drm/i915: export a CPT mode set verification function
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
23b2f8bb 27#include <linux/cpufreq.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
79e53945
JB
35#include "drmP.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
ab2c0672 40#include "drm_dp_helper.h"
79e53945
JB
41
42#include "drm_crtc_helper.h"
43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
7662c8bd 47static void intel_update_watermarks(struct drm_device *dev);
3dec0095 48static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 49static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
50
51typedef struct {
0206e353
AJ
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
79e53945
JB
61} intel_clock_t;
62
63typedef struct {
0206e353 64 int min, max;
79e53945
JB
65} intel_range_t;
66
67typedef struct {
0206e353
AJ
68 int dot_limit;
69 int p2_slow, p2_fast;
79e53945
JB
70} intel_p2_t;
71
72#define INTEL_P2_NUM 2
d4906093
ML
73typedef struct intel_limit intel_limit_t;
74struct intel_limit {
0206e353
AJ
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *);
d4906093 79};
79e53945 80
2377b741
JB
81/* FDI */
82#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83
d4906093
ML
84static bool
85intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *best_clock);
87static bool
88intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *best_clock);
79e53945 90
a4fc5ed6
KP
91static bool
92intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93 int target, int refclk, intel_clock_t *best_clock);
5eb08b69 94static bool
f2b115e6
AJ
95intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96 int target, int refclk, intel_clock_t *best_clock);
a4fc5ed6 97
021357ac
CW
98static inline u32 /* units of 100MHz */
99intel_fdi_link_freq(struct drm_device *dev)
100{
8b99e68c
CW
101 if (IS_GEN5(dev)) {
102 struct drm_i915_private *dev_priv = dev->dev_private;
103 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104 } else
105 return 27;
021357ac
CW
106}
107
e4b36699 108static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
109 .dot = { .min = 25000, .max = 350000 },
110 .vco = { .min = 930000, .max = 1400000 },
111 .n = { .min = 3, .max = 16 },
112 .m = { .min = 96, .max = 140 },
113 .m1 = { .min = 18, .max = 26 },
114 .m2 = { .min = 6, .max = 16 },
115 .p = { .min = 4, .max = 128 },
116 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
117 .p2 = { .dot_limit = 165000,
118 .p2_slow = 4, .p2_fast = 2 },
d4906093 119 .find_pll = intel_find_best_PLL,
e4b36699
KP
120};
121
122static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
123 .dot = { .min = 25000, .max = 350000 },
124 .vco = { .min = 930000, .max = 1400000 },
125 .n = { .min = 3, .max = 16 },
126 .m = { .min = 96, .max = 140 },
127 .m1 = { .min = 18, .max = 26 },
128 .m2 = { .min = 6, .max = 16 },
129 .p = { .min = 4, .max = 128 },
130 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
131 .p2 = { .dot_limit = 165000,
132 .p2_slow = 14, .p2_fast = 7 },
d4906093 133 .find_pll = intel_find_best_PLL,
e4b36699 134};
273e27ca 135
e4b36699 136static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
137 .dot = { .min = 20000, .max = 400000 },
138 .vco = { .min = 1400000, .max = 2800000 },
139 .n = { .min = 1, .max = 6 },
140 .m = { .min = 70, .max = 120 },
141 .m1 = { .min = 10, .max = 22 },
142 .m2 = { .min = 5, .max = 9 },
143 .p = { .min = 5, .max = 80 },
144 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
145 .p2 = { .dot_limit = 200000,
146 .p2_slow = 10, .p2_fast = 5 },
d4906093 147 .find_pll = intel_find_best_PLL,
e4b36699
KP
148};
149
150static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
151 .dot = { .min = 20000, .max = 400000 },
152 .vco = { .min = 1400000, .max = 2800000 },
153 .n = { .min = 1, .max = 6 },
154 .m = { .min = 70, .max = 120 },
155 .m1 = { .min = 10, .max = 22 },
156 .m2 = { .min = 5, .max = 9 },
157 .p = { .min = 7, .max = 98 },
158 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
159 .p2 = { .dot_limit = 112000,
160 .p2_slow = 14, .p2_fast = 7 },
d4906093 161 .find_pll = intel_find_best_PLL,
e4b36699
KP
162};
163
273e27ca 164
e4b36699 165static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
166 .dot = { .min = 25000, .max = 270000 },
167 .vco = { .min = 1750000, .max = 3500000},
168 .n = { .min = 1, .max = 4 },
169 .m = { .min = 104, .max = 138 },
170 .m1 = { .min = 17, .max = 23 },
171 .m2 = { .min = 5, .max = 11 },
172 .p = { .min = 10, .max = 30 },
173 .p1 = { .min = 1, .max = 3},
174 .p2 = { .dot_limit = 270000,
175 .p2_slow = 10,
176 .p2_fast = 10
044c7c41 177 },
d4906093 178 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
179};
180
181static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
182 .dot = { .min = 22000, .max = 400000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 16, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 5, .max = 80 },
189 .p1 = { .min = 1, .max = 8},
190 .p2 = { .dot_limit = 165000,
191 .p2_slow = 10, .p2_fast = 5 },
d4906093 192 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
193};
194
195static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
196 .dot = { .min = 20000, .max = 115000 },
197 .vco = { .min = 1750000, .max = 3500000 },
198 .n = { .min = 1, .max = 3 },
199 .m = { .min = 104, .max = 138 },
200 .m1 = { .min = 17, .max = 23 },
201 .m2 = { .min = 5, .max = 11 },
202 .p = { .min = 28, .max = 112 },
203 .p1 = { .min = 2, .max = 8 },
204 .p2 = { .dot_limit = 0,
205 .p2_slow = 14, .p2_fast = 14
044c7c41 206 },
d4906093 207 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
208};
209
210static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
211 .dot = { .min = 80000, .max = 224000 },
212 .vco = { .min = 1750000, .max = 3500000 },
213 .n = { .min = 1, .max = 3 },
214 .m = { .min = 104, .max = 138 },
215 .m1 = { .min = 17, .max = 23 },
216 .m2 = { .min = 5, .max = 11 },
217 .p = { .min = 14, .max = 42 },
218 .p1 = { .min = 2, .max = 6 },
219 .p2 = { .dot_limit = 0,
220 .p2_slow = 7, .p2_fast = 7
044c7c41 221 },
d4906093 222 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
223};
224
225static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
226 .dot = { .min = 161670, .max = 227000 },
227 .vco = { .min = 1750000, .max = 3500000},
228 .n = { .min = 1, .max = 2 },
229 .m = { .min = 97, .max = 108 },
230 .m1 = { .min = 0x10, .max = 0x12 },
231 .m2 = { .min = 0x05, .max = 0x06 },
232 .p = { .min = 10, .max = 20 },
233 .p1 = { .min = 1, .max = 2},
234 .p2 = { .dot_limit = 0,
273e27ca 235 .p2_slow = 10, .p2_fast = 10 },
0206e353 236 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
237};
238
f2b115e6 239static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
240 .dot = { .min = 20000, .max = 400000},
241 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 242 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
243 .n = { .min = 3, .max = 6 },
244 .m = { .min = 2, .max = 256 },
273e27ca 245 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
246 .m1 = { .min = 0, .max = 0 },
247 .m2 = { .min = 0, .max = 254 },
248 .p = { .min = 5, .max = 80 },
249 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
250 .p2 = { .dot_limit = 200000,
251 .p2_slow = 10, .p2_fast = 5 },
6115707b 252 .find_pll = intel_find_best_PLL,
e4b36699
KP
253};
254
f2b115e6 255static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
256 .dot = { .min = 20000, .max = 400000 },
257 .vco = { .min = 1700000, .max = 3500000 },
258 .n = { .min = 3, .max = 6 },
259 .m = { .min = 2, .max = 256 },
260 .m1 = { .min = 0, .max = 0 },
261 .m2 = { .min = 0, .max = 254 },
262 .p = { .min = 7, .max = 112 },
263 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
264 .p2 = { .dot_limit = 112000,
265 .p2_slow = 14, .p2_fast = 14 },
6115707b 266 .find_pll = intel_find_best_PLL,
e4b36699
KP
267};
268
273e27ca
EA
269/* Ironlake / Sandybridge
270 *
271 * We calculate clock using (register_value + 2) for N/M1/M2, so here
272 * the range value for them is (actual_value - 2).
273 */
b91ad0ec 274static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
275 .dot = { .min = 25000, .max = 350000 },
276 .vco = { .min = 1760000, .max = 3510000 },
277 .n = { .min = 1, .max = 5 },
278 .m = { .min = 79, .max = 127 },
279 .m1 = { .min = 12, .max = 22 },
280 .m2 = { .min = 5, .max = 9 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 225000,
284 .p2_slow = 10, .p2_fast = 5 },
4547668a 285 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
286};
287
b91ad0ec 288static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
289 .dot = { .min = 25000, .max = 350000 },
290 .vco = { .min = 1760000, .max = 3510000 },
291 .n = { .min = 1, .max = 3 },
292 .m = { .min = 79, .max = 118 },
293 .m1 = { .min = 12, .max = 22 },
294 .m2 = { .min = 5, .max = 9 },
295 .p = { .min = 28, .max = 112 },
296 .p1 = { .min = 2, .max = 8 },
297 .p2 = { .dot_limit = 225000,
298 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
299 .find_pll = intel_g4x_find_best_PLL,
300};
301
302static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 3 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 14, .max = 56 },
310 .p1 = { .min = 2, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
313 .find_pll = intel_g4x_find_best_PLL,
314};
315
273e27ca 316/* LVDS 100mhz refclk limits. */
b91ad0ec 317static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
318 .dot = { .min = 25000, .max = 350000 },
319 .vco = { .min = 1760000, .max = 3510000 },
320 .n = { .min = 1, .max = 2 },
321 .m = { .min = 79, .max = 126 },
322 .m1 = { .min = 12, .max = 22 },
323 .m2 = { .min = 5, .max = 9 },
324 .p = { .min = 28, .max = 112 },
0206e353 325 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
326 .p2 = { .dot_limit = 225000,
327 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
328 .find_pll = intel_g4x_find_best_PLL,
329};
330
331static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 126 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 42 },
0206e353 339 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
342 .find_pll = intel_g4x_find_best_PLL,
343};
344
345static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000},
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 81, .max = 90 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 10, .max = 20 },
353 .p1 = { .min = 1, .max = 2},
354 .p2 = { .dot_limit = 0,
273e27ca 355 .p2_slow = 10, .p2_fast = 10 },
0206e353 356 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
357};
358
1b894b59
CW
359static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360 int refclk)
2c07245f 361{
b91ad0ec
ZW
362 struct drm_device *dev = crtc->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 364 const intel_limit_t *limit;
b91ad0ec
ZW
365
366 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b91ad0ec
ZW
367 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368 LVDS_CLKB_POWER_UP) {
369 /* LVDS dual channel */
1b894b59 370 if (refclk == 100000)
b91ad0ec
ZW
371 limit = &intel_limits_ironlake_dual_lvds_100m;
372 else
373 limit = &intel_limits_ironlake_dual_lvds;
374 } else {
1b894b59 375 if (refclk == 100000)
b91ad0ec
ZW
376 limit = &intel_limits_ironlake_single_lvds_100m;
377 else
378 limit = &intel_limits_ironlake_single_lvds;
379 }
380 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
381 HAS_eDP)
382 limit = &intel_limits_ironlake_display_port;
2c07245f 383 else
b91ad0ec 384 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
385
386 return limit;
387}
388
044c7c41
ML
389static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
390{
391 struct drm_device *dev = crtc->dev;
392 struct drm_i915_private *dev_priv = dev->dev_private;
393 const intel_limit_t *limit;
394
395 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397 LVDS_CLKB_POWER_UP)
398 /* LVDS with dual channel */
e4b36699 399 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
400 else
401 /* LVDS with dual channel */
e4b36699 402 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
403 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 405 limit = &intel_limits_g4x_hdmi;
044c7c41 406 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 407 limit = &intel_limits_g4x_sdvo;
0206e353 408 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 409 limit = &intel_limits_g4x_display_port;
044c7c41 410 } else /* The option is for other outputs */
e4b36699 411 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
412
413 return limit;
414}
415
1b894b59 416static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
417{
418 struct drm_device *dev = crtc->dev;
419 const intel_limit_t *limit;
420
bad720ff 421 if (HAS_PCH_SPLIT(dev))
1b894b59 422 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 423 else if (IS_G4X(dev)) {
044c7c41 424 limit = intel_g4x_limit(crtc);
f2b115e6 425 } else if (IS_PINEVIEW(dev)) {
2177832f 426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 427 limit = &intel_limits_pineview_lvds;
2177832f 428 else
f2b115e6 429 limit = &intel_limits_pineview_sdvo;
a6c45cf0
CW
430 } else if (!IS_GEN2(dev)) {
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432 limit = &intel_limits_i9xx_lvds;
433 else
434 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
435 } else {
436 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 437 limit = &intel_limits_i8xx_lvds;
79e53945 438 else
e4b36699 439 limit = &intel_limits_i8xx_dvo;
79e53945
JB
440 }
441 return limit;
442}
443
f2b115e6
AJ
444/* m1 is reserved as 0 in Pineview, n is a ring counter */
445static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 446{
2177832f
SL
447 clock->m = clock->m2 + 2;
448 clock->p = clock->p1 * clock->p2;
449 clock->vco = refclk * clock->m / clock->n;
450 clock->dot = clock->vco / clock->p;
451}
452
453static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
454{
f2b115e6
AJ
455 if (IS_PINEVIEW(dev)) {
456 pineview_clock(refclk, clock);
2177832f
SL
457 return;
458 }
79e53945
JB
459 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460 clock->p = clock->p1 * clock->p2;
461 clock->vco = refclk * clock->m / (clock->n + 2);
462 clock->dot = clock->vco / clock->p;
463}
464
79e53945
JB
465/**
466 * Returns whether any output on the specified pipe is of the specified type
467 */
4ef69c7a 468bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 469{
4ef69c7a
CW
470 struct drm_device *dev = crtc->dev;
471 struct drm_mode_config *mode_config = &dev->mode_config;
472 struct intel_encoder *encoder;
473
474 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475 if (encoder->base.crtc == crtc && encoder->type == type)
476 return true;
477
478 return false;
79e53945
JB
479}
480
7c04d1d9 481#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
482/**
483 * Returns whether the given set of divisors are valid for a given refclk with
484 * the given connectors.
485 */
486
1b894b59
CW
487static bool intel_PLL_is_valid(struct drm_device *dev,
488 const intel_limit_t *limit,
489 const intel_clock_t *clock)
79e53945 490{
79e53945 491 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 492 INTELPllInvalid("p1 out of range\n");
79e53945 493 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 494 INTELPllInvalid("p out of range\n");
79e53945 495 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 496 INTELPllInvalid("m2 out of range\n");
79e53945 497 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 498 INTELPllInvalid("m1 out of range\n");
f2b115e6 499 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 500 INTELPllInvalid("m1 <= m2\n");
79e53945 501 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 502 INTELPllInvalid("m out of range\n");
79e53945 503 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 504 INTELPllInvalid("n out of range\n");
79e53945 505 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 506 INTELPllInvalid("vco out of range\n");
79e53945
JB
507 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508 * connector, etc., rather than just a single range.
509 */
510 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 511 INTELPllInvalid("dot out of range\n");
79e53945
JB
512
513 return true;
514}
515
d4906093
ML
516static bool
517intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518 int target, int refclk, intel_clock_t *best_clock)
519
79e53945
JB
520{
521 struct drm_device *dev = crtc->dev;
522 struct drm_i915_private *dev_priv = dev->dev_private;
523 intel_clock_t clock;
79e53945
JB
524 int err = target;
525
bc5e5718 526 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 527 (I915_READ(LVDS)) != 0) {
79e53945
JB
528 /*
529 * For LVDS, if the panel is on, just rely on its current
530 * settings for dual-channel. We haven't figured out how to
531 * reliably set up different single/dual channel state, if we
532 * even can.
533 */
534 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535 LVDS_CLKB_POWER_UP)
536 clock.p2 = limit->p2.p2_fast;
537 else
538 clock.p2 = limit->p2.p2_slow;
539 } else {
540 if (target < limit->p2.dot_limit)
541 clock.p2 = limit->p2.p2_slow;
542 else
543 clock.p2 = limit->p2.p2_fast;
544 }
545
0206e353 546 memset(best_clock, 0, sizeof(*best_clock));
79e53945 547
42158660
ZY
548 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549 clock.m1++) {
550 for (clock.m2 = limit->m2.min;
551 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
552 /* m1 is always 0 in Pineview */
553 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
554 break;
555 for (clock.n = limit->n.min;
556 clock.n <= limit->n.max; clock.n++) {
557 for (clock.p1 = limit->p1.min;
558 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
559 int this_err;
560
2177832f 561 intel_clock(dev, refclk, &clock);
1b894b59
CW
562 if (!intel_PLL_is_valid(dev, limit,
563 &clock))
79e53945
JB
564 continue;
565
566 this_err = abs(clock.dot - target);
567 if (this_err < err) {
568 *best_clock = clock;
569 err = this_err;
570 }
571 }
572 }
573 }
574 }
575
576 return (err != target);
577}
578
d4906093
ML
579static bool
580intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581 int target, int refclk, intel_clock_t *best_clock)
582{
583 struct drm_device *dev = crtc->dev;
584 struct drm_i915_private *dev_priv = dev->dev_private;
585 intel_clock_t clock;
586 int max_n;
587 bool found;
6ba770dc
AJ
588 /* approximately equals target * 0.00585 */
589 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
590 found = false;
591
592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
593 int lvds_reg;
594
c619eed4 595 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
596 lvds_reg = PCH_LVDS;
597 else
598 lvds_reg = LVDS;
599 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
600 LVDS_CLKB_POWER_UP)
601 clock.p2 = limit->p2.p2_fast;
602 else
603 clock.p2 = limit->p2.p2_slow;
604 } else {
605 if (target < limit->p2.dot_limit)
606 clock.p2 = limit->p2.p2_slow;
607 else
608 clock.p2 = limit->p2.p2_fast;
609 }
610
611 memset(best_clock, 0, sizeof(*best_clock));
612 max_n = limit->n.max;
f77f13e2 613 /* based on hardware requirement, prefer smaller n to precision */
d4906093 614 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 615 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
616 for (clock.m1 = limit->m1.max;
617 clock.m1 >= limit->m1.min; clock.m1--) {
618 for (clock.m2 = limit->m2.max;
619 clock.m2 >= limit->m2.min; clock.m2--) {
620 for (clock.p1 = limit->p1.max;
621 clock.p1 >= limit->p1.min; clock.p1--) {
622 int this_err;
623
2177832f 624 intel_clock(dev, refclk, &clock);
1b894b59
CW
625 if (!intel_PLL_is_valid(dev, limit,
626 &clock))
d4906093 627 continue;
1b894b59
CW
628
629 this_err = abs(clock.dot - target);
d4906093
ML
630 if (this_err < err_most) {
631 *best_clock = clock;
632 err_most = this_err;
633 max_n = clock.n;
634 found = true;
635 }
636 }
637 }
638 }
639 }
2c07245f
ZW
640 return found;
641}
642
5eb08b69 643static bool
f2b115e6
AJ
644intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *best_clock)
5eb08b69
ZW
646{
647 struct drm_device *dev = crtc->dev;
648 intel_clock_t clock;
4547668a 649
5eb08b69
ZW
650 if (target < 200000) {
651 clock.n = 1;
652 clock.p1 = 2;
653 clock.p2 = 10;
654 clock.m1 = 12;
655 clock.m2 = 9;
656 } else {
657 clock.n = 2;
658 clock.p1 = 1;
659 clock.p2 = 10;
660 clock.m1 = 14;
661 clock.m2 = 8;
662 }
663 intel_clock(dev, refclk, &clock);
664 memcpy(best_clock, &clock, sizeof(intel_clock_t));
665 return true;
666}
667
a4fc5ed6
KP
668/* DisplayPort has only two frequencies, 162MHz and 270MHz */
669static bool
670intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671 int target, int refclk, intel_clock_t *best_clock)
672{
5eddb70b
CW
673 intel_clock_t clock;
674 if (target < 200000) {
675 clock.p1 = 2;
676 clock.p2 = 10;
677 clock.n = 2;
678 clock.m1 = 23;
679 clock.m2 = 8;
680 } else {
681 clock.p1 = 1;
682 clock.p2 = 10;
683 clock.n = 1;
684 clock.m1 = 14;
685 clock.m2 = 2;
686 }
687 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688 clock.p = (clock.p1 * clock.p2);
689 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690 clock.vco = 0;
691 memcpy(best_clock, &clock, sizeof(intel_clock_t));
692 return true;
a4fc5ed6
KP
693}
694
9d0498a2
JB
695/**
696 * intel_wait_for_vblank - wait for vblank on a given pipe
697 * @dev: drm device
698 * @pipe: pipe to wait for
699 *
700 * Wait for vblank to occur on a given pipe. Needed for various bits of
701 * mode setting code.
702 */
703void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 704{
9d0498a2 705 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 706 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 707
300387c0
CW
708 /* Clear existing vblank status. Note this will clear any other
709 * sticky status fields as well.
710 *
711 * This races with i915_driver_irq_handler() with the result
712 * that either function could miss a vblank event. Here it is not
713 * fatal, as we will either wait upon the next vblank interrupt or
714 * timeout. Generally speaking intel_wait_for_vblank() is only
715 * called during modeset at which time the GPU should be idle and
716 * should *not* be performing page flips and thus not waiting on
717 * vblanks...
718 * Currently, the result of us stealing a vblank from the irq
719 * handler is that a single frame will be skipped during swapbuffers.
720 */
721 I915_WRITE(pipestat_reg,
722 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
723
9d0498a2 724 /* Wait for vblank interrupt bit to set */
481b6af3
CW
725 if (wait_for(I915_READ(pipestat_reg) &
726 PIPE_VBLANK_INTERRUPT_STATUS,
727 50))
9d0498a2
JB
728 DRM_DEBUG_KMS("vblank wait timed out\n");
729}
730
ab7ad7f6
KP
731/*
732 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
733 * @dev: drm device
734 * @pipe: pipe to wait for
735 *
736 * After disabling a pipe, we can't wait for vblank in the usual way,
737 * spinning on the vblank interrupt status bit, since we won't actually
738 * see an interrupt when the pipe is disabled.
739 *
ab7ad7f6
KP
740 * On Gen4 and above:
741 * wait for the pipe register state bit to turn off
742 *
743 * Otherwise:
744 * wait for the display line value to settle (it usually
745 * ends up stopping at the start of the next frame).
58e10eb9 746 *
9d0498a2 747 */
58e10eb9 748void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
749{
750 struct drm_i915_private *dev_priv = dev->dev_private;
ab7ad7f6
KP
751
752 if (INTEL_INFO(dev)->gen >= 4) {
58e10eb9 753 int reg = PIPECONF(pipe);
ab7ad7f6
KP
754
755 /* Wait for the Pipe State to go off */
58e10eb9
CW
756 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757 100))
ab7ad7f6
KP
758 DRM_DEBUG_KMS("pipe_off wait timed out\n");
759 } else {
760 u32 last_line;
58e10eb9 761 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
762 unsigned long timeout = jiffies + msecs_to_jiffies(100);
763
764 /* Wait for the display line to settle */
765 do {
58e10eb9 766 last_line = I915_READ(reg) & DSL_LINEMASK;
ab7ad7f6 767 mdelay(5);
58e10eb9 768 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
ab7ad7f6
KP
769 time_after(timeout, jiffies));
770 if (time_after(jiffies, timeout))
771 DRM_DEBUG_KMS("pipe_off wait timed out\n");
772 }
79e53945
JB
773}
774
b24e7179
JB
775static const char *state_string(bool enabled)
776{
777 return enabled ? "on" : "off";
778}
779
780/* Only for pre-ILK configs */
781static void assert_pll(struct drm_i915_private *dev_priv,
782 enum pipe pipe, bool state)
783{
784 int reg;
785 u32 val;
786 bool cur_state;
787
788 reg = DPLL(pipe);
789 val = I915_READ(reg);
790 cur_state = !!(val & DPLL_VCO_ENABLE);
791 WARN(cur_state != state,
792 "PLL state assertion failure (expected %s, current %s)\n",
793 state_string(state), state_string(cur_state));
794}
795#define assert_pll_enabled(d, p) assert_pll(d, p, true)
796#define assert_pll_disabled(d, p) assert_pll(d, p, false)
797
040484af
JB
798/* For ILK+ */
799static void assert_pch_pll(struct drm_i915_private *dev_priv,
800 enum pipe pipe, bool state)
801{
802 int reg;
803 u32 val;
804 bool cur_state;
805
d3ccbe86
JB
806 if (HAS_PCH_CPT(dev_priv->dev)) {
807 u32 pch_dpll;
808
809 pch_dpll = I915_READ(PCH_DPLL_SEL);
810
811 /* Make sure the selected PLL is enabled to the transcoder */
812 WARN(!((pch_dpll >> (4 * pipe)) & 8),
813 "transcoder %d PLL not enabled\n", pipe);
814
815 /* Convert the transcoder pipe number to a pll pipe number */
816 pipe = (pch_dpll >> (4 * pipe)) & 1;
817 }
818
040484af
JB
819 reg = PCH_DPLL(pipe);
820 val = I915_READ(reg);
821 cur_state = !!(val & DPLL_VCO_ENABLE);
822 WARN(cur_state != state,
823 "PCH PLL state assertion failure (expected %s, current %s)\n",
824 state_string(state), state_string(cur_state));
825}
826#define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827#define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
828
829static void assert_fdi_tx(struct drm_i915_private *dev_priv,
830 enum pipe pipe, bool state)
831{
832 int reg;
833 u32 val;
834 bool cur_state;
835
836 reg = FDI_TX_CTL(pipe);
837 val = I915_READ(reg);
838 cur_state = !!(val & FDI_TX_ENABLE);
839 WARN(cur_state != state,
840 "FDI TX state assertion failure (expected %s, current %s)\n",
841 state_string(state), state_string(cur_state));
842}
843#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
845
846static void assert_fdi_rx(struct drm_i915_private *dev_priv,
847 enum pipe pipe, bool state)
848{
849 int reg;
850 u32 val;
851 bool cur_state;
852
853 reg = FDI_RX_CTL(pipe);
854 val = I915_READ(reg);
855 cur_state = !!(val & FDI_RX_ENABLE);
856 WARN(cur_state != state,
857 "FDI RX state assertion failure (expected %s, current %s)\n",
858 state_string(state), state_string(cur_state));
859}
860#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
862
863static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
864 enum pipe pipe)
865{
866 int reg;
867 u32 val;
868
869 /* ILK FDI PLL is always enabled */
870 if (dev_priv->info->gen == 5)
871 return;
872
873 reg = FDI_TX_CTL(pipe);
874 val = I915_READ(reg);
875 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
876}
877
878static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
879 enum pipe pipe)
880{
881 int reg;
882 u32 val;
883
884 reg = FDI_RX_CTL(pipe);
885 val = I915_READ(reg);
886 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
887}
888
ea0760cf
JB
889static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
890 enum pipe pipe)
891{
892 int pp_reg, lvds_reg;
893 u32 val;
894 enum pipe panel_pipe = PIPE_A;
0de3b485 895 bool locked = true;
ea0760cf
JB
896
897 if (HAS_PCH_SPLIT(dev_priv->dev)) {
898 pp_reg = PCH_PP_CONTROL;
899 lvds_reg = PCH_LVDS;
900 } else {
901 pp_reg = PP_CONTROL;
902 lvds_reg = LVDS;
903 }
904
905 val = I915_READ(pp_reg);
906 if (!(val & PANEL_POWER_ON) ||
907 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
908 locked = false;
909
910 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
911 panel_pipe = PIPE_B;
912
913 WARN(panel_pipe == pipe && locked,
914 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 915 pipe_name(pipe));
ea0760cf
JB
916}
917
63d7bbe9
JB
918static void assert_pipe(struct drm_i915_private *dev_priv,
919 enum pipe pipe, bool state)
b24e7179
JB
920{
921 int reg;
922 u32 val;
63d7bbe9 923 bool cur_state;
b24e7179
JB
924
925 reg = PIPECONF(pipe);
926 val = I915_READ(reg);
63d7bbe9
JB
927 cur_state = !!(val & PIPECONF_ENABLE);
928 WARN(cur_state != state,
929 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 930 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179 931}
63d7bbe9
JB
932#define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
933#define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
b24e7179
JB
934
935static void assert_plane_enabled(struct drm_i915_private *dev_priv,
936 enum plane plane)
937{
938 int reg;
939 u32 val;
940
941 reg = DSPCNTR(plane);
942 val = I915_READ(reg);
943 WARN(!(val & DISPLAY_PLANE_ENABLE),
944 "plane %c assertion failure, should be active but is disabled\n",
9db4a9c7 945 plane_name(plane));
b24e7179
JB
946}
947
948static void assert_planes_disabled(struct drm_i915_private *dev_priv,
949 enum pipe pipe)
950{
951 int reg, i;
952 u32 val;
953 int cur_pipe;
954
19ec1358
JB
955 /* Planes are fixed to pipes on ILK+ */
956 if (HAS_PCH_SPLIT(dev_priv->dev))
957 return;
958
b24e7179
JB
959 /* Need to check both planes against the pipe */
960 for (i = 0; i < 2; i++) {
961 reg = DSPCNTR(i);
962 val = I915_READ(reg);
963 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
964 DISPPLANE_SEL_PIPE_SHIFT;
965 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
966 "plane %c assertion failure, should be off on pipe %c but is still active\n",
967 plane_name(i), pipe_name(pipe));
b24e7179
JB
968 }
969}
970
92f2584a
JB
971static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
972{
973 u32 val;
974 bool enabled;
975
976 val = I915_READ(PCH_DREF_CONTROL);
977 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
978 DREF_SUPERSPREAD_SOURCE_MASK));
979 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
980}
981
982static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
983 enum pipe pipe)
984{
985 int reg;
986 u32 val;
987 bool enabled;
988
989 reg = TRANSCONF(pipe);
990 val = I915_READ(reg);
991 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
992 WARN(enabled,
993 "transcoder assertion failed, should be off on pipe %c but is still active\n",
994 pipe_name(pipe));
92f2584a
JB
995}
996
4e634389
KP
997static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
998 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
999{
1000 if ((val & DP_PORT_EN) == 0)
1001 return false;
1002
1003 if (HAS_PCH_CPT(dev_priv->dev)) {
1004 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1005 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1006 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1007 return false;
1008 } else {
1009 if ((val & DP_PIPE_MASK) != (pipe << 30))
1010 return false;
1011 }
1012 return true;
1013}
1014
1519b995
KP
1015static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1016 enum pipe pipe, u32 val)
1017{
1018 if ((val & PORT_ENABLE) == 0)
1019 return false;
1020
1021 if (HAS_PCH_CPT(dev_priv->dev)) {
1022 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1023 return false;
1024 } else {
1025 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1026 return false;
1027 }
1028 return true;
1029}
1030
1031static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1032 enum pipe pipe, u32 val)
1033{
1034 if ((val & LVDS_PORT_EN) == 0)
1035 return false;
1036
1037 if (HAS_PCH_CPT(dev_priv->dev)) {
1038 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1039 return false;
1040 } else {
1041 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1042 return false;
1043 }
1044 return true;
1045}
1046
1047static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1048 enum pipe pipe, u32 val)
1049{
1050 if ((val & ADPA_DAC_ENABLE) == 0)
1051 return false;
1052 if (HAS_PCH_CPT(dev_priv->dev)) {
1053 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1054 return false;
1055 } else {
1056 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1057 return false;
1058 }
1059 return true;
1060}
1061
291906f1 1062static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1063 enum pipe pipe, int reg, u32 port_sel)
291906f1 1064{
47a05eca 1065 u32 val = I915_READ(reg);
4e634389 1066 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1067 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1068 reg, pipe_name(pipe));
291906f1
JB
1069}
1070
1071static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1072 enum pipe pipe, int reg)
1073{
47a05eca 1074 u32 val = I915_READ(reg);
1519b995 1075 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
291906f1 1076 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1077 reg, pipe_name(pipe));
291906f1
JB
1078}
1079
1080static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1081 enum pipe pipe)
1082{
1083 int reg;
1084 u32 val;
291906f1 1085
f0575e92
KP
1086 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1087 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1088 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1089
1090 reg = PCH_ADPA;
1091 val = I915_READ(reg);
1519b995 1092 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
291906f1 1093 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1094 pipe_name(pipe));
291906f1
JB
1095
1096 reg = PCH_LVDS;
1097 val = I915_READ(reg);
1519b995 1098 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
291906f1 1099 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1100 pipe_name(pipe));
291906f1
JB
1101
1102 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1103 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1104 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1105}
1106
63d7bbe9
JB
1107/**
1108 * intel_enable_pll - enable a PLL
1109 * @dev_priv: i915 private structure
1110 * @pipe: pipe PLL to enable
1111 *
1112 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1113 * make sure the PLL reg is writable first though, since the panel write
1114 * protect mechanism may be enabled.
1115 *
1116 * Note! This is for pre-ILK only.
1117 */
1118static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1119{
1120 int reg;
1121 u32 val;
1122
1123 /* No really, not for ILK+ */
1124 BUG_ON(dev_priv->info->gen >= 5);
1125
1126 /* PLL is protected by panel, make sure we can write it */
1127 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1128 assert_panel_unlocked(dev_priv, pipe);
1129
1130 reg = DPLL(pipe);
1131 val = I915_READ(reg);
1132 val |= DPLL_VCO_ENABLE;
1133
1134 /* We do this three times for luck */
1135 I915_WRITE(reg, val);
1136 POSTING_READ(reg);
1137 udelay(150); /* wait for warmup */
1138 I915_WRITE(reg, val);
1139 POSTING_READ(reg);
1140 udelay(150); /* wait for warmup */
1141 I915_WRITE(reg, val);
1142 POSTING_READ(reg);
1143 udelay(150); /* wait for warmup */
1144}
1145
1146/**
1147 * intel_disable_pll - disable a PLL
1148 * @dev_priv: i915 private structure
1149 * @pipe: pipe PLL to disable
1150 *
1151 * Disable the PLL for @pipe, making sure the pipe is off first.
1152 *
1153 * Note! This is for pre-ILK only.
1154 */
1155static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1156{
1157 int reg;
1158 u32 val;
1159
1160 /* Don't disable pipe A or pipe A PLLs if needed */
1161 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1162 return;
1163
1164 /* Make sure the pipe isn't still relying on us */
1165 assert_pipe_disabled(dev_priv, pipe);
1166
1167 reg = DPLL(pipe);
1168 val = I915_READ(reg);
1169 val &= ~DPLL_VCO_ENABLE;
1170 I915_WRITE(reg, val);
1171 POSTING_READ(reg);
1172}
1173
92f2584a
JB
1174/**
1175 * intel_enable_pch_pll - enable PCH PLL
1176 * @dev_priv: i915 private structure
1177 * @pipe: pipe PLL to enable
1178 *
1179 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1180 * drives the transcoder clock.
1181 */
1182static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1183 enum pipe pipe)
1184{
1185 int reg;
1186 u32 val;
1187
4c609cb8
JB
1188 if (pipe > 1)
1189 return;
1190
92f2584a
JB
1191 /* PCH only available on ILK+ */
1192 BUG_ON(dev_priv->info->gen < 5);
1193
1194 /* PCH refclock must be enabled first */
1195 assert_pch_refclk_enabled(dev_priv);
1196
1197 reg = PCH_DPLL(pipe);
1198 val = I915_READ(reg);
1199 val |= DPLL_VCO_ENABLE;
1200 I915_WRITE(reg, val);
1201 POSTING_READ(reg);
1202 udelay(200);
1203}
1204
1205static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1206 enum pipe pipe)
1207{
1208 int reg;
1209 u32 val;
1210
4c609cb8
JB
1211 if (pipe > 1)
1212 return;
1213
92f2584a
JB
1214 /* PCH only available on ILK+ */
1215 BUG_ON(dev_priv->info->gen < 5);
1216
1217 /* Make sure transcoder isn't still depending on us */
1218 assert_transcoder_disabled(dev_priv, pipe);
1219
1220 reg = PCH_DPLL(pipe);
1221 val = I915_READ(reg);
1222 val &= ~DPLL_VCO_ENABLE;
1223 I915_WRITE(reg, val);
1224 POSTING_READ(reg);
1225 udelay(200);
1226}
1227
040484af
JB
1228static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1229 enum pipe pipe)
1230{
1231 int reg;
1232 u32 val;
1233
1234 /* PCH only available on ILK+ */
1235 BUG_ON(dev_priv->info->gen < 5);
1236
1237 /* Make sure PCH DPLL is enabled */
1238 assert_pch_pll_enabled(dev_priv, pipe);
1239
1240 /* FDI must be feeding us bits for PCH ports */
1241 assert_fdi_tx_enabled(dev_priv, pipe);
1242 assert_fdi_rx_enabled(dev_priv, pipe);
1243
1244 reg = TRANSCONF(pipe);
1245 val = I915_READ(reg);
e9bcff5c
JB
1246
1247 if (HAS_PCH_IBX(dev_priv->dev)) {
1248 /*
1249 * make the BPC in transcoder be consistent with
1250 * that in pipeconf reg.
1251 */
1252 val &= ~PIPE_BPC_MASK;
1253 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1254 }
040484af
JB
1255 I915_WRITE(reg, val | TRANS_ENABLE);
1256 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1257 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1258}
1259
1260static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1261 enum pipe pipe)
1262{
1263 int reg;
1264 u32 val;
1265
1266 /* FDI relies on the transcoder */
1267 assert_fdi_tx_disabled(dev_priv, pipe);
1268 assert_fdi_rx_disabled(dev_priv, pipe);
1269
291906f1
JB
1270 /* Ports must be off as well */
1271 assert_pch_ports_disabled(dev_priv, pipe);
1272
040484af
JB
1273 reg = TRANSCONF(pipe);
1274 val = I915_READ(reg);
1275 val &= ~TRANS_ENABLE;
1276 I915_WRITE(reg, val);
1277 /* wait for PCH transcoder off, transcoder state */
1278 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1279 DRM_ERROR("failed to disable transcoder\n");
1280}
1281
b24e7179 1282/**
309cfea8 1283 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1284 * @dev_priv: i915 private structure
1285 * @pipe: pipe to enable
040484af 1286 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1287 *
1288 * Enable @pipe, making sure that various hardware specific requirements
1289 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1290 *
1291 * @pipe should be %PIPE_A or %PIPE_B.
