEW(dev)) {
6117 chv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6118 chv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660
VS
6119 } else {
6120 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6e3c9717 6121 vlv_enable_pll(intel_crtc, intel_crtc->config);
c0b4c660 6122 }
9d556c99 6123 }
89b667f8
JB
6124
6125 for_each_encoder_on_crtc(dev, crtc, encoder)
6126 if (encoder->pre_enable)
6127 encoder->pre_enable(encoder);
6128
2dd24552
JB
6129 i9xx_pfit_enable(intel_crtc);
6130
63cbb074
VS
6131 intel_crtc_load_lut(crtc);
6132
e1fdc473 6133 intel_enable_pipe(intel_crtc);
be6a6f8e 6134
4b3a9526
VS
6135 assert_vblank_disabled(crtc);
6136 drm_crtc_vblank_on(crtc);
6137
f9b61ff6
DV
6138 for_each_encoder_on_crtc(dev, crtc, encoder)
6139 encoder->enable(encoder);
89b667f8
JB
6140}
6141
f13c2ef3
DV
6142static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6143{
6144 struct drm_device *dev = crtc->base.dev;
6145 struct drm_i915_private *dev_priv = dev->dev_private;
6146
6e3c9717
ACO
6147 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6148 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6149}
6150
0b8765c6 6151static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6152{
6153 struct drm_device *dev = crtc->dev;
a72e4c9f 6154 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6156 struct intel_encoder *encoder;
79e53945 6157 int pipe = intel_crtc->pipe;
79e53945 6158
53d9f4e9 6159 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6160 return;
6161
f13c2ef3
DV
6162 i9xx_set_pll_dividers(intel_crtc);
6163
6e3c9717 6164 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6165 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6166
6167 intel_set_pipe_timings(intel_crtc);
6168
5b18e57c
DV
6169 i9xx_set_pipeconf(intel_crtc);
6170
f7abfe8b 6171 intel_crtc->active = true;
6b383a7f 6172
4a3436e8 6173 if (!IS_GEN2(dev))
a72e4c9f 6174 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6175
9d6d9f19
MK
6176 for_each_encoder_on_crtc(dev, crtc, encoder)
6177 if (encoder->pre_enable)
6178 encoder->pre_enable(encoder);
6179
f6736a1a
DV
6180 i9xx_enable_pll(intel_crtc);
6181
2dd24552
JB
6182 i9xx_pfit_enable(intel_crtc);
6183
63cbb074
VS
6184 intel_crtc_load_lut(crtc);
6185
f37fcc2a 6186 intel_update_watermarks(crtc);
e1fdc473 6187 intel_enable_pipe(intel_crtc);
be6a6f8e 6188
4b3a9526
VS
6189 assert_vblank_disabled(crtc);
6190 drm_crtc_vblank_on(crtc);
6191
f9b61ff6
DV
6192 for_each_encoder_on_crtc(dev, crtc, encoder)
6193 encoder->enable(encoder);
0b8765c6 6194}
79e53945 6195
87476d63
DV
6196static void i9xx_pfit_disable(struct intel_crtc *crtc)
6197{
6198 struct drm_device *dev = crtc->base.dev;
6199 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6200
6e3c9717 6201 if (!crtc->config->gmch_pfit.control)
328d8e82 6202 return;
87476d63 6203
328d8e82 6204 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6205
328d8e82
DV
6206 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6207 I915_READ(PFIT_CONTROL));
6208 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6209}
6210
0b8765c6
JB
6211static void i9xx_crtc_disable(struct drm_crtc *crtc)
6212{
6213 struct drm_device *dev = crtc->dev;
6214 struct drm_i915_private *dev_priv = dev->dev_private;
6215 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6216 struct intel_encoder *encoder;
0b8765c6 6217 int pipe = intel_crtc->pipe;
ef9c3aee 6218
6304cd91
VS
6219 /*
6220 * On gen2 planes are double buffered but the pipe isn't, so we must
6221 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
6222 * We also need to wait on all gmch platforms because of the
6223 * self-refresh mode constraint explained above.
6304cd91 6224 */
564ed191 6225 intel_wait_for_vblank(dev, pipe);
6304cd91 6226
4b3a9526
VS
6227 for_each_encoder_on_crtc(dev, crtc, encoder)
6228 encoder->disable(encoder);
6229
f9b61ff6
DV
6230 drm_crtc_vblank_off(crtc);
6231 assert_vblank_disabled(crtc);
6232
575f7ab7 6233 intel_disable_pipe(intel_crtc);
24a1f16d 6234
87476d63 6235 i9xx_pfit_disable(intel_crtc);
24a1f16d 6236
89b667f8
JB
6237 for_each_encoder_on_crtc(dev, crtc, encoder)
6238 if (encoder->post_disable)
6239 encoder->post_disable(encoder);
6240
a65347ba 6241 if (!intel_crtc->config->has_dsi_encoder) {
076ed3b2
CML
6242 if (IS_CHERRYVIEW(dev))
6243 chv_disable_pll(dev_priv, pipe);
6244 else if (IS_VALLEYVIEW(dev))
6245 vlv_disable_pll(dev_priv, pipe);
6246 else
1c4e0274 6247 i9xx_disable_pll(intel_crtc);
076ed3b2 6248 }
0b8765c6 6249
d6db995f
VS
6250 for_each_encoder_on_crtc(dev, crtc, encoder)
6251 if (encoder->post_pll_disable)
6252 encoder->post_pll_disable(encoder);
6253
4a3436e8 6254 if (!IS_GEN2(dev))
a72e4c9f 6255 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
0b8765c6
JB
6256}
6257
b17d48e2
ML
6258static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6259{
6260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6261 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6262 enum intel_display_power_domain domain;
6263 unsigned long domains;
6264
6265 if (!intel_crtc->active)
6266 return;
6267
a539205a 6268 if (to_intel_plane_state(crtc->primary->state)->visible) {
fc32b1fd
ML
6269 WARN_ON(intel_crtc->unpin_work);
6270
a539205a 6271 intel_pre_disable_primary(crtc);
54a41961
ML
6272
6273 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6274 to_intel_plane_state(crtc->primary->state)->visible = false;
a539205a
ML
6275 }
6276
b17d48e2 6277 dev_priv->display.crtc_disable(crtc);
37d9078b 6278 intel_crtc->active = false;
58f9c0bc 6279 intel_fbc_disable(intel_crtc);
37d9078b 6280 intel_update_watermarks(crtc);
1f7457b1 6281 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6282
6283 domains = intel_crtc->enabled_power_domains;
6284 for_each_power_domain(domain, domains)
6285 intel_display_power_put(dev_priv, domain);
6286 intel_crtc->enabled_power_domains = 0;
565602d7
ML
6287
6288 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6289 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
b17d48e2
ML
6290}
6291
6b72d486
ML
6292/*
6293 * turn all crtc's off, but do not adjust state
6294 * This has to be paired with a call to intel_modeset_setup_hw_state.
6295 */
70e0bd74 6296int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6297{
e2c8b870 6298 struct drm_i915_private *dev_priv = to_i915(dev);
70e0bd74 6299 struct drm_atomic_state *state;
e2c8b870 6300 int ret;
70e0bd74 6301
e2c8b870
ML
6302 state = drm_atomic_helper_suspend(dev);
6303 ret = PTR_ERR_OR_ZERO(state);
70e0bd74
ML
6304 if (ret)
6305 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
e2c8b870
ML
6306 else
6307 dev_priv->modeset_restore_state = state;
70e0bd74 6308 return ret;
ee7b9f93
JB
6309}
6310
ea5b213a 6311void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6312{
4ef69c7a 6313 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6314
ea5b213a
CW
6315 drm_encoder_cleanup(encoder);
6316 kfree(intel_encoder);
7e7d76c3
JB
6317}
6318
0a91ca29
DV
6319/* Cross check the actual hw state with our own modeset state tracking (and it's
6320 * internal consistency). */
b980514c 6321static void intel_connector_check_state(struct intel_connector *connector)
79e53945 6322{
35dd3c64
ML
6323 struct drm_crtc *crtc = connector->base.state->crtc;
6324
6325 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6326 connector->base.base.id,
6327 connector->base.name);
6328
0a91ca29 6329 if (connector->get_hw_state(connector)) {
e85376cb 6330 struct intel_encoder *encoder = connector->encoder;
35dd3c64 6331 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6332
35dd3c64
ML
6333 I915_STATE_WARN(!crtc,
6334 "connector enabled without attached crtc\n");
0a91ca29 6335
35dd3c64
ML
6336 if (!crtc)
6337 return;
6338
6339 I915_STATE_WARN(!crtc->state->active,
6340 "connector is active, but attached crtc isn't\n");
6341
e85376cb 6342 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
35dd3c64
ML
6343 return;
6344
e85376cb 6345 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
35dd3c64
ML
6346 "atomic encoder doesn't match attached encoder\n");
6347
e85376cb 6348 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
35dd3c64
ML
6349 "attached encoder crtc differs from connector crtc\n");
6350 } else {
4d688a2a
ML
6351 I915_STATE_WARN(crtc && crtc->state->active,
6352 "attached crtc is active, but connector isn't\n");
35dd3c64
ML
6353 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6354 "best encoder set without crtc!\n");
0a91ca29 6355 }
79e53945
JB
6356}
6357
08d9bc92
ACO
6358int intel_connector_init(struct intel_connector *connector)
6359{
5350a031 6360 drm_atomic_helper_connector_reset(&connector->base);
08d9bc92 6361
5350a031 6362 if (!connector->base.state)
08d9bc92
ACO
6363 return -ENOMEM;
6364
08d9bc92
ACO
6365 return 0;
6366}
6367
6368struct intel_connector *intel_connector_alloc(void)
6369{
6370 struct intel_connector *connector;
6371
6372 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6373 if (!connector)
6374 return NULL;
6375
6376 if (intel_connector_init(connector) < 0) {
6377 kfree(connector);
6378 return NULL;
6379 }
6380
6381 return connector;
6382}
6383
f0947c37
DV
6384/* Simple connector->get_hw_state implementation for encoders that support only
6385 * one connector and no cloning and hence the encoder state determines the state
6386 * of the connector. */
6387bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6388{
24929352 6389 enum pipe pipe = 0;
f0947c37 6390 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6391
f0947c37 6392 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6393}
6394
6d293983 6395static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6396{
6d293983
ACO
6397 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6398 return crtc_state->fdi_lanes;
d272ddfa
VS
6399
6400 return 0;
6401}
6402
6d293983 6403static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6404 struct intel_crtc_state *pipe_config)
1857e1da 6405{
6d293983
ACO
6406 struct drm_atomic_state *state = pipe_config->base.state;
6407 struct intel_crtc *other_crtc;
6408 struct intel_crtc_state *other_crtc_state;
6409
1857e1da
DV
6410 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6411 pipe_name(pipe), pipe_config->fdi_lanes);
6412 if (pipe_config->fdi_lanes > 4) {
6413 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6414 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6415 return -EINVAL;
1857e1da
DV
6416 }
6417
bafb6553 6418 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6419 if (pipe_config->fdi_lanes > 2) {
6420 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6421 pipe_config->fdi_lanes);
6d293983 6422 return -EINVAL;
1857e1da 6423 } else {
6d293983 6424 return 0;
1857e1da
DV
6425 }
6426 }
6427
6428 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6429 return 0;
1857e1da
DV
6430
6431 /* Ivybridge 3 pipe is really complicated */
6432 switch (pipe) {
6433 case PIPE_A:
6d293983 6434 return 0;
1857e1da 6435 case PIPE_B:
6d293983
ACO
6436 if (pipe_config->fdi_lanes <= 2)
6437 return 0;
6438
6439 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6440 other_crtc_state =
6441 intel_atomic_get_crtc_state(state, other_crtc);
6442 if (IS_ERR(other_crtc_state))
6443 return PTR_ERR(other_crtc_state);
6444
6445 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6446 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6447 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6448 return -EINVAL;
1857e1da 6449 }
6d293983 6450 return 0;
1857e1da 6451 case PIPE_C:
251cc67c
VS
6452 if (pipe_config->fdi_lanes > 2) {
6453 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6454 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6455 return -EINVAL;
251cc67c 6456 }
6d293983
ACO
6457
6458 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6459 other_crtc_state =
6460 intel_atomic_get_crtc_state(state, other_crtc);
6461 if (IS_ERR(other_crtc_state))
6462 return PTR_ERR(other_crtc_state);
6463
6464 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6465 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6466 return -EINVAL;
1857e1da 6467 }
6d293983 6468 return 0;
1857e1da
DV
6469 default:
6470 BUG();
6471 }
6472}
6473
e29c22c0
DV
6474#define RETRY 1
6475static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6476 struct intel_crtc_state *pipe_config)
877d48d5 6477{
1857e1da 6478 struct drm_device *dev = intel_crtc->base.dev;
7c5f93b0 6479 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6480 int lane, link_bw, fdi_dotclock, ret;
6481 bool needs_recompute = false;
877d48d5 6482
e29c22c0 6483retry:
877d48d5
DV
6484 /* FDI is a binary signal running at ~2.7GHz, encoding
6485 * each output octet as 10 bits. The actual frequency
6486 * is stored as a divider into a 100MHz clock, and the
6487 * mode pixel clock is stored in units of 1KHz.
6488 * Hence the bw of each lane in terms of the mode signal
6489 * is:
6490 */
21a727b3 6491 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
877d48d5 6492
241bfc38 6493 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6494
2bd89a07 6495 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6496 pipe_config->pipe_bpp);
6497
6498 pipe_config->fdi_lanes = lane;
6499
2bd89a07 6500 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6501 link_bw, &pipe_config->fdi_m_n);
1857e1da 6502
e3b247da 6503 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6d293983 6504 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6505 pipe_config->pipe_bpp -= 2*3;
6506 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6507 pipe_config->pipe_bpp);
6508 needs_recompute = true;
6509 pipe_config->bw_constrained = true;
6510
6511 goto retry;
6512 }
6513
6514 if (needs_recompute)
6515 return RETRY;
6516
6d293983 6517 return ret;
877d48d5
DV
6518}
6519
8cfb3407
VS
6520static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6521 struct intel_crtc_state *pipe_config)
6522{
6523 if (pipe_config->pipe_bpp > 24)
6524 return false;
6525
6526 /* HSW can handle pixel rate up to cdclk? */
6527 if (IS_HASWELL(dev_priv->dev))
6528 return true;
6529
6530 /*
b432e5cf
VS
6531 * We compare against max which means we must take
6532 * the increased cdclk requirement into account when
6533 * calculating the new cdclk.
6534 *
6535 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6536 */
6537 return ilk_pipe_pixel_rate(pipe_config) <=
6538 dev_priv->max_cdclk_freq * 95 / 100;
6539}
6540
42db64ef 6541static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6542 struct intel_crtc_state *pipe_config)
42db64ef 6543{
8cfb3407
VS
6544 struct drm_device *dev = crtc->base.dev;
6545 struct drm_i915_private *dev_priv = dev->dev_private;
6546
d330a953 6547 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6548 hsw_crtc_supports_ips(crtc) &&
6549 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6550}
6551
39acb4aa
VS
6552static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6553{
6554 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6555
6556 /* GDG double wide on either pipe, otherwise pipe A only */
6557 return INTEL_INFO(dev_priv)->gen < 4 &&
6558 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6559}
6560
a43f6e0f 6561static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6562 struct intel_crtc_state *pipe_config)
79e53945 6563{
a43f6e0f 6564 struct drm_device *dev = crtc->base.dev;
8bd31e67 6565 struct drm_i915_private *dev_priv = dev->dev_private;
7c5f93b0 6566 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 6567
ad3a4479 6568 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6569 if (INTEL_INFO(dev)->gen < 4) {
39acb4aa 6570 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
cf532bb2
VS
6571
6572 /*
39acb4aa 6573 * Enable double wide mode when the dot clock
cf532bb2 6574 * is > 90% of the (display) core speed.
cf532bb2 6575 */
39acb4aa
VS
6576 if (intel_crtc_supports_double_wide(crtc) &&
6577 adjusted_mode->crtc_clock > clock_limit) {
ad3a4479 6578 clock_limit *= 2;
cf532bb2 6579 pipe_config->double_wide = true;
ad3a4479
VS
6580 }
6581
39acb4aa
VS
6582 if (adjusted_mode->crtc_clock > clock_limit) {
6583 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6584 adjusted_mode->crtc_clock, clock_limit,
6585 yesno(pipe_config->double_wide));
e29c22c0 6586 return -EINVAL;
39acb4aa 6587 }
2c07245f 6588 }
89749350 6589
1d1d0e27
VS
6590 /*
6591 * Pipe horizontal size must be even in:
6592 * - DVO ganged mode
6593 * - LVDS dual channel mode
6594 * - Double wide pipe
6595 */
a93e255f 6596 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6597 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6598 pipe_config->pipe_src_w &= ~1;
6599
8693a824
DL
6600 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6601 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6602 */
6603 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
aad941d5 6604 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
e29c22c0 6605 return -EINVAL;
44f46b42 6606
f5adf94e 6607 if (HAS_IPS(dev))
a43f6e0f
DV
6608 hsw_compute_ips_config(crtc, pipe_config);
6609
877d48d5 6610 if (pipe_config->has_pch_encoder)
a43f6e0f 6611 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6612
cf5a15be 6613 return 0;
79e53945
JB
6614}
6615
1652d19e
VS
6616static int skylake_get_display_clock_speed(struct drm_device *dev)
6617{
6618 struct drm_i915_private *dev_priv = to_i915(dev);
6619 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6620 uint32_t cdctl = I915_READ(CDCLK_CTL);
6621 uint32_t linkrate;
6622
414355a7 6623 if (!(lcpll1 & LCPLL_PLL_ENABLE))
1652d19e 6624 return 24000; /* 24MHz is the cd freq with NSSC ref */
1652d19e
VS
6625
6626 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6627 return 540000;
6628
6629 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6630 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6631
71cd8423
DL
6632 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6633 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6634 /* vco 8640 */
6635 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6636 case CDCLK_FREQ_450_432:
6637 return 432000;
6638 case CDCLK_FREQ_337_308:
6639 return 308570;
6640 case CDCLK_FREQ_675_617:
6641 return 617140;
6642 default:
6643 WARN(1, "Unknown cd freq selection\n");
6644 }
6645 } else {
6646 /* vco 8100 */
6647 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6648 case CDCLK_FREQ_450_432:
6649 return 450000;
6650 case CDCLK_FREQ_337_308:
6651 return 337500;
6652 case CDCLK_FREQ_675_617:
6653 return 675000;
6654 default:
6655 WARN(1, "Unknown cd freq selection\n");
6656 }
6657 }
6658
6659 /* error case, do as if DPLL0 isn't enabled */
6660 return 24000;
6661}
6662
acd3f3d3
BP
6663static int broxton_get_display_clock_speed(struct drm_device *dev)
6664{
6665 struct drm_i915_private *dev_priv = to_i915(dev);
6666 uint32_t cdctl = I915_READ(CDCLK_CTL);
6667 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6668 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6669 int cdclk;
6670
6671 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6672 return 19200;
6673
6674 cdclk = 19200 * pll_ratio / 2;
6675
6676 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6677 case BXT_CDCLK_CD2X_DIV_SEL_1:
6678 return cdclk; /* 576MHz or 624MHz */
6679 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6680 return cdclk * 2 / 3; /* 384MHz */
6681 case BXT_CDCLK_CD2X_DIV_SEL_2:
6682 return cdclk / 2; /* 288MHz */
6683 case BXT_CDCLK_CD2X_DIV_SEL_4:
6684 return cdclk / 4; /* 144MHz */
6685 }
6686
6687 /* error case, do as if DE PLL isn't enabled */
6688 return 19200;
6689}
6690
1652d19e
VS
6691static int broadwell_get_display_clock_speed(struct drm_device *dev)
6692{
6693 struct drm_i915_private *dev_priv = dev->dev_private;
6694 uint32_t lcpll = I915_READ(LCPLL_CTL);
6695 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6696
6697 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6698 return 800000;
6699 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6700 return 450000;
6701 else if (freq == LCPLL_CLK_FREQ_450)
6702 return 450000;
6703 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6704 return 540000;
6705 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6706 return 337500;
6707 else
6708 return 675000;
6709}
6710
6711static int haswell_get_display_clock_speed(struct drm_device *dev)
6712{
6713 struct drm_i915_private *dev_priv = dev->dev_private;
6714 uint32_t lcpll = I915_READ(LCPLL_CTL);
6715 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6716
6717 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6718 return 800000;
6719 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6720 return 450000;
6721 else if (freq == LCPLL_CLK_FREQ_450)
6722 return 450000;
6723 else if (IS_HSW_ULT(dev))
6724 return 337500;
6725 else
6726 return 540000;
79e53945
JB
6727}
6728
25eb05fc
JB
6729static int valleyview_get_display_clock_speed(struct drm_device *dev)
6730{
bfa7df01
VS
6731 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6732 CCK_DISPLAY_CLOCK_CONTROL);
25eb05fc
JB
6733}
6734
b37a6434
VS
6735static int ilk_get_display_clock_speed(struct drm_device *dev)
6736{
6737 return 450000;
6738}
6739
e70236a8
JB
6740static int i945_get_display_clock_speed(struct drm_device *dev)
6741{
6742 return 400000;
6743}
79e53945 6744
e70236a8 6745static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6746{
e907f170 6747 return 333333;
e70236a8 6748}
79e53945 6749
e70236a8
JB
6750static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6751{
6752 return 200000;
6753}
79e53945 6754
257a7ffc
DV
6755static int pnv_get_display_clock_speed(struct drm_device *dev)
6756{
6757 u16 gcfgc = 0;
6758
6759 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6760
6761 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6762 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6763 return 266667;
257a7ffc 6764 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6765 return 333333;
257a7ffc 6766 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6767 return 444444;
257a7ffc
DV
6768 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6769 return 200000;
6770 default:
6771 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6772 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6773 return 133333;
257a7ffc 6774 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6775 return 166667;
257a7ffc
DV
6776 }
6777}
6778
e70236a8
JB
6779static int i915gm_get_display_clock_speed(struct drm_device *dev)
6780{
6781 u16 gcfgc = 0;
79e53945 6782
e70236a8
JB
6783 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6784
6785 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6786 return 133333;
e70236a8
JB
6787 else {
6788 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6789 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6790 return 333333;
e70236a8
JB
6791 default:
6792 case GC_DISPLAY_CLOCK_190_200_MHZ:
6793 return 190000;
79e53945 6794 }
e70236a8
JB
6795 }
6796}
6797
6798static int i865_get_display_clock_speed(struct drm_device *dev)
6799{
e907f170 6800 return 266667;
e70236a8
JB
6801}
6802
1b1d2716 6803static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6804{
6805 u16 hpllcc = 0;
1b1d2716 6806
65cd2b3f
VS
6807 /*
6808 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6809 * encoding is different :(
6810 * FIXME is this the right way to detect 852GM/852GMV?
6811 */
6812 if (dev->pdev->revision == 0x1)
6813 return 133333;
6814
1b1d2716
VS
6815 pci_bus_read_config_word(dev->pdev->bus,
6816 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6817
e70236a8
JB
6818 /* Assume that the hardware is in the high speed state. This
6819 * should be the default.
6820 */
6821 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6822 case GC_CLOCK_133_200:
1b1d2716 6823 case GC_CLOCK_133_200_2:
e70236a8
JB
6824 case GC_CLOCK_100_200:
6825 return 200000;
6826 case GC_CLOCK_166_250:
6827 return 250000;
6828 case GC_CLOCK_100_133:
e907f170 6829 return 133333;
1b1d2716
VS
6830 case GC_CLOCK_133_266:
6831 case GC_CLOCK_133_266_2:
6832 case GC_CLOCK_166_266:
6833 return 266667;
e70236a8 6834 }
79e53945 6835
e70236a8
JB
6836 /* Shouldn't happen */
6837 return 0;
6838}
79e53945 6839
e70236a8
JB
6840static int i830_get_display_clock_speed(struct drm_device *dev)
6841{
e907f170 6842 return 133333;
79e53945
JB
6843}
6844
34edce2f
VS
6845static unsigned int intel_hpll_vco(struct drm_device *dev)
6846{
6847 struct drm_i915_private *dev_priv = dev->dev_private;
6848 static const unsigned int blb_vco[8] = {
6849 [0] = 3200000,
6850 [1] = 4000000,
6851 [2] = 5333333,
6852 [3] = 4800000,
6853 [4] = 6400000,
6854 };
6855 static const unsigned int pnv_vco[8] = {
6856 [0] = 3200000,
6857 [1] = 4000000,
6858 [2] = 5333333,
6859 [3] = 4800000,
6860 [4] = 2666667,
6861 };
6862 static const unsigned int cl_vco[8] = {
6863 [0] = 3200000,
6864 [1] = 4000000,
6865 [2] = 5333333,
6866 [3] = 6400000,
6867 [4] = 3333333,
6868 [5] = 3566667,
6869 [6] = 4266667,
6870 };
6871 static const unsigned int elk_vco[8] = {
6872 [0] = 3200000,
6873 [1] = 4000000,
6874 [2] = 5333333,
6875 [3] = 4800000,
6876 };
6877 static const unsigned int ctg_vco[8] = {
6878 [0] = 3200000,
6879 [1] = 4000000,
6880 [2] = 5333333,
6881 [3] = 6400000,
6882 [4] = 2666667,
6883 [5] = 4266667,
6884 };
6885 const unsigned int *vco_table;
6886 unsigned int vco;
6887 uint8_t tmp = 0;
6888
6889 /* FIXME other chipsets? */
6890 if (IS_GM45(dev))
6891 vco_table = ctg_vco;
6892 else if (IS_G4X(dev))
6893 vco_table = elk_vco;
6894 else if (IS_CRESTLINE(dev))
6895 vco_table = cl_vco;
6896 else if (IS_PINEVIEW(dev))
6897 vco_table = pnv_vco;
6898 else if (IS_G33(dev))
6899 vco_table = blb_vco;
6900 else
6901 return 0;
6902
6903 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6904
6905 vco = vco_table[tmp & 0x7];
6906 if (vco == 0)
6907 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6908 else
6909 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6910
6911 return vco;
6912}
6913
6914static int gm45_get_display_clock_speed(struct drm_device *dev)
6915{
6916 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6917 uint16_t tmp = 0;
6918
6919 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6920
6921 cdclk_sel = (tmp >> 12) & 0x1;
6922
6923 switch (vco) {
6924 case 2666667:
6925 case 4000000:
6926 case 5333333:
6927 return cdclk_sel ? 333333 : 222222;
6928 case 3200000:
6929 return cdclk_sel ? 320000 : 228571;
6930 default:
6931 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6932 return 222222;
6933 }
6934}
6935
6936static int i965gm_get_display_clock_speed(struct drm_device *dev)
6937{
6938 static const uint8_t div_3200[] = { 16, 10, 8 };
6939 static const uint8_t div_4000[] = { 20, 12, 10 };
6940 static const uint8_t div_5333[] = { 24, 16, 14 };
6941 const uint8_t *div_table;
6942 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6943 uint16_t tmp = 0;
6944
6945 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6946
6947 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6948
6949 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6950 goto fail;
6951
6952 switch (vco) {
6953 case 3200000:
6954 div_table = div_3200;
6955 break;
6956 case 4000000:
6957 div_table = div_4000;
6958 break;
6959 case 5333333:
6960 div_table = div_5333;
6961 break;
6962 default:
6963 goto fail;
6964 }
6965
6966 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6967
caf4e252 6968fail:
34edce2f
VS
6969 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6970 return 200000;
6971}
6972
6973static int g33_get_display_clock_speed(struct drm_device *dev)
6974{
6975 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6976 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6977 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6978 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6979 const uint8_t *div_table;
6980 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6981 uint16_t tmp = 0;
6982
6983 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6984
6985 cdclk_sel = (tmp >> 4) & 0x7;
6986
6987 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6988 goto fail;
6989
6990 switch (vco) {
6991 case 3200000:
6992 div_table = div_3200;
6993 break;
6994 case 4000000:
6995 div_table = div_4000;
6996 break;
6997 case 4800000:
6998 div_table = div_4800;
6999 break;
7000 case 5333333:
7001 div_table = div_5333;
7002 break;
7003 default:
7004 goto fail;
7005 }
7006
7007 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7008
caf4e252 7009fail:
34edce2f
VS
7010 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7011 return 190476;
7012}
7013
2c07245f 7014static void
a65851af 7015intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 7016{
a65851af
VS
7017 while (*num > DATA_LINK_M_N_MASK ||
7018 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
7019 *num >>= 1;
7020 *den >>= 1;
7021 }
7022}
7023
a65851af
VS
7024static void compute_m_n(unsigned int m, unsigned int n,
7025 uint32_t *ret_m, uint32_t *ret_n)
7026{
7027 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7028 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7029 intel_reduce_m_n_ratio(ret_m, ret_n);
7030}
7031
e69d0bc1
DV
7032void
7033intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7034 int pixel_clock, int link_clock,
7035 struct intel_link_m_n *m_n)
2c07245f 7036{
e69d0bc1 7037 m_n->tu = 64;
a65851af
VS
7038
7039 compute_m_n(bits_per_pixel * pixel_clock,
7040 link_clock * nlanes * 8,
7041 &m_n->gmch_m, &m_n->gmch_n);
7042
7043 compute_m_n(pixel_clock, link_clock,
7044 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7045}
7046
a7615030
CW
7047static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7048{
d330a953
JN
7049 if (i915.panel_use_ssc >= 0)
7050 return i915.panel_use_ssc != 0;
41aa3448 7051 return dev_priv->vbt.lvds_use_ssc
435793df 7052 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7053}
7054
a93e255f
ACO
7055static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7056 int num_connectors)
c65d77d8 7057{
a93e255f 7058 struct drm_device *dev = crtc_state->base.crtc->dev;
c65d77d8
JB
7059 struct drm_i915_private *dev_priv = dev->dev_private;
7060 int refclk;
7061
a93e255f
ACO
7062 WARN_ON(!crtc_state->base.state);
7063
666a4537 7064 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || IS_BROXTON(dev)) {
9a0ea498 7065 refclk = 100000;
a93e255f 7066 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
c65d77d8 7067 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
7068 refclk = dev_priv->vbt.lvds_ssc_freq;
7069 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
7070 } else if (!IS_GEN2(dev)) {
7071 refclk = 96000;
7072 } else {
7073 refclk = 48000;
7074 }
7075
7076 return refclk;
7077}
7078
7429e9d4 7079static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7080{
7df00d7a 7081 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7082}
f47709a9 7083
7429e9d4
DV
7084static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7085{
7086 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7087}
7088
f47709a9 7089static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7090 struct intel_crtc_state *crtc_state,
a7516a05
JB
7091 intel_clock_t *reduced_clock)
7092{
f47709a9 7093 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7094 u32 fp, fp2 = 0;
7095
7096 if (IS_PINEVIEW(dev)) {
190f68c5 7097 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7098 if (reduced_clock)
7429e9d4 7099 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7100 } else {
190f68c5 7101 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7102 if (reduced_clock)
7429e9d4 7103 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7104 }
7105
190f68c5 7106 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7107
f47709a9 7108 crtc->lowfreq_avail = false;
a93e255f 7109 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7110 reduced_clock) {
190f68c5 7111 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7112 crtc->lowfreq_avail = true;
a7516a05 7113 } else {
190f68c5 7114 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7115 }
7116}
7117
5e69f97f
CML
7118static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7119 pipe)
89b667f8
JB
7120{
7121 u32 reg_val;
7122
7123 /*
7124 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7125 * and set it to a reasonable value instead.
7126 */
ab3c759a 7127 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7128 reg_val &= 0xffffff00;
7129 reg_val |= 0x00000030;
ab3c759a 7130 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7131
ab3c759a 7132 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7133 reg_val &= 0x8cffffff;
7134 reg_val = 0x8c000000;
ab3c759a 7135 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7136
ab3c759a 7137 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7138 reg_val &= 0xffffff00;
ab3c759a 7139 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7140
ab3c759a 7141 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7142 reg_val &= 0x00ffffff;
7143 reg_val |= 0xb0000000;
ab3c759a 7144 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7145}
7146
b551842d
DV
7147static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7148 struct intel_link_m_n *m_n)
7149{
7150 struct drm_device *dev = crtc->base.dev;
7151 struct drm_i915_private *dev_priv = dev->dev_private;
7152 int pipe = crtc->pipe;
7153
e3b95f1e
DV
7154 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7155 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7156 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7157 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7158}
7159
7160static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7161 struct intel_link_m_n *m_n,
7162 struct intel_link_m_n *m2_n2)
b551842d
DV
7163{
7164 struct drm_device *dev = crtc->base.dev;
7165 struct drm_i915_private *dev_priv = dev->dev_private;
7166 int pipe = crtc->pipe;
6e3c9717 7167 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7168
7169 if (INTEL_INFO(dev)->gen >= 5) {
7170 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7171 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7172 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7173 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7174 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7175 * for gen < 8) and if DRRS is supported (to make sure the
7176 * registers are not unnecessarily accessed).
7177 */
44395bfe 7178 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7179 crtc->config->has_drrs) {
f769cd24
VK
7180 I915_WRITE(PIPE_DATA_M2(transcoder),
7181 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7182 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7183 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7184 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7185 }
b551842d 7186 } else {
e3b95f1e
DV
7187 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7188 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7189 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7190 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7191 }
7192}
7193
fe3cd48d 7194void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7195{
fe3cd48d
R
7196 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7197
7198 if (m_n == M1_N1) {
7199 dp_m_n = &crtc->config->dp_m_n;
7200 dp_m2_n2 = &crtc->config->dp_m2_n2;
7201 } else if (m_n == M2_N2) {
7202
7203 /*
7204 * M2_N2 registers are not supported. Hence m2_n2 divider value
7205 * needs to be programmed into M1_N1.
7206 */
7207 dp_m_n = &crtc->config->dp_m2_n2;
7208 } else {
7209 DRM_ERROR("Unsupported divider value\n");
7210 return;
7211 }
7212
6e3c9717
ACO
7213 if (crtc->config->has_pch_encoder)
7214 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7215 else
fe3cd48d 7216 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7217}
7218
251ac862
DV
7219static void vlv_compute_dpll(struct intel_crtc *crtc,
7220 struct intel_crtc_state *pipe_config)
bdd4b6a6
DV
7221{
7222 u32 dpll, dpll_md;
7223
7224 /*
7225 * Enable DPIO clock input. We should never disable the reference
7226 * clock for pipe B, since VGA hotplug / manual detection depends
7227 * on it.
7228 */
60bfe44f
VS
7229 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7230 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
bdd4b6a6
DV
7231 /* We should never disable this, set it here for state tracking */
7232 if (crtc->pipe == PIPE_B)
7233 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7234 dpll |= DPLL_VCO_ENABLE;
d288f65f 7235 pipe_config->dpll_hw_state.dpll = dpll;
bdd4b6a6 7236
d288f65f 7237 dpll_md = (pipe_config->pixel_multiplier - 1)
bdd4b6a6 7238 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
d288f65f 7239 pipe_config->dpll_hw_state.dpll_md = dpll_md;
bdd4b6a6
DV
7240}
7241
d288f65f 7242static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7243 const struct intel_crtc_state *pipe_config)
a0c4da24 7244{
f47709a9 7245 struct drm_device *dev = crtc->base.dev;
a0c4da24 7246 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 7247 int pipe = crtc->pipe;
bdd4b6a6 7248 u32 mdiv;
a0c4da24 7249 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7250 u32 coreclk, reg_val;
a0c4da24 7251
a580516d 7252 mutex_lock(&dev_priv->sb_lock);
09153000 7253
d288f65f
VS
7254 bestn = pipe_config->dpll.n;
7255 bestm1 = pipe_config->dpll.m1;
7256 bestm2 = pipe_config->dpll.m2;
7257 bestp1 = pipe_config->dpll.p1;
7258 bestp2 = pipe_config->dpll.p2;
a0c4da24 7259
89b667f8
JB
7260 /* See eDP HDMI DPIO driver vbios notes doc */
7261
7262 /* PLL B needs special handling */
bdd4b6a6 7263 if (pipe == PIPE_B)
5e69f97f 7264 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7265
7266 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7267 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7268
7269 /* Disable target IRef on PLL */
ab3c759a 7270 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7271 reg_val &= 0x00ffffff;
ab3c759a 7272 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7273
7274 /* Disable fast lock */
ab3c759a 7275 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7276
7277 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7278 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7279 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7280 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7281 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7282
7283 /*
7284 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7285 * but we don't support that).
7286 * Note: don't use the DAC post divider as it seems unstable.
7287 */
7288 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7289 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7290
a0c4da24 7291 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7292 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7293
89b667f8 7294 /* Set HBR and RBR LPF coefficients */
d288f65f 7295 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7296 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7297 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7298 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7299 0x009f0003);
89b667f8 7300 else
ab3c759a 7301 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7302 0x00d0000f);
7303
681a8504 7304 if (pipe_config->has_dp_encoder) {
89b667f8 7305 /* Use SSC source */
bdd4b6a6 7306 if (pipe == PIPE_A)
ab3c759a 7307 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7308 0x0df40000);
7309 else
ab3c759a 7310 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7311 0x0df70000);
7312 } else { /* HDMI or VGA */
7313 /* Use bend source */
bdd4b6a6 7314 if (pipe == PIPE_A)
ab3c759a 7315 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7316 0x0df70000);
7317 else
ab3c759a 7318 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7319 0x0df40000);
7320 }
a0c4da24 7321
ab3c759a 7322 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7323 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7324 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7325 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7326 coreclk |= 0x01000000;
ab3c759a 7327 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7328
ab3c759a 7329 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7330 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7331}
7332
251ac862
DV
7333static void chv_compute_dpll(struct intel_crtc *crtc,
7334 struct intel_crtc_state *pipe_config)
1ae0d137 7335{
60bfe44f
VS
7336 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7337 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
1ae0d137
VS
7338 DPLL_VCO_ENABLE;
7339 if (crtc->pipe != PIPE_A)
d288f65f 7340 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
1ae0d137 7341
d288f65f
VS
7342 pipe_config->dpll_hw_state.dpll_md =
7343 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
1ae0d137
VS
7344}
7345
d288f65f 7346static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7347 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7348{
7349 struct drm_device *dev = crtc->base.dev;
7350 struct drm_i915_private *dev_priv = dev->dev_private;
7351 int pipe = crtc->pipe;
f0f59a00 7352 i915_reg_t dpll_reg = DPLL(crtc->pipe);
9d556c99 7353 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7354 u32 loopfilter, tribuf_calcntr;
9d556c99 7355 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7356 u32 dpio_val;
9cbe40c1 7357 int vco;
9d556c99 7358
d288f65f
VS
7359 bestn = pipe_config->dpll.n;
7360 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7361 bestm1 = pipe_config->dpll.m1;
7362 bestm2 = pipe_config->dpll.m2 >> 22;
7363 bestp1 = pipe_config->dpll.p1;
7364 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7365 vco = pipe_config->dpll.vco;
a945ce7e 7366 dpio_val = 0;
9cbe40c1 7367 loopfilter = 0;
9d556c99
CML
7368
7369 /*
7370 * Enable Refclk and SSC
7371 */
a11b0703 7372 I915_WRITE(dpll_reg,
d288f65f 7373 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
a11b0703 7374
a580516d 7375 mutex_lock(&dev_priv->sb_lock);
9d556c99 7376
9d556c99
CML
7377 /* p1 and p2 divider */
7378 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7379 5 << DPIO_CHV_S1_DIV_SHIFT |
7380 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7381 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7382 1 << DPIO_CHV_K_DIV_SHIFT);
7383
7384 /* Feedback post-divider - m2 */
7385 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7386
7387 /* Feedback refclk divider - n and m1 */
7388 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7389 DPIO_CHV_M1_DIV_BY_2 |
7390 1 << DPIO_CHV_N_DIV_SHIFT);
7391
7392 /* M2 fraction division */
25a25dfc 7393 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7394
7395 /* M2 fraction division enable */
a945ce7e
VP
7396 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7397 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7398 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7399 if (bestm2_frac)
7400 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7401 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7402
de3a0fde
VP
7403 /* Program digital lock detect threshold */
7404 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7405 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7406 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7407 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7408 if (!bestm2_frac)
7409 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7410 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7411
9d556c99 7412 /* Loop filter */
9cbe40c1
VP
7413 if (vco == 5400000) {
7414 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7415 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7416 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7417 tribuf_calcntr = 0x9;
7418 } else if (vco <= 6200000) {
7419 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7420 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7421 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7422 tribuf_calcntr = 0x9;
7423 } else if (vco <= 6480000) {
7424 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7425 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7426 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7427 tribuf_calcntr = 0x8;
7428 } else {
7429 /* Not supported. Apply the same limits as in the max case */
7430 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7431 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7432 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7433 tribuf_calcntr = 0;
7434 }
9d556c99
CML
7435 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7436
968040b2 7437 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7438 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7439 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7440 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7441
9d556c99
CML
7442 /* AFC Recal */
7443 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7444 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7445 DPIO_AFC_RECAL);
7446
a580516d 7447 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7448}
7449
d288f65f
VS
7450/**
7451 * vlv_force_pll_on - forcibly enable just the PLL
7452 * @dev_priv: i915 private structure
7453 * @pipe: pipe PLL to enable
7454 * @dpll: PLL configuration
7455 *
7456 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7457 * in cases where we need the PLL enabled even when @pipe is not going to
7458 * be enabled.
