drm/i915: Wrap external callers to IPS state with appropriate locks
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
79e53945
JB
35#include "drmP.h"
36#include "intel_drv.h"
37#include "i915_drm.h"
38#include "i915_drv.h"
e5510fac 39#include "i915_trace.h"
ab2c0672 40#include "drm_dp_helper.h"
79e53945 41#include "drm_crtc_helper.h"
c0f372b3 42#include <linux/dma_remapping.h>
79e53945 43
32f9d658
ZW
44#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
0206e353 46bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
3dec0095 47static void intel_increase_pllclock(struct drm_crtc *crtc);
6b383a7f 48static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
79e53945
JB
49
50typedef struct {
0206e353
AJ
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
79e53945
JB
60} intel_clock_t;
61
62typedef struct {
0206e353 63 int min, max;
79e53945
JB
64} intel_range_t;
65
66typedef struct {
0206e353
AJ
67 int dot_limit;
68 int p2_slow, p2_fast;
79e53945
JB
69} intel_p2_t;
70
71#define INTEL_P2_NUM 2
d4906093
ML
72typedef struct intel_limit intel_limit_t;
73struct intel_limit {
0206e353
AJ
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
cec2f356 77 int, int, intel_clock_t *, intel_clock_t *);
d4906093 78};
79e53945 79
2377b741
JB
80/* FDI */
81#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
d4906093
ML
83static bool
84intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
d4906093
ML
87static bool
88intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
79e53945 91
a4fc5ed6
KP
92static bool
93intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
5eb08b69 96static bool
f2b115e6 97intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
cec2f356
SP
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
a4fc5ed6 100
a0c4da24
JB
101static bool
102intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103 int target, int refclk, intel_clock_t *match_clock,
104 intel_clock_t *best_clock);
105
021357ac
CW
106static inline u32 /* units of 100MHz */
107intel_fdi_link_freq(struct drm_device *dev)
108{
8b99e68c
CW
109 if (IS_GEN5(dev)) {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112 } else
113 return 27;
021357ac
CW
114}
115
e4b36699 116static const intel_limit_t intel_limits_i8xx_dvo = {
0206e353
AJ
117 .dot = { .min = 25000, .max = 350000 },
118 .vco = { .min = 930000, .max = 1400000 },
119 .n = { .min = 3, .max = 16 },
120 .m = { .min = 96, .max = 140 },
121 .m1 = { .min = 18, .max = 26 },
122 .m2 = { .min = 6, .max = 16 },
123 .p = { .min = 4, .max = 128 },
124 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
125 .p2 = { .dot_limit = 165000,
126 .p2_slow = 4, .p2_fast = 2 },
d4906093 127 .find_pll = intel_find_best_PLL,
e4b36699
KP
128};
129
130static const intel_limit_t intel_limits_i8xx_lvds = {
0206e353
AJ
131 .dot = { .min = 25000, .max = 350000 },
132 .vco = { .min = 930000, .max = 1400000 },
133 .n = { .min = 3, .max = 16 },
134 .m = { .min = 96, .max = 140 },
135 .m1 = { .min = 18, .max = 26 },
136 .m2 = { .min = 6, .max = 16 },
137 .p = { .min = 4, .max = 128 },
138 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
139 .p2 = { .dot_limit = 165000,
140 .p2_slow = 14, .p2_fast = 7 },
d4906093 141 .find_pll = intel_find_best_PLL,
e4b36699 142};
273e27ca 143
e4b36699 144static const intel_limit_t intel_limits_i9xx_sdvo = {
0206e353
AJ
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 10, .max = 22 },
150 .m2 = { .min = 5, .max = 9 },
151 .p = { .min = 5, .max = 80 },
152 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
153 .p2 = { .dot_limit = 200000,
154 .p2_slow = 10, .p2_fast = 5 },
d4906093 155 .find_pll = intel_find_best_PLL,
e4b36699
KP
156};
157
158static const intel_limit_t intel_limits_i9xx_lvds = {
0206e353
AJ
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 10, .max = 22 },
164 .m2 = { .min = 5, .max = 9 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
d4906093 169 .find_pll = intel_find_best_PLL,
e4b36699
KP
170};
171
273e27ca 172
e4b36699 173static const intel_limit_t intel_limits_g4x_sdvo = {
273e27ca
EA
174 .dot = { .min = 25000, .max = 270000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 10, .max = 30 },
181 .p1 = { .min = 1, .max = 3},
182 .p2 = { .dot_limit = 270000,
183 .p2_slow = 10,
184 .p2_fast = 10
044c7c41 185 },
d4906093 186 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
187};
188
189static const intel_limit_t intel_limits_g4x_hdmi = {
273e27ca
EA
190 .dot = { .min = 22000, .max = 400000 },
191 .vco = { .min = 1750000, .max = 3500000},
192 .n = { .min = 1, .max = 4 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 16, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8},
198 .p2 = { .dot_limit = 165000,
199 .p2_slow = 10, .p2_fast = 5 },
d4906093 200 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
201};
202
203static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
204 .dot = { .min = 20000, .max = 115000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 28, .max = 112 },
211 .p1 = { .min = 2, .max = 8 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 14, .p2_fast = 14
044c7c41 214 },
d4906093 215 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
216};
217
218static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
219 .dot = { .min = 80000, .max = 224000 },
220 .vco = { .min = 1750000, .max = 3500000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 14, .max = 42 },
226 .p1 = { .min = 2, .max = 6 },
227 .p2 = { .dot_limit = 0,
228 .p2_slow = 7, .p2_fast = 7
044c7c41 229 },
d4906093 230 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
231};
232
233static const intel_limit_t intel_limits_g4x_display_port = {
0206e353
AJ
234 .dot = { .min = 161670, .max = 227000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 2 },
237 .m = { .min = 97, .max = 108 },
238 .m1 = { .min = 0x10, .max = 0x12 },
239 .m2 = { .min = 0x05, .max = 0x06 },
240 .p = { .min = 10, .max = 20 },
241 .p1 = { .min = 1, .max = 2},
242 .p2 = { .dot_limit = 0,
273e27ca 243 .p2_slow = 10, .p2_fast = 10 },
0206e353 244 .find_pll = intel_find_pll_g4x_dp,
e4b36699
KP
245};
246
f2b115e6 247static const intel_limit_t intel_limits_pineview_sdvo = {
0206e353
AJ
248 .dot = { .min = 20000, .max = 400000},
249 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 250 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
251 .n = { .min = 3, .max = 6 },
252 .m = { .min = 2, .max = 256 },
273e27ca 253 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
254 .m1 = { .min = 0, .max = 0 },
255 .m2 = { .min = 0, .max = 254 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
258 .p2 = { .dot_limit = 200000,
259 .p2_slow = 10, .p2_fast = 5 },
6115707b 260 .find_pll = intel_find_best_PLL,
e4b36699
KP
261};
262
f2b115e6 263static const intel_limit_t intel_limits_pineview_lvds = {
0206e353
AJ
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1700000, .max = 3500000 },
266 .n = { .min = 3, .max = 6 },
267 .m = { .min = 2, .max = 256 },
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 7, .max = 112 },
271 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
272 .p2 = { .dot_limit = 112000,
273 .p2_slow = 14, .p2_fast = 14 },
6115707b 274 .find_pll = intel_find_best_PLL,
e4b36699
KP
275};
276
273e27ca
EA
277/* Ironlake / Sandybridge
278 *
279 * We calculate clock using (register_value + 2) for N/M1/M2, so here
280 * the range value for them is (actual_value - 2).
281 */
b91ad0ec 282static const intel_limit_t intel_limits_ironlake_dac = {
273e27ca
EA
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 5 },
286 .m = { .min = 79, .max = 127 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 10, .p2_fast = 5 },
4547668a 293 .find_pll = intel_g4x_find_best_PLL,
e4b36699
KP
294};
295
b91ad0ec 296static const intel_limit_t intel_limits_ironlake_single_lvds = {
273e27ca
EA
297 .dot = { .min = 25000, .max = 350000 },
298 .vco = { .min = 1760000, .max = 3510000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 79, .max = 118 },
301 .m1 = { .min = 12, .max = 22 },
302 .m2 = { .min = 5, .max = 9 },
303 .p = { .min = 28, .max = 112 },
304 .p1 = { .min = 2, .max = 8 },
305 .p2 = { .dot_limit = 225000,
306 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
307 .find_pll = intel_g4x_find_best_PLL,
308};
309
310static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273e27ca
EA
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 3 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 14, .max = 56 },
318 .p1 = { .min = 2, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
321 .find_pll = intel_g4x_find_best_PLL,
322};
323
273e27ca 324/* LVDS 100mhz refclk limits. */
b91ad0ec 325static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
326 .dot = { .min = 25000, .max = 350000 },
327 .vco = { .min = 1760000, .max = 3510000 },
328 .n = { .min = 1, .max = 2 },
329 .m = { .min = 79, .max = 126 },
330 .m1 = { .min = 12, .max = 22 },
331 .m2 = { .min = 5, .max = 9 },
332 .p = { .min = 28, .max = 112 },
0206e353 333 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
334 .p2 = { .dot_limit = 225000,
335 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
336 .find_pll = intel_g4x_find_best_PLL,
337};
338
339static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 126 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 42 },
0206e353 347 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
350 .find_pll = intel_g4x_find_best_PLL,
351};
352
353static const intel_limit_t intel_limits_ironlake_display_port = {
0206e353
AJ
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000},
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 81, .max = 90 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 10, .max = 20 },
361 .p1 = { .min = 1, .max = 2},
362 .p2 = { .dot_limit = 0,
273e27ca 363 .p2_slow = 10, .p2_fast = 10 },
0206e353 364 .find_pll = intel_find_pll_ironlake_dp,
79e53945
JB
365};
366
a0c4da24
JB
367static const intel_limit_t intel_limits_vlv_dac = {
368 .dot = { .min = 25000, .max = 270000 },
369 .vco = { .min = 4000000, .max = 6000000 },
370 .n = { .min = 1, .max = 7 },
371 .m = { .min = 22, .max = 450 }, /* guess */
372 .m1 = { .min = 2, .max = 3 },
373 .m2 = { .min = 11, .max = 156 },
374 .p = { .min = 10, .max = 30 },
375 .p1 = { .min = 2, .max = 3 },
376 .p2 = { .dot_limit = 270000,
377 .p2_slow = 2, .p2_fast = 20 },
378 .find_pll = intel_vlv_find_best_pll,
379};
380
381static const intel_limit_t intel_limits_vlv_hdmi = {
382 .dot = { .min = 20000, .max = 165000 },
383 .vco = { .min = 5994000, .max = 4000000 },
384 .n = { .min = 1, .max = 7 },
385 .m = { .min = 60, .max = 300 }, /* guess */
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p = { .min = 10, .max = 30 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .dot_limit = 270000,
391 .p2_slow = 2, .p2_fast = 20 },
392 .find_pll = intel_vlv_find_best_pll,
393};
394
395static const intel_limit_t intel_limits_vlv_dp = {
396 .dot = { .min = 162000, .max = 270000 },
397 .vco = { .min = 5994000, .max = 4000000 },
398 .n = { .min = 1, .max = 7 },
399 .m = { .min = 60, .max = 300 }, /* guess */
400 .m1 = { .min = 2, .max = 3 },
401 .m2 = { .min = 11, .max = 156 },
402 .p = { .min = 10, .max = 30 },
403 .p1 = { .min = 2, .max = 3 },
404 .p2 = { .dot_limit = 270000,
405 .p2_slow = 2, .p2_fast = 20 },
406 .find_pll = intel_vlv_find_best_pll,
407};
408
57f350b6
JB
409u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410{
411 unsigned long flags;
412 u32 val = 0;
413
414 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416 DRM_ERROR("DPIO idle wait timed out\n");
417 goto out_unlock;
418 }
419
420 I915_WRITE(DPIO_REG, reg);
421 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422 DPIO_BYTE);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO read wait timed out\n");
425 goto out_unlock;
426 }
427 val = I915_READ(DPIO_DATA);
428
429out_unlock:
430 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431 return val;
432}
433
a0c4da24
JB
434static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435 u32 val)
436{
437 unsigned long flags;
438
439 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441 DRM_ERROR("DPIO idle wait timed out\n");
442 goto out_unlock;
443 }
444
445 I915_WRITE(DPIO_DATA, val);
446 I915_WRITE(DPIO_REG, reg);
447 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448 DPIO_BYTE);
449 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450 DRM_ERROR("DPIO write wait timed out\n");
451
452out_unlock:
453 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454}
455
57f350b6
JB
456static void vlv_init_dpio(struct drm_device *dev)
457{
458 struct drm_i915_private *dev_priv = dev->dev_private;
459
460 /* Reset the DPIO config */
461 I915_WRITE(DPIO_CTL, 0);
462 POSTING_READ(DPIO_CTL);
463 I915_WRITE(DPIO_CTL, 1);
464 POSTING_READ(DPIO_CTL);
465}
466
618563e3
DV
467static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468{
469 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470 return 1;
471}
472
473static const struct dmi_system_id intel_dual_link_lvds[] = {
474 {
475 .callback = intel_dual_link_lvds_callback,
476 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477 .matches = {
478 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480 },
481 },
482 { } /* terminating entry */
483};
484
b0354385
TI
485static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486 unsigned int reg)
487{
488 unsigned int val;
489
121d527a
TI
490 /* use the module option value if specified */
491 if (i915_lvds_channel_mode > 0)
492 return i915_lvds_channel_mode == 2;
493
618563e3
DV
494 if (dmi_check_system(intel_dual_link_lvds))
495 return true;
496
b0354385
TI
497 if (dev_priv->lvds_val)
498 val = dev_priv->lvds_val;
499 else {
500 /* BIOS should set the proper LVDS register value at boot, but
501 * in reality, it doesn't set the value when the lid is closed;
502 * we need to check "the value to be set" in VBT when LVDS
503 * register is uninitialized.
504 */
505 val = I915_READ(reg);
14d94a3d 506 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
b0354385
TI
507 val = dev_priv->bios_lvds_val;
508 dev_priv->lvds_val = val;
509 }
510 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511}
512
1b894b59
CW
513static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514 int refclk)
2c07245f 515{
b91ad0ec
ZW
516 struct drm_device *dev = crtc->dev;
517 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 518 const intel_limit_t *limit;
b91ad0ec
ZW
519
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 521 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
b91ad0ec 522 /* LVDS dual channel */
1b894b59 523 if (refclk == 100000)
b91ad0ec
ZW
524 limit = &intel_limits_ironlake_dual_lvds_100m;
525 else
526 limit = &intel_limits_ironlake_dual_lvds;
527 } else {
1b894b59 528 if (refclk == 100000)
b91ad0ec
ZW
529 limit = &intel_limits_ironlake_single_lvds_100m;
530 else
531 limit = &intel_limits_ironlake_single_lvds;
532 }
533 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
4547668a
ZY
534 HAS_eDP)
535 limit = &intel_limits_ironlake_display_port;
2c07245f 536 else
b91ad0ec 537 limit = &intel_limits_ironlake_dac;
2c07245f
ZW
538
539 return limit;
540}
541
044c7c41
ML
542static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543{
544 struct drm_device *dev = crtc->dev;
545 struct drm_i915_private *dev_priv = dev->dev_private;
546 const intel_limit_t *limit;
547
548 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
b0354385 549 if (is_dual_link_lvds(dev_priv, LVDS))
044c7c41 550 /* LVDS with dual channel */
e4b36699 551 limit = &intel_limits_g4x_dual_channel_lvds;
044c7c41
ML
552 else
553 /* LVDS with dual channel */
e4b36699 554 limit = &intel_limits_g4x_single_channel_lvds;
044c7c41
ML
555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
e4b36699 557 limit = &intel_limits_g4x_hdmi;
044c7c41 558 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
e4b36699 559 limit = &intel_limits_g4x_sdvo;
0206e353 560 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
e4b36699 561 limit = &intel_limits_g4x_display_port;
044c7c41 562 } else /* The option is for other outputs */
e4b36699 563 limit = &intel_limits_i9xx_sdvo;
044c7c41
ML
564
565 return limit;
566}
567
1b894b59 568static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
79e53945
JB
569{
570 struct drm_device *dev = crtc->dev;
571 const intel_limit_t *limit;
572
bad720ff 573 if (HAS_PCH_SPLIT(dev))
1b894b59 574 limit = intel_ironlake_limit(crtc, refclk);
2c07245f 575 else if (IS_G4X(dev)) {
044c7c41 576 limit = intel_g4x_limit(crtc);
f2b115e6 577 } else if (IS_PINEVIEW(dev)) {
2177832f 578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
f2b115e6 579 limit = &intel_limits_pineview_lvds;
2177832f 580 else
f2b115e6 581 limit = &intel_limits_pineview_sdvo;
a0c4da24
JB
582 } else if (IS_VALLEYVIEW(dev)) {
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584 limit = &intel_limits_vlv_dac;
585 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586 limit = &intel_limits_vlv_hdmi;
587 else
588 limit = &intel_limits_vlv_dp;
a6c45cf0
CW
589 } else if (!IS_GEN2(dev)) {
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591 limit = &intel_limits_i9xx_lvds;
592 else
593 limit = &intel_limits_i9xx_sdvo;
79e53945
JB
594 } else {
595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
e4b36699 596 limit = &intel_limits_i8xx_lvds;
79e53945 597 else
e4b36699 598 limit = &intel_limits_i8xx_dvo;
79e53945
JB
599 }
600 return limit;
601}
602
f2b115e6
AJ
603/* m1 is reserved as 0 in Pineview, n is a ring counter */
604static void pineview_clock(int refclk, intel_clock_t *clock)
79e53945 605{
2177832f
SL
606 clock->m = clock->m2 + 2;
607 clock->p = clock->p1 * clock->p2;
608 clock->vco = refclk * clock->m / clock->n;
609 clock->dot = clock->vco / clock->p;
610}
611
612static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613{
f2b115e6
AJ
614 if (IS_PINEVIEW(dev)) {
615 pineview_clock(refclk, clock);
2177832f
SL
616 return;
617 }
79e53945
JB
618 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619 clock->p = clock->p1 * clock->p2;
620 clock->vco = refclk * clock->m / (clock->n + 2);
621 clock->dot = clock->vco / clock->p;
622}
623
79e53945
JB
624/**
625 * Returns whether any output on the specified pipe is of the specified type
626 */
4ef69c7a 627bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
79e53945 628{
4ef69c7a 629 struct drm_device *dev = crtc->dev;
4ef69c7a
CW
630 struct intel_encoder *encoder;
631
6c2b7c12
DV
632 for_each_encoder_on_crtc(dev, crtc, encoder)
633 if (encoder->type == type)
4ef69c7a
CW
634 return true;
635
636 return false;
79e53945
JB
637}
638
7c04d1d9 639#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
640/**
641 * Returns whether the given set of divisors are valid for a given refclk with
642 * the given connectors.
643 */
644
1b894b59
CW
645static bool intel_PLL_is_valid(struct drm_device *dev,
646 const intel_limit_t *limit,
647 const intel_clock_t *clock)
79e53945 648{
79e53945 649 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 650 INTELPllInvalid("p1 out of range\n");
79e53945 651 if (clock->p < limit->p.min || limit->p.max < clock->p)
0206e353 652 INTELPllInvalid("p out of range\n");
79e53945 653 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 654 INTELPllInvalid("m2 out of range\n");
79e53945 655 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 656 INTELPllInvalid("m1 out of range\n");
f2b115e6 657 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
0206e353 658 INTELPllInvalid("m1 <= m2\n");
79e53945 659 if (clock->m < limit->m.min || limit->m.max < clock->m)
0206e353 660 INTELPllInvalid("m out of range\n");
79e53945 661 if (clock->n < limit->n.min || limit->n.max < clock->n)
0206e353 662 INTELPllInvalid("n out of range\n");
79e53945 663 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 664 INTELPllInvalid("vco out of range\n");
79e53945
JB
665 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666 * connector, etc., rather than just a single range.
667 */
668 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 669 INTELPllInvalid("dot out of range\n");
79e53945
JB
670
671 return true;
672}
673
d4906093
ML
674static bool
675intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
d4906093 678
79e53945
JB
679{
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 intel_clock_t clock;
79e53945
JB
683 int err = target;
684
bc5e5718 685 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
832cc28d 686 (I915_READ(LVDS)) != 0) {
79e53945
JB
687 /*
688 * For LVDS, if the panel is on, just rely on its current
689 * settings for dual-channel. We haven't figured out how to
690 * reliably set up different single/dual channel state, if we
691 * even can.
