drm/i915: Introduce a for_each_intel_encoder() macro
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
760285e7
DH
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
465c120c
MR
42#include <drm/drm_plane_helper.h>
43#include <drm/drm_rect.h>
c0f372b3 44#include <linux/dma_remapping.h>
79e53945 45
465c120c
MR
46/* Primary plane formats supported by all gen */
47#define COMMON_PRIMARY_FORMATS \
48 DRM_FORMAT_C8, \
49 DRM_FORMAT_RGB565, \
50 DRM_FORMAT_XRGB8888, \
51 DRM_FORMAT_ARGB8888
52
53/* Primary plane formats for gen <= 3 */
54static const uint32_t intel_primary_formats_gen2[] = {
55 COMMON_PRIMARY_FORMATS,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_ARGB1555,
58};
59
60/* Primary plane formats for gen >= 4 */
61static const uint32_t intel_primary_formats_gen4[] = {
62 COMMON_PRIMARY_FORMATS, \
63 DRM_FORMAT_XBGR8888,
64 DRM_FORMAT_ABGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_ARGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 DRM_FORMAT_ABGR2101010,
69};
70
3d7d6510
MR
71/* Cursor formats */
72static const uint32_t intel_cursor_formats[] = {
73 DRM_FORMAT_ARGB8888,
74};
75
ef9348c8 76#define DIV_ROUND_CLOSEST_ULL(ll, d) \
465c120c 77({ unsigned long long _tmp = (ll)+(d)/2; do_div(_tmp, d); _tmp; })
ef9348c8 78
cc36513c
DV
79static void intel_increase_pllclock(struct drm_device *dev,
80 enum pipe pipe);
6b383a7f 81static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945 82
f1f644dc
JB
83static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
84 struct intel_crtc_config *pipe_config);
18442d08
VS
85static void ironlake_pch_clock_get(struct intel_crtc *crtc,
86 struct intel_crtc_config *pipe_config);
f1f644dc 87
e7457a9a
DL
88static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
89 int x, int y, struct drm_framebuffer *old_fb);
eb1bfe80
JB
90static int intel_framebuffer_init(struct drm_device *dev,
91 struct intel_framebuffer *ifb,
92 struct drm_mode_fb_cmd2 *mode_cmd,
93 struct drm_i915_gem_object *obj);
5b18e57c
DV
94static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
95static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
29407aab 96static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
97 struct intel_link_m_n *m_n,
98 struct intel_link_m_n *m2_n2);
29407aab 99static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97
DV
100static void haswell_set_pipeconf(struct drm_crtc *crtc);
101static void intel_set_pipe_csc(struct drm_crtc *crtc);
bdd4b6a6 102static void vlv_prepare_pll(struct intel_crtc *crtc);
1ae0d137 103static void chv_prepare_pll(struct intel_crtc *crtc);
e7457a9a 104
0e32b39c
DA
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
79e53945 113typedef struct {
0206e353 114 int min, max;
79e53945
JB
115} intel_range_t;
116
117typedef struct {
0206e353
AJ
118 int dot_limit;
119 int p2_slow, p2_fast;
79e53945
JB
120} intel_p2_t;
121
d4906093
ML
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
0206e353
AJ
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
d4906093 126};
79e53945 127
d2acd215
DV
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
021357ac
CW
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
8b99e68c
CW
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
021357ac
CW
146}
147
5d536e28 148static const intel_limit_t intel_limits_i8xx_dac = {
0206e353 149 .dot = { .min = 25000, .max = 350000 },
9c333719 150 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 151 .n = { .min = 2, .max = 16 },
0206e353
AJ
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
159};
160
5d536e28
DV
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
9c333719 163 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 164 .n = { .min = 2, .max = 16 },
5d536e28
DV
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
e4b36699 174static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353 175 .dot = { .min = 25000, .max = 350000 },
9c333719 176 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 177 .n = { .min = 2, .max = 16 },
0206e353
AJ
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
e4b36699 185};
273e27ca 186
e4b36699 187static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
211};
212
273e27ca 213
e4b36699 214static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
044c7c41 226 },
e4b36699
KP
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
044c7c41 253 },
e4b36699
KP
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
044c7c41 267 },
e4b36699
KP
268};
269
f2b115e6 270static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 273 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
273e27ca 276 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
283};
284
f2b115e6 285static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
296};
297
273e27ca
EA
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
b91ad0ec 303static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
314};
315
b91ad0ec 316static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
340};
341
273e27ca 342/* LVDS 100mhz refclk limits. */
b91ad0ec 343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
0206e353 351 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
0206e353 364 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
367};
368
dc730512 369static const intel_limit_t intel_limits_vlv = {
f01b7962
VS
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 377 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 378 .n = { .min = 1, .max = 7 },
a0c4da24
JB
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
b99ab663 381 .p1 = { .min = 2, .max = 3 },
5fdc9c49 382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
383};
384
ef9348c8
CML
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6700000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
6b4bf1c4
VS
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
fb03ac01
VS
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
6b4bf1c4
VS
409}
410
e0638cdf
PZ
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
415{
416 struct drm_device *dev = crtc->dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, crtc, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
1b894b59
CW
426static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
427 int refclk)
2c07245f 428{
b91ad0ec 429 struct drm_device *dev = crtc->dev;
2c07245f 430 const intel_limit_t *limit;
b91ad0ec
ZW
431
432 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 433 if (intel_is_dual_link_lvds(dev)) {
1b894b59 434 if (refclk == 100000)
b91ad0ec
ZW
435 limit = &intel_limits_ironlake_dual_lvds_100m;
436 else
437 limit = &intel_limits_ironlake_dual_lvds;
438 } else {
1b894b59 439 if (refclk == 100000)
b91ad0ec
ZW
440 limit = &intel_limits_ironlake_single_lvds_100m;
441 else
442 limit = &intel_limits_ironlake_single_lvds;
443 }
c6bb3538 444 } else
b91ad0ec 445 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
446
447 return limit;
448}
449
044c7c41
ML
450static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
451{
452 struct drm_device *dev = crtc->dev;
044c7c41
ML
453 const intel_limit_t *limit;
454
455 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 456 if (intel_is_dual_link_lvds(dev))
e4b36699 457 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41 458 else
e4b36699 459 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
460 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
461 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 462 limit = &intel_limits_g4x_hdmi;
044c7c41 463 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 464 limit = &intel_limits_g4x_sdvo;
044c7c41 465 } else /* The option is for other outputs */
e4b36699 466 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
467
468 return limit;
469}
470
1b894b59 471static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
472{
473 struct drm_device *dev = crtc->dev;
474 const intel_limit_t *limit;
475
bad720ff 476 if (HAS_PCH_SPLIT(dev))
1b894b59 477 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 478 else if (IS_G4X(dev)) {
044c7c41 479 limit = intel_g4x_limit(crtc);
f2b115e6 480 } else if (IS_PINEVIEW(dev)) {
2177832f 481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 482 limit = &intel_limits_pineview_lvds;
2177832f 483 else
f2b115e6 484 limit = &intel_limits_pineview_sdvo;
ef9348c8
CML
485 } else if (IS_CHERRYVIEW(dev)) {
486 limit = &intel_limits_chv;
a0c4da24 487 } else if (IS_VALLEYVIEW(dev)) {
dc730512 488 limit = &intel_limits_vlv;
a6c45cf0
CW
489 } else if (!IS_GEN2(dev)) {
490 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
491 limit = &intel_limits_i9xx_lvds;
492 else
493 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
494 } else {
495 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 496 limit = &intel_limits_i8xx_lvds;
5d536e28 497 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
e4b36699 498 limit = &intel_limits_i8xx_dvo;
5d536e28
DV
499 else
500 limit = &intel_limits_i8xx_dac;
79e53945
JB
501 }
502 return limit;
503}
504
f2b115e6
AJ
505/* m1 is reserved as 0 in Pineview, n is a ring counter */
506static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 507{
2177832f
SL
508 clock->m = clock->m2 + 2;
509 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
510 if (WARN_ON(clock->n == 0 || clock->p == 0))
511 return;
fb03ac01
VS
512 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
513 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
2177832f
SL
514}
515
7429e9d4
DV
516static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
517{
518 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
519}
520
ac58c3f0 521static void i9xx_clock(int refclk, intel_clock_t *clock)
2177832f 522{
7429e9d4 523 clock->m = i9xx_dpll_compute_m(clock);
79e53945 524 clock->p = clock->p1 * clock->p2;
ed5ca77e
VS
525 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
526 return;
fb03ac01
VS
527 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
528 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
79e53945
JB
529}
530
ef9348c8
CML
531static void chv_clock(int refclk, intel_clock_t *clock)
532{
533 clock->m = clock->m1 * clock->m2;
534 clock->p = clock->p1 * clock->p2;
535 if (WARN_ON(clock->n == 0 || clock->p == 0))
536 return;
537 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
538 clock->n << 22);
539 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
540}
541
7c04d1d9 542#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
543/**
544 * Returns whether the given set of divisors are valid for a given refclk with
545 * the given connectors.
546 */
547
1b894b59
CW
548static bool intel_PLL_is_valid(struct drm_device *dev,
549 const intel_limit_t *limit,
550 const intel_clock_t *clock)
79e53945 551{
f01b7962
VS
552 if (clock->n < limit->n.min || limit->n.max < clock->n)
553 INTELPllInvalid("n out of range\n");
79e53945 554 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 555 INTELPllInvalid("p1 out of range\n");
79e53945 556 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 557 INTELPllInvalid("m2 out of range\n");
79e53945 558 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 559 INTELPllInvalid("m1 out of range\n");
f01b7962
VS
560
561 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
562 if (clock->m1 <= clock->m2)
563 INTELPllInvalid("m1 <= m2\n");
564
565 if (!IS_VALLEYVIEW(dev)) {
566 if (clock->p < limit->p.min || limit->p.max < clock->p)
567 INTELPllInvalid("p out of range\n");
568 if (clock->m < limit->m.min || limit->m.max < clock->m)
569 INTELPllInvalid("m out of range\n");
570 }
571
79e53945 572 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 573 INTELPllInvalid("vco out of range\n");
79e53945
JB
574 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
575 * connector, etc., rather than just a single range.
576 */
577 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 578 INTELPllInvalid("dot out of range\n");
79e53945
JB
579
580 return true;
581}
582
d4906093 583static bool
ee9300bb 584i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
585 int target, int refclk, intel_clock_t *match_clock,
586 intel_clock_t *best_clock)
79e53945
JB
587{
588 struct drm_device *dev = crtc->dev;
79e53945 589 intel_clock_t clock;
79e53945
JB
590 int err = target;
591
a210b028 592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 593 /*
a210b028
DV
594 * For LVDS just rely on its current settings for dual-channel.
595 * We haven't figured out how to reliably set up different
596 * single/dual channel state, if we even can.
79e53945 597 */
1974cad0 598 if (intel_is_dual_link_lvds(dev))
79e53945
JB
599 clock.p2 = limit->p2.p2_fast;
600 else
601 clock.p2 = limit->p2.p2_slow;
602 } else {
603 if (target < limit->p2.dot_limit)
604 clock.p2 = limit->p2.p2_slow;
605 else
606 clock.p2 = limit->p2.p2_fast;
607 }
608
0206e353 609 memset(best_clock, 0, sizeof(*best_clock));
79e53945 610
42158660
ZY
611 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
612 clock.m1++) {
613 for (clock.m2 = limit->m2.min;
614 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 615 if (clock.m2 >= clock.m1)
42158660
ZY
616 break;
617 for (clock.n = limit->n.min;
618 clock.n <= limit->n.max; clock.n++) {
619 for (clock.p1 = limit->p1.min;
620 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
621 int this_err;
622
ac58c3f0
DV
623 i9xx_clock(refclk, &clock);
624 if (!intel_PLL_is_valid(dev, limit,
625 &clock))
626 continue;
627 if (match_clock &&
628 clock.p != match_clock->p)
629 continue;
630
631 this_err = abs(clock.dot - target);
632 if (this_err < err) {
633 *best_clock = clock;
634 err = this_err;
635 }
636 }
637 }
638 }
639 }
640
641 return (err != target);
642}
643
644static bool
ee9300bb
DV
645pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
646 int target, int refclk, intel_clock_t *match_clock,
647 intel_clock_t *best_clock)
79e53945
JB
648{
649 struct drm_device *dev = crtc->dev;
79e53945 650 intel_clock_t clock;
79e53945
JB
651 int err = target;
652
a210b028 653 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
79e53945 654 /*
a210b028
DV
655 * For LVDS just rely on its current settings for dual-channel.
656 * We haven't figured out how to reliably set up different
657 * single/dual channel state, if we even can.
79e53945 658 */
1974cad0 659 if (intel_is_dual_link_lvds(dev))
79e53945
JB
660 clock.p2 = limit->p2.p2_fast;
661 else
662 clock.p2 = limit->p2.p2_slow;
663 } else {
664 if (target < limit->p2.dot_limit)
665 clock.p2 = limit->p2.p2_slow;
666 else
667 clock.p2 = limit->p2.p2_fast;
668 }
669
0206e353 670 memset(best_clock, 0, sizeof(*best_clock));
79e53945 671
42158660
ZY
672 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673 clock.m1++) {
674 for (clock.m2 = limit->m2.min;
675 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
676 for (clock.n = limit->n.min;
677 clock.n <= limit->n.max; clock.n++) {
678 for (clock.p1 = limit->p1.min;
679 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
680 int this_err;
681
ac58c3f0 682 pineview_clock(refclk, &clock);
1b894b59
CW
683 if (!intel_PLL_is_valid(dev, limit,
684 &clock))
79e53945 685 continue;
cec2f356
SP
686 if (match_clock &&
687 clock.p != match_clock->p)
688 continue;
79e53945
JB
689
690 this_err = abs(clock.dot - target);
691 if (this_err < err) {
692 *best_clock = clock;
693 err = this_err;
694 }
695 }
696 }
697 }
698 }
699
700 return (err != target);
701}
702
d4906093 703static bool
ee9300bb
DV
704g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
705 int target, int refclk, intel_clock_t *match_clock,
706 intel_clock_t *best_clock)
d4906093
ML
707{
708 struct drm_device *dev = crtc->dev;
d4906093
ML
709 intel_clock_t clock;
710 int max_n;
711 bool found;
6ba770dc
AJ
712 /* approximately equals target * 0.00585 */
713 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
714 found = false;
715
716 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1974cad0 717 if (intel_is_dual_link_lvds(dev))
d4906093
ML
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
f77f13e2 730 /* based on hardware requirement, prefer smaller n to precision */
d4906093 731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 732 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
ac58c3f0 741 i9xx_clock(refclk, &clock);
1b894b59
CW
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
d4906093 744 continue;
1b894b59
CW
745
746 this_err = abs(clock.dot - target);
d4906093
ML
747 if (this_err < err_most) {
748 *best_clock = clock;
749 err_most = this_err;
750 max_n = clock.n;
751 found = true;
752 }
753 }
754 }
755 }
756 }
2c07245f
ZW
757 return found;
758}
759
a0c4da24 760static bool
ee9300bb
DV
761vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
762 int target, int refclk, intel_clock_t *match_clock,
763 intel_clock_t *best_clock)
a0c4da24 764{
f01b7962 765 struct drm_device *dev = crtc->dev;
6b4bf1c4 766 intel_clock_t clock;
69e4f900 767 unsigned int bestppm = 1000000;
27e639bf
VS
768 /* min update 19.2 MHz */
769 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 770 bool found = false;
a0c4da24 771
6b4bf1c4
VS
772 target *= 5; /* fast clock */
773
774 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
775
776 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 778 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 779 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 780 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 781 clock.p = clock.p1 * clock.p2;
a0c4da24 782 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 783 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
69e4f900
VS
784 unsigned int ppm, diff;
785
6b4bf1c4
VS
786 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
787 refclk * clock.m1);
788
789 vlv_clock(refclk, &clock);
43b0ac53 790
f01b7962
VS
791 if (!intel_PLL_is_valid(dev, limit,
792 &clock))
43b0ac53
VS
793 continue;
794
6b4bf1c4
VS
795 diff = abs(clock.dot - target);
796 ppm = div_u64(1000000ULL * diff, target);
797
798 if (ppm < 100 && clock.p > best_clock->p) {
43b0ac53 799 bestppm = 0;
6b4bf1c4 800 *best_clock = clock;
49e497ef 801 found = true;
43b0ac53 802 }
6b4bf1c4 803
c686122c 804 if (bestppm >= 10 && ppm < bestppm - 10) {
69e4f900 805 bestppm = ppm;
6b4bf1c4 806 *best_clock = clock;
49e497ef 807 found = true;
a0c4da24
JB
808 }
809 }
810 }
811 }
812 }
a0c4da24 813
49e497ef 814 return found;
a0c4da24 815}
a4fc5ed6 816
ef9348c8
CML
817static bool
818chv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
819 int target, int refclk, intel_clock_t *match_clock,
820 intel_clock_t *best_clock)
821{
822 struct drm_device *dev = crtc->dev;
823 intel_clock_t clock;
824 uint64_t m2;
825 int found = false;
826
827 memset(best_clock, 0, sizeof(*best_clock));
828
829 /*
830 * Based on hardware doc, the n always set to 1, and m1 always
831 * set to 2. If requires to support 200Mhz refclk, we need to
832 * revisit this because n may not 1 anymore.
833 */
834 clock.n = 1, clock.m1 = 2;
835 target *= 5; /* fast clock */
836
837 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
838 for (clock.p2 = limit->p2.p2_fast;
839 clock.p2 >= limit->p2.p2_slow;
840 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
841
842 clock.p = clock.p1 * clock.p2;
843
844 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
845 clock.n) << 22, refclk * clock.m1);
846
847 if (m2 > INT_MAX/clock.m1)
848 continue;
849
850 clock.m2 = m2;
851
852 chv_clock(refclk, &clock);
853
854 if (!intel_PLL_is_valid(dev, limit, &clock))
855 continue;
856
857 /* based on hardware requirement, prefer bigger p
858 */
859 if (clock.p > best_clock->p) {
860 *best_clock = clock;
861 found = true;
862 }
863 }
864 }
865
866 return found;
867}
868
20ddf665
VS
869bool intel_crtc_active(struct drm_crtc *crtc)
870{
871 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
872
873 /* Be paranoid as we can arrive here with only partial
874 * state retrieved from the hardware during setup.
875 *
241bfc38 876 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
877 * as Haswell has gained clock readout/fastboot support.
878 *
66e514c1 879 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665
VS
880 * properly reconstruct framebuffers.
881 */
f4510a27 882 return intel_crtc->active && crtc->primary->fb &&
241bfc38 883 intel_crtc->config.adjusted_mode.crtc_clock;
20ddf665
VS
884}
885
a5c961d1
PZ
886enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
887 enum pipe pipe)
888{
889 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
891
3b117c8f 892 return intel_crtc->config.cpu_transcoder;
a5c961d1
PZ
893}
894
57e22f4a 895static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
a928d536
PZ
896{
897 struct drm_i915_private *dev_priv = dev->dev_private;
57e22f4a 898 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
a928d536
PZ
899
900 frame = I915_READ(frame_reg);
901
902 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
93937071 903 WARN(1, "vblank wait timed out\n");
a928d536
PZ
904}
905
9d0498a2
JB
906/**
907 * intel_wait_for_vblank - wait for vblank on a given pipe
908 * @dev: drm device
909 * @pipe: pipe to wait for
910 *
911 * Wait for vblank to occur on a given pipe. Needed for various bits of
912 * mode setting code.
913 */
914void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 915{
9d0498a2 916 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 917 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 918
57e22f4a
VS
919 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
920 g4x_wait_for_vblank(dev, pipe);
a928d536
PZ
921 return;
922 }
923
300387c0
CW
924 /* Clear existing vblank status. Note this will clear any other
925 * sticky status fields as well.
926 *
927 * This races with i915_driver_irq_handler() with the result
928 * that either function could miss a vblank event. Here it is not
929 * fatal, as we will either wait upon the next vblank interrupt or
930 * timeout. Generally speaking intel_wait_for_vblank() is only
931 * called during modeset at which time the GPU should be idle and
932 * should *not* be performing page flips and thus not waiting on
933 * vblanks...
934 * Currently, the result of us stealing a vblank from the irq
935 * handler is that a single frame will be skipped during swapbuffers.
936 */
937 I915_WRITE(pipestat_reg,
938 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
939
9d0498a2 940 /* Wait for vblank interrupt bit to set */
481b6af3
CW
941 if (wait_for(I915_READ(pipestat_reg) &
942 PIPE_VBLANK_INTERRUPT_STATUS,
943 50))
9d0498a2
JB
944 DRM_DEBUG_KMS("vblank wait timed out\n");
945}
946
fbf49ea2
VS
947static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
948{
949 struct drm_i915_private *dev_priv = dev->dev_private;
950 u32 reg = PIPEDSL(pipe);
951 u32 line1, line2;
952 u32 line_mask;
953
954 if (IS_GEN2(dev))
955 line_mask = DSL_LINEMASK_GEN2;
956 else
957 line_mask = DSL_LINEMASK_GEN3;
958
959 line1 = I915_READ(reg) & line_mask;
960 mdelay(5);
961 line2 = I915_READ(reg) & line_mask;
962
963 return line1 == line2;
964}
965
ab7ad7f6
KP
966/*
967 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
968 * @dev: drm device
969 * @pipe: pipe to wait for
970 *
971 * After disabling a pipe, we can't wait for vblank in the usual way,
972 * spinning on the vblank interrupt status bit, since we won't actually
973 * see an interrupt when the pipe is disabled.
974 *
ab7ad7f6
KP
975 * On Gen4 and above:
976 * wait for the pipe register state bit to turn off
977 *
978 * Otherwise:
979 * wait for the display line value to settle (it usually
980 * ends up stopping at the start of the next frame).
58e10eb9 981 *
9d0498a2 982 */
58e10eb9 983void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
984{
985 struct drm_i915_private *dev_priv = dev->dev_private;
702e7a56
PZ
986 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
987 pipe);
ab7ad7f6
KP
988
989 if (INTEL_INFO(dev)->gen >= 4) {
702e7a56 990 int reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
991
992 /* Wait for the Pipe State to go off */
58e10eb9
CW
993 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
994 100))
284637d9 995 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 996 } else {
ab7ad7f6 997 /* Wait for the display line to settle */
fbf49ea2 998 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 999 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1000 }
79e53945
JB
1001}
1002
b0ea7d37
DL
1003/*
1004 * ibx_digital_port_connected - is the specified port connected?
1005 * @dev_priv: i915 private structure
1006 * @port: the port to test
1007 *
1008 * Returns true if @port is connected, false otherwise.
1009 */
1010bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1011 struct intel_digital_port *port)
1012{
1013 u32 bit;
1014
c36346e3 1015 if (HAS_PCH_IBX(dev_priv->dev)) {
eba905b2 1016 switch (port->port) {
c36346e3
DL
1017 case PORT_B:
1018 bit = SDE_PORTB_HOTPLUG;
1019 break;
1020 case PORT_C:
1021 bit = SDE_PORTC_HOTPLUG;
1022 break;
1023 case PORT_D:
1024 bit = SDE_PORTD_HOTPLUG;
1025 break;
1026 default:
1027 return true;
1028 }
1029 } else {
eba905b2 1030 switch (port->port) {
c36346e3
DL
1031 case PORT_B:
1032 bit = SDE_PORTB_HOTPLUG_CPT;
1033 break;
1034 case PORT_C:
1035 bit = SDE_PORTC_HOTPLUG_CPT;
1036 break;
1037 case PORT_D:
1038 bit = SDE_PORTD_HOTPLUG_CPT;
1039 break;
1040 default:
1041 return true;
1042 }
b0ea7d37
DL
1043 }
1044
1045 return I915_READ(SDEISR) & bit;
1046}
1047
b24e7179
JB
1048static const char *state_string(bool enabled)
1049{
1050 return enabled ? "on" : "off";
1051}
1052
1053/* Only for pre-ILK configs */
55607e8a
DV
1054void assert_pll(struct drm_i915_private *dev_priv,
1055 enum pipe pipe, bool state)
b24e7179
JB
1056{
1057 int reg;
1058 u32 val;
1059 bool cur_state;
1060
1061 reg = DPLL(pipe);
1062 val = I915_READ(reg);
1063 cur_state = !!(val & DPLL_VCO_ENABLE);
1064 WARN(cur_state != state,
1065 "PLL state assertion failure (expected %s, current %s)\n",
1066 state_string(state), state_string(cur_state));
1067}
b24e7179 1068
23538ef1
JN
1069/* XXX: the dsi pll is shared between MIPI DSI ports */
1070static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1071{
1072 u32 val;
1073 bool cur_state;
1074
1075 mutex_lock(&dev_priv->dpio_lock);
1076 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1077 mutex_unlock(&dev_priv->dpio_lock);
1078
1079 cur_state = val & DSI_PLL_VCO_EN;
1080 WARN(cur_state != state,
1081 "DSI PLL state assertion failure (expected %s, current %s)\n",
1082 state_string(state), state_string(cur_state));
1083}
1084#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1085#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1086
55607e8a 1087struct intel_shared_dpll *
e2b78267
DV
1088intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1089{
1090 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1091
a43f6e0f 1092 if (crtc->config.shared_dpll < 0)
e2b78267
DV
1093 return NULL;
1094
a43f6e0f 1095 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
e2b78267
DV
1096}
1097
040484af 1098/* For ILK+ */
55607e8a
DV
1099void assert_shared_dpll(struct drm_i915_private *dev_priv,
1100 struct intel_shared_dpll *pll,
1101 bool state)
040484af 1102{
040484af 1103 bool cur_state;
5358901f 1104 struct intel_dpll_hw_state hw_state;
040484af 1105
92b27b08 1106 if (WARN (!pll,
46edb027 1107 "asserting DPLL %s with no DPLL\n", state_string(state)))
ee7b9f93 1108 return;
ee7b9f93 1109
5358901f 1110 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
92b27b08 1111 WARN(cur_state != state,
5358901f
DV
1112 "%s assertion failure (expected %s, current %s)\n",
1113 pll->name, state_string(state), state_string(cur_state));
040484af 1114}
040484af
JB
1115
1116static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1117 enum pipe pipe, bool state)
1118{
1119 int reg;
1120 u32 val;
1121 bool cur_state;
ad80a810
PZ
1122 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1123 pipe);
040484af 1124
affa9354
PZ
1125 if (HAS_DDI(dev_priv->dev)) {
1126 /* DDI does not have a specific FDI_TX register */
ad80a810 1127 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
bf507ef7 1128 val = I915_READ(reg);
ad80a810 1129 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7
ED
1130 } else {
1131 reg = FDI_TX_CTL(pipe);
1132 val = I915_READ(reg);
1133 cur_state = !!(val & FDI_TX_ENABLE);
1134 }
040484af
JB
1135 WARN(cur_state != state,
1136 "FDI TX state assertion failure (expected %s, current %s)\n",
1137 state_string(state), state_string(cur_state));
1138}
1139#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1140#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1141
1142static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1143 enum pipe pipe, bool state)
1144{
1145 int reg;
1146 u32 val;
1147 bool cur_state;
1148
d63fa0dc
PZ
1149 reg = FDI_RX_CTL(pipe);
1150 val = I915_READ(reg);
1151 cur_state = !!(val & FDI_RX_ENABLE);
040484af
JB
1152 WARN(cur_state != state,
1153 "FDI RX state assertion failure (expected %s, current %s)\n",
1154 state_string(state), state_string(cur_state));
1155}
1156#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1157#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1158
1159static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
1161{
1162 int reg;
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
3d13ef2e 1166 if (INTEL_INFO(dev_priv->dev)->gen == 5)
040484af
JB
1167 return;
1168
bf507ef7 1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
affa9354 1170 if (HAS_DDI(dev_priv->dev))
bf507ef7
ED
1171 return;
1172
040484af
JB
1173 reg = FDI_TX_CTL(pipe);
1174 val = I915_READ(reg);
1175 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1176}
1177
55607e8a
DV
1178void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1179 enum pipe pipe, bool state)
040484af
JB
1180{
1181 int reg;
1182 u32 val;
55607e8a 1183 bool cur_state;
040484af
JB
1184
1185 reg = FDI_RX_CTL(pipe);
1186 val = I915_READ(reg);
55607e8a
DV
1187 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1188 WARN(cur_state != state,
1189 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1190 state_string(state), state_string(cur_state));
040484af
JB
1191}
1192
ea0760cf
JB
1193static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1194 enum pipe pipe)
1195{
1196 int pp_reg, lvds_reg;
1197 u32 val;
1198 enum pipe panel_pipe = PIPE_A;
0de3b485 1199 bool locked = true;
ea0760cf
JB
1200
1201 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1202 pp_reg = PCH_PP_CONTROL;
1203 lvds_reg = PCH_LVDS;
1204 } else {
1205 pp_reg = PP_CONTROL;
1206 lvds_reg = LVDS;
1207 }
1208
1209 val = I915_READ(pp_reg);
1210 if (!(val & PANEL_POWER_ON) ||
1211 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1212 locked = false;
1213
1214 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1215 panel_pipe = PIPE_B;
1216
1217 WARN(panel_pipe == pipe && locked,
1218 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1219 pipe_name(pipe));
ea0760cf
JB
1220}
1221
93ce0ba6
JN
1222static void assert_cursor(struct drm_i915_private *dev_priv,
1223 enum pipe pipe, bool state)
1224{
1225 struct drm_device *dev = dev_priv->dev;
1226 bool cur_state;
1227
d9d82081 1228 if (IS_845G(dev) || IS_I865G(dev))
93ce0ba6 1229 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
d9d82081 1230 else
5efb3e28 1231 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6
JN
1232
1233 WARN(cur_state != state,
1234 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1235 pipe_name(pipe), state_string(state), state_string(cur_state));
1236}
1237#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1238#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1239
b840d907
JB
1240void assert_pipe(struct drm_i915_private *dev_priv,
1241 enum pipe pipe, bool state)
b24e7179
JB
1242{
1243 int reg;
1244 u32 val;
63d7bbe9 1245 bool cur_state;
702e7a56
PZ
1246 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1247 pipe);
b24e7179 1248
8e636784
DV
1249 /* if we need the pipe A quirk it must be always on */
1250 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1251 state = true;
1252
da7e29bd 1253 if (!intel_display_power_enabled(dev_priv,
b97186f0 1254 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
69310161
PZ
1255 cur_state = false;
1256 } else {
1257 reg = PIPECONF(cpu_transcoder);
1258 val = I915_READ(reg);
1259 cur_state = !!(val & PIPECONF_ENABLE);
1260 }
1261
63d7bbe9
JB
1262 WARN(cur_state != state,
1263 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1264 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1265}
1266
931872fc
CW
1267static void assert_plane(struct drm_i915_private *dev_priv,
1268 enum plane plane, bool state)
b24e7179
JB
1269{
1270 int reg;
1271 u32 val;
931872fc 1272 bool cur_state;
b24e7179
JB
1273
1274 reg = DSPCNTR(plane);
1275 val = I915_READ(reg);
931872fc
CW
1276 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1277 WARN(cur_state != state,
1278 "plane %c assertion failure (expected %s, current %s)\n",
1279 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1280}
1281
931872fc
CW
1282#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1283#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1284
b24e7179
JB
1285static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1286 enum pipe pipe)
1287{
653e1026 1288 struct drm_device *dev = dev_priv->dev;
b24e7179
JB
1289 int reg, i;
1290 u32 val;
1291 int cur_pipe;
1292
653e1026
VS
1293 /* Primary planes are fixed to pipes on gen4+ */
1294 if (INTEL_INFO(dev)->gen >= 4) {
28c05794
AJ
1295 reg = DSPCNTR(pipe);
1296 val = I915_READ(reg);
83f26f16 1297 WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1298 "plane %c assertion failure, should be disabled but not\n",
1299 plane_name(pipe));
19ec1358 1300 return;
28c05794 1301 }
19ec1358 1302
b24e7179 1303 /* Need to check both planes against the pipe */
08e2a7de 1304 for_each_pipe(i) {
b24e7179
JB
1305 reg = DSPCNTR(i);
1306 val = I915_READ(reg);
1307 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1308 DISPPLANE_SEL_PIPE_SHIFT;
1309 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1310 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1311 plane_name(i), pipe_name(pipe));
b24e7179
JB
1312 }
1313}
1314
19332d7a
JB
1315static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1316 enum pipe pipe)
1317{
20674eef 1318 struct drm_device *dev = dev_priv->dev;
1fe47785 1319 int reg, sprite;
19332d7a
JB
1320 u32 val;
1321
20674eef 1322 if (IS_VALLEYVIEW(dev)) {
1fe47785
DL
1323 for_each_sprite(pipe, sprite) {
1324 reg = SPCNTR(pipe, sprite);
20674eef 1325 val = I915_READ(reg);
83f26f16 1326 WARN(val & SP_ENABLE,
20674eef 1327 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1328 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1329 }
1330 } else if (INTEL_INFO(dev)->gen >= 7) {
1331 reg = SPRCTL(pipe);
19332d7a 1332 val = I915_READ(reg);
83f26f16 1333 WARN(val & SPRITE_ENABLE,
06da8da2 1334 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1335 plane_name(pipe), pipe_name(pipe));
1336 } else if (INTEL_INFO(dev)->gen >= 5) {
1337 reg = DVSCNTR(pipe);
19332d7a 1338 val = I915_READ(reg);
83f26f16 1339 WARN(val & DVS_ENABLE,
06da8da2 1340 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1341 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1342 }
1343}
1344
89eff4be 1345static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
92f2584a
JB
1346{
1347 u32 val;
1348 bool enabled;
1349
89eff4be 1350 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
9d82aa17 1351
92f2584a
JB
1352 val = I915_READ(PCH_DREF_CONTROL);
1353 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1354 DREF_SUPERSPREAD_SOURCE_MASK));
1355 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1356}
1357
ab9412ba
DV
1358static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1359 enum pipe pipe)
92f2584a
JB
1360{
1361 int reg;
1362 u32 val;
1363 bool enabled;
1364
ab9412ba 1365 reg = PCH_TRANSCONF(pipe);
92f2584a
JB
1366 val = I915_READ(reg);
1367 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1368 WARN(enabled,
1369 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1370 pipe_name(pipe));
92f2584a
JB
1371}
1372
4e634389
KP
1373static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1374 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1375{
1376 if ((val & DP_PORT_EN) == 0)
1377 return false;
1378
1379 if (HAS_PCH_CPT(dev_priv->dev)) {
1380 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1381 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1382 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1383 return false;
44f37d1f
CML
1384 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1385 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1386 return false;
f0575e92
KP
1387 } else {
1388 if ((val & DP_PIPE_MASK) != (pipe << 30))
1389 return false;
1390 }
1391 return true;
1392}
1393
1519b995
KP
1394static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1395 enum pipe pipe, u32 val)
1396{
dc0fa718 1397 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1398 return false;
1399
1400 if (HAS_PCH_CPT(dev_priv->dev)) {
dc0fa718 1401 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1402 return false;
44f37d1f
CML
1403 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1404 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1405 return false;
1519b995 1406 } else {
dc0fa718 1407 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1408 return false;
1409 }
1410 return true;
1411}
1412
1413static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1414 enum pipe pipe, u32 val)
1415{
1416 if ((val & LVDS_PORT_EN) == 0)
1417 return false;
1418
1419 if (HAS_PCH_CPT(dev_priv->dev)) {
1420 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1421 return false;
1422 } else {
1423 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1424 return false;
1425 }
1426 return true;
1427}
1428
1429static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1430 enum pipe pipe, u32 val)
1431{
1432 if ((val & ADPA_DAC_ENABLE) == 0)
1433 return false;
1434 if (HAS_PCH_CPT(dev_priv->dev)) {
1435 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1436 return false;
1437 } else {
1438 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1439 return false;
1440 }
1441 return true;
1442}
1443
291906f1 1444static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1445 enum pipe pipe, int reg, u32 port_sel)
291906f1 1446{
47a05eca 1447 u32 val = I915_READ(reg);
4e634389 1448 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1449 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1450 reg, pipe_name(pipe));
de9a35ab 1451
75c5da27
DV
1452 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1453 && (val & DP_PIPEB_SELECT),
de9a35ab 1454 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1455}
1456
1457static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1458 enum pipe pipe, int reg)
1459{
47a05eca 1460 u32 val = I915_READ(reg);
b70ad586 1461 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1462 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1463 reg, pipe_name(pipe));
de9a35ab 1464
dc0fa718 1465 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
75c5da27 1466 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1467 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1468}
1469
1470static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1471 enum pipe pipe)
1472{
1473 int reg;
1474 u32 val;
291906f1 1475
f0575e92
KP
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1477 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1478 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1479
1480 reg = PCH_ADPA;
1481 val = I915_READ(reg);
b70ad586 1482 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1483 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1484 pipe_name(pipe));
291906f1
JB
1485
1486 reg = PCH_LVDS;
1487 val = I915_READ(reg);
b70ad586 1488 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1489 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1490 pipe_name(pipe));
291906f1 1491
e2debe91
PZ
1492 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1493 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1494 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1495}
1496
40e9cf64
JB
1497static void intel_init_dpio(struct drm_device *dev)
1498{
1499 struct drm_i915_private *dev_priv = dev->dev_private;
1500
1501 if (!IS_VALLEYVIEW(dev))
1502 return;
1503
a09caddd
CML
1504 /*
1505 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1506 * CHV x1 PHY (DP/HDMI D)
1507 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1508 */
1509 if (IS_CHERRYVIEW(dev)) {
1510 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1511 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1512 } else {
1513 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1514 }
5382f5f3
JB
1515}
1516
426115cf 1517static void vlv_enable_pll(struct intel_crtc *crtc)
87442f73 1518{
426115cf
DV
1519 struct drm_device *dev = crtc->base.dev;
1520 struct drm_i915_private *dev_priv = dev->dev_private;
1521 int reg = DPLL(crtc->pipe);
1522 u32 dpll = crtc->config.dpll_hw_state.dpll;
87442f73 1523
426115cf 1524 assert_pipe_disabled(dev_priv, crtc->pipe);
87442f73
DV
1525
1526 /* No really, not for ILK+ */
1527 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1528
1529 /* PLL is protected by panel, make sure we can write it */
1530 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
426115cf 1531 assert_panel_unlocked(dev_priv, crtc->pipe);
87442f73 1532
426115cf
DV
1533 I915_WRITE(reg, dpll);
1534 POSTING_READ(reg);
1535 udelay(150);
1536
1537 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1538 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1539
1540 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1541 POSTING_READ(DPLL_MD(crtc->pipe));
87442f73
DV
1542
1543 /* We do this three times for luck */
426115cf 1544 I915_WRITE(reg, dpll);
87442f73
DV
1545 POSTING_READ(reg);
1546 udelay(150); /* wait for warmup */
426115cf 1547 I915_WRITE(reg, dpll);
87442f73
DV
1548 POSTING_READ(reg);
1549 udelay(150); /* wait for warmup */
426115cf 1550 I915_WRITE(reg, dpll);
87442f73
DV
1551 POSTING_READ(reg);
1552 udelay(150); /* wait for warmup */
1553}
1554
9d556c99
CML
1555static void chv_enable_pll(struct intel_crtc *crtc)
1556{
1557 struct drm_device *dev = crtc->base.dev;
1558 struct drm_i915_private *dev_priv = dev->dev_private;
1559 int pipe = crtc->pipe;
1560 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1561 u32 tmp;
1562
1563 assert_pipe_disabled(dev_priv, crtc->pipe);
1564
1565 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1566
1567 mutex_lock(&dev_priv->dpio_lock);
1568
1569 /* Enable back the 10bit clock to display controller */
1570 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1571 tmp |= DPIO_DCLKP_EN;
1572 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1573
1574 /*
1575 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1576 */
1577 udelay(1);
1578
1579 /* Enable PLL */
a11b0703 1580 I915_WRITE(DPLL(pipe), crtc->config.dpll_hw_state.dpll);
9d556c99
CML
1581
1582 /* Check PLL is locked */
a11b0703 1583 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99
CML
1584 DRM_ERROR("PLL %d failed to lock\n", pipe);
1585
a11b0703
VS
1586 /* not sure when this should be written */
1587 I915_WRITE(DPLL_MD(pipe), crtc->config.dpll_hw_state.dpll_md);
1588 POSTING_READ(DPLL_MD(pipe));
1589
9d556c99
CML
1590 mutex_unlock(&dev_priv->dpio_lock);
1591}
1592
66e3d5c0 1593static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1594{
66e3d5c0
DV
1595 struct drm_device *dev = crtc->base.dev;
1596 struct drm_i915_private *dev_priv = dev->dev_private;
1597 int reg = DPLL(crtc->pipe);
1598 u32 dpll = crtc->config.dpll_hw_state.dpll;
63d7bbe9 1599
66e3d5c0 1600 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1601
63d7bbe9 1602 /* No really, not for ILK+ */
3d13ef2e 1603 BUG_ON(INTEL_INFO(dev)->gen >= 5);
63d7bbe9
JB
1604
1605 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1606 if (IS_MOBILE(dev) && !IS_I830(dev))
1607 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1608
66e3d5c0
DV
1609 I915_WRITE(reg, dpll);
1610
1611 /* Wait for the clocks to stabilize. */
1612 POSTING_READ(reg);
1613 udelay(150);
1614
1615 if (INTEL_INFO(dev)->gen >= 4) {
1616 I915_WRITE(DPLL_MD(crtc->pipe),
1617 crtc->config.dpll_hw_state.dpll_md);
1618 } else {
1619 /* The pixel multiplier can only be updated once the
1620 * DPLL is enabled and the clocks are stable.
1621 *
1622 * So write it again.
1623 */
1624 I915_WRITE(reg, dpll);
1625 }
63d7bbe9
JB
1626
1627 /* We do this three times for luck */
66e3d5c0 1628 I915_WRITE(reg, dpll);
63d7bbe9
JB
1629 POSTING_READ(reg);
1630 udelay(150); /* wait for warmup */
66e3d5c0 1631 I915_WRITE(reg, dpll);
63d7bbe9
JB
1632 POSTING_READ(reg);
1633 udelay(150); /* wait for warmup */
66e3d5c0 1634 I915_WRITE(reg, dpll);
63d7bbe9
JB
1635 POSTING_READ(reg);
1636 udelay(150); /* wait for warmup */
1637}
1638
1639/**
50b44a44 1640 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1641 * @dev_priv: i915 private structure
1642 * @pipe: pipe PLL to disable
1643 *
1644 * Disable the PLL for @pipe, making sure the pipe is off first.
1645 *
1646 * Note! This is for pre-ILK only.
1647 */
50b44a44 1648static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9 1649{
63d7bbe9
JB
1650 /* Don't disable pipe A or pipe A PLLs if needed */
1651 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1652 return;
1653
1654 /* Make sure the pipe isn't still relying on us */
1655 assert_pipe_disabled(dev_priv, pipe);
1656
50b44a44
DV
1657 I915_WRITE(DPLL(pipe), 0);
1658 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1659}
1660
f6071166
JB
1661static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1662{
1663 u32 val = 0;
1664
1665 /* Make sure the pipe isn't still relying on us */
1666 assert_pipe_disabled(dev_priv, pipe);
1667
e5cbfbfb
ID
1668 /*
1669 * Leave integrated clock source and reference clock enabled for pipe B.
1670 * The latter is needed for VGA hotplug / manual detection.
1671 */
f6071166 1672 if (pipe == PIPE_B)
e5cbfbfb 1673 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
f6071166
JB
1674 I915_WRITE(DPLL(pipe), val);
1675 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1676
1677}
1678
1679static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1680{
d752048d 1681 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1682 u32 val;
1683
a11b0703
VS
1684 /* Make sure the pipe isn't still relying on us */
1685 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1686
a11b0703 1687 /* Set PLL en = 0 */
d17ec4ce 1688 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
a11b0703
VS
1689 if (pipe != PIPE_A)
1690 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1691 I915_WRITE(DPLL(pipe), val);
1692 POSTING_READ(DPLL(pipe));
d752048d
VS
1693
1694 mutex_lock(&dev_priv->dpio_lock);
1695
1696 /* Disable 10bit clock to display controller */
1697 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1698 val &= ~DPIO_DCLKP_EN;
1699 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1700
61407f6d
VS
1701 /* disable left/right clock distribution */
1702 if (pipe != PIPE_B) {
1703 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1704 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1705 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1706 } else {
1707 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1708 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1709 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1710 }
1711
d752048d 1712 mutex_unlock(&dev_priv->dpio_lock);
f6071166
JB
1713}
1714
e4607fcf
CML
1715void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1716 struct intel_digital_port *dport)
89b667f8
JB
1717{
1718 u32 port_mask;
00fc31b7 1719 int dpll_reg;
89b667f8 1720
e4607fcf
CML
1721 switch (dport->port) {
1722 case PORT_B:
89b667f8 1723 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1724 dpll_reg = DPLL(0);
e4607fcf
CML
1725 break;
1726 case PORT_C:
89b667f8 1727 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7
CML
1728 dpll_reg = DPLL(0);
1729 break;
1730 case PORT_D:
1731 port_mask = DPLL_PORTD_READY_MASK;
1732 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1733 break;
1734 default:
1735 BUG();
1736 }
89b667f8 1737
00fc31b7 1738 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
89b667f8 1739 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
00fc31b7 1740 port_name(dport->port), I915_READ(dpll_reg));
89b667f8
JB
1741}
1742
b14b1055
DV
1743static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1744{
1745 struct drm_device *dev = crtc->base.dev;
1746 struct drm_i915_private *dev_priv = dev->dev_private;
1747 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1748
be19f0ff
CW
1749 if (WARN_ON(pll == NULL))
1750 return;
1751
b14b1055
DV
1752 WARN_ON(!pll->refcount);
1753 if (pll->active == 0) {
1754 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1755 WARN_ON(pll->on);
1756 assert_shared_dpll_disabled(dev_priv, pll);
1757
1758 pll->mode_set(dev_priv, pll);
1759 }
1760}
1761
92f2584a 1762/**
85b3894f 1763 * intel_enable_shared_dpll - enable PCH PLL
92f2584a
JB
1764 * @dev_priv: i915 private structure
1765 * @pipe: pipe PLL to enable
1766 *
1767 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1768 * drives the transcoder clock.
1769 */
85b3894f 1770static void intel_enable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1771{
3d13ef2e
DL
1772 struct drm_device *dev = crtc->base.dev;
1773 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1774 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
92f2584a 1775
87a875bb 1776 if (WARN_ON(pll == NULL))
48da64a8
CW
1777 return;
1778
1779 if (WARN_ON(pll->refcount == 0))
1780 return;
ee7b9f93 1781
74dd6928 1782 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
46edb027 1783 pll->name, pll->active, pll->on,
e2b78267 1784 crtc->base.base.id);
92f2584a 1785
cdbd2316
DV
1786 if (pll->active++) {
1787 WARN_ON(!pll->on);
e9d6944e 1788 assert_shared_dpll_enabled(dev_priv, pll);
ee7b9f93
JB
1789 return;
1790 }
f4a091c7 1791 WARN_ON(pll->on);
ee7b9f93 1792
bd2bb1b9
PZ
1793 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1794
46edb027 1795 DRM_DEBUG_KMS("enabling %s\n", pll->name);
e7b903d2 1796 pll->enable(dev_priv, pll);
ee7b9f93 1797 pll->on = true;
92f2584a
JB
1798}
1799
716c2e55 1800void intel_disable_shared_dpll(struct intel_crtc *crtc)
92f2584a 1801{
3d13ef2e
DL
1802 struct drm_device *dev = crtc->base.dev;
1803 struct drm_i915_private *dev_priv = dev->dev_private;
e2b78267 1804 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4c609cb8 1805
92f2584a 1806 /* PCH only available on ILK+ */
3d13ef2e 1807 BUG_ON(INTEL_INFO(dev)->gen < 5);
87a875bb 1808 if (WARN_ON(pll == NULL))
ee7b9f93 1809 return;
92f2584a 1810
48da64a8
CW
1811 if (WARN_ON(pll->refcount == 0))
1812 return;
7a419866 1813
46edb027
DV
1814 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1815 pll->name, pll->active, pll->on,
e2b78267 1816 crtc->base.base.id);
7a419866 1817
48da64a8 1818 if (WARN_ON(pll->active == 0)) {
e9d6944e 1819 assert_shared_dpll_disabled(dev_priv, pll);
48da64a8
CW
1820 return;
1821 }
1822
e9d6944e 1823 assert_shared_dpll_enabled(dev_priv, pll);
f4a091c7 1824 WARN_ON(!pll->on);
cdbd2316 1825 if (--pll->active)
7a419866 1826 return;
ee7b9f93 1827
46edb027 1828 DRM_DEBUG_KMS("disabling %s\n", pll->name);
e7b903d2 1829 pll->disable(dev_priv, pll);
ee7b9f93 1830 pll->on = false;
bd2bb1b9
PZ
1831
1832 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
92f2584a
JB
1833}
1834
b8a4f404
PZ
1835static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1836 enum pipe pipe)
040484af 1837{
23670b32 1838 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1839 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1840 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
23670b32 1841 uint32_t reg, val, pipeconf_val;
040484af
JB
1842
1843 /* PCH only available on ILK+ */
3d13ef2e 1844 BUG_ON(INTEL_INFO(dev)->gen < 5);
040484af
JB
1845
1846 /* Make sure PCH DPLL is enabled */
e72f9fbf 1847 assert_shared_dpll_enabled(dev_priv,
e9d6944e 1848 intel_crtc_to_shared_dpll(intel_crtc));
040484af
JB
1849
1850 /* FDI must be feeding us bits for PCH ports */
1851 assert_fdi_tx_enabled(dev_priv, pipe);
1852 assert_fdi_rx_enabled(dev_priv, pipe);
1853
23670b32
DV
1854 if (HAS_PCH_CPT(dev)) {
1855 /* Workaround: Set the timing override bit before enabling the
1856 * pch transcoder. */
1857 reg = TRANS_CHICKEN2(pipe);
1858 val = I915_READ(reg);
1859 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1860 I915_WRITE(reg, val);
59c859d6 1861 }
23670b32 1862
ab9412ba 1863 reg = PCH_TRANSCONF(pipe);
040484af 1864 val = I915_READ(reg);
5f7f726d 1865 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1866
1867 if (HAS_PCH_IBX(dev_priv->dev)) {
1868 /*
1869 * make the BPC in transcoder be consistent with
1870 * that in pipeconf reg.
1871 */
dfd07d72
DV
1872 val &= ~PIPECONF_BPC_MASK;
1873 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1874 }
5f7f726d
PZ
1875
1876 val &= ~TRANS_INTERLACE_MASK;
1877 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1878 if (HAS_PCH_IBX(dev_priv->dev) &&
1879 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1880 val |= TRANS_LEGACY_INTERLACED_ILK;
1881 else
1882 val |= TRANS_INTERLACED;
5f7f726d
PZ
1883 else
1884 val |= TRANS_PROGRESSIVE;
1885
040484af
JB
1886 I915_WRITE(reg, val | TRANS_ENABLE);
1887 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1888 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1889}
1890
8fb033d7 1891static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1892 enum transcoder cpu_transcoder)
040484af 1893{
8fb033d7 1894 u32 val, pipeconf_val;
8fb033d7
PZ
1895
1896 /* PCH only available on ILK+ */
3d13ef2e 1897 BUG_ON(INTEL_INFO(dev_priv->dev)->gen < 5);
8fb033d7 1898
8fb033d7 1899 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1900 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1901 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1902
223a6fdf
PZ
1903 /* Workaround: set timing override bit. */
1904 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1905 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf
PZ
1906 I915_WRITE(_TRANSA_CHICKEN2, val);
1907
25f3ef11 1908 val = TRANS_ENABLE;
937bb610 1909 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1910
9a76b1c6
PZ
1911 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1912 PIPECONF_INTERLACED_ILK)
a35f2679 1913 val |= TRANS_INTERLACED;
8fb033d7
PZ
1914 else
1915 val |= TRANS_PROGRESSIVE;
1916
ab9412ba
DV
1917 I915_WRITE(LPT_TRANSCONF, val);
1918 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1919 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1920}
1921
b8a4f404
PZ
1922static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1923 enum pipe pipe)
040484af 1924{
23670b32
DV
1925 struct drm_device *dev = dev_priv->dev;
1926 uint32_t reg, val;
040484af
JB
1927
1928 /* FDI relies on the transcoder */
1929 assert_fdi_tx_disabled(dev_priv, pipe);
1930 assert_fdi_rx_disabled(dev_priv, pipe);
1931
291906f1
JB
1932 /* Ports must be off as well */
1933 assert_pch_ports_disabled(dev_priv, pipe);
1934
ab9412ba 1935 reg = PCH_TRANSCONF(pipe);
040484af
JB
1936 val = I915_READ(reg);
1937 val &= ~TRANS_ENABLE;
1938 I915_WRITE(reg, val);
1939 /* wait for PCH transcoder off, transcoder state */
1940 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1941 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32
DV
1942
1943 if (!HAS_PCH_IBX(dev)) {
1944 /* Workaround: Clear the timing override chicken bit again. */
1945 reg = TRANS_CHICKEN2(pipe);
1946 val = I915_READ(reg);
1947 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1948 I915_WRITE(reg, val);
1949 }
040484af
JB
1950}
1951
ab4d966c 1952static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1953{
8fb033d7
PZ
1954 u32 val;
1955
ab9412ba 1956 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1957 val &= ~TRANS_ENABLE;
ab9412ba 1958 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1959 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1960 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1961 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1962
1963 /* Workaround: clear timing override bit. */
1964 val = I915_READ(_TRANSA_CHICKEN2);
23670b32 1965 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
223a6fdf 1966 I915_WRITE(_TRANSA_CHICKEN2, val);
040484af
JB
1967}
1968
b24e7179 1969/**
309cfea8 1970 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1971 * @crtc: crtc responsible for the pipe
b24e7179 1972 *
0372264a 1973 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1974 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1975 */
e1fdc473 1976static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1977{
0372264a
PZ
1978 struct drm_device *dev = crtc->base.dev;
1979 struct drm_i915_private *dev_priv = dev->dev_private;
1980 enum pipe pipe = crtc->pipe;
702e7a56
PZ
1981 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1982 pipe);
1a240d4d 1983 enum pipe pch_transcoder;
b24e7179
JB
1984 int reg;
1985 u32 val;
1986
58c6eaa2 1987 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1988 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1989 assert_sprites_disabled(dev_priv, pipe);
1990
681e5811 1991 if (HAS_PCH_LPT(dev_priv->dev))
cc391bbb
PZ
1992 pch_transcoder = TRANSCODER_A;
1993 else
1994 pch_transcoder = pipe;
1995
b24e7179
JB
1996 /*
1997 * A pipe without a PLL won't actually be able to drive bits from
1998 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1999 * need the check.
2000 */
2001 if (!HAS_PCH_SPLIT(dev_priv->dev))
fbf3218a 2002 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DSI))
23538ef1
JN
2003 assert_dsi_pll_enabled(dev_priv);
2004 else
2005 assert_pll_enabled(dev_priv, pipe);
040484af 2006 else {
30421c4f 2007 if (crtc->config.has_pch_encoder) {
040484af 2008 /* if driving the PCH, we need FDI enabled */
cc391bbb 2009 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
2010 assert_fdi_tx_pll_enabled(dev_priv,
2011 (enum pipe) cpu_transcoder);
040484af
JB
2012 }
2013 /* FIXME: assert CPU port conditions for SNB+ */
2014 }
b24e7179 2015
702e7a56 2016 reg = PIPECONF(cpu_transcoder);
b24e7179 2017 val = I915_READ(reg);
7ad25d48
PZ
2018 if (val & PIPECONF_ENABLE) {
2019 WARN_ON(!(pipe == PIPE_A &&
2020 dev_priv->quirks & QUIRK_PIPEA_FORCE));
00d70b15 2021 return;
7ad25d48 2022 }
00d70b15
CW
2023
2024 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2025 POSTING_READ(reg);
b24e7179
JB
2026}
2027
2028/**
309cfea8 2029 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
2030 * @dev_priv: i915 private structure
2031 * @pipe: pipe to disable
2032 *
2033 * Disable @pipe, making sure that various hardware specific requirements
2034 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
2035 *
2036 * @pipe should be %PIPE_A or %PIPE_B.
2037 *
2038 * Will wait until the pipe has shut down before returning.
2039 */
2040static void intel_disable_pipe(struct drm_i915_private *dev_priv,
2041 enum pipe pipe)
2042{
702e7a56
PZ
2043 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2044 pipe);
b24e7179
JB
2045 int reg;
2046 u32 val;
2047
2048 /*
2049 * Make sure planes won't keep trying to pump pixels to us,
2050 * or we might hang the display.