1292 *
1293 * Will wait until the pipe is actually running (i.e. first vblank) before
1294 * returning.
1295 */
040484af
JB
1296static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1297 bool pch_port)
b24e7179
JB
1298{
1299 int reg;
1300 u32 val;
1301
1302 /*
1303 * A pipe without a PLL won't actually be able to drive bits from
1304 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1305 * need the check.
1306 */
1307 if (!HAS_PCH_SPLIT(dev_priv->dev))
1308 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1309 else {
1310 if (pch_port) {
1311 /* if driving the PCH, we need FDI enabled */
1312 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1313 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1314 }
1315 /* FIXME: assert CPU port conditions for SNB+ */
1316 }
b24e7179
JB
1317
1318 reg = PIPECONF(pipe);
1319 val = I915_READ(reg);
00d70b15
CW
1320 if (val & PIPECONF_ENABLE)
1321 return;
1322
1323 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1324 intel_wait_for_vblank(dev_priv->dev, pipe);
1325}
1326
1327/**
309cfea8 1328 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1329 * @dev_priv: i915 private structure
1330 * @pipe: pipe to disable
1331 *
1332 * Disable @pipe, making sure that various hardware specific requirements
1333 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1334 *
1335 * @pipe should be %PIPE_A or %PIPE_B.
1336 *
1337 * Will wait until the pipe has shut down before returning.
1338 */
1339static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1340 enum pipe pipe)
1341{
1342 int reg;
1343 u32 val;
1344
1345 /*
1346 * Make sure planes won't keep trying to pump pixels to us,
1347 * or we might hang the display.
1348 */
1349 assert_planes_disabled(dev_priv, pipe);
1350
1351 /* Don't disable pipe A or pipe A PLLs if needed */
1352 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1353 return;
1354
1355 reg = PIPECONF(pipe);
1356 val = I915_READ(reg);
00d70b15
CW
1357 if ((val & PIPECONF_ENABLE) == 0)
1358 return;
1359
1360 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1361 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1362}
1363
d74362c9
KP
1364/*
1365 * Plane regs are double buffered, going from enabled->disabled needs a
1366 * trigger in order to latch. The display address reg provides this.
1367 */
1368static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1369 enum plane plane)
1370{
1371 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1372 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1373}
1374
b24e7179
JB
1375/**
1376 * intel_enable_plane - enable a display plane on a given pipe
1377 * @dev_priv: i915 private structure
1378 * @plane: plane to enable
1379 * @pipe: pipe being fed
1380 *
1381 * Enable @plane on @pipe, making sure that @pipe is running first.
1382 */
1383static void intel_enable_plane(struct drm_i915_private *dev_priv,
1384 enum plane plane, enum pipe pipe)
1385{
1386 int reg;
1387 u32 val;
1388
1389 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1390 assert_pipe_enabled(dev_priv, pipe);
1391
1392 reg = DSPCNTR(plane);
1393 val = I915_READ(reg);
00d70b15
CW
1394 if (val & DISPLAY_PLANE_ENABLE)
1395 return;
1396
1397 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1398 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1399 intel_wait_for_vblank(dev_priv->dev, pipe);
1400}
1401
b24e7179
JB
1402/**
1403 * intel_disable_plane - disable a display plane
1404 * @dev_priv: i915 private structure
1405 * @plane: plane to disable
1406 * @pipe: pipe consuming the data
1407 *
1408 * Disable @plane; should be an independent operation.
1409 */
1410static void intel_disable_plane(struct drm_i915_private *dev_priv,
1411 enum plane plane, enum pipe pipe)
1412{
1413 int reg;
1414 u32 val;
1415
1416 reg = DSPCNTR(plane);
1417 val = I915_READ(reg);
00d70b15
CW
1418 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1419 return;
1420
1421 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1422 intel_flush_display_plane(dev_priv, plane);
1423 intel_wait_for_vblank(dev_priv->dev, pipe);
1424}
1425
47a05eca 1426static void disable_pch_dp(struct drm_i915_private *dev_priv,
f0575e92 1427 enum pipe pipe, int reg, u32 port_sel)
47a05eca
JB
1428{
1429 u32 val = I915_READ(reg);
4e634389 1430 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
f0575e92 1431 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
47a05eca 1432 I915_WRITE(reg, val & ~DP_PORT_EN);
f0575e92 1433 }
47a05eca
JB
1434}
1435
1436static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1437 enum pipe pipe, int reg)
1438{
1439 u32 val = I915_READ(reg);
1519b995 1440 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
f0575e92
KP
1441 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1442 reg, pipe);
47a05eca 1443 I915_WRITE(reg, val & ~PORT_ENABLE);
f0575e92 1444 }
47a05eca
JB
1445}
1446
1447/* Disable any ports connected to this transcoder */
1448static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1449 enum pipe pipe)
1450{
1451 u32 reg, val;
1452
1453 val = I915_READ(PCH_PP_CONTROL);
1454 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1455
f0575e92
KP
1456 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1457 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1458 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
47a05eca
JB
1459
1460 reg = PCH_ADPA;
1461 val = I915_READ(reg);
1519b995 1462 if (adpa_pipe_enabled(dev_priv, val, pipe))
47a05eca
JB
1463 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1464
1465 reg = PCH_LVDS;
1466 val = I915_READ(reg);
1519b995
KP
1467 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1468 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
47a05eca
JB
1469 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1470 POSTING_READ(reg);
1471 udelay(100);
1472 }
1473
1474 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1475 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1476 disable_pch_hdmi(dev_priv, pipe, HDMID);
1477}
1478
43a9539f
CW
1479static void i8xx_disable_fbc(struct drm_device *dev)
1480{
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482 u32 fbc_ctl;
1483
1484 /* Disable compression */
1485 fbc_ctl = I915_READ(FBC_CONTROL);
1486 if ((fbc_ctl & FBC_CTL_EN) == 0)
1487 return;
1488
1489 fbc_ctl &= ~FBC_CTL_EN;
1490 I915_WRITE(FBC_CONTROL, fbc_ctl);
1491
1492 /* Wait for compressing bit to clear */
1493 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1494 DRM_DEBUG_KMS("FBC idle timed out\n");
1495 return;
1496 }
1497
1498 DRM_DEBUG_KMS("disabled FBC\n");
1499}
1500
80824003
JB
1501static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1502{
1503 struct drm_device *dev = crtc->dev;
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505 struct drm_framebuffer *fb = crtc->fb;
1506 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1507 struct drm_i915_gem_object *obj = intel_fb->obj;
80824003 1508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
016b9b61 1509 int cfb_pitch;
80824003
JB
1510 int plane, i;
1511 u32 fbc_ctl, fbc_ctl2;
1512
016b9b61
CW
1513 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1514 if (fb->pitch < cfb_pitch)
1515 cfb_pitch = fb->pitch;
80824003
JB
1516
1517 /* FBC_CTL wants 64B units */
016b9b61
CW
1518 cfb_pitch = (cfb_pitch / 64) - 1;
1519 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
80824003
JB
1520
1521 /* Clear old tags */
1522 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1523 I915_WRITE(FBC_TAG + (i * 4), 0);
1524
1525 /* Set it up... */
de568510
CW
1526 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1527 fbc_ctl2 |= plane;
80824003
JB
1528 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1529 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1530
1531 /* enable it... */
1532 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
ee25df2b 1533 if (IS_I945GM(dev))
49677901 1534 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
016b9b61 1535 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
80824003 1536 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
016b9b61 1537 fbc_ctl |= obj->fence_reg;
80824003
JB
1538 I915_WRITE(FBC_CONTROL, fbc_ctl);
1539
016b9b61
CW
1540 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1541 cfb_pitch, crtc->y, intel_crtc->plane);
80824003
JB
1542}
1543
ee5382ae 1544static bool i8xx_fbc_enabled(struct drm_device *dev)
80824003 1545{
80824003
JB
1546 struct drm_i915_private *dev_priv = dev->dev_private;
1547
1548 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1549}
1550
74dff282
JB
1551static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1552{
1553 struct drm_device *dev = crtc->dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_framebuffer *fb = crtc->fb;
1556 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1557 struct drm_i915_gem_object *obj = intel_fb->obj;
74dff282 1558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1559 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
74dff282
JB
1560 unsigned long stall_watermark = 200;
1561 u32 dpfc_ctl;
1562
74dff282 1563 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
016b9b61 1564 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
de568510 1565 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
74dff282 1566
74dff282
JB
1567 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1568 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1569 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1570 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1571
1572 /* enable it... */
1573 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1574
28c97730 1575 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
74dff282
JB
1576}
1577
43a9539f 1578static void g4x_disable_fbc(struct drm_device *dev)
74dff282
JB
1579{
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 u32 dpfc_ctl;
1582
1583 /* Disable compression */
1584 dpfc_ctl = I915_READ(DPFC_CONTROL);
bed4a673
CW
1585 if (dpfc_ctl & DPFC_CTL_EN) {
1586 dpfc_ctl &= ~DPFC_CTL_EN;
1587 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
74dff282 1588
bed4a673
CW
1589 DRM_DEBUG_KMS("disabled FBC\n");
1590 }
74dff282
JB
1591}
1592
ee5382ae 1593static bool g4x_fbc_enabled(struct drm_device *dev)
74dff282 1594{
74dff282
JB
1595 struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1598}
1599
4efe0708
JB
1600static void sandybridge_blit_fbc_update(struct drm_device *dev)
1601{
1602 struct drm_i915_private *dev_priv = dev->dev_private;
1603 u32 blt_ecoskpd;
1604
1605 /* Make sure blitter notifies FBC of writes */
fcca7926 1606 gen6_gt_force_wake_get(dev_priv);
4efe0708
JB
1607 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1608 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1609 GEN6_BLITTER_LOCK_SHIFT;
1610 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1611 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1612 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1613 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1614 GEN6_BLITTER_LOCK_SHIFT);
1615 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1616 POSTING_READ(GEN6_BLITTER_ECOSKPD);
fcca7926 1617 gen6_gt_force_wake_put(dev_priv);
4efe0708
JB
1618}
1619
b52eb4dc
ZY
1620static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1621{
1622 struct drm_device *dev = crtc->dev;
1623 struct drm_i915_private *dev_priv = dev->dev_private;
1624 struct drm_framebuffer *fb = crtc->fb;
1625 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 1626 struct drm_i915_gem_object *obj = intel_fb->obj;
b52eb4dc 1627 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5eddb70b 1628 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
b52eb4dc
ZY
1629 unsigned long stall_watermark = 200;
1630 u32 dpfc_ctl;
1631
bed4a673 1632 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
b52eb4dc
ZY
1633 dpfc_ctl &= DPFC_RESERVED;
1634 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
9ce9d069
CW
1635 /* Set persistent mode for front-buffer rendering, ala X. */
1636 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
016b9b61 1637 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
de568510 1638 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
b52eb4dc 1639
b52eb4dc
ZY
1640 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1641 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1642 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1643 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
05394f39 1644 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
b52eb4dc 1645 /* enable it... */
bed4a673 1646 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
b52eb4dc 1647
9c04f015
YL
1648 if (IS_GEN6(dev)) {
1649 I915_WRITE(SNB_DPFC_CTL_SA,
016b9b61 1650 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
9c04f015 1651 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
4efe0708 1652 sandybridge_blit_fbc_update(dev);
9c04f015
YL
1653 }
1654
b52eb4dc
ZY
1655 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1656}
1657
43a9539f 1658static void ironlake_disable_fbc(struct drm_device *dev)
b52eb4dc
ZY
1659{
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 u32 dpfc_ctl;
1662
1663 /* Disable compression */
1664 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
bed4a673
CW
1665 if (dpfc_ctl & DPFC_CTL_EN) {
1666 dpfc_ctl &= ~DPFC_CTL_EN;
1667 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
b52eb4dc 1668
bed4a673
CW
1669 DRM_DEBUG_KMS("disabled FBC\n");
1670 }
b52eb4dc
ZY
1671}
1672
1673static bool ironlake_fbc_enabled(struct drm_device *dev)
1674{
1675 struct drm_i915_private *dev_priv = dev->dev_private;
1676
1677 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1678}
1679
ee5382ae
AJ
1680bool intel_fbc_enabled(struct drm_device *dev)
1681{
1682 struct drm_i915_private *dev_priv = dev->dev_private;
1683
1684 if (!dev_priv->display.fbc_enabled)
1685 return false;
1686
1687 return dev_priv->display.fbc_enabled(dev);
1688}
1689
1630fe75
CW
1690static void intel_fbc_work_fn(struct work_struct *__work)
1691{
1692 struct intel_fbc_work *work =
1693 container_of(to_delayed_work(__work),
1694 struct intel_fbc_work, work);
1695 struct drm_device *dev = work->crtc->dev;
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697
1698 mutex_lock(&dev->struct_mutex);
1699 if (work == dev_priv->fbc_work) {
1700 /* Double check that we haven't switched fb without cancelling
1701 * the prior work.
1702 */
016b9b61 1703 if (work->crtc->fb == work->fb) {
1630fe75
CW
1704 dev_priv->display.enable_fbc(work->crtc,
1705 work->interval);
1706
016b9b61
CW
1707 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1708 dev_priv->cfb_fb = work->crtc->fb->base.id;
1709 dev_priv->cfb_y = work->crtc->y;
1710 }
1711
1630fe75
CW
1712 dev_priv->fbc_work = NULL;
1713 }
1714 mutex_unlock(&dev->struct_mutex);
1715
1716 kfree(work);
1717}
1718
1719static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1720{
1721 if (dev_priv->fbc_work == NULL)
1722 return;
1723
1724 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1725
1726 /* Synchronisation is provided by struct_mutex and checking of
1727 * dev_priv->fbc_work, so we can perform the cancellation
1728 * entirely asynchronously.
1729 */
1730 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1731 /* tasklet was killed before being run, clean up */
1732 kfree(dev_priv->fbc_work);
1733
1734 /* Mark the work as no longer wanted so that if it does
1735 * wake-up (because the work was already running and waiting
1736 * for our mutex), it will discover that is no longer
1737 * necessary to run.
1738 */
1739 dev_priv->fbc_work = NULL;
1740}
1741
43a9539f 1742static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
ee5382ae 1743{
1630fe75
CW
1744 struct intel_fbc_work *work;
1745 struct drm_device *dev = crtc->dev;
1746 struct drm_i915_private *dev_priv = dev->dev_private;
ee5382ae
AJ
1747
1748 if (!dev_priv->display.enable_fbc)
1749 return;
1750
1630fe75
CW
1751 intel_cancel_fbc_work(dev_priv);
1752
1753 work = kzalloc(sizeof *work, GFP_KERNEL);
1754 if (work == NULL) {
1755 dev_priv->display.enable_fbc(crtc, interval);
1756 return;
1757 }
1758
1759 work->crtc = crtc;
1760 work->fb = crtc->fb;
1761 work->interval = interval;
1762 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1763
1764 dev_priv->fbc_work = work;
1765
1766 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1767
1768 /* Delay the actual enabling to let pageflipping cease and the
016b9b61
CW
1769 * display to settle before starting the compression. Note that
1770 * this delay also serves a second purpose: it allows for a
1771 * vblank to pass after disabling the FBC before we attempt
1772 * to modify the control registers.
1630fe75
CW
1773 *
1774 * A more complicated solution would involve tracking vblanks
1775 * following the termination of the page-flipping sequence
1776 * and indeed performing the enable as a co-routine and not
1777 * waiting synchronously upon the vblank.
1778 */
1779 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
ee5382ae
AJ
1780}
1781
1782void intel_disable_fbc(struct drm_device *dev)
1783{
1784 struct drm_i915_private *dev_priv = dev->dev_private;
1785
1630fe75
CW
1786 intel_cancel_fbc_work(dev_priv);
1787
ee5382ae
AJ
1788 if (!dev_priv->display.disable_fbc)
1789 return;
1790
1791 dev_priv->display.disable_fbc(dev);
016b9b61 1792 dev_priv->cfb_plane = -1;
ee5382ae
AJ
1793}
1794
80824003
JB
1795/**
1796 * intel_update_fbc - enable/disable FBC as needed
bed4a673 1797 * @dev: the drm_device
80824003
JB
1798 *
1799 * Set up the framebuffer compression hardware at mode set time. We
1800 * enable it if possible:
1801 * - plane A only (on pre-965)
1802 * - no pixel mulitply/line duplication
1803 * - no alpha buffer discard
1804 * - no dual wide
1805 * - framebuffer <= 2048 in width, 1536 in height
1806 *
1807 * We can't assume that any compression will take place (worst case),
1808 * so the compressed buffer has to be the same size as the uncompressed
1809 * one. It also must reside (along with the line length buffer) in
1810 * stolen memory.
1811 *
1812 * We need to enable/disable FBC on a global basis.
1813 */
bed4a673 1814static void intel_update_fbc(struct drm_device *dev)
80824003 1815{
80824003 1816 struct drm_i915_private *dev_priv = dev->dev_private;
bed4a673
CW
1817 struct drm_crtc *crtc = NULL, *tmp_crtc;
1818 struct intel_crtc *intel_crtc;
1819 struct drm_framebuffer *fb;
80824003 1820 struct intel_framebuffer *intel_fb;
05394f39 1821 struct drm_i915_gem_object *obj;
cd0de039 1822 int enable_fbc;
9c928d16
JB
1823
1824 DRM_DEBUG_KMS("\n");
80824003
JB
1825
1826 if (!i915_powersave)
1827 return;
1828
ee5382ae 1829 if (!I915_HAS_FBC(dev))
e70236a8
JB
1830 return;
1831
80824003
JB
1832 /*
1833 * If FBC is already on, we just have to verify that we can
1834 * keep it that way...
1835 * Need to disable if:
9c928d16 1836 * - more than one pipe is active
80824003
JB
1837 * - changing FBC params (stride, fence, mode)
1838 * - new fb is too large to fit in compressed buffer
1839 * - going to an unsupported config (interlace, pixel multiply, etc.)
1840 */
9c928d16 1841 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
d210246a 1842 if (tmp_crtc->enabled && tmp_crtc->fb) {
bed4a673
CW
1843 if (crtc) {
1844 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1845 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1846 goto out_disable;
1847 }
1848 crtc = tmp_crtc;
1849 }
9c928d16 1850 }
bed4a673
CW
1851
1852 if (!crtc || crtc->fb == NULL) {
1853 DRM_DEBUG_KMS("no output, disabling\n");
1854 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
9c928d16
JB
1855 goto out_disable;
1856 }
bed4a673
CW
1857
1858 intel_crtc = to_intel_crtc(crtc);
1859 fb = crtc->fb;
1860 intel_fb = to_intel_framebuffer(fb);
05394f39 1861 obj = intel_fb->obj;
bed4a673 1862
cd0de039
KP
1863 enable_fbc = i915_enable_fbc;
1864 if (enable_fbc < 0) {
1865 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1866 enable_fbc = 1;
1867 if (INTEL_INFO(dev)->gen <= 5)
1868 enable_fbc = 0;
1869 }
1870 if (!enable_fbc) {
1871 DRM_DEBUG_KMS("fbc disabled per module param\n");
c1a9f047
JB
1872 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1873 goto out_disable;
1874 }
05394f39 1875 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
28c97730 1876 DRM_DEBUG_KMS("framebuffer too large, disabling "
5eddb70b 1877 "compression\n");
b5e50c3f 1878 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
80824003
JB
1879 goto out_disable;
1880 }
bed4a673
CW
1881 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1882 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
28c97730 1883 DRM_DEBUG_KMS("mode incompatible with compression, "
5eddb70b 1884 "disabling\n");
b5e50c3f 1885 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
80824003
JB
1886 goto out_disable;
1887 }
bed4a673
CW
1888 if ((crtc->mode.hdisplay > 2048) ||
1889 (crtc->mode.vdisplay > 1536)) {
28c97730 1890 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
b5e50c3f 1891 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
80824003
JB
1892 goto out_disable;
1893 }
bed4a673 1894 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
28c97730 1895 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
b5e50c3f 1896 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
80824003
JB
1897 goto out_disable;
1898 }
de568510
CW
1899
1900 /* The use of a CPU fence is mandatory in order to detect writes
1901 * by the CPU to the scanout and trigger updates to the FBC.
1902 */
1903 if (obj->tiling_mode != I915_TILING_X ||
1904 obj->fence_reg == I915_FENCE_REG_NONE) {
1905 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
b5e50c3f 1906 dev_priv->no_fbc_reason = FBC_NOT_TILED;
80824003
JB
1907 goto out_disable;
1908 }
1909
c924b934
JW
1910 /* If the kernel debugger is active, always disable compression */
1911 if (in_dbg_master())
1912 goto out_disable;
1913
016b9b61
CW
1914 /* If the scanout has not changed, don't modify the FBC settings.
1915 * Note that we make the fundamental assumption that the fb->obj
1916 * cannot be unpinned (and have its GTT offset and fence revoked)
1917 * without first being decoupled from the scanout and FBC disabled.
1918 */
1919 if (dev_priv->cfb_plane == intel_crtc->plane &&
1920 dev_priv->cfb_fb == fb->base.id &&
1921 dev_priv->cfb_y == crtc->y)
1922 return;
1923
1924 if (intel_fbc_enabled(dev)) {
1925 /* We update FBC along two paths, after changing fb/crtc
1926 * configuration (modeswitching) and after page-flipping
1927 * finishes. For the latter, we know that not only did
1928 * we disable the FBC at the start of the page-flip
1929 * sequence, but also more than one vblank has passed.
1930 *
1931 * For the former case of modeswitching, it is possible
1932 * to switch between two FBC valid configurations
1933 * instantaneously so we do need to disable the FBC
1934 * before we can modify its control registers. We also
1935 * have to wait for the next vblank for that to take
1936 * effect. However, since we delay enabling FBC we can
1937 * assume that a vblank has passed since disabling and
1938 * that we can safely alter the registers in the deferred
1939 * callback.
1940 *
1941 * In the scenario that we go from a valid to invalid
1942 * and then back to valid FBC configuration we have
1943 * no strict enforcement that a vblank occurred since
1944 * disabling the FBC. However, along all current pipe
1945 * disabling paths we do need to wait for a vblank at
1946 * some point. And we wait before enabling FBC anyway.
1947 */
1948 DRM_DEBUG_KMS("disabling active FBC for update\n");
1949 intel_disable_fbc(dev);
1950 }
1951
bed4a673 1952 intel_enable_fbc(crtc, 500);
80824003
JB
1953 return;
1954
1955out_disable:
80824003 1956 /* Multiple disables should be harmless */
a939406f
CW
1957 if (intel_fbc_enabled(dev)) {
1958 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
ee5382ae 1959 intel_disable_fbc(dev);
a939406f 1960 }
80824003
JB
1961}
1962
127bd2ac 1963int
48b956c5 1964intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1965 struct drm_i915_gem_object *obj,
919926ae 1966 struct intel_ring_buffer *pipelined)
6b95a207 1967{
ce453d81 1968 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1969 u32 alignment;
1970 int ret;
1971
05394f39 1972 switch (obj->tiling_mode) {
6b95a207 1973 case I915_TILING_NONE:
534843da
CW
1974 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1975 alignment = 128 * 1024;
a6c45cf0 1976 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1977 alignment = 4 * 1024;
1978 else
1979 alignment = 64 * 1024;
6b95a207
KH
1980 break;
1981 case I915_TILING_X:
1982 /* pin() will align the object as required by fence */
1983 alignment = 0;
1984 break;
1985 case I915_TILING_Y:
1986 /* FIXME: Is this true? */
1987 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1988 return -EINVAL;
1989 default:
1990 BUG();
1991 }
1992
ce453d81 1993 dev_priv->mm.interruptible = false;
2da3b9b9 1994 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1995 if (ret)
ce453d81 1996 goto err_interruptible;
6b95a207
KH
1997
1998 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1999 * fence, whereas 965+ only requires a fence if using
2000 * framebuffer compression. For simplicity, we always install
2001 * a fence as the cost is not that onerous.
2002 */
05394f39 2003 if (obj->tiling_mode != I915_TILING_NONE) {
ce453d81 2004 ret = i915_gem_object_get_fence(obj, pipelined);
48b956c5
CW
2005 if (ret)
2006 goto err_unpin;
6b95a207
KH
2007 }
2008
ce453d81 2009 dev_priv->mm.interruptible = true;
6b95a207 2010 return 0;
48b956c5
CW
2011
2012err_unpin:
2013 i915_gem_object_unpin(obj);
ce453d81
CW
2014err_interruptible:
2015 dev_priv->mm.interruptible = true;
48b956c5 2016 return ret;
6b95a207
KH
2017}
2018
17638cd6
JB
2019static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2020 int x, int y)
81255565
JB
2021{
2022 struct drm_device *dev = crtc->dev;
2023 struct drm_i915_private *dev_priv = dev->dev_private;
2024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2025 struct intel_framebuffer *intel_fb;
05394f39 2026 struct drm_i915_gem_object *obj;
81255565
JB
2027 int plane = intel_crtc->plane;
2028 unsigned long Start, Offset;
81255565 2029 u32 dspcntr;
5eddb70b 2030 u32 reg;
81255565
JB
2031
2032 switch (plane) {
2033 case 0:
2034 case 1:
2035 break;
2036 default:
2037 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2038 return -EINVAL;
2039 }
2040
2041 intel_fb = to_intel_framebuffer(fb);
2042 obj = intel_fb->obj;
81255565 2043
5eddb70b
CW
2044 reg = DSPCNTR(plane);
2045 dspcntr = I915_READ(reg);
81255565
JB
2046 /* Mask out pixel format bits in case we change it */
2047 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048 switch (fb->bits_per_pixel) {
2049 case 8:
2050 dspcntr |= DISPPLANE_8BPP;
2051 break;
2052 case 16:
2053 if (fb->depth == 15)
2054 dspcntr |= DISPPLANE_15_16BPP;
2055 else
2056 dspcntr |= DISPPLANE_16BPP;
2057 break;
2058 case 24:
2059 case 32:
2060 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2061 break;
2062 default:
17638cd6 2063 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
2064 return -EINVAL;
2065 }
a6c45cf0 2066 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 2067 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
2068 dspcntr |= DISPPLANE_TILED;
2069 else
2070 dspcntr &= ~DISPPLANE_TILED;
2071 }
2072
5eddb70b 2073 I915_WRITE(reg, dspcntr);
81255565 2074
05394f39 2075 Start = obj->gtt_offset;
81255565
JB
2076 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2077
4e6cfefc
CW
2078 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2079 Start, Offset, x, y, fb->pitch);
5eddb70b 2080 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
a6c45cf0 2081 if (INTEL_INFO(dev)->gen >= 4) {
5eddb70b
CW
2082 I915_WRITE(DSPSURF(plane), Start);
2083 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2084 I915_WRITE(DSPADDR(plane), Offset);
2085 } else
2086 I915_WRITE(DSPADDR(plane), Start + Offset);
2087 POSTING_READ(reg);
81255565 2088
17638cd6
JB
2089 return 0;
2090}
2091
2092static int ironlake_update_plane(struct drm_crtc *crtc,
2093 struct drm_framebuffer *fb, int x, int y)
2094{
2095 struct drm_device *dev = crtc->dev;
2096 struct drm_i915_private *dev_priv = dev->dev_private;
2097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2098 struct intel_framebuffer *intel_fb;
2099 struct drm_i915_gem_object *obj;
2100 int plane = intel_crtc->plane;
2101 unsigned long Start, Offset;
2102 u32 dspcntr;
2103 u32 reg;
2104
2105 switch (plane) {
2106 case 0:
2107 case 1:
27f8227b 2108 case 2:
17638cd6
JB
2109 break;
2110 default:
2111 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2112 return -EINVAL;
2113 }
2114
2115 intel_fb = to_intel_framebuffer(fb);
2116 obj = intel_fb->obj;
2117
2118 reg = DSPCNTR(plane);
2119 dspcntr = I915_READ(reg);
2120 /* Mask out pixel format bits in case we change it */
2121 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2122 switch (fb->bits_per_pixel) {
2123 case 8:
2124 dspcntr |= DISPPLANE_8BPP;
2125 break;
2126 case 16:
2127 if (fb->depth != 16)
2128 return -EINVAL;
2129
2130 dspcntr |= DISPPLANE_16BPP;
2131 break;
2132 case 24:
2133 case 32:
2134 if (fb->depth == 24)
2135 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2136 else if (fb->depth == 30)
2137 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2138 else
2139 return -EINVAL;
2140 break;
2141 default:
2142 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2143 return -EINVAL;
2144 }
2145
2146 if (obj->tiling_mode != I915_TILING_NONE)
2147 dspcntr |= DISPPLANE_TILED;
2148 else
2149 dspcntr &= ~DISPPLANE_TILED;
2150
2151 /* must disable */
2152 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2153
2154 I915_WRITE(reg, dspcntr);
2155
2156 Start = obj->gtt_offset;
2157 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
2158
2159 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2160 Start, Offset, x, y, fb->pitch);
2161 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
2162 I915_WRITE(DSPSURF(plane), Start);
2163 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2164 I915_WRITE(DSPADDR(plane), Offset);
2165 POSTING_READ(reg);
2166
2167 return 0;
2168}
2169
2170/* Assume fb object is pinned & idle & fenced and just update base pointers */
2171static int
2172intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2173 int x, int y, enum mode_set_atomic state)
2174{
2175 struct drm_device *dev = crtc->dev;
2176 struct drm_i915_private *dev_priv = dev->dev_private;
2177 int ret;
2178
2179 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2180 if (ret)
2181 return ret;
2182
bed4a673 2183 intel_update_fbc(dev);
3dec0095 2184 intel_increase_pllclock(crtc);
81255565
JB
2185
2186 return 0;
2187}
2188
5c3b82e2 2189static int
3c4fdcfb
KH
2190intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2191 struct drm_framebuffer *old_fb)
79e53945
JB
2192{
2193 struct drm_device *dev = crtc->dev;
79e53945
JB
2194 struct drm_i915_master_private *master_priv;
2195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5c3b82e2 2196 int ret;
79e53945
JB
2197
2198 /* no fb bound */
2199 if (!crtc->fb) {
a5071c2f 2200 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2201 return 0;
2202 }
2203
265db958 2204 switch (intel_crtc->plane) {
5c3b82e2
CW
2205 case 0:
2206 case 1:
2207 break;
27f8227b
JB
2208 case 2:
2209 if (IS_IVYBRIDGE(dev))
2210 break;
2211 /* fall through otherwise */
5c3b82e2 2212 default:
a5071c2f 2213 DRM_ERROR("no plane for crtc\n");
5c3b82e2 2214 return -EINVAL;
79e53945
JB
2215 }
2216
5c3b82e2 2217 mutex_lock(&dev->struct_mutex);
265db958
CW
2218 ret = intel_pin_and_fence_fb_obj(dev,
2219 to_intel_framebuffer(crtc->fb)->obj,
919926ae 2220 NULL);
5c3b82e2
CW
2221 if (ret != 0) {
2222 mutex_unlock(&dev->struct_mutex);
a5071c2f 2223 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2224 return ret;
2225 }
79e53945 2226
265db958 2227 if (old_fb) {
e6c3a2a6 2228 struct drm_i915_private *dev_priv = dev->dev_private;
05394f39 2229 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
265db958 2230
e6c3a2a6 2231 wait_event(dev_priv->pending_flip_queue,
01eec727 2232 atomic_read(&dev_priv->mm.wedged) ||
05394f39 2233 atomic_read(&obj->pending_flip) == 0);
85345517
CW
2234
2235 /* Big Hammer, we also need to ensure that any pending
2236 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2237 * current scanout is retired before unpinning the old
2238 * framebuffer.
01eec727
CW
2239 *
2240 * This should only fail upon a hung GPU, in which case we
2241 * can safely continue.