692 */
b0354385 693 if (is_dual_link_lvds(dev_priv, LVDS))
79e53945
JB
694 clock.p2 = limit->p2.p2_fast;
695 else
696 clock.p2 = limit->p2.p2_slow;
697 } else {
698 if (target < limit->p2.dot_limit)
699 clock.p2 = limit->p2.p2_slow;
700 else
701 clock.p2 = limit->p2.p2_fast;
702 }
703
0206e353 704 memset(best_clock, 0, sizeof(*best_clock));
79e53945 705
42158660
ZY
706 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707 clock.m1++) {
708 for (clock.m2 = limit->m2.min;
709 clock.m2 <= limit->m2.max; clock.m2++) {
f2b115e6
AJ
710 /* m1 is always 0 in Pineview */
711 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
42158660
ZY
712 break;
713 for (clock.n = limit->n.min;
714 clock.n <= limit->n.max; clock.n++) {
715 for (clock.p1 = limit->p1.min;
716 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
717 int this_err;
718
2177832f 719 intel_clock(dev, refclk, &clock);
1b894b59
CW
720 if (!intel_PLL_is_valid(dev, limit,
721 &clock))
79e53945 722 continue;
cec2f356
SP
723 if (match_clock &&
724 clock.p != match_clock->p)
725 continue;
79e53945
JB
726
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
731 }
732 }
733 }
734 }
735 }
736
737 return (err != target);
738}
739
d4906093
ML
740static bool
741intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
742 int target, int refclk, intel_clock_t *match_clock,
743 intel_clock_t *best_clock)
d4906093
ML
744{
745 struct drm_device *dev = crtc->dev;
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 intel_clock_t clock;
748 int max_n;
749 bool found;
6ba770dc
AJ
750 /* approximately equals target * 0.00585 */
751 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
752 found = false;
753
754 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4547668a
ZY
755 int lvds_reg;
756
c619eed4 757 if (HAS_PCH_SPLIT(dev))
4547668a
ZY
758 lvds_reg = PCH_LVDS;
759 else
760 lvds_reg = LVDS;
761 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
d4906093
ML
762 LVDS_CLKB_POWER_UP)
763 clock.p2 = limit->p2.p2_fast;
764 else
765 clock.p2 = limit->p2.p2_slow;
766 } else {
767 if (target < limit->p2.dot_limit)
768 clock.p2 = limit->p2.p2_slow;
769 else
770 clock.p2 = limit->p2.p2_fast;
771 }
772
773 memset(best_clock, 0, sizeof(*best_clock));
774 max_n = limit->n.max;
f77f13e2 775 /* based on hardware requirement, prefer smaller n to precision */
d4906093 776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 777 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
778 for (clock.m1 = limit->m1.max;
779 clock.m1 >= limit->m1.min; clock.m1--) {
780 for (clock.m2 = limit->m2.max;
781 clock.m2 >= limit->m2.min; clock.m2--) {
782 for (clock.p1 = limit->p1.max;
783 clock.p1 >= limit->p1.min; clock.p1--) {
784 int this_err;
785
2177832f 786 intel_clock(dev, refclk, &clock);
1b894b59
CW
787 if (!intel_PLL_is_valid(dev, limit,
788 &clock))
d4906093 789 continue;
cec2f356
SP
790 if (match_clock &&
791 clock.p != match_clock->p)
792 continue;
1b894b59
CW
793
794 this_err = abs(clock.dot - target);
d4906093
ML
795 if (this_err < err_most) {
796 *best_clock = clock;
797 err_most = this_err;
798 max_n = clock.n;
799 found = true;
800 }
801 }
802 }
803 }
804 }
2c07245f
ZW
805 return found;
806}
807
5eb08b69 808static bool
f2b115e6 809intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
5eb08b69
ZW
812{
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
4547668a 815
5eb08b69
ZW
816 if (target < 200000) {
817 clock.n = 1;
818 clock.p1 = 2;
819 clock.p2 = 10;
820 clock.m1 = 12;
821 clock.m2 = 9;
822 } else {
823 clock.n = 2;
824 clock.p1 = 1;
825 clock.p2 = 10;
826 clock.m1 = 14;
827 clock.m2 = 8;
828 }
829 intel_clock(dev, refclk, &clock);
830 memcpy(best_clock, &clock, sizeof(intel_clock_t));
831 return true;
832}
833
a4fc5ed6
KP
834/* DisplayPort has only two frequencies, 162MHz and 270MHz */
835static bool
836intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
cec2f356
SP
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
a4fc5ed6 839{
5eddb70b
CW
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.p1 = 2;
843 clock.p2 = 10;
844 clock.n = 2;
845 clock.m1 = 23;
846 clock.m2 = 8;
847 } else {
848 clock.p1 = 1;
849 clock.p2 = 10;
850 clock.n = 1;
851 clock.m1 = 14;
852 clock.m2 = 2;
853 }
854 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855 clock.p = (clock.p1 * clock.p2);
856 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857 clock.vco = 0;
858 memcpy(best_clock, &clock, sizeof(intel_clock_t));
859 return true;
a4fc5ed6 860}
a0c4da24
JB
861static bool
862intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
865{
866 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867 u32 m, n, fastclk;
868 u32 updrate, minupdate, fracbits, p;
869 unsigned long bestppm, ppm, absppm;
870 int dotclk, flag;
871
af447bd3 872 flag = 0;
a0c4da24
JB
873 dotclk = target * 1000;
874 bestppm = 1000000;
875 ppm = absppm = 0;
876 fastclk = dotclk / (2*100);
877 updrate = 0;
878 minupdate = 19200;
879 fracbits = 1;
880 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881 bestm1 = bestm2 = bestp1 = bestp2 = 0;
882
883 /* based on hardware requirement, prefer smaller n to precision */
884 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885 updrate = refclk / n;
886 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888 if (p2 > 10)
889 p2 = p2 - 1;
890 p = p1 * p2;
891 /* based on hardware requirement, prefer bigger m1,m2 values */
892 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893 m2 = (((2*(fastclk * p * n / m1 )) +
894 refclk) / (2*refclk));
895 m = m1 * m2;
896 vco = updrate * m;
897 if (vco >= limit->vco.min && vco < limit->vco.max) {
898 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899 absppm = (ppm > 0) ? ppm : (-ppm);
900 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901 bestppm = 0;
902 flag = 1;
903 }
904 if (absppm < bestppm - 10) {
905 bestppm = absppm;
906 flag = 1;
907 }
908 if (flag) {
909 bestn = n;
910 bestm1 = m1;
911 bestm2 = m2;
912 bestp1 = p1;
913 bestp2 = p2;
914 flag = 0;
915 }
916 }
917 }
918 }
919 }
920 }
921 best_clock->n = bestn;
922 best_clock->m1 = bestm1;
923 best_clock->m2 = bestm2;
924 best_clock->p1 = bestp1;
925 best_clock->p2 = bestp2;
926
927 return true;
928}
a4fc5ed6 929
a928d536
PZ
930static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
931{
932 struct drm_i915_private *dev_priv = dev->dev_private;
933 u32 frame, frame_reg = PIPEFRAME(pipe);
934
935 frame = I915_READ(frame_reg);
936
937 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938 DRM_DEBUG_KMS("vblank wait timed out\n");
939}
940
9d0498a2
JB
941/**
942 * intel_wait_for_vblank - wait for vblank on a given pipe
943 * @dev: drm device
944 * @pipe: pipe to wait for
945 *
946 * Wait for vblank to occur on a given pipe. Needed for various bits of
947 * mode setting code.
948 */
949void intel_wait_for_vblank(struct drm_device *dev, int pipe)
79e53945 950{
9d0498a2 951 struct drm_i915_private *dev_priv = dev->dev_private;
9db4a9c7 952 int pipestat_reg = PIPESTAT(pipe);
9d0498a2 953
a928d536
PZ
954 if (INTEL_INFO(dev)->gen >= 5) {
955 ironlake_wait_for_vblank(dev, pipe);
956 return;
957 }
958
300387c0
CW
959 /* Clear existing vblank status. Note this will clear any other
960 * sticky status fields as well.
961 *
962 * This races with i915_driver_irq_handler() with the result
963 * that either function could miss a vblank event. Here it is not
964 * fatal, as we will either wait upon the next vblank interrupt or
965 * timeout. Generally speaking intel_wait_for_vblank() is only
966 * called during modeset at which time the GPU should be idle and
967 * should *not* be performing page flips and thus not waiting on
968 * vblanks...
969 * Currently, the result of us stealing a vblank from the irq
970 * handler is that a single frame will be skipped during swapbuffers.
971 */
972 I915_WRITE(pipestat_reg,
973 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
974
9d0498a2 975 /* Wait for vblank interrupt bit to set */
481b6af3
CW
976 if (wait_for(I915_READ(pipestat_reg) &
977 PIPE_VBLANK_INTERRUPT_STATUS,
978 50))
9d0498a2
JB
979 DRM_DEBUG_KMS("vblank wait timed out\n");
980}
981
ab7ad7f6
KP
982/*
983 * intel_wait_for_pipe_off - wait for pipe to turn off
9d0498a2
JB
984 * @dev: drm device
985 * @pipe: pipe to wait for
986 *
987 * After disabling a pipe, we can't wait for vblank in the usual way,
988 * spinning on the vblank interrupt status bit, since we won't actually
989 * see an interrupt when the pipe is disabled.
990 *
ab7ad7f6
KP
991 * On Gen4 and above:
992 * wait for the pipe register state bit to turn off
993 *
994 * Otherwise:
995 * wait for the display line value to settle (it usually
996 * ends up stopping at the start of the next frame).
58e10eb9 997 *
9d0498a2 998 */
58e10eb9 999void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
9d0498a2
JB
1000{
1001 struct drm_i915_private *dev_priv = dev->dev_private;
ab7ad7f6
KP
1002
1003 if (INTEL_INFO(dev)->gen >= 4) {
58e10eb9 1004 int reg = PIPECONF(pipe);
ab7ad7f6
KP
1005
1006 /* Wait for the Pipe State to go off */
58e10eb9
CW
1007 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008 100))
284637d9 1009 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1010 } else {
837ba00f 1011 u32 last_line, line_mask;
58e10eb9 1012 int reg = PIPEDSL(pipe);
ab7ad7f6
KP
1013 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1014
837ba00f
PZ
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1019
ab7ad7f6
KP
1020 /* Wait for the display line to settle */
1021 do {
837ba00f 1022 last_line = I915_READ(reg) & line_mask;
ab7ad7f6 1023 mdelay(5);
837ba00f 1024 } while (((I915_READ(reg) & line_mask) != last_line) &&
ab7ad7f6
KP
1025 time_after(timeout, jiffies));
1026 if (time_after(jiffies, timeout))
284637d9 1027 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1028 }
79e53945
JB
1029}
1030
b24e7179
JB
1031static const char *state_string(bool enabled)
1032{
1033 return enabled ? "on" : "off";
1034}
1035
1036/* Only for pre-ILK configs */
1037static void assert_pll(struct drm_i915_private *dev_priv,
1038 enum pipe pipe, bool state)
1039{
1040 int reg;
1041 u32 val;
1042 bool cur_state;
1043
1044 reg = DPLL(pipe);
1045 val = I915_READ(reg);
1046 cur_state = !!(val & DPLL_VCO_ENABLE);
1047 WARN(cur_state != state,
1048 "PLL state assertion failure (expected %s, current %s)\n",
1049 state_string(state), state_string(cur_state));
1050}
1051#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1053
040484af
JB
1054/* For ILK+ */
1055static void assert_pch_pll(struct drm_i915_private *dev_priv,
92b27b08
CW
1056 struct intel_pch_pll *pll,
1057 struct intel_crtc *crtc,
1058 bool state)
040484af 1059{
040484af
JB
1060 u32 val;
1061 bool cur_state;
1062
9d82aa17
ED
1063 if (HAS_PCH_LPT(dev_priv->dev)) {
1064 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065 return;
1066 }
1067
92b27b08
CW
1068 if (WARN (!pll,
1069 "asserting PCH PLL %s with no PLL\n", state_string(state)))
ee7b9f93 1070 return;
ee7b9f93 1071
92b27b08
CW
1072 val = I915_READ(pll->pll_reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
1074 WARN(cur_state != state,
1075 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076 pll->pll_reg, state_string(state), state_string(cur_state), val);
1077
1078 /* Make sure the selected PLL is correctly attached to the transcoder */
1079 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
d3ccbe86
JB
1080 u32 pch_dpll;
1081
1082 pch_dpll = I915_READ(PCH_DPLL_SEL);
92b27b08
CW
1083 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085 "PLL[%d] not attached to this transcoder %d: %08x\n",
1086 cur_state, crtc->pipe, pch_dpll)) {
1087 cur_state = !!(val >> (4*crtc->pipe + 3));
1088 WARN(cur_state != state,
1089 "PLL[%d] not %s on this transcoder %d: %08x\n",
1090 pll->pll_reg == _PCH_DPLL_B,
1091 state_string(state),
1092 crtc->pipe,
1093 val);
1094 }
d3ccbe86 1095 }
040484af 1096}
92b27b08
CW
1097#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
040484af
JB
1099
1100static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101 enum pipe pipe, bool state)
1102{
1103 int reg;
1104 u32 val;
1105 bool cur_state;
1106
bf507ef7
ED
1107 if (IS_HASWELL(dev_priv->dev)) {
1108 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109 reg = DDI_FUNC_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112 } else {
1113 reg = FDI_TX_CTL(pipe);
1114 val = I915_READ(reg);
1115 cur_state = !!(val & FDI_TX_ENABLE);
1116 }
040484af
JB
1117 WARN(cur_state != state,
1118 "FDI TX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1120}
1121#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1123
1124static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125 enum pipe pipe, bool state)
1126{
1127 int reg;
1128 u32 val;
1129 bool cur_state;
1130
59c859d6
ED
1131 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133 return;
1134 } else {
1135 reg = FDI_RX_CTL(pipe);
1136 val = I915_READ(reg);
1137 cur_state = !!(val & FDI_RX_ENABLE);
1138 }
040484af
JB
1139 WARN(cur_state != state,
1140 "FDI RX state assertion failure (expected %s, current %s)\n",
1141 state_string(state), state_string(cur_state));
1142}
1143#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1145
1146static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147 enum pipe pipe)
1148{
1149 int reg;
1150 u32 val;
1151
1152 /* ILK FDI PLL is always enabled */
1153 if (dev_priv->info->gen == 5)
1154 return;
1155
bf507ef7
ED
1156 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157 if (IS_HASWELL(dev_priv->dev))
1158 return;
1159
040484af
JB
1160 reg = FDI_TX_CTL(pipe);
1161 val = I915_READ(reg);
1162 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1163}
1164
1165static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1167{
1168 int reg;
1169 u32 val;
1170
59c859d6
ED
1171 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173 return;
1174 }
040484af
JB
1175 reg = FDI_RX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1178}
1179
ea0760cf
JB
1180static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1182{
1183 int pp_reg, lvds_reg;
1184 u32 val;
1185 enum pipe panel_pipe = PIPE_A;
0de3b485 1186 bool locked = true;
ea0760cf
JB
1187
1188 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189 pp_reg = PCH_PP_CONTROL;
1190 lvds_reg = PCH_LVDS;
1191 } else {
1192 pp_reg = PP_CONTROL;
1193 lvds_reg = LVDS;
1194 }
1195
1196 val = I915_READ(pp_reg);
1197 if (!(val & PANEL_POWER_ON) ||
1198 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199 locked = false;
1200
1201 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202 panel_pipe = PIPE_B;
1203
1204 WARN(panel_pipe == pipe && locked,
1205 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1206 pipe_name(pipe));
ea0760cf
JB
1207}
1208
b840d907
JB
1209void assert_pipe(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, bool state)
b24e7179
JB
1211{
1212 int reg;
1213 u32 val;
63d7bbe9 1214 bool cur_state;
b24e7179 1215
8e636784
DV
1216 /* if we need the pipe A quirk it must be always on */
1217 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218 state = true;
1219
b24e7179
JB
1220 reg = PIPECONF(pipe);
1221 val = I915_READ(reg);
63d7bbe9
JB
1222 cur_state = !!(val & PIPECONF_ENABLE);
1223 WARN(cur_state != state,
1224 "pipe %c assertion failure (expected %s, current %s)\n",
9db4a9c7 1225 pipe_name(pipe), state_string(state), state_string(cur_state));
b24e7179
JB
1226}
1227
931872fc
CW
1228static void assert_plane(struct drm_i915_private *dev_priv,
1229 enum plane plane, bool state)
b24e7179
JB
1230{
1231 int reg;
1232 u32 val;
931872fc 1233 bool cur_state;
b24e7179
JB
1234
1235 reg = DSPCNTR(plane);
1236 val = I915_READ(reg);
931872fc
CW
1237 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238 WARN(cur_state != state,
1239 "plane %c assertion failure (expected %s, current %s)\n",
1240 plane_name(plane), state_string(state), state_string(cur_state));
b24e7179
JB
1241}
1242
931872fc
CW
1243#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1245
b24e7179
JB
1246static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1248{
1249 int reg, i;
1250 u32 val;
1251 int cur_pipe;
1252
19ec1358 1253 /* Planes are fixed to pipes on ILK+ */
28c05794
AJ
1254 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255 reg = DSPCNTR(pipe);
1256 val = I915_READ(reg);
1257 WARN((val & DISPLAY_PLANE_ENABLE),
1258 "plane %c assertion failure, should be disabled but not\n",
1259 plane_name(pipe));
19ec1358 1260 return;
28c05794 1261 }
19ec1358 1262
b24e7179
JB
1263 /* Need to check both planes against the pipe */
1264 for (i = 0; i < 2; i++) {
1265 reg = DSPCNTR(i);
1266 val = I915_READ(reg);
1267 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268 DISPPLANE_SEL_PIPE_SHIFT;
1269 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1270 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271 plane_name(i), pipe_name(pipe));
b24e7179
JB
1272 }
1273}
1274
92f2584a
JB
1275static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1276{
1277 u32 val;
1278 bool enabled;
1279
9d82aa17
ED
1280 if (HAS_PCH_LPT(dev_priv->dev)) {
1281 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282 return;
1283 }
1284
92f2584a
JB
1285 val = I915_READ(PCH_DREF_CONTROL);
1286 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287 DREF_SUPERSPREAD_SOURCE_MASK));
1288 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1289}
1290
1291static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1293{
1294 int reg;
1295 u32 val;
1296 bool enabled;
1297
1298 reg = TRANSCONF(pipe);
1299 val = I915_READ(reg);
1300 enabled = !!(val & TRANS_ENABLE);
9db4a9c7
JB
1301 WARN(enabled,
1302 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303 pipe_name(pipe));
92f2584a
JB
1304}
1305
4e634389
KP
1306static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1308{
1309 if ((val & DP_PORT_EN) == 0)
1310 return false;
1311
1312 if (HAS_PCH_CPT(dev_priv->dev)) {
1313 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else {
1318 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319 return false;
1320 }
1321 return true;
1322}
1323
1519b995
KP
1324static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe, u32 val)
1326{
1327 if ((val & PORT_ENABLE) == 0)
1328 return false;
1329
1330 if (HAS_PCH_CPT(dev_priv->dev)) {
1331 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332 return false;
1333 } else {
1334 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335 return false;
1336 }
1337 return true;
1338}
1339
1340static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, u32 val)
1342{
1343 if ((val & LVDS_PORT_EN) == 0)
1344 return false;
1345
1346 if (HAS_PCH_CPT(dev_priv->dev)) {
1347 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348 return false;
1349 } else {
1350 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351 return false;
1352 }
1353 return true;
1354}
1355
1356static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357 enum pipe pipe, u32 val)
1358{
1359 if ((val & ADPA_DAC_ENABLE) == 0)
1360 return false;
1361 if (HAS_PCH_CPT(dev_priv->dev)) {
1362 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363 return false;
1364 } else {
1365 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366 return false;
1367 }
1368 return true;
1369}
1370
291906f1 1371static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0575e92 1372 enum pipe pipe, int reg, u32 port_sel)
291906f1 1373{
47a05eca 1374 u32 val = I915_READ(reg);
4e634389 1375 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1376 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1377 reg, pipe_name(pipe));
de9a35ab 1378
75c5da27
DV
1379 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1380 && (val & DP_PIPEB_SELECT),
de9a35ab 1381 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1382}
1383
1384static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1385 enum pipe pipe, int reg)
1386{
47a05eca 1387 u32 val = I915_READ(reg);
e9a851ed 1388 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1389 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
9db4a9c7 1390 reg, pipe_name(pipe));
de9a35ab 1391
75c5da27
DV
1392 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1393 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1394 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1395}
1396
1397static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
1399{
1400 int reg;
1401 u32 val;
291906f1 1402
f0575e92
KP
1403 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1404 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1405 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1
JB
1406
1407 reg = PCH_ADPA;
1408 val = I915_READ(reg);
e9a851ed 1409 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1410 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1411 pipe_name(pipe));
291906f1
JB
1412
1413 reg = PCH_LVDS;
1414 val = I915_READ(reg);
e9a851ed 1415 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1416 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1417 pipe_name(pipe));
291906f1
JB
1418
1419 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1420 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1421 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1422}
1423
63d7bbe9
JB
1424/**
1425 * intel_enable_pll - enable a PLL
1426 * @dev_priv: i915 private structure
1427 * @pipe: pipe PLL to enable
1428 *
1429 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1430 * make sure the PLL reg is writable first though, since the panel write
1431 * protect mechanism may be enabled.
1432 *
1433 * Note! This is for pre-ILK only.
7434a255
TR
1434 *
1435 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
63d7bbe9 1436 */
a37b9b34 1437static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
63d7bbe9
JB
1438{
1439 int reg;
1440 u32 val;
1441
1442 /* No really, not for ILK+ */
a0c4da24 1443 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
63d7bbe9
JB
1444
1445 /* PLL is protected by panel, make sure we can write it */
1446 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1447 assert_panel_unlocked(dev_priv, pipe);
1448
1449 reg = DPLL(pipe);
1450 val = I915_READ(reg);
1451 val |= DPLL_VCO_ENABLE;
1452
1453 /* We do this three times for luck */
1454 I915_WRITE(reg, val);
1455 POSTING_READ(reg);
1456 udelay(150); /* wait for warmup */
1457 I915_WRITE(reg, val);
1458 POSTING_READ(reg);
1459 udelay(150); /* wait for warmup */
1460 I915_WRITE(reg, val);
1461 POSTING_READ(reg);
1462 udelay(150); /* wait for warmup */
1463}
1464
1465/**
1466 * intel_disable_pll - disable a PLL
1467 * @dev_priv: i915 private structure
1468 * @pipe: pipe PLL to disable
1469 *
1470 * Disable the PLL for @pipe, making sure the pipe is off first.
1471 *
1472 * Note! This is for pre-ILK only.