7459 */
3f36b937
TU
7460int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7461 const struct dpll *dpll)
d288f65f
VS
7462{
7463 struct intel_crtc *crtc =
7464 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
3f36b937
TU
7465 struct intel_crtc_state *pipe_config;
7466
7467 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7468 if (!pipe_config)
7469 return -ENOMEM;
7470
7471 pipe_config->base.crtc = &crtc->base;
7472 pipe_config->pixel_multiplier = 1;
7473 pipe_config->dpll = *dpll;
d288f65f
VS
7474
7475 if (IS_CHERRYVIEW(dev)) {
3f36b937
TU
7476 chv_compute_dpll(crtc, pipe_config);
7477 chv_prepare_pll(crtc, pipe_config);
7478 chv_enable_pll(crtc, pipe_config);
d288f65f 7479 } else {
3f36b937
TU
7480 vlv_compute_dpll(crtc, pipe_config);
7481 vlv_prepare_pll(crtc, pipe_config);
7482 vlv_enable_pll(crtc, pipe_config);
d288f65f 7483 }
3f36b937
TU
7484
7485 kfree(pipe_config);
7486
7487 return 0;
d288f65f
VS
7488}
7489
7490/**
7491 * vlv_force_pll_off - forcibly disable just the PLL
7492 * @dev_priv: i915 private structure
7493 * @pipe: pipe PLL to disable
7494 *
7495 * Disable the PLL for @pipe. To be used in cases where we need
7496 * the PLL enabled even when @pipe is not going to be enabled.
7497 */
7498void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7499{
7500 if (IS_CHERRYVIEW(dev))
7501 chv_disable_pll(to_i915(dev), pipe);
7502 else
7503 vlv_disable_pll(to_i915(dev), pipe);
7504}
7505
251ac862
DV
7506static void i9xx_compute_dpll(struct intel_crtc *crtc,
7507 struct intel_crtc_state *crtc_state,
7508 intel_clock_t *reduced_clock,
7509 int num_connectors)
eb1cbe48 7510{
f47709a9 7511 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7512 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7513 u32 dpll;
7514 bool is_sdvo;
190f68c5 7515 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7516
190f68c5 7517 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7518
a93e255f
ACO
7519 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7520 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7521
7522 dpll = DPLL_VGA_MODE_DIS;
7523
a93e255f 7524 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7525 dpll |= DPLLB_MODE_LVDS;
7526 else
7527 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7528
ef1b460d 7529 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7530 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7531 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7532 }
198a037f
DV
7533
7534 if (is_sdvo)
4a33e48d 7535 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7536
190f68c5 7537 if (crtc_state->has_dp_encoder)
4a33e48d 7538 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7539
7540 /* compute bitmask from p1 value */
7541 if (IS_PINEVIEW(dev))
7542 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7543 else {
7544 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7545 if (IS_G4X(dev) && reduced_clock)
7546 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7547 }
7548 switch (clock->p2) {
7549 case 5:
7550 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7551 break;
7552 case 7:
7553 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7554 break;
7555 case 10:
7556 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7557 break;
7558 case 14:
7559 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7560 break;
7561 }
7562 if (INTEL_INFO(dev)->gen >= 4)
7563 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7564
190f68c5 7565 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7566 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7567 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7568 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7569 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7570 else
7571 dpll |= PLL_REF_INPUT_DREFCLK;
7572
7573 dpll |= DPLL_VCO_ENABLE;
190f68c5 7574 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7575
eb1cbe48 7576 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7577 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7578 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7579 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7580 }
7581}
7582
251ac862
DV
7583static void i8xx_compute_dpll(struct intel_crtc *crtc,
7584 struct intel_crtc_state *crtc_state,
7585 intel_clock_t *reduced_clock,
7586 int num_connectors)
eb1cbe48 7587{
f47709a9 7588 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7589 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7590 u32 dpll;
190f68c5 7591 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7592
190f68c5 7593 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7594
eb1cbe48
DV
7595 dpll = DPLL_VGA_MODE_DIS;
7596
a93e255f 7597 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7598 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7599 } else {
7600 if (clock->p1 == 2)
7601 dpll |= PLL_P1_DIVIDE_BY_TWO;
7602 else
7603 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7604 if (clock->p2 == 4)
7605 dpll |= PLL_P2_DIVIDE_BY_4;
7606 }
7607
a93e255f 7608 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7609 dpll |= DPLL_DVO_2X_MODE;
7610
a93e255f 7611 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
7612 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7613 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7614 else
7615 dpll |= PLL_REF_INPUT_DREFCLK;
7616
7617 dpll |= DPLL_VCO_ENABLE;
190f68c5 7618 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7619}
7620
8a654f3b 7621static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7622{
7623 struct drm_device *dev = intel_crtc->base.dev;
7624 struct drm_i915_private *dev_priv = dev->dev_private;
7625 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7626 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7c5f93b0 7627 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7628 uint32_t crtc_vtotal, crtc_vblank_end;
7629 int vsyncshift = 0;
4d8a62ea
DV
7630
7631 /* We need to be careful not to changed the adjusted mode, for otherwise
7632 * the hw state checker will get angry at the mismatch. */
7633 crtc_vtotal = adjusted_mode->crtc_vtotal;
7634 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7635
609aeaca 7636 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7637 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7638 crtc_vtotal -= 1;
7639 crtc_vblank_end -= 1;
609aeaca 7640
409ee761 7641 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7642 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7643 else
7644 vsyncshift = adjusted_mode->crtc_hsync_start -
7645 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7646 if (vsyncshift < 0)
7647 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7648 }
7649
7650 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7651 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7652
fe2b8f9d 7653 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7654 (adjusted_mode->crtc_hdisplay - 1) |
7655 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7656 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7657 (adjusted_mode->crtc_hblank_start - 1) |
7658 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7659 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7660 (adjusted_mode->crtc_hsync_start - 1) |
7661 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7662
fe2b8f9d 7663 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7664 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7665 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7666 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7667 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7668 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7669 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7670 (adjusted_mode->crtc_vsync_start - 1) |
7671 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7672
b5e508d4
PZ
7673 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7674 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7675 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7676 * bits. */
7677 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7678 (pipe == PIPE_B || pipe == PIPE_C))
7679 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7680
b0e77b9c
PZ
7681 /* pipesrc controls the size that is scaled from, which should
7682 * always be the user's requested size.
7683 */
7684 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7685 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7686 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7687}
7688
1bd1bd80 7689static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7690 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7691{
7692 struct drm_device *dev = crtc->base.dev;
7693 struct drm_i915_private *dev_priv = dev->dev_private;
7694 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7695 uint32_t tmp;
7696
7697 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7698 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7699 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7700 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7701 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7702 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7703 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7704 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7705 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7706
7707 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7708 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7709 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7710 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7711 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7712 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7713 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7714 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7715 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7716
7717 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7718 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7719 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7720 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80
DV
7721 }
7722
7723 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7724 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7725 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7726
2d112de7
ACO
7727 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7728 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7729}
7730
f6a83288 7731void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7732 struct intel_crtc_state *pipe_config)
babea61d 7733{
2d112de7
ACO
7734 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7735 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7736 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7737 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7738
2d112de7
ACO
7739 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7740 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7741 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7742 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7743
2d112de7 7744 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 7745 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 7746
2d112de7
ACO
7747 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7748 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
7749
7750 mode->hsync = drm_mode_hsync(mode);
7751 mode->vrefresh = drm_mode_vrefresh(mode);
7752 drm_mode_set_name(mode);
babea61d
JB
7753}
7754
84b046f3
DV
7755static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7756{
7757 struct drm_device *dev = intel_crtc->base.dev;
7758 struct drm_i915_private *dev_priv = dev->dev_private;
7759 uint32_t pipeconf;
7760
9f11a9e4 7761 pipeconf = 0;
84b046f3 7762
b6b5d049
VS
7763 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7764 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7765 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7766
6e3c9717 7767 if (intel_crtc->config->double_wide)
cf532bb2 7768 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7769
ff9ce46e 7770 /* only g4x and later have fancy bpc/dither controls */
666a4537 7771 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
ff9ce46e 7772 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7773 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7774 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7775 PIPECONF_DITHER_TYPE_SP;
84b046f3 7776
6e3c9717 7777 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7778 case 18:
7779 pipeconf |= PIPECONF_6BPC;
7780 break;
7781 case 24:
7782 pipeconf |= PIPECONF_8BPC;
7783 break;
7784 case 30:
7785 pipeconf |= PIPECONF_10BPC;
7786 break;
7787 default:
7788 /* Case prevented by intel_choose_pipe_bpp_dither. */
7789 BUG();
84b046f3
DV
7790 }
7791 }
7792
7793 if (HAS_PIPE_CXSR(dev)) {
7794 if (intel_crtc->lowfreq_avail) {
7795 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7796 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7797 } else {
7798 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7799 }
7800 }
7801
6e3c9717 7802 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7803 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7804 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7805 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7806 else
7807 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7808 } else
84b046f3
DV
7809 pipeconf |= PIPECONF_PROGRESSIVE;
7810
666a4537
WB
7811 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7812 intel_crtc->config->limited_color_range)
9f11a9e4 7813 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7814
84b046f3
DV
7815 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7816 POSTING_READ(PIPECONF(intel_crtc->pipe));
7817}
7818
190f68c5
ACO
7819static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7820 struct intel_crtc_state *crtc_state)
79e53945 7821{
c7653199 7822 struct drm_device *dev = crtc->base.dev;
79e53945 7823 struct drm_i915_private *dev_priv = dev->dev_private;
c751ce4f 7824 int refclk, num_connectors = 0;
c329a4ec
DV
7825 intel_clock_t clock;
7826 bool ok;
d4906093 7827 const intel_limit_t *limit;
55bb9992 7828 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 7829 struct drm_connector *connector;
55bb9992
ACO
7830 struct drm_connector_state *connector_state;
7831 int i;
79e53945 7832
dd3cd74a
ACO
7833 memset(&crtc_state->dpll_hw_state, 0,
7834 sizeof(crtc_state->dpll_hw_state));
7835
a65347ba
JN
7836 if (crtc_state->has_dsi_encoder)
7837 return 0;
43565a06 7838
a65347ba
JN
7839 for_each_connector_in_state(state, connector, connector_state, i) {
7840 if (connector_state->crtc == &crtc->base)
7841 num_connectors++;
79e53945
JB
7842 }
7843
190f68c5 7844 if (!crtc_state->clock_set) {
a93e255f 7845 refclk = i9xx_get_refclk(crtc_state, num_connectors);
79e53945 7846
e9fd1c02
JN
7847 /*
7848 * Returns a set of divisors for the desired target clock with
7849 * the given refclk, or FALSE. The returned values represent
7850 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7851 * 2) / p1 / p2.
7852 */
a93e255f
ACO
7853 limit = intel_limit(crtc_state, refclk);
7854 ok = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 7855 crtc_state->port_clock,
e9fd1c02 7856 refclk, NULL, &clock);
f2335330 7857 if (!ok) {
e9fd1c02
JN
7858 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7859 return -EINVAL;
7860 }
79e53945 7861
f2335330 7862 /* Compat-code for transition, will disappear. */
190f68c5
ACO
7863 crtc_state->dpll.n = clock.n;
7864 crtc_state->dpll.m1 = clock.m1;
7865 crtc_state->dpll.m2 = clock.m2;
7866 crtc_state->dpll.p1 = clock.p1;
7867 crtc_state->dpll.p2 = clock.p2;
f47709a9 7868 }
7026d4ac 7869
e9fd1c02 7870 if (IS_GEN2(dev)) {
c329a4ec 7871 i8xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7872 num_connectors);
9d556c99 7873 } else if (IS_CHERRYVIEW(dev)) {
251ac862 7874 chv_compute_dpll(crtc, crtc_state);
e9fd1c02 7875 } else if (IS_VALLEYVIEW(dev)) {
251ac862 7876 vlv_compute_dpll(crtc, crtc_state);
e9fd1c02 7877 } else {
c329a4ec 7878 i9xx_compute_dpll(crtc, crtc_state, NULL,
251ac862 7879 num_connectors);
e9fd1c02 7880 }
79e53945 7881
c8f7a0db 7882 return 0;
f564048e
EA
7883}
7884
2fa2fe9a 7885static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7886 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7887{
7888 struct drm_device *dev = crtc->base.dev;
7889 struct drm_i915_private *dev_priv = dev->dev_private;
7890 uint32_t tmp;
7891
dc9e7dec
VS
7892 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7893 return;
7894
2fa2fe9a 7895 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
7896 if (!(tmp & PFIT_ENABLE))
7897 return;
2fa2fe9a 7898
06922821 7899 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
7900 if (INTEL_INFO(dev)->gen < 4) {
7901 if (crtc->pipe != PIPE_B)
7902 return;
2fa2fe9a
DV
7903 } else {
7904 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7905 return;
7906 }
7907
06922821 7908 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
7909 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7910 if (INTEL_INFO(dev)->gen < 5)
7911 pipe_config->gmch_pfit.lvds_border_bits =
7912 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7913}
7914
acbec814 7915static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 7916 struct intel_crtc_state *pipe_config)
acbec814
JB
7917{
7918 struct drm_device *dev = crtc->base.dev;
7919 struct drm_i915_private *dev_priv = dev->dev_private;
7920 int pipe = pipe_config->cpu_transcoder;
7921 intel_clock_t clock;
7922 u32 mdiv;
662c6ecb 7923 int refclk = 100000;
acbec814 7924
f573de5a
SK
7925 /* In case of MIPI DPLL will not even be used */
7926 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7927 return;
7928
a580516d 7929 mutex_lock(&dev_priv->sb_lock);
ab3c759a 7930 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 7931 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
7932
7933 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7934 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7935 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7936 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7937 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7938
dccbea3b 7939 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
7940}
7941
5724dbd1
DL
7942static void
7943i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7944 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
7945{
7946 struct drm_device *dev = crtc->base.dev;
7947 struct drm_i915_private *dev_priv = dev->dev_private;
7948 u32 val, base, offset;
7949 int pipe = crtc->pipe, plane = crtc->plane;
7950 int fourcc, pixel_format;
6761dd31 7951 unsigned int aligned_height;
b113d5ee 7952 struct drm_framebuffer *fb;
1b842c89 7953 struct intel_framebuffer *intel_fb;
1ad292b5 7954
42a7b088
DL
7955 val = I915_READ(DSPCNTR(plane));
7956 if (!(val & DISPLAY_PLANE_ENABLE))
7957 return;
7958
d9806c9f 7959 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 7960 if (!intel_fb) {
1ad292b5
JB
7961 DRM_DEBUG_KMS("failed to alloc fb\n");
7962 return;
7963 }
7964
1b842c89
DL
7965 fb = &intel_fb->base;
7966
18c5247e
DV
7967 if (INTEL_INFO(dev)->gen >= 4) {
7968 if (val & DISPPLANE_TILED) {
49af449b 7969 plane_config->tiling = I915_TILING_X;
18c5247e
DV
7970 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7971 }
7972 }
1ad292b5
JB
7973
7974 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 7975 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
7976 fb->pixel_format = fourcc;
7977 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
7978
7979 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 7980 if (plane_config->tiling)
1ad292b5
JB
7981 offset = I915_READ(DSPTILEOFF(plane));
7982 else
7983 offset = I915_READ(DSPLINOFF(plane));
7984 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7985 } else {
7986 base = I915_READ(DSPADDR(plane));
7987 }
7988 plane_config->base = base;
7989
7990 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
7991 fb->width = ((val >> 16) & 0xfff) + 1;
7992 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
7993
7994 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 7995 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 7996
b113d5ee 7997 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
7998 fb->pixel_format,
7999 fb->modifier[0]);
1ad292b5 8000
f37b5c2b 8001 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8002
2844a921
DL
8003 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8004 pipe_name(pipe), plane, fb->width, fb->height,
8005 fb->bits_per_pixel, base, fb->pitches[0],
8006 plane_config->size);
1ad292b5 8007
2d14030b 8008 plane_config->fb = intel_fb;
1ad292b5
JB
8009}
8010
70b23a98 8011static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8012 struct intel_crtc_state *pipe_config)
70b23a98
VS
8013{
8014 struct drm_device *dev = crtc->base.dev;
8015 struct drm_i915_private *dev_priv = dev->dev_private;
8016 int pipe = pipe_config->cpu_transcoder;
8017 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8018 intel_clock_t clock;
0d7b6b11 8019 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8020 int refclk = 100000;
8021
a580516d 8022 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8023 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8024 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8025 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8026 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8027 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8028 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8029
8030 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8031 clock.m2 = (pll_dw0 & 0xff) << 22;
8032 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8033 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8034 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8035 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8036 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8037
dccbea3b 8038 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8039}
8040
0e8ffe1b 8041static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8042 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8043{
8044 struct drm_device *dev = crtc->base.dev;
8045 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 8046 enum intel_display_power_domain power_domain;
0e8ffe1b 8047 uint32_t tmp;
1729050e 8048 bool ret;
0e8ffe1b 8049
1729050e
ID
8050 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8051 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0
ID
8052 return false;
8053
e143a21c 8054 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 8055 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 8056
1729050e
ID
8057 ret = false;
8058
0e8ffe1b
DV
8059 tmp = I915_READ(PIPECONF(crtc->pipe));
8060 if (!(tmp & PIPECONF_ENABLE))
1729050e 8061 goto out;
0e8ffe1b 8062
666a4537 8063 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
42571aef
VS
8064 switch (tmp & PIPECONF_BPC_MASK) {
8065 case PIPECONF_6BPC:
8066 pipe_config->pipe_bpp = 18;
8067 break;
8068 case PIPECONF_8BPC:
8069 pipe_config->pipe_bpp = 24;
8070 break;
8071 case PIPECONF_10BPC:
8072 pipe_config->pipe_bpp = 30;
8073 break;
8074 default:
8075 break;
8076 }
8077 }
8078
666a4537
WB
8079 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8080 (tmp & PIPECONF_COLOR_RANGE_SELECT))
b5a9fa09
DV
8081 pipe_config->limited_color_range = true;
8082
282740f7
VS
8083 if (INTEL_INFO(dev)->gen < 4)
8084 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8085
1bd1bd80
DV
8086 intel_get_pipe_timings(crtc, pipe_config);
8087
2fa2fe9a
DV
8088 i9xx_get_pfit_config(crtc, pipe_config);
8089
6c49f241
DV
8090 if (INTEL_INFO(dev)->gen >= 4) {
8091 tmp = I915_READ(DPLL_MD(crtc->pipe));
8092 pipe_config->pixel_multiplier =
8093 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8094 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8095 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8096 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8097 tmp = I915_READ(DPLL(crtc->pipe));
8098 pipe_config->pixel_multiplier =
8099 ((tmp & SDVO_MULTIPLIER_MASK)
8100 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8101 } else {
8102 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8103 * port and will be fixed up in the encoder->get_config
8104 * function. */
8105 pipe_config->pixel_multiplier = 1;
8106 }
8bcc2795 8107 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
666a4537 8108 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
1c4e0274
VS
8109 /*
8110 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8111 * on 830. Filter it out here so that we don't
8112 * report errors due to that.
8113 */
8114 if (IS_I830(dev))
8115 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8116
8bcc2795
DV
8117 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8118 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8119 } else {
8120 /* Mask out read-only status bits. */
8121 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8122 DPLL_PORTC_READY_MASK |
8123 DPLL_PORTB_READY_MASK);
8bcc2795 8124 }
6c49f241 8125
70b23a98
VS
8126 if (IS_CHERRYVIEW(dev))
8127 chv_crtc_clock_get(crtc, pipe_config);
8128 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8129 vlv_crtc_clock_get(crtc, pipe_config);
8130 else
8131 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8132
0f64614d
VS
8133 /*
8134 * Normally the dotclock is filled in by the encoder .get_config()
8135 * but in case the pipe is enabled w/o any ports we need a sane
8136 * default.
8137 */
8138 pipe_config->base.adjusted_mode.crtc_clock =
8139 pipe_config->port_clock / pipe_config->pixel_multiplier;
8140
1729050e
ID
8141 ret = true;
8142
8143out:
8144 intel_display_power_put(dev_priv, power_domain);
8145
8146 return ret;
0e8ffe1b
DV
8147}
8148
dde86e2d 8149static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8150{
8151 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8152 struct intel_encoder *encoder;
74cfd7ac 8153 u32 val, final;
13d83a67 8154 bool has_lvds = false;
199e5d79 8155 bool has_cpu_edp = false;
199e5d79 8156 bool has_panel = false;
99eb6a01
KP
8157 bool has_ck505 = false;
8158 bool can_ssc = false;
13d83a67
JB
8159
8160 /* We need to take the global config into account */
b2784e15 8161 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8162 switch (encoder->type) {
8163 case INTEL_OUTPUT_LVDS:
8164 has_panel = true;
8165 has_lvds = true;
8166 break;
8167 case INTEL_OUTPUT_EDP:
8168 has_panel = true;
2de6905f 8169 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8170 has_cpu_edp = true;
8171 break;
6847d71b
PZ
8172 default:
8173 break;
13d83a67
JB
8174 }
8175 }
8176
99eb6a01 8177 if (HAS_PCH_IBX(dev)) {
41aa3448 8178 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8179 can_ssc = has_ck505;
8180 } else {
8181 has_ck505 = false;
8182 can_ssc = true;
8183 }
8184
2de6905f
ID
8185 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8186 has_panel, has_lvds, has_ck505);
13d83a67
JB
8187
8188 /* Ironlake: try to setup display ref clock before DPLL
8189 * enabling. This is only under driver's control after
8190 * PCH B stepping, previous chipset stepping should be
8191 * ignoring this setting.
8192 */
74cfd7ac
CW
8193 val = I915_READ(PCH_DREF_CONTROL);
8194
8195 /* As we must carefully and slowly disable/enable each source in turn,
8196 * compute the final state we want first and check if we need to
8197 * make any changes at all.
8198 */
8199 final = val;
8200 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8201 if (has_ck505)
8202 final |= DREF_NONSPREAD_CK505_ENABLE;
8203 else
8204 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8205
8206 final &= ~DREF_SSC_SOURCE_MASK;
8207 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8208 final &= ~DREF_SSC1_ENABLE;
8209
8210 if (has_panel) {
8211 final |= DREF_SSC_SOURCE_ENABLE;
8212
8213 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8214 final |= DREF_SSC1_ENABLE;
8215
8216 if (has_cpu_edp) {
8217 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8218 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8219 else
8220 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8221 } else
8222 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8223 } else {
8224 final |= DREF_SSC_SOURCE_DISABLE;
8225 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8226 }
8227
8228 if (final == val)
8229 return;
8230
13d83a67 8231 /* Always enable nonspread source */
74cfd7ac 8232 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8233
99eb6a01 8234 if (has_ck505)
74cfd7ac 8235 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8236 else
74cfd7ac 8237 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8238
199e5d79 8239 if (has_panel) {
74cfd7ac
CW
8240 val &= ~DREF_SSC_SOURCE_MASK;
8241 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8242
199e5d79 8243 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8244 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8245 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8246 val |= DREF_SSC1_ENABLE;
e77166b5 8247 } else
74cfd7ac 8248 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8249
8250 /* Get SSC going before enabling the outputs */
74cfd7ac 8251 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8252 POSTING_READ(PCH_DREF_CONTROL);
8253 udelay(200);
8254
74cfd7ac 8255 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8256
8257 /* Enable CPU source on CPU attached eDP */
199e5d79 8258 if (has_cpu_edp) {
99eb6a01 8259 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8260 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8261 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8262 } else
74cfd7ac 8263 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8264 } else
74cfd7ac 8265 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8266
74cfd7ac 8267 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8268 POSTING_READ(PCH_DREF_CONTROL);
8269 udelay(200);
8270 } else {
8271 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8272
74cfd7ac 8273 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8274
8275 /* Turn off CPU output */
74cfd7ac 8276 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8277
74cfd7ac 8278 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8279 POSTING_READ(PCH_DREF_CONTROL);
8280 udelay(200);
8281
8282 /* Turn off the SSC source */
74cfd7ac
CW
8283 val &= ~DREF_SSC_SOURCE_MASK;
8284 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
8285
8286 /* Turn off SSC1 */
74cfd7ac 8287 val &= ~DREF_SSC1_ENABLE;
199e5d79 8288
74cfd7ac 8289 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
8290 POSTING_READ(PCH_DREF_CONTROL);
8291 udelay(200);
8292 }
74cfd7ac
CW
8293
8294 BUG_ON(val != final);
13d83a67
JB
8295}
8296
f31f2d55 8297static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8298{
f31f2d55 8299 uint32_t tmp;
dde86e2d 8300
0ff066a9
PZ
8301 tmp = I915_READ(SOUTH_CHICKEN2);
8302 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8303 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8304
0ff066a9
PZ
8305 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8306 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8307 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8308
0ff066a9
PZ
8309 tmp = I915_READ(SOUTH_CHICKEN2);
8310 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8311 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8312
0ff066a9
PZ
8313 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8314 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8315 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8316}
8317
8318/* WaMPhyProgramming:hsw */
8319static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8320{
8321 uint32_t tmp;
dde86e2d
PZ
8322
8323 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8324 tmp &= ~(0xFF << 24);
8325 tmp |= (0x12 << 24);
8326 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8327
dde86e2d
PZ
8328 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8329 tmp |= (1 << 11);
8330 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8331
8332 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8333 tmp |= (1 << 11);
8334 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8335
dde86e2d
PZ
8336 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8337 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8338 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8339
8340 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8341 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8342 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8343
0ff066a9
PZ
8344 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8345 tmp &= ~(7 << 13);
8346 tmp |= (5 << 13);
8347 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8348
0ff066a9
PZ
8349 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8350 tmp &= ~(7 << 13);
8351 tmp |= (5 << 13);
8352 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8353
8354 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8355 tmp &= ~0xFF;
8356 tmp |= 0x1C;
8357 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8358
8359 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8360 tmp &= ~0xFF;
8361 tmp |= 0x1C;
8362 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8363
8364 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8365 tmp &= ~(0xFF << 16);
8366 tmp |= (0x1C << 16);
8367 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8368
8369 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8370 tmp &= ~(0xFF << 16);
8371 tmp |= (0x1C << 16);
8372 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8373
0ff066a9
PZ
8374 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8375 tmp |= (1 << 27);
8376 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8377
0ff066a9
PZ
8378 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8379 tmp |= (1 << 27);
8380 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8381
0ff066a9
PZ
8382 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8383 tmp &= ~(0xF << 28);
8384 tmp |= (4 << 28);
8385 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8386
0ff066a9
PZ
8387 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8388 tmp &= ~(0xF << 28);
8389 tmp |= (4 << 28);
8390 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8391}
8392
2fa86a1f
PZ
8393/* Implements 3 different sequences from BSpec chapter "Display iCLK
8394 * Programming" based on the parameters passed:
8395 * - Sequence to enable CLKOUT_DP
8396 * - Sequence to enable CLKOUT_DP without spread
8397 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8398 */
8399static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8400 bool with_fdi)
f31f2d55
PZ
8401{
8402 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8403 uint32_t reg, tmp;
8404
8405 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8406 with_spread = true;
c2699524 8407 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
2fa86a1f 8408 with_fdi = false;
f31f2d55 8409
a580516d 8410 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8411
8412 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8413 tmp &= ~SBI_SSCCTL_DISABLE;
8414 tmp |= SBI_SSCCTL_PATHALT;
8415 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8416
8417 udelay(24);
8418
2fa86a1f
PZ
8419 if (with_spread) {
8420 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8421 tmp &= ~SBI_SSCCTL_PATHALT;
8422 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8423
2fa86a1f
PZ
8424 if (with_fdi) {
8425 lpt_reset_fdi_mphy(dev_priv);
8426 lpt_program_fdi_mphy(dev_priv);
8427 }
8428 }
dde86e2d 8429
c2699524 8430 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
2fa86a1f
PZ
8431 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8432 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8433 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8434
a580516d 8435 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8436}
8437
47701c3b
PZ
8438/* Sequence to disable CLKOUT_DP */
8439static void lpt_disable_clkout_dp(struct drm_device *dev)
8440{
8441 struct drm_i915_private *dev_priv = dev->dev_private;
8442 uint32_t reg, tmp;
8443
a580516d 8444 mutex_lock(&dev_priv->sb_lock);
47701c3b 8445
c2699524 8446 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
47701c3b
PZ
8447 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8448 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8449 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8450
8451 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8452 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8453 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8454 tmp |= SBI_SSCCTL_PATHALT;
8455 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8456 udelay(32);
8457 }
8458 tmp |= SBI_SSCCTL_DISABLE;
8459 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8460 }
8461
a580516d 8462 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8463}
8464
f7be2c21
VS
8465#define BEND_IDX(steps) ((50 + (steps)) / 5)
8466
8467static const uint16_t sscdivintphase[] = {
8468 [BEND_IDX( 50)] = 0x3B23,
8469 [BEND_IDX( 45)] = 0x3B23,
8470 [BEND_IDX( 40)] = 0x3C23,
8471 [BEND_IDX( 35)] = 0x3C23,
8472 [BEND_IDX( 30)] = 0x3D23,
8473 [BEND_IDX( 25)] = 0x3D23,
8474 [BEND_IDX( 20)] = 0x3E23,
8475 [BEND_IDX( 15)] = 0x3E23,
8476 [BEND_IDX( 10)] = 0x3F23,
8477 [BEND_IDX( 5)] = 0x3F23,
8478 [BEND_IDX( 0)] = 0x0025,
8479 [BEND_IDX( -5)] = 0x0025,
8480 [BEND_IDX(-10)] = 0x0125,
8481 [BEND_IDX(-15)] = 0x0125,
8482 [BEND_IDX(-20)] = 0x0225,
8483 [BEND_IDX(-25)] = 0x0225,
8484 [BEND_IDX(-30)] = 0x0325,
8485 [BEND_IDX(-35)] = 0x0325,
8486 [BEND_IDX(-40)] = 0x0425,
8487 [BEND_IDX(-45)] = 0x0425,
8488 [BEND_IDX(-50)] = 0x0525,
8489};
8490
8491/*
8492 * Bend CLKOUT_DP
8493 * steps -50 to 50 inclusive, in steps of 5
8494 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8495 * change in clock period = -(steps / 10) * 5.787 ps
8496 */
8497static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8498{
8499 uint32_t tmp;
8500 int idx = BEND_IDX(steps);
8501
8502 if (WARN_ON(steps % 5 != 0))
8503 return;
8504
8505 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8506 return;
8507
8508 mutex_lock(&dev_priv->sb_lock);
8509
8510 if (steps % 10 != 0)
8511 tmp = 0xAAAAAAAB;
8512 else
8513 tmp = 0x00000000;
8514 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8515
8516 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8517 tmp &= 0xffff0000;
8518 tmp |= sscdivintphase[idx];
8519 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8520
8521 mutex_unlock(&dev_priv->sb_lock);
8522}
8523
8524#undef BEND_IDX
8525
bf8fa3d3
PZ
8526static void lpt_init_pch_refclk(struct drm_device *dev)
8527{
bf8fa3d3
PZ
8528 struct intel_encoder *encoder;
8529 bool has_vga = false;
8530
b2784e15 8531 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8532 switch (encoder->type) {
8533 case INTEL_OUTPUT_ANALOG:
8534 has_vga = true;
8535 break;
6847d71b
PZ
8536 default:
8537 break;
bf8fa3d3
PZ
8538 }
8539 }
8540
f7be2c21
VS
8541 if (has_vga) {
8542 lpt_bend_clkout_dp(to_i915(dev), 0);
47701c3b 8543 lpt_enable_clkout_dp(dev, true, true);
f7be2c21 8544 } else {
47701c3b 8545 lpt_disable_clkout_dp(dev);
f7be2c21 8546 }
bf8fa3d3
PZ
8547}
8548
dde86e2d
PZ
8549/*
8550 * Initialize reference clocks when the driver loads
8551 */
8552void intel_init_pch_refclk(struct drm_device *dev)
8553{
8554 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8555 ironlake_init_pch_refclk(dev);
8556 else if (HAS_PCH_LPT(dev))
8557 lpt_init_pch_refclk(dev);
8558}
8559
55bb9992 8560static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
d9d444cb 8561{
55bb9992 8562 struct drm_device *dev = crtc_state->base.crtc->dev;
d9d444cb 8563 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8564 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8565 struct drm_connector *connector;
55bb9992 8566 struct drm_connector_state *connector_state;
d9d444cb 8567 struct intel_encoder *encoder;
55bb9992 8568 int num_connectors = 0, i;
d9d444cb
JB
8569 bool is_lvds = false;
8570
da3ced29 8571 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8572 if (connector_state->crtc != crtc_state->base.crtc)
8573 continue;
8574
8575 encoder = to_intel_encoder(connector_state->best_encoder);
8576
d9d444cb
JB
8577 switch (encoder->type) {
8578 case INTEL_OUTPUT_LVDS:
8579 is_lvds = true;
8580 break;
6847d71b
PZ
8581 default:
8582 break;
d9d444cb
JB
8583 }
8584 num_connectors++;
8585 }
8586
8587 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 8588 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 8589 dev_priv->vbt.lvds_ssc_freq);
e91e941b 8590 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
8591 }
8592
8593 return 120000;
8594}
8595
6ff93609 8596static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8597{
c8203565 8598 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8599 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8600 int pipe = intel_crtc->pipe;
c8203565
PZ
8601 uint32_t val;
8602
78114071 8603 val = 0;
c8203565 8604
6e3c9717 8605 switch (intel_crtc->config->pipe_bpp) {
c8203565 8606 case 18:
dfd07d72 8607 val |= PIPECONF_6BPC;
c8203565
PZ
8608 break;
8609 case 24:
dfd07d72 8610 val |= PIPECONF_8BPC;
c8203565
PZ
8611 break;
8612 case 30:
dfd07d72 8613 val |= PIPECONF_10BPC;
c8203565
PZ
8614 break;
8615 case 36:
dfd07d72 8616 val |= PIPECONF_12BPC;
c8203565
PZ
8617 break;
8618 default:
cc769b62
PZ
8619 /* Case prevented by intel_choose_pipe_bpp_dither. */
8620 BUG();
c8203565
PZ
8621 }
8622
6e3c9717 8623 if (intel_crtc->config->dither)
c8203565
PZ
8624 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8625
6e3c9717 8626 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8627 val |= PIPECONF_INTERLACED_ILK;
8628 else
8629 val |= PIPECONF_PROGRESSIVE;
8630
6e3c9717 8631 if (intel_crtc->config->limited_color_range)
3685a8f3 8632 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8633
c8203565
PZ
8634 I915_WRITE(PIPECONF(pipe), val);
8635 POSTING_READ(PIPECONF(pipe));
8636}
8637
86d3efce
VS
8638/*
8639 * Set up the pipe CSC unit.
8640 *
8641 * Currently only full range RGB to limited range RGB conversion
8642 * is supported, but eventually this should handle various
8643 * RGB<->YCbCr scenarios as well.
8644 */
50f3b016 8645static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
8646{
8647 struct drm_device *dev = crtc->dev;
8648 struct drm_i915_private *dev_priv = dev->dev_private;
8649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8650 int pipe = intel_crtc->pipe;
8651 uint16_t coeff = 0x7800; /* 1.0 */
8652
8653 /*
8654 * TODO: Check what kind of values actually come out of the pipe
8655 * with these coeff/postoff values and adjust to get the best
8656 * accuracy. Perhaps we even need to take the bpc value into
8657 * consideration.
8658 */
8659
6e3c9717 8660 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8661 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8662
8663 /*
8664 * GY/GU and RY/RU should be the other way around according
8665 * to BSpec, but reality doesn't agree. Just set them up in
8666 * a way that results in the correct picture.
8667 */
8668 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8669 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8670
8671 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8672 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8673
8674 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8675 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8676
8677 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8678 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8679 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8680
8681 if (INTEL_INFO(dev)->gen > 6) {
8682 uint16_t postoff = 0;
8683
6e3c9717 8684 if (intel_crtc->config->limited_color_range)
32cf0cb0 8685 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
8686
8687 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8688 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8689 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8690
8691 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8692 } else {
8693 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8694
6e3c9717 8695 if (intel_crtc->config->limited_color_range)
86d3efce
VS
8696 mode |= CSC_BLACK_SCREEN_OFFSET;
8697
8698 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8699 }
8700}
8701
6ff93609 8702static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8703{
756f85cf
PZ
8704 struct drm_device *dev = crtc->dev;
8705 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 8706 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8707 enum pipe pipe = intel_crtc->pipe;
6e3c9717 8708 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee2b0b38
PZ
8709 uint32_t val;
8710
3eff4faa 8711 val = 0;
ee2b0b38 8712
6e3c9717 8713 if (IS_HASWELL(dev) && intel_crtc->config->dither)
ee2b0b38
PZ
8714 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8715
6e3c9717 8716 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8717 val |= PIPECONF_INTERLACED_ILK;
8718 else
8719 val |= PIPECONF_PROGRESSIVE;
8720
702e7a56
PZ
8721 I915_WRITE(PIPECONF(cpu_transcoder), val);
8722 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
8723
8724 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8725 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf 8726
3cdf122c 8727 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
756f85cf
PZ
8728 val = 0;
8729
6e3c9717 8730 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8731 case 18:
8732 val |= PIPEMISC_DITHER_6_BPC;
8733 break;
8734 case 24:
8735 val |= PIPEMISC_DITHER_8_BPC;
8736 break;
8737 case 30:
8738 val |= PIPEMISC_DITHER_10_BPC;
8739 break;
8740 case 36:
8741 val |= PIPEMISC_DITHER_12_BPC;
8742 break;
8743 default:
8744 /* Case prevented by pipe_config_set_bpp. */
8745 BUG();
8746 }
8747
6e3c9717 8748 if (intel_crtc->config->dither)
756f85cf
PZ
8749 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8750
8751 I915_WRITE(PIPEMISC(pipe), val);
8752 }
ee2b0b38
PZ
8753}
8754
6591c6e4 8755static bool ironlake_compute_clocks(struct drm_crtc *crtc,
190f68c5 8756 struct intel_crtc_state *crtc_state,
6591c6e4
PZ
8757 intel_clock_t *clock,
8758 bool *has_reduced_clock,
8759 intel_clock_t *reduced_clock)
8760{
8761 struct drm_device *dev = crtc->dev;
8762 struct drm_i915_private *dev_priv = dev->dev_private;
6591c6e4 8763 int refclk;
d4906093 8764 const intel_limit_t *limit;
c329a4ec 8765 bool ret;
79e53945 8766
55bb9992 8767 refclk = ironlake_get_refclk(crtc_state);
79e53945 8768
d4906093
ML
8769 /*
8770 * Returns a set of divisors for the desired target clock with the given
8771 * refclk, or FALSE. The returned values represent the clock equation:
8772 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8773 */
a93e255f
ACO
8774 limit = intel_limit(crtc_state, refclk);
8775 ret = dev_priv->display.find_dpll(limit, crtc_state,
190f68c5 8776 crtc_state->port_clock,
ee9300bb 8777 refclk, NULL, clock);
6591c6e4
PZ
8778 if (!ret)
8779 return false;
cda4b7d3 8780
6591c6e4
PZ
8781 return true;
8782}
8783
d4b1931c
PZ
8784int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8785{
8786 /*
8787 * Account for spread spectrum to avoid
8788 * oversubscribing the link. Max center spread
8789 * is 2.5%; use 5% for safety's sake.