2051 */
2052 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2053 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2054 assert_sprites_disabled(dev_priv, pipe);
b24e7179
JB
2055
2056 /* Don't disable pipe A or pipe A PLLs if needed */
2057 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2058 return;
2059
702e7a56 2060 reg = PIPECONF(cpu_transcoder);
b24e7179 2061 val = I915_READ(reg);
00d70b15
CW
2062 if ((val & PIPECONF_ENABLE) == 0)
2063 return;
2064
2065 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
2066 intel_wait_for_pipe_off(dev_priv->dev, pipe);
2067}
2068
d74362c9
KP
2069/*
2070 * Plane regs are double buffered, going from enabled->disabled needs a
2071 * trigger in order to latch. The display address reg provides this.
2072 */
1dba99f4
VS
2073void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2074 enum plane plane)
d74362c9 2075{
3d13ef2e
DL
2076 struct drm_device *dev = dev_priv->dev;
2077 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1dba99f4
VS
2078
2079 I915_WRITE(reg, I915_READ(reg));
2080 POSTING_READ(reg);
d74362c9
KP
2081}
2082
b24e7179 2083/**
262ca2b0 2084 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
b24e7179
JB
2085 * @dev_priv: i915 private structure
2086 * @plane: plane to enable
2087 * @pipe: pipe being fed
2088 *
2089 * Enable @plane on @pipe, making sure that @pipe is running first.
2090 */
262ca2b0
MR
2091static void intel_enable_primary_hw_plane(struct drm_i915_private *dev_priv,
2092 enum plane plane, enum pipe pipe)
b24e7179 2093{
33c3b0d1 2094 struct drm_device *dev = dev_priv->dev;
939c2fe8
VS
2095 struct intel_crtc *intel_crtc =
2096 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2097 int reg;
2098 u32 val;
2099
2100 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2101 assert_pipe_enabled(dev_priv, pipe);
2102
98ec7739
VS
2103 if (intel_crtc->primary_enabled)
2104 return;
0037f71c 2105
4c445e0e 2106 intel_crtc->primary_enabled = true;
939c2fe8 2107
b24e7179
JB
2108 reg = DSPCNTR(plane);
2109 val = I915_READ(reg);
10efa932 2110 WARN_ON(val & DISPLAY_PLANE_ENABLE);
00d70b15
CW
2111
2112 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1dba99f4 2113 intel_flush_primary_plane(dev_priv, plane);
33c3b0d1
VS
2114
2115 /*
2116 * BDW signals flip done immediately if the plane
2117 * is disabled, even if the plane enable is already
2118 * armed to occur at the next vblank :(
2119 */
2120 if (IS_BROADWELL(dev))
2121 intel_wait_for_vblank(dev, intel_crtc->pipe);
b24e7179
JB
2122}
2123
b24e7179 2124/**
262ca2b0 2125 * intel_disable_primary_hw_plane - disable the primary hardware plane
b24e7179
JB
2126 * @dev_priv: i915 private structure
2127 * @plane: plane to disable
2128 * @pipe: pipe consuming the data
2129 *
2130 * Disable @plane; should be an independent operation.
2131 */
262ca2b0
MR
2132static void intel_disable_primary_hw_plane(struct drm_i915_private *dev_priv,
2133 enum plane plane, enum pipe pipe)
b24e7179 2134{
939c2fe8
VS
2135 struct intel_crtc *intel_crtc =
2136 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
b24e7179
JB
2137 int reg;
2138 u32 val;
2139
98ec7739
VS
2140 if (!intel_crtc->primary_enabled)
2141 return;
0037f71c 2142
4c445e0e 2143 intel_crtc->primary_enabled = false;
939c2fe8 2144
b24e7179
JB
2145 reg = DSPCNTR(plane);
2146 val = I915_READ(reg);
10efa932 2147 WARN_ON((val & DISPLAY_PLANE_ENABLE) == 0);
00d70b15
CW
2148
2149 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1dba99f4 2150 intel_flush_primary_plane(dev_priv, plane);
b24e7179
JB
2151}
2152
693db184
CW
2153static bool need_vtd_wa(struct drm_device *dev)
2154{
2155#ifdef CONFIG_INTEL_IOMMU
2156 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2157 return true;
2158#endif
2159 return false;
2160}
2161
a57ce0b2
JB
2162static int intel_align_height(struct drm_device *dev, int height, bool tiled)
2163{
2164 int tile_height;
2165
2166 tile_height = tiled ? (IS_GEN2(dev) ? 16 : 8) : 1;
2167 return ALIGN(height, tile_height);
2168}
2169
127bd2ac 2170int
48b956c5 2171intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 2172 struct drm_i915_gem_object *obj,
a4872ba6 2173 struct intel_engine_cs *pipelined)
6b95a207 2174{
ce453d81 2175 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
2176 u32 alignment;
2177 int ret;
2178
ebcdd39e
MR
2179 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2180
05394f39 2181 switch (obj->tiling_mode) {
6b95a207 2182 case I915_TILING_NONE:
534843da
CW
2183 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2184 alignment = 128 * 1024;
a6c45cf0 2185 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
2186 alignment = 4 * 1024;
2187 else
2188 alignment = 64 * 1024;
6b95a207
KH
2189 break;
2190 case I915_TILING_X:
2191 /* pin() will align the object as required by fence */
2192 alignment = 0;
2193 break;
2194 case I915_TILING_Y:
80075d49 2195 WARN(1, "Y tiled bo slipped through, driver bug!\n");
6b95a207
KH
2196 return -EINVAL;
2197 default:
2198 BUG();
2199 }
2200
693db184
CW
2201 /* Note that the w/a also requires 64 PTE of padding following the
2202 * bo. We currently fill all unused PTE with the shadow page and so
2203 * we should always have valid PTE following the scanout preventing
2204 * the VT-d warning.
2205 */
2206 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2207 alignment = 256 * 1024;
2208
ce453d81 2209 dev_priv->mm.interruptible = false;
2da3b9b9 2210 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 2211 if (ret)
ce453d81 2212 goto err_interruptible;
6b95a207
KH
2213
2214 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2215 * fence, whereas 965+ only requires a fence if using
2216 * framebuffer compression. For simplicity, we always install
2217 * a fence as the cost is not that onerous.
2218 */
06d98131 2219 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
2220 if (ret)
2221 goto err_unpin;
1690e1eb 2222
9a5a53b3 2223 i915_gem_object_pin_fence(obj);
6b95a207 2224
ce453d81 2225 dev_priv->mm.interruptible = true;
6b95a207 2226 return 0;
48b956c5
CW
2227
2228err_unpin:
cc98b413 2229 i915_gem_object_unpin_from_display_plane(obj);
ce453d81
CW
2230err_interruptible:
2231 dev_priv->mm.interruptible = true;
48b956c5 2232 return ret;
6b95a207
KH
2233}
2234
1690e1eb
CW
2235void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2236{
ebcdd39e
MR
2237 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2238
1690e1eb 2239 i915_gem_object_unpin_fence(obj);
cc98b413 2240 i915_gem_object_unpin_from_display_plane(obj);
1690e1eb
CW
2241}
2242
c2c75131
DV
2243/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2244 * is assumed to be a power-of-two. */
bc752862
CW
2245unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2246 unsigned int tiling_mode,
2247 unsigned int cpp,
2248 unsigned int pitch)
c2c75131 2249{
bc752862
CW
2250 if (tiling_mode != I915_TILING_NONE) {
2251 unsigned int tile_rows, tiles;
c2c75131 2252
bc752862
CW
2253 tile_rows = *y / 8;
2254 *y %= 8;
c2c75131 2255
bc752862
CW
2256 tiles = *x / (512/cpp);
2257 *x %= 512/cpp;
2258
2259 return tile_rows * pitch * 8 + tiles * 4096;
2260 } else {
2261 unsigned int offset;
2262
2263 offset = *y * pitch + *x * cpp;
2264 *y = 0;
2265 *x = (offset & 4095) / cpp;
2266 return offset & -4096;
2267 }
c2c75131
DV
2268}
2269
46f297fb
JB
2270int intel_format_to_fourcc(int format)
2271{
2272 switch (format) {
2273 case DISPPLANE_8BPP:
2274 return DRM_FORMAT_C8;
2275 case DISPPLANE_BGRX555:
2276 return DRM_FORMAT_XRGB1555;
2277 case DISPPLANE_BGRX565:
2278 return DRM_FORMAT_RGB565;
2279 default:
2280 case DISPPLANE_BGRX888:
2281 return DRM_FORMAT_XRGB8888;
2282 case DISPPLANE_RGBX888:
2283 return DRM_FORMAT_XBGR8888;
2284 case DISPPLANE_BGRX101010:
2285 return DRM_FORMAT_XRGB2101010;
2286 case DISPPLANE_RGBX101010:
2287 return DRM_FORMAT_XBGR2101010;
2288 }
2289}
2290
484b41dd 2291static bool intel_alloc_plane_obj(struct intel_crtc *crtc,
46f297fb
JB
2292 struct intel_plane_config *plane_config)
2293{
2294 struct drm_device *dev = crtc->base.dev;
2295 struct drm_i915_gem_object *obj = NULL;
2296 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2297 u32 base = plane_config->base;
2298
ff2652ea
CW
2299 if (plane_config->size == 0)
2300 return false;
2301
46f297fb
JB
2302 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2303 plane_config->size);
2304 if (!obj)
484b41dd 2305 return false;
46f297fb
JB
2306
2307 if (plane_config->tiled) {
2308 obj->tiling_mode = I915_TILING_X;
66e514c1 2309 obj->stride = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2310 }
2311
66e514c1
DA
2312 mode_cmd.pixel_format = crtc->base.primary->fb->pixel_format;
2313 mode_cmd.width = crtc->base.primary->fb->width;
2314 mode_cmd.height = crtc->base.primary->fb->height;
2315 mode_cmd.pitches[0] = crtc->base.primary->fb->pitches[0];
46f297fb
JB
2316
2317 mutex_lock(&dev->struct_mutex);
2318
66e514c1 2319 if (intel_framebuffer_init(dev, to_intel_framebuffer(crtc->base.primary->fb),
484b41dd 2320 &mode_cmd, obj)) {
46f297fb
JB
2321 DRM_DEBUG_KMS("intel fb init failed\n");
2322 goto out_unref_obj;
2323 }
2324
a071fa00 2325 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
46f297fb 2326 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2327
2328 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2329 return true;
46f297fb
JB
2330
2331out_unref_obj:
2332 drm_gem_object_unreference(&obj->base);
2333 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2334 return false;
2335}
2336
2337static void intel_find_plane_obj(struct intel_crtc *intel_crtc,
2338 struct intel_plane_config *plane_config)
2339{
2340 struct drm_device *dev = intel_crtc->base.dev;
2341 struct drm_crtc *c;
2342 struct intel_crtc *i;
2ff8fde1 2343 struct drm_i915_gem_object *obj;
484b41dd 2344
66e514c1 2345 if (!intel_crtc->base.primary->fb)
484b41dd
JB
2346 return;
2347
2348 if (intel_alloc_plane_obj(intel_crtc, plane_config))
2349 return;
2350
66e514c1
DA
2351 kfree(intel_crtc->base.primary->fb);
2352 intel_crtc->base.primary->fb = NULL;
484b41dd
JB
2353
2354 /*
2355 * Failed to alloc the obj, check to see if we should share
2356 * an fb with another CRTC instead
2357 */
70e1e0ec 2358 for_each_crtc(dev, c) {
484b41dd
JB
2359 i = to_intel_crtc(c);
2360
2361 if (c == &intel_crtc->base)
2362 continue;
2363
2ff8fde1
MR
2364 if (!i->active)
2365 continue;
2366
2367 obj = intel_fb_obj(c->primary->fb);
2368 if (obj == NULL)
484b41dd
JB
2369 continue;
2370
2ff8fde1 2371 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
66e514c1
DA
2372 drm_framebuffer_reference(c->primary->fb);
2373 intel_crtc->base.primary->fb = c->primary->fb;
2ff8fde1 2374 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
484b41dd
JB
2375 break;
2376 }
2377 }
46f297fb
JB
2378}
2379
29b9bde6
DV
2380static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2381 struct drm_framebuffer *fb,
2382 int x, int y)
81255565
JB
2383{
2384 struct drm_device *dev = crtc->dev;
2385 struct drm_i915_private *dev_priv = dev->dev_private;
2386 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2387 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2388 int plane = intel_crtc->plane;
e506a0c6 2389 unsigned long linear_offset;
81255565 2390 u32 dspcntr;
5eddb70b 2391 u32 reg;
81255565 2392
5eddb70b
CW
2393 reg = DSPCNTR(plane);
2394 dspcntr = I915_READ(reg);
81255565
JB
2395 /* Mask out pixel format bits in case we change it */
2396 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2397 switch (fb->pixel_format) {
2398 case DRM_FORMAT_C8:
81255565
JB
2399 dspcntr |= DISPPLANE_8BPP;
2400 break;
57779d06
VS
2401 case DRM_FORMAT_XRGB1555:
2402 case DRM_FORMAT_ARGB1555:
2403 dspcntr |= DISPPLANE_BGRX555;
81255565 2404 break;
57779d06
VS
2405 case DRM_FORMAT_RGB565:
2406 dspcntr |= DISPPLANE_BGRX565;
2407 break;
2408 case DRM_FORMAT_XRGB8888:
2409 case DRM_FORMAT_ARGB8888:
2410 dspcntr |= DISPPLANE_BGRX888;
2411 break;
2412 case DRM_FORMAT_XBGR8888:
2413 case DRM_FORMAT_ABGR8888:
2414 dspcntr |= DISPPLANE_RGBX888;
2415 break;
2416 case DRM_FORMAT_XRGB2101010:
2417 case DRM_FORMAT_ARGB2101010:
2418 dspcntr |= DISPPLANE_BGRX101010;
2419 break;
2420 case DRM_FORMAT_XBGR2101010:
2421 case DRM_FORMAT_ABGR2101010:
2422 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2423 break;
2424 default:
baba133a 2425 BUG();
81255565 2426 }
57779d06 2427
a6c45cf0 2428 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2429 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2430 dspcntr |= DISPPLANE_TILED;
2431 else
2432 dspcntr &= ~DISPPLANE_TILED;
2433 }
2434
de1aa629
VS
2435 if (IS_G4X(dev))
2436 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2437
5eddb70b 2438 I915_WRITE(reg, dspcntr);
81255565 2439
e506a0c6 2440 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2441
c2c75131
DV
2442 if (INTEL_INFO(dev)->gen >= 4) {
2443 intel_crtc->dspaddr_offset =
bc752862
CW
2444 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2445 fb->bits_per_pixel / 8,
2446 fb->pitches[0]);
c2c75131
DV
2447 linear_offset -= intel_crtc->dspaddr_offset;
2448 } else {
e506a0c6 2449 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2450 }
e506a0c6 2451
f343c5f6
BW
2452 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2453 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2454 fb->pitches[0]);
01f2c773 2455 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2456 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2457 I915_WRITE(DSPSURF(plane),
2458 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2459 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2460 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2461 } else
f343c5f6 2462 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2463 POSTING_READ(reg);
17638cd6
JB
2464}
2465
29b9bde6
DV
2466static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2467 struct drm_framebuffer *fb,
2468 int x, int y)
17638cd6
JB
2469{
2470 struct drm_device *dev = crtc->dev;
2471 struct drm_i915_private *dev_priv = dev->dev_private;
2472 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2ff8fde1 2473 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
17638cd6 2474 int plane = intel_crtc->plane;
e506a0c6 2475 unsigned long linear_offset;
17638cd6
JB
2476 u32 dspcntr;
2477 u32 reg;
2478
17638cd6
JB
2479 reg = DSPCNTR(plane);
2480 dspcntr = I915_READ(reg);
2481 /* Mask out pixel format bits in case we change it */
2482 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
57779d06
VS
2483 switch (fb->pixel_format) {
2484 case DRM_FORMAT_C8:
17638cd6
JB
2485 dspcntr |= DISPPLANE_8BPP;
2486 break;
57779d06
VS
2487 case DRM_FORMAT_RGB565:
2488 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2489 break;
57779d06
VS
2490 case DRM_FORMAT_XRGB8888:
2491 case DRM_FORMAT_ARGB8888:
2492 dspcntr |= DISPPLANE_BGRX888;
2493 break;
2494 case DRM_FORMAT_XBGR8888:
2495 case DRM_FORMAT_ABGR8888:
2496 dspcntr |= DISPPLANE_RGBX888;
2497 break;
2498 case DRM_FORMAT_XRGB2101010:
2499 case DRM_FORMAT_ARGB2101010:
2500 dspcntr |= DISPPLANE_BGRX101010;
2501 break;
2502 case DRM_FORMAT_XBGR2101010:
2503 case DRM_FORMAT_ABGR2101010:
2504 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2505 break;
2506 default:
baba133a 2507 BUG();
17638cd6
JB
2508 }
2509
2510 if (obj->tiling_mode != I915_TILING_NONE)
2511 dspcntr |= DISPPLANE_TILED;
2512 else
2513 dspcntr &= ~DISPPLANE_TILED;
2514
b42c6009 2515 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1f5d76db
PZ
2516 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2517 else
2518 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6
JB
2519
2520 I915_WRITE(reg, dspcntr);
2521
e506a0c6 2522 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131 2523 intel_crtc->dspaddr_offset =
bc752862
CW
2524 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2525 fb->bits_per_pixel / 8,
2526 fb->pitches[0]);
c2c75131 2527 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2528
f343c5f6
BW
2529 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2530 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2531 fb->pitches[0]);
01f2c773 2532 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2533 I915_WRITE(DSPSURF(plane),
2534 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2535 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2536 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2537 } else {
2538 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2539 I915_WRITE(DSPLINOFF(plane), linear_offset);
2540 }
17638cd6 2541 POSTING_READ(reg);
17638cd6
JB
2542}
2543
2544/* Assume fb object is pinned & idle & fenced and just update base pointers */
2545static int
2546intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2547 int x, int y, enum mode_set_atomic state)
2548{
2549 struct drm_device *dev = crtc->dev;
2550 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2551
6b8e6ed0
CW
2552 if (dev_priv->display.disable_fbc)
2553 dev_priv->display.disable_fbc(dev);
cc36513c 2554 intel_increase_pllclock(dev, to_intel_crtc(crtc)->pipe);
81255565 2555
29b9bde6
DV
2556 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2557
2558 return 0;
81255565
JB
2559}
2560
96a02917
VS
2561void intel_display_handle_reset(struct drm_device *dev)
2562{
2563 struct drm_i915_private *dev_priv = dev->dev_private;
2564 struct drm_crtc *crtc;
2565
2566 /*
2567 * Flips in the rings have been nuked by the reset,
2568 * so complete all pending flips so that user space
2569 * will get its events and not get stuck.
2570 *
2571 * Also update the base address of all primary
2572 * planes to the the last fb to make sure we're
2573 * showing the correct fb after a reset.
2574 *
2575 * Need to make two loops over the crtcs so that we
2576 * don't try to grab a crtc mutex before the
2577 * pending_flip_queue really got woken up.
2578 */
2579
70e1e0ec 2580 for_each_crtc(dev, crtc) {
96a02917
VS
2581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2582 enum plane plane = intel_crtc->plane;
2583
2584 intel_prepare_page_flip(dev, plane);
2585 intel_finish_page_flip_plane(dev, plane);
2586 }
2587
70e1e0ec 2588 for_each_crtc(dev, crtc) {
96a02917
VS
2589 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2590
51fd371b 2591 drm_modeset_lock(&crtc->mutex, NULL);
947fdaad
CW
2592 /*
2593 * FIXME: Once we have proper support for primary planes (and
2594 * disabling them without disabling the entire crtc) allow again
66e514c1 2595 * a NULL crtc->primary->fb.
947fdaad 2596 */
f4510a27 2597 if (intel_crtc->active && crtc->primary->fb)
262ca2b0 2598 dev_priv->display.update_primary_plane(crtc,
66e514c1 2599 crtc->primary->fb,
262ca2b0
MR
2600 crtc->x,
2601 crtc->y);
51fd371b 2602 drm_modeset_unlock(&crtc->mutex);
96a02917
VS
2603 }
2604}
2605
14667a4b
CW
2606static int
2607intel_finish_fb(struct drm_framebuffer *old_fb)
2608{
2ff8fde1 2609 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
14667a4b
CW
2610 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2611 bool was_interruptible = dev_priv->mm.interruptible;
2612 int ret;
2613
14667a4b
CW
2614 /* Big Hammer, we also need to ensure that any pending
2615 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2616 * current scanout is retired before unpinning the old
2617 * framebuffer.
2618 *
2619 * This should only fail upon a hung GPU, in which case we
2620 * can safely continue.
2621 */
2622 dev_priv->mm.interruptible = false;
2623 ret = i915_gem_object_finish_gpu(obj);
2624 dev_priv->mm.interruptible = was_interruptible;
2625
2626 return ret;
2627}
2628
7d5e3799
CW
2629static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2630{
2631 struct drm_device *dev = crtc->dev;
2632 struct drm_i915_private *dev_priv = dev->dev_private;
2633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2634 unsigned long flags;
2635 bool pending;
2636
2637 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2638 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2639 return false;
2640
2641 spin_lock_irqsave(&dev->event_lock, flags);
2642 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2643 spin_unlock_irqrestore(&dev->event_lock, flags);
2644
2645 return pending;
2646}
2647
5c3b82e2 2648static int
3c4fdcfb 2649intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2650 struct drm_framebuffer *fb)
79e53945
JB
2651{
2652 struct drm_device *dev = crtc->dev;
6b8e6ed0 2653 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 2654 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 2655 enum pipe pipe = intel_crtc->pipe;
2ff8fde1
MR
2656 struct drm_framebuffer *old_fb = crtc->primary->fb;
2657 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2658 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
5c3b82e2 2659 int ret;
79e53945 2660
7d5e3799
CW
2661 if (intel_crtc_has_pending_flip(crtc)) {
2662 DRM_ERROR("pipe is still busy with an old pageflip\n");
2663 return -EBUSY;
2664 }
2665
79e53945 2666 /* no fb bound */
94352cf9 2667 if (!fb) {
a5071c2f 2668 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2669 return 0;
2670 }
2671
7eb552ae 2672 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
84f44ce7
VS
2673 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2674 plane_name(intel_crtc->plane),
2675 INTEL_INFO(dev)->num_pipes);
5c3b82e2 2676 return -EINVAL;
79e53945
JB
2677 }
2678
5c3b82e2 2679 mutex_lock(&dev->struct_mutex);
a071fa00
DV
2680 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
2681 if (ret == 0)
91565c85 2682 i915_gem_track_fb(old_obj, obj,
a071fa00 2683 INTEL_FRONTBUFFER_PRIMARY(pipe));
8ac36ec1 2684 mutex_unlock(&dev->struct_mutex);
5c3b82e2 2685 if (ret != 0) {
a5071c2f 2686 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2687 return ret;
2688 }
79e53945 2689
bb2043de
DL
2690 /*
2691 * Update pipe size and adjust fitter if needed: the reason for this is
2692 * that in compute_mode_changes we check the native mode (not the pfit
2693 * mode) to see if we can flip rather than do a full mode set. In the
2694 * fastboot case, we'll flip, but if we don't update the pipesrc and
2695 * pfit state, we'll end up with a big fb scanned out into the wrong
2696 * sized surface.
2697 *
2698 * To fix this properly, we need to hoist the checks up into
2699 * compute_mode_changes (or above), check the actual pfit state and
2700 * whether the platform allows pfit disable with pipe active, and only
2701 * then update the pipesrc and pfit state, even on the flip path.
2702 */
d330a953 2703 if (i915.fastboot) {
d7bf63f2
DL
2704 const struct drm_display_mode *adjusted_mode =
2705 &intel_crtc->config.adjusted_mode;
2706
4d6a3e63 2707 I915_WRITE(PIPESRC(intel_crtc->pipe),
d7bf63f2
DL
2708 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2709 (adjusted_mode->crtc_vdisplay - 1));
fd4daa9c 2710 if (!intel_crtc->config.pch_pfit.enabled &&
4d6a3e63
JB
2711 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2712 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2713 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2714 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2715 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2716 }
0637d60d
JB
2717 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2718 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
4d6a3e63
JB
2719 }
2720
29b9bde6 2721 dev_priv->display.update_primary_plane(crtc, fb, x, y);
3c4fdcfb 2722
f99d7069
DV
2723 if (intel_crtc->active)
2724 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
2725
f4510a27 2726 crtc->primary->fb = fb;
6c4c86f5
DV
2727 crtc->x = x;
2728 crtc->y = y;
94352cf9 2729
b7f1de28 2730 if (old_fb) {
d7697eea
DV
2731 if (intel_crtc->active && old_fb != fb)
2732 intel_wait_for_vblank(dev, intel_crtc->pipe);
8ac36ec1 2733 mutex_lock(&dev->struct_mutex);
2ff8fde1 2734 intel_unpin_fb_obj(old_obj);
8ac36ec1 2735 mutex_unlock(&dev->struct_mutex);
b7f1de28 2736 }
652c393a 2737
8ac36ec1 2738 mutex_lock(&dev->struct_mutex);
6b8e6ed0 2739 intel_update_fbc(dev);
5c3b82e2 2740 mutex_unlock(&dev->struct_mutex);
79e53945 2741
5c3b82e2 2742 return 0;
79e53945
JB
2743}
2744
5e84e1a4
ZW
2745static void intel_fdi_normal_train(struct drm_crtc *crtc)
2746{
2747 struct drm_device *dev = crtc->dev;
2748 struct drm_i915_private *dev_priv = dev->dev_private;
2749 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2750 int pipe = intel_crtc->pipe;
2751 u32 reg, temp;
2752
2753 /* enable normal train */
2754 reg = FDI_TX_CTL(pipe);
2755 temp = I915_READ(reg);
61e499bf 2756 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2757 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2758 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2759 } else {
2760 temp &= ~FDI_LINK_TRAIN_NONE;
2761 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2762 }
5e84e1a4
ZW
2763 I915_WRITE(reg, temp);
2764
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 if (HAS_PCH_CPT(dev)) {
2768 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2769 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2770 } else {
2771 temp &= ~FDI_LINK_TRAIN_NONE;
2772 temp |= FDI_LINK_TRAIN_NONE;
2773 }
2774 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2775
2776 /* wait one idle pattern time */
2777 POSTING_READ(reg);
2778 udelay(1000);
357555c0
JB
2779
2780 /* IVB wants error correction enabled */
2781 if (IS_IVYBRIDGE(dev))
2782 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2783 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2784}
2785
1fbc0d78 2786static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
1e833f40 2787{
1fbc0d78
DV
2788 return crtc->base.enabled && crtc->active &&
2789 crtc->config.has_pch_encoder;
1e833f40
DV
2790}
2791
01a415fd
DV
2792static void ivb_modeset_global_resources(struct drm_device *dev)
2793{
2794 struct drm_i915_private *dev_priv = dev->dev_private;
2795 struct intel_crtc *pipe_B_crtc =
2796 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2797 struct intel_crtc *pipe_C_crtc =
2798 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2799 uint32_t temp;
2800
1e833f40
DV
2801 /*
2802 * When everything is off disable fdi C so that we could enable fdi B
2803 * with all lanes. Note that we don't care about enabled pipes without
2804 * an enabled pch encoder.
2805 */
2806 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2807 !pipe_has_enabled_pch(pipe_C_crtc)) {
01a415fd
DV
2808 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2809 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2810
2811 temp = I915_READ(SOUTH_CHICKEN1);
2812 temp &= ~FDI_BC_BIFURCATION_SELECT;
2813 DRM_DEBUG_KMS("disabling fdi C rx\n");
2814 I915_WRITE(SOUTH_CHICKEN1, temp);
2815 }
2816}
2817
8db9d77b
ZW
2818/* The FDI link training functions for ILK/Ibexpeak. */
2819static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2820{
2821 struct drm_device *dev = crtc->dev;
2822 struct drm_i915_private *dev_priv = dev->dev_private;
2823 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2824 int pipe = intel_crtc->pipe;
5eddb70b 2825 u32 reg, temp, tries;
8db9d77b 2826
1c8562f6 2827 /* FDI needs bits from pipe first */
0fc932b8 2828 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 2829
e1a44743
AJ
2830 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2831 for train result */
5eddb70b
CW
2832 reg = FDI_RX_IMR(pipe);
2833 temp = I915_READ(reg);
e1a44743
AJ
2834 temp &= ~FDI_RX_SYMBOL_LOCK;
2835 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2836 I915_WRITE(reg, temp);
2837 I915_READ(reg);
e1a44743
AJ
2838 udelay(150);
2839
8db9d77b 2840 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2841 reg = FDI_TX_CTL(pipe);
2842 temp = I915_READ(reg);
627eb5a3
DV
2843 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2844 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2845 temp &= ~FDI_LINK_TRAIN_NONE;
2846 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2847 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2848
5eddb70b
CW
2849 reg = FDI_RX_CTL(pipe);
2850 temp = I915_READ(reg);
8db9d77b
ZW
2851 temp &= ~FDI_LINK_TRAIN_NONE;
2852 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2853 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2854
2855 POSTING_READ(reg);
8db9d77b
ZW
2856 udelay(150);
2857
5b2adf89 2858 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
2859 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2860 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2861 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 2862
5eddb70b 2863 reg = FDI_RX_IIR(pipe);
e1a44743 2864 for (tries = 0; tries < 5; tries++) {
5eddb70b 2865 temp = I915_READ(reg);
8db9d77b
ZW
2866 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2867
2868 if ((temp & FDI_RX_BIT_LOCK)) {
2869 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2870 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2871 break;
2872 }
8db9d77b 2873 }
e1a44743 2874 if (tries == 5)
5eddb70b 2875 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2876
2877 /* Train 2 */
5eddb70b
CW
2878 reg = FDI_TX_CTL(pipe);
2879 temp = I915_READ(reg);
8db9d77b
ZW
2880 temp &= ~FDI_LINK_TRAIN_NONE;
2881 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2882 I915_WRITE(reg, temp);
8db9d77b 2883
5eddb70b
CW
2884 reg = FDI_RX_CTL(pipe);
2885 temp = I915_READ(reg);
8db9d77b
ZW
2886 temp &= ~FDI_LINK_TRAIN_NONE;
2887 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2888 I915_WRITE(reg, temp);
8db9d77b 2889
5eddb70b
CW
2890 POSTING_READ(reg);
2891 udelay(150);
8db9d77b 2892
5eddb70b 2893 reg = FDI_RX_IIR(pipe);
e1a44743 2894 for (tries = 0; tries < 5; tries++) {
5eddb70b 2895 temp = I915_READ(reg);
8db9d77b
ZW
2896 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2897
2898 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2899 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2900 DRM_DEBUG_KMS("FDI train 2 done.\n");
2901 break;
2902 }
8db9d77b 2903 }
e1a44743 2904 if (tries == 5)
5eddb70b 2905 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2906
2907 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2908
8db9d77b
ZW
2909}
2910
0206e353 2911static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2912 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2913 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2914 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2915 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2916};
2917
2918/* The FDI link training functions for SNB/Cougarpoint. */
2919static void gen6_fdi_link_train(struct drm_crtc *crtc)
2920{
2921 struct drm_device *dev = crtc->dev;
2922 struct drm_i915_private *dev_priv = dev->dev_private;
2923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2924 int pipe = intel_crtc->pipe;
fa37d39e 2925 u32 reg, temp, i, retry;
8db9d77b 2926
e1a44743
AJ
2927 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2928 for train result */
5eddb70b
CW
2929 reg = FDI_RX_IMR(pipe);
2930 temp = I915_READ(reg);
e1a44743
AJ
2931 temp &= ~FDI_RX_SYMBOL_LOCK;
2932 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2933 I915_WRITE(reg, temp);
2934
2935 POSTING_READ(reg);
e1a44743
AJ
2936 udelay(150);
2937
8db9d77b 2938 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2939 reg = FDI_TX_CTL(pipe);
2940 temp = I915_READ(reg);
627eb5a3
DV
2941 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2942 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
8db9d77b
ZW
2943 temp &= ~FDI_LINK_TRAIN_NONE;
2944 temp |= FDI_LINK_TRAIN_PATTERN_1;
2945 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2946 /* SNB-B */
2947 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2948 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2949
d74cf324
DV
2950 I915_WRITE(FDI_RX_MISC(pipe),
2951 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2952
5eddb70b
CW
2953 reg = FDI_RX_CTL(pipe);
2954 temp = I915_READ(reg);
8db9d77b
ZW
2955 if (HAS_PCH_CPT(dev)) {
2956 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2957 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2958 } else {
2959 temp &= ~FDI_LINK_TRAIN_NONE;
2960 temp |= FDI_LINK_TRAIN_PATTERN_1;
2961 }
5eddb70b
CW
2962 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2963
2964 POSTING_READ(reg);
8db9d77b
ZW
2965 udelay(150);
2966
0206e353 2967 for (i = 0; i < 4; i++) {
5eddb70b
CW
2968 reg = FDI_TX_CTL(pipe);
2969 temp = I915_READ(reg);
8db9d77b
ZW
2970 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2971 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2972 I915_WRITE(reg, temp);
2973
2974 POSTING_READ(reg);
8db9d77b
ZW
2975 udelay(500);
2976
fa37d39e
SP
2977 for (retry = 0; retry < 5; retry++) {
2978 reg = FDI_RX_IIR(pipe);
2979 temp = I915_READ(reg);
2980 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2981 if (temp & FDI_RX_BIT_LOCK) {
2982 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2983 DRM_DEBUG_KMS("FDI train 1 done.\n");
2984 break;
2985 }
2986 udelay(50);
8db9d77b 2987 }
fa37d39e
SP
2988 if (retry < 5)
2989 break;
8db9d77b
ZW
2990 }
2991 if (i == 4)
5eddb70b 2992 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2993
2994 /* Train 2 */
5eddb70b
CW
2995 reg = FDI_TX_CTL(pipe);
2996 temp = I915_READ(reg);
8db9d77b
ZW
2997 temp &= ~FDI_LINK_TRAIN_NONE;
2998 temp |= FDI_LINK_TRAIN_PATTERN_2;
2999 if (IS_GEN6(dev)) {
3000 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3001 /* SNB-B */
3002 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3003 }
5eddb70b 3004 I915_WRITE(reg, temp);
8db9d77b 3005
5eddb70b
CW
3006 reg = FDI_RX_CTL(pipe);
3007 temp = I915_READ(reg);
8db9d77b
ZW
3008 if (HAS_PCH_CPT(dev)) {
3009 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3010 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3011 } else {
3012 temp &= ~FDI_LINK_TRAIN_NONE;
3013 temp |= FDI_LINK_TRAIN_PATTERN_2;
3014 }
5eddb70b
CW
3015 I915_WRITE(reg, temp);
3016
3017 POSTING_READ(reg);
8db9d77b
ZW
3018 udelay(150);
3019
0206e353 3020 for (i = 0; i < 4; i++) {
5eddb70b
CW
3021 reg = FDI_TX_CTL(pipe);
3022 temp = I915_READ(reg);
8db9d77b
ZW
3023 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3024 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3025 I915_WRITE(reg, temp);
3026
3027 POSTING_READ(reg);
8db9d77b
ZW
3028 udelay(500);
3029
fa37d39e
SP
3030 for (retry = 0; retry < 5; retry++) {
3031 reg = FDI_RX_IIR(pipe);
3032 temp = I915_READ(reg);
3033 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3034 if (temp & FDI_RX_SYMBOL_LOCK) {
3035 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3036 DRM_DEBUG_KMS("FDI train 2 done.\n");
3037 break;
3038 }
3039 udelay(50);
8db9d77b 3040 }
fa37d39e
SP
3041 if (retry < 5)
3042 break;
8db9d77b
ZW
3043 }
3044 if (i == 4)
5eddb70b 3045 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3046
3047 DRM_DEBUG_KMS("FDI train done.\n");
3048}
3049
357555c0
JB
3050/* Manual link training for Ivy Bridge A0 parts */
3051static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3052{
3053 struct drm_device *dev = crtc->dev;
3054 struct drm_i915_private *dev_priv = dev->dev_private;
3055 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3056 int pipe = intel_crtc->pipe;
139ccd3f 3057 u32 reg, temp, i, j;
357555c0
JB
3058
3059 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3060 for train result */
3061 reg = FDI_RX_IMR(pipe);
3062 temp = I915_READ(reg);
3063 temp &= ~FDI_RX_SYMBOL_LOCK;
3064 temp &= ~FDI_RX_BIT_LOCK;
3065 I915_WRITE(reg, temp);
3066
3067 POSTING_READ(reg);
3068 udelay(150);
3069
01a415fd
DV
3070 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3071 I915_READ(FDI_RX_IIR(pipe)));
3072
139ccd3f
JB
3073 /* Try each vswing and preemphasis setting twice before moving on */
3074 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3075 /* disable first in case we need to retry */
3076 reg = FDI_TX_CTL(pipe);
3077 temp = I915_READ(reg);
3078 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3079 temp &= ~FDI_TX_ENABLE;
3080 I915_WRITE(reg, temp);
357555c0 3081
139ccd3f
JB
3082 reg = FDI_RX_CTL(pipe);
3083 temp = I915_READ(reg);
3084 temp &= ~FDI_LINK_TRAIN_AUTO;
3085 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3086 temp &= ~FDI_RX_ENABLE;
3087 I915_WRITE(reg, temp);
357555c0 3088
139ccd3f 3089 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3090 reg = FDI_TX_CTL(pipe);
3091 temp = I915_READ(reg);
139ccd3f
JB
3092 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3093 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
3094 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3095 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3096 temp |= snb_b_fdi_train_param[j/2];
3097 temp |= FDI_COMPOSITE_SYNC;
3098 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3099
139ccd3f
JB
3100 I915_WRITE(FDI_RX_MISC(pipe),
3101 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3102
139ccd3f 3103 reg = FDI_RX_CTL(pipe);
357555c0 3104 temp = I915_READ(reg);
139ccd3f
JB
3105 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3106 temp |= FDI_COMPOSITE_SYNC;
3107 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3108
139ccd3f
JB
3109 POSTING_READ(reg);
3110 udelay(1); /* should be 0.5us */
357555c0 3111
139ccd3f
JB
3112 for (i = 0; i < 4; i++) {
3113 reg = FDI_RX_IIR(pipe);
3114 temp = I915_READ(reg);
3115 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3116
139ccd3f
JB
3117 if (temp & FDI_RX_BIT_LOCK ||
3118 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3119 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3120 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3121 i);
3122 break;
3123 }
3124 udelay(1); /* should be 0.5us */
3125 }
3126 if (i == 4) {
3127 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3128 continue;
3129 }
357555c0 3130
139ccd3f 3131 /* Train 2 */
357555c0
JB
3132 reg = FDI_TX_CTL(pipe);
3133 temp = I915_READ(reg);
139ccd3f
JB
3134 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3135 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3136 I915_WRITE(reg, temp);
3137
3138 reg = FDI_RX_CTL(pipe);
3139 temp = I915_READ(reg);
3140 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3141 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3142 I915_WRITE(reg, temp);
3143
3144 POSTING_READ(reg);
139ccd3f 3145 udelay(2); /* should be 1.5us */
357555c0 3146
139ccd3f
JB
3147 for (i = 0; i < 4; i++) {
3148 reg = FDI_RX_IIR(pipe);
3149 temp = I915_READ(reg);
3150 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3151
139ccd3f
JB
3152 if (temp & FDI_RX_SYMBOL_LOCK ||
3153 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3154 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3155 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3156 i);
3157 goto train_done;
3158 }
3159 udelay(2); /* should be 1.5us */
357555c0 3160 }
139ccd3f
JB
3161 if (i == 4)
3162 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3163 }
357555c0 3164
139ccd3f 3165train_done:
357555c0
JB
3166 DRM_DEBUG_KMS("FDI train done.\n");
3167}
3168
88cefb6c 3169static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3170{
88cefb6c 3171 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3172 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3173 int pipe = intel_crtc->pipe;
5eddb70b 3174 u32 reg, temp;
79e53945 3175
c64e311e 3176
c98e9dcf 3177 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3178 reg = FDI_RX_CTL(pipe);
3179 temp = I915_READ(reg);
627eb5a3
DV
3180 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3181 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
dfd07d72 3182 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3183 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3184
3185 POSTING_READ(reg);
c98e9dcf
JB
3186 udelay(200);
3187
3188 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3189 temp = I915_READ(reg);
3190 I915_WRITE(reg, temp | FDI_PCDCLK);
3191
3192 POSTING_READ(reg);
c98e9dcf
JB
3193 udelay(200);
3194
20749730
PZ
3195 /* Enable CPU FDI TX PLL, always on for Ironlake */
3196 reg = FDI_TX_CTL(pipe);
3197 temp = I915_READ(reg);
3198 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3199 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3200
20749730
PZ
3201 POSTING_READ(reg);
3202 udelay(100);
6be4a607 3203 }
0e23b99d
JB
3204}
3205
88cefb6c
DV
3206static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3207{
3208 struct drm_device *dev = intel_crtc->base.dev;
3209 struct drm_i915_private *dev_priv = dev->dev_private;
3210 int pipe = intel_crtc->pipe;
3211 u32 reg, temp;
3212
3213 /* Switch from PCDclk to Rawclk */
3214 reg = FDI_RX_CTL(pipe);
3215 temp = I915_READ(reg);
3216 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3217
3218 /* Disable CPU FDI TX PLL */
3219 reg = FDI_TX_CTL(pipe);
3220 temp = I915_READ(reg);
3221 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3222
3223 POSTING_READ(reg);
3224 udelay(100);
3225
3226 reg = FDI_RX_CTL(pipe);
3227 temp = I915_READ(reg);
3228 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3229
3230 /* Wait for the clocks to turn off. */
3231 POSTING_READ(reg);
3232 udelay(100);
3233}
3234
0fc932b8
JB
3235static void ironlake_fdi_disable(struct drm_crtc *crtc)
3236{
3237 struct drm_device *dev = crtc->dev;
3238 struct drm_i915_private *dev_priv = dev->dev_private;
3239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3240 int pipe = intel_crtc->pipe;
3241 u32 reg, temp;
3242
3243 /* disable CPU FDI tx and PCH FDI rx */
3244 reg = FDI_TX_CTL(pipe);
3245 temp = I915_READ(reg);
3246 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3247 POSTING_READ(reg);
3248
3249 reg = FDI_RX_CTL(pipe);
3250 temp = I915_READ(reg);
3251 temp &= ~(0x7 << 16);
dfd07d72 3252 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3253 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3254
3255 POSTING_READ(reg);
3256 udelay(100);
3257
3258 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3259 if (HAS_PCH_IBX(dev))
6f06ce18 3260 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3261
3262 /* still set train pattern 1 */
3263 reg = FDI_TX_CTL(pipe);
3264 temp = I915_READ(reg);
3265 temp &= ~FDI_LINK_TRAIN_NONE;
3266 temp |= FDI_LINK_TRAIN_PATTERN_1;
3267 I915_WRITE(reg, temp);
3268
3269 reg = FDI_RX_CTL(pipe);
3270 temp = I915_READ(reg);
3271 if (HAS_PCH_CPT(dev)) {
3272 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3273 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3274 } else {
3275 temp &= ~FDI_LINK_TRAIN_NONE;
3276 temp |= FDI_LINK_TRAIN_PATTERN_1;
3277 }
3278 /* BPC in FDI rx is consistent with that in PIPECONF */
3279 temp &= ~(0x07 << 16);
dfd07d72 3280 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3281 I915_WRITE(reg, temp);
3282
3283 POSTING_READ(reg);
3284 udelay(100);
3285}
3286
5dce5b93
CW
3287bool intel_has_pending_fb_unpin(struct drm_device *dev)
3288{
3289 struct intel_crtc *crtc;
3290
3291 /* Note that we don't need to be called with mode_config.lock here
3292 * as our list of CRTC objects is static for the lifetime of the
3293 * device and so cannot disappear as we iterate. Similarly, we can
3294 * happily treat the predicates as racy, atomic checks as userspace
3295 * cannot claim and pin a new fb without at least acquring the
3296 * struct_mutex and so serialising with us.
3297 */
d3fcc808 3298 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3299 if (atomic_read(&crtc->unpin_work_count) == 0)
3300 continue;
3301
3302 if (crtc->unpin_work)
3303 intel_wait_for_vblank(dev, crtc->pipe);
3304
3305 return true;
3306 }
3307
3308 return false;
3309}
3310
46a55d30 3311void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3312{
0f91128d 3313 struct drm_device *dev = crtc->dev;
5bb61643 3314 struct drm_i915_private *dev_priv = dev->dev_private;
e6c3a2a6 3315
f4510a27 3316 if (crtc->primary->fb == NULL)
e6c3a2a6
CW
3317 return;
3318
2c10d571
DV
3319 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3320
eed6d67d
DV
3321 WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3322 !intel_crtc_has_pending_flip(crtc),
3323 60*HZ) == 0);
5bb61643 3324
0f91128d 3325 mutex_lock(&dev->struct_mutex);
f4510a27 3326 intel_finish_fb(crtc->primary->fb);
0f91128d 3327 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
3328}
3329
e615efe4
ED
3330/* Program iCLKIP clock to the desired frequency */
3331static void lpt_program_iclkip(struct drm_crtc *crtc)
3332{
3333 struct drm_device *dev = crtc->dev;
3334 struct drm_i915_private *dev_priv = dev->dev_private;
241bfc38 3335 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
e615efe4
ED
3336 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3337 u32 temp;
3338
09153000
DV
3339 mutex_lock(&dev_priv->dpio_lock);
3340
e615efe4
ED
3341 /* It is necessary to ungate the pixclk gate prior to programming
3342 * the divisors, and gate it back when it is done.
3343 */
3344 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3345
3346 /* Disable SSCCTL */
3347 intel_sbi_write(dev_priv, SBI_SSCCTL6,
988d6ee8
PZ
3348 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3349 SBI_SSCCTL_DISABLE,
3350 SBI_ICLK);
e615efe4
ED
3351
3352 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
12d7ceed 3353 if (clock == 20000) {
e615efe4
ED
3354 auxdiv = 1;
3355 divsel = 0x41;
3356 phaseinc = 0x20;
3357 } else {
3358 /* The iCLK virtual clock root frequency is in MHz,
241bfc38
DL
3359 * but the adjusted_mode->crtc_clock in in KHz. To get the
3360 * divisors, it is necessary to divide one by another, so we
e615efe4
ED
3361 * convert the virtual clock precision to KHz here for higher
3362 * precision.
3363 */
3364 u32 iclk_virtual_root_freq = 172800 * 1000;
3365 u32 iclk_pi_range = 64;
3366 u32 desired_divisor, msb_divisor_value, pi_value;
3367
12d7ceed 3368 desired_divisor = (iclk_virtual_root_freq / clock);
e615efe4
ED
3369 msb_divisor_value = desired_divisor / iclk_pi_range;
3370 pi_value = desired_divisor % iclk_pi_range;
3371
3372 auxdiv = 0;
3373 divsel = msb_divisor_value - 2;
3374 phaseinc = pi_value;
3375 }
3376
3377 /* This should not happen with any sane values */
3378 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3379 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3380 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3381 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3382
3383 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3384 clock,
e615efe4
ED
3385 auxdiv,
3386 divsel,
3387 phasedir,
3388 phaseinc);
3389
3390 /* Program SSCDIVINTPHASE6 */
988d6ee8 3391 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3392 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3393 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3394 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3395 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3396 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3397 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3398 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3399
3400 /* Program SSCAUXDIV */
988d6ee8 3401 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3402 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3403 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3404 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3405
3406 /* Enable modulator and associated divider */
988d6ee8 3407 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3408 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3409 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4
ED
3410
3411 /* Wait for initialization time */
3412 udelay(24);
3413
3414 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
09153000
DV
3415
3416 mutex_unlock(&dev_priv->dpio_lock);
e615efe4
ED
3417}
3418
275f01b2
DV
3419static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3420 enum pipe pch_transcoder)
3421{
3422 struct drm_device *dev = crtc->base.dev;
3423 struct drm_i915_private *dev_priv = dev->dev_private;
3424 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3425
3426 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3427 I915_READ(HTOTAL(cpu_transcoder)));
3428 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3429 I915_READ(HBLANK(cpu_transcoder)));
3430 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3431 I915_READ(HSYNC(cpu_transcoder)));
3432
3433 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3434 I915_READ(VTOTAL(cpu_transcoder)));
3435 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3436 I915_READ(VBLANK(cpu_transcoder)));
3437 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3438 I915_READ(VSYNC(cpu_transcoder)));
3439 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3440 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3441}
3442
1fbc0d78
DV
3443static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3444{
3445 struct drm_i915_private *dev_priv = dev->dev_private;
3446 uint32_t temp;
3447
3448 temp = I915_READ(SOUTH_CHICKEN1);
3449 if (temp & FDI_BC_BIFURCATION_SELECT)
3450 return;
3451
3452 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3453 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3454
3455 temp |= FDI_BC_BIFURCATION_SELECT;
3456 DRM_DEBUG_KMS("enabling fdi C rx\n");
3457 I915_WRITE(SOUTH_CHICKEN1, temp);
3458 POSTING_READ(SOUTH_CHICKEN1);
3459}
3460
3461static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3462{
3463 struct drm_device *dev = intel_crtc->base.dev;
3464 struct drm_i915_private *dev_priv = dev->dev_private;
3465
3466 switch (intel_crtc->pipe) {
3467 case PIPE_A:
3468 break;
3469 case PIPE_B:
3470 if (intel_crtc->config.fdi_lanes > 2)
3471 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3472 else
3473 cpt_enable_fdi_bc_bifurcation(dev);
3474
3475 break;
3476 case PIPE_C:
3477 cpt_enable_fdi_bc_bifurcation(dev);
3478
3479 break;
3480 default:
3481 BUG();
3482 }
3483}
3484
f67a559d
JB
3485/*
3486 * Enable PCH resources required for PCH ports:
3487 * - PCH PLLs
3488 * - FDI training & RX/TX
3489 * - update transcoder timings
3490 * - DP transcoding bits
3491 * - transcoder
3492 */
3493static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
3494{
3495 struct drm_device *dev = crtc->dev;
3496 struct drm_i915_private *dev_priv = dev->dev_private;
3497 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3498 int pipe = intel_crtc->pipe;
ee7b9f93 3499 u32 reg, temp;
2c07245f 3500
ab9412ba 3501 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 3502
1fbc0d78
DV
3503 if (IS_IVYBRIDGE(dev))
3504 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3505
cd986abb
DV
3506 /* Write the TU size bits before fdi link training, so that error
3507 * detection works. */
3508 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3509 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3510
c98e9dcf 3511 /* For PCH output, training FDI link */
674cf967 3512 dev_priv->display.fdi_link_train(crtc);
2c07245f 3513
3ad8a208
DV
3514 /* We need to program the right clock selection before writing the pixel
3515 * mutliplier into the DPLL. */
303b81e0 3516 if (HAS_PCH_CPT(dev)) {
ee7b9f93 3517 u32 sel;
4b645f14 3518
c98e9dcf 3519 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
3520 temp |= TRANS_DPLL_ENABLE(pipe);
3521 sel = TRANS_DPLLB_SEL(pipe);
a43f6e0f 3522 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
ee7b9f93
JB
3523 temp |= sel;
3524 else
3525 temp &= ~sel;
c98e9dcf 3526 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3527 }
5eddb70b 3528
3ad8a208
DV
3529 /* XXX: pch pll's can be enabled any time before we enable the PCH
3530 * transcoder, and we actually should do this to not upset any PCH
3531 * transcoder that already use the clock when we share it.
3532 *
3533 * Note that enable_shared_dpll tries to do the right thing, but
3534 * get_shared_dpll unconditionally resets the pll - we need that to have
3535 * the right LVDS enable sequence. */
85b3894f 3536 intel_enable_shared_dpll(intel_crtc);
3ad8a208 3537
d9b6cb56
JB
3538 /* set transcoder timing, panel must allow it */
3539 assert_panel_unlocked(dev_priv, pipe);
275f01b2 3540 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 3541
303b81e0 3542 intel_fdi_normal_train(crtc);
5e84e1a4 3543
c98e9dcf
JB
3544 /* For PCH DP, enable TRANS_DP_CTL */
3545 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3546 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3547 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
dfd07d72 3548 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5eddb70b
CW
3549 reg = TRANS_DP_CTL(pipe);
3550 temp = I915_READ(reg);
3551 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3552 TRANS_DP_SYNC_MASK |
3553 TRANS_DP_BPC_MASK);
5eddb70b
CW
3554 temp |= (TRANS_DP_OUTPUT_ENABLE |
3555 TRANS_DP_ENH_FRAMING);
9325c9f0 3556 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3557
3558 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3559 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3560 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3561 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3562
3563 switch (intel_trans_dp_port_sel(crtc)) {
3564 case PCH_DP_B:
5eddb70b 3565 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3566 break;
3567 case PCH_DP_C:
5eddb70b 3568 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3569 break;
3570 case PCH_DP_D:
5eddb70b 3571 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3572 break;
3573 default:
e95d41e1 3574 BUG();
32f9d658 3575 }
2c07245f 3576
5eddb70b 3577 I915_WRITE(reg, temp);
6be4a607 3578 }
b52eb4dc 3579
b8a4f404 3580 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
3581}
3582
1507e5bd
PZ
3583static void lpt_pch_enable(struct drm_crtc *crtc)
3584{
3585 struct drm_device *dev = crtc->dev;
3586 struct drm_i915_private *dev_priv = dev->dev_private;
3587 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 3588 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
1507e5bd 3589
ab9412ba 3590 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 3591
8c52b5e8 3592 lpt_program_iclkip(crtc);
1507e5bd 3593
0540e488 3594 /* Set transcoder timing. */
275f01b2 3595 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 3596
937bb610 3597 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
3598}
3599
716c2e55 3600void intel_put_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3601{
e2b78267 3602 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
ee7b9f93
JB
3603
3604 if (pll == NULL)
3605 return;
3606
3607 if (pll->refcount == 0) {
46edb027 3608 WARN(1, "bad %s refcount\n", pll->name);
ee7b9f93
JB
3609 return;
3610 }
3611
f4a091c7
DV
3612 if (--pll->refcount == 0) {
3613 WARN_ON(pll->on);
3614 WARN_ON(pll->active);
3615 }
3616
a43f6e0f 3617 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
ee7b9f93
JB
3618}
3619
716c2e55 3620struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
ee7b9f93 3621{
e2b78267
DV
3622 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3623 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3624 enum intel_dpll_id i;
ee7b9f93 3625
ee7b9f93 3626 if (pll) {
46edb027
DV
3627 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3628 crtc->base.base.id, pll->name);
e2b78267 3629 intel_put_shared_dpll(crtc);
ee7b9f93
JB
3630 }
3631
98b6bd99
DV
3632 if (HAS_PCH_IBX(dev_priv->dev)) {
3633 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
d94ab068 3634 i = (enum intel_dpll_id) crtc->pipe;
e72f9fbf 3635 pll = &dev_priv->shared_dplls[i];
98b6bd99 3636
46edb027
DV
3637 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3638 crtc->base.base.id, pll->name);
98b6bd99 3639
f2a69f44
DV
3640 WARN_ON(pll->refcount);
3641
98b6bd99
DV
3642 goto found;
3643 }
3644
e72f9fbf
DV
3645 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3646 pll = &dev_priv->shared_dplls[i];
ee7b9f93
JB
3647
3648 /* Only want to check enabled timings first */
3649 if (pll->refcount == 0)
3650 continue;
3651
b89a1d39
DV
3652 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3653 sizeof(pll->hw_state)) == 0) {
46edb027 3654 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
e2b78267 3655 crtc->base.base.id,
46edb027 3656 pll->name, pll->refcount, pll->active);
ee7b9f93
JB
3657
3658 goto found;
3659 }
3660 }
3661
3662 /* Ok no matching timings, maybe there's a free one? */
e72f9fbf
DV
3663 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3664 pll = &dev_priv->shared_dplls[i];
ee7b9f93 3665 if (pll->refcount == 0) {
46edb027
DV
3666 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3667 crtc->base.base.id, pll->name);
ee7b9f93
JB
3668 goto found;
3669 }
3670 }
3671
3672 return NULL;
3673
3674found:
f2a69f44
DV
3675 if (pll->refcount == 0)
3676 pll->hw_state = crtc->config.dpll_hw_state;
3677
a43f6e0f 3678 crtc->config.shared_dpll = i;
46edb027
DV
3679 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3680 pipe_name(crtc->pipe));
ee7b9f93 3681
cdbd2316 3682 pll->refcount++;
e04c7350 3683
ee7b9f93
JB
3684 return pll;
3685}
3686
a1520318 3687static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
3688{
3689 struct drm_i915_private *dev_priv = dev->dev_private;
23670b32 3690 int dslreg = PIPEDSL(pipe);
d4270e57
JB
3691 u32 temp;
3692
3693 temp = I915_READ(dslreg);
3694 udelay(500);
3695 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 3696 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 3697 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
3698 }
3699}
3700
b074cec8
JB
3701static void ironlake_pfit_enable(struct intel_crtc *crtc)
3702{
3703 struct drm_device *dev = crtc->base.dev;
3704 struct drm_i915_private *dev_priv = dev->dev_private;
3705 int pipe = crtc->pipe;
3706
fd4daa9c 3707 if (crtc->config.pch_pfit.enabled) {
b074cec8
JB
3708 /* Force use of hard-coded filter coefficients
3709 * as some pre-programmed values are broken,
3710 * e.g. x201.