1473 */
1474static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1475{
1476 int reg;
1477 u32 val;
1478
1479 /* Don't disable pipe A or pipe A PLLs if needed */
1480 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1481 return;
1482
1483 /* Make sure the pipe isn't still relying on us */
1484 assert_pipe_disabled(dev_priv, pipe);
1485
1486 reg = DPLL(pipe);
1487 val = I915_READ(reg);
1488 val &= ~DPLL_VCO_ENABLE;
1489 I915_WRITE(reg, val);
1490 POSTING_READ(reg);
1491}
1492
a416edef
ED
1493/* SBI access */
1494static void
1495intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1496{
1497 unsigned long flags;
1498
1499 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1500 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1501 100)) {
1502 DRM_ERROR("timeout waiting for SBI to become ready\n");
1503 goto out_unlock;
1504 }
1505
1506 I915_WRITE(SBI_ADDR,
1507 (reg << 16));
1508 I915_WRITE(SBI_DATA,
1509 value);
1510 I915_WRITE(SBI_CTL_STAT,
1511 SBI_BUSY |
1512 SBI_CTL_OP_CRWR);
1513
39fb50f6 1514 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1515 100)) {
1516 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1517 goto out_unlock;
1518 }
1519
1520out_unlock:
1521 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1522}
1523
1524static u32
1525intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1526{
1527 unsigned long flags;
39fb50f6 1528 u32 value = 0;
a416edef
ED
1529
1530 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
39fb50f6 1531 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
a416edef
ED
1532 100)) {
1533 DRM_ERROR("timeout waiting for SBI to become ready\n");
1534 goto out_unlock;
1535 }
1536
1537 I915_WRITE(SBI_ADDR,
1538 (reg << 16));
1539 I915_WRITE(SBI_CTL_STAT,
1540 SBI_BUSY |
1541 SBI_CTL_OP_CRRD);
1542
39fb50f6 1543 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
a416edef
ED
1544 100)) {
1545 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1546 goto out_unlock;
1547 }
1548
1549 value = I915_READ(SBI_DATA);
1550
1551out_unlock:
1552 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1553 return value;
1554}
1555
92f2584a
JB
1556/**
1557 * intel_enable_pch_pll - enable PCH PLL
1558 * @dev_priv: i915 private structure
1559 * @pipe: pipe PLL to enable
1560 *
1561 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1562 * drives the transcoder clock.
1563 */
ee7b9f93 1564static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1565{
ee7b9f93 1566 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
48da64a8 1567 struct intel_pch_pll *pll;
92f2584a
JB
1568 int reg;
1569 u32 val;
1570
48da64a8 1571 /* PCH PLLs only available on ILK, SNB and IVB */
92f2584a 1572 BUG_ON(dev_priv->info->gen < 5);
48da64a8
CW
1573 pll = intel_crtc->pch_pll;
1574 if (pll == NULL)
1575 return;
1576
1577 if (WARN_ON(pll->refcount == 0))
1578 return;
ee7b9f93
JB
1579
1580 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1581 pll->pll_reg, pll->active, pll->on,
1582 intel_crtc->base.base.id);
92f2584a
JB
1583
1584 /* PCH refclock must be enabled first */
1585 assert_pch_refclk_enabled(dev_priv);
1586
ee7b9f93 1587 if (pll->active++ && pll->on) {
92b27b08 1588 assert_pch_pll_enabled(dev_priv, pll, NULL);
ee7b9f93
JB
1589 return;
1590 }
1591
1592 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1593
1594 reg = pll->pll_reg;
92f2584a
JB
1595 val = I915_READ(reg);
1596 val |= DPLL_VCO_ENABLE;
1597 I915_WRITE(reg, val);
1598 POSTING_READ(reg);
1599 udelay(200);
ee7b9f93
JB
1600
1601 pll->on = true;
92f2584a
JB
1602}
1603
ee7b9f93 1604static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
92f2584a 1605{
ee7b9f93
JB
1606 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1607 struct intel_pch_pll *pll = intel_crtc->pch_pll;
92f2584a 1608 int reg;
ee7b9f93 1609 u32 val;
4c609cb8 1610
92f2584a
JB
1611 /* PCH only available on ILK+ */
1612 BUG_ON(dev_priv->info->gen < 5);
ee7b9f93
JB
1613 if (pll == NULL)
1614 return;
92f2584a 1615
48da64a8
CW
1616 if (WARN_ON(pll->refcount == 0))
1617 return;
7a419866 1618
ee7b9f93
JB
1619 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1620 pll->pll_reg, pll->active, pll->on,
1621 intel_crtc->base.base.id);
7a419866 1622
48da64a8 1623 if (WARN_ON(pll->active == 0)) {
92b27b08 1624 assert_pch_pll_disabled(dev_priv, pll, NULL);
48da64a8
CW
1625 return;
1626 }
1627
ee7b9f93 1628 if (--pll->active) {
92b27b08 1629 assert_pch_pll_enabled(dev_priv, pll, NULL);
7a419866 1630 return;
ee7b9f93
JB
1631 }
1632
1633 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1634
1635 /* Make sure transcoder isn't still depending on us */
1636 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
7a419866 1637
ee7b9f93 1638 reg = pll->pll_reg;
92f2584a
JB
1639 val = I915_READ(reg);
1640 val &= ~DPLL_VCO_ENABLE;
1641 I915_WRITE(reg, val);
1642 POSTING_READ(reg);
1643 udelay(200);
ee7b9f93
JB
1644
1645 pll->on = false;
92f2584a
JB
1646}
1647
040484af
JB
1648static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1649 enum pipe pipe)
1650{
1651 int reg;
5f7f726d 1652 u32 val, pipeconf_val;
7c26e5c6 1653 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
040484af
JB
1654
1655 /* PCH only available on ILK+ */
1656 BUG_ON(dev_priv->info->gen < 5);
1657
1658 /* Make sure PCH DPLL is enabled */
92b27b08
CW
1659 assert_pch_pll_enabled(dev_priv,
1660 to_intel_crtc(crtc)->pch_pll,
1661 to_intel_crtc(crtc));
040484af
JB
1662
1663 /* FDI must be feeding us bits for PCH ports */
1664 assert_fdi_tx_enabled(dev_priv, pipe);
1665 assert_fdi_rx_enabled(dev_priv, pipe);
1666
59c859d6
ED
1667 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1668 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1669 return;
1670 }
040484af
JB
1671 reg = TRANSCONF(pipe);
1672 val = I915_READ(reg);
5f7f726d 1673 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c
JB
1674
1675 if (HAS_PCH_IBX(dev_priv->dev)) {
1676 /*
1677 * make the BPC in transcoder be consistent with
1678 * that in pipeconf reg.
1679 */
1680 val &= ~PIPE_BPC_MASK;
5f7f726d 1681 val |= pipeconf_val & PIPE_BPC_MASK;
e9bcff5c 1682 }
5f7f726d
PZ
1683
1684 val &= ~TRANS_INTERLACE_MASK;
1685 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
7c26e5c6
PZ
1686 if (HAS_PCH_IBX(dev_priv->dev) &&
1687 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1688 val |= TRANS_LEGACY_INTERLACED_ILK;
1689 else
1690 val |= TRANS_INTERLACED;
5f7f726d
PZ
1691 else
1692 val |= TRANS_PROGRESSIVE;
1693
040484af
JB
1694 I915_WRITE(reg, val | TRANS_ENABLE);
1695 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1696 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1697}
1698
1699static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1700 enum pipe pipe)
1701{
1702 int reg;
1703 u32 val;
1704
1705 /* FDI relies on the transcoder */
1706 assert_fdi_tx_disabled(dev_priv, pipe);
1707 assert_fdi_rx_disabled(dev_priv, pipe);
1708
291906f1
JB
1709 /* Ports must be off as well */
1710 assert_pch_ports_disabled(dev_priv, pipe);
1711
040484af
JB
1712 reg = TRANSCONF(pipe);
1713 val = I915_READ(reg);
1714 val &= ~TRANS_ENABLE;
1715 I915_WRITE(reg, val);
1716 /* wait for PCH transcoder off, transcoder state */
1717 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4c9c18c2 1718 DRM_ERROR("failed to disable transcoder %d\n", pipe);
040484af
JB
1719}
1720
b24e7179 1721/**
309cfea8 1722 * intel_enable_pipe - enable a pipe, asserting requirements
b24e7179
JB
1723 * @dev_priv: i915 private structure
1724 * @pipe: pipe to enable
040484af 1725 * @pch_port: on ILK+, is this pipe driving a PCH port or not
b24e7179
JB
1726 *
1727 * Enable @pipe, making sure that various hardware specific requirements
1728 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1729 *
1730 * @pipe should be %PIPE_A or %PIPE_B.
1731 *
1732 * Will wait until the pipe is actually running (i.e. first vblank) before
1733 * returning.
1734 */
040484af
JB
1735static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1736 bool pch_port)
b24e7179
JB
1737{
1738 int reg;
1739 u32 val;
1740
1741 /*
1742 * A pipe without a PLL won't actually be able to drive bits from
1743 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1744 * need the check.
1745 */
1746 if (!HAS_PCH_SPLIT(dev_priv->dev))
1747 assert_pll_enabled(dev_priv, pipe);
040484af
JB
1748 else {
1749 if (pch_port) {
1750 /* if driving the PCH, we need FDI enabled */
1751 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1752 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1753 }
1754 /* FIXME: assert CPU port conditions for SNB+ */
1755 }
b24e7179
JB
1756
1757 reg = PIPECONF(pipe);
1758 val = I915_READ(reg);
00d70b15
CW
1759 if (val & PIPECONF_ENABLE)
1760 return;
1761
1762 I915_WRITE(reg, val | PIPECONF_ENABLE);
b24e7179
JB
1763 intel_wait_for_vblank(dev_priv->dev, pipe);
1764}
1765
1766/**
309cfea8 1767 * intel_disable_pipe - disable a pipe, asserting requirements
b24e7179
JB
1768 * @dev_priv: i915 private structure
1769 * @pipe: pipe to disable
1770 *
1771 * Disable @pipe, making sure that various hardware specific requirements
1772 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1773 *
1774 * @pipe should be %PIPE_A or %PIPE_B.
1775 *
1776 * Will wait until the pipe has shut down before returning.
1777 */
1778static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1779 enum pipe pipe)
1780{
1781 int reg;
1782 u32 val;
1783
1784 /*
1785 * Make sure planes won't keep trying to pump pixels to us,
1786 * or we might hang the display.
1787 */
1788 assert_planes_disabled(dev_priv, pipe);
1789
1790 /* Don't disable pipe A or pipe A PLLs if needed */
1791 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1792 return;
1793
1794 reg = PIPECONF(pipe);
1795 val = I915_READ(reg);
00d70b15
CW
1796 if ((val & PIPECONF_ENABLE) == 0)
1797 return;
1798
1799 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
b24e7179
JB
1800 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1801}
1802
d74362c9
KP
1803/*
1804 * Plane regs are double buffered, going from enabled->disabled needs a
1805 * trigger in order to latch. The display address reg provides this.
1806 */
6f1d69b0 1807void intel_flush_display_plane(struct drm_i915_private *dev_priv,
d74362c9
KP
1808 enum plane plane)
1809{
1810 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1811 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1812}
1813
b24e7179
JB
1814/**
1815 * intel_enable_plane - enable a display plane on a given pipe
1816 * @dev_priv: i915 private structure
1817 * @plane: plane to enable
1818 * @pipe: pipe being fed
1819 *
1820 * Enable @plane on @pipe, making sure that @pipe is running first.
1821 */
1822static void intel_enable_plane(struct drm_i915_private *dev_priv,
1823 enum plane plane, enum pipe pipe)
1824{
1825 int reg;
1826 u32 val;
1827
1828 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1829 assert_pipe_enabled(dev_priv, pipe);
1830
1831 reg = DSPCNTR(plane);
1832 val = I915_READ(reg);
00d70b15
CW
1833 if (val & DISPLAY_PLANE_ENABLE)
1834 return;
1835
1836 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
d74362c9 1837 intel_flush_display_plane(dev_priv, plane);
b24e7179
JB
1838 intel_wait_for_vblank(dev_priv->dev, pipe);
1839}
1840
b24e7179
JB
1841/**
1842 * intel_disable_plane - disable a display plane
1843 * @dev_priv: i915 private structure
1844 * @plane: plane to disable
1845 * @pipe: pipe consuming the data
1846 *
1847 * Disable @plane; should be an independent operation.
1848 */
1849static void intel_disable_plane(struct drm_i915_private *dev_priv,
1850 enum plane plane, enum pipe pipe)
1851{
1852 int reg;
1853 u32 val;
1854
1855 reg = DSPCNTR(plane);
1856 val = I915_READ(reg);
00d70b15
CW
1857 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1858 return;
1859
1860 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
b24e7179
JB
1861 intel_flush_display_plane(dev_priv, plane);
1862 intel_wait_for_vblank(dev_priv->dev, pipe);
1863}
1864
127bd2ac 1865int
48b956c5 1866intel_pin_and_fence_fb_obj(struct drm_device *dev,
05394f39 1867 struct drm_i915_gem_object *obj,
919926ae 1868 struct intel_ring_buffer *pipelined)
6b95a207 1869{
ce453d81 1870 struct drm_i915_private *dev_priv = dev->dev_private;
6b95a207
KH
1871 u32 alignment;
1872 int ret;
1873
05394f39 1874 switch (obj->tiling_mode) {
6b95a207 1875 case I915_TILING_NONE:
534843da
CW
1876 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1877 alignment = 128 * 1024;
a6c45cf0 1878 else if (INTEL_INFO(dev)->gen >= 4)
534843da
CW
1879 alignment = 4 * 1024;
1880 else
1881 alignment = 64 * 1024;
6b95a207
KH
1882 break;
1883 case I915_TILING_X:
1884 /* pin() will align the object as required by fence */
1885 alignment = 0;
1886 break;
1887 case I915_TILING_Y:
1888 /* FIXME: Is this true? */
1889 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1890 return -EINVAL;
1891 default:
1892 BUG();
1893 }
1894
ce453d81 1895 dev_priv->mm.interruptible = false;
2da3b9b9 1896 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
48b956c5 1897 if (ret)
ce453d81 1898 goto err_interruptible;
6b95a207
KH
1899
1900 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1901 * fence, whereas 965+ only requires a fence if using
1902 * framebuffer compression. For simplicity, we always install
1903 * a fence as the cost is not that onerous.
1904 */
06d98131 1905 ret = i915_gem_object_get_fence(obj);
9a5a53b3
CW
1906 if (ret)
1907 goto err_unpin;
1690e1eb 1908
9a5a53b3 1909 i915_gem_object_pin_fence(obj);
6b95a207 1910
ce453d81 1911 dev_priv->mm.interruptible = true;
6b95a207 1912 return 0;
48b956c5
CW
1913
1914err_unpin:
1915 i915_gem_object_unpin(obj);
ce453d81
CW
1916err_interruptible:
1917 dev_priv->mm.interruptible = true;
48b956c5 1918 return ret;
6b95a207
KH
1919}
1920
1690e1eb
CW
1921void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1922{
1923 i915_gem_object_unpin_fence(obj);
1924 i915_gem_object_unpin(obj);
1925}
1926
c2c75131
DV
1927/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1928 * is assumed to be a power-of-two. */
1929static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1930 unsigned int bpp,
1931 unsigned int pitch)
1932{
1933 int tile_rows, tiles;
1934
1935 tile_rows = *y / 8;
1936 *y %= 8;
1937 tiles = *x / (512/bpp);
1938 *x %= 512/bpp;
1939
1940 return tile_rows * pitch * 8 + tiles * 4096;
1941}
1942
17638cd6
JB
1943static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1944 int x, int y)
81255565
JB
1945{
1946 struct drm_device *dev = crtc->dev;
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1949 struct intel_framebuffer *intel_fb;
05394f39 1950 struct drm_i915_gem_object *obj;
81255565 1951 int plane = intel_crtc->plane;
e506a0c6 1952 unsigned long linear_offset;
81255565 1953 u32 dspcntr;
5eddb70b 1954 u32 reg;
81255565
JB
1955
1956 switch (plane) {
1957 case 0:
1958 case 1:
1959 break;
1960 default:
1961 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1962 return -EINVAL;
1963 }
1964
1965 intel_fb = to_intel_framebuffer(fb);
1966 obj = intel_fb->obj;
81255565 1967
5eddb70b
CW
1968 reg = DSPCNTR(plane);
1969 dspcntr = I915_READ(reg);
81255565
JB
1970 /* Mask out pixel format bits in case we change it */
1971 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1972 switch (fb->bits_per_pixel) {
1973 case 8:
1974 dspcntr |= DISPPLANE_8BPP;
1975 break;
1976 case 16:
1977 if (fb->depth == 15)
1978 dspcntr |= DISPPLANE_15_16BPP;
1979 else
1980 dspcntr |= DISPPLANE_16BPP;
1981 break;
1982 case 24:
1983 case 32:
1984 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1985 break;
1986 default:
17638cd6 1987 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
81255565
JB
1988 return -EINVAL;
1989 }
a6c45cf0 1990 if (INTEL_INFO(dev)->gen >= 4) {
05394f39 1991 if (obj->tiling_mode != I915_TILING_NONE)
81255565
JB
1992 dspcntr |= DISPPLANE_TILED;
1993 else
1994 dspcntr &= ~DISPPLANE_TILED;
1995 }
1996
5eddb70b 1997 I915_WRITE(reg, dspcntr);
81255565 1998
e506a0c6 1999 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
81255565 2000
c2c75131
DV
2001 if (INTEL_INFO(dev)->gen >= 4) {
2002 intel_crtc->dspaddr_offset =
2003 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2004 fb->bits_per_pixel / 8,
2005 fb->pitches[0]);
2006 linear_offset -= intel_crtc->dspaddr_offset;
2007 } else {
e506a0c6 2008 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2009 }
e506a0c6
DV
2010
2011 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2012 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2013 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2014 if (INTEL_INFO(dev)->gen >= 4) {
c2c75131
DV
2015 I915_MODIFY_DISPBASE(DSPSURF(plane),
2016 obj->gtt_offset + intel_crtc->dspaddr_offset);
5eddb70b 2017 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2018 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2019 } else
e506a0c6 2020 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
5eddb70b 2021 POSTING_READ(reg);
81255565 2022
17638cd6
JB
2023 return 0;
2024}
2025
2026static int ironlake_update_plane(struct drm_crtc *crtc,
2027 struct drm_framebuffer *fb, int x, int y)
2028{
2029 struct drm_device *dev = crtc->dev;
2030 struct drm_i915_private *dev_priv = dev->dev_private;
2031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2032 struct intel_framebuffer *intel_fb;
2033 struct drm_i915_gem_object *obj;
2034 int plane = intel_crtc->plane;
e506a0c6 2035 unsigned long linear_offset;
17638cd6
JB
2036 u32 dspcntr;
2037 u32 reg;
2038
2039 switch (plane) {
2040 case 0:
2041 case 1:
27f8227b 2042 case 2:
17638cd6
JB
2043 break;
2044 default:
2045 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046 return -EINVAL;
2047 }
2048
2049 intel_fb = to_intel_framebuffer(fb);
2050 obj = intel_fb->obj;
2051
2052 reg = DSPCNTR(plane);
2053 dspcntr = I915_READ(reg);
2054 /* Mask out pixel format bits in case we change it */
2055 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056 switch (fb->bits_per_pixel) {
2057 case 8:
2058 dspcntr |= DISPPLANE_8BPP;
2059 break;
2060 case 16:
2061 if (fb->depth != 16)
2062 return -EINVAL;
2063
2064 dspcntr |= DISPPLANE_16BPP;
2065 break;
2066 case 24:
2067 case 32:
2068 if (fb->depth == 24)
2069 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2070 else if (fb->depth == 30)
2071 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2072 else
2073 return -EINVAL;
2074 break;
2075 default:
2076 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2077 return -EINVAL;
2078 }
2079
2080 if (obj->tiling_mode != I915_TILING_NONE)
2081 dspcntr |= DISPPLANE_TILED;
2082 else
2083 dspcntr &= ~DISPPLANE_TILED;
2084
2085 /* must disable */
2086 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2087
2088 I915_WRITE(reg, dspcntr);
2089
e506a0c6 2090 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
c2c75131
DV
2091 intel_crtc->dspaddr_offset =
2092 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2093 fb->bits_per_pixel / 8,
2094 fb->pitches[0]);
2095 linear_offset -= intel_crtc->dspaddr_offset;
17638cd6 2096
e506a0c6
DV
2097 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2098 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
01f2c773 2099 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
c2c75131
DV
2100 I915_MODIFY_DISPBASE(DSPSURF(plane),
2101 obj->gtt_offset + intel_crtc->dspaddr_offset);
17638cd6 2102 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2103 I915_WRITE(DSPLINOFF(plane), linear_offset);
17638cd6
JB
2104 POSTING_READ(reg);
2105
2106 return 0;
2107}
2108
2109/* Assume fb object is pinned & idle & fenced and just update base pointers */
2110static int
2111intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2112 int x, int y, enum mode_set_atomic state)
2113{
2114 struct drm_device *dev = crtc->dev;
2115 struct drm_i915_private *dev_priv = dev->dev_private;
17638cd6 2116
6b8e6ed0
CW
2117 if (dev_priv->display.disable_fbc)
2118 dev_priv->display.disable_fbc(dev);
3dec0095 2119 intel_increase_pllclock(crtc);
81255565 2120
6b8e6ed0 2121 return dev_priv->display.update_plane(crtc, fb, x, y);
81255565
JB
2122}
2123
14667a4b
CW
2124static int
2125intel_finish_fb(struct drm_framebuffer *old_fb)
2126{
2127 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2128 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2129 bool was_interruptible = dev_priv->mm.interruptible;
2130 int ret;
2131
2132 wait_event(dev_priv->pending_flip_queue,
2133 atomic_read(&dev_priv->mm.wedged) ||
2134 atomic_read(&obj->pending_flip) == 0);
2135
2136 /* Big Hammer, we also need to ensure that any pending
2137 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2138 * current scanout is retired before unpinning the old
2139 * framebuffer.
2140 *
2141 * This should only fail upon a hung GPU, in which case we
2142 * can safely continue.