85345517 2242 */
a8198eea 2243 ret = i915_gem_object_finish_gpu(obj);
01eec727 2244 (void) ret;
265db958
CW
2245 }
2246
21c74a8e
JW
2247 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2248 LEAVE_ATOMIC_MODE_SET);
4e6cfefc 2249 if (ret) {
265db958 2250 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
5c3b82e2 2251 mutex_unlock(&dev->struct_mutex);
a5071c2f 2252 DRM_ERROR("failed to update base address\n");
4e6cfefc 2253 return ret;
79e53945 2254 }
3c4fdcfb 2255
b7f1de28
CW
2256 if (old_fb) {
2257 intel_wait_for_vblank(dev, intel_crtc->pipe);
265db958 2258 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2259 }
652c393a 2260
5c3b82e2 2261 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2262
2263 if (!dev->primary->master)
5c3b82e2 2264 return 0;
79e53945
JB
2265
2266 master_priv = dev->primary->master->driver_priv;
2267 if (!master_priv->sarea_priv)
5c3b82e2 2268 return 0;
79e53945 2269
265db958 2270 if (intel_crtc->pipe) {
79e53945
JB
2271 master_priv->sarea_priv->pipeB_x = x;
2272 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2273 } else {
2274 master_priv->sarea_priv->pipeA_x = x;
2275 master_priv->sarea_priv->pipeA_y = y;
79e53945 2276 }
5c3b82e2
CW
2277
2278 return 0;
79e53945
JB
2279}
2280
5eddb70b 2281static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2282{
2283 struct drm_device *dev = crtc->dev;
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 u32 dpa_ctl;
2286
28c97730 2287 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2288 dpa_ctl = I915_READ(DP_A);
2289 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2290
2291 if (clock < 200000) {
2292 u32 temp;
2293 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2294 /* workaround for 160Mhz:
2295 1) program 0x4600c bits 15:0 = 0x8124
2296 2) program 0x46010 bit 0 = 1
2297 3) program 0x46034 bit 24 = 1
2298 4) program 0x64000 bit 14 = 1
2299 */
2300 temp = I915_READ(0x4600c);
2301 temp &= 0xffff0000;
2302 I915_WRITE(0x4600c, temp | 0x8124);
2303
2304 temp = I915_READ(0x46010);
2305 I915_WRITE(0x46010, temp | 1);
2306
2307 temp = I915_READ(0x46034);
2308 I915_WRITE(0x46034, temp | (1 << 24));
2309 } else {
2310 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2311 }
2312 I915_WRITE(DP_A, dpa_ctl);
2313
5eddb70b 2314 POSTING_READ(DP_A);
32f9d658
ZW
2315 udelay(500);
2316}
2317
5e84e1a4
ZW
2318static void intel_fdi_normal_train(struct drm_crtc *crtc)
2319{
2320 struct drm_device *dev = crtc->dev;
2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323 int pipe = intel_crtc->pipe;
2324 u32 reg, temp;
2325
2326 /* enable normal train */
2327 reg = FDI_TX_CTL(pipe);
2328 temp = I915_READ(reg);
61e499bf 2329 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2330 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2331 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2332 } else {
2333 temp &= ~FDI_LINK_TRAIN_NONE;
2334 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2335 }
5e84e1a4
ZW
2336 I915_WRITE(reg, temp);
2337
2338 reg = FDI_RX_CTL(pipe);
2339 temp = I915_READ(reg);
2340 if (HAS_PCH_CPT(dev)) {
2341 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2342 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2343 } else {
2344 temp &= ~FDI_LINK_TRAIN_NONE;
2345 temp |= FDI_LINK_TRAIN_NONE;
2346 }
2347 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2348
2349 /* wait one idle pattern time */
2350 POSTING_READ(reg);
2351 udelay(1000);
357555c0
JB
2352
2353 /* IVB wants error correction enabled */
2354 if (IS_IVYBRIDGE(dev))
2355 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2356 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2357}
2358
291427f5
JB
2359static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2360{
2361 struct drm_i915_private *dev_priv = dev->dev_private;
2362 u32 flags = I915_READ(SOUTH_CHICKEN1);
2363
2364 flags |= FDI_PHASE_SYNC_OVR(pipe);
2365 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2366 flags |= FDI_PHASE_SYNC_EN(pipe);
2367 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2368 POSTING_READ(SOUTH_CHICKEN1);
2369}
2370
8db9d77b
ZW
2371/* The FDI link training functions for ILK/Ibexpeak. */
2372static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2373{
2374 struct drm_device *dev = crtc->dev;
2375 struct drm_i915_private *dev_priv = dev->dev_private;
2376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2377 int pipe = intel_crtc->pipe;
0fc932b8 2378 int plane = intel_crtc->plane;
5eddb70b 2379 u32 reg, temp, tries;
8db9d77b 2380
0fc932b8
JB
2381 /* FDI needs bits from pipe & plane first */
2382 assert_pipe_enabled(dev_priv, pipe);
2383 assert_plane_enabled(dev_priv, plane);
2384
e1a44743
AJ
2385 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2386 for train result */
5eddb70b
CW
2387 reg = FDI_RX_IMR(pipe);
2388 temp = I915_READ(reg);
e1a44743
AJ
2389 temp &= ~FDI_RX_SYMBOL_LOCK;
2390 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2391 I915_WRITE(reg, temp);
2392 I915_READ(reg);
e1a44743
AJ
2393 udelay(150);
2394
8db9d77b 2395 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2396 reg = FDI_TX_CTL(pipe);
2397 temp = I915_READ(reg);
77ffb597
AJ
2398 temp &= ~(7 << 19);
2399 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2400 temp &= ~FDI_LINK_TRAIN_NONE;
2401 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2402 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2403
5eddb70b
CW
2404 reg = FDI_RX_CTL(pipe);
2405 temp = I915_READ(reg);
8db9d77b
ZW
2406 temp &= ~FDI_LINK_TRAIN_NONE;
2407 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2408 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2409
2410 POSTING_READ(reg);
8db9d77b
ZW
2411 udelay(150);
2412
5b2adf89 2413 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2414 if (HAS_PCH_IBX(dev)) {
2415 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2416 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2417 FDI_RX_PHASE_SYNC_POINTER_EN);
2418 }
5b2adf89 2419
5eddb70b 2420 reg = FDI_RX_IIR(pipe);
e1a44743 2421 for (tries = 0; tries < 5; tries++) {
5eddb70b 2422 temp = I915_READ(reg);
8db9d77b
ZW
2423 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2424
2425 if ((temp & FDI_RX_BIT_LOCK)) {
2426 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2427 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2428 break;
2429 }
8db9d77b 2430 }
e1a44743 2431 if (tries == 5)
5eddb70b 2432 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2433
2434 /* Train 2 */
5eddb70b
CW
2435 reg = FDI_TX_CTL(pipe);
2436 temp = I915_READ(reg);
8db9d77b
ZW
2437 temp &= ~FDI_LINK_TRAIN_NONE;
2438 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2439 I915_WRITE(reg, temp);
8db9d77b 2440
5eddb70b
CW
2441 reg = FDI_RX_CTL(pipe);
2442 temp = I915_READ(reg);
8db9d77b
ZW
2443 temp &= ~FDI_LINK_TRAIN_NONE;
2444 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2445 I915_WRITE(reg, temp);
8db9d77b 2446
5eddb70b
CW
2447 POSTING_READ(reg);
2448 udelay(150);
8db9d77b 2449
5eddb70b 2450 reg = FDI_RX_IIR(pipe);
e1a44743 2451 for (tries = 0; tries < 5; tries++) {
5eddb70b 2452 temp = I915_READ(reg);
8db9d77b
ZW
2453 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2456 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2457 DRM_DEBUG_KMS("FDI train 2 done.\n");
2458 break;
2459 }
8db9d77b 2460 }
e1a44743 2461 if (tries == 5)
5eddb70b 2462 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2463
2464 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2465
8db9d77b
ZW
2466}
2467
0206e353 2468static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2469 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2470 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2471 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2472 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2473};
2474
2475/* The FDI link training functions for SNB/Cougarpoint. */
2476static void gen6_fdi_link_train(struct drm_crtc *crtc)
2477{
2478 struct drm_device *dev = crtc->dev;
2479 struct drm_i915_private *dev_priv = dev->dev_private;
2480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2481 int pipe = intel_crtc->pipe;
5eddb70b 2482 u32 reg, temp, i;
8db9d77b 2483
e1a44743
AJ
2484 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2485 for train result */
5eddb70b
CW
2486 reg = FDI_RX_IMR(pipe);
2487 temp = I915_READ(reg);
e1a44743
AJ
2488 temp &= ~FDI_RX_SYMBOL_LOCK;
2489 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2490 I915_WRITE(reg, temp);
2491
2492 POSTING_READ(reg);
e1a44743
AJ
2493 udelay(150);
2494
8db9d77b 2495 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2496 reg = FDI_TX_CTL(pipe);
2497 temp = I915_READ(reg);
77ffb597
AJ
2498 temp &= ~(7 << 19);
2499 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503 /* SNB-B */
2504 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2505 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2506
5eddb70b
CW
2507 reg = FDI_RX_CTL(pipe);
2508 temp = I915_READ(reg);
8db9d77b
ZW
2509 if (HAS_PCH_CPT(dev)) {
2510 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2511 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2512 } else {
2513 temp &= ~FDI_LINK_TRAIN_NONE;
2514 temp |= FDI_LINK_TRAIN_PATTERN_1;
2515 }
5eddb70b
CW
2516 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2517
2518 POSTING_READ(reg);
8db9d77b
ZW
2519 udelay(150);
2520
291427f5
JB
2521 if (HAS_PCH_CPT(dev))
2522 cpt_phase_pointer_enable(dev, pipe);
2523
0206e353 2524 for (i = 0; i < 4; i++) {
5eddb70b
CW
2525 reg = FDI_TX_CTL(pipe);
2526 temp = I915_READ(reg);
8db9d77b
ZW
2527 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2528 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2529 I915_WRITE(reg, temp);
2530
2531 POSTING_READ(reg);
8db9d77b
ZW
2532 udelay(500);
2533
5eddb70b
CW
2534 reg = FDI_RX_IIR(pipe);
2535 temp = I915_READ(reg);
8db9d77b
ZW
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538 if (temp & FDI_RX_BIT_LOCK) {
5eddb70b 2539 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2540 DRM_DEBUG_KMS("FDI train 1 done.\n");
2541 break;
2542 }
2543 }
2544 if (i == 4)
5eddb70b 2545 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2546
2547 /* Train 2 */
5eddb70b
CW
2548 reg = FDI_TX_CTL(pipe);
2549 temp = I915_READ(reg);
8db9d77b
ZW
2550 temp &= ~FDI_LINK_TRAIN_NONE;
2551 temp |= FDI_LINK_TRAIN_PATTERN_2;
2552 if (IS_GEN6(dev)) {
2553 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2554 /* SNB-B */
2555 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2556 }
5eddb70b 2557 I915_WRITE(reg, temp);
8db9d77b 2558
5eddb70b
CW
2559 reg = FDI_RX_CTL(pipe);
2560 temp = I915_READ(reg);
8db9d77b
ZW
2561 if (HAS_PCH_CPT(dev)) {
2562 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2563 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2564 } else {
2565 temp &= ~FDI_LINK_TRAIN_NONE;
2566 temp |= FDI_LINK_TRAIN_PATTERN_2;
2567 }
5eddb70b
CW
2568 I915_WRITE(reg, temp);
2569
2570 POSTING_READ(reg);
8db9d77b
ZW
2571 udelay(150);
2572
0206e353 2573 for (i = 0; i < 4; i++) {
5eddb70b
CW
2574 reg = FDI_TX_CTL(pipe);
2575 temp = I915_READ(reg);
8db9d77b
ZW
2576 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2577 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2578 I915_WRITE(reg, temp);
2579
2580 POSTING_READ(reg);
8db9d77b
ZW
2581 udelay(500);
2582
5eddb70b
CW
2583 reg = FDI_RX_IIR(pipe);
2584 temp = I915_READ(reg);
8db9d77b
ZW
2585 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2586
2587 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2588 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2589 DRM_DEBUG_KMS("FDI train 2 done.\n");
2590 break;
2591 }
2592 }
2593 if (i == 4)
5eddb70b 2594 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2595
2596 DRM_DEBUG_KMS("FDI train done.\n");
2597}
2598
357555c0
JB
2599/* Manual link training for Ivy Bridge A0 parts */
2600static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2601{
2602 struct drm_device *dev = crtc->dev;
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2604 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2605 int pipe = intel_crtc->pipe;
2606 u32 reg, temp, i;
2607
2608 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2609 for train result */
2610 reg = FDI_RX_IMR(pipe);
2611 temp = I915_READ(reg);
2612 temp &= ~FDI_RX_SYMBOL_LOCK;
2613 temp &= ~FDI_RX_BIT_LOCK;
2614 I915_WRITE(reg, temp);
2615
2616 POSTING_READ(reg);
2617 udelay(150);
2618
2619 /* enable CPU FDI TX and PCH FDI RX */
2620 reg = FDI_TX_CTL(pipe);
2621 temp = I915_READ(reg);
2622 temp &= ~(7 << 19);
2623 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2624 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2625 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2626 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2627 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2628 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2629 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2630
2631 reg = FDI_RX_CTL(pipe);
2632 temp = I915_READ(reg);
2633 temp &= ~FDI_LINK_TRAIN_AUTO;
2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2636 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2637 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2638
2639 POSTING_READ(reg);
2640 udelay(150);
2641
291427f5
JB
2642 if (HAS_PCH_CPT(dev))
2643 cpt_phase_pointer_enable(dev, pipe);
2644
0206e353 2645 for (i = 0; i < 4; i++) {
357555c0
JB
2646 reg = FDI_TX_CTL(pipe);
2647 temp = I915_READ(reg);
2648 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2649 temp |= snb_b_fdi_train_param[i];
2650 I915_WRITE(reg, temp);
2651
2652 POSTING_READ(reg);
2653 udelay(500);
2654
2655 reg = FDI_RX_IIR(pipe);
2656 temp = I915_READ(reg);
2657 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2658
2659 if (temp & FDI_RX_BIT_LOCK ||
2660 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2661 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2662 DRM_DEBUG_KMS("FDI train 1 done.\n");
2663 break;
2664 }
2665 }
2666 if (i == 4)
2667 DRM_ERROR("FDI train 1 fail!\n");
2668
2669 /* Train 2 */
2670 reg = FDI_TX_CTL(pipe);
2671 temp = I915_READ(reg);
2672 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2673 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2674 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2675 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2676 I915_WRITE(reg, temp);
2677
2678 reg = FDI_RX_CTL(pipe);
2679 temp = I915_READ(reg);
2680 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2681 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2682 I915_WRITE(reg, temp);
2683
2684 POSTING_READ(reg);
2685 udelay(150);
2686
0206e353 2687 for (i = 0; i < 4; i++) {
357555c0
JB
2688 reg = FDI_TX_CTL(pipe);
2689 temp = I915_READ(reg);
2690 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2691 temp |= snb_b_fdi_train_param[i];
2692 I915_WRITE(reg, temp);
2693
2694 POSTING_READ(reg);
2695 udelay(500);
2696
2697 reg = FDI_RX_IIR(pipe);
2698 temp = I915_READ(reg);
2699 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2700
2701 if (temp & FDI_RX_SYMBOL_LOCK) {
2702 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2703 DRM_DEBUG_KMS("FDI train 2 done.\n");
2704 break;
2705 }
2706 }
2707 if (i == 4)
2708 DRM_ERROR("FDI train 2 fail!\n");
2709
2710 DRM_DEBUG_KMS("FDI train done.\n");
2711}
2712
2713static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2c07245f
ZW
2714{
2715 struct drm_device *dev = crtc->dev;
2716 struct drm_i915_private *dev_priv = dev->dev_private;
2717 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2718 int pipe = intel_crtc->pipe;
5eddb70b 2719 u32 reg, temp;
79e53945 2720
c64e311e 2721 /* Write the TU size bits so error detection works */
5eddb70b
CW
2722 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2723 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
c64e311e 2724
c98e9dcf 2725 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2726 reg = FDI_RX_CTL(pipe);
2727 temp = I915_READ(reg);
2728 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2729 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2730 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2731 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2732
2733 POSTING_READ(reg);
c98e9dcf
JB
2734 udelay(200);
2735
2736 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2737 temp = I915_READ(reg);
2738 I915_WRITE(reg, temp | FDI_PCDCLK);
2739
2740 POSTING_READ(reg);
c98e9dcf
JB
2741 udelay(200);
2742
2743 /* Enable CPU FDI TX PLL, always on for Ironlake */
5eddb70b
CW
2744 reg = FDI_TX_CTL(pipe);
2745 temp = I915_READ(reg);
c98e9dcf 2746 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
5eddb70b
CW
2747 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2748
2749 POSTING_READ(reg);
c98e9dcf 2750 udelay(100);
6be4a607 2751 }
0e23b99d
JB
2752}
2753
291427f5
JB
2754static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2755{
2756 struct drm_i915_private *dev_priv = dev->dev_private;
2757 u32 flags = I915_READ(SOUTH_CHICKEN1);
2758
2759 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2760 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2761 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2762 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2763 POSTING_READ(SOUTH_CHICKEN1);
2764}
0fc932b8
JB
2765static void ironlake_fdi_disable(struct drm_crtc *crtc)
2766{
2767 struct drm_device *dev = crtc->dev;
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2770 int pipe = intel_crtc->pipe;
2771 u32 reg, temp;
2772
2773 /* disable CPU FDI tx and PCH FDI rx */
2774 reg = FDI_TX_CTL(pipe);
2775 temp = I915_READ(reg);
2776 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2777 POSTING_READ(reg);
2778
2779 reg = FDI_RX_CTL(pipe);
2780 temp = I915_READ(reg);
2781 temp &= ~(0x7 << 16);
2782 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2783 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2784
2785 POSTING_READ(reg);
2786 udelay(100);
2787
2788 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2789 if (HAS_PCH_IBX(dev)) {
2790 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2791 I915_WRITE(FDI_RX_CHICKEN(pipe),
2792 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2793 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2794 } else if (HAS_PCH_CPT(dev)) {
2795 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2796 }
0fc932b8
JB
2797
2798 /* still set train pattern 1 */
2799 reg = FDI_TX_CTL(pipe);
2800 temp = I915_READ(reg);
2801 temp &= ~FDI_LINK_TRAIN_NONE;
2802 temp |= FDI_LINK_TRAIN_PATTERN_1;
2803 I915_WRITE(reg, temp);
2804
2805 reg = FDI_RX_CTL(pipe);
2806 temp = I915_READ(reg);
2807 if (HAS_PCH_CPT(dev)) {
2808 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2809 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2810 } else {
2811 temp &= ~FDI_LINK_TRAIN_NONE;
2812 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813 }
2814 /* BPC in FDI rx is consistent with that in PIPECONF */
2815 temp &= ~(0x07 << 16);
2816 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2817 I915_WRITE(reg, temp);
2818
2819 POSTING_READ(reg);
2820 udelay(100);
2821}
2822
6b383a7f
CW
2823/*
2824 * When we disable a pipe, we need to clear any pending scanline wait events
2825 * to avoid hanging the ring, which we assume we are waiting on.
2826 */
2827static void intel_clear_scanline_wait(struct drm_device *dev)
2828{
2829 struct drm_i915_private *dev_priv = dev->dev_private;
8168bd48 2830 struct intel_ring_buffer *ring;
6b383a7f
CW
2831 u32 tmp;
2832
2833 if (IS_GEN2(dev))
2834 /* Can't break the hang on i8xx */
2835 return;
2836
1ec14ad3 2837 ring = LP_RING(dev_priv);
8168bd48
CW
2838 tmp = I915_READ_CTL(ring);
2839 if (tmp & RING_WAIT)
2840 I915_WRITE_CTL(ring, tmp);
6b383a7f
CW
2841}
2842
e6c3a2a6
CW
2843static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2844{
05394f39 2845 struct drm_i915_gem_object *obj;
e6c3a2a6
CW
2846 struct drm_i915_private *dev_priv;
2847
2848 if (crtc->fb == NULL)
2849 return;
2850
05394f39 2851 obj = to_intel_framebuffer(crtc->fb)->obj;
e6c3a2a6
CW
2852 dev_priv = crtc->dev->dev_private;
2853 wait_event(dev_priv->pending_flip_queue,
05394f39 2854 atomic_read(&obj->pending_flip) == 0);
e6c3a2a6
CW
2855}
2856
040484af
JB
2857static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2858{
2859 struct drm_device *dev = crtc->dev;
2860 struct drm_mode_config *mode_config = &dev->mode_config;
2861 struct intel_encoder *encoder;
2862
2863 /*
2864 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2865 * must be driven by its own crtc; no sharing is possible.
2866 */
2867 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2868 if (encoder->base.crtc != crtc)
2869 continue;
2870
2871 switch (encoder->type) {
2872 case INTEL_OUTPUT_EDP:
2873 if (!intel_encoder_is_pch_edp(&encoder->base))
2874 return false;
2875 continue;
2876 }
2877 }
2878
2879 return true;
2880}
2881
f67a559d
JB
2882/*
2883 * Enable PCH resources required for PCH ports:
2884 * - PCH PLLs
2885 * - FDI training & RX/TX
2886 * - update transcoder timings
2887 * - DP transcoding bits
2888 * - transcoder
2889 */
2890static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
2891{
2892 struct drm_device *dev = crtc->dev;
2893 struct drm_i915_private *dev_priv = dev->dev_private;
2894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2895 int pipe = intel_crtc->pipe;
4b645f14 2896 u32 reg, temp, transc_sel;
2c07245f 2897
c98e9dcf 2898 /* For PCH output, training FDI link */
674cf967 2899 dev_priv->display.fdi_link_train(crtc);
2c07245f 2900
92f2584a 2901 intel_enable_pch_pll(dev_priv, pipe);
8db9d77b 2902
c98e9dcf 2903 if (HAS_PCH_CPT(dev)) {
4b645f14
JB
2904 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2905 TRANSC_DPLLB_SEL;
2906
c98e9dcf
JB
2907 /* Be sure PCH DPLL SEL is set */
2908 temp = I915_READ(PCH_DPLL_SEL);
d64311ab
JB
2909 if (pipe == 0) {
2910 temp &= ~(TRANSA_DPLLB_SEL);
c98e9dcf 2911 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
d64311ab
JB
2912 } else if (pipe == 1) {
2913 temp &= ~(TRANSB_DPLLB_SEL);
c98e9dcf 2914 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
d64311ab
JB
2915 } else if (pipe == 2) {
2916 temp &= ~(TRANSC_DPLLB_SEL);
4b645f14 2917 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
d64311ab 2918 }
c98e9dcf 2919 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 2920 }
5eddb70b 2921
d9b6cb56
JB
2922 /* set transcoder timing, panel must allow it */
2923 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
2924 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2925 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2926 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 2927
5eddb70b
CW
2928 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2929 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2930 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
8db9d77b 2931
5e84e1a4
ZW
2932 intel_fdi_normal_train(crtc);
2933
c98e9dcf
JB
2934 /* For PCH DP, enable TRANS_DP_CTL */
2935 if (HAS_PCH_CPT(dev) &&
2936 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
9325c9f0 2937 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
2938 reg = TRANS_DP_CTL(pipe);
2939 temp = I915_READ(reg);
2940 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
2941 TRANS_DP_SYNC_MASK |
2942 TRANS_DP_BPC_MASK);
5eddb70b
CW
2943 temp |= (TRANS_DP_OUTPUT_ENABLE |
2944 TRANS_DP_ENH_FRAMING);
9325c9f0 2945 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
2946
2947 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 2948 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 2949 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 2950 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
2951
2952 switch (intel_trans_dp_port_sel(crtc)) {
2953 case PCH_DP_B:
5eddb70b 2954 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
2955 break;
2956 case PCH_DP_C:
5eddb70b 2957 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
2958 break;
2959 case PCH_DP_D:
5eddb70b 2960 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
2961 break;
2962 default:
2963 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
5eddb70b 2964 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 2965 break;
32f9d658 2966 }
2c07245f 2967
5eddb70b 2968 I915_WRITE(reg, temp);
6be4a607 2969 }
b52eb4dc 2970
040484af 2971 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
2972}
2973
d4270e57
JB
2974void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2975{
2976 struct drm_i915_private *dev_priv = dev->dev_private;
2977 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2978 u32 temp;
2979
2980 temp = I915_READ(dslreg);
2981 udelay(500);
2982 if (wait_for(I915_READ(dslreg) != temp, 5)) {
2983 /* Without this, mode sets may fail silently on FDI */
2984 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2985 udelay(250);
2986 I915_WRITE(tc2reg, 0);
2987 if (wait_for(I915_READ(dslreg) != temp, 5))
2988 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
2989 }
2990}
2991
f67a559d
JB
2992static void ironlake_crtc_enable(struct drm_crtc *crtc)
2993{
2994 struct drm_device *dev = crtc->dev;
2995 struct drm_i915_private *dev_priv = dev->dev_private;
2996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2997 int pipe = intel_crtc->pipe;
2998 int plane = intel_crtc->plane;
2999 u32 temp;
3000 bool is_pch_port;
3001
3002 if (intel_crtc->active)
3003 return;
3004
3005 intel_crtc->active = true;
3006 intel_update_watermarks(dev);
3007
3008 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3009 temp = I915_READ(PCH_LVDS);
3010 if ((temp & LVDS_PORT_EN) == 0)
3011 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3012 }
3013
3014 is_pch_port = intel_crtc_driving_pch(crtc);
3015
3016 if (is_pch_port)
357555c0 3017 ironlake_fdi_pll_enable(crtc);
f67a559d
JB
3018 else
3019 ironlake_fdi_disable(crtc);
3020
3021 /* Enable panel fitting for LVDS */
3022 if (dev_priv->pch_pf_size &&
3023 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3024 /* Force use of hard-coded filter coefficients
3025 * as some pre-programmed values are broken,
3026 * e.g. x201.
3027 */
9db4a9c7
JB
3028 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3029 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3030 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3031 }
3032
9c54c0dd
JB
3033 /*
3034 * On ILK+ LUT must be loaded before the pipe is running but with
3035 * clocks enabled
3036 */
3037 intel_crtc_load_lut(crtc);
3038
f67a559d
JB
3039 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3040 intel_enable_plane(dev_priv, plane, pipe);
3041
3042 if (is_pch_port)
3043 ironlake_pch_enable(crtc);
c98e9dcf 3044
d1ebd816 3045 mutex_lock(&dev->struct_mutex);
bed4a673 3046 intel_update_fbc(dev);
d1ebd816
BW
3047 mutex_unlock(&dev->struct_mutex);
3048
6b383a7f 3049 intel_crtc_update_cursor(crtc, true);
6be4a607
JB
3050}
3051
3052static void ironlake_crtc_disable(struct drm_crtc *crtc)
3053{
3054 struct drm_device *dev = crtc->dev;
3055 struct drm_i915_private *dev_priv = dev->dev_private;
3056 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3057 int pipe = intel_crtc->pipe;
3058 int plane = intel_crtc->plane;
5eddb70b 3059 u32 reg, temp;
b52eb4dc 3060
f7abfe8b
CW
3061 if (!intel_crtc->active)
3062 return;
3063
e6c3a2a6 3064 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3065 drm_vblank_off(dev, pipe);
6b383a7f 3066 intel_crtc_update_cursor(crtc, false);
5eddb70b 3067
b24e7179 3068 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3069
973d04f9
CW
3070 if (dev_priv->cfb_plane == plane)
3071 intel_disable_fbc(dev);
2c07245f 3072
b24e7179 3073 intel_disable_pipe(dev_priv, pipe);
32f9d658 3074
6be4a607 3075 /* Disable PF */
9db4a9c7
JB
3076 I915_WRITE(PF_CTL(pipe), 0);
3077 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3078
0fc932b8 3079 ironlake_fdi_disable(crtc);
2c07245f 3080
47a05eca
JB
3081 /* This is a horrible layering violation; we should be doing this in
3082 * the connector/encoder ->prepare instead, but we don't always have
3083 * enough information there about the config to know whether it will
3084 * actually be necessary or just cause undesired flicker.
3085 */
3086 intel_disable_pch_ports(dev_priv, pipe);
249c0e64 3087
040484af 3088 intel_disable_transcoder(dev_priv, pipe);
913d8d11 3089
6be4a607
JB
3090 if (HAS_PCH_CPT(dev)) {
3091 /* disable TRANS_DP_CTL */
5eddb70b
CW
3092 reg = TRANS_DP_CTL(pipe);
3093 temp = I915_READ(reg);
3094 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3095 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3096 I915_WRITE(reg, temp);
6be4a607
JB
3097
3098 /* disable DPLL_SEL */
3099 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3100 switch (pipe) {
3101 case 0:
d64311ab 3102 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3103 break;
3104 case 1:
6be4a607 3105 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3106 break;
3107 case 2:
4b645f14 3108 /* C shares PLL A or B */
d64311ab 3109 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3110 break;
3111 default:
3112 BUG(); /* wtf */
3113 }
6be4a607 3114 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3115 }
e3421a18 3116
6be4a607 3117 /* disable PCH DPLL */
4b645f14
JB
3118 if (!intel_crtc->no_pll)
3119 intel_disable_pch_pll(dev_priv, pipe);
8db9d77b 3120
6be4a607 3121 /* Switch from PCDclk to Rawclk */
5eddb70b
CW
3122 reg = FDI_RX_CTL(pipe);
3123 temp = I915_READ(reg);
3124 I915_WRITE(reg, temp & ~FDI_PCDCLK);
8db9d77b 3125
6be4a607 3126 /* Disable CPU FDI TX PLL */
5eddb70b
CW
3127 reg = FDI_TX_CTL(pipe);
3128 temp = I915_READ(reg);
3129 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3130
3131 POSTING_READ(reg);
6be4a607 3132 udelay(100);
8db9d77b 3133
5eddb70b
CW
3134 reg = FDI_RX_CTL(pipe);
3135 temp = I915_READ(reg);
3136 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2c07245f 3137
6be4a607 3138 /* Wait for the clocks to turn off. */
5eddb70b 3139 POSTING_READ(reg);
6be4a607 3140 udelay(100);
6b383a7f 3141
f7abfe8b 3142 intel_crtc->active = false;
6b383a7f 3143 intel_update_watermarks(dev);
d1ebd816
BW
3144
3145 mutex_lock(&dev->struct_mutex);
6b383a7f
CW
3146 intel_update_fbc(dev);
3147 intel_clear_scanline_wait(dev);
d1ebd816 3148 mutex_unlock(&dev->struct_mutex);
6be4a607 3149}
1b3c7a47 3150
6be4a607
JB
3151static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3152{
3153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3154 int pipe = intel_crtc->pipe;
3155 int plane = intel_crtc->plane;
8db9d77b 3156
6be4a607
JB
3157 /* XXX: When our outputs are all unaware of DPMS modes other than off
3158 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3159 */
3160 switch (mode) {
3161 case DRM_MODE_DPMS_ON:
3162 case DRM_MODE_DPMS_STANDBY:
3163 case DRM_MODE_DPMS_SUSPEND:
3164 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3165 ironlake_crtc_enable(crtc);
3166 break;
1b3c7a47 3167
6be4a607
JB
3168 case DRM_MODE_DPMS_OFF:
3169 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3170 ironlake_crtc_disable(crtc);
2c07245f
ZW
3171 break;
3172 }
3173}
3174
02e792fb
DV
3175static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3176{
02e792fb 3177 if (!enable && intel_crtc->overlay) {
23f09ce3 3178 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3179 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3180
23f09ce3 3181 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3182 dev_priv->mm.interruptible = false;
3183 (void) intel_overlay_switch_off(intel_crtc->overlay);
3184 dev_priv->mm.interruptible = true;
23f09ce3 3185 mutex_unlock(&dev->struct_mutex);
02e792fb 3186 }
02e792fb 3187
5dcdbcb0
CW
3188 /* Let userspace switch the overlay on again. In most cases userspace
3189 * has to recompute where to put it anyway.
3190 */
02e792fb
DV
3191}
3192
0b8765c6 3193static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3194{
3195 struct drm_device *dev = crtc->dev;
79e53945
JB
3196 struct drm_i915_private *dev_priv = dev->dev_private;
3197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3198 int pipe = intel_crtc->pipe;
80824003 3199 int plane = intel_crtc->plane;
79e53945 3200
f7abfe8b
CW
3201 if (intel_crtc->active)
3202 return;
3203
3204 intel_crtc->active = true;
6b383a7f
CW
3205 intel_update_watermarks(dev);
3206
63d7bbe9 3207 intel_enable_pll(dev_priv, pipe);
040484af 3208 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3209 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3210
0b8765c6 3211 intel_crtc_load_lut(crtc);
bed4a673 3212 intel_update_fbc(dev);
79e53945 3213
0b8765c6
JB
3214 /* Give the overlay scaler a chance to enable if it's on this pipe */
3215 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3216 intel_crtc_update_cursor(crtc, true);
0b8765c6 3217}
79e53945 3218
0b8765c6
JB
3219static void i9xx_crtc_disable(struct drm_crtc *crtc)
3220{
3221 struct drm_device *dev = crtc->dev;
3222 struct drm_i915_private *dev_priv = dev->dev_private;
3223 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3224 int pipe = intel_crtc->pipe;
3225 int plane = intel_crtc->plane;
b690e96c 3226
f7abfe8b
CW
3227 if (!intel_crtc->active)
3228 return;
3229
0b8765c6 3230 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3231 intel_crtc_wait_for_pending_flips(crtc);
3232 drm_vblank_off(dev, pipe);
0b8765c6 3233 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3234 intel_crtc_update_cursor(crtc, false);
0b8765c6 3235
973d04f9
CW
3236 if (dev_priv->cfb_plane == plane)
3237 intel_disable_fbc(dev);
79e53945 3238
b24e7179 3239 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3240 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3241 intel_disable_pll(dev_priv, pipe);
0b8765c6 3242
f7abfe8b 3243 intel_crtc->active = false;
6b383a7f
CW
3244 intel_update_fbc(dev);
3245 intel_update_watermarks(dev);
3246 intel_clear_scanline_wait(dev);
0b8765c6
JB
3247}
3248
3249static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3250{
3251 /* XXX: When our outputs are all unaware of DPMS modes other than off
3252 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3253 */
3254 switch (mode) {
3255 case DRM_MODE_DPMS_ON:
3256 case DRM_MODE_DPMS_STANDBY:
3257 case DRM_MODE_DPMS_SUSPEND:
3258 i9xx_crtc_enable(crtc);
3259 break;
3260 case DRM_MODE_DPMS_OFF:
3261 i9xx_crtc_disable(crtc);
79e53945
JB
3262 break;
3263 }
2c07245f
ZW
3264}
3265
3266/**
3267 * Sets the power management mode of the pipe and plane.
2c07245f
ZW
3268 */
3269static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3270{
3271 struct drm_device *dev = crtc->dev;
e70236a8 3272 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f
ZW
3273 struct drm_i915_master_private *master_priv;
3274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3275 int pipe = intel_crtc->pipe;
3276 bool enabled;
3277
032d2a0d
CW
3278 if (intel_crtc->dpms_mode == mode)
3279 return;
3280
65655d4a 3281 intel_crtc->dpms_mode = mode;
debcaddc 3282
e70236a8 3283 dev_priv->display.dpms(crtc, mode);
79e53945
JB
3284
3285 if (!dev->primary->master)
3286 return;
3287
3288 master_priv = dev->primary->master->driver_priv;
3289 if (!master_priv->sarea_priv)
3290 return;
3291
3292 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3293
3294 switch (pipe) {
3295 case 0:
3296 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3297 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3298 break;
3299 case 1:
3300 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3301 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3302 break;
3303 default:
9db4a9c7 3304 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3305 break;
3306 }
79e53945
JB
3307}
3308
cdd59983
CW
3309static void intel_crtc_disable(struct drm_crtc *crtc)
3310{
3311 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3312 struct drm_device *dev = crtc->dev;
3313
3314 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3315
3316 if (crtc->fb) {
3317 mutex_lock(&dev->struct_mutex);
3318 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3319 mutex_unlock(&dev->struct_mutex);
3320 }
3321}
3322
7e7d76c3
JB
3323/* Prepare for a mode set.
3324 *
3325 * Note we could be a lot smarter here. We need to figure out which outputs
3326 * will be enabled, which disabled (in short, how the config will changes)
3327 * and perform the minimum necessary steps to accomplish that, e.g. updating
3328 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3329 * panel fitting is in the proper state, etc.
3330 */
3331static void i9xx_crtc_prepare(struct drm_crtc *crtc)
79e53945 3332{
7e7d76c3 3333 i9xx_crtc_disable(crtc);
79e53945
JB
3334}
3335
7e7d76c3 3336static void i9xx_crtc_commit(struct drm_crtc *crtc)
79e53945 3337{
7e7d76c3 3338 i9xx_crtc_enable(crtc);
7e7d76c3
JB
3339}
3340
3341static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3342{
7e7d76c3 3343 ironlake_crtc_disable(crtc);
7e7d76c3
JB
3344}
3345
3346static void ironlake_crtc_commit(struct drm_crtc *crtc)
3347{
7e7d76c3 3348 ironlake_crtc_enable(crtc);
79e53945
JB
3349}
3350
0206e353 3351void intel_encoder_prepare(struct drm_encoder *encoder)
79e53945
JB
3352{
3353 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3354 /* lvds has its own version of prepare see intel_lvds_prepare */
3355 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3356}
3357
0206e353 3358void intel_encoder_commit(struct drm_encoder *encoder)
79e53945
JB
3359{
3360 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
d4270e57
JB
3361 struct drm_device *dev = encoder->dev;
3362 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3363 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3364
79e53945
JB
3365 /* lvds has its own version of commit see intel_lvds_commit */
3366 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
d4270e57
JB
3367
3368 if (HAS_PCH_CPT(dev))
3369 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
79e53945
JB
3370}
3371
ea5b213a
CW
3372void intel_encoder_destroy(struct drm_encoder *encoder)
3373{
4ef69c7a 3374 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3375
ea5b213a
CW
3376 drm_encoder_cleanup(encoder);
3377 kfree(intel_encoder);
3378}
3379
79e53945
JB
3380static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3381 struct drm_display_mode *mode,
3382 struct drm_display_mode *adjusted_mode)
3383{
2c07245f 3384 struct drm_device *dev = crtc->dev;
89749350 3385
bad720ff 3386 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3387 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3388 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3389 return false;
2c07245f 3390 }
89749350
CW
3391
3392 /* XXX some encoders set the crtcinfo, others don't.
3393 * Obviously we need some form of conflict resolution here...
3394 */
3395 if (adjusted_mode->crtc_htotal == 0)
3396 drm_mode_set_crtcinfo(adjusted_mode, 0);
3397
79e53945
JB
3398 return true;
3399}
3400
e70236a8
JB
3401static int i945_get_display_clock_speed(struct drm_device *dev)
3402{
3403 return 400000;
3404}
79e53945 3405
e70236a8 3406static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3407{
e70236a8
JB
3408 return 333000;
3409}
79e53945 3410
e70236a8
JB
3411static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3412{
3413 return 200000;
3414}
79e53945 3415
e70236a8
JB
3416static int i915gm_get_display_clock_speed(struct drm_device *dev)
3417{
3418 u16 gcfgc = 0;
79e53945 3419
e70236a8
JB
3420 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3421
3422 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3423 return 133000;
3424 else {
3425 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3426 case GC_DISPLAY_CLOCK_333_MHZ:
3427 return 333000;
3428 default:
3429 case GC_DISPLAY_CLOCK_190_200_MHZ:
3430 return 190000;
79e53945 3431 }
e70236a8
JB
3432 }
3433}
3434
3435static int i865_get_display_clock_speed(struct drm_device *dev)
3436{
3437 return 266000;
3438}
3439
3440static int i855_get_display_clock_speed(struct drm_device *dev)
3441{
3442 u16 hpllcc = 0;
3443 /* Assume that the hardware is in the high speed state. This
3444 * should be the default.