8790 */
8791 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8792 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8793}
8794
7429e9d4 8795static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8796{
7429e9d4 8797 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8798}
8799
de13a2e3 8800static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
190f68c5 8801 struct intel_crtc_state *crtc_state,
7429e9d4 8802 u32 *fp,
9a7c7890 8803 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 8804{
de13a2e3 8805 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8806 struct drm_device *dev = crtc->dev;
8807 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8808 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8809 struct drm_connector *connector;
55bb9992
ACO
8810 struct drm_connector_state *connector_state;
8811 struct intel_encoder *encoder;
de13a2e3 8812 uint32_t dpll;
55bb9992 8813 int factor, num_connectors = 0, i;
09ede541 8814 bool is_lvds = false, is_sdvo = false;
79e53945 8815
da3ced29 8816 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8817 if (connector_state->crtc != crtc_state->base.crtc)
8818 continue;
8819
8820 encoder = to_intel_encoder(connector_state->best_encoder);
8821
8822 switch (encoder->type) {
79e53945
JB
8823 case INTEL_OUTPUT_LVDS:
8824 is_lvds = true;
8825 break;
8826 case INTEL_OUTPUT_SDVO:
7d57382e 8827 case INTEL_OUTPUT_HDMI:
79e53945 8828 is_sdvo = true;
79e53945 8829 break;
6847d71b
PZ
8830 default:
8831 break;
79e53945 8832 }
43565a06 8833
c751ce4f 8834 num_connectors++;
79e53945 8835 }
79e53945 8836
c1858123 8837 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8838 factor = 21;
8839 if (is_lvds) {
8840 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8841 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8842 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8843 factor = 25;
190f68c5 8844 } else if (crtc_state->sdvo_tv_clock)
8febb297 8845 factor = 20;
c1858123 8846
190f68c5 8847 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7d0ac5b7 8848 *fp |= FP_CB_TUNE;
2c07245f 8849
9a7c7890
DV
8850 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8851 *fp2 |= FP_CB_TUNE;
8852
5eddb70b 8853 dpll = 0;
2c07245f 8854
a07d6787
EA
8855 if (is_lvds)
8856 dpll |= DPLLB_MODE_LVDS;
8857 else
8858 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8859
190f68c5 8860 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8861 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8862
8863 if (is_sdvo)
4a33e48d 8864 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8865 if (crtc_state->has_dp_encoder)
4a33e48d 8866 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8867
a07d6787 8868 /* compute bitmask from p1 value */
190f68c5 8869 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8870 /* also FPA1 */
190f68c5 8871 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8872
190f68c5 8873 switch (crtc_state->dpll.p2) {
a07d6787
EA
8874 case 5:
8875 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8876 break;
8877 case 7:
8878 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8879 break;
8880 case 10:
8881 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8882 break;
8883 case 14:
8884 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8885 break;
79e53945
JB
8886 }
8887
b4c09f3b 8888 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 8889 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8890 else
8891 dpll |= PLL_REF_INPUT_DREFCLK;
8892
959e16d6 8893 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
8894}
8895
190f68c5
ACO
8896static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8897 struct intel_crtc_state *crtc_state)
de13a2e3 8898{
c7653199 8899 struct drm_device *dev = crtc->base.dev;
de13a2e3 8900 intel_clock_t clock, reduced_clock;
cbbab5bd 8901 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 8902 bool ok, has_reduced_clock = false;
8b47047b 8903 bool is_lvds = false;
e2b78267 8904 struct intel_shared_dpll *pll;
de13a2e3 8905
dd3cd74a
ACO
8906 memset(&crtc_state->dpll_hw_state, 0,
8907 sizeof(crtc_state->dpll_hw_state));
8908
7905df29 8909 is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
79e53945 8910
5dc5298b
PZ
8911 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8912 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 8913
190f68c5 8914 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
de13a2e3 8915 &has_reduced_clock, &reduced_clock);
190f68c5 8916 if (!ok && !crtc_state->clock_set) {
de13a2e3
PZ
8917 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8918 return -EINVAL;
79e53945 8919 }
f47709a9 8920 /* Compat-code for transition, will disappear. */
190f68c5
ACO
8921 if (!crtc_state->clock_set) {
8922 crtc_state->dpll.n = clock.n;
8923 crtc_state->dpll.m1 = clock.m1;
8924 crtc_state->dpll.m2 = clock.m2;
8925 crtc_state->dpll.p1 = clock.p1;
8926 crtc_state->dpll.p2 = clock.p2;
f47709a9 8927 }
79e53945 8928
5dc5298b 8929 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
190f68c5
ACO
8930 if (crtc_state->has_pch_encoder) {
8931 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
cbbab5bd 8932 if (has_reduced_clock)
7429e9d4 8933 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 8934
190f68c5 8935 dpll = ironlake_compute_dpll(crtc, crtc_state,
cbbab5bd
DV
8936 &fp, &reduced_clock,
8937 has_reduced_clock ? &fp2 : NULL);
8938
190f68c5
ACO
8939 crtc_state->dpll_hw_state.dpll = dpll;
8940 crtc_state->dpll_hw_state.fp0 = fp;
66e985c0 8941 if (has_reduced_clock)
190f68c5 8942 crtc_state->dpll_hw_state.fp1 = fp2;
66e985c0 8943 else
190f68c5 8944 crtc_state->dpll_hw_state.fp1 = fp;
66e985c0 8945
190f68c5 8946 pll = intel_get_shared_dpll(crtc, crtc_state);
ee7b9f93 8947 if (pll == NULL) {
84f44ce7 8948 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
c7653199 8949 pipe_name(crtc->pipe));
4b645f14
JB
8950 return -EINVAL;
8951 }
3fb37703 8952 }
79e53945 8953
ab585dea 8954 if (is_lvds && has_reduced_clock)
c7653199 8955 crtc->lowfreq_avail = true;
bcd644e0 8956 else
c7653199 8957 crtc->lowfreq_avail = false;
e2b78267 8958
c8f7a0db 8959 return 0;
79e53945
JB
8960}
8961
eb14cb74
VS
8962static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8963 struct intel_link_m_n *m_n)
8964{
8965 struct drm_device *dev = crtc->base.dev;
8966 struct drm_i915_private *dev_priv = dev->dev_private;
8967 enum pipe pipe = crtc->pipe;
8968
8969 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8970 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8971 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8972 & ~TU_SIZE_MASK;
8973 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8974 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8975 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8976}
8977
8978static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8979 enum transcoder transcoder,
b95af8be
VK
8980 struct intel_link_m_n *m_n,
8981 struct intel_link_m_n *m2_n2)
72419203
DV
8982{
8983 struct drm_device *dev = crtc->base.dev;
8984 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 8985 enum pipe pipe = crtc->pipe;
72419203 8986
eb14cb74
VS
8987 if (INTEL_INFO(dev)->gen >= 5) {
8988 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8989 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8990 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8991 & ~TU_SIZE_MASK;
8992 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8993 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8994 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
8995 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8996 * gen < 8) and if DRRS is supported (to make sure the
8997 * registers are not unnecessarily read).
8998 */
8999 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 9000 crtc->config->has_drrs) {
b95af8be
VK
9001 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9002 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9003 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9004 & ~TU_SIZE_MASK;
9005 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9006 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9007 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9008 }
eb14cb74
VS
9009 } else {
9010 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9011 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9012 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9013 & ~TU_SIZE_MASK;
9014 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9015 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9016 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9017 }
9018}
9019
9020void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9021 struct intel_crtc_state *pipe_config)
eb14cb74 9022{
681a8504 9023 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9024 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9025 else
9026 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9027 &pipe_config->dp_m_n,
9028 &pipe_config->dp_m2_n2);
eb14cb74 9029}
72419203 9030
eb14cb74 9031static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9032 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9033{
9034 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9035 &pipe_config->fdi_m_n, NULL);
72419203
DV
9036}
9037
bd2e244f 9038static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9039 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9040{
9041 struct drm_device *dev = crtc->base.dev;
9042 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
9043 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9044 uint32_t ps_ctrl = 0;
9045 int id = -1;
9046 int i;
bd2e244f 9047
a1b2278e
CK
9048 /* find scaler attached to this pipe */
9049 for (i = 0; i < crtc->num_scalers; i++) {
9050 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9051 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9052 id = i;
9053 pipe_config->pch_pfit.enabled = true;
9054 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9055 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9056 break;
9057 }
9058 }
bd2e244f 9059
a1b2278e
CK
9060 scaler_state->scaler_id = id;
9061 if (id >= 0) {
9062 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9063 } else {
9064 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9065 }
9066}
9067
5724dbd1
DL
9068static void
9069skylake_get_initial_plane_config(struct intel_crtc *crtc,
9070 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9071{
9072 struct drm_device *dev = crtc->base.dev;
9073 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 9074 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9075 int pipe = crtc->pipe;
9076 int fourcc, pixel_format;
6761dd31 9077 unsigned int aligned_height;
bc8d7dff 9078 struct drm_framebuffer *fb;
1b842c89 9079 struct intel_framebuffer *intel_fb;
bc8d7dff 9080
d9806c9f 9081 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9082 if (!intel_fb) {
bc8d7dff
DL
9083 DRM_DEBUG_KMS("failed to alloc fb\n");
9084 return;
9085 }
9086
1b842c89
DL
9087 fb = &intel_fb->base;
9088
bc8d7dff 9089 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9090 if (!(val & PLANE_CTL_ENABLE))
9091 goto error;
9092
bc8d7dff
DL
9093 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9094 fourcc = skl_format_to_fourcc(pixel_format,
9095 val & PLANE_CTL_ORDER_RGBX,
9096 val & PLANE_CTL_ALPHA_MASK);
9097 fb->pixel_format = fourcc;
9098 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9099
40f46283
DL
9100 tiling = val & PLANE_CTL_TILED_MASK;
9101 switch (tiling) {
9102 case PLANE_CTL_TILED_LINEAR:
9103 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9104 break;
9105 case PLANE_CTL_TILED_X:
9106 plane_config->tiling = I915_TILING_X;
9107 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9108 break;
9109 case PLANE_CTL_TILED_Y:
9110 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9111 break;
9112 case PLANE_CTL_TILED_YF:
9113 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9114 break;
9115 default:
9116 MISSING_CASE(tiling);
9117 goto error;
9118 }
9119
bc8d7dff
DL
9120 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9121 plane_config->base = base;
9122
9123 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9124
9125 val = I915_READ(PLANE_SIZE(pipe, 0));
9126 fb->height = ((val >> 16) & 0xfff) + 1;
9127 fb->width = ((val >> 0) & 0x1fff) + 1;
9128
9129 val = I915_READ(PLANE_STRIDE(pipe, 0));
7b49f948 9130 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
40f46283 9131 fb->pixel_format);
bc8d7dff
DL
9132 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9133
9134 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9135 fb->pixel_format,
9136 fb->modifier[0]);
bc8d7dff 9137
f37b5c2b 9138 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9139
9140 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9141 pipe_name(pipe), fb->width, fb->height,
9142 fb->bits_per_pixel, base, fb->pitches[0],
9143 plane_config->size);
9144
2d14030b 9145 plane_config->fb = intel_fb;
bc8d7dff
DL
9146 return;
9147
9148error:
9149 kfree(fb);
9150}
9151
2fa2fe9a 9152static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9153 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9154{
9155 struct drm_device *dev = crtc->base.dev;
9156 struct drm_i915_private *dev_priv = dev->dev_private;
9157 uint32_t tmp;
9158
9159 tmp = I915_READ(PF_CTL(crtc->pipe));
9160
9161 if (tmp & PF_ENABLE) {
fd4daa9c 9162 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9163 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9164 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9165
9166 /* We currently do not free assignements of panel fitters on
9167 * ivb/hsw (since we don't use the higher upscaling modes which
9168 * differentiates them) so just WARN about this case for now. */
9169 if (IS_GEN7(dev)) {
9170 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9171 PF_PIPE_SEL_IVB(crtc->pipe));
9172 }
2fa2fe9a 9173 }
79e53945
JB
9174}
9175
5724dbd1
DL
9176static void
9177ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9178 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9179{
9180 struct drm_device *dev = crtc->base.dev;
9181 struct drm_i915_private *dev_priv = dev->dev_private;
9182 u32 val, base, offset;
aeee5a49 9183 int pipe = crtc->pipe;
4c6baa59 9184 int fourcc, pixel_format;
6761dd31 9185 unsigned int aligned_height;
b113d5ee 9186 struct drm_framebuffer *fb;
1b842c89 9187 struct intel_framebuffer *intel_fb;
4c6baa59 9188
42a7b088
DL
9189 val = I915_READ(DSPCNTR(pipe));
9190 if (!(val & DISPLAY_PLANE_ENABLE))
9191 return;
9192
d9806c9f 9193 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9194 if (!intel_fb) {
4c6baa59
JB
9195 DRM_DEBUG_KMS("failed to alloc fb\n");
9196 return;
9197 }
9198
1b842c89
DL
9199 fb = &intel_fb->base;
9200
18c5247e
DV
9201 if (INTEL_INFO(dev)->gen >= 4) {
9202 if (val & DISPPLANE_TILED) {
49af449b 9203 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9204 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9205 }
9206 }
4c6baa59
JB
9207
9208 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9209 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9210 fb->pixel_format = fourcc;
9211 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9212
aeee5a49 9213 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9214 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9215 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9216 } else {
49af449b 9217 if (plane_config->tiling)
aeee5a49 9218 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9219 else
aeee5a49 9220 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9221 }
9222 plane_config->base = base;
9223
9224 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9225 fb->width = ((val >> 16) & 0xfff) + 1;
9226 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9227
9228 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9229 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9230
b113d5ee 9231 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9232 fb->pixel_format,
9233 fb->modifier[0]);
4c6baa59 9234
f37b5c2b 9235 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9236
2844a921
DL
9237 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9238 pipe_name(pipe), fb->width, fb->height,
9239 fb->bits_per_pixel, base, fb->pitches[0],
9240 plane_config->size);
b113d5ee 9241
2d14030b 9242 plane_config->fb = intel_fb;
4c6baa59
JB
9243}
9244
0e8ffe1b 9245static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9246 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9247{
9248 struct drm_device *dev = crtc->base.dev;
9249 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 9250 enum intel_display_power_domain power_domain;
0e8ffe1b 9251 uint32_t tmp;
1729050e 9252 bool ret;
0e8ffe1b 9253
1729050e
ID
9254 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9255 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
930e8c9e
PZ
9256 return false;
9257
e143a21c 9258 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 9259 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 9260
1729050e 9261 ret = false;
0e8ffe1b
DV
9262 tmp = I915_READ(PIPECONF(crtc->pipe));
9263 if (!(tmp & PIPECONF_ENABLE))
1729050e 9264 goto out;
0e8ffe1b 9265
42571aef
VS
9266 switch (tmp & PIPECONF_BPC_MASK) {
9267 case PIPECONF_6BPC:
9268 pipe_config->pipe_bpp = 18;
9269 break;
9270 case PIPECONF_8BPC:
9271 pipe_config->pipe_bpp = 24;
9272 break;
9273 case PIPECONF_10BPC:
9274 pipe_config->pipe_bpp = 30;
9275 break;
9276 case PIPECONF_12BPC:
9277 pipe_config->pipe_bpp = 36;
9278 break;
9279 default:
9280 break;
9281 }
9282
b5a9fa09
DV
9283 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9284 pipe_config->limited_color_range = true;
9285
ab9412ba 9286 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
9287 struct intel_shared_dpll *pll;
9288
88adfff1
DV
9289 pipe_config->has_pch_encoder = true;
9290
627eb5a3
DV
9291 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9292 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9293 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9294
9295 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9296
c0d43d62 9297 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
9298 pipe_config->shared_dpll =
9299 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9300 } else {
9301 tmp = I915_READ(PCH_DPLL_SEL);
9302 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9303 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9304 else
9305 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9306 }
66e985c0
DV
9307
9308 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9309
9310 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9311 &pipe_config->dpll_hw_state));
c93f54cf
DV
9312
9313 tmp = pipe_config->dpll_hw_state.dpll;
9314 pipe_config->pixel_multiplier =
9315 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9316 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9317
9318 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9319 } else {
9320 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9321 }
9322
1bd1bd80
DV
9323 intel_get_pipe_timings(crtc, pipe_config);
9324
2fa2fe9a
DV
9325 ironlake_get_pfit_config(crtc, pipe_config);
9326
1729050e
ID
9327 ret = true;
9328
9329out:
9330 intel_display_power_put(dev_priv, power_domain);
9331
9332 return ret;
0e8ffe1b
DV
9333}
9334
be256dc7
PZ
9335static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9336{
9337 struct drm_device *dev = dev_priv->dev;
be256dc7 9338 struct intel_crtc *crtc;
be256dc7 9339
d3fcc808 9340 for_each_intel_crtc(dev, crtc)
e2c719b7 9341 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9342 pipe_name(crtc->pipe));
9343
e2c719b7
RC
9344 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9345 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
01403de3
VS
9346 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9347 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
e2c719b7
RC
9348 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9349 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9350 "CPU PWM1 enabled\n");
c5107b87 9351 if (IS_HASWELL(dev))
e2c719b7 9352 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9353 "CPU PWM2 enabled\n");
e2c719b7 9354 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9355 "PCH PWM1 enabled\n");
e2c719b7 9356 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9357 "Utility pin enabled\n");
e2c719b7 9358 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9359
9926ada1
PZ
9360 /*
9361 * In theory we can still leave IRQs enabled, as long as only the HPD
9362 * interrupts remain enabled. We used to check for that, but since it's
9363 * gen-specific and since we only disable LCPLL after we fully disable
9364 * the interrupts, the check below should be enough.
9365 */
e2c719b7 9366 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9367}
9368
9ccd5aeb
PZ
9369static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9370{
9371 struct drm_device *dev = dev_priv->dev;
9372
9373 if (IS_HASWELL(dev))
9374 return I915_READ(D_COMP_HSW);
9375 else
9376 return I915_READ(D_COMP_BDW);
9377}
9378
3c4c9b81
PZ
9379static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9380{
9381 struct drm_device *dev = dev_priv->dev;
9382
9383 if (IS_HASWELL(dev)) {
9384 mutex_lock(&dev_priv->rps.hw_lock);
9385 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9386 val))
f475dadf 9387 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9388 mutex_unlock(&dev_priv->rps.hw_lock);
9389 } else {
9ccd5aeb
PZ
9390 I915_WRITE(D_COMP_BDW, val);
9391 POSTING_READ(D_COMP_BDW);
3c4c9b81 9392 }
be256dc7
PZ
9393}
9394
9395/*
9396 * This function implements pieces of two sequences from BSpec:
9397 * - Sequence for display software to disable LCPLL
9398 * - Sequence for display software to allow package C8+
9399 * The steps implemented here are just the steps that actually touch the LCPLL
9400 * register. Callers should take care of disabling all the display engine
9401 * functions, doing the mode unset, fixing interrupts, etc.
9402 */
6ff58d53
PZ
9403static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9404 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9405{
9406 uint32_t val;
9407
9408 assert_can_disable_lcpll(dev_priv);
9409
9410 val = I915_READ(LCPLL_CTL);
9411
9412 if (switch_to_fclk) {
9413 val |= LCPLL_CD_SOURCE_FCLK;
9414 I915_WRITE(LCPLL_CTL, val);
9415
9416 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9417 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9418 DRM_ERROR("Switching to FCLK failed\n");
9419
9420 val = I915_READ(LCPLL_CTL);
9421 }
9422
9423 val |= LCPLL_PLL_DISABLE;
9424 I915_WRITE(LCPLL_CTL, val);
9425 POSTING_READ(LCPLL_CTL);
9426
9427 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9428 DRM_ERROR("LCPLL still locked\n");
9429
9ccd5aeb 9430 val = hsw_read_dcomp(dev_priv);
be256dc7 9431 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9432 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9433 ndelay(100);
9434
9ccd5aeb
PZ
9435 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9436 1))
be256dc7
PZ
9437 DRM_ERROR("D_COMP RCOMP still in progress\n");
9438
9439 if (allow_power_down) {
9440 val = I915_READ(LCPLL_CTL);
9441 val |= LCPLL_POWER_DOWN_ALLOW;
9442 I915_WRITE(LCPLL_CTL, val);
9443 POSTING_READ(LCPLL_CTL);
9444 }
9445}
9446
9447/*
9448 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9449 * source.
9450 */
6ff58d53 9451static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9452{
9453 uint32_t val;
9454
9455 val = I915_READ(LCPLL_CTL);
9456
9457 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9458 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9459 return;
9460
a8a8bd54
PZ
9461 /*
9462 * Make sure we're not on PC8 state before disabling PC8, otherwise
9463 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9464 */
59bad947 9465 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9466
be256dc7
PZ
9467 if (val & LCPLL_POWER_DOWN_ALLOW) {
9468 val &= ~LCPLL_POWER_DOWN_ALLOW;
9469 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9470 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9471 }
9472
9ccd5aeb 9473 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9474 val |= D_COMP_COMP_FORCE;
9475 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9476 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9477
9478 val = I915_READ(LCPLL_CTL);
9479 val &= ~LCPLL_PLL_DISABLE;
9480 I915_WRITE(LCPLL_CTL, val);
9481
9482 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9483 DRM_ERROR("LCPLL not locked yet\n");
9484
9485 if (val & LCPLL_CD_SOURCE_FCLK) {
9486 val = I915_READ(LCPLL_CTL);
9487 val &= ~LCPLL_CD_SOURCE_FCLK;
9488 I915_WRITE(LCPLL_CTL, val);
9489
9490 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9491 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9492 DRM_ERROR("Switching back to LCPLL failed\n");
9493 }
215733fa 9494
59bad947 9495 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9496 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9497}
9498
765dab67
PZ
9499/*
9500 * Package states C8 and deeper are really deep PC states that can only be
9501 * reached when all the devices on the system allow it, so even if the graphics
9502 * device allows PC8+, it doesn't mean the system will actually get to these
9503 * states. Our driver only allows PC8+ when going into runtime PM.
9504 *
9505 * The requirements for PC8+ are that all the outputs are disabled, the power
9506 * well is disabled and most interrupts are disabled, and these are also
9507 * requirements for runtime PM. When these conditions are met, we manually do
9508 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9509 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9510 * hang the machine.
9511 *
9512 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9513 * the state of some registers, so when we come back from PC8+ we need to
9514 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9515 * need to take care of the registers kept by RC6. Notice that this happens even
9516 * if we don't put the device in PCI D3 state (which is what currently happens
9517 * because of the runtime PM support).
9518 *
9519 * For more, read "Display Sequences for Package C8" on the hardware
9520 * documentation.
9521 */
a14cb6fc 9522void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9523{
c67a470b
PZ
9524 struct drm_device *dev = dev_priv->dev;
9525 uint32_t val;
9526
c67a470b
PZ
9527 DRM_DEBUG_KMS("Enabling package C8+\n");
9528
c2699524 9529 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9530 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9531 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9532 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9533 }
9534
9535 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9536 hsw_disable_lcpll(dev_priv, true, true);
9537}
9538
a14cb6fc 9539void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9540{
9541 struct drm_device *dev = dev_priv->dev;
9542 uint32_t val;
9543
c67a470b
PZ
9544 DRM_DEBUG_KMS("Disabling package C8+\n");
9545
9546 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9547 lpt_init_pch_refclk(dev);
9548
c2699524 9549 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9550 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9551 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9552 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9553 }
c67a470b
PZ
9554}
9555
27c329ed 9556static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 9557{
a821fc46 9558 struct drm_device *dev = old_state->dev;
1a617b77
ML
9559 struct intel_atomic_state *old_intel_state =
9560 to_intel_atomic_state(old_state);
9561 unsigned int req_cdclk = old_intel_state->dev_cdclk;
f8437dd1 9562
27c329ed 9563 broxton_set_cdclk(dev, req_cdclk);
f8437dd1
VK
9564}
9565
b432e5cf 9566/* compute the max rate for new configuration */
27c329ed 9567static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 9568{
565602d7
ML
9569 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9570 struct drm_i915_private *dev_priv = state->dev->dev_private;
9571 struct drm_crtc *crtc;
9572 struct drm_crtc_state *cstate;
27c329ed 9573 struct intel_crtc_state *crtc_state;
565602d7
ML
9574 unsigned max_pixel_rate = 0, i;
9575 enum pipe pipe;
b432e5cf 9576
565602d7
ML
9577 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9578 sizeof(intel_state->min_pixclk));
27c329ed 9579
565602d7
ML
9580 for_each_crtc_in_state(state, crtc, cstate, i) {
9581 int pixel_rate;
27c329ed 9582
565602d7
ML
9583 crtc_state = to_intel_crtc_state(cstate);
9584 if (!crtc_state->base.enable) {
9585 intel_state->min_pixclk[i] = 0;
b432e5cf 9586 continue;
565602d7 9587 }
b432e5cf 9588
27c329ed 9589 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
9590
9591 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
565602d7 9592 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
b432e5cf
VS
9593 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9594
565602d7 9595 intel_state->min_pixclk[i] = pixel_rate;
b432e5cf
VS
9596 }
9597
565602d7
ML
9598 for_each_pipe(dev_priv, pipe)
9599 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9600
b432e5cf
VS
9601 return max_pixel_rate;
9602}
9603
9604static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9605{
9606 struct drm_i915_private *dev_priv = dev->dev_private;
9607 uint32_t val, data;
9608 int ret;
9609
9610 if (WARN((I915_READ(LCPLL_CTL) &
9611 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9612 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9613 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9614 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9615 "trying to change cdclk frequency with cdclk not enabled\n"))
9616 return;
9617
9618 mutex_lock(&dev_priv->rps.hw_lock);
9619 ret = sandybridge_pcode_write(dev_priv,
9620 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9621 mutex_unlock(&dev_priv->rps.hw_lock);
9622 if (ret) {
9623 DRM_ERROR("failed to inform pcode about cdclk change\n");
9624 return;
9625 }
9626
9627 val = I915_READ(LCPLL_CTL);
9628 val |= LCPLL_CD_SOURCE_FCLK;
9629 I915_WRITE(LCPLL_CTL, val);
9630
5ba00178
TU
9631 if (wait_for_us(I915_READ(LCPLL_CTL) &
9632 LCPLL_CD_SOURCE_FCLK_DONE, 1))
b432e5cf
VS
9633 DRM_ERROR("Switching to FCLK failed\n");
9634
9635 val = I915_READ(LCPLL_CTL);
9636 val &= ~LCPLL_CLK_FREQ_MASK;
9637
9638 switch (cdclk) {
9639 case 450000:
9640 val |= LCPLL_CLK_FREQ_450;
9641 data = 0;
9642 break;
9643 case 540000:
9644 val |= LCPLL_CLK_FREQ_54O_BDW;
9645 data = 1;
9646 break;
9647 case 337500:
9648 val |= LCPLL_CLK_FREQ_337_5_BDW;
9649 data = 2;
9650 break;
9651 case 675000:
9652 val |= LCPLL_CLK_FREQ_675_BDW;
9653 data = 3;
9654 break;
9655 default:
9656 WARN(1, "invalid cdclk frequency\n");
9657 return;
9658 }
9659
9660 I915_WRITE(LCPLL_CTL, val);
9661
9662 val = I915_READ(LCPLL_CTL);
9663 val &= ~LCPLL_CD_SOURCE_FCLK;
9664 I915_WRITE(LCPLL_CTL, val);
9665
5ba00178
TU
9666 if (wait_for_us((I915_READ(LCPLL_CTL) &
9667 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
b432e5cf
VS
9668 DRM_ERROR("Switching back to LCPLL failed\n");
9669
9670 mutex_lock(&dev_priv->rps.hw_lock);
9671 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9672 mutex_unlock(&dev_priv->rps.hw_lock);
9673
9674 intel_update_cdclk(dev);
9675
9676 WARN(cdclk != dev_priv->cdclk_freq,
9677 "cdclk requested %d kHz but got %d kHz\n",
9678 cdclk, dev_priv->cdclk_freq);
9679}
9680
27c329ed 9681static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 9682{
27c329ed 9683 struct drm_i915_private *dev_priv = to_i915(state->dev);
1a617b77 9684 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
27c329ed 9685 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
9686 int cdclk;
9687
9688 /*
9689 * FIXME should also account for plane ratio
9690 * once 64bpp pixel formats are supported.
9691 */
27c329ed 9692 if (max_pixclk > 540000)
b432e5cf 9693 cdclk = 675000;
27c329ed 9694 else if (max_pixclk > 450000)
b432e5cf 9695 cdclk = 540000;
27c329ed 9696 else if (max_pixclk > 337500)
b432e5cf
VS
9697 cdclk = 450000;
9698 else
9699 cdclk = 337500;
9700
b432e5cf 9701 if (cdclk > dev_priv->max_cdclk_freq) {
63ba534e
ML
9702 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9703 cdclk, dev_priv->max_cdclk_freq);
9704 return -EINVAL;
b432e5cf
VS
9705 }
9706
1a617b77
ML
9707 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9708 if (!intel_state->active_crtcs)
9709 intel_state->dev_cdclk = 337500;
b432e5cf
VS
9710
9711 return 0;
9712}
9713
27c329ed 9714static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 9715{
27c329ed 9716 struct drm_device *dev = old_state->dev;
1a617b77
ML
9717 struct intel_atomic_state *old_intel_state =
9718 to_intel_atomic_state(old_state);
9719 unsigned req_cdclk = old_intel_state->dev_cdclk;
b432e5cf 9720
27c329ed 9721 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
9722}
9723
190f68c5
ACO
9724static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9725 struct intel_crtc_state *crtc_state)
09b4ddf9 9726{
af3997b5
MK
9727 struct intel_encoder *intel_encoder =
9728 intel_ddi_get_crtc_new_encoder(crtc_state);
9729
9730 if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9731 if (!intel_ddi_pll_select(crtc, crtc_state))
9732 return -EINVAL;
9733 }
716c2e55 9734
c7653199 9735 crtc->lowfreq_avail = false;
644cef34 9736
c8f7a0db 9737 return 0;
79e53945
JB
9738}
9739
3760b59c
S
9740static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9741 enum port port,
9742 struct intel_crtc_state *pipe_config)
9743{
9744 switch (port) {
9745 case PORT_A:
9746 pipe_config->ddi_pll_sel = SKL_DPLL0;
9747 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9748 break;
9749 case PORT_B:
9750 pipe_config->ddi_pll_sel = SKL_DPLL1;
9751 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9752 break;
9753 case PORT_C:
9754 pipe_config->ddi_pll_sel = SKL_DPLL2;
9755 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9756 break;
9757 default:
9758 DRM_ERROR("Incorrect port type\n");
9759 }
9760}
9761
96b7dfb7
S
9762static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9763 enum port port,
5cec258b 9764 struct intel_crtc_state *pipe_config)
96b7dfb7 9765{
3148ade7 9766 u32 temp, dpll_ctl1;
96b7dfb7
S
9767
9768 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9769 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9770
9771 switch (pipe_config->ddi_pll_sel) {
3148ade7
DL
9772 case SKL_DPLL0:
9773 /*
9774 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9775 * of the shared DPLL framework and thus needs to be read out
9776 * separately
9777 */
9778 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9779 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9780 break;
96b7dfb7
S
9781 case SKL_DPLL1:
9782 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9783 break;
9784 case SKL_DPLL2:
9785 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9786 break;
9787 case SKL_DPLL3:
9788 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9789 break;
96b7dfb7
S
9790 }
9791}
9792
7d2c8175
DL
9793static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9794 enum port port,
5cec258b 9795 struct intel_crtc_state *pipe_config)
7d2c8175
DL
9796{
9797 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9798
9799 switch (pipe_config->ddi_pll_sel) {
9800 case PORT_CLK_SEL_WRPLL1:
9801 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9802 break;
9803 case PORT_CLK_SEL_WRPLL2:
9804 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9805 break;
00490c22
ML
9806 case PORT_CLK_SEL_SPLL:
9807 pipe_config->shared_dpll = DPLL_ID_SPLL;
79bd23da 9808 break;
7d2c8175
DL
9809 }
9810}
9811
26804afd 9812static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9813 struct intel_crtc_state *pipe_config)
26804afd
DV
9814{
9815 struct drm_device *dev = crtc->base.dev;
9816 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9817 struct intel_shared_dpll *pll;
26804afd
DV
9818 enum port port;
9819 uint32_t tmp;
9820
9821 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9822
9823 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9824
ef11bdb3 9825 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
96b7dfb7 9826 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9827 else if (IS_BROXTON(dev))
9828 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9829 else
9830 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9831
d452c5b6
DV
9832 if (pipe_config->shared_dpll >= 0) {
9833 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9834
9835 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9836 &pipe_config->dpll_hw_state));
9837 }
9838
26804afd
DV
9839 /*
9840 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9841 * DDI E. So just check whether this pipe is wired to DDI E and whether
9842 * the PCH transcoder is on.
9843 */
ca370455
DL
9844 if (INTEL_INFO(dev)->gen < 9 &&
9845 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9846 pipe_config->has_pch_encoder = true;
9847
9848 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9849 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9850 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9851
9852 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9853 }
9854}
9855
0e8ffe1b 9856static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9857 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9858{
9859 struct drm_device *dev = crtc->base.dev;
9860 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e
ID
9861 enum intel_display_power_domain power_domain;
9862 unsigned long power_domain_mask;
0e8ffe1b 9863 uint32_t tmp;
1729050e 9864 bool ret;
0e8ffe1b 9865
1729050e
ID
9866 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9867 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0 9868 return false;
1729050e
ID
9869 power_domain_mask = BIT(power_domain);
9870
9871 ret = false;
b5482bd0 9872
e143a21c 9873 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
9874 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9875
eccb140b
DV
9876 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9877 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9878 enum pipe trans_edp_pipe;
9879 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9880 default:
9881 WARN(1, "unknown pipe linked to edp transcoder\n");
9882 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9883 case TRANS_DDI_EDP_INPUT_A_ON:
9884 trans_edp_pipe = PIPE_A;
9885 break;
9886 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9887 trans_edp_pipe = PIPE_B;
9888 break;
9889 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9890 trans_edp_pipe = PIPE_C;
9891 break;
9892 }
9893
9894 if (trans_edp_pipe == crtc->pipe)
9895 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9896 }
9897
1729050e
ID
9898 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9899 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9900 goto out;
9901 power_domain_mask |= BIT(power_domain);
2bfce950 9902
eccb140b 9903 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b 9904 if (!(tmp & PIPECONF_ENABLE))
1729050e 9905 goto out;
0e8ffe1b 9906
26804afd 9907 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 9908
1bd1bd80
DV
9909 intel_get_pipe_timings(crtc, pipe_config);
9910
a1b2278e
CK
9911 if (INTEL_INFO(dev)->gen >= 9) {
9912 skl_init_scalers(dev, crtc, pipe_config);
9913 }
9914
af99ceda
CK
9915 if (INTEL_INFO(dev)->gen >= 9) {
9916 pipe_config->scaler_state.scaler_id = -1;
9917 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9918 }
9919
1729050e
ID
9920 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9921 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9922 power_domain_mask |= BIT(power_domain);
1c132b44 9923 if (INTEL_INFO(dev)->gen >= 9)
bd2e244f 9924 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 9925 else
1c132b44 9926 ironlake_get_pfit_config(crtc, pipe_config);
bd2e244f 9927 }
88adfff1 9928
e59150dc
JB
9929 if (IS_HASWELL(dev))
9930 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9931 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 9932
ebb69c95
CT
9933 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9934 pipe_config->pixel_multiplier =
9935 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9936 } else {
9937 pipe_config->pixel_multiplier = 1;
9938 }
6c49f241 9939
1729050e
ID
9940 ret = true;
9941
9942out:
9943 for_each_power_domain(power_domain, power_domain_mask)
9944 intel_display_power_put(dev_priv, power_domain);
9945
9946 return ret;
0e8ffe1b
DV
9947}
9948
55a08b3f
ML
9949static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
9950 const struct intel_plane_state *plane_state)
560b85bb
CW
9951{
9952 struct drm_device *dev = crtc->dev;
9953 struct drm_i915_private *dev_priv = dev->dev_private;
9954 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 9955 uint32_t cntl = 0, size = 0;
560b85bb 9956
55a08b3f
ML
9957 if (plane_state && plane_state->visible) {
9958 unsigned int width = plane_state->base.crtc_w;
9959 unsigned int height = plane_state->base.crtc_h;
dc41c154
VS
9960 unsigned int stride = roundup_pow_of_two(width) * 4;
9961
9962 switch (stride) {
9963 default:
9964 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9965 width, stride);
9966 stride = 256;
9967 /* fallthrough */
9968 case 256:
9969 case 512:
9970 case 1024:
9971 case 2048:
9972 break;
4b0e333e
CW
9973 }
9974
dc41c154
VS
9975 cntl |= CURSOR_ENABLE |
9976 CURSOR_GAMMA_ENABLE |
9977 CURSOR_FORMAT_ARGB |
9978 CURSOR_STRIDE(stride);
9979
9980 size = (height << 12) | width;
4b0e333e 9981 }
560b85bb 9982
dc41c154
VS
9983 if (intel_crtc->cursor_cntl != 0 &&
9984 (intel_crtc->cursor_base != base ||
9985 intel_crtc->cursor_size != size ||
9986 intel_crtc->cursor_cntl != cntl)) {
9987 /* On these chipsets we can only modify the base/size/stride
9988 * whilst the cursor is disabled.
9989 */
0b87c24e
VS
9990 I915_WRITE(CURCNTR(PIPE_A), 0);
9991 POSTING_READ(CURCNTR(PIPE_A));
dc41c154 9992 intel_crtc->cursor_cntl = 0;
4b0e333e 9993 }
560b85bb 9994
99d1f387 9995 if (intel_crtc->cursor_base != base) {
0b87c24e 9996 I915_WRITE(CURBASE(PIPE_A), base);
99d1f387
VS
9997 intel_crtc->cursor_base = base;
9998 }
4726e0b0 9999
dc41c154
VS
10000 if (intel_crtc->cursor_size != size) {
10001 I915_WRITE(CURSIZE, size);
10002 intel_crtc->cursor_size = size;
4b0e333e 10003 }
560b85bb 10004
4b0e333e 10005 if (intel_crtc->cursor_cntl != cntl) {
0b87c24e
VS
10006 I915_WRITE(CURCNTR(PIPE_A), cntl);
10007 POSTING_READ(CURCNTR(PIPE_A));
4b0e333e 10008 intel_crtc->cursor_cntl = cntl;
560b85bb 10009 }
560b85bb
CW
10010}
10011
55a08b3f
ML
10012static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10013 const struct intel_plane_state *plane_state)
65a21cd6
JB
10014{
10015 struct drm_device *dev = crtc->dev;
10016 struct drm_i915_private *dev_priv = dev->dev_private;
10017 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10018 int pipe = intel_crtc->pipe;
663f3122 10019 uint32_t cntl = 0;
4b0e333e 10020
55a08b3f 10021 if (plane_state && plane_state->visible) {
4b0e333e 10022 cntl = MCURSOR_GAMMA_ENABLE;
55a08b3f 10023 switch (plane_state->base.crtc_w) {
4726e0b0
SK
10024 case 64:
10025 cntl |= CURSOR_MODE_64_ARGB_AX;
10026 break;
10027 case 128:
10028 cntl |= CURSOR_MODE_128_ARGB_AX;
10029 break;
10030 case 256:
10031 cntl |= CURSOR_MODE_256_ARGB_AX;
10032 break;
10033 default:
55a08b3f 10034 MISSING_CASE(plane_state->base.crtc_w);
4726e0b0 10035 return;
65a21cd6 10036 }
4b0e333e 10037 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7 10038
fc6f93bc 10039 if (HAS_DDI(dev))
47bf17a7 10040 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 10041
55a08b3f
ML
10042 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10043 cntl |= CURSOR_ROTATE_180;
10044 }
4398ad45 10045
4b0e333e
CW
10046 if (intel_crtc->cursor_cntl != cntl) {
10047 I915_WRITE(CURCNTR(pipe), cntl);
10048 POSTING_READ(CURCNTR(pipe));
10049 intel_crtc->cursor_cntl = cntl;
65a21cd6 10050 }
4b0e333e 10051
65a21cd6 10052 /* and commit changes on next vblank */
5efb3e28
VS
10053 I915_WRITE(CURBASE(pipe), base);
10054 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10055
10056 intel_crtc->cursor_base = base;
65a21cd6
JB
10057}
10058
cda4b7d3 10059/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f 10060static void intel_crtc_update_cursor(struct drm_crtc *crtc,
55a08b3f 10061 const struct intel_plane_state *plane_state)
cda4b7d3
CW
10062{
10063 struct drm_device *dev = crtc->dev;
10064 struct drm_i915_private *dev_priv = dev->dev_private;
10065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10066 int pipe = intel_crtc->pipe;
55a08b3f
ML
10067 u32 base = intel_crtc->cursor_addr;
10068 u32 pos = 0;
cda4b7d3 10069
55a08b3f
ML
10070 if (plane_state) {
10071 int x = plane_state->base.crtc_x;
10072 int y = plane_state->base.crtc_y;
cda4b7d3 10073
55a08b3f
ML
10074 if (x < 0) {
10075 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10076 x = -x;
10077 }
10078 pos |= x << CURSOR_X_SHIFT;
cda4b7d3 10079
55a08b3f
ML
10080 if (y < 0) {
10081 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10082 y = -y;
10083 }
10084 pos |= y << CURSOR_Y_SHIFT;
10085
10086 /* ILK+ do this automagically */
10087 if (HAS_GMCH_DISPLAY(dev) &&
10088 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10089 base += (plane_state->base.crtc_h *
10090 plane_state->base.crtc_w - 1) * 4;
10091 }
cda4b7d3 10092 }
cda4b7d3 10093
5efb3e28
VS
10094 I915_WRITE(CURPOS(pipe), pos);
10095
8ac54669 10096 if (IS_845G(dev) || IS_I865G(dev))
55a08b3f 10097 i845_update_cursor(crtc, base, plane_state);
5efb3e28 10098 else
55a08b3f 10099 i9xx_update_cursor(crtc, base, plane_state);
cda4b7d3
CW
10100}
10101
dc41c154
VS
10102static bool cursor_size_ok(struct drm_device *dev,
10103 uint32_t width, uint32_t height)
10104{
10105 if (width == 0 || height == 0)
10106 return false;
10107
10108 /*
10109 * 845g/865g are special in that they are only limited by
10110 * the width of their cursors, the height is arbitrary up to
10111 * the precision of the register. Everything else requires
10112 * square cursors, limited to a few power-of-two sizes.