2143 */
2144 dev_priv->mm.interruptible = false;
2145 ret = i915_gem_object_finish_gpu(obj);
2146 dev_priv->mm.interruptible = was_interruptible;
2147
2148 return ret;
2149}
2150
5c3b82e2 2151static int
3c4fdcfb 2152intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
94352cf9 2153 struct drm_framebuffer *fb)
79e53945
JB
2154{
2155 struct drm_device *dev = crtc->dev;
6b8e6ed0 2156 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
2157 struct drm_i915_master_private *master_priv;
2158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
94352cf9 2159 struct drm_framebuffer *old_fb;
5c3b82e2 2160 int ret;
79e53945
JB
2161
2162 /* no fb bound */
94352cf9 2163 if (!fb) {
a5071c2f 2164 DRM_ERROR("No FB bound\n");
5c3b82e2
CW
2165 return 0;
2166 }
2167
5826eca5
ED
2168 if(intel_crtc->plane > dev_priv->num_pipe) {
2169 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2170 intel_crtc->plane,
2171 dev_priv->num_pipe);
5c3b82e2 2172 return -EINVAL;
79e53945
JB
2173 }
2174
5c3b82e2 2175 mutex_lock(&dev->struct_mutex);
265db958 2176 ret = intel_pin_and_fence_fb_obj(dev,
94352cf9 2177 to_intel_framebuffer(fb)->obj,
919926ae 2178 NULL);
5c3b82e2
CW
2179 if (ret != 0) {
2180 mutex_unlock(&dev->struct_mutex);
a5071c2f 2181 DRM_ERROR("pin & fence failed\n");
5c3b82e2
CW
2182 return ret;
2183 }
79e53945 2184
94352cf9
DV
2185 if (crtc->fb)
2186 intel_finish_fb(crtc->fb);
265db958 2187
94352cf9 2188 ret = dev_priv->display.update_plane(crtc, fb, x, y);
4e6cfefc 2189 if (ret) {
94352cf9 2190 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
5c3b82e2 2191 mutex_unlock(&dev->struct_mutex);
a5071c2f 2192 DRM_ERROR("failed to update base address\n");
4e6cfefc 2193 return ret;
79e53945 2194 }
3c4fdcfb 2195
94352cf9
DV
2196 old_fb = crtc->fb;
2197 crtc->fb = fb;
6c4c86f5
DV
2198 crtc->x = x;
2199 crtc->y = y;
94352cf9 2200
b7f1de28
CW
2201 if (old_fb) {
2202 intel_wait_for_vblank(dev, intel_crtc->pipe);
1690e1eb 2203 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
b7f1de28 2204 }
652c393a 2205
6b8e6ed0 2206 intel_update_fbc(dev);
5c3b82e2 2207 mutex_unlock(&dev->struct_mutex);
79e53945
JB
2208
2209 if (!dev->primary->master)
5c3b82e2 2210 return 0;
79e53945
JB
2211
2212 master_priv = dev->primary->master->driver_priv;
2213 if (!master_priv->sarea_priv)
5c3b82e2 2214 return 0;
79e53945 2215
265db958 2216 if (intel_crtc->pipe) {
79e53945
JB
2217 master_priv->sarea_priv->pipeB_x = x;
2218 master_priv->sarea_priv->pipeB_y = y;
5c3b82e2
CW
2219 } else {
2220 master_priv->sarea_priv->pipeA_x = x;
2221 master_priv->sarea_priv->pipeA_y = y;
79e53945 2222 }
5c3b82e2
CW
2223
2224 return 0;
79e53945
JB
2225}
2226
5eddb70b 2227static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
32f9d658
ZW
2228{
2229 struct drm_device *dev = crtc->dev;
2230 struct drm_i915_private *dev_priv = dev->dev_private;
2231 u32 dpa_ctl;
2232
28c97730 2233 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
32f9d658
ZW
2234 dpa_ctl = I915_READ(DP_A);
2235 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2236
2237 if (clock < 200000) {
2238 u32 temp;
2239 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2240 /* workaround for 160Mhz:
2241 1) program 0x4600c bits 15:0 = 0x8124
2242 2) program 0x46010 bit 0 = 1
2243 3) program 0x46034 bit 24 = 1
2244 4) program 0x64000 bit 14 = 1
2245 */
2246 temp = I915_READ(0x4600c);
2247 temp &= 0xffff0000;
2248 I915_WRITE(0x4600c, temp | 0x8124);
2249
2250 temp = I915_READ(0x46010);
2251 I915_WRITE(0x46010, temp | 1);
2252
2253 temp = I915_READ(0x46034);
2254 I915_WRITE(0x46034, temp | (1 << 24));
2255 } else {
2256 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2257 }
2258 I915_WRITE(DP_A, dpa_ctl);
2259
5eddb70b 2260 POSTING_READ(DP_A);
32f9d658
ZW
2261 udelay(500);
2262}
2263
5e84e1a4
ZW
2264static void intel_fdi_normal_train(struct drm_crtc *crtc)
2265{
2266 struct drm_device *dev = crtc->dev;
2267 struct drm_i915_private *dev_priv = dev->dev_private;
2268 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2269 int pipe = intel_crtc->pipe;
2270 u32 reg, temp;
2271
2272 /* enable normal train */
2273 reg = FDI_TX_CTL(pipe);
2274 temp = I915_READ(reg);
61e499bf 2275 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
2276 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2277 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
2278 } else {
2279 temp &= ~FDI_LINK_TRAIN_NONE;
2280 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 2281 }
5e84e1a4
ZW
2282 I915_WRITE(reg, temp);
2283
2284 reg = FDI_RX_CTL(pipe);
2285 temp = I915_READ(reg);
2286 if (HAS_PCH_CPT(dev)) {
2287 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2288 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2289 } else {
2290 temp &= ~FDI_LINK_TRAIN_NONE;
2291 temp |= FDI_LINK_TRAIN_NONE;
2292 }
2293 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2294
2295 /* wait one idle pattern time */
2296 POSTING_READ(reg);
2297 udelay(1000);
357555c0
JB
2298
2299 /* IVB wants error correction enabled */
2300 if (IS_IVYBRIDGE(dev))
2301 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2302 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
2303}
2304
291427f5
JB
2305static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2306{
2307 struct drm_i915_private *dev_priv = dev->dev_private;
2308 u32 flags = I915_READ(SOUTH_CHICKEN1);
2309
2310 flags |= FDI_PHASE_SYNC_OVR(pipe);
2311 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2312 flags |= FDI_PHASE_SYNC_EN(pipe);
2313 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2314 POSTING_READ(SOUTH_CHICKEN1);
2315}
2316
8db9d77b
ZW
2317/* The FDI link training functions for ILK/Ibexpeak. */
2318static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2319{
2320 struct drm_device *dev = crtc->dev;
2321 struct drm_i915_private *dev_priv = dev->dev_private;
2322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2323 int pipe = intel_crtc->pipe;
0fc932b8 2324 int plane = intel_crtc->plane;
5eddb70b 2325 u32 reg, temp, tries;
8db9d77b 2326
0fc932b8
JB
2327 /* FDI needs bits from pipe & plane first */
2328 assert_pipe_enabled(dev_priv, pipe);
2329 assert_plane_enabled(dev_priv, plane);
2330
e1a44743
AJ
2331 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2332 for train result */
5eddb70b
CW
2333 reg = FDI_RX_IMR(pipe);
2334 temp = I915_READ(reg);
e1a44743
AJ
2335 temp &= ~FDI_RX_SYMBOL_LOCK;
2336 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2337 I915_WRITE(reg, temp);
2338 I915_READ(reg);
e1a44743
AJ
2339 udelay(150);
2340
8db9d77b 2341 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2342 reg = FDI_TX_CTL(pipe);
2343 temp = I915_READ(reg);
77ffb597
AJ
2344 temp &= ~(7 << 19);
2345 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2346 temp &= ~FDI_LINK_TRAIN_NONE;
2347 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 2348 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2349
5eddb70b
CW
2350 reg = FDI_RX_CTL(pipe);
2351 temp = I915_READ(reg);
8db9d77b
ZW
2352 temp &= ~FDI_LINK_TRAIN_NONE;
2353 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
2354 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2355
2356 POSTING_READ(reg);
8db9d77b
ZW
2357 udelay(150);
2358
5b2adf89 2359 /* Ironlake workaround, enable clock pointer after FDI enable*/
6f06ce18
JB
2360 if (HAS_PCH_IBX(dev)) {
2361 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2362 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2363 FDI_RX_PHASE_SYNC_POINTER_EN);
2364 }
5b2adf89 2365
5eddb70b 2366 reg = FDI_RX_IIR(pipe);
e1a44743 2367 for (tries = 0; tries < 5; tries++) {
5eddb70b 2368 temp = I915_READ(reg);
8db9d77b
ZW
2369 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2370
2371 if ((temp & FDI_RX_BIT_LOCK)) {
2372 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 2373 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
2374 break;
2375 }
8db9d77b 2376 }
e1a44743 2377 if (tries == 5)
5eddb70b 2378 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2379
2380 /* Train 2 */
5eddb70b
CW
2381 reg = FDI_TX_CTL(pipe);
2382 temp = I915_READ(reg);
8db9d77b
ZW
2383 temp &= ~FDI_LINK_TRAIN_NONE;
2384 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2385 I915_WRITE(reg, temp);
8db9d77b 2386
5eddb70b
CW
2387 reg = FDI_RX_CTL(pipe);
2388 temp = I915_READ(reg);
8db9d77b
ZW
2389 temp &= ~FDI_LINK_TRAIN_NONE;
2390 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 2391 I915_WRITE(reg, temp);
8db9d77b 2392
5eddb70b
CW
2393 POSTING_READ(reg);
2394 udelay(150);
8db9d77b 2395
5eddb70b 2396 reg = FDI_RX_IIR(pipe);
e1a44743 2397 for (tries = 0; tries < 5; tries++) {
5eddb70b 2398 temp = I915_READ(reg);
8db9d77b
ZW
2399 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2400
2401 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 2402 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
2403 DRM_DEBUG_KMS("FDI train 2 done.\n");
2404 break;
2405 }
8db9d77b 2406 }
e1a44743 2407 if (tries == 5)
5eddb70b 2408 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2409
2410 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 2411
8db9d77b
ZW
2412}
2413
0206e353 2414static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
2415 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2416 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2417 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2418 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2419};
2420
2421/* The FDI link training functions for SNB/Cougarpoint. */
2422static void gen6_fdi_link_train(struct drm_crtc *crtc)
2423{
2424 struct drm_device *dev = crtc->dev;
2425 struct drm_i915_private *dev_priv = dev->dev_private;
2426 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2427 int pipe = intel_crtc->pipe;
fa37d39e 2428 u32 reg, temp, i, retry;
8db9d77b 2429
e1a44743
AJ
2430 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2431 for train result */
5eddb70b
CW
2432 reg = FDI_RX_IMR(pipe);
2433 temp = I915_READ(reg);
e1a44743
AJ
2434 temp &= ~FDI_RX_SYMBOL_LOCK;
2435 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
2436 I915_WRITE(reg, temp);
2437
2438 POSTING_READ(reg);
e1a44743
AJ
2439 udelay(150);
2440
8db9d77b 2441 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
2442 reg = FDI_TX_CTL(pipe);
2443 temp = I915_READ(reg);
77ffb597
AJ
2444 temp &= ~(7 << 19);
2445 temp |= (intel_crtc->fdi_lanes - 1) << 19;
8db9d77b
ZW
2446 temp &= ~FDI_LINK_TRAIN_NONE;
2447 temp |= FDI_LINK_TRAIN_PATTERN_1;
2448 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2449 /* SNB-B */
2450 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 2451 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 2452
5eddb70b
CW
2453 reg = FDI_RX_CTL(pipe);
2454 temp = I915_READ(reg);
8db9d77b
ZW
2455 if (HAS_PCH_CPT(dev)) {
2456 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2457 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2458 } else {
2459 temp &= ~FDI_LINK_TRAIN_NONE;
2460 temp |= FDI_LINK_TRAIN_PATTERN_1;
2461 }
5eddb70b
CW
2462 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2463
2464 POSTING_READ(reg);
8db9d77b
ZW
2465 udelay(150);
2466
291427f5
JB
2467 if (HAS_PCH_CPT(dev))
2468 cpt_phase_pointer_enable(dev, pipe);
2469
0206e353 2470 for (i = 0; i < 4; i++) {
5eddb70b
CW
2471 reg = FDI_TX_CTL(pipe);
2472 temp = I915_READ(reg);
8db9d77b
ZW
2473 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2474 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2475 I915_WRITE(reg, temp);
2476
2477 POSTING_READ(reg);
8db9d77b
ZW
2478 udelay(500);
2479
fa37d39e
SP
2480 for (retry = 0; retry < 5; retry++) {
2481 reg = FDI_RX_IIR(pipe);
2482 temp = I915_READ(reg);
2483 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2484 if (temp & FDI_RX_BIT_LOCK) {
2485 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2486 DRM_DEBUG_KMS("FDI train 1 done.\n");
2487 break;
2488 }
2489 udelay(50);
8db9d77b 2490 }
fa37d39e
SP
2491 if (retry < 5)
2492 break;
8db9d77b
ZW
2493 }
2494 if (i == 4)
5eddb70b 2495 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
2496
2497 /* Train 2 */
5eddb70b
CW
2498 reg = FDI_TX_CTL(pipe);
2499 temp = I915_READ(reg);
8db9d77b
ZW
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_2;
2502 if (IS_GEN6(dev)) {
2503 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2504 /* SNB-B */
2505 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2506 }
5eddb70b 2507 I915_WRITE(reg, temp);
8db9d77b 2508
5eddb70b
CW
2509 reg = FDI_RX_CTL(pipe);
2510 temp = I915_READ(reg);
8db9d77b
ZW
2511 if (HAS_PCH_CPT(dev)) {
2512 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2513 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2514 } else {
2515 temp &= ~FDI_LINK_TRAIN_NONE;
2516 temp |= FDI_LINK_TRAIN_PATTERN_2;
2517 }
5eddb70b
CW
2518 I915_WRITE(reg, temp);
2519
2520 POSTING_READ(reg);
8db9d77b
ZW
2521 udelay(150);
2522
0206e353 2523 for (i = 0; i < 4; i++) {
5eddb70b
CW
2524 reg = FDI_TX_CTL(pipe);
2525 temp = I915_READ(reg);
8db9d77b
ZW
2526 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2527 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
2528 I915_WRITE(reg, temp);
2529
2530 POSTING_READ(reg);
8db9d77b
ZW
2531 udelay(500);
2532
fa37d39e
SP
2533 for (retry = 0; retry < 5; retry++) {
2534 reg = FDI_RX_IIR(pipe);
2535 temp = I915_READ(reg);
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537 if (temp & FDI_RX_SYMBOL_LOCK) {
2538 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2539 DRM_DEBUG_KMS("FDI train 2 done.\n");
2540 break;
2541 }
2542 udelay(50);
8db9d77b 2543 }
fa37d39e
SP
2544 if (retry < 5)
2545 break;
8db9d77b
ZW
2546 }
2547 if (i == 4)
5eddb70b 2548 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
2549
2550 DRM_DEBUG_KMS("FDI train done.\n");
2551}
2552
357555c0
JB
2553/* Manual link training for Ivy Bridge A0 parts */
2554static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2555{
2556 struct drm_device *dev = crtc->dev;
2557 struct drm_i915_private *dev_priv = dev->dev_private;
2558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2559 int pipe = intel_crtc->pipe;
2560 u32 reg, temp, i;
2561
2562 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2563 for train result */
2564 reg = FDI_RX_IMR(pipe);
2565 temp = I915_READ(reg);
2566 temp &= ~FDI_RX_SYMBOL_LOCK;
2567 temp &= ~FDI_RX_BIT_LOCK;
2568 I915_WRITE(reg, temp);
2569
2570 POSTING_READ(reg);
2571 udelay(150);
2572
2573 /* enable CPU FDI TX and PCH FDI RX */
2574 reg = FDI_TX_CTL(pipe);
2575 temp = I915_READ(reg);
2576 temp &= ~(7 << 19);
2577 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2578 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2579 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2580 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2581 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
c4f9c4c2 2582 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2583 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2584
2585 reg = FDI_RX_CTL(pipe);
2586 temp = I915_READ(reg);
2587 temp &= ~FDI_LINK_TRAIN_AUTO;
2588 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2589 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
c4f9c4c2 2590 temp |= FDI_COMPOSITE_SYNC;
357555c0
JB
2591 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2592
2593 POSTING_READ(reg);
2594 udelay(150);
2595
291427f5
JB
2596 if (HAS_PCH_CPT(dev))
2597 cpt_phase_pointer_enable(dev, pipe);
2598
0206e353 2599 for (i = 0; i < 4; i++) {
357555c0
JB
2600 reg = FDI_TX_CTL(pipe);
2601 temp = I915_READ(reg);
2602 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2603 temp |= snb_b_fdi_train_param[i];
2604 I915_WRITE(reg, temp);
2605
2606 POSTING_READ(reg);
2607 udelay(500);
2608
2609 reg = FDI_RX_IIR(pipe);
2610 temp = I915_READ(reg);
2611 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2612
2613 if (temp & FDI_RX_BIT_LOCK ||
2614 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2615 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2616 DRM_DEBUG_KMS("FDI train 1 done.\n");
2617 break;
2618 }
2619 }
2620 if (i == 4)
2621 DRM_ERROR("FDI train 1 fail!\n");
2622
2623 /* Train 2 */
2624 reg = FDI_TX_CTL(pipe);
2625 temp = I915_READ(reg);
2626 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2627 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2628 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2629 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2630 I915_WRITE(reg, temp);
2631
2632 reg = FDI_RX_CTL(pipe);
2633 temp = I915_READ(reg);
2634 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2635 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2636 I915_WRITE(reg, temp);
2637
2638 POSTING_READ(reg);
2639 udelay(150);
2640
0206e353 2641 for (i = 0; i < 4; i++) {
357555c0
JB
2642 reg = FDI_TX_CTL(pipe);
2643 temp = I915_READ(reg);
2644 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645 temp |= snb_b_fdi_train_param[i];
2646 I915_WRITE(reg, temp);
2647
2648 POSTING_READ(reg);
2649 udelay(500);
2650
2651 reg = FDI_RX_IIR(pipe);
2652 temp = I915_READ(reg);
2653 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2654
2655 if (temp & FDI_RX_SYMBOL_LOCK) {
2656 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2657 DRM_DEBUG_KMS("FDI train 2 done.\n");
2658 break;
2659 }
2660 }
2661 if (i == 4)
2662 DRM_ERROR("FDI train 2 fail!\n");
2663
2664 DRM_DEBUG_KMS("FDI train done.\n");
2665}
2666
88cefb6c 2667static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 2668{
88cefb6c 2669 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 2670 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 2671 int pipe = intel_crtc->pipe;
5eddb70b 2672 u32 reg, temp;
79e53945 2673
c64e311e 2674 /* Write the TU size bits so error detection works */
5eddb70b
CW
2675 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2676 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
c64e311e 2677
c98e9dcf 2678 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
2679 reg = FDI_RX_CTL(pipe);
2680 temp = I915_READ(reg);
2681 temp &= ~((0x7 << 19) | (0x7 << 16));
c98e9dcf 2682 temp |= (intel_crtc->fdi_lanes - 1) << 19;
5eddb70b
CW
2683 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2684 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2685
2686 POSTING_READ(reg);
c98e9dcf
JB
2687 udelay(200);
2688
2689 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
2690 temp = I915_READ(reg);
2691 I915_WRITE(reg, temp | FDI_PCDCLK);
2692
2693 POSTING_READ(reg);
c98e9dcf
JB
2694 udelay(200);
2695
bf507ef7
ED
2696 /* On Haswell, the PLL configuration for ports and pipes is handled
2697 * separately, as part of DDI setup */
2698 if (!IS_HASWELL(dev)) {
2699 /* Enable CPU FDI TX PLL, always on for Ironlake */
2700 reg = FDI_TX_CTL(pipe);
2701 temp = I915_READ(reg);
2702 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2703 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 2704
bf507ef7
ED
2705 POSTING_READ(reg);
2706 udelay(100);
2707 }
6be4a607 2708 }
0e23b99d
JB
2709}
2710
88cefb6c
DV
2711static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2712{
2713 struct drm_device *dev = intel_crtc->base.dev;
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 int pipe = intel_crtc->pipe;
2716 u32 reg, temp;
2717
2718 /* Switch from PCDclk to Rawclk */
2719 reg = FDI_RX_CTL(pipe);
2720 temp = I915_READ(reg);
2721 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2722
2723 /* Disable CPU FDI TX PLL */
2724 reg = FDI_TX_CTL(pipe);
2725 temp = I915_READ(reg);
2726 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2727
2728 POSTING_READ(reg);
2729 udelay(100);
2730
2731 reg = FDI_RX_CTL(pipe);
2732 temp = I915_READ(reg);
2733 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2734
2735 /* Wait for the clocks to turn off. */
2736 POSTING_READ(reg);
2737 udelay(100);
2738}
2739
291427f5
JB
2740static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2741{
2742 struct drm_i915_private *dev_priv = dev->dev_private;
2743 u32 flags = I915_READ(SOUTH_CHICKEN1);
2744
2745 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2746 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2747 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2748 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2749 POSTING_READ(SOUTH_CHICKEN1);
2750}
0fc932b8
JB
2751static void ironlake_fdi_disable(struct drm_crtc *crtc)
2752{
2753 struct drm_device *dev = crtc->dev;
2754 struct drm_i915_private *dev_priv = dev->dev_private;
2755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2756 int pipe = intel_crtc->pipe;
2757 u32 reg, temp;
2758
2759 /* disable CPU FDI tx and PCH FDI rx */
2760 reg = FDI_TX_CTL(pipe);
2761 temp = I915_READ(reg);
2762 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2763 POSTING_READ(reg);
2764
2765 reg = FDI_RX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~(0x7 << 16);
2768 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2769 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2770
2771 POSTING_READ(reg);
2772 udelay(100);
2773
2774 /* Ironlake workaround, disable clock pointer after downing FDI */
6f06ce18
JB
2775 if (HAS_PCH_IBX(dev)) {
2776 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
2777 I915_WRITE(FDI_RX_CHICKEN(pipe),
2778 I915_READ(FDI_RX_CHICKEN(pipe) &
6f06ce18 2779 ~FDI_RX_PHASE_SYNC_POINTER_EN));
291427f5
JB
2780 } else if (HAS_PCH_CPT(dev)) {
2781 cpt_phase_pointer_disable(dev, pipe);
6f06ce18 2782 }
0fc932b8
JB
2783
2784 /* still set train pattern 1 */
2785 reg = FDI_TX_CTL(pipe);
2786 temp = I915_READ(reg);
2787 temp &= ~FDI_LINK_TRAIN_NONE;
2788 temp |= FDI_LINK_TRAIN_PATTERN_1;
2789 I915_WRITE(reg, temp);
2790
2791 reg = FDI_RX_CTL(pipe);
2792 temp = I915_READ(reg);
2793 if (HAS_PCH_CPT(dev)) {
2794 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2795 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2796 } else {
2797 temp &= ~FDI_LINK_TRAIN_NONE;
2798 temp |= FDI_LINK_TRAIN_PATTERN_1;
2799 }
2800 /* BPC in FDI rx is consistent with that in PIPECONF */
2801 temp &= ~(0x07 << 16);
2802 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2803 I915_WRITE(reg, temp);
2804
2805 POSTING_READ(reg);
2806 udelay(100);
2807}
2808
e6c3a2a6
CW
2809static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2810{
0f91128d 2811 struct drm_device *dev = crtc->dev;
e6c3a2a6
CW
2812
2813 if (crtc->fb == NULL)
2814 return;
2815
0f91128d
CW
2816 mutex_lock(&dev->struct_mutex);
2817 intel_finish_fb(crtc->fb);
2818 mutex_unlock(&dev->struct_mutex);
e6c3a2a6
CW
2819}
2820
040484af
JB
2821static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2822{
2823 struct drm_device *dev = crtc->dev;
228d3e36 2824 struct intel_encoder *intel_encoder;
040484af
JB
2825
2826 /*
2827 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2828 * must be driven by its own crtc; no sharing is possible.