3445 */
3446 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3447 case GC_CLOCK_133_200:
3448 case GC_CLOCK_100_200:
3449 return 200000;
3450 case GC_CLOCK_166_250:
3451 return 250000;
3452 case GC_CLOCK_100_133:
79e53945 3453 return 133000;
e70236a8 3454 }
79e53945 3455
e70236a8
JB
3456 /* Shouldn't happen */
3457 return 0;
3458}
79e53945 3459
e70236a8
JB
3460static int i830_get_display_clock_speed(struct drm_device *dev)
3461{
3462 return 133000;
79e53945
JB
3463}
3464
2c07245f
ZW
3465struct fdi_m_n {
3466 u32 tu;
3467 u32 gmch_m;
3468 u32 gmch_n;
3469 u32 link_m;
3470 u32 link_n;
3471};
3472
3473static void
3474fdi_reduce_ratio(u32 *num, u32 *den)
3475{
3476 while (*num > 0xffffff || *den > 0xffffff) {
3477 *num >>= 1;
3478 *den >>= 1;
3479 }
3480}
3481
2c07245f 3482static void
f2b115e6
AJ
3483ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3484 int link_clock, struct fdi_m_n *m_n)
2c07245f 3485{
2c07245f
ZW
3486 m_n->tu = 64; /* default size */
3487
22ed1113
CW
3488 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3489 m_n->gmch_m = bits_per_pixel * pixel_clock;
3490 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3491 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3492
22ed1113
CW
3493 m_n->link_m = pixel_clock;
3494 m_n->link_n = link_clock;
2c07245f
ZW
3495 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3496}
3497
3498
7662c8bd
SL
3499struct intel_watermark_params {
3500 unsigned long fifo_size;
3501 unsigned long max_wm;
3502 unsigned long default_wm;
3503 unsigned long guard_size;
3504 unsigned long cacheline_size;
3505};
3506
f2b115e6 3507/* Pineview has different values for various configs */
d210246a 3508static const struct intel_watermark_params pineview_display_wm = {
f2b115e6
AJ
3509 PINEVIEW_DISPLAY_FIFO,
3510 PINEVIEW_MAX_WM,
3511 PINEVIEW_DFT_WM,
3512 PINEVIEW_GUARD_WM,
3513 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3514};
d210246a 3515static const struct intel_watermark_params pineview_display_hplloff_wm = {
f2b115e6
AJ
3516 PINEVIEW_DISPLAY_FIFO,
3517 PINEVIEW_MAX_WM,
3518 PINEVIEW_DFT_HPLLOFF_WM,
3519 PINEVIEW_GUARD_WM,
3520 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3521};
d210246a 3522static const struct intel_watermark_params pineview_cursor_wm = {
f2b115e6
AJ
3523 PINEVIEW_CURSOR_FIFO,
3524 PINEVIEW_CURSOR_MAX_WM,
3525 PINEVIEW_CURSOR_DFT_WM,
3526 PINEVIEW_CURSOR_GUARD_WM,
3527 PINEVIEW_FIFO_LINE_SIZE,
7662c8bd 3528};
d210246a 3529static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
f2b115e6
AJ
3530 PINEVIEW_CURSOR_FIFO,
3531 PINEVIEW_CURSOR_MAX_WM,
3532 PINEVIEW_CURSOR_DFT_WM,
3533 PINEVIEW_CURSOR_GUARD_WM,
3534 PINEVIEW_FIFO_LINE_SIZE
7662c8bd 3535};
d210246a 3536static const struct intel_watermark_params g4x_wm_info = {
0e442c60
JB
3537 G4X_FIFO_SIZE,
3538 G4X_MAX_WM,
3539 G4X_MAX_WM,
3540 2,
3541 G4X_FIFO_LINE_SIZE,
3542};
d210246a 3543static const struct intel_watermark_params g4x_cursor_wm_info = {
4fe5e611
ZY
3544 I965_CURSOR_FIFO,
3545 I965_CURSOR_MAX_WM,
3546 I965_CURSOR_DFT_WM,
3547 2,
3548 G4X_FIFO_LINE_SIZE,
3549};
d210246a 3550static const struct intel_watermark_params i965_cursor_wm_info = {
4fe5e611
ZY
3551 I965_CURSOR_FIFO,
3552 I965_CURSOR_MAX_WM,
3553 I965_CURSOR_DFT_WM,
3554 2,
3555 I915_FIFO_LINE_SIZE,
3556};
d210246a 3557static const struct intel_watermark_params i945_wm_info = {
dff33cfc 3558 I945_FIFO_SIZE,
7662c8bd
SL
3559 I915_MAX_WM,
3560 1,
dff33cfc
JB
3561 2,
3562 I915_FIFO_LINE_SIZE
7662c8bd 3563};
d210246a 3564static const struct intel_watermark_params i915_wm_info = {
dff33cfc 3565 I915_FIFO_SIZE,
7662c8bd
SL
3566 I915_MAX_WM,
3567 1,
dff33cfc 3568 2,
7662c8bd
SL
3569 I915_FIFO_LINE_SIZE
3570};
d210246a 3571static const struct intel_watermark_params i855_wm_info = {
7662c8bd
SL
3572 I855GM_FIFO_SIZE,
3573 I915_MAX_WM,
3574 1,
dff33cfc 3575 2,
7662c8bd
SL
3576 I830_FIFO_LINE_SIZE
3577};
d210246a 3578static const struct intel_watermark_params i830_wm_info = {
7662c8bd
SL
3579 I830_FIFO_SIZE,
3580 I915_MAX_WM,
3581 1,
dff33cfc 3582 2,
7662c8bd
SL
3583 I830_FIFO_LINE_SIZE
3584};
3585
d210246a 3586static const struct intel_watermark_params ironlake_display_wm_info = {
7f8a8569
ZW
3587 ILK_DISPLAY_FIFO,
3588 ILK_DISPLAY_MAXWM,
3589 ILK_DISPLAY_DFTWM,
3590 2,
3591 ILK_FIFO_LINE_SIZE
3592};
d210246a 3593static const struct intel_watermark_params ironlake_cursor_wm_info = {
c936f44d
ZY
3594 ILK_CURSOR_FIFO,
3595 ILK_CURSOR_MAXWM,
3596 ILK_CURSOR_DFTWM,
3597 2,
3598 ILK_FIFO_LINE_SIZE
3599};
d210246a 3600static const struct intel_watermark_params ironlake_display_srwm_info = {
7f8a8569
ZW
3601 ILK_DISPLAY_SR_FIFO,
3602 ILK_DISPLAY_MAX_SRWM,
3603 ILK_DISPLAY_DFT_SRWM,
3604 2,
3605 ILK_FIFO_LINE_SIZE
3606};
d210246a 3607static const struct intel_watermark_params ironlake_cursor_srwm_info = {
7f8a8569
ZW
3608 ILK_CURSOR_SR_FIFO,
3609 ILK_CURSOR_MAX_SRWM,
3610 ILK_CURSOR_DFT_SRWM,
3611 2,
3612 ILK_FIFO_LINE_SIZE
3613};
3614
d210246a 3615static const struct intel_watermark_params sandybridge_display_wm_info = {
1398261a
YL
3616 SNB_DISPLAY_FIFO,
3617 SNB_DISPLAY_MAXWM,
3618 SNB_DISPLAY_DFTWM,
3619 2,
3620 SNB_FIFO_LINE_SIZE
3621};
d210246a 3622static const struct intel_watermark_params sandybridge_cursor_wm_info = {
1398261a
YL
3623 SNB_CURSOR_FIFO,
3624 SNB_CURSOR_MAXWM,
3625 SNB_CURSOR_DFTWM,
3626 2,
3627 SNB_FIFO_LINE_SIZE
3628};
d210246a 3629static const struct intel_watermark_params sandybridge_display_srwm_info = {
1398261a
YL
3630 SNB_DISPLAY_SR_FIFO,
3631 SNB_DISPLAY_MAX_SRWM,
3632 SNB_DISPLAY_DFT_SRWM,
3633 2,
3634 SNB_FIFO_LINE_SIZE
3635};
d210246a 3636static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
1398261a
YL
3637 SNB_CURSOR_SR_FIFO,
3638 SNB_CURSOR_MAX_SRWM,
3639 SNB_CURSOR_DFT_SRWM,
3640 2,
3641 SNB_FIFO_LINE_SIZE
3642};
3643
3644
dff33cfc
JB
3645/**
3646 * intel_calculate_wm - calculate watermark level
3647 * @clock_in_khz: pixel clock
3648 * @wm: chip FIFO params
3649 * @pixel_size: display pixel size
3650 * @latency_ns: memory latency for the platform
3651 *
3652 * Calculate the watermark level (the level at which the display plane will
3653 * start fetching from memory again). Each chip has a different display
3654 * FIFO size and allocation, so the caller needs to figure that out and pass
3655 * in the correct intel_watermark_params structure.
3656 *
3657 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3658 * on the pixel size. When it reaches the watermark level, it'll start
3659 * fetching FIFO line sized based chunks from memory until the FIFO fills
3660 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3661 * will occur, and a display engine hang could result.
3662 */
7662c8bd 3663static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
d210246a
CW
3664 const struct intel_watermark_params *wm,
3665 int fifo_size,
7662c8bd
SL
3666 int pixel_size,
3667 unsigned long latency_ns)
3668{
390c4dd4 3669 long entries_required, wm_size;
dff33cfc 3670
d660467c
JB
3671 /*
3672 * Note: we need to make sure we don't overflow for various clock &
3673 * latency values.
3674 * clocks go from a few thousand to several hundred thousand.
3675 * latency is usually a few thousand
3676 */
3677 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3678 1000;
8de9b311 3679 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
7662c8bd 3680
bbb0aef5 3681 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
dff33cfc 3682
d210246a 3683 wm_size = fifo_size - (entries_required + wm->guard_size);
dff33cfc 3684
bbb0aef5 3685 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
7662c8bd 3686
390c4dd4
JB
3687 /* Don't promote wm_size to unsigned... */
3688 if (wm_size > (long)wm->max_wm)
7662c8bd 3689 wm_size = wm->max_wm;
c3add4b6 3690 if (wm_size <= 0)
7662c8bd
SL
3691 wm_size = wm->default_wm;
3692 return wm_size;
3693}
3694
3695struct cxsr_latency {
3696 int is_desktop;
95534263 3697 int is_ddr3;
7662c8bd
SL
3698 unsigned long fsb_freq;
3699 unsigned long mem_freq;
3700 unsigned long display_sr;
3701 unsigned long display_hpll_disable;
3702 unsigned long cursor_sr;
3703 unsigned long cursor_hpll_disable;
3704};
3705
403c89ff 3706static const struct cxsr_latency cxsr_latency_table[] = {
95534263
LP
3707 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3708 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3709 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3710 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3711 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3712
3713 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3714 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3715 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3716 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3717 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3718
3719 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3720 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3721 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3722 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3723 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3724
3725 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3726 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3727 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3728 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3729 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3730
3731 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3732 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3733 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3734 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3735 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3736
3737 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3738 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3739 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3740 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3741 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
7662c8bd
SL
3742};
3743
403c89ff
CW
3744static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3745 int is_ddr3,
3746 int fsb,
3747 int mem)
7662c8bd 3748{
403c89ff 3749 const struct cxsr_latency *latency;
7662c8bd 3750 int i;
7662c8bd
SL
3751
3752 if (fsb == 0 || mem == 0)
3753 return NULL;
3754
3755 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3756 latency = &cxsr_latency_table[i];
3757 if (is_desktop == latency->is_desktop &&
95534263 3758 is_ddr3 == latency->is_ddr3 &&
decbbcda
JSR
3759 fsb == latency->fsb_freq && mem == latency->mem_freq)
3760 return latency;
7662c8bd 3761 }
decbbcda 3762
28c97730 3763 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
decbbcda
JSR
3764
3765 return NULL;
7662c8bd
SL
3766}
3767
f2b115e6 3768static void pineview_disable_cxsr(struct drm_device *dev)
7662c8bd
SL
3769{
3770 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd
SL
3771
3772 /* deactivate cxsr */
3e33d94d 3773 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
7662c8bd
SL
3774}
3775
bcc24fb4
JB
3776/*
3777 * Latency for FIFO fetches is dependent on several factors:
3778 * - memory configuration (speed, channels)
3779 * - chipset
3780 * - current MCH state
3781 * It can be fairly high in some situations, so here we assume a fairly
3782 * pessimal value. It's a tradeoff between extra memory fetches (if we
3783 * set this value too high, the FIFO will fetch frequently to stay full)
3784 * and power consumption (set it too low to save power and we might see
3785 * FIFO underruns and display "flicker").
3786 *
3787 * A value of 5us seems to be a good balance; safe for very low end
3788 * platforms but not overly aggressive on lower latency configs.
3789 */
69e302a9 3790static const int latency_ns = 5000;
7662c8bd 3791
e70236a8 3792static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
dff33cfc
JB
3793{
3794 struct drm_i915_private *dev_priv = dev->dev_private;
3795 uint32_t dsparb = I915_READ(DSPARB);
3796 int size;
3797
8de9b311
CW
3798 size = dsparb & 0x7f;
3799 if (plane)
3800 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
dff33cfc 3801
28c97730 3802 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3803 plane ? "B" : "A", size);
dff33cfc
JB
3804
3805 return size;
3806}
7662c8bd 3807
e70236a8
JB
3808static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3809{
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811 uint32_t dsparb = I915_READ(DSPARB);
3812 int size;
3813
8de9b311
CW
3814 size = dsparb & 0x1ff;
3815 if (plane)
3816 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
e70236a8 3817 size >>= 1; /* Convert to cachelines */
dff33cfc 3818
28c97730 3819 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3820 plane ? "B" : "A", size);
dff33cfc
JB
3821
3822 return size;
3823}
7662c8bd 3824
e70236a8
JB
3825static int i845_get_fifo_size(struct drm_device *dev, int plane)
3826{
3827 struct drm_i915_private *dev_priv = dev->dev_private;
3828 uint32_t dsparb = I915_READ(DSPARB);
3829 int size;
3830
3831 size = dsparb & 0x7f;
3832 size >>= 2; /* Convert to cachelines */
3833
28c97730 3834 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b
CW
3835 plane ? "B" : "A",
3836 size);
e70236a8
JB
3837
3838 return size;
3839}
3840
3841static int i830_get_fifo_size(struct drm_device *dev, int plane)
3842{
3843 struct drm_i915_private *dev_priv = dev->dev_private;
3844 uint32_t dsparb = I915_READ(DSPARB);
3845 int size;
3846
3847 size = dsparb & 0x7f;
3848 size >>= 1; /* Convert to cachelines */
3849
28c97730 3850 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
5eddb70b 3851 plane ? "B" : "A", size);
e70236a8
JB
3852
3853 return size;
3854}
3855
d210246a
CW
3856static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3857{
3858 struct drm_crtc *crtc, *enabled = NULL;
3859
3860 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3861 if (crtc->enabled && crtc->fb) {
3862 if (enabled)
3863 return NULL;
3864 enabled = crtc;
3865 }
3866 }
3867
3868 return enabled;
3869}
3870
3871static void pineview_update_wm(struct drm_device *dev)
d4294342
ZY
3872{
3873 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 3874 struct drm_crtc *crtc;
403c89ff 3875 const struct cxsr_latency *latency;
d4294342
ZY
3876 u32 reg;
3877 unsigned long wm;
d4294342 3878
403c89ff 3879 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
95534263 3880 dev_priv->fsb_freq, dev_priv->mem_freq);
d4294342
ZY
3881 if (!latency) {
3882 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3883 pineview_disable_cxsr(dev);
3884 return;
3885 }
3886
d210246a
CW
3887 crtc = single_enabled_crtc(dev);
3888 if (crtc) {
3889 int clock = crtc->mode.clock;
3890 int pixel_size = crtc->fb->bits_per_pixel / 8;
d4294342
ZY
3891
3892 /* Display SR */
d210246a
CW
3893 wm = intel_calculate_wm(clock, &pineview_display_wm,
3894 pineview_display_wm.fifo_size,
d4294342
ZY
3895 pixel_size, latency->display_sr);
3896 reg = I915_READ(DSPFW1);
3897 reg &= ~DSPFW_SR_MASK;
3898 reg |= wm << DSPFW_SR_SHIFT;
3899 I915_WRITE(DSPFW1, reg);
3900 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3901
3902 /* cursor SR */
d210246a
CW
3903 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3904 pineview_display_wm.fifo_size,
d4294342
ZY
3905 pixel_size, latency->cursor_sr);
3906 reg = I915_READ(DSPFW3);
3907 reg &= ~DSPFW_CURSOR_SR_MASK;
3908 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3909 I915_WRITE(DSPFW3, reg);
3910
3911 /* Display HPLL off SR */
d210246a
CW
3912 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3913 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3914 pixel_size, latency->display_hpll_disable);
3915 reg = I915_READ(DSPFW3);
3916 reg &= ~DSPFW_HPLL_SR_MASK;
3917 reg |= wm & DSPFW_HPLL_SR_MASK;
3918 I915_WRITE(DSPFW3, reg);
3919
3920 /* cursor HPLL off SR */
d210246a
CW
3921 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3922 pineview_display_hplloff_wm.fifo_size,
d4294342
ZY
3923 pixel_size, latency->cursor_hpll_disable);
3924 reg = I915_READ(DSPFW3);
3925 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3926 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3927 I915_WRITE(DSPFW3, reg);
3928 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3929
3930 /* activate cxsr */
3e33d94d
CW
3931 I915_WRITE(DSPFW3,
3932 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
d4294342
ZY
3933 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3934 } else {
3935 pineview_disable_cxsr(dev);
3936 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3937 }
3938}
3939
417ae147
CW
3940static bool g4x_compute_wm0(struct drm_device *dev,
3941 int plane,
3942 const struct intel_watermark_params *display,
3943 int display_latency_ns,
3944 const struct intel_watermark_params *cursor,
3945 int cursor_latency_ns,
3946 int *plane_wm,
3947 int *cursor_wm)
3948{
3949 struct drm_crtc *crtc;
3950 int htotal, hdisplay, clock, pixel_size;
3951 int line_time_us, line_count;
3952 int entries, tlb_miss;
3953
3954 crtc = intel_get_crtc_for_plane(dev, plane);
5c72d064
CW
3955 if (crtc->fb == NULL || !crtc->enabled) {
3956 *cursor_wm = cursor->guard_size;
3957 *plane_wm = display->guard_size;
417ae147 3958 return false;
5c72d064 3959 }
417ae147
CW
3960
3961 htotal = crtc->mode.htotal;
3962 hdisplay = crtc->mode.hdisplay;
3963 clock = crtc->mode.clock;
3964 pixel_size = crtc->fb->bits_per_pixel / 8;
3965
3966 /* Use the small buffer method to calculate plane watermark */
3967 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3968 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3969 if (tlb_miss > 0)
3970 entries += tlb_miss;
3971 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3972 *plane_wm = entries + display->guard_size;
3973 if (*plane_wm > (int)display->max_wm)
3974 *plane_wm = display->max_wm;
3975
3976 /* Use the large buffer method to calculate cursor watermark */
3977 line_time_us = ((htotal * 1000) / clock);
3978 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3979 entries = line_count * 64 * pixel_size;
3980 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3981 if (tlb_miss > 0)
3982 entries += tlb_miss;
3983 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3984 *cursor_wm = entries + cursor->guard_size;
3985 if (*cursor_wm > (int)cursor->max_wm)
3986 *cursor_wm = (int)cursor->max_wm;
3987
3988 return true;
3989}
3990
3991/*
3992 * Check the wm result.
3993 *
3994 * If any calculated watermark values is larger than the maximum value that
3995 * can be programmed into the associated watermark register, that watermark
3996 * must be disabled.
3997 */
3998static bool g4x_check_srwm(struct drm_device *dev,
3999 int display_wm, int cursor_wm,
4000 const struct intel_watermark_params *display,
4001 const struct intel_watermark_params *cursor)
652c393a 4002{
417ae147
CW
4003 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4004 display_wm, cursor_wm);
652c393a 4005
417ae147 4006 if (display_wm > display->max_wm) {
bbb0aef5 4007 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
417ae147
CW
4008 display_wm, display->max_wm);
4009 return false;
4010 }
0e442c60 4011
417ae147 4012 if (cursor_wm > cursor->max_wm) {
bbb0aef5 4013 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
417ae147
CW
4014 cursor_wm, cursor->max_wm);
4015 return false;
4016 }
0e442c60 4017
417ae147
CW
4018 if (!(display_wm || cursor_wm)) {
4019 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4020 return false;
4021 }
0e442c60 4022
417ae147
CW
4023 return true;
4024}
0e442c60 4025
417ae147 4026static bool g4x_compute_srwm(struct drm_device *dev,
d210246a
CW
4027 int plane,
4028 int latency_ns,
417ae147
CW
4029 const struct intel_watermark_params *display,
4030 const struct intel_watermark_params *cursor,
4031 int *display_wm, int *cursor_wm)
4032{
d210246a
CW
4033 struct drm_crtc *crtc;
4034 int hdisplay, htotal, pixel_size, clock;
417ae147
CW
4035 unsigned long line_time_us;
4036 int line_count, line_size;
4037 int small, large;
4038 int entries;
0e442c60 4039
417ae147
CW
4040 if (!latency_ns) {
4041 *display_wm = *cursor_wm = 0;
4042 return false;
4043 }
0e442c60 4044
d210246a
CW
4045 crtc = intel_get_crtc_for_plane(dev, plane);
4046 hdisplay = crtc->mode.hdisplay;
4047 htotal = crtc->mode.htotal;
4048 clock = crtc->mode.clock;
4049 pixel_size = crtc->fb->bits_per_pixel / 8;
4050
417ae147
CW
4051 line_time_us = (htotal * 1000) / clock;
4052 line_count = (latency_ns / line_time_us + 1000) / 1000;
4053 line_size = hdisplay * pixel_size;
0e442c60 4054
417ae147
CW
4055 /* Use the minimum of the small and large buffer method for primary */
4056 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4057 large = line_count * line_size;
0e442c60 4058
417ae147
CW
4059 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4060 *display_wm = entries + display->guard_size;
4fe5e611 4061
417ae147
CW
4062 /* calculate the self-refresh watermark for display cursor */
4063 entries = line_count * pixel_size * 64;
4064 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4065 *cursor_wm = entries + cursor->guard_size;
4fe5e611 4066
417ae147
CW
4067 return g4x_check_srwm(dev,
4068 *display_wm, *cursor_wm,
4069 display, cursor);
4070}
4fe5e611 4071
7ccb4a53 4072#define single_plane_enabled(mask) is_power_of_2(mask)
d210246a
CW
4073
4074static void g4x_update_wm(struct drm_device *dev)
417ae147
CW
4075{
4076 static const int sr_latency_ns = 12000;
4077 struct drm_i915_private *dev_priv = dev->dev_private;
4078 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
d210246a
CW
4079 int plane_sr, cursor_sr;
4080 unsigned int enabled = 0;
417ae147
CW
4081
4082 if (g4x_compute_wm0(dev, 0,
4083 &g4x_wm_info, latency_ns,
4084 &g4x_cursor_wm_info, latency_ns,
4085 &planea_wm, &cursora_wm))
d210246a 4086 enabled |= 1;
417ae147
CW
4087
4088 if (g4x_compute_wm0(dev, 1,
4089 &g4x_wm_info, latency_ns,
4090 &g4x_cursor_wm_info, latency_ns,
4091 &planeb_wm, &cursorb_wm))
d210246a 4092 enabled |= 2;
417ae147
CW
4093
4094 plane_sr = cursor_sr = 0;
d210246a
CW
4095 if (single_plane_enabled(enabled) &&
4096 g4x_compute_srwm(dev, ffs(enabled) - 1,
4097 sr_latency_ns,
417ae147
CW
4098 &g4x_wm_info,
4099 &g4x_cursor_wm_info,
4100 &plane_sr, &cursor_sr))
0e442c60 4101 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
417ae147
CW
4102 else
4103 I915_WRITE(FW_BLC_SELF,
4104 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
0e442c60 4105
308977ac
CW
4106 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4107 planea_wm, cursora_wm,
4108 planeb_wm, cursorb_wm,
4109 plane_sr, cursor_sr);
0e442c60 4110
417ae147
CW
4111 I915_WRITE(DSPFW1,
4112 (plane_sr << DSPFW_SR_SHIFT) |
0e442c60 4113 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
417ae147
CW
4114 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4115 planea_wm);
4116 I915_WRITE(DSPFW2,
4117 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
0e442c60
JB
4118 (cursora_wm << DSPFW_CURSORA_SHIFT));
4119 /* HPLL off in SR has some issues on G4x... disable it */
417ae147
CW
4120 I915_WRITE(DSPFW3,
4121 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
0e442c60 4122 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
652c393a
JB
4123}
4124
d210246a 4125static void i965_update_wm(struct drm_device *dev)
7662c8bd
SL
4126{
4127 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4128 struct drm_crtc *crtc;
4129 int srwm = 1;
4fe5e611 4130 int cursor_sr = 16;
1dc7546d
JB
4131
4132 /* Calc sr entries for one plane configs */
d210246a
CW
4133 crtc = single_enabled_crtc(dev);
4134 if (crtc) {
1dc7546d 4135 /* self-refresh has much higher latency */
69e302a9 4136 static const int sr_latency_ns = 12000;
d210246a
CW
4137 int clock = crtc->mode.clock;
4138 int htotal = crtc->mode.htotal;
4139 int hdisplay = crtc->mode.hdisplay;
4140 int pixel_size = crtc->fb->bits_per_pixel / 8;
4141 unsigned long line_time_us;
4142 int entries;
1dc7546d 4143
d210246a 4144 line_time_us = ((htotal * 1000) / clock);
1dc7546d
JB
4145
4146 /* Use ns/us then divide to preserve precision */
d210246a
CW
4147 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4148 pixel_size * hdisplay;
4149 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
d210246a 4150 srwm = I965_FIFO_SIZE - entries;
1dc7546d
JB
4151 if (srwm < 0)
4152 srwm = 1;
1b07e04e 4153 srwm &= 0x1ff;
308977ac
CW
4154 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4155 entries, srwm);
4fe5e611 4156
d210246a 4157 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
5eddb70b 4158 pixel_size * 64;
d210246a 4159 entries = DIV_ROUND_UP(entries,
8de9b311 4160 i965_cursor_wm_info.cacheline_size);
4fe5e611 4161 cursor_sr = i965_cursor_wm_info.fifo_size -
d210246a 4162 (entries + i965_cursor_wm_info.guard_size);
4fe5e611
ZY
4163
4164 if (cursor_sr > i965_cursor_wm_info.max_wm)
4165 cursor_sr = i965_cursor_wm_info.max_wm;
4166
4167 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4168 "cursor %d\n", srwm, cursor_sr);
4169
a6c45cf0 4170 if (IS_CRESTLINE(dev))
adcdbc66 4171 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
33c5fd12
DJ
4172 } else {
4173 /* Turn off self refresh if both pipes are enabled */
a6c45cf0 4174 if (IS_CRESTLINE(dev))
adcdbc66
JB
4175 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4176 & ~FW_BLC_SELF_EN);
1dc7546d 4177 }
7662c8bd 4178
1dc7546d
JB
4179 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4180 srwm);
7662c8bd
SL
4181
4182 /* 965 has limitations... */
417ae147
CW
4183 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4184 (8 << 16) | (8 << 8) | (8 << 0));
7662c8bd 4185 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4fe5e611
ZY
4186 /* update cursor SR watermark */
4187 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
7662c8bd
SL
4188}
4189
d210246a 4190static void i9xx_update_wm(struct drm_device *dev)
7662c8bd
SL
4191{
4192 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a 4193 const struct intel_watermark_params *wm_info;
dff33cfc
JB
4194 uint32_t fwater_lo;
4195 uint32_t fwater_hi;
d210246a
CW
4196 int cwm, srwm = 1;
4197 int fifo_size;
dff33cfc 4198 int planea_wm, planeb_wm;
d210246a 4199 struct drm_crtc *crtc, *enabled = NULL;
7662c8bd 4200
72557b4f 4201 if (IS_I945GM(dev))
d210246a 4202 wm_info = &i945_wm_info;
a6c45cf0 4203 else if (!IS_GEN2(dev))
d210246a 4204 wm_info = &i915_wm_info;
7662c8bd 4205 else
d210246a
CW
4206 wm_info = &i855_wm_info;
4207
4208 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4209 crtc = intel_get_crtc_for_plane(dev, 0);
4210 if (crtc->enabled && crtc->fb) {
4211 planea_wm = intel_calculate_wm(crtc->mode.clock,
4212 wm_info, fifo_size,
4213 crtc->fb->bits_per_pixel / 8,
4214 latency_ns);
4215 enabled = crtc;
4216 } else
4217 planea_wm = fifo_size - wm_info->guard_size;
4218
4219 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4220 crtc = intel_get_crtc_for_plane(dev, 1);
4221 if (crtc->enabled && crtc->fb) {
4222 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4223 wm_info, fifo_size,
4224 crtc->fb->bits_per_pixel / 8,
4225 latency_ns);
4226 if (enabled == NULL)
4227 enabled = crtc;
4228 else
4229 enabled = NULL;
4230 } else
4231 planeb_wm = fifo_size - wm_info->guard_size;
7662c8bd 4232
28c97730 4233 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
7662c8bd
SL
4234
4235 /*
4236 * Overlay gets an aggressive default since video jitter is bad.
4237 */
4238 cwm = 2;
4239
18b2190c
AL
4240 /* Play safe and disable self-refresh before adjusting watermarks. */
4241 if (IS_I945G(dev) || IS_I945GM(dev))
4242 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4243 else if (IS_I915GM(dev))
4244 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4245
dff33cfc 4246 /* Calc sr entries for one plane configs */
d210246a 4247 if (HAS_FW_BLC(dev) && enabled) {
dff33cfc 4248 /* self-refresh has much higher latency */
69e302a9 4249 static const int sr_latency_ns = 6000;
d210246a
CW
4250 int clock = enabled->mode.clock;
4251 int htotal = enabled->mode.htotal;
4252 int hdisplay = enabled->mode.hdisplay;
4253 int pixel_size = enabled->fb->bits_per_pixel / 8;
4254 unsigned long line_time_us;
4255 int entries;
dff33cfc 4256
d210246a 4257 line_time_us = (htotal * 1000) / clock;
dff33cfc
JB
4258
4259 /* Use ns/us then divide to preserve precision */
d210246a
CW
4260 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4261 pixel_size * hdisplay;
4262 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4263 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4264 srwm = wm_info->fifo_size - entries;
dff33cfc
JB
4265 if (srwm < 0)
4266 srwm = 1;
ee980b80
LP
4267
4268 if (IS_I945G(dev) || IS_I945GM(dev))
18b2190c
AL
4269 I915_WRITE(FW_BLC_SELF,
4270 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4271 else if (IS_I915GM(dev))
ee980b80 4272 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
7662c8bd
SL
4273 }
4274
28c97730 4275 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
5eddb70b 4276 planea_wm, planeb_wm, cwm, srwm);
7662c8bd 4277
dff33cfc
JB
4278 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4279 fwater_hi = (cwm & 0x1f);
4280
4281 /* Set request length to 8 cachelines per fetch */
4282 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4283 fwater_hi = fwater_hi | (1 << 8);
7662c8bd
SL
4284
4285 I915_WRITE(FW_BLC, fwater_lo);
4286 I915_WRITE(FW_BLC2, fwater_hi);
18b2190c 4287
d210246a
CW
4288 if (HAS_FW_BLC(dev)) {
4289 if (enabled) {
4290 if (IS_I945G(dev) || IS_I945GM(dev))
4291 I915_WRITE(FW_BLC_SELF,
4292 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4293 else if (IS_I915GM(dev))
4294 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4295 DRM_DEBUG_KMS("memory self refresh enabled\n");
4296 } else
4297 DRM_DEBUG_KMS("memory self refresh disabled\n");
4298 }
7662c8bd
SL
4299}
4300
d210246a 4301static void i830_update_wm(struct drm_device *dev)
7662c8bd
SL
4302{
4303 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4304 struct drm_crtc *crtc;
4305 uint32_t fwater_lo;
dff33cfc 4306 int planea_wm;
7662c8bd 4307
d210246a
CW
4308 crtc = single_enabled_crtc(dev);
4309 if (crtc == NULL)
4310 return;
7662c8bd 4311
d210246a
CW
4312 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4313 dev_priv->display.get_fifo_size(dev, 0),
4314 crtc->fb->bits_per_pixel / 8,
4315 latency_ns);
4316 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
f3601326
JB
4317 fwater_lo |= (3<<8) | planea_wm;
4318
28c97730 4319 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
7662c8bd
SL
4320
4321 I915_WRITE(FW_BLC, fwater_lo);
4322}
4323
7f8a8569 4324#define ILK_LP0_PLANE_LATENCY 700
c936f44d 4325#define ILK_LP0_CURSOR_LATENCY 1300
7f8a8569 4326
1398261a
YL
4327/*
4328 * Check the wm result.
4329 *
4330 * If any calculated watermark values is larger than the maximum value that
4331 * can be programmed into the associated watermark register, that watermark
4332 * must be disabled.
1398261a 4333 */
b79d4990
JB
4334static bool ironlake_check_srwm(struct drm_device *dev, int level,
4335 int fbc_wm, int display_wm, int cursor_wm,
4336 const struct intel_watermark_params *display,
4337 const struct intel_watermark_params *cursor)
1398261a
YL
4338{
4339 struct drm_i915_private *dev_priv = dev->dev_private;
4340
4341 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4342 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4343
4344 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4345 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4346 fbc_wm, SNB_FBC_MAX_SRWM, level);
1398261a
YL
4347
4348 /* fbc has it's own way to disable FBC WM */
4349 I915_WRITE(DISP_ARB_CTL,
4350 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4351 return false;
4352 }
4353
b79d4990 4354 if (display_wm > display->max_wm) {
1398261a 4355 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4356 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1398261a
YL
4357 return false;
4358 }
4359
b79d4990 4360 if (cursor_wm > cursor->max_wm) {
1398261a 4361 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
b79d4990 4362 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1398261a
YL
4363 return false;
4364 }
4365
4366 if (!(fbc_wm || display_wm || cursor_wm)) {
4367 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4368 return false;
4369 }
4370
4371 return true;
4372}
4373
4374/*
4375 * Compute watermark values of WM[1-3],
4376 */
d210246a
CW
4377static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4378 int latency_ns,
b79d4990
JB
4379 const struct intel_watermark_params *display,
4380 const struct intel_watermark_params *cursor,
4381 int *fbc_wm, int *display_wm, int *cursor_wm)
1398261a 4382{
d210246a 4383 struct drm_crtc *crtc;
1398261a 4384 unsigned long line_time_us;
d210246a 4385 int hdisplay, htotal, pixel_size, clock;
b79d4990 4386 int line_count, line_size;
1398261a
YL
4387 int small, large;
4388 int entries;
1398261a
YL
4389
4390 if (!latency_ns) {
4391 *fbc_wm = *display_wm = *cursor_wm = 0;
4392 return false;
4393 }
4394
d210246a
CW
4395 crtc = intel_get_crtc_for_plane(dev, plane);
4396 hdisplay = crtc->mode.hdisplay;
4397 htotal = crtc->mode.htotal;
4398 clock = crtc->mode.clock;
4399 pixel_size = crtc->fb->bits_per_pixel / 8;
4400
1398261a
YL
4401 line_time_us = (htotal * 1000) / clock;
4402 line_count = (latency_ns / line_time_us + 1000) / 1000;
4403 line_size = hdisplay * pixel_size;
4404
4405 /* Use the minimum of the small and large buffer method for primary */
4406 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4407 large = line_count * line_size;
4408
b79d4990
JB
4409 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4410 *display_wm = entries + display->guard_size;
1398261a
YL
4411
4412 /*
b79d4990 4413 * Spec says:
1398261a
YL
4414 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4415 */
4416 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4417
4418 /* calculate the self-refresh watermark for display cursor */
4419 entries = line_count * pixel_size * 64;
b79d4990
JB
4420 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4421 *cursor_wm = entries + cursor->guard_size;
1398261a 4422
b79d4990
JB
4423 return ironlake_check_srwm(dev, level,
4424 *fbc_wm, *display_wm, *cursor_wm,
4425 display, cursor);
4426}
4427
d210246a 4428static void ironlake_update_wm(struct drm_device *dev)
b79d4990
JB
4429{
4430 struct drm_i915_private *dev_priv = dev->dev_private;
d210246a
CW
4431 int fbc_wm, plane_wm, cursor_wm;
4432 unsigned int enabled;
b79d4990
JB
4433
4434 enabled = 0;
9f405100
CW
4435 if (g4x_compute_wm0(dev, 0,
4436 &ironlake_display_wm_info,
4437 ILK_LP0_PLANE_LATENCY,
4438 &ironlake_cursor_wm_info,
4439 ILK_LP0_CURSOR_LATENCY,
4440 &plane_wm, &cursor_wm)) {
b79d4990
JB
4441 I915_WRITE(WM0_PIPEA_ILK,
4442 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4443 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4444 " plane %d, " "cursor: %d\n",
4445 plane_wm, cursor_wm);
d210246a 4446 enabled |= 1;
b79d4990
JB
4447 }
4448
9f405100
CW
4449 if (g4x_compute_wm0(dev, 1,
4450 &ironlake_display_wm_info,
4451 ILK_LP0_PLANE_LATENCY,
4452 &ironlake_cursor_wm_info,
4453 ILK_LP0_CURSOR_LATENCY,
4454 &plane_wm, &cursor_wm)) {
b79d4990
JB
4455 I915_WRITE(WM0_PIPEB_ILK,
4456 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4457 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4458 " plane %d, cursor: %d\n",
4459 plane_wm, cursor_wm);
d210246a 4460 enabled |= 2;
b79d4990
JB
4461 }
4462
4463 /*
4464 * Calculate and update the self-refresh watermark only when one
4465 * display plane is used.
4466 */
4467 I915_WRITE(WM3_LP_ILK, 0);
4468 I915_WRITE(WM2_LP_ILK, 0);
4469 I915_WRITE(WM1_LP_ILK, 0);
4470
d210246a 4471 if (!single_plane_enabled(enabled))
b79d4990 4472 return;
d210246a 4473 enabled = ffs(enabled) - 1;
b79d4990
JB
4474
4475 /* WM1 */
d210246a
CW
4476 if (!ironlake_compute_srwm(dev, 1, enabled,
4477 ILK_READ_WM1_LATENCY() * 500,
b79d4990
JB
4478 &ironlake_display_srwm_info,
4479 &ironlake_cursor_srwm_info,
4480 &fbc_wm, &plane_wm, &cursor_wm))
4481 return;
4482
4483 I915_WRITE(WM1_LP_ILK,
4484 WM1_LP_SR_EN |
4485 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4486 (fbc_wm << WM1_LP_FBC_SHIFT) |
4487 (plane_wm << WM1_LP_SR_SHIFT) |
4488 cursor_wm);
4489
4490 /* WM2 */
d210246a
CW
4491 if (!ironlake_compute_srwm(dev, 2, enabled,
4492 ILK_READ_WM2_LATENCY() * 500,
b79d4990
JB
4493 &ironlake_display_srwm_info,
4494 &ironlake_cursor_srwm_info,
4495 &fbc_wm, &plane_wm, &cursor_wm))
4496 return;
4497
4498 I915_WRITE(WM2_LP_ILK,
4499 WM2_LP_EN |
4500 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4501 (fbc_wm << WM1_LP_FBC_SHIFT) |
4502 (plane_wm << WM1_LP_SR_SHIFT) |
4503 cursor_wm);
4504
4505 /*
4506 * WM3 is unsupported on ILK, probably because we don't have latency
4507 * data for that power state
4508 */
1398261a
YL
4509}
4510
d210246a 4511static void sandybridge_update_wm(struct drm_device *dev)
1398261a
YL
4512{
4513 struct drm_i915_private *dev_priv = dev->dev_private;
a0fa62d3 4514 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
d210246a
CW
4515 int fbc_wm, plane_wm, cursor_wm;
4516 unsigned int enabled;
1398261a
YL
4517
4518 enabled = 0;
9f405100
CW
4519 if (g4x_compute_wm0(dev, 0,
4520 &sandybridge_display_wm_info, latency,
4521 &sandybridge_cursor_wm_info, latency,
4522 &plane_wm, &cursor_wm)) {
1398261a
YL
4523 I915_WRITE(WM0_PIPEA_ILK,
4524 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4525 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4526 " plane %d, " "cursor: %d\n",
4527 plane_wm, cursor_wm);
d210246a 4528 enabled |= 1;
1398261a
YL
4529 }
4530
9f405100
CW
4531 if (g4x_compute_wm0(dev, 1,
4532 &sandybridge_display_wm_info, latency,
4533 &sandybridge_cursor_wm_info, latency,
4534 &plane_wm, &cursor_wm)) {
1398261a
YL
4535 I915_WRITE(WM0_PIPEB_ILK,
4536 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4537 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4538 " plane %d, cursor: %d\n",
4539 plane_wm, cursor_wm);
d210246a 4540 enabled |= 2;
1398261a
YL
4541 }
4542
4543 /*
4544 * Calculate and update the self-refresh watermark only when one
4545 * display plane is used.
4546 *
4547 * SNB support 3 levels of watermark.