10113 */
10114 if (IS_845G(dev) || IS_I865G(dev)) {
10115 if ((width & 63) != 0)
10116 return false;
10117
10118 if (width > (IS_845G(dev) ? 64 : 512))
10119 return false;
10120
10121 if (height > 1023)
10122 return false;
10123 } else {
10124 switch (width | height) {
10125 case 256:
10126 case 128:
10127 if (IS_GEN2(dev))
10128 return false;
10129 case 64:
10130 break;
10131 default:
10132 return false;
10133 }
10134 }
10135
10136 return true;
10137}
10138
79e53945 10139static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 10140 u16 *blue, uint32_t start, uint32_t size)
79e53945 10141{
7203425a 10142 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 10143 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 10144
7203425a 10145 for (i = start; i < end; i++) {
79e53945
JB
10146 intel_crtc->lut_r[i] = red[i] >> 8;
10147 intel_crtc->lut_g[i] = green[i] >> 8;
10148 intel_crtc->lut_b[i] = blue[i] >> 8;
10149 }
10150
10151 intel_crtc_load_lut(crtc);
10152}
10153
79e53945
JB
10154/* VESA 640x480x72Hz mode to set on the pipe */
10155static struct drm_display_mode load_detect_mode = {
10156 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10157 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10158};
10159
a8bb6818
DV
10160struct drm_framebuffer *
10161__intel_framebuffer_create(struct drm_device *dev,
10162 struct drm_mode_fb_cmd2 *mode_cmd,
10163 struct drm_i915_gem_object *obj)
d2dff872
CW
10164{
10165 struct intel_framebuffer *intel_fb;
10166 int ret;
10167
10168 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
dcb1394e 10169 if (!intel_fb)
d2dff872 10170 return ERR_PTR(-ENOMEM);
d2dff872
CW
10171
10172 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10173 if (ret)
10174 goto err;
d2dff872
CW
10175
10176 return &intel_fb->base;
dcb1394e 10177
dd4916c5 10178err:
dd4916c5 10179 kfree(intel_fb);
dd4916c5 10180 return ERR_PTR(ret);
d2dff872
CW
10181}
10182
b5ea642a 10183static struct drm_framebuffer *
a8bb6818
DV
10184intel_framebuffer_create(struct drm_device *dev,
10185 struct drm_mode_fb_cmd2 *mode_cmd,
10186 struct drm_i915_gem_object *obj)
10187{
10188 struct drm_framebuffer *fb;
10189 int ret;
10190
10191 ret = i915_mutex_lock_interruptible(dev);
10192 if (ret)
10193 return ERR_PTR(ret);
10194 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10195 mutex_unlock(&dev->struct_mutex);
10196
10197 return fb;
10198}
10199
d2dff872
CW
10200static u32
10201intel_framebuffer_pitch_for_width(int width, int bpp)
10202{
10203 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10204 return ALIGN(pitch, 64);
10205}
10206
10207static u32
10208intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10209{
10210 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10211 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10212}
10213
10214static struct drm_framebuffer *
10215intel_framebuffer_create_for_mode(struct drm_device *dev,
10216 struct drm_display_mode *mode,
10217 int depth, int bpp)
10218{
dcb1394e 10219 struct drm_framebuffer *fb;
d2dff872 10220 struct drm_i915_gem_object *obj;
0fed39bd 10221 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
10222
10223 obj = i915_gem_alloc_object(dev,
10224 intel_framebuffer_size_for_mode(mode, bpp));
10225 if (obj == NULL)
10226 return ERR_PTR(-ENOMEM);
10227
10228 mode_cmd.width = mode->hdisplay;
10229 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10230 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10231 bpp);
5ca0c34a 10232 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872 10233
dcb1394e
LW
10234 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10235 if (IS_ERR(fb))
10236 drm_gem_object_unreference_unlocked(&obj->base);
10237
10238 return fb;
d2dff872
CW
10239}
10240
10241static struct drm_framebuffer *
10242mode_fits_in_fbdev(struct drm_device *dev,
10243 struct drm_display_mode *mode)
10244{
0695726e 10245#ifdef CONFIG_DRM_FBDEV_EMULATION
d2dff872
CW
10246 struct drm_i915_private *dev_priv = dev->dev_private;
10247 struct drm_i915_gem_object *obj;
10248 struct drm_framebuffer *fb;
10249
4c0e5528 10250 if (!dev_priv->fbdev)
d2dff872
CW
10251 return NULL;
10252
4c0e5528 10253 if (!dev_priv->fbdev->fb)
d2dff872
CW
10254 return NULL;
10255
4c0e5528
DV
10256 obj = dev_priv->fbdev->fb->obj;
10257 BUG_ON(!obj);
10258
8bcd4553 10259 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10260 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10261 fb->bits_per_pixel))
d2dff872
CW
10262 return NULL;
10263
01f2c773 10264 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10265 return NULL;
10266
edde3617 10267 drm_framebuffer_reference(fb);
d2dff872 10268 return fb;
4520f53a
DV
10269#else
10270 return NULL;
10271#endif
d2dff872
CW
10272}
10273
d3a40d1b
ACO
10274static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10275 struct drm_crtc *crtc,
10276 struct drm_display_mode *mode,
10277 struct drm_framebuffer *fb,
10278 int x, int y)
10279{
10280 struct drm_plane_state *plane_state;
10281 int hdisplay, vdisplay;
10282 int ret;
10283
10284 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10285 if (IS_ERR(plane_state))
10286 return PTR_ERR(plane_state);
10287
10288 if (mode)
10289 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10290 else
10291 hdisplay = vdisplay = 0;
10292
10293 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10294 if (ret)
10295 return ret;
10296 drm_atomic_set_fb_for_plane(plane_state, fb);
10297 plane_state->crtc_x = 0;
10298 plane_state->crtc_y = 0;
10299 plane_state->crtc_w = hdisplay;
10300 plane_state->crtc_h = vdisplay;
10301 plane_state->src_x = x << 16;
10302 plane_state->src_y = y << 16;
10303 plane_state->src_w = hdisplay << 16;
10304 plane_state->src_h = vdisplay << 16;
10305
10306 return 0;
10307}
10308
d2434ab7 10309bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10310 struct drm_display_mode *mode,
51fd371b
RC
10311 struct intel_load_detect_pipe *old,
10312 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10313{
10314 struct intel_crtc *intel_crtc;
d2434ab7
DV
10315 struct intel_encoder *intel_encoder =
10316 intel_attached_encoder(connector);
79e53945 10317 struct drm_crtc *possible_crtc;
4ef69c7a 10318 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10319 struct drm_crtc *crtc = NULL;
10320 struct drm_device *dev = encoder->dev;
94352cf9 10321 struct drm_framebuffer *fb;
51fd371b 10322 struct drm_mode_config *config = &dev->mode_config;
edde3617 10323 struct drm_atomic_state *state = NULL, *restore_state = NULL;
944b0c76 10324 struct drm_connector_state *connector_state;
4be07317 10325 struct intel_crtc_state *crtc_state;
51fd371b 10326 int ret, i = -1;
79e53945 10327
d2dff872 10328 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10329 connector->base.id, connector->name,
8e329a03 10330 encoder->base.id, encoder->name);
d2dff872 10331
edde3617
ML
10332 old->restore_state = NULL;
10333
51fd371b
RC
10334retry:
10335 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10336 if (ret)
ad3c558f 10337 goto fail;
6e9f798d 10338
79e53945
JB
10339 /*
10340 * Algorithm gets a little messy:
7a5e4805 10341 *
79e53945
JB
10342 * - if the connector already has an assigned crtc, use it (but make
10343 * sure it's on first)
7a5e4805 10344 *
79e53945
JB
10345 * - try to find the first unused crtc that can drive this connector,
10346 * and use that if we find one
79e53945
JB
10347 */
10348
10349 /* See if we already have a CRTC for this connector */
edde3617
ML
10350 if (connector->state->crtc) {
10351 crtc = connector->state->crtc;
8261b191 10352
51fd371b 10353 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 10354 if (ret)
ad3c558f 10355 goto fail;
8261b191
CW
10356
10357 /* Make sure the crtc and connector are running */
edde3617 10358 goto found;
79e53945
JB
10359 }
10360
10361 /* Find an unused one (if possible) */
70e1e0ec 10362 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10363 i++;
10364 if (!(encoder->possible_crtcs & (1 << i)))
10365 continue;
edde3617
ML
10366
10367 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10368 if (ret)
10369 goto fail;
10370
10371 if (possible_crtc->state->enable) {
10372 drm_modeset_unlock(&possible_crtc->mutex);
a459249c 10373 continue;
edde3617 10374 }
a459249c
VS
10375
10376 crtc = possible_crtc;
10377 break;
79e53945
JB
10378 }
10379
10380 /*
10381 * If we didn't find an unused CRTC, don't use any.
10382 */
10383 if (!crtc) {
7173188d 10384 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 10385 goto fail;
79e53945
JB
10386 }
10387
edde3617
ML
10388found:
10389 intel_crtc = to_intel_crtc(crtc);
10390
4d02e2de
DV
10391 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10392 if (ret)
ad3c558f 10393 goto fail;
79e53945 10394
83a57153 10395 state = drm_atomic_state_alloc(dev);
edde3617
ML
10396 restore_state = drm_atomic_state_alloc(dev);
10397 if (!state || !restore_state) {
10398 ret = -ENOMEM;
10399 goto fail;
10400 }
83a57153
ACO
10401
10402 state->acquire_ctx = ctx;
edde3617 10403 restore_state->acquire_ctx = ctx;
83a57153 10404
944b0c76
ACO
10405 connector_state = drm_atomic_get_connector_state(state, connector);
10406 if (IS_ERR(connector_state)) {
10407 ret = PTR_ERR(connector_state);
10408 goto fail;
10409 }
10410
edde3617
ML
10411 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10412 if (ret)
10413 goto fail;
944b0c76 10414
4be07317
ACO
10415 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10416 if (IS_ERR(crtc_state)) {
10417 ret = PTR_ERR(crtc_state);
10418 goto fail;
10419 }
10420
49d6fa21 10421 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10422
6492711d
CW
10423 if (!mode)
10424 mode = &load_detect_mode;
79e53945 10425
d2dff872
CW
10426 /* We need a framebuffer large enough to accommodate all accesses
10427 * that the plane may generate whilst we perform load detection.
10428 * We can not rely on the fbcon either being present (we get called
10429 * during its initialisation to detect all boot displays, or it may
10430 * not even exist) or that it is large enough to satisfy the
10431 * requested mode.
10432 */
94352cf9
DV
10433 fb = mode_fits_in_fbdev(dev, mode);
10434 if (fb == NULL) {
d2dff872 10435 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9 10436 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
d2dff872
CW
10437 } else
10438 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10439 if (IS_ERR(fb)) {
d2dff872 10440 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10441 goto fail;
79e53945 10442 }
79e53945 10443
d3a40d1b
ACO
10444 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10445 if (ret)
10446 goto fail;
10447
edde3617
ML
10448 drm_framebuffer_unreference(fb);
10449
10450 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10451 if (ret)
10452 goto fail;
10453
10454 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10455 if (!ret)
10456 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10457 if (!ret)
10458 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10459 if (ret) {
10460 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10461 goto fail;
10462 }
8c7b5ccb 10463
3ba86073
ML
10464 ret = drm_atomic_commit(state);
10465 if (ret) {
6492711d 10466 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
412b61d8 10467 goto fail;
79e53945 10468 }
edde3617
ML
10469
10470 old->restore_state = restore_state;
7173188d 10471
79e53945 10472 /* let the connector get through one full cycle before testing */
9d0498a2 10473 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10474 return true;
412b61d8 10475
ad3c558f 10476fail:
e5d958ef 10477 drm_atomic_state_free(state);
edde3617
ML
10478 drm_atomic_state_free(restore_state);
10479 restore_state = state = NULL;
83a57153 10480
51fd371b
RC
10481 if (ret == -EDEADLK) {
10482 drm_modeset_backoff(ctx);
10483 goto retry;
10484 }
10485
412b61d8 10486 return false;
79e53945
JB
10487}
10488
d2434ab7 10489void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10490 struct intel_load_detect_pipe *old,
10491 struct drm_modeset_acquire_ctx *ctx)
79e53945 10492{
d2434ab7
DV
10493 struct intel_encoder *intel_encoder =
10494 intel_attached_encoder(connector);
4ef69c7a 10495 struct drm_encoder *encoder = &intel_encoder->base;
edde3617 10496 struct drm_atomic_state *state = old->restore_state;
d3a40d1b 10497 int ret;
79e53945 10498
d2dff872 10499 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10500 connector->base.id, connector->name,
8e329a03 10501 encoder->base.id, encoder->name);
d2dff872 10502
edde3617 10503 if (!state)
0622a53c 10504 return;
79e53945 10505
edde3617
ML
10506 ret = drm_atomic_commit(state);
10507 if (ret) {
10508 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10509 drm_atomic_state_free(state);
10510 }
79e53945
JB
10511}
10512
da4a1efa 10513static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10514 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10515{
10516 struct drm_i915_private *dev_priv = dev->dev_private;
10517 u32 dpll = pipe_config->dpll_hw_state.dpll;
10518
10519 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10520 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10521 else if (HAS_PCH_SPLIT(dev))
10522 return 120000;
10523 else if (!IS_GEN2(dev))
10524 return 96000;
10525 else
10526 return 48000;
10527}
10528
79e53945 10529/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10530static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10531 struct intel_crtc_state *pipe_config)
79e53945 10532{
f1f644dc 10533 struct drm_device *dev = crtc->base.dev;
79e53945 10534 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10535 int pipe = pipe_config->cpu_transcoder;
293623f7 10536 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
10537 u32 fp;
10538 intel_clock_t clock;
dccbea3b 10539 int port_clock;
da4a1efa 10540 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10541
10542 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10543 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10544 else
293623f7 10545 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10546
10547 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10548 if (IS_PINEVIEW(dev)) {
10549 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10550 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10551 } else {
10552 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10553 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10554 }
10555
a6c45cf0 10556 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10557 if (IS_PINEVIEW(dev))
10558 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10559 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10560 else
10561 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10562 DPLL_FPA01_P1_POST_DIV_SHIFT);
10563
10564 switch (dpll & DPLL_MODE_MASK) {
10565 case DPLLB_MODE_DAC_SERIAL:
10566 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10567 5 : 10;
10568 break;
10569 case DPLLB_MODE_LVDS:
10570 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10571 7 : 14;
10572 break;
10573 default:
28c97730 10574 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10575 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10576 return;
79e53945
JB
10577 }
10578
ac58c3f0 10579 if (IS_PINEVIEW(dev))
dccbea3b 10580 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 10581 else
dccbea3b 10582 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 10583 } else {
0fb58223 10584 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10585 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10586
10587 if (is_lvds) {
10588 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10589 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10590
10591 if (lvds & LVDS_CLKB_POWER_UP)
10592 clock.p2 = 7;
10593 else
10594 clock.p2 = 14;
79e53945
JB
10595 } else {
10596 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10597 clock.p1 = 2;
10598 else {
10599 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10600 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10601 }
10602 if (dpll & PLL_P2_DIVIDE_BY_4)
10603 clock.p2 = 4;
10604 else
10605 clock.p2 = 2;
79e53945 10606 }
da4a1efa 10607
dccbea3b 10608 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
10609 }
10610
18442d08
VS
10611 /*
10612 * This value includes pixel_multiplier. We will use
241bfc38 10613 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10614 * encoder's get_config() function.
10615 */
dccbea3b 10616 pipe_config->port_clock = port_clock;
f1f644dc
JB
10617}
10618
6878da05
VS
10619int intel_dotclock_calculate(int link_freq,
10620 const struct intel_link_m_n *m_n)
f1f644dc 10621{
f1f644dc
JB
10622 /*
10623 * The calculation for the data clock is:
1041a02f 10624 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10625 * But we want to avoid losing precison if possible, so:
1041a02f 10626 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10627 *
10628 * and the link clock is simpler:
1041a02f 10629 * link_clock = (m * link_clock) / n
f1f644dc
JB
10630 */
10631
6878da05
VS
10632 if (!m_n->link_n)
10633 return 0;
f1f644dc 10634
6878da05
VS
10635 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10636}
f1f644dc 10637
18442d08 10638static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10639 struct intel_crtc_state *pipe_config)
6878da05 10640{
e3b247da 10641 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
79e53945 10642
18442d08
VS
10643 /* read out port_clock from the DPLL */
10644 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10645
f1f644dc 10646 /*
e3b247da
VS
10647 * In case there is an active pipe without active ports,
10648 * we may need some idea for the dotclock anyway.
10649 * Calculate one based on the FDI configuration.
79e53945 10650 */
2d112de7 10651 pipe_config->base.adjusted_mode.crtc_clock =
21a727b3 10652 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
18442d08 10653 &pipe_config->fdi_m_n);
79e53945
JB
10654}
10655
10656/** Returns the currently programmed mode of the given pipe. */
10657struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10658 struct drm_crtc *crtc)
10659{
548f245b 10660 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10661 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10662 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10663 struct drm_display_mode *mode;
3f36b937 10664 struct intel_crtc_state *pipe_config;
fe2b8f9d
PZ
10665 int htot = I915_READ(HTOTAL(cpu_transcoder));
10666 int hsync = I915_READ(HSYNC(cpu_transcoder));
10667 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10668 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10669 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10670
10671 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10672 if (!mode)
10673 return NULL;
10674
3f36b937
TU
10675 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10676 if (!pipe_config) {
10677 kfree(mode);
10678 return NULL;
10679 }
10680
f1f644dc
JB
10681 /*
10682 * Construct a pipe_config sufficient for getting the clock info
10683 * back out of crtc_clock_get.
10684 *
10685 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10686 * to use a real value here instead.
10687 */
3f36b937
TU
10688 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10689 pipe_config->pixel_multiplier = 1;
10690 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10691 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10692 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10693 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10694
10695 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
79e53945
JB
10696 mode->hdisplay = (htot & 0xffff) + 1;
10697 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10698 mode->hsync_start = (hsync & 0xffff) + 1;
10699 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10700 mode->vdisplay = (vtot & 0xffff) + 1;
10701 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10702 mode->vsync_start = (vsync & 0xffff) + 1;
10703 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10704
10705 drm_mode_set_name(mode);
79e53945 10706
3f36b937
TU
10707 kfree(pipe_config);
10708
79e53945
JB
10709 return mode;
10710}
10711
f047e395
CW
10712void intel_mark_busy(struct drm_device *dev)
10713{
c67a470b
PZ
10714 struct drm_i915_private *dev_priv = dev->dev_private;
10715
f62a0076
CW
10716 if (dev_priv->mm.busy)
10717 return;
10718
43694d69 10719 intel_runtime_pm_get(dev_priv);
c67a470b 10720 i915_update_gfx_val(dev_priv);
43cf3bf0
CW
10721 if (INTEL_INFO(dev)->gen >= 6)
10722 gen6_rps_busy(dev_priv);
f62a0076 10723 dev_priv->mm.busy = true;
f047e395
CW
10724}
10725
10726void intel_mark_idle(struct drm_device *dev)
652c393a 10727{
c67a470b 10728 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 10729
f62a0076
CW
10730 if (!dev_priv->mm.busy)
10731 return;
10732
10733 dev_priv->mm.busy = false;
10734
3d13ef2e 10735 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 10736 gen6_rps_idle(dev->dev_private);
bb4cdd53 10737
43694d69 10738 intel_runtime_pm_put(dev_priv);
652c393a
JB
10739}
10740
79e53945
JB
10741static void intel_crtc_destroy(struct drm_crtc *crtc)
10742{
10743 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10744 struct drm_device *dev = crtc->dev;
10745 struct intel_unpin_work *work;
67e77c5a 10746
5e2d7afc 10747 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10748 work = intel_crtc->unpin_work;
10749 intel_crtc->unpin_work = NULL;
5e2d7afc 10750 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10751
10752 if (work) {
10753 cancel_work_sync(&work->work);
10754 kfree(work);
10755 }
79e53945
JB
10756
10757 drm_crtc_cleanup(crtc);
67e77c5a 10758
79e53945
JB
10759 kfree(intel_crtc);
10760}
10761
6b95a207
KH
10762static void intel_unpin_work_fn(struct work_struct *__work)
10763{
10764 struct intel_unpin_work *work =
10765 container_of(__work, struct intel_unpin_work, work);
a9ff8714
VS
10766 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10767 struct drm_device *dev = crtc->base.dev;
10768 struct drm_plane *primary = crtc->base.primary;
6b95a207 10769
b4a98e57 10770 mutex_lock(&dev->struct_mutex);
3465c580 10771 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
05394f39 10772 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10773
f06cc1b9 10774 if (work->flip_queued_req)
146d84f0 10775 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10776 mutex_unlock(&dev->struct_mutex);
10777
a9ff8714 10778 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
1eb52238 10779 intel_fbc_post_update(crtc);
89ed88ba 10780 drm_framebuffer_unreference(work->old_fb);
f99d7069 10781
a9ff8714
VS
10782 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10783 atomic_dec(&crtc->unpin_work_count);
b4a98e57 10784
6b95a207
KH
10785 kfree(work);
10786}
10787
1afe3e9d 10788static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 10789 struct drm_crtc *crtc)
6b95a207 10790{
6b95a207
KH
10791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10792 struct intel_unpin_work *work;
6b95a207
KH
10793 unsigned long flags;
10794
10795 /* Ignore early vblank irqs */
10796 if (intel_crtc == NULL)
10797 return;
10798
f326038a
DV
10799 /*
10800 * This is called both by irq handlers and the reset code (to complete
10801 * lost pageflips) so needs the full irqsave spinlocks.
10802 */
6b95a207
KH
10803 spin_lock_irqsave(&dev->event_lock, flags);
10804 work = intel_crtc->unpin_work;
e7d841ca
CW
10805
10806 /* Ensure we don't miss a work->pending update ... */
10807 smp_rmb();
10808
10809 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10810 spin_unlock_irqrestore(&dev->event_lock, flags);
10811 return;
10812 }
10813
d6bbafa1 10814 page_flip_completed(intel_crtc);
0af7e4df 10815
6b95a207 10816 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10817}
10818
1afe3e9d
JB
10819void intel_finish_page_flip(struct drm_device *dev, int pipe)
10820{
fbee40df 10821 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10822 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10823
49b14a5c 10824 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10825}
10826
10827void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10828{
fbee40df 10829 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
10830 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10831
49b14a5c 10832 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
10833}
10834
75f7f3ec
VS
10835/* Is 'a' after or equal to 'b'? */
10836static bool g4x_flip_count_after_eq(u32 a, u32 b)
10837{
10838 return !((a - b) & 0x80000000);
10839}
10840
10841static bool page_flip_finished(struct intel_crtc *crtc)
10842{
10843 struct drm_device *dev = crtc->base.dev;
10844 struct drm_i915_private *dev_priv = dev->dev_private;
10845
bdfa7542
VS
10846 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10847 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10848 return true;
10849
75f7f3ec
VS
10850 /*
10851 * The relevant registers doen't exist on pre-ctg.
10852 * As the flip done interrupt doesn't trigger for mmio
10853 * flips on gmch platforms, a flip count check isn't
10854 * really needed there. But since ctg has the registers,
10855 * include it in the check anyway.
10856 */
10857 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10858 return true;
10859
e8861675
ML
10860 /*
10861 * BDW signals flip done immediately if the plane
10862 * is disabled, even if the plane enable is already
10863 * armed to occur at the next vblank :(
10864 */
10865
75f7f3ec
VS
10866 /*
10867 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10868 * used the same base address. In that case the mmio flip might
10869 * have completed, but the CS hasn't even executed the flip yet.
10870 *
10871 * A flip count check isn't enough as the CS might have updated
10872 * the base address just after start of vblank, but before we
10873 * managed to process the interrupt. This means we'd complete the
10874 * CS flip too soon.
10875 *
10876 * Combining both checks should get us a good enough result. It may
10877 * still happen that the CS flip has been executed, but has not
10878 * yet actually completed. But in case the base address is the same
10879 * anyway, we don't really care.
10880 */
10881 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10882 crtc->unpin_work->gtt_offset &&
fd8f507c 10883 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
75f7f3ec
VS
10884 crtc->unpin_work->flip_count);
10885}
10886
6b95a207
KH
10887void intel_prepare_page_flip(struct drm_device *dev, int plane)
10888{
fbee40df 10889 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
10890 struct intel_crtc *intel_crtc =
10891 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10892 unsigned long flags;
10893
f326038a
DV
10894
10895 /*
10896 * This is called both by irq handlers and the reset code (to complete
10897 * lost pageflips) so needs the full irqsave spinlocks.
10898 *
10899 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10900 * generate a page-flip completion irq, i.e. every modeset
10901 * is also accompanied by a spurious intel_prepare_page_flip().
10902 */
6b95a207 10903 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10904 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10905 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10906 spin_unlock_irqrestore(&dev->event_lock, flags);
10907}
10908
6042639c 10909static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
e7d841ca
CW
10910{
10911 /* Ensure that the work item is consistent when activating it ... */
10912 smp_wmb();
6042639c 10913 atomic_set(&work->pending, INTEL_FLIP_PENDING);
e7d841ca
CW
10914 /* and that it is marked active as soon as the irq could fire. */
10915 smp_wmb();
10916}
10917
8c9f3aaf
JB
10918static int intel_gen2_queue_flip(struct drm_device *dev,
10919 struct drm_crtc *crtc,
10920 struct drm_framebuffer *fb,
ed8d1975 10921 struct drm_i915_gem_object *obj,
6258fbe2 10922 struct drm_i915_gem_request *req,
ed8d1975 10923 uint32_t flags)
8c9f3aaf 10924{
6258fbe2 10925 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10926 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10927 u32 flip_mask;
10928 int ret;
10929
5fb9de1a 10930 ret = intel_ring_begin(req, 6);
8c9f3aaf 10931 if (ret)
4fa62c89 10932 return ret;
8c9f3aaf
JB
10933
10934 /* Can't queue multiple flips, so wait for the previous
10935 * one to finish before executing the next.
10936 */
10937 if (intel_crtc->plane)
10938 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10939 else
10940 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10941 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10942 intel_ring_emit(ring, MI_NOOP);
10943 intel_ring_emit(ring, MI_DISPLAY_FLIP |
10944 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10945 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10946 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 10947 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca 10948
6042639c 10949 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 10950 return 0;
8c9f3aaf
JB
10951}
10952
10953static int intel_gen3_queue_flip(struct drm_device *dev,
10954 struct drm_crtc *crtc,
10955 struct drm_framebuffer *fb,
ed8d1975 10956 struct drm_i915_gem_object *obj,
6258fbe2 10957 struct drm_i915_gem_request *req,
ed8d1975 10958 uint32_t flags)
8c9f3aaf 10959{
6258fbe2 10960 struct intel_engine_cs *ring = req->ring;
8c9f3aaf 10961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
10962 u32 flip_mask;
10963 int ret;
10964
5fb9de1a 10965 ret = intel_ring_begin(req, 6);
8c9f3aaf 10966 if (ret)
4fa62c89 10967 return ret;
8c9f3aaf
JB
10968
10969 if (intel_crtc->plane)
10970 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10971 else
10972 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
10973 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10974 intel_ring_emit(ring, MI_NOOP);
10975 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10976 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10977 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 10978 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
10979 intel_ring_emit(ring, MI_NOOP);
10980
6042639c 10981 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 10982 return 0;
8c9f3aaf
JB
10983}
10984
10985static int intel_gen4_queue_flip(struct drm_device *dev,
10986 struct drm_crtc *crtc,
10987 struct drm_framebuffer *fb,
ed8d1975 10988 struct drm_i915_gem_object *obj,
6258fbe2 10989 struct drm_i915_gem_request *req,
ed8d1975 10990 uint32_t flags)
8c9f3aaf 10991{
6258fbe2 10992 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
10993 struct drm_i915_private *dev_priv = dev->dev_private;
10994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10995 uint32_t pf, pipesrc;
10996 int ret;
10997
5fb9de1a 10998 ret = intel_ring_begin(req, 4);
8c9f3aaf 10999 if (ret)
4fa62c89 11000 return ret;
8c9f3aaf
JB
11001
11002 /* i965+ uses the linear or tiled offsets from the
11003 * Display Registers (which do not change across a page-flip)
11004 * so we need only reprogram the base address.
11005 */
6d90c952
DV
11006 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11007 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11008 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 11009 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 11010 obj->tiling_mode);
8c9f3aaf
JB
11011
11012 /* XXX Enabling the panel-fitter across page-flip is so far
11013 * untested on non-native modes, so ignore it for now.
11014 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11015 */
11016 pf = 0;
11017 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11018 intel_ring_emit(ring, pf | pipesrc);
e7d841ca 11019
6042639c 11020 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11021 return 0;
8c9f3aaf
JB
11022}
11023
11024static int intel_gen6_queue_flip(struct drm_device *dev,
11025 struct drm_crtc *crtc,
11026 struct drm_framebuffer *fb,
ed8d1975 11027 struct drm_i915_gem_object *obj,
6258fbe2 11028 struct drm_i915_gem_request *req,
ed8d1975 11029 uint32_t flags)
8c9f3aaf 11030{
6258fbe2 11031 struct intel_engine_cs *ring = req->ring;
8c9f3aaf
JB
11032 struct drm_i915_private *dev_priv = dev->dev_private;
11033 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11034 uint32_t pf, pipesrc;
11035 int ret;
11036
5fb9de1a 11037 ret = intel_ring_begin(req, 4);
8c9f3aaf 11038 if (ret)
4fa62c89 11039 return ret;
8c9f3aaf 11040
6d90c952
DV
11041 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11042 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11043 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 11044 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 11045
dc257cf1
DV
11046 /* Contrary to the suggestions in the documentation,
11047 * "Enable Panel Fitter" does not seem to be required when page
11048 * flipping with a non-native mode, and worse causes a normal
11049 * modeset to fail.
11050 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11051 */
11052 pf = 0;
8c9f3aaf 11053 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 11054 intel_ring_emit(ring, pf | pipesrc);
e7d841ca 11055
6042639c 11056 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11057 return 0;
8c9f3aaf
JB
11058}
11059
7c9017e5
JB
11060static int intel_gen7_queue_flip(struct drm_device *dev,
11061 struct drm_crtc *crtc,
11062 struct drm_framebuffer *fb,
ed8d1975 11063 struct drm_i915_gem_object *obj,
6258fbe2 11064 struct drm_i915_gem_request *req,
ed8d1975 11065 uint32_t flags)
7c9017e5 11066{
6258fbe2 11067 struct intel_engine_cs *ring = req->ring;
7c9017e5 11068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 11069 uint32_t plane_bit = 0;
ffe74d75
CW
11070 int len, ret;
11071
eba905b2 11072 switch (intel_crtc->plane) {
cb05d8de
DV
11073 case PLANE_A:
11074 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11075 break;
11076 case PLANE_B:
11077 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11078 break;
11079 case PLANE_C:
11080 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11081 break;
11082 default:
11083 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 11084 return -ENODEV;
cb05d8de
DV
11085 }
11086
ffe74d75 11087 len = 4;
f476828a 11088 if (ring->id == RCS) {
ffe74d75 11089 len += 6;
f476828a
DL
11090 /*
11091 * On Gen 8, SRM is now taking an extra dword to accommodate
11092 * 48bits addresses, and we need a NOOP for the batch size to
11093 * stay even.
11094 */
11095 if (IS_GEN8(dev))
11096 len += 2;
11097 }
ffe74d75 11098
f66fab8e
VS
11099 /*
11100 * BSpec MI_DISPLAY_FLIP for IVB:
11101 * "The full packet must be contained within the same cache line."
11102 *
11103 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11104 * cacheline, if we ever start emitting more commands before
11105 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11106 * then do the cacheline alignment, and finally emit the
11107 * MI_DISPLAY_FLIP.
11108 */
bba09b12 11109 ret = intel_ring_cacheline_align(req);
f66fab8e 11110 if (ret)
4fa62c89 11111 return ret;
f66fab8e 11112
5fb9de1a 11113 ret = intel_ring_begin(req, len);
7c9017e5 11114 if (ret)
4fa62c89 11115 return ret;
7c9017e5 11116
ffe74d75
CW
11117 /* Unmask the flip-done completion message. Note that the bspec says that
11118 * we should do this for both the BCS and RCS, and that we must not unmask
11119 * more than one flip event at any time (or ensure that one flip message
11120 * can be sent by waiting for flip-done prior to queueing new flips).
11121 * Experimentation says that BCS works despite DERRMR masking all
11122 * flip-done completion events and that unmasking all planes at once
11123 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11124 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11125 */
11126 if (ring->id == RCS) {
11127 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
f92a9162 11128 intel_ring_emit_reg(ring, DERRMR);
ffe74d75
CW
11129 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11130 DERRMR_PIPEB_PRI_FLIP_DONE |
11131 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a 11132 if (IS_GEN8(dev))
f1afe24f 11133 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
f476828a
DL
11134 MI_SRM_LRM_GLOBAL_GTT);
11135 else
f1afe24f 11136 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
f476828a 11137 MI_SRM_LRM_GLOBAL_GTT);
f92a9162 11138 intel_ring_emit_reg(ring, DERRMR);
ffe74d75 11139 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
11140 if (IS_GEN8(dev)) {
11141 intel_ring_emit(ring, 0);
11142 intel_ring_emit(ring, MI_NOOP);
11143 }
ffe74d75
CW
11144 }
11145
cb05d8de 11146 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 11147 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 11148 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 11149 intel_ring_emit(ring, (MI_NOOP));
e7d841ca 11150
6042639c 11151 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11152 return 0;
7c9017e5
JB
11153}
11154
84c33a64
SG
11155static bool use_mmio_flip(struct intel_engine_cs *ring,
11156 struct drm_i915_gem_object *obj)
11157{
11158 /*
11159 * This is not being used for older platforms, because
11160 * non-availability of flip done interrupt forces us to use
11161 * CS flips. Older platforms derive flip done using some clever
11162 * tricks involving the flip_pending status bits and vblank irqs.
11163 * So using MMIO flips there would disrupt this mechanism.
11164 */
11165
8e09bf83
CW
11166 if (ring == NULL)
11167 return true;
11168
84c33a64
SG
11169 if (INTEL_INFO(ring->dev)->gen < 5)
11170 return false;
11171
11172 if (i915.use_mmio_flip < 0)
11173 return false;
11174 else if (i915.use_mmio_flip > 0)
11175 return true;
14bf993e
OM
11176 else if (i915.enable_execlists)
11177 return true;
fd8e058a
AG
11178 else if (obj->base.dma_buf &&
11179 !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11180 false))
11181 return true;
84c33a64 11182 else
b4716185 11183 return ring != i915_gem_request_get_ring(obj->last_write_req);
84c33a64
SG
11184}
11185
6042639c 11186static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
86efe24a 11187 unsigned int rotation,
6042639c 11188 struct intel_unpin_work *work)
ff944564
DL
11189{
11190 struct drm_device *dev = intel_crtc->base.dev;
11191 struct drm_i915_private *dev_priv = dev->dev_private;
11192 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564 11193 const enum pipe pipe = intel_crtc->pipe;
86efe24a 11194 u32 ctl, stride, tile_height;
ff944564
DL
11195
11196 ctl = I915_READ(PLANE_CTL(pipe, 0));
11197 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
11198 switch (fb->modifier[0]) {
11199 case DRM_FORMAT_MOD_NONE:
11200 break;
11201 case I915_FORMAT_MOD_X_TILED:
ff944564 11202 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
11203 break;
11204 case I915_FORMAT_MOD_Y_TILED:
11205 ctl |= PLANE_CTL_TILED_Y;
11206 break;
11207 case I915_FORMAT_MOD_Yf_TILED:
11208 ctl |= PLANE_CTL_TILED_YF;
11209 break;
11210 default:
11211 MISSING_CASE(fb->modifier[0]);
11212 }
ff944564
DL
11213
11214 /*
11215 * The stride is either expressed as a multiple of 64 bytes chunks for
11216 * linear buffers or in number of tiles for tiled buffers.
11217 */
86efe24a
TU
11218 if (intel_rotation_90_or_270(rotation)) {
11219 /* stride = Surface height in tiles */
832be82f 11220 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
86efe24a
TU
11221 stride = DIV_ROUND_UP(fb->height, tile_height);
11222 } else {
11223 stride = fb->pitches[0] /
7b49f948
VS
11224 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11225 fb->pixel_format);
86efe24a 11226 }
ff944564
DL
11227
11228 /*
11229 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11230 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11231 */
11232 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11233 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11234
6042639c 11235 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
ff944564
DL
11236 POSTING_READ(PLANE_SURF(pipe, 0));
11237}
11238
6042639c
CW
11239static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11240 struct intel_unpin_work *work)
84c33a64
SG
11241{
11242 struct drm_device *dev = intel_crtc->base.dev;
11243 struct drm_i915_private *dev_priv = dev->dev_private;
11244 struct intel_framebuffer *intel_fb =
11245 to_intel_framebuffer(intel_crtc->base.primary->fb);
11246 struct drm_i915_gem_object *obj = intel_fb->obj;
f0f59a00 11247 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
84c33a64 11248 u32 dspcntr;
84c33a64 11249
84c33a64
SG
11250 dspcntr = I915_READ(reg);
11251
c5d97472
DL
11252 if (obj->tiling_mode != I915_TILING_NONE)
11253 dspcntr |= DISPPLANE_TILED;
11254 else
11255 dspcntr &= ~DISPPLANE_TILED;
11256
84c33a64
SG
11257 I915_WRITE(reg, dspcntr);
11258
6042639c 11259 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
84c33a64 11260 POSTING_READ(DSPSURF(intel_crtc->plane));
ff944564
DL
11261}
11262
11263/*
11264 * XXX: This is the temporary way to update the plane registers until we get
11265 * around to using the usual plane update functions for MMIO flips
11266 */
6042639c 11267static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
ff944564 11268{
6042639c
CW
11269 struct intel_crtc *crtc = mmio_flip->crtc;
11270 struct intel_unpin_work *work;
11271
11272 spin_lock_irq(&crtc->base.dev->event_lock);
11273 work = crtc->unpin_work;
11274 spin_unlock_irq(&crtc->base.dev->event_lock);
11275 if (work == NULL)
11276 return;
ff944564 11277
6042639c 11278 intel_mark_page_flip_active(work);
ff944564 11279
6042639c 11280 intel_pipe_update_start(crtc);
ff944564 11281
6042639c 11282 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
86efe24a 11283 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
ff944564
DL
11284 else
11285 /* use_mmio_flip() retricts MMIO flips to ilk+ */
6042639c 11286 ilk_do_mmio_flip(crtc, work);
ff944564 11287
6042639c 11288 intel_pipe_update_end(crtc);
84c33a64
SG
11289}
11290
9362c7c5 11291static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 11292{
b2cfe0ab
CW
11293 struct intel_mmio_flip *mmio_flip =
11294 container_of(work, struct intel_mmio_flip, work);
fd8e058a
AG
11295 struct intel_framebuffer *intel_fb =
11296 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11297 struct drm_i915_gem_object *obj = intel_fb->obj;
84c33a64 11298
6042639c 11299 if (mmio_flip->req) {
eed29a5b 11300 WARN_ON(__i915_wait_request(mmio_flip->req,
b2cfe0ab 11301 mmio_flip->crtc->reset_counter,
bcafc4e3
CW
11302 false, NULL,
11303 &mmio_flip->i915->rps.mmioflips));
6042639c
CW
11304 i915_gem_request_unreference__unlocked(mmio_flip->req);
11305 }
84c33a64 11306
fd8e058a
AG
11307 /* For framebuffer backed by dmabuf, wait for fence */
11308 if (obj->base.dma_buf)
11309 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11310 false, false,
11311 MAX_SCHEDULE_TIMEOUT) < 0);
11312
6042639c 11313 intel_do_mmio_flip(mmio_flip);
b2cfe0ab 11314 kfree(mmio_flip);
84c33a64
SG
11315}
11316
11317static int intel_queue_mmio_flip(struct drm_device *dev,
11318 struct drm_crtc *crtc,
86efe24a 11319 struct drm_i915_gem_object *obj)
84c33a64 11320{
b2cfe0ab
CW
11321 struct intel_mmio_flip *mmio_flip;
11322
11323 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11324 if (mmio_flip == NULL)
11325 return -ENOMEM;
84c33a64 11326
bcafc4e3 11327 mmio_flip->i915 = to_i915(dev);
eed29a5b 11328 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
b2cfe0ab 11329 mmio_flip->crtc = to_intel_crtc(crtc);
86efe24a 11330 mmio_flip->rotation = crtc->primary->state->rotation;
536f5b5e 11331
b2cfe0ab
CW
11332 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11333 schedule_work(&mmio_flip->work);
84c33a64 11334
84c33a64
SG
11335 return 0;
11336}
11337
8c9f3aaf
JB
11338static int intel_default_queue_flip(struct drm_device *dev,
11339 struct drm_crtc *crtc,
11340 struct drm_framebuffer *fb,
ed8d1975 11341 struct drm_i915_gem_object *obj,
6258fbe2 11342 struct drm_i915_gem_request *req,
ed8d1975 11343 uint32_t flags)
8c9f3aaf
JB
11344{
11345 return -ENODEV;
11346}
11347
d6bbafa1
CW
11348static bool __intel_pageflip_stall_check(struct drm_device *dev,
11349 struct drm_crtc *crtc)
11350{
11351 struct drm_i915_private *dev_priv = dev->dev_private;
11352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11353 struct intel_unpin_work *work = intel_crtc->unpin_work;
11354 u32 addr;
11355
11356 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11357 return true;
11358
908565c2
CW
11359 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11360 return false;
11361
d6bbafa1
CW
11362 if (!work->enable_stall_check)
11363 return false;
11364
11365 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
11366 if (work->flip_queued_req &&
11367 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
11368 return false;
11369
1e3feefd 11370 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
11371 }
11372
1e3feefd 11373 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
11374 return false;
11375
11376 /* Potential stall - if we see that the flip has happened,
11377 * assume a missed interrupt. */
11378 if (INTEL_INFO(dev)->gen >= 4)
11379 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11380 else
11381 addr = I915_READ(DSPADDR(intel_crtc->plane));
11382
11383 /* There is a potential issue here with a false positive after a flip
11384 * to the same address. We could address this by checking for a
11385 * non-incrementing frame counter.
11386 */
11387 return addr == work->gtt_offset;
11388}
11389
11390void intel_check_page_flip(struct drm_device *dev, int pipe)
11391{
11392 struct drm_i915_private *dev_priv = dev->dev_private;
11393 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 11395 struct intel_unpin_work *work;
f326038a 11396
6c51d46f 11397 WARN_ON(!in_interrupt());
d6bbafa1
CW
11398
11399 if (crtc == NULL)
11400 return;
11401
f326038a 11402 spin_lock(&dev->event_lock);
6ad790c0
CW
11403 work = intel_crtc->unpin_work;
11404 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 11405 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 11406 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 11407 page_flip_completed(intel_crtc);
6ad790c0 11408 work = NULL;
d6bbafa1 11409 }
6ad790c0
CW
11410 if (work != NULL &&
11411 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11412 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
f326038a 11413 spin_unlock(&dev->event_lock);
d6bbafa1
CW
11414}
11415
6b95a207
KH
11416static int intel_crtc_page_flip(struct drm_crtc *crtc,
11417 struct drm_framebuffer *fb,
ed8d1975
KP
11418 struct drm_pending_vblank_event *event,
11419 uint32_t page_flip_flags)
6b95a207
KH
11420{
11421 struct drm_device *dev = crtc->dev;
11422 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 11423 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 11424 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 11425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 11426 struct drm_plane *primary = crtc->primary;
a071fa00 11427 enum pipe pipe = intel_crtc->pipe;
6b95a207 11428 struct intel_unpin_work *work;
a4872ba6 11429 struct intel_engine_cs *ring;
cf5d8a46 11430 bool mmio_flip;
91af127f 11431 struct drm_i915_gem_request *request = NULL;
52e68630 11432 int ret;
6b95a207 11433
2ff8fde1
MR
11434 /*
11435 * drm_mode_page_flip_ioctl() should already catch this, but double
11436 * check to be safe. In the future we may enable pageflipping from
11437 * a disabled primary plane.