2829 */
228d3e36 2830 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
040484af 2831
6ee8bab0
ED
2832 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2833 * CPU handles all others */
2834 if (IS_HASWELL(dev)) {
2835 /* It is still unclear how this will work on PPT, so throw up a warning */
2836 WARN_ON(!HAS_PCH_LPT(dev));
2837
228d3e36 2838 if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
6ee8bab0
ED
2839 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2840 return true;
2841 } else {
2842 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
228d3e36 2843 intel_encoder->type);
6ee8bab0
ED
2844 return false;
2845 }
2846 }
2847
228d3e36 2848 switch (intel_encoder->type) {
040484af 2849 case INTEL_OUTPUT_EDP:
228d3e36 2850 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
040484af
JB
2851 return false;
2852 continue;
2853 }
2854 }
2855
2856 return true;
2857}
2858
e615efe4
ED
2859/* Program iCLKIP clock to the desired frequency */
2860static void lpt_program_iclkip(struct drm_crtc *crtc)
2861{
2862 struct drm_device *dev = crtc->dev;
2863 struct drm_i915_private *dev_priv = dev->dev_private;
2864 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2865 u32 temp;
2866
2867 /* It is necessary to ungate the pixclk gate prior to programming
2868 * the divisors, and gate it back when it is done.
2869 */
2870 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2871
2872 /* Disable SSCCTL */
2873 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2874 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2875 SBI_SSCCTL_DISABLE);
2876
2877 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2878 if (crtc->mode.clock == 20000) {
2879 auxdiv = 1;
2880 divsel = 0x41;
2881 phaseinc = 0x20;
2882 } else {
2883 /* The iCLK virtual clock root frequency is in MHz,
2884 * but the crtc->mode.clock in in KHz. To get the divisors,
2885 * it is necessary to divide one by another, so we
2886 * convert the virtual clock precision to KHz here for higher
2887 * precision.
2888 */
2889 u32 iclk_virtual_root_freq = 172800 * 1000;
2890 u32 iclk_pi_range = 64;
2891 u32 desired_divisor, msb_divisor_value, pi_value;
2892
2893 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2894 msb_divisor_value = desired_divisor / iclk_pi_range;
2895 pi_value = desired_divisor % iclk_pi_range;
2896
2897 auxdiv = 0;
2898 divsel = msb_divisor_value - 2;
2899 phaseinc = pi_value;
2900 }
2901
2902 /* This should not happen with any sane values */
2903 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2904 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2905 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2906 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2907
2908 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2909 crtc->mode.clock,
2910 auxdiv,
2911 divsel,
2912 phasedir,
2913 phaseinc);
2914
2915 /* Program SSCDIVINTPHASE6 */
2916 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2917 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2918 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2919 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2920 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2921 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2922 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2923
2924 intel_sbi_write(dev_priv,
2925 SBI_SSCDIVINTPHASE6,
2926 temp);
2927
2928 /* Program SSCAUXDIV */
2929 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2930 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2931 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2932 intel_sbi_write(dev_priv,
2933 SBI_SSCAUXDIV6,
2934 temp);
2935
2936
2937 /* Enable modulator and associated divider */
2938 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2939 temp &= ~SBI_SSCCTL_DISABLE;
2940 intel_sbi_write(dev_priv,
2941 SBI_SSCCTL6,
2942 temp);
2943
2944 /* Wait for initialization time */
2945 udelay(24);
2946
2947 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2948}
2949
f67a559d
JB
2950/*
2951 * Enable PCH resources required for PCH ports:
2952 * - PCH PLLs
2953 * - FDI training & RX/TX
2954 * - update transcoder timings
2955 * - DP transcoding bits
2956 * - transcoder
2957 */
2958static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
2959{
2960 struct drm_device *dev = crtc->dev;
2961 struct drm_i915_private *dev_priv = dev->dev_private;
2962 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2963 int pipe = intel_crtc->pipe;
ee7b9f93 2964 u32 reg, temp;
2c07245f 2965
e7e164db
CW
2966 assert_transcoder_disabled(dev_priv, pipe);
2967
c98e9dcf 2968 /* For PCH output, training FDI link */
674cf967 2969 dev_priv->display.fdi_link_train(crtc);
2c07245f 2970
6f13b7b5
CW
2971 intel_enable_pch_pll(intel_crtc);
2972
e615efe4
ED
2973 if (HAS_PCH_LPT(dev)) {
2974 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2975 lpt_program_iclkip(crtc);
2976 } else if (HAS_PCH_CPT(dev)) {
ee7b9f93 2977 u32 sel;
4b645f14 2978
c98e9dcf 2979 temp = I915_READ(PCH_DPLL_SEL);
ee7b9f93
JB
2980 switch (pipe) {
2981 default:
2982 case 0:
2983 temp |= TRANSA_DPLL_ENABLE;
2984 sel = TRANSA_DPLLB_SEL;
2985 break;
2986 case 1:
2987 temp |= TRANSB_DPLL_ENABLE;
2988 sel = TRANSB_DPLLB_SEL;
2989 break;
2990 case 2:
2991 temp |= TRANSC_DPLL_ENABLE;
2992 sel = TRANSC_DPLLB_SEL;
2993 break;
d64311ab 2994 }
ee7b9f93
JB
2995 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2996 temp |= sel;
2997 else
2998 temp &= ~sel;
c98e9dcf 2999 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 3000 }
5eddb70b 3001
d9b6cb56
JB
3002 /* set transcoder timing, panel must allow it */
3003 assert_panel_unlocked(dev_priv, pipe);
5eddb70b
CW
3004 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3005 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3006 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
8db9d77b 3007
5eddb70b
CW
3008 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3009 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3010 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
0529a0d9 3011 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
8db9d77b 3012
f57e1e3a
ED
3013 if (!IS_HASWELL(dev))
3014 intel_fdi_normal_train(crtc);
5e84e1a4 3015
c98e9dcf
JB
3016 /* For PCH DP, enable TRANS_DP_CTL */
3017 if (HAS_PCH_CPT(dev) &&
417e822d
KP
3018 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3019 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
9325c9f0 3020 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
5eddb70b
CW
3021 reg = TRANS_DP_CTL(pipe);
3022 temp = I915_READ(reg);
3023 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
3024 TRANS_DP_SYNC_MASK |
3025 TRANS_DP_BPC_MASK);
5eddb70b
CW
3026 temp |= (TRANS_DP_OUTPUT_ENABLE |
3027 TRANS_DP_ENH_FRAMING);
9325c9f0 3028 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf
JB
3029
3030 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 3031 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
c98e9dcf 3032 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 3033 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
3034
3035 switch (intel_trans_dp_port_sel(crtc)) {
3036 case PCH_DP_B:
5eddb70b 3037 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf
JB
3038 break;
3039 case PCH_DP_C:
5eddb70b 3040 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf
JB
3041 break;
3042 case PCH_DP_D:
5eddb70b 3043 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
3044 break;
3045 default:
3046 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
5eddb70b 3047 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 3048 break;
32f9d658 3049 }
2c07245f 3050
5eddb70b 3051 I915_WRITE(reg, temp);
6be4a607 3052 }
b52eb4dc 3053
040484af 3054 intel_enable_transcoder(dev_priv, pipe);
f67a559d
JB
3055}
3056
ee7b9f93
JB
3057static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3058{
3059 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3060
3061 if (pll == NULL)
3062 return;
3063
3064 if (pll->refcount == 0) {
3065 WARN(1, "bad PCH PLL refcount\n");
3066 return;
3067 }
3068
3069 --pll->refcount;
3070 intel_crtc->pch_pll = NULL;
3071}
3072
3073static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3074{
3075 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3076 struct intel_pch_pll *pll;
3077 int i;
3078
3079 pll = intel_crtc->pch_pll;
3080 if (pll) {
3081 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3082 intel_crtc->base.base.id, pll->pll_reg);
3083 goto prepare;
3084 }
3085
98b6bd99
DV
3086 if (HAS_PCH_IBX(dev_priv->dev)) {
3087 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3088 i = intel_crtc->pipe;
3089 pll = &dev_priv->pch_plls[i];
3090
3091 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3092 intel_crtc->base.base.id, pll->pll_reg);
3093
3094 goto found;
3095 }
3096
ee7b9f93
JB
3097 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3098 pll = &dev_priv->pch_plls[i];
3099
3100 /* Only want to check enabled timings first */
3101 if (pll->refcount == 0)
3102 continue;
3103
3104 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3105 fp == I915_READ(pll->fp0_reg)) {
3106 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3107 intel_crtc->base.base.id,
3108 pll->pll_reg, pll->refcount, pll->active);
3109
3110 goto found;
3111 }
3112 }
3113
3114 /* Ok no matching timings, maybe there's a free one? */
3115 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3116 pll = &dev_priv->pch_plls[i];
3117 if (pll->refcount == 0) {
3118 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3119 intel_crtc->base.base.id, pll->pll_reg);
3120 goto found;
3121 }
3122 }
3123
3124 return NULL;
3125
3126found:
3127 intel_crtc->pch_pll = pll;
3128 pll->refcount++;
3129 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3130prepare: /* separate function? */
3131 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
ee7b9f93 3132
e04c7350
CW
3133 /* Wait for the clocks to stabilize before rewriting the regs */
3134 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3135 POSTING_READ(pll->pll_reg);
3136 udelay(150);
e04c7350
CW
3137
3138 I915_WRITE(pll->fp0_reg, fp);
3139 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
ee7b9f93
JB
3140 pll->on = false;
3141 return pll;
3142}
3143
d4270e57
JB
3144void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3145{
3146 struct drm_i915_private *dev_priv = dev->dev_private;
3147 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3148 u32 temp;
3149
3150 temp = I915_READ(dslreg);
3151 udelay(500);
3152 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3153 /* Without this, mode sets may fail silently on FDI */
3154 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3155 udelay(250);
3156 I915_WRITE(tc2reg, 0);
3157 if (wait_for(I915_READ(dslreg) != temp, 5))
3158 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3159 }
3160}
3161
f67a559d
JB
3162static void ironlake_crtc_enable(struct drm_crtc *crtc)
3163{
3164 struct drm_device *dev = crtc->dev;
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3167 struct intel_encoder *encoder;
f67a559d
JB
3168 int pipe = intel_crtc->pipe;
3169 int plane = intel_crtc->plane;
3170 u32 temp;
3171 bool is_pch_port;
3172
08a48469
DV
3173 WARN_ON(!crtc->enabled);
3174
f67a559d
JB
3175 if (intel_crtc->active)
3176 return;
3177
3178 intel_crtc->active = true;
3179 intel_update_watermarks(dev);
3180
3181 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3182 temp = I915_READ(PCH_LVDS);
3183 if ((temp & LVDS_PORT_EN) == 0)
3184 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3185 }
3186
3187 is_pch_port = intel_crtc_driving_pch(crtc);
3188
46b6f814 3189 if (is_pch_port) {
88cefb6c 3190 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
3191 } else {
3192 assert_fdi_tx_disabled(dev_priv, pipe);
3193 assert_fdi_rx_disabled(dev_priv, pipe);
3194 }
f67a559d 3195
bf49ec8c
DV
3196 for_each_encoder_on_crtc(dev, crtc, encoder)
3197 if (encoder->pre_enable)
3198 encoder->pre_enable(encoder);
3199
f67a559d
JB
3200 /* Enable panel fitting for LVDS */
3201 if (dev_priv->pch_pf_size &&
3202 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3203 /* Force use of hard-coded filter coefficients
3204 * as some pre-programmed values are broken,
3205 * e.g. x201.
3206 */
9db4a9c7
JB
3207 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3208 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3209 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
f67a559d
JB
3210 }
3211
9c54c0dd
JB
3212 /*
3213 * On ILK+ LUT must be loaded before the pipe is running but with
3214 * clocks enabled
3215 */
3216 intel_crtc_load_lut(crtc);
3217
f67a559d
JB
3218 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3219 intel_enable_plane(dev_priv, plane, pipe);
3220
3221 if (is_pch_port)
3222 ironlake_pch_enable(crtc);
c98e9dcf 3223
d1ebd816 3224 mutex_lock(&dev->struct_mutex);
bed4a673 3225 intel_update_fbc(dev);
d1ebd816
BW
3226 mutex_unlock(&dev->struct_mutex);
3227
6b383a7f 3228 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3229
fa5c73b1
DV
3230 for_each_encoder_on_crtc(dev, crtc, encoder)
3231 encoder->enable(encoder);
61b77ddd
DV
3232
3233 if (HAS_PCH_CPT(dev))
3234 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
6be4a607
JB
3235}
3236
3237static void ironlake_crtc_disable(struct drm_crtc *crtc)
3238{
3239 struct drm_device *dev = crtc->dev;
3240 struct drm_i915_private *dev_priv = dev->dev_private;
3241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3242 struct intel_encoder *encoder;
6be4a607
JB
3243 int pipe = intel_crtc->pipe;
3244 int plane = intel_crtc->plane;
5eddb70b 3245 u32 reg, temp;
b52eb4dc 3246
ef9c3aee 3247
f7abfe8b
CW
3248 if (!intel_crtc->active)
3249 return;
3250
ea9d758d
DV
3251 for_each_encoder_on_crtc(dev, crtc, encoder)
3252 encoder->disable(encoder);
3253
e6c3a2a6 3254 intel_crtc_wait_for_pending_flips(crtc);
6be4a607 3255 drm_vblank_off(dev, pipe);
6b383a7f 3256 intel_crtc_update_cursor(crtc, false);
5eddb70b 3257
b24e7179 3258 intel_disable_plane(dev_priv, plane, pipe);
913d8d11 3259
973d04f9
CW
3260 if (dev_priv->cfb_plane == plane)
3261 intel_disable_fbc(dev);
2c07245f 3262
b24e7179 3263 intel_disable_pipe(dev_priv, pipe);
32f9d658 3264
6be4a607 3265 /* Disable PF */
9db4a9c7
JB
3266 I915_WRITE(PF_CTL(pipe), 0);
3267 I915_WRITE(PF_WIN_SZ(pipe), 0);
2c07245f 3268
bf49ec8c
DV
3269 for_each_encoder_on_crtc(dev, crtc, encoder)
3270 if (encoder->post_disable)
3271 encoder->post_disable(encoder);
3272
0fc932b8 3273 ironlake_fdi_disable(crtc);
2c07245f 3274
040484af 3275 intel_disable_transcoder(dev_priv, pipe);
913d8d11 3276
6be4a607
JB
3277 if (HAS_PCH_CPT(dev)) {
3278 /* disable TRANS_DP_CTL */
5eddb70b
CW
3279 reg = TRANS_DP_CTL(pipe);
3280 temp = I915_READ(reg);
3281 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
cb3543c6 3282 temp |= TRANS_DP_PORT_SEL_NONE;
5eddb70b 3283 I915_WRITE(reg, temp);
6be4a607
JB
3284
3285 /* disable DPLL_SEL */
3286 temp = I915_READ(PCH_DPLL_SEL);
9db4a9c7
JB
3287 switch (pipe) {
3288 case 0:
d64311ab 3289 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
9db4a9c7
JB
3290 break;
3291 case 1:
6be4a607 3292 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
9db4a9c7
JB
3293 break;
3294 case 2:
4b645f14 3295 /* C shares PLL A or B */
d64311ab 3296 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
9db4a9c7
JB
3297 break;
3298 default:
3299 BUG(); /* wtf */
3300 }
6be4a607 3301 I915_WRITE(PCH_DPLL_SEL, temp);
6be4a607 3302 }
e3421a18 3303
6be4a607 3304 /* disable PCH DPLL */
ee7b9f93 3305 intel_disable_pch_pll(intel_crtc);
8db9d77b 3306
88cefb6c 3307 ironlake_fdi_pll_disable(intel_crtc);
6b383a7f 3308
f7abfe8b 3309 intel_crtc->active = false;
6b383a7f 3310 intel_update_watermarks(dev);
d1ebd816
BW
3311
3312 mutex_lock(&dev->struct_mutex);
6b383a7f 3313 intel_update_fbc(dev);
d1ebd816 3314 mutex_unlock(&dev->struct_mutex);
6be4a607 3315}
1b3c7a47 3316
ee7b9f93
JB
3317static void ironlake_crtc_off(struct drm_crtc *crtc)
3318{
3319 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3320 intel_put_pch_pll(intel_crtc);
3321}
3322
02e792fb
DV
3323static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3324{
02e792fb 3325 if (!enable && intel_crtc->overlay) {
23f09ce3 3326 struct drm_device *dev = intel_crtc->base.dev;
ce453d81 3327 struct drm_i915_private *dev_priv = dev->dev_private;
03f77ea5 3328
23f09ce3 3329 mutex_lock(&dev->struct_mutex);
ce453d81
CW
3330 dev_priv->mm.interruptible = false;
3331 (void) intel_overlay_switch_off(intel_crtc->overlay);
3332 dev_priv->mm.interruptible = true;
23f09ce3 3333 mutex_unlock(&dev->struct_mutex);
02e792fb 3334 }
02e792fb 3335
5dcdbcb0
CW
3336 /* Let userspace switch the overlay on again. In most cases userspace
3337 * has to recompute where to put it anyway.
3338 */
02e792fb
DV
3339}
3340
0b8765c6 3341static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
3342{
3343 struct drm_device *dev = crtc->dev;
79e53945
JB
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3346 struct intel_encoder *encoder;
79e53945 3347 int pipe = intel_crtc->pipe;
80824003 3348 int plane = intel_crtc->plane;
79e53945 3349
08a48469
DV
3350 WARN_ON(!crtc->enabled);
3351
f7abfe8b
CW
3352 if (intel_crtc->active)
3353 return;
3354
3355 intel_crtc->active = true;
6b383a7f
CW
3356 intel_update_watermarks(dev);
3357
63d7bbe9 3358 intel_enable_pll(dev_priv, pipe);
040484af 3359 intel_enable_pipe(dev_priv, pipe, false);
b24e7179 3360 intel_enable_plane(dev_priv, plane, pipe);
79e53945 3361
0b8765c6 3362 intel_crtc_load_lut(crtc);
bed4a673 3363 intel_update_fbc(dev);
79e53945 3364
0b8765c6
JB
3365 /* Give the overlay scaler a chance to enable if it's on this pipe */
3366 intel_crtc_dpms_overlay(intel_crtc, true);
6b383a7f 3367 intel_crtc_update_cursor(crtc, true);
ef9c3aee 3368
fa5c73b1
DV
3369 for_each_encoder_on_crtc(dev, crtc, encoder)
3370 encoder->enable(encoder);
0b8765c6 3371}
79e53945 3372
0b8765c6
JB
3373static void i9xx_crtc_disable(struct drm_crtc *crtc)
3374{
3375 struct drm_device *dev = crtc->dev;
3376 struct drm_i915_private *dev_priv = dev->dev_private;
3377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 3378 struct intel_encoder *encoder;
0b8765c6
JB
3379 int pipe = intel_crtc->pipe;
3380 int plane = intel_crtc->plane;
b690e96c 3381
ef9c3aee 3382
f7abfe8b
CW
3383 if (!intel_crtc->active)
3384 return;
3385
ea9d758d
DV
3386 for_each_encoder_on_crtc(dev, crtc, encoder)
3387 encoder->disable(encoder);
3388
0b8765c6 3389 /* Give the overlay scaler a chance to disable if it's on this pipe */
e6c3a2a6
CW
3390 intel_crtc_wait_for_pending_flips(crtc);
3391 drm_vblank_off(dev, pipe);
0b8765c6 3392 intel_crtc_dpms_overlay(intel_crtc, false);
6b383a7f 3393 intel_crtc_update_cursor(crtc, false);
0b8765c6 3394
973d04f9
CW
3395 if (dev_priv->cfb_plane == plane)
3396 intel_disable_fbc(dev);
79e53945 3397
b24e7179 3398 intel_disable_plane(dev_priv, plane, pipe);
b24e7179 3399 intel_disable_pipe(dev_priv, pipe);
63d7bbe9 3400 intel_disable_pll(dev_priv, pipe);
0b8765c6 3401
f7abfe8b 3402 intel_crtc->active = false;
6b383a7f
CW
3403 intel_update_fbc(dev);
3404 intel_update_watermarks(dev);
0b8765c6
JB
3405}
3406
ee7b9f93
JB
3407static void i9xx_crtc_off(struct drm_crtc *crtc)
3408{
3409}
3410
976f8a20
DV
3411static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3412 bool enabled)
2c07245f
ZW
3413{
3414 struct drm_device *dev = crtc->dev;
3415 struct drm_i915_master_private *master_priv;
3416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3417 int pipe = intel_crtc->pipe;
79e53945
JB
3418
3419 if (!dev->primary->master)
3420 return;
3421
3422 master_priv = dev->primary->master->driver_priv;
3423 if (!master_priv->sarea_priv)
3424 return;
3425
79e53945
JB
3426 switch (pipe) {
3427 case 0:
3428 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3429 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3430 break;
3431 case 1:
3432 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3433 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3434 break;
3435 default:
9db4a9c7 3436 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
79e53945
JB
3437 break;
3438 }
79e53945
JB
3439}
3440
976f8a20
DV
3441/**
3442 * Sets the power management mode of the pipe and plane.