4548 *
4549 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4550 * and disabled in the descending order
4551 *
4552 */
4553 I915_WRITE(WM3_LP_ILK, 0);
4554 I915_WRITE(WM2_LP_ILK, 0);
4555 I915_WRITE(WM1_LP_ILK, 0);
4556
d210246a 4557 if (!single_plane_enabled(enabled))
1398261a 4558 return;
d210246a 4559 enabled = ffs(enabled) - 1;
1398261a
YL
4560
4561 /* WM1 */
d210246a
CW
4562 if (!ironlake_compute_srwm(dev, 1, enabled,
4563 SNB_READ_WM1_LATENCY() * 500,
b79d4990
JB
4564 &sandybridge_display_srwm_info,
4565 &sandybridge_cursor_srwm_info,
4566 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4567 return;
4568
4569 I915_WRITE(WM1_LP_ILK,
4570 WM1_LP_SR_EN |
4571 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4572 (fbc_wm << WM1_LP_FBC_SHIFT) |
4573 (plane_wm << WM1_LP_SR_SHIFT) |
4574 cursor_wm);
4575
4576 /* WM2 */
d210246a
CW
4577 if (!ironlake_compute_srwm(dev, 2, enabled,
4578 SNB_READ_WM2_LATENCY() * 500,
b79d4990
JB
4579 &sandybridge_display_srwm_info,
4580 &sandybridge_cursor_srwm_info,
4581 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4582 return;
4583
4584 I915_WRITE(WM2_LP_ILK,
4585 WM2_LP_EN |
4586 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4587 (fbc_wm << WM1_LP_FBC_SHIFT) |
4588 (plane_wm << WM1_LP_SR_SHIFT) |
4589 cursor_wm);
4590
4591 /* WM3 */
d210246a
CW
4592 if (!ironlake_compute_srwm(dev, 3, enabled,
4593 SNB_READ_WM3_LATENCY() * 500,
b79d4990
JB
4594 &sandybridge_display_srwm_info,
4595 &sandybridge_cursor_srwm_info,
4596 &fbc_wm, &plane_wm, &cursor_wm))
1398261a
YL
4597 return;
4598
4599 I915_WRITE(WM3_LP_ILK,
4600 WM3_LP_EN |
4601 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4602 (fbc_wm << WM1_LP_FBC_SHIFT) |
4603 (plane_wm << WM1_LP_SR_SHIFT) |
4604 cursor_wm);
4605}
4606
7662c8bd
SL
4607/**
4608 * intel_update_watermarks - update FIFO watermark values based on current modes
4609 *
4610 * Calculate watermark values for the various WM regs based on current mode
4611 * and plane configuration.
4612 *
4613 * There are several cases to deal with here:
4614 * - normal (i.e. non-self-refresh)
4615 * - self-refresh (SR) mode
4616 * - lines are large relative to FIFO size (buffer can hold up to 2)
4617 * - lines are small relative to FIFO size (buffer can hold more than 2
4618 * lines), so need to account for TLB latency
4619 *
4620 * The normal calculation is:
4621 * watermark = dotclock * bytes per pixel * latency
4622 * where latency is platform & configuration dependent (we assume pessimal
4623 * values here).
4624 *
4625 * The SR calculation is:
4626 * watermark = (trunc(latency/line time)+1) * surface width *
4627 * bytes per pixel
4628 * where
4629 * line time = htotal / dotclock
fa143215 4630 * surface width = hdisplay for normal plane and 64 for cursor
7662c8bd
SL
4631 * and latency is assumed to be high, as above.
4632 *
4633 * The final value programmed to the register should always be rounded up,
4634 * and include an extra 2 entries to account for clock crossings.
4635 *
4636 * We don't use the sprite, so we can ignore that. And on Crestline we have
4637 * to set the non-SR watermarks to 8.
5eddb70b 4638 */
7662c8bd
SL
4639static void intel_update_watermarks(struct drm_device *dev)
4640{
e70236a8 4641 struct drm_i915_private *dev_priv = dev->dev_private;
7662c8bd 4642
d210246a
CW
4643 if (dev_priv->display.update_wm)
4644 dev_priv->display.update_wm(dev);
7662c8bd
SL
4645}
4646
a7615030
CW
4647static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4648{
72bbe58c
KP
4649 if (i915_panel_use_ssc >= 0)
4650 return i915_panel_use_ssc != 0;
4651 return dev_priv->lvds_use_ssc
435793df 4652 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
4653}
4654
5a354204
JB
4655/**
4656 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4657 * @crtc: CRTC structure
4658 *
4659 * A pipe may be connected to one or more outputs. Based on the depth of the
4660 * attached framebuffer, choose a good color depth to use on the pipe.
4661 *
4662 * If possible, match the pipe depth to the fb depth. In some cases, this
4663 * isn't ideal, because the connected output supports a lesser or restricted
4664 * set of depths. Resolve that here:
4665 * LVDS typically supports only 6bpc, so clamp down in that case
4666 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4667 * Displays may support a restricted set as well, check EDID and clamp as
4668 * appropriate.
4669 *
4670 * RETURNS:
4671 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4672 * true if they don't match).
4673 */
4674static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4675 unsigned int *pipe_bpp)
4676{
4677 struct drm_device *dev = crtc->dev;
4678 struct drm_i915_private *dev_priv = dev->dev_private;
4679 struct drm_encoder *encoder;
4680 struct drm_connector *connector;
4681 unsigned int display_bpc = UINT_MAX, bpc;
4682
4683 /* Walk the encoders & connectors on this crtc, get min bpc */
4684 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4685 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4686
4687 if (encoder->crtc != crtc)
4688 continue;
4689
4690 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4691 unsigned int lvds_bpc;
4692
4693 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4694 LVDS_A3_POWER_UP)
4695 lvds_bpc = 8;
4696 else
4697 lvds_bpc = 6;
4698
4699 if (lvds_bpc < display_bpc) {
4700 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4701 display_bpc = lvds_bpc;
4702 }
4703 continue;
4704 }
4705
4706 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4707 /* Use VBT settings if we have an eDP panel */
4708 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4709
4710 if (edp_bpc < display_bpc) {
4711 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4712 display_bpc = edp_bpc;
4713 }
4714 continue;
4715 }
4716
4717 /* Not one of the known troublemakers, check the EDID */
4718 list_for_each_entry(connector, &dev->mode_config.connector_list,
4719 head) {
4720 if (connector->encoder != encoder)
4721 continue;
4722
62ac41a6
JB
4723 /* Don't use an invalid EDID bpc value */
4724 if (connector->display_info.bpc &&
4725 connector->display_info.bpc < display_bpc) {
5a354204
JB
4726 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4727 display_bpc = connector->display_info.bpc;
4728 }
4729 }
4730
4731 /*
4732 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4733 * through, clamp it down. (Note: >12bpc will be caught below.)
4734 */
4735 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4736 if (display_bpc > 8 && display_bpc < 12) {
4737 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4738 display_bpc = 12;
4739 } else {
4740 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4741 display_bpc = 8;
4742 }
4743 }
4744 }
4745
4746 /*
4747 * We could just drive the pipe at the highest bpc all the time and
4748 * enable dithering as needed, but that costs bandwidth. So choose
4749 * the minimum value that expresses the full color range of the fb but
4750 * also stays within the max display bpc discovered above.
4751 */
4752
4753 switch (crtc->fb->depth) {
4754 case 8:
4755 bpc = 8; /* since we go through a colormap */
4756 break;
4757 case 15:
4758 case 16:
4759 bpc = 6; /* min is 18bpp */
4760 break;
4761 case 24:
578393cd 4762 bpc = 8;
5a354204
JB
4763 break;
4764 case 30:
578393cd 4765 bpc = 10;
5a354204
JB
4766 break;
4767 case 48:
578393cd 4768 bpc = 12;
5a354204
JB
4769 break;
4770 default:
4771 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4772 bpc = min((unsigned int)8, display_bpc);
4773 break;
4774 }
4775
578393cd
KP
4776 display_bpc = min(display_bpc, bpc);
4777
5a354204
JB
4778 DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4779 bpc, display_bpc);
4780
578393cd 4781 *pipe_bpp = display_bpc * 3;
5a354204
JB
4782
4783 return display_bpc != bpc;
4784}
4785
f564048e
EA
4786static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4787 struct drm_display_mode *mode,
4788 struct drm_display_mode *adjusted_mode,
4789 int x, int y,
4790 struct drm_framebuffer *old_fb)
79e53945
JB
4791{
4792 struct drm_device *dev = crtc->dev;
4793 struct drm_i915_private *dev_priv = dev->dev_private;
4794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4795 int pipe = intel_crtc->pipe;
80824003 4796 int plane = intel_crtc->plane;
c751ce4f 4797 int refclk, num_connectors = 0;
652c393a 4798 intel_clock_t clock, reduced_clock;
5eddb70b 4799 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
652c393a 4800 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
a4fc5ed6 4801 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
79e53945 4802 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 4803 struct intel_encoder *encoder;
d4906093 4804 const intel_limit_t *limit;
5c3b82e2 4805 int ret;
fae14981 4806 u32 temp;
aa9b500d 4807 u32 lvds_sync = 0;
79e53945 4808
5eddb70b
CW
4809 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4810 if (encoder->base.crtc != crtc)
79e53945
JB
4811 continue;
4812
5eddb70b 4813 switch (encoder->type) {
79e53945
JB
4814 case INTEL_OUTPUT_LVDS:
4815 is_lvds = true;
4816 break;
4817 case INTEL_OUTPUT_SDVO:
7d57382e 4818 case INTEL_OUTPUT_HDMI:
79e53945 4819 is_sdvo = true;
5eddb70b 4820 if (encoder->needs_tv_clock)
e2f0ba97 4821 is_tv = true;
79e53945
JB
4822 break;
4823 case INTEL_OUTPUT_DVO:
4824 is_dvo = true;
4825 break;
4826 case INTEL_OUTPUT_TVOUT:
4827 is_tv = true;
4828 break;
4829 case INTEL_OUTPUT_ANALOG:
4830 is_crt = true;
4831 break;
a4fc5ed6
KP
4832 case INTEL_OUTPUT_DISPLAYPORT:
4833 is_dp = true;
4834 break;
79e53945 4835 }
43565a06 4836
c751ce4f 4837 num_connectors++;
79e53945
JB
4838 }
4839
a7615030 4840 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
43565a06 4841 refclk = dev_priv->lvds_ssc_freq * 1000;
28c97730 4842 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5eddb70b 4843 refclk / 1000);
a6c45cf0 4844 } else if (!IS_GEN2(dev)) {
79e53945
JB
4845 refclk = 96000;
4846 } else {
4847 refclk = 48000;
4848 }
4849
d4906093
ML
4850 /*
4851 * Returns a set of divisors for the desired target clock with the given
4852 * refclk, or FALSE. The returned values represent the clock equation:
4853 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4854 */
1b894b59 4855 limit = intel_limit(crtc, refclk);
d4906093 4856 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
4857 if (!ok) {
4858 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4859 return -EINVAL;
79e53945
JB
4860 }
4861
cda4b7d3 4862 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4863 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4864
ddc9003c
ZY
4865 if (is_lvds && dev_priv->lvds_downclock_avail) {
4866 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4867 dev_priv->lvds_downclock,
4868 refclk,
4869 &reduced_clock);
18f9ed12
ZY
4870 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4871 /*
4872 * If the different P is found, it means that we can't
4873 * switch the display clock by using the FP0/FP1.
4874 * In such case we will disable the LVDS downclock
4875 * feature.
4876 */
4877 DRM_DEBUG_KMS("Different P is found for "
5eddb70b 4878 "LVDS clock/downclock\n");
18f9ed12
ZY
4879 has_reduced_clock = 0;
4880 }
652c393a 4881 }
7026d4ac
ZW
4882 /* SDVO TV has fixed PLL values depend on its clock range,
4883 this mirrors vbios setting. */
4884 if (is_sdvo && is_tv) {
4885 if (adjusted_mode->clock >= 100000
5eddb70b 4886 && adjusted_mode->clock < 140500) {
7026d4ac
ZW
4887 clock.p1 = 2;
4888 clock.p2 = 10;
4889 clock.n = 3;
4890 clock.m1 = 16;
4891 clock.m2 = 8;
4892 } else if (adjusted_mode->clock >= 140500
5eddb70b 4893 && adjusted_mode->clock <= 200000) {
7026d4ac
ZW
4894 clock.p1 = 1;
4895 clock.p2 = 10;
4896 clock.n = 6;
4897 clock.m1 = 12;
4898 clock.m2 = 8;
4899 }
4900 }
4901
f2b115e6 4902 if (IS_PINEVIEW(dev)) {
2177832f 4903 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
652c393a
JB
4904 if (has_reduced_clock)
4905 fp2 = (1 << reduced_clock.n) << 16 |
4906 reduced_clock.m1 << 8 | reduced_clock.m2;
4907 } else {
2177832f 4908 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
652c393a
JB
4909 if (has_reduced_clock)
4910 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4911 reduced_clock.m2;
4912 }
79e53945 4913
929c77fb 4914 dpll = DPLL_VGA_MODE_DIS;
2c07245f 4915
a6c45cf0 4916 if (!IS_GEN2(dev)) {
79e53945
JB
4917 if (is_lvds)
4918 dpll |= DPLLB_MODE_LVDS;
4919 else
4920 dpll |= DPLLB_MODE_DAC_SERIAL;
4921 if (is_sdvo) {
6c9547ff
CW
4922 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4923 if (pixel_multiplier > 1) {
4924 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4925 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
6c9547ff 4926 }
79e53945 4927 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 4928 }
929c77fb 4929 if (is_dp)
a4fc5ed6 4930 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945
JB
4931
4932 /* compute bitmask from p1 value */
f2b115e6
AJ
4933 if (IS_PINEVIEW(dev))
4934 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
2c07245f 4935 else {
2177832f 4936 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
652c393a
JB
4937 if (IS_G4X(dev) && has_reduced_clock)
4938 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2c07245f 4939 }
79e53945
JB
4940 switch (clock.p2) {
4941 case 5:
4942 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4943 break;
4944 case 7:
4945 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4946 break;
4947 case 10:
4948 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4949 break;
4950 case 14:
4951 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4952 break;
4953 }
929c77fb 4954 if (INTEL_INFO(dev)->gen >= 4)
79e53945
JB
4955 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4956 } else {
4957 if (is_lvds) {
4958 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4959 } else {
4960 if (clock.p1 == 2)
4961 dpll |= PLL_P1_DIVIDE_BY_TWO;
4962 else
4963 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4964 if (clock.p2 == 4)
4965 dpll |= PLL_P2_DIVIDE_BY_4;
4966 }
4967 }
4968
43565a06
KH
4969 if (is_sdvo && is_tv)
4970 dpll |= PLL_REF_INPUT_TVCLKINBC;
4971 else if (is_tv)
79e53945 4972 /* XXX: just matching BIOS for now */
43565a06 4973 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 4974 dpll |= 3;
a7615030 4975 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 4976 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
4977 else
4978 dpll |= PLL_REF_INPUT_DREFCLK;
4979
4980 /* setup pipeconf */
5eddb70b 4981 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4982
4983 /* Set up the display plane register */
4984 dspcntr = DISPPLANE_GAMMA_ENABLE;
4985
f2b115e6 4986 /* Ironlake's plane is forced to pipe, bit 24 is to
2c07245f 4987 enable color space conversion */
929c77fb
EA
4988 if (pipe == 0)
4989 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4990 else
4991 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4992
a6c45cf0 4993 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4994 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4995 * core speed.
4996 *
4997 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4998 * pipe == 0 check?
4999 */
e70236a8
JB
5000 if (mode->clock >
5001 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 5002 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 5003 else
5eddb70b 5004 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
5005 }
5006
929c77fb 5007 dpll |= DPLL_VCO_ENABLE;
8d86dc6a 5008
28c97730 5009 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
5010 drm_mode_debug_printmodeline(mode);
5011
fae14981
EA
5012 I915_WRITE(FP0(pipe), fp);
5013 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5eddb70b 5014
fae14981 5015 POSTING_READ(DPLL(pipe));
c713bb08 5016 udelay(150);
8db9d77b 5017
79e53945
JB
5018 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5019 * This is an exception to the general rule that mode_set doesn't turn
5020 * things on.
5021 */
5022 if (is_lvds) {
fae14981 5023 temp = I915_READ(LVDS);
5eddb70b 5024 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
b3b095b3 5025 if (pipe == 1) {
929c77fb 5026 temp |= LVDS_PIPEB_SELECT;
b3b095b3 5027 } else {
929c77fb 5028 temp &= ~LVDS_PIPEB_SELECT;
b3b095b3 5029 }
a3e17eb8 5030 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5031 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5032 /* Set the B0-B3 data pairs corresponding to whether we're going to
5033 * set the DPLLs for dual-channel mode or not.
5034 */
5035 if (clock.p2 == 7)
5eddb70b 5036 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5037 else
5eddb70b 5038 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5039
5040 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5041 * appropriately here, but we need to look more thoroughly into how
5042 * panels behave in the two modes.
5043 */
929c77fb
EA
5044 /* set the dithering flag on LVDS as needed */
5045 if (INTEL_INFO(dev)->gen >= 4) {
434ed097 5046 if (dev_priv->lvds_dither)
5eddb70b 5047 temp |= LVDS_ENABLE_DITHER;
434ed097 5048 else
5eddb70b 5049 temp &= ~LVDS_ENABLE_DITHER;
898822ce 5050 }
aa9b500d
BF
5051 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5052 lvds_sync |= LVDS_HSYNC_POLARITY;
5053 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5054 lvds_sync |= LVDS_VSYNC_POLARITY;
5055 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5056 != lvds_sync) {
5057 char flags[2] = "-+";
5058 DRM_INFO("Changing LVDS panel from "
5059 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5060 flags[!(temp & LVDS_HSYNC_POLARITY)],
5061 flags[!(temp & LVDS_VSYNC_POLARITY)],
5062 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5063 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5064 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5065 temp |= lvds_sync;
5066 }
fae14981 5067 I915_WRITE(LVDS, temp);
79e53945 5068 }
434ed097 5069
929c77fb 5070 if (is_dp) {
a4fc5ed6 5071 intel_dp_set_m_n(crtc, mode, adjusted_mode);
434ed097
JB
5072 }
5073
fae14981 5074 I915_WRITE(DPLL(pipe), dpll);
5eddb70b 5075
c713bb08 5076 /* Wait for the clocks to stabilize. */
fae14981 5077 POSTING_READ(DPLL(pipe));
c713bb08 5078 udelay(150);
32f9d658 5079
c713bb08
EA
5080 if (INTEL_INFO(dev)->gen >= 4) {
5081 temp = 0;
5082 if (is_sdvo) {
5083 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5084 if (temp > 1)
5085 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5086 else
5087 temp = 0;
32f9d658 5088 }
c713bb08
EA
5089 I915_WRITE(DPLL_MD(pipe), temp);
5090 } else {
5091 /* The pixel multiplier can only be updated once the
5092 * DPLL is enabled and the clocks are stable.
5093 *
5094 * So write it again.
5095 */
fae14981 5096 I915_WRITE(DPLL(pipe), dpll);
79e53945 5097 }
79e53945 5098
5eddb70b 5099 intel_crtc->lowfreq_avail = false;
652c393a 5100 if (is_lvds && has_reduced_clock && i915_powersave) {
fae14981 5101 I915_WRITE(FP1(pipe), fp2);
652c393a
JB
5102 intel_crtc->lowfreq_avail = true;
5103 if (HAS_PIPE_CXSR(dev)) {
28c97730 5104 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a
JB
5105 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5106 }
5107 } else {
fae14981 5108 I915_WRITE(FP1(pipe), fp);
652c393a 5109 if (HAS_PIPE_CXSR(dev)) {
28c97730 5110 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
5111 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5112 }
5113 }
5114
734b4157
KH
5115 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5116 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5117 /* the chip adds 2 halflines automatically */
5118 adjusted_mode->crtc_vdisplay -= 1;
5119 adjusted_mode->crtc_vtotal -= 1;
5120 adjusted_mode->crtc_vblank_start -= 1;
5121 adjusted_mode->crtc_vblank_end -= 1;
5122 adjusted_mode->crtc_vsync_end -= 1;
5123 adjusted_mode->crtc_vsync_start -= 1;
5124 } else
5125 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5126
5eddb70b
CW
5127 I915_WRITE(HTOTAL(pipe),
5128 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5129 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5130 I915_WRITE(HBLANK(pipe),
5131 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5132 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5133 I915_WRITE(HSYNC(pipe),
5134 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5135 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5136
5137 I915_WRITE(VTOTAL(pipe),
5138 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5139 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5140 I915_WRITE(VBLANK(pipe),
5141 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5142 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5143 I915_WRITE(VSYNC(pipe),
5144 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5145 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b
CW
5146
5147 /* pipesrc and dspsize control the size that is scaled from,
5148 * which should always be the user's requested size.
79e53945 5149 */
929c77fb
EA
5150 I915_WRITE(DSPSIZE(plane),
5151 ((mode->vdisplay - 1) << 16) |
5152 (mode->hdisplay - 1));
5153 I915_WRITE(DSPPOS(plane), 0);
5eddb70b
CW
5154 I915_WRITE(PIPESRC(pipe),
5155 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5156
f564048e
EA
5157 I915_WRITE(PIPECONF(pipe), pipeconf);
5158 POSTING_READ(PIPECONF(pipe));
929c77fb 5159 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
5160
5161 intel_wait_for_vblank(dev, pipe);
5162
f564048e
EA
5163 I915_WRITE(DSPCNTR(plane), dspcntr);
5164 POSTING_READ(DSPCNTR(plane));
284d9529 5165 intel_enable_plane(dev_priv, plane, pipe);
f564048e
EA
5166
5167 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5168
5169 intel_update_watermarks(dev);
5170
f564048e
EA
5171 return ret;
5172}
5173
9fb526db
KP
5174/*
5175 * Initialize reference clocks when the driver loads
5176 */
5177void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
5178{
5179 struct drm_i915_private *dev_priv = dev->dev_private;
5180 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 5181 struct intel_encoder *encoder;
13d83a67
JB
5182 u32 temp;
5183 bool has_lvds = false;
199e5d79
KP
5184 bool has_cpu_edp = false;
5185 bool has_pch_edp = false;
5186 bool has_panel = false;
99eb6a01
KP
5187 bool has_ck505 = false;
5188 bool can_ssc = false;
13d83a67
JB
5189
5190 /* We need to take the global config into account */
199e5d79
KP
5191 list_for_each_entry(encoder, &mode_config->encoder_list,
5192 base.head) {
5193 switch (encoder->type) {
5194 case INTEL_OUTPUT_LVDS:
5195 has_panel = true;
5196 has_lvds = true;
5197 break;
5198 case INTEL_OUTPUT_EDP:
5199 has_panel = true;
5200 if (intel_encoder_is_pch_edp(&encoder->base))
5201 has_pch_edp = true;
5202 else
5203 has_cpu_edp = true;
5204 break;
13d83a67
JB
5205 }
5206 }
5207
99eb6a01
KP
5208 if (HAS_PCH_IBX(dev)) {
5209 has_ck505 = dev_priv->display_clock_mode;
5210 can_ssc = has_ck505;
5211 } else {
5212 has_ck505 = false;
5213 can_ssc = true;
5214 }
5215
5216 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5217 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5218 has_ck505);
13d83a67
JB
5219
5220 /* Ironlake: try to setup display ref clock before DPLL
5221 * enabling. This is only under driver's control after
5222 * PCH B stepping, previous chipset stepping should be
5223 * ignoring this setting.
5224 */
5225 temp = I915_READ(PCH_DREF_CONTROL);
5226 /* Always enable nonspread source */
5227 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 5228
99eb6a01
KP
5229 if (has_ck505)
5230 temp |= DREF_NONSPREAD_CK505_ENABLE;
5231 else
5232 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 5233
199e5d79
KP
5234 if (has_panel) {
5235 temp &= ~DREF_SSC_SOURCE_MASK;
5236 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 5237
199e5d79 5238 /* SSC must be turned on before enabling the CPU output */
99eb6a01 5239 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 5240 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 5241 temp |= DREF_SSC1_ENABLE;
13d83a67 5242 }
199e5d79
KP
5243
5244 /* Get SSC going before enabling the outputs */
5245 I915_WRITE(PCH_DREF_CONTROL, temp);
5246 POSTING_READ(PCH_DREF_CONTROL);
5247 udelay(200);
5248
13d83a67
JB
5249 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5250
5251 /* Enable CPU source on CPU attached eDP */
199e5d79 5252 if (has_cpu_edp) {
99eb6a01 5253 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 5254 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 5255 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 5256 }
13d83a67
JB
5257 else
5258 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
5259 } else
5260 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5261
5262 I915_WRITE(PCH_DREF_CONTROL, temp);
5263 POSTING_READ(PCH_DREF_CONTROL);
5264 udelay(200);
5265 } else {
5266 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5267
5268 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5269
5270 /* Turn off CPU output */
5271 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5272
5273 I915_WRITE(PCH_DREF_CONTROL, temp);
5274 POSTING_READ(PCH_DREF_CONTROL);
5275 udelay(200);
5276
5277 /* Turn off the SSC source */
5278 temp &= ~DREF_SSC_SOURCE_MASK;
5279 temp |= DREF_SSC_SOURCE_DISABLE;
5280
5281 /* Turn off SSC1 */
5282 temp &= ~ DREF_SSC1_ENABLE;
5283
13d83a67
JB
5284 I915_WRITE(PCH_DREF_CONTROL, temp);
5285 POSTING_READ(PCH_DREF_CONTROL);
5286 udelay(200);
5287 }
5288}
5289
d9d444cb
JB
5290static int ironlake_get_refclk(struct drm_crtc *crtc)
5291{
5292 struct drm_device *dev = crtc->dev;
5293 struct drm_i915_private *dev_priv = dev->dev_private;
5294 struct intel_encoder *encoder;
5295 struct drm_mode_config *mode_config = &dev->mode_config;
5296 struct intel_encoder *edp_encoder = NULL;
5297 int num_connectors = 0;
5298 bool is_lvds = false;
5299
5300 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5301 if (encoder->base.crtc != crtc)
5302 continue;
5303
5304 switch (encoder->type) {
5305 case INTEL_OUTPUT_LVDS:
5306 is_lvds = true;
5307 break;
5308 case INTEL_OUTPUT_EDP:
5309 edp_encoder = encoder;
5310 break;
5311 }
5312 num_connectors++;
5313 }
5314
5315 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5316 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5317 dev_priv->lvds_ssc_freq);
5318 return dev_priv->lvds_ssc_freq * 1000;
5319 }
5320
5321 return 120000;
5322}
5323
f564048e
EA
5324static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5325 struct drm_display_mode *mode,
5326 struct drm_display_mode *adjusted_mode,
5327 int x, int y,
5328 struct drm_framebuffer *old_fb)
79e53945
JB
5329{
5330 struct drm_device *dev = crtc->dev;
5331 struct drm_i915_private *dev_priv = dev->dev_private;
5332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5333 int pipe = intel_crtc->pipe;
80824003 5334 int plane = intel_crtc->plane;
c751ce4f 5335 int refclk, num_connectors = 0;
652c393a 5336 intel_clock_t clock, reduced_clock;
5eddb70b 5337 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
a07d6787 5338 bool ok, has_reduced_clock = false, is_sdvo = false;
a4fc5ed6 5339 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
8e647a27 5340 struct intel_encoder *has_edp_encoder = NULL;
79e53945 5341 struct drm_mode_config *mode_config = &dev->mode_config;
5eddb70b 5342 struct intel_encoder *encoder;
d4906093 5343 const intel_limit_t *limit;
5c3b82e2 5344 int ret;
2c07245f 5345 struct fdi_m_n m_n = {0};
fae14981 5346 u32 temp;
aa9b500d 5347 u32 lvds_sync = 0;
5a354204
JB
5348 int target_clock, pixel_multiplier, lane, link_bw, factor;
5349 unsigned int pipe_bpp;
5350 bool dither;
79e53945 5351
5eddb70b
CW
5352 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5353 if (encoder->base.crtc != crtc)
79e53945
JB
5354 continue;
5355
5eddb70b 5356 switch (encoder->type) {
79e53945
JB
5357 case INTEL_OUTPUT_LVDS:
5358 is_lvds = true;
5359 break;
5360 case INTEL_OUTPUT_SDVO:
7d57382e 5361 case INTEL_OUTPUT_HDMI:
79e53945 5362 is_sdvo = true;
5eddb70b 5363 if (encoder->needs_tv_clock)
e2f0ba97 5364 is_tv = true;
79e53945 5365 break;
79e53945
JB
5366 case INTEL_OUTPUT_TVOUT:
5367 is_tv = true;
5368 break;
5369 case INTEL_OUTPUT_ANALOG:
5370 is_crt = true;
5371 break;
a4fc5ed6
KP
5372 case INTEL_OUTPUT_DISPLAYPORT:
5373 is_dp = true;
5374 break;
32f9d658 5375 case INTEL_OUTPUT_EDP:
5eddb70b 5376 has_edp_encoder = encoder;
32f9d658 5377 break;
79e53945 5378 }
43565a06 5379
c751ce4f 5380 num_connectors++;
79e53945
JB
5381 }
5382
d9d444cb 5383 refclk = ironlake_get_refclk(crtc);
79e53945 5384
d4906093
ML
5385 /*
5386 * Returns a set of divisors for the desired target clock with the given
5387 * refclk, or FALSE. The returned values represent the clock equation:
5388 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5389 */
1b894b59 5390 limit = intel_limit(crtc, refclk);
d4906093 5391 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
79e53945
JB
5392 if (!ok) {
5393 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 5394 return -EINVAL;
79e53945
JB
5395 }
5396
cda4b7d3 5397 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 5398 intel_crtc_update_cursor(crtc, true);
cda4b7d3 5399
ddc9003c
ZY
5400 if (is_lvds && dev_priv->lvds_downclock_avail) {
5401 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
5402 dev_priv->lvds_downclock,
5403 refclk,
5404 &reduced_clock);
18f9ed12
ZY
5405 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5406 /*
5407 * If the different P is found, it means that we can't
5408 * switch the display clock by using the FP0/FP1.
5409 * In such case we will disable the LVDS downclock
5410 * feature.
5411 */
5412 DRM_DEBUG_KMS("Different P is found for "
5eddb70b 5413 "LVDS clock/downclock\n");
18f9ed12
ZY
5414 has_reduced_clock = 0;
5415 }
652c393a 5416 }
7026d4ac
ZW
5417 /* SDVO TV has fixed PLL values depend on its clock range,
5418 this mirrors vbios setting. */
5419 if (is_sdvo && is_tv) {
5420 if (adjusted_mode->clock >= 100000
5eddb70b 5421 && adjusted_mode->clock < 140500) {
7026d4ac
ZW
5422 clock.p1 = 2;
5423 clock.p2 = 10;
5424 clock.n = 3;
5425 clock.m1 = 16;
5426 clock.m2 = 8;
5427 } else if (adjusted_mode->clock >= 140500
5eddb70b 5428 && adjusted_mode->clock <= 200000) {
7026d4ac
ZW
5429 clock.p1 = 1;
5430 clock.p2 = 10;
5431 clock.n = 6;
5432 clock.m1 = 12;
5433 clock.m2 = 8;
5434 }
5435 }
5436
2c07245f 5437 /* FDI link */
8febb297
EA
5438 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5439 lane = 0;
5440 /* CPU eDP doesn't require FDI link, so just set DP M/N
5441 according to current link config */
5442 if (has_edp_encoder &&
5443 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5444 target_clock = mode->clock;
5445 intel_edp_link_config(has_edp_encoder,
5446 &lane, &link_bw);
5447 } else {
5448 /* [e]DP over FDI requires target mode clock
5449 instead of link clock */
5450 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5eb08b69 5451 target_clock = mode->clock;
8febb297
EA
5452 else
5453 target_clock = adjusted_mode->clock;
5454
5455 /* FDI is a binary signal running at ~2.7GHz, encoding
5456 * each output octet as 10 bits. The actual frequency
5457 * is stored as a divider into a 100MHz clock, and the
5458 * mode pixel clock is stored in units of 1KHz.
5459 * Hence the bw of each lane in terms of the mode signal
5460 * is:
5461 */
5462 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5463 }
58a27471 5464
8febb297
EA
5465 /* determine panel color depth */
5466 temp = I915_READ(PIPECONF(pipe));
5467 temp &= ~PIPE_BPC_MASK;
5a354204
JB
5468 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp);
5469 switch (pipe_bpp) {
5470 case 18:
5471 temp |= PIPE_6BPC;
8febb297 5472 break;
5a354204
JB
5473 case 24:
5474 temp |= PIPE_8BPC;
8febb297 5475 break;
5a354204
JB
5476 case 30:
5477 temp |= PIPE_10BPC;
8febb297 5478 break;
5a354204
JB
5479 case 36:
5480 temp |= PIPE_12BPC;
8febb297
EA
5481 break;
5482 default:
62ac41a6
JB
5483 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5484 pipe_bpp);
5a354204
JB
5485 temp |= PIPE_8BPC;
5486 pipe_bpp = 24;
5487 break;
8febb297 5488 }
77ffb597 5489
5a354204
JB
5490 intel_crtc->bpp = pipe_bpp;
5491 I915_WRITE(PIPECONF(pipe), temp);
5492
8febb297
EA
5493 if (!lane) {
5494 /*
5495 * Account for spread spectrum to avoid
5496 * oversubscribing the link. Max center spread
5497 * is 2.5%; use 5% for safety's sake.
5498 */
5a354204 5499 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
8febb297 5500 lane = bps / (link_bw * 8) + 1;
5eb08b69 5501 }
2c07245f 5502
8febb297
EA
5503 intel_crtc->fdi_lanes = lane;
5504
5505 if (pixel_multiplier > 1)
5506 link_bw *= pixel_multiplier;
5a354204
JB
5507 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5508 &m_n);
8febb297 5509
a07d6787
EA
5510 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5511 if (has_reduced_clock)
5512 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5513 reduced_clock.m2;
79e53945 5514
c1858123 5515 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
5516 factor = 21;
5517 if (is_lvds) {
5518 if ((intel_panel_use_ssc(dev_priv) &&
5519 dev_priv->lvds_ssc_freq == 100) ||
5520 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5521 factor = 25;
5522 } else if (is_sdvo && is_tv)
5523 factor = 20;
c1858123 5524
cb0e0931 5525 if (clock.m < factor * clock.n)
8febb297 5526 fp |= FP_CB_TUNE;
2c07245f 5527
5eddb70b 5528 dpll = 0;
2c07245f 5529
a07d6787
EA
5530 if (is_lvds)
5531 dpll |= DPLLB_MODE_LVDS;
5532 else
5533 dpll |= DPLLB_MODE_DAC_SERIAL;
5534 if (is_sdvo) {
5535 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5536 if (pixel_multiplier > 1) {
5537 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 5538 }
a07d6787
EA
5539 dpll |= DPLL_DVO_HIGH_SPEED;
5540 }
5541 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5542 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 5543
a07d6787
EA
5544 /* compute bitmask from p1 value */
5545 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5546 /* also FPA1 */
5547 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5548
5549 switch (clock.p2) {
5550 case 5:
5551 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5552 break;
5553 case 7:
5554 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5555 break;
5556 case 10:
5557 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5558 break;
5559 case 14:
5560 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5561 break;
79e53945
JB
5562 }
5563
43565a06
KH
5564 if (is_sdvo && is_tv)
5565 dpll |= PLL_REF_INPUT_TVCLKINBC;
5566 else if (is_tv)
79e53945 5567 /* XXX: just matching BIOS for now */
43565a06 5568 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 5569 dpll |= 3;
a7615030 5570 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 5571 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
5572 else
5573 dpll |= PLL_REF_INPUT_DREFCLK;
5574
5575 /* setup pipeconf */
5eddb70b 5576 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
5577
5578 /* Set up the display plane register */
5579 dspcntr = DISPPLANE_GAMMA_ENABLE;
5580
f7cb34d4 5581 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
5582 drm_mode_debug_printmodeline(mode);
5583
5c5313c8 5584 /* PCH eDP needs FDI, but CPU eDP does not */
4b645f14
JB
5585 if (!intel_crtc->no_pll) {
5586 if (!has_edp_encoder ||
5587 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5588 I915_WRITE(PCH_FP0(pipe), fp);
5589 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5590
5591 POSTING_READ(PCH_DPLL(pipe));
5592 udelay(150);
5593 }
5594 } else {
5595 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5596 fp == I915_READ(PCH_FP0(0))) {
5597 intel_crtc->use_pll_a = true;
5598 DRM_DEBUG_KMS("using pipe a dpll\n");
5599 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5600 fp == I915_READ(PCH_FP0(1))) {
5601 intel_crtc->use_pll_a = false;
5602 DRM_DEBUG_KMS("using pipe b dpll\n");
5603 } else {
5604 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5605 return -EINVAL;
5606 }
79e53945
JB
5607 }
5608
8db9d77b
ZW
5609 /* enable transcoder DPLL */
5610 if (HAS_PCH_CPT(dev)) {
4b645f14
JB
5611 u32 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
5612 TRANSC_DPLLB_SEL;
8db9d77b 5613 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
5614 switch (pipe) {
5615 case 0:
5eddb70b 5616 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
9db4a9c7
JB
5617 break;
5618 case 1:
5eddb70b 5619 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
9db4a9c7
JB
5620 break;
5621 case 2:
d64311ab 5622 temp &= ~(TRANSC_DPLLB_SEL);
4b645f14 5623 temp |= TRANSC_DPLL_ENABLE | transc_sel;
9db4a9c7
JB
5624 break;
5625 default:
5626 BUG();
32f9d658 5627 }
8db9d77b 5628 I915_WRITE(PCH_DPLL_SEL, temp);
5eddb70b
CW
5629
5630 POSTING_READ(PCH_DPLL_SEL);
8db9d77b
ZW
5631 udelay(150);
5632 }
5633
79e53945
JB
5634 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5635 * This is an exception to the general rule that mode_set doesn't turn
5636 * things on.