11438 */
11439 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11440 return -EBUSY;
11441
e6a595d2 11442 /* Can't change pixel format via MI display flips. */
f4510a27 11443 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
11444 return -EINVAL;
11445
11446 /*
11447 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11448 * Note that pitch changes could also affect these register.
11449 */
11450 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
11451 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11452 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
11453 return -EINVAL;
11454
f900db47
CW
11455 if (i915_terminally_wedged(&dev_priv->gpu_error))
11456 goto out_hang;
11457
b14c5679 11458 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
11459 if (work == NULL)
11460 return -ENOMEM;
11461
6b95a207 11462 work->event = event;
b4a98e57 11463 work->crtc = crtc;
ab8d6675 11464 work->old_fb = old_fb;
6b95a207
KH
11465 INIT_WORK(&work->work, intel_unpin_work_fn);
11466
87b6b101 11467 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
11468 if (ret)
11469 goto free_work;
11470
6b95a207 11471 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 11472 spin_lock_irq(&dev->event_lock);
6b95a207 11473 if (intel_crtc->unpin_work) {
d6bbafa1
CW
11474 /* Before declaring the flip queue wedged, check if
11475 * the hardware completed the operation behind our backs.
11476 */
11477 if (__intel_pageflip_stall_check(dev, crtc)) {
11478 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11479 page_flip_completed(intel_crtc);
11480 } else {
11481 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 11482 spin_unlock_irq(&dev->event_lock);
468f0b44 11483
d6bbafa1
CW
11484 drm_crtc_vblank_put(crtc);
11485 kfree(work);
11486 return -EBUSY;
11487 }
6b95a207
KH
11488 }
11489 intel_crtc->unpin_work = work;
5e2d7afc 11490 spin_unlock_irq(&dev->event_lock);
6b95a207 11491
b4a98e57
CW
11492 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11493 flush_workqueue(dev_priv->wq);
11494
75dfca80 11495 /* Reference the objects for the scheduled work. */
ab8d6675 11496 drm_framebuffer_reference(work->old_fb);
05394f39 11497 drm_gem_object_reference(&obj->base);
6b95a207 11498
f4510a27 11499 crtc->primary->fb = fb;
afd65eb4 11500 update_state_fb(crtc->primary);
e8216e50 11501 intel_fbc_pre_update(intel_crtc);
1ed1f968 11502
e1f99ce6 11503 work->pending_flip_obj = obj;
e1f99ce6 11504
89ed88ba
CW
11505 ret = i915_mutex_lock_interruptible(dev);
11506 if (ret)
11507 goto cleanup;
11508
b4a98e57 11509 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 11510 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 11511
75f7f3ec 11512 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
fd8f507c 11513 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
75f7f3ec 11514
666a4537 11515 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4fa62c89 11516 ring = &dev_priv->ring[BCS];
ab8d6675 11517 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83
CW
11518 /* vlv: DISPLAY_FLIP fails to change tiling */
11519 ring = NULL;
48bf5b2d 11520 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
2a92d5bc 11521 ring = &dev_priv->ring[BCS];
4fa62c89 11522 } else if (INTEL_INFO(dev)->gen >= 7) {
b4716185 11523 ring = i915_gem_request_get_ring(obj->last_write_req);
4fa62c89
VS
11524 if (ring == NULL || ring->id != RCS)
11525 ring = &dev_priv->ring[BCS];
11526 } else {
11527 ring = &dev_priv->ring[RCS];
11528 }
11529
cf5d8a46
CW
11530 mmio_flip = use_mmio_flip(ring, obj);
11531
11532 /* When using CS flips, we want to emit semaphores between rings.
11533 * However, when using mmio flips we will create a task to do the
11534 * synchronisation, so all we want here is to pin the framebuffer
11535 * into the display plane and skip any waits.
11536 */
7580d774
ML
11537 if (!mmio_flip) {
11538 ret = i915_gem_object_sync(obj, ring, &request);
11539 if (ret)
11540 goto cleanup_pending;
11541 }
11542
3465c580 11543 ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
8c9f3aaf
JB
11544 if (ret)
11545 goto cleanup_pending;
6b95a207 11546
dedf278c
TU
11547 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11548 obj, 0);
11549 work->gtt_offset += intel_crtc->dspaddr_offset;
4fa62c89 11550
cf5d8a46 11551 if (mmio_flip) {
86efe24a 11552 ret = intel_queue_mmio_flip(dev, crtc, obj);
d6bbafa1
CW
11553 if (ret)
11554 goto cleanup_unpin;
11555
f06cc1b9
JH
11556 i915_gem_request_assign(&work->flip_queued_req,
11557 obj->last_write_req);
d6bbafa1 11558 } else {
6258fbe2 11559 if (!request) {
26827088
DG
11560 request = i915_gem_request_alloc(ring, NULL);
11561 if (IS_ERR(request)) {
11562 ret = PTR_ERR(request);
6258fbe2 11563 goto cleanup_unpin;
26827088 11564 }
6258fbe2
JH
11565 }
11566
11567 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
d6bbafa1
CW
11568 page_flip_flags);
11569 if (ret)
11570 goto cleanup_unpin;
11571
6258fbe2 11572 i915_gem_request_assign(&work->flip_queued_req, request);
d6bbafa1
CW
11573 }
11574
91af127f 11575 if (request)
75289874 11576 i915_add_request_no_flush(request);
91af127f 11577
1e3feefd 11578 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11579 work->enable_stall_check = true;
4fa62c89 11580
ab8d6675 11581 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a9ff8714 11582 to_intel_plane(primary)->frontbuffer_bit);
c80ac854 11583 mutex_unlock(&dev->struct_mutex);
a071fa00 11584
a9ff8714
VS
11585 intel_frontbuffer_flip_prepare(dev,
11586 to_intel_plane(primary)->frontbuffer_bit);
6b95a207 11587
e5510fac
JB
11588 trace_i915_flip_request(intel_crtc->plane, obj);
11589
6b95a207 11590 return 0;
96b099fd 11591
4fa62c89 11592cleanup_unpin:
3465c580 11593 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
8c9f3aaf 11594cleanup_pending:
0aa498d5 11595 if (!IS_ERR_OR_NULL(request))
91af127f 11596 i915_gem_request_cancel(request);
b4a98e57 11597 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11598 mutex_unlock(&dev->struct_mutex);
11599cleanup:
f4510a27 11600 crtc->primary->fb = old_fb;
afd65eb4 11601 update_state_fb(crtc->primary);
89ed88ba
CW
11602
11603 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11604 drm_framebuffer_unreference(work->old_fb);
96b099fd 11605
5e2d7afc 11606 spin_lock_irq(&dev->event_lock);
96b099fd 11607 intel_crtc->unpin_work = NULL;
5e2d7afc 11608 spin_unlock_irq(&dev->event_lock);
96b099fd 11609
87b6b101 11610 drm_crtc_vblank_put(crtc);
7317c75e 11611free_work:
96b099fd
CW
11612 kfree(work);
11613
f900db47 11614 if (ret == -EIO) {
02e0efb5
ML
11615 struct drm_atomic_state *state;
11616 struct drm_plane_state *plane_state;
11617
f900db47 11618out_hang:
02e0efb5
ML
11619 state = drm_atomic_state_alloc(dev);
11620 if (!state)
11621 return -ENOMEM;
11622 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11623
11624retry:
11625 plane_state = drm_atomic_get_plane_state(state, primary);
11626 ret = PTR_ERR_OR_ZERO(plane_state);
11627 if (!ret) {
11628 drm_atomic_set_fb_for_plane(plane_state, fb);
11629
11630 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11631 if (!ret)
11632 ret = drm_atomic_commit(state);
11633 }
11634
11635 if (ret == -EDEADLK) {
11636 drm_modeset_backoff(state->acquire_ctx);
11637 drm_atomic_state_clear(state);
11638 goto retry;
11639 }
11640
11641 if (ret)
11642 drm_atomic_state_free(state);
11643
f0d3dad3 11644 if (ret == 0 && event) {
5e2d7afc 11645 spin_lock_irq(&dev->event_lock);
a071fa00 11646 drm_send_vblank_event(dev, pipe, event);
5e2d7afc 11647 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11648 }
f900db47 11649 }
96b099fd 11650 return ret;
6b95a207
KH
11651}
11652
da20eabd
ML
11653
11654/**
11655 * intel_wm_need_update - Check whether watermarks need updating
11656 * @plane: drm plane
11657 * @state: new plane state
11658 *
11659 * Check current plane state versus the new one to determine whether
11660 * watermarks need to be recalculated.
11661 *
11662 * Returns true or false.
11663 */
11664static bool intel_wm_need_update(struct drm_plane *plane,
11665 struct drm_plane_state *state)
11666{
d21fbe87
MR
11667 struct intel_plane_state *new = to_intel_plane_state(state);
11668 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11669
11670 /* Update watermarks on tiling or size changes. */
92826fcd
ML
11671 if (new->visible != cur->visible)
11672 return true;
11673
11674 if (!cur->base.fb || !new->base.fb)
11675 return false;
11676
11677 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11678 cur->base.rotation != new->base.rotation ||
d21fbe87
MR
11679 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11680 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11681 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11682 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
2791a16c 11683 return true;
7809e5ae 11684
2791a16c 11685 return false;
7809e5ae
MR
11686}
11687
d21fbe87
MR
11688static bool needs_scaling(struct intel_plane_state *state)
11689{
11690 int src_w = drm_rect_width(&state->src) >> 16;
11691 int src_h = drm_rect_height(&state->src) >> 16;
11692 int dst_w = drm_rect_width(&state->dst);
11693 int dst_h = drm_rect_height(&state->dst);
11694
11695 return (src_w != dst_w || src_h != dst_h);
11696}
11697
da20eabd
ML
11698int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11699 struct drm_plane_state *plane_state)
11700{
ab1d3a0e 11701 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
da20eabd
ML
11702 struct drm_crtc *crtc = crtc_state->crtc;
11703 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11704 struct drm_plane *plane = plane_state->plane;
11705 struct drm_device *dev = crtc->dev;
ed4a6a7c 11706 struct drm_i915_private *dev_priv = to_i915(dev);
da20eabd
ML
11707 struct intel_plane_state *old_plane_state =
11708 to_intel_plane_state(plane->state);
11709 int idx = intel_crtc->base.base.id, ret;
da20eabd
ML
11710 bool mode_changed = needs_modeset(crtc_state);
11711 bool was_crtc_enabled = crtc->state->active;
11712 bool is_crtc_enabled = crtc_state->active;
da20eabd
ML
11713 bool turn_off, turn_on, visible, was_visible;
11714 struct drm_framebuffer *fb = plane_state->fb;
11715
11716 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11717 plane->type != DRM_PLANE_TYPE_CURSOR) {
11718 ret = skl_update_scaler_plane(
11719 to_intel_crtc_state(crtc_state),
11720 to_intel_plane_state(plane_state));
11721 if (ret)
11722 return ret;
11723 }
11724
da20eabd
ML
11725 was_visible = old_plane_state->visible;
11726 visible = to_intel_plane_state(plane_state)->visible;
11727
11728 if (!was_crtc_enabled && WARN_ON(was_visible))
11729 was_visible = false;
11730
35c08f43
ML
11731 /*
11732 * Visibility is calculated as if the crtc was on, but
11733 * after scaler setup everything depends on it being off
11734 * when the crtc isn't active.
11735 */
11736 if (!is_crtc_enabled)
11737 to_intel_plane_state(plane_state)->visible = visible = false;
da20eabd
ML
11738
11739 if (!was_visible && !visible)
11740 return 0;
11741
e8861675
ML
11742 if (fb != old_plane_state->base.fb)
11743 pipe_config->fb_changed = true;
11744
da20eabd
ML
11745 turn_off = was_visible && (!visible || mode_changed);
11746 turn_on = visible && (!was_visible || mode_changed);
11747
11748 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11749 plane->base.id, fb ? fb->base.id : -1);
11750
11751 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11752 plane->base.id, was_visible, visible,
11753 turn_off, turn_on, mode_changed);
11754
92826fcd
ML
11755 if (turn_on || turn_off) {
11756 pipe_config->wm_changed = true;
11757
852eb00d 11758 /* must disable cxsr around plane enable/disable */
e8861675 11759 if (plane->type != DRM_PLANE_TYPE_CURSOR)
ab1d3a0e 11760 pipe_config->disable_cxsr = true;
852eb00d 11761 } else if (intel_wm_need_update(plane, plane_state)) {
92826fcd 11762 pipe_config->wm_changed = true;
852eb00d 11763 }
da20eabd 11764
ed4a6a7c
MR
11765 /* Pre-gen9 platforms need two-step watermark updates */
11766 if (pipe_config->wm_changed && INTEL_INFO(dev)->gen < 9 &&
11767 dev_priv->display.optimize_watermarks)
11768 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11769
8be6ca85 11770 if (visible || was_visible)
a9ff8714
VS
11771 intel_crtc->atomic.fb_bits |=
11772 to_intel_plane(plane)->frontbuffer_bit;
11773
da20eabd
ML
11774 switch (plane->type) {
11775 case DRM_PLANE_TYPE_PRIMARY:
da20eabd 11776 intel_crtc->atomic.post_enable_primary = turn_on;
fcf38d13 11777 intel_crtc->atomic.update_fbc = true;
da20eabd 11778
da20eabd
ML
11779 break;
11780 case DRM_PLANE_TYPE_CURSOR:
da20eabd
ML
11781 break;
11782 case DRM_PLANE_TYPE_OVERLAY:
d21fbe87
MR
11783 /*
11784 * WaCxSRDisabledForSpriteScaling:ivb
11785 *
11786 * cstate->update_wm was already set above, so this flag will
11787 * take effect when we commit and program watermarks.
11788 */
11789 if (IS_IVYBRIDGE(dev) &&
11790 needs_scaling(to_intel_plane_state(plane_state)) &&
e8861675
ML
11791 !needs_scaling(old_plane_state))
11792 pipe_config->disable_lp_wm = true;
d21fbe87
MR
11793
11794 break;
da20eabd
ML
11795 }
11796 return 0;
11797}
11798
6d3a1ce7
ML
11799static bool encoders_cloneable(const struct intel_encoder *a,
11800 const struct intel_encoder *b)
11801{
11802 /* masks could be asymmetric, so check both ways */
11803 return a == b || (a->cloneable & (1 << b->type) &&
11804 b->cloneable & (1 << a->type));
11805}
11806
11807static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11808 struct intel_crtc *crtc,
11809 struct intel_encoder *encoder)
11810{
11811 struct intel_encoder *source_encoder;
11812 struct drm_connector *connector;
11813 struct drm_connector_state *connector_state;
11814 int i;
11815
11816 for_each_connector_in_state(state, connector, connector_state, i) {
11817 if (connector_state->crtc != &crtc->base)
11818 continue;
11819
11820 source_encoder =
11821 to_intel_encoder(connector_state->best_encoder);
11822 if (!encoders_cloneable(encoder, source_encoder))
11823 return false;
11824 }
11825
11826 return true;
11827}
11828
11829static bool check_encoder_cloning(struct drm_atomic_state *state,
11830 struct intel_crtc *crtc)
11831{
11832 struct intel_encoder *encoder;
11833 struct drm_connector *connector;
11834 struct drm_connector_state *connector_state;
11835 int i;
11836
11837 for_each_connector_in_state(state, connector, connector_state, i) {
11838 if (connector_state->crtc != &crtc->base)
11839 continue;
11840
11841 encoder = to_intel_encoder(connector_state->best_encoder);
11842 if (!check_single_encoder_cloning(state, crtc, encoder))
11843 return false;
11844 }
11845
11846 return true;
11847}
11848
11849static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11850 struct drm_crtc_state *crtc_state)
11851{
cf5a15be 11852 struct drm_device *dev = crtc->dev;
ad421372 11853 struct drm_i915_private *dev_priv = dev->dev_private;
6d3a1ce7 11854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
11855 struct intel_crtc_state *pipe_config =
11856 to_intel_crtc_state(crtc_state);
6d3a1ce7 11857 struct drm_atomic_state *state = crtc_state->state;
4d20cd86 11858 int ret;
6d3a1ce7
ML
11859 bool mode_changed = needs_modeset(crtc_state);
11860
11861 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11862 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11863 return -EINVAL;
11864 }
11865
852eb00d 11866 if (mode_changed && !crtc_state->active)
92826fcd 11867 pipe_config->wm_changed = true;
eddfcbcd 11868
ad421372
ML
11869 if (mode_changed && crtc_state->enable &&
11870 dev_priv->display.crtc_compute_clock &&
11871 !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11872 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11873 pipe_config);
11874 if (ret)
11875 return ret;
11876 }
11877
e435d6e5 11878 ret = 0;
86c8bbbe 11879 if (dev_priv->display.compute_pipe_wm) {
e3bddded 11880 ret = dev_priv->display.compute_pipe_wm(pipe_config);
ed4a6a7c
MR
11881 if (ret) {
11882 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11883 return ret;
11884 }
11885 }
11886
11887 if (dev_priv->display.compute_intermediate_wm &&
11888 !to_intel_atomic_state(state)->skip_intermediate_wm) {
11889 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11890 return 0;
11891
11892 /*
11893 * Calculate 'intermediate' watermarks that satisfy both the
11894 * old state and the new state. We can program these
11895 * immediately.
11896 */
11897 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
11898 intel_crtc,
11899 pipe_config);
11900 if (ret) {
11901 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
86c8bbbe 11902 return ret;
ed4a6a7c 11903 }
86c8bbbe
MR
11904 }
11905
e435d6e5
ML
11906 if (INTEL_INFO(dev)->gen >= 9) {
11907 if (mode_changed)
11908 ret = skl_update_scaler_crtc(pipe_config);
11909
11910 if (!ret)
11911 ret = intel_atomic_setup_scalers(dev, intel_crtc,
11912 pipe_config);
11913 }
11914
11915 return ret;
6d3a1ce7
ML
11916}
11917
65b38e0d 11918static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
11919 .mode_set_base_atomic = intel_pipe_set_base_atomic,
11920 .load_lut = intel_crtc_load_lut,
ea2c67bb
MR
11921 .atomic_begin = intel_begin_crtc_commit,
11922 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 11923 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
11924};
11925
d29b2f9d
ACO
11926static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11927{
11928 struct intel_connector *connector;
11929
11930 for_each_intel_connector(dev, connector) {
11931 if (connector->base.encoder) {
11932 connector->base.state->best_encoder =
11933 connector->base.encoder;
11934 connector->base.state->crtc =
11935 connector->base.encoder->crtc;
11936 } else {
11937 connector->base.state->best_encoder = NULL;
11938 connector->base.state->crtc = NULL;
11939 }
11940 }
11941}
11942
050f7aeb 11943static void
eba905b2 11944connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 11945 struct intel_crtc_state *pipe_config)
050f7aeb
DV
11946{
11947 int bpp = pipe_config->pipe_bpp;
11948
11949 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11950 connector->base.base.id,
c23cc417 11951 connector->base.name);
050f7aeb
DV
11952
11953 /* Don't use an invalid EDID bpc value */
11954 if (connector->base.display_info.bpc &&
11955 connector->base.display_info.bpc * 3 < bpp) {
11956 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11957 bpp, connector->base.display_info.bpc*3);
11958 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11959 }
11960
013dd9e0
JN
11961 /* Clamp bpp to default limit on screens without EDID 1.4 */
11962 if (connector->base.display_info.bpc == 0) {
11963 int type = connector->base.connector_type;
11964 int clamp_bpp = 24;
11965
11966 /* Fall back to 18 bpp when DP sink capability is unknown. */
11967 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
11968 type == DRM_MODE_CONNECTOR_eDP)
11969 clamp_bpp = 18;
11970
11971 if (bpp > clamp_bpp) {
11972 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
11973 bpp, clamp_bpp);
11974 pipe_config->pipe_bpp = clamp_bpp;
11975 }
050f7aeb
DV
11976 }
11977}
11978
4e53c2e0 11979static int
050f7aeb 11980compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 11981 struct intel_crtc_state *pipe_config)
4e53c2e0 11982{
050f7aeb 11983 struct drm_device *dev = crtc->base.dev;
1486017f 11984 struct drm_atomic_state *state;
da3ced29
ACO
11985 struct drm_connector *connector;
11986 struct drm_connector_state *connector_state;
1486017f 11987 int bpp, i;
4e53c2e0 11988
666a4537 11989 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
4e53c2e0 11990 bpp = 10*3;
d328c9d7
DV
11991 else if (INTEL_INFO(dev)->gen >= 5)
11992 bpp = 12*3;
11993 else
11994 bpp = 8*3;
11995
4e53c2e0 11996
4e53c2e0
DV
11997 pipe_config->pipe_bpp = bpp;
11998
1486017f
ACO
11999 state = pipe_config->base.state;
12000
4e53c2e0 12001 /* Clamp display bpp to EDID value */
da3ced29
ACO
12002 for_each_connector_in_state(state, connector, connector_state, i) {
12003 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
12004 continue;
12005
da3ced29
ACO
12006 connected_sink_compute_bpp(to_intel_connector(connector),
12007 pipe_config);
4e53c2e0
DV
12008 }
12009
12010 return bpp;
12011}
12012
644db711
DV
12013static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12014{
12015 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12016 "type: 0x%x flags: 0x%x\n",
1342830c 12017 mode->crtc_clock,
644db711
DV
12018 mode->crtc_hdisplay, mode->crtc_hsync_start,
12019 mode->crtc_hsync_end, mode->crtc_htotal,
12020 mode->crtc_vdisplay, mode->crtc_vsync_start,
12021 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12022}
12023
c0b03411 12024static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 12025 struct intel_crtc_state *pipe_config,
c0b03411
DV
12026 const char *context)
12027{
6a60cd87
CK
12028 struct drm_device *dev = crtc->base.dev;
12029 struct drm_plane *plane;
12030 struct intel_plane *intel_plane;
12031 struct intel_plane_state *state;
12032 struct drm_framebuffer *fb;
12033
12034 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12035 context, pipe_config, pipe_name(crtc->pipe));
c0b03411
DV
12036
12037 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12038 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12039 pipe_config->pipe_bpp, pipe_config->dither);
12040 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12041 pipe_config->has_pch_encoder,
12042 pipe_config->fdi_lanes,
12043 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12044 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12045 pipe_config->fdi_m_n.tu);
90a6b7b0 12046 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
eb14cb74 12047 pipe_config->has_dp_encoder,
90a6b7b0 12048 pipe_config->lane_count,
eb14cb74
VS
12049 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12050 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12051 pipe_config->dp_m_n.tu);
b95af8be 12052
90a6b7b0 12053 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
b95af8be 12054 pipe_config->has_dp_encoder,
90a6b7b0 12055 pipe_config->lane_count,
b95af8be
VK
12056 pipe_config->dp_m2_n2.gmch_m,
12057 pipe_config->dp_m2_n2.gmch_n,
12058 pipe_config->dp_m2_n2.link_m,
12059 pipe_config->dp_m2_n2.link_n,
12060 pipe_config->dp_m2_n2.tu);
12061
55072d19
DV
12062 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12063 pipe_config->has_audio,
12064 pipe_config->has_infoframe);
12065
c0b03411 12066 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12067 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12068 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12069 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12070 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12071 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12072 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12073 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12074 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12075 crtc->num_scalers,
12076 pipe_config->scaler_state.scaler_users,
12077 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12078 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12079 pipe_config->gmch_pfit.control,
12080 pipe_config->gmch_pfit.pgm_ratios,
12081 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12082 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12083 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12084 pipe_config->pch_pfit.size,
12085 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12086 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12087 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12088
415ff0f6 12089 if (IS_BROXTON(dev)) {
05712c15 12090 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 12091 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 12092 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6
TU
12093 pipe_config->ddi_pll_sel,
12094 pipe_config->dpll_hw_state.ebb0,
05712c15 12095 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
12096 pipe_config->dpll_hw_state.pll0,
12097 pipe_config->dpll_hw_state.pll1,
12098 pipe_config->dpll_hw_state.pll2,
12099 pipe_config->dpll_hw_state.pll3,
12100 pipe_config->dpll_hw_state.pll6,
12101 pipe_config->dpll_hw_state.pll8,
05712c15 12102 pipe_config->dpll_hw_state.pll9,
c8453338 12103 pipe_config->dpll_hw_state.pll10,
415ff0f6 12104 pipe_config->dpll_hw_state.pcsdw12);
ef11bdb3 12105 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
415ff0f6
TU
12106 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12107 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12108 pipe_config->ddi_pll_sel,
12109 pipe_config->dpll_hw_state.ctrl1,
12110 pipe_config->dpll_hw_state.cfgcr1,
12111 pipe_config->dpll_hw_state.cfgcr2);
12112 } else if (HAS_DDI(dev)) {
1260f07e 12113 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
415ff0f6 12114 pipe_config->ddi_pll_sel,
00490c22
ML
12115 pipe_config->dpll_hw_state.wrpll,
12116 pipe_config->dpll_hw_state.spll);
415ff0f6
TU
12117 } else {
12118 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12119 "fp0: 0x%x, fp1: 0x%x\n",
12120 pipe_config->dpll_hw_state.dpll,
12121 pipe_config->dpll_hw_state.dpll_md,
12122 pipe_config->dpll_hw_state.fp0,
12123 pipe_config->dpll_hw_state.fp1);
12124 }
12125
6a60cd87
CK
12126 DRM_DEBUG_KMS("planes on this crtc\n");
12127 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12128 intel_plane = to_intel_plane(plane);
12129 if (intel_plane->pipe != crtc->pipe)
12130 continue;
12131
12132 state = to_intel_plane_state(plane->state);
12133 fb = state->base.fb;
12134 if (!fb) {
12135 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12136 "disabled, scaler_id = %d\n",
12137 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12138 plane->base.id, intel_plane->pipe,
12139 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12140 drm_plane_index(plane), state->scaler_id);
12141 continue;
12142 }
12143
12144 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12145 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12146 plane->base.id, intel_plane->pipe,
12147 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12148 drm_plane_index(plane));
12149 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12150 fb->base.id, fb->width, fb->height, fb->pixel_format);
12151 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12152 state->scaler_id,
12153 state->src.x1 >> 16, state->src.y1 >> 16,
12154 drm_rect_width(&state->src) >> 16,
12155 drm_rect_height(&state->src) >> 16,
12156 state->dst.x1, state->dst.y1,
12157 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12158 }
c0b03411
DV
12159}
12160
5448a00d 12161static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12162{
5448a00d 12163 struct drm_device *dev = state->dev;
da3ced29 12164 struct drm_connector *connector;
00f0b378
VS
12165 unsigned int used_ports = 0;
12166
12167 /*
12168 * Walk the connector list instead of the encoder
12169 * list to detect the problem on ddi platforms
12170 * where there's just one encoder per digital port.
12171 */
0bff4858
VS
12172 drm_for_each_connector(connector, dev) {
12173 struct drm_connector_state *connector_state;
12174 struct intel_encoder *encoder;
12175
12176 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12177 if (!connector_state)
12178 connector_state = connector->state;
12179
5448a00d 12180 if (!connector_state->best_encoder)
00f0b378
VS
12181 continue;
12182
5448a00d
ACO
12183 encoder = to_intel_encoder(connector_state->best_encoder);
12184
12185 WARN_ON(!connector_state->crtc);
00f0b378
VS
12186
12187 switch (encoder->type) {
12188 unsigned int port_mask;
12189 case INTEL_OUTPUT_UNKNOWN:
12190 if (WARN_ON(!HAS_DDI(dev)))
12191 break;
12192 case INTEL_OUTPUT_DISPLAYPORT:
12193 case INTEL_OUTPUT_HDMI:
12194 case INTEL_OUTPUT_EDP:
12195 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12196
12197 /* the same port mustn't appear more than once */
12198 if (used_ports & port_mask)
12199 return false;
12200
12201 used_ports |= port_mask;
12202 default:
12203 break;
12204 }
12205 }
12206
12207 return true;
12208}
12209
83a57153
ACO
12210static void
12211clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12212{
12213 struct drm_crtc_state tmp_state;
663a3640 12214 struct intel_crtc_scaler_state scaler_state;
4978cc93
ACO
12215 struct intel_dpll_hw_state dpll_hw_state;
12216 enum intel_dpll_id shared_dpll;
8504c74c 12217 uint32_t ddi_pll_sel;
c4e2d043 12218 bool force_thru;
83a57153 12219
7546a384
ACO
12220 /* FIXME: before the switch to atomic started, a new pipe_config was
12221 * kzalloc'd. Code that depends on any field being zero should be
12222 * fixed, so that the crtc_state can be safely duplicated. For now,
12223 * only fields that are know to not cause problems are preserved. */
12224
83a57153 12225 tmp_state = crtc_state->base;
663a3640 12226 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12227 shared_dpll = crtc_state->shared_dpll;
12228 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12229 ddi_pll_sel = crtc_state->ddi_pll_sel;
c4e2d043 12230 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12231
83a57153 12232 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12233
83a57153 12234 crtc_state->base = tmp_state;
663a3640 12235 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12236 crtc_state->shared_dpll = shared_dpll;
12237 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12238 crtc_state->ddi_pll_sel = ddi_pll_sel;
c4e2d043 12239 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12240}
12241
548ee15b 12242static int
b8cecdf5 12243intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12244 struct intel_crtc_state *pipe_config)
ee7b9f93 12245{
b359283a 12246 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12247 struct intel_encoder *encoder;
da3ced29 12248 struct drm_connector *connector;
0b901879 12249 struct drm_connector_state *connector_state;
d328c9d7 12250 int base_bpp, ret = -EINVAL;
0b901879 12251 int i;
e29c22c0 12252 bool retry = true;
ee7b9f93 12253
83a57153 12254 clear_intel_crtc_state(pipe_config);
7758a113 12255
e143a21c
DV
12256 pipe_config->cpu_transcoder =
12257 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12258
2960bc9c
ID
12259 /*
12260 * Sanitize sync polarity flags based on requested ones. If neither
12261 * positive or negative polarity is requested, treat this as meaning
12262 * negative polarity.
12263 */
2d112de7 12264 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12265 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12266 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12267
2d112de7 12268 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12269 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12270 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12271
d328c9d7
DV
12272 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12273 pipe_config);
12274 if (base_bpp < 0)
4e53c2e0
DV
12275 goto fail;
12276
e41a56be
VS
12277 /*
12278 * Determine the real pipe dimensions. Note that stereo modes can
12279 * increase the actual pipe size due to the frame doubling and
12280 * insertion of additional space for blanks between the frame. This
12281 * is stored in the crtc timings. We use the requested mode to do this
12282 * computation to clearly distinguish it from the adjusted mode, which
12283 * can be changed by the connectors in the below retry loop.
12284 */
2d112de7 12285 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12286 &pipe_config->pipe_src_w,
12287 &pipe_config->pipe_src_h);
e41a56be 12288
e29c22c0 12289encoder_retry:
ef1b460d 12290 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12291 pipe_config->port_clock = 0;
ef1b460d 12292 pipe_config->pixel_multiplier = 1;
ff9a6750 12293
135c81b8 12294 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12295 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12296 CRTC_STEREO_DOUBLE);
135c81b8 12297
7758a113
DV
12298 /* Pass our mode to the connectors and the CRTC to give them a chance to
12299 * adjust it according to limitations or connector properties, and also
12300 * a chance to reject the mode entirely.
47f1c6c9 12301 */
da3ced29 12302 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12303 if (connector_state->crtc != crtc)
7758a113 12304 continue;
7ae89233 12305
0b901879
ACO
12306 encoder = to_intel_encoder(connector_state->best_encoder);
12307
efea6e8e
DV
12308 if (!(encoder->compute_config(encoder, pipe_config))) {
12309 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12310 goto fail;
12311 }
ee7b9f93 12312 }
47f1c6c9 12313
ff9a6750
DV
12314 /* Set default port clock if not overwritten by the encoder. Needs to be
12315 * done afterwards in case the encoder adjusts the mode. */
12316 if (!pipe_config->port_clock)
2d112de7 12317 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12318 * pipe_config->pixel_multiplier;
ff9a6750 12319
a43f6e0f 12320 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12321 if (ret < 0) {
7758a113
DV
12322 DRM_DEBUG_KMS("CRTC fixup failed\n");
12323 goto fail;
ee7b9f93 12324 }
e29c22c0
DV
12325
12326 if (ret == RETRY) {
12327 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12328 ret = -EINVAL;
12329 goto fail;
12330 }
12331
12332 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12333 retry = false;
12334 goto encoder_retry;
12335 }
12336
e8fa4270
DV
12337 /* Dithering seems to not pass-through bits correctly when it should, so
12338 * only enable it on 6bpc panels. */
12339 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
62f0ace5 12340 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12341 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12342
7758a113 12343fail:
548ee15b 12344 return ret;
ee7b9f93 12345}
47f1c6c9 12346
ea9d758d 12347static void
4740b0f2 12348intel_modeset_update_crtc_state(struct drm_atomic_state *state)
ea9d758d 12349{
0a9ab303
ACO
12350 struct drm_crtc *crtc;
12351 struct drm_crtc_state *crtc_state;
8a75d157 12352 int i;
ea9d758d 12353
7668851f 12354 /* Double check state. */
8a75d157 12355 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3cb480bc 12356 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
12357
12358 /* Update hwmode for vblank functions */
12359 if (crtc->state->active)
12360 crtc->hwmode = crtc->state->adjusted_mode;
12361 else
12362 crtc->hwmode.crtc_clock = 0;
61067a5e
ML
12363
12364 /*
12365 * Update legacy state to satisfy fbc code. This can
12366 * be removed when fbc uses the atomic state.
12367 */
12368 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12369 struct drm_plane_state *plane_state = crtc->primary->state;
12370
12371 crtc->primary->fb = plane_state->fb;
12372 crtc->x = plane_state->src_x >> 16;
12373 crtc->y = plane_state->src_y >> 16;
12374 }
ea9d758d 12375 }
ea9d758d
DV
12376}
12377
3bd26263 12378static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12379{
3bd26263 12380 int diff;
f1f644dc
JB
12381
12382 if (clock1 == clock2)
12383 return true;
12384
12385 if (!clock1 || !clock2)
12386 return false;
12387
12388 diff = abs(clock1 - clock2);
12389
12390 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12391 return true;
12392
12393 return false;
12394}
12395
25c5b266
DV
12396#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12397 list_for_each_entry((intel_crtc), \
12398 &(dev)->mode_config.crtc_list, \
12399 base.head) \
95150bdf 12400 for_each_if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12401
cfb23ed6
ML
12402static bool
12403intel_compare_m_n(unsigned int m, unsigned int n,
12404 unsigned int m2, unsigned int n2,
12405 bool exact)
12406{
12407 if (m == m2 && n == n2)
12408 return true;
12409
12410 if (exact || !m || !n || !m2 || !n2)
12411 return false;
12412
12413 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12414
31d10b57
ML
12415 if (n > n2) {
12416 while (n > n2) {
cfb23ed6
ML
12417 m2 <<= 1;
12418 n2 <<= 1;
12419 }
31d10b57
ML
12420 } else if (n < n2) {
12421 while (n < n2) {
cfb23ed6
ML
12422 m <<= 1;
12423 n <<= 1;
12424 }
12425 }
12426
31d10b57
ML
12427 if (n != n2)
12428 return false;
12429
12430 return intel_fuzzy_clock_check(m, m2);
cfb23ed6
ML
12431}
12432
12433static bool
12434intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12435 struct intel_link_m_n *m2_n2,
12436 bool adjust)
12437{
12438 if (m_n->tu == m2_n2->tu &&
12439 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12440 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12441 intel_compare_m_n(m_n->link_m, m_n->link_n,
12442 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12443 if (adjust)
12444 *m2_n2 = *m_n;
12445
12446 return true;
12447 }
12448
12449 return false;
12450}
12451
0e8ffe1b 12452static bool
2fa2fe9a 12453intel_pipe_config_compare(struct drm_device *dev,
5cec258b 12454 struct intel_crtc_state *current_config,
cfb23ed6
ML
12455 struct intel_crtc_state *pipe_config,
12456 bool adjust)
0e8ffe1b 12457{
cfb23ed6
ML
12458 bool ret = true;
12459
12460#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12461 do { \
12462 if (!adjust) \
12463 DRM_ERROR(fmt, ##__VA_ARGS__); \
12464 else \
12465 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12466 } while (0)
12467
66e985c0
DV
12468#define PIPE_CONF_CHECK_X(name) \
12469 if (current_config->name != pipe_config->name) { \
cfb23ed6 12470 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
12471 "(expected 0x%08x, found 0x%08x)\n", \
12472 current_config->name, \
12473 pipe_config->name); \
cfb23ed6 12474 ret = false; \
66e985c0
DV
12475 }
12476
08a24034
DV
12477#define PIPE_CONF_CHECK_I(name) \
12478 if (current_config->name != pipe_config->name) { \
cfb23ed6 12479 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
12480 "(expected %i, found %i)\n", \
12481 current_config->name, \
12482 pipe_config->name); \
cfb23ed6
ML
12483 ret = false; \
12484 }
12485
12486#define PIPE_CONF_CHECK_M_N(name) \
12487 if (!intel_compare_link_m_n(&current_config->name, \
12488 &pipe_config->name,\
12489 adjust)) { \
12490 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12491 "(expected tu %i gmch %i/%i link %i/%i, " \
12492 "found tu %i, gmch %i/%i link %i/%i)\n", \
12493 current_config->name.tu, \
12494 current_config->name.gmch_m, \
12495 current_config->name.gmch_n, \
12496 current_config->name.link_m, \
12497 current_config->name.link_n, \
12498 pipe_config->name.tu, \
12499 pipe_config->name.gmch_m, \
12500 pipe_config->name.gmch_n, \
12501 pipe_config->name.link_m, \
12502 pipe_config->name.link_n); \
12503 ret = false; \
12504 }
12505
12506#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12507 if (!intel_compare_link_m_n(&current_config->name, \
12508 &pipe_config->name, adjust) && \
12509 !intel_compare_link_m_n(&current_config->alt_name, \
12510 &pipe_config->name, adjust)) { \
12511 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12512 "(expected tu %i gmch %i/%i link %i/%i, " \
12513 "or tu %i gmch %i/%i link %i/%i, " \
12514 "found tu %i, gmch %i/%i link %i/%i)\n", \
12515 current_config->name.tu, \
12516 current_config->name.gmch_m, \
12517 current_config->name.gmch_n, \
12518 current_config->name.link_m, \
12519 current_config->name.link_n, \
12520 current_config->alt_name.tu, \
12521 current_config->alt_name.gmch_m, \
12522 current_config->alt_name.gmch_n, \
12523 current_config->alt_name.link_m, \
12524 current_config->alt_name.link_n, \
12525 pipe_config->name.tu, \
12526 pipe_config->name.gmch_m, \
12527 pipe_config->name.gmch_n, \
12528 pipe_config->name.link_m, \
12529 pipe_config->name.link_n); \
12530 ret = false; \
88adfff1
DV
12531 }
12532
b95af8be
VK
12533/* This is required for BDW+ where there is only one set of registers for
12534 * switching between high and low RR.
12535 * This macro can be used whenever a comparison has to be made between one
12536 * hw state and multiple sw state variables.
12537 */
12538#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12539 if ((current_config->name != pipe_config->name) && \
12540 (current_config->alt_name != pipe_config->name)) { \
cfb23ed6 12541 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
b95af8be
VK
12542 "(expected %i or %i, found %i)\n", \
12543 current_config->name, \
12544 current_config->alt_name, \
12545 pipe_config->name); \
cfb23ed6 12546 ret = false; \
b95af8be
VK
12547 }
12548
1bd1bd80
DV
12549#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12550 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 12551 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12552 "(expected %i, found %i)\n", \
12553 current_config->name & (mask), \
12554 pipe_config->name & (mask)); \
cfb23ed6 12555 ret = false; \
1bd1bd80
DV
12556 }
12557
5e550656
VS
12558#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12559 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 12560 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
12561 "(expected %i, found %i)\n", \
12562 current_config->name, \
12563 pipe_config->name); \
cfb23ed6 12564 ret = false; \
5e550656
VS
12565 }
12566
bb760063
DV
12567#define PIPE_CONF_QUIRK(quirk) \
12568 ((current_config->quirks | pipe_config->quirks) & (quirk))
12569
eccb140b
DV
12570 PIPE_CONF_CHECK_I(cpu_transcoder);
12571
08a24034
DV
12572 PIPE_CONF_CHECK_I(has_pch_encoder);
12573 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 12574 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 12575
eb14cb74 12576 PIPE_CONF_CHECK_I(has_dp_encoder);
90a6b7b0 12577 PIPE_CONF_CHECK_I(lane_count);
b95af8be
VK
12578
12579 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
12580 PIPE_CONF_CHECK_M_N(dp_m_n);
12581
cfb23ed6
ML
12582 if (current_config->has_drrs)
12583 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12584 } else
12585 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 12586
a65347ba
JN
12587 PIPE_CONF_CHECK_I(has_dsi_encoder);
12588
2d112de7
ACO
12589 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12590 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12591 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12592 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12593 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12594 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12595
2d112de7
ACO
12596 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12597 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12598 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12599 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12600 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12601 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12602
c93f54cf 12603 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12604 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09 12605 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
666a4537 12606 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
b5a9fa09 12607 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12608 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12609
9ed109a7
DV
12610 PIPE_CONF_CHECK_I(has_audio);
12611
2d112de7 12612 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12613 DRM_MODE_FLAG_INTERLACE);
12614
bb760063 12615 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12616 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12617 DRM_MODE_FLAG_PHSYNC);
2d112de7 12618 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12619 DRM_MODE_FLAG_NHSYNC);
2d112de7 12620 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12621 DRM_MODE_FLAG_PVSYNC);
2d112de7 12622 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12623 DRM_MODE_FLAG_NVSYNC);
12624 }
045ac3b5 12625
333b8ca8 12626 PIPE_CONF_CHECK_X(gmch_pfit.control);
e2ff2d4a
DV
12627 /* pfit ratios are autocomputed by the hw on gen4+ */
12628 if (INTEL_INFO(dev)->gen < 4)
12629 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
333b8ca8 12630 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
9953599b 12631
bfd16b2a
ML
12632 if (!adjust) {
12633 PIPE_CONF_CHECK_I(pipe_src_w);
12634 PIPE_CONF_CHECK_I(pipe_src_h);
12635
12636 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12637 if (current_config->pch_pfit.enabled) {
12638 PIPE_CONF_CHECK_X(pch_pfit.pos);
12639 PIPE_CONF_CHECK_X(pch_pfit.size);
12640 }
2fa2fe9a 12641
7aefe2b5
ML
12642 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12643 }
a1b2278e 12644
e59150dc
JB
12645 /* BDW+ don't expose a synchronous way to read the state */
12646 if (IS_HASWELL(dev))
12647 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12648
282740f7
VS
12649 PIPE_CONF_CHECK_I(double_wide);
12650
26804afd
DV
12651 PIPE_CONF_CHECK_X(ddi_pll_sel);
12652
c0d43d62 12653 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 12654 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12655 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12656 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12657 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12658 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
00490c22 12659 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
3f4cd19f
DL
12660 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12661 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12662 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12663
42571aef
VS
12664 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12665 PIPE_CONF_CHECK_I(pipe_bpp);
12666
2d112de7 12667 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12668 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12669
66e985c0 12670#undef PIPE_CONF_CHECK_X
08a24034 12671#undef PIPE_CONF_CHECK_I
b95af8be 12672#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 12673#undef PIPE_CONF_CHECK_FLAGS
5e550656 12674#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12675#undef PIPE_CONF_QUIRK
cfb23ed6 12676#undef INTEL_ERR_OR_DBG_KMS
88adfff1 12677
cfb23ed6 12678 return ret;
0e8ffe1b
DV
12679}
12680
e3b247da
VS
12681static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12682 const struct intel_crtc_state *pipe_config)
12683{
12684 if (pipe_config->has_pch_encoder) {
21a727b3 12685 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
e3b247da
VS
12686 &pipe_config->fdi_m_n);
12687 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12688
12689 /*
12690 * FDI already provided one idea for the dotclock.