3443 */
3444void intel_crtc_update_dpms(struct drm_crtc *crtc)
3445{
3446 struct drm_device *dev = crtc->dev;
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3448 struct intel_encoder *intel_encoder;
3449 bool enable = false;
3450
3451 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3452 enable |= intel_encoder->connectors_active;
3453
3454 if (enable)
3455 dev_priv->display.crtc_enable(crtc);
3456 else
3457 dev_priv->display.crtc_disable(crtc);
3458
3459 intel_crtc_update_sarea(crtc, enable);
3460}
3461
3462static void intel_crtc_noop(struct drm_crtc *crtc)
3463{
3464}
3465
cdd59983
CW
3466static void intel_crtc_disable(struct drm_crtc *crtc)
3467{
cdd59983 3468 struct drm_device *dev = crtc->dev;
976f8a20 3469 struct drm_connector *connector;
ee7b9f93 3470 struct drm_i915_private *dev_priv = dev->dev_private;
cdd59983 3471
976f8a20
DV
3472 /* crtc should still be enabled when we disable it. */
3473 WARN_ON(!crtc->enabled);
3474
3475 dev_priv->display.crtc_disable(crtc);
3476 intel_crtc_update_sarea(crtc, false);
ee7b9f93
JB
3477 dev_priv->display.off(crtc);
3478
931872fc
CW
3479 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3480 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
cdd59983
CW
3481
3482 if (crtc->fb) {
3483 mutex_lock(&dev->struct_mutex);
1690e1eb 3484 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
cdd59983 3485 mutex_unlock(&dev->struct_mutex);
976f8a20
DV
3486 crtc->fb = NULL;
3487 }
3488
3489 /* Update computed state. */
3490 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3491 if (!connector->encoder || !connector->encoder->crtc)
3492 continue;
3493
3494 if (connector->encoder->crtc != crtc)
3495 continue;
3496
3497 connector->dpms = DRM_MODE_DPMS_OFF;
3498 to_intel_encoder(connector->encoder)->connectors_active = false;
cdd59983
CW
3499 }
3500}
3501
a261b246 3502void intel_modeset_disable(struct drm_device *dev)
79e53945 3503{
a261b246
DV
3504 struct drm_crtc *crtc;
3505
3506 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3507 if (crtc->enabled)
3508 intel_crtc_disable(crtc);
3509 }
79e53945
JB
3510}
3511
1f703855 3512void intel_encoder_noop(struct drm_encoder *encoder)
79e53945 3513{
7e7d76c3
JB
3514}
3515
ea5b213a 3516void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 3517{
4ef69c7a 3518 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 3519
ea5b213a
CW
3520 drm_encoder_cleanup(encoder);
3521 kfree(intel_encoder);
7e7d76c3
JB
3522}
3523
5ab432ef
DV
3524/* Simple dpms helper for encodres with just one connector, no cloning and only
3525 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3526 * state of the entire output pipe. */
3527void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
7e7d76c3 3528{
5ab432ef
DV
3529 if (mode == DRM_MODE_DPMS_ON) {
3530 encoder->connectors_active = true;
3531
b2cabb0e 3532 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef
DV
3533 } else {
3534 encoder->connectors_active = false;
3535
b2cabb0e 3536 intel_crtc_update_dpms(encoder->base.crtc);
5ab432ef 3537 }
79e53945
JB
3538}
3539
0a91ca29
DV
3540/* Cross check the actual hw state with our own modeset state tracking (and it's
3541 * internal consistency). */
b980514c 3542static void intel_connector_check_state(struct intel_connector *connector)
79e53945 3543{
0a91ca29
DV
3544 if (connector->get_hw_state(connector)) {
3545 struct intel_encoder *encoder = connector->encoder;
3546 struct drm_crtc *crtc;
3547 bool encoder_enabled;
3548 enum pipe pipe;
3549
3550 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3551 connector->base.base.id,
3552 drm_get_connector_name(&connector->base));
3553
3554 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3555 "wrong connector dpms state\n");
3556 WARN(connector->base.encoder != &encoder->base,
3557 "active connector not linked to encoder\n");
3558 WARN(!encoder->connectors_active,
3559 "encoder->connectors_active not set\n");
3560
3561 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3562 WARN(!encoder_enabled, "encoder not enabled\n");
3563 if (WARN_ON(!encoder->base.crtc))
3564 return;
3565
3566 crtc = encoder->base.crtc;
3567
3568 WARN(!crtc->enabled, "crtc not enabled\n");
3569 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3570 WARN(pipe != to_intel_crtc(crtc)->pipe,
3571 "encoder active on the wrong pipe\n");
3572 }
79e53945
JB
3573}
3574
5ab432ef
DV
3575/* Even simpler default implementation, if there's really no special case to
3576 * consider. */
3577void intel_connector_dpms(struct drm_connector *connector, int mode)
79e53945 3578{
5ab432ef 3579 struct intel_encoder *encoder = intel_attached_encoder(connector);
d4270e57 3580
5ab432ef
DV
3581 /* All the simple cases only support two dpms states. */
3582 if (mode != DRM_MODE_DPMS_ON)
3583 mode = DRM_MODE_DPMS_OFF;
d4270e57 3584
5ab432ef
DV
3585 if (mode == connector->dpms)
3586 return;
3587
3588 connector->dpms = mode;
3589
3590 /* Only need to change hw state when actually enabled */
3591 if (encoder->base.crtc)
3592 intel_encoder_dpms(encoder, mode);
3593 else
8af6cf88 3594 WARN_ON(encoder->connectors_active != false);
0a91ca29 3595
b980514c 3596 intel_modeset_check_state(connector->dev);
79e53945
JB
3597}
3598
f0947c37
DV
3599/* Simple connector->get_hw_state implementation for encoders that support only
3600 * one connector and no cloning and hence the encoder state determines the state
3601 * of the connector. */
3602bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 3603{
24929352 3604 enum pipe pipe = 0;
f0947c37 3605 struct intel_encoder *encoder = connector->encoder;
ea5b213a 3606
f0947c37 3607 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
3608}
3609
79e53945 3610static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
35313cde 3611 const struct drm_display_mode *mode,
79e53945
JB
3612 struct drm_display_mode *adjusted_mode)
3613{
2c07245f 3614 struct drm_device *dev = crtc->dev;
89749350 3615
bad720ff 3616 if (HAS_PCH_SPLIT(dev)) {
2c07245f 3617 /* FDI link clock is fixed at 2.7G */
2377b741
JB
3618 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3619 return false;
2c07245f 3620 }
89749350 3621
f9bef081
DV
3622 /* All interlaced capable intel hw wants timings in frames. Note though
3623 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3624 * timings, so we need to be careful not to clobber these.*/
3625 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3626 drm_mode_set_crtcinfo(adjusted_mode, 0);
89749350 3627
44f46b42
CW
3628 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3629 * with a hsync front porch of 0.
3630 */
3631 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3632 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3633 return false;
3634
79e53945
JB
3635 return true;
3636}
3637
25eb05fc
JB
3638static int valleyview_get_display_clock_speed(struct drm_device *dev)
3639{
3640 return 400000; /* FIXME */
3641}
3642
e70236a8
JB
3643static int i945_get_display_clock_speed(struct drm_device *dev)
3644{
3645 return 400000;
3646}
79e53945 3647
e70236a8 3648static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 3649{
e70236a8
JB
3650 return 333000;
3651}
79e53945 3652
e70236a8
JB
3653static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3654{
3655 return 200000;
3656}
79e53945 3657
e70236a8
JB
3658static int i915gm_get_display_clock_speed(struct drm_device *dev)
3659{
3660 u16 gcfgc = 0;
79e53945 3661
e70236a8
JB
3662 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3663
3664 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3665 return 133000;
3666 else {
3667 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3668 case GC_DISPLAY_CLOCK_333_MHZ:
3669 return 333000;
3670 default:
3671 case GC_DISPLAY_CLOCK_190_200_MHZ:
3672 return 190000;
79e53945 3673 }
e70236a8
JB
3674 }
3675}
3676
3677static int i865_get_display_clock_speed(struct drm_device *dev)
3678{
3679 return 266000;
3680}
3681
3682static int i855_get_display_clock_speed(struct drm_device *dev)
3683{
3684 u16 hpllcc = 0;
3685 /* Assume that the hardware is in the high speed state. This
3686 * should be the default.
3687 */
3688 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3689 case GC_CLOCK_133_200:
3690 case GC_CLOCK_100_200:
3691 return 200000;
3692 case GC_CLOCK_166_250:
3693 return 250000;
3694 case GC_CLOCK_100_133:
79e53945 3695 return 133000;
e70236a8 3696 }
79e53945 3697
e70236a8
JB
3698 /* Shouldn't happen */
3699 return 0;
3700}
79e53945 3701
e70236a8
JB
3702static int i830_get_display_clock_speed(struct drm_device *dev)
3703{
3704 return 133000;
79e53945
JB
3705}
3706
2c07245f
ZW
3707struct fdi_m_n {
3708 u32 tu;
3709 u32 gmch_m;
3710 u32 gmch_n;
3711 u32 link_m;
3712 u32 link_n;
3713};
3714
3715static void
3716fdi_reduce_ratio(u32 *num, u32 *den)
3717{
3718 while (*num > 0xffffff || *den > 0xffffff) {
3719 *num >>= 1;
3720 *den >>= 1;
3721 }
3722}
3723
2c07245f 3724static void
f2b115e6
AJ
3725ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3726 int link_clock, struct fdi_m_n *m_n)
2c07245f 3727{
2c07245f
ZW
3728 m_n->tu = 64; /* default size */
3729
22ed1113
CW
3730 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3731 m_n->gmch_m = bits_per_pixel * pixel_clock;
3732 m_n->gmch_n = link_clock * nlanes * 8;
2c07245f
ZW
3733 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3734
22ed1113
CW
3735 m_n->link_m = pixel_clock;
3736 m_n->link_n = link_clock;
2c07245f
ZW
3737 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3738}
3739
a7615030
CW
3740static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3741{
72bbe58c
KP
3742 if (i915_panel_use_ssc >= 0)
3743 return i915_panel_use_ssc != 0;
3744 return dev_priv->lvds_use_ssc
435793df 3745 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
3746}
3747
5a354204
JB
3748/**
3749 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3750 * @crtc: CRTC structure
3b5c78a3 3751 * @mode: requested mode
5a354204
JB
3752 *
3753 * A pipe may be connected to one or more outputs. Based on the depth of the
3754 * attached framebuffer, choose a good color depth to use on the pipe.
3755 *
3756 * If possible, match the pipe depth to the fb depth. In some cases, this
3757 * isn't ideal, because the connected output supports a lesser or restricted
3758 * set of depths. Resolve that here:
3759 * LVDS typically supports only 6bpc, so clamp down in that case
3760 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3761 * Displays may support a restricted set as well, check EDID and clamp as
3762 * appropriate.
3b5c78a3 3763 * DP may want to dither down to 6bpc to fit larger modes
5a354204
JB
3764 *
3765 * RETURNS:
3766 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3767 * true if they don't match).
3768 */
3769static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
94352cf9 3770 struct drm_framebuffer *fb,
3b5c78a3
AJ
3771 unsigned int *pipe_bpp,
3772 struct drm_display_mode *mode)
5a354204
JB
3773{
3774 struct drm_device *dev = crtc->dev;
3775 struct drm_i915_private *dev_priv = dev->dev_private;
5a354204 3776 struct drm_connector *connector;
6c2b7c12 3777 struct intel_encoder *intel_encoder;
5a354204
JB
3778 unsigned int display_bpc = UINT_MAX, bpc;
3779
3780 /* Walk the encoders & connectors on this crtc, get min bpc */
6c2b7c12 3781 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5a354204
JB
3782
3783 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3784 unsigned int lvds_bpc;
3785
3786 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3787 LVDS_A3_POWER_UP)
3788 lvds_bpc = 8;
3789 else
3790 lvds_bpc = 6;
3791
3792 if (lvds_bpc < display_bpc) {
82820490 3793 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5a354204
JB
3794 display_bpc = lvds_bpc;
3795 }
3796 continue;
3797 }
3798
5a354204
JB
3799 /* Not one of the known troublemakers, check the EDID */
3800 list_for_each_entry(connector, &dev->mode_config.connector_list,
3801 head) {
6c2b7c12 3802 if (connector->encoder != &intel_encoder->base)
5a354204
JB
3803 continue;
3804
62ac41a6
JB
3805 /* Don't use an invalid EDID bpc value */
3806 if (connector->display_info.bpc &&
3807 connector->display_info.bpc < display_bpc) {
82820490 3808 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5a354204
JB
3809 display_bpc = connector->display_info.bpc;
3810 }
3811 }
3812
3813 /*
3814 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3815 * through, clamp it down. (Note: >12bpc will be caught below.)
3816 */
3817 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3818 if (display_bpc > 8 && display_bpc < 12) {
82820490 3819 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5a354204
JB
3820 display_bpc = 12;
3821 } else {
82820490 3822 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5a354204
JB
3823 display_bpc = 8;
3824 }
3825 }
3826 }
3827
3b5c78a3
AJ
3828 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3829 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3830 display_bpc = 6;
3831 }
3832
5a354204
JB
3833 /*
3834 * We could just drive the pipe at the highest bpc all the time and
3835 * enable dithering as needed, but that costs bandwidth. So choose
3836 * the minimum value that expresses the full color range of the fb but
3837 * also stays within the max display bpc discovered above.
3838 */
3839
94352cf9 3840 switch (fb->depth) {
5a354204
JB
3841 case 8:
3842 bpc = 8; /* since we go through a colormap */
3843 break;
3844 case 15:
3845 case 16:
3846 bpc = 6; /* min is 18bpp */
3847 break;
3848 case 24:
578393cd 3849 bpc = 8;
5a354204
JB
3850 break;
3851 case 30:
578393cd 3852 bpc = 10;
5a354204
JB
3853 break;
3854 case 48:
578393cd 3855 bpc = 12;
5a354204
JB
3856 break;
3857 default:
3858 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3859 bpc = min((unsigned int)8, display_bpc);
3860 break;
3861 }
3862
578393cd
KP
3863 display_bpc = min(display_bpc, bpc);
3864
82820490
AJ
3865 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3866 bpc, display_bpc);
5a354204 3867
578393cd 3868 *pipe_bpp = display_bpc * 3;
5a354204
JB
3869
3870 return display_bpc != bpc;
3871}
3872
a0c4da24
JB
3873static int vlv_get_refclk(struct drm_crtc *crtc)
3874{
3875 struct drm_device *dev = crtc->dev;
3876 struct drm_i915_private *dev_priv = dev->dev_private;
3877 int refclk = 27000; /* for DP & HDMI */
3878
3879 return 100000; /* only one validated so far */
3880
3881 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3882 refclk = 96000;
3883 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3884 if (intel_panel_use_ssc(dev_priv))
3885 refclk = 100000;
3886 else
3887 refclk = 96000;
3888 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3889 refclk = 100000;
3890 }
3891
3892 return refclk;
3893}
3894
c65d77d8
JB
3895static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3896{
3897 struct drm_device *dev = crtc->dev;
3898 struct drm_i915_private *dev_priv = dev->dev_private;
3899 int refclk;
3900
a0c4da24
JB
3901 if (IS_VALLEYVIEW(dev)) {
3902 refclk = vlv_get_refclk(crtc);
3903 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
c65d77d8
JB
3904 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3905 refclk = dev_priv->lvds_ssc_freq * 1000;
3906 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3907 refclk / 1000);
3908 } else if (!IS_GEN2(dev)) {
3909 refclk = 96000;
3910 } else {
3911 refclk = 48000;
3912 }
3913
3914 return refclk;
3915}
3916
3917static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3918 intel_clock_t *clock)
3919{
3920 /* SDVO TV has fixed PLL values depend on its clock range,
3921 this mirrors vbios setting. */
3922 if (adjusted_mode->clock >= 100000
3923 && adjusted_mode->clock < 140500) {
3924 clock->p1 = 2;
3925 clock->p2 = 10;
3926 clock->n = 3;
3927 clock->m1 = 16;
3928 clock->m2 = 8;
3929 } else if (adjusted_mode->clock >= 140500
3930 && adjusted_mode->clock <= 200000) {
3931 clock->p1 = 1;
3932 clock->p2 = 10;
3933 clock->n = 6;
3934 clock->m1 = 12;
3935 clock->m2 = 8;
3936 }
3937}
3938
a7516a05
JB
3939static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3940 intel_clock_t *clock,
3941 intel_clock_t *reduced_clock)
3942{
3943 struct drm_device *dev = crtc->dev;
3944 struct drm_i915_private *dev_priv = dev->dev_private;
3945 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3946 int pipe = intel_crtc->pipe;
3947 u32 fp, fp2 = 0;
3948
3949 if (IS_PINEVIEW(dev)) {
3950 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3951 if (reduced_clock)
3952 fp2 = (1 << reduced_clock->n) << 16 |
3953 reduced_clock->m1 << 8 | reduced_clock->m2;
3954 } else {
3955 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3956 if (reduced_clock)
3957 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3958 reduced_clock->m2;
3959 }
3960
3961 I915_WRITE(FP0(pipe), fp);
3962
3963 intel_crtc->lowfreq_avail = false;
3964 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3965 reduced_clock && i915_powersave) {
3966 I915_WRITE(FP1(pipe), fp2);
3967 intel_crtc->lowfreq_avail = true;
3968 } else {
3969 I915_WRITE(FP1(pipe), fp);
3970 }
3971}
3972
93e537a1
DV
3973static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3974 struct drm_display_mode *adjusted_mode)
3975{
3976 struct drm_device *dev = crtc->dev;
3977 struct drm_i915_private *dev_priv = dev->dev_private;
3978 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3979 int pipe = intel_crtc->pipe;
284d5df5 3980 u32 temp;
93e537a1
DV
3981
3982 temp = I915_READ(LVDS);
3983 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3984 if (pipe == 1) {
3985 temp |= LVDS_PIPEB_SELECT;
3986 } else {
3987 temp &= ~LVDS_PIPEB_SELECT;
3988 }
3989 /* set the corresponsding LVDS_BORDER bit */
3990 temp |= dev_priv->lvds_border_bits;
3991 /* Set the B0-B3 data pairs corresponding to whether we're going to
3992 * set the DPLLs for dual-channel mode or not.
3993 */
3994 if (clock->p2 == 7)
3995 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3996 else
3997 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3998
3999 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4000 * appropriately here, but we need to look more thoroughly into how
4001 * panels behave in the two modes.
4002 */
4003 /* set the dithering flag on LVDS as needed */
4004 if (INTEL_INFO(dev)->gen >= 4) {
4005 if (dev_priv->lvds_dither)
4006 temp |= LVDS_ENABLE_DITHER;
4007 else
4008 temp &= ~LVDS_ENABLE_DITHER;
4009 }
284d5df5 4010 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
93e537a1 4011 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4012 temp |= LVDS_HSYNC_POLARITY;
93e537a1 4013 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4014 temp |= LVDS_VSYNC_POLARITY;
93e537a1
DV
4015 I915_WRITE(LVDS, temp);
4016}
4017
a0c4da24
JB
4018static void vlv_update_pll(struct drm_crtc *crtc,
4019 struct drm_display_mode *mode,
4020 struct drm_display_mode *adjusted_mode,
4021 intel_clock_t *clock, intel_clock_t *reduced_clock,
4022 int refclk, int num_connectors)
4023{
4024 struct drm_device *dev = crtc->dev;
4025 struct drm_i915_private *dev_priv = dev->dev_private;
4026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4027 int pipe = intel_crtc->pipe;
4028 u32 dpll, mdiv, pdiv;
4029 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4030 bool is_hdmi;
4031
4032 is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4033
4034 bestn = clock->n;
4035 bestm1 = clock->m1;
4036 bestm2 = clock->m2;
4037 bestp1 = clock->p1;
4038 bestp2 = clock->p2;
4039
4040 /* Enable DPIO clock input */
4041 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4042 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4043 I915_WRITE(DPLL(pipe), dpll);
4044 POSTING_READ(DPLL(pipe));
4045
4046 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4047 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4048 mdiv |= ((bestn << DPIO_N_SHIFT));
4049 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4050 mdiv |= (1 << DPIO_K_SHIFT);
4051 mdiv |= DPIO_ENABLE_CALIBRATION;
4052 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4053
4054 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4055
4056 pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4057 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4058 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4059 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4060
4061 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4062
4063 dpll |= DPLL_VCO_ENABLE;
4064 I915_WRITE(DPLL(pipe), dpll);
4065 POSTING_READ(DPLL(pipe));
4066 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4067 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4068
4069 if (is_hdmi) {
4070 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4071
4072 if (temp > 1)
4073 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4074 else
4075 temp = 0;
4076
4077 I915_WRITE(DPLL_MD(pipe), temp);
4078 POSTING_READ(DPLL_MD(pipe));
4079 }
4080
4081 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4082}
4083
eb1cbe48
DV
4084static void i9xx_update_pll(struct drm_crtc *crtc,
4085 struct drm_display_mode *mode,
4086 struct drm_display_mode *adjusted_mode,
4087 intel_clock_t *clock, intel_clock_t *reduced_clock,
4088 int num_connectors)
4089{
4090 struct drm_device *dev = crtc->dev;
4091 struct drm_i915_private *dev_priv = dev->dev_private;
4092 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4093 int pipe = intel_crtc->pipe;
4094 u32 dpll;
4095 bool is_sdvo;
4096
4097 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4098 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4099
4100 dpll = DPLL_VGA_MODE_DIS;
4101
4102 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4103 dpll |= DPLLB_MODE_LVDS;
4104 else
4105 dpll |= DPLLB_MODE_DAC_SERIAL;
4106 if (is_sdvo) {
4107 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4108 if (pixel_multiplier > 1) {
4109 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4110 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4111 }
4112 dpll |= DPLL_DVO_HIGH_SPEED;
4113 }
4114 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4115 dpll |= DPLL_DVO_HIGH_SPEED;
4116
4117 /* compute bitmask from p1 value */
4118 if (IS_PINEVIEW(dev))
4119 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4120 else {
4121 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4122 if (IS_G4X(dev) && reduced_clock)
4123 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4124 }
4125 switch (clock->p2) {
4126 case 5:
4127 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4128 break;
4129 case 7:
4130 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4131 break;
4132 case 10:
4133 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4134 break;
4135 case 14:
4136 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4137 break;
4138 }
4139 if (INTEL_INFO(dev)->gen >= 4)
4140 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4141
4142 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4143 dpll |= PLL_REF_INPUT_TVCLKINBC;
4144 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4145 /* XXX: just matching BIOS for now */
4146 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4147 dpll |= 3;
4148 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4149 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4150 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4151 else
4152 dpll |= PLL_REF_INPUT_DREFCLK;
4153
4154 dpll |= DPLL_VCO_ENABLE;
4155 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4156 POSTING_READ(DPLL(pipe));
4157 udelay(150);
4158
4159 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4160 * This is an exception to the general rule that mode_set doesn't turn
4161 * things on.