3711 */
3712 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3713 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3714 PF_PIPE_SEL_IVB(pipe));
3715 else
3716 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3717 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3718 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
d4270e57
JB
3719 }
3720}
3721
bb53d4ae
VS
3722static void intel_enable_planes(struct drm_crtc *crtc)
3723{
3724 struct drm_device *dev = crtc->dev;
3725 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3726 struct drm_plane *plane;
bb53d4ae
VS
3727 struct intel_plane *intel_plane;
3728
af2b653b
MR
3729 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3730 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3731 if (intel_plane->pipe == pipe)
3732 intel_plane_restore(&intel_plane->base);
af2b653b 3733 }
bb53d4ae
VS
3734}
3735
3736static void intel_disable_planes(struct drm_crtc *crtc)
3737{
3738 struct drm_device *dev = crtc->dev;
3739 enum pipe pipe = to_intel_crtc(crtc)->pipe;
af2b653b 3740 struct drm_plane *plane;
bb53d4ae
VS
3741 struct intel_plane *intel_plane;
3742
af2b653b
MR
3743 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
3744 intel_plane = to_intel_plane(plane);
bb53d4ae
VS
3745 if (intel_plane->pipe == pipe)
3746 intel_plane_disable(&intel_plane->base);
af2b653b 3747 }
bb53d4ae
VS
3748}
3749
20bc8673 3750void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 3751{
cea165c3
VS
3752 struct drm_device *dev = crtc->base.dev;
3753 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531
PZ
3754
3755 if (!crtc->config.ips_enabled)
3756 return;
3757
cea165c3
VS
3758 /* We can only enable IPS after we enable a plane and wait for a vblank */
3759 intel_wait_for_vblank(dev, crtc->pipe);
3760
d77e4531 3761 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 3762 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3763 mutex_lock(&dev_priv->rps.hw_lock);
3764 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3765 mutex_unlock(&dev_priv->rps.hw_lock);
3766 /* Quoting Art Runyan: "its not safe to expect any particular
3767 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
3768 * mailbox." Moreover, the mailbox may return a bogus state,
3769 * so we need to just enable it and continue on.
2a114cc1
BW
3770 */
3771 } else {
3772 I915_WRITE(IPS_CTL, IPS_ENABLE);
3773 /* The bit only becomes 1 in the next vblank, so this wait here
3774 * is essentially intel_wait_for_vblank. If we don't have this
3775 * and don't wait for vblanks until the end of crtc_enable, then
3776 * the HW state readout code will complain that the expected
3777 * IPS_CTL value is not the one we read. */
3778 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3779 DRM_ERROR("Timed out waiting for IPS enable\n");
3780 }
d77e4531
PZ
3781}
3782
20bc8673 3783void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
3784{
3785 struct drm_device *dev = crtc->base.dev;
3786 struct drm_i915_private *dev_priv = dev->dev_private;
3787
3788 if (!crtc->config.ips_enabled)
3789 return;
3790
3791 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 3792 if (IS_BROADWELL(dev)) {
2a114cc1
BW
3793 mutex_lock(&dev_priv->rps.hw_lock);
3794 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3795 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
3796 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
3797 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
3798 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 3799 } else {
2a114cc1 3800 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
3801 POSTING_READ(IPS_CTL);
3802 }
d77e4531
PZ
3803
3804 /* We need to wait for a vblank before we can disable the plane. */
3805 intel_wait_for_vblank(dev, crtc->pipe);
3806}
3807
3808/** Loads the palette/gamma unit for the CRTC with the prepared values */
3809static void intel_crtc_load_lut(struct drm_crtc *crtc)
3810{
3811 struct drm_device *dev = crtc->dev;
3812 struct drm_i915_private *dev_priv = dev->dev_private;
3813 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814 enum pipe pipe = intel_crtc->pipe;
3815 int palreg = PALETTE(pipe);
3816 int i;
3817 bool reenable_ips = false;
3818
3819 /* The clocks have to be on to load the palette. */
3820 if (!crtc->enabled || !intel_crtc->active)
3821 return;
3822
3823 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3824 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3825 assert_dsi_pll_enabled(dev_priv);
3826 else
3827 assert_pll_enabled(dev_priv, pipe);
3828 }
3829
3830 /* use legacy palette for Ironlake */
7a1db49a 3831 if (!HAS_GMCH_DISPLAY(dev))
d77e4531
PZ
3832 palreg = LGC_PALETTE(pipe);
3833
3834 /* Workaround : Do not read or write the pipe palette/gamma data while
3835 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3836 */
41e6fc4c 3837 if (IS_HASWELL(dev) && intel_crtc->config.ips_enabled &&
d77e4531
PZ
3838 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3839 GAMMA_MODE_MODE_SPLIT)) {
3840 hsw_disable_ips(intel_crtc);
3841 reenable_ips = true;
3842 }
3843
3844 for (i = 0; i < 256; i++) {
3845 I915_WRITE(palreg + 4 * i,
3846 (intel_crtc->lut_r[i] << 16) |
3847 (intel_crtc->lut_g[i] << 8) |
3848 intel_crtc->lut_b[i]);
3849 }
3850
3851 if (reenable_ips)
3852 hsw_enable_ips(intel_crtc);
3853}
3854
d3eedb1a
VS
3855static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3856{
3857 if (!enable && intel_crtc->overlay) {
3858 struct drm_device *dev = intel_crtc->base.dev;
3859 struct drm_i915_private *dev_priv = dev->dev_private;
3860
3861 mutex_lock(&dev->struct_mutex);
3862 dev_priv->mm.interruptible = false;
3863 (void) intel_overlay_switch_off(intel_crtc->overlay);
3864 dev_priv->mm.interruptible = true;
3865 mutex_unlock(&dev->struct_mutex);
3866 }
3867
3868 /* Let userspace switch the overlay on again. In most cases userspace
3869 * has to recompute where to put it anyway.
3870 */
3871}
3872
d3eedb1a 3873static void intel_crtc_enable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3874{
3875 struct drm_device *dev = crtc->dev;
3876 struct drm_i915_private *dev_priv = dev->dev_private;
3877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3878 int pipe = intel_crtc->pipe;
3879 int plane = intel_crtc->plane;
3880
f98551ae
VS
3881 drm_vblank_on(dev, pipe);
3882
a5c4d7bc
VS
3883 intel_enable_primary_hw_plane(dev_priv, plane, pipe);
3884 intel_enable_planes(crtc);
3885 intel_crtc_update_cursor(crtc, true);
d3eedb1a 3886 intel_crtc_dpms_overlay(intel_crtc, true);
a5c4d7bc
VS
3887
3888 hsw_enable_ips(intel_crtc);
3889
3890 mutex_lock(&dev->struct_mutex);
3891 intel_update_fbc(dev);
3892 mutex_unlock(&dev->struct_mutex);
f99d7069
DV
3893
3894 /*
3895 * FIXME: Once we grow proper nuclear flip support out of this we need
3896 * to compute the mask of flip planes precisely. For the time being
3897 * consider this a flip from a NULL plane.
3898 */
3899 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
3900}
3901
d3eedb1a 3902static void intel_crtc_disable_planes(struct drm_crtc *crtc)
a5c4d7bc
VS
3903{
3904 struct drm_device *dev = crtc->dev;
3905 struct drm_i915_private *dev_priv = dev->dev_private;
3906 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3907 int pipe = intel_crtc->pipe;
3908 int plane = intel_crtc->plane;
3909
3910 intel_crtc_wait_for_pending_flips(crtc);
a5c4d7bc
VS
3911
3912 if (dev_priv->fbc.plane == plane)
3913 intel_disable_fbc(dev);
3914
3915 hsw_disable_ips(intel_crtc);
3916
d3eedb1a 3917 intel_crtc_dpms_overlay(intel_crtc, false);
a5c4d7bc
VS
3918 intel_crtc_update_cursor(crtc, false);
3919 intel_disable_planes(crtc);
3920 intel_disable_primary_hw_plane(dev_priv, plane, pipe);
f98551ae 3921
f99d7069
DV
3922 /*
3923 * FIXME: Once we grow proper nuclear flip support out of this we need
3924 * to compute the mask of flip planes precisely. For the time being
3925 * consider this a flip to a NULL plane.
3926 */
3927 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
3928
f98551ae 3929 drm_vblank_off(dev, pipe);
a5c4d7bc
VS
3930}
3931
f67a559d
JB
3932static void ironlake_crtc_enable(struct drm_crtc *crtc)
3933{
3934 struct drm_device *dev = crtc->dev;
3935 struct drm_i915_private *dev_priv = dev->dev_private;
3936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3937 struct intel_encoder *encoder;
f67a559d 3938 int pipe = intel_crtc->pipe;
29407aab 3939 enum plane plane = intel_crtc->plane;
f67a559d 3940
08a48469
DV
3941 WARN_ON(!crtc->enabled);
3942
f67a559d
JB
3943 if (intel_crtc->active)
3944 return;
3945
b14b1055
DV
3946 if (intel_crtc->config.has_pch_encoder)
3947 intel_prepare_shared_dpll(intel_crtc);
3948
29407aab
DV
3949 if (intel_crtc->config.has_dp_encoder)
3950 intel_dp_set_m_n(intel_crtc);
3951
3952 intel_set_pipe_timings(intel_crtc);
3953
3954 if (intel_crtc->config.has_pch_encoder) {
3955 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 3956 &intel_crtc->config.fdi_m_n, NULL);
29407aab
DV
3957 }
3958
3959 ironlake_set_pipeconf(crtc);
3960
3961 /* Set up the display plane register */
3962 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
3963 POSTING_READ(DSPCNTR(plane));
3964
3965 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
3966 crtc->x, crtc->y);
3967
f67a559d 3968 intel_crtc->active = true;
8664281b
PZ
3969
3970 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3971 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3972
f6736a1a 3973 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
3974 if (encoder->pre_enable)
3975 encoder->pre_enable(encoder);
f67a559d 3976
5bfe2ac0 3977 if (intel_crtc->config.has_pch_encoder) {
fff367c7
DV
3978 /* Note: FDI PLL enabling _must_ be done before we enable the
3979 * cpu pipes, hence this is separate from all the other fdi/pch
3980 * enabling. */
88cefb6c 3981 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3982 } else {
3983 assert_fdi_tx_disabled(dev_priv, pipe);
3984 assert_fdi_rx_disabled(dev_priv, pipe);
3985 }
f67a559d 3986
b074cec8 3987 ironlake_pfit_enable(intel_crtc);
f67a559d 3988
9c54c0dd
JB
3989 /*
3990 * On ILK+ LUT must be loaded before the pipe is running but with
3991 * clocks enabled
3992 */
3993 intel_crtc_load_lut(crtc);
3994
f37fcc2a 3995 intel_update_watermarks(crtc);
e1fdc473 3996 intel_enable_pipe(intel_crtc);
f67a559d 3997
5bfe2ac0 3998 if (intel_crtc->config.has_pch_encoder)
f67a559d 3999 ironlake_pch_enable(crtc);
c98e9dcf 4000
fa5c73b1
DV
4001 for_each_encoder_on_crtc(dev, crtc, encoder)
4002 encoder->enable(encoder);
61b77ddd
DV
4003
4004 if (HAS_PCH_CPT(dev))
a1520318 4005 cpt_verify_modeset(dev, intel_crtc->pipe);
6ce94100 4006
d3eedb1a 4007 intel_crtc_enable_planes(crtc);
6be4a607
JB
4008}
4009
42db64ef
PZ
4010/* IPS only exists on ULT machines and is tied to pipe A. */
4011static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4012{
f5adf94e 4013 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4014}
4015
e4916946
PZ
4016/*
4017 * This implements the workaround described in the "notes" section of the mode
4018 * set sequence documentation. When going from no pipes or single pipe to
4019 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4020 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4021 */
4022static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4023{
4024 struct drm_device *dev = crtc->base.dev;
4025 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4026
4027 /* We want to get the other_active_crtc only if there's only 1 other
4028 * active crtc. */
d3fcc808 4029 for_each_intel_crtc(dev, crtc_it) {
e4916946
PZ
4030 if (!crtc_it->active || crtc_it == crtc)
4031 continue;
4032
4033 if (other_active_crtc)
4034 return;
4035
4036 other_active_crtc = crtc_it;
4037 }
4038 if (!other_active_crtc)
4039 return;
4040
4041 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4042 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4043}
4044
4f771f10
PZ
4045static void haswell_crtc_enable(struct drm_crtc *crtc)
4046{
4047 struct drm_device *dev = crtc->dev;
4048 struct drm_i915_private *dev_priv = dev->dev_private;
4049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4050 struct intel_encoder *encoder;
4051 int pipe = intel_crtc->pipe;
229fca97 4052 enum plane plane = intel_crtc->plane;
4f771f10
PZ
4053
4054 WARN_ON(!crtc->enabled);
4055
4056 if (intel_crtc->active)
4057 return;
4058
df8ad70c
DV
4059 if (intel_crtc_to_shared_dpll(intel_crtc))
4060 intel_enable_shared_dpll(intel_crtc);
4061
229fca97
DV
4062 if (intel_crtc->config.has_dp_encoder)
4063 intel_dp_set_m_n(intel_crtc);
4064
4065 intel_set_pipe_timings(intel_crtc);
4066
4067 if (intel_crtc->config.has_pch_encoder) {
4068 intel_cpu_transcoder_set_m_n(intel_crtc,
f769cd24 4069 &intel_crtc->config.fdi_m_n, NULL);
229fca97
DV
4070 }
4071
4072 haswell_set_pipeconf(crtc);
4073
4074 intel_set_pipe_csc(crtc);
4075
4076 /* Set up the display plane register */
4077 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
4078 POSTING_READ(DSPCNTR(plane));
4079
4080 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4081 crtc->x, crtc->y);
4082
4f771f10 4083 intel_crtc->active = true;
8664281b
PZ
4084
4085 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4f771f10
PZ
4086 for_each_encoder_on_crtc(dev, crtc, encoder)
4087 if (encoder->pre_enable)
4088 encoder->pre_enable(encoder);
4089
4fe9467d
ID
4090 if (intel_crtc->config.has_pch_encoder) {
4091 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
4092 dev_priv->display.fdi_link_train(crtc);
4093 }
4094
1f544388 4095 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4096
b074cec8 4097 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4098
4099 /*
4100 * On ILK+ LUT must be loaded before the pipe is running but with
4101 * clocks enabled
4102 */
4103 intel_crtc_load_lut(crtc);
4104
1f544388 4105 intel_ddi_set_pipe_settings(crtc);
8228c251 4106 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4107
f37fcc2a 4108 intel_update_watermarks(crtc);
e1fdc473 4109 intel_enable_pipe(intel_crtc);
42db64ef 4110
5bfe2ac0 4111 if (intel_crtc->config.has_pch_encoder)
1507e5bd 4112 lpt_pch_enable(crtc);
4f771f10 4113
0e32b39c
DA
4114 if (intel_crtc->config.dp_encoder_is_mst)
4115 intel_ddi_set_vc_payload_alloc(crtc, true);
4116
8807e55b 4117 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4118 encoder->enable(encoder);
8807e55b
JN
4119 intel_opregion_notify_encoder(encoder, true);
4120 }
4f771f10 4121
e4916946
PZ
4122 /* If we change the relative order between pipe/planes enabling, we need
4123 * to change the workaround. */
4124 haswell_mode_set_planes_workaround(intel_crtc);
d3eedb1a 4125 intel_crtc_enable_planes(crtc);
4f771f10
PZ
4126}
4127
3f8dce3a
DV
4128static void ironlake_pfit_disable(struct intel_crtc *crtc)
4129{
4130 struct drm_device *dev = crtc->base.dev;
4131 struct drm_i915_private *dev_priv = dev->dev_private;
4132 int pipe = crtc->pipe;
4133
4134 /* To avoid upsetting the power well on haswell only disable the pfit if
4135 * it's in use. The hw state code will make sure we get this right. */
fd4daa9c 4136 if (crtc->config.pch_pfit.enabled) {
3f8dce3a
DV
4137 I915_WRITE(PF_CTL(pipe), 0);
4138 I915_WRITE(PF_WIN_POS(pipe), 0);
4139 I915_WRITE(PF_WIN_SZ(pipe), 0);
4140 }
4141}
4142
6be4a607
JB
4143static void ironlake_crtc_disable(struct drm_crtc *crtc)
4144{
4145 struct drm_device *dev = crtc->dev;
4146 struct drm_i915_private *dev_priv = dev->dev_private;
4147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4148 struct intel_encoder *encoder;
6be4a607 4149 int pipe = intel_crtc->pipe;
5eddb70b 4150 u32 reg, temp;
b52eb4dc 4151
f7abfe8b
CW
4152 if (!intel_crtc->active)
4153 return;
4154
d3eedb1a 4155 intel_crtc_disable_planes(crtc);
a5c4d7bc 4156
ea9d758d
DV
4157 for_each_encoder_on_crtc(dev, crtc, encoder)
4158 encoder->disable(encoder);
4159
d925c59a
DV
4160 if (intel_crtc->config.has_pch_encoder)
4161 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
4162
b24e7179 4163 intel_disable_pipe(dev_priv, pipe);
32f9d658 4164
0e32b39c
DA
4165 if (intel_crtc->config.dp_encoder_is_mst)
4166 intel_ddi_set_vc_payload_alloc(crtc, false);
4167
3f8dce3a 4168 ironlake_pfit_disable(intel_crtc);
2c07245f 4169
bf49ec8c
DV
4170 for_each_encoder_on_crtc(dev, crtc, encoder)
4171 if (encoder->post_disable)
4172 encoder->post_disable(encoder);
2c07245f 4173
d925c59a
DV
4174 if (intel_crtc->config.has_pch_encoder) {
4175 ironlake_fdi_disable(crtc);
913d8d11 4176
d925c59a
DV
4177 ironlake_disable_pch_transcoder(dev_priv, pipe);
4178 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
6be4a607 4179
d925c59a
DV
4180 if (HAS_PCH_CPT(dev)) {
4181 /* disable TRANS_DP_CTL */
4182 reg = TRANS_DP_CTL(pipe);
4183 temp = I915_READ(reg);
4184 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4185 TRANS_DP_PORT_SEL_MASK);
4186 temp |= TRANS_DP_PORT_SEL_NONE;
4187 I915_WRITE(reg, temp);
4188
4189 /* disable DPLL_SEL */
4190 temp = I915_READ(PCH_DPLL_SEL);
11887397 4191 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 4192 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 4193 }
e3421a18 4194
d925c59a 4195 /* disable PCH DPLL */
e72f9fbf 4196 intel_disable_shared_dpll(intel_crtc);
8db9d77b 4197
d925c59a
DV
4198 ironlake_fdi_pll_disable(intel_crtc);
4199 }
6b383a7f 4200
f7abfe8b 4201 intel_crtc->active = false;
46ba614c 4202 intel_update_watermarks(crtc);
d1ebd816
BW
4203
4204 mutex_lock(&dev->struct_mutex);
6b383a7f 4205 intel_update_fbc(dev);
d1ebd816 4206 mutex_unlock(&dev->struct_mutex);
6be4a607 4207}
1b3c7a47 4208
4f771f10 4209static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 4210{
4f771f10
PZ
4211 struct drm_device *dev = crtc->dev;
4212 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 4213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10
PZ
4214 struct intel_encoder *encoder;
4215 int pipe = intel_crtc->pipe;
3b117c8f 4216 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee7b9f93 4217
4f771f10
PZ
4218 if (!intel_crtc->active)
4219 return;
4220
d3eedb1a 4221 intel_crtc_disable_planes(crtc);
dda9a66a 4222
8807e55b
JN
4223 for_each_encoder_on_crtc(dev, crtc, encoder) {
4224 intel_opregion_notify_encoder(encoder, false);
4f771f10 4225 encoder->disable(encoder);
8807e55b 4226 }
4f771f10 4227
8664281b
PZ
4228 if (intel_crtc->config.has_pch_encoder)
4229 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
4f771f10
PZ
4230 intel_disable_pipe(dev_priv, pipe);
4231
ad80a810 4232 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 4233
3f8dce3a 4234 ironlake_pfit_disable(intel_crtc);
4f771f10 4235
1f544388 4236 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 4237
88adfff1 4238 if (intel_crtc->config.has_pch_encoder) {
ab4d966c 4239 lpt_disable_pch_transcoder(dev_priv);
8664281b 4240 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
1ad960f2 4241 intel_ddi_fdi_disable(crtc);
83616634 4242 }
4f771f10 4243
97b040aa
ID
4244 for_each_encoder_on_crtc(dev, crtc, encoder)
4245 if (encoder->post_disable)
4246 encoder->post_disable(encoder);
4247
4f771f10 4248 intel_crtc->active = false;
46ba614c 4249 intel_update_watermarks(crtc);
4f771f10
PZ
4250
4251 mutex_lock(&dev->struct_mutex);
4252 intel_update_fbc(dev);
4253 mutex_unlock(&dev->struct_mutex);
df8ad70c
DV
4254
4255 if (intel_crtc_to_shared_dpll(intel_crtc))
4256 intel_disable_shared_dpll(intel_crtc);
4f771f10
PZ
4257}
4258
ee7b9f93
JB
4259static void ironlake_crtc_off(struct drm_crtc *crtc)
4260{
4261 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
e72f9fbf 4262 intel_put_shared_dpll(intel_crtc);
ee7b9f93
JB
4263}
4264
6441ab5f 4265
2dd24552
JB
4266static void i9xx_pfit_enable(struct intel_crtc *crtc)
4267{
4268 struct drm_device *dev = crtc->base.dev;
4269 struct drm_i915_private *dev_priv = dev->dev_private;
4270 struct intel_crtc_config *pipe_config = &crtc->config;
4271
328d8e82 4272 if (!crtc->config.gmch_pfit.control)
2dd24552
JB
4273 return;
4274
2dd24552 4275 /*
c0b03411
DV
4276 * The panel fitter should only be adjusted whilst the pipe is disabled,
4277 * according to register description and PRM.
2dd24552 4278 */
c0b03411
DV
4279 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4280 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 4281
b074cec8
JB
4282 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4283 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
4284
4285 /* Border color in case we don't scale up to the full screen. Black by
4286 * default, change to something else for debugging. */
4287 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
4288}
4289
d05410f9
DA
4290static enum intel_display_power_domain port_to_power_domain(enum port port)
4291{
4292 switch (port) {
4293 case PORT_A:
4294 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4295 case PORT_B:
4296 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4297 case PORT_C:
4298 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4299 case PORT_D:
4300 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4301 default:
4302 WARN_ON_ONCE(1);
4303 return POWER_DOMAIN_PORT_OTHER;
4304 }
4305}
4306
77d22dca
ID
4307#define for_each_power_domain(domain, mask) \
4308 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4309 if ((1 << (domain)) & (mask))
4310
319be8ae
ID
4311enum intel_display_power_domain
4312intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4313{
4314 struct drm_device *dev = intel_encoder->base.dev;
4315 struct intel_digital_port *intel_dig_port;
4316
4317 switch (intel_encoder->type) {
4318 case INTEL_OUTPUT_UNKNOWN:
4319 /* Only DDI platforms should ever use this output type */
4320 WARN_ON_ONCE(!HAS_DDI(dev));
4321 case INTEL_OUTPUT_DISPLAYPORT:
4322 case INTEL_OUTPUT_HDMI:
4323 case INTEL_OUTPUT_EDP:
4324 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 4325 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
4326 case INTEL_OUTPUT_DP_MST:
4327 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4328 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
4329 case INTEL_OUTPUT_ANALOG:
4330 return POWER_DOMAIN_PORT_CRT;
4331 case INTEL_OUTPUT_DSI:
4332 return POWER_DOMAIN_PORT_DSI;
4333 default:
4334 return POWER_DOMAIN_PORT_OTHER;
4335 }
4336}
4337
4338static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
77d22dca 4339{
319be8ae
ID
4340 struct drm_device *dev = crtc->dev;
4341 struct intel_encoder *intel_encoder;
4342 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4343 enum pipe pipe = intel_crtc->pipe;
77d22dca
ID
4344 unsigned long mask;
4345 enum transcoder transcoder;
4346
4347 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4348
4349 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4350 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
fabf6e51
DV
4351 if (intel_crtc->config.pch_pfit.enabled ||
4352 intel_crtc->config.pch_pfit.force_thru)
77d22dca
ID
4353 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4354
319be8ae
ID
4355 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4356 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4357
77d22dca
ID
4358 return mask;
4359}
4360
4361void intel_display_set_init_power(struct drm_i915_private *dev_priv,
4362 bool enable)
4363{
4364 if (dev_priv->power_domains.init_power_on == enable)
4365 return;
4366
4367 if (enable)
4368 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
4369 else
4370 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
4371
4372 dev_priv->power_domains.init_power_on = enable;
4373}
4374
4375static void modeset_update_crtc_power_domains(struct drm_device *dev)
4376{
4377 struct drm_i915_private *dev_priv = dev->dev_private;
4378 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4379 struct intel_crtc *crtc;
4380
4381 /*
4382 * First get all needed power domains, then put all unneeded, to avoid
4383 * any unnecessary toggling of the power wells.
4384 */
d3fcc808 4385 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4386 enum intel_display_power_domain domain;
4387
4388 if (!crtc->base.enabled)
4389 continue;
4390
319be8ae 4391 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
77d22dca
ID
4392
4393 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4394 intel_display_power_get(dev_priv, domain);
4395 }
4396
d3fcc808 4397 for_each_intel_crtc(dev, crtc) {
77d22dca
ID
4398 enum intel_display_power_domain domain;
4399
4400 for_each_power_domain(domain, crtc->enabled_power_domains)
4401 intel_display_power_put(dev_priv, domain);
4402
4403 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4404 }
4405
4406 intel_display_set_init_power(dev_priv, false);
4407}
4408
dfcab17e 4409/* returns HPLL frequency in kHz */
f8bf63fd 4410static int valleyview_get_vco(struct drm_i915_private *dev_priv)
30a970c6 4411{
586f49dc 4412 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
30a970c6 4413
586f49dc
JB
4414 /* Obtain SKU information */
4415 mutex_lock(&dev_priv->dpio_lock);
4416 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4417 CCK_FUSE_HPLL_FREQ_MASK;
4418 mutex_unlock(&dev_priv->dpio_lock);
30a970c6 4419
dfcab17e 4420 return vco_freq[hpll_freq] * 1000;
30a970c6
JB
4421}
4422
f8bf63fd
VS
4423static void vlv_update_cdclk(struct drm_device *dev)
4424{
4425 struct drm_i915_private *dev_priv = dev->dev_private;
4426
4427 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4428 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz",
4429 dev_priv->vlv_cdclk_freq);
4430
4431 /*
4432 * Program the gmbus_freq based on the cdclk frequency.
4433 * BSpec erroneously claims we should aim for 4MHz, but
4434 * in fact 1MHz is the correct frequency.
4435 */
4436 I915_WRITE(GMBUSFREQ_VLV, dev_priv->vlv_cdclk_freq);
4437}
4438
30a970c6
JB
4439/* Adjust CDclk dividers to allow high res or save power if possible */
4440static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4441{
4442 struct drm_i915_private *dev_priv = dev->dev_private;
4443 u32 val, cmd;
4444
d197b7d3 4445 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
d60c4473 4446
dfcab17e 4447 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 4448 cmd = 2;
dfcab17e 4449 else if (cdclk == 266667)
30a970c6
JB
4450 cmd = 1;
4451 else
4452 cmd = 0;
4453
4454 mutex_lock(&dev_priv->rps.hw_lock);
4455 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4456 val &= ~DSPFREQGUAR_MASK;
4457 val |= (cmd << DSPFREQGUAR_SHIFT);
4458 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4459 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4460 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4461 50)) {
4462 DRM_ERROR("timed out waiting for CDclk change\n");
4463 }
4464 mutex_unlock(&dev_priv->rps.hw_lock);
4465
dfcab17e 4466 if (cdclk == 400000) {
30a970c6
JB
4467 u32 divider, vco;
4468
4469 vco = valleyview_get_vco(dev_priv);
dfcab17e 4470 divider = DIV_ROUND_CLOSEST(vco << 1, cdclk) - 1;
30a970c6
JB
4471
4472 mutex_lock(&dev_priv->dpio_lock);
4473 /* adjust cdclk divider */
4474 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
9cf33db5 4475 val &= ~DISPLAY_FREQUENCY_VALUES;
30a970c6
JB
4476 val |= divider;
4477 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
4478
4479 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4480 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4481 50))
4482 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
4483 mutex_unlock(&dev_priv->dpio_lock);
4484 }
4485
4486 mutex_lock(&dev_priv->dpio_lock);
4487 /* adjust self-refresh exit latency value */
4488 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4489 val &= ~0x7f;
4490
4491 /*
4492 * For high bandwidth configs, we set a higher latency in the bunit
4493 * so that the core display fetch happens in time to avoid underruns.
4494 */
dfcab17e 4495 if (cdclk == 400000)
30a970c6
JB
4496 val |= 4500 / 250; /* 4.5 usec */
4497 else
4498 val |= 3000 / 250; /* 3.0 usec */
4499 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4500 mutex_unlock(&dev_priv->dpio_lock);
4501
f8bf63fd 4502 vlv_update_cdclk(dev);
30a970c6
JB
4503}
4504
383c5a6a
VS
4505static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4506{
4507 struct drm_i915_private *dev_priv = dev->dev_private;
4508 u32 val, cmd;
4509
4510 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4511
4512 switch (cdclk) {
4513 case 400000:
4514 cmd = 3;
4515 break;
4516 case 333333:
4517 case 320000:
4518 cmd = 2;
4519 break;
4520 case 266667:
4521 cmd = 1;
4522 break;
4523 case 200000:
4524 cmd = 0;
4525 break;
4526 default:
4527 WARN_ON(1);
4528 return;
4529 }
4530
4531 mutex_lock(&dev_priv->rps.hw_lock);
4532 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4533 val &= ~DSPFREQGUAR_MASK_CHV;
4534 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4535 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4536 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4537 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4538 50)) {
4539 DRM_ERROR("timed out waiting for CDclk change\n");
4540 }
4541 mutex_unlock(&dev_priv->rps.hw_lock);
4542
4543 vlv_update_cdclk(dev);
4544}
4545
30a970c6
JB
4546static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4547 int max_pixclk)
4548{
29dc7ef3
VS
4549 int vco = valleyview_get_vco(dev_priv);
4550 int freq_320 = (vco << 1) % 320000 != 0 ? 333333 : 320000;
4551
d49a340d
VS
4552 /* FIXME: Punit isn't quite ready yet */
4553 if (IS_CHERRYVIEW(dev_priv->dev))
4554 return 400000;
4555
30a970c6
JB
4556 /*
4557 * Really only a few cases to deal with, as only 4 CDclks are supported:
4558 * 200MHz
4559 * 267MHz
29dc7ef3 4560 * 320/333MHz (depends on HPLL freq)
30a970c6
JB
4561 * 400MHz
4562 * So we check to see whether we're above 90% of the lower bin and
4563 * adjust if needed.
e37c67a1
VS
4564 *
4565 * We seem to get an unstable or solid color picture at 200MHz.
4566 * Not sure what's wrong. For now use 200MHz only when all pipes
4567 * are off.
30a970c6 4568 */
29dc7ef3 4569 if (max_pixclk > freq_320*9/10)
dfcab17e
VS
4570 return 400000;
4571 else if (max_pixclk > 266667*9/10)
29dc7ef3 4572 return freq_320;
e37c67a1 4573 else if (max_pixclk > 0)
dfcab17e 4574 return 266667;
e37c67a1
VS
4575 else
4576 return 200000;
30a970c6
JB
4577}
4578
2f2d7aa1
VS
4579/* compute the max pixel clock for new configuration */
4580static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
30a970c6
JB
4581{
4582 struct drm_device *dev = dev_priv->dev;
4583 struct intel_crtc *intel_crtc;
4584 int max_pixclk = 0;
4585
d3fcc808 4586 for_each_intel_crtc(dev, intel_crtc) {
2f2d7aa1 4587 if (intel_crtc->new_enabled)
30a970c6 4588 max_pixclk = max(max_pixclk,
2f2d7aa1 4589 intel_crtc->new_config->adjusted_mode.crtc_clock);
30a970c6
JB
4590 }
4591
4592 return max_pixclk;
4593}
4594
4595static void valleyview_modeset_global_pipes(struct drm_device *dev,
2f2d7aa1 4596 unsigned *prepare_pipes)
30a970c6
JB
4597{
4598 struct drm_i915_private *dev_priv = dev->dev_private;
4599 struct intel_crtc *intel_crtc;
2f2d7aa1 4600 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6 4601
d60c4473
ID
4602 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4603 dev_priv->vlv_cdclk_freq)
30a970c6
JB
4604 return;
4605
2f2d7aa1 4606 /* disable/enable all currently active pipes while we change cdclk */
d3fcc808 4607 for_each_intel_crtc(dev, intel_crtc)
30a970c6
JB
4608 if (intel_crtc->base.enabled)
4609 *prepare_pipes |= (1 << intel_crtc->pipe);
4610}
4611
4612static void valleyview_modeset_global_resources(struct drm_device *dev)
4613{
4614 struct drm_i915_private *dev_priv = dev->dev_private;
2f2d7aa1 4615 int max_pixclk = intel_mode_max_pixclk(dev_priv);
30a970c6
JB
4616 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4617
383c5a6a
VS
4618 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
4619 if (IS_CHERRYVIEW(dev))
4620 cherryview_set_cdclk(dev, req_cdclk);
4621 else
4622 valleyview_set_cdclk(dev, req_cdclk);
4623 }
4624
77961eb9 4625 modeset_update_crtc_power_domains(dev);
30a970c6
JB
4626}
4627
89b667f8
JB
4628static void valleyview_crtc_enable(struct drm_crtc *crtc)
4629{
4630 struct drm_device *dev = crtc->dev;
5b18e57c 4631 struct drm_i915_private *dev_priv = dev->dev_private;
89b667f8
JB
4632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4633 struct intel_encoder *encoder;
4634 int pipe = intel_crtc->pipe;
5b18e57c 4635 int plane = intel_crtc->plane;
23538ef1 4636 bool is_dsi;
5b18e57c 4637 u32 dspcntr;
89b667f8
JB
4638
4639 WARN_ON(!crtc->enabled);
4640
4641 if (intel_crtc->active)
4642 return;
4643
8525a235
SK
4644 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4645
1ae0d137
VS
4646 if (!is_dsi) {
4647 if (IS_CHERRYVIEW(dev))
4648 chv_prepare_pll(intel_crtc);
4649 else
4650 vlv_prepare_pll(intel_crtc);
4651 }
bdd4b6a6 4652
5b18e57c
DV
4653 /* Set up the display plane register */
4654 dspcntr = DISPPLANE_GAMMA_ENABLE;
4655
4656 if (intel_crtc->config.has_dp_encoder)
4657 intel_dp_set_m_n(intel_crtc);
4658
4659 intel_set_pipe_timings(intel_crtc);
4660
4661 /* pipesrc and dspsize control the size that is scaled from,
4662 * which should always be the user's requested size.
4663 */
4664 I915_WRITE(DSPSIZE(plane),
4665 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4666 (intel_crtc->config.pipe_src_w - 1));
4667 I915_WRITE(DSPPOS(plane), 0);
4668
4669 i9xx_set_pipeconf(intel_crtc);
4670
4671 I915_WRITE(DSPCNTR(plane), dspcntr);
4672 POSTING_READ(DSPCNTR(plane));
4673
4674 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4675 crtc->x, crtc->y);
4676
89b667f8 4677 intel_crtc->active = true;
89b667f8 4678
4a3436e8
VS
4679 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4680
89b667f8
JB
4681 for_each_encoder_on_crtc(dev, crtc, encoder)
4682 if (encoder->pre_pll_enable)
4683 encoder->pre_pll_enable(encoder);
4684
9d556c99
CML
4685 if (!is_dsi) {
4686 if (IS_CHERRYVIEW(dev))
4687 chv_enable_pll(intel_crtc);
4688 else
4689 vlv_enable_pll(intel_crtc);
4690 }
89b667f8
JB
4691
4692 for_each_encoder_on_crtc(dev, crtc, encoder)
4693 if (encoder->pre_enable)
4694 encoder->pre_enable(encoder);
4695
2dd24552
JB
4696 i9xx_pfit_enable(intel_crtc);
4697
63cbb074
VS
4698 intel_crtc_load_lut(crtc);
4699
f37fcc2a 4700 intel_update_watermarks(crtc);
e1fdc473 4701 intel_enable_pipe(intel_crtc);
be6a6f8e 4702
5004945f
JN
4703 for_each_encoder_on_crtc(dev, crtc, encoder)
4704 encoder->enable(encoder);
9ab0460b
VS
4705
4706 intel_crtc_enable_planes(crtc);
d40d9187 4707
56b80e1f
VS
4708 /* Underruns don't raise interrupts, so check manually. */
4709 i9xx_check_fifo_underruns(dev);
89b667f8
JB
4710}
4711
f13c2ef3
DV
4712static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
4713{
4714 struct drm_device *dev = crtc->base.dev;
4715 struct drm_i915_private *dev_priv = dev->dev_private;
4716
4717 I915_WRITE(FP0(crtc->pipe), crtc->config.dpll_hw_state.fp0);
4718 I915_WRITE(FP1(crtc->pipe), crtc->config.dpll_hw_state.fp1);
4719}
4720
0b8765c6 4721static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
4722{
4723 struct drm_device *dev = crtc->dev;
5b18e57c 4724 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 4725 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4726 struct intel_encoder *encoder;
79e53945 4727 int pipe = intel_crtc->pipe;
5b18e57c
DV
4728 int plane = intel_crtc->plane;
4729 u32 dspcntr;
79e53945 4730
08a48469
DV
4731 WARN_ON(!crtc->enabled);
4732
f7abfe8b
CW
4733 if (intel_crtc->active)
4734 return;
4735
f13c2ef3
DV
4736 i9xx_set_pll_dividers(intel_crtc);
4737
5b18e57c
DV
4738 /* Set up the display plane register */
4739 dspcntr = DISPPLANE_GAMMA_ENABLE;
4740
4741 if (pipe == 0)
4742 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4743 else
4744 dspcntr |= DISPPLANE_SEL_PIPE_B;
4745
4746 if (intel_crtc->config.has_dp_encoder)
4747 intel_dp_set_m_n(intel_crtc);
4748
4749 intel_set_pipe_timings(intel_crtc);
4750
4751 /* pipesrc and dspsize control the size that is scaled from,
4752 * which should always be the user's requested size.
4753 */
4754 I915_WRITE(DSPSIZE(plane),
4755 ((intel_crtc->config.pipe_src_h - 1) << 16) |
4756 (intel_crtc->config.pipe_src_w - 1));
4757 I915_WRITE(DSPPOS(plane), 0);
4758
4759 i9xx_set_pipeconf(intel_crtc);
4760
4761 I915_WRITE(DSPCNTR(plane), dspcntr);
4762 POSTING_READ(DSPCNTR(plane));
4763
4764 dev_priv->display.update_primary_plane(crtc, crtc->primary->fb,
4765 crtc->x, crtc->y);
4766
f7abfe8b 4767 intel_crtc->active = true;
6b383a7f 4768
4a3436e8
VS
4769 if (!IS_GEN2(dev))
4770 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4771
9d6d9f19
MK
4772 for_each_encoder_on_crtc(dev, crtc, encoder)
4773 if (encoder->pre_enable)
4774 encoder->pre_enable(encoder);
4775
f6736a1a
DV
4776 i9xx_enable_pll(intel_crtc);
4777
2dd24552
JB
4778 i9xx_pfit_enable(intel_crtc);
4779
63cbb074
VS
4780 intel_crtc_load_lut(crtc);
4781
f37fcc2a 4782 intel_update_watermarks(crtc);
e1fdc473 4783 intel_enable_pipe(intel_crtc);
be6a6f8e 4784
fa5c73b1
DV
4785 for_each_encoder_on_crtc(dev, crtc, encoder)
4786 encoder->enable(encoder);
9ab0460b
VS
4787
4788 intel_crtc_enable_planes(crtc);
d40d9187 4789
4a3436e8
VS
4790 /*
4791 * Gen2 reports pipe underruns whenever all planes are disabled.
4792 * So don't enable underrun reporting before at least some planes
4793 * are enabled.
4794 * FIXME: Need to fix the logic to work when we turn off all planes
4795 * but leave the pipe running.
4796 */
4797 if (IS_GEN2(dev))
4798 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
4799
56b80e1f
VS
4800 /* Underruns don't raise interrupts, so check manually. */
4801 i9xx_check_fifo_underruns(dev);
0b8765c6 4802}
79e53945 4803
87476d63
DV
4804static void i9xx_pfit_disable(struct intel_crtc *crtc)
4805{
4806 struct drm_device *dev = crtc->base.dev;
4807 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 4808
328d8e82
DV
4809 if (!crtc->config.gmch_pfit.control)
4810 return;
87476d63 4811
328d8e82 4812 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 4813
328d8e82
DV
4814 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4815 I915_READ(PFIT_CONTROL));
4816 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
4817}
4818
0b8765c6
JB
4819static void i9xx_crtc_disable(struct drm_crtc *crtc)
4820{
4821 struct drm_device *dev = crtc->dev;
4822 struct drm_i915_private *dev_priv = dev->dev_private;
4823 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4824 struct intel_encoder *encoder;
0b8765c6 4825 int pipe = intel_crtc->pipe;
ef9c3aee 4826
f7abfe8b
CW
4827 if (!intel_crtc->active)
4828 return;
4829
4a3436e8
VS
4830 /*
4831 * Gen2 reports pipe underruns whenever all planes are disabled.
4832 * So diasble underrun reporting before all the planes get disabled.
4833 * FIXME: Need to fix the logic to work when we turn off all planes
4834 * but leave the pipe running.
4835 */
4836 if (IS_GEN2(dev))
4837 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4838
564ed191
ID
4839 /*
4840 * Vblank time updates from the shadow to live plane control register
4841 * are blocked if the memory self-refresh mode is active at that
4842 * moment. So to make sure the plane gets truly disabled, disable
4843 * first the self-refresh mode. The self-refresh enable bit in turn
4844 * will be checked/applied by the HW only at the next frame start
4845 * event which is after the vblank start event, so we need to have a
4846 * wait-for-vblank between disabling the plane and the pipe.
4847 */
4848 intel_set_memory_cxsr(dev_priv, false);
9ab0460b
VS
4849 intel_crtc_disable_planes(crtc);
4850
ea9d758d
DV
4851 for_each_encoder_on_crtc(dev, crtc, encoder)
4852 encoder->disable(encoder);
4853
6304cd91
VS
4854 /*
4855 * On gen2 planes are double buffered but the pipe isn't, so we must
4856 * wait for planes to fully turn off before disabling the pipe.
564ed191
ID
4857 * We also need to wait on all gmch platforms because of the
4858 * self-refresh mode constraint explained above.
6304cd91 4859 */
564ed191 4860 intel_wait_for_vblank(dev, pipe);
6304cd91 4861
b24e7179 4862 intel_disable_pipe(dev_priv, pipe);
24a1f16d 4863
87476d63 4864 i9xx_pfit_disable(intel_crtc);
24a1f16d 4865
89b667f8
JB
4866 for_each_encoder_on_crtc(dev, crtc, encoder)
4867 if (encoder->post_disable)
4868 encoder->post_disable(encoder);
4869
076ed3b2
CML
4870 if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI)) {
4871 if (IS_CHERRYVIEW(dev))
4872 chv_disable_pll(dev_priv, pipe);
4873 else if (IS_VALLEYVIEW(dev))
4874 vlv_disable_pll(dev_priv, pipe);
4875 else
4876 i9xx_disable_pll(dev_priv, pipe);
4877 }
0b8765c6 4878
4a3436e8
VS
4879 if (!IS_GEN2(dev))
4880 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false);
4881
f7abfe8b 4882 intel_crtc->active = false;
46ba614c 4883 intel_update_watermarks(crtc);
f37fcc2a 4884
efa9624e 4885 mutex_lock(&dev->struct_mutex);
6b383a7f 4886 intel_update_fbc(dev);
efa9624e 4887 mutex_unlock(&dev->struct_mutex);
0b8765c6
JB
4888}
4889
ee7b9f93
JB
4890static void i9xx_crtc_off(struct drm_crtc *crtc)
4891{
4892}
4893
976f8a20
DV
4894static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4895 bool enabled)
2c07245f
ZW
4896{
4897 struct drm_device *dev = crtc->dev;
4898 struct drm_i915_master_private *master_priv;
4899 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4900 int pipe = intel_crtc->pipe;
79e53945
JB
4901
4902 if (!dev->primary->master)
4903 return;
4904
4905 master_priv = dev->primary->master->driver_priv;
4906 if (!master_priv->sarea_priv)
4907 return;
4908
79e53945
JB
4909 switch (pipe) {
4910 case 0:
4911 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4912 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4913 break;
4914 case 1:
4915 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4916 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4917 break;
4918 default:
9db4a9c7 4919 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
4920 break;
4921 }
79e53945
JB
4922}
4923
b04c5bd6
BF
4924/* Master function to enable/disable CRTC and corresponding power wells */
4925void intel_crtc_control(struct drm_crtc *crtc, bool enable)
976f8a20
DV
4926{
4927 struct drm_device *dev = crtc->dev;
4928 struct drm_i915_private *dev_priv = dev->dev_private;
0e572fe7 4929 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
0e572fe7
DV
4930 enum intel_display_power_domain domain;
4931 unsigned long domains;
976f8a20 4932
0e572fe7
DV
4933 if (enable) {
4934 if (!intel_crtc->active) {
e1e9fb84
DV
4935 domains = get_crtc_power_domains(crtc);
4936 for_each_power_domain(domain, domains)
4937 intel_display_power_get(dev_priv, domain);
4938 intel_crtc->enabled_power_domains = domains;
0e572fe7
DV
4939
4940 dev_priv->display.crtc_enable(crtc);
4941 }
4942 } else {
4943 if (intel_crtc->active) {
4944 dev_priv->display.crtc_disable(crtc);
4945
e1e9fb84
DV
4946 domains = intel_crtc->enabled_power_domains;
4947 for_each_power_domain(domain, domains)
4948 intel_display_power_put(dev_priv, domain);
4949 intel_crtc->enabled_power_domains = 0;
0e572fe7
DV
4950 }
4951 }
b04c5bd6
BF
4952}
4953
4954/**
4955 * Sets the power management mode of the pipe and plane.
4956 */
4957void intel_crtc_update_dpms(struct drm_crtc *crtc)
4958{
4959 struct drm_device *dev = crtc->dev;
4960 struct intel_encoder *intel_encoder;
4961 bool enable = false;
4962
4963 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4964 enable |= intel_encoder->connectors_active;
4965
4966 intel_crtc_control(crtc, enable);
976f8a20
DV
4967
4968 intel_crtc_update_sarea(crtc, enable);
4969}
4970
cdd59983
CW
4971static void intel_crtc_disable(struct drm_crtc *crtc)
4972{
cdd59983 4973 struct drm_device *dev = crtc->dev;
976f8a20 4974 struct drm_connector *connector;
ee7b9f93 4975 struct drm_i915_private *dev_priv = dev->dev_private;
2ff8fde1 4976 struct drm_i915_gem_object *old_obj = intel_fb_obj(crtc->primary->fb);
a071fa00 4977 enum pipe pipe = to_intel_crtc(crtc)->pipe;
cdd59983 4978
976f8a20
DV
4979 /* crtc should still be enabled when we disable it. */
4980 WARN_ON(!crtc->enabled);
4981
4982 dev_priv->display.crtc_disable(crtc);
4983 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
4984 dev_priv->display.off(crtc);
4985
f4510a27 4986 if (crtc->primary->fb) {
cdd59983 4987 mutex_lock(&dev->struct_mutex);
a071fa00
DV
4988 intel_unpin_fb_obj(old_obj);
4989 i915_gem_track_fb(old_obj, NULL,
4990 INTEL_FRONTBUFFER_PRIMARY(pipe));
cdd59983 4991 mutex_unlock(&dev->struct_mutex);
f4510a27 4992 crtc->primary->fb = NULL;
976f8a20
DV
4993 }
4994
4995 /* Update computed state. */
4996 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4997 if (!connector->encoder || !connector->encoder->crtc)
4998 continue;
4999
5000 if (connector->encoder->crtc != crtc)
5001 continue;
5002
5003 connector->dpms = DRM_MODE_DPMS_OFF;
5004 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
5005 }
5006}
5007
ea5b213a 5008void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 5009{
4ef69c7a 5010 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 5011
ea5b213a
CW
5012 drm_encoder_cleanup(encoder);
5013 kfree(intel_encoder);
7e7d76c3
JB
5014}
5015
9237329d 5016/* Simple dpms helper for encoders with just one connector, no cloning and only
5ab432ef
DV
5017 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5018 * state of the entire output pipe. */
9237329d 5019static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 5020{
5ab432ef
DV
5021 if (mode == DRM_MODE_DPMS_ON) {
5022 encoder->connectors_active = true;
5023
b2cabb0e 5024 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
5025 } else {
5026 encoder->connectors_active = false;
5027
b2cabb0e 5028 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 5029 }
79e53945
JB
5030}
5031
0a91ca29
DV
5032/* Cross check the actual hw state with our own modeset state tracking (and it's
5033 * internal consistency). */
b980514c 5034static void intel_connector_check_state(struct intel_connector *connector)
79e53945 5035{
0a91ca29
DV
5036 if (connector->get_hw_state(connector)) {
5037 struct intel_encoder *encoder = connector->encoder;
5038 struct drm_crtc *crtc;
5039 bool encoder_enabled;
5040 enum pipe pipe;
5041
5042 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5043 connector->base.base.id,
c23cc417 5044 connector->base.name);
0a91ca29 5045
0e32b39c
DA
5046 /* there is no real hw state for MST connectors */
5047 if (connector->mst_port)
5048 return;
5049
0a91ca29
DV
5050 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5051 "wrong connector dpms state\n");
5052 WARN(connector->base.encoder != &encoder->base,
5053 "active connector not linked to encoder\n");
0a91ca29 5054
36cd7444
DA
5055 if (encoder) {
5056 WARN(!encoder->connectors_active,
5057 "encoder->connectors_active not set\n");
5058
5059 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5060 WARN(!encoder_enabled, "encoder not enabled\n");
5061 if (WARN_ON(!encoder->base.crtc))
5062 return;
0a91ca29 5063
36cd7444 5064 crtc = encoder->base.crtc;
0a91ca29 5065
36cd7444
DA
5066 WARN(!crtc->enabled, "crtc not enabled\n");
5067 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5068 WARN(pipe != to_intel_crtc(crtc)->pipe,
5069 "encoder active on the wrong pipe\n");
5070 }
0a91ca29 5071 }
79e53945
JB
5072}
5073
5ab432ef
DV
5074/* Even simpler default implementation, if there's really no special case to
5075 * consider. */
5076void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 5077{
5ab432ef
DV
5078 /* All the simple cases only support two dpms states. */
5079 if (mode != DRM_MODE_DPMS_ON)
5080 mode = DRM_MODE_DPMS_OFF;
d4270e57 5081
5ab432ef
DV
5082 if (mode == connector->dpms)
5083 return;
5084
5085 connector->dpms = mode;
5086
5087 /* Only need to change hw state when actually enabled */
c9976dcf
CW
5088 if (connector->encoder)
5089 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
0a91ca29 5090
b980514c 5091 intel_modeset_check_state(connector->dev);
79e53945
JB
5092}
5093
f0947c37
DV
5094/* Simple connector->get_hw_state implementation for encoders that support only
5095 * one connector and no cloning and hence the encoder state determines the state
5096 * of the connector. */
5097bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 5098{
24929352 5099 enum pipe pipe = 0;
f0947c37 5100 struct intel_encoder *encoder = connector->encoder;
ea5b213a 5101
f0947c37 5102 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
5103}
5104
1857e1da
DV
5105static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5106 struct intel_crtc_config *pipe_config)
5107{
5108 struct drm_i915_private *dev_priv = dev->dev_private;
5109 struct intel_crtc *pipe_B_crtc =
5110 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5111
5112 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5113 pipe_name(pipe), pipe_config->fdi_lanes);
5114 if (pipe_config->fdi_lanes > 4) {
5115 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5116 pipe_name(pipe), pipe_config->fdi_lanes);
5117 return false;
5118 }
5119
bafb6553 5120 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
5121 if (pipe_config->fdi_lanes > 2) {
5122 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5123 pipe_config->fdi_lanes);
5124 return false;
5125 } else {
5126 return true;
5127 }
5128 }
5129
5130 if (INTEL_INFO(dev)->num_pipes == 2)
5131 return true;
5132
5133 /* Ivybridge 3 pipe is really complicated */
5134 switch (pipe) {
5135 case PIPE_A:
5136 return true;
5137 case PIPE_B:
5138 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5139 pipe_config->fdi_lanes > 2) {
5140 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5141 pipe_name(pipe), pipe_config->fdi_lanes);
5142 return false;
5143 }
5144 return true;
5145 case PIPE_C:
1e833f40 5146 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
1857e1da
DV
5147 pipe_B_crtc->config.fdi_lanes <= 2) {
5148 if (pipe_config->fdi_lanes > 2) {
5149 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5150 pipe_name(pipe), pipe_config->fdi_lanes);
5151 return false;
5152 }
5153 } else {
5154 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5155 return false;
5156 }
5157 return true;
5158 default:
5159 BUG();
5160 }
5161}
5162
e29c22c0
DV
5163#define RETRY 1
5164static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5165 struct intel_crtc_config *pipe_config)
877d48d5 5166{
1857e1da 5167 struct drm_device *dev = intel_crtc->base.dev;
877d48d5 5168 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
ff9a6750 5169 int lane, link_bw, fdi_dotclock;
e29c22c0 5170 bool setup_ok, needs_recompute = false;
877d48d5 5171
e29c22c0 5172retry:
877d48d5
DV
5173 /* FDI is a binary signal running at ~2.7GHz, encoding
5174 * each output octet as 10 bits. The actual frequency
5175 * is stored as a divider into a 100MHz clock, and the
5176 * mode pixel clock is stored in units of 1KHz.
5177 * Hence the bw of each lane in terms of the mode signal
5178 * is:
5179 */
5180 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5181
241bfc38 5182 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 5183
2bd89a07 5184 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
5185 pipe_config->pipe_bpp);
5186
5187 pipe_config->fdi_lanes = lane;
5188
2bd89a07 5189 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 5190 link_bw, &pipe_config->fdi_m_n);
1857e1da 5191
e29c22c0
DV
5192 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5193 intel_crtc->pipe, pipe_config);
5194 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5195 pipe_config->pipe_bpp -= 2*3;
5196 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5197 pipe_config->pipe_bpp);
5198 needs_recompute = true;
5199 pipe_config->bw_constrained = true;
5200
5201 goto retry;
5202 }
5203
5204 if (needs_recompute)
5205 return RETRY;
5206
5207 return setup_ok ? 0 : -EINVAL;
877d48d5
DV
5208}
5209
42db64ef
PZ
5210static void hsw_compute_ips_config(struct intel_crtc *crtc,
5211 struct intel_crtc_config *pipe_config)
5212{
d330a953 5213 pipe_config->ips_enabled = i915.enable_ips &&
3c4ca58c 5214 hsw_crtc_supports_ips(crtc) &&
b6dfdc9b 5215 pipe_config->pipe_bpp <= 24;
42db64ef
PZ
5216}
5217
a43f6e0f 5218static int intel_crtc_compute_config(struct intel_crtc *crtc,
e29c22c0 5219 struct intel_crtc_config *pipe_config)
79e53945 5220{
a43f6e0f 5221 struct drm_device *dev = crtc->base.dev;
b8cecdf5 5222 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
89749350 5223
ad3a4479 5224 /* FIXME should check pixel clock limits on all platforms */
cf532bb2
VS
5225 if (INTEL_INFO(dev)->gen < 4) {
5226 struct drm_i915_private *dev_priv = dev->dev_private;
5227 int clock_limit =
5228 dev_priv->display.get_display_clock_speed(dev);
5229
5230 /*
5231 * Enable pixel doubling when the dot clock
5232 * is > 90% of the (display) core speed.