12691 * Yell if the encoder disagrees.
12692 */
12693 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12694 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12695 fdi_dotclock, dotclock);
12696 }
12697}
12698
08db6652
DL
12699static void check_wm_state(struct drm_device *dev)
12700{
12701 struct drm_i915_private *dev_priv = dev->dev_private;
12702 struct skl_ddb_allocation hw_ddb, *sw_ddb;
12703 struct intel_crtc *intel_crtc;
12704 int plane;
12705
12706 if (INTEL_INFO(dev)->gen < 9)
12707 return;
12708
12709 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12710 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12711
12712 for_each_intel_crtc(dev, intel_crtc) {
12713 struct skl_ddb_entry *hw_entry, *sw_entry;
12714 const enum pipe pipe = intel_crtc->pipe;
12715
12716 if (!intel_crtc->active)
12717 continue;
12718
12719 /* planes */
dd740780 12720 for_each_plane(dev_priv, pipe, plane) {
08db6652
DL
12721 hw_entry = &hw_ddb.plane[pipe][plane];
12722 sw_entry = &sw_ddb->plane[pipe][plane];
12723
12724 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12725 continue;
12726
12727 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12728 "(expected (%u,%u), found (%u,%u))\n",
12729 pipe_name(pipe), plane + 1,
12730 sw_entry->start, sw_entry->end,
12731 hw_entry->start, hw_entry->end);
12732 }
12733
12734 /* cursor */
4969d33e
MR
12735 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12736 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
08db6652
DL
12737
12738 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12739 continue;
12740
12741 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12742 "(expected (%u,%u), found (%u,%u))\n",
12743 pipe_name(pipe),
12744 sw_entry->start, sw_entry->end,
12745 hw_entry->start, hw_entry->end);
12746 }
12747}
12748
91d1b4bd 12749static void
35dd3c64
ML
12750check_connector_state(struct drm_device *dev,
12751 struct drm_atomic_state *old_state)
8af6cf88 12752{
35dd3c64
ML
12753 struct drm_connector_state *old_conn_state;
12754 struct drm_connector *connector;
12755 int i;
8af6cf88 12756
35dd3c64
ML
12757 for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12758 struct drm_encoder *encoder = connector->encoder;
12759 struct drm_connector_state *state = connector->state;
ad3c558f 12760
8af6cf88
DV
12761 /* This also checks the encoder/connector hw state with the
12762 * ->get_hw_state callbacks. */
35dd3c64 12763 intel_connector_check_state(to_intel_connector(connector));
8af6cf88 12764
ad3c558f 12765 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 12766 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 12767 }
91d1b4bd
DV
12768}
12769
12770static void
12771check_encoder_state(struct drm_device *dev)
12772{
12773 struct intel_encoder *encoder;
12774 struct intel_connector *connector;
8af6cf88 12775
b2784e15 12776 for_each_intel_encoder(dev, encoder) {
8af6cf88 12777 bool enabled = false;
4d20cd86 12778 enum pipe pipe;
8af6cf88
DV
12779
12780 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12781 encoder->base.base.id,
8e329a03 12782 encoder->base.name);
8af6cf88 12783
3a3371ff 12784 for_each_intel_connector(dev, connector) {
4d20cd86 12785 if (connector->base.state->best_encoder != &encoder->base)
8af6cf88
DV
12786 continue;
12787 enabled = true;
ad3c558f
ML
12788
12789 I915_STATE_WARN(connector->base.state->crtc !=
12790 encoder->base.crtc,
12791 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 12792 }
0e32b39c 12793
e2c719b7 12794 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12795 "encoder's enabled state mismatch "
12796 "(expected %i, found %i)\n",
12797 !!encoder->base.crtc, enabled);
7c60d198
ML
12798
12799 if (!encoder->base.crtc) {
4d20cd86 12800 bool active;
7c60d198 12801
4d20cd86
ML
12802 active = encoder->get_hw_state(encoder, &pipe);
12803 I915_STATE_WARN(active,
12804 "encoder detached but still enabled on pipe %c.\n",
12805 pipe_name(pipe));
7c60d198 12806 }
8af6cf88 12807 }
91d1b4bd
DV
12808}
12809
12810static void
4d20cd86 12811check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
91d1b4bd 12812{
fbee40df 12813 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd 12814 struct intel_encoder *encoder;
4d20cd86
ML
12815 struct drm_crtc_state *old_crtc_state;
12816 struct drm_crtc *crtc;
12817 int i;
8af6cf88 12818
4d20cd86
ML
12819 for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12820 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12821 struct intel_crtc_state *pipe_config, *sw_config;
7b89b8de 12822 bool active;
8af6cf88 12823
bfd16b2a
ML
12824 if (!needs_modeset(crtc->state) &&
12825 !to_intel_crtc_state(crtc->state)->update_pipe)
4d20cd86 12826 continue;
045ac3b5 12827
4d20cd86
ML
12828 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12829 pipe_config = to_intel_crtc_state(old_crtc_state);
12830 memset(pipe_config, 0, sizeof(*pipe_config));
12831 pipe_config->base.crtc = crtc;
12832 pipe_config->base.state = old_state;
8af6cf88 12833
4d20cd86
ML
12834 DRM_DEBUG_KMS("[CRTC:%d]\n",
12835 crtc->base.id);
8af6cf88 12836
4d20cd86
ML
12837 active = dev_priv->display.get_pipe_config(intel_crtc,
12838 pipe_config);
d62cf62a 12839
b6b5d049 12840 /* hw state is inconsistent with the pipe quirk */
4d20cd86
ML
12841 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12842 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12843 active = crtc->state->active;
6c49f241 12844
4d20cd86 12845 I915_STATE_WARN(crtc->state->active != active,
0e8ffe1b 12846 "crtc active state doesn't match with hw state "
4d20cd86 12847 "(expected %i, found %i)\n", crtc->state->active, active);
0e8ffe1b 12848
4d20cd86 12849 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
53d9f4e9 12850 "transitional active state does not match atomic hw state "
4d20cd86
ML
12851 "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12852
12853 for_each_encoder_on_crtc(dev, crtc, encoder) {
12854 enum pipe pipe;
12855
12856 active = encoder->get_hw_state(encoder, &pipe);
12857 I915_STATE_WARN(active != crtc->state->active,
12858 "[ENCODER:%i] active %i with crtc active %i\n",
12859 encoder->base.base.id, active, crtc->state->active);
12860
12861 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12862 "Encoder connected to wrong pipe %c\n",
12863 pipe_name(pipe));
12864
12865 if (active)
12866 encoder->get_config(encoder, pipe_config);
12867 }
53d9f4e9 12868
4d20cd86 12869 if (!crtc->state->active)
cfb23ed6
ML
12870 continue;
12871
e3b247da
VS
12872 intel_pipe_config_sanity_check(dev_priv, pipe_config);
12873
4d20cd86
ML
12874 sw_config = to_intel_crtc_state(crtc->state);
12875 if (!intel_pipe_config_compare(dev, sw_config,
12876 pipe_config, false)) {
e2c719b7 12877 I915_STATE_WARN(1, "pipe state doesn't match!\n");
4d20cd86 12878 intel_dump_pipe_config(intel_crtc, pipe_config,
c0b03411 12879 "[hw state]");
4d20cd86 12880 intel_dump_pipe_config(intel_crtc, sw_config,
c0b03411
DV
12881 "[sw state]");
12882 }
8af6cf88
DV
12883 }
12884}
12885
91d1b4bd
DV
12886static void
12887check_shared_dpll_state(struct drm_device *dev)
12888{
fbee40df 12889 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
12890 struct intel_crtc *crtc;
12891 struct intel_dpll_hw_state dpll_hw_state;
12892 int i;
5358901f
DV
12893
12894 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12895 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12896 int enabled_crtcs = 0, active_crtcs = 0;
12897 bool active;
12898
12899 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12900
12901 DRM_DEBUG_KMS("%s\n", pll->name);
12902
12903 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12904
e2c719b7 12905 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
5358901f 12906 "more active pll users than references: %i vs %i\n",
3e369b76 12907 pll->active, hweight32(pll->config.crtc_mask));
e2c719b7 12908 I915_STATE_WARN(pll->active && !pll->on,
5358901f 12909 "pll in active use but not on in sw tracking\n");
e2c719b7 12910 I915_STATE_WARN(pll->on && !pll->active,
35c95375 12911 "pll in on but not on in use in sw tracking\n");
e2c719b7 12912 I915_STATE_WARN(pll->on != active,
5358901f
DV
12913 "pll on state mismatch (expected %i, found %i)\n",
12914 pll->on, active);
12915
d3fcc808 12916 for_each_intel_crtc(dev, crtc) {
83d65738 12917 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
5358901f
DV
12918 enabled_crtcs++;
12919 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12920 active_crtcs++;
12921 }
e2c719b7 12922 I915_STATE_WARN(pll->active != active_crtcs,
5358901f
DV
12923 "pll active crtcs mismatch (expected %i, found %i)\n",
12924 pll->active, active_crtcs);
e2c719b7 12925 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
5358901f 12926 "pll enabled crtcs mismatch (expected %i, found %i)\n",
3e369b76 12927 hweight32(pll->config.crtc_mask), enabled_crtcs);
66e985c0 12928
e2c719b7 12929 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
66e985c0
DV
12930 sizeof(dpll_hw_state)),
12931 "pll hw state mismatch\n");
5358901f 12932 }
8af6cf88
DV
12933}
12934
ee165b1a
ML
12935static void
12936intel_modeset_check_state(struct drm_device *dev,
12937 struct drm_atomic_state *old_state)
91d1b4bd 12938{
08db6652 12939 check_wm_state(dev);
35dd3c64 12940 check_connector_state(dev, old_state);
91d1b4bd 12941 check_encoder_state(dev);
4d20cd86 12942 check_crtc_state(dev, old_state);
91d1b4bd
DV
12943 check_shared_dpll_state(dev);
12944}
12945
80715b2f
VS
12946static void update_scanline_offset(struct intel_crtc *crtc)
12947{
12948 struct drm_device *dev = crtc->base.dev;
12949
12950 /*
12951 * The scanline counter increments at the leading edge of hsync.
12952 *
12953 * On most platforms it starts counting from vtotal-1 on the
12954 * first active line. That means the scanline counter value is
12955 * always one less than what we would expect. Ie. just after
12956 * start of vblank, which also occurs at start of hsync (on the
12957 * last active line), the scanline counter will read vblank_start-1.
12958 *
12959 * On gen2 the scanline counter starts counting from 1 instead
12960 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12961 * to keep the value positive), instead of adding one.
12962 *
12963 * On HSW+ the behaviour of the scanline counter depends on the output
12964 * type. For DP ports it behaves like most other platforms, but on HDMI
12965 * there's an extra 1 line difference. So we need to add two instead of
12966 * one to the value.
12967 */
12968 if (IS_GEN2(dev)) {
124abe07 12969 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
12970 int vtotal;
12971
124abe07
VS
12972 vtotal = adjusted_mode->crtc_vtotal;
12973 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
80715b2f
VS
12974 vtotal /= 2;
12975
12976 crtc->scanline_offset = vtotal - 1;
12977 } else if (HAS_DDI(dev) &&
409ee761 12978 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
12979 crtc->scanline_offset = 2;
12980 } else
12981 crtc->scanline_offset = 1;
12982}
12983
ad421372 12984static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 12985{
225da59b 12986 struct drm_device *dev = state->dev;
ed6739ef 12987 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 12988 struct intel_shared_dpll_config *shared_dpll = NULL;
0a9ab303
ACO
12989 struct drm_crtc *crtc;
12990 struct drm_crtc_state *crtc_state;
0a9ab303 12991 int i;
ed6739ef
ACO
12992
12993 if (!dev_priv->display.crtc_compute_clock)
ad421372 12994 return;
ed6739ef 12995
0a9ab303 12996 for_each_crtc_in_state(state, crtc, crtc_state, i) {
fb1a38a9
ML
12997 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12998 int old_dpll = to_intel_crtc_state(crtc->state)->shared_dpll;
0a9ab303 12999
fb1a38a9 13000 if (!needs_modeset(crtc_state))
225da59b
ACO
13001 continue;
13002
fb1a38a9
ML
13003 to_intel_crtc_state(crtc_state)->shared_dpll = DPLL_ID_PRIVATE;
13004
13005 if (old_dpll == DPLL_ID_PRIVATE)
13006 continue;
0a9ab303 13007
ad421372
ML
13008 if (!shared_dpll)
13009 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 13010
fb1a38a9 13011 shared_dpll[old_dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
ad421372 13012 }
ed6739ef
ACO
13013}
13014
99d736a2
ML
13015/*
13016 * This implements the workaround described in the "notes" section of the mode
13017 * set sequence documentation. When going from no pipes or single pipe to
13018 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13019 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13020 */
13021static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13022{
13023 struct drm_crtc_state *crtc_state;
13024 struct intel_crtc *intel_crtc;
13025 struct drm_crtc *crtc;
13026 struct intel_crtc_state *first_crtc_state = NULL;
13027 struct intel_crtc_state *other_crtc_state = NULL;
13028 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13029 int i;
13030
13031 /* look at all crtc's that are going to be enabled in during modeset */
13032 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13033 intel_crtc = to_intel_crtc(crtc);
13034
13035 if (!crtc_state->active || !needs_modeset(crtc_state))
13036 continue;
13037
13038 if (first_crtc_state) {
13039 other_crtc_state = to_intel_crtc_state(crtc_state);
13040 break;
13041 } else {
13042 first_crtc_state = to_intel_crtc_state(crtc_state);
13043 first_pipe = intel_crtc->pipe;
13044 }
13045 }
13046
13047 /* No workaround needed? */
13048 if (!first_crtc_state)
13049 return 0;
13050
13051 /* w/a possibly needed, check how many crtc's are already enabled. */
13052 for_each_intel_crtc(state->dev, intel_crtc) {
13053 struct intel_crtc_state *pipe_config;
13054
13055 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13056 if (IS_ERR(pipe_config))
13057 return PTR_ERR(pipe_config);
13058
13059 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13060
13061 if (!pipe_config->base.active ||
13062 needs_modeset(&pipe_config->base))
13063 continue;
13064
13065 /* 2 or more enabled crtcs means no need for w/a */
13066 if (enabled_pipe != INVALID_PIPE)
13067 return 0;
13068
13069 enabled_pipe = intel_crtc->pipe;
13070 }
13071
13072 if (enabled_pipe != INVALID_PIPE)
13073 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13074 else if (other_crtc_state)
13075 other_crtc_state->hsw_workaround_pipe = first_pipe;
13076
13077 return 0;
13078}
13079
27c329ed
ML
13080static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13081{
13082 struct drm_crtc *crtc;
13083 struct drm_crtc_state *crtc_state;
13084 int ret = 0;
13085
13086 /* add all active pipes to the state */
13087 for_each_crtc(state->dev, crtc) {
13088 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13089 if (IS_ERR(crtc_state))
13090 return PTR_ERR(crtc_state);
13091
13092 if (!crtc_state->active || needs_modeset(crtc_state))
13093 continue;
13094
13095 crtc_state->mode_changed = true;
13096
13097 ret = drm_atomic_add_affected_connectors(state, crtc);
13098 if (ret)
13099 break;
13100
13101 ret = drm_atomic_add_affected_planes(state, crtc);
13102 if (ret)
13103 break;
13104 }
13105
13106 return ret;
13107}
13108
c347a676 13109static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd 13110{
565602d7
ML
13111 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13112 struct drm_i915_private *dev_priv = state->dev->dev_private;
13113 struct drm_crtc *crtc;
13114 struct drm_crtc_state *crtc_state;
13115 int ret = 0, i;
054518dd 13116
b359283a
ML
13117 if (!check_digital_port_conflicts(state)) {
13118 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13119 return -EINVAL;
13120 }
13121
565602d7
ML
13122 intel_state->modeset = true;
13123 intel_state->active_crtcs = dev_priv->active_crtcs;
13124
13125 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13126 if (crtc_state->active)
13127 intel_state->active_crtcs |= 1 << i;
13128 else
13129 intel_state->active_crtcs &= ~(1 << i);
13130 }
13131
054518dd
ACO
13132 /*
13133 * See if the config requires any additional preparation, e.g.
13134 * to adjust global state with pipes off. We need to do this
13135 * here so we can get the modeset_pipe updated config for the new
13136 * mode set on this crtc. For other crtcs we need to use the
13137 * adjusted_mode bits in the crtc directly.
13138 */
27c329ed 13139 if (dev_priv->display.modeset_calc_cdclk) {
27c329ed
ML
13140 ret = dev_priv->display.modeset_calc_cdclk(state);
13141
1a617b77 13142 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
27c329ed
ML
13143 ret = intel_modeset_all_pipes(state);
13144
13145 if (ret < 0)
054518dd 13146 return ret;
e8788cbc
ML
13147
13148 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13149 intel_state->cdclk, intel_state->dev_cdclk);
27c329ed 13150 } else
1a617b77 13151 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
054518dd 13152
ad421372 13153 intel_modeset_clear_plls(state);
054518dd 13154
565602d7 13155 if (IS_HASWELL(dev_priv))
ad421372 13156 return haswell_mode_set_planes_workaround(state);
99d736a2 13157
ad421372 13158 return 0;
c347a676
ACO
13159}
13160
aa363136
MR
13161/*
13162 * Handle calculation of various watermark data at the end of the atomic check
13163 * phase. The code here should be run after the per-crtc and per-plane 'check'
13164 * handlers to ensure that all derived state has been updated.
13165 */
13166static void calc_watermark_data(struct drm_atomic_state *state)
13167{
13168 struct drm_device *dev = state->dev;
13169 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13170 struct drm_crtc *crtc;
13171 struct drm_crtc_state *cstate;
13172 struct drm_plane *plane;
13173 struct drm_plane_state *pstate;
13174
13175 /*
13176 * Calculate watermark configuration details now that derived
13177 * plane/crtc state is all properly updated.
13178 */
13179 drm_for_each_crtc(crtc, dev) {
13180 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13181 crtc->state;
13182
13183 if (cstate->active)
13184 intel_state->wm_config.num_pipes_active++;
13185 }
13186 drm_for_each_legacy_plane(plane, dev) {
13187 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13188 plane->state;
13189
13190 if (!to_intel_plane_state(pstate)->visible)
13191 continue;
13192
13193 intel_state->wm_config.sprites_enabled = true;
13194 if (pstate->crtc_w != pstate->src_w >> 16 ||
13195 pstate->crtc_h != pstate->src_h >> 16)
13196 intel_state->wm_config.sprites_scaled = true;
13197 }
13198}
13199
74c090b1
ML
13200/**
13201 * intel_atomic_check - validate state object
13202 * @dev: drm device
13203 * @state: state to validate
13204 */
13205static int intel_atomic_check(struct drm_device *dev,
13206 struct drm_atomic_state *state)
c347a676 13207{
dd8b3bdb 13208 struct drm_i915_private *dev_priv = to_i915(dev);
aa363136 13209 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
c347a676
ACO
13210 struct drm_crtc *crtc;
13211 struct drm_crtc_state *crtc_state;
13212 int ret, i;
61333b60 13213 bool any_ms = false;
c347a676 13214
74c090b1 13215 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13216 if (ret)
13217 return ret;
13218
c347a676 13219 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13220 struct intel_crtc_state *pipe_config =
13221 to_intel_crtc_state(crtc_state);
1ed51de9 13222
ba8af3e5
ML
13223 memset(&to_intel_crtc(crtc)->atomic, 0,
13224 sizeof(struct intel_crtc_atomic_commit));
13225
1ed51de9
DV
13226 /* Catch I915_MODE_FLAG_INHERITED */
13227 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13228 crtc_state->mode_changed = true;
cfb23ed6 13229
61333b60
ML
13230 if (!crtc_state->enable) {
13231 if (needs_modeset(crtc_state))
13232 any_ms = true;
c347a676 13233 continue;
61333b60 13234 }
c347a676 13235
26495481 13236 if (!needs_modeset(crtc_state))
cfb23ed6
ML
13237 continue;
13238
26495481
DV
13239 /* FIXME: For only active_changed we shouldn't need to do any
13240 * state recomputation at all. */
13241
1ed51de9
DV
13242 ret = drm_atomic_add_affected_connectors(state, crtc);
13243 if (ret)
13244 return ret;
b359283a 13245
cfb23ed6 13246 ret = intel_modeset_pipe_config(crtc, pipe_config);
c347a676
ACO
13247 if (ret)
13248 return ret;
13249
73831236 13250 if (i915.fastboot &&
dd8b3bdb 13251 intel_pipe_config_compare(dev,
cfb23ed6 13252 to_intel_crtc_state(crtc->state),
1ed51de9 13253 pipe_config, true)) {
26495481 13254 crtc_state->mode_changed = false;
bfd16b2a 13255 to_intel_crtc_state(crtc_state)->update_pipe = true;
26495481
DV
13256 }
13257
13258 if (needs_modeset(crtc_state)) {
13259 any_ms = true;
cfb23ed6
ML
13260
13261 ret = drm_atomic_add_affected_planes(state, crtc);
13262 if (ret)
13263 return ret;
13264 }
61333b60 13265
26495481
DV
13266 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13267 needs_modeset(crtc_state) ?
13268 "[modeset]" : "[fastset]");
c347a676
ACO
13269 }
13270
61333b60
ML
13271 if (any_ms) {
13272 ret = intel_modeset_checks(state);
13273
13274 if (ret)
13275 return ret;
27c329ed 13276 } else
dd8b3bdb 13277 intel_state->cdclk = dev_priv->cdclk_freq;
76305b1a 13278
dd8b3bdb 13279 ret = drm_atomic_helper_check_planes(dev, state);
aa363136
MR
13280 if (ret)
13281 return ret;
13282
f51be2e0 13283 intel_fbc_choose_crtc(dev_priv, state);
aa363136
MR
13284 calc_watermark_data(state);
13285
13286 return 0;
054518dd
ACO
13287}
13288
5008e874
ML
13289static int intel_atomic_prepare_commit(struct drm_device *dev,
13290 struct drm_atomic_state *state,
13291 bool async)
13292{
7580d774
ML
13293 struct drm_i915_private *dev_priv = dev->dev_private;
13294 struct drm_plane_state *plane_state;
5008e874 13295 struct drm_crtc_state *crtc_state;
7580d774 13296 struct drm_plane *plane;
5008e874
ML
13297 struct drm_crtc *crtc;
13298 int i, ret;
13299
13300 if (async) {
13301 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13302 return -EINVAL;
13303 }
13304
13305 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13306 ret = intel_crtc_wait_for_pending_flips(crtc);
13307 if (ret)
13308 return ret;
7580d774
ML
13309
13310 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13311 flush_workqueue(dev_priv->wq);
5008e874
ML
13312 }
13313
f935675f
ML
13314 ret = mutex_lock_interruptible(&dev->struct_mutex);
13315 if (ret)
13316 return ret;
13317
5008e874 13318 ret = drm_atomic_helper_prepare_planes(dev, state);
7580d774
ML
13319 if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13320 u32 reset_counter;
13321
13322 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13323 mutex_unlock(&dev->struct_mutex);
13324
13325 for_each_plane_in_state(state, plane, plane_state, i) {
13326 struct intel_plane_state *intel_plane_state =
13327 to_intel_plane_state(plane_state);
13328
13329 if (!intel_plane_state->wait_req)
13330 continue;
13331
13332 ret = __i915_wait_request(intel_plane_state->wait_req,
13333 reset_counter, true,
13334 NULL, NULL);
13335
13336 /* Swallow -EIO errors to allow updates during hw lockup. */
13337 if (ret == -EIO)
13338 ret = 0;
13339
13340 if (ret)
13341 break;
13342 }
13343
13344 if (!ret)
13345 return 0;
13346
13347 mutex_lock(&dev->struct_mutex);
13348 drm_atomic_helper_cleanup_planes(dev, state);
13349 }
5008e874 13350
f935675f 13351 mutex_unlock(&dev->struct_mutex);
5008e874
ML
13352 return ret;
13353}
13354
e8861675
ML
13355static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13356 struct drm_i915_private *dev_priv,
13357 unsigned crtc_mask)
13358{
13359 unsigned last_vblank_count[I915_MAX_PIPES];
13360 enum pipe pipe;
13361 int ret;
13362
13363 if (!crtc_mask)
13364 return;
13365
13366 for_each_pipe(dev_priv, pipe) {
13367 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13368
13369 if (!((1 << pipe) & crtc_mask))
13370 continue;
13371
13372 ret = drm_crtc_vblank_get(crtc);
13373 if (WARN_ON(ret != 0)) {
13374 crtc_mask &= ~(1 << pipe);
13375 continue;
13376 }
13377
13378 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13379 }
13380
13381 for_each_pipe(dev_priv, pipe) {
13382 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13383 long lret;
13384
13385 if (!((1 << pipe) & crtc_mask))
13386 continue;
13387
13388 lret = wait_event_timeout(dev->vblank[pipe].queue,
13389 last_vblank_count[pipe] !=
13390 drm_crtc_vblank_count(crtc),
13391 msecs_to_jiffies(50));
13392
13393 WARN_ON(!lret);
13394
13395 drm_crtc_vblank_put(crtc);
13396 }
13397}
13398
13399static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13400{
13401 /* fb updated, need to unpin old fb */
13402 if (crtc_state->fb_changed)
13403 return true;
13404
13405 /* wm changes, need vblank before final wm's */
13406 if (crtc_state->wm_changed)
13407 return true;
13408
13409 /*
13410 * cxsr is re-enabled after vblank.
13411 * This is already handled by crtc_state->wm_changed,
13412 * but added for clarity.
13413 */
13414 if (crtc_state->disable_cxsr)
13415 return true;
13416
13417 return false;
13418}
13419
74c090b1
ML
13420/**
13421 * intel_atomic_commit - commit validated state object
13422 * @dev: DRM device
13423 * @state: the top-level driver state object
13424 * @async: asynchronous commit
13425 *
13426 * This function commits a top-level state object that has been validated
13427 * with drm_atomic_helper_check().
13428 *
13429 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13430 * we can only handle plane-related operations and do not yet support
13431 * asynchronous commit.
13432 *
13433 * RETURNS
13434 * Zero for success or -errno.
13435 */
13436static int intel_atomic_commit(struct drm_device *dev,
13437 struct drm_atomic_state *state,
13438 bool async)
a6778b3c 13439{
565602d7 13440 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fbee40df 13441 struct drm_i915_private *dev_priv = dev->dev_private;
0a9ab303 13442 struct drm_crtc_state *crtc_state;
7580d774 13443 struct drm_crtc *crtc;
ed4a6a7c 13444 struct intel_crtc_state *intel_cstate;
565602d7
ML
13445 int ret = 0, i;
13446 bool hw_check = intel_state->modeset;
33c8df89 13447 unsigned long put_domains[I915_MAX_PIPES] = {};
e8861675 13448 unsigned crtc_vblank_mask = 0;
a6778b3c 13449
5008e874 13450 ret = intel_atomic_prepare_commit(dev, state, async);
7580d774
ML
13451 if (ret) {
13452 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
d4afb8cc 13453 return ret;
7580d774 13454 }
d4afb8cc 13455
1c5e19f8 13456 drm_atomic_helper_swap_state(dev, state);
aa363136 13457 dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
1c5e19f8 13458
565602d7
ML
13459 if (intel_state->modeset) {
13460 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13461 sizeof(intel_state->min_pixclk));
13462 dev_priv->active_crtcs = intel_state->active_crtcs;
1a617b77 13463 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
33c8df89
ML
13464
13465 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
565602d7
ML
13466 }
13467
0a9ab303 13468 for_each_crtc_in_state(state, crtc, crtc_state, i) {
a539205a
ML
13469 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13470
33c8df89
ML
13471 if (needs_modeset(crtc->state) ||
13472 to_intel_crtc_state(crtc->state)->update_pipe) {
13473 hw_check = true;
13474
13475 put_domains[to_intel_crtc(crtc)->pipe] =
13476 modeset_get_crtc_power_domains(crtc,
13477 to_intel_crtc_state(crtc->state));
13478 }
13479
61333b60
ML
13480 if (!needs_modeset(crtc->state))
13481 continue;
13482
5c74cd73 13483 intel_pre_plane_update(to_intel_crtc_state(crtc_state));
460da916 13484
a539205a
ML
13485 if (crtc_state->active) {
13486 intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13487 dev_priv->display.crtc_disable(crtc);
eddfcbcd 13488 intel_crtc->active = false;
58f9c0bc 13489 intel_fbc_disable(intel_crtc);
eddfcbcd 13490 intel_disable_shared_dpll(intel_crtc);
9bbc8258
VS
13491
13492 /*
13493 * Underruns don't always raise
13494 * interrupts, so check manually.
13495 */
13496 intel_check_cpu_fifo_underruns(dev_priv);
13497 intel_check_pch_fifo_underruns(dev_priv);
b9001114
ML
13498
13499 if (!crtc->state->active)
13500 intel_update_watermarks(crtc);
a539205a 13501 }
b8cecdf5 13502 }
7758a113 13503
ea9d758d
DV
13504 /* Only after disabling all output pipelines that will be changed can we
13505 * update the the output configuration. */
4740b0f2 13506 intel_modeset_update_crtc_state(state);
f6e5b160 13507
565602d7 13508 if (intel_state->modeset) {
4740b0f2
ML
13509 intel_shared_dpll_commit(state);
13510
13511 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
33c8df89
ML
13512
13513 if (dev_priv->display.modeset_commit_cdclk &&
13514 intel_state->dev_cdclk != dev_priv->cdclk_freq)
13515 dev_priv->display.modeset_commit_cdclk(state);
4740b0f2 13516 }
47fab737 13517
a6778b3c 13518 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
0a9ab303 13519 for_each_crtc_in_state(state, crtc, crtc_state, i) {
f6ac4b2a
ML
13520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13521 bool modeset = needs_modeset(crtc->state);
e8861675
ML
13522 struct intel_crtc_state *pipe_config =
13523 to_intel_crtc_state(crtc->state);
13524 bool update_pipe = !modeset && pipe_config->update_pipe;
9f836f90 13525
f6ac4b2a 13526 if (modeset && crtc->state->active) {
a539205a
ML
13527 update_scanline_offset(to_intel_crtc(crtc));
13528 dev_priv->display.crtc_enable(crtc);
13529 }
80715b2f 13530
f6ac4b2a 13531 if (!modeset)
5c74cd73 13532 intel_pre_plane_update(to_intel_crtc_state(crtc_state));
f6ac4b2a 13533
49227c4a
PZ
13534 if (crtc->state->active && intel_crtc->atomic.update_fbc)
13535 intel_fbc_enable(intel_crtc);
13536
6173ee28
ML
13537 if (crtc->state->active &&
13538 (crtc->state->planes_changed || update_pipe))
62852622 13539 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
bfd16b2a 13540
e8861675
ML
13541 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13542 crtc_vblank_mask |= 1 << i;
80715b2f 13543 }
a6778b3c 13544
a6778b3c 13545 /* FIXME: add subpixel order */
83a57153 13546
e8861675
ML
13547 if (!state->legacy_cursor_update)
13548 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
f935675f 13549
33c8df89 13550 for_each_crtc_in_state(state, crtc, crtc_state, i) {
e8861675
ML
13551 intel_post_plane_update(to_intel_crtc(crtc));
13552
33c8df89
ML
13553 if (put_domains[i])
13554 modeset_put_power_domains(dev_priv, put_domains[i]);
13555 }
13556
13557 if (intel_state->modeset)
13558 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13559
ed4a6a7c
MR
13560 /*
13561 * Now that the vblank has passed, we can go ahead and program the
13562 * optimal watermarks on platforms that need two-step watermark
13563 * programming.
13564 *
13565 * TODO: Move this (and other cleanup) to an async worker eventually.
13566 */
13567 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13568 intel_cstate = to_intel_crtc_state(crtc->state);
13569
13570 if (dev_priv->display.optimize_watermarks)
13571 dev_priv->display.optimize_watermarks(intel_cstate);
13572 }
13573
f935675f 13574 mutex_lock(&dev->struct_mutex);
d4afb8cc 13575 drm_atomic_helper_cleanup_planes(dev, state);
f935675f 13576 mutex_unlock(&dev->struct_mutex);
2bfb4627 13577
565602d7 13578 if (hw_check)
ee165b1a
ML
13579 intel_modeset_check_state(dev, state);
13580
13581 drm_atomic_state_free(state);
f30da187 13582
75714940
MK
13583 /* As one of the primary mmio accessors, KMS has a high likelihood
13584 * of triggering bugs in unclaimed access. After we finish
13585 * modesetting, see if an error has been flagged, and if so
13586 * enable debugging for the next modeset - and hope we catch
13587 * the culprit.
13588 *
13589 * XXX note that we assume display power is on at this point.
13590 * This might hold true now but we need to add pm helper to check
13591 * unclaimed only when the hardware is on, as atomic commits
13592 * can happen also when the device is completely off.
13593 */
13594 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13595
74c090b1 13596 return 0;
7f27126e
JB
13597}
13598
c0c36b94
CW
13599void intel_crtc_restore_mode(struct drm_crtc *crtc)
13600{
83a57153
ACO
13601 struct drm_device *dev = crtc->dev;
13602 struct drm_atomic_state *state;
e694eb02 13603 struct drm_crtc_state *crtc_state;
2bfb4627 13604 int ret;
83a57153
ACO
13605
13606 state = drm_atomic_state_alloc(dev);
13607 if (!state) {
e694eb02 13608 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
83a57153
ACO
13609 crtc->base.id);
13610 return;
13611 }
13612
e694eb02 13613 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 13614
e694eb02
ML
13615retry:
13616 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13617 ret = PTR_ERR_OR_ZERO(crtc_state);
13618 if (!ret) {
13619 if (!crtc_state->active)
13620 goto out;
83a57153 13621
e694eb02 13622 crtc_state->mode_changed = true;
74c090b1 13623 ret = drm_atomic_commit(state);
83a57153
ACO
13624 }
13625
e694eb02
ML
13626 if (ret == -EDEADLK) {
13627 drm_atomic_state_clear(state);
13628 drm_modeset_backoff(state->acquire_ctx);
13629 goto retry;
4ed9fb37 13630 }
4be07317 13631
2bfb4627 13632 if (ret)
e694eb02 13633out:
2bfb4627 13634 drm_atomic_state_free(state);
c0c36b94
CW
13635}
13636
25c5b266
DV
13637#undef for_each_intel_crtc_masked
13638
f6e5b160 13639static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 13640 .gamma_set = intel_crtc_gamma_set,
74c090b1 13641 .set_config = drm_atomic_helper_set_config,
f6e5b160
CW
13642 .destroy = intel_crtc_destroy,
13643 .page_flip = intel_crtc_page_flip,
1356837e
MR
13644 .atomic_duplicate_state = intel_crtc_duplicate_state,
13645 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
13646};
13647
6beb8c23
MR
13648/**
13649 * intel_prepare_plane_fb - Prepare fb for usage on plane
13650 * @plane: drm plane to prepare for
13651 * @fb: framebuffer to prepare for presentation
13652 *
13653 * Prepares a framebuffer for usage on a display plane. Generally this
13654 * involves pinning the underlying object and updating the frontbuffer tracking
13655 * bits. Some older platforms need special physical address handling for
13656 * cursor planes.
13657 *
f935675f
ML
13658 * Must be called with struct_mutex held.
13659 *
6beb8c23
MR
13660 * Returns 0 on success, negative error code on failure.
13661 */
13662int
13663intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee 13664 const struct drm_plane_state *new_state)
465c120c
MR
13665{
13666 struct drm_device *dev = plane->dev;
844f9111 13667 struct drm_framebuffer *fb = new_state->fb;
6beb8c23 13668 struct intel_plane *intel_plane = to_intel_plane(plane);
6beb8c23 13669 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
1ee49399 13670 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
6beb8c23 13671 int ret = 0;
465c120c 13672
1ee49399 13673 if (!obj && !old_obj)
465c120c
MR
13674 return 0;
13675
5008e874
ML
13676 if (old_obj) {
13677 struct drm_crtc_state *crtc_state =
13678 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13679
13680 /* Big Hammer, we also need to ensure that any pending
13681 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13682 * current scanout is retired before unpinning the old
13683 * framebuffer. Note that we rely on userspace rendering
13684 * into the buffer attached to the pipe they are waiting
13685 * on. If not, userspace generates a GPU hang with IPEHR
13686 * point to the MI_WAIT_FOR_EVENT.
13687 *
13688 * This should only fail upon a hung GPU, in which case we
13689 * can safely continue.
13690 */
13691 if (needs_modeset(crtc_state))
13692 ret = i915_gem_object_wait_rendering(old_obj, true);
13693
13694 /* Swallow -EIO errors to allow updates during hw lockup. */
13695 if (ret && ret != -EIO)
f935675f 13696 return ret;
5008e874
ML
13697 }
13698
3c28ff22
AG
13699 /* For framebuffer backed by dmabuf, wait for fence */
13700 if (obj && obj->base.dma_buf) {
bcf8be27
ML
13701 long lret;
13702
13703 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13704 false, true,
13705 MAX_SCHEDULE_TIMEOUT);
13706 if (lret == -ERESTARTSYS)
13707 return lret;
3c28ff22 13708
bcf8be27 13709 WARN(lret < 0, "waiting returns %li\n", lret);
3c28ff22
AG
13710 }
13711
1ee49399
ML
13712 if (!obj) {
13713 ret = 0;
13714 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
6beb8c23
MR
13715 INTEL_INFO(dev)->cursor_needs_physical) {
13716 int align = IS_I830(dev) ? 16 * 1024 : 256;
13717 ret = i915_gem_object_attach_phys(obj, align);
13718 if (ret)
13719 DRM_DEBUG_KMS("failed to attach phys object\n");
13720 } else {
3465c580 13721 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
6beb8c23 13722 }
465c120c 13723
7580d774
ML
13724 if (ret == 0) {
13725 if (obj) {
13726 struct intel_plane_state *plane_state =
13727 to_intel_plane_state(new_state);
13728
13729 i915_gem_request_assign(&plane_state->wait_req,
13730 obj->last_write_req);
13731 }
13732
a9ff8714 13733 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774 13734 }
fdd508a6 13735
6beb8c23
MR
13736 return ret;
13737}
13738
38f3ce3a
MR
13739/**
13740 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13741 * @plane: drm plane to clean up for
13742 * @fb: old framebuffer that was on plane
13743 *
13744 * Cleans up a framebuffer that has just been removed from a plane.
f935675f
ML
13745 *
13746 * Must be called with struct_mutex held.