5637 */
5638 if (is_lvds) {
fae14981 5639 temp = I915_READ(PCH_LVDS);
5eddb70b 5640 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4b645f14
JB
5641 if (HAS_PCH_CPT(dev))
5642 temp |= PORT_TRANS_SEL_CPT(pipe);
5643 else if (pipe == 1)
5644 temp |= LVDS_PIPEB_SELECT;
5645 else
5646 temp &= ~LVDS_PIPEB_SELECT;
5647
a3e17eb8 5648 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 5649 temp |= dev_priv->lvds_border_bits;
79e53945
JB
5650 /* Set the B0-B3 data pairs corresponding to whether we're going to
5651 * set the DPLLs for dual-channel mode or not.
5652 */
5653 if (clock.p2 == 7)
5eddb70b 5654 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 5655 else
5eddb70b 5656 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
5657
5658 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5659 * appropriately here, but we need to look more thoroughly into how
5660 * panels behave in the two modes.
5661 */
aa9b500d
BF
5662 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5663 lvds_sync |= LVDS_HSYNC_POLARITY;
5664 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5665 lvds_sync |= LVDS_VSYNC_POLARITY;
5666 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5667 != lvds_sync) {
5668 char flags[2] = "-+";
5669 DRM_INFO("Changing LVDS panel from "
5670 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5671 flags[!(temp & LVDS_HSYNC_POLARITY)],
5672 flags[!(temp & LVDS_VSYNC_POLARITY)],
5673 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5674 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5675 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5676 temp |= lvds_sync;
5677 }
fae14981 5678 I915_WRITE(PCH_LVDS, temp);
79e53945 5679 }
434ed097 5680
8febb297
EA
5681 pipeconf &= ~PIPECONF_DITHER_EN;
5682 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5a354204 5683 if ((is_lvds && dev_priv->lvds_dither) || dither) {
8febb297
EA
5684 pipeconf |= PIPECONF_DITHER_EN;
5685 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
434ed097 5686 }
5c5313c8 5687 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
a4fc5ed6 5688 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 5689 } else {
8db9d77b 5690 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
5691 I915_WRITE(TRANSDATA_M1(pipe), 0);
5692 I915_WRITE(TRANSDATA_N1(pipe), 0);
5693 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5694 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 5695 }
79e53945 5696
4b645f14
JB
5697 if (!intel_crtc->no_pll &&
5698 (!has_edp_encoder ||
5699 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
fae14981 5700 I915_WRITE(PCH_DPLL(pipe), dpll);
5eddb70b 5701
32f9d658 5702 /* Wait for the clocks to stabilize. */
fae14981 5703 POSTING_READ(PCH_DPLL(pipe));
32f9d658
ZW
5704 udelay(150);
5705
8febb297
EA
5706 /* The pixel multiplier can only be updated once the
5707 * DPLL is enabled and the clocks are stable.
5708 *
5709 * So write it again.
5710 */
fae14981 5711 I915_WRITE(PCH_DPLL(pipe), dpll);
79e53945 5712 }
79e53945 5713
5eddb70b 5714 intel_crtc->lowfreq_avail = false;
4b645f14
JB
5715 if (!intel_crtc->no_pll) {
5716 if (is_lvds && has_reduced_clock && i915_powersave) {
5717 I915_WRITE(PCH_FP1(pipe), fp2);
5718 intel_crtc->lowfreq_avail = true;
5719 if (HAS_PIPE_CXSR(dev)) {
5720 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5721 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5722 }
5723 } else {
5724 I915_WRITE(PCH_FP1(pipe), fp);
5725 if (HAS_PIPE_CXSR(dev)) {
5726 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5727 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5728 }
652c393a
JB
5729 }
5730 }
5731
734b4157
KH
5732 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5733 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5734 /* the chip adds 2 halflines automatically */
5735 adjusted_mode->crtc_vdisplay -= 1;
5736 adjusted_mode->crtc_vtotal -= 1;
5737 adjusted_mode->crtc_vblank_start -= 1;
5738 adjusted_mode->crtc_vblank_end -= 1;
5739 adjusted_mode->crtc_vsync_end -= 1;
5740 adjusted_mode->crtc_vsync_start -= 1;
5741 } else
5742 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5743
5eddb70b
CW
5744 I915_WRITE(HTOTAL(pipe),
5745 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5746 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5747 I915_WRITE(HBLANK(pipe),
5748 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5749 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5750 I915_WRITE(HSYNC(pipe),
5751 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5752 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5753
5754 I915_WRITE(VTOTAL(pipe),
5755 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5756 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5757 I915_WRITE(VBLANK(pipe),
5758 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5759 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5760 I915_WRITE(VSYNC(pipe),
5761 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5762 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b 5763
8febb297
EA
5764 /* pipesrc controls the size that is scaled from, which should
5765 * always be the user's requested size.
79e53945 5766 */
5eddb70b
CW
5767 I915_WRITE(PIPESRC(pipe),
5768 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5769
8febb297
EA
5770 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5771 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5772 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5773 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
2c07245f 5774
8febb297
EA
5775 if (has_edp_encoder &&
5776 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5777 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f
ZW
5778 }
5779
5eddb70b
CW
5780 I915_WRITE(PIPECONF(pipe), pipeconf);
5781 POSTING_READ(PIPECONF(pipe));
79e53945 5782
9d0498a2 5783 intel_wait_for_vblank(dev, pipe);
79e53945 5784
f00a3ddf 5785 if (IS_GEN5(dev)) {
553bd149
ZW
5786 /* enable address swizzle for tiling buffer */
5787 temp = I915_READ(DISP_ARB_CTL);
5788 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5789 }
5790
5eddb70b 5791 I915_WRITE(DSPCNTR(plane), dspcntr);
b24e7179 5792 POSTING_READ(DSPCNTR(plane));
79e53945 5793
5c3b82e2 5794 ret = intel_pipe_set_base(crtc, x, y, old_fb);
7662c8bd
SL
5795
5796 intel_update_watermarks(dev);
5797
1f803ee5 5798 return ret;
79e53945
JB
5799}
5800
f564048e
EA
5801static int intel_crtc_mode_set(struct drm_crtc *crtc,
5802 struct drm_display_mode *mode,
5803 struct drm_display_mode *adjusted_mode,
5804 int x, int y,
5805 struct drm_framebuffer *old_fb)
5806{
5807 struct drm_device *dev = crtc->dev;
5808 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
5809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5810 int pipe = intel_crtc->pipe;
f564048e
EA
5811 int ret;
5812
0b701d27 5813 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5814
f564048e
EA
5815 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5816 x, y, old_fb);
7662c8bd 5817
79e53945 5818 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5819
120eced9
KP
5820 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
5821
1f803ee5 5822 return ret;
79e53945
JB
5823}
5824
e0dac65e
WF
5825static void g4x_write_eld(struct drm_connector *connector,
5826 struct drm_crtc *crtc)
5827{
5828 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5829 uint8_t *eld = connector->eld;
5830 uint32_t eldv;
5831 uint32_t len;
5832 uint32_t i;
5833
5834 i = I915_READ(G4X_AUD_VID_DID);
5835
5836 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5837 eldv = G4X_ELDV_DEVCL_DEVBLC;
5838 else
5839 eldv = G4X_ELDV_DEVCTG;
5840
5841 i = I915_READ(G4X_AUD_CNTL_ST);
5842 i &= ~(eldv | G4X_ELD_ADDR);
5843 len = (i >> 9) & 0x1f; /* ELD buffer size */
5844 I915_WRITE(G4X_AUD_CNTL_ST, i);
5845
5846 if (!eld[0])
5847 return;
5848
5849 len = min_t(uint8_t, eld[2], len);
5850 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5851 for (i = 0; i < len; i++)
5852 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5853
5854 i = I915_READ(G4X_AUD_CNTL_ST);
5855 i |= eldv;
5856 I915_WRITE(G4X_AUD_CNTL_ST, i);
5857}
5858
5859static void ironlake_write_eld(struct drm_connector *connector,
5860 struct drm_crtc *crtc)
5861{
5862 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5863 uint8_t *eld = connector->eld;
5864 uint32_t eldv;
5865 uint32_t i;
5866 int len;
5867 int hdmiw_hdmiedid;
5868 int aud_cntl_st;
5869 int aud_cntrl_st2;
5870
5871 if (IS_IVYBRIDGE(connector->dev)) {
5872 hdmiw_hdmiedid = GEN7_HDMIW_HDMIEDID_A;
5873 aud_cntl_st = GEN7_AUD_CNTRL_ST_A;
5874 aud_cntrl_st2 = GEN7_AUD_CNTRL_ST2;
5875 } else {
5876 hdmiw_hdmiedid = GEN5_HDMIW_HDMIEDID_A;
5877 aud_cntl_st = GEN5_AUD_CNTL_ST_A;
5878 aud_cntrl_st2 = GEN5_AUD_CNTL_ST2;
5879 }
5880
5881 i = to_intel_crtc(crtc)->pipe;
5882 hdmiw_hdmiedid += i * 0x100;
5883 aud_cntl_st += i * 0x100;
5884
5885 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5886
5887 i = I915_READ(aud_cntl_st);
5888 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
5889 if (!i) {
5890 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5891 /* operate blindly on all ports */
5892 eldv = GEN5_ELD_VALIDB;
5893 eldv |= GEN5_ELD_VALIDB << 4;
5894 eldv |= GEN5_ELD_VALIDB << 8;
5895 } else {
5896 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5897 eldv = GEN5_ELD_VALIDB << ((i - 1) * 4);
5898 }
5899
5900 i = I915_READ(aud_cntrl_st2);
5901 i &= ~eldv;
5902 I915_WRITE(aud_cntrl_st2, i);
5903
5904 if (!eld[0])
5905 return;
5906
5907 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5908 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5909 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5910 }
5911
5912 i = I915_READ(aud_cntl_st);
5913 i &= ~GEN5_ELD_ADDRESS;
5914 I915_WRITE(aud_cntl_st, i);
5915
5916 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5917 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5918 for (i = 0; i < len; i++)
5919 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5920
5921 i = I915_READ(aud_cntrl_st2);
5922 i |= eldv;
5923 I915_WRITE(aud_cntrl_st2, i);
5924}
5925
5926void intel_write_eld(struct drm_encoder *encoder,
5927 struct drm_display_mode *mode)
5928{
5929 struct drm_crtc *crtc = encoder->crtc;
5930 struct drm_connector *connector;
5931 struct drm_device *dev = encoder->dev;
5932 struct drm_i915_private *dev_priv = dev->dev_private;
5933
5934 connector = drm_select_eld(encoder, mode);
5935 if (!connector)
5936 return;
5937
5938 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5939 connector->base.id,
5940 drm_get_connector_name(connector),
5941 connector->encoder->base.id,
5942 drm_get_encoder_name(connector->encoder));
5943
5944 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5945
5946 if (dev_priv->display.write_eld)
5947 dev_priv->display.write_eld(connector, crtc);
5948}
5949
79e53945
JB
5950/** Loads the palette/gamma unit for the CRTC with the prepared values */
5951void intel_crtc_load_lut(struct drm_crtc *crtc)
5952{
5953 struct drm_device *dev = crtc->dev;
5954 struct drm_i915_private *dev_priv = dev->dev_private;
5955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 5956 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
5957 int i;
5958
5959 /* The clocks have to be on to load the palette. */
5960 if (!crtc->enabled)
5961 return;
5962
f2b115e6 5963 /* use legacy palette for Ironlake */
bad720ff 5964 if (HAS_PCH_SPLIT(dev))
9db4a9c7 5965 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 5966
79e53945
JB
5967 for (i = 0; i < 256; i++) {
5968 I915_WRITE(palreg + 4 * i,
5969 (intel_crtc->lut_r[i] << 16) |
5970 (intel_crtc->lut_g[i] << 8) |
5971 intel_crtc->lut_b[i]);
5972 }
5973}
5974
560b85bb
CW
5975static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5976{
5977 struct drm_device *dev = crtc->dev;
5978 struct drm_i915_private *dev_priv = dev->dev_private;
5979 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5980 bool visible = base != 0;
5981 u32 cntl;
5982
5983 if (intel_crtc->cursor_visible == visible)
5984 return;
5985
9db4a9c7 5986 cntl = I915_READ(_CURACNTR);
560b85bb
CW
5987 if (visible) {
5988 /* On these chipsets we can only modify the base whilst
5989 * the cursor is disabled.
5990 */
9db4a9c7 5991 I915_WRITE(_CURABASE, base);
560b85bb
CW
5992
5993 cntl &= ~(CURSOR_FORMAT_MASK);
5994 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5995 cntl |= CURSOR_ENABLE |
5996 CURSOR_GAMMA_ENABLE |
5997 CURSOR_FORMAT_ARGB;
5998 } else
5999 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 6000 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
6001
6002 intel_crtc->cursor_visible = visible;
6003}
6004
6005static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6006{
6007 struct drm_device *dev = crtc->dev;
6008 struct drm_i915_private *dev_priv = dev->dev_private;
6009 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6010 int pipe = intel_crtc->pipe;
6011 bool visible = base != 0;
6012
6013 if (intel_crtc->cursor_visible != visible) {
548f245b 6014 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
6015 if (base) {
6016 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6017 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6018 cntl |= pipe << 28; /* Connect to correct pipe */
6019 } else {
6020 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6021 cntl |= CURSOR_MODE_DISABLE;
6022 }
9db4a9c7 6023 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
6024
6025 intel_crtc->cursor_visible = visible;
6026 }
6027 /* and commit changes on next vblank */
9db4a9c7 6028 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
6029}
6030
65a21cd6
JB
6031static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6032{
6033 struct drm_device *dev = crtc->dev;
6034 struct drm_i915_private *dev_priv = dev->dev_private;
6035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6036 int pipe = intel_crtc->pipe;
6037 bool visible = base != 0;
6038
6039 if (intel_crtc->cursor_visible != visible) {
6040 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6041 if (base) {
6042 cntl &= ~CURSOR_MODE;
6043 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6044 } else {
6045 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6046 cntl |= CURSOR_MODE_DISABLE;
6047 }
6048 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6049
6050 intel_crtc->cursor_visible = visible;
6051 }
6052 /* and commit changes on next vblank */
6053 I915_WRITE(CURBASE_IVB(pipe), base);
6054}
6055
cda4b7d3 6056/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
6057static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6058 bool on)
cda4b7d3
CW
6059{
6060 struct drm_device *dev = crtc->dev;
6061 struct drm_i915_private *dev_priv = dev->dev_private;
6062 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6063 int pipe = intel_crtc->pipe;
6064 int x = intel_crtc->cursor_x;
6065 int y = intel_crtc->cursor_y;
560b85bb 6066 u32 base, pos;
cda4b7d3
CW
6067 bool visible;
6068
6069 pos = 0;
6070
6b383a7f 6071 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
6072 base = intel_crtc->cursor_addr;
6073 if (x > (int) crtc->fb->width)
6074 base = 0;
6075
6076 if (y > (int) crtc->fb->height)
6077 base = 0;
6078 } else
6079 base = 0;
6080
6081 if (x < 0) {
6082 if (x + intel_crtc->cursor_width < 0)
6083 base = 0;
6084
6085 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6086 x = -x;
6087 }
6088 pos |= x << CURSOR_X_SHIFT;
6089
6090 if (y < 0) {
6091 if (y + intel_crtc->cursor_height < 0)
6092 base = 0;
6093
6094 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6095 y = -y;
6096 }
6097 pos |= y << CURSOR_Y_SHIFT;
6098
6099 visible = base != 0;
560b85bb 6100 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
6101 return;
6102
65a21cd6
JB
6103 if (IS_IVYBRIDGE(dev)) {
6104 I915_WRITE(CURPOS_IVB(pipe), pos);
6105 ivb_update_cursor(crtc, base);
6106 } else {
6107 I915_WRITE(CURPOS(pipe), pos);
6108 if (IS_845G(dev) || IS_I865G(dev))
6109 i845_update_cursor(crtc, base);
6110 else
6111 i9xx_update_cursor(crtc, base);
6112 }
cda4b7d3
CW
6113
6114 if (visible)
6115 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6116}
6117
79e53945 6118static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 6119 struct drm_file *file,
79e53945
JB
6120 uint32_t handle,
6121 uint32_t width, uint32_t height)
6122{
6123 struct drm_device *dev = crtc->dev;
6124 struct drm_i915_private *dev_priv = dev->dev_private;
6125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 6126 struct drm_i915_gem_object *obj;
cda4b7d3 6127 uint32_t addr;
3f8bc370 6128 int ret;
79e53945 6129
28c97730 6130 DRM_DEBUG_KMS("\n");
79e53945
JB
6131
6132 /* if we want to turn off the cursor ignore width and height */
6133 if (!handle) {
28c97730 6134 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 6135 addr = 0;
05394f39 6136 obj = NULL;
5004417d 6137 mutex_lock(&dev->struct_mutex);
3f8bc370 6138 goto finish;
79e53945
JB
6139 }
6140
6141 /* Currently we only support 64x64 cursors */
6142 if (width != 64 || height != 64) {
6143 DRM_ERROR("we currently only support 64x64 cursors\n");
6144 return -EINVAL;
6145 }
6146
05394f39 6147 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 6148 if (&obj->base == NULL)
79e53945
JB
6149 return -ENOENT;
6150
05394f39 6151 if (obj->base.size < width * height * 4) {
79e53945 6152 DRM_ERROR("buffer is to small\n");
34b8686e
DA
6153 ret = -ENOMEM;
6154 goto fail;
79e53945
JB
6155 }
6156
71acb5eb 6157 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 6158 mutex_lock(&dev->struct_mutex);
b295d1b6 6159 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
6160 if (obj->tiling_mode) {
6161 DRM_ERROR("cursor cannot be tiled\n");
6162 ret = -EINVAL;
6163 goto fail_locked;
6164 }
6165
2da3b9b9 6166 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
6167 if (ret) {
6168 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 6169 goto fail_locked;
e7b526bb
CW
6170 }
6171
d9e86c0e
CW
6172 ret = i915_gem_object_put_fence(obj);
6173 if (ret) {
2da3b9b9 6174 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
6175 goto fail_unpin;
6176 }
6177
05394f39 6178 addr = obj->gtt_offset;
71acb5eb 6179 } else {
6eeefaf3 6180 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 6181 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
6182 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6183 align);
71acb5eb
DA
6184 if (ret) {
6185 DRM_ERROR("failed to attach phys object\n");
7f9872e0 6186 goto fail_locked;
71acb5eb 6187 }
05394f39 6188 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
6189 }
6190
a6c45cf0 6191 if (IS_GEN2(dev))
14b60391
JB
6192 I915_WRITE(CURSIZE, (height << 12) | width);
6193
3f8bc370 6194 finish:
3f8bc370 6195 if (intel_crtc->cursor_bo) {
b295d1b6 6196 if (dev_priv->info->cursor_needs_physical) {
05394f39 6197 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
6198 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6199 } else
6200 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 6201 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 6202 }
80824003 6203
7f9872e0 6204 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
6205
6206 intel_crtc->cursor_addr = addr;
05394f39 6207 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
6208 intel_crtc->cursor_width = width;
6209 intel_crtc->cursor_height = height;
6210
6b383a7f 6211 intel_crtc_update_cursor(crtc, true);
3f8bc370 6212
79e53945 6213 return 0;
e7b526bb 6214fail_unpin:
05394f39 6215 i915_gem_object_unpin(obj);
7f9872e0 6216fail_locked:
34b8686e 6217 mutex_unlock(&dev->struct_mutex);
bc9025bd 6218fail:
05394f39 6219 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 6220 return ret;
79e53945
JB
6221}
6222
6223static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6224{
79e53945 6225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6226
cda4b7d3
CW
6227 intel_crtc->cursor_x = x;
6228 intel_crtc->cursor_y = y;
652c393a 6229
6b383a7f 6230 intel_crtc_update_cursor(crtc, true);
79e53945
JB
6231
6232 return 0;
6233}
6234
6235/** Sets the color ramps on behalf of RandR */
6236void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6237 u16 blue, int regno)
6238{
6239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6240
6241 intel_crtc->lut_r[regno] = red >> 8;
6242 intel_crtc->lut_g[regno] = green >> 8;
6243 intel_crtc->lut_b[regno] = blue >> 8;
6244}
6245
b8c00ac5
DA
6246void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6247 u16 *blue, int regno)
6248{
6249 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6250
6251 *red = intel_crtc->lut_r[regno] << 8;
6252 *green = intel_crtc->lut_g[regno] << 8;
6253 *blue = intel_crtc->lut_b[regno] << 8;
6254}
6255
79e53945 6256static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 6257 u16 *blue, uint32_t start, uint32_t size)
79e53945 6258{
7203425a 6259 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 6260 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 6261
7203425a 6262 for (i = start; i < end; i++) {
79e53945
JB
6263 intel_crtc->lut_r[i] = red[i] >> 8;
6264 intel_crtc->lut_g[i] = green[i] >> 8;
6265 intel_crtc->lut_b[i] = blue[i] >> 8;
6266 }
6267
6268 intel_crtc_load_lut(crtc);
6269}
6270
6271/**
6272 * Get a pipe with a simple mode set on it for doing load-based monitor
6273 * detection.
6274 *
6275 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 6276 * its requirements. The pipe will be connected to no other encoders.
79e53945 6277 *
c751ce4f 6278 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
6279 * configured for it. In the future, it could choose to temporarily disable
6280 * some outputs to free up a pipe for its use.
6281 *
6282 * \return crtc, or NULL if no pipes are available.
6283 */
6284
6285/* VESA 640x480x72Hz mode to set on the pipe */
6286static struct drm_display_mode load_detect_mode = {
6287 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6288 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6289};
6290
d2dff872
CW
6291static struct drm_framebuffer *
6292intel_framebuffer_create(struct drm_device *dev,
6293 struct drm_mode_fb_cmd *mode_cmd,
6294 struct drm_i915_gem_object *obj)
6295{
6296 struct intel_framebuffer *intel_fb;
6297 int ret;
6298
6299 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6300 if (!intel_fb) {
6301 drm_gem_object_unreference_unlocked(&obj->base);
6302 return ERR_PTR(-ENOMEM);
6303 }
6304
6305 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6306 if (ret) {
6307 drm_gem_object_unreference_unlocked(&obj->base);
6308 kfree(intel_fb);
6309 return ERR_PTR(ret);
6310 }
6311
6312 return &intel_fb->base;
6313}
6314
6315static u32
6316intel_framebuffer_pitch_for_width(int width, int bpp)
6317{
6318 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6319 return ALIGN(pitch, 64);
6320}
6321
6322static u32
6323intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6324{
6325 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6326 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6327}
6328
6329static struct drm_framebuffer *
6330intel_framebuffer_create_for_mode(struct drm_device *dev,
6331 struct drm_display_mode *mode,
6332 int depth, int bpp)
6333{
6334 struct drm_i915_gem_object *obj;
6335 struct drm_mode_fb_cmd mode_cmd;
6336
6337 obj = i915_gem_alloc_object(dev,
6338 intel_framebuffer_size_for_mode(mode, bpp));
6339 if (obj == NULL)
6340 return ERR_PTR(-ENOMEM);
6341
6342 mode_cmd.width = mode->hdisplay;
6343 mode_cmd.height = mode->vdisplay;
6344 mode_cmd.depth = depth;
6345 mode_cmd.bpp = bpp;
6346 mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
6347
6348 return intel_framebuffer_create(dev, &mode_cmd, obj);
6349}
6350
6351static struct drm_framebuffer *
6352mode_fits_in_fbdev(struct drm_device *dev,
6353 struct drm_display_mode *mode)
6354{
6355 struct drm_i915_private *dev_priv = dev->dev_private;
6356 struct drm_i915_gem_object *obj;
6357 struct drm_framebuffer *fb;
6358
6359 if (dev_priv->fbdev == NULL)
6360 return NULL;
6361
6362 obj = dev_priv->fbdev->ifb.obj;
6363 if (obj == NULL)
6364 return NULL;
6365
6366 fb = &dev_priv->fbdev->ifb.base;
6367 if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
6368 fb->bits_per_pixel))
6369 return NULL;
6370
6371 if (obj->base.size < mode->vdisplay * fb->pitch)
6372 return NULL;
6373
6374 return fb;
6375}
6376
7173188d
CW
6377bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6378 struct drm_connector *connector,
6379 struct drm_display_mode *mode,
8261b191 6380 struct intel_load_detect_pipe *old)
79e53945
JB
6381{
6382 struct intel_crtc *intel_crtc;
6383 struct drm_crtc *possible_crtc;
4ef69c7a 6384 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6385 struct drm_crtc *crtc = NULL;
6386 struct drm_device *dev = encoder->dev;
d2dff872 6387 struct drm_framebuffer *old_fb;
79e53945
JB
6388 int i = -1;
6389
d2dff872
CW
6390 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6391 connector->base.id, drm_get_connector_name(connector),
6392 encoder->base.id, drm_get_encoder_name(encoder));
6393
79e53945
JB
6394 /*
6395 * Algorithm gets a little messy:
7a5e4805 6396 *
79e53945
JB
6397 * - if the connector already has an assigned crtc, use it (but make
6398 * sure it's on first)
7a5e4805 6399 *
79e53945
JB
6400 * - try to find the first unused crtc that can drive this connector,
6401 * and use that if we find one
79e53945
JB
6402 */
6403
6404 /* See if we already have a CRTC for this connector */
6405 if (encoder->crtc) {
6406 crtc = encoder->crtc;
8261b191 6407
79e53945 6408 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6409 old->dpms_mode = intel_crtc->dpms_mode;
6410 old->load_detect_temp = false;
6411
6412 /* Make sure the crtc and connector are running */
79e53945 6413 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6492711d
CW
6414 struct drm_encoder_helper_funcs *encoder_funcs;
6415 struct drm_crtc_helper_funcs *crtc_funcs;
6416
79e53945
JB
6417 crtc_funcs = crtc->helper_private;
6418 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6492711d
CW
6419
6420 encoder_funcs = encoder->helper_private;
79e53945
JB
6421 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6422 }
8261b191 6423
7173188d 6424 return true;
79e53945
JB
6425 }
6426
6427 /* Find an unused one (if possible) */
6428 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6429 i++;
6430 if (!(encoder->possible_crtcs & (1 << i)))
6431 continue;
6432 if (!possible_crtc->enabled) {
6433 crtc = possible_crtc;
6434 break;
6435 }
79e53945
JB
6436 }
6437
6438 /*
6439 * If we didn't find an unused CRTC, don't use any.
6440 */
6441 if (!crtc) {
7173188d
CW
6442 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6443 return false;
79e53945
JB
6444 }
6445
6446 encoder->crtc = crtc;
c1c43977 6447 connector->encoder = encoder;
79e53945
JB
6448
6449 intel_crtc = to_intel_crtc(crtc);
8261b191
CW
6450 old->dpms_mode = intel_crtc->dpms_mode;
6451 old->load_detect_temp = true;
d2dff872 6452 old->release_fb = NULL;
79e53945 6453
6492711d
CW
6454 if (!mode)
6455 mode = &load_detect_mode;
79e53945 6456
d2dff872
CW
6457 old_fb = crtc->fb;
6458
6459 /* We need a framebuffer large enough to accommodate all accesses
6460 * that the plane may generate whilst we perform load detection.
6461 * We can not rely on the fbcon either being present (we get called
6462 * during its initialisation to detect all boot displays, or it may
6463 * not even exist) or that it is large enough to satisfy the
6464 * requested mode.
6465 */
6466 crtc->fb = mode_fits_in_fbdev(dev, mode);
6467 if (crtc->fb == NULL) {
6468 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6469 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6470 old->release_fb = crtc->fb;
6471 } else
6472 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6473 if (IS_ERR(crtc->fb)) {
6474 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6475 crtc->fb = old_fb;
6476 return false;
79e53945 6477 }
79e53945 6478
d2dff872 6479 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6492711d 6480 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
6481 if (old->release_fb)
6482 old->release_fb->funcs->destroy(old->release_fb);
6483 crtc->fb = old_fb;
6492711d 6484 return false;
79e53945 6485 }
7173188d 6486
79e53945 6487 /* let the connector get through one full cycle before testing */
9d0498a2 6488 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 6489
7173188d 6490 return true;
79e53945
JB
6491}
6492
c1c43977 6493void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
8261b191
CW
6494 struct drm_connector *connector,
6495 struct intel_load_detect_pipe *old)
79e53945 6496{
4ef69c7a 6497 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
6498 struct drm_device *dev = encoder->dev;
6499 struct drm_crtc *crtc = encoder->crtc;
6500 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6501 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6502
d2dff872
CW
6503 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6504 connector->base.id, drm_get_connector_name(connector),
6505 encoder->base.id, drm_get_encoder_name(encoder));
6506
8261b191 6507 if (old->load_detect_temp) {
c1c43977 6508 connector->encoder = NULL;
79e53945 6509 drm_helper_disable_unused_functions(dev);
d2dff872
CW
6510
6511 if (old->release_fb)
6512 old->release_fb->funcs->destroy(old->release_fb);
6513
0622a53c 6514 return;
79e53945
JB
6515 }
6516
c751ce4f 6517 /* Switch crtc and encoder back off if necessary */
0622a53c
CW
6518 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6519 encoder_funcs->dpms(encoder, old->dpms_mode);
8261b191 6520 crtc_funcs->dpms(crtc, old->dpms_mode);
79e53945
JB
6521 }
6522}
6523
6524/* Returns the clock of the currently programmed mode of the given pipe. */
6525static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6526{
6527 struct drm_i915_private *dev_priv = dev->dev_private;
6528 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6529 int pipe = intel_crtc->pipe;
548f245b 6530 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
6531 u32 fp;
6532 intel_clock_t clock;
6533
6534 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 6535 fp = I915_READ(FP0(pipe));
79e53945 6536 else
39adb7a5 6537 fp = I915_READ(FP1(pipe));
79e53945
JB
6538
6539 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
6540 if (IS_PINEVIEW(dev)) {
6541 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6542 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
6543 } else {
6544 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6545 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6546 }
6547
a6c45cf0 6548 if (!IS_GEN2(dev)) {
f2b115e6
AJ
6549 if (IS_PINEVIEW(dev))
6550 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6551 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
6552 else
6553 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
6554 DPLL_FPA01_P1_POST_DIV_SHIFT);
6555
6556 switch (dpll & DPLL_MODE_MASK) {
6557 case DPLLB_MODE_DAC_SERIAL:
6558 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6559 5 : 10;
6560 break;
6561 case DPLLB_MODE_LVDS:
6562 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6563 7 : 14;
6564 break;
6565 default:
28c97730 6566 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
6567 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6568 return 0;
6569 }
6570
6571 /* XXX: Handle the 100Mhz refclk */
2177832f 6572 intel_clock(dev, 96000, &clock);
79e53945
JB
6573 } else {
6574 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6575
6576 if (is_lvds) {
6577 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6578 DPLL_FPA01_P1_POST_DIV_SHIFT);
6579 clock.p2 = 14;
6580
6581 if ((dpll & PLL_REF_INPUT_MASK) ==
6582 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6583 /* XXX: might not be 66MHz */
2177832f 6584 intel_clock(dev, 66000, &clock);
79e53945 6585 } else
2177832f 6586 intel_clock(dev, 48000, &clock);
79e53945
JB
6587 } else {
6588 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6589 clock.p1 = 2;
6590 else {
6591 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6592 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6593 }
6594 if (dpll & PLL_P2_DIVIDE_BY_4)
6595 clock.p2 = 4;
6596 else
6597 clock.p2 = 2;
6598
2177832f 6599 intel_clock(dev, 48000, &clock);
79e53945
JB
6600 }
6601 }
6602
6603 /* XXX: It would be nice to validate the clocks, but we can't reuse
6604 * i830PllIsValid() because it relies on the xf86_config connector
6605 * configuration being accurate, which it isn't necessarily.
6606 */
6607
6608 return clock.dot;
6609}
6610
6611/** Returns the currently programmed mode of the given pipe. */
6612struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6613 struct drm_crtc *crtc)
6614{
548f245b 6615 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
6616 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6617 int pipe = intel_crtc->pipe;
6618 struct drm_display_mode *mode;
548f245b
JB
6619 int htot = I915_READ(HTOTAL(pipe));
6620 int hsync = I915_READ(HSYNC(pipe));
6621 int vtot = I915_READ(VTOTAL(pipe));
6622 int vsync = I915_READ(VSYNC(pipe));
79e53945
JB
6623
6624 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6625 if (!mode)
6626 return NULL;
6627
6628 mode->clock = intel_crtc_clock_get(dev, crtc);
6629 mode->hdisplay = (htot & 0xffff) + 1;
6630 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6631 mode->hsync_start = (hsync & 0xffff) + 1;
6632 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6633 mode->vdisplay = (vtot & 0xffff) + 1;
6634 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6635 mode->vsync_start = (vsync & 0xffff) + 1;
6636 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6637
6638 drm_mode_set_name(mode);
6639 drm_mode_set_crtcinfo(mode, 0);
6640
6641 return mode;
6642}
6643
652c393a
JB
6644#define GPU_IDLE_TIMEOUT 500 /* ms */
6645
6646/* When this timer fires, we've been idle for awhile */
6647static void intel_gpu_idle_timer(unsigned long arg)
6648{
6649 struct drm_device *dev = (struct drm_device *)arg;
6650 drm_i915_private_t *dev_priv = dev->dev_private;
6651
ff7ea4c0
CW
6652 if (!list_empty(&dev_priv->mm.active_list)) {
6653 /* Still processing requests, so just re-arm the timer. */
6654 mod_timer(&dev_priv->idle_timer, jiffies +
6655 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6656 return;
6657 }
652c393a 6658
ff7ea4c0 6659 dev_priv->busy = false;
01dfba93 6660 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6661}
6662
652c393a
JB
6663#define CRTC_IDLE_TIMEOUT 1000 /* ms */
6664
6665static void intel_crtc_idle_timer(unsigned long arg)
6666{
6667 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6668 struct drm_crtc *crtc = &intel_crtc->base;
6669 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
ff7ea4c0 6670 struct intel_framebuffer *intel_fb;
652c393a 6671
ff7ea4c0
CW
6672 intel_fb = to_intel_framebuffer(crtc->fb);
6673 if (intel_fb && intel_fb->obj->active) {
6674 /* The framebuffer is still being accessed by the GPU. */
6675 mod_timer(&intel_crtc->idle_timer, jiffies +
6676 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6677 return;
6678 }
652c393a 6679
ff7ea4c0 6680 intel_crtc->busy = false;
01dfba93 6681 queue_work(dev_priv->wq, &dev_priv->idle_work);
652c393a
JB
6682}
6683
3dec0095 6684static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6685{
6686 struct drm_device *dev = crtc->dev;
6687 drm_i915_private_t *dev_priv = dev->dev_private;
6688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6689 int pipe = intel_crtc->pipe;
dbdc6479
JB
6690 int dpll_reg = DPLL(pipe);
6691 int dpll;
652c393a 6692
bad720ff 6693 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6694 return;
6695
6696 if (!dev_priv->lvds_downclock_avail)
6697 return;
6698
dbdc6479 6699 dpll = I915_READ(dpll_reg);
652c393a 6700 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6701 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a
JB
6702
6703 /* Unlock panel regs */
dbdc6479
JB
6704 I915_WRITE(PP_CONTROL,
6705 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
652c393a
JB
6706
6707 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6708 I915_WRITE(dpll_reg, dpll);
9d0498a2 6709 intel_wait_for_vblank(dev, pipe);
dbdc6479 6710
652c393a
JB
6711 dpll = I915_READ(dpll_reg);
6712 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6713 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a
JB
6714
6715 /* ...and lock them again */
6716 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6717 }
6718
6719 /* Schedule downclock */
3dec0095
DV
6720 mod_timer(&intel_crtc->idle_timer, jiffies +
6721 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
652c393a
JB
6722}
6723
6724static void intel_decrease_pllclock(struct drm_crtc *crtc)
6725{
6726 struct drm_device *dev = crtc->dev;
6727 drm_i915_private_t *dev_priv = dev->dev_private;
6728 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6729 int pipe = intel_crtc->pipe;
9db4a9c7 6730 int dpll_reg = DPLL(pipe);
652c393a
JB
6731 int dpll = I915_READ(dpll_reg);
6732
bad720ff 6733 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6734 return;
6735
6736 if (!dev_priv->lvds_downclock_avail)
6737 return;
6738
6739 /*
6740 * Since this is called by a timer, we should never get here in
6741 * the manual case.
6742 */
6743 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
44d98a61 6744 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a
JB
6745
6746 /* Unlock panel regs */
4a655f04
JB
6747 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6748 PANEL_UNLOCK_REGS);
652c393a
JB
6749
6750 dpll |= DISPLAY_RATE_SELECT_FPA1;
6751 I915_WRITE(dpll_reg, dpll);
9d0498a2 6752 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6753 dpll = I915_READ(dpll_reg);
6754 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6755 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6756
6757 /* ...and lock them again */
6758 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6759 }
6760
6761}
6762
6763/**
6764 * intel_idle_update - adjust clocks for idleness
6765 * @work: work struct
6766 *
6767 * Either the GPU or display (or both) went idle. Check the busy status
6768 * here and adjust the CRTC and GPU clocks as necessary.
6769 */
6770static void intel_idle_update(struct work_struct *work)
6771{
6772 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
6773 idle_work);
6774 struct drm_device *dev = dev_priv->dev;
6775 struct drm_crtc *crtc;
6776 struct intel_crtc *intel_crtc;
6777
6778 if (!i915_powersave)
6779 return;
6780
6781 mutex_lock(&dev->struct_mutex);
6782
7648fa99
JB
6783 i915_update_gfx_val(dev_priv);
6784
652c393a
JB
6785 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6786 /* Skip inactive CRTCs */
6787 if (!crtc->fb)
6788 continue;
6789
6790 intel_crtc = to_intel_crtc(crtc);
6791 if (!intel_crtc->busy)
6792 intel_decrease_pllclock(crtc);
6793 }
6794
45ac22c8 6795
652c393a
JB
6796 mutex_unlock(&dev->struct_mutex);
6797}
6798
6799/**
6800 * intel_mark_busy - mark the GPU and possibly the display busy
6801 * @dev: drm device
6802 * @obj: object we're operating on
6803 *
6804 * Callers can use this function to indicate that the GPU is busy processing
6805 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6806 * buffer), we'll also mark the display as busy, so we know to increase its
6807 * clock frequency.