5233 *
b397c96b
VS
5234 * GDG double wide on either pipe,
5235 * otherwise pipe A only.
cf532bb2 5236 */
b397c96b 5237 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
241bfc38 5238 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
ad3a4479 5239 clock_limit *= 2;
cf532bb2 5240 pipe_config->double_wide = true;
ad3a4479
VS
5241 }
5242
241bfc38 5243 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
e29c22c0 5244 return -EINVAL;
2c07245f 5245 }
89749350 5246
1d1d0e27
VS
5247 /*
5248 * Pipe horizontal size must be even in:
5249 * - DVO ganged mode
5250 * - LVDS dual channel mode
5251 * - Double wide pipe
5252 */
5253 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5254 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5255 pipe_config->pipe_src_w &= ~1;
5256
8693a824
DL
5257 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5258 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
5259 */
5260 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5261 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
e29c22c0 5262 return -EINVAL;
44f46b42 5263
bd080ee5 5264 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5d2d38dd 5265 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
bd080ee5 5266 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5d2d38dd
DV
5267 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5268 * for lvds. */
5269 pipe_config->pipe_bpp = 8*3;
5270 }
5271
f5adf94e 5272 if (HAS_IPS(dev))
a43f6e0f
DV
5273 hsw_compute_ips_config(crtc, pipe_config);
5274
12030431
DV
5275 /*
5276 * XXX: PCH/WRPLL clock sharing is done in ->mode_set, so make sure the
5277 * old clock survives for now.
5278 */
5279 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev) || HAS_DDI(dev))
a43f6e0f 5280 pipe_config->shared_dpll = crtc->config.shared_dpll;
42db64ef 5281
877d48d5 5282 if (pipe_config->has_pch_encoder)
a43f6e0f 5283 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 5284
e29c22c0 5285 return 0;
79e53945
JB
5286}
5287
25eb05fc
JB
5288static int valleyview_get_display_clock_speed(struct drm_device *dev)
5289{
d197b7d3
VS
5290 struct drm_i915_private *dev_priv = dev->dev_private;
5291 int vco = valleyview_get_vco(dev_priv);
5292 u32 val;
5293 int divider;
5294
d49a340d
VS
5295 /* FIXME: Punit isn't quite ready yet */
5296 if (IS_CHERRYVIEW(dev))
5297 return 400000;
5298
d197b7d3
VS
5299 mutex_lock(&dev_priv->dpio_lock);
5300 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5301 mutex_unlock(&dev_priv->dpio_lock);
5302
5303 divider = val & DISPLAY_FREQUENCY_VALUES;
5304
7d007f40
VS
5305 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5306 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5307 "cdclk change in progress\n");
5308
d197b7d3 5309 return DIV_ROUND_CLOSEST(vco << 1, divider + 1);
25eb05fc
JB
5310}
5311
e70236a8
JB
5312static int i945_get_display_clock_speed(struct drm_device *dev)
5313{
5314 return 400000;
5315}
79e53945 5316
e70236a8 5317static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 5318{
e70236a8
JB
5319 return 333000;
5320}
79e53945 5321
e70236a8
JB
5322static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5323{
5324 return 200000;
5325}
79e53945 5326
257a7ffc
DV
5327static int pnv_get_display_clock_speed(struct drm_device *dev)
5328{
5329 u16 gcfgc = 0;
5330
5331 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5332
5333 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5334 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5335 return 267000;
5336 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5337 return 333000;
5338 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5339 return 444000;
5340 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5341 return 200000;
5342 default:
5343 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5344 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5345 return 133000;
5346 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5347 return 167000;
5348 }
5349}
5350
e70236a8
JB
5351static int i915gm_get_display_clock_speed(struct drm_device *dev)
5352{
5353 u16 gcfgc = 0;
79e53945 5354
e70236a8
JB
5355 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5356
5357 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5358 return 133000;
5359 else {
5360 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5361 case GC_DISPLAY_CLOCK_333_MHZ:
5362 return 333000;
5363 default:
5364 case GC_DISPLAY_CLOCK_190_200_MHZ:
5365 return 190000;
79e53945 5366 }
e70236a8
JB
5367 }
5368}
5369
5370static int i865_get_display_clock_speed(struct drm_device *dev)
5371{
5372 return 266000;
5373}
5374
5375static int i855_get_display_clock_speed(struct drm_device *dev)
5376{
5377 u16 hpllcc = 0;
5378 /* Assume that the hardware is in the high speed state. This
5379 * should be the default.
5380 */
5381 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5382 case GC_CLOCK_133_200:
5383 case GC_CLOCK_100_200:
5384 return 200000;
5385 case GC_CLOCK_166_250:
5386 return 250000;
5387 case GC_CLOCK_100_133:
79e53945 5388 return 133000;
e70236a8 5389 }
79e53945 5390
e70236a8
JB
5391 /* Shouldn't happen */
5392 return 0;
5393}
79e53945 5394
e70236a8
JB
5395static int i830_get_display_clock_speed(struct drm_device *dev)
5396{
5397 return 133000;
79e53945
JB
5398}
5399
2c07245f 5400static void
a65851af 5401intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 5402{
a65851af
VS
5403 while (*num > DATA_LINK_M_N_MASK ||
5404 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
5405 *num >>= 1;
5406 *den >>= 1;
5407 }
5408}
5409
a65851af
VS
5410static void compute_m_n(unsigned int m, unsigned int n,
5411 uint32_t *ret_m, uint32_t *ret_n)
5412{
5413 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5414 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5415 intel_reduce_m_n_ratio(ret_m, ret_n);
5416}
5417
e69d0bc1
DV
5418void
5419intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5420 int pixel_clock, int link_clock,
5421 struct intel_link_m_n *m_n)
2c07245f 5422{
e69d0bc1 5423 m_n->tu = 64;
a65851af
VS
5424
5425 compute_m_n(bits_per_pixel * pixel_clock,
5426 link_clock * nlanes * 8,
5427 &m_n->gmch_m, &m_n->gmch_n);
5428
5429 compute_m_n(pixel_clock, link_clock,
5430 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
5431}
5432
a7615030
CW
5433static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5434{
d330a953
JN
5435 if (i915.panel_use_ssc >= 0)
5436 return i915.panel_use_ssc != 0;
41aa3448 5437 return dev_priv->vbt.lvds_use_ssc
435793df 5438 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
5439}
5440
c65d77d8
JB
5441static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5442{
5443 struct drm_device *dev = crtc->dev;
5444 struct drm_i915_private *dev_priv = dev->dev_private;
5445 int refclk;
5446
a0c4da24 5447 if (IS_VALLEYVIEW(dev)) {
9a0ea498 5448 refclk = 100000;
a0c4da24 5449 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8 5450 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b
VS
5451 refclk = dev_priv->vbt.lvds_ssc_freq;
5452 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
c65d77d8
JB
5453 } else if (!IS_GEN2(dev)) {
5454 refclk = 96000;
5455 } else {
5456 refclk = 48000;
5457 }
5458
5459 return refclk;
5460}
5461
7429e9d4 5462static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 5463{
7df00d7a 5464 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 5465}
f47709a9 5466
7429e9d4
DV
5467static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5468{
5469 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
5470}
5471
f47709a9 5472static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
a7516a05
JB
5473 intel_clock_t *reduced_clock)
5474{
f47709a9 5475 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
5476 u32 fp, fp2 = 0;
5477
5478 if (IS_PINEVIEW(dev)) {
7429e9d4 5479 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5480 if (reduced_clock)
7429e9d4 5481 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 5482 } else {
7429e9d4 5483 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
a7516a05 5484 if (reduced_clock)
7429e9d4 5485 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
5486 }
5487
8bcc2795 5488 crtc->config.dpll_hw_state.fp0 = fp;
a7516a05 5489
f47709a9
DV
5490 crtc->lowfreq_avail = false;
5491 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
d330a953 5492 reduced_clock && i915.powersave) {
8bcc2795 5493 crtc->config.dpll_hw_state.fp1 = fp2;
f47709a9 5494 crtc->lowfreq_avail = true;
a7516a05 5495 } else {
8bcc2795 5496 crtc->config.dpll_hw_state.fp1 = fp;
a7516a05
JB
5497 }
5498}
5499
5e69f97f
CML
5500static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5501 pipe)
89b667f8
JB
5502{
5503 u32 reg_val;
5504
5505 /*
5506 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5507 * and set it to a reasonable value instead.
5508 */
ab3c759a 5509 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
5510 reg_val &= 0xffffff00;
5511 reg_val |= 0x00000030;
ab3c759a 5512 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5513
ab3c759a 5514 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5515 reg_val &= 0x8cffffff;
5516 reg_val = 0x8c000000;
ab3c759a 5517 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 5518
ab3c759a 5519 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 5520 reg_val &= 0xffffff00;
ab3c759a 5521 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 5522
ab3c759a 5523 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
5524 reg_val &= 0x00ffffff;
5525 reg_val |= 0xb0000000;
ab3c759a 5526 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
5527}
5528
b551842d
DV
5529static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5530 struct intel_link_m_n *m_n)
5531{
5532 struct drm_device *dev = crtc->base.dev;
5533 struct drm_i915_private *dev_priv = dev->dev_private;
5534 int pipe = crtc->pipe;
5535
e3b95f1e
DV
5536 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5537 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5538 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5539 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
5540}
5541
5542static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
5543 struct intel_link_m_n *m_n,
5544 struct intel_link_m_n *m2_n2)
b551842d
DV
5545{
5546 struct drm_device *dev = crtc->base.dev;
5547 struct drm_i915_private *dev_priv = dev->dev_private;
5548 int pipe = crtc->pipe;
5549 enum transcoder transcoder = crtc->config.cpu_transcoder;
5550
5551 if (INTEL_INFO(dev)->gen >= 5) {
5552 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5553 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5554 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5555 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
5556 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5557 * for gen < 8) and if DRRS is supported (to make sure the
5558 * registers are not unnecessarily accessed).
5559 */
5560 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
5561 crtc->config.has_drrs) {
5562 I915_WRITE(PIPE_DATA_M2(transcoder),
5563 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5564 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5565 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5566 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5567 }
b551842d 5568 } else {
e3b95f1e
DV
5569 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5570 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5571 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5572 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
5573 }
5574}
5575
f769cd24 5576void intel_dp_set_m_n(struct intel_crtc *crtc)
03afc4a2
DV
5577{
5578 if (crtc->config.has_pch_encoder)
5579 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
5580 else
f769cd24
VK
5581 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n,
5582 &crtc->config.dp_m2_n2);
03afc4a2
DV
5583}
5584
f47709a9 5585static void vlv_update_pll(struct intel_crtc *crtc)
bdd4b6a6
DV
5586{
5587 u32 dpll, dpll_md;
5588
5589 /*
5590 * Enable DPIO clock input. We should never disable the reference
5591 * clock for pipe B, since VGA hotplug / manual detection depends
5592 * on it.
5593 */
5594 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5595 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5596 /* We should never disable this, set it here for state tracking */
5597 if (crtc->pipe == PIPE_B)
5598 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5599 dpll |= DPLL_VCO_ENABLE;
5600 crtc->config.dpll_hw_state.dpll = dpll;
5601
5602 dpll_md = (crtc->config.pixel_multiplier - 1)
5603 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5604 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5605}
5606
5607static void vlv_prepare_pll(struct intel_crtc *crtc)
a0c4da24 5608{
f47709a9 5609 struct drm_device *dev = crtc->base.dev;
a0c4da24 5610 struct drm_i915_private *dev_priv = dev->dev_private;
f47709a9 5611 int pipe = crtc->pipe;
bdd4b6a6 5612 u32 mdiv;
a0c4da24 5613 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 5614 u32 coreclk, reg_val;
a0c4da24 5615
09153000
DV
5616 mutex_lock(&dev_priv->dpio_lock);
5617
f47709a9
DV
5618 bestn = crtc->config.dpll.n;
5619 bestm1 = crtc->config.dpll.m1;
5620 bestm2 = crtc->config.dpll.m2;
5621 bestp1 = crtc->config.dpll.p1;
5622 bestp2 = crtc->config.dpll.p2;
a0c4da24 5623
89b667f8
JB
5624 /* See eDP HDMI DPIO driver vbios notes doc */
5625
5626 /* PLL B needs special handling */
bdd4b6a6 5627 if (pipe == PIPE_B)
5e69f97f 5628 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
5629
5630 /* Set up Tx target for periodic Rcomp update */
ab3c759a 5631 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
5632
5633 /* Disable target IRef on PLL */
ab3c759a 5634 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 5635 reg_val &= 0x00ffffff;
ab3c759a 5636 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
5637
5638 /* Disable fast lock */
ab3c759a 5639 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
5640
5641 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
5642 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5643 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5644 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 5645 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
5646
5647 /*
5648 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5649 * but we don't support that).
5650 * Note: don't use the DAC post divider as it seems unstable.
5651 */
5652 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 5653 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5654
a0c4da24 5655 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 5656 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 5657
89b667f8 5658 /* Set HBR and RBR LPF coefficients */
ff9a6750 5659 if (crtc->config.port_clock == 162000 ||
99750bd4 5660 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
89b667f8 5661 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
ab3c759a 5662 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 5663 0x009f0003);
89b667f8 5664 else
ab3c759a 5665 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
5666 0x00d0000f);
5667
5668 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
5669 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
5670 /* Use SSC source */
bdd4b6a6 5671 if (pipe == PIPE_A)
ab3c759a 5672 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5673 0x0df40000);
5674 else
ab3c759a 5675 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5676 0x0df70000);
5677 } else { /* HDMI or VGA */
5678 /* Use bend source */
bdd4b6a6 5679 if (pipe == PIPE_A)
ab3c759a 5680 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5681 0x0df70000);
5682 else
ab3c759a 5683 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
5684 0x0df40000);
5685 }
a0c4da24 5686
ab3c759a 5687 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8
JB
5688 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
5689 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
5690 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
5691 coreclk |= 0x01000000;
ab3c759a 5692 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 5693
ab3c759a 5694 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
09153000 5695 mutex_unlock(&dev_priv->dpio_lock);
a0c4da24
JB
5696}
5697
9d556c99 5698static void chv_update_pll(struct intel_crtc *crtc)
1ae0d137
VS
5699{
5700 crtc->config.dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
5701 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
5702 DPLL_VCO_ENABLE;
5703 if (crtc->pipe != PIPE_A)
5704 crtc->config.dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5705
5706 crtc->config.dpll_hw_state.dpll_md =
5707 (crtc->config.pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5708}
5709
5710static void chv_prepare_pll(struct intel_crtc *crtc)
9d556c99
CML
5711{
5712 struct drm_device *dev = crtc->base.dev;
5713 struct drm_i915_private *dev_priv = dev->dev_private;
5714 int pipe = crtc->pipe;
5715 int dpll_reg = DPLL(crtc->pipe);
5716 enum dpio_channel port = vlv_pipe_to_channel(pipe);
580d3811 5717 u32 loopfilter, intcoeff;
9d556c99
CML
5718 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
5719 int refclk;
5720
9d556c99
CML
5721 bestn = crtc->config.dpll.n;
5722 bestm2_frac = crtc->config.dpll.m2 & 0x3fffff;
5723 bestm1 = crtc->config.dpll.m1;
5724 bestm2 = crtc->config.dpll.m2 >> 22;
5725 bestp1 = crtc->config.dpll.p1;
5726 bestp2 = crtc->config.dpll.p2;
5727
5728 /*
5729 * Enable Refclk and SSC
5730 */
a11b0703
VS
5731 I915_WRITE(dpll_reg,
5732 crtc->config.dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
5733
5734 mutex_lock(&dev_priv->dpio_lock);
9d556c99 5735
9d556c99
CML
5736 /* p1 and p2 divider */
5737 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
5738 5 << DPIO_CHV_S1_DIV_SHIFT |
5739 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
5740 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
5741 1 << DPIO_CHV_K_DIV_SHIFT);
5742
5743 /* Feedback post-divider - m2 */
5744 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
5745
5746 /* Feedback refclk divider - n and m1 */
5747 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
5748 DPIO_CHV_M1_DIV_BY_2 |
5749 1 << DPIO_CHV_N_DIV_SHIFT);
5750
5751 /* M2 fraction division */
5752 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
5753
5754 /* M2 fraction division enable */
5755 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
5756 DPIO_CHV_FRAC_DIV_EN |
5757 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
5758
5759 /* Loop filter */
5760 refclk = i9xx_get_refclk(&crtc->base, 0);
5761 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
5762 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
5763 if (refclk == 100000)
5764 intcoeff = 11;
5765 else if (refclk == 38400)
5766 intcoeff = 10;
5767 else
5768 intcoeff = 9;
5769 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
5770 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
5771
5772 /* AFC Recal */
5773 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
5774 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
5775 DPIO_AFC_RECAL);
5776
5777 mutex_unlock(&dev_priv->dpio_lock);
5778}
5779
f47709a9
DV
5780static void i9xx_update_pll(struct intel_crtc *crtc,
5781 intel_clock_t *reduced_clock,
eb1cbe48
DV
5782 int num_connectors)
5783{
f47709a9 5784 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5785 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
5786 u32 dpll;
5787 bool is_sdvo;
f47709a9 5788 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5789
f47709a9 5790 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5791
f47709a9
DV
5792 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5793 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
5794
5795 dpll = DPLL_VGA_MODE_DIS;
5796
f47709a9 5797 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
5798 dpll |= DPLLB_MODE_LVDS;
5799 else
5800 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 5801
ef1b460d 5802 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
198a037f
DV
5803 dpll |= (crtc->config.pixel_multiplier - 1)
5804 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 5805 }
198a037f
DV
5806
5807 if (is_sdvo)
4a33e48d 5808 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 5809
f47709a9 5810 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4a33e48d 5811 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
5812
5813 /* compute bitmask from p1 value */
5814 if (IS_PINEVIEW(dev))
5815 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5816 else {
5817 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5818 if (IS_G4X(dev) && reduced_clock)
5819 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5820 }
5821 switch (clock->p2) {
5822 case 5:
5823 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5824 break;
5825 case 7:
5826 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5827 break;
5828 case 10:
5829 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5830 break;
5831 case 14:
5832 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5833 break;
5834 }
5835 if (INTEL_INFO(dev)->gen >= 4)
5836 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5837
09ede541 5838 if (crtc->config.sdvo_tv_clock)
eb1cbe48 5839 dpll |= PLL_REF_INPUT_TVCLKINBC;
f47709a9 5840 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5841 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5842 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5843 else
5844 dpll |= PLL_REF_INPUT_DREFCLK;
5845
5846 dpll |= DPLL_VCO_ENABLE;
8bcc2795
DV
5847 crtc->config.dpll_hw_state.dpll = dpll;
5848
eb1cbe48 5849 if (INTEL_INFO(dev)->gen >= 4) {
ef1b460d
DV
5850 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5851 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8bcc2795 5852 crtc->config.dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
5853 }
5854}
5855
f47709a9 5856static void i8xx_update_pll(struct intel_crtc *crtc,
f47709a9 5857 intel_clock_t *reduced_clock,
eb1cbe48
DV
5858 int num_connectors)
5859{
f47709a9 5860 struct drm_device *dev = crtc->base.dev;
eb1cbe48 5861 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 5862 u32 dpll;
f47709a9 5863 struct dpll *clock = &crtc->config.dpll;
eb1cbe48 5864
f47709a9 5865 i9xx_update_pll_dividers(crtc, reduced_clock);
2a8f64ca 5866
eb1cbe48
DV
5867 dpll = DPLL_VGA_MODE_DIS;
5868
f47709a9 5869 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
5870 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5871 } else {
5872 if (clock->p1 == 2)
5873 dpll |= PLL_P1_DIVIDE_BY_TWO;
5874 else
5875 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5876 if (clock->p2 == 4)
5877 dpll |= PLL_P2_DIVIDE_BY_4;
5878 }
5879
4a33e48d
DV
5880 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5881 dpll |= DPLL_DVO_2X_MODE;
5882
f47709a9 5883 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
eb1cbe48
DV
5884 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5885 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5886 else
5887 dpll |= PLL_REF_INPUT_DREFCLK;
5888
5889 dpll |= DPLL_VCO_ENABLE;
8bcc2795 5890 crtc->config.dpll_hw_state.dpll = dpll;
eb1cbe48
DV
5891}
5892
8a654f3b 5893static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
5894{
5895 struct drm_device *dev = intel_crtc->base.dev;
5896 struct drm_i915_private *dev_priv = dev->dev_private;
5897 enum pipe pipe = intel_crtc->pipe;
3b117c8f 5898 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8a654f3b
DV
5899 struct drm_display_mode *adjusted_mode =
5900 &intel_crtc->config.adjusted_mode;
1caea6e9
VS
5901 uint32_t crtc_vtotal, crtc_vblank_end;
5902 int vsyncshift = 0;
4d8a62ea
DV
5903
5904 /* We need to be careful not to changed the adjusted mode, for otherwise
5905 * the hw state checker will get angry at the mismatch. */
5906 crtc_vtotal = adjusted_mode->crtc_vtotal;
5907 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 5908
609aeaca 5909 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 5910 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
5911 crtc_vtotal -= 1;
5912 crtc_vblank_end -= 1;
609aeaca
VS
5913
5914 if (intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
5915 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
5916 else
5917 vsyncshift = adjusted_mode->crtc_hsync_start -
5918 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
5919 if (vsyncshift < 0)
5920 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
5921 }
5922
5923 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 5924 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 5925
fe2b8f9d 5926 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
5927 (adjusted_mode->crtc_hdisplay - 1) |
5928 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 5929 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
5930 (adjusted_mode->crtc_hblank_start - 1) |
5931 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 5932 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
5933 (adjusted_mode->crtc_hsync_start - 1) |
5934 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5935
fe2b8f9d 5936 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 5937 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 5938 ((crtc_vtotal - 1) << 16));
fe2b8f9d 5939 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 5940 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 5941 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 5942 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
5943 (adjusted_mode->crtc_vsync_start - 1) |
5944 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5945
b5e508d4
PZ
5946 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5947 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5948 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5949 * bits. */
5950 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5951 (pipe == PIPE_B || pipe == PIPE_C))
5952 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5953
b0e77b9c
PZ
5954 /* pipesrc controls the size that is scaled from, which should
5955 * always be the user's requested size.
5956 */
5957 I915_WRITE(PIPESRC(pipe),
37327abd
VS
5958 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5959 (intel_crtc->config.pipe_src_h - 1));
b0e77b9c
PZ
5960}
5961
1bd1bd80
DV
5962static void intel_get_pipe_timings(struct intel_crtc *crtc,
5963 struct intel_crtc_config *pipe_config)
5964{
5965 struct drm_device *dev = crtc->base.dev;
5966 struct drm_i915_private *dev_priv = dev->dev_private;
5967 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5968 uint32_t tmp;
5969
5970 tmp = I915_READ(HTOTAL(cpu_transcoder));
5971 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5972 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5973 tmp = I915_READ(HBLANK(cpu_transcoder));
5974 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5975 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5976 tmp = I915_READ(HSYNC(cpu_transcoder));
5977 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5978 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5979
5980 tmp = I915_READ(VTOTAL(cpu_transcoder));
5981 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5982 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5983 tmp = I915_READ(VBLANK(cpu_transcoder));
5984 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5985 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5986 tmp = I915_READ(VSYNC(cpu_transcoder));
5987 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5988 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5989
5990 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5991 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5992 pipe_config->adjusted_mode.crtc_vtotal += 1;
5993 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5994 }
5995
5996 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
5997 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5998 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5999
6000 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
6001 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
6002}
6003
f6a83288
DV
6004void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6005 struct intel_crtc_config *pipe_config)
babea61d 6006{
f6a83288
DV
6007 mode->hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
6008 mode->htotal = pipe_config->adjusted_mode.crtc_htotal;
6009 mode->hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
6010 mode->hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
babea61d 6011
f6a83288
DV
6012 mode->vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
6013 mode->vtotal = pipe_config->adjusted_mode.crtc_vtotal;
6014 mode->vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
6015 mode->vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
babea61d 6016
f6a83288 6017 mode->flags = pipe_config->adjusted_mode.flags;
babea61d 6018
f6a83288
DV
6019 mode->clock = pipe_config->adjusted_mode.crtc_clock;
6020 mode->flags |= pipe_config->adjusted_mode.flags;
babea61d
JB
6021}
6022
84b046f3
DV
6023static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6024{
6025 struct drm_device *dev = intel_crtc->base.dev;
6026 struct drm_i915_private *dev_priv = dev->dev_private;
6027 uint32_t pipeconf;
6028
9f11a9e4 6029 pipeconf = 0;
84b046f3 6030
67c72a12
DV
6031 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
6032 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
6033 pipeconf |= PIPECONF_ENABLE;
6034
cf532bb2
VS
6035 if (intel_crtc->config.double_wide)
6036 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 6037
ff9ce46e
DV
6038 /* only g4x and later have fancy bpc/dither controls */
6039 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
ff9ce46e
DV
6040 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6041 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
6042 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 6043 PIPECONF_DITHER_TYPE_SP;
84b046f3 6044
ff9ce46e
DV
6045 switch (intel_crtc->config.pipe_bpp) {
6046 case 18:
6047 pipeconf |= PIPECONF_6BPC;
6048 break;
6049 case 24:
6050 pipeconf |= PIPECONF_8BPC;
6051 break;
6052 case 30:
6053 pipeconf |= PIPECONF_10BPC;
6054 break;
6055 default:
6056 /* Case prevented by intel_choose_pipe_bpp_dither. */
6057 BUG();
84b046f3
DV
6058 }
6059 }
6060
6061 if (HAS_PIPE_CXSR(dev)) {
6062 if (intel_crtc->lowfreq_avail) {
6063 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6064 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6065 } else {
6066 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
6067 }
6068 }
6069
efc2cfff
VS
6070 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6071 if (INTEL_INFO(dev)->gen < 4 ||
6072 intel_pipe_has_type(&intel_crtc->base, INTEL_OUTPUT_SDVO))
6073 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6074 else
6075 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6076 } else
84b046f3
DV
6077 pipeconf |= PIPECONF_PROGRESSIVE;
6078
9f11a9e4
DV
6079 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
6080 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 6081
84b046f3
DV
6082 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6083 POSTING_READ(PIPECONF(intel_crtc->pipe));
6084}
6085
f564048e 6086static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
f564048e 6087 int x, int y,
94352cf9 6088 struct drm_framebuffer *fb)
79e53945
JB
6089{
6090 struct drm_device *dev = crtc->dev;
6091 struct drm_i915_private *dev_priv = dev->dev_private;
6092 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c751ce4f 6093 int refclk, num_connectors = 0;
652c393a 6094 intel_clock_t clock, reduced_clock;
a16af721 6095 bool ok, has_reduced_clock = false;
e9fd1c02 6096 bool is_lvds = false, is_dsi = false;
5eddb70b 6097 struct intel_encoder *encoder;
d4906093 6098 const intel_limit_t *limit;
79e53945 6099
6c2b7c12 6100 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 6101 switch (encoder->type) {
79e53945
JB
6102 case INTEL_OUTPUT_LVDS:
6103 is_lvds = true;
6104 break;
e9fd1c02
JN
6105 case INTEL_OUTPUT_DSI:
6106 is_dsi = true;
6107 break;
79e53945 6108 }
43565a06 6109
c751ce4f 6110 num_connectors++;
79e53945
JB
6111 }
6112
f2335330 6113 if (is_dsi)
5b18e57c 6114 return 0;
f2335330
JN
6115
6116 if (!intel_crtc->config.clock_set) {
6117 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 6118
e9fd1c02
JN
6119 /*
6120 * Returns a set of divisors for the desired target clock with
6121 * the given refclk, or FALSE. The returned values represent
6122 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6123 * 2) / p1 / p2.
6124 */
6125 limit = intel_limit(crtc, refclk);
6126 ok = dev_priv->display.find_dpll(limit, crtc,
6127 intel_crtc->config.port_clock,
6128 refclk, NULL, &clock);
f2335330 6129 if (!ok) {
e9fd1c02
JN
6130 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6131 return -EINVAL;
6132 }
79e53945 6133
f2335330
JN
6134 if (is_lvds && dev_priv->lvds_downclock_avail) {
6135 /*
6136 * Ensure we match the reduced clock's P to the target
6137 * clock. If the clocks don't match, we can't switch
6138 * the display clock by using the FP0/FP1. In such case
6139 * we will disable the LVDS downclock feature.
6140 */
6141 has_reduced_clock =
6142 dev_priv->display.find_dpll(limit, crtc,
6143 dev_priv->lvds_downclock,
6144 refclk, &clock,
6145 &reduced_clock);
6146 }
6147 /* Compat-code for transition, will disappear. */
f47709a9
DV
6148 intel_crtc->config.dpll.n = clock.n;
6149 intel_crtc->config.dpll.m1 = clock.m1;
6150 intel_crtc->config.dpll.m2 = clock.m2;
6151 intel_crtc->config.dpll.p1 = clock.p1;
6152 intel_crtc->config.dpll.p2 = clock.p2;
6153 }
7026d4ac 6154
e9fd1c02 6155 if (IS_GEN2(dev)) {
8a654f3b 6156 i8xx_update_pll(intel_crtc,
2a8f64ca
VP
6157 has_reduced_clock ? &reduced_clock : NULL,
6158 num_connectors);
9d556c99
CML
6159 } else if (IS_CHERRYVIEW(dev)) {
6160 chv_update_pll(intel_crtc);
e9fd1c02 6161 } else if (IS_VALLEYVIEW(dev)) {
f2335330 6162 vlv_update_pll(intel_crtc);
e9fd1c02 6163 } else {
f47709a9 6164 i9xx_update_pll(intel_crtc,
eb1cbe48 6165 has_reduced_clock ? &reduced_clock : NULL,
eba905b2 6166 num_connectors);
e9fd1c02 6167 }
79e53945 6168
c8f7a0db 6169 return 0;
f564048e
EA
6170}
6171
2fa2fe9a
DV
6172static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6173 struct intel_crtc_config *pipe_config)
6174{
6175 struct drm_device *dev = crtc->base.dev;
6176 struct drm_i915_private *dev_priv = dev->dev_private;
6177 uint32_t tmp;
6178
dc9e7dec
VS
6179 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6180 return;
6181
2fa2fe9a 6182 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
6183 if (!(tmp & PFIT_ENABLE))
6184 return;
2fa2fe9a 6185
06922821 6186 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
6187 if (INTEL_INFO(dev)->gen < 4) {
6188 if (crtc->pipe != PIPE_B)
6189 return;
2fa2fe9a
DV
6190 } else {
6191 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6192 return;
6193 }
6194
06922821 6195 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a
DV
6196 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6197 if (INTEL_INFO(dev)->gen < 5)
6198 pipe_config->gmch_pfit.lvds_border_bits =
6199 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6200}
6201
acbec814
JB
6202static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6203 struct intel_crtc_config *pipe_config)
6204{
6205 struct drm_device *dev = crtc->base.dev;
6206 struct drm_i915_private *dev_priv = dev->dev_private;
6207 int pipe = pipe_config->cpu_transcoder;
6208 intel_clock_t clock;
6209 u32 mdiv;
662c6ecb 6210 int refclk = 100000;
acbec814 6211
f573de5a
SK
6212 /* In case of MIPI DPLL will not even be used */
6213 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6214 return;
6215
acbec814 6216 mutex_lock(&dev_priv->dpio_lock);
ab3c759a 6217 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
acbec814
JB
6218 mutex_unlock(&dev_priv->dpio_lock);
6219
6220 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6221 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6222 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6223 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6224 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6225
f646628b 6226 vlv_clock(refclk, &clock);
acbec814 6227
f646628b
VS
6228 /* clock.dot is the fast clock */
6229 pipe_config->port_clock = clock.dot / 5;
acbec814
JB
6230}
6231
1ad292b5
JB
6232static void i9xx_get_plane_config(struct intel_crtc *crtc,
6233 struct intel_plane_config *plane_config)
6234{
6235 struct drm_device *dev = crtc->base.dev;
6236 struct drm_i915_private *dev_priv = dev->dev_private;
6237 u32 val, base, offset;
6238 int pipe = crtc->pipe, plane = crtc->plane;
6239 int fourcc, pixel_format;
6240 int aligned_height;
6241
66e514c1
DA
6242 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
6243 if (!crtc->base.primary->fb) {
1ad292b5
JB
6244 DRM_DEBUG_KMS("failed to alloc fb\n");
6245 return;
6246 }
6247
6248 val = I915_READ(DSPCNTR(plane));
6249
6250 if (INTEL_INFO(dev)->gen >= 4)
6251 if (val & DISPPLANE_TILED)
6252 plane_config->tiled = true;
6253
6254 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6255 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
6256 crtc->base.primary->fb->pixel_format = fourcc;
6257 crtc->base.primary->fb->bits_per_pixel =
1ad292b5
JB
6258 drm_format_plane_cpp(fourcc, 0) * 8;
6259
6260 if (INTEL_INFO(dev)->gen >= 4) {
6261 if (plane_config->tiled)
6262 offset = I915_READ(DSPTILEOFF(plane));
6263 else
6264 offset = I915_READ(DSPLINOFF(plane));
6265 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6266 } else {
6267 base = I915_READ(DSPADDR(plane));
6268 }
6269 plane_config->base = base;
6270
6271 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
6272 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
6273 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
6274
6275 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 6276 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
1ad292b5 6277
66e514c1 6278 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
1ad292b5
JB
6279 plane_config->tiled);
6280
1267a26b
FF
6281 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
6282 aligned_height);
1ad292b5
JB
6283
6284 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
6285 pipe, plane, crtc->base.primary->fb->width,
6286 crtc->base.primary->fb->height,
6287 crtc->base.primary->fb->bits_per_pixel, base,
6288 crtc->base.primary->fb->pitches[0],
1ad292b5
JB
6289 plane_config->size);
6290
6291}
6292
70b23a98
VS
6293static void chv_crtc_clock_get(struct intel_crtc *crtc,
6294 struct intel_crtc_config *pipe_config)
6295{
6296 struct drm_device *dev = crtc->base.dev;
6297 struct drm_i915_private *dev_priv = dev->dev_private;
6298 int pipe = pipe_config->cpu_transcoder;
6299 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6300 intel_clock_t clock;
6301 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6302 int refclk = 100000;
6303
6304 mutex_lock(&dev_priv->dpio_lock);
6305 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6306 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6307 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6308 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6309 mutex_unlock(&dev_priv->dpio_lock);
6310
6311 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6312 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6313 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6314 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6315 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6316
6317 chv_clock(refclk, &clock);
6318
6319 /* clock.dot is the fast clock */
6320 pipe_config->port_clock = clock.dot / 5;
6321}
6322
0e8ffe1b
DV
6323static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6324 struct intel_crtc_config *pipe_config)
6325{
6326 struct drm_device *dev = crtc->base.dev;
6327 struct drm_i915_private *dev_priv = dev->dev_private;
6328 uint32_t tmp;
6329
b5482bd0
ID
6330 if (!intel_display_power_enabled(dev_priv,
6331 POWER_DOMAIN_PIPE(crtc->pipe)))
6332 return false;
6333
e143a21c 6334 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 6335 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 6336
0e8ffe1b
DV
6337 tmp = I915_READ(PIPECONF(crtc->pipe));
6338 if (!(tmp & PIPECONF_ENABLE))
6339 return false;
6340
42571aef
VS
6341 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6342 switch (tmp & PIPECONF_BPC_MASK) {
6343 case PIPECONF_6BPC:
6344 pipe_config->pipe_bpp = 18;
6345 break;
6346 case PIPECONF_8BPC:
6347 pipe_config->pipe_bpp = 24;
6348 break;
6349 case PIPECONF_10BPC:
6350 pipe_config->pipe_bpp = 30;
6351 break;
6352 default:
6353 break;
6354 }
6355 }
6356
b5a9fa09
DV
6357 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6358 pipe_config->limited_color_range = true;
6359
282740f7
VS
6360 if (INTEL_INFO(dev)->gen < 4)
6361 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6362
1bd1bd80
DV
6363 intel_get_pipe_timings(crtc, pipe_config);
6364
2fa2fe9a
DV
6365 i9xx_get_pfit_config(crtc, pipe_config);
6366
6c49f241
DV
6367 if (INTEL_INFO(dev)->gen >= 4) {
6368 tmp = I915_READ(DPLL_MD(crtc->pipe));
6369 pipe_config->pixel_multiplier =
6370 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6371 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 6372 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
6373 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6374 tmp = I915_READ(DPLL(crtc->pipe));
6375 pipe_config->pixel_multiplier =
6376 ((tmp & SDVO_MULTIPLIER_MASK)
6377 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6378 } else {
6379 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6380 * port and will be fixed up in the encoder->get_config
6381 * function. */
6382 pipe_config->pixel_multiplier = 1;
6383 }
8bcc2795
DV
6384 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6385 if (!IS_VALLEYVIEW(dev)) {
6386 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6387 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
6388 } else {
6389 /* Mask out read-only status bits. */
6390 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6391 DPLL_PORTC_READY_MASK |
6392 DPLL_PORTB_READY_MASK);
8bcc2795 6393 }
6c49f241 6394
70b23a98
VS
6395 if (IS_CHERRYVIEW(dev))
6396 chv_crtc_clock_get(crtc, pipe_config);
6397 else if (IS_VALLEYVIEW(dev))
acbec814
JB
6398 vlv_crtc_clock_get(crtc, pipe_config);
6399 else
6400 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 6401
0e8ffe1b
DV
6402 return true;
6403}
6404
dde86e2d 6405static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
6406{
6407 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 6408 struct intel_encoder *encoder;
74cfd7ac 6409 u32 val, final;
13d83a67 6410 bool has_lvds = false;
199e5d79 6411 bool has_cpu_edp = false;
199e5d79 6412 bool has_panel = false;
99eb6a01
KP
6413 bool has_ck505 = false;
6414 bool can_ssc = false;
13d83a67
JB
6415
6416 /* We need to take the global config into account */
b2784e15 6417 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
6418 switch (encoder->type) {
6419 case INTEL_OUTPUT_LVDS:
6420 has_panel = true;
6421 has_lvds = true;
6422 break;
6423 case INTEL_OUTPUT_EDP:
6424 has_panel = true;
2de6905f 6425 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
6426 has_cpu_edp = true;
6427 break;
13d83a67
JB
6428 }
6429 }
6430
99eb6a01 6431 if (HAS_PCH_IBX(dev)) {
41aa3448 6432 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
6433 can_ssc = has_ck505;
6434 } else {
6435 has_ck505 = false;
6436 can_ssc = true;
6437 }
6438
2de6905f
ID
6439 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6440 has_panel, has_lvds, has_ck505);
13d83a67
JB
6441
6442 /* Ironlake: try to setup display ref clock before DPLL
6443 * enabling. This is only under driver's control after
6444 * PCH B stepping, previous chipset stepping should be
6445 * ignoring this setting.
6446 */
74cfd7ac
CW
6447 val = I915_READ(PCH_DREF_CONTROL);
6448
6449 /* As we must carefully and slowly disable/enable each source in turn,
6450 * compute the final state we want first and check if we need to
6451 * make any changes at all.
6452 */
6453 final = val;
6454 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6455 if (has_ck505)
6456 final |= DREF_NONSPREAD_CK505_ENABLE;
6457 else
6458 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6459
6460 final &= ~DREF_SSC_SOURCE_MASK;
6461 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6462 final &= ~DREF_SSC1_ENABLE;
6463
6464 if (has_panel) {
6465 final |= DREF_SSC_SOURCE_ENABLE;
6466
6467 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6468 final |= DREF_SSC1_ENABLE;
6469
6470 if (has_cpu_edp) {
6471 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6472 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6473 else
6474 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6475 } else
6476 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6477 } else {
6478 final |= DREF_SSC_SOURCE_DISABLE;
6479 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6480 }
6481
6482 if (final == val)
6483 return;
6484
13d83a67 6485 /* Always enable nonspread source */
74cfd7ac 6486 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 6487
99eb6a01 6488 if (has_ck505)
74cfd7ac 6489 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 6490 else
74cfd7ac 6491 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 6492
199e5d79 6493 if (has_panel) {
74cfd7ac
CW
6494 val &= ~DREF_SSC_SOURCE_MASK;
6495 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 6496
199e5d79 6497 /* SSC must be turned on before enabling the CPU output */
99eb6a01 6498 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6499 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 6500 val |= DREF_SSC1_ENABLE;
e77166b5 6501 } else
74cfd7ac 6502 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
6503
6504 /* Get SSC going before enabling the outputs */
74cfd7ac 6505 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6506 POSTING_READ(PCH_DREF_CONTROL);
6507 udelay(200);
6508
74cfd7ac 6509 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
6510
6511 /* Enable CPU source on CPU attached eDP */
199e5d79 6512 if (has_cpu_edp) {
99eb6a01 6513 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 6514 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 6515 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 6516 } else
74cfd7ac 6517 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 6518 } else
74cfd7ac 6519 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6520
74cfd7ac 6521 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6522 POSTING_READ(PCH_DREF_CONTROL);
6523 udelay(200);
6524 } else {
6525 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6526
74cfd7ac 6527 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
6528
6529 /* Turn off CPU output */
74cfd7ac 6530 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 6531
74cfd7ac 6532 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
6533 POSTING_READ(PCH_DREF_CONTROL);
6534 udelay(200);
6535
6536 /* Turn off the SSC source */
74cfd7ac
CW
6537 val &= ~DREF_SSC_SOURCE_MASK;
6538 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
6539
6540 /* Turn off SSC1 */
74cfd7ac 6541 val &= ~DREF_SSC1_ENABLE;
199e5d79 6542
74cfd7ac 6543 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
6544 POSTING_READ(PCH_DREF_CONTROL);
6545 udelay(200);
6546 }
74cfd7ac
CW
6547
6548 BUG_ON(val != final);
13d83a67
JB
6549}
6550
f31f2d55 6551static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 6552{
f31f2d55 6553 uint32_t tmp;
dde86e2d 6554
0ff066a9
PZ
6555 tmp = I915_READ(SOUTH_CHICKEN2);
6556 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6557 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6558
0ff066a9
PZ
6559 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6560 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6561 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 6562
0ff066a9
PZ
6563 tmp = I915_READ(SOUTH_CHICKEN2);
6564 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6565 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 6566
0ff066a9
PZ
6567 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6568 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6569 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
6570}
6571
6572/* WaMPhyProgramming:hsw */
6573static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6574{
6575 uint32_t tmp;
dde86e2d
PZ
6576
6577 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6578 tmp &= ~(0xFF << 24);
6579 tmp |= (0x12 << 24);
6580 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6581
dde86e2d
PZ
6582 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6583 tmp |= (1 << 11);
6584 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6585
6586 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6587 tmp |= (1 << 11);
6588 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
6589
dde86e2d
PZ
6590 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
6591 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6592 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
6593
6594 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
6595 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
6596 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
6597
0ff066a9
PZ
6598 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
6599 tmp &= ~(7 << 13);
6600 tmp |= (5 << 13);
6601 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 6602
0ff066a9
PZ
6603 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
6604 tmp &= ~(7 << 13);
6605 tmp |= (5 << 13);
6606 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
6607
6608 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
6609 tmp &= ~0xFF;
6610 tmp |= 0x1C;
6611 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
6612
6613 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
6614 tmp &= ~0xFF;
6615 tmp |= 0x1C;
6616 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
6617
6618 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
6619 tmp &= ~(0xFF << 16);
6620 tmp |= (0x1C << 16);
6621 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
6622
6623 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
6624 tmp &= ~(0xFF << 16);
6625 tmp |= (0x1C << 16);
6626 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
6627
0ff066a9
PZ
6628 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
6629 tmp |= (1 << 27);
6630 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 6631
0ff066a9
PZ
6632 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
6633 tmp |= (1 << 27);
6634 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 6635
0ff066a9
PZ
6636 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
6637 tmp &= ~(0xF << 28);
6638 tmp |= (4 << 28);
6639 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 6640
0ff066a9
PZ
6641 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
6642 tmp &= ~(0xF << 28);
6643 tmp |= (4 << 28);
6644 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
6645}
6646
2fa86a1f
PZ
6647/* Implements 3 different sequences from BSpec chapter "Display iCLK
6648 * Programming" based on the parameters passed:
6649 * - Sequence to enable CLKOUT_DP
6650 * - Sequence to enable CLKOUT_DP without spread
6651 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
6652 */
6653static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
6654 bool with_fdi)
f31f2d55
PZ
6655{
6656 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
6657 uint32_t reg, tmp;
6658
6659 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
6660 with_spread = true;
6661 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
6662 with_fdi, "LP PCH doesn't have FDI\n"))
6663 with_fdi = false;
f31f2d55
PZ
6664
6665 mutex_lock(&dev_priv->dpio_lock);
6666
6667 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6668 tmp &= ~SBI_SSCCTL_DISABLE;
6669 tmp |= SBI_SSCCTL_PATHALT;
6670 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6671
6672 udelay(24);
6673
2fa86a1f
PZ
6674 if (with_spread) {
6675 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6676 tmp &= ~SBI_SSCCTL_PATHALT;
6677 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 6678
2fa86a1f
PZ
6679 if (with_fdi) {
6680 lpt_reset_fdi_mphy(dev_priv);
6681 lpt_program_fdi_mphy(dev_priv);
6682 }
6683 }
dde86e2d 6684
2fa86a1f
PZ
6685 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6686 SBI_GEN0 : SBI_DBUFF0;
6687 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6688 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6689 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246
DV
6690
6691 mutex_unlock(&dev_priv->dpio_lock);
dde86e2d
PZ
6692}
6693
47701c3b
PZ
6694/* Sequence to disable CLKOUT_DP */
6695static void lpt_disable_clkout_dp(struct drm_device *dev)
6696{
6697 struct drm_i915_private *dev_priv = dev->dev_private;
6698 uint32_t reg, tmp;
6699
6700 mutex_lock(&dev_priv->dpio_lock);
6701
6702 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
6703 SBI_GEN0 : SBI_DBUFF0;
6704 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
6705 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
6706 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
6707
6708 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
6709 if (!(tmp & SBI_SSCCTL_DISABLE)) {
6710 if (!(tmp & SBI_SSCCTL_PATHALT)) {
6711 tmp |= SBI_SSCCTL_PATHALT;
6712 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6713 udelay(32);
6714 }
6715 tmp |= SBI_SSCCTL_DISABLE;
6716 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
6717 }
6718
6719 mutex_unlock(&dev_priv->dpio_lock);
6720}
6721
bf8fa3d3
PZ
6722static void lpt_init_pch_refclk(struct drm_device *dev)
6723{
bf8fa3d3
PZ
6724 struct intel_encoder *encoder;
6725 bool has_vga = false;
6726
b2784e15 6727 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
6728 switch (encoder->type) {
6729 case INTEL_OUTPUT_ANALOG:
6730 has_vga = true;
6731 break;
6732 }
6733 }
6734
47701c3b
PZ
6735 if (has_vga)
6736 lpt_enable_clkout_dp(dev, true, true);
6737 else
6738 lpt_disable_clkout_dp(dev);
bf8fa3d3
PZ
6739}
6740
dde86e2d
PZ
6741/*
6742 * Initialize reference clocks when the driver loads
6743 */
6744void intel_init_pch_refclk(struct drm_device *dev)
6745{
6746 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6747 ironlake_init_pch_refclk(dev);
6748 else if (HAS_PCH_LPT(dev))
6749 lpt_init_pch_refclk(dev);
6750}
6751
d9d444cb
JB
6752static int ironlake_get_refclk(struct drm_crtc *crtc)
6753{
6754 struct drm_device *dev = crtc->dev;
6755 struct drm_i915_private *dev_priv = dev->dev_private;
6756 struct intel_encoder *encoder;
d9d444cb
JB
6757 int num_connectors = 0;
6758 bool is_lvds = false;
6759
6c2b7c12 6760 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
6761 switch (encoder->type) {
6762 case INTEL_OUTPUT_LVDS:
6763 is_lvds = true;
6764 break;
d9d444cb
JB
6765 }
6766 num_connectors++;
6767 }
6768
6769 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
e91e941b 6770 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
41aa3448 6771 dev_priv->vbt.lvds_ssc_freq);
e91e941b 6772 return dev_priv->vbt.lvds_ssc_freq;
d9d444cb
JB
6773 }
6774
6775 return 120000;
6776}
6777
6ff93609 6778static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 6779{
c8203565 6780 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
6781 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6782 int pipe = intel_crtc->pipe;
c8203565
PZ
6783 uint32_t val;
6784
78114071 6785 val = 0;
c8203565 6786
965e0c48 6787 switch (intel_crtc->config.pipe_bpp) {
c8203565 6788 case 18:
dfd07d72 6789 val |= PIPECONF_6BPC;
c8203565
PZ
6790 break;
6791 case 24:
dfd07d72 6792 val |= PIPECONF_8BPC;
c8203565
PZ
6793 break;
6794 case 30:
dfd07d72 6795 val |= PIPECONF_10BPC;
c8203565
PZ
6796 break;
6797 case 36:
dfd07d72 6798 val |= PIPECONF_12BPC;
c8203565
PZ
6799 break;
6800 default:
cc769b62
PZ
6801 /* Case prevented by intel_choose_pipe_bpp_dither. */
6802 BUG();
c8203565
PZ
6803 }
6804
d8b32247 6805 if (intel_crtc->config.dither)
c8203565
PZ
6806 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6807
6ff93609 6808 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
6809 val |= PIPECONF_INTERLACED_ILK;
6810 else
6811 val |= PIPECONF_PROGRESSIVE;
6812
50f3b016 6813 if (intel_crtc->config.limited_color_range)
3685a8f3 6814 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 6815
c8203565
PZ
6816 I915_WRITE(PIPECONF(pipe), val);
6817 POSTING_READ(PIPECONF(pipe));
6818}
6819
86d3efce
VS
6820/*
6821 * Set up the pipe CSC unit.
6822 *
6823 * Currently only full range RGB to limited range RGB conversion
6824 * is supported, but eventually this should handle various
6825 * RGB<->YCbCr scenarios as well.
6826 */
50f3b016 6827static void intel_set_pipe_csc(struct drm_crtc *crtc)
86d3efce
VS
6828{
6829 struct drm_device *dev = crtc->dev;
6830 struct drm_i915_private *dev_priv = dev->dev_private;
6831 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6832 int pipe = intel_crtc->pipe;
6833 uint16_t coeff = 0x7800; /* 1.0 */
6834
6835 /*
6836 * TODO: Check what kind of values actually come out of the pipe
6837 * with these coeff/postoff values and adjust to get the best
6838 * accuracy. Perhaps we even need to take the bpc value into
6839 * consideration.
6840 */
6841
50f3b016 6842 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6843 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
6844
6845 /*
6846 * GY/GU and RY/RU should be the other way around according
6847 * to BSpec, but reality doesn't agree. Just set them up in
6848 * a way that results in the correct picture.
6849 */
6850 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6851 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6852
6853 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6854 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6855
6856 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6857 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6858
6859 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6860 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6861 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6862
6863 if (INTEL_INFO(dev)->gen > 6) {
6864 uint16_t postoff = 0;
6865
50f3b016 6866 if (intel_crtc->config.limited_color_range)
32cf0cb0 6867 postoff = (16 * (1 << 12) / 255) & 0x1fff;
86d3efce
VS
6868
6869 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6870 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6871 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6872
6873 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6874 } else {
6875 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6876
50f3b016 6877 if (intel_crtc->config.limited_color_range)
86d3efce
VS
6878 mode |= CSC_BLACK_SCREEN_OFFSET;
6879
6880 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6881 }
6882}
6883
6ff93609 6884static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 6885{
756f85cf
PZ
6886 struct drm_device *dev = crtc->dev;
6887 struct drm_i915_private *dev_priv = dev->dev_private;
ee2b0b38 6888 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 6889 enum pipe pipe = intel_crtc->pipe;
3b117c8f 6890 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
ee2b0b38
PZ
6891 uint32_t val;
6892
3eff4faa 6893 val = 0;
ee2b0b38 6894
756f85cf 6895 if (IS_HASWELL(dev) && intel_crtc->config.dither)
ee2b0b38
PZ
6896 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6897
6ff93609 6898 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
6899 val |= PIPECONF_INTERLACED_ILK;
6900 else
6901 val |= PIPECONF_PROGRESSIVE;
6902
702e7a56
PZ
6903 I915_WRITE(PIPECONF(cpu_transcoder), val);
6904 POSTING_READ(PIPECONF(cpu_transcoder));
3eff4faa
DV
6905
6906 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6907 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
756f85cf
PZ
6908
6909 if (IS_BROADWELL(dev)) {
6910 val = 0;
6911
6912 switch (intel_crtc->config.pipe_bpp) {
6913 case 18:
6914 val |= PIPEMISC_DITHER_6_BPC;
6915 break;
6916 case 24:
6917 val |= PIPEMISC_DITHER_8_BPC;
6918 break;
6919 case 30:
6920 val |= PIPEMISC_DITHER_10_BPC;
6921 break;
6922 case 36:
6923 val |= PIPEMISC_DITHER_12_BPC;
6924 break;
6925 default:
6926 /* Case prevented by pipe_config_set_bpp. */
6927 BUG();
6928 }
6929
6930 if (intel_crtc->config.dither)
6931 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6932
6933 I915_WRITE(PIPEMISC(pipe), val);
6934 }
ee2b0b38
PZ
6935}
6936
6591c6e4 6937static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6591c6e4
PZ
6938 intel_clock_t *clock,
6939 bool *has_reduced_clock,
6940 intel_clock_t *reduced_clock)
6941{
6942 struct drm_device *dev = crtc->dev;
6943 struct drm_i915_private *dev_priv = dev->dev_private;
6944 struct intel_encoder *intel_encoder;
6945 int refclk;
d4906093 6946 const intel_limit_t *limit;
a16af721 6947 bool ret, is_lvds = false;
79e53945 6948
6591c6e4
PZ
6949 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6950 switch (intel_encoder->type) {
79e53945
JB
6951 case INTEL_OUTPUT_LVDS:
6952 is_lvds = true;
6953 break;
79e53945
JB
6954 }
6955 }
6956
d9d444cb 6957 refclk = ironlake_get_refclk(crtc);
79e53945 6958
d4906093
ML
6959 /*
6960 * Returns a set of divisors for the desired target clock with the given
6961 * refclk, or FALSE. The returned values represent the clock equation:
6962 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6963 */
1b894b59 6964 limit = intel_limit(crtc, refclk);
ff9a6750
DV
6965 ret = dev_priv->display.find_dpll(limit, crtc,
6966 to_intel_crtc(crtc)->config.port_clock,
ee9300bb 6967 refclk, NULL, clock);
6591c6e4
PZ
6968 if (!ret)
6969 return false;
cda4b7d3 6970
ddc9003c 6971 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
6972 /*
6973 * Ensure we match the reduced clock's P to the target clock.
6974 * If the clocks don't match, we can't switch the display clock
6975 * by using the FP0/FP1. In such case we will disable the LVDS
6976 * downclock feature.
6977 */
ee9300bb
DV
6978 *has_reduced_clock =
6979 dev_priv->display.find_dpll(limit, crtc,
6980 dev_priv->lvds_downclock,
6981 refclk, clock,
6982 reduced_clock);
652c393a 6983 }
61e9653f 6984
6591c6e4
PZ
6985 return true;
6986}
6987
d4b1931c
PZ
6988int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6989{
6990 /*
6991 * Account for spread spectrum to avoid
6992 * oversubscribing the link. Max center spread
6993 * is 2.5%; use 5% for safety's sake.