38f3ce3a
MR
13747 */
13748void
13749intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee 13750 const struct drm_plane_state *old_state)
38f3ce3a
MR
13751{
13752 struct drm_device *dev = plane->dev;
1ee49399 13753 struct intel_plane *intel_plane = to_intel_plane(plane);
7580d774 13754 struct intel_plane_state *old_intel_state;
1ee49399
ML
13755 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13756 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
38f3ce3a 13757
7580d774
ML
13758 old_intel_state = to_intel_plane_state(old_state);
13759
1ee49399 13760 if (!obj && !old_obj)
38f3ce3a
MR
13761 return;
13762
1ee49399
ML
13763 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13764 !INTEL_INFO(dev)->cursor_needs_physical))
3465c580 13765 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
1ee49399
ML
13766
13767 /* prepare_fb aborted? */
13768 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13769 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13770 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774
ML
13771
13772 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
465c120c
MR
13773}
13774
6156a456
CK
13775int
13776skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13777{
13778 int max_scale;
13779 struct drm_device *dev;
13780 struct drm_i915_private *dev_priv;
13781 int crtc_clock, cdclk;
13782
bf8a0af0 13783 if (!intel_crtc || !crtc_state->base.enable)
6156a456
CK
13784 return DRM_PLANE_HELPER_NO_SCALING;
13785
13786 dev = intel_crtc->base.dev;
13787 dev_priv = dev->dev_private;
13788 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 13789 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456 13790
54bf1ce6 13791 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
6156a456
CK
13792 return DRM_PLANE_HELPER_NO_SCALING;
13793
13794 /*
13795 * skl max scale is lower of:
13796 * close to 3 but not 3, -1 is for that purpose
13797 * or
13798 * cdclk/crtc_clock
13799 */
13800 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13801
13802 return max_scale;
13803}
13804
465c120c 13805static int
3c692a41 13806intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 13807 struct intel_crtc_state *crtc_state,
3c692a41
GP
13808 struct intel_plane_state *state)
13809{
2b875c22
MR
13810 struct drm_crtc *crtc = state->base.crtc;
13811 struct drm_framebuffer *fb = state->base.fb;
6156a456 13812 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
13813 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13814 bool can_position = false;
465c120c 13815
693bdc28
VS
13816 if (INTEL_INFO(plane->dev)->gen >= 9) {
13817 /* use scaler when colorkey is not required */
13818 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13819 min_scale = 1;
13820 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13821 }
d8106366 13822 can_position = true;
6156a456 13823 }
d8106366 13824
061e4b8d
ML
13825 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13826 &state->dst, &state->clip,
da20eabd
ML
13827 min_scale, max_scale,
13828 can_position, true,
13829 &state->visible);
14af293f
GP
13830}
13831
613d2b27
ML
13832static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13833 struct drm_crtc_state *old_crtc_state)
3c692a41 13834{
32b7eeec 13835 struct drm_device *dev = crtc->dev;
3c692a41 13836 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bfd16b2a
ML
13837 struct intel_crtc_state *old_intel_state =
13838 to_intel_crtc_state(old_crtc_state);
13839 bool modeset = needs_modeset(crtc->state);
3c692a41 13840
c34c9ee4 13841 /* Perform vblank evasion around commit operation */
62852622 13842 intel_pipe_update_start(intel_crtc);
0583236e 13843
bfd16b2a
ML
13844 if (modeset)
13845 return;
13846
13847 if (to_intel_crtc_state(crtc->state)->update_pipe)
13848 intel_update_pipe_config(intel_crtc, old_intel_state);
13849 else if (INTEL_INFO(dev)->gen >= 9)
0583236e 13850 skl_detach_scalers(intel_crtc);
32b7eeec
MR
13851}
13852
613d2b27
ML
13853static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13854 struct drm_crtc_state *old_crtc_state)
32b7eeec 13855{
32b7eeec 13856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
32b7eeec 13857
62852622 13858 intel_pipe_update_end(intel_crtc);
3c692a41
GP
13859}
13860
cf4c7c12 13861/**
4a3b8769
MR
13862 * intel_plane_destroy - destroy a plane
13863 * @plane: plane to destroy
cf4c7c12 13864 *
4a3b8769
MR
13865 * Common destruction function for all types of planes (primary, cursor,
13866 * sprite).
cf4c7c12 13867 */
4a3b8769 13868void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13869{
13870 struct intel_plane *intel_plane = to_intel_plane(plane);
13871 drm_plane_cleanup(plane);
13872 kfree(intel_plane);
13873}
13874
65a3fea0 13875const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13876 .update_plane = drm_atomic_helper_update_plane,
13877 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13878 .destroy = intel_plane_destroy,
c196e1d6 13879 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
13880 .atomic_get_property = intel_plane_atomic_get_property,
13881 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
13882 .atomic_duplicate_state = intel_plane_duplicate_state,
13883 .atomic_destroy_state = intel_plane_destroy_state,
13884
465c120c
MR
13885};
13886
13887static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13888 int pipe)
13889{
13890 struct intel_plane *primary;
8e7d688b 13891 struct intel_plane_state *state;
465c120c 13892 const uint32_t *intel_primary_formats;
45e3743a 13893 unsigned int num_formats;
465c120c
MR
13894
13895 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13896 if (primary == NULL)
13897 return NULL;
13898
8e7d688b
MR
13899 state = intel_create_plane_state(&primary->base);
13900 if (!state) {
ea2c67bb
MR
13901 kfree(primary);
13902 return NULL;
13903 }
8e7d688b 13904 primary->base.state = &state->base;
ea2c67bb 13905
465c120c
MR
13906 primary->can_scale = false;
13907 primary->max_downscale = 1;
6156a456
CK
13908 if (INTEL_INFO(dev)->gen >= 9) {
13909 primary->can_scale = true;
af99ceda 13910 state->scaler_id = -1;
6156a456 13911 }
465c120c
MR
13912 primary->pipe = pipe;
13913 primary->plane = pipe;
a9ff8714 13914 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179 13915 primary->check_plane = intel_check_primary_plane;
465c120c
MR
13916 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13917 primary->plane = !pipe;
13918
6c0fd451
DL
13919 if (INTEL_INFO(dev)->gen >= 9) {
13920 intel_primary_formats = skl_primary_formats;
13921 num_formats = ARRAY_SIZE(skl_primary_formats);
a8d201af
ML
13922
13923 primary->update_plane = skylake_update_primary_plane;
13924 primary->disable_plane = skylake_disable_primary_plane;
13925 } else if (HAS_PCH_SPLIT(dev)) {
13926 intel_primary_formats = i965_primary_formats;
13927 num_formats = ARRAY_SIZE(i965_primary_formats);
13928
13929 primary->update_plane = ironlake_update_primary_plane;
13930 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451 13931 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
13932 intel_primary_formats = i965_primary_formats;
13933 num_formats = ARRAY_SIZE(i965_primary_formats);
a8d201af
ML
13934
13935 primary->update_plane = i9xx_update_primary_plane;
13936 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451
DL
13937 } else {
13938 intel_primary_formats = i8xx_primary_formats;
13939 num_formats = ARRAY_SIZE(i8xx_primary_formats);
a8d201af
ML
13940
13941 primary->update_plane = i9xx_update_primary_plane;
13942 primary->disable_plane = i9xx_disable_primary_plane;
465c120c
MR
13943 }
13944
13945 drm_universal_plane_init(dev, &primary->base, 0,
65a3fea0 13946 &intel_plane_funcs,
465c120c 13947 intel_primary_formats, num_formats,
b0b3b795 13948 DRM_PLANE_TYPE_PRIMARY, NULL);
48404c1e 13949
3b7a5119
SJ
13950 if (INTEL_INFO(dev)->gen >= 4)
13951 intel_create_rotation_property(dev, primary);
48404c1e 13952
ea2c67bb
MR
13953 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13954
465c120c
MR
13955 return &primary->base;
13956}
13957
3b7a5119
SJ
13958void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13959{
13960 if (!dev->mode_config.rotation_property) {
13961 unsigned long flags = BIT(DRM_ROTATE_0) |
13962 BIT(DRM_ROTATE_180);
13963
13964 if (INTEL_INFO(dev)->gen >= 9)
13965 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13966
13967 dev->mode_config.rotation_property =
13968 drm_mode_create_rotation_property(dev, flags);
13969 }
13970 if (dev->mode_config.rotation_property)
13971 drm_object_attach_property(&plane->base.base,
13972 dev->mode_config.rotation_property,
13973 plane->base.state->rotation);
13974}
13975
3d7d6510 13976static int
852e787c 13977intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 13978 struct intel_crtc_state *crtc_state,
852e787c 13979 struct intel_plane_state *state)
3d7d6510 13980{
061e4b8d 13981 struct drm_crtc *crtc = crtc_state->base.crtc;
2b875c22 13982 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 13983 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
b29ec92c 13984 enum pipe pipe = to_intel_plane(plane)->pipe;
757f9a3e
GP
13985 unsigned stride;
13986 int ret;
3d7d6510 13987
061e4b8d
ML
13988 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13989 &state->dst, &state->clip,
3d7d6510
MR
13990 DRM_PLANE_HELPER_NO_SCALING,
13991 DRM_PLANE_HELPER_NO_SCALING,
852e787c 13992 true, true, &state->visible);
757f9a3e
GP
13993 if (ret)
13994 return ret;
13995
757f9a3e
GP
13996 /* if we want to turn off the cursor ignore width and height */
13997 if (!obj)
da20eabd 13998 return 0;
757f9a3e 13999
757f9a3e 14000 /* Check for which cursor types we support */
061e4b8d 14001 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
14002 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14003 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
14004 return -EINVAL;
14005 }
14006
ea2c67bb
MR
14007 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14008 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
14009 DRM_DEBUG_KMS("buffer is too small\n");
14010 return -ENOMEM;
14011 }
14012
3a656b54 14013 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 14014 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 14015 return -EINVAL;
32b7eeec
MR
14016 }
14017
b29ec92c
VS
14018 /*
14019 * There's something wrong with the cursor on CHV pipe C.
14020 * If it straddles the left edge of the screen then
14021 * moving it away from the edge or disabling it often
14022 * results in a pipe underrun, and often that can lead to
14023 * dead pipe (constant underrun reported, and it scans
14024 * out just a solid color). To recover from that, the
14025 * display power well must be turned off and on again.
14026 * Refuse the put the cursor into that compromised position.
14027 */
14028 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14029 state->visible && state->base.crtc_x < 0) {
14030 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14031 return -EINVAL;
14032 }
14033
da20eabd 14034 return 0;
852e787c 14035}
3d7d6510 14036
a8ad0d8e
ML
14037static void
14038intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 14039 struct drm_crtc *crtc)
a8ad0d8e 14040{
f2858021
ML
14041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14042
14043 intel_crtc->cursor_addr = 0;
55a08b3f 14044 intel_crtc_update_cursor(crtc, NULL);
a8ad0d8e
ML
14045}
14046
f4a2cf29 14047static void
55a08b3f
ML
14048intel_update_cursor_plane(struct drm_plane *plane,
14049 const struct intel_crtc_state *crtc_state,
14050 const struct intel_plane_state *state)
852e787c 14051{
55a08b3f
ML
14052 struct drm_crtc *crtc = crtc_state->base.crtc;
14053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb 14054 struct drm_device *dev = plane->dev;
2b875c22 14055 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 14056 uint32_t addr;
852e787c 14057
f4a2cf29 14058 if (!obj)
a912f12f 14059 addr = 0;
f4a2cf29 14060 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 14061 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 14062 else
a912f12f 14063 addr = obj->phys_handle->busaddr;
852e787c 14064
a912f12f 14065 intel_crtc->cursor_addr = addr;
55a08b3f 14066 intel_crtc_update_cursor(crtc, state);
852e787c
GP
14067}
14068
3d7d6510
MR
14069static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14070 int pipe)
14071{
14072 struct intel_plane *cursor;
8e7d688b 14073 struct intel_plane_state *state;
3d7d6510
MR
14074
14075 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14076 if (cursor == NULL)
14077 return NULL;
14078
8e7d688b
MR
14079 state = intel_create_plane_state(&cursor->base);
14080 if (!state) {
ea2c67bb
MR
14081 kfree(cursor);
14082 return NULL;
14083 }
8e7d688b 14084 cursor->base.state = &state->base;
ea2c67bb 14085
3d7d6510
MR
14086 cursor->can_scale = false;
14087 cursor->max_downscale = 1;
14088 cursor->pipe = pipe;
14089 cursor->plane = pipe;
a9ff8714 14090 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179 14091 cursor->check_plane = intel_check_cursor_plane;
55a08b3f 14092 cursor->update_plane = intel_update_cursor_plane;
a8ad0d8e 14093 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510
MR
14094
14095 drm_universal_plane_init(dev, &cursor->base, 0,
65a3fea0 14096 &intel_plane_funcs,
3d7d6510
MR
14097 intel_cursor_formats,
14098 ARRAY_SIZE(intel_cursor_formats),
b0b3b795 14099 DRM_PLANE_TYPE_CURSOR, NULL);
4398ad45
VS
14100
14101 if (INTEL_INFO(dev)->gen >= 4) {
14102 if (!dev->mode_config.rotation_property)
14103 dev->mode_config.rotation_property =
14104 drm_mode_create_rotation_property(dev,
14105 BIT(DRM_ROTATE_0) |
14106 BIT(DRM_ROTATE_180));
14107 if (dev->mode_config.rotation_property)
14108 drm_object_attach_property(&cursor->base.base,
14109 dev->mode_config.rotation_property,
8e7d688b 14110 state->base.rotation);
4398ad45
VS
14111 }
14112
af99ceda
CK
14113 if (INTEL_INFO(dev)->gen >=9)
14114 state->scaler_id = -1;
14115
ea2c67bb
MR
14116 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14117
3d7d6510
MR
14118 return &cursor->base;
14119}
14120
549e2bfb
CK
14121static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14122 struct intel_crtc_state *crtc_state)
14123{
14124 int i;
14125 struct intel_scaler *intel_scaler;
14126 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14127
14128 for (i = 0; i < intel_crtc->num_scalers; i++) {
14129 intel_scaler = &scaler_state->scalers[i];
14130 intel_scaler->in_use = 0;
549e2bfb
CK
14131 intel_scaler->mode = PS_SCALER_MODE_DYN;
14132 }
14133
14134 scaler_state->scaler_id = -1;
14135}
14136
b358d0a6 14137static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 14138{
fbee40df 14139 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 14140 struct intel_crtc *intel_crtc;
f5de6e07 14141 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
14142 struct drm_plane *primary = NULL;
14143 struct drm_plane *cursor = NULL;
465c120c 14144 int i, ret;
79e53945 14145
955382f3 14146 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
14147 if (intel_crtc == NULL)
14148 return;
14149
f5de6e07
ACO
14150 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14151 if (!crtc_state)
14152 goto fail;
550acefd
ACO
14153 intel_crtc->config = crtc_state;
14154 intel_crtc->base.state = &crtc_state->base;
07878248 14155 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 14156
549e2bfb
CK
14157 /* initialize shared scalers */
14158 if (INTEL_INFO(dev)->gen >= 9) {
14159 if (pipe == PIPE_C)
14160 intel_crtc->num_scalers = 1;
14161 else
14162 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14163
14164 skl_init_scalers(dev, intel_crtc, crtc_state);
14165 }
14166
465c120c 14167 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
14168 if (!primary)
14169 goto fail;
14170
14171 cursor = intel_cursor_plane_create(dev, pipe);
14172 if (!cursor)
14173 goto fail;
14174
465c120c 14175 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
f9882876 14176 cursor, &intel_crtc_funcs, NULL);
3d7d6510
MR
14177 if (ret)
14178 goto fail;
79e53945
JB
14179
14180 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
14181 for (i = 0; i < 256; i++) {
14182 intel_crtc->lut_r[i] = i;
14183 intel_crtc->lut_g[i] = i;
14184 intel_crtc->lut_b[i] = i;
14185 }
14186
1f1c2e24
VS
14187 /*
14188 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 14189 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 14190 */
80824003
JB
14191 intel_crtc->pipe = pipe;
14192 intel_crtc->plane = pipe;
3a77c4c4 14193 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 14194 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 14195 intel_crtc->plane = !pipe;
80824003
JB
14196 }
14197
4b0e333e
CW
14198 intel_crtc->cursor_base = ~0;
14199 intel_crtc->cursor_cntl = ~0;
dc41c154 14200 intel_crtc->cursor_size = ~0;
8d7849db 14201
852eb00d
VS
14202 intel_crtc->wm.cxsr_allowed = true;
14203
22fd0fab
JB
14204 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14205 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14206 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14207 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14208
79e53945 14209 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
14210
14211 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
14212 return;
14213
14214fail:
14215 if (primary)
14216 drm_plane_cleanup(primary);
14217 if (cursor)
14218 drm_plane_cleanup(cursor);
f5de6e07 14219 kfree(crtc_state);
3d7d6510 14220 kfree(intel_crtc);
79e53945
JB
14221}
14222
752aa88a
JB
14223enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14224{
14225 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 14226 struct drm_device *dev = connector->base.dev;
752aa88a 14227
51fd371b 14228 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 14229
d3babd3f 14230 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
14231 return INVALID_PIPE;
14232
14233 return to_intel_crtc(encoder->crtc)->pipe;
14234}
14235
08d7b3d1 14236int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 14237 struct drm_file *file)
08d7b3d1 14238{
08d7b3d1 14239 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 14240 struct drm_crtc *drmmode_crtc;
c05422d5 14241 struct intel_crtc *crtc;
08d7b3d1 14242
7707e653 14243 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 14244
7707e653 14245 if (!drmmode_crtc) {
08d7b3d1 14246 DRM_ERROR("no such CRTC id\n");
3f2c2057 14247 return -ENOENT;
08d7b3d1
CW
14248 }
14249
7707e653 14250 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 14251 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 14252
c05422d5 14253 return 0;
08d7b3d1
CW
14254}
14255
66a9278e 14256static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 14257{
66a9278e
DV
14258 struct drm_device *dev = encoder->base.dev;
14259 struct intel_encoder *source_encoder;
79e53945 14260 int index_mask = 0;
79e53945
JB
14261 int entry = 0;
14262
b2784e15 14263 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 14264 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
14265 index_mask |= (1 << entry);
14266
79e53945
JB
14267 entry++;
14268 }
4ef69c7a 14269
79e53945
JB
14270 return index_mask;
14271}
14272
4d302442
CW
14273static bool has_edp_a(struct drm_device *dev)
14274{
14275 struct drm_i915_private *dev_priv = dev->dev_private;
14276
14277 if (!IS_MOBILE(dev))
14278 return false;
14279
14280 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14281 return false;
14282
e3589908 14283 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
14284 return false;
14285
14286 return true;
14287}
14288
84b4e042
JB
14289static bool intel_crt_present(struct drm_device *dev)
14290{
14291 struct drm_i915_private *dev_priv = dev->dev_private;
14292
884497ed
DL
14293 if (INTEL_INFO(dev)->gen >= 9)
14294 return false;
14295
cf404ce4 14296 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
14297 return false;
14298
14299 if (IS_CHERRYVIEW(dev))
14300 return false;
14301
65e472e4
VS
14302 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14303 return false;
14304
70ac54d0
VS
14305 /* DDI E can't be used if DDI A requires 4 lanes */
14306 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14307 return false;
14308
e4abb733 14309 if (!dev_priv->vbt.int_crt_support)
84b4e042
JB
14310 return false;
14311
14312 return true;
14313}
14314
79e53945
JB
14315static void intel_setup_outputs(struct drm_device *dev)
14316{
725e30ad 14317 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 14318 struct intel_encoder *encoder;
cb0953d7 14319 bool dpd_is_edp = false;
79e53945 14320
c9093354 14321 intel_lvds_init(dev);
79e53945 14322
84b4e042 14323 if (intel_crt_present(dev))
79935fca 14324 intel_crt_init(dev);
cb0953d7 14325
c776eb2e
VK
14326 if (IS_BROXTON(dev)) {
14327 /*
14328 * FIXME: Broxton doesn't support port detection via the
14329 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14330 * detect the ports.
14331 */
14332 intel_ddi_init(dev, PORT_A);
14333 intel_ddi_init(dev, PORT_B);
14334 intel_ddi_init(dev, PORT_C);
14335 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
14336 int found;
14337
de31facd
JB
14338 /*
14339 * Haswell uses DDI functions to detect digital outputs.
14340 * On SKL pre-D0 the strap isn't connected, so we assume
14341 * it's there.
14342 */
77179400 14343 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
de31facd 14344 /* WaIgnoreDDIAStrap: skl */
ef11bdb3 14345 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
0e72a5b5
ED
14346 intel_ddi_init(dev, PORT_A);
14347
14348 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14349 * register */
14350 found = I915_READ(SFUSE_STRAP);
14351
14352 if (found & SFUSE_STRAP_DDIB_DETECTED)
14353 intel_ddi_init(dev, PORT_B);
14354 if (found & SFUSE_STRAP_DDIC_DETECTED)
14355 intel_ddi_init(dev, PORT_C);
14356 if (found & SFUSE_STRAP_DDID_DETECTED)
14357 intel_ddi_init(dev, PORT_D);
2800e4c2
RV
14358 /*
14359 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14360 */
ef11bdb3 14361 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
2800e4c2
RV
14362 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14363 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14364 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14365 intel_ddi_init(dev, PORT_E);
14366
0e72a5b5 14367 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14368 int found;
5d8a7752 14369 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14370
14371 if (has_edp_a(dev))
14372 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14373
dc0fa718 14374 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14375 /* PCH SDVOB multiplex with HDMIB */
2a5c0832 14376 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
30ad48b7 14377 if (!found)
e2debe91 14378 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14379 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14380 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14381 }
14382
dc0fa718 14383 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14384 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14385
dc0fa718 14386 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14387 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14388
5eb08b69 14389 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14390 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14391
270b3042 14392 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14393 intel_dp_init(dev, PCH_DP_D, PORT_D);
666a4537 14394 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
e17ac6db
VS
14395 /*
14396 * The DP_DETECTED bit is the latched state of the DDC
14397 * SDA pin at boot. However since eDP doesn't require DDC
14398 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14399 * eDP ports may have been muxed to an alternate function.
14400 * Thus we can't rely on the DP_DETECTED bit alone to detect
14401 * eDP ports. Consult the VBT as well as DP_DETECTED to
14402 * detect eDP ports.
14403 */
e66eb81d 14404 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
d2182a66 14405 !intel_dp_is_edp(dev, PORT_B))
e66eb81d
VS
14406 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14407 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
e17ac6db 14408 intel_dp_is_edp(dev, PORT_B))
e66eb81d 14409 intel_dp_init(dev, VLV_DP_B, PORT_B);
585a94b8 14410
e66eb81d 14411 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
d2182a66 14412 !intel_dp_is_edp(dev, PORT_C))
e66eb81d
VS
14413 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14414 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
e17ac6db 14415 intel_dp_is_edp(dev, PORT_C))
e66eb81d 14416 intel_dp_init(dev, VLV_DP_C, PORT_C);
19c03924 14417
9418c1f1 14418 if (IS_CHERRYVIEW(dev)) {
e17ac6db 14419 /* eDP not supported on port D, so don't check VBT */
e66eb81d
VS
14420 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14421 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14422 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14423 intel_dp_init(dev, CHV_DP_D, PORT_D);
9418c1f1
VS
14424 }
14425
3cfca973 14426 intel_dsi_init(dev);
09da55dc 14427 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 14428 bool found = false;
7d57382e 14429
e2debe91 14430 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14431 DRM_DEBUG_KMS("probing SDVOB\n");
2a5c0832 14432 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
3fec3d2f 14433 if (!found && IS_G4X(dev)) {
b01f2c3a 14434 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14435 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14436 }
27185ae1 14437
3fec3d2f 14438 if (!found && IS_G4X(dev))
ab9d7c30 14439 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14440 }
13520b05
KH
14441
14442 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14443
e2debe91 14444 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14445 DRM_DEBUG_KMS("probing SDVOC\n");
2a5c0832 14446 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
b01f2c3a 14447 }
27185ae1 14448
e2debe91 14449 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14450
3fec3d2f 14451 if (IS_G4X(dev)) {
b01f2c3a 14452 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14453 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14454 }
3fec3d2f 14455 if (IS_G4X(dev))
ab9d7c30 14456 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14457 }
27185ae1 14458
3fec3d2f 14459 if (IS_G4X(dev) &&
e7281eab 14460 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14461 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14462 } else if (IS_GEN2(dev))
79e53945
JB
14463 intel_dvo_init(dev);
14464
103a196f 14465 if (SUPPORTS_TV(dev))
79e53945
JB
14466 intel_tv_init(dev);
14467
0bc12bcb 14468 intel_psr_init(dev);
7c8f8a70 14469
b2784e15 14470 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14471 encoder->base.possible_crtcs = encoder->crtc_mask;
14472 encoder->base.possible_clones =
66a9278e 14473 intel_encoder_clones(encoder);
79e53945 14474 }
47356eb6 14475
dde86e2d 14476 intel_init_pch_refclk(dev);
270b3042
DV
14477
14478 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14479}
14480
14481static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14482{
60a5ca01 14483 struct drm_device *dev = fb->dev;
79e53945 14484 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14485
ef2d633e 14486 drm_framebuffer_cleanup(fb);
60a5ca01 14487 mutex_lock(&dev->struct_mutex);
ef2d633e 14488 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14489 drm_gem_object_unreference(&intel_fb->obj->base);
14490 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14491 kfree(intel_fb);
14492}
14493
14494static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14495 struct drm_file *file,
79e53945
JB
14496 unsigned int *handle)
14497{
14498 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14499 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14500
cc917ab4
CW
14501 if (obj->userptr.mm) {
14502 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14503 return -EINVAL;
14504 }
14505
05394f39 14506 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14507}
14508
86c98588
RV
14509static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14510 struct drm_file *file,
14511 unsigned flags, unsigned color,
14512 struct drm_clip_rect *clips,
14513 unsigned num_clips)
14514{
14515 struct drm_device *dev = fb->dev;
14516 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14517 struct drm_i915_gem_object *obj = intel_fb->obj;
14518
14519 mutex_lock(&dev->struct_mutex);
74b4ea1e 14520 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
14521 mutex_unlock(&dev->struct_mutex);
14522
14523 return 0;
14524}
14525
79e53945
JB
14526static const struct drm_framebuffer_funcs intel_fb_funcs = {
14527 .destroy = intel_user_framebuffer_destroy,
14528 .create_handle = intel_user_framebuffer_create_handle,
86c98588 14529 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
14530};
14531
b321803d
DL
14532static
14533u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14534 uint32_t pixel_format)
14535{
14536 u32 gen = INTEL_INFO(dev)->gen;
14537
14538 if (gen >= 9) {
ac484963
VS
14539 int cpp = drm_format_plane_cpp(pixel_format, 0);
14540
b321803d
DL
14541 /* "The stride in bytes must not exceed the of the size of 8K
14542 * pixels and 32K bytes."
14543 */
ac484963 14544 return min(8192 * cpp, 32768);
666a4537 14545 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
b321803d
DL
14546 return 32*1024;
14547 } else if (gen >= 4) {
14548 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14549 return 16*1024;
14550 else
14551 return 32*1024;
14552 } else if (gen >= 3) {
14553 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14554 return 8*1024;
14555 else
14556 return 16*1024;
14557 } else {
14558 /* XXX DSPC is limited to 4k tiled */
14559 return 8*1024;
14560 }
14561}
14562
b5ea642a
DV
14563static int intel_framebuffer_init(struct drm_device *dev,
14564 struct intel_framebuffer *intel_fb,
14565 struct drm_mode_fb_cmd2 *mode_cmd,
14566 struct drm_i915_gem_object *obj)
79e53945 14567{
7b49f948 14568 struct drm_i915_private *dev_priv = to_i915(dev);
6761dd31 14569 unsigned int aligned_height;
79e53945 14570 int ret;
b321803d 14571 u32 pitch_limit, stride_alignment;
79e53945 14572
dd4916c5
DV
14573 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14574
2a80eada
DV
14575 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14576 /* Enforce that fb modifier and tiling mode match, but only for
14577 * X-tiled. This is needed for FBC. */
14578 if (!!(obj->tiling_mode == I915_TILING_X) !=
14579 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14580 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14581 return -EINVAL;
14582 }
14583 } else {
14584 if (obj->tiling_mode == I915_TILING_X)
14585 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14586 else if (obj->tiling_mode == I915_TILING_Y) {
14587 DRM_DEBUG("No Y tiling for legacy addfb\n");
14588 return -EINVAL;
14589 }
14590 }
14591
9a8f0a12
TU
14592 /* Passed in modifier sanity checking. */
14593 switch (mode_cmd->modifier[0]) {
14594 case I915_FORMAT_MOD_Y_TILED:
14595 case I915_FORMAT_MOD_Yf_TILED:
14596 if (INTEL_INFO(dev)->gen < 9) {
14597 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14598 mode_cmd->modifier[0]);
14599 return -EINVAL;
14600 }
14601 case DRM_FORMAT_MOD_NONE:
14602 case I915_FORMAT_MOD_X_TILED:
14603 break;
14604 default:
c0f40428
JB
14605 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14606 mode_cmd->modifier[0]);
57cd6508 14607 return -EINVAL;
c16ed4be 14608 }
57cd6508 14609
7b49f948
VS
14610 stride_alignment = intel_fb_stride_alignment(dev_priv,
14611 mode_cmd->modifier[0],
b321803d
DL
14612 mode_cmd->pixel_format);
14613 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14614 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14615 mode_cmd->pitches[0], stride_alignment);
57cd6508 14616 return -EINVAL;
c16ed4be 14617 }
57cd6508 14618
b321803d
DL
14619 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14620 mode_cmd->pixel_format);
a35cdaa0 14621 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
14622 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14623 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 14624 "tiled" : "linear",
a35cdaa0 14625 mode_cmd->pitches[0], pitch_limit);
5d7bd705 14626 return -EINVAL;
c16ed4be 14627 }
5d7bd705 14628
2a80eada 14629 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
14630 mode_cmd->pitches[0] != obj->stride) {
14631 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14632 mode_cmd->pitches[0], obj->stride);
5d7bd705 14633 return -EINVAL;
c16ed4be 14634 }
5d7bd705 14635
57779d06 14636 /* Reject formats not supported by any plane early. */
308e5bcb 14637 switch (mode_cmd->pixel_format) {
57779d06 14638 case DRM_FORMAT_C8:
04b3924d
VS
14639 case DRM_FORMAT_RGB565:
14640 case DRM_FORMAT_XRGB8888:
14641 case DRM_FORMAT_ARGB8888:
57779d06
VS
14642 break;
14643 case DRM_FORMAT_XRGB1555:
c16ed4be 14644 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
14645 DRM_DEBUG("unsupported pixel format: %s\n",
14646 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14647 return -EINVAL;
c16ed4be 14648 }
57779d06 14649 break;
57779d06 14650 case DRM_FORMAT_ABGR8888:
666a4537
WB
14651 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14652 INTEL_INFO(dev)->gen < 9) {
6c0fd451
DL
14653 DRM_DEBUG("unsupported pixel format: %s\n",
14654 drm_get_format_name(mode_cmd->pixel_format));
14655 return -EINVAL;
14656 }
14657 break;
14658 case DRM_FORMAT_XBGR8888:
04b3924d 14659 case DRM_FORMAT_XRGB2101010:
57779d06 14660 case DRM_FORMAT_XBGR2101010:
c16ed4be 14661 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
14662 DRM_DEBUG("unsupported pixel format: %s\n",
14663 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14664 return -EINVAL;
c16ed4be 14665 }
b5626747 14666 break;
7531208b 14667 case DRM_FORMAT_ABGR2101010:
666a4537 14668 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7531208b
DL
14669 DRM_DEBUG("unsupported pixel format: %s\n",
14670 drm_get_format_name(mode_cmd->pixel_format));
14671 return -EINVAL;
14672 }
14673 break;
04b3924d
VS
14674 case DRM_FORMAT_YUYV:
14675 case DRM_FORMAT_UYVY:
14676 case DRM_FORMAT_YVYU:
14677 case DRM_FORMAT_VYUY:
c16ed4be 14678 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14679 DRM_DEBUG("unsupported pixel format: %s\n",
14680 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14681 return -EINVAL;
c16ed4be 14682 }
57cd6508
CW
14683 break;
14684 default:
4ee62c76
VS
14685 DRM_DEBUG("unsupported pixel format: %s\n",
14686 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14687 return -EINVAL;
14688 }
14689
90f9a336
VS
14690 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14691 if (mode_cmd->offsets[0] != 0)
14692 return -EINVAL;
14693
ec2c981e 14694 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14695 mode_cmd->pixel_format,
14696 mode_cmd->modifier[0]);
53155c0a
DV
14697 /* FIXME drm helper for size checks (especially planar formats)? */
14698 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14699 return -EINVAL;
14700
c7d73f6a
DV
14701 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14702 intel_fb->obj = obj;
14703
2d7a215f
VS
14704 intel_fill_fb_info(dev_priv, &intel_fb->base);
14705
79e53945
JB
14706 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14707 if (ret) {
14708 DRM_ERROR("framebuffer init failed %d\n", ret);
14709 return ret;
14710 }
14711
0b05e1e0
VS
14712 intel_fb->obj->framebuffer_references++;
14713
79e53945
JB
14714 return 0;
14715}
14716
79e53945
JB
14717static struct drm_framebuffer *
14718intel_user_framebuffer_create(struct drm_device *dev,
14719 struct drm_file *filp,
1eb83451 14720 const struct drm_mode_fb_cmd2 *user_mode_cmd)
79e53945 14721{
dcb1394e 14722 struct drm_framebuffer *fb;
05394f39 14723 struct drm_i915_gem_object *obj;
76dc3769 14724 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
79e53945 14725
308e5bcb 14726 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
76dc3769 14727 mode_cmd.handles[0]));
c8725226 14728 if (&obj->base == NULL)
cce13ff7 14729 return ERR_PTR(-ENOENT);
79e53945 14730
92907cbb 14731 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
dcb1394e
LW
14732 if (IS_ERR(fb))
14733 drm_gem_object_unreference_unlocked(&obj->base);
14734
14735 return fb;
79e53945
JB
14736}
14737
0695726e 14738#ifndef CONFIG_DRM_FBDEV_EMULATION
0632fef6 14739static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14740{
14741}
14742#endif
14743
79e53945 14744static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14745 .fb_create = intel_user_framebuffer_create,
0632fef6 14746 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14747 .atomic_check = intel_atomic_check,
14748 .atomic_commit = intel_atomic_commit,
de419ab6
ML
14749 .atomic_state_alloc = intel_atomic_state_alloc,
14750 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
14751};
14752
e70236a8
JB
14753/* Set up chip specific display functions */
14754static void intel_init_display(struct drm_device *dev)
14755{
14756 struct drm_i915_private *dev_priv = dev->dev_private;
14757
ee9300bb
DV
14758 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14759 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
14760 else if (IS_CHERRYVIEW(dev))
14761 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
14762 else if (IS_VALLEYVIEW(dev))
14763 dev_priv->display.find_dpll = vlv_find_best_dpll;
14764 else if (IS_PINEVIEW(dev))
14765 dev_priv->display.find_dpll = pnv_find_best_dpll;
14766 else
14767 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14768
bc8d7dff
DL
14769 if (INTEL_INFO(dev)->gen >= 9) {
14770 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14771 dev_priv->display.get_initial_plane_config =
14772 skylake_get_initial_plane_config;
bc8d7dff
DL
14773 dev_priv->display.crtc_compute_clock =
14774 haswell_crtc_compute_clock;
14775 dev_priv->display.crtc_enable = haswell_crtc_enable;
14776 dev_priv->display.crtc_disable = haswell_crtc_disable;
bc8d7dff 14777 } else if (HAS_DDI(dev)) {
0e8ffe1b 14778 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14779 dev_priv->display.get_initial_plane_config =
14780 ironlake_get_initial_plane_config;
797d0259
ACO
14781 dev_priv->display.crtc_compute_clock =
14782 haswell_crtc_compute_clock;
4f771f10
PZ
14783 dev_priv->display.crtc_enable = haswell_crtc_enable;
14784 dev_priv->display.crtc_disable = haswell_crtc_disable;
09b4ddf9 14785 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 14786 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14787 dev_priv->display.get_initial_plane_config =
14788 ironlake_get_initial_plane_config;
3fb37703
ACO
14789 dev_priv->display.crtc_compute_clock =
14790 ironlake_crtc_compute_clock;
76e5a89c
DV
14791 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14792 dev_priv->display.crtc_disable = ironlake_crtc_disable;
666a4537 14793 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
89b667f8 14794 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14795 dev_priv->display.get_initial_plane_config =
14796 i9xx_get_initial_plane_config;
d6dfee7a 14797 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
89b667f8
JB
14798 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14799 dev_priv->display.crtc_disable = i9xx_crtc_disable;
f564048e 14800 } else {
0e8ffe1b 14801 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14802 dev_priv->display.get_initial_plane_config =
14803 i9xx_get_initial_plane_config;
d6dfee7a 14804 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14805 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14806 dev_priv->display.crtc_disable = i9xx_crtc_disable;
f564048e 14807 }
e70236a8 14808
e70236a8 14809 /* Returns the core display clock speed */
ef11bdb3 14810 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
1652d19e
VS
14811 dev_priv->display.get_display_clock_speed =
14812 skylake_get_display_clock_speed;
acd3f3d3
BP
14813 else if (IS_BROXTON(dev))
14814 dev_priv->display.get_display_clock_speed =
14815 broxton_get_display_clock_speed;
1652d19e
VS
14816 else if (IS_BROADWELL(dev))
14817 dev_priv->display.get_display_clock_speed =
14818 broadwell_get_display_clock_speed;
14819 else if (IS_HASWELL(dev))
14820 dev_priv->display.get_display_clock_speed =
14821 haswell_get_display_clock_speed;
666a4537 14822 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
25eb05fc
JB
14823 dev_priv->display.get_display_clock_speed =
14824 valleyview_get_display_clock_speed;
b37a6434
VS
14825 else if (IS_GEN5(dev))
14826 dev_priv->display.get_display_clock_speed =
14827 ilk_get_display_clock_speed;
a7c66cd8 14828 else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
34edce2f 14829 IS_GEN6(dev) || IS_IVYBRIDGE(dev))
e70236a8
JB
14830 dev_priv->display.get_display_clock_speed =
14831 i945_get_display_clock_speed;
34edce2f
VS
14832 else if (IS_GM45(dev))
14833 dev_priv->display.get_display_clock_speed =
14834 gm45_get_display_clock_speed;
14835 else if (IS_CRESTLINE(dev))
14836 dev_priv->display.get_display_clock_speed =
14837 i965gm_get_display_clock_speed;
14838 else if (IS_PINEVIEW(dev))
14839 dev_priv->display.get_display_clock_speed =
14840 pnv_get_display_clock_speed;
14841 else if (IS_G33(dev) || IS_G4X(dev))
14842 dev_priv->display.get_display_clock_speed =
14843 g33_get_display_clock_speed;
e70236a8
JB
14844 else if (IS_I915G(dev))
14845 dev_priv->display.get_display_clock_speed =
14846 i915_get_display_clock_speed;
257a7ffc 14847 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
14848 dev_priv->display.get_display_clock_speed =
14849 i9xx_misc_get_display_clock_speed;
14850 else if (IS_I915GM(dev))
14851 dev_priv->display.get_display_clock_speed =
14852 i915gm_get_display_clock_speed;
14853 else if (IS_I865G(dev))
14854 dev_priv->display.get_display_clock_speed =
14855 i865_get_display_clock_speed;
f0f8a9ce 14856 else if (IS_I85X(dev))
e70236a8 14857 dev_priv->display.get_display_clock_speed =
1b1d2716 14858 i85x_get_display_clock_speed;
623e01e5
VS
14859 else { /* 830 */
14860 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
14861 dev_priv->display.get_display_clock_speed =
14862 i830_get_display_clock_speed;
623e01e5 14863 }
e70236a8 14864
7c10a2b5 14865 if (IS_GEN5(dev)) {
3bb11b53 14866 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
3bb11b53
SJ
14867 } else if (IS_GEN6(dev)) {
14868 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
3bb11b53
SJ
14869 } else if (IS_IVYBRIDGE(dev)) {
14870 /* FIXME: detect B0+ stepping and use auto training */
14871 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
059b2fe9 14872 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3bb11b53 14873 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
27c329ed
ML
14874 if (IS_BROADWELL(dev)) {
14875 dev_priv->display.modeset_commit_cdclk =
14876 broadwell_modeset_commit_cdclk;
14877 dev_priv->display.modeset_calc_cdclk =
14878 broadwell_modeset_calc_cdclk;
14879 }
666a4537 14880 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
27c329ed
ML
14881 dev_priv->display.modeset_commit_cdclk =
14882 valleyview_modeset_commit_cdclk;
14883 dev_priv->display.modeset_calc_cdclk =
14884 valleyview_modeset_calc_cdclk;
f8437dd1 14885 } else if (IS_BROXTON(dev)) {
27c329ed
ML
14886 dev_priv->display.modeset_commit_cdclk =
14887 broxton_modeset_commit_cdclk;
14888 dev_priv->display.modeset_calc_cdclk =
14889 broxton_modeset_calc_cdclk;
e70236a8 14890 }
8c9f3aaf 14891
8c9f3aaf
JB
14892 switch (INTEL_INFO(dev)->gen) {
14893 case 2:
14894 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14895 break;
14896
14897 case 3:
14898 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14899 break;
14900
14901 case 4:
14902 case 5:
14903 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14904 break;
14905
14906 case 6:
14907 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14908 break;
7c9017e5 14909 case 7:
4e0bbc31 14910 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
14911 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14912 break;
830c81db 14913 case 9:
ba343e02
TU
14914 /* Drop through - unsupported since execlist only. */
14915 default:
14916 /* Default just returns -ENODEV to indicate unsupported */
14917 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 14918 }
7bd688cd 14919
e39b999a 14920 mutex_init(&dev_priv->pps_mutex);
e70236a8
JB
14921}
14922
b690e96c
JB
14923/*
14924 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14925 * resume, or other times. This quirk makes sure that's the case for
14926 * affected systems.