6808 */
05394f39 6809void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
652c393a
JB
6810{
6811 drm_i915_private_t *dev_priv = dev->dev_private;
6812 struct drm_crtc *crtc = NULL;
6813 struct intel_framebuffer *intel_fb;
6814 struct intel_crtc *intel_crtc;
6815
5e17ee74
ZW
6816 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6817 return;
6818
18b2190c 6819 if (!dev_priv->busy)
28cf798f 6820 dev_priv->busy = true;
18b2190c 6821 else
28cf798f
CW
6822 mod_timer(&dev_priv->idle_timer, jiffies +
6823 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
652c393a
JB
6824
6825 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6826 if (!crtc->fb)
6827 continue;
6828
6829 intel_crtc = to_intel_crtc(crtc);
6830 intel_fb = to_intel_framebuffer(crtc->fb);
6831 if (intel_fb->obj == obj) {
6832 if (!intel_crtc->busy) {
6833 /* Non-busy -> busy, upclock */
3dec0095 6834 intel_increase_pllclock(crtc);
652c393a
JB
6835 intel_crtc->busy = true;
6836 } else {
6837 /* Busy -> busy, put off timer */
6838 mod_timer(&intel_crtc->idle_timer, jiffies +
6839 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6840 }
6841 }
6842 }
6843}
6844
79e53945
JB
6845static void intel_crtc_destroy(struct drm_crtc *crtc)
6846{
6847 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6848 struct drm_device *dev = crtc->dev;
6849 struct intel_unpin_work *work;
6850 unsigned long flags;
6851
6852 spin_lock_irqsave(&dev->event_lock, flags);
6853 work = intel_crtc->unpin_work;
6854 intel_crtc->unpin_work = NULL;
6855 spin_unlock_irqrestore(&dev->event_lock, flags);
6856
6857 if (work) {
6858 cancel_work_sync(&work->work);
6859 kfree(work);
6860 }
79e53945
JB
6861
6862 drm_crtc_cleanup(crtc);
67e77c5a 6863
79e53945
JB
6864 kfree(intel_crtc);
6865}
6866
6b95a207
KH
6867static void intel_unpin_work_fn(struct work_struct *__work)
6868{
6869 struct intel_unpin_work *work =
6870 container_of(__work, struct intel_unpin_work, work);
6871
6872 mutex_lock(&work->dev->struct_mutex);
b1b87f6b 6873 i915_gem_object_unpin(work->old_fb_obj);
05394f39
CW
6874 drm_gem_object_unreference(&work->pending_flip_obj->base);
6875 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6876
7782de3b 6877 intel_update_fbc(work->dev);
6b95a207
KH
6878 mutex_unlock(&work->dev->struct_mutex);
6879 kfree(work);
6880}
6881
1afe3e9d 6882static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6883 struct drm_crtc *crtc)
6b95a207
KH
6884{
6885 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6886 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6887 struct intel_unpin_work *work;
05394f39 6888 struct drm_i915_gem_object *obj;
6b95a207 6889 struct drm_pending_vblank_event *e;
49b14a5c 6890 struct timeval tnow, tvbl;
6b95a207
KH
6891 unsigned long flags;
6892
6893 /* Ignore early vblank irqs */
6894 if (intel_crtc == NULL)
6895 return;
6896
49b14a5c
MK
6897 do_gettimeofday(&tnow);
6898
6b95a207
KH
6899 spin_lock_irqsave(&dev->event_lock, flags);
6900 work = intel_crtc->unpin_work;
6901 if (work == NULL || !work->pending) {
6902 spin_unlock_irqrestore(&dev->event_lock, flags);
6903 return;
6904 }
6905
6906 intel_crtc->unpin_work = NULL;
6b95a207
KH
6907
6908 if (work->event) {
6909 e = work->event;
49b14a5c 6910 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df
MK
6911
6912 /* Called before vblank count and timestamps have
6913 * been updated for the vblank interval of flip
6914 * completion? Need to increment vblank count and
6915 * add one videorefresh duration to returned timestamp
49b14a5c
MK
6916 * to account for this. We assume this happened if we
6917 * get called over 0.9 frame durations after the last
6918 * timestamped vblank.
6919 *
6920 * This calculation can not be used with vrefresh rates
6921 * below 5Hz (10Hz to be on the safe side) without
6922 * promoting to 64 integers.
0af7e4df 6923 */
49b14a5c
MK
6924 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6925 9 * crtc->framedur_ns) {
0af7e4df 6926 e->event.sequence++;
49b14a5c
MK
6927 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6928 crtc->framedur_ns);
0af7e4df
MK
6929 }
6930
49b14a5c
MK
6931 e->event.tv_sec = tvbl.tv_sec;
6932 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6933
6b95a207
KH
6934 list_add_tail(&e->base.link,
6935 &e->base.file_priv->event_list);
6936 wake_up_interruptible(&e->base.file_priv->event_wait);
6937 }
6938
0af7e4df
MK
6939 drm_vblank_put(dev, intel_crtc->pipe);
6940
6b95a207
KH
6941 spin_unlock_irqrestore(&dev->event_lock, flags);
6942
05394f39 6943 obj = work->old_fb_obj;
d9e86c0e 6944
e59f2bac 6945 atomic_clear_mask(1 << intel_crtc->plane,
05394f39
CW
6946 &obj->pending_flip.counter);
6947 if (atomic_read(&obj->pending_flip) == 0)
f787a5f5 6948 wake_up(&dev_priv->pending_flip_queue);
d9e86c0e 6949
6b95a207 6950 schedule_work(&work->work);
e5510fac
JB
6951
6952 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6953}
6954
1afe3e9d
JB
6955void intel_finish_page_flip(struct drm_device *dev, int pipe)
6956{
6957 drm_i915_private_t *dev_priv = dev->dev_private;
6958 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6959
49b14a5c 6960 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6961}
6962
6963void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6964{
6965 drm_i915_private_t *dev_priv = dev->dev_private;
6966 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6967
49b14a5c 6968 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6969}
6970
6b95a207
KH
6971void intel_prepare_page_flip(struct drm_device *dev, int plane)
6972{
6973 drm_i915_private_t *dev_priv = dev->dev_private;
6974 struct intel_crtc *intel_crtc =
6975 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6976 unsigned long flags;
6977
6978 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6979 if (intel_crtc->unpin_work) {
4e5359cd
SF
6980 if ((++intel_crtc->unpin_work->pending) > 1)
6981 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6982 } else {
6983 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6984 }
6b95a207
KH
6985 spin_unlock_irqrestore(&dev->event_lock, flags);
6986}
6987
8c9f3aaf
JB
6988static int intel_gen2_queue_flip(struct drm_device *dev,
6989 struct drm_crtc *crtc,
6990 struct drm_framebuffer *fb,
6991 struct drm_i915_gem_object *obj)
6992{
6993 struct drm_i915_private *dev_priv = dev->dev_private;
6994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6995 unsigned long offset;
6996 u32 flip_mask;
6997 int ret;
6998
6999 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7000 if (ret)
7001 goto out;
7002
7003 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7004 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
7005
7006 ret = BEGIN_LP_RING(6);
7007 if (ret)
7008 goto out;
7009
7010 /* Can't queue multiple flips, so wait for the previous
7011 * one to finish before executing the next.
7012 */
7013 if (intel_crtc->plane)
7014 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7015 else
7016 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7017 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7018 OUT_RING(MI_NOOP);
7019 OUT_RING(MI_DISPLAY_FLIP |
7020 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7021 OUT_RING(fb->pitch);
7022 OUT_RING(obj->gtt_offset + offset);
7023 OUT_RING(MI_NOOP);
7024 ADVANCE_LP_RING();
7025out:
7026 return ret;
7027}
7028
7029static int intel_gen3_queue_flip(struct drm_device *dev,
7030 struct drm_crtc *crtc,
7031 struct drm_framebuffer *fb,
7032 struct drm_i915_gem_object *obj)
7033{
7034 struct drm_i915_private *dev_priv = dev->dev_private;
7035 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7036 unsigned long offset;
7037 u32 flip_mask;
7038 int ret;
7039
7040 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7041 if (ret)
7042 goto out;
7043
7044 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7045 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
7046
7047 ret = BEGIN_LP_RING(6);
7048 if (ret)
7049 goto out;
7050
7051 if (intel_crtc->plane)
7052 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7053 else
7054 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7055 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7056 OUT_RING(MI_NOOP);
7057 OUT_RING(MI_DISPLAY_FLIP_I915 |
7058 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7059 OUT_RING(fb->pitch);
7060 OUT_RING(obj->gtt_offset + offset);
7061 OUT_RING(MI_NOOP);
7062
7063 ADVANCE_LP_RING();
7064out:
7065 return ret;
7066}
7067
7068static int intel_gen4_queue_flip(struct drm_device *dev,
7069 struct drm_crtc *crtc,
7070 struct drm_framebuffer *fb,
7071 struct drm_i915_gem_object *obj)
7072{
7073 struct drm_i915_private *dev_priv = dev->dev_private;
7074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7075 uint32_t pf, pipesrc;
7076 int ret;
7077
7078 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7079 if (ret)
7080 goto out;
7081
7082 ret = BEGIN_LP_RING(4);
7083 if (ret)
7084 goto out;
7085
7086 /* i965+ uses the linear or tiled offsets from the
7087 * Display Registers (which do not change across a page-flip)
7088 * so we need only reprogram the base address.
7089 */
7090 OUT_RING(MI_DISPLAY_FLIP |
7091 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7092 OUT_RING(fb->pitch);
7093 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7094
7095 /* XXX Enabling the panel-fitter across page-flip is so far
7096 * untested on non-native modes, so ignore it for now.
7097 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7098 */
7099 pf = 0;
7100 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7101 OUT_RING(pf | pipesrc);
7102 ADVANCE_LP_RING();
7103out:
7104 return ret;
7105}
7106
7107static int intel_gen6_queue_flip(struct drm_device *dev,
7108 struct drm_crtc *crtc,
7109 struct drm_framebuffer *fb,
7110 struct drm_i915_gem_object *obj)
7111{
7112 struct drm_i915_private *dev_priv = dev->dev_private;
7113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7114 uint32_t pf, pipesrc;
7115 int ret;
7116
7117 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7118 if (ret)
7119 goto out;
7120
7121 ret = BEGIN_LP_RING(4);
7122 if (ret)
7123 goto out;
7124
7125 OUT_RING(MI_DISPLAY_FLIP |
7126 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7127 OUT_RING(fb->pitch | obj->tiling_mode);
7128 OUT_RING(obj->gtt_offset);
7129
7130 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7131 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7132 OUT_RING(pf | pipesrc);
7133 ADVANCE_LP_RING();
7134out:
7135 return ret;
7136}
7137
7c9017e5
JB
7138/*
7139 * On gen7 we currently use the blit ring because (in early silicon at least)
7140 * the render ring doesn't give us interrpts for page flip completion, which
7141 * means clients will hang after the first flip is queued. Fortunately the
7142 * blit ring generates interrupts properly, so use it instead.
7143 */
7144static int intel_gen7_queue_flip(struct drm_device *dev,
7145 struct drm_crtc *crtc,
7146 struct drm_framebuffer *fb,
7147 struct drm_i915_gem_object *obj)
7148{
7149 struct drm_i915_private *dev_priv = dev->dev_private;
7150 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7151 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7152 int ret;
7153
7154 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7155 if (ret)
7156 goto out;
7157
7158 ret = intel_ring_begin(ring, 4);
7159 if (ret)
7160 goto out;
7161
7162 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7163 intel_ring_emit(ring, (fb->pitch | obj->tiling_mode));
7164 intel_ring_emit(ring, (obj->gtt_offset));
7165 intel_ring_emit(ring, (MI_NOOP));
7166 intel_ring_advance(ring);
7167out:
7168 return ret;
7169}
7170
8c9f3aaf
JB
7171static int intel_default_queue_flip(struct drm_device *dev,
7172 struct drm_crtc *crtc,
7173 struct drm_framebuffer *fb,
7174 struct drm_i915_gem_object *obj)
7175{
7176 return -ENODEV;
7177}
7178
6b95a207
KH
7179static int intel_crtc_page_flip(struct drm_crtc *crtc,
7180 struct drm_framebuffer *fb,
7181 struct drm_pending_vblank_event *event)
7182{
7183 struct drm_device *dev = crtc->dev;
7184 struct drm_i915_private *dev_priv = dev->dev_private;
7185 struct intel_framebuffer *intel_fb;
05394f39 7186 struct drm_i915_gem_object *obj;
6b95a207
KH
7187 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7188 struct intel_unpin_work *work;
8c9f3aaf 7189 unsigned long flags;
52e68630 7190 int ret;
6b95a207
KH
7191
7192 work = kzalloc(sizeof *work, GFP_KERNEL);
7193 if (work == NULL)
7194 return -ENOMEM;
7195
6b95a207
KH
7196 work->event = event;
7197 work->dev = crtc->dev;
7198 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 7199 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
7200 INIT_WORK(&work->work, intel_unpin_work_fn);
7201
7202 /* We borrow the event spin lock for protecting unpin_work */
7203 spin_lock_irqsave(&dev->event_lock, flags);
7204 if (intel_crtc->unpin_work) {
7205 spin_unlock_irqrestore(&dev->event_lock, flags);
7206 kfree(work);
468f0b44
CW
7207
7208 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
7209 return -EBUSY;
7210 }
7211 intel_crtc->unpin_work = work;
7212 spin_unlock_irqrestore(&dev->event_lock, flags);
7213
7214 intel_fb = to_intel_framebuffer(fb);
7215 obj = intel_fb->obj;
7216
468f0b44 7217 mutex_lock(&dev->struct_mutex);
6b95a207 7218
75dfca80 7219 /* Reference the objects for the scheduled work. */
05394f39
CW
7220 drm_gem_object_reference(&work->old_fb_obj->base);
7221 drm_gem_object_reference(&obj->base);
6b95a207
KH
7222
7223 crtc->fb = fb;
96b099fd
CW
7224
7225 ret = drm_vblank_get(dev, intel_crtc->pipe);
7226 if (ret)
7227 goto cleanup_objs;
7228
e1f99ce6 7229 work->pending_flip_obj = obj;
e1f99ce6 7230
4e5359cd
SF
7231 work->enable_stall_check = true;
7232
e1f99ce6
CW
7233 /* Block clients from rendering to the new back buffer until
7234 * the flip occurs and the object is no longer visible.
7235 */
05394f39 7236 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 7237
8c9f3aaf
JB
7238 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7239 if (ret)
7240 goto cleanup_pending;
6b95a207 7241
7782de3b 7242 intel_disable_fbc(dev);
6b95a207
KH
7243 mutex_unlock(&dev->struct_mutex);
7244
e5510fac
JB
7245 trace_i915_flip_request(intel_crtc->plane, obj);
7246
6b95a207 7247 return 0;
96b099fd 7248
8c9f3aaf
JB
7249cleanup_pending:
7250 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
96b099fd 7251cleanup_objs:
05394f39
CW
7252 drm_gem_object_unreference(&work->old_fb_obj->base);
7253 drm_gem_object_unreference(&obj->base);
96b099fd
CW
7254 mutex_unlock(&dev->struct_mutex);
7255
7256 spin_lock_irqsave(&dev->event_lock, flags);
7257 intel_crtc->unpin_work = NULL;
7258 spin_unlock_irqrestore(&dev->event_lock, flags);
7259
7260 kfree(work);
7261
7262 return ret;
6b95a207
KH
7263}
7264
47f1c6c9
CW
7265static void intel_sanitize_modesetting(struct drm_device *dev,
7266 int pipe, int plane)
7267{
7268 struct drm_i915_private *dev_priv = dev->dev_private;
7269 u32 reg, val;
7270
7271 if (HAS_PCH_SPLIT(dev))
7272 return;
7273
7274 /* Who knows what state these registers were left in by the BIOS or
7275 * grub?
7276 *
7277 * If we leave the registers in a conflicting state (e.g. with the
7278 * display plane reading from the other pipe than the one we intend
7279 * to use) then when we attempt to teardown the active mode, we will
7280 * not disable the pipes and planes in the correct order -- leaving
7281 * a plane reading from a disabled pipe and possibly leading to
7282 * undefined behaviour.
7283 */
7284
7285 reg = DSPCNTR(plane);
7286 val = I915_READ(reg);
7287
7288 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7289 return;
7290 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7291 return;
7292
7293 /* This display plane is active and attached to the other CPU pipe. */
7294 pipe = !pipe;
7295
7296 /* Disable the plane and wait for it to stop reading from the pipe. */
b24e7179
JB
7297 intel_disable_plane(dev_priv, plane, pipe);
7298 intel_disable_pipe(dev_priv, pipe);
47f1c6c9 7299}
79e53945 7300
f6e5b160
CW
7301static void intel_crtc_reset(struct drm_crtc *crtc)
7302{
7303 struct drm_device *dev = crtc->dev;
7304 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7305
7306 /* Reset flags back to the 'unknown' status so that they
7307 * will be correctly set on the initial modeset.
7308 */
7309 intel_crtc->dpms_mode = -1;
7310
7311 /* We need to fix up any BIOS configuration that conflicts with
7312 * our expectations.
7313 */
7314 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7315}
7316
7317static struct drm_crtc_helper_funcs intel_helper_funcs = {
7318 .dpms = intel_crtc_dpms,
7319 .mode_fixup = intel_crtc_mode_fixup,
7320 .mode_set = intel_crtc_mode_set,
7321 .mode_set_base = intel_pipe_set_base,
7322 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7323 .load_lut = intel_crtc_load_lut,
7324 .disable = intel_crtc_disable,
7325};
7326
7327static const struct drm_crtc_funcs intel_crtc_funcs = {
7328 .reset = intel_crtc_reset,
7329 .cursor_set = intel_crtc_cursor_set,
7330 .cursor_move = intel_crtc_cursor_move,
7331 .gamma_set = intel_crtc_gamma_set,
7332 .set_config = drm_crtc_helper_set_config,
7333 .destroy = intel_crtc_destroy,
7334 .page_flip = intel_crtc_page_flip,
7335};
7336
b358d0a6 7337static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 7338{
22fd0fab 7339 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
7340 struct intel_crtc *intel_crtc;
7341 int i;
7342
7343 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7344 if (intel_crtc == NULL)
7345 return;
7346
7347 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7348
7349 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
7350 for (i = 0; i < 256; i++) {
7351 intel_crtc->lut_r[i] = i;
7352 intel_crtc->lut_g[i] = i;
7353 intel_crtc->lut_b[i] = i;
7354 }
7355
80824003
JB
7356 /* Swap pipes & planes for FBC on pre-965 */
7357 intel_crtc->pipe = pipe;
7358 intel_crtc->plane = pipe;
e2e767ab 7359 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 7360 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 7361 intel_crtc->plane = !pipe;
80824003
JB
7362 }
7363
22fd0fab
JB
7364 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7365 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7366 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7367 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7368
5d1d0cc8 7369 intel_crtc_reset(&intel_crtc->base);
04dbff52 7370 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5a354204 7371 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3
JB
7372
7373 if (HAS_PCH_SPLIT(dev)) {
4b645f14
JB
7374 if (pipe == 2 && IS_IVYBRIDGE(dev))
7375 intel_crtc->no_pll = true;
7e7d76c3
JB
7376 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7377 intel_helper_funcs.commit = ironlake_crtc_commit;
7378 } else {
7379 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7380 intel_helper_funcs.commit = i9xx_crtc_commit;
7381 }
7382
79e53945
JB
7383 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7384
652c393a
JB
7385 intel_crtc->busy = false;
7386
7387 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7388 (unsigned long)intel_crtc);
79e53945
JB
7389}
7390
08d7b3d1 7391int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 7392 struct drm_file *file)
08d7b3d1
CW
7393{
7394 drm_i915_private_t *dev_priv = dev->dev_private;
7395 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7396 struct drm_mode_object *drmmode_obj;
7397 struct intel_crtc *crtc;
08d7b3d1
CW
7398
7399 if (!dev_priv) {
7400 DRM_ERROR("called with no initialization\n");
7401 return -EINVAL;
7402 }
7403
c05422d5
DV
7404 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7405 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7406
c05422d5 7407 if (!drmmode_obj) {
08d7b3d1
CW
7408 DRM_ERROR("no such CRTC id\n");
7409 return -EINVAL;
7410 }
7411
c05422d5
DV
7412 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7413 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7414
c05422d5 7415 return 0;
08d7b3d1
CW
7416}
7417
c5e4df33 7418static int intel_encoder_clones(struct drm_device *dev, int type_mask)
79e53945 7419{
4ef69c7a 7420 struct intel_encoder *encoder;
79e53945 7421 int index_mask = 0;
79e53945
JB
7422 int entry = 0;
7423
4ef69c7a
CW
7424 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7425 if (type_mask & encoder->clone_mask)
79e53945
JB
7426 index_mask |= (1 << entry);
7427 entry++;
7428 }
4ef69c7a 7429
79e53945
JB
7430 return index_mask;
7431}
7432
4d302442
CW
7433static bool has_edp_a(struct drm_device *dev)
7434{
7435 struct drm_i915_private *dev_priv = dev->dev_private;
7436
7437 if (!IS_MOBILE(dev))
7438 return false;
7439
7440 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7441 return false;
7442
7443 if (IS_GEN5(dev) &&
7444 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7445 return false;
7446
7447 return true;
7448}
7449
79e53945
JB
7450static void intel_setup_outputs(struct drm_device *dev)
7451{
725e30ad 7452 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 7453 struct intel_encoder *encoder;
cb0953d7 7454 bool dpd_is_edp = false;
c5d1b51d 7455 bool has_lvds = false;
79e53945 7456
541998a1 7457 if (IS_MOBILE(dev) && !IS_I830(dev))
c5d1b51d
CW
7458 has_lvds = intel_lvds_init(dev);
7459 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7460 /* disable the panel fitter on everything but LVDS */
7461 I915_WRITE(PFIT_CONTROL, 0);
7462 }
79e53945 7463
bad720ff 7464 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 7465 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 7466
4d302442 7467 if (has_edp_a(dev))
32f9d658
ZW
7468 intel_dp_init(dev, DP_A);
7469
cb0953d7
AJ
7470 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7471 intel_dp_init(dev, PCH_DP_D);
7472 }
7473
7474 intel_crt_init(dev);
7475
7476 if (HAS_PCH_SPLIT(dev)) {
7477 int found;
7478
30ad48b7 7479 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca
ZY
7480 /* PCH SDVOB multiplex with HDMIB */
7481 found = intel_sdvo_init(dev, PCH_SDVOB);
30ad48b7
ZW
7482 if (!found)
7483 intel_hdmi_init(dev, HDMIB);
5eb08b69
ZW
7484 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7485 intel_dp_init(dev, PCH_DP_B);
30ad48b7
ZW
7486 }
7487
7488 if (I915_READ(HDMIC) & PORT_DETECTED)
7489 intel_hdmi_init(dev, HDMIC);
7490
7491 if (I915_READ(HDMID) & PORT_DETECTED)
7492 intel_hdmi_init(dev, HDMID);
7493
5eb08b69
ZW
7494 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7495 intel_dp_init(dev, PCH_DP_C);
7496
cb0953d7 7497 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5eb08b69
ZW
7498 intel_dp_init(dev, PCH_DP_D);
7499
103a196f 7500 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 7501 bool found = false;
7d57382e 7502
725e30ad 7503 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 7504 DRM_DEBUG_KMS("probing SDVOB\n");
725e30ad 7505 found = intel_sdvo_init(dev, SDVOB);
b01f2c3a
JB
7506 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7507 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
725e30ad 7508 intel_hdmi_init(dev, SDVOB);
b01f2c3a 7509 }
27185ae1 7510
b01f2c3a
JB
7511 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7512 DRM_DEBUG_KMS("probing DP_B\n");
a4fc5ed6 7513 intel_dp_init(dev, DP_B);
b01f2c3a 7514 }
725e30ad 7515 }
13520b05
KH
7516
7517 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 7518
b01f2c3a
JB
7519 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7520 DRM_DEBUG_KMS("probing SDVOC\n");
725e30ad 7521 found = intel_sdvo_init(dev, SDVOC);
b01f2c3a 7522 }
27185ae1
ML
7523
7524 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7525
b01f2c3a
JB
7526 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7527 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
725e30ad 7528 intel_hdmi_init(dev, SDVOC);
b01f2c3a
JB
7529 }
7530 if (SUPPORTS_INTEGRATED_DP(dev)) {
7531 DRM_DEBUG_KMS("probing DP_C\n");
a4fc5ed6 7532 intel_dp_init(dev, DP_C);
b01f2c3a 7533 }
725e30ad 7534 }
27185ae1 7535
b01f2c3a
JB
7536 if (SUPPORTS_INTEGRATED_DP(dev) &&
7537 (I915_READ(DP_D) & DP_DETECTED)) {
7538 DRM_DEBUG_KMS("probing DP_D\n");
a4fc5ed6 7539 intel_dp_init(dev, DP_D);
b01f2c3a 7540 }
bad720ff 7541 } else if (IS_GEN2(dev))
79e53945
JB
7542 intel_dvo_init(dev);
7543
103a196f 7544 if (SUPPORTS_TV(dev))
79e53945
JB
7545 intel_tv_init(dev);
7546
4ef69c7a
CW
7547 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7548 encoder->base.possible_crtcs = encoder->crtc_mask;
7549 encoder->base.possible_clones =
7550 intel_encoder_clones(dev, encoder->clone_mask);
79e53945 7551 }
47356eb6 7552
2c7111db
CW
7553 /* disable all the possible outputs/crtcs before entering KMS mode */
7554 drm_helper_disable_unused_functions(dev);
9fb526db
KP
7555
7556 if (HAS_PCH_SPLIT(dev))
7557 ironlake_init_pch_refclk(dev);
79e53945
JB
7558}
7559
7560static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7561{
7562 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
7563
7564 drm_framebuffer_cleanup(fb);
05394f39 7565 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
7566
7567 kfree(intel_fb);
7568}
7569
7570static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 7571 struct drm_file *file,
79e53945
JB
7572 unsigned int *handle)
7573{
7574 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 7575 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 7576
05394f39 7577 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
7578}
7579
7580static const struct drm_framebuffer_funcs intel_fb_funcs = {
7581 .destroy = intel_user_framebuffer_destroy,
7582 .create_handle = intel_user_framebuffer_create_handle,
7583};
7584
38651674
DA
7585int intel_framebuffer_init(struct drm_device *dev,
7586 struct intel_framebuffer *intel_fb,
7587 struct drm_mode_fb_cmd *mode_cmd,
05394f39 7588 struct drm_i915_gem_object *obj)
79e53945 7589{
79e53945
JB
7590 int ret;
7591
05394f39 7592 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
7593 return -EINVAL;
7594
7595 if (mode_cmd->pitch & 63)
7596 return -EINVAL;
7597
7598 switch (mode_cmd->bpp) {
7599 case 8:
7600 case 16:
b5626747
JB
7601 /* Only pre-ILK can handle 5:5:5 */
7602 if (mode_cmd->depth == 15 && !HAS_PCH_SPLIT(dev))
7603 return -EINVAL;
7604 break;
7605
57cd6508
CW
7606 case 24:
7607 case 32:
7608 break;
7609 default:
7610 return -EINVAL;
7611 }
7612
79e53945
JB
7613 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7614 if (ret) {
7615 DRM_ERROR("framebuffer init failed %d\n", ret);
7616 return ret;
7617 }
7618
7619 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 7620 intel_fb->obj = obj;
79e53945
JB
7621 return 0;
7622}
7623
79e53945
JB
7624static struct drm_framebuffer *
7625intel_user_framebuffer_create(struct drm_device *dev,
7626 struct drm_file *filp,
7627 struct drm_mode_fb_cmd *mode_cmd)
7628{
05394f39 7629 struct drm_i915_gem_object *obj;
79e53945 7630
05394f39 7631 obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
c8725226 7632 if (&obj->base == NULL)
cce13ff7 7633 return ERR_PTR(-ENOENT);
79e53945 7634
d2dff872 7635 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
7636}
7637
79e53945 7638static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 7639 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 7640 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
7641};
7642
05394f39 7643static struct drm_i915_gem_object *
aa40d6bb 7644intel_alloc_context_page(struct drm_device *dev)
9ea8d059 7645{
05394f39 7646 struct drm_i915_gem_object *ctx;
9ea8d059
CW
7647 int ret;
7648
2c34b850
BW
7649 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7650
aa40d6bb
ZN
7651 ctx = i915_gem_alloc_object(dev, 4096);
7652 if (!ctx) {
9ea8d059
CW
7653 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7654 return NULL;
7655 }
7656
75e9e915 7657 ret = i915_gem_object_pin(ctx, 4096, true);
9ea8d059
CW
7658 if (ret) {
7659 DRM_ERROR("failed to pin power context: %d\n", ret);
7660 goto err_unref;
7661 }
7662
aa40d6bb 7663 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
9ea8d059
CW
7664 if (ret) {
7665 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7666 goto err_unpin;
7667 }
9ea8d059 7668
aa40d6bb 7669 return ctx;
9ea8d059
CW
7670
7671err_unpin:
aa40d6bb 7672 i915_gem_object_unpin(ctx);
9ea8d059 7673err_unref:
05394f39 7674 drm_gem_object_unreference(&ctx->base);
9ea8d059
CW
7675 mutex_unlock(&dev->struct_mutex);
7676 return NULL;
7677}
7678
7648fa99
JB
7679bool ironlake_set_drps(struct drm_device *dev, u8 val)
7680{
7681 struct drm_i915_private *dev_priv = dev->dev_private;
7682 u16 rgvswctl;
7683
7684 rgvswctl = I915_READ16(MEMSWCTL);
7685 if (rgvswctl & MEMCTL_CMD_STS) {
7686 DRM_DEBUG("gpu busy, RCS change rejected\n");
7687 return false; /* still busy with another command */
7688 }
7689
7690 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7691 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7692 I915_WRITE16(MEMSWCTL, rgvswctl);
7693 POSTING_READ16(MEMSWCTL);
7694
7695 rgvswctl |= MEMCTL_CMD_STS;
7696 I915_WRITE16(MEMSWCTL, rgvswctl);
7697
7698 return true;
7699}
7700
f97108d1
JB
7701void ironlake_enable_drps(struct drm_device *dev)
7702{
7703 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 7704 u32 rgvmodectl = I915_READ(MEMMODECTL);
f97108d1 7705 u8 fmax, fmin, fstart, vstart;
f97108d1 7706
ea056c14
JB
7707 /* Enable temp reporting */
7708 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7709 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7710
f97108d1
JB
7711 /* 100ms RC evaluation intervals */
7712 I915_WRITE(RCUPEI, 100000);
7713 I915_WRITE(RCDNEI, 100000);
7714
7715 /* Set max/min thresholds to 90ms and 80ms respectively */
7716 I915_WRITE(RCBMAXAVG, 90000);
7717 I915_WRITE(RCBMINAVG, 80000);
7718
7719 I915_WRITE(MEMIHYST, 1);
7720
7721 /* Set up min, max, and cur for interrupt handling */
7722 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7723 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7724 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7725 MEMMODE_FSTART_SHIFT;
7648fa99 7726
f97108d1
JB
7727 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7728 PXVFREQ_PX_SHIFT;
7729
80dbf4b7 7730 dev_priv->fmax = fmax; /* IPS callback will increase this */
7648fa99
JB
7731 dev_priv->fstart = fstart;
7732
80dbf4b7 7733 dev_priv->max_delay = fstart;
f97108d1
JB
7734 dev_priv->min_delay = fmin;
7735 dev_priv->cur_delay = fstart;
7736
80dbf4b7
JB
7737 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7738 fmax, fmin, fstart);
7648fa99 7739
f97108d1
JB
7740 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7741
7742 /*
7743 * Interrupts will be enabled in ironlake_irq_postinstall
7744 */
7745
7746 I915_WRITE(VIDSTART, vstart);
7747 POSTING_READ(VIDSTART);
7748
7749 rgvmodectl |= MEMMODE_SWMODE_EN;
7750 I915_WRITE(MEMMODECTL, rgvmodectl);
7751
481b6af3 7752 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
913d8d11 7753 DRM_ERROR("stuck trying to change perf mode\n");
f97108d1
JB
7754 msleep(1);
7755
7648fa99 7756 ironlake_set_drps(dev, fstart);
f97108d1 7757
7648fa99
JB
7758 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
7759 I915_READ(0x112e0);
7760 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
7761 dev_priv->last_count2 = I915_READ(0x112f4);
7762 getrawmonotonic(&dev_priv->last_time2);
f97108d1
JB
7763}
7764
7765void ironlake_disable_drps(struct drm_device *dev)
7766{
7767 struct drm_i915_private *dev_priv = dev->dev_private;
7648fa99 7768 u16 rgvswctl = I915_READ16(MEMSWCTL);
f97108d1
JB
7769
7770 /* Ack interrupts, disable EFC interrupt */
7771 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
7772 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
7773 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
7774 I915_WRITE(DEIIR, DE_PCU_EVENT);
7775 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
7776
7777 /* Go back to the starting frequency */
7648fa99 7778 ironlake_set_drps(dev, dev_priv->fstart);
f97108d1
JB
7779 msleep(1);
7780 rgvswctl |= MEMCTL_CMD_STS;
7781 I915_WRITE(MEMSWCTL, rgvswctl);
7782 msleep(1);
7783
7784}
7785
3b8d8d91
JB
7786void gen6_set_rps(struct drm_device *dev, u8 val)
7787{
7788 struct drm_i915_private *dev_priv = dev->dev_private;
7789 u32 swreq;
7790
7791 swreq = (val & 0x3ff) << 25;
7792 I915_WRITE(GEN6_RPNSWREQ, swreq);
7793}
7794
7795void gen6_disable_rps(struct drm_device *dev)
7796{
7797 struct drm_i915_private *dev_priv = dev->dev_private;
7798
7799 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
7800 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
7801 I915_WRITE(GEN6_PMIER, 0);
6fdd4d98
DV
7802 /* Complete PM interrupt masking here doesn't race with the rps work
7803 * item again unmasking PM interrupts because that is using a different
7804 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
7805 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
4912d041
BW
7806
7807 spin_lock_irq(&dev_priv->rps_lock);
7808 dev_priv->pm_iir = 0;
7809 spin_unlock_irq(&dev_priv->rps_lock);
7810
3b8d8d91
JB
7811 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
7812}
7813
7648fa99
JB
7814static unsigned long intel_pxfreq(u32 vidfreq)
7815{
7816 unsigned long freq;
7817 int div = (vidfreq & 0x3f0000) >> 16;
7818 int post = (vidfreq & 0x3000) >> 12;
7819 int pre = (vidfreq & 0x7);
7820
7821 if (!pre)
7822 return 0;
7823
7824 freq = ((div * 133333) / ((1<<post) * pre));
7825
7826 return freq;
7827}
7828
7829void intel_init_emon(struct drm_device *dev)
7830{
7831 struct drm_i915_private *dev_priv = dev->dev_private;
7832 u32 lcfuse;
7833 u8 pxw[16];
7834 int i;
7835
7836 /* Disable to program */
7837 I915_WRITE(ECR, 0);
7838 POSTING_READ(ECR);
7839
7840 /* Program energy weights for various events */
7841 I915_WRITE(SDEW, 0x15040d00);
7842 I915_WRITE(CSIEW0, 0x007f0000);
7843 I915_WRITE(CSIEW1, 0x1e220004);
7844 I915_WRITE(CSIEW2, 0x04000004);
7845
7846 for (i = 0; i < 5; i++)
7847 I915_WRITE(PEW + (i * 4), 0);
7848 for (i = 0; i < 3; i++)
7849 I915_WRITE(DEW + (i * 4), 0);
7850
7851 /* Program P-state weights to account for frequency power adjustment */
7852 for (i = 0; i < 16; i++) {
7853 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
7854 unsigned long freq = intel_pxfreq(pxvidfreq);
7855 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
7856 PXVFREQ_PX_SHIFT;
7857 unsigned long val;
7858
7859 val = vid * vid;
7860 val *= (freq / 1000);
7861 val *= 255;
7862 val /= (127*127*900);
7863 if (val > 0xff)
7864 DRM_ERROR("bad pxval: %ld\n", val);
7865 pxw[i] = val;
7866 }
7867 /* Render standby states get 0 weight */
7868 pxw[14] = 0;
7869 pxw[15] = 0;
7870
7871 for (i = 0; i < 4; i++) {
7872 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
7873 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
7874 I915_WRITE(PXW + (i * 4), val);
7875 }
7876
7877 /* Adjust magic regs to magic values (more experimental results) */
7878 I915_WRITE(OGW0, 0);
7879 I915_WRITE(OGW1, 0);
7880 I915_WRITE(EG0, 0x00007f00);
7881 I915_WRITE(EG1, 0x0000000e);
7882 I915_WRITE(EG2, 0x000e0000);
7883 I915_WRITE(EG3, 0x68000300);
7884 I915_WRITE(EG4, 0x42000000);
7885 I915_WRITE(EG5, 0x00140031);
7886 I915_WRITE(EG6, 0);
7887 I915_WRITE(EG7, 0);
7888
7889 for (i = 0; i < 8; i++)
7890 I915_WRITE(PXWL + (i * 4), 0);
7891
7892 /* Enable PMON + select events */
7893 I915_WRITE(ECR, 0x80000019);
7894
7895 lcfuse = I915_READ(LCFUSE02);
7896
7897 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
7898}
7899
3b8d8d91 7900void gen6_enable_rps(struct drm_i915_private *dev_priv)
8fd26859 7901{
a6044e23
JB
7902 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7903 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
7df8721b 7904 u32 pcu_mbox, rc6_mask = 0;
a6044e23 7905 int cur_freq, min_freq, max_freq;
8fd26859
CW
7906 int i;
7907
7908 /* Here begins a magic sequence of register writes to enable
7909 * auto-downclocking.