6994 */
6995 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 6996 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
6997}
6998
7429e9d4 6999static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 7000{
7429e9d4 7001 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
7002}
7003
de13a2e3 7004static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7429e9d4 7005 u32 *fp,
9a7c7890 7006 intel_clock_t *reduced_clock, u32 *fp2)
79e53945 7007{
de13a2e3 7008 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
7009 struct drm_device *dev = crtc->dev;
7010 struct drm_i915_private *dev_priv = dev->dev_private;
de13a2e3
PZ
7011 struct intel_encoder *intel_encoder;
7012 uint32_t dpll;
6cc5f341 7013 int factor, num_connectors = 0;
09ede541 7014 bool is_lvds = false, is_sdvo = false;
79e53945 7015
de13a2e3
PZ
7016 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
7017 switch (intel_encoder->type) {
79e53945
JB
7018 case INTEL_OUTPUT_LVDS:
7019 is_lvds = true;
7020 break;
7021 case INTEL_OUTPUT_SDVO:
7d57382e 7022 case INTEL_OUTPUT_HDMI:
79e53945 7023 is_sdvo = true;
79e53945 7024 break;
79e53945 7025 }
43565a06 7026
c751ce4f 7027 num_connectors++;
79e53945 7028 }
79e53945 7029
c1858123 7030 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
7031 factor = 21;
7032 if (is_lvds) {
7033 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 7034 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 7035 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 7036 factor = 25;
09ede541 7037 } else if (intel_crtc->config.sdvo_tv_clock)
8febb297 7038 factor = 20;
c1858123 7039
7429e9d4 7040 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
7d0ac5b7 7041 *fp |= FP_CB_TUNE;
2c07245f 7042
9a7c7890
DV
7043 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7044 *fp2 |= FP_CB_TUNE;
7045
5eddb70b 7046 dpll = 0;
2c07245f 7047
a07d6787
EA
7048 if (is_lvds)
7049 dpll |= DPLLB_MODE_LVDS;
7050 else
7051 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 7052
ef1b460d
DV
7053 dpll |= (intel_crtc->config.pixel_multiplier - 1)
7054 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
7055
7056 if (is_sdvo)
4a33e48d 7057 dpll |= DPLL_SDVO_HIGH_SPEED;
9566e9af 7058 if (intel_crtc->config.has_dp_encoder)
4a33e48d 7059 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 7060
a07d6787 7061 /* compute bitmask from p1 value */
7429e9d4 7062 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 7063 /* also FPA1 */
7429e9d4 7064 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 7065
7429e9d4 7066 switch (intel_crtc->config.dpll.p2) {
a07d6787
EA
7067 case 5:
7068 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7069 break;
7070 case 7:
7071 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7072 break;
7073 case 10:
7074 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7075 break;
7076 case 14:
7077 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7078 break;
79e53945
JB
7079 }
7080
b4c09f3b 7081 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 7082 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
7083 else
7084 dpll |= PLL_REF_INPUT_DREFCLK;
7085
959e16d6 7086 return dpll | DPLL_VCO_ENABLE;
de13a2e3
PZ
7087}
7088
7089static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
de13a2e3
PZ
7090 int x, int y,
7091 struct drm_framebuffer *fb)
7092{
7093 struct drm_device *dev = crtc->dev;
de13a2e3 7094 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
de13a2e3
PZ
7095 int num_connectors = 0;
7096 intel_clock_t clock, reduced_clock;
cbbab5bd 7097 u32 dpll = 0, fp = 0, fp2 = 0;
e2f12b07 7098 bool ok, has_reduced_clock = false;
8b47047b 7099 bool is_lvds = false;
de13a2e3 7100 struct intel_encoder *encoder;
e2b78267 7101 struct intel_shared_dpll *pll;
de13a2e3
PZ
7102
7103 for_each_encoder_on_crtc(dev, crtc, encoder) {
7104 switch (encoder->type) {
7105 case INTEL_OUTPUT_LVDS:
7106 is_lvds = true;
7107 break;
de13a2e3
PZ
7108 }
7109
7110 num_connectors++;
a07d6787 7111 }
79e53945 7112
5dc5298b
PZ
7113 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7114 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
a07d6787 7115
ff9a6750 7116 ok = ironlake_compute_clocks(crtc, &clock,
de13a2e3 7117 &has_reduced_clock, &reduced_clock);
ee9300bb 7118 if (!ok && !intel_crtc->config.clock_set) {
de13a2e3
PZ
7119 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7120 return -EINVAL;
79e53945 7121 }
f47709a9
DV
7122 /* Compat-code for transition, will disappear. */
7123 if (!intel_crtc->config.clock_set) {
7124 intel_crtc->config.dpll.n = clock.n;
7125 intel_crtc->config.dpll.m1 = clock.m1;
7126 intel_crtc->config.dpll.m2 = clock.m2;
7127 intel_crtc->config.dpll.p1 = clock.p1;
7128 intel_crtc->config.dpll.p2 = clock.p2;
7129 }
79e53945 7130
5dc5298b 7131 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8b47047b 7132 if (intel_crtc->config.has_pch_encoder) {
7429e9d4 7133 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
cbbab5bd 7134 if (has_reduced_clock)
7429e9d4 7135 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
cbbab5bd 7136
7429e9d4 7137 dpll = ironlake_compute_dpll(intel_crtc,
cbbab5bd
DV
7138 &fp, &reduced_clock,
7139 has_reduced_clock ? &fp2 : NULL);
7140
959e16d6 7141 intel_crtc->config.dpll_hw_state.dpll = dpll;
66e985c0
DV
7142 intel_crtc->config.dpll_hw_state.fp0 = fp;
7143 if (has_reduced_clock)
7144 intel_crtc->config.dpll_hw_state.fp1 = fp2;
7145 else
7146 intel_crtc->config.dpll_hw_state.fp1 = fp;
7147
b89a1d39 7148 pll = intel_get_shared_dpll(intel_crtc);
ee7b9f93 7149 if (pll == NULL) {
84f44ce7 7150 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
29407aab 7151 pipe_name(intel_crtc->pipe));
4b645f14
JB
7152 return -EINVAL;
7153 }
ee7b9f93 7154 } else
e72f9fbf 7155 intel_put_shared_dpll(intel_crtc);
79e53945 7156
d330a953 7157 if (is_lvds && has_reduced_clock && i915.powersave)
bcd644e0
DV
7158 intel_crtc->lowfreq_avail = true;
7159 else
7160 intel_crtc->lowfreq_avail = false;
e2b78267 7161
c8f7a0db 7162 return 0;
79e53945
JB
7163}
7164
eb14cb74
VS
7165static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7166 struct intel_link_m_n *m_n)
7167{
7168 struct drm_device *dev = crtc->base.dev;
7169 struct drm_i915_private *dev_priv = dev->dev_private;
7170 enum pipe pipe = crtc->pipe;
7171
7172 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7173 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7174 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7175 & ~TU_SIZE_MASK;
7176 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7177 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7178 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7179}
7180
7181static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7182 enum transcoder transcoder,
b95af8be
VK
7183 struct intel_link_m_n *m_n,
7184 struct intel_link_m_n *m2_n2)
72419203
DV
7185{
7186 struct drm_device *dev = crtc->base.dev;
7187 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 7188 enum pipe pipe = crtc->pipe;
72419203 7189
eb14cb74
VS
7190 if (INTEL_INFO(dev)->gen >= 5) {
7191 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7192 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7193 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7194 & ~TU_SIZE_MASK;
7195 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7196 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7197 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
7198 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7199 * gen < 8) and if DRRS is supported (to make sure the
7200 * registers are not unnecessarily read).
7201 */
7202 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7203 crtc->config.has_drrs) {
7204 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7205 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7206 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7207 & ~TU_SIZE_MASK;
7208 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7209 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7210 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7211 }
eb14cb74
VS
7212 } else {
7213 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7214 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7215 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7216 & ~TU_SIZE_MASK;
7217 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7218 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7219 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7220 }
7221}
7222
7223void intel_dp_get_m_n(struct intel_crtc *crtc,
7224 struct intel_crtc_config *pipe_config)
7225{
7226 if (crtc->config.has_pch_encoder)
7227 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7228 else
7229 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
7230 &pipe_config->dp_m_n,
7231 &pipe_config->dp_m2_n2);
eb14cb74 7232}
72419203 7233
eb14cb74
VS
7234static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7235 struct intel_crtc_config *pipe_config)
7236{
7237 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 7238 &pipe_config->fdi_m_n, NULL);
72419203
DV
7239}
7240
2fa2fe9a
DV
7241static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7242 struct intel_crtc_config *pipe_config)
7243{
7244 struct drm_device *dev = crtc->base.dev;
7245 struct drm_i915_private *dev_priv = dev->dev_private;
7246 uint32_t tmp;
7247
7248 tmp = I915_READ(PF_CTL(crtc->pipe));
7249
7250 if (tmp & PF_ENABLE) {
fd4daa9c 7251 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
7252 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7253 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
7254
7255 /* We currently do not free assignements of panel fitters on
7256 * ivb/hsw (since we don't use the higher upscaling modes which
7257 * differentiates them) so just WARN about this case for now. */
7258 if (IS_GEN7(dev)) {
7259 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7260 PF_PIPE_SEL_IVB(crtc->pipe));
7261 }
2fa2fe9a 7262 }
79e53945
JB
7263}
7264
4c6baa59
JB
7265static void ironlake_get_plane_config(struct intel_crtc *crtc,
7266 struct intel_plane_config *plane_config)
7267{
7268 struct drm_device *dev = crtc->base.dev;
7269 struct drm_i915_private *dev_priv = dev->dev_private;
7270 u32 val, base, offset;
7271 int pipe = crtc->pipe, plane = crtc->plane;
7272 int fourcc, pixel_format;
7273 int aligned_height;
7274
66e514c1
DA
7275 crtc->base.primary->fb = kzalloc(sizeof(struct intel_framebuffer), GFP_KERNEL);
7276 if (!crtc->base.primary->fb) {
4c6baa59
JB
7277 DRM_DEBUG_KMS("failed to alloc fb\n");
7278 return;
7279 }
7280
7281 val = I915_READ(DSPCNTR(plane));
7282
7283 if (INTEL_INFO(dev)->gen >= 4)
7284 if (val & DISPPLANE_TILED)
7285 plane_config->tiled = true;
7286
7287 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7288 fourcc = intel_format_to_fourcc(pixel_format);
66e514c1
DA
7289 crtc->base.primary->fb->pixel_format = fourcc;
7290 crtc->base.primary->fb->bits_per_pixel =
4c6baa59
JB
7291 drm_format_plane_cpp(fourcc, 0) * 8;
7292
7293 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7294 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7295 offset = I915_READ(DSPOFFSET(plane));
7296 } else {
7297 if (plane_config->tiled)
7298 offset = I915_READ(DSPTILEOFF(plane));
7299 else
7300 offset = I915_READ(DSPLINOFF(plane));
7301 }
7302 plane_config->base = base;
7303
7304 val = I915_READ(PIPESRC(pipe));
66e514c1
DA
7305 crtc->base.primary->fb->width = ((val >> 16) & 0xfff) + 1;
7306 crtc->base.primary->fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
7307
7308 val = I915_READ(DSPSTRIDE(pipe));
026b96e2 7309 crtc->base.primary->fb->pitches[0] = val & 0xffffffc0;
4c6baa59 7310
66e514c1 7311 aligned_height = intel_align_height(dev, crtc->base.primary->fb->height,
4c6baa59
JB
7312 plane_config->tiled);
7313
1267a26b
FF
7314 plane_config->size = PAGE_ALIGN(crtc->base.primary->fb->pitches[0] *
7315 aligned_height);
4c6baa59
JB
7316
7317 DRM_DEBUG_KMS("pipe/plane %d/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
66e514c1
DA
7318 pipe, plane, crtc->base.primary->fb->width,
7319 crtc->base.primary->fb->height,
7320 crtc->base.primary->fb->bits_per_pixel, base,
7321 crtc->base.primary->fb->pitches[0],
4c6baa59
JB
7322 plane_config->size);
7323}
7324
0e8ffe1b
DV
7325static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7326 struct intel_crtc_config *pipe_config)
7327{
7328 struct drm_device *dev = crtc->base.dev;
7329 struct drm_i915_private *dev_priv = dev->dev_private;
7330 uint32_t tmp;
7331
930e8c9e
PZ
7332 if (!intel_display_power_enabled(dev_priv,
7333 POWER_DOMAIN_PIPE(crtc->pipe)))
7334 return false;
7335
e143a21c 7336 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62 7337 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
eccb140b 7338
0e8ffe1b
DV
7339 tmp = I915_READ(PIPECONF(crtc->pipe));
7340 if (!(tmp & PIPECONF_ENABLE))
7341 return false;
7342
42571aef
VS
7343 switch (tmp & PIPECONF_BPC_MASK) {
7344 case PIPECONF_6BPC:
7345 pipe_config->pipe_bpp = 18;
7346 break;
7347 case PIPECONF_8BPC:
7348 pipe_config->pipe_bpp = 24;
7349 break;
7350 case PIPECONF_10BPC:
7351 pipe_config->pipe_bpp = 30;
7352 break;
7353 case PIPECONF_12BPC:
7354 pipe_config->pipe_bpp = 36;
7355 break;
7356 default:
7357 break;
7358 }
7359
b5a9fa09
DV
7360 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7361 pipe_config->limited_color_range = true;
7362
ab9412ba 7363 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0
DV
7364 struct intel_shared_dpll *pll;
7365
88adfff1
DV
7366 pipe_config->has_pch_encoder = true;
7367
627eb5a3
DV
7368 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7369 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7370 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
7371
7372 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 7373
c0d43d62 7374 if (HAS_PCH_IBX(dev_priv->dev)) {
d94ab068
DV
7375 pipe_config->shared_dpll =
7376 (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
7377 } else {
7378 tmp = I915_READ(PCH_DPLL_SEL);
7379 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7380 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7381 else
7382 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7383 }
66e985c0
DV
7384
7385 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7386
7387 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7388 &pipe_config->dpll_hw_state));
c93f54cf
DV
7389
7390 tmp = pipe_config->dpll_hw_state.dpll;
7391 pipe_config->pixel_multiplier =
7392 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7393 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
7394
7395 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
7396 } else {
7397 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
7398 }
7399
1bd1bd80
DV
7400 intel_get_pipe_timings(crtc, pipe_config);
7401
2fa2fe9a
DV
7402 ironlake_get_pfit_config(crtc, pipe_config);
7403
0e8ffe1b
DV
7404 return true;
7405}
7406
be256dc7
PZ
7407static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7408{
7409 struct drm_device *dev = dev_priv->dev;
be256dc7 7410 struct intel_crtc *crtc;
be256dc7 7411
d3fcc808 7412 for_each_intel_crtc(dev, crtc)
798183c5 7413 WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
7414 pipe_name(crtc->pipe));
7415
7416 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
8cc3e169
DV
7417 WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7418 WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7419 WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
be256dc7
PZ
7420 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7421 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7422 "CPU PWM1 enabled\n");
c5107b87
PZ
7423 if (IS_HASWELL(dev))
7424 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7425 "CPU PWM2 enabled\n");
be256dc7
PZ
7426 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7427 "PCH PWM1 enabled\n");
7428 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7429 "Utility pin enabled\n");
7430 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7431
9926ada1
PZ
7432 /*
7433 * In theory we can still leave IRQs enabled, as long as only the HPD
7434 * interrupts remain enabled. We used to check for that, but since it's
7435 * gen-specific and since we only disable LCPLL after we fully disable
7436 * the interrupts, the check below should be enough.
7437 */
9df7575f 7438 WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
7439}
7440
9ccd5aeb
PZ
7441static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7442{
7443 struct drm_device *dev = dev_priv->dev;
7444
7445 if (IS_HASWELL(dev))
7446 return I915_READ(D_COMP_HSW);
7447 else
7448 return I915_READ(D_COMP_BDW);
7449}
7450
3c4c9b81
PZ
7451static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7452{
7453 struct drm_device *dev = dev_priv->dev;
7454
7455 if (IS_HASWELL(dev)) {
7456 mutex_lock(&dev_priv->rps.hw_lock);
7457 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7458 val))
f475dadf 7459 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
7460 mutex_unlock(&dev_priv->rps.hw_lock);
7461 } else {
9ccd5aeb
PZ
7462 I915_WRITE(D_COMP_BDW, val);
7463 POSTING_READ(D_COMP_BDW);
3c4c9b81 7464 }
be256dc7
PZ
7465}
7466
7467/*
7468 * This function implements pieces of two sequences from BSpec:
7469 * - Sequence for display software to disable LCPLL
7470 * - Sequence for display software to allow package C8+
7471 * The steps implemented here are just the steps that actually touch the LCPLL
7472 * register. Callers should take care of disabling all the display engine
7473 * functions, doing the mode unset, fixing interrupts, etc.
7474 */
6ff58d53
PZ
7475static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7476 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
7477{
7478 uint32_t val;
7479
7480 assert_can_disable_lcpll(dev_priv);
7481
7482 val = I915_READ(LCPLL_CTL);
7483
7484 if (switch_to_fclk) {
7485 val |= LCPLL_CD_SOURCE_FCLK;
7486 I915_WRITE(LCPLL_CTL, val);
7487
7488 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7489 LCPLL_CD_SOURCE_FCLK_DONE, 1))
7490 DRM_ERROR("Switching to FCLK failed\n");
7491
7492 val = I915_READ(LCPLL_CTL);
7493 }
7494
7495 val |= LCPLL_PLL_DISABLE;
7496 I915_WRITE(LCPLL_CTL, val);
7497 POSTING_READ(LCPLL_CTL);
7498
7499 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
7500 DRM_ERROR("LCPLL still locked\n");
7501
9ccd5aeb 7502 val = hsw_read_dcomp(dev_priv);
be256dc7 7503 val |= D_COMP_COMP_DISABLE;
3c4c9b81 7504 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7505 ndelay(100);
7506
9ccd5aeb
PZ
7507 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
7508 1))
be256dc7
PZ
7509 DRM_ERROR("D_COMP RCOMP still in progress\n");
7510
7511 if (allow_power_down) {
7512 val = I915_READ(LCPLL_CTL);
7513 val |= LCPLL_POWER_DOWN_ALLOW;
7514 I915_WRITE(LCPLL_CTL, val);
7515 POSTING_READ(LCPLL_CTL);
7516 }
7517}
7518
7519/*
7520 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
7521 * source.
7522 */
6ff58d53 7523static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
7524{
7525 uint32_t val;
a8a8bd54 7526 unsigned long irqflags;
be256dc7
PZ
7527
7528 val = I915_READ(LCPLL_CTL);
7529
7530 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
7531 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
7532 return;
7533
a8a8bd54
PZ
7534 /*
7535 * Make sure we're not on PC8 state before disabling PC8, otherwise
7536 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
7537 *
7538 * The other problem is that hsw_restore_lcpll() is called as part of
7539 * the runtime PM resume sequence, so we can't just call
7540 * gen6_gt_force_wake_get() because that function calls
7541 * intel_runtime_pm_get(), and we can't change the runtime PM refcount
7542 * while we are on the resume sequence. So to solve this problem we have
7543 * to call special forcewake code that doesn't touch runtime PM and
7544 * doesn't enable the forcewake delayed work.
7545 */
7546 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7547 if (dev_priv->uncore.forcewake_count++ == 0)
7548 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
7549 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
215733fa 7550
be256dc7
PZ
7551 if (val & LCPLL_POWER_DOWN_ALLOW) {
7552 val &= ~LCPLL_POWER_DOWN_ALLOW;
7553 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 7554 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
7555 }
7556
9ccd5aeb 7557 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
7558 val |= D_COMP_COMP_FORCE;
7559 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 7560 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
7561
7562 val = I915_READ(LCPLL_CTL);
7563 val &= ~LCPLL_PLL_DISABLE;
7564 I915_WRITE(LCPLL_CTL, val);
7565
7566 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
7567 DRM_ERROR("LCPLL not locked yet\n");
7568
7569 if (val & LCPLL_CD_SOURCE_FCLK) {
7570 val = I915_READ(LCPLL_CTL);
7571 val &= ~LCPLL_CD_SOURCE_FCLK;
7572 I915_WRITE(LCPLL_CTL, val);
7573
7574 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
7575 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
7576 DRM_ERROR("Switching back to LCPLL failed\n");
7577 }
215733fa 7578
a8a8bd54
PZ
7579 /* See the big comment above. */
7580 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
7581 if (--dev_priv->uncore.forcewake_count == 0)
7582 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
7583 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
be256dc7
PZ
7584}
7585
765dab67
PZ
7586/*
7587 * Package states C8 and deeper are really deep PC states that can only be
7588 * reached when all the devices on the system allow it, so even if the graphics
7589 * device allows PC8+, it doesn't mean the system will actually get to these
7590 * states. Our driver only allows PC8+ when going into runtime PM.
7591 *
7592 * The requirements for PC8+ are that all the outputs are disabled, the power
7593 * well is disabled and most interrupts are disabled, and these are also
7594 * requirements for runtime PM. When these conditions are met, we manually do
7595 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
7596 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
7597 * hang the machine.
7598 *
7599 * When we really reach PC8 or deeper states (not just when we allow it) we lose
7600 * the state of some registers, so when we come back from PC8+ we need to
7601 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
7602 * need to take care of the registers kept by RC6. Notice that this happens even
7603 * if we don't put the device in PCI D3 state (which is what currently happens
7604 * because of the runtime PM support).
7605 *
7606 * For more, read "Display Sequences for Package C8" on the hardware
7607 * documentation.
7608 */
a14cb6fc 7609void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 7610{
c67a470b
PZ
7611 struct drm_device *dev = dev_priv->dev;
7612 uint32_t val;
7613
c67a470b
PZ
7614 DRM_DEBUG_KMS("Enabling package C8+\n");
7615
c67a470b
PZ
7616 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7617 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7618 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7619 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7620 }
7621
7622 lpt_disable_clkout_dp(dev);
c67a470b
PZ
7623 hsw_disable_lcpll(dev_priv, true, true);
7624}
7625
a14cb6fc 7626void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
7627{
7628 struct drm_device *dev = dev_priv->dev;
7629 uint32_t val;
7630
c67a470b
PZ
7631 DRM_DEBUG_KMS("Disabling package C8+\n");
7632
7633 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
7634 lpt_init_pch_refclk(dev);
7635
7636 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
7637 val = I915_READ(SOUTH_DSPCLK_GATE_D);
7638 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
7639 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7640 }
7641
7642 intel_prepare_ddi(dev);
c67a470b
PZ
7643}
7644
9a952a0d
PZ
7645static void snb_modeset_global_resources(struct drm_device *dev)
7646{
7647 modeset_update_crtc_power_domains(dev);
7648}
7649
4f074129
ID
7650static void haswell_modeset_global_resources(struct drm_device *dev)
7651{
da723569 7652 modeset_update_crtc_power_domains(dev);
d6dd9eb1
DV
7653}
7654
09b4ddf9 7655static int haswell_crtc_mode_set(struct drm_crtc *crtc,
09b4ddf9
PZ
7656 int x, int y,
7657 struct drm_framebuffer *fb)
7658{
09b4ddf9 7659 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
09b4ddf9 7660
566b734a 7661 if (!intel_ddi_pll_select(intel_crtc))
6441ab5f 7662 return -EINVAL;
716c2e55 7663
644cef34
DV
7664 intel_crtc->lowfreq_avail = false;
7665
c8f7a0db 7666 return 0;
79e53945
JB
7667}
7668
7d2c8175
DL
7669static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
7670 enum port port,
7671 struct intel_crtc_config *pipe_config)
7672{
7673 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
7674
7675 switch (pipe_config->ddi_pll_sel) {
7676 case PORT_CLK_SEL_WRPLL1:
7677 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
7678 break;
7679 case PORT_CLK_SEL_WRPLL2:
7680 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
7681 break;
7682 }
7683}
7684
26804afd
DV
7685static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
7686 struct intel_crtc_config *pipe_config)
7687{
7688 struct drm_device *dev = crtc->base.dev;
7689 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 7690 struct intel_shared_dpll *pll;
26804afd
DV
7691 enum port port;
7692 uint32_t tmp;
7693
7694 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
7695
7696 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
7697
7d2c8175 7698 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 7699
d452c5b6
DV
7700 if (pipe_config->shared_dpll >= 0) {
7701 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7702
7703 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7704 &pipe_config->dpll_hw_state));
7705 }
7706
26804afd
DV
7707 /*
7708 * Haswell has only FDI/PCH transcoder A. It is which is connected to
7709 * DDI E. So just check whether this pipe is wired to DDI E and whether
7710 * the PCH transcoder is on.
7711 */
7712 if ((port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
7713 pipe_config->has_pch_encoder = true;
7714
7715 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
7716 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7717 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7718
7719 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7720 }
7721}
7722
0e8ffe1b
DV
7723static bool haswell_get_pipe_config(struct intel_crtc *crtc,
7724 struct intel_crtc_config *pipe_config)
7725{
7726 struct drm_device *dev = crtc->base.dev;
7727 struct drm_i915_private *dev_priv = dev->dev_private;
2fa2fe9a 7728 enum intel_display_power_domain pfit_domain;
0e8ffe1b
DV
7729 uint32_t tmp;
7730
b5482bd0
ID
7731 if (!intel_display_power_enabled(dev_priv,
7732 POWER_DOMAIN_PIPE(crtc->pipe)))
7733 return false;
7734
e143a21c 7735 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
c0d43d62
DV
7736 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7737
eccb140b
DV
7738 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
7739 if (tmp & TRANS_DDI_FUNC_ENABLE) {
7740 enum pipe trans_edp_pipe;
7741 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
7742 default:
7743 WARN(1, "unknown pipe linked to edp transcoder\n");
7744 case TRANS_DDI_EDP_INPUT_A_ONOFF:
7745 case TRANS_DDI_EDP_INPUT_A_ON:
7746 trans_edp_pipe = PIPE_A;
7747 break;
7748 case TRANS_DDI_EDP_INPUT_B_ONOFF:
7749 trans_edp_pipe = PIPE_B;
7750 break;
7751 case TRANS_DDI_EDP_INPUT_C_ONOFF:
7752 trans_edp_pipe = PIPE_C;
7753 break;
7754 }
7755
7756 if (trans_edp_pipe == crtc->pipe)
7757 pipe_config->cpu_transcoder = TRANSCODER_EDP;
7758 }
7759
da7e29bd 7760 if (!intel_display_power_enabled(dev_priv,
eccb140b 7761 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
2bfce950
PZ
7762 return false;
7763
eccb140b 7764 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
0e8ffe1b
DV
7765 if (!(tmp & PIPECONF_ENABLE))
7766 return false;
7767
26804afd 7768 haswell_get_ddi_port_state(crtc, pipe_config);
627eb5a3 7769
1bd1bd80
DV
7770 intel_get_pipe_timings(crtc, pipe_config);
7771
2fa2fe9a 7772 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
da7e29bd 7773 if (intel_display_power_enabled(dev_priv, pfit_domain))
2fa2fe9a 7774 ironlake_get_pfit_config(crtc, pipe_config);
88adfff1 7775
e59150dc
JB
7776 if (IS_HASWELL(dev))
7777 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7778 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 7779
6c49f241
DV
7780 pipe_config->pixel_multiplier = 1;
7781
0e8ffe1b
DV
7782 return true;
7783}
7784
1a91510d
JN
7785static struct {
7786 int clock;
7787 u32 config;
7788} hdmi_audio_clock[] = {
7789 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7790 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7791 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7792 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7793 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7794 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7795 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7796 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7797 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7798 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7799};
7800
7801/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7802static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7803{
7804 int i;
7805
7806 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7807 if (mode->clock == hdmi_audio_clock[i].clock)
7808 break;
7809 }
7810
7811 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7812 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7813 i = 1;
7814 }
7815
7816 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7817 hdmi_audio_clock[i].clock,
7818 hdmi_audio_clock[i].config);
7819
7820 return hdmi_audio_clock[i].config;
7821}
7822
3a9627f4
WF
7823static bool intel_eld_uptodate(struct drm_connector *connector,
7824 int reg_eldv, uint32_t bits_eldv,
7825 int reg_elda, uint32_t bits_elda,
7826 int reg_edid)
7827{
7828 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7829 uint8_t *eld = connector->eld;
7830 uint32_t i;
7831
7832 i = I915_READ(reg_eldv);
7833 i &= bits_eldv;
7834
7835 if (!eld[0])
7836 return !i;
7837
7838 if (!i)
7839 return false;
7840
7841 i = I915_READ(reg_elda);
7842 i &= ~bits_elda;
7843 I915_WRITE(reg_elda, i);
7844
7845 for (i = 0; i < eld[2]; i++)
7846 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7847 return false;
7848
7849 return true;
7850}
7851
e0dac65e 7852static void g4x_write_eld(struct drm_connector *connector,
34427052
JN
7853 struct drm_crtc *crtc,
7854 struct drm_display_mode *mode)
e0dac65e
WF
7855{
7856 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7857 uint8_t *eld = connector->eld;
7858 uint32_t eldv;
7859 uint32_t len;
7860 uint32_t i;
7861
7862 i = I915_READ(G4X_AUD_VID_DID);
7863
7864 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7865 eldv = G4X_ELDV_DEVCL_DEVBLC;
7866 else
7867 eldv = G4X_ELDV_DEVCTG;
7868
3a9627f4
WF
7869 if (intel_eld_uptodate(connector,
7870 G4X_AUD_CNTL_ST, eldv,
7871 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7872 G4X_HDMIW_HDMIEDID))
7873 return;
7874
e0dac65e
WF
7875 i = I915_READ(G4X_AUD_CNTL_ST);
7876 i &= ~(eldv | G4X_ELD_ADDR);
7877 len = (i >> 9) & 0x1f; /* ELD buffer size */
7878 I915_WRITE(G4X_AUD_CNTL_ST, i);
7879
7880 if (!eld[0])
7881 return;
7882
7883 len = min_t(uint8_t, eld[2], len);
7884 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7885 for (i = 0; i < len; i++)
7886 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7887
7888 i = I915_READ(G4X_AUD_CNTL_ST);
7889 i |= eldv;
7890 I915_WRITE(G4X_AUD_CNTL_ST, i);
7891}
7892
83358c85 7893static void haswell_write_eld(struct drm_connector *connector,
34427052
JN
7894 struct drm_crtc *crtc,
7895 struct drm_display_mode *mode)
83358c85
WX
7896{
7897 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7898 uint8_t *eld = connector->eld;
83358c85
WX
7899 uint32_t eldv;
7900 uint32_t i;
7901 int len;
7902 int pipe = to_intel_crtc(crtc)->pipe;
7903 int tmp;
7904
7905 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7906 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7907 int aud_config = HSW_AUD_CFG(pipe);
7908 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7909
83358c85
WX
7910 /* Audio output enable */
7911 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7912 tmp = I915_READ(aud_cntrl_st2);
7913 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7914 I915_WRITE(aud_cntrl_st2, tmp);
c7905792 7915 POSTING_READ(aud_cntrl_st2);
83358c85 7916
c7905792 7917 assert_pipe_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
83358c85
WX
7918
7919 /* Set ELD valid state */
7920 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7921 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
83358c85
WX
7922 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7923 I915_WRITE(aud_cntrl_st2, tmp);
7924 tmp = I915_READ(aud_cntrl_st2);
7e7cb34f 7925 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
83358c85
WX
7926
7927 /* Enable HDMI mode */
7928 tmp = I915_READ(aud_config);
7e7cb34f 7929 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
83358c85
WX
7930 /* clear N_programing_enable and N_value_index */
7931 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7932 I915_WRITE(aud_config, tmp);
7933
7934 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7935
7936 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7937
7938 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7939 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7940 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7941 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
7942 } else {
7943 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7944 }
83358c85
WX
7945
7946 if (intel_eld_uptodate(connector,
7947 aud_cntrl_st2, eldv,
7948 aud_cntl_st, IBX_ELD_ADDRESS,
7949 hdmiw_hdmiedid))
7950 return;
7951
7952 i = I915_READ(aud_cntrl_st2);
7953 i &= ~eldv;
7954 I915_WRITE(aud_cntrl_st2, i);
7955
7956 if (!eld[0])
7957 return;
7958
7959 i = I915_READ(aud_cntl_st);
7960 i &= ~IBX_ELD_ADDRESS;
7961 I915_WRITE(aud_cntl_st, i);
7962 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7963 DRM_DEBUG_DRIVER("port num:%d\n", i);
7964
7965 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7966 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7967 for (i = 0; i < len; i++)
7968 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7969
7970 i = I915_READ(aud_cntrl_st2);
7971 i |= eldv;
7972 I915_WRITE(aud_cntrl_st2, i);
7973
7974}
7975
e0dac65e 7976static void ironlake_write_eld(struct drm_connector *connector,
34427052
JN
7977 struct drm_crtc *crtc,
7978 struct drm_display_mode *mode)
e0dac65e
WF
7979{
7980 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7981 uint8_t *eld = connector->eld;
7982 uint32_t eldv;
7983 uint32_t i;
7984 int len;
7985 int hdmiw_hdmiedid;
b6daa025 7986 int aud_config;
e0dac65e
WF
7987 int aud_cntl_st;
7988 int aud_cntrl_st2;
9b138a83 7989 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 7990
b3f33cbf 7991 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
7992 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7993 aud_config = IBX_AUD_CFG(pipe);
7994 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 7995 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
9ca2fe73
ML
7996 } else if (IS_VALLEYVIEW(connector->dev)) {
7997 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7998 aud_config = VLV_AUD_CFG(pipe);
7999 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
8000 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
e0dac65e 8001 } else {
9b138a83
WX
8002 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
8003 aud_config = CPT_AUD_CFG(pipe);
8004 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 8005 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
8006 }
8007
9b138a83 8008 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e 8009
9ca2fe73
ML
8010 if (IS_VALLEYVIEW(connector->dev)) {
8011 struct intel_encoder *intel_encoder;
8012 struct intel_digital_port *intel_dig_port;
8013
8014 intel_encoder = intel_attached_encoder(connector);
8015 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
8016 i = intel_dig_port->port;
8017 } else {
8018 i = I915_READ(aud_cntl_st);
8019 i = (i >> 29) & DIP_PORT_SEL_MASK;
8020 /* DIP_Port_Select, 0x1 = PortB */
8021 }
8022
e0dac65e
WF
8023 if (!i) {
8024 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
8025 /* operate blindly on all ports */
1202b4c6
WF
8026 eldv = IBX_ELD_VALIDB;
8027 eldv |= IBX_ELD_VALIDB << 4;
8028 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e 8029 } else {
2582a850 8030 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
1202b4c6 8031 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
8032 }
8033
3a9627f4
WF
8034 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
8035 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
8036 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025 8037 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
1a91510d
JN
8038 } else {
8039 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
8040 }
e0dac65e 8041
3a9627f4
WF
8042 if (intel_eld_uptodate(connector,
8043 aud_cntrl_st2, eldv,
8044 aud_cntl_st, IBX_ELD_ADDRESS,
8045 hdmiw_hdmiedid))
8046 return;
8047
e0dac65e
WF
8048 i = I915_READ(aud_cntrl_st2);
8049 i &= ~eldv;
8050 I915_WRITE(aud_cntrl_st2, i);
8051
8052 if (!eld[0])
8053 return;
8054
e0dac65e 8055 i = I915_READ(aud_cntl_st);
1202b4c6 8056 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
8057 I915_WRITE(aud_cntl_st, i);
8058
8059 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
8060 DRM_DEBUG_DRIVER("ELD size %d\n", len);
8061 for (i = 0; i < len; i++)
8062 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
8063
8064 i = I915_READ(aud_cntrl_st2);
8065 i |= eldv;
8066 I915_WRITE(aud_cntrl_st2, i);
8067}
8068
8069void intel_write_eld(struct drm_encoder *encoder,
8070 struct drm_display_mode *mode)
8071{
8072 struct drm_crtc *crtc = encoder->crtc;
8073 struct drm_connector *connector;
8074 struct drm_device *dev = encoder->dev;
8075 struct drm_i915_private *dev_priv = dev->dev_private;
8076
8077 connector = drm_select_eld(encoder, mode);
8078 if (!connector)
8079 return;
8080
8081 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8082 connector->base.id,
c23cc417 8083 connector->name,
e0dac65e 8084 connector->encoder->base.id,
8e329a03 8085 connector->encoder->name);
e0dac65e
WF
8086
8087 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
8088
8089 if (dev_priv->display.write_eld)
34427052 8090 dev_priv->display.write_eld(connector, crtc, mode);
e0dac65e
WF
8091}
8092
560b85bb
CW
8093static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8094{
8095 struct drm_device *dev = crtc->dev;
8096 struct drm_i915_private *dev_priv = dev->dev_private;
8097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4b0e333e 8098 uint32_t cntl;
560b85bb 8099
4b0e333e 8100 if (base != intel_crtc->cursor_base) {
560b85bb
CW
8101 /* On these chipsets we can only modify the base whilst
8102 * the cursor is disabled.
8103 */
4b0e333e
CW
8104 if (intel_crtc->cursor_cntl) {
8105 I915_WRITE(_CURACNTR, 0);
8106 POSTING_READ(_CURACNTR);
8107 intel_crtc->cursor_cntl = 0;
8108 }
8109
9db4a9c7 8110 I915_WRITE(_CURABASE, base);
4b0e333e
CW
8111 POSTING_READ(_CURABASE);
8112 }
560b85bb 8113
4b0e333e
CW
8114 /* XXX width must be 64, stride 256 => 0x00 << 28 */
8115 cntl = 0;
8116 if (base)
8117 cntl = (CURSOR_ENABLE |
560b85bb 8118 CURSOR_GAMMA_ENABLE |
4b0e333e
CW
8119 CURSOR_FORMAT_ARGB);
8120 if (intel_crtc->cursor_cntl != cntl) {
8121 I915_WRITE(_CURACNTR, cntl);
8122 POSTING_READ(_CURACNTR);
8123 intel_crtc->cursor_cntl = cntl;
8124 }
560b85bb
CW
8125}
8126
8127static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8128{
8129 struct drm_device *dev = crtc->dev;
8130 struct drm_i915_private *dev_priv = dev->dev_private;
8131 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8132 int pipe = intel_crtc->pipe;
4b0e333e 8133 uint32_t cntl;
4726e0b0 8134
4b0e333e
CW
8135 cntl = 0;
8136 if (base) {
8137 cntl = MCURSOR_GAMMA_ENABLE;
8138 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8139 case 64:
8140 cntl |= CURSOR_MODE_64_ARGB_AX;
8141 break;
8142 case 128:
8143 cntl |= CURSOR_MODE_128_ARGB_AX;
8144 break;
8145 case 256:
8146 cntl |= CURSOR_MODE_256_ARGB_AX;
8147 break;
8148 default:
8149 WARN_ON(1);
8150 return;
560b85bb 8151 }
4b0e333e
CW
8152 cntl |= pipe << 28; /* Connect to correct pipe */
8153 }
8154 if (intel_crtc->cursor_cntl != cntl) {
9db4a9c7 8155 I915_WRITE(CURCNTR(pipe), cntl);
4b0e333e
CW
8156 POSTING_READ(CURCNTR(pipe));
8157 intel_crtc->cursor_cntl = cntl;
560b85bb 8158 }
4b0e333e 8159
560b85bb 8160 /* and commit changes on next vblank */
9db4a9c7 8161 I915_WRITE(CURBASE(pipe), base);
b2ea8ef5 8162 POSTING_READ(CURBASE(pipe));
560b85bb
CW
8163}
8164
65a21cd6
JB
8165static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
8166{
8167 struct drm_device *dev = crtc->dev;
8168 struct drm_i915_private *dev_priv = dev->dev_private;
8169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8170 int pipe = intel_crtc->pipe;
4b0e333e
CW
8171 uint32_t cntl;
8172
8173 cntl = 0;
8174 if (base) {
8175 cntl = MCURSOR_GAMMA_ENABLE;
8176 switch (intel_crtc->cursor_width) {
4726e0b0
SK
8177 case 64:
8178 cntl |= CURSOR_MODE_64_ARGB_AX;
8179 break;
8180 case 128:
8181 cntl |= CURSOR_MODE_128_ARGB_AX;
8182 break;
8183 case 256:
8184 cntl |= CURSOR_MODE_256_ARGB_AX;
8185 break;
8186 default:
8187 WARN_ON(1);
8188 return;
65a21cd6 8189 }
4b0e333e
CW
8190 }
8191 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8192 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 8193
4b0e333e
CW
8194 if (intel_crtc->cursor_cntl != cntl) {
8195 I915_WRITE(CURCNTR(pipe), cntl);
8196 POSTING_READ(CURCNTR(pipe));
8197 intel_crtc->cursor_cntl = cntl;
65a21cd6 8198 }
4b0e333e 8199
65a21cd6 8200 /* and commit changes on next vblank */
5efb3e28
VS
8201 I915_WRITE(CURBASE(pipe), base);
8202 POSTING_READ(CURBASE(pipe));
65a21cd6
JB
8203}
8204
cda4b7d3 8205/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
8206static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8207 bool on)
cda4b7d3
CW
8208{
8209 struct drm_device *dev = crtc->dev;
8210 struct drm_i915_private *dev_priv = dev->dev_private;
8211 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8212 int pipe = intel_crtc->pipe;
3d7d6510
MR
8213 int x = crtc->cursor_x;
8214 int y = crtc->cursor_y;
d6e4db15 8215 u32 base = 0, pos = 0;
cda4b7d3 8216
d6e4db15 8217 if (on)
cda4b7d3 8218 base = intel_crtc->cursor_addr;
cda4b7d3 8219
d6e4db15
VS
8220 if (x >= intel_crtc->config.pipe_src_w)
8221 base = 0;
8222
8223 if (y >= intel_crtc->config.pipe_src_h)
cda4b7d3
CW
8224 base = 0;
8225
8226 if (x < 0) {
efc9064e 8227 if (x + intel_crtc->cursor_width <= 0)
cda4b7d3
CW
8228 base = 0;
8229
8230 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8231 x = -x;
8232 }
8233 pos |= x << CURSOR_X_SHIFT;
8234
8235 if (y < 0) {
efc9064e 8236 if (y + intel_crtc->cursor_height <= 0)
cda4b7d3
CW
8237 base = 0;
8238
8239 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8240 y = -y;
8241 }
8242 pos |= y << CURSOR_Y_SHIFT;
8243
4b0e333e 8244 if (base == 0 && intel_crtc->cursor_base == 0)
cda4b7d3
CW
8245 return;
8246
5efb3e28
VS
8247 I915_WRITE(CURPOS(pipe), pos);
8248
8249 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev))
65a21cd6 8250 ivb_update_cursor(crtc, base);
5efb3e28
VS
8251 else if (IS_845G(dev) || IS_I865G(dev))
8252 i845_update_cursor(crtc, base);
8253 else
8254 i9xx_update_cursor(crtc, base);
4b0e333e 8255 intel_crtc->cursor_base = base;
cda4b7d3
CW
8256}
8257
e3287951
MR
8258/*
8259 * intel_crtc_cursor_set_obj - Set cursor to specified GEM object
8260 *
8261 * Note that the object's reference will be consumed if the update fails. If
8262 * the update succeeds, the reference of the old object (if any) will be
8263 * consumed.
8264 */
8265static int intel_crtc_cursor_set_obj(struct drm_crtc *crtc,
8266 struct drm_i915_gem_object *obj,
8267 uint32_t width, uint32_t height)
79e53945
JB
8268{
8269 struct drm_device *dev = crtc->dev;
8270 struct drm_i915_private *dev_priv = dev->dev_private;
8271 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 8272 enum pipe pipe = intel_crtc->pipe;
64f962e3 8273 unsigned old_width;
cda4b7d3 8274 uint32_t addr;
3f8bc370 8275 int ret;
79e53945 8276
79e53945 8277 /* if we want to turn off the cursor ignore width and height */
e3287951 8278 if (!obj) {
28c97730 8279 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 8280 addr = 0;
05394f39 8281 obj = NULL;
5004417d 8282 mutex_lock(&dev->struct_mutex);
3f8bc370 8283 goto finish;
79e53945
JB
8284 }
8285
4726e0b0
SK
8286 /* Check for which cursor types we support */
8287 if (!((width == 64 && height == 64) ||
8288 (width == 128 && height == 128 && !IS_GEN2(dev)) ||
8289 (width == 256 && height == 256 && !IS_GEN2(dev)))) {
8290 DRM_DEBUG("Cursor dimension not supported\n");
79e53945
JB
8291 return -EINVAL;
8292 }
8293
05394f39 8294 if (obj->base.size < width * height * 4) {
e3287951 8295 DRM_DEBUG_KMS("buffer is too small\n");
34b8686e
DA
8296 ret = -ENOMEM;
8297 goto fail;
79e53945
JB
8298 }
8299
71acb5eb 8300 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 8301 mutex_lock(&dev->struct_mutex);
3d13ef2e 8302 if (!INTEL_INFO(dev)->cursor_needs_physical) {
693db184
CW
8303 unsigned alignment;
8304
d9e86c0e 8305 if (obj->tiling_mode) {
3b25b31f 8306 DRM_DEBUG_KMS("cursor cannot be tiled\n");
d9e86c0e
CW
8307 ret = -EINVAL;
8308 goto fail_locked;
8309 }
8310
693db184
CW
8311 /* Note that the w/a also requires 2 PTE of padding following
8312 * the bo. We currently fill all unused PTE with the shadow
8313 * page and so we should always have valid PTE following the
8314 * cursor preventing the VT-d warning.
8315 */
8316 alignment = 0;
8317 if (need_vtd_wa(dev))
8318 alignment = 64*1024;
8319
8320 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
e7b526bb 8321 if (ret) {
3b25b31f 8322 DRM_DEBUG_KMS("failed to move cursor bo into the GTT\n");
2da3b9b9 8323 goto fail_locked;
e7b526bb
CW
8324 }
8325
d9e86c0e
CW
8326 ret = i915_gem_object_put_fence(obj);
8327 if (ret) {
3b25b31f 8328 DRM_DEBUG_KMS("failed to release fence for cursor");
d9e86c0e
CW
8329 goto fail_unpin;
8330 }
8331
f343c5f6 8332 addr = i915_gem_obj_ggtt_offset(obj);
71acb5eb 8333 } else {
6eeefaf3 8334 int align = IS_I830(dev) ? 16 * 1024 : 256;
00731155 8335 ret = i915_gem_object_attach_phys(obj, align);
71acb5eb 8336 if (ret) {
3b25b31f 8337 DRM_DEBUG_KMS("failed to attach phys object\n");
7f9872e0 8338 goto fail_locked;
71acb5eb 8339 }
00731155 8340 addr = obj->phys_handle->busaddr;
3f8bc370
KH
8341 }
8342
a6c45cf0 8343 if (IS_GEN2(dev))
14b60391
JB
8344 I915_WRITE(CURSIZE, (height << 12) | width);
8345
3f8bc370 8346 finish:
3f8bc370 8347 if (intel_crtc->cursor_bo) {
00731155 8348 if (!INTEL_INFO(dev)->cursor_needs_physical)
cc98b413 8349 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
3f8bc370 8350 }
80824003 8351
a071fa00
DV
8352 i915_gem_track_fb(intel_crtc->cursor_bo, obj,
8353 INTEL_FRONTBUFFER_CURSOR(pipe));
7f9872e0 8354 mutex_unlock(&dev->struct_mutex);
3f8bc370 8355
64f962e3
CW
8356 old_width = intel_crtc->cursor_width;
8357
3f8bc370 8358 intel_crtc->cursor_addr = addr;
05394f39 8359 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
8360 intel_crtc->cursor_width = width;
8361 intel_crtc->cursor_height = height;
8362
64f962e3
CW
8363 if (intel_crtc->active) {
8364 if (old_width != width)
8365 intel_update_watermarks(crtc);
f2f5f771 8366 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
64f962e3 8367 }
3f8bc370 8368
f99d7069
DV
8369 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_CURSOR(pipe));
8370
79e53945 8371 return 0;
e7b526bb 8372fail_unpin:
cc98b413 8373 i915_gem_object_unpin_from_display_plane(obj);
7f9872e0 8374fail_locked:
34b8686e 8375 mutex_unlock(&dev->struct_mutex);
bc9025bd 8376fail:
05394f39 8377 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 8378 return ret;
79e53945
JB
8379}
8380
79e53945 8381static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 8382 u16 *blue, uint32_t start, uint32_t size)
79e53945 8383{
7203425a 8384 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 8385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8386
7203425a 8387 for (i = start; i < end; i++) {
79e53945
JB
8388 intel_crtc->lut_r[i] = red[i] >> 8;
8389 intel_crtc->lut_g[i] = green[i] >> 8;
8390 intel_crtc->lut_b[i] = blue[i] >> 8;
8391 }
8392
8393 intel_crtc_load_lut(crtc);
8394}
8395
79e53945
JB
8396/* VESA 640x480x72Hz mode to set on the pipe */
8397static struct drm_display_mode load_detect_mode = {
8398 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8399 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8400};
8401
a8bb6818
DV
8402struct drm_framebuffer *
8403__intel_framebuffer_create(struct drm_device *dev,
8404 struct drm_mode_fb_cmd2 *mode_cmd,
8405 struct drm_i915_gem_object *obj)
d2dff872
CW
8406{
8407 struct intel_framebuffer *intel_fb;
8408 int ret;
8409
8410 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8411 if (!intel_fb) {
8412 drm_gem_object_unreference_unlocked(&obj->base);
8413 return ERR_PTR(-ENOMEM);
8414 }
8415
8416 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
8417 if (ret)
8418 goto err;
d2dff872
CW
8419
8420 return &intel_fb->base;
dd4916c5
DV
8421err:
8422 drm_gem_object_unreference_unlocked(&obj->base);
8423 kfree(intel_fb);
8424
8425 return ERR_PTR(ret);
d2dff872
CW
8426}
8427
b5ea642a 8428static struct drm_framebuffer *
a8bb6818
DV
8429intel_framebuffer_create(struct drm_device *dev,
8430 struct drm_mode_fb_cmd2 *mode_cmd,
8431 struct drm_i915_gem_object *obj)
8432{
8433 struct drm_framebuffer *fb;
8434 int ret;
8435
8436 ret = i915_mutex_lock_interruptible(dev);
8437 if (ret)
8438 return ERR_PTR(ret);
8439 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8440 mutex_unlock(&dev->struct_mutex);
8441
8442 return fb;
8443}
8444
d2dff872
CW
8445static u32
8446intel_framebuffer_pitch_for_width(int width, int bpp)
8447{
8448 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8449 return ALIGN(pitch, 64);
8450}
8451
8452static u32
8453intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8454{
8455 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 8456 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
8457}
8458
8459static struct drm_framebuffer *
8460intel_framebuffer_create_for_mode(struct drm_device *dev,
8461 struct drm_display_mode *mode,
8462 int depth, int bpp)
8463{
8464 struct drm_i915_gem_object *obj;
0fed39bd 8465 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872
CW
8466
8467 obj = i915_gem_alloc_object(dev,
8468 intel_framebuffer_size_for_mode(mode, bpp));
8469 if (obj == NULL)
8470 return ERR_PTR(-ENOMEM);
8471
8472 mode_cmd.width = mode->hdisplay;
8473 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
8474 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8475 bpp);
5ca0c34a 8476 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
8477
8478 return intel_framebuffer_create(dev, &mode_cmd, obj);
8479}
8480
8481static struct drm_framebuffer *
8482mode_fits_in_fbdev(struct drm_device *dev,
8483 struct drm_display_mode *mode)
8484{
4520f53a 8485#ifdef CONFIG_DRM_I915_FBDEV
d2dff872
CW
8486 struct drm_i915_private *dev_priv = dev->dev_private;
8487 struct drm_i915_gem_object *obj;
8488 struct drm_framebuffer *fb;
8489
4c0e5528 8490 if (!dev_priv->fbdev)
d2dff872
CW
8491 return NULL;
8492
4c0e5528 8493 if (!dev_priv->fbdev->fb)
d2dff872
CW
8494 return NULL;
8495
4c0e5528
DV
8496 obj = dev_priv->fbdev->fb->obj;
8497 BUG_ON(!obj);
8498
8bcd4553 8499 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
8500 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8501 fb->bits_per_pixel))
d2dff872
CW
8502 return NULL;
8503
01f2c773 8504 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
8505 return NULL;
8506
8507 return fb;
4520f53a
DV
8508#else
8509 return NULL;
8510#endif
d2dff872
CW
8511}
8512
d2434ab7 8513bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 8514 struct drm_display_mode *mode,
51fd371b
RC
8515 struct intel_load_detect_pipe *old,
8516 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
8517{
8518 struct intel_crtc *intel_crtc;
d2434ab7
DV
8519 struct intel_encoder *intel_encoder =
8520 intel_attached_encoder(connector);
79e53945 8521 struct drm_crtc *possible_crtc;
4ef69c7a 8522 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
8523 struct drm_crtc *crtc = NULL;
8524 struct drm_device *dev = encoder->dev;
94352cf9 8525 struct drm_framebuffer *fb;
51fd371b
RC
8526 struct drm_mode_config *config = &dev->mode_config;
8527 int ret, i = -1;
79e53945 8528
d2dff872 8529 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8530 connector->base.id, connector->name,
8e329a03 8531 encoder->base.id, encoder->name);
d2dff872 8532
51fd371b
RC
8533 drm_modeset_acquire_init(ctx, 0);
8534
8535retry:
8536 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8537 if (ret)
8538 goto fail_unlock;
6e9f798d 8539
79e53945
JB
8540 /*
8541 * Algorithm gets a little messy:
7a5e4805 8542 *
79e53945
JB
8543 * - if the connector already has an assigned crtc, use it (but make
8544 * sure it's on first)
7a5e4805 8545 *
79e53945
JB
8546 * - try to find the first unused crtc that can drive this connector,
8547 * and use that if we find one
79e53945
JB
8548 */
8549
8550 /* See if we already have a CRTC for this connector */
8551 if (encoder->crtc) {
8552 crtc = encoder->crtc;
8261b191 8553
51fd371b
RC
8554 ret = drm_modeset_lock(&crtc->mutex, ctx);
8555 if (ret)
8556 goto fail_unlock;
7b24056b 8557
24218aac 8558 old->dpms_mode = connector->dpms;
8261b191
CW
8559 old->load_detect_temp = false;
8560
8561 /* Make sure the crtc and connector are running */
24218aac
DV
8562 if (connector->dpms != DRM_MODE_DPMS_ON)
8563 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 8564
7173188d 8565 return true;
79e53945
JB
8566 }
8567
8568 /* Find an unused one (if possible) */
70e1e0ec 8569 for_each_crtc(dev, possible_crtc) {
79e53945
JB
8570 i++;
8571 if (!(encoder->possible_crtcs & (1 << i)))
8572 continue;
8573 if (!possible_crtc->enabled) {
8574 crtc = possible_crtc;
8575 break;
8576 }
79e53945
JB
8577 }
8578
8579 /*
8580 * If we didn't find an unused CRTC, don't use any.
8581 */
8582 if (!crtc) {
7173188d 8583 DRM_DEBUG_KMS("no pipe available for load-detect\n");
51fd371b 8584 goto fail_unlock;
79e53945
JB
8585 }
8586
51fd371b
RC
8587 ret = drm_modeset_lock(&crtc->mutex, ctx);
8588 if (ret)
8589 goto fail_unlock;
fc303101
DV
8590 intel_encoder->new_crtc = to_intel_crtc(crtc);
8591 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
8592
8593 intel_crtc = to_intel_crtc(crtc);
412b61d8
VS
8594 intel_crtc->new_enabled = true;
8595 intel_crtc->new_config = &intel_crtc->config;
24218aac 8596 old->dpms_mode = connector->dpms;
8261b191 8597 old->load_detect_temp = true;
d2dff872 8598 old->release_fb = NULL;
79e53945 8599
6492711d
CW
8600 if (!mode)
8601 mode = &load_detect_mode;
79e53945 8602
d2dff872
CW
8603 /* We need a framebuffer large enough to accommodate all accesses
8604 * that the plane may generate whilst we perform load detection.
8605 * We can not rely on the fbcon either being present (we get called
8606 * during its initialisation to detect all boot displays, or it may
8607 * not even exist) or that it is large enough to satisfy the
8608 * requested mode.