14927 */
0206e353 14928static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
14929{
14930 struct drm_i915_private *dev_priv = dev->dev_private;
14931
14932 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 14933 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
14934}
14935
b6b5d049
VS
14936static void quirk_pipeb_force(struct drm_device *dev)
14937{
14938 struct drm_i915_private *dev_priv = dev->dev_private;
14939
14940 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14941 DRM_INFO("applying pipe b force quirk\n");
14942}
14943
435793df
KP
14944/*
14945 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14946 */
14947static void quirk_ssc_force_disable(struct drm_device *dev)
14948{
14949 struct drm_i915_private *dev_priv = dev->dev_private;
14950 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 14951 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
14952}
14953
4dca20ef 14954/*
5a15ab5b
CE
14955 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14956 * brightness value
4dca20ef
CE
14957 */
14958static void quirk_invert_brightness(struct drm_device *dev)
14959{
14960 struct drm_i915_private *dev_priv = dev->dev_private;
14961 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 14962 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
14963}
14964
9c72cc6f
SD
14965/* Some VBT's incorrectly indicate no backlight is present */
14966static void quirk_backlight_present(struct drm_device *dev)
14967{
14968 struct drm_i915_private *dev_priv = dev->dev_private;
14969 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14970 DRM_INFO("applying backlight present quirk\n");
14971}
14972
b690e96c
JB
14973struct intel_quirk {
14974 int device;
14975 int subsystem_vendor;
14976 int subsystem_device;
14977 void (*hook)(struct drm_device *dev);
14978};
14979
5f85f176
EE
14980/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14981struct intel_dmi_quirk {
14982 void (*hook)(struct drm_device *dev);
14983 const struct dmi_system_id (*dmi_id_list)[];
14984};
14985
14986static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14987{
14988 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14989 return 1;
14990}
14991
14992static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14993 {
14994 .dmi_id_list = &(const struct dmi_system_id[]) {
14995 {
14996 .callback = intel_dmi_reverse_brightness,
14997 .ident = "NCR Corporation",
14998 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14999 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15000 },
15001 },
15002 { } /* terminating entry */
15003 },
15004 .hook = quirk_invert_brightness,
15005 },
15006};
15007
c43b5634 15008static struct intel_quirk intel_quirks[] = {
b690e96c
JB
15009 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15010 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15011
b690e96c
JB
15012 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15013 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15014
5f080c0f
VS
15015 /* 830 needs to leave pipe A & dpll A up */
15016 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15017
b6b5d049
VS
15018 /* 830 needs to leave pipe B & dpll B up */
15019 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15020
435793df
KP
15021 /* Lenovo U160 cannot use SSC on LVDS */
15022 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
15023
15024 /* Sony Vaio Y cannot use SSC on LVDS */
15025 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 15026
be505f64
AH
15027 /* Acer Aspire 5734Z must invert backlight brightness */
15028 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15029
15030 /* Acer/eMachines G725 */
15031 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15032
15033 /* Acer/eMachines e725 */
15034 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15035
15036 /* Acer/Packard Bell NCL20 */
15037 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15038
15039 /* Acer Aspire 4736Z */
15040 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
15041
15042 /* Acer Aspire 5336 */
15043 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
15044
15045 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15046 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 15047
dfb3d47b
SD
15048 /* Acer C720 Chromebook (Core i3 4005U) */
15049 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15050
b2a9601c 15051 /* Apple Macbook 2,1 (Core 2 T7400) */
15052 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15053
1b9448b0
JN
15054 /* Apple Macbook 4,1 */
15055 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15056
d4967d8c
SD
15057 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15058 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
15059
15060 /* HP Chromebook 14 (Celeron 2955U) */
15061 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
15062
15063 /* Dell Chromebook 11 */
15064 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
9be64eee
JN
15065
15066 /* Dell Chromebook 11 (2015 version) */
15067 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
15068};
15069
15070static void intel_init_quirks(struct drm_device *dev)
15071{
15072 struct pci_dev *d = dev->pdev;
15073 int i;
15074
15075 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15076 struct intel_quirk *q = &intel_quirks[i];
15077
15078 if (d->device == q->device &&
15079 (d->subsystem_vendor == q->subsystem_vendor ||
15080 q->subsystem_vendor == PCI_ANY_ID) &&
15081 (d->subsystem_device == q->subsystem_device ||
15082 q->subsystem_device == PCI_ANY_ID))
15083 q->hook(dev);
15084 }
5f85f176
EE
15085 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15086 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15087 intel_dmi_quirks[i].hook(dev);
15088 }
b690e96c
JB
15089}
15090
9cce37f4
JB
15091/* Disable the VGA plane that we never use */
15092static void i915_disable_vga(struct drm_device *dev)
15093{
15094 struct drm_i915_private *dev_priv = dev->dev_private;
15095 u8 sr1;
f0f59a00 15096 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 15097
2b37c616 15098 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 15099 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 15100 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
15101 sr1 = inb(VGA_SR_DATA);
15102 outb(sr1 | 1<<5, VGA_SR_DATA);
15103 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15104 udelay(300);
15105
01f5a626 15106 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
15107 POSTING_READ(vga_reg);
15108}
15109
f817586c
DV
15110void intel_modeset_init_hw(struct drm_device *dev)
15111{
1a617b77
ML
15112 struct drm_i915_private *dev_priv = dev->dev_private;
15113
b6283055 15114 intel_update_cdclk(dev);
1a617b77
ML
15115
15116 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15117
f817586c 15118 intel_init_clock_gating(dev);
8090c6b9 15119 intel_enable_gt_powersave(dev);
f817586c
DV
15120}
15121
d93c0372
MR
15122/*
15123 * Calculate what we think the watermarks should be for the state we've read
15124 * out of the hardware and then immediately program those watermarks so that
15125 * we ensure the hardware settings match our internal state.
15126 *
15127 * We can calculate what we think WM's should be by creating a duplicate of the
15128 * current state (which was constructed during hardware readout) and running it
15129 * through the atomic check code to calculate new watermark values in the
15130 * state object.
15131 */
15132static void sanitize_watermarks(struct drm_device *dev)
15133{
15134 struct drm_i915_private *dev_priv = to_i915(dev);
15135 struct drm_atomic_state *state;
15136 struct drm_crtc *crtc;
15137 struct drm_crtc_state *cstate;
15138 struct drm_modeset_acquire_ctx ctx;
15139 int ret;
15140 int i;
15141
15142 /* Only supported on platforms that use atomic watermark design */
ed4a6a7c 15143 if (!dev_priv->display.optimize_watermarks)
d93c0372
MR
15144 return;
15145
15146 /*
15147 * We need to hold connection_mutex before calling duplicate_state so
15148 * that the connector loop is protected.
15149 */
15150 drm_modeset_acquire_init(&ctx, 0);
15151retry:
0cd1262d 15152 ret = drm_modeset_lock_all_ctx(dev, &ctx);
d93c0372
MR
15153 if (ret == -EDEADLK) {
15154 drm_modeset_backoff(&ctx);
15155 goto retry;
15156 } else if (WARN_ON(ret)) {
0cd1262d 15157 goto fail;
d93c0372
MR
15158 }
15159
15160 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15161 if (WARN_ON(IS_ERR(state)))
0cd1262d 15162 goto fail;
d93c0372 15163
ed4a6a7c
MR
15164 /*
15165 * Hardware readout is the only time we don't want to calculate
15166 * intermediate watermarks (since we don't trust the current
15167 * watermarks).
15168 */
15169 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15170
d93c0372
MR
15171 ret = intel_atomic_check(dev, state);
15172 if (ret) {
15173 /*
15174 * If we fail here, it means that the hardware appears to be
15175 * programmed in a way that shouldn't be possible, given our
15176 * understanding of watermark requirements. This might mean a
15177 * mistake in the hardware readout code or a mistake in the
15178 * watermark calculations for a given platform. Raise a WARN
15179 * so that this is noticeable.
15180 *
15181 * If this actually happens, we'll have to just leave the
15182 * BIOS-programmed watermarks untouched and hope for the best.
15183 */
15184 WARN(true, "Could not determine valid watermarks for inherited state\n");
0cd1262d 15185 goto fail;
d93c0372
MR
15186 }
15187
15188 /* Write calculated watermark values back */
15189 to_i915(dev)->wm.config = to_intel_atomic_state(state)->wm_config;
15190 for_each_crtc_in_state(state, crtc, cstate, i) {
15191 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15192
ed4a6a7c
MR
15193 cs->wm.need_postvbl_update = true;
15194 dev_priv->display.optimize_watermarks(cs);
d93c0372
MR
15195 }
15196
15197 drm_atomic_state_free(state);
0cd1262d 15198fail:
d93c0372
MR
15199 drm_modeset_drop_locks(&ctx);
15200 drm_modeset_acquire_fini(&ctx);
15201}
15202
79e53945
JB
15203void intel_modeset_init(struct drm_device *dev)
15204{
652c393a 15205 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 15206 int sprite, ret;
8cc87b75 15207 enum pipe pipe;
46f297fb 15208 struct intel_crtc *crtc;
79e53945
JB
15209
15210 drm_mode_config_init(dev);
15211
15212 dev->mode_config.min_width = 0;
15213 dev->mode_config.min_height = 0;
15214
019d96cb
DA
15215 dev->mode_config.preferred_depth = 24;
15216 dev->mode_config.prefer_shadow = 1;
15217
25bab385
TU
15218 dev->mode_config.allow_fb_modifiers = true;
15219
e6ecefaa 15220 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 15221
b690e96c
JB
15222 intel_init_quirks(dev);
15223
1fa61106
ED
15224 intel_init_pm(dev);
15225
e3c74757
BW
15226 if (INTEL_INFO(dev)->num_pipes == 0)
15227 return;
15228
69f92f67
LW
15229 /*
15230 * There may be no VBT; and if the BIOS enabled SSC we can
15231 * just keep using it to avoid unnecessary flicker. Whereas if the
15232 * BIOS isn't using it, don't assume it will work even if the VBT
15233 * indicates as much.
15234 */
15235 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15236 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15237 DREF_SSC1_ENABLE);
15238
15239 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15240 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15241 bios_lvds_use_ssc ? "en" : "dis",
15242 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15243 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15244 }
15245 }
15246
e70236a8 15247 intel_init_display(dev);
7c10a2b5 15248 intel_init_audio(dev);
e70236a8 15249
a6c45cf0
CW
15250 if (IS_GEN2(dev)) {
15251 dev->mode_config.max_width = 2048;
15252 dev->mode_config.max_height = 2048;
15253 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
15254 dev->mode_config.max_width = 4096;
15255 dev->mode_config.max_height = 4096;
79e53945 15256 } else {
a6c45cf0
CW
15257 dev->mode_config.max_width = 8192;
15258 dev->mode_config.max_height = 8192;
79e53945 15259 }
068be561 15260
dc41c154
VS
15261 if (IS_845G(dev) || IS_I865G(dev)) {
15262 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15263 dev->mode_config.cursor_height = 1023;
15264 } else if (IS_GEN2(dev)) {
068be561
DL
15265 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15266 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15267 } else {
15268 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15269 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15270 }
15271
5d4545ae 15272 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 15273
28c97730 15274 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
15275 INTEL_INFO(dev)->num_pipes,
15276 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 15277
055e393f 15278 for_each_pipe(dev_priv, pipe) {
8cc87b75 15279 intel_crtc_init(dev, pipe);
3bdcfc0c 15280 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 15281 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 15282 if (ret)
06da8da2 15283 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 15284 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 15285 }
79e53945
JB
15286 }
15287
bfa7df01 15288 intel_update_czclk(dev_priv);
e7dc33f3 15289 intel_update_rawclk(dev_priv);
bfa7df01
VS
15290 intel_update_cdclk(dev);
15291
e72f9fbf 15292 intel_shared_dpll_init(dev);
ee7b9f93 15293
9cce37f4
JB
15294 /* Just disable it once at startup */
15295 i915_disable_vga(dev);
79e53945 15296 intel_setup_outputs(dev);
11be49eb 15297
6e9f798d 15298 drm_modeset_lock_all(dev);
043e9bda 15299 intel_modeset_setup_hw_state(dev);
6e9f798d 15300 drm_modeset_unlock_all(dev);
46f297fb 15301
d3fcc808 15302 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
15303 struct intel_initial_plane_config plane_config = {};
15304
46f297fb
JB
15305 if (!crtc->active)
15306 continue;
15307
46f297fb 15308 /*
46f297fb
JB
15309 * Note that reserving the BIOS fb up front prevents us
15310 * from stuffing other stolen allocations like the ring
15311 * on top. This prevents some ugliness at boot time, and
15312 * can even allow for smooth boot transitions if the BIOS
15313 * fb is large enough for the active pipe configuration.
15314 */
eeebeac5
ML
15315 dev_priv->display.get_initial_plane_config(crtc,
15316 &plane_config);
15317
15318 /*
15319 * If the fb is shared between multiple heads, we'll
15320 * just get the first one.
15321 */
15322 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 15323 }
d93c0372
MR
15324
15325 /*
15326 * Make sure hardware watermarks really match the state we read out.
15327 * Note that we need to do this after reconstructing the BIOS fb's
15328 * since the watermark calculation done here will use pstate->fb.
15329 */
15330 sanitize_watermarks(dev);
2c7111db
CW
15331}
15332
7fad798e
DV
15333static void intel_enable_pipe_a(struct drm_device *dev)
15334{
15335 struct intel_connector *connector;
15336 struct drm_connector *crt = NULL;
15337 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 15338 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
15339
15340 /* We can't just switch on the pipe A, we need to set things up with a
15341 * proper mode and output configuration. As a gross hack, enable pipe A
15342 * by enabling the load detect pipe once. */
3a3371ff 15343 for_each_intel_connector(dev, connector) {
7fad798e
DV
15344 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15345 crt = &connector->base;
15346 break;
15347 }
15348 }
15349
15350 if (!crt)
15351 return;
15352
208bf9fd 15353 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 15354 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
15355}
15356
fa555837
DV
15357static bool
15358intel_check_plane_mapping(struct intel_crtc *crtc)
15359{
7eb552ae
BW
15360 struct drm_device *dev = crtc->base.dev;
15361 struct drm_i915_private *dev_priv = dev->dev_private;
649636ef 15362 u32 val;
fa555837 15363
7eb552ae 15364 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
15365 return true;
15366
649636ef 15367 val = I915_READ(DSPCNTR(!crtc->plane));
fa555837
DV
15368
15369 if ((val & DISPLAY_PLANE_ENABLE) &&
15370 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15371 return false;
15372
15373 return true;
15374}
15375
02e93c35
VS
15376static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15377{
15378 struct drm_device *dev = crtc->base.dev;
15379 struct intel_encoder *encoder;
15380
15381 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15382 return true;
15383
15384 return false;
15385}
15386
dd756198
VS
15387static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15388{
15389 struct drm_device *dev = encoder->base.dev;
15390 struct intel_connector *connector;
15391
15392 for_each_connector_on_encoder(dev, &encoder->base, connector)
15393 return true;
15394
15395 return false;
15396}
15397
24929352
DV
15398static void intel_sanitize_crtc(struct intel_crtc *crtc)
15399{
15400 struct drm_device *dev = crtc->base.dev;
15401 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15402 i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
24929352 15403
24929352 15404 /* Clear any frame start delays used for debugging left by the BIOS */
24929352
DV
15405 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15406
d3eaf884 15407 /* restore vblank interrupts to correct state */
9625604c 15408 drm_crtc_vblank_reset(&crtc->base);
d297e103 15409 if (crtc->active) {
f9cd7b88
VS
15410 struct intel_plane *plane;
15411
9625604c 15412 drm_crtc_vblank_on(&crtc->base);
f9cd7b88
VS
15413
15414 /* Disable everything but the primary plane */
15415 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15416 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15417 continue;
15418
15419 plane->disable_plane(&plane->base, &crtc->base);
15420 }
9625604c 15421 }
d3eaf884 15422
24929352 15423 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
15424 * disable the crtc (and hence change the state) if it is wrong. Note
15425 * that gen4+ has a fixed plane -> pipe mapping. */
15426 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
15427 bool plane;
15428
24929352
DV
15429 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15430 crtc->base.base.id);
15431
15432 /* Pipe has the wrong plane attached and the plane is active.
15433 * Temporarily change the plane mapping and disable everything
15434 * ... */
15435 plane = crtc->plane;
b70709a6 15436 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 15437 crtc->plane = !plane;
b17d48e2 15438 intel_crtc_disable_noatomic(&crtc->base);
24929352 15439 crtc->plane = plane;
24929352 15440 }
24929352 15441
7fad798e
DV
15442 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15443 crtc->pipe == PIPE_A && !crtc->active) {
15444 /* BIOS forgot to enable pipe A, this mostly happens after
15445 * resume. Force-enable the pipe to fix this, the update_dpms
15446 * call below we restore the pipe to the right state, but leave
15447 * the required bits on. */
15448 intel_enable_pipe_a(dev);
15449 }
15450
24929352
DV
15451 /* Adjust the state of the output pipe according to whether we
15452 * have active connectors/encoders. */
02e93c35 15453 if (!intel_crtc_has_encoders(crtc))
b17d48e2 15454 intel_crtc_disable_noatomic(&crtc->base);
24929352 15455
53d9f4e9 15456 if (crtc->active != crtc->base.state->active) {
02e93c35 15457 struct intel_encoder *encoder;
24929352
DV
15458
15459 /* This can happen either due to bugs in the get_hw_state
b17d48e2
ML
15460 * functions or because of calls to intel_crtc_disable_noatomic,
15461 * or because the pipe is force-enabled due to the
24929352
DV
15462 * pipe A quirk. */
15463 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15464 crtc->base.base.id,
83d65738 15465 crtc->base.state->enable ? "enabled" : "disabled",
24929352
DV
15466 crtc->active ? "enabled" : "disabled");
15467
4be40c98 15468 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
49d6fa21 15469 crtc->base.state->active = crtc->active;
24929352 15470 crtc->base.enabled = crtc->active;
2aa974c9 15471 crtc->base.state->connector_mask = 0;
e87a52b3 15472 crtc->base.state->encoder_mask = 0;
24929352
DV
15473
15474 /* Because we only establish the connector -> encoder ->
15475 * crtc links if something is active, this means the
15476 * crtc is now deactivated. Break the links. connector
15477 * -> encoder links are only establish when things are
15478 * actually up, hence no need to break them. */
15479 WARN_ON(crtc->active);
15480
2d406bb0 15481 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
24929352 15482 encoder->base.crtc = NULL;
24929352 15483 }
c5ab3bc0 15484
a3ed6aad 15485 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15486 /*
15487 * We start out with underrun reporting disabled to avoid races.
15488 * For correct bookkeeping mark this on active crtcs.
15489 *
c5ab3bc0
DV
15490 * Also on gmch platforms we dont have any hardware bits to
15491 * disable the underrun reporting. Which means we need to start
15492 * out with underrun reporting disabled also on inactive pipes,
15493 * since otherwise we'll complain about the garbage we read when
15494 * e.g. coming up after runtime pm.
15495 *
4cc31489
DV
15496 * No protection against concurrent access is required - at
15497 * worst a fifo underrun happens which also sets this to false.
15498 */
15499 crtc->cpu_fifo_underrun_disabled = true;
15500 crtc->pch_fifo_underrun_disabled = true;
15501 }
24929352
DV
15502}
15503
15504static void intel_sanitize_encoder(struct intel_encoder *encoder)
15505{
15506 struct intel_connector *connector;
15507 struct drm_device *dev = encoder->base.dev;
15508
15509 /* We need to check both for a crtc link (meaning that the
15510 * encoder is active and trying to read from a pipe) and the
15511 * pipe itself being active. */
15512 bool has_active_crtc = encoder->base.crtc &&
15513 to_intel_crtc(encoder->base.crtc)->active;
15514
dd756198 15515 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
24929352
DV
15516 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15517 encoder->base.base.id,
8e329a03 15518 encoder->base.name);
24929352
DV
15519
15520 /* Connector is active, but has no active pipe. This is
15521 * fallout from our resume register restoring. Disable
15522 * the encoder manually again. */
15523 if (encoder->base.crtc) {
15524 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15525 encoder->base.base.id,
8e329a03 15526 encoder->base.name);
24929352 15527 encoder->disable(encoder);
a62d1497
VS
15528 if (encoder->post_disable)
15529 encoder->post_disable(encoder);
24929352 15530 }
7f1950fb 15531 encoder->base.crtc = NULL;
24929352
DV
15532
15533 /* Inconsistent output/port/pipe state happens presumably due to
15534 * a bug in one of the get_hw_state functions. Or someplace else
15535 * in our code, like the register restore mess on resume. Clamp
15536 * things to off as a safer default. */
3a3371ff 15537 for_each_intel_connector(dev, connector) {
24929352
DV
15538 if (connector->encoder != encoder)
15539 continue;
7f1950fb
EE
15540 connector->base.dpms = DRM_MODE_DPMS_OFF;
15541 connector->base.encoder = NULL;
24929352
DV
15542 }
15543 }
15544 /* Enabled encoders without active connectors will be fixed in
15545 * the crtc fixup. */
15546}
15547
04098753 15548void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15549{
15550 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15551 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15552
04098753
ID
15553 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15554 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15555 i915_disable_vga(dev);
15556 }
15557}
15558
15559void i915_redisable_vga(struct drm_device *dev)
15560{
15561 struct drm_i915_private *dev_priv = dev->dev_private;
15562
8dc8a27c
PZ
15563 /* This function can be called both from intel_modeset_setup_hw_state or
15564 * at a very early point in our resume sequence, where the power well
15565 * structures are not yet restored. Since this function is at a very
15566 * paranoid "someone might have enabled VGA while we were not looking"
15567 * level, just check if the power well is enabled instead of trying to
15568 * follow the "don't touch the power well if we don't need it" policy
15569 * the rest of the driver uses. */
6392f847 15570 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15571 return;
15572
04098753 15573 i915_redisable_vga_power_on(dev);
6392f847
ID
15574
15575 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
0fde901f
KM
15576}
15577
f9cd7b88 15578static bool primary_get_hw_state(struct intel_plane *plane)
98ec7739 15579{
f9cd7b88 15580 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
98ec7739 15581
f9cd7b88 15582 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
d032ffa0
ML
15583}
15584
f9cd7b88
VS
15585/* FIXME read out full plane state for all planes */
15586static void readout_plane_state(struct intel_crtc *crtc)
d032ffa0 15587{
b26d3ea3 15588 struct drm_plane *primary = crtc->base.primary;
f9cd7b88 15589 struct intel_plane_state *plane_state =
b26d3ea3 15590 to_intel_plane_state(primary->state);
d032ffa0 15591
19b8d387 15592 plane_state->visible = crtc->active &&
b26d3ea3
ML
15593 primary_get_hw_state(to_intel_plane(primary));
15594
15595 if (plane_state->visible)
15596 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
98ec7739
VS
15597}
15598
30e984df 15599static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
15600{
15601 struct drm_i915_private *dev_priv = dev->dev_private;
15602 enum pipe pipe;
24929352
DV
15603 struct intel_crtc *crtc;
15604 struct intel_encoder *encoder;
15605 struct intel_connector *connector;
5358901f 15606 int i;
24929352 15607
565602d7
ML
15608 dev_priv->active_crtcs = 0;
15609
d3fcc808 15610 for_each_intel_crtc(dev, crtc) {
565602d7
ML
15611 struct intel_crtc_state *crtc_state = crtc->config;
15612 int pixclk = 0;
3b117c8f 15613
565602d7
ML
15614 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15615 memset(crtc_state, 0, sizeof(*crtc_state));
15616 crtc_state->base.crtc = &crtc->base;
24929352 15617
565602d7
ML
15618 crtc_state->base.active = crtc_state->base.enable =
15619 dev_priv->display.get_pipe_config(crtc, crtc_state);
15620
15621 crtc->base.enabled = crtc_state->base.enable;
15622 crtc->active = crtc_state->base.active;
15623
15624 if (crtc_state->base.active) {
15625 dev_priv->active_crtcs |= 1 << crtc->pipe;
15626
15627 if (IS_BROADWELL(dev_priv)) {
15628 pixclk = ilk_pipe_pixel_rate(crtc_state);
15629
15630 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15631 if (crtc_state->ips_enabled)
15632 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15633 } else if (IS_VALLEYVIEW(dev_priv) ||
15634 IS_CHERRYVIEW(dev_priv) ||
15635 IS_BROXTON(dev_priv))
15636 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15637 else
15638 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15639 }
15640
15641 dev_priv->min_pixclk[crtc->pipe] = pixclk;
b70709a6 15642
f9cd7b88 15643 readout_plane_state(crtc);
24929352
DV
15644
15645 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15646 crtc->base.base.id,
15647 crtc->active ? "enabled" : "disabled");
15648 }
15649
5358901f
DV
15650 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15651 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15652
3e369b76
ACO
15653 pll->on = pll->get_hw_state(dev_priv, pll,
15654 &pll->config.hw_state);
5358901f 15655 pll->active = 0;
3e369b76 15656 pll->config.crtc_mask = 0;
d3fcc808 15657 for_each_intel_crtc(dev, crtc) {
1e6f2ddc 15658 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
5358901f 15659 pll->active++;
3e369b76 15660 pll->config.crtc_mask |= 1 << crtc->pipe;
1e6f2ddc 15661 }
5358901f 15662 }
5358901f 15663
1e6f2ddc 15664 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 15665 pll->name, pll->config.crtc_mask, pll->on);
bd2bb1b9 15666
3e369b76 15667 if (pll->config.crtc_mask)
bd2bb1b9 15668 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
15669 }
15670
b2784e15 15671 for_each_intel_encoder(dev, encoder) {
24929352
DV
15672 pipe = 0;
15673
15674 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
15675 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15676 encoder->base.crtc = &crtc->base;
6e3c9717 15677 encoder->get_config(encoder, crtc->config);
24929352
DV
15678 } else {
15679 encoder->base.crtc = NULL;
15680 }
15681
6f2bcceb 15682 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 15683 encoder->base.base.id,
8e329a03 15684 encoder->base.name,
24929352 15685 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 15686 pipe_name(pipe));
24929352
DV
15687 }
15688
3a3371ff 15689 for_each_intel_connector(dev, connector) {
24929352
DV
15690 if (connector->get_hw_state(connector)) {
15691 connector->base.dpms = DRM_MODE_DPMS_ON;
2aa974c9
ML
15692
15693 encoder = connector->encoder;
15694 connector->base.encoder = &encoder->base;
15695
15696 if (encoder->base.crtc &&
15697 encoder->base.crtc->state->active) {
15698 /*
15699 * This has to be done during hardware readout
15700 * because anything calling .crtc_disable may
15701 * rely on the connector_mask being accurate.
15702 */
15703 encoder->base.crtc->state->connector_mask |=
15704 1 << drm_connector_index(&connector->base);
e87a52b3
ML
15705 encoder->base.crtc->state->encoder_mask |=
15706 1 << drm_encoder_index(&encoder->base);
2aa974c9
ML
15707 }
15708
24929352
DV
15709 } else {
15710 connector->base.dpms = DRM_MODE_DPMS_OFF;
15711 connector->base.encoder = NULL;
15712 }
15713 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15714 connector->base.base.id,
c23cc417 15715 connector->base.name,
24929352
DV
15716 connector->base.encoder ? "enabled" : "disabled");
15717 }
7f4c6284
VS
15718
15719 for_each_intel_crtc(dev, crtc) {
15720 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15721
15722 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15723 if (crtc->base.state->active) {
15724 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15725 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15726 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15727
15728 /*
15729 * The initial mode needs to be set in order to keep
15730 * the atomic core happy. It wants a valid mode if the
15731 * crtc's enabled, so we do the above call.
15732 *
15733 * At this point some state updated by the connectors
15734 * in their ->detect() callback has not run yet, so
15735 * no recalculation can be done yet.
15736 *
15737 * Even if we could do a recalculation and modeset
15738 * right now it would cause a double modeset if
15739 * fbdev or userspace chooses a different initial mode.
15740 *
15741 * If that happens, someone indicated they wanted a
15742 * mode change, which means it's safe to do a full
15743 * recalculation.
15744 */
15745 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
9eca6832
VS
15746
15747 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15748 update_scanline_offset(crtc);
7f4c6284 15749 }
e3b247da
VS
15750
15751 intel_pipe_config_sanity_check(dev_priv, crtc->config);
7f4c6284 15752 }
30e984df
DV
15753}
15754
043e9bda
ML
15755/* Scan out the current hw modeset state,
15756 * and sanitizes it to the current state
15757 */
15758static void
15759intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df
DV
15760{
15761 struct drm_i915_private *dev_priv = dev->dev_private;
15762 enum pipe pipe;
30e984df
DV
15763 struct intel_crtc *crtc;
15764 struct intel_encoder *encoder;
35c95375 15765 int i;
30e984df
DV
15766
15767 intel_modeset_readout_hw_state(dev);
24929352
DV
15768
15769 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 15770 for_each_intel_encoder(dev, encoder) {
24929352
DV
15771 intel_sanitize_encoder(encoder);
15772 }
15773
055e393f 15774 for_each_pipe(dev_priv, pipe) {
24929352
DV
15775 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15776 intel_sanitize_crtc(crtc);
6e3c9717
ACO
15777 intel_dump_pipe_config(crtc, crtc->config,
15778 "[setup_hw_state]");
24929352 15779 }
9a935856 15780
d29b2f9d
ACO
15781 intel_modeset_update_connector_atomic_state(dev);
15782
35c95375
DV
15783 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15784 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15785
15786 if (!pll->on || pll->active)
15787 continue;
15788
15789 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15790
15791 pll->disable(dev_priv, pll);
15792 pll->on = false;
15793 }
15794
666a4537 15795 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6eb1a681
VS
15796 vlv_wm_get_hw_state(dev);
15797 else if (IS_GEN9(dev))
3078999f
PB
15798 skl_wm_get_hw_state(dev);
15799 else if (HAS_PCH_SPLIT(dev))
243e6a44 15800 ilk_wm_get_hw_state(dev);
292b990e
ML
15801
15802 for_each_intel_crtc(dev, crtc) {
15803 unsigned long put_domains;
15804
74bff5f9 15805 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
292b990e
ML
15806 if (WARN_ON(put_domains))
15807 modeset_put_power_domains(dev_priv, put_domains);
15808 }
15809 intel_display_set_init_power(dev_priv, false);
010cf73d
PZ
15810
15811 intel_fbc_init_pipe_state(dev_priv);
043e9bda 15812}
7d0bc1ea 15813
043e9bda
ML
15814void intel_display_resume(struct drm_device *dev)
15815{
e2c8b870
ML
15816 struct drm_i915_private *dev_priv = to_i915(dev);
15817 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15818 struct drm_modeset_acquire_ctx ctx;
043e9bda 15819 int ret;
e2c8b870 15820 bool setup = false;
f30da187 15821
e2c8b870 15822 dev_priv->modeset_restore_state = NULL;
043e9bda 15823
ea49c9ac
ML
15824 /*
15825 * This is a cludge because with real atomic modeset mode_config.mutex
15826 * won't be taken. Unfortunately some probed state like
15827 * audio_codec_enable is still protected by mode_config.mutex, so lock
15828 * it here for now.
15829 */
15830 mutex_lock(&dev->mode_config.mutex);
e2c8b870 15831 drm_modeset_acquire_init(&ctx, 0);
043e9bda 15832
e2c8b870
ML
15833retry:
15834 ret = drm_modeset_lock_all_ctx(dev, &ctx);
043e9bda 15835
e2c8b870
ML
15836 if (ret == 0 && !setup) {
15837 setup = true;
043e9bda 15838
e2c8b870
ML
15839 intel_modeset_setup_hw_state(dev);
15840 i915_redisable_vga(dev);
45e2b5f6 15841 }
8af6cf88 15842
e2c8b870
ML
15843 if (ret == 0 && state) {
15844 struct drm_crtc_state *crtc_state;
15845 struct drm_crtc *crtc;
15846 int i;
043e9bda 15847
e2c8b870
ML
15848 state->acquire_ctx = &ctx;
15849
15850 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15851 /*
15852 * Force recalculation even if we restore
15853 * current state. With fast modeset this may not result
15854 * in a modeset when the state is compatible.
15855 */
15856 crtc_state->mode_changed = true;
15857 }
15858
15859 ret = drm_atomic_commit(state);
043e9bda
ML
15860 }
15861
e2c8b870
ML
15862 if (ret == -EDEADLK) {
15863 drm_modeset_backoff(&ctx);
15864 goto retry;
15865 }
043e9bda 15866
e2c8b870
ML
15867 drm_modeset_drop_locks(&ctx);
15868 drm_modeset_acquire_fini(&ctx);
ea49c9ac 15869 mutex_unlock(&dev->mode_config.mutex);
043e9bda 15870
e2c8b870
ML
15871 if (ret) {
15872 DRM_ERROR("Restoring old state failed with %i\n", ret);
15873 drm_atomic_state_free(state);
15874 }
2c7111db
CW
15875}
15876
15877void intel_modeset_gem_init(struct drm_device *dev)
15878{
484b41dd 15879 struct drm_crtc *c;
2ff8fde1 15880 struct drm_i915_gem_object *obj;
e0d6149b 15881 int ret;
484b41dd 15882
ae48434c 15883 intel_init_gt_powersave(dev);
ae48434c 15884
1833b134 15885 intel_modeset_init_hw(dev);
02e792fb
DV
15886
15887 intel_setup_overlay(dev);
484b41dd
JB
15888
15889 /*
15890 * Make sure any fbs we allocated at startup are properly
15891 * pinned & fenced. When we do the allocation it's too early
15892 * for this.
15893 */
70e1e0ec 15894 for_each_crtc(dev, c) {
2ff8fde1
MR
15895 obj = intel_fb_obj(c->primary->fb);
15896 if (obj == NULL)
484b41dd
JB
15897 continue;
15898
e0d6149b 15899 mutex_lock(&dev->struct_mutex);
3465c580
VS
15900 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
15901 c->primary->state->rotation);
e0d6149b
TU
15902 mutex_unlock(&dev->struct_mutex);
15903 if (ret) {
484b41dd
JB
15904 DRM_ERROR("failed to pin boot fb on pipe %d\n",
15905 to_intel_crtc(c)->pipe);
66e514c1
DA
15906 drm_framebuffer_unreference(c->primary->fb);
15907 c->primary->fb = NULL;
36750f28 15908 c->primary->crtc = c->primary->state->crtc = NULL;
afd65eb4 15909 update_state_fb(c->primary);
36750f28 15910 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
15911 }
15912 }
0962c3c9
VS
15913
15914 intel_backlight_register(dev);
79e53945
JB
15915}
15916
4932e2c3
ID
15917void intel_connector_unregister(struct intel_connector *intel_connector)
15918{
15919 struct drm_connector *connector = &intel_connector->base;
15920
15921 intel_panel_destroy_backlight(connector);
34ea3d38 15922 drm_connector_unregister(connector);
4932e2c3
ID
15923}
15924
79e53945
JB
15925void intel_modeset_cleanup(struct drm_device *dev)
15926{
652c393a 15927 struct drm_i915_private *dev_priv = dev->dev_private;
19c8054c 15928 struct intel_connector *connector;
652c393a 15929
2eb5252e
ID
15930 intel_disable_gt_powersave(dev);
15931
0962c3c9
VS
15932 intel_backlight_unregister(dev);
15933
fd0c0642
DV
15934 /*
15935 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 15936 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
15937 * experience fancy races otherwise.
15938 */
2aeb7d3a 15939 intel_irq_uninstall(dev_priv);
eb21b92b 15940
fd0c0642
DV
15941 /*
15942 * Due to the hpd irq storm handling the hotplug work can re-arm the
15943 * poll handlers. Hence disable polling after hpd handling is shut down.
15944 */
f87ea761 15945 drm_kms_helper_poll_fini(dev);
fd0c0642 15946
723bfd70
JB
15947 intel_unregister_dsm_handler();
15948
c937ab3e 15949 intel_fbc_global_disable(dev_priv);
69341a5e 15950
1630fe75
CW
15951 /* flush any delayed tasks or pending work */
15952 flush_scheduled_work();
15953
db31af1d 15954 /* destroy the backlight and sysfs files before encoders/connectors */
19c8054c
JN
15955 for_each_intel_connector(dev, connector)
15956 connector->unregister(connector);
d9255d57 15957
79e53945 15958 drm_mode_config_cleanup(dev);
4d7bb011
DV
15959
15960 intel_cleanup_overlay(dev);
ae48434c 15961
ae48434c 15962 intel_cleanup_gt_powersave(dev);
f5949141
DV
15963
15964 intel_teardown_gmbus(dev);
79e53945
JB
15965}
15966
f1c79df3
ZW
15967/*
15968 * Return which encoder is currently attached for connector.
15969 */
df0e9248 15970struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 15971{
df0e9248
CW
15972 return &intel_attached_encoder(connector)->base;
15973}
f1c79df3 15974
df0e9248
CW
15975void intel_connector_attach_encoder(struct intel_connector *connector,
15976 struct intel_encoder *encoder)
15977{
15978 connector->encoder = encoder;
15979 drm_mode_connector_attach_encoder(&connector->base,
15980 &encoder->base);
79e53945 15981}
28d52043
DA
15982
15983/*
15984 * set vga decode state - true == enable VGA decode
15985 */
15986int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15987{
15988 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 15989 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
15990 u16 gmch_ctrl;
15991
75fa041d
CW
15992 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15993 DRM_ERROR("failed to read control word\n");
15994 return -EIO;
15995 }
15996
c0cc8a55
CW
15997 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15998 return 0;
15999
28d52043
DA
16000 if (state)
16001 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16002 else
16003 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
16004
16005 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16006 DRM_ERROR("failed to write control word\n");
16007 return -EIO;
16008 }
16009
28d52043
DA
16010 return 0;
16011}
c4a1d9e4 16012
c4a1d9e4 16013struct intel_display_error_state {
ff57f1b0
PZ
16014
16015 u32 power_well_driver;
16016
63b66e5b
CW
16017 int num_transcoders;
16018
c4a1d9e4
CW
16019 struct intel_cursor_error_state {
16020 u32 control;
16021 u32 position;
16022 u32 base;
16023 u32 size;
52331309 16024 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
16025
16026 struct intel_pipe_error_state {
ddf9c536 16027 bool power_domain_on;
c4a1d9e4 16028 u32 source;
f301b1e1 16029 u32 stat;
52331309 16030 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
16031
16032 struct intel_plane_error_state {
16033 u32 control;
16034 u32 stride;
16035 u32 size;
16036 u32 pos;
16037 u32 addr;
16038 u32 surface;
16039 u32 tile_offset;
52331309 16040 } plane[I915_MAX_PIPES];
63b66e5b
CW
16041
16042 struct intel_transcoder_error_state {
ddf9c536 16043 bool power_domain_on;
63b66e5b
CW
16044 enum transcoder cpu_transcoder;
16045
16046 u32 conf;
16047
16048 u32 htotal;
16049 u32 hblank;
16050 u32 hsync;
16051 u32 vtotal;
16052 u32 vblank;
16053 u32 vsync;
16054 } transcoder[4];
c4a1d9e4
CW
16055};
16056
16057struct intel_display_error_state *
16058intel_display_capture_error_state(struct drm_device *dev)
16059{
fbee40df 16060 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 16061 struct intel_display_error_state *error;
63b66e5b
CW
16062 int transcoders[] = {
16063 TRANSCODER_A,
16064 TRANSCODER_B,
16065 TRANSCODER_C,
16066 TRANSCODER_EDP,
16067 };
c4a1d9e4
CW
16068 int i;
16069
63b66e5b
CW
16070 if (INTEL_INFO(dev)->num_pipes == 0)
16071 return NULL;
16072
9d1cb914 16073 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
16074 if (error == NULL)
16075 return NULL;
16076
190be112 16077 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
16078 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16079
055e393f 16080 for_each_pipe(dev_priv, i) {
ddf9c536 16081 error->pipe[i].power_domain_on =
f458ebbc
DV
16082 __intel_display_power_is_enabled(dev_priv,
16083 POWER_DOMAIN_PIPE(i));
ddf9c536 16084 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
16085 continue;
16086
5efb3e28
VS
16087 error->cursor[i].control = I915_READ(CURCNTR(i));
16088 error->cursor[i].position = I915_READ(CURPOS(i));
16089 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
16090
16091 error->plane[i].control = I915_READ(DSPCNTR(i));
16092 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 16093 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 16094 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
16095 error->plane[i].pos = I915_READ(DSPPOS(i));
16096 }
ca291363
PZ
16097 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
16098 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
16099 if (INTEL_INFO(dev)->gen >= 4) {
16100 error->plane[i].surface = I915_READ(DSPSURF(i));
16101 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16102 }
16103
c4a1d9e4 16104 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 16105
3abfce77 16106 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 16107 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
16108 }
16109
16110 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
16111 if (HAS_DDI(dev_priv->dev))
16112 error->num_transcoders++; /* Account for eDP. */
16113
16114 for (i = 0; i < error->num_transcoders; i++) {
16115 enum transcoder cpu_transcoder = transcoders[i];
16116
ddf9c536 16117 error->transcoder[i].power_domain_on =
f458ebbc 16118 __intel_display_power_is_enabled(dev_priv,
38cc1daf 16119 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 16120 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
16121 continue;
16122
63b66e5b
CW
16123 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16124
16125 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16126 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16127 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16128 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16129 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16130 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16131 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
16132 }
16133
16134 return error;
16135}
16136
edc3d884
MK
16137#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16138
c4a1d9e4 16139void
edc3d884 16140intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
16141 struct drm_device *dev,
16142 struct intel_display_error_state *error)
16143{
055e393f 16144 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
16145 int i;
16146
63b66e5b
CW
16147 if (!error)
16148 return;
16149
edc3d884 16150 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 16151 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 16152 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 16153 error->power_well_driver);
055e393f 16154 for_each_pipe(dev_priv, i) {
edc3d884 16155 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536 16156 err_printf(m, " Power: %s\n",
87ad3212 16157 onoff(error->pipe[i].power_domain_on));
edc3d884 16158 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 16159 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
16160
16161 err_printf(m, "Plane [%d]:\n", i);
16162 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16163 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 16164 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
16165 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16166 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 16167 }
4b71a570 16168 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 16169 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 16170 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
16171 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16172 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
16173 }
16174
edc3d884
MK
16175 err_printf(m, "Cursor [%d]:\n", i);
16176 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16177 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16178 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 16179 }
63b66e5b
CW
16180
16181 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 16182 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 16183 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536 16184 err_printf(m, " Power: %s\n",
87ad3212 16185 onoff(error->transcoder[i].power_domain_on));
63b66e5b
CW
16186 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16187 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16188 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16189 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16190 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16191 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16192 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16193 }
c4a1d9e4 16194}
This page took 4.60617 seconds and 5 git commands to generate.