4162 */
4163 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4164 intel_update_lvds(crtc, clock, adjusted_mode);
4165
4166 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4167 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4168
4169 I915_WRITE(DPLL(pipe), dpll);
4170
4171 /* Wait for the clocks to stabilize. */
4172 POSTING_READ(DPLL(pipe));
4173 udelay(150);
4174
4175 if (INTEL_INFO(dev)->gen >= 4) {
4176 u32 temp = 0;
4177 if (is_sdvo) {
4178 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4179 if (temp > 1)
4180 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4181 else
4182 temp = 0;
4183 }
4184 I915_WRITE(DPLL_MD(pipe), temp);
4185 } else {
4186 /* The pixel multiplier can only be updated once the
4187 * DPLL is enabled and the clocks are stable.
4188 *
4189 * So write it again.
4190 */
4191 I915_WRITE(DPLL(pipe), dpll);
4192 }
4193}
4194
4195static void i8xx_update_pll(struct drm_crtc *crtc,
4196 struct drm_display_mode *adjusted_mode,
4197 intel_clock_t *clock,
4198 int num_connectors)
4199{
4200 struct drm_device *dev = crtc->dev;
4201 struct drm_i915_private *dev_priv = dev->dev_private;
4202 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4203 int pipe = intel_crtc->pipe;
4204 u32 dpll;
4205
4206 dpll = DPLL_VGA_MODE_DIS;
4207
4208 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4209 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4210 } else {
4211 if (clock->p1 == 2)
4212 dpll |= PLL_P1_DIVIDE_BY_TWO;
4213 else
4214 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4215 if (clock->p2 == 4)
4216 dpll |= PLL_P2_DIVIDE_BY_4;
4217 }
4218
4219 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4220 /* XXX: just matching BIOS for now */
4221 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4222 dpll |= 3;
4223 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4224 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4225 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4226 else
4227 dpll |= PLL_REF_INPUT_DREFCLK;
4228
4229 dpll |= DPLL_VCO_ENABLE;
4230 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4231 POSTING_READ(DPLL(pipe));
4232 udelay(150);
4233
eb1cbe48
DV
4234 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4235 * This is an exception to the general rule that mode_set doesn't turn
4236 * things on.
4237 */
4238 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4239 intel_update_lvds(crtc, clock, adjusted_mode);
4240
5b5896e4
DV
4241 I915_WRITE(DPLL(pipe), dpll);
4242
4243 /* Wait for the clocks to stabilize. */
4244 POSTING_READ(DPLL(pipe));
4245 udelay(150);
4246
eb1cbe48
DV
4247 /* The pixel multiplier can only be updated once the
4248 * DPLL is enabled and the clocks are stable.
4249 *
4250 * So write it again.
4251 */
4252 I915_WRITE(DPLL(pipe), dpll);
4253}
4254
f564048e
EA
4255static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4256 struct drm_display_mode *mode,
4257 struct drm_display_mode *adjusted_mode,
4258 int x, int y,
94352cf9 4259 struct drm_framebuffer *fb)
79e53945
JB
4260{
4261 struct drm_device *dev = crtc->dev;
4262 struct drm_i915_private *dev_priv = dev->dev_private;
4263 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4264 int pipe = intel_crtc->pipe;
80824003 4265 int plane = intel_crtc->plane;
c751ce4f 4266 int refclk, num_connectors = 0;
652c393a 4267 intel_clock_t clock, reduced_clock;
eb1cbe48
DV
4268 u32 dspcntr, pipeconf, vsyncshift;
4269 bool ok, has_reduced_clock = false, is_sdvo = false;
4270 bool is_lvds = false, is_tv = false, is_dp = false;
5eddb70b 4271 struct intel_encoder *encoder;
d4906093 4272 const intel_limit_t *limit;
5c3b82e2 4273 int ret;
79e53945 4274
6c2b7c12 4275 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4276 switch (encoder->type) {
79e53945
JB
4277 case INTEL_OUTPUT_LVDS:
4278 is_lvds = true;
4279 break;
4280 case INTEL_OUTPUT_SDVO:
7d57382e 4281 case INTEL_OUTPUT_HDMI:
79e53945 4282 is_sdvo = true;
5eddb70b 4283 if (encoder->needs_tv_clock)
e2f0ba97 4284 is_tv = true;
79e53945 4285 break;
79e53945
JB
4286 case INTEL_OUTPUT_TVOUT:
4287 is_tv = true;
4288 break;
a4fc5ed6
KP
4289 case INTEL_OUTPUT_DISPLAYPORT:
4290 is_dp = true;
4291 break;
79e53945 4292 }
43565a06 4293
c751ce4f 4294 num_connectors++;
79e53945
JB
4295 }
4296
c65d77d8 4297 refclk = i9xx_get_refclk(crtc, num_connectors);
79e53945 4298
d4906093
ML
4299 /*
4300 * Returns a set of divisors for the desired target clock with the given
4301 * refclk, or FALSE. The returned values represent the clock equation:
4302 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4303 */
1b894b59 4304 limit = intel_limit(crtc, refclk);
cec2f356
SP
4305 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4306 &clock);
79e53945
JB
4307 if (!ok) {
4308 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4309 return -EINVAL;
79e53945
JB
4310 }
4311
cda4b7d3 4312 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4313 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4314
ddc9003c 4315 if (is_lvds && dev_priv->lvds_downclock_avail) {
cec2f356
SP
4316 /*
4317 * Ensure we match the reduced clock's P to the target clock.
4318 * If the clocks don't match, we can't switch the display clock
4319 * by using the FP0/FP1. In such case we will disable the LVDS
4320 * downclock feature.
4321 */
ddc9003c 4322 has_reduced_clock = limit->find_pll(limit, crtc,
5eddb70b
CW
4323 dev_priv->lvds_downclock,
4324 refclk,
cec2f356 4325 &clock,
5eddb70b 4326 &reduced_clock);
7026d4ac
ZW
4327 }
4328
c65d77d8
JB
4329 if (is_sdvo && is_tv)
4330 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
7026d4ac 4331
a7516a05
JB
4332 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4333 &reduced_clock : NULL);
79e53945 4334
eb1cbe48
DV
4335 if (IS_GEN2(dev))
4336 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
a0c4da24
JB
4337 else if (IS_VALLEYVIEW(dev))
4338 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4339 refclk, num_connectors);
79e53945 4340 else
eb1cbe48
DV
4341 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4342 has_reduced_clock ? &reduced_clock : NULL,
4343 num_connectors);
79e53945
JB
4344
4345 /* setup pipeconf */
5eddb70b 4346 pipeconf = I915_READ(PIPECONF(pipe));
79e53945
JB
4347
4348 /* Set up the display plane register */
4349 dspcntr = DISPPLANE_GAMMA_ENABLE;
4350
929c77fb
EA
4351 if (pipe == 0)
4352 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4353 else
4354 dspcntr |= DISPPLANE_SEL_PIPE_B;
79e53945 4355
a6c45cf0 4356 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
79e53945
JB
4357 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4358 * core speed.
4359 *
4360 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4361 * pipe == 0 check?
4362 */
e70236a8
JB
4363 if (mode->clock >
4364 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5eddb70b 4365 pipeconf |= PIPECONF_DOUBLE_WIDE;
79e53945 4366 else
5eddb70b 4367 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
79e53945
JB
4368 }
4369
3b5c78a3
AJ
4370 /* default to 8bpc */
4371 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4372 if (is_dp) {
4373 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4374 pipeconf |= PIPECONF_BPP_6 |
4375 PIPECONF_DITHER_EN |
4376 PIPECONF_DITHER_TYPE_SP;
4377 }
4378 }
4379
28c97730 4380 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
79e53945
JB
4381 drm_mode_debug_printmodeline(mode);
4382
a7516a05
JB
4383 if (HAS_PIPE_CXSR(dev)) {
4384 if (intel_crtc->lowfreq_avail) {
28c97730 4385 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
652c393a 4386 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
a7516a05 4387 } else {
28c97730 4388 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
652c393a
JB
4389 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4390 }
4391 }
4392
617cf884 4393 pipeconf &= ~PIPECONF_INTERLACE_MASK;
dbb02575
DV
4394 if (!IS_GEN2(dev) &&
4395 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
734b4157
KH
4396 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4397 /* the chip adds 2 halflines automatically */
734b4157 4398 adjusted_mode->crtc_vtotal -= 1;
734b4157 4399 adjusted_mode->crtc_vblank_end -= 1;
0529a0d9
DV
4400 vsyncshift = adjusted_mode->crtc_hsync_start
4401 - adjusted_mode->crtc_htotal/2;
4402 } else {
617cf884 4403 pipeconf |= PIPECONF_PROGRESSIVE;
0529a0d9
DV
4404 vsyncshift = 0;
4405 }
4406
4407 if (!IS_GEN3(dev))
4408 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
734b4157 4409
5eddb70b
CW
4410 I915_WRITE(HTOTAL(pipe),
4411 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 4412 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
4413 I915_WRITE(HBLANK(pipe),
4414 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 4415 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
4416 I915_WRITE(HSYNC(pipe),
4417 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 4418 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
4419
4420 I915_WRITE(VTOTAL(pipe),
4421 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 4422 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
4423 I915_WRITE(VBLANK(pipe),
4424 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 4425 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
4426 I915_WRITE(VSYNC(pipe),
4427 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 4428 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b
CW
4429
4430 /* pipesrc and dspsize control the size that is scaled from,
4431 * which should always be the user's requested size.
79e53945 4432 */
929c77fb
EA
4433 I915_WRITE(DSPSIZE(plane),
4434 ((mode->vdisplay - 1) << 16) |
4435 (mode->hdisplay - 1));
4436 I915_WRITE(DSPPOS(plane), 0);
5eddb70b
CW
4437 I915_WRITE(PIPESRC(pipe),
4438 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 4439
f564048e
EA
4440 I915_WRITE(PIPECONF(pipe), pipeconf);
4441 POSTING_READ(PIPECONF(pipe));
929c77fb 4442 intel_enable_pipe(dev_priv, pipe, false);
f564048e
EA
4443
4444 intel_wait_for_vblank(dev, pipe);
4445
f564048e
EA
4446 I915_WRITE(DSPCNTR(plane), dspcntr);
4447 POSTING_READ(DSPCNTR(plane));
4448
94352cf9 4449 ret = intel_pipe_set_base(crtc, x, y, fb);
f564048e
EA
4450
4451 intel_update_watermarks(dev);
4452
f564048e
EA
4453 return ret;
4454}
4455
9fb526db
KP
4456/*
4457 * Initialize reference clocks when the driver loads
4458 */
4459void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
4460{
4461 struct drm_i915_private *dev_priv = dev->dev_private;
4462 struct drm_mode_config *mode_config = &dev->mode_config;
13d83a67 4463 struct intel_encoder *encoder;
13d83a67
JB
4464 u32 temp;
4465 bool has_lvds = false;
199e5d79
KP
4466 bool has_cpu_edp = false;
4467 bool has_pch_edp = false;
4468 bool has_panel = false;
99eb6a01
KP
4469 bool has_ck505 = false;
4470 bool can_ssc = false;
13d83a67
JB
4471
4472 /* We need to take the global config into account */
199e5d79
KP
4473 list_for_each_entry(encoder, &mode_config->encoder_list,
4474 base.head) {
4475 switch (encoder->type) {
4476 case INTEL_OUTPUT_LVDS:
4477 has_panel = true;
4478 has_lvds = true;
4479 break;
4480 case INTEL_OUTPUT_EDP:
4481 has_panel = true;
4482 if (intel_encoder_is_pch_edp(&encoder->base))
4483 has_pch_edp = true;
4484 else
4485 has_cpu_edp = true;
4486 break;
13d83a67
JB
4487 }
4488 }
4489
99eb6a01
KP
4490 if (HAS_PCH_IBX(dev)) {
4491 has_ck505 = dev_priv->display_clock_mode;
4492 can_ssc = has_ck505;
4493 } else {
4494 has_ck505 = false;
4495 can_ssc = true;
4496 }
4497
4498 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4499 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4500 has_ck505);
13d83a67
JB
4501
4502 /* Ironlake: try to setup display ref clock before DPLL
4503 * enabling. This is only under driver's control after
4504 * PCH B stepping, previous chipset stepping should be
4505 * ignoring this setting.
4506 */
4507 temp = I915_READ(PCH_DREF_CONTROL);
4508 /* Always enable nonspread source */
4509 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 4510
99eb6a01
KP
4511 if (has_ck505)
4512 temp |= DREF_NONSPREAD_CK505_ENABLE;
4513 else
4514 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 4515
199e5d79
KP
4516 if (has_panel) {
4517 temp &= ~DREF_SSC_SOURCE_MASK;
4518 temp |= DREF_SSC_SOURCE_ENABLE;
13d83a67 4519
199e5d79 4520 /* SSC must be turned on before enabling the CPU output */
99eb6a01 4521 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4522 DRM_DEBUG_KMS("Using SSC on panel\n");
13d83a67 4523 temp |= DREF_SSC1_ENABLE;
e77166b5
DV
4524 } else
4525 temp &= ~DREF_SSC1_ENABLE;
199e5d79
KP
4526
4527 /* Get SSC going before enabling the outputs */
4528 I915_WRITE(PCH_DREF_CONTROL, temp);
4529 POSTING_READ(PCH_DREF_CONTROL);
4530 udelay(200);
4531
13d83a67
JB
4532 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4533
4534 /* Enable CPU source on CPU attached eDP */
199e5d79 4535 if (has_cpu_edp) {
99eb6a01 4536 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 4537 DRM_DEBUG_KMS("Using SSC on eDP\n");
13d83a67 4538 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
199e5d79 4539 }
13d83a67
JB
4540 else
4541 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79
KP
4542 } else
4543 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4544
4545 I915_WRITE(PCH_DREF_CONTROL, temp);
4546 POSTING_READ(PCH_DREF_CONTROL);
4547 udelay(200);
4548 } else {
4549 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4550
4551 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4552
4553 /* Turn off CPU output */
4554 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4555
4556 I915_WRITE(PCH_DREF_CONTROL, temp);
4557 POSTING_READ(PCH_DREF_CONTROL);
4558 udelay(200);
4559
4560 /* Turn off the SSC source */
4561 temp &= ~DREF_SSC_SOURCE_MASK;
4562 temp |= DREF_SSC_SOURCE_DISABLE;
4563
4564 /* Turn off SSC1 */
4565 temp &= ~ DREF_SSC1_ENABLE;
4566
13d83a67
JB
4567 I915_WRITE(PCH_DREF_CONTROL, temp);
4568 POSTING_READ(PCH_DREF_CONTROL);
4569 udelay(200);
4570 }
4571}
4572
d9d444cb
JB
4573static int ironlake_get_refclk(struct drm_crtc *crtc)
4574{
4575 struct drm_device *dev = crtc->dev;
4576 struct drm_i915_private *dev_priv = dev->dev_private;
4577 struct intel_encoder *encoder;
d9d444cb
JB
4578 struct intel_encoder *edp_encoder = NULL;
4579 int num_connectors = 0;
4580 bool is_lvds = false;
4581
6c2b7c12 4582 for_each_encoder_on_crtc(dev, crtc, encoder) {
d9d444cb
JB
4583 switch (encoder->type) {
4584 case INTEL_OUTPUT_LVDS:
4585 is_lvds = true;
4586 break;
4587 case INTEL_OUTPUT_EDP:
4588 edp_encoder = encoder;
4589 break;
4590 }
4591 num_connectors++;
4592 }
4593
4594 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4595 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4596 dev_priv->lvds_ssc_freq);
4597 return dev_priv->lvds_ssc_freq * 1000;
4598 }
4599
4600 return 120000;
4601}
4602
c8203565
PZ
4603static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4604 struct drm_display_mode *adjusted_mode,
4605 bool dither)
4606{
4607 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4609 int pipe = intel_crtc->pipe;
4610 uint32_t val;
4611
4612 val = I915_READ(PIPECONF(pipe));
4613
4614 val &= ~PIPE_BPC_MASK;
4615 switch (intel_crtc->bpp) {
4616 case 18:
4617 val |= PIPE_6BPC;
4618 break;
4619 case 24:
4620 val |= PIPE_8BPC;
4621 break;
4622 case 30:
4623 val |= PIPE_10BPC;
4624 break;
4625 case 36:
4626 val |= PIPE_12BPC;
4627 break;
4628 default:
4629 val |= PIPE_8BPC;
4630 break;
4631 }
4632
4633 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4634 if (dither)
4635 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4636
4637 val &= ~PIPECONF_INTERLACE_MASK;
4638 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4639 val |= PIPECONF_INTERLACED_ILK;
4640 else
4641 val |= PIPECONF_PROGRESSIVE;
4642
4643 I915_WRITE(PIPECONF(pipe), val);
4644 POSTING_READ(PIPECONF(pipe));
4645}
4646
6591c6e4
PZ
4647static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4648 struct drm_display_mode *adjusted_mode,
4649 intel_clock_t *clock,
4650 bool *has_reduced_clock,
4651 intel_clock_t *reduced_clock)
4652{
4653 struct drm_device *dev = crtc->dev;
4654 struct drm_i915_private *dev_priv = dev->dev_private;
4655 struct intel_encoder *intel_encoder;
4656 int refclk;
4657 const intel_limit_t *limit;
4658 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4659
4660 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4661 switch (intel_encoder->type) {
4662 case INTEL_OUTPUT_LVDS:
4663 is_lvds = true;
4664 break;
4665 case INTEL_OUTPUT_SDVO:
4666 case INTEL_OUTPUT_HDMI:
4667 is_sdvo = true;
4668 if (intel_encoder->needs_tv_clock)
4669 is_tv = true;
4670 break;
4671 case INTEL_OUTPUT_TVOUT:
4672 is_tv = true;
4673 break;
4674 }
4675 }
4676
4677 refclk = ironlake_get_refclk(crtc);
4678
4679 /*
4680 * Returns a set of divisors for the desired target clock with the given
4681 * refclk, or FALSE. The returned values represent the clock equation:
4682 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4683 */
4684 limit = intel_limit(crtc, refclk);
4685 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4686 clock);
4687 if (!ret)
4688 return false;
4689
4690 if (is_lvds && dev_priv->lvds_downclock_avail) {
4691 /*
4692 * Ensure we match the reduced clock's P to the target clock.
4693 * If the clocks don't match, we can't switch the display clock
4694 * by using the FP0/FP1. In such case we will disable the LVDS
4695 * downclock feature.
4696 */
4697 *has_reduced_clock = limit->find_pll(limit, crtc,
4698 dev_priv->lvds_downclock,
4699 refclk,
4700 clock,
4701 reduced_clock);
4702 }
4703
4704 if (is_sdvo && is_tv)
4705 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4706
4707 return true;
4708}
4709
f564048e
EA
4710static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4711 struct drm_display_mode *mode,
4712 struct drm_display_mode *adjusted_mode,
4713 int x, int y,
94352cf9 4714 struct drm_framebuffer *fb)
79e53945
JB
4715{
4716 struct drm_device *dev = crtc->dev;
4717 struct drm_i915_private *dev_priv = dev->dev_private;
4718 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4719 int pipe = intel_crtc->pipe;
80824003 4720 int plane = intel_crtc->plane;
6591c6e4 4721 int num_connectors = 0;
652c393a 4722 intel_clock_t clock, reduced_clock;
a1f9e77e 4723 u32 dpll, fp = 0, fp2 = 0;
a07d6787 4724 bool ok, has_reduced_clock = false, is_sdvo = false;
a4fc5ed6 4725 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
e3aef172 4726 struct intel_encoder *encoder, *edp_encoder = NULL;
5c3b82e2 4727 int ret;
2c07245f 4728 struct fdi_m_n m_n = {0};
fae14981 4729 u32 temp;
5a354204
JB
4730 int target_clock, pixel_multiplier, lane, link_bw, factor;
4731 unsigned int pipe_bpp;
4732 bool dither;
e3aef172 4733 bool is_cpu_edp = false, is_pch_edp = false;
79e53945 4734
6c2b7c12 4735 for_each_encoder_on_crtc(dev, crtc, encoder) {
5eddb70b 4736 switch (encoder->type) {
79e53945
JB
4737 case INTEL_OUTPUT_LVDS:
4738 is_lvds = true;
4739 break;
4740 case INTEL_OUTPUT_SDVO:
7d57382e 4741 case INTEL_OUTPUT_HDMI:
79e53945 4742 is_sdvo = true;
5eddb70b 4743 if (encoder->needs_tv_clock)
e2f0ba97 4744 is_tv = true;
79e53945 4745 break;
79e53945
JB
4746 case INTEL_OUTPUT_TVOUT:
4747 is_tv = true;
4748 break;
4749 case INTEL_OUTPUT_ANALOG:
4750 is_crt = true;
4751 break;
a4fc5ed6
KP
4752 case INTEL_OUTPUT_DISPLAYPORT:
4753 is_dp = true;
4754 break;
32f9d658 4755 case INTEL_OUTPUT_EDP:
e3aef172
JB
4756 is_dp = true;
4757 if (intel_encoder_is_pch_edp(&encoder->base))
4758 is_pch_edp = true;
4759 else
4760 is_cpu_edp = true;
4761 edp_encoder = encoder;
32f9d658 4762 break;
79e53945 4763 }
43565a06 4764
c751ce4f 4765 num_connectors++;
79e53945
JB
4766 }
4767
6591c6e4
PZ
4768 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
4769 &has_reduced_clock, &reduced_clock);
79e53945
JB
4770 if (!ok) {
4771 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5c3b82e2 4772 return -EINVAL;
79e53945
JB
4773 }
4774
cda4b7d3 4775 /* Ensure that the cursor is valid for the new mode before changing... */
6b383a7f 4776 intel_crtc_update_cursor(crtc, true);
cda4b7d3 4777
2c07245f 4778 /* FDI link */
8febb297
EA
4779 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4780 lane = 0;
4781 /* CPU eDP doesn't require FDI link, so just set DP M/N
4782 according to current link config */
e3aef172 4783 if (is_cpu_edp) {
e3aef172 4784 intel_edp_link_config(edp_encoder, &lane, &link_bw);
8febb297 4785 } else {
8febb297
EA
4786 /* FDI is a binary signal running at ~2.7GHz, encoding
4787 * each output octet as 10 bits. The actual frequency
4788 * is stored as a divider into a 100MHz clock, and the
4789 * mode pixel clock is stored in units of 1KHz.