8609 */
94352cf9
DV
8610 fb = mode_fits_in_fbdev(dev, mode);
8611 if (fb == NULL) {
d2dff872 8612 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
8613 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8614 old->release_fb = fb;
d2dff872
CW
8615 } else
8616 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 8617 if (IS_ERR(fb)) {
d2dff872 8618 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 8619 goto fail;
79e53945 8620 }
79e53945 8621
c0c36b94 8622 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 8623 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
8624 if (old->release_fb)
8625 old->release_fb->funcs->destroy(old->release_fb);
412b61d8 8626 goto fail;
79e53945 8627 }
7173188d 8628
79e53945 8629 /* let the connector get through one full cycle before testing */
9d0498a2 8630 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 8631 return true;
412b61d8
VS
8632
8633 fail:
8634 intel_crtc->new_enabled = crtc->enabled;
8635 if (intel_crtc->new_enabled)
8636 intel_crtc->new_config = &intel_crtc->config;
8637 else
8638 intel_crtc->new_config = NULL;
51fd371b
RC
8639fail_unlock:
8640 if (ret == -EDEADLK) {
8641 drm_modeset_backoff(ctx);
8642 goto retry;
8643 }
8644
8645 drm_modeset_drop_locks(ctx);
8646 drm_modeset_acquire_fini(ctx);
6e9f798d 8647
412b61d8 8648 return false;
79e53945
JB
8649}
8650
d2434ab7 8651void intel_release_load_detect_pipe(struct drm_connector *connector,
51fd371b
RC
8652 struct intel_load_detect_pipe *old,
8653 struct drm_modeset_acquire_ctx *ctx)
79e53945 8654{
d2434ab7
DV
8655 struct intel_encoder *intel_encoder =
8656 intel_attached_encoder(connector);
4ef69c7a 8657 struct drm_encoder *encoder = &intel_encoder->base;
7b24056b 8658 struct drm_crtc *crtc = encoder->crtc;
412b61d8 8659 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 8660
d2dff872 8661 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 8662 connector->base.id, connector->name,
8e329a03 8663 encoder->base.id, encoder->name);
d2dff872 8664
8261b191 8665 if (old->load_detect_temp) {
fc303101
DV
8666 to_intel_connector(connector)->new_encoder = NULL;
8667 intel_encoder->new_crtc = NULL;
412b61d8
VS
8668 intel_crtc->new_enabled = false;
8669 intel_crtc->new_config = NULL;
fc303101 8670 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872 8671
36206361
DV
8672 if (old->release_fb) {
8673 drm_framebuffer_unregister_private(old->release_fb);
8674 drm_framebuffer_unreference(old->release_fb);
8675 }
d2dff872 8676
51fd371b 8677 goto unlock;
0622a53c 8678 return;
79e53945
JB
8679 }
8680
c751ce4f 8681 /* Switch crtc and encoder back off if necessary */
24218aac
DV
8682 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8683 connector->funcs->dpms(connector, old->dpms_mode);
7b24056b 8684
51fd371b
RC
8685unlock:
8686 drm_modeset_drop_locks(ctx);
8687 drm_modeset_acquire_fini(ctx);
79e53945
JB
8688}
8689
da4a1efa
VS
8690static int i9xx_pll_refclk(struct drm_device *dev,
8691 const struct intel_crtc_config *pipe_config)
8692{
8693 struct drm_i915_private *dev_priv = dev->dev_private;
8694 u32 dpll = pipe_config->dpll_hw_state.dpll;
8695
8696 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 8697 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
8698 else if (HAS_PCH_SPLIT(dev))
8699 return 120000;
8700 else if (!IS_GEN2(dev))
8701 return 96000;
8702 else
8703 return 48000;
8704}
8705
79e53945 8706/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc
JB
8707static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8708 struct intel_crtc_config *pipe_config)
79e53945 8709{
f1f644dc 8710 struct drm_device *dev = crtc->base.dev;
79e53945 8711 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 8712 int pipe = pipe_config->cpu_transcoder;
293623f7 8713 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945
JB
8714 u32 fp;
8715 intel_clock_t clock;
da4a1efa 8716 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
8717
8718 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 8719 fp = pipe_config->dpll_hw_state.fp0;
79e53945 8720 else
293623f7 8721 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
8722
8723 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
8724 if (IS_PINEVIEW(dev)) {
8725 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8726 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
8727 } else {
8728 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8729 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8730 }
8731
a6c45cf0 8732 if (!IS_GEN2(dev)) {
f2b115e6
AJ
8733 if (IS_PINEVIEW(dev))
8734 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8735 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
8736 else
8737 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
8738 DPLL_FPA01_P1_POST_DIV_SHIFT);
8739
8740 switch (dpll & DPLL_MODE_MASK) {
8741 case DPLLB_MODE_DAC_SERIAL:
8742 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8743 5 : 10;
8744 break;
8745 case DPLLB_MODE_LVDS:
8746 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8747 7 : 14;
8748 break;
8749 default:
28c97730 8750 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 8751 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 8752 return;
79e53945
JB
8753 }
8754
ac58c3f0 8755 if (IS_PINEVIEW(dev))
da4a1efa 8756 pineview_clock(refclk, &clock);
ac58c3f0 8757 else
da4a1efa 8758 i9xx_clock(refclk, &clock);
79e53945 8759 } else {
0fb58223 8760 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 8761 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
8762
8763 if (is_lvds) {
8764 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8765 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
8766
8767 if (lvds & LVDS_CLKB_POWER_UP)
8768 clock.p2 = 7;
8769 else
8770 clock.p2 = 14;
79e53945
JB
8771 } else {
8772 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8773 clock.p1 = 2;
8774 else {
8775 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8776 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8777 }
8778 if (dpll & PLL_P2_DIVIDE_BY_4)
8779 clock.p2 = 4;
8780 else
8781 clock.p2 = 2;
79e53945 8782 }
da4a1efa
VS
8783
8784 i9xx_clock(refclk, &clock);
79e53945
JB
8785 }
8786
18442d08
VS
8787 /*
8788 * This value includes pixel_multiplier. We will use
241bfc38 8789 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
8790 * encoder's get_config() function.
8791 */
8792 pipe_config->port_clock = clock.dot;
f1f644dc
JB
8793}
8794
6878da05
VS
8795int intel_dotclock_calculate(int link_freq,
8796 const struct intel_link_m_n *m_n)
f1f644dc 8797{
f1f644dc
JB
8798 /*
8799 * The calculation for the data clock is:
1041a02f 8800 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 8801 * But we want to avoid losing precison if possible, so:
1041a02f 8802 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
8803 *
8804 * and the link clock is simpler:
1041a02f 8805 * link_clock = (m * link_clock) / n
f1f644dc
JB
8806 */
8807
6878da05
VS
8808 if (!m_n->link_n)
8809 return 0;
f1f644dc 8810
6878da05
VS
8811 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8812}
f1f644dc 8813
18442d08
VS
8814static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8815 struct intel_crtc_config *pipe_config)
6878da05
VS
8816{
8817 struct drm_device *dev = crtc->base.dev;
79e53945 8818
18442d08
VS
8819 /* read out port_clock from the DPLL */
8820 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 8821
f1f644dc 8822 /*
18442d08 8823 * This value does not include pixel_multiplier.
241bfc38 8824 * We will check that port_clock and adjusted_mode.crtc_clock
18442d08
VS
8825 * agree once we know their relationship in the encoder's
8826 * get_config() function.
79e53945 8827 */
241bfc38 8828 pipe_config->adjusted_mode.crtc_clock =
18442d08
VS
8829 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8830 &pipe_config->fdi_m_n);
79e53945
JB
8831}
8832
8833/** Returns the currently programmed mode of the given pipe. */
8834struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8835 struct drm_crtc *crtc)
8836{
548f245b 8837 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 8838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3b117c8f 8839 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
79e53945 8840 struct drm_display_mode *mode;
f1f644dc 8841 struct intel_crtc_config pipe_config;
fe2b8f9d
PZ
8842 int htot = I915_READ(HTOTAL(cpu_transcoder));
8843 int hsync = I915_READ(HSYNC(cpu_transcoder));
8844 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8845 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 8846 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
8847
8848 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8849 if (!mode)
8850 return NULL;
8851
f1f644dc
JB
8852 /*
8853 * Construct a pipe_config sufficient for getting the clock info
8854 * back out of crtc_clock_get.
8855 *
8856 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8857 * to use a real value here instead.
8858 */
293623f7 8859 pipe_config.cpu_transcoder = (enum transcoder) pipe;
f1f644dc 8860 pipe_config.pixel_multiplier = 1;
293623f7
VS
8861 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8862 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8863 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
f1f644dc
JB
8864 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8865
773ae034 8866 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
79e53945
JB
8867 mode->hdisplay = (htot & 0xffff) + 1;
8868 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8869 mode->hsync_start = (hsync & 0xffff) + 1;
8870 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8871 mode->vdisplay = (vtot & 0xffff) + 1;
8872 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8873 mode->vsync_start = (vsync & 0xffff) + 1;
8874 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8875
8876 drm_mode_set_name(mode);
79e53945
JB
8877
8878 return mode;
8879}
8880
cc36513c
DV
8881static void intel_increase_pllclock(struct drm_device *dev,
8882 enum pipe pipe)
652c393a 8883{
fbee40df 8884 struct drm_i915_private *dev_priv = dev->dev_private;
dbdc6479
JB
8885 int dpll_reg = DPLL(pipe);
8886 int dpll;
652c393a 8887
baff296c 8888 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8889 return;
8890
8891 if (!dev_priv->lvds_downclock_avail)
8892 return;
8893
dbdc6479 8894 dpll = I915_READ(dpll_reg);
652c393a 8895 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 8896 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 8897
8ac5a6d5 8898 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
8899
8900 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8901 I915_WRITE(dpll_reg, dpll);
9d0498a2 8902 intel_wait_for_vblank(dev, pipe);
dbdc6479 8903
652c393a
JB
8904 dpll = I915_READ(dpll_reg);
8905 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 8906 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 8907 }
652c393a
JB
8908}
8909
8910static void intel_decrease_pllclock(struct drm_crtc *crtc)
8911{
8912 struct drm_device *dev = crtc->dev;
fbee40df 8913 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 8915
baff296c 8916 if (!HAS_GMCH_DISPLAY(dev))
652c393a
JB
8917 return;
8918
8919 if (!dev_priv->lvds_downclock_avail)
8920 return;
8921
8922 /*
8923 * Since this is called by a timer, we should never get here in
8924 * the manual case.
8925 */
8926 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
8927 int pipe = intel_crtc->pipe;
8928 int dpll_reg = DPLL(pipe);
8929 int dpll;
f6e5b160 8930
44d98a61 8931 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 8932
8ac5a6d5 8933 assert_panel_unlocked(dev_priv, pipe);
652c393a 8934
dc257cf1 8935 dpll = I915_READ(dpll_reg);
652c393a
JB
8936 dpll |= DISPLAY_RATE_SELECT_FPA1;
8937 I915_WRITE(dpll_reg, dpll);
9d0498a2 8938 intel_wait_for_vblank(dev, pipe);
652c393a
JB
8939 dpll = I915_READ(dpll_reg);
8940 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 8941 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
8942 }
8943
8944}
8945
f047e395
CW
8946void intel_mark_busy(struct drm_device *dev)
8947{
c67a470b
PZ
8948 struct drm_i915_private *dev_priv = dev->dev_private;
8949
f62a0076
CW
8950 if (dev_priv->mm.busy)
8951 return;
8952
43694d69 8953 intel_runtime_pm_get(dev_priv);
c67a470b 8954 i915_update_gfx_val(dev_priv);
f62a0076 8955 dev_priv->mm.busy = true;
f047e395
CW
8956}
8957
8958void intel_mark_idle(struct drm_device *dev)
652c393a 8959{
c67a470b 8960 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8961 struct drm_crtc *crtc;
652c393a 8962
f62a0076
CW
8963 if (!dev_priv->mm.busy)
8964 return;
8965
8966 dev_priv->mm.busy = false;
8967
d330a953 8968 if (!i915.powersave)
bb4cdd53 8969 goto out;
652c393a 8970
70e1e0ec 8971 for_each_crtc(dev, crtc) {
f4510a27 8972 if (!crtc->primary->fb)
652c393a
JB
8973 continue;
8974
725a5b54 8975 intel_decrease_pllclock(crtc);
652c393a 8976 }
b29c19b6 8977
3d13ef2e 8978 if (INTEL_INFO(dev)->gen >= 6)
b29c19b6 8979 gen6_rps_idle(dev->dev_private);
bb4cdd53
PZ
8980
8981out:
43694d69 8982 intel_runtime_pm_put(dev_priv);
652c393a
JB
8983}
8984
7c8f8a70 8985
f99d7069
DV
8986/**
8987 * intel_mark_fb_busy - mark given planes as busy
8988 * @dev: DRM device
8989 * @frontbuffer_bits: bits for the affected planes
8990 * @ring: optional ring for asynchronous commands
8991 *
8992 * This function gets called every time the screen contents change. It can be
8993 * used to keep e.g. the update rate at the nominal refresh rate with DRRS.
8994 */
8995static void intel_mark_fb_busy(struct drm_device *dev,
8996 unsigned frontbuffer_bits,
8997 struct intel_engine_cs *ring)
652c393a 8998{
cc36513c 8999 enum pipe pipe;
652c393a 9000
d330a953 9001 if (!i915.powersave)
acb87dfb
CW
9002 return;
9003
cc36513c 9004 for_each_pipe(pipe) {
f99d7069 9005 if (!(frontbuffer_bits & INTEL_FRONTBUFFER_ALL_MASK(pipe)))
c65355bb
CW
9006 continue;
9007
cc36513c 9008 intel_increase_pllclock(dev, pipe);
c65355bb
CW
9009 if (ring && intel_fbc_enabled(dev))
9010 ring->fbc_dirty = true;
652c393a
JB
9011 }
9012}
9013
f99d7069
DV
9014/**
9015 * intel_fb_obj_invalidate - invalidate frontbuffer object
9016 * @obj: GEM object to invalidate
9017 * @ring: set for asynchronous rendering
9018 *
9019 * This function gets called every time rendering on the given object starts and
9020 * frontbuffer caching (fbc, low refresh rate for DRRS, panel self refresh) must
9021 * be invalidated. If @ring is non-NULL any subsequent invalidation will be delayed
9022 * until the rendering completes or a flip on this frontbuffer plane is
9023 * scheduled.
9024 */
9025void intel_fb_obj_invalidate(struct drm_i915_gem_object *obj,
9026 struct intel_engine_cs *ring)
9027{
9028 struct drm_device *dev = obj->base.dev;
9029 struct drm_i915_private *dev_priv = dev->dev_private;
9030
9031 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9032
9033 if (!obj->frontbuffer_bits)
9034 return;
9035
9036 if (ring) {
9037 mutex_lock(&dev_priv->fb_tracking.lock);
9038 dev_priv->fb_tracking.busy_bits
9039 |= obj->frontbuffer_bits;
9040 dev_priv->fb_tracking.flip_bits
9041 &= ~obj->frontbuffer_bits;
9042 mutex_unlock(&dev_priv->fb_tracking.lock);
9043 }
9044
9045 intel_mark_fb_busy(dev, obj->frontbuffer_bits, ring);
9046
9ca15301 9047 intel_edp_psr_invalidate(dev, obj->frontbuffer_bits);
f99d7069
DV
9048}
9049
9050/**
9051 * intel_frontbuffer_flush - flush frontbuffer
9052 * @dev: DRM device
9053 * @frontbuffer_bits: frontbuffer plane tracking bits
9054 *
9055 * This function gets called every time rendering on the given planes has
9056 * completed and frontbuffer caching can be started again. Flushes will get
9057 * delayed if they're blocked by some oustanding asynchronous rendering.
9058 *
9059 * Can be called without any locks held.
9060 */
9061void intel_frontbuffer_flush(struct drm_device *dev,
9062 unsigned frontbuffer_bits)
9063{
9064 struct drm_i915_private *dev_priv = dev->dev_private;
9065
9066 /* Delay flushing when rings are still busy.*/
9067 mutex_lock(&dev_priv->fb_tracking.lock);
9068 frontbuffer_bits &= ~dev_priv->fb_tracking.busy_bits;
9069 mutex_unlock(&dev_priv->fb_tracking.lock);
9070
9071 intel_mark_fb_busy(dev, frontbuffer_bits, NULL);
9072
9ca15301 9073 intel_edp_psr_flush(dev, frontbuffer_bits);
f99d7069
DV
9074}
9075
9076/**
9077 * intel_fb_obj_flush - flush frontbuffer object
9078 * @obj: GEM object to flush
9079 * @retire: set when retiring asynchronous rendering
9080 *
9081 * This function gets called every time rendering on the given object has
9082 * completed and frontbuffer caching can be started again. If @retire is true
9083 * then any delayed flushes will be unblocked.
9084 */
9085void intel_fb_obj_flush(struct drm_i915_gem_object *obj,
9086 bool retire)
9087{
9088 struct drm_device *dev = obj->base.dev;
9089 struct drm_i915_private *dev_priv = dev->dev_private;
9090 unsigned frontbuffer_bits;
9091
9092 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
9093
9094 if (!obj->frontbuffer_bits)
9095 return;
9096
9097 frontbuffer_bits = obj->frontbuffer_bits;
9098
9099 if (retire) {
9100 mutex_lock(&dev_priv->fb_tracking.lock);
9101 /* Filter out new bits since rendering started. */
9102 frontbuffer_bits &= dev_priv->fb_tracking.busy_bits;
9103
9104 dev_priv->fb_tracking.busy_bits &= ~frontbuffer_bits;
9105 mutex_unlock(&dev_priv->fb_tracking.lock);
9106 }
9107
9108 intel_frontbuffer_flush(dev, frontbuffer_bits);
9109}
9110
9111/**
9112 * intel_frontbuffer_flip_prepare - prepare asnychronous frontbuffer flip
9113 * @dev: DRM device
9114 * @frontbuffer_bits: frontbuffer plane tracking bits
9115 *
9116 * This function gets called after scheduling a flip on @obj. The actual
9117 * frontbuffer flushing will be delayed until completion is signalled with
9118 * intel_frontbuffer_flip_complete. If an invalidate happens in between this
9119 * flush will be cancelled.
9120 *
9121 * Can be called without any locks held.
9122 */
9123void intel_frontbuffer_flip_prepare(struct drm_device *dev,
9124 unsigned frontbuffer_bits)
9125{
9126 struct drm_i915_private *dev_priv = dev->dev_private;
9127
9128 mutex_lock(&dev_priv->fb_tracking.lock);
9129 dev_priv->fb_tracking.flip_bits
9130 |= frontbuffer_bits;
9131 mutex_unlock(&dev_priv->fb_tracking.lock);
9132}
9133
9134/**
9135 * intel_frontbuffer_flip_complete - complete asynchronous frontbuffer flush
9136 * @dev: DRM device
9137 * @frontbuffer_bits: frontbuffer plane tracking bits
9138 *
9139 * This function gets called after the flip has been latched and will complete
9140 * on the next vblank. It will execute the fush if it hasn't been cancalled yet.
9141 *
9142 * Can be called without any locks held.
9143 */
9144void intel_frontbuffer_flip_complete(struct drm_device *dev,
9145 unsigned frontbuffer_bits)
9146{
9147 struct drm_i915_private *dev_priv = dev->dev_private;
9148
9149 mutex_lock(&dev_priv->fb_tracking.lock);
9150 /* Mask any cancelled flips. */
9151 frontbuffer_bits &= dev_priv->fb_tracking.flip_bits;
9152 dev_priv->fb_tracking.flip_bits &= ~frontbuffer_bits;
9153 mutex_unlock(&dev_priv->fb_tracking.lock);
9154
9155 intel_frontbuffer_flush(dev, frontbuffer_bits);
9156}
9157
79e53945
JB
9158static void intel_crtc_destroy(struct drm_crtc *crtc)
9159{
9160 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
9161 struct drm_device *dev = crtc->dev;
9162 struct intel_unpin_work *work;
9163 unsigned long flags;
9164
9165 spin_lock_irqsave(&dev->event_lock, flags);
9166 work = intel_crtc->unpin_work;
9167 intel_crtc->unpin_work = NULL;
9168 spin_unlock_irqrestore(&dev->event_lock, flags);
9169
9170 if (work) {
9171 cancel_work_sync(&work->work);
9172 kfree(work);
9173 }
79e53945
JB
9174
9175 drm_crtc_cleanup(crtc);
67e77c5a 9176
79e53945
JB
9177 kfree(intel_crtc);
9178}
9179
6b95a207
KH
9180static void intel_unpin_work_fn(struct work_struct *__work)
9181{
9182 struct intel_unpin_work *work =
9183 container_of(__work, struct intel_unpin_work, work);
b4a98e57 9184 struct drm_device *dev = work->crtc->dev;
f99d7069 9185 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
6b95a207 9186
b4a98e57 9187 mutex_lock(&dev->struct_mutex);
1690e1eb 9188 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
9189 drm_gem_object_unreference(&work->pending_flip_obj->base);
9190 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 9191
b4a98e57
CW
9192 intel_update_fbc(dev);
9193 mutex_unlock(&dev->struct_mutex);
9194
f99d7069
DV
9195 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9196
b4a98e57
CW
9197 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9198 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9199
6b95a207
KH
9200 kfree(work);
9201}
9202
1afe3e9d 9203static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 9204 struct drm_crtc *crtc)
6b95a207 9205{
fbee40df 9206 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9208 struct intel_unpin_work *work;
6b95a207
KH
9209 unsigned long flags;
9210
9211 /* Ignore early vblank irqs */
9212 if (intel_crtc == NULL)
9213 return;
9214
9215 spin_lock_irqsave(&dev->event_lock, flags);
9216 work = intel_crtc->unpin_work;
e7d841ca
CW
9217
9218 /* Ensure we don't miss a work->pending update ... */
9219 smp_rmb();
9220
9221 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
9222 spin_unlock_irqrestore(&dev->event_lock, flags);
9223 return;
9224 }
9225
e7d841ca
CW
9226 /* and that the unpin work is consistent wrt ->pending. */
9227 smp_rmb();
9228
6b95a207 9229 intel_crtc->unpin_work = NULL;
6b95a207 9230
45a066eb
RC
9231 if (work->event)
9232 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6b95a207 9233
87b6b101 9234 drm_crtc_vblank_put(crtc);
0af7e4df 9235
6b95a207
KH
9236 spin_unlock_irqrestore(&dev->event_lock, flags);
9237
2c10d571 9238 wake_up_all(&dev_priv->pending_flip_queue);
b4a98e57
CW
9239
9240 queue_work(dev_priv->wq, &work->work);
e5510fac
JB
9241
9242 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
9243}
9244
1afe3e9d
JB
9245void intel_finish_page_flip(struct drm_device *dev, int pipe)
9246{
fbee40df 9247 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9248 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9249
49b14a5c 9250 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9251}
9252
9253void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9254{
fbee40df 9255 struct drm_i915_private *dev_priv = dev->dev_private;
1afe3e9d
JB
9256 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9257
49b14a5c 9258 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
9259}
9260
75f7f3ec
VS
9261/* Is 'a' after or equal to 'b'? */
9262static bool g4x_flip_count_after_eq(u32 a, u32 b)
9263{
9264 return !((a - b) & 0x80000000);
9265}
9266
9267static bool page_flip_finished(struct intel_crtc *crtc)
9268{
9269 struct drm_device *dev = crtc->base.dev;
9270 struct drm_i915_private *dev_priv = dev->dev_private;
9271
9272 /*
9273 * The relevant registers doen't exist on pre-ctg.
9274 * As the flip done interrupt doesn't trigger for mmio
9275 * flips on gmch platforms, a flip count check isn't
9276 * really needed there. But since ctg has the registers,
9277 * include it in the check anyway.
9278 */
9279 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9280 return true;
9281
9282 /*
9283 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9284 * used the same base address. In that case the mmio flip might
9285 * have completed, but the CS hasn't even executed the flip yet.
9286 *
9287 * A flip count check isn't enough as the CS might have updated
9288 * the base address just after start of vblank, but before we
9289 * managed to process the interrupt. This means we'd complete the
9290 * CS flip too soon.
9291 *
9292 * Combining both checks should get us a good enough result. It may
9293 * still happen that the CS flip has been executed, but has not
9294 * yet actually completed. But in case the base address is the same
9295 * anyway, we don't really care.
9296 */
9297 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9298 crtc->unpin_work->gtt_offset &&
9299 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9300 crtc->unpin_work->flip_count);
9301}
9302
6b95a207
KH
9303void intel_prepare_page_flip(struct drm_device *dev, int plane)
9304{
fbee40df 9305 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
9306 struct intel_crtc *intel_crtc =
9307 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9308 unsigned long flags;
9309
e7d841ca
CW
9310 /* NB: An MMIO update of the plane base pointer will also
9311 * generate a page-flip completion irq, i.e. every modeset
9312 * is also accompanied by a spurious intel_prepare_page_flip().
9313 */
6b95a207 9314 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 9315 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 9316 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
9317 spin_unlock_irqrestore(&dev->event_lock, flags);
9318}
9319
eba905b2 9320static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
e7d841ca
CW
9321{
9322 /* Ensure that the work item is consistent when activating it ... */
9323 smp_wmb();
9324 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9325 /* and that it is marked active as soon as the irq could fire. */
9326 smp_wmb();
9327}
9328
8c9f3aaf
JB
9329static int intel_gen2_queue_flip(struct drm_device *dev,
9330 struct drm_crtc *crtc,
9331 struct drm_framebuffer *fb,
ed8d1975 9332 struct drm_i915_gem_object *obj,
a4872ba6 9333 struct intel_engine_cs *ring,
ed8d1975 9334 uint32_t flags)
8c9f3aaf 9335{
8c9f3aaf 9336 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9337 u32 flip_mask;
9338 int ret;
9339
6d90c952 9340 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9341 if (ret)
4fa62c89 9342 return ret;
8c9f3aaf
JB
9343
9344 /* Can't queue multiple flips, so wait for the previous
9345 * one to finish before executing the next.
9346 */
9347 if (intel_crtc->plane)
9348 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9349 else
9350 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9351 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9352 intel_ring_emit(ring, MI_NOOP);
9353 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9354 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9355 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9356 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952 9357 intel_ring_emit(ring, 0); /* aux display base address, unused */
e7d841ca
CW
9358
9359 intel_mark_page_flip_active(intel_crtc);
09246732 9360 __intel_ring_advance(ring);
83d4092b 9361 return 0;
8c9f3aaf
JB
9362}
9363
9364static int intel_gen3_queue_flip(struct drm_device *dev,
9365 struct drm_crtc *crtc,
9366 struct drm_framebuffer *fb,
ed8d1975 9367 struct drm_i915_gem_object *obj,
a4872ba6 9368 struct intel_engine_cs *ring,
ed8d1975 9369 uint32_t flags)
8c9f3aaf 9370{
8c9f3aaf 9371 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
9372 u32 flip_mask;
9373 int ret;
9374
6d90c952 9375 ret = intel_ring_begin(ring, 6);
8c9f3aaf 9376 if (ret)
4fa62c89 9377 return ret;
8c9f3aaf
JB
9378
9379 if (intel_crtc->plane)
9380 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9381 else
9382 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
9383 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9384 intel_ring_emit(ring, MI_NOOP);
9385 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9386 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9387 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9388 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
6d90c952
DV
9389 intel_ring_emit(ring, MI_NOOP);
9390
e7d841ca 9391 intel_mark_page_flip_active(intel_crtc);
09246732 9392 __intel_ring_advance(ring);
83d4092b 9393 return 0;
8c9f3aaf
JB
9394}
9395
9396static int intel_gen4_queue_flip(struct drm_device *dev,
9397 struct drm_crtc *crtc,
9398 struct drm_framebuffer *fb,
ed8d1975 9399 struct drm_i915_gem_object *obj,
a4872ba6 9400 struct intel_engine_cs *ring,
ed8d1975 9401 uint32_t flags)
8c9f3aaf
JB
9402{
9403 struct drm_i915_private *dev_priv = dev->dev_private;
9404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9405 uint32_t pf, pipesrc;
9406 int ret;
9407
6d90c952 9408 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9409 if (ret)
4fa62c89 9410 return ret;
8c9f3aaf
JB
9411
9412 /* i965+ uses the linear or tiled offsets from the
9413 * Display Registers (which do not change across a page-flip)
9414 * so we need only reprogram the base address.
9415 */
6d90c952
DV
9416 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9417 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9418 intel_ring_emit(ring, fb->pitches[0]);
75f7f3ec 9419 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
c2c75131 9420 obj->tiling_mode);
8c9f3aaf
JB
9421
9422 /* XXX Enabling the panel-fitter across page-flip is so far
9423 * untested on non-native modes, so ignore it for now.
9424 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9425 */
9426 pf = 0;
9427 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9428 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9429
9430 intel_mark_page_flip_active(intel_crtc);
09246732 9431 __intel_ring_advance(ring);
83d4092b 9432 return 0;
8c9f3aaf
JB
9433}
9434
9435static int intel_gen6_queue_flip(struct drm_device *dev,
9436 struct drm_crtc *crtc,
9437 struct drm_framebuffer *fb,
ed8d1975 9438 struct drm_i915_gem_object *obj,
a4872ba6 9439 struct intel_engine_cs *ring,
ed8d1975 9440 uint32_t flags)
8c9f3aaf
JB
9441{
9442 struct drm_i915_private *dev_priv = dev->dev_private;
9443 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9444 uint32_t pf, pipesrc;
9445 int ret;
9446
6d90c952 9447 ret = intel_ring_begin(ring, 4);
8c9f3aaf 9448 if (ret)
4fa62c89 9449 return ret;
8c9f3aaf 9450
6d90c952
DV
9451 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9452 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9453 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
75f7f3ec 9454 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 9455
dc257cf1
DV
9456 /* Contrary to the suggestions in the documentation,
9457 * "Enable Panel Fitter" does not seem to be required when page
9458 * flipping with a non-native mode, and worse causes a normal
9459 * modeset to fail.
9460 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9461 */
9462 pf = 0;
8c9f3aaf 9463 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952 9464 intel_ring_emit(ring, pf | pipesrc);
e7d841ca
CW
9465
9466 intel_mark_page_flip_active(intel_crtc);
09246732 9467 __intel_ring_advance(ring);
83d4092b 9468 return 0;
8c9f3aaf
JB
9469}
9470
7c9017e5
JB
9471static int intel_gen7_queue_flip(struct drm_device *dev,
9472 struct drm_crtc *crtc,
9473 struct drm_framebuffer *fb,
ed8d1975 9474 struct drm_i915_gem_object *obj,
a4872ba6 9475 struct intel_engine_cs *ring,
ed8d1975 9476 uint32_t flags)
7c9017e5 9477{
7c9017e5 9478 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 9479 uint32_t plane_bit = 0;
ffe74d75
CW
9480 int len, ret;
9481
eba905b2 9482 switch (intel_crtc->plane) {
cb05d8de
DV
9483 case PLANE_A:
9484 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9485 break;
9486 case PLANE_B:
9487 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9488 break;
9489 case PLANE_C:
9490 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9491 break;
9492 default:
9493 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 9494 return -ENODEV;
cb05d8de
DV
9495 }
9496
ffe74d75 9497 len = 4;
f476828a 9498 if (ring->id == RCS) {
ffe74d75 9499 len += 6;
f476828a
DL
9500 /*
9501 * On Gen 8, SRM is now taking an extra dword to accommodate
9502 * 48bits addresses, and we need a NOOP for the batch size to
9503 * stay even.
9504 */
9505 if (IS_GEN8(dev))
9506 len += 2;
9507 }
ffe74d75 9508
f66fab8e
VS
9509 /*
9510 * BSpec MI_DISPLAY_FLIP for IVB:
9511 * "The full packet must be contained within the same cache line."
9512 *
9513 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9514 * cacheline, if we ever start emitting more commands before
9515 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9516 * then do the cacheline alignment, and finally emit the
9517 * MI_DISPLAY_FLIP.
9518 */
9519 ret = intel_ring_cacheline_align(ring);
9520 if (ret)
4fa62c89 9521 return ret;
f66fab8e 9522
ffe74d75 9523 ret = intel_ring_begin(ring, len);
7c9017e5 9524 if (ret)
4fa62c89 9525 return ret;
7c9017e5 9526
ffe74d75
CW
9527 /* Unmask the flip-done completion message. Note that the bspec says that
9528 * we should do this for both the BCS and RCS, and that we must not unmask
9529 * more than one flip event at any time (or ensure that one flip message
9530 * can be sent by waiting for flip-done prior to queueing new flips).
9531 * Experimentation says that BCS works despite DERRMR masking all
9532 * flip-done completion events and that unmasking all planes at once
9533 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9534 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9535 */
9536 if (ring->id == RCS) {
9537 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9538 intel_ring_emit(ring, DERRMR);
9539 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9540 DERRMR_PIPEB_PRI_FLIP_DONE |
9541 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a
DL
9542 if (IS_GEN8(dev))
9543 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9544 MI_SRM_LRM_GLOBAL_GTT);
9545 else
9546 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9547 MI_SRM_LRM_GLOBAL_GTT);
ffe74d75
CW
9548 intel_ring_emit(ring, DERRMR);
9549 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
f476828a
DL
9550 if (IS_GEN8(dev)) {
9551 intel_ring_emit(ring, 0);
9552 intel_ring_emit(ring, MI_NOOP);
9553 }
ffe74d75
CW
9554 }
9555
cb05d8de 9556 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 9557 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
75f7f3ec 9558 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
7c9017e5 9559 intel_ring_emit(ring, (MI_NOOP));
e7d841ca
CW
9560
9561 intel_mark_page_flip_active(intel_crtc);
09246732 9562 __intel_ring_advance(ring);
83d4092b 9563 return 0;
7c9017e5
JB
9564}
9565
84c33a64
SG
9566static bool use_mmio_flip(struct intel_engine_cs *ring,
9567 struct drm_i915_gem_object *obj)
9568{
9569 /*
9570 * This is not being used for older platforms, because
9571 * non-availability of flip done interrupt forces us to use
9572 * CS flips. Older platforms derive flip done using some clever
9573 * tricks involving the flip_pending status bits and vblank irqs.
9574 * So using MMIO flips there would disrupt this mechanism.
9575 */
9576
8e09bf83
CW
9577 if (ring == NULL)
9578 return true;
9579
84c33a64
SG
9580 if (INTEL_INFO(ring->dev)->gen < 5)
9581 return false;
9582
9583 if (i915.use_mmio_flip < 0)
9584 return false;
9585 else if (i915.use_mmio_flip > 0)
9586 return true;
9587 else
9588 return ring != obj->ring;
9589}
9590
9591static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9592{
9593 struct drm_device *dev = intel_crtc->base.dev;
9594 struct drm_i915_private *dev_priv = dev->dev_private;
9595 struct intel_framebuffer *intel_fb =
9596 to_intel_framebuffer(intel_crtc->base.primary->fb);
9597 struct drm_i915_gem_object *obj = intel_fb->obj;
9598 u32 dspcntr;
9599 u32 reg;
9600
9601 intel_mark_page_flip_active(intel_crtc);
9602
9603 reg = DSPCNTR(intel_crtc->plane);
9604 dspcntr = I915_READ(reg);
9605
9606 if (INTEL_INFO(dev)->gen >= 4) {
9607 if (obj->tiling_mode != I915_TILING_NONE)
9608 dspcntr |= DISPPLANE_TILED;
9609 else
9610 dspcntr &= ~DISPPLANE_TILED;
9611 }
9612 I915_WRITE(reg, dspcntr);
9613
9614 I915_WRITE(DSPSURF(intel_crtc->plane),
9615 intel_crtc->unpin_work->gtt_offset);
9616 POSTING_READ(DSPSURF(intel_crtc->plane));
9617}
9618
9619static int intel_postpone_flip(struct drm_i915_gem_object *obj)
9620{
9621 struct intel_engine_cs *ring;
9622 int ret;
9623
9624 lockdep_assert_held(&obj->base.dev->struct_mutex);
9625
9626 if (!obj->last_write_seqno)
9627 return 0;
9628
9629 ring = obj->ring;
9630
9631 if (i915_seqno_passed(ring->get_seqno(ring, true),
9632 obj->last_write_seqno))
9633 return 0;
9634
9635 ret = i915_gem_check_olr(ring, obj->last_write_seqno);
9636 if (ret)
9637 return ret;
9638
9639 if (WARN_ON(!ring->irq_get(ring)))
9640 return 0;
9641
9642 return 1;
9643}
9644
9645void intel_notify_mmio_flip(struct intel_engine_cs *ring)
9646{
9647 struct drm_i915_private *dev_priv = to_i915(ring->dev);
9648 struct intel_crtc *intel_crtc;
9649 unsigned long irq_flags;
9650 u32 seqno;
9651
9652 seqno = ring->get_seqno(ring, false);
9653
9654 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9655 for_each_intel_crtc(ring->dev, intel_crtc) {
9656 struct intel_mmio_flip *mmio_flip;
9657
9658 mmio_flip = &intel_crtc->mmio_flip;
9659 if (mmio_flip->seqno == 0)
9660 continue;
9661
9662 if (ring->id != mmio_flip->ring_id)
9663 continue;
9664
9665 if (i915_seqno_passed(seqno, mmio_flip->seqno)) {
9666 intel_do_mmio_flip(intel_crtc);
9667 mmio_flip->seqno = 0;
9668 ring->irq_put(ring);
9669 }
9670 }
9671 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9672}
9673
9674static int intel_queue_mmio_flip(struct drm_device *dev,
9675 struct drm_crtc *crtc,
9676 struct drm_framebuffer *fb,
9677 struct drm_i915_gem_object *obj,
9678 struct intel_engine_cs *ring,
9679 uint32_t flags)
9680{
9681 struct drm_i915_private *dev_priv = dev->dev_private;
9682 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9683 unsigned long irq_flags;
9684 int ret;
9685
9686 if (WARN_ON(intel_crtc->mmio_flip.seqno))
9687 return -EBUSY;
9688
9689 ret = intel_postpone_flip(obj);
9690 if (ret < 0)
9691 return ret;
9692 if (ret == 0) {
9693 intel_do_mmio_flip(intel_crtc);
9694 return 0;
9695 }
9696
9697 spin_lock_irqsave(&dev_priv->mmio_flip_lock, irq_flags);
9698 intel_crtc->mmio_flip.seqno = obj->last_write_seqno;
9699 intel_crtc->mmio_flip.ring_id = obj->ring->id;
9700 spin_unlock_irqrestore(&dev_priv->mmio_flip_lock, irq_flags);
9701
9702 /*
9703 * Double check to catch cases where irq fired before
9704 * mmio flip data was ready
9705 */
9706 intel_notify_mmio_flip(obj->ring);
9707 return 0;
9708}
9709
8c9f3aaf
JB
9710static int intel_default_queue_flip(struct drm_device *dev,
9711 struct drm_crtc *crtc,
9712 struct drm_framebuffer *fb,
ed8d1975 9713 struct drm_i915_gem_object *obj,
a4872ba6 9714 struct intel_engine_cs *ring,
ed8d1975 9715 uint32_t flags)
8c9f3aaf
JB
9716{
9717 return -ENODEV;
9718}
9719
6b95a207
KH
9720static int intel_crtc_page_flip(struct drm_crtc *crtc,
9721 struct drm_framebuffer *fb,
ed8d1975
KP
9722 struct drm_pending_vblank_event *event,
9723 uint32_t page_flip_flags)
6b95a207
KH
9724{
9725 struct drm_device *dev = crtc->dev;
9726 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 9727 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 9728 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 9729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
a071fa00 9730 enum pipe pipe = intel_crtc->pipe;
6b95a207 9731 struct intel_unpin_work *work;
a4872ba6 9732 struct intel_engine_cs *ring;
8c9f3aaf 9733 unsigned long flags;
52e68630 9734 int ret;
6b95a207 9735
2ff8fde1
MR
9736 /*
9737 * drm_mode_page_flip_ioctl() should already catch this, but double
9738 * check to be safe. In the future we may enable pageflipping from
9739 * a disabled primary plane.
9740 */
9741 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9742 return -EBUSY;
9743
e6a595d2 9744 /* Can't change pixel format via MI display flips. */
f4510a27 9745 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
9746 return -EINVAL;
9747
9748 /*
9749 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9750 * Note that pitch changes could also affect these register.
9751 */
9752 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
9753 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9754 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
9755 return -EINVAL;
9756
f900db47
CW
9757 if (i915_terminally_wedged(&dev_priv->gpu_error))
9758 goto out_hang;
9759
b14c5679 9760 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
9761 if (work == NULL)
9762 return -ENOMEM;
9763
6b95a207 9764 work->event = event;
b4a98e57 9765 work->crtc = crtc;
2ff8fde1 9766 work->old_fb_obj = intel_fb_obj(old_fb);
6b95a207
KH
9767 INIT_WORK(&work->work, intel_unpin_work_fn);
9768
87b6b101 9769 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
9770 if (ret)
9771 goto free_work;
9772
6b95a207
KH
9773 /* We borrow the event spin lock for protecting unpin_work */
9774 spin_lock_irqsave(&dev->event_lock, flags);
9775 if (intel_crtc->unpin_work) {
9776 spin_unlock_irqrestore(&dev->event_lock, flags);
9777 kfree(work);
87b6b101 9778 drm_crtc_vblank_put(crtc);
468f0b44
CW
9779
9780 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
9781 return -EBUSY;
9782 }
9783 intel_crtc->unpin_work = work;
9784 spin_unlock_irqrestore(&dev->event_lock, flags);
9785
b4a98e57
CW
9786 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9787 flush_workqueue(dev_priv->wq);
9788
79158103
CW
9789 ret = i915_mutex_lock_interruptible(dev);
9790 if (ret)
9791 goto cleanup;
6b95a207 9792
75dfca80 9793 /* Reference the objects for the scheduled work. */
05394f39
CW
9794 drm_gem_object_reference(&work->old_fb_obj->base);
9795 drm_gem_object_reference(&obj->base);
6b95a207 9796
f4510a27 9797 crtc->primary->fb = fb;
96b099fd 9798
e1f99ce6 9799 work->pending_flip_obj = obj;
e1f99ce6 9800
4e5359cd
SF
9801 work->enable_stall_check = true;
9802
b4a98e57 9803 atomic_inc(&intel_crtc->unpin_work_count);
10d83730 9804 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
e1f99ce6 9805
75f7f3ec 9806 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
a071fa00 9807 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
75f7f3ec 9808
4fa62c89
VS
9809 if (IS_VALLEYVIEW(dev)) {
9810 ring = &dev_priv->ring[BCS];
8e09bf83
CW
9811 if (obj->tiling_mode != work->old_fb_obj->tiling_mode)
9812 /* vlv: DISPLAY_FLIP fails to change tiling */
9813 ring = NULL;
2a92d5bc
CW
9814 } else if (IS_IVYBRIDGE(dev)) {
9815 ring = &dev_priv->ring[BCS];
4fa62c89
VS
9816 } else if (INTEL_INFO(dev)->gen >= 7) {
9817 ring = obj->ring;
9818 if (ring == NULL || ring->id != RCS)
9819 ring = &dev_priv->ring[BCS];
9820 } else {
9821 ring = &dev_priv->ring[RCS];
9822 }
9823
9824 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf
JB
9825 if (ret)
9826 goto cleanup_pending;
6b95a207 9827
4fa62c89
VS
9828 work->gtt_offset =
9829 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9830
84c33a64
SG
9831 if (use_mmio_flip(ring, obj))
9832 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9833 page_flip_flags);
9834 else
9835 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9836 page_flip_flags);
4fa62c89
VS
9837 if (ret)
9838 goto cleanup_unpin;
9839
a071fa00
DV
9840 i915_gem_track_fb(work->old_fb_obj, obj,
9841 INTEL_FRONTBUFFER_PRIMARY(pipe));
9842
7782de3b 9843 intel_disable_fbc(dev);
f99d7069 9844 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
6b95a207
KH
9845 mutex_unlock(&dev->struct_mutex);
9846
e5510fac
JB
9847 trace_i915_flip_request(intel_crtc->plane, obj);
9848
6b95a207 9849 return 0;
96b099fd 9850
4fa62c89
VS
9851cleanup_unpin:
9852 intel_unpin_fb_obj(obj);
8c9f3aaf 9853cleanup_pending:
b4a98e57 9854 atomic_dec(&intel_crtc->unpin_work_count);
f4510a27 9855 crtc->primary->fb = old_fb;
05394f39
CW
9856 drm_gem_object_unreference(&work->old_fb_obj->base);
9857 drm_gem_object_unreference(&obj->base);
96b099fd
CW
9858 mutex_unlock(&dev->struct_mutex);
9859
79158103 9860cleanup:
96b099fd
CW
9861 spin_lock_irqsave(&dev->event_lock, flags);
9862 intel_crtc->unpin_work = NULL;
9863 spin_unlock_irqrestore(&dev->event_lock, flags);
9864
87b6b101 9865 drm_crtc_vblank_put(crtc);
7317c75e 9866free_work:
96b099fd
CW
9867 kfree(work);
9868
f900db47
CW
9869 if (ret == -EIO) {
9870out_hang:
9871 intel_crtc_wait_for_pending_flips(crtc);
9872 ret = intel_pipe_set_base(crtc, crtc->x, crtc->y, fb);
9873 if (ret == 0 && event)
a071fa00 9874 drm_send_vblank_event(dev, pipe, event);
f900db47 9875 }
96b099fd 9876 return ret;
6b95a207
KH
9877}
9878
f6e5b160 9879static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
9880 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9881 .load_lut = intel_crtc_load_lut,
f6e5b160
CW
9882};
9883
9a935856
DV
9884/**
9885 * intel_modeset_update_staged_output_state
9886 *
9887 * Updates the staged output configuration state, e.g. after we've read out the
9888 * current hw state.
9889 */
9890static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 9891{
7668851f 9892 struct intel_crtc *crtc;
9a935856
DV
9893 struct intel_encoder *encoder;
9894 struct intel_connector *connector;
f6e5b160 9895
9a935856
DV
9896 list_for_each_entry(connector, &dev->mode_config.connector_list,
9897 base.head) {
9898 connector->new_encoder =
9899 to_intel_encoder(connector->base.encoder);
9900 }
f6e5b160 9901
b2784e15 9902 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9903 encoder->new_crtc =
9904 to_intel_crtc(encoder->base.crtc);
9905 }
7668851f 9906
d3fcc808 9907 for_each_intel_crtc(dev, crtc) {
7668851f 9908 crtc->new_enabled = crtc->base.enabled;
7bd0a8e7
VS
9909
9910 if (crtc->new_enabled)
9911 crtc->new_config = &crtc->config;
9912 else
9913 crtc->new_config = NULL;
7668851f 9914 }
f6e5b160
CW
9915}
9916
9a935856
DV
9917/**
9918 * intel_modeset_commit_output_state
9919 *
9920 * This function copies the stage display pipe configuration to the real one.
9921 */
9922static void intel_modeset_commit_output_state(struct drm_device *dev)
9923{
7668851f 9924 struct intel_crtc *crtc;
9a935856
DV
9925 struct intel_encoder *encoder;
9926 struct intel_connector *connector;
f6e5b160 9927
9a935856
DV
9928 list_for_each_entry(connector, &dev->mode_config.connector_list,
9929 base.head) {
9930 connector->base.encoder = &connector->new_encoder->base;
9931 }
f6e5b160 9932
b2784e15 9933 for_each_intel_encoder(dev, encoder) {
9a935856
DV
9934 encoder->base.crtc = &encoder->new_crtc->base;
9935 }
7668851f 9936
d3fcc808 9937 for_each_intel_crtc(dev, crtc) {
7668851f
VS
9938 crtc->base.enabled = crtc->new_enabled;
9939 }
9a935856
DV
9940}
9941
050f7aeb 9942static void
eba905b2 9943connected_sink_compute_bpp(struct intel_connector *connector,
050f7aeb
DV
9944 struct intel_crtc_config *pipe_config)
9945{
9946 int bpp = pipe_config->pipe_bpp;
9947
9948 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9949 connector->base.base.id,
c23cc417 9950 connector->base.name);
050f7aeb
DV
9951
9952 /* Don't use an invalid EDID bpc value */
9953 if (connector->base.display_info.bpc &&
9954 connector->base.display_info.bpc * 3 < bpp) {
9955 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9956 bpp, connector->base.display_info.bpc*3);
9957 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9958 }
9959
9960 /* Clamp bpp to 8 on screens without EDID 1.4 */
9961 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9962 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9963 bpp);
9964 pipe_config->pipe_bpp = 24;
9965 }
9966}
9967
4e53c2e0 9968static int
050f7aeb
DV
9969compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9970 struct drm_framebuffer *fb,
9971 struct intel_crtc_config *pipe_config)
4e53c2e0 9972{
050f7aeb
DV
9973 struct drm_device *dev = crtc->base.dev;
9974 struct intel_connector *connector;
4e53c2e0
DV
9975 int bpp;
9976
d42264b1
DV
9977 switch (fb->pixel_format) {
9978 case DRM_FORMAT_C8:
4e53c2e0
DV
9979 bpp = 8*3; /* since we go through a colormap */
9980 break;
d42264b1
DV
9981 case DRM_FORMAT_XRGB1555:
9982 case DRM_FORMAT_ARGB1555:
9983 /* checked in intel_framebuffer_init already */
9984 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
9985 return -EINVAL;
9986 case DRM_FORMAT_RGB565:
4e53c2e0
DV
9987 bpp = 6*3; /* min is 18bpp */
9988 break;
d42264b1
DV
9989 case DRM_FORMAT_XBGR8888:
9990 case DRM_FORMAT_ABGR8888:
9991 /* checked in intel_framebuffer_init already */
9992 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
9993 return -EINVAL;
9994 case DRM_FORMAT_XRGB8888:
9995 case DRM_FORMAT_ARGB8888:
4e53c2e0
DV
9996 bpp = 8*3;
9997 break;
d42264b1
DV
9998 case DRM_FORMAT_XRGB2101010:
9999 case DRM_FORMAT_ARGB2101010:
10000 case DRM_FORMAT_XBGR2101010:
10001 case DRM_FORMAT_ABGR2101010:
10002 /* checked in intel_framebuffer_init already */
10003 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
baba133a 10004 return -EINVAL;
4e53c2e0
DV
10005 bpp = 10*3;
10006 break;
baba133a 10007 /* TODO: gen4+ supports 16 bpc floating point, too. */
4e53c2e0
DV
10008 default:
10009 DRM_DEBUG_KMS("unsupported depth\n");
10010 return -EINVAL;
10011 }
10012
4e53c2e0
DV
10013 pipe_config->pipe_bpp = bpp;
10014
10015 /* Clamp display bpp to EDID value */
10016 list_for_each_entry(connector, &dev->mode_config.connector_list,
050f7aeb 10017 base.head) {
1b829e05
DV
10018 if (!connector->new_encoder ||
10019 connector->new_encoder->new_crtc != crtc)
4e53c2e0
DV
10020 continue;
10021
050f7aeb 10022 connected_sink_compute_bpp(connector, pipe_config);
4e53c2e0
DV
10023 }
10024
10025 return bpp;
10026}
10027
644db711
DV
10028static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10029{
10030 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10031 "type: 0x%x flags: 0x%x\n",
1342830c 10032 mode->crtc_clock,
644db711
DV
10033 mode->crtc_hdisplay, mode->crtc_hsync_start,
10034 mode->crtc_hsync_end, mode->crtc_htotal,
10035 mode->crtc_vdisplay, mode->crtc_vsync_start,
10036 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10037}
10038
c0b03411
DV
10039static void intel_dump_pipe_config(struct intel_crtc *crtc,
10040 struct intel_crtc_config *pipe_config,
10041 const char *context)
10042{
10043 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10044 context, pipe_name(crtc->pipe));
10045
10046 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10047 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10048 pipe_config->pipe_bpp, pipe_config->dither);
10049 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10050 pipe_config->has_pch_encoder,
10051 pipe_config->fdi_lanes,
10052 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10053 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10054 pipe_config->fdi_m_n.tu);
eb14cb74
VS
10055 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10056 pipe_config->has_dp_encoder,
10057 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10058 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10059 pipe_config->dp_m_n.tu);
b95af8be
VK
10060
10061 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10062 pipe_config->has_dp_encoder,
10063 pipe_config->dp_m2_n2.gmch_m,
10064 pipe_config->dp_m2_n2.gmch_n,
10065 pipe_config->dp_m2_n2.link_m,
10066 pipe_config->dp_m2_n2.link_n,
10067 pipe_config->dp_m2_n2.tu);
10068
c0b03411
DV
10069 DRM_DEBUG_KMS("requested mode:\n");
10070 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
10071 DRM_DEBUG_KMS("adjusted mode:\n");
10072 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
644db711 10073 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
d71b8d4a 10074 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
10075 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10076 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
c0b03411
DV
10077 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10078 pipe_config->gmch_pfit.control,
10079 pipe_config->gmch_pfit.pgm_ratios,
10080 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 10081 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 10082 pipe_config->pch_pfit.pos,
fd4daa9c
CW
10083 pipe_config->pch_pfit.size,
10084 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 10085 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 10086 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
c0b03411
DV
10087}
10088
bc079e8b
VS
10089static bool encoders_cloneable(const struct intel_encoder *a,
10090 const struct intel_encoder *b)
accfc0c5 10091{
bc079e8b
VS
10092 /* masks could be asymmetric, so check both ways */
10093 return a == b || (a->cloneable & (1 << b->type) &&
10094 b->cloneable & (1 << a->type));
10095}
10096
10097static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10098 struct intel_encoder *encoder)
10099{
10100 struct drm_device *dev = crtc->base.dev;
10101 struct intel_encoder *source_encoder;
10102
b2784e15 10103 for_each_intel_encoder(dev, source_encoder) {
bc079e8b
VS
10104 if (source_encoder->new_crtc != crtc)
10105 continue;
10106
10107 if (!encoders_cloneable(encoder, source_encoder))
10108 return false;
10109 }
10110
10111 return true;
10112}
10113
10114static bool check_encoder_cloning(struct intel_crtc *crtc)
10115{
10116 struct drm_device *dev = crtc->base.dev;
accfc0c5
DV
10117 struct intel_encoder *encoder;
10118
b2784e15 10119 for_each_intel_encoder(dev, encoder) {
bc079e8b 10120 if (encoder->new_crtc != crtc)
accfc0c5
DV
10121 continue;
10122
bc079e8b
VS
10123 if (!check_single_encoder_cloning(crtc, encoder))
10124 return false;
accfc0c5
DV
10125 }
10126
bc079e8b 10127 return true;
accfc0c5
DV
10128}
10129
b8cecdf5
DV
10130static struct intel_crtc_config *
10131intel_modeset_pipe_config(struct drm_crtc *crtc,
4e53c2e0 10132 struct drm_framebuffer *fb,
b8cecdf5 10133 struct drm_display_mode *mode)
ee7b9f93 10134{
7758a113 10135 struct drm_device *dev = crtc->dev;
7758a113 10136 struct intel_encoder *encoder;
b8cecdf5 10137 struct intel_crtc_config *pipe_config;
e29c22c0
DV
10138 int plane_bpp, ret = -EINVAL;
10139 bool retry = true;
ee7b9f93 10140
bc079e8b 10141 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
accfc0c5
DV
10142 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10143 return ERR_PTR(-EINVAL);
10144 }
10145
b8cecdf5
DV
10146 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10147 if (!pipe_config)
7758a113
DV
10148 return ERR_PTR(-ENOMEM);
10149
b8cecdf5
DV
10150 drm_mode_copy(&pipe_config->adjusted_mode, mode);
10151 drm_mode_copy(&pipe_config->requested_mode, mode);
37327abd 10152
e143a21c
DV
10153 pipe_config->cpu_transcoder =
10154 (enum transcoder) to_intel_crtc(crtc)->pipe;
c0d43d62 10155 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
b8cecdf5 10156
2960bc9c
ID
10157 /*
10158 * Sanitize sync polarity flags based on requested ones. If neither
10159 * positive or negative polarity is requested, treat this as meaning
10160 * negative polarity.
10161 */
10162 if (!(pipe_config->adjusted_mode.flags &
10163 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10164 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10165
10166 if (!(pipe_config->adjusted_mode.flags &
10167 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10168 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10169
050f7aeb
DV
10170 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10171 * plane pixel format and any sink constraints into account. Returns the
10172 * source plane bpp so that dithering can be selected on mismatches
10173 * after encoders and crtc also have had their say. */
10174 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10175 fb, pipe_config);
4e53c2e0
DV
10176 if (plane_bpp < 0)
10177 goto fail;
10178
e41a56be
VS
10179 /*
10180 * Determine the real pipe dimensions. Note that stereo modes can
10181 * increase the actual pipe size due to the frame doubling and
10182 * insertion of additional space for blanks between the frame. This
10183 * is stored in the crtc timings. We use the requested mode to do this
10184 * computation to clearly distinguish it from the adjusted mode, which
10185 * can be changed by the connectors in the below retry loop.
10186 */
10187 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
10188 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
10189 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
10190
e29c22c0 10191encoder_retry:
ef1b460d 10192 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 10193 pipe_config->port_clock = 0;
ef1b460d 10194 pipe_config->pixel_multiplier = 1;
ff9a6750 10195
135c81b8 10196 /* Fill in default crtc timings, allow encoders to overwrite them. */
6ce70f5e 10197 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
135c81b8 10198
7758a113
DV
10199 /* Pass our mode to the connectors and the CRTC to give them a chance to
10200 * adjust it according to limitations or connector properties, and also
10201 * a chance to reject the mode entirely.