7910 *
7911 * Perhaps there might be some value in exposing these to
7912 * userspace...
7913 */
7914 I915_WRITE(GEN6_RC_STATE, 0);
d1ebd816 7915 mutex_lock(&dev_priv->dev->struct_mutex);
fcca7926 7916 gen6_gt_force_wake_get(dev_priv);
8fd26859 7917
3b8d8d91 7918 /* disable the counters and set deterministic thresholds */
8fd26859
CW
7919 I915_WRITE(GEN6_RC_CONTROL, 0);
7920
7921 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7922 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7923 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7924 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7925 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7926
7927 for (i = 0; i < I915_NUM_RINGS; i++)
7928 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
7929
7930 I915_WRITE(GEN6_RC_SLEEP, 0);
7931 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7932 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7933 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
7934 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7935
7df8721b
JB
7936 if (i915_enable_rc6)
7937 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
7938 GEN6_RC_CTL_RC6_ENABLE;
7939
8fd26859 7940 I915_WRITE(GEN6_RC_CONTROL,
7df8721b 7941 rc6_mask |
9c3d2f7f 7942 GEN6_RC_CTL_EI_MODE(1) |
8fd26859
CW
7943 GEN6_RC_CTL_HW_ENABLE);
7944
3b8d8d91 7945 I915_WRITE(GEN6_RPNSWREQ,
8fd26859
CW
7946 GEN6_FREQUENCY(10) |
7947 GEN6_OFFSET(0) |
7948 GEN6_AGGRESSIVE_TURBO);
7949 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7950 GEN6_FREQUENCY(12));
7951
7952 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7953 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7954 18 << 24 |
7955 6 << 16);
ccab5c82
JB
7956 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7957 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8fd26859 7958 I915_WRITE(GEN6_RP_UP_EI, 100000);
ccab5c82 7959 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8fd26859
CW
7960 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7961 I915_WRITE(GEN6_RP_CONTROL,
7962 GEN6_RP_MEDIA_TURBO |
7963 GEN6_RP_USE_NORMAL_FREQ |
7964 GEN6_RP_MEDIA_IS_GFX |
7965 GEN6_RP_ENABLE |
ccab5c82
JB
7966 GEN6_RP_UP_BUSY_AVG |
7967 GEN6_RP_DOWN_IDLE_CONT);
8fd26859
CW
7968
7969 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7970 500))
7971 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7972
7973 I915_WRITE(GEN6_PCODE_DATA, 0);
7974 I915_WRITE(GEN6_PCODE_MAILBOX,
7975 GEN6_PCODE_READY |
7976 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7977 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7978 500))
7979 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7980
a6044e23
JB
7981 min_freq = (rp_state_cap & 0xff0000) >> 16;
7982 max_freq = rp_state_cap & 0xff;
7983 cur_freq = (gt_perf_status & 0xff00) >> 8;
7984
7985 /* Check for overclock support */
7986 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7987 500))
7988 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7989 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7990 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7991 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7992 500))
7993 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7994 if (pcu_mbox & (1<<31)) { /* OC supported */
7995 max_freq = pcu_mbox & 0xff;
e281fcaa 7996 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
a6044e23
JB
7997 }
7998
7999 /* In units of 100MHz */
8000 dev_priv->max_delay = max_freq;
8001 dev_priv->min_delay = min_freq;
8002 dev_priv->cur_delay = cur_freq;
8003
8fd26859
CW
8004 /* requires MSI enabled */
8005 I915_WRITE(GEN6_PMIER,
8006 GEN6_PM_MBOX_EVENT |
8007 GEN6_PM_THERMAL_EVENT |
8008 GEN6_PM_RP_DOWN_TIMEOUT |
8009 GEN6_PM_RP_UP_THRESHOLD |
8010 GEN6_PM_RP_DOWN_THRESHOLD |
8011 GEN6_PM_RP_UP_EI_EXPIRED |
8012 GEN6_PM_RP_DOWN_EI_EXPIRED);
4912d041
BW
8013 spin_lock_irq(&dev_priv->rps_lock);
8014 WARN_ON(dev_priv->pm_iir != 0);
3b8d8d91 8015 I915_WRITE(GEN6_PMIMR, 0);
4912d041 8016 spin_unlock_irq(&dev_priv->rps_lock);
3b8d8d91
JB
8017 /* enable all PM interrupts */
8018 I915_WRITE(GEN6_PMINTRMSK, 0);
8fd26859 8019
fcca7926 8020 gen6_gt_force_wake_put(dev_priv);
d1ebd816 8021 mutex_unlock(&dev_priv->dev->struct_mutex);
8fd26859
CW
8022}
8023
23b2f8bb
JB
8024void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8025{
8026 int min_freq = 15;
8027 int gpu_freq, ia_freq, max_ia_freq;
8028 int scaling_factor = 180;
8029
8030 max_ia_freq = cpufreq_quick_get_max(0);
8031 /*
8032 * Default to measured freq if none found, PCU will ensure we don't go
8033 * over
8034 */
8035 if (!max_ia_freq)
8036 max_ia_freq = tsc_khz;
8037
8038 /* Convert from kHz to MHz */
8039 max_ia_freq /= 1000;
8040
8041 mutex_lock(&dev_priv->dev->struct_mutex);
8042
8043 /*
8044 * For each potential GPU frequency, load a ring frequency we'd like
8045 * to use for memory access. We do this by specifying the IA frequency
8046 * the PCU should use as a reference to determine the ring frequency.
8047 */
8048 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8049 gpu_freq--) {
8050 int diff = dev_priv->max_delay - gpu_freq;
8051
8052 /*
8053 * For GPU frequencies less than 750MHz, just use the lowest
8054 * ring freq.
8055 */
8056 if (gpu_freq < min_freq)
8057 ia_freq = 800;
8058 else
8059 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8060 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8061
8062 I915_WRITE(GEN6_PCODE_DATA,
8063 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8064 gpu_freq);
8065 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8066 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8067 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8068 GEN6_PCODE_READY) == 0, 10)) {
8069 DRM_ERROR("pcode write of freq table timed out\n");
8070 continue;
8071 }
8072 }
8073
8074 mutex_unlock(&dev_priv->dev->struct_mutex);
8075}
8076
6067aaea
JB
8077static void ironlake_init_clock_gating(struct drm_device *dev)
8078{
8079 struct drm_i915_private *dev_priv = dev->dev_private;
8080 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8081
8082 /* Required for FBC */
8083 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8084 DPFCRUNIT_CLOCK_GATE_DISABLE |
8085 DPFDUNIT_CLOCK_GATE_DISABLE;
8086 /* Required for CxSR */
8087 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8088
8089 I915_WRITE(PCH_3DCGDIS0,
8090 MARIUNIT_CLOCK_GATE_DISABLE |
8091 SVSMUNIT_CLOCK_GATE_DISABLE);
8092 I915_WRITE(PCH_3DCGDIS1,
8093 VFMUNIT_CLOCK_GATE_DISABLE);
8094
8095 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8096
6067aaea
JB
8097 /*
8098 * According to the spec the following bits should be set in
8099 * order to enable memory self-refresh
8100 * The bit 22/21 of 0x42004
8101 * The bit 5 of 0x42020
8102 * The bit 15 of 0x45000
8103 */
8104 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8105 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8106 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8107 I915_WRITE(ILK_DSPCLK_GATE,
8108 (I915_READ(ILK_DSPCLK_GATE) |
8109 ILK_DPARB_CLK_GATE));
8110 I915_WRITE(DISP_ARB_CTL,
8111 (I915_READ(DISP_ARB_CTL) |
8112 DISP_FBC_WM_DIS));
8113 I915_WRITE(WM3_LP_ILK, 0);
8114 I915_WRITE(WM2_LP_ILK, 0);
8115 I915_WRITE(WM1_LP_ILK, 0);
8116
8117 /*
8118 * Based on the document from hardware guys the following bits
8119 * should be set unconditionally in order to enable FBC.
8120 * The bit 22 of 0x42000
8121 * The bit 22 of 0x42004
8122 * The bit 7,8,9 of 0x42020.
8123 */
8124 if (IS_IRONLAKE_M(dev)) {
8125 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8126 I915_READ(ILK_DISPLAY_CHICKEN1) |
8127 ILK_FBCQ_DIS);
8128 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8129 I915_READ(ILK_DISPLAY_CHICKEN2) |
8130 ILK_DPARB_GATE);
8131 I915_WRITE(ILK_DSPCLK_GATE,
8132 I915_READ(ILK_DSPCLK_GATE) |
8133 ILK_DPFC_DIS1 |
8134 ILK_DPFC_DIS2 |
8135 ILK_CLK_FBC);
8136 }
8137
8138 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8139 I915_READ(ILK_DISPLAY_CHICKEN2) |
8140 ILK_ELPIN_409_SELECT);
8141 I915_WRITE(_3D_CHICKEN2,
8142 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8143 _3D_CHICKEN2_WM_READ_PIPELINED);
8fd26859
CW
8144}
8145
6067aaea 8146static void gen6_init_clock_gating(struct drm_device *dev)
652c393a
JB
8147{
8148 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 8149 int pipe;
6067aaea
JB
8150 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8151
8152 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
652c393a 8153
6067aaea
JB
8154 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8155 I915_READ(ILK_DISPLAY_CHICKEN2) |
8156 ILK_ELPIN_409_SELECT);
8956c8bb 8157
6067aaea
JB
8158 I915_WRITE(WM3_LP_ILK, 0);
8159 I915_WRITE(WM2_LP_ILK, 0);
8160 I915_WRITE(WM1_LP_ILK, 0);
652c393a
JB
8161
8162 /*
6067aaea
JB
8163 * According to the spec the following bits should be
8164 * set in order to enable memory self-refresh and fbc:
8165 * The bit21 and bit22 of 0x42000
8166 * The bit21 and bit22 of 0x42004
8167 * The bit5 and bit7 of 0x42020
8168 * The bit14 of 0x70180
8169 * The bit14 of 0x71180
652c393a 8170 */
6067aaea
JB
8171 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8172 I915_READ(ILK_DISPLAY_CHICKEN1) |
8173 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8174 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8175 I915_READ(ILK_DISPLAY_CHICKEN2) |
8176 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8177 I915_WRITE(ILK_DSPCLK_GATE,
8178 I915_READ(ILK_DSPCLK_GATE) |
8179 ILK_DPARB_CLK_GATE |
8180 ILK_DPFD_CLK_GATE);
8956c8bb 8181
d74362c9 8182 for_each_pipe(pipe) {
6067aaea
JB
8183 I915_WRITE(DSPCNTR(pipe),
8184 I915_READ(DSPCNTR(pipe)) |
8185 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
8186 intel_flush_display_plane(dev_priv, pipe);
8187 }
6067aaea 8188}
8956c8bb 8189
28963a3e
JB
8190static void ivybridge_init_clock_gating(struct drm_device *dev)
8191{
8192 struct drm_i915_private *dev_priv = dev->dev_private;
8193 int pipe;
8194 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7f8a8569 8195
28963a3e 8196 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
382b0936 8197
28963a3e
JB
8198 I915_WRITE(WM3_LP_ILK, 0);
8199 I915_WRITE(WM2_LP_ILK, 0);
8200 I915_WRITE(WM1_LP_ILK, 0);
de6e2eaf 8201
28963a3e 8202 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
67e92af0 8203
d74362c9 8204 for_each_pipe(pipe) {
28963a3e
JB
8205 I915_WRITE(DSPCNTR(pipe),
8206 I915_READ(DSPCNTR(pipe)) |
8207 DISPPLANE_TRICKLE_FEED_DISABLE);
d74362c9
KP
8208 intel_flush_display_plane(dev_priv, pipe);
8209 }
28963a3e
JB
8210}
8211
6067aaea
JB
8212static void g4x_init_clock_gating(struct drm_device *dev)
8213{
8214 struct drm_i915_private *dev_priv = dev->dev_private;
8215 uint32_t dspclk_gate;
8fd26859 8216
6067aaea
JB
8217 I915_WRITE(RENCLK_GATE_D1, 0);
8218 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8219 GS_UNIT_CLOCK_GATE_DISABLE |
8220 CL_UNIT_CLOCK_GATE_DISABLE);
8221 I915_WRITE(RAMCLK_GATE_D, 0);
8222 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8223 OVRUNIT_CLOCK_GATE_DISABLE |
8224 OVCUNIT_CLOCK_GATE_DISABLE;
8225 if (IS_GM45(dev))
8226 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8227 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8228}
1398261a 8229
6067aaea
JB
8230static void crestline_init_clock_gating(struct drm_device *dev)
8231{
8232 struct drm_i915_private *dev_priv = dev->dev_private;
652c393a 8233
6067aaea
JB
8234 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8235 I915_WRITE(RENCLK_GATE_D2, 0);
8236 I915_WRITE(DSPCLK_GATE_D, 0);
8237 I915_WRITE(RAMCLK_GATE_D, 0);
8238 I915_WRITE16(DEUC, 0);
8239}
652c393a 8240
6067aaea
JB
8241static void broadwater_init_clock_gating(struct drm_device *dev)
8242{
8243 struct drm_i915_private *dev_priv = dev->dev_private;
8244
8245 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8246 I965_RCC_CLOCK_GATE_DISABLE |
8247 I965_RCPB_CLOCK_GATE_DISABLE |
8248 I965_ISC_CLOCK_GATE_DISABLE |
8249 I965_FBC_CLOCK_GATE_DISABLE);
8250 I915_WRITE(RENCLK_GATE_D2, 0);
8251}
8252
8253static void gen3_init_clock_gating(struct drm_device *dev)
8254{
8255 struct drm_i915_private *dev_priv = dev->dev_private;
8256 u32 dstate = I915_READ(D_STATE);
8257
8258 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8259 DSTATE_DOT_CLOCK_GATING;
8260 I915_WRITE(D_STATE, dstate);
8261}
8262
8263static void i85x_init_clock_gating(struct drm_device *dev)
8264{
8265 struct drm_i915_private *dev_priv = dev->dev_private;
8266
8267 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8268}
8269
8270static void i830_init_clock_gating(struct drm_device *dev)
8271{
8272 struct drm_i915_private *dev_priv = dev->dev_private;
8273
8274 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
652c393a
JB
8275}
8276
645c62a5
JB
8277static void ibx_init_clock_gating(struct drm_device *dev)
8278{
8279 struct drm_i915_private *dev_priv = dev->dev_private;
8280
8281 /*
8282 * On Ibex Peak and Cougar Point, we need to disable clock
8283 * gating for the panel power sequencer or it will fail to
8284 * start up when no ports are active.
8285 */
8286 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8287}
8288
8289static void cpt_init_clock_gating(struct drm_device *dev)
8290{
8291 struct drm_i915_private *dev_priv = dev->dev_private;
3bcf603f 8292 int pipe;
645c62a5
JB
8293
8294 /*
8295 * On Ibex Peak and Cougar Point, we need to disable clock
8296 * gating for the panel power sequencer or it will fail to
8297 * start up when no ports are active.
8298 */
8299 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8300 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8301 DPLS_EDP_PPS_FIX_DIS);
3bcf603f
JB
8302 /* Without this, mode sets may fail silently on FDI */
8303 for_each_pipe(pipe)
8304 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
652c393a
JB
8305}
8306
ac668088 8307static void ironlake_teardown_rc6(struct drm_device *dev)
0cdab21f
CW
8308{
8309 struct drm_i915_private *dev_priv = dev->dev_private;
8310
8311 if (dev_priv->renderctx) {
ac668088
CW
8312 i915_gem_object_unpin(dev_priv->renderctx);
8313 drm_gem_object_unreference(&dev_priv->renderctx->base);
0cdab21f
CW
8314 dev_priv->renderctx = NULL;
8315 }
8316
8317 if (dev_priv->pwrctx) {
ac668088
CW
8318 i915_gem_object_unpin(dev_priv->pwrctx);
8319 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8320 dev_priv->pwrctx = NULL;
8321 }
8322}
8323
8324static void ironlake_disable_rc6(struct drm_device *dev)
8325{
8326 struct drm_i915_private *dev_priv = dev->dev_private;
8327
8328 if (I915_READ(PWRCTXA)) {
8329 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8330 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8331 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8332 50);
0cdab21f
CW
8333
8334 I915_WRITE(PWRCTXA, 0);
8335 POSTING_READ(PWRCTXA);
8336
ac668088
CW
8337 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8338 POSTING_READ(RSTDBYCTL);
0cdab21f 8339 }
ac668088 8340
99507307 8341 ironlake_teardown_rc6(dev);
0cdab21f
CW
8342}
8343
ac668088 8344static int ironlake_setup_rc6(struct drm_device *dev)
d5bb081b
JB
8345{
8346 struct drm_i915_private *dev_priv = dev->dev_private;
8347
ac668088
CW
8348 if (dev_priv->renderctx == NULL)
8349 dev_priv->renderctx = intel_alloc_context_page(dev);
8350 if (!dev_priv->renderctx)
8351 return -ENOMEM;
8352
8353 if (dev_priv->pwrctx == NULL)
8354 dev_priv->pwrctx = intel_alloc_context_page(dev);
8355 if (!dev_priv->pwrctx) {
8356 ironlake_teardown_rc6(dev);
8357 return -ENOMEM;
8358 }
8359
8360 return 0;
d5bb081b
JB
8361}
8362
8363void ironlake_enable_rc6(struct drm_device *dev)
8364{
8365 struct drm_i915_private *dev_priv = dev->dev_private;
8366 int ret;
8367
ac668088
CW
8368 /* rc6 disabled by default due to repeated reports of hanging during
8369 * boot and resume.
8370 */
8371 if (!i915_enable_rc6)
8372 return;
8373
2c34b850 8374 mutex_lock(&dev->struct_mutex);
ac668088 8375 ret = ironlake_setup_rc6(dev);
2c34b850
BW
8376 if (ret) {
8377 mutex_unlock(&dev->struct_mutex);
ac668088 8378 return;
2c34b850 8379 }
ac668088 8380
d5bb081b
JB
8381 /*
8382 * GPU can automatically power down the render unit if given a page
8383 * to save state.
8384 */
8385 ret = BEGIN_LP_RING(6);
8386 if (ret) {
ac668088 8387 ironlake_teardown_rc6(dev);
2c34b850 8388 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
8389 return;
8390 }
ac668088 8391
d5bb081b
JB
8392 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8393 OUT_RING(MI_SET_CONTEXT);
8394 OUT_RING(dev_priv->renderctx->gtt_offset |
8395 MI_MM_SPACE_GTT |
8396 MI_SAVE_EXT_STATE_EN |
8397 MI_RESTORE_EXT_STATE_EN |
8398 MI_RESTORE_INHIBIT);
8399 OUT_RING(MI_SUSPEND_FLUSH);
8400 OUT_RING(MI_NOOP);
8401 OUT_RING(MI_FLUSH);
8402 ADVANCE_LP_RING();
8403
4a246cfc
BW
8404 /*
8405 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8406 * does an implicit flush, combined with MI_FLUSH above, it should be
8407 * safe to assume that renderctx is valid
8408 */
8409 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8410 if (ret) {
8411 DRM_ERROR("failed to enable ironlake power power savings\n");
8412 ironlake_teardown_rc6(dev);
8413 mutex_unlock(&dev->struct_mutex);
8414 return;
8415 }
8416
d5bb081b
JB
8417 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8418 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2c34b850 8419 mutex_unlock(&dev->struct_mutex);
d5bb081b
JB
8420}
8421
645c62a5
JB
8422void intel_init_clock_gating(struct drm_device *dev)
8423{
8424 struct drm_i915_private *dev_priv = dev->dev_private;
8425
8426 dev_priv->display.init_clock_gating(dev);
8427
8428 if (dev_priv->display.init_pch_clock_gating)
8429 dev_priv->display.init_pch_clock_gating(dev);
8430}
ac668088 8431
e70236a8
JB
8432/* Set up chip specific display functions */
8433static void intel_init_display(struct drm_device *dev)
8434{
8435 struct drm_i915_private *dev_priv = dev->dev_private;
8436
8437 /* We always want a DPMS function */
f564048e 8438 if (HAS_PCH_SPLIT(dev)) {
f2b115e6 8439 dev_priv->display.dpms = ironlake_crtc_dpms;
f564048e 8440 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
17638cd6 8441 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 8442 } else {
e70236a8 8443 dev_priv->display.dpms = i9xx_crtc_dpms;
f564048e 8444 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
17638cd6 8445 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 8446 }
e70236a8 8447
ee5382ae 8448 if (I915_HAS_FBC(dev)) {
9c04f015 8449 if (HAS_PCH_SPLIT(dev)) {
b52eb4dc
ZY
8450 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8451 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8452 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8453 } else if (IS_GM45(dev)) {
74dff282
JB
8454 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8455 dev_priv->display.enable_fbc = g4x_enable_fbc;
8456 dev_priv->display.disable_fbc = g4x_disable_fbc;
a6c45cf0 8457 } else if (IS_CRESTLINE(dev)) {
e70236a8
JB
8458 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8459 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8460 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8461 }
74dff282 8462 /* 855GM needs testing */
e70236a8
JB
8463 }
8464
8465 /* Returns the core display clock speed */
0206e353 8466 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
8467 dev_priv->display.get_display_clock_speed =
8468 i945_get_display_clock_speed;
8469 else if (IS_I915G(dev))
8470 dev_priv->display.get_display_clock_speed =
8471 i915_get_display_clock_speed;
f2b115e6 8472 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
8473 dev_priv->display.get_display_clock_speed =
8474 i9xx_misc_get_display_clock_speed;
8475 else if (IS_I915GM(dev))
8476 dev_priv->display.get_display_clock_speed =
8477 i915gm_get_display_clock_speed;
8478 else if (IS_I865G(dev))
8479 dev_priv->display.get_display_clock_speed =
8480 i865_get_display_clock_speed;
f0f8a9ce 8481 else if (IS_I85X(dev))
e70236a8
JB
8482 dev_priv->display.get_display_clock_speed =
8483 i855_get_display_clock_speed;
8484 else /* 852, 830 */
8485 dev_priv->display.get_display_clock_speed =
8486 i830_get_display_clock_speed;
8487
8488 /* For FIFO watermark updates */
7f8a8569 8489 if (HAS_PCH_SPLIT(dev)) {
645c62a5
JB
8490 if (HAS_PCH_IBX(dev))
8491 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8492 else if (HAS_PCH_CPT(dev))
8493 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8494
f00a3ddf 8495 if (IS_GEN5(dev)) {
7f8a8569
ZW
8496 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8497 dev_priv->display.update_wm = ironlake_update_wm;
8498 else {
8499 DRM_DEBUG_KMS("Failed to get proper latency. "
8500 "Disable CxSR\n");
8501 dev_priv->display.update_wm = NULL;
1398261a 8502 }
674cf967 8503 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
6067aaea 8504 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
e0dac65e 8505 dev_priv->display.write_eld = ironlake_write_eld;
1398261a
YL
8506 } else if (IS_GEN6(dev)) {
8507 if (SNB_READ_WM0_LATENCY()) {
8508 dev_priv->display.update_wm = sandybridge_update_wm;
8509 } else {
8510 DRM_DEBUG_KMS("Failed to read display plane latency. "
8511 "Disable CxSR\n");
8512 dev_priv->display.update_wm = NULL;
7f8a8569 8513 }
674cf967 8514 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
6067aaea 8515 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
e0dac65e 8516 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
8517 } else if (IS_IVYBRIDGE(dev)) {
8518 /* FIXME: detect B0+ stepping and use auto training */
8519 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
fe100d4d
JB
8520 if (SNB_READ_WM0_LATENCY()) {
8521 dev_priv->display.update_wm = sandybridge_update_wm;
8522 } else {
8523 DRM_DEBUG_KMS("Failed to read display plane latency. "
8524 "Disable CxSR\n");
8525 dev_priv->display.update_wm = NULL;
8526 }
28963a3e 8527 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
e0dac65e 8528 dev_priv->display.write_eld = ironlake_write_eld;
7f8a8569
ZW
8529 } else
8530 dev_priv->display.update_wm = NULL;
8531 } else if (IS_PINEVIEW(dev)) {
d4294342 8532 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
95534263 8533 dev_priv->is_ddr3,
d4294342
ZY
8534 dev_priv->fsb_freq,
8535 dev_priv->mem_freq)) {
8536 DRM_INFO("failed to find known CxSR latency "
95534263 8537 "(found ddr%s fsb freq %d, mem freq %d), "
d4294342 8538 "disabling CxSR\n",
0206e353 8539 (dev_priv->is_ddr3 == 1) ? "3" : "2",
d4294342
ZY
8540 dev_priv->fsb_freq, dev_priv->mem_freq);
8541 /* Disable CxSR and never update its watermark again */
8542 pineview_disable_cxsr(dev);
8543 dev_priv->display.update_wm = NULL;
8544 } else
8545 dev_priv->display.update_wm = pineview_update_wm;
95e0ee92 8546 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6067aaea 8547 } else if (IS_G4X(dev)) {
e0dac65e 8548 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 8549 dev_priv->display.update_wm = g4x_update_wm;
6067aaea
JB
8550 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8551 } else if (IS_GEN4(dev)) {
e70236a8 8552 dev_priv->display.update_wm = i965_update_wm;
6067aaea
JB
8553 if (IS_CRESTLINE(dev))
8554 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8555 else if (IS_BROADWATER(dev))
8556 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8557 } else if (IS_GEN3(dev)) {
e70236a8
JB
8558 dev_priv->display.update_wm = i9xx_update_wm;
8559 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6067aaea
JB
8560 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8561 } else if (IS_I865G(dev)) {
8562 dev_priv->display.update_wm = i830_update_wm;
8563 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8564 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8f4695ed
AJ
8565 } else if (IS_I85X(dev)) {
8566 dev_priv->display.update_wm = i9xx_update_wm;
8567 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
6067aaea 8568 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
e70236a8 8569 } else {
8f4695ed 8570 dev_priv->display.update_wm = i830_update_wm;
6067aaea 8571 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8f4695ed 8572 if (IS_845G(dev))
e70236a8
JB
8573 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8574 else
8575 dev_priv->display.get_fifo_size = i830_get_fifo_size;
e70236a8 8576 }
8c9f3aaf
JB
8577
8578 /* Default just returns -ENODEV to indicate unsupported */
8579 dev_priv->display.queue_flip = intel_default_queue_flip;
8580
8581 switch (INTEL_INFO(dev)->gen) {
8582 case 2:
8583 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8584 break;
8585
8586 case 3:
8587 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8588 break;
8589
8590 case 4:
8591 case 5:
8592 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8593 break;
8594
8595 case 6:
8596 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8597 break;
7c9017e5
JB
8598 case 7:
8599 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8600 break;
8c9f3aaf 8601 }
e70236a8
JB
8602}
8603
b690e96c
JB
8604/*
8605 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8606 * resume, or other times. This quirk makes sure that's the case for
8607 * affected systems.
8608 */
0206e353 8609static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
8610{
8611 struct drm_i915_private *dev_priv = dev->dev_private;
8612
8613 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8614 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8615}
8616
435793df
KP
8617/*
8618 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8619 */
8620static void quirk_ssc_force_disable(struct drm_device *dev)
8621{
8622 struct drm_i915_private *dev_priv = dev->dev_private;
8623 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8624}
8625
b690e96c
JB
8626struct intel_quirk {
8627 int device;
8628 int subsystem_vendor;
8629 int subsystem_device;
8630 void (*hook)(struct drm_device *dev);
8631};
8632
8633struct intel_quirk intel_quirks[] = {
8634 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8635 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8636 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 8637 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c
JB
8638
8639 /* Thinkpad R31 needs pipe A force quirk */
8640 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8641 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8642 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8643
8644 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8645 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8646 /* ThinkPad X40 needs pipe A force quirk */
8647
8648 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8649 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8650
8651 /* 855 & before need to leave pipe A & dpll A up */
8652 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8653 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
8654
8655 /* Lenovo U160 cannot use SSC on LVDS */
8656 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
8657
8658 /* Sony Vaio Y cannot use SSC on LVDS */
8659 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
b690e96c
JB
8660};
8661
8662static void intel_init_quirks(struct drm_device *dev)
8663{
8664 struct pci_dev *d = dev->pdev;
8665 int i;
8666
8667 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8668 struct intel_quirk *q = &intel_quirks[i];
8669
8670 if (d->device == q->device &&
8671 (d->subsystem_vendor == q->subsystem_vendor ||
8672 q->subsystem_vendor == PCI_ANY_ID) &&
8673 (d->subsystem_device == q->subsystem_device ||
8674 q->subsystem_device == PCI_ANY_ID))
8675 q->hook(dev);
8676 }
8677}
8678
9cce37f4
JB
8679/* Disable the VGA plane that we never use */
8680static void i915_disable_vga(struct drm_device *dev)
8681{
8682 struct drm_i915_private *dev_priv = dev->dev_private;
8683 u8 sr1;
8684 u32 vga_reg;
8685
8686 if (HAS_PCH_SPLIT(dev))
8687 vga_reg = CPU_VGACNTRL;
8688 else
8689 vga_reg = VGACNTRL;
8690
8691 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8692 outb(1, VGA_SR_INDEX);
8693 sr1 = inb(VGA_SR_DATA);
8694 outb(sr1 | 1<<5, VGA_SR_DATA);
8695 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8696 udelay(300);
8697
8698 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8699 POSTING_READ(vga_reg);
8700}
8701
79e53945
JB
8702void intel_modeset_init(struct drm_device *dev)
8703{
652c393a 8704 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
8705 int i;
8706
8707 drm_mode_config_init(dev);
8708
8709 dev->mode_config.min_width = 0;
8710 dev->mode_config.min_height = 0;
8711
8712 dev->mode_config.funcs = (void *)&intel_mode_funcs;
8713
b690e96c
JB
8714 intel_init_quirks(dev);
8715
e70236a8
JB
8716 intel_init_display(dev);
8717
a6c45cf0
CW
8718 if (IS_GEN2(dev)) {
8719 dev->mode_config.max_width = 2048;
8720 dev->mode_config.max_height = 2048;
8721 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
8722 dev->mode_config.max_width = 4096;
8723 dev->mode_config.max_height = 4096;
79e53945 8724 } else {
a6c45cf0
CW
8725 dev->mode_config.max_width = 8192;
8726 dev->mode_config.max_height = 8192;
79e53945 8727 }
35c3047a 8728 dev->mode_config.fb_base = dev->agp->base;
79e53945 8729
28c97730 8730 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8731 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8732
a3524f1b 8733 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945
JB
8734 intel_crtc_init(dev, i);
8735 }
8736
9cce37f4
JB
8737 /* Just disable it once at startup */
8738 i915_disable_vga(dev);
79e53945 8739 intel_setup_outputs(dev);
652c393a 8740
645c62a5 8741 intel_init_clock_gating(dev);
9cce37f4 8742
7648fa99 8743 if (IS_IRONLAKE_M(dev)) {
f97108d1 8744 ironlake_enable_drps(dev);
7648fa99
JB
8745 intel_init_emon(dev);
8746 }
f97108d1 8747
1c70c0ce 8748 if (IS_GEN6(dev) || IS_GEN7(dev)) {
3b8d8d91 8749 gen6_enable_rps(dev_priv);
23b2f8bb
JB
8750 gen6_update_ring_freq(dev_priv);
8751 }
3b8d8d91 8752
652c393a
JB
8753 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
8754 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
8755 (unsigned long)dev);
2c7111db
CW
8756}
8757
8758void intel_modeset_gem_init(struct drm_device *dev)
8759{
8760 if (IS_IRONLAKE_M(dev))
8761 ironlake_enable_rc6(dev);
02e792fb
DV
8762
8763 intel_setup_overlay(dev);
79e53945
JB
8764}
8765
8766void intel_modeset_cleanup(struct drm_device *dev)
8767{
652c393a
JB
8768 struct drm_i915_private *dev_priv = dev->dev_private;
8769 struct drm_crtc *crtc;
8770 struct intel_crtc *intel_crtc;
8771
f87ea761 8772 drm_kms_helper_poll_fini(dev);
652c393a
JB
8773 mutex_lock(&dev->struct_mutex);
8774
723bfd70
JB
8775 intel_unregister_dsm_handler();
8776
8777
652c393a
JB
8778 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8779 /* Skip inactive CRTCs */
8780 if (!crtc->fb)
8781 continue;
8782
8783 intel_crtc = to_intel_crtc(crtc);
3dec0095 8784 intel_increase_pllclock(crtc);
652c393a
JB
8785 }
8786
973d04f9 8787 intel_disable_fbc(dev);
e70236a8 8788
f97108d1
JB
8789 if (IS_IRONLAKE_M(dev))
8790 ironlake_disable_drps(dev);
1c70c0ce 8791 if (IS_GEN6(dev) || IS_GEN7(dev))
3b8d8d91 8792 gen6_disable_rps(dev);
f97108d1 8793
d5bb081b
JB
8794 if (IS_IRONLAKE_M(dev))
8795 ironlake_disable_rc6(dev);
0cdab21f 8796
69341a5e
KH
8797 mutex_unlock(&dev->struct_mutex);
8798
6c0d9350
DV
8799 /* Disable the irq before mode object teardown, for the irq might
8800 * enqueue unpin/hotplug work. */
8801 drm_irq_uninstall(dev);
8802 cancel_work_sync(&dev_priv->hotplug_work);
6fdd4d98 8803 cancel_work_sync(&dev_priv->rps_work);
6c0d9350 8804
1630fe75
CW
8805 /* flush any delayed tasks or pending work */
8806 flush_scheduled_work();
8807
3dec0095
DV
8808 /* Shut off idle work before the crtcs get freed. */
8809 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8810 intel_crtc = to_intel_crtc(crtc);
8811 del_timer_sync(&intel_crtc->idle_timer);
8812 }
8813 del_timer_sync(&dev_priv->idle_timer);
8814 cancel_work_sync(&dev_priv->idle_work);
8815
79e53945
JB
8816 drm_mode_config_cleanup(dev);
8817}
8818
f1c79df3
ZW
8819/*
8820 * Return which encoder is currently attached for connector.
8821 */
df0e9248 8822struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 8823{
df0e9248
CW
8824 return &intel_attached_encoder(connector)->base;
8825}
f1c79df3 8826
df0e9248
CW
8827void intel_connector_attach_encoder(struct intel_connector *connector,
8828 struct intel_encoder *encoder)
8829{
8830 connector->encoder = encoder;
8831 drm_mode_connector_attach_encoder(&connector->base,
8832 &encoder->base);
79e53945 8833}
28d52043
DA
8834
8835/*
8836 * set vga decode state - true == enable VGA decode
8837 */
8838int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8839{
8840 struct drm_i915_private *dev_priv = dev->dev_private;
8841 u16 gmch_ctrl;
8842
8843 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8844 if (state)
8845 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8846 else
8847 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8848 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8849 return 0;
8850}
c4a1d9e4
CW
8851
8852#ifdef CONFIG_DEBUG_FS
8853#include <linux/seq_file.h>
8854
8855struct intel_display_error_state {
8856 struct intel_cursor_error_state {
8857 u32 control;
8858 u32 position;
8859 u32 base;
8860 u32 size;
8861 } cursor[2];
8862
8863 struct intel_pipe_error_state {
8864 u32 conf;
8865 u32 source;
8866
8867 u32 htotal;
8868 u32 hblank;
8869 u32 hsync;
8870 u32 vtotal;
8871 u32 vblank;
8872 u32 vsync;
8873 } pipe[2];
8874
8875 struct intel_plane_error_state {
8876 u32 control;
8877 u32 stride;
8878 u32 size;
8879 u32 pos;
8880 u32 addr;
8881 u32 surface;
8882 u32 tile_offset;
8883 } plane[2];
8884};
8885
8886struct intel_display_error_state *
8887intel_display_capture_error_state(struct drm_device *dev)
8888{
0206e353 8889 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8890 struct intel_display_error_state *error;
8891 int i;
8892
8893 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8894 if (error == NULL)
8895 return NULL;
8896
8897 for (i = 0; i < 2; i++) {
8898 error->cursor[i].control = I915_READ(CURCNTR(i));
8899 error->cursor[i].position = I915_READ(CURPOS(i));
8900 error->cursor[i].base = I915_READ(CURBASE(i));
8901
8902 error->plane[i].control = I915_READ(DSPCNTR(i));
8903 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8904 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 8905 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
8906 error->plane[i].addr = I915_READ(DSPADDR(i));
8907 if (INTEL_INFO(dev)->gen >= 4) {
8908 error->plane[i].surface = I915_READ(DSPSURF(i));
8909 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8910 }
8911
8912 error->pipe[i].conf = I915_READ(PIPECONF(i));
8913 error->pipe[i].source = I915_READ(PIPESRC(i));
8914 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8915 error->pipe[i].hblank = I915_READ(HBLANK(i));
8916 error->pipe[i].hsync = I915_READ(HSYNC(i));
8917 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8918 error->pipe[i].vblank = I915_READ(VBLANK(i));
8919 error->pipe[i].vsync = I915_READ(VSYNC(i));
8920 }
8921
8922 return error;
8923}
8924
8925void
8926intel_display_print_error_state(struct seq_file *m,
8927 struct drm_device *dev,
8928 struct intel_display_error_state *error)
8929{
8930 int i;
8931
8932 for (i = 0; i < 2; i++) {
8933 seq_printf(m, "Pipe [%d]:\n", i);
8934 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8935 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8936 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8937 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8938 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8939 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8940 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8941 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8942
8943 seq_printf(m, "Plane [%d]:\n", i);
8944 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8945 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8946 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8947 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8948 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8949 if (INTEL_INFO(dev)->gen >= 4) {
8950 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8951 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8952 }
8953
8954 seq_printf(m, "Cursor [%d]:\n", i);
8955 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8956 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8957 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8958 }
8959}
8960#endif
This page took 0.96408 seconds and 5 git commands to generate.