4790 * Hence the bw of each lane in terms of the mode signal
4791 * is:
4792 */
4793 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4794 }
58a27471 4795
94bf2ced
DV
4796 /* [e]DP over FDI requires target mode clock instead of link clock. */
4797 if (edp_encoder)
4798 target_clock = intel_edp_target_clock(edp_encoder, mode);
4799 else if (is_dp)
4800 target_clock = mode->clock;
4801 else
4802 target_clock = adjusted_mode->clock;
4803
8febb297 4804 /* determine panel color depth */
94352cf9 4805 dither = intel_choose_pipe_bpp_dither(crtc, fb, &pipe_bpp, mode);
c8203565
PZ
4806 if (is_lvds && dev_priv->lvds_dither)
4807 dither = true;
4808
4809 if (pipe_bpp != 18 && pipe_bpp != 24 && pipe_bpp != 30 &&
4810 pipe_bpp != 36) {
62ac41a6 4811 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
c8203565 4812 pipe_bpp);
5a354204 4813 pipe_bpp = 24;
8febb297 4814 }
5a354204 4815 intel_crtc->bpp = pipe_bpp;
5a354204 4816
8febb297
EA
4817 if (!lane) {
4818 /*
4819 * Account for spread spectrum to avoid
4820 * oversubscribing the link. Max center spread
4821 * is 2.5%; use 5% for safety's sake.
4822 */
5a354204 4823 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
8febb297 4824 lane = bps / (link_bw * 8) + 1;
5eb08b69 4825 }
2c07245f 4826
8febb297
EA
4827 intel_crtc->fdi_lanes = lane;
4828
4829 if (pixel_multiplier > 1)
4830 link_bw *= pixel_multiplier;
5a354204
JB
4831 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4832 &m_n);
8febb297 4833
a07d6787
EA
4834 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4835 if (has_reduced_clock)
4836 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4837 reduced_clock.m2;
79e53945 4838
c1858123 4839 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
4840 factor = 21;
4841 if (is_lvds) {
4842 if ((intel_panel_use_ssc(dev_priv) &&
4843 dev_priv->lvds_ssc_freq == 100) ||
4844 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4845 factor = 25;
4846 } else if (is_sdvo && is_tv)
4847 factor = 20;
c1858123 4848
cb0e0931 4849 if (clock.m < factor * clock.n)
8febb297 4850 fp |= FP_CB_TUNE;
2c07245f 4851
5eddb70b 4852 dpll = 0;
2c07245f 4853
a07d6787
EA
4854 if (is_lvds)
4855 dpll |= DPLLB_MODE_LVDS;
4856 else
4857 dpll |= DPLLB_MODE_DAC_SERIAL;
4858 if (is_sdvo) {
4859 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4860 if (pixel_multiplier > 1) {
4861 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
79e53945 4862 }
a07d6787
EA
4863 dpll |= DPLL_DVO_HIGH_SPEED;
4864 }
e3aef172 4865 if (is_dp && !is_cpu_edp)
a07d6787 4866 dpll |= DPLL_DVO_HIGH_SPEED;
79e53945 4867
a07d6787
EA
4868 /* compute bitmask from p1 value */
4869 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4870 /* also FPA1 */
4871 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4872
4873 switch (clock.p2) {
4874 case 5:
4875 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4876 break;
4877 case 7:
4878 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4879 break;
4880 case 10:
4881 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4882 break;
4883 case 14:
4884 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4885 break;
79e53945
JB
4886 }
4887
43565a06
KH
4888 if (is_sdvo && is_tv)
4889 dpll |= PLL_REF_INPUT_TVCLKINBC;
4890 else if (is_tv)
79e53945 4891 /* XXX: just matching BIOS for now */
43565a06 4892 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
79e53945 4893 dpll |= 3;
a7615030 4894 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
43565a06 4895 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
4896 else
4897 dpll |= PLL_REF_INPUT_DREFCLK;
4898
f7cb34d4 4899 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
79e53945
JB
4900 drm_mode_debug_printmodeline(mode);
4901
9d82aa17
ED
4902 /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4903 * pre-Haswell/LPT generation */
4904 if (HAS_PCH_LPT(dev)) {
4905 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4906 pipe);
4907 } else if (!is_cpu_edp) {
ee7b9f93 4908 struct intel_pch_pll *pll;
4b645f14 4909
ee7b9f93
JB
4910 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4911 if (pll == NULL) {
4912 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4913 pipe);
4b645f14
JB
4914 return -EINVAL;
4915 }
ee7b9f93
JB
4916 } else
4917 intel_put_pch_pll(intel_crtc);
79e53945
JB
4918
4919 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4920 * This is an exception to the general rule that mode_set doesn't turn
4921 * things on.
4922 */
4923 if (is_lvds) {
fae14981 4924 temp = I915_READ(PCH_LVDS);
5eddb70b 4925 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
7885d205
JB
4926 if (HAS_PCH_CPT(dev)) {
4927 temp &= ~PORT_TRANS_SEL_MASK;
4b645f14 4928 temp |= PORT_TRANS_SEL_CPT(pipe);
7885d205
JB
4929 } else {
4930 if (pipe == 1)
4931 temp |= LVDS_PIPEB_SELECT;
4932 else
4933 temp &= ~LVDS_PIPEB_SELECT;
4934 }
4b645f14 4935
a3e17eb8 4936 /* set the corresponsding LVDS_BORDER bit */
5eddb70b 4937 temp |= dev_priv->lvds_border_bits;
79e53945
JB
4938 /* Set the B0-B3 data pairs corresponding to whether we're going to
4939 * set the DPLLs for dual-channel mode or not.
4940 */
4941 if (clock.p2 == 7)
5eddb70b 4942 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
79e53945 4943 else
5eddb70b 4944 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
79e53945
JB
4945
4946 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4947 * appropriately here, but we need to look more thoroughly into how
4948 * panels behave in the two modes.
4949 */
284d5df5 4950 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
aa9b500d 4951 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
284d5df5 4952 temp |= LVDS_HSYNC_POLARITY;
aa9b500d 4953 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
284d5df5 4954 temp |= LVDS_VSYNC_POLARITY;
fae14981 4955 I915_WRITE(PCH_LVDS, temp);
79e53945 4956 }
434ed097 4957
e3aef172 4958 if (is_dp && !is_cpu_edp) {
a4fc5ed6 4959 intel_dp_set_m_n(crtc, mode, adjusted_mode);
8febb297 4960 } else {
8db9d77b 4961 /* For non-DP output, clear any trans DP clock recovery setting.*/
9db4a9c7
JB
4962 I915_WRITE(TRANSDATA_M1(pipe), 0);
4963 I915_WRITE(TRANSDATA_N1(pipe), 0);
4964 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4965 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
8db9d77b 4966 }
79e53945 4967
ee7b9f93
JB
4968 if (intel_crtc->pch_pll) {
4969 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5eddb70b 4970
32f9d658 4971 /* Wait for the clocks to stabilize. */
ee7b9f93 4972 POSTING_READ(intel_crtc->pch_pll->pll_reg);
32f9d658
ZW
4973 udelay(150);
4974
8febb297
EA
4975 /* The pixel multiplier can only be updated once the
4976 * DPLL is enabled and the clocks are stable.
4977 *
4978 * So write it again.
4979 */
ee7b9f93 4980 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
79e53945 4981 }
79e53945 4982
5eddb70b 4983 intel_crtc->lowfreq_avail = false;
ee7b9f93 4984 if (intel_crtc->pch_pll) {
4b645f14 4985 if (is_lvds && has_reduced_clock && i915_powersave) {
ee7b9f93 4986 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4b645f14 4987 intel_crtc->lowfreq_avail = true;
4b645f14 4988 } else {
ee7b9f93 4989 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
652c393a
JB
4990 }
4991 }
4992
734b4157 4993 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
734b4157 4994 /* the chip adds 2 halflines automatically */
734b4157 4995 adjusted_mode->crtc_vtotal -= 1;
734b4157 4996 adjusted_mode->crtc_vblank_end -= 1;
0529a0d9
DV
4997 I915_WRITE(VSYNCSHIFT(pipe),
4998 adjusted_mode->crtc_hsync_start
4999 - adjusted_mode->crtc_htotal/2);
5000 } else {
0529a0d9
DV
5001 I915_WRITE(VSYNCSHIFT(pipe), 0);
5002 }
734b4157 5003
5eddb70b
CW
5004 I915_WRITE(HTOTAL(pipe),
5005 (adjusted_mode->crtc_hdisplay - 1) |
79e53945 5006 ((adjusted_mode->crtc_htotal - 1) << 16));
5eddb70b
CW
5007 I915_WRITE(HBLANK(pipe),
5008 (adjusted_mode->crtc_hblank_start - 1) |
79e53945 5009 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5eddb70b
CW
5010 I915_WRITE(HSYNC(pipe),
5011 (adjusted_mode->crtc_hsync_start - 1) |
79e53945 5012 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5eddb70b
CW
5013
5014 I915_WRITE(VTOTAL(pipe),
5015 (adjusted_mode->crtc_vdisplay - 1) |
79e53945 5016 ((adjusted_mode->crtc_vtotal - 1) << 16));
5eddb70b
CW
5017 I915_WRITE(VBLANK(pipe),
5018 (adjusted_mode->crtc_vblank_start - 1) |
79e53945 5019 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5eddb70b
CW
5020 I915_WRITE(VSYNC(pipe),
5021 (adjusted_mode->crtc_vsync_start - 1) |
79e53945 5022 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5eddb70b 5023
8febb297
EA
5024 /* pipesrc controls the size that is scaled from, which should
5025 * always be the user's requested size.
79e53945 5026 */
5eddb70b
CW
5027 I915_WRITE(PIPESRC(pipe),
5028 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2c07245f 5029
8febb297
EA
5030 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5031 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5032 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5033 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
2c07245f 5034
e3aef172 5035 if (is_cpu_edp)
8febb297 5036 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
2c07245f 5037
c8203565 5038 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
79e53945 5039
9d0498a2 5040 intel_wait_for_vblank(dev, pipe);
79e53945 5041
a1f9e77e
PZ
5042 /* Set up the display plane register */
5043 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
b24e7179 5044 POSTING_READ(DSPCNTR(plane));
79e53945 5045
94352cf9 5046 ret = intel_pipe_set_base(crtc, x, y, fb);
7662c8bd
SL
5047
5048 intel_update_watermarks(dev);
5049
1f8eeabf
ED
5050 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5051
1f803ee5 5052 return ret;
79e53945
JB
5053}
5054
f564048e
EA
5055static int intel_crtc_mode_set(struct drm_crtc *crtc,
5056 struct drm_display_mode *mode,
5057 struct drm_display_mode *adjusted_mode,
5058 int x, int y,
94352cf9 5059 struct drm_framebuffer *fb)
f564048e
EA
5060{
5061 struct drm_device *dev = crtc->dev;
5062 struct drm_i915_private *dev_priv = dev->dev_private;
0b701d27
EA
5063 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5064 int pipe = intel_crtc->pipe;
f564048e
EA
5065 int ret;
5066
0b701d27 5067 drm_vblank_pre_modeset(dev, pipe);
7662c8bd 5068
f564048e 5069 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
94352cf9 5070 x, y, fb);
79e53945 5071 drm_vblank_post_modeset(dev, pipe);
5c3b82e2 5072
1f803ee5 5073 return ret;
79e53945
JB
5074}
5075
3a9627f4
WF
5076static bool intel_eld_uptodate(struct drm_connector *connector,
5077 int reg_eldv, uint32_t bits_eldv,
5078 int reg_elda, uint32_t bits_elda,
5079 int reg_edid)
5080{
5081 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5082 uint8_t *eld = connector->eld;
5083 uint32_t i;
5084
5085 i = I915_READ(reg_eldv);
5086 i &= bits_eldv;
5087
5088 if (!eld[0])
5089 return !i;
5090
5091 if (!i)
5092 return false;
5093
5094 i = I915_READ(reg_elda);
5095 i &= ~bits_elda;
5096 I915_WRITE(reg_elda, i);
5097
5098 for (i = 0; i < eld[2]; i++)
5099 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5100 return false;
5101
5102 return true;
5103}
5104
e0dac65e
WF
5105static void g4x_write_eld(struct drm_connector *connector,
5106 struct drm_crtc *crtc)
5107{
5108 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5109 uint8_t *eld = connector->eld;
5110 uint32_t eldv;
5111 uint32_t len;
5112 uint32_t i;
5113
5114 i = I915_READ(G4X_AUD_VID_DID);
5115
5116 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5117 eldv = G4X_ELDV_DEVCL_DEVBLC;
5118 else
5119 eldv = G4X_ELDV_DEVCTG;
5120
3a9627f4
WF
5121 if (intel_eld_uptodate(connector,
5122 G4X_AUD_CNTL_ST, eldv,
5123 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5124 G4X_HDMIW_HDMIEDID))
5125 return;
5126
e0dac65e
WF
5127 i = I915_READ(G4X_AUD_CNTL_ST);
5128 i &= ~(eldv | G4X_ELD_ADDR);
5129 len = (i >> 9) & 0x1f; /* ELD buffer size */
5130 I915_WRITE(G4X_AUD_CNTL_ST, i);
5131
5132 if (!eld[0])
5133 return;
5134
5135 len = min_t(uint8_t, eld[2], len);
5136 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5137 for (i = 0; i < len; i++)
5138 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5139
5140 i = I915_READ(G4X_AUD_CNTL_ST);
5141 i |= eldv;
5142 I915_WRITE(G4X_AUD_CNTL_ST, i);
5143}
5144
83358c85
WX
5145static void haswell_write_eld(struct drm_connector *connector,
5146 struct drm_crtc *crtc)
5147{
5148 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5149 uint8_t *eld = connector->eld;
5150 struct drm_device *dev = crtc->dev;
5151 uint32_t eldv;
5152 uint32_t i;
5153 int len;
5154 int pipe = to_intel_crtc(crtc)->pipe;
5155 int tmp;
5156
5157 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5158 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5159 int aud_config = HSW_AUD_CFG(pipe);
5160 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5161
5162
5163 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5164
5165 /* Audio output enable */
5166 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5167 tmp = I915_READ(aud_cntrl_st2);
5168 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5169 I915_WRITE(aud_cntrl_st2, tmp);
5170
5171 /* Wait for 1 vertical blank */
5172 intel_wait_for_vblank(dev, pipe);
5173
5174 /* Set ELD valid state */
5175 tmp = I915_READ(aud_cntrl_st2);
5176 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5177 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5178 I915_WRITE(aud_cntrl_st2, tmp);
5179 tmp = I915_READ(aud_cntrl_st2);
5180 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5181
5182 /* Enable HDMI mode */
5183 tmp = I915_READ(aud_config);
5184 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5185 /* clear N_programing_enable and N_value_index */
5186 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5187 I915_WRITE(aud_config, tmp);
5188
5189 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5190
5191 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5192
5193 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5194 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5195 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5196 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5197 } else
5198 I915_WRITE(aud_config, 0);
5199
5200 if (intel_eld_uptodate(connector,
5201 aud_cntrl_st2, eldv,
5202 aud_cntl_st, IBX_ELD_ADDRESS,
5203 hdmiw_hdmiedid))
5204 return;
5205
5206 i = I915_READ(aud_cntrl_st2);
5207 i &= ~eldv;
5208 I915_WRITE(aud_cntrl_st2, i);
5209
5210 if (!eld[0])
5211 return;
5212
5213 i = I915_READ(aud_cntl_st);
5214 i &= ~IBX_ELD_ADDRESS;
5215 I915_WRITE(aud_cntl_st, i);
5216 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5217 DRM_DEBUG_DRIVER("port num:%d\n", i);
5218
5219 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5220 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5221 for (i = 0; i < len; i++)
5222 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5223
5224 i = I915_READ(aud_cntrl_st2);
5225 i |= eldv;
5226 I915_WRITE(aud_cntrl_st2, i);
5227
5228}
5229
e0dac65e
WF
5230static void ironlake_write_eld(struct drm_connector *connector,
5231 struct drm_crtc *crtc)
5232{
5233 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5234 uint8_t *eld = connector->eld;
5235 uint32_t eldv;
5236 uint32_t i;
5237 int len;
5238 int hdmiw_hdmiedid;
b6daa025 5239 int aud_config;
e0dac65e
WF
5240 int aud_cntl_st;
5241 int aud_cntrl_st2;
9b138a83 5242 int pipe = to_intel_crtc(crtc)->pipe;
e0dac65e 5243
b3f33cbf 5244 if (HAS_PCH_IBX(connector->dev)) {
9b138a83
WX
5245 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5246 aud_config = IBX_AUD_CFG(pipe);
5247 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
1202b4c6 5248 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
e0dac65e 5249 } else {
9b138a83
WX
5250 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5251 aud_config = CPT_AUD_CFG(pipe);
5252 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
1202b4c6 5253 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
e0dac65e
WF
5254 }
5255
9b138a83 5256 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
e0dac65e
WF
5257
5258 i = I915_READ(aud_cntl_st);
9b138a83 5259 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
e0dac65e
WF
5260 if (!i) {
5261 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5262 /* operate blindly on all ports */
1202b4c6
WF
5263 eldv = IBX_ELD_VALIDB;
5264 eldv |= IBX_ELD_VALIDB << 4;
5265 eldv |= IBX_ELD_VALIDB << 8;
e0dac65e
WF
5266 } else {
5267 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
1202b4c6 5268 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
e0dac65e
WF
5269 }
5270
3a9627f4
WF
5271 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5272 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5273 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
b6daa025
WF
5274 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5275 } else
5276 I915_WRITE(aud_config, 0);
e0dac65e 5277
3a9627f4
WF
5278 if (intel_eld_uptodate(connector,
5279 aud_cntrl_st2, eldv,
5280 aud_cntl_st, IBX_ELD_ADDRESS,
5281 hdmiw_hdmiedid))
5282 return;
5283
e0dac65e
WF
5284 i = I915_READ(aud_cntrl_st2);
5285 i &= ~eldv;
5286 I915_WRITE(aud_cntrl_st2, i);
5287
5288 if (!eld[0])
5289 return;
5290
e0dac65e 5291 i = I915_READ(aud_cntl_st);
1202b4c6 5292 i &= ~IBX_ELD_ADDRESS;
e0dac65e
WF
5293 I915_WRITE(aud_cntl_st, i);
5294
5295 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5296 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5297 for (i = 0; i < len; i++)
5298 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5299
5300 i = I915_READ(aud_cntrl_st2);
5301 i |= eldv;
5302 I915_WRITE(aud_cntrl_st2, i);
5303}
5304
5305void intel_write_eld(struct drm_encoder *encoder,
5306 struct drm_display_mode *mode)
5307{
5308 struct drm_crtc *crtc = encoder->crtc;
5309 struct drm_connector *connector;
5310 struct drm_device *dev = encoder->dev;
5311 struct drm_i915_private *dev_priv = dev->dev_private;
5312
5313 connector = drm_select_eld(encoder, mode);
5314 if (!connector)
5315 return;
5316
5317 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5318 connector->base.id,
5319 drm_get_connector_name(connector),
5320 connector->encoder->base.id,
5321 drm_get_encoder_name(connector->encoder));
5322
5323 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5324
5325 if (dev_priv->display.write_eld)
5326 dev_priv->display.write_eld(connector, crtc);
5327}
5328
79e53945
JB
5329/** Loads the palette/gamma unit for the CRTC with the prepared values */
5330void intel_crtc_load_lut(struct drm_crtc *crtc)
5331{
5332 struct drm_device *dev = crtc->dev;
5333 struct drm_i915_private *dev_priv = dev->dev_private;
5334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9db4a9c7 5335 int palreg = PALETTE(intel_crtc->pipe);
79e53945
JB
5336 int i;
5337
5338 /* The clocks have to be on to load the palette. */
aed3f09d 5339 if (!crtc->enabled || !intel_crtc->active)
79e53945
JB
5340 return;
5341
f2b115e6 5342 /* use legacy palette for Ironlake */
bad720ff 5343 if (HAS_PCH_SPLIT(dev))
9db4a9c7 5344 palreg = LGC_PALETTE(intel_crtc->pipe);
2c07245f 5345
79e53945
JB
5346 for (i = 0; i < 256; i++) {
5347 I915_WRITE