47f1c6c9 10202 */
b2784e15 10203 for_each_intel_encoder(dev, encoder) {
47f1c6c9 10204
7758a113
DV
10205 if (&encoder->new_crtc->base != crtc)
10206 continue;
7ae89233 10207
efea6e8e
DV
10208 if (!(encoder->compute_config(encoder, pipe_config))) {
10209 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
10210 goto fail;
10211 }
ee7b9f93 10212 }
47f1c6c9 10213
ff9a6750
DV
10214 /* Set default port clock if not overwritten by the encoder. Needs to be
10215 * done afterwards in case the encoder adjusts the mode. */
10216 if (!pipe_config->port_clock)
241bfc38
DL
10217 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
10218 * pipe_config->pixel_multiplier;
ff9a6750 10219
a43f6e0f 10220 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 10221 if (ret < 0) {
7758a113
DV
10222 DRM_DEBUG_KMS("CRTC fixup failed\n");
10223 goto fail;
ee7b9f93 10224 }
e29c22c0
DV
10225
10226 if (ret == RETRY) {
10227 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10228 ret = -EINVAL;
10229 goto fail;
10230 }
10231
10232 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10233 retry = false;
10234 goto encoder_retry;
10235 }
10236
4e53c2e0
DV
10237 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10238 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10239 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10240
b8cecdf5 10241 return pipe_config;
7758a113 10242fail:
b8cecdf5 10243 kfree(pipe_config);
e29c22c0 10244 return ERR_PTR(ret);
ee7b9f93 10245}
47f1c6c9 10246
e2e1ed41
DV
10247/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10248 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10249static void
10250intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10251 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
10252{
10253 struct intel_crtc *intel_crtc;
e2e1ed41
DV
10254 struct drm_device *dev = crtc->dev;
10255 struct intel_encoder *encoder;
10256 struct intel_connector *connector;
10257 struct drm_crtc *tmp_crtc;
79e53945 10258
e2e1ed41 10259 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 10260
e2e1ed41
DV
10261 /* Check which crtcs have changed outputs connected to them, these need
10262 * to be part of the prepare_pipes mask. We don't (yet) support global
10263 * modeset across multiple crtcs, so modeset_pipes will only have one
10264 * bit set at most. */
10265 list_for_each_entry(connector, &dev->mode_config.connector_list,
10266 base.head) {
10267 if (connector->base.encoder == &connector->new_encoder->base)
10268 continue;
79e53945 10269
e2e1ed41
DV
10270 if (connector->base.encoder) {
10271 tmp_crtc = connector->base.encoder->crtc;
10272
10273 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10274 }
10275
10276 if (connector->new_encoder)
10277 *prepare_pipes |=
10278 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
10279 }
10280
b2784e15 10281 for_each_intel_encoder(dev, encoder) {
e2e1ed41
DV
10282 if (encoder->base.crtc == &encoder->new_crtc->base)
10283 continue;
10284
10285 if (encoder->base.crtc) {
10286 tmp_crtc = encoder->base.crtc;
10287
10288 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10289 }
10290
10291 if (encoder->new_crtc)
10292 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
10293 }
10294
7668851f 10295 /* Check for pipes that will be enabled/disabled ... */
d3fcc808 10296 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10297 if (intel_crtc->base.enabled == intel_crtc->new_enabled)
e2e1ed41 10298 continue;
7e7d76c3 10299
7668851f 10300 if (!intel_crtc->new_enabled)
e2e1ed41 10301 *disable_pipes |= 1 << intel_crtc->pipe;
7668851f
VS
10302 else
10303 *prepare_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
10304 }
10305
e2e1ed41
DV
10306
10307 /* set_mode is also used to update properties on life display pipes. */
10308 intel_crtc = to_intel_crtc(crtc);
7668851f 10309 if (intel_crtc->new_enabled)
e2e1ed41
DV
10310 *prepare_pipes |= 1 << intel_crtc->pipe;
10311
b6c5164d
DV
10312 /*
10313 * For simplicity do a full modeset on any pipe where the output routing
10314 * changed. We could be more clever, but that would require us to be
10315 * more careful with calling the relevant encoder->mode_set functions.
10316 */
e2e1ed41
DV
10317 if (*prepare_pipes)
10318 *modeset_pipes = *prepare_pipes;
10319
10320 /* ... and mask these out. */
10321 *modeset_pipes &= ~(*disable_pipes);
10322 *prepare_pipes &= ~(*disable_pipes);
b6c5164d
DV
10323
10324 /*
10325 * HACK: We don't (yet) fully support global modesets. intel_set_config
10326 * obies this rule, but the modeset restore mode of
10327 * intel_modeset_setup_hw_state does not.
10328 */
10329 *modeset_pipes &= 1 << intel_crtc->pipe;
10330 *prepare_pipes &= 1 << intel_crtc->pipe;
e3641d3f
DV
10331
10332 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10333 *modeset_pipes, *prepare_pipes, *disable_pipes);
47f1c6c9 10334}
79e53945 10335
ea9d758d 10336static bool intel_crtc_in_use(struct drm_crtc *crtc)
f6e5b160 10337{
ea9d758d 10338 struct drm_encoder *encoder;
f6e5b160 10339 struct drm_device *dev = crtc->dev;
f6e5b160 10340
ea9d758d
DV
10341 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10342 if (encoder->crtc == crtc)
10343 return true;
10344
10345 return false;
10346}
10347
10348static void
10349intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10350{
10351 struct intel_encoder *intel_encoder;
10352 struct intel_crtc *intel_crtc;
10353 struct drm_connector *connector;
10354
b2784e15 10355 for_each_intel_encoder(dev, intel_encoder) {
ea9d758d
DV
10356 if (!intel_encoder->base.crtc)
10357 continue;
10358
10359 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10360
10361 if (prepare_pipes & (1 << intel_crtc->pipe))
10362 intel_encoder->connectors_active = false;
10363 }
10364
10365 intel_modeset_commit_output_state(dev);
10366
7668851f 10367 /* Double check state. */
d3fcc808 10368 for_each_intel_crtc(dev, intel_crtc) {
7668851f 10369 WARN_ON(intel_crtc->base.enabled != intel_crtc_in_use(&intel_crtc->base));
7bd0a8e7
VS
10370 WARN_ON(intel_crtc->new_config &&
10371 intel_crtc->new_config != &intel_crtc->config);
10372 WARN_ON(intel_crtc->base.enabled != !!intel_crtc->new_config);
ea9d758d
DV
10373 }
10374
10375 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10376 if (!connector->encoder || !connector->encoder->crtc)
10377 continue;
10378
10379 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10380
10381 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
10382 struct drm_property *dpms_property =
10383 dev->mode_config.dpms_property;
10384
ea9d758d 10385 connector->dpms = DRM_MODE_DPMS_ON;
662595df 10386 drm_object_property_set_value(&connector->base,
68d34720
DV
10387 dpms_property,
10388 DRM_MODE_DPMS_ON);
ea9d758d
DV
10389
10390 intel_encoder = to_intel_encoder(connector->encoder);
10391 intel_encoder->connectors_active = true;
10392 }
10393 }
10394
10395}
10396
3bd26263 10397static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 10398{
3bd26263 10399 int diff;
f1f644dc
JB
10400
10401 if (clock1 == clock2)
10402 return true;
10403
10404 if (!clock1 || !clock2)
10405 return false;
10406
10407 diff = abs(clock1 - clock2);
10408
10409 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10410 return true;
10411
10412 return false;
10413}
10414
25c5b266
DV
10415#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10416 list_for_each_entry((intel_crtc), \
10417 &(dev)->mode_config.crtc_list, \
10418 base.head) \
0973f18f 10419 if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 10420
0e8ffe1b 10421static bool
2fa2fe9a
DV
10422intel_pipe_config_compare(struct drm_device *dev,
10423 struct intel_crtc_config *current_config,
0e8ffe1b
DV
10424 struct intel_crtc_config *pipe_config)
10425{
66e985c0
DV
10426#define PIPE_CONF_CHECK_X(name) \
10427 if (current_config->name != pipe_config->name) { \
10428 DRM_ERROR("mismatch in " #name " " \
10429 "(expected 0x%08x, found 0x%08x)\n", \
10430 current_config->name, \
10431 pipe_config->name); \
10432 return false; \
10433 }
10434
08a24034
DV
10435#define PIPE_CONF_CHECK_I(name) \
10436 if (current_config->name != pipe_config->name) { \
10437 DRM_ERROR("mismatch in " #name " " \
10438 "(expected %i, found %i)\n", \
10439 current_config->name, \
10440 pipe_config->name); \
10441 return false; \
88adfff1
DV
10442 }
10443
b95af8be
VK
10444/* This is required for BDW+ where there is only one set of registers for
10445 * switching between high and low RR.
10446 * This macro can be used whenever a comparison has to be made between one
10447 * hw state and multiple sw state variables.
10448 */
10449#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10450 if ((current_config->name != pipe_config->name) && \
10451 (current_config->alt_name != pipe_config->name)) { \
10452 DRM_ERROR("mismatch in " #name " " \
10453 "(expected %i or %i, found %i)\n", \
10454 current_config->name, \
10455 current_config->alt_name, \
10456 pipe_config->name); \
10457 return false; \
10458 }
10459
1bd1bd80
DV
10460#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10461 if ((current_config->name ^ pipe_config->name) & (mask)) { \
6f02488e 10462 DRM_ERROR("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
10463 "(expected %i, found %i)\n", \
10464 current_config->name & (mask), \
10465 pipe_config->name & (mask)); \
10466 return false; \
10467 }
10468
5e550656
VS
10469#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10470 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10471 DRM_ERROR("mismatch in " #name " " \
10472 "(expected %i, found %i)\n", \
10473 current_config->name, \
10474 pipe_config->name); \
10475 return false; \
10476 }
10477
bb760063
DV
10478#define PIPE_CONF_QUIRK(quirk) \
10479 ((current_config->quirks | pipe_config->quirks) & (quirk))
10480
eccb140b
DV
10481 PIPE_CONF_CHECK_I(cpu_transcoder);
10482
08a24034
DV
10483 PIPE_CONF_CHECK_I(has_pch_encoder);
10484 PIPE_CONF_CHECK_I(fdi_lanes);
72419203
DV
10485 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10486 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10487 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10488 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10489 PIPE_CONF_CHECK_I(fdi_m_n.tu);
08a24034 10490
eb14cb74 10491 PIPE_CONF_CHECK_I(has_dp_encoder);
b95af8be
VK
10492
10493 if (INTEL_INFO(dev)->gen < 8) {
10494 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10495 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10496 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10497 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10498 PIPE_CONF_CHECK_I(dp_m_n.tu);
10499
10500 if (current_config->has_drrs) {
10501 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10502 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10503 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10504 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10505 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10506 }
10507 } else {
10508 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10509 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10510 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10511 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10512 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10513 }
eb14cb74 10514
1bd1bd80
DV
10515 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
10516 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
10517 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
10518 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
10519 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
10520 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
10521
10522 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
10523 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
10524 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
10525 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
10526 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
10527 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
10528
c93f54cf 10529 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 10530 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09
DV
10531 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10532 IS_VALLEYVIEW(dev))
10533 PIPE_CONF_CHECK_I(limited_color_range);
6c49f241 10534
9ed109a7
DV
10535 PIPE_CONF_CHECK_I(has_audio);
10536
1bd1bd80
DV
10537 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10538 DRM_MODE_FLAG_INTERLACE);
10539
bb760063
DV
10540 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10541 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10542 DRM_MODE_FLAG_PHSYNC);
10543 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10544 DRM_MODE_FLAG_NHSYNC);
10545 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10546 DRM_MODE_FLAG_PVSYNC);
10547 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
10548 DRM_MODE_FLAG_NVSYNC);
10549 }
045ac3b5 10550
37327abd
VS
10551 PIPE_CONF_CHECK_I(pipe_src_w);
10552 PIPE_CONF_CHECK_I(pipe_src_h);
1bd1bd80 10553
9953599b
DV
10554 /*
10555 * FIXME: BIOS likes to set up a cloned config with lvds+external
10556 * screen. Since we don't yet re-compute the pipe config when moving
10557 * just the lvds port away to another pipe the sw tracking won't match.
10558 *
10559 * Proper atomic modesets with recomputed global state will fix this.
10560 * Until then just don't check gmch state for inherited modes.
10561 */
10562 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10563 PIPE_CONF_CHECK_I(gmch_pfit.control);
10564 /* pfit ratios are autocomputed by the hw on gen4+ */
10565 if (INTEL_INFO(dev)->gen < 4)
10566 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10567 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10568 }
10569
fd4daa9c
CW
10570 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10571 if (current_config->pch_pfit.enabled) {
10572 PIPE_CONF_CHECK_I(pch_pfit.pos);
10573 PIPE_CONF_CHECK_I(pch_pfit.size);
10574 }
2fa2fe9a 10575
e59150dc
JB
10576 /* BDW+ don't expose a synchronous way to read the state */
10577 if (IS_HASWELL(dev))
10578 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 10579
282740f7
VS
10580 PIPE_CONF_CHECK_I(double_wide);
10581
26804afd
DV
10582 PIPE_CONF_CHECK_X(ddi_pll_sel);
10583
c0d43d62 10584 PIPE_CONF_CHECK_I(shared_dpll);
66e985c0 10585 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 10586 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
10587 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10588 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 10589 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
c0d43d62 10590
42571aef
VS
10591 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10592 PIPE_CONF_CHECK_I(pipe_bpp);
10593
a9a7e98a
JB
10594 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
10595 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 10596
66e985c0 10597#undef PIPE_CONF_CHECK_X
08a24034 10598#undef PIPE_CONF_CHECK_I
b95af8be 10599#undef PIPE_CONF_CHECK_I_ALT
1bd1bd80 10600#undef PIPE_CONF_CHECK_FLAGS
5e550656 10601#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 10602#undef PIPE_CONF_QUIRK
88adfff1 10603
0e8ffe1b
DV
10604 return true;
10605}
10606
91d1b4bd
DV
10607static void
10608check_connector_state(struct drm_device *dev)
8af6cf88 10609{
8af6cf88
DV
10610 struct intel_connector *connector;
10611
10612 list_for_each_entry(connector, &dev->mode_config.connector_list,
10613 base.head) {
10614 /* This also checks the encoder/connector hw state with the
10615 * ->get_hw_state callbacks. */
10616 intel_connector_check_state(connector);
10617
10618 WARN(&connector->new_encoder->base != connector->base.encoder,
10619 "connector's staged encoder doesn't match current encoder\n");
10620 }
91d1b4bd
DV
10621}
10622
10623static void
10624check_encoder_state(struct drm_device *dev)
10625{
10626 struct intel_encoder *encoder;
10627 struct intel_connector *connector;
8af6cf88 10628
b2784e15 10629 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10630 bool enabled = false;
10631 bool active = false;
10632 enum pipe pipe, tracked_pipe;
10633
10634 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10635 encoder->base.base.id,
8e329a03 10636 encoder->base.name);
8af6cf88
DV
10637
10638 WARN(&encoder->new_crtc->base != encoder->base.crtc,
10639 "encoder's stage crtc doesn't match current crtc\n");
10640 WARN(encoder->connectors_active && !encoder->base.crtc,
10641 "encoder's active_connectors set, but no crtc\n");
10642
10643 list_for_each_entry(connector, &dev->mode_config.connector_list,
10644 base.head) {
10645 if (connector->base.encoder != &encoder->base)
10646 continue;
10647 enabled = true;
10648 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10649 active = true;
10650 }
0e32b39c
DA
10651 /*
10652 * for MST connectors if we unplug the connector is gone
10653 * away but the encoder is still connected to a crtc
10654 * until a modeset happens in response to the hotplug.
10655 */
10656 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10657 continue;
10658
8af6cf88
DV
10659 WARN(!!encoder->base.crtc != enabled,
10660 "encoder's enabled state mismatch "
10661 "(expected %i, found %i)\n",
10662 !!encoder->base.crtc, enabled);
10663 WARN(active && !encoder->base.crtc,
10664 "active encoder with no crtc\n");
10665
10666 WARN(encoder->connectors_active != active,
10667 "encoder's computed active state doesn't match tracked active state "
10668 "(expected %i, found %i)\n", active, encoder->connectors_active);
10669
10670 active = encoder->get_hw_state(encoder, &pipe);
10671 WARN(active != encoder->connectors_active,
10672 "encoder's hw state doesn't match sw tracking "
10673 "(expected %i, found %i)\n",
10674 encoder->connectors_active, active);
10675
10676 if (!encoder->base.crtc)
10677 continue;
10678
10679 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10680 WARN(active && pipe != tracked_pipe,
10681 "active encoder's pipe doesn't match"
10682 "(expected %i, found %i)\n",
10683 tracked_pipe, pipe);
10684
10685 }
91d1b4bd
DV
10686}
10687
10688static void
10689check_crtc_state(struct drm_device *dev)
10690{
fbee40df 10691 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10692 struct intel_crtc *crtc;
10693 struct intel_encoder *encoder;
10694 struct intel_crtc_config pipe_config;
8af6cf88 10695
d3fcc808 10696 for_each_intel_crtc(dev, crtc) {
8af6cf88
DV
10697 bool enabled = false;
10698 bool active = false;
10699
045ac3b5
JB
10700 memset(&pipe_config, 0, sizeof(pipe_config));
10701
8af6cf88
DV
10702 DRM_DEBUG_KMS("[CRTC:%d]\n",
10703 crtc->base.base.id);
10704
10705 WARN(crtc->active && !crtc->base.enabled,
10706 "active crtc, but not enabled in sw tracking\n");
10707
b2784e15 10708 for_each_intel_encoder(dev, encoder) {
8af6cf88
DV
10709 if (encoder->base.crtc != &crtc->base)
10710 continue;
10711 enabled = true;
10712 if (encoder->connectors_active)
10713 active = true;
10714 }
6c49f241 10715
8af6cf88
DV
10716 WARN(active != crtc->active,
10717 "crtc's computed active state doesn't match tracked active state "
10718 "(expected %i, found %i)\n", active, crtc->active);
10719 WARN(enabled != crtc->base.enabled,
10720 "crtc's computed enabled state doesn't match tracked enabled state "
10721 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
10722
0e8ffe1b
DV
10723 active = dev_priv->display.get_pipe_config(crtc,
10724 &pipe_config);
d62cf62a
DV
10725
10726 /* hw state is inconsistent with the pipe A quirk */
10727 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
10728 active = crtc->active;
10729
b2784e15 10730 for_each_intel_encoder(dev, encoder) {
3eaba51c 10731 enum pipe pipe;
6c49f241
DV
10732 if (encoder->base.crtc != &crtc->base)
10733 continue;
1d37b689 10734 if (encoder->get_hw_state(encoder, &pipe))
6c49f241
DV
10735 encoder->get_config(encoder, &pipe_config);
10736 }
10737
0e8ffe1b
DV
10738 WARN(crtc->active != active,
10739 "crtc active state doesn't match with hw state "
10740 "(expected %i, found %i)\n", crtc->active, active);
10741
c0b03411
DV
10742 if (active &&
10743 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
10744 WARN(1, "pipe state doesn't match!\n");
10745 intel_dump_pipe_config(crtc, &pipe_config,
10746 "[hw state]");
10747 intel_dump_pipe_config(crtc, &crtc->config,
10748 "[sw state]");
10749 }
8af6cf88
DV
10750 }
10751}
10752
91d1b4bd
DV
10753static void
10754check_shared_dpll_state(struct drm_device *dev)
10755{
fbee40df 10756 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd
DV
10757 struct intel_crtc *crtc;
10758 struct intel_dpll_hw_state dpll_hw_state;
10759 int i;
5358901f
DV
10760
10761 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10762 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10763 int enabled_crtcs = 0, active_crtcs = 0;
10764 bool active;
10765
10766 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10767
10768 DRM_DEBUG_KMS("%s\n", pll->name);
10769
10770 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10771
10772 WARN(pll->active > pll->refcount,
10773 "more active pll users than references: %i vs %i\n",
10774 pll->active, pll->refcount);
10775 WARN(pll->active && !pll->on,
10776 "pll in active use but not on in sw tracking\n");
35c95375
DV
10777 WARN(pll->on && !pll->active,
10778 "pll in on but not on in use in sw tracking\n");
5358901f
DV
10779 WARN(pll->on != active,
10780 "pll on state mismatch (expected %i, found %i)\n",
10781 pll->on, active);
10782
d3fcc808 10783 for_each_intel_crtc(dev, crtc) {
5358901f
DV
10784 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
10785 enabled_crtcs++;
10786 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10787 active_crtcs++;
10788 }
10789 WARN(pll->active != active_crtcs,
10790 "pll active crtcs mismatch (expected %i, found %i)\n",
10791 pll->active, active_crtcs);
10792 WARN(pll->refcount != enabled_crtcs,
10793 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10794 pll->refcount, enabled_crtcs);
66e985c0
DV
10795
10796 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
10797 sizeof(dpll_hw_state)),
10798 "pll hw state mismatch\n");
5358901f 10799 }
8af6cf88
DV
10800}
10801
91d1b4bd
DV
10802void
10803intel_modeset_check_state(struct drm_device *dev)
10804{
10805 check_connector_state(dev);
10806 check_encoder_state(dev);
10807 check_crtc_state(dev);
10808 check_shared_dpll_state(dev);
10809}
10810
18442d08
VS
10811void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
10812 int dotclock)
10813{
10814 /*
10815 * FDI already provided one idea for the dotclock.
10816 * Yell if the encoder disagrees.
10817 */
241bfc38 10818 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
18442d08 10819 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
241bfc38 10820 pipe_config->adjusted_mode.crtc_clock, dotclock);
18442d08
VS
10821}
10822
80715b2f
VS
10823static void update_scanline_offset(struct intel_crtc *crtc)
10824{
10825 struct drm_device *dev = crtc->base.dev;
10826
10827 /*
10828 * The scanline counter increments at the leading edge of hsync.
10829 *
10830 * On most platforms it starts counting from vtotal-1 on the
10831 * first active line. That means the scanline counter value is
10832 * always one less than what we would expect. Ie. just after
10833 * start of vblank, which also occurs at start of hsync (on the
10834 * last active line), the scanline counter will read vblank_start-1.
10835 *
10836 * On gen2 the scanline counter starts counting from 1 instead
10837 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10838 * to keep the value positive), instead of adding one.
10839 *
10840 * On HSW+ the behaviour of the scanline counter depends on the output
10841 * type. For DP ports it behaves like most other platforms, but on HDMI
10842 * there's an extra 1 line difference. So we need to add two instead of
10843 * one to the value.
10844 */
10845 if (IS_GEN2(dev)) {
10846 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
10847 int vtotal;
10848
10849 vtotal = mode->crtc_vtotal;
10850 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10851 vtotal /= 2;
10852
10853 crtc->scanline_offset = vtotal - 1;
10854 } else if (HAS_DDI(dev) &&
10855 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI)) {
10856 crtc->scanline_offset = 2;
10857 } else
10858 crtc->scanline_offset = 1;
10859}
10860
f30da187
DV
10861static int __intel_set_mode(struct drm_crtc *crtc,
10862 struct drm_display_mode *mode,
10863 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
10864{
10865 struct drm_device *dev = crtc->dev;
fbee40df 10866 struct drm_i915_private *dev_priv = dev->dev_private;
4b4b9238 10867 struct drm_display_mode *saved_mode;
b8cecdf5 10868 struct intel_crtc_config *pipe_config = NULL;
25c5b266
DV
10869 struct intel_crtc *intel_crtc;
10870 unsigned disable_pipes, prepare_pipes, modeset_pipes;
c0c36b94 10871 int ret = 0;
a6778b3c 10872
4b4b9238 10873 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
c0c36b94
CW
10874 if (!saved_mode)
10875 return -ENOMEM;
a6778b3c 10876
e2e1ed41 10877 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
10878 &prepare_pipes, &disable_pipes);
10879
3ac18232 10880 *saved_mode = crtc->mode;
a6778b3c 10881
25c5b266
DV
10882 /* Hack: Because we don't (yet) support global modeset on multiple
10883 * crtcs, we don't keep track of the new mode for more than one crtc.
10884 * Hence simply check whether any bit is set in modeset_pipes in all the
10885 * pieces of code that are not yet converted to deal with mutliple crtcs
10886 * changing their mode at the same time. */
25c5b266 10887 if (modeset_pipes) {
4e53c2e0 10888 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
b8cecdf5
DV
10889 if (IS_ERR(pipe_config)) {
10890 ret = PTR_ERR(pipe_config);
10891 pipe_config = NULL;
10892
3ac18232 10893 goto out;
25c5b266 10894 }
c0b03411
DV
10895 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
10896 "[modeset]");
50741abc 10897 to_intel_crtc(crtc)->new_config = pipe_config;
25c5b266 10898 }
a6778b3c 10899
30a970c6
JB
10900 /*
10901 * See if the config requires any additional preparation, e.g.
10902 * to adjust global state with pipes off. We need to do this
10903 * here so we can get the modeset_pipe updated config for the new
10904 * mode set on this crtc. For other crtcs we need to use the
10905 * adjusted_mode bits in the crtc directly.
10906 */
c164f833 10907 if (IS_VALLEYVIEW(dev)) {
2f2d7aa1 10908 valleyview_modeset_global_pipes(dev, &prepare_pipes);
30a970c6 10909
c164f833
VS
10910 /* may have added more to prepare_pipes than we should */
10911 prepare_pipes &= ~disable_pipes;
10912 }
10913
460da916
DV
10914 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
10915 intel_crtc_disable(&intel_crtc->base);
10916
ea9d758d
DV
10917 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10918 if (intel_crtc->base.enabled)
10919 dev_priv->display.crtc_disable(&intel_crtc->base);
10920 }
a6778b3c 10921
6c4c86f5
DV
10922 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
10923 * to set it here already despite that we pass it down the callchain.
f6e5b160 10924 */
b8cecdf5 10925 if (modeset_pipes) {
25c5b266 10926 crtc->mode = *mode;
b8cecdf5
DV
10927 /* mode_set/enable/disable functions rely on a correct pipe
10928 * config. */
10929 to_intel_crtc(crtc)->config = *pipe_config;
50741abc 10930 to_intel_crtc(crtc)->new_config = &to_intel_crtc(crtc)->config;
c326c0a9
VS
10931
10932 /*
10933 * Calculate and store various constants which
10934 * are later needed by vblank and swap-completion
10935 * timestamping. They are derived from true hwmode.
10936 */
10937 drm_calc_timestamping_constants(crtc,
10938 &pipe_config->adjusted_mode);
b8cecdf5 10939 }
7758a113 10940
ea9d758d
DV
10941 /* Only after disabling all output pipelines that will be changed can we
10942 * update the the output configuration. */
10943 intel_modeset_update_state(dev, prepare_pipes);
f6e5b160 10944
47fab737
DV
10945 if (dev_priv->display.modeset_global_resources)
10946 dev_priv->display.modeset_global_resources(dev);
10947
a6778b3c
DV
10948 /* Set up the DPLL and any encoders state that needs to adjust or depend
10949 * on the DPLL.
f6e5b160 10950 */
25c5b266 10951 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
2ff8fde1
MR
10952 struct drm_framebuffer *old_fb = crtc->primary->fb;
10953 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_fb);
10954 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
4c10794f
DV
10955
10956 mutex_lock(&dev->struct_mutex);
10957 ret = intel_pin_and_fence_fb_obj(dev,
a071fa00 10958 obj,
4c10794f
DV
10959 NULL);
10960 if (ret != 0) {
10961 DRM_ERROR("pin & fence failed\n");
10962 mutex_unlock(&dev->struct_mutex);
10963 goto done;
10964 }
2ff8fde1 10965 if (old_fb)
a071fa00 10966 intel_unpin_fb_obj(old_obj);
a071fa00
DV
10967 i915_gem_track_fb(old_obj, obj,
10968 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
4c10794f
DV
10969 mutex_unlock(&dev->struct_mutex);
10970
10971 crtc->primary->fb = fb;
10972 crtc->x = x;
10973 crtc->y = y;
10974
4271b753
DV
10975 ret = dev_priv->display.crtc_mode_set(&intel_crtc->base,
10976 x, y, fb);
c0c36b94
CW
10977 if (ret)
10978 goto done;
a6778b3c
DV
10979 }
10980
10981 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
80715b2f
VS
10982 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
10983 update_scanline_offset(intel_crtc);
10984
25c5b266 10985 dev_priv->display.crtc_enable(&intel_crtc->base);
80715b2f 10986 }
a6778b3c 10987
a6778b3c
DV
10988 /* FIXME: add subpixel order */
10989done:
4b4b9238 10990 if (ret && crtc->enabled)
3ac18232 10991 crtc->mode = *saved_mode;
a6778b3c 10992
3ac18232 10993out:
b8cecdf5 10994 kfree(pipe_config);
3ac18232 10995 kfree(saved_mode);
a6778b3c 10996 return ret;
f6e5b160
CW
10997}
10998
e7457a9a
DL
10999static int intel_set_mode(struct drm_crtc *crtc,
11000 struct drm_display_mode *mode,
11001 int x, int y, struct drm_framebuffer *fb)
f30da187
DV
11002{
11003 int ret;
11004
11005 ret = __intel_set_mode(crtc, mode, x, y, fb);
11006
11007 if (ret == 0)
11008 intel_modeset_check_state(crtc->dev);
11009
11010 return ret;
11011}
11012
c0c36b94
CW
11013void intel_crtc_restore_mode(struct drm_crtc *crtc)
11014{
f4510a27 11015 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
c0c36b94
CW
11016}
11017
25c5b266
DV
11018#undef for_each_intel_crtc_masked
11019
d9e55608
DV
11020static void intel_set_config_free(struct intel_set_config *config)
11021{
11022 if (!config)
11023 return;
11024
1aa4b628
DV
11025 kfree(config->save_connector_encoders);
11026 kfree(config->save_encoder_crtcs);
7668851f 11027 kfree(config->save_crtc_enabled);
d9e55608
DV
11028 kfree(config);
11029}
11030
85f9eb71
DV
11031static int intel_set_config_save_state(struct drm_device *dev,
11032 struct intel_set_config *config)
11033{
7668851f 11034 struct drm_crtc *crtc;
85f9eb71
DV
11035 struct drm_encoder *encoder;
11036 struct drm_connector *connector;
11037 int count;
11038
7668851f
VS
11039 config->save_crtc_enabled =
11040 kcalloc(dev->mode_config.num_crtc,
11041 sizeof(bool), GFP_KERNEL);
11042 if (!config->save_crtc_enabled)
11043 return -ENOMEM;
11044
1aa4b628
DV
11045 config->save_encoder_crtcs =
11046 kcalloc(dev->mode_config.num_encoder,
11047 sizeof(struct drm_crtc *), GFP_KERNEL);
11048 if (!config->save_encoder_crtcs)
85f9eb71
DV
11049 return -ENOMEM;
11050
1aa4b628
DV
11051 config->save_connector_encoders =
11052 kcalloc(dev->mode_config.num_connector,
11053 sizeof(struct drm_encoder *), GFP_KERNEL);
11054 if (!config->save_connector_encoders)
85f9eb71
DV
11055 return -ENOMEM;
11056
11057 /* Copy data. Note that driver private data is not affected.
11058 * Should anything bad happen only the expected state is
11059 * restored, not the drivers personal bookkeeping.
11060 */
7668851f 11061 count = 0;
70e1e0ec 11062 for_each_crtc(dev, crtc) {
7668851f
VS
11063 config->save_crtc_enabled[count++] = crtc->enabled;
11064 }
11065
85f9eb71
DV
11066 count = 0;
11067 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 11068 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
11069 }
11070
11071 count = 0;
11072 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 11073 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
11074 }
11075
11076 return 0;
11077}
11078
11079static void intel_set_config_restore_state(struct drm_device *dev,
11080 struct intel_set_config *config)
11081{
7668851f 11082 struct intel_crtc *crtc;
9a935856
DV
11083 struct intel_encoder *encoder;
11084 struct intel_connector *connector;
85f9eb71
DV
11085 int count;
11086
7668851f 11087 count = 0;
d3fcc808 11088 for_each_intel_crtc(dev, crtc) {
7668851f 11089 crtc->new_enabled = config->save_crtc_enabled[count++];
7bd0a8e7
VS
11090
11091 if (crtc->new_enabled)
11092 crtc->new_config = &crtc->config;
11093 else
11094 crtc->new_config = NULL;
7668851f
VS
11095 }
11096
85f9eb71 11097 count = 0;
b2784e15 11098 for_each_intel_encoder(dev, encoder) {
9a935856
DV
11099 encoder->new_crtc =
11100 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
11101 }
11102
11103 count = 0;
9a935856
DV
11104 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11105 connector->new_encoder =
11106 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
11107 }
11108}
11109
e3de42b6 11110static bool
2e57f47d 11111is_crtc_connector_off(struct drm_mode_set *set)
e3de42b6
ID
11112{
11113 int i;
11114
2e57f47d
CW
11115 if (set->num_connectors == 0)
11116 return false;
11117
11118 if (WARN_ON(set->connectors == NULL))
11119 return false;
11120
11121 for (i = 0; i < set->num_connectors; i++)
11122 if (set->connectors[i]->encoder &&
11123 set->connectors[i]->encoder->crtc == set->crtc &&
11124 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
e3de42b6
ID
11125 return true;
11126
11127 return false;
11128}
11129
5e2b584e
DV
11130static void
11131intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11132 struct intel_set_config *config)
11133{
11134
11135 /* We should be able to check here if the fb has the same properties
11136 * and then just flip_or_move it */
2e57f47d
CW
11137 if (is_crtc_connector_off(set)) {
11138 config->mode_changed = true;
f4510a27 11139 } else if (set->crtc->primary->fb != set->fb) {
3b150f08
MR
11140 /*
11141 * If we have no fb, we can only flip as long as the crtc is
11142 * active, otherwise we need a full mode set. The crtc may
11143 * be active if we've only disabled the primary plane, or
11144 * in fastboot situations.
11145 */
f4510a27 11146 if (set->crtc->primary->fb == NULL) {
319d9827
JB
11147 struct intel_crtc *intel_crtc =
11148 to_intel_crtc(set->crtc);
11149
3b150f08 11150 if (intel_crtc->active) {
319d9827
JB
11151 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11152 config->fb_changed = true;
11153 } else {
11154 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11155 config->mode_changed = true;
11156 }
5e2b584e
DV
11157 } else if (set->fb == NULL) {
11158 config->mode_changed = true;
72f4901e 11159 } else if (set->fb->pixel_format !=
f4510a27 11160 set->crtc->primary->fb->pixel_format) {
5e2b584e 11161 config->mode_changed = true;
e3de42b6 11162 } else {
5e2b584e 11163 config->fb_changed = true;
e3de42b6 11164 }
5e2b584e
DV
11165 }
11166
835c5873 11167 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
11168 config->fb_changed = true;
11169
11170 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11171 DRM_DEBUG_KMS("modes are different, full mode set\n");
11172 drm_mode_debug_printmodeline(&set->crtc->mode);
11173 drm_mode_debug_printmodeline(set->mode);
11174 config->mode_changed = true;
11175 }
a1d95703
CW
11176
11177 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11178 set->crtc->base.id, config->mode_changed, config->fb_changed);
5e2b584e
DV
11179}
11180
2e431051 11181static int
9a935856
DV
11182intel_modeset_stage_output_state(struct drm_device *dev,
11183 struct drm_mode_set *set,
11184 struct intel_set_config *config)
50f56119 11185{
9a935856
DV
11186 struct intel_connector *connector;
11187 struct intel_encoder *encoder;
7668851f 11188 struct intel_crtc *crtc;
f3f08572 11189 int ro;
50f56119 11190
9abdda74 11191 /* The upper layers ensure that we either disable a crtc or have a list
9a935856
DV
11192 * of connectors. For paranoia, double-check this. */
11193 WARN_ON(!set->fb && (set->num_connectors != 0));
11194 WARN_ON(set->fb && (set->num_connectors == 0));
11195
9a935856
DV
11196 list_for_each_entry(connector, &dev->mode_config.connector_list,
11197 base.head) {
11198 /* Otherwise traverse passed in connector list and get encoders
11199 * for them. */
50f56119 11200 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11201 if (set->connectors[ro] == &connector->base) {
0e32b39c 11202 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
50f56119
DV
11203 break;
11204 }
11205 }
11206
9a935856
DV
11207 /* If we disable the crtc, disable all its connectors. Also, if
11208 * the connector is on the changing crtc but not on the new
11209 * connector list, disable it. */
11210 if ((!set->fb || ro == set->num_connectors) &&
11211 connector->base.encoder &&
11212 connector->base.encoder->crtc == set->crtc) {
11213 connector->new_encoder = NULL;
11214
11215 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11216 connector->base.base.id,
c23cc417 11217 connector->base.name);
9a935856
DV
11218 }
11219
11220
11221 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 11222 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 11223 config->mode_changed = true;
50f56119
DV
11224 }
11225 }
9a935856 11226 /* connector->new_encoder is now updated for all connectors. */
50f56119 11227
9a935856 11228 /* Update crtc of enabled connectors. */
9a935856
DV
11229 list_for_each_entry(connector, &dev->mode_config.connector_list,
11230 base.head) {
7668851f
VS
11231 struct drm_crtc *new_crtc;
11232
9a935856 11233 if (!connector->new_encoder)
50f56119
DV
11234 continue;
11235
9a935856 11236 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
11237
11238 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 11239 if (set->connectors[ro] == &connector->base)
50f56119
DV
11240 new_crtc = set->crtc;
11241 }
11242
11243 /* Make sure the new CRTC will work with the encoder */
14509916
TR
11244 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11245 new_crtc)) {
5e2b584e 11246 return -EINVAL;
50f56119 11247 }
0e32b39c 11248 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
9a935856
DV
11249
11250 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11251 connector->base.base.id,
c23cc417 11252 connector->base.name,
9a935856
DV
11253 new_crtc->base.id);
11254 }
11255
11256 /* Check for any encoders that needs to be disabled. */
b2784e15 11257 for_each_intel_encoder(dev, encoder) {
5a65f358 11258 int num_connectors = 0;
9a935856
DV
11259 list_for_each_entry(connector,
11260 &dev->mode_config.connector_list,
11261 base.head) {
11262 if (connector->new_encoder == encoder) {
11263 WARN_ON(!connector->new_encoder->new_crtc);
5a65f358 11264 num_connectors++;
9a935856
DV
11265 }
11266 }
5a65f358
PZ
11267
11268 if (num_connectors == 0)
11269 encoder->new_crtc = NULL;
11270 else if (num_connectors > 1)
11271 return -EINVAL;
11272
9a935856
DV
11273 /* Only now check for crtc changes so we don't miss encoders
11274 * that will be disabled. */
11275 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 11276 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 11277 config->mode_changed = true;
50f56119
DV
11278 }
11279 }
9a935856 11280 /* Now we've also updated encoder->new_crtc for all encoders. */
0e32b39c
DA
11281 list_for_each_entry(connector, &dev->mode_config.connector_list,
11282 base.head) {
11283 if (connector->new_encoder)
11284 if (connector->new_encoder != connector->encoder)
11285 connector->encoder = connector->new_encoder;
11286 }
d3fcc808 11287 for_each_intel_crtc(dev, crtc) {
7668851f
VS
11288 crtc->new_enabled = false;
11289
b2784e15 11290 for_each_intel_encoder(dev, encoder) {
7668851f
VS
11291 if (encoder->new_crtc == crtc) {
11292 crtc->new_enabled = true;
11293 break;
11294 }
11295 }
11296
11297 if (crtc->new_enabled != crtc->base.enabled) {
11298 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11299 crtc->new_enabled ? "en" : "dis");
11300 config->mode_changed = true;
11301 }
7bd0a8e7
VS
11302
11303 if (crtc->new_enabled)
11304 crtc->new_config = &crtc->config;
11305 else
11306 crtc->new_config = NULL;
7668851f
VS
11307 }
11308
2e431051
DV
11309 return 0;
11310}
11311
7d00a1f5
VS
11312static void disable_crtc_nofb(struct intel_crtc *crtc)
11313{
11314 struct drm_device *dev = crtc->base.dev;
11315 struct intel_encoder *encoder;
11316 struct intel_connector *connector;
11317
11318 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11319 pipe_name(crtc->pipe));
11320
11321 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11322 if (connector->new_encoder &&
11323 connector->new_encoder->new_crtc == crtc)
11324 connector->new_encoder = NULL;
11325 }
11326
b2784e15 11327 for_each_intel_encoder(dev, encoder) {
7d00a1f5
VS
11328 if (encoder->new_crtc == crtc)
11329 encoder->new_crtc = NULL;
11330 }
11331
11332 crtc->new_enabled = false;
7bd0a8e7 11333 crtc->new_config = NULL;
7d00a1f5
VS
11334}
11335
2e431051
DV
11336static int intel_crtc_set_config(struct drm_mode_set *set)
11337{
11338 struct drm_device *dev;
2e431051
DV
11339 struct drm_mode_set save_set;
11340 struct intel_set_config *config;
11341 int ret;
2e431051 11342
8d3e375e
DV
11343 BUG_ON(!set);
11344 BUG_ON(!set->crtc);
11345 BUG_ON(!set->crtc->helper_private);
2e431051 11346
7e53f3a4
DV
11347 /* Enforce sane interface api - has been abused by the fb helper. */
11348 BUG_ON(!set->mode && set->fb);
11349 BUG_ON(set->fb && set->num_connectors == 0);
431e50f7 11350
2e431051
DV
11351 if (set->fb) {
11352 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11353 set->crtc->base.id, set->fb->base.id,
11354 (int)set->num_connectors, set->x, set->y);
11355 } else {
11356 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
11357 }
11358
11359 dev = set->crtc->dev;
11360
11361 ret = -ENOMEM;
11362 config = kzalloc(sizeof(*config), GFP_KERNEL);
11363 if (!config)
11364 goto out_config;
11365
11366 ret = intel_set_config_save_state(dev, config);
11367 if (ret)
11368 goto out_config;
11369
11370 save_set.crtc = set->crtc;
11371 save_set.mode = &set->crtc->mode;
11372 save_set.x = set->crtc->x;
11373 save_set.y = set->crtc->y;
f4510a27 11374 save_set.fb = set->crtc->primary->fb;
2e431051
DV
11375
11376 /* Compute whether we need a full modeset, only an fb base update or no
11377 * change at all. In the future we might also check whether only the
11378 * mode changed, e.g. for LVDS where we only change the panel fitter in
11379 * such cases. */
11380 intel_set_config_compute_mode_changes(set, config);
11381
9a935856 11382 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
11383 if (ret)
11384 goto fail;
11385
5e2b584e 11386 if (config->mode_changed) {
c0c36b94
CW
11387 ret = intel_set_mode(set->crtc, set->mode,
11388 set->x, set->y, set->fb);
5e2b584e 11389 } else if (config->fb_changed) {
3b150f08
MR
11390 struct drm_i915_private *dev_priv = dev->dev_private;
11391 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11392
4878cae2
VS
11393 intel_crtc_wait_for_pending_flips(set->crtc);
11394
4f660f49 11395 ret = intel_pipe_set_base(set->crtc,
94352cf9 11396 set->x, set->y, set->fb);
3b150f08
MR
11397
11398 /*
11399 * We need to make sure the primary plane is re-enabled if it
11400 * has previously been turned off.
11401 */
11402 if (!intel_crtc->primary_enabled && ret == 0) {
11403 WARN_ON(!intel_crtc->active);
11404 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11405 intel_crtc->pipe);
11406 }
11407
7ca51a3a
JB
11408 /*
11409 * In the fastboot case this may be our only check of the
11410 * state after boot. It would be better to only do it on
11411 * the first update, but we don't have a nice way of doing that
11412 * (and really, set_config isn't used much for high freq page
11413 * flipping, so increasing its cost here shouldn't be a big
11414 * deal).
11415 */
d330a953 11416 if (i915.fastboot && ret == 0)
7ca51a3a 11417 intel_modeset_check_state(set->crtc->dev);
50f56119
DV
11418 }
11419
2d05eae1 11420 if (ret) {
bf67dfeb
DV
11421 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11422 set->crtc->base.id, ret);
50f56119 11423fail:
2d05eae1 11424 intel_set_config_restore_state(dev, config);
50f56119 11425
7d00a1f5
VS
11426 /*
11427 * HACK: if the pipe was on, but we didn't have a framebuffer,
11428 * force the pipe off to avoid oopsing in the modeset code
11429 * due to fb==NULL. This should only happen during boot since
11430 * we don't yet reconstruct the FB from the hardware state.
11431 */
11432 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11433 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11434
2d05eae1
CW
11435 /* Try to restore the config */
11436 if (config->mode_changed &&
11437 intel_set_mode(save_set.crtc, save_set.mode,
11438 save_set.x, save_set.y, save_set.fb))
11439 DRM_ERROR("failed to restore config after modeset failure\n");
11440 }
50f56119 11441
d9e55608
DV
11442out_config:
11443 intel_set_config_free(config);
50f56119
DV
11444 return ret;
11445}
f6e5b160
CW
11446
11447static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160 11448 .gamma_set = intel_crtc_gamma_set,
50f56119 11449 .set_config = intel_crtc_set_config,
f6e5b160
CW
11450 .destroy = intel_crtc_destroy,
11451 .page_flip = intel_crtc_page_flip,
11452};
11453
5358901f
DV
11454static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11455 struct intel_shared_dpll *pll,
11456 struct intel_dpll_hw_state *hw_state)
ee7b9f93 11457{
5358901f 11458 uint32_t val;
ee7b9f93 11459
bd2bb1b9
PZ
11460 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_PLLS))
11461 return false;
11462
5358901f 11463 val = I915_READ(PCH_DPLL(pll->id));
66e985c0
DV
11464 hw_state->dpll = val;
11465 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11466 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
5358901f
DV
11467
11468 return val & DPLL_VCO_ENABLE;
11469}
11470
15bdd4cf
DV
11471static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11472 struct intel_shared_dpll *pll)
11473{
11474 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
11475 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
11476}
11477
e7b903d2
DV
11478static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11479 struct intel_shared_dpll *pll)
11480{
e7b903d2 11481 /* PCH refclock must be enabled first */
89eff4be 11482 ibx_assert_pch_refclk_enabled(dev_priv);
e7b903d2 11483
15bdd4cf
DV
11484 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11485
11486 /* Wait for the clocks to stabilize. */
11487 POSTING_READ(PCH_DPLL(pll->id));
11488 udelay(150);
11489
11490 /* The pixel multiplier can only be updated once the
11491 * DPLL is enabled and the clocks are stable.
11492 *
11493 * So write it again.
11494 */
11495 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
11496 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11497 udelay(200);
11498}
11499
11500static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11501 struct intel_shared_dpll *pll)
11502{
11503 struct drm_device *dev = dev_priv->dev;
11504 struct intel_crtc *crtc;
e7b903d2
DV
11505
11506 /* Make sure no transcoder isn't still depending on us. */
d3fcc808 11507 for_each_intel_crtc(dev, crtc) {
e7b903d2
DV
11508 if (intel_crtc_to_shared_dpll(crtc) == pll)
11509 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
ee7b9f93
JB
11510 }
11511
15bdd4cf
DV
11512 I915_WRITE(PCH_DPLL(pll->id), 0);
11513 POSTING_READ(PCH_DPLL(pll->id));
e7b903d2
DV
11514 udelay(200);
11515}
11516
46edb027
DV
11517static char *ibx_pch_dpll_names[] = {
11518 "PCH DPLL A",
11519 "PCH DPLL B",
11520};
11521
7c74ade1 11522static void ibx_pch_dpll_init(struct drm_device *dev)
ee7b9f93 11523{
e7b903d2 11524 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93
JB
11525 int i;
11526
7c74ade1 11527 dev_priv->num_shared_dpll = 2;
ee7b9f93 11528
e72f9fbf 11529 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
46edb027
DV
11530 dev_priv->shared_dplls[i].id = i;
11531 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
15bdd4cf 11532 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
e7b903d2
DV
11533 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11534 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
5358901f
DV
11535 dev_priv->shared_dplls[i].get_hw_state =
11536 ibx_pch_dpll_get_hw_state;
ee7b9f93
JB
11537 }
11538}
11539
7c74ade1
DV
11540static void intel_shared_dpll_init(struct drm_device *dev)
11541{
e7b903d2 11542 struct drm_i915_private *dev_priv = dev->dev_private;
7c74ade1 11543
9cd86933
DV
11544 if (HAS_DDI(dev))
11545 intel_ddi_pll_init(dev);
11546 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7c74ade1
DV
11547 ibx_pch_dpll_init(dev);
11548 else
11549 dev_priv->num_shared_dpll = 0;
11550
11551 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
7c74ade1
DV
11552}
11553
465c120c
MR
11554static int
11555intel_primary_plane_disable(struct drm_plane *plane)
11556{
11557 struct drm_device *dev = plane->dev;
11558 struct drm_i915_private *dev_priv = dev->dev_private;
11559 struct intel_plane *intel_plane = to_intel_plane(plane);
11560 struct intel_crtc *intel_crtc;
11561
11562 if (!plane->fb)
11563 return 0;
11564
11565 BUG_ON(!plane->crtc);
11566
11567 intel_crtc = to_intel_crtc(plane->crtc);
11568
11569 /*
11570 * Even though we checked plane->fb above, it's still possible that
11571 * the primary plane has been implicitly disabled because the crtc
11572 * coordinates given weren't visible, or because we detected
11573 * that it was 100% covered by a sprite plane. Or, the CRTC may be
11574 * off and we've set a fb, but haven't actually turned on the CRTC yet.
11575 * In either case, we need to unpin the FB and let the fb pointer get
11576 * updated, but otherwise we don't need to touch the hardware.
11577 */
11578 if (!intel_crtc->primary_enabled)
11579 goto disable_unpin;
11580
11581 intel_crtc_wait_for_pending_flips(plane->crtc);
11582 intel_disable_primary_hw_plane(dev_priv, intel_plane->plane,
11583 intel_plane->pipe);
465c120c 11584disable_unpin:
4c34574f 11585 mutex_lock(&dev->struct_mutex);
2ff8fde1 11586 i915_gem_track_fb(intel_fb_obj(plane->fb), NULL,
a071fa00 11587 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
2ff8fde1 11588 intel_unpin_fb_obj(intel_fb_obj(plane->fb));
4c34574f 11589 mutex_unlock(&dev->struct_mutex);
465c120c
MR
11590 plane->fb = NULL;
11591
11592 return 0;
11593}
11594
11595static int
11596intel_primary_plane_setplane(struct drm_plane *plane, struct drm_crtc *crtc,
11597 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11598 unsigned int crtc_w, unsigned int crtc_h,
11599 uint32_t src_x, uint32_t src_y,
11600 uint32_t src_w, uint32_t src_h)
11601{
11602 struct drm_device *dev = crtc->dev;
11603 struct drm_i915_private *dev_priv = dev->dev_private;
11604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11605 struct intel_plane *intel_plane = to_intel_plane(plane);
2ff8fde1
MR
11606 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11607 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
465c120c
MR
11608 struct drm_rect dest = {
11609 /* integer pixels */
11610 .x1 = crtc_x,
11611 .y1 = crtc_y,
11612 .x2 = crtc_x + crtc_w,
11613 .y2 = crtc_y + crtc_h,
11614 };
11615 struct drm_rect src = {
11616 /* 16.16 fixed point */
11617 .x1 = src_x,
11618 .y1 = src_y,
11619 .x2 = src_x + src_w,
11620 .y2 = src_y + src_h,
11621 };
11622 const struct drm_rect clip = {
11623 /* integer pixels */
11624 .x2 = intel_crtc->active ? intel_crtc->config.pipe_src_w : 0,
11625 .y2 = intel_crtc->active ? intel_crtc->config.pipe_src_h : 0,
11626 };
11627 bool visible;
11628 int ret;
11629
11630 ret = drm_plane_helper_check_update(plane, crtc, fb,
11631 &src, &dest, &clip,
11632 DRM_PLANE_HELPER_NO_SCALING,
11633 DRM_PLANE_HELPER_NO_SCALING,
11634 false, true, &visible);
11635
11636 if (ret)
11637 return ret;
11638
11639 /*
11640 * If the CRTC isn't enabled, we're just pinning the framebuffer,
11641 * updating the fb pointer, and returning without touching the
11642 * hardware. This allows us to later do a drmModeSetCrtc with fb=-1 to
11643 * turn on the display with all planes setup as desired.
11644 */
11645 if (!crtc->enabled) {
4c34574f
MR
11646 mutex_lock(&dev->struct_mutex);
11647
465c120c
MR
11648 /*
11649 * If we already called setplane while the crtc was disabled,
11650 * we may have an fb pinned; unpin it.
11651 */
11652 if (plane->fb)
a071fa00
DV
11653 intel_unpin_fb_obj(old_obj);
11654
11655 i915_gem_track_fb(old_obj, obj,
11656 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
465c120c
MR
11657
11658 /* Pin and return without programming hardware */
4c34574f
MR
11659 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
11660 mutex_unlock(&dev->struct_mutex);
11661
11662 return ret;
465c120c
MR
11663 }
11664
11665 intel_crtc_wait_for_pending_flips(crtc);
11666
11667 /*
11668 * If clipping results in a non-visible primary plane, we'll disable
11669 * the primary plane. Note that this is a bit different than what
11670 * happens if userspace explicitly disables the plane by passing fb=0
11671 * because plane->fb still gets set and pinned.
11672 */
11673 if (!visible) {
4c34574f
MR
11674 mutex_lock(&dev->struct_mutex);
11675
465c120c
MR
11676 /*
11677 * Try to pin the new fb first so that we can bail out if we
11678 * fail.
11679 */
11680 if (plane->fb != fb) {
a071fa00 11681 ret = intel_pin_and_fence_fb_obj(dev, obj, NULL);
4c34574f
MR
11682 if (ret) {
11683 mutex_unlock(&dev->struct_mutex);
465c120c 11684 return ret;
4c34574f 11685 }
465c120c
MR
11686 }
11687
a071fa00
DV
11688 i915_gem_track_fb(old_obj, obj,
11689 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe));
11690
465c120c
MR
11691 if (intel_crtc->primary_enabled)
11692 intel_disable_primary_hw_plane(dev_priv,
11693 intel_plane->plane,
11694 intel_plane->pipe);
11695
11696
11697 if (plane->fb != fb)
11698 if (plane->fb)
a071fa00 11699 intel_unpin_fb_obj(old_obj);
465c120c 11700
4c34574f
MR
11701 mutex_unlock(&dev->struct_mutex);
11702
465c120c
MR
11703 return 0;
11704 }
11705
11706 ret = intel_pipe_set_base(crtc, src.x1, src.y1, fb);
11707 if (ret)
11708 return ret;
11709
11710 if (!intel_crtc->primary_enabled)
11711 intel_enable_primary_hw_plane(dev_priv, intel_crtc->plane,
11712 intel_crtc->pipe);
11713
11714 return 0;
11715}
11716
3d7d6510
MR
11717/* Common destruction function for both primary and cursor planes */
11718static void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
11719{
11720 struct intel_plane *intel_plane = to_intel_plane(plane);
11721 drm_plane_cleanup(plane);
11722 kfree(intel_plane);
11723}
11724
11725static const struct drm_plane_funcs intel_primary_plane_funcs = {
11726 .update_plane = intel_primary_plane_setplane,
11727 .disable_plane = intel_primary_plane_disable,
3d7d6510 11728 .destroy = intel_plane_destroy,
465c120c
MR
11729};
11730
11731static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
11732 int pipe)
11733{
11734 struct intel_plane *primary;
11735 const uint32_t *intel_primary_formats;
11736 int num_formats;
11737
11738 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
11739 if (primary == NULL)
11740 return NULL;
11741
11742 primary->can_scale = false;
11743 primary->max_downscale = 1;
11744 primary->pipe = pipe;
11745 primary->plane = pipe;
11746 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
11747 primary->plane = !pipe;
11748
11749 if (INTEL_INFO(dev)->gen <= 3) {
11750 intel_primary_formats = intel_primary_formats_gen2;
11751 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
11752 } else {
11753 intel_primary_formats = intel_primary_formats_gen4;
11754 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
11755 }
11756
11757 drm_universal_plane_init(dev, &primary->base, 0,
11758 &intel_primary_plane_funcs,
11759 intel_primary_formats, num_formats,
11760 DRM_PLANE_TYPE_PRIMARY);
11761 return &primary->base;
11762}
11763
3d7d6510
MR
11764static int
11765intel_cursor_plane_disable(struct drm_plane *plane)
11766{
11767 if (!plane->fb)
11768 return 0;
11769
11770 BUG_ON(!plane->crtc);
11771
11772 return intel_crtc_cursor_set_obj(plane->crtc, NULL, 0, 0);
11773}
11774
11775static int
11776intel_cursor_plane_update(struct drm_plane *plane, struct drm_crtc *crtc,
11777 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
11778 unsigned int crtc_w, unsigned int crtc_h,
11779 uint32_t src_x, uint32_t src_y,
11780 uint32_t src_w, uint32_t src_h)
11781{
11782 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11783 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
11784 struct drm_i915_gem_object *obj = intel_fb->obj;
11785 struct drm_rect dest = {
11786 /* integer pixels */
11787 .x1 = crtc_x,
11788 .y1 = crtc_y,
11789 .x2 = crtc_x + crtc_w,
11790 .y2 = crtc_y + crtc_h,
11791 };
11792 struct drm_rect src = {
11793 /* 16.16 fixed point */
11794 .x1 = src_x,
11795 .y1 = src_y,
11796 .x2 = src_x + src_w,
11797 .y2 = src_y + src_h,
11798 };
11799 const struct drm_rect clip = {
11800 /* integer pixels */
11801 .x2 = intel_crtc->config.pipe_src_w,
11802 .y2 = intel_crtc->config.pipe_src_h,
11803 };
11804 bool visible;
11805 int ret;
11806
11807 ret = drm_plane_helper_check_update(plane, crtc, fb,
11808 &src, &dest, &clip,
11809 DRM_PLANE_HELPER_NO_SCALING,
11810 DRM_PLANE_HELPER_NO_SCALING,
11811 true, true, &visible);
11812 if (ret)
11813 return ret;
11814
11815 crtc->cursor_x = crtc_x;
11816 crtc->cursor_y = crtc_y;
11817 if (fb != crtc->cursor->fb) {
11818 return intel_crtc_cursor_set_obj(crtc, obj, crtc_w, crtc_h);
11819 } else {
11820 intel_crtc_update_cursor(crtc, visible);
11821 return 0;
11822 }
11823}
11824static const struct drm_plane_funcs intel_cursor_plane_funcs = {
11825 .update_plane = intel_cursor_plane_update,
11826 .disable_plane = intel_cursor_plane_disable,
11827 .destroy = intel_plane_destroy,
11828};
11829
11830static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
11831 int pipe)
11832{
11833 struct intel_plane *cursor;
11834
11835 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
11836 if (cursor == NULL)
11837 return NULL;
11838
11839 cursor->can_scale = false;
11840 cursor->max_downscale = 1;
11841 cursor->pipe = pipe;
11842 cursor->plane = pipe;
11843
11844 drm_universal_plane_init(dev, &cursor->base, 0,
11845 &intel_cursor_plane_funcs,
11846 intel_cursor_formats,
11847 ARRAY_SIZE(intel_cursor_formats),
11848 DRM_PLANE_TYPE_CURSOR);
11849 return &cursor->base;
11850}
11851
b358d0a6 11852static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 11853{
fbee40df 11854 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 11855 struct intel_crtc *intel_crtc;
3d7d6510
MR
11856 struct drm_plane *primary = NULL;
11857 struct drm_plane *cursor = NULL;
465c120c 11858 int i, ret;
79e53945 11859
955382f3 11860 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
11861 if (intel_crtc == NULL)
11862 return;
11863
465c120c 11864 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
11865 if (!primary)
11866 goto fail;
11867
11868 cursor = intel_cursor_plane_create(dev, pipe);
11869 if (!cursor)
11870 goto fail;
11871
465c120c 11872 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
3d7d6510
MR
11873 cursor, &intel_crtc_funcs);
11874 if (ret)
11875 goto fail;
79e53945
JB
11876
11877 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
11878 for (i = 0; i < 256; i++) {
11879 intel_crtc->lut_r[i] = i;
11880 intel_crtc->lut_g[i] = i;
11881 intel_crtc->lut_b[i] = i;
11882 }
11883
1f1c2e24
VS
11884 /*
11885 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 11886 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 11887 */
80824003
JB
11888 intel_crtc->pipe = pipe;
11889 intel_crtc->plane = pipe;
3a77c4c4 11890 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 11891 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 11892 intel_crtc->plane = !pipe;
80824003
JB
11893 }
11894
4b0e333e
CW
11895 intel_crtc->cursor_base = ~0;
11896 intel_crtc->cursor_cntl = ~0;
11897
22fd0fab
JB
11898 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
11899 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
11900 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
11901 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
11902
79e53945 11903 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101
DV
11904
11905 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
11906 return;
11907
11908fail:
11909 if (primary)
11910 drm_plane_cleanup(primary);
11911 if (cursor)
11912 drm_plane_cleanup(cursor);
11913 kfree(intel_crtc);
79e53945
JB
11914}
11915
752aa88a
JB
11916enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
11917{
11918 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 11919 struct drm_device *dev = connector->base.dev;
752aa88a 11920
51fd371b 11921 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a
JB
11922
11923 if (!encoder)
11924 return INVALID_PIPE;
11925
11926 return to_intel_crtc(encoder->crtc)->pipe;
11927}
11928
08d7b3d1 11929int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 11930 struct drm_file *file)
08d7b3d1 11931{
08d7b3d1 11932 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 11933 struct drm_crtc *drmmode_crtc;
c05422d5 11934 struct intel_crtc *crtc;
08d7b3d1 11935
1cff8f6b
DV
11936 if (!drm_core_check_feature(dev, DRIVER_MODESET))
11937 return -ENODEV;
08d7b3d1 11938
7707e653 11939 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 11940
7707e653 11941 if (!drmmode_crtc) {
08d7b3d1 11942 DRM_ERROR("no such CRTC id\n");
3f2c2057 11943 return -ENOENT;
08d7b3d1
CW
11944 }
11945
7707e653 11946 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 11947 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 11948
c05422d5 11949 return 0;
08d7b3d1
CW
11950}
11951
66a9278e 11952static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 11953{
66a9278e
DV
11954 struct drm_device *dev = encoder->base.dev;
11955 struct intel_encoder *source_encoder;
79e53945 11956 int index_mask = 0;
79e53945
JB
11957 int entry = 0;
11958
b2784e15 11959 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 11960 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
11961 index_mask |= (1 << entry);
11962
79e53945
JB
11963 entry++;
11964 }
4ef69c7a 11965
79e53945
JB
11966 return index_mask;
11967}
11968
4d302442
CW
11969static bool has_edp_a(struct drm_device *dev)
11970{
11971 struct drm_i915_private *dev_priv = dev->dev_private;
11972
11973 if (!IS_MOBILE(dev))
11974 return false;
11975
11976 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
11977 return false;
11978
e3589908 11979 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
11980 return false;
11981
11982 return true;
11983}
11984
ba0fbca4
DL
11985const char *intel_output_name(int output)
11986{
11987 static const char *names[] = {
11988 [INTEL_OUTPUT_UNUSED] = "Unused",
11989 [INTEL_OUTPUT_ANALOG] = "Analog",
11990 [INTEL_OUTPUT_DVO] = "DVO",
11991 [INTEL_OUTPUT_SDVO] = "SDVO",
11992 [INTEL_OUTPUT_LVDS] = "LVDS",
11993 [INTEL_OUTPUT_TVOUT] = "TV",
11994 [INTEL_OUTPUT_HDMI] = "HDMI",
11995 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
11996 [INTEL_OUTPUT_EDP] = "eDP",
11997 [INTEL_OUTPUT_DSI] = "DSI",
11998 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
11999 };
12000
12001 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
12002 return "Invalid";
12003
12004 return names[output];
12005}
12006
84b4e042
JB
12007static bool intel_crt_present(struct drm_device *dev)
12008{
12009 struct drm_i915_private *dev_priv = dev->dev_private;
12010
12011 if (IS_ULT(dev))
12012 return false;
12013
12014 if (IS_CHERRYVIEW(dev))
12015 return false;
12016
12017 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12018 return false;
12019
12020 return true;
12021}
12022
79e53945
JB
12023static void intel_setup_outputs(struct drm_device *dev)
12024{
725e30ad 12025 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 12026 struct intel_encoder *encoder;
cb0953d7 12027 bool dpd_is_edp = false;
79e53945 12028
c9093354 12029 intel_lvds_init(dev);
79e53945 12030
84b4e042 12031 if (intel_crt_present(dev))
79935fca 12032 intel_crt_init(dev);
cb0953d7 12033
affa9354 12034 if (HAS_DDI(dev)) {
0e72a5b5
ED
12035 int found;
12036
12037 /* Haswell uses DDI functions to detect digital outputs */
12038 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12039 /* DDI A only supports eDP */
12040 if (found)
12041 intel_ddi_init(dev, PORT_A);
12042
12043 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12044 * register */
12045 found = I915_READ(SFUSE_STRAP);
12046
12047 if (found & SFUSE_STRAP_DDIB_DETECTED)
12048 intel_ddi_init(dev, PORT_B);
12049 if (found & SFUSE_STRAP_DDIC_DETECTED)
12050 intel_ddi_init(dev, PORT_C);
12051 if (found & SFUSE_STRAP_DDID_DETECTED)
12052 intel_ddi_init(dev, PORT_D);
12053 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 12054 int found;
5d8a7752 12055 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
12056
12057 if (has_edp_a(dev))
12058 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 12059
dc0fa718 12060 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 12061 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 12062 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 12063 if (!found)
e2debe91 12064 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 12065 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 12066 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
12067 }
12068
dc0fa718 12069 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 12070 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 12071
dc0fa718 12072 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 12073 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 12074
5eb08b69 12075 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 12076 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 12077
270b3042 12078 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 12079 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d 12080 } else if (IS_VALLEYVIEW(dev)) {
585a94b8
AB
12081 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
12082 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12083 PORT_B);
12084 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
12085 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12086 }
12087
6f6005a5
JB
12088 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
12089 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12090 PORT_C);
12091 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
5d8a7752 12092 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
6f6005a5 12093 }
19c03924 12094
9418c1f1
VS
12095 if (IS_CHERRYVIEW(dev)) {
12096 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED) {
12097 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12098 PORT_D);
12099 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12100 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12101 }
12102 }
12103
3cfca973 12104 intel_dsi_init(dev);
103a196f 12105 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 12106 bool found = false;
7d57382e 12107
e2debe91 12108 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12109 DRM_DEBUG_KMS("probing SDVOB\n");
e2debe91 12110 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
b01f2c3a
JB
12111 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12112 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 12113 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 12114 }
27185ae1 12115
e7281eab 12116 if (!found && SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12117 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 12118 }
13520b05
KH
12119
12120 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 12121
e2debe91 12122 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 12123 DRM_DEBUG_KMS("probing SDVOC\n");
e2debe91 12124 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
b01f2c3a 12125 }
27185ae1 12126
e2debe91 12127 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 12128
b01f2c3a
JB
12129 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12130 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 12131 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 12132 }
e7281eab 12133 if (SUPPORTS_INTEGRATED_DP(dev))
ab9d7c30 12134 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 12135 }
27185ae1 12136
b01f2c3a 12137 if (SUPPORTS_INTEGRATED_DP(dev) &&
e7281eab 12138 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 12139 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 12140 } else if (IS_GEN2(dev))
79e53945
JB
12141 intel_dvo_init(dev);
12142
103a196f 12143 if (SUPPORTS_TV(dev))
79e53945
JB
12144 intel_tv_init(dev);
12145
7c8f8a70
RV
12146 intel_edp_psr_init(dev);
12147
b2784e15 12148 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
12149 encoder->base.possible_crtcs = encoder->crtc_mask;
12150 encoder->base.possible_clones =
66a9278e 12151 intel_encoder_clones(encoder);
79e53945 12152 }
47356eb6 12153
dde86e2d 12154 intel_init_pch_refclk(dev);
270b3042
DV
12155
12156 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
12157}
12158
12159static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12160{
60a5ca01 12161 struct drm_device *dev = fb->dev;
79e53945 12162 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 12163
ef2d633e 12164 drm_framebuffer_cleanup(fb);
60a5ca01 12165 mutex_lock(&dev->struct_mutex);
ef2d633e 12166 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
12167 drm_gem_object_unreference(&intel_fb->obj->base);
12168 mutex_unlock(&dev->struct_mutex);
79e53945
JB
12169 kfree(intel_fb);
12170}
12171
12172static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 12173 struct drm_file *file,
79e53945
JB
12174 unsigned int *handle)
12175{
12176 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 12177 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 12178
05394f39 12179 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
12180}
12181
12182static const struct drm_framebuffer_funcs intel_fb_funcs = {
12183 .destroy = intel_user_framebuffer_destroy,
12184 .create_handle = intel_user_framebuffer_create_handle,
12185};
12186
b5ea642a
DV
12187static int intel_framebuffer_init(struct drm_device *dev,
12188 struct intel_framebuffer *intel_fb,
12189 struct drm_mode_fb_cmd2 *mode_cmd,
12190 struct drm_i915_gem_object *obj)
79e53945 12191{
a57ce0b2 12192 int aligned_height;
a35cdaa0 12193 int pitch_limit;
79e53945
JB
12194 int ret;
12195
dd4916c5
DV
12196 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12197
c16ed4be
CW
12198 if (obj->tiling_mode == I915_TILING_Y) {
12199 DRM_DEBUG("hardware does not support tiling Y\n");
57cd6508 12200 return -EINVAL;
c16ed4be 12201 }
57cd6508 12202
c16ed4be
CW
12203 if (mode_cmd->pitches[0] & 63) {
12204 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12205 mode_cmd->pitches[0]);
57cd6508 12206 return -EINVAL;
c16ed4be 12207 }
57cd6508 12208
a35cdaa0
CW
12209 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12210 pitch_limit = 32*1024;
12211 } else if (INTEL_INFO(dev)->gen >= 4) {
12212 if (obj->tiling_mode)
12213 pitch_limit = 16*1024;
12214 else
12215 pitch_limit = 32*1024;
12216 } else if (INTEL_INFO(dev)->gen >= 3) {
12217 if (obj->tiling_mode)
12218 pitch_limit = 8*1024;
12219 else
12220 pitch_limit = 16*1024;
12221 } else
12222 /* XXX DSPC is limited to 4k tiled */
12223 pitch_limit = 8*1024;
12224
12225 if (mode_cmd->pitches[0] > pitch_limit) {
12226 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12227 obj->tiling_mode ? "tiled" : "linear",
12228 mode_cmd->pitches[0], pitch_limit);
5d7bd705 12229 return -EINVAL;
c16ed4be 12230 }
5d7bd705
VS
12231
12232 if (obj->tiling_mode != I915_TILING_NONE &&
c16ed4be
CW
12233 mode_cmd->pitches[0] != obj->stride) {
12234 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12235 mode_cmd->pitches[0], obj->stride);
5d7bd705 12236 return -EINVAL;
c16ed4be 12237 }
5d7bd705 12238
57779d06 12239 /* Reject formats not supported by any plane early. */
308e5bcb 12240 switch (mode_cmd->pixel_format) {
57779d06 12241 case DRM_FORMAT_C8:
04b3924d
VS
12242 case DRM_FORMAT_RGB565:
12243 case DRM_FORMAT_XRGB8888:
12244 case DRM_FORMAT_ARGB8888:
57779d06
VS
12245 break;
12246 case DRM_FORMAT_XRGB1555:
12247 case DRM_FORMAT_ARGB1555:
c16ed4be 12248 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
12249 DRM_DEBUG("unsupported pixel format: %s\n",
12250 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12251 return -EINVAL;
c16ed4be 12252 }
57779d06
VS
12253 break;
12254 case DRM_FORMAT_XBGR8888:
12255 case DRM_FORMAT_ABGR8888:
04b3924d
VS
12256 case DRM_FORMAT_XRGB2101010:
12257 case DRM_FORMAT_ARGB2101010:
57779d06
VS
12258 case DRM_FORMAT_XBGR2101010:
12259 case DRM_FORMAT_ABGR2101010:
c16ed4be 12260 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
12261 DRM_DEBUG("unsupported pixel format: %s\n",
12262 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12263 return -EINVAL;
c16ed4be 12264 }
b5626747 12265 break;
04b3924d
VS
12266 case DRM_FORMAT_YUYV:
12267 case DRM_FORMAT_UYVY:
12268 case DRM_FORMAT_YVYU:
12269 case DRM_FORMAT_VYUY:
c16ed4be 12270 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
12271 DRM_DEBUG("unsupported pixel format: %s\n",
12272 drm_get_format_name(mode_cmd->pixel_format));
57779d06 12273 return -EINVAL;
c16ed4be 12274 }
57cd6508
CW
12275 break;
12276 default:
4ee62c76
VS
12277 DRM_DEBUG("unsupported pixel format: %s\n",
12278 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
12279 return -EINVAL;
12280 }
12281
90f9a336
VS
12282 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12283 if (mode_cmd->offsets[0] != 0)
12284 return -EINVAL;
12285
a57ce0b2
JB
12286 aligned_height = intel_align_height(dev, mode_cmd->height,
12287 obj->tiling_mode);
53155c0a
DV
12288 /* FIXME drm helper for size checks (especially planar formats)? */
12289 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12290 return -EINVAL;
12291
c7d73f6a
DV
12292 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12293 intel_fb->obj = obj;
80075d49 12294 intel_fb->obj->framebuffer_references++;
c7d73f6a 12295
79e53945
JB
12296 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12297 if (ret) {
12298 DRM_ERROR("framebuffer init failed %d\n", ret);
12299 return ret;
12300 }
12301
79e53945
JB
12302 return 0;
12303}
12304
79e53945
JB
12305static struct drm_framebuffer *
12306intel_user_framebuffer_create(struct drm_device *dev,
12307 struct drm_file *filp,
308e5bcb 12308 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 12309{
05394f39 12310 struct drm_i915_gem_object *obj;
79e53945 12311
308e5bcb
JB
12312 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12313 mode_cmd->handles[0]));
c8725226 12314 if (&obj->base == NULL)
cce13ff7 12315 return ERR_PTR(-ENOENT);
79e53945 12316
d2dff872 12317 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
12318}
12319
4520f53a 12320#ifndef CONFIG_DRM_I915_FBDEV
0632fef6 12321static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
12322{
12323}
12324#endif
12325
79e53945 12326static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 12327 .fb_create = intel_user_framebuffer_create,
0632fef6 12328 .output_poll_changed = intel_fbdev_output_poll_changed,
79e53945
JB
12329};
12330
e70236a8
JB
12331/* Set up chip specific display functions */
12332static void intel_init_display(struct drm_device *dev)
12333{
12334 struct drm_i915_private *dev_priv = dev->dev_private;
12335
ee9300bb
DV
12336 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12337 dev_priv->display.find_dpll = g4x_find_best_dpll;
ef9348c8
CML
12338 else if (IS_CHERRYVIEW(dev))
12339 dev_priv->display.find_dpll = chv_find_best_dpll;
ee9300bb
DV
12340 else if (IS_VALLEYVIEW(dev))
12341 dev_priv->display.find_dpll = vlv_find_best_dpll;
12342 else if (IS_PINEVIEW(dev))
12343 dev_priv->display.find_dpll = pnv_find_best_dpll;
12344 else
12345 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12346
affa9354 12347 if (HAS_DDI(dev)) {
0e8ffe1b 12348 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
4c6baa59 12349 dev_priv->display.get_plane_config = ironlake_get_plane_config;
09b4ddf9 12350 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
4f771f10
PZ
12351 dev_priv->display.crtc_enable = haswell_crtc_enable;
12352 dev_priv->display.crtc_disable = haswell_crtc_disable;
df8ad70c 12353 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12354 dev_priv->display.update_primary_plane =
12355 ironlake_update_primary_plane;
09b4ddf9 12356 } else if (HAS_PCH_SPLIT(dev)) {
0e8ffe1b 12357 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
4c6baa59 12358 dev_priv->display.get_plane_config = ironlake_get_plane_config;
f564048e 12359 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
12360 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12361 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 12362 dev_priv->display.off = ironlake_crtc_off;
262ca2b0
MR
12363 dev_priv->display.update_primary_plane =
12364 ironlake_update_primary_plane;
89b667f8
JB
12365 } else if (IS_VALLEYVIEW(dev)) {
12366 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12367 dev_priv->display.get_plane_config = i9xx_get_plane_config;
89b667f8
JB
12368 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
12369 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12370 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12371 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12372 dev_priv->display.update_primary_plane =
12373 i9xx_update_primary_plane;
f564048e 12374 } else {
0e8ffe1b 12375 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
1ad292b5 12376 dev_priv->display.get_plane_config = i9xx_get_plane_config;
f564048e 12377 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
12378 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12379 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 12380 dev_priv->display.off = i9xx_crtc_off;
262ca2b0
MR
12381 dev_priv->display.update_primary_plane =
12382 i9xx_update_primary_plane;
f564048e 12383 }
e70236a8 12384
e70236a8 12385 /* Returns the core display clock speed */
25eb05fc
JB
12386 if (IS_VALLEYVIEW(dev))
12387 dev_priv->display.get_display_clock_speed =
12388 valleyview_get_display_clock_speed;
12389 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
12390 dev_priv->display.get_display_clock_speed =
12391 i945_get_display_clock_speed;
12392 else if (IS_I915G(dev))
12393 dev_priv->display.get_display_clock_speed =
12394 i915_get_display_clock_speed;
257a7ffc 12395 else if (IS_I945GM(dev) || IS_845G(dev))
e70236a8
JB
12396 dev_priv->display.get_display_clock_speed =
12397 i9xx_misc_get_display_clock_speed;
257a7ffc
DV
12398 else if (IS_PINEVIEW(dev))
12399 dev_priv->display.get_display_clock_speed =
12400 pnv_get_display_clock_speed;
e70236a8
JB
12401 else if (IS_I915GM(dev))
12402 dev_priv->display.get_display_clock_speed =
12403 i915gm_get_display_clock_speed;
12404 else if (IS_I865G(dev))
12405 dev_priv->display.get_display_clock_speed =
12406 i865_get_display_clock_speed;
f0f8a9ce 12407 else if (IS_I85X(dev))
e70236a8
JB
12408 dev_priv->display.get_display_clock_speed =
12409 i855_get_display_clock_speed;
12410 else /* 852, 830 */
12411 dev_priv->display.get_display_clock_speed =
12412 i830_get_display_clock_speed;
12413
7f8a8569 12414 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 12415 if (IS_GEN5(dev)) {
674cf967 12416 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 12417 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 12418 } else if (IS_GEN6(dev)) {
674cf967 12419 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 12420 dev_priv->display.write_eld = ironlake_write_eld;
9a952a0d
PZ
12421 dev_priv->display.modeset_global_resources =
12422 snb_modeset_global_resources;
357555c0
JB
12423 } else if (IS_IVYBRIDGE(dev)) {
12424 /* FIXME: detect B0+ stepping and use auto training */
12425 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 12426 dev_priv->display.write_eld = ironlake_write_eld;
01a415fd
DV
12427 dev_priv->display.modeset_global_resources =
12428 ivb_modeset_global_resources;
4e0bbc31 12429 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
c82e4d26 12430 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 12431 dev_priv->display.write_eld = haswell_write_eld;
d6dd9eb1
DV
12432 dev_priv->display.modeset_global_resources =
12433 haswell_modeset_global_resources;
a0e63c22 12434 }
6067aaea 12435 } else if (IS_G4X(dev)) {
e0dac65e 12436 dev_priv->display.write_eld = g4x_write_eld;
30a970c6
JB
12437 } else if (IS_VALLEYVIEW(dev)) {
12438 dev_priv->display.modeset_global_resources =
12439 valleyview_modeset_global_resources;
9ca2fe73 12440 dev_priv->display.write_eld = ironlake_write_eld;
e70236a8 12441 }
8c9f3aaf
JB
12442
12443 /* Default just returns -ENODEV to indicate unsupported */
12444 dev_priv->display.queue_flip = intel_default_queue_flip;
12445
12446 switch (INTEL_INFO(dev)->gen) {
12447 case 2:
12448 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12449 break;
12450
12451 case 3:
12452 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12453 break;
12454
12455 case 4:
12456 case 5:
12457 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12458 break;
12459
12460 case 6:
12461 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12462 break;
7c9017e5 12463 case 7:
4e0bbc31 12464 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
12465 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12466 break;
8c9f3aaf 12467 }
7bd688cd
JN
12468
12469 intel_panel_init_backlight_funcs(dev);
e70236a8
JB
12470}
12471
b690e96c
JB
12472/*
12473 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12474 * resume, or other times. This quirk makes sure that's the case for
12475 * affected systems.
12476 */
0206e353 12477static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
12478{
12479 struct drm_i915_private *dev_priv = dev->dev_private;
12480
12481 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 12482 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
12483}
12484
435793df
KP
12485/*
12486 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
12487 */
12488static void quirk_ssc_force_disable(struct drm_device *dev)
12489{
12490 struct drm_i915_private *dev_priv = dev->dev_private;
12491 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 12492 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
12493}
12494
4dca20ef 12495/*
5a15ab5b
CE
12496 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
12497 * brightness value
4dca20ef
CE
12498 */
12499static void quirk_invert_brightness(struct drm_device *dev)
12500{
12501 struct drm_i915_private *dev_priv = dev->dev_private;
12502 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 12503 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
12504}
12505
9c72cc6f
SD
12506/* Some VBT's incorrectly indicate no backlight is present */
12507static void quirk_backlight_present(struct drm_device *dev)
12508{
12509 struct drm_i915_private *dev_priv = dev->dev_private;
12510 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
12511 DRM_INFO("applying backlight present quirk\n");
12512}
12513
b690e96c
JB
12514struct intel_quirk {
12515 int device;
12516 int subsystem_vendor;
12517 int subsystem_device;
12518 void (*hook)(struct drm_device *dev);
12519};
12520
5f85f176
EE
12521/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
12522struct intel_dmi_quirk {
12523 void (*hook)(struct drm_device *dev);
12524 const struct dmi_system_id (*dmi_id_list)[];
12525};
12526
12527static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
12528{
12529 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
12530 return 1;
12531}
12532
12533static const struct intel_dmi_quirk intel_dmi_quirks[] = {
12534 {
12535 .dmi_id_list = &(const struct dmi_system_id[]) {
12536 {
12537 .callback = intel_dmi_reverse_brightness,
12538 .ident = "NCR Corporation",
12539 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
12540 DMI_MATCH(DMI_PRODUCT_NAME, ""),
12541 },
12542 },
12543 { } /* terminating entry */
12544 },
12545 .hook = quirk_invert_brightness,
12546 },
12547};
12548
c43b5634 12549static struct intel_quirk intel_quirks[] = {
b690e96c 12550 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 12551 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 12552
b690e96c
JB
12553 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
12554 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
12555
b690e96c
JB
12556 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
12557 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
12558
435793df
KP
12559 /* Lenovo U160 cannot use SSC on LVDS */
12560 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
12561
12562 /* Sony Vaio Y cannot use SSC on LVDS */
12563 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 12564
be505f64
AH
12565 /* Acer Aspire 5734Z must invert backlight brightness */
12566 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
12567
12568 /* Acer/eMachines G725 */
12569 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
12570
12571 /* Acer/eMachines e725 */
12572 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
12573
12574 /* Acer/Packard Bell NCL20 */
12575 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
12576
12577 /* Acer Aspire 4736Z */
12578 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
12579
12580 /* Acer Aspire 5336 */
12581 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
12582
12583 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
12584 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c
SD
12585
12586 /* Toshiba CB35 Chromebook (Celeron 2955U) */
12587 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
12588
12589 /* HP Chromebook 14 (Celeron 2955U) */
12590 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
b690e96c
JB
12591};
12592
12593static void intel_init_quirks(struct drm_device *dev)
12594{
12595 struct pci_dev *d = dev->pdev;
12596 int i;
12597
12598 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
12599 struct intel_quirk *q = &intel_quirks[i];
12600
12601 if (d->device == q->device &&
12602 (d->subsystem_vendor == q->subsystem_vendor ||
12603 q->subsystem_vendor == PCI_ANY_ID) &&
12604 (d->subsystem_device == q->subsystem_device ||
12605 q->subsystem_device == PCI_ANY_ID))
12606 q->hook(dev);
12607 }
5f85f176
EE
12608 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
12609 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
12610 intel_dmi_quirks[i].hook(dev);
12611 }
b690e96c
JB
12612}
12613
9cce37f4
JB
12614/* Disable the VGA plane that we never use */
12615static void i915_disable_vga(struct drm_device *dev)
12616{
12617 struct drm_i915_private *dev_priv = dev->dev_private;
12618 u8 sr1;
766aa1c4 12619 u32 vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 12620
2b37c616 12621 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 12622 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 12623 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
12624 sr1 = inb(VGA_SR_DATA);
12625 outb(sr1 | 1<<5, VGA_SR_DATA);
12626 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
12627 udelay(300);
12628
12629 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
12630 POSTING_READ(vga_reg);
12631}
12632
f817586c
DV
12633void intel_modeset_init_hw(struct drm_device *dev)
12634{
a8f78b58
ED
12635 intel_prepare_ddi(dev);
12636
f8bf63fd
VS
12637 if (IS_VALLEYVIEW(dev))
12638 vlv_update_cdclk(dev);
12639
f817586c
DV
12640 intel_init_clock_gating(dev);
12641
8090c6b9 12642 intel_enable_gt_powersave(dev);
f817586c
DV
12643}
12644
7d708ee4
ID
12645void intel_modeset_suspend_hw(struct drm_device *dev)
12646{
12647 intel_suspend_hw(dev);
12648}
12649
79e53945
JB
12650void intel_modeset_init(struct drm_device *dev)
12651{
652c393a 12652 struct drm_i915_private *dev_priv = dev->dev_private;
1fe47785 12653 int sprite, ret;
8cc87b75 12654 enum pipe pipe;
46f297fb 12655 struct intel_crtc *crtc;
79e53945
JB
12656
12657 drm_mode_config_init(dev);
12658
12659 dev->mode_config.min_width = 0;
12660 dev->mode_config.min_height = 0;
12661
019d96cb
DA
12662 dev->mode_config.preferred_depth = 24;
12663 dev->mode_config.prefer_shadow = 1;
12664
e6ecefaa 12665 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 12666
b690e96c
JB
12667 intel_init_quirks(dev);
12668
1fa61106
ED
12669 intel_init_pm(dev);
12670
e3c74757
BW
12671 if (INTEL_INFO(dev)->num_pipes == 0)
12672 return;
12673
e70236a8
JB
12674 intel_init_display(dev);
12675
a6c45cf0
CW
12676 if (IS_GEN2(dev)) {
12677 dev->mode_config.max_width = 2048;
12678 dev->mode_config.max_height = 2048;
12679 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
12680 dev->mode_config.max_width = 4096;
12681 dev->mode_config.max_height = 4096;
79e53945 12682 } else {
a6c45cf0
CW
12683 dev->mode_config.max_width = 8192;
12684 dev->mode_config.max_height = 8192;
79e53945 12685 }
068be561
DL
12686
12687 if (IS_GEN2(dev)) {
12688 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
12689 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
12690 } else {
12691 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
12692 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
12693 }
12694
5d4545ae 12695 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
79e53945 12696
28c97730 12697 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
12698 INTEL_INFO(dev)->num_pipes,
12699 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 12700
8cc87b75
DL
12701 for_each_pipe(pipe) {
12702 intel_crtc_init(dev, pipe);
1fe47785
DL
12703 for_each_sprite(pipe, sprite) {
12704 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 12705 if (ret)
06da8da2 12706 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 12707 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 12708 }
79e53945
JB
12709 }
12710
f42bb70d
JB
12711 intel_init_dpio(dev);
12712
e72f9fbf 12713 intel_shared_dpll_init(dev);
ee7b9f93 12714
9cce37f4
JB
12715 /* Just disable it once at startup */
12716 i915_disable_vga(dev);
79e53945 12717 intel_setup_outputs(dev);
11be49eb
CW
12718
12719 /* Just in case the BIOS is doing something questionable. */
12720 intel_disable_fbc(dev);
fa9fa083 12721
6e9f798d 12722 drm_modeset_lock_all(dev);
fa9fa083 12723 intel_modeset_setup_hw_state(dev, false);
6e9f798d 12724 drm_modeset_unlock_all(dev);
46f297fb 12725
d3fcc808 12726 for_each_intel_crtc(dev, crtc) {
46f297fb
JB
12727 if (!crtc->active)
12728 continue;
12729
46f297fb 12730 /*
46f297fb
JB
12731 * Note that reserving the BIOS fb up front prevents us
12732 * from stuffing other stolen allocations like the ring
12733 * on top. This prevents some ugliness at boot time, and
12734 * can even allow for smooth boot transitions if the BIOS
12735 * fb is large enough for the active pipe configuration.
12736 */
12737 if (dev_priv->display.get_plane_config) {
12738 dev_priv->display.get_plane_config(crtc,
12739 &crtc->plane_config);
12740 /*
12741 * If the fb is shared between multiple heads, we'll
12742 * just get the first one.
12743 */
484b41dd 12744 intel_find_plane_obj(crtc, &crtc->plane_config);
46f297fb 12745 }
46f297fb 12746 }
2c7111db
CW
12747}
12748
7fad798e
DV
12749static void intel_enable_pipe_a(struct drm_device *dev)
12750{
12751 struct intel_connector *connector;
12752 struct drm_connector *crt = NULL;
12753 struct intel_load_detect_pipe load_detect_temp;
51fd371b 12754 struct drm_modeset_acquire_ctx ctx;
7fad798e
DV
12755
12756 /* We can't just switch on the pipe A, we need to set things up with a
12757 * proper mode and output configuration. As a gross hack, enable pipe A
12758 * by enabling the load detect pipe once. */
12759 list_for_each_entry(connector,
12760 &dev->mode_config.connector_list,
12761 base.head) {
12762 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
12763 crt = &connector->base;
12764 break;
12765 }
12766 }
12767
12768 if (!crt)
12769 return;
12770
51fd371b
RC
12771 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, &ctx))
12772 intel_release_load_detect_pipe(crt, &load_detect_temp, &ctx);
7fad798e 12773
652c393a 12774
7fad798e
DV
12775}
12776
fa555837
DV
12777static bool
12778intel_check_plane_mapping(struct intel_crtc *crtc)
12779{
7eb552ae
BW
12780 struct drm_device *dev = crtc->base.dev;
12781 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837
DV
12782 u32 reg, val;
12783
7eb552ae 12784 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
12785 return true;
12786
12787 reg = DSPCNTR(!crtc->plane);
12788 val = I915_READ(reg);
12789
12790 if ((val & DISPLAY_PLANE_ENABLE) &&
12791 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
12792 return false;
12793
12794 return true;
12795}
12796
24929352
DV
12797static void intel_sanitize_crtc(struct intel_crtc *crtc)
12798{
12799 struct drm_device *dev = crtc->base.dev;
12800 struct drm_i915_private *dev_priv = dev->dev_private;
fa555837 12801 u32 reg;
24929352 12802
24929352 12803 /* Clear any frame start delays used for debugging left by the BIOS */
3b117c8f 12804 reg = PIPECONF(crtc->config.cpu_transcoder);
24929352
DV
12805 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
12806
d3eaf884
VS
12807 /* restore vblank interrupts to correct state */
12808 if (crtc->active)
12809 drm_vblank_on(dev, crtc->pipe);
12810 else
12811 drm_vblank_off(dev, crtc->pipe);
12812
24929352 12813 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
12814 * disable the crtc (and hence change the state) if it is wrong. Note
12815 * that gen4+ has a fixed plane -> pipe mapping. */
12816 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
12817 struct intel_connector *connector;
12818 bool plane;
12819
24929352
DV
12820 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
12821 crtc->base.base.id);
12822
12823 /* Pipe has the wrong plane attached and the plane is active.
12824 * Temporarily change the plane mapping and disable everything
12825 * ... */
12826 plane = crtc->plane;
12827 crtc->plane = !plane;
9c8958bc 12828 crtc->primary_enabled = true;
24929352
DV
12829 dev_priv->display.crtc_disable(&crtc->base);
12830 crtc->plane = plane;
12831
12832 /* ... and break all links. */
12833 list_for_each_entry(connector, &dev->mode_config.connector_list,
12834 base.head) {
12835 if (connector->encoder->base.crtc != &crtc->base)
12836 continue;
12837
7f1950fb
EE
12838 connector->base.dpms = DRM_MODE_DPMS_OFF;
12839 connector->base.encoder = NULL;
24929352 12840 }
7f1950fb
EE
12841 /* multiple connectors may have the same encoder:
12842 * handle them and break crtc link separately */
12843 list_for_each_entry(connector, &dev->mode_config.connector_list,
12844 base.head)
12845 if (connector->encoder->base.crtc == &crtc->base) {
12846 connector->encoder->base.crtc = NULL;
12847 connector->encoder->connectors_active = false;
12848 }
24929352
DV
12849
12850 WARN_ON(crtc->active);
12851 crtc->base.enabled = false;
12852 }
24929352 12853
7fad798e
DV
12854 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
12855 crtc->pipe == PIPE_A && !crtc->active) {
12856 /* BIOS forgot to enable pipe A, this mostly happens after
12857 * resume. Force-enable the pipe to fix this, the update_dpms
12858 * call below we restore the pipe to the right state, but leave
12859 * the required bits on. */
12860 intel_enable_pipe_a(dev);
12861 }
12862
24929352
DV
12863 /* Adjust the state of the output pipe according to whether we
12864 * have active connectors/encoders. */
12865 intel_crtc_update_dpms(&crtc->base);
12866
12867 if (crtc->active != crtc->base.enabled) {
12868 struct intel_encoder *encoder;
12869
12870 /* This can happen either due to bugs in the get_hw_state
12871 * functions or because the pipe is force-enabled due to the
12872 * pipe A quirk. */
12873 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
12874 crtc->base.base.id,
12875 crtc->base.enabled ? "enabled" : "disabled",
12876 crtc->active ? "enabled" : "disabled");
12877
12878 crtc->base.enabled = crtc->active;
12879
12880 /* Because we only establish the connector -> encoder ->
12881 * crtc links if something is active, this means the
12882 * crtc is now deactivated. Break the links. connector
12883 * -> encoder links are only establish when things are
12884 * actually up, hence no need to break them. */
12885 WARN_ON(crtc->active);
12886
12887 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
12888 WARN_ON(encoder->connectors_active);
12889 encoder->base.crtc = NULL;
12890 }
12891 }
c5ab3bc0
DV
12892
12893 if (crtc->active || IS_VALLEYVIEW(dev) || INTEL_INFO(dev)->gen < 5) {
4cc31489
DV
12894 /*
12895 * We start out with underrun reporting disabled to avoid races.
12896 * For correct bookkeeping mark this on active crtcs.
12897 *
c5ab3bc0
DV
12898 * Also on gmch platforms we dont have any hardware bits to
12899 * disable the underrun reporting. Which means we need to start
12900 * out with underrun reporting disabled also on inactive pipes,
12901 * since otherwise we'll complain about the garbage we read when
12902 * e.g. coming up after runtime pm.
12903 *
4cc31489
DV
12904 * No protection against concurrent access is required - at
12905 * worst a fifo underrun happens which also sets this to false.
12906 */
12907 crtc->cpu_fifo_underrun_disabled = true;
12908 crtc->pch_fifo_underrun_disabled = true;
80715b2f
VS
12909
12910 update_scanline_offset(crtc);
4cc31489 12911 }
24929352
DV
12912}
12913
12914static void intel_sanitize_encoder(struct intel_encoder *encoder)
12915{
12916 struct intel_connector *connector;
12917 struct drm_device *dev = encoder->base.dev;
12918
12919 /* We need to check both for a crtc link (meaning that the
12920 * encoder is active and trying to read from a pipe) and the
12921 * pipe itself being active. */
12922 bool has_active_crtc = encoder->base.crtc &&
12923 to_intel_crtc(encoder->base.crtc)->active;
12924
12925 if (encoder->connectors_active && !has_active_crtc) {
12926 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
12927 encoder->base.base.id,
8e329a03 12928 encoder->base.name);
24929352
DV
12929
12930 /* Connector is active, but has no active pipe. This is
12931 * fallout from our resume register restoring. Disable
12932 * the encoder manually again. */
12933 if (encoder->base.crtc) {
12934 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
12935 encoder->base.base.id,
8e329a03 12936 encoder->base.name);
24929352 12937 encoder->disable(encoder);
a62d1497
VS
12938 if (encoder->post_disable)
12939 encoder->post_disable(encoder);
24929352 12940 }
7f1950fb
EE
12941 encoder->base.crtc = NULL;
12942 encoder->connectors_active = false;
24929352
DV
12943
12944 /* Inconsistent output/port/pipe state happens presumably due to
12945 * a bug in one of the get_hw_state functions. Or someplace else
12946 * in our code, like the register restore mess on resume. Clamp
12947 * things to off as a safer default. */
12948 list_for_each_entry(connector,
12949 &dev->mode_config.connector_list,
12950 base.head) {
12951 if (connector->encoder != encoder)
12952 continue;
7f1950fb
EE
12953 connector->base.dpms = DRM_MODE_DPMS_OFF;
12954 connector->base.encoder = NULL;
24929352
DV
12955 }
12956 }
12957 /* Enabled encoders without active connectors will be fixed in
12958 * the crtc fixup. */
12959}
12960
04098753 12961void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
12962{
12963 struct drm_i915_private *dev_priv = dev->dev_private;
766aa1c4 12964 u32 vga_reg = i915_vgacntrl_reg(dev);
0fde901f 12965
04098753
ID
12966 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
12967 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
12968 i915_disable_vga(dev);
12969 }
12970}
12971
12972void i915_redisable_vga(struct drm_device *dev)
12973{
12974 struct drm_i915_private *dev_priv = dev->dev_private;
12975
8dc8a27c
PZ
12976 /* This function can be called both from intel_modeset_setup_hw_state or
12977 * at a very early point in our resume sequence, where the power well
12978 * structures are not yet restored. Since this function is at a very
12979 * paranoid "someone might have enabled VGA while we were not looking"
12980 * level, just check if the power well is enabled instead of trying to
12981 * follow the "don't touch the power well if we don't need it" policy
12982 * the rest of the driver uses. */
04098753 12983 if (!intel_display_power_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
12984 return;
12985
04098753 12986 i915_redisable_vga_power_on(dev);
0fde901f
KM
12987}
12988
98ec7739
VS
12989static bool primary_get_hw_state(struct intel_crtc *crtc)
12990{
12991 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
12992
12993 if (!crtc->active)
12994 return false;
12995
12996 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
12997}
12998
30e984df 12999static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
13000{
13001 struct drm_i915_private *dev_priv = dev->dev_private;
13002 enum pipe pipe;
24929352
DV
13003 struct intel_crtc *crtc;
13004 struct intel_encoder *encoder;
13005 struct intel_connector *connector;
5358901f 13006 int i;
24929352 13007
d3fcc808 13008 for_each_intel_crtc(dev, crtc) {
88adfff1 13009 memset(&crtc->config, 0, sizeof(crtc->config));
3b117c8f 13010
9953599b
DV
13011 crtc->config.quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13012
0e8ffe1b
DV
13013 crtc->active = dev_priv->display.get_pipe_config(crtc,
13014 &crtc->config);
24929352
DV
13015
13016 crtc->base.enabled = crtc->active;
98ec7739 13017 crtc->primary_enabled = primary_get_hw_state(crtc);
24929352
DV
13018
13019 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13020 crtc->base.base.id,
13021 crtc->active ? "enabled" : "disabled");
13022 }
13023
5358901f
DV
13024 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13025 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13026
13027 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
13028 pll->active = 0;
d3fcc808 13029 for_each_intel_crtc(dev, crtc) {
5358901f
DV
13030 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
13031 pll->active++;
13032 }
13033 pll->refcount = pll->active;
13034
35c95375
DV
13035 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
13036 pll->name, pll->refcount, pll->on);
bd2bb1b9
PZ
13037
13038 if (pll->refcount)
13039 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5358901f
DV
13040 }
13041
b2784e15 13042 for_each_intel_encoder(dev, encoder) {
24929352
DV
13043 pipe = 0;
13044
13045 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
13046 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13047 encoder->base.crtc = &crtc->base;
1d37b689 13048 encoder->get_config(encoder, &crtc->config);
24929352
DV
13049 } else {
13050 encoder->base.crtc = NULL;
13051 }
13052
13053 encoder->connectors_active = false;
6f2bcceb 13054 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 13055 encoder->base.base.id,
8e329a03 13056 encoder->base.name,
24929352 13057 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 13058 pipe_name(pipe));
24929352
DV
13059 }
13060
13061 list_for_each_entry(connector, &dev->mode_config.connector_list,
13062 base.head) {
13063 if (connector->get_hw_state(connector)) {
13064 connector->base.dpms = DRM_MODE_DPMS_ON;
13065 connector->encoder->connectors_active = true;
13066 connector->base.encoder = &connector->encoder->base;
13067 } else {
13068 connector->base.dpms = DRM_MODE_DPMS_OFF;
13069 connector->base.encoder = NULL;
13070 }
13071 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13072 connector->base.base.id,
c23cc417 13073 connector->base.name,
24929352
DV
13074 connector->base.encoder ? "enabled" : "disabled");
13075 }
30e984df
DV
13076}
13077
13078/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13079 * and i915 state tracking structures. */
13080void intel_modeset_setup_hw_state(struct drm_device *dev,
13081 bool force_restore)
13082{
13083 struct drm_i915_private *dev_priv = dev->dev_private;
13084 enum pipe pipe;
30e984df
DV
13085 struct intel_crtc *crtc;
13086 struct intel_encoder *encoder;
35c95375 13087 int i;
30e984df
DV
13088
13089 intel_modeset_readout_hw_state(dev);
24929352 13090
babea61d
JB
13091 /*
13092 * Now that we have the config, copy it to each CRTC struct
13093 * Note that this could go away if we move to using crtc_config
13094 * checking everywhere.
13095 */
d3fcc808 13096 for_each_intel_crtc(dev, crtc) {
d330a953 13097 if (crtc->active && i915.fastboot) {
f6a83288 13098 intel_mode_from_pipe_config(&crtc->base.mode, &crtc->config);
babea61d
JB
13099 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13100 crtc->base.base.id);
13101 drm_mode_debug_printmodeline(&crtc->base.mode);
13102 }
13103 }
13104
24929352 13105 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 13106 for_each_intel_encoder(dev, encoder) {
24929352
DV
13107 intel_sanitize_encoder(encoder);
13108 }
13109
13110 for_each_pipe(pipe) {
13111 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13112 intel_sanitize_crtc(crtc);
c0b03411 13113 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
24929352 13114 }
9a935856 13115
35c95375
DV
13116 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13117 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13118
13119 if (!pll->on || pll->active)
13120 continue;
13121
13122 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13123
13124 pll->disable(dev_priv, pll);
13125 pll->on = false;
13126 }
13127
96f90c54 13128 if (HAS_PCH_SPLIT(dev))
243e6a44
VS
13129 ilk_wm_get_hw_state(dev);
13130
45e2b5f6 13131 if (force_restore) {
7d0bc1ea
VS
13132 i915_redisable_vga(dev);
13133
f30da187
DV
13134 /*
13135 * We need to use raw interfaces for restoring state to avoid
13136 * checking (bogus) intermediate states.
13137 */
45e2b5f6 13138 for_each_pipe(pipe) {
b5644d05
JB
13139 struct drm_crtc *crtc =
13140 dev_priv->pipe_to_crtc_mapping[pipe];
f30da187
DV
13141
13142 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
f4510a27 13143 crtc->primary->fb);
45e2b5f6
DV
13144 }
13145 } else {
13146 intel_modeset_update_staged_output_state(dev);
13147 }
8af6cf88
DV
13148
13149 intel_modeset_check_state(dev);
2c7111db
CW
13150}
13151
13152void intel_modeset_gem_init(struct drm_device *dev)
13153{
484b41dd 13154 struct drm_crtc *c;
2ff8fde1 13155 struct drm_i915_gem_object *obj;
484b41dd 13156
ae48434c
ID
13157 mutex_lock(&dev->struct_mutex);
13158 intel_init_gt_powersave(dev);
13159 mutex_unlock(&dev->struct_mutex);
13160
1833b134 13161 intel_modeset_init_hw(dev);
02e792fb
DV
13162
13163 intel_setup_overlay(dev);
484b41dd
JB
13164
13165 /*
13166 * Make sure any fbs we allocated at startup are properly
13167 * pinned & fenced. When we do the allocation it's too early
13168 * for this.
13169 */
13170 mutex_lock(&dev->struct_mutex);
70e1e0ec 13171 for_each_crtc(dev, c) {
2ff8fde1
MR
13172 obj = intel_fb_obj(c->primary->fb);
13173 if (obj == NULL)
484b41dd
JB
13174 continue;
13175
2ff8fde1 13176 if (intel_pin_and_fence_fb_obj(dev, obj, NULL)) {
484b41dd
JB
13177 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13178 to_intel_crtc(c)->pipe);
66e514c1
DA
13179 drm_framebuffer_unreference(c->primary->fb);
13180 c->primary->fb = NULL;
484b41dd
JB
13181 }
13182 }
13183 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13184}
13185
4932e2c3
ID
13186void intel_connector_unregister(struct intel_connector *intel_connector)
13187{
13188 struct drm_connector *connector = &intel_connector->base;
13189
13190 intel_panel_destroy_backlight(connector);
34ea3d38 13191 drm_connector_unregister(connector);
4932e2c3
ID
13192}
13193
79e53945
JB
13194void intel_modeset_cleanup(struct drm_device *dev)
13195{
652c393a 13196 struct drm_i915_private *dev_priv = dev->dev_private;
d9255d57 13197 struct drm_connector *connector;
652c393a 13198
fd0c0642
DV
13199 /*
13200 * Interrupts and polling as the first thing to avoid creating havoc.
13201 * Too much stuff here (turning of rps, connectors, ...) would
13202 * experience fancy races otherwise.
13203 */
13204 drm_irq_uninstall(dev);
13205 cancel_work_sync(&dev_priv->hotplug_work);
eb21b92b
JB
13206 dev_priv->pm._irqs_disabled = true;
13207
fd0c0642
DV
13208 /*
13209 * Due to the hpd irq storm handling the hotplug work can re-arm the
13210 * poll handlers. Hence disable polling after hpd handling is shut down.
13211 */
f87ea761 13212 drm_kms_helper_poll_fini(dev);
fd0c0642 13213
652c393a
JB
13214 mutex_lock(&dev->struct_mutex);
13215
723bfd70
JB
13216 intel_unregister_dsm_handler();
13217
973d04f9 13218 intel_disable_fbc(dev);
e70236a8 13219
8090c6b9 13220 intel_disable_gt_powersave(dev);
0cdab21f 13221
930ebb46
DV
13222 ironlake_teardown_rc6(dev);
13223
69341a5e
KH
13224 mutex_unlock(&dev->struct_mutex);
13225
1630fe75
CW
13226 /* flush any delayed tasks or pending work */
13227 flush_scheduled_work();
13228
db31af1d
JN
13229 /* destroy the backlight and sysfs files before encoders/connectors */
13230 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4932e2c3
ID
13231 struct intel_connector *intel_connector;
13232
13233 intel_connector = to_intel_connector(connector);
13234 intel_connector->unregister(intel_connector);
db31af1d 13235 }
d9255d57 13236
79e53945 13237 drm_mode_config_cleanup(dev);
4d7bb011
DV
13238
13239 intel_cleanup_overlay(dev);
ae48434c
ID
13240
13241 mutex_lock(&dev->struct_mutex);
13242 intel_cleanup_gt_powersave(dev);
13243 mutex_unlock(&dev->struct_mutex);
79e53945
JB
13244}
13245
f1c79df3
ZW
13246/*
13247 * Return which encoder is currently attached for connector.
13248 */
df0e9248 13249struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 13250{
df0e9248
CW
13251 return &intel_attached_encoder(connector)->base;
13252}
f1c79df3 13253
df0e9248
CW
13254void intel_connector_attach_encoder(struct intel_connector *connector,
13255 struct intel_encoder *encoder)
13256{
13257 connector->encoder = encoder;
13258 drm_mode_connector_attach_encoder(&connector->base,
13259 &encoder->base);
79e53945 13260}
28d52043
DA
13261
13262/*
13263 * set vga decode state - true == enable VGA decode
13264 */
13265int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13266{
13267 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 13268 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
13269 u16 gmch_ctrl;
13270
75fa041d
CW
13271 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13272 DRM_ERROR("failed to read control word\n");
13273 return -EIO;
13274 }
13275
c0cc8a55
CW
13276 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13277 return 0;
13278
28d52043
DA
13279 if (state)
13280 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13281 else
13282 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
13283
13284 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13285 DRM_ERROR("failed to write control word\n");
13286 return -EIO;
13287 }
13288
28d52043
DA
13289 return 0;
13290}
c4a1d9e4 13291
c4a1d9e4 13292struct intel_display_error_state {
ff57f1b0
PZ
13293
13294 u32 power_well_driver;
13295
63b66e5b
CW
13296 int num_transcoders;
13297
c4a1d9e4
CW
13298 struct intel_cursor_error_state {
13299 u32 control;
13300 u32 position;
13301 u32 base;
13302 u32 size;
52331309 13303 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
13304
13305 struct intel_pipe_error_state {
ddf9c536 13306 bool power_domain_on;
c4a1d9e4 13307 u32 source;
f301b1e1 13308 u32 stat;
52331309 13309 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
13310
13311 struct intel_plane_error_state {
13312 u32 control;
13313 u32 stride;
13314 u32 size;
13315 u32 pos;
13316 u32 addr;
13317 u32 surface;
13318 u32 tile_offset;
52331309 13319 } plane[I915_MAX_PIPES];
63b66e5b
CW
13320
13321 struct intel_transcoder_error_state {
ddf9c536 13322 bool power_domain_on;
63b66e5b
CW
13323 enum transcoder cpu_transcoder;
13324
13325 u32 conf;
13326
13327 u32 htotal;
13328 u32 hblank;
13329 u32 hsync;
13330 u32 vtotal;
13331 u32 vblank;
13332 u32 vsync;
13333 } transcoder[4];
c4a1d9e4
CW
13334};
13335
13336struct intel_display_error_state *
13337intel_display_capture_error_state(struct drm_device *dev)
13338{
fbee40df 13339 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4 13340 struct intel_display_error_state *error;
63b66e5b
CW
13341 int transcoders[] = {
13342 TRANSCODER_A,
13343 TRANSCODER_B,
13344 TRANSCODER_C,
13345 TRANSCODER_EDP,
13346 };
c4a1d9e4
CW
13347 int i;
13348
63b66e5b
CW
13349 if (INTEL_INFO(dev)->num_pipes == 0)
13350 return NULL;
13351
9d1cb914 13352 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
13353 if (error == NULL)
13354 return NULL;
13355
190be112 13356 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
ff57f1b0
PZ
13357 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13358
52331309 13359 for_each_pipe(i) {
ddf9c536 13360 error->pipe[i].power_domain_on =
bfafe93a
ID
13361 intel_display_power_enabled_unlocked(dev_priv,
13362 POWER_DOMAIN_PIPE(i));
ddf9c536 13363 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
13364 continue;
13365
5efb3e28
VS
13366 error->cursor[i].control = I915_READ(CURCNTR(i));
13367 error->cursor[i].position = I915_READ(CURPOS(i));
13368 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
13369
13370 error->plane[i].control = I915_READ(DSPCNTR(i));
13371 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
80ca378b 13372 if (INTEL_INFO(dev)->gen <= 3) {
51889b35 13373 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
13374 error->plane[i].pos = I915_READ(DSPPOS(i));
13375 }
ca291363
PZ
13376 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13377 error->plane[i].addr = I915_READ(DSPADDR(i));
c4a1d9e4
CW
13378 if (INTEL_INFO(dev)->gen >= 4) {
13379 error->plane[i].surface = I915_READ(DSPSURF(i));
13380 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13381 }
13382
c4a1d9e4 13383 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 13384
3abfce77 13385 if (HAS_GMCH_DISPLAY(dev))
f301b1e1 13386 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
13387 }
13388
13389 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13390 if (HAS_DDI(dev_priv->dev))
13391 error->num_transcoders++; /* Account for eDP. */
13392
13393 for (i = 0; i < error->num_transcoders; i++) {
13394 enum transcoder cpu_transcoder = transcoders[i];
13395
ddf9c536 13396 error->transcoder[i].power_domain_on =
bfafe93a 13397 intel_display_power_enabled_unlocked(dev_priv,
38cc1daf 13398 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 13399 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
13400 continue;
13401
63b66e5b
CW
13402 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13403
13404 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13405 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13406 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13407 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13408 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13409 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13410 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
13411 }
13412
13413 return error;
13414}
13415
edc3d884
MK
13416#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13417
c4a1d9e4 13418void
edc3d884 13419intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
13420 struct drm_device *dev,
13421 struct intel_display_error_state *error)
13422{
13423 int i;
13424
63b66e5b
CW
13425 if (!error)
13426 return;
13427
edc3d884 13428 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 13429 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 13430 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 13431 error->power_well_driver);
52331309 13432 for_each_pipe(i) {
edc3d884 13433 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536
ID
13434 err_printf(m, " Power: %s\n",
13435 error->pipe[i].power_domain_on ? "on" : "off");
edc3d884 13436 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 13437 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
13438
13439 err_printf(m, "Plane [%d]:\n", i);
13440 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
13441 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 13442 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
13443 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
13444 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 13445 }
4b71a570 13446 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 13447 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 13448 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
13449 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
13450 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
13451 }
13452
edc3d884
MK
13453 err_printf(m, "Cursor [%d]:\n", i);
13454 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
13455 err_printf(m, " POS: %08x\n", error->cursor[i].position);
13456 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 13457 }
63b66e5b
CW
13458
13459 for (i = 0; i < error->num_transcoders; i++) {
1cf84bb6 13460 err_printf(m, "CPU transcoder: %c\n",
63b66e5b 13461 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536
ID
13462 err_printf(m, " Power: %s\n",
13463 error->transcoder[i].power_domain_on ? "on" : "off");
63b66e5b
CW
13464 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
13465 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
13466 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
13467 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
13468 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
13469 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
13470 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
13471 }
c4a1d9e4 13472}
This page took 2.623122 seconds and 5 git commands to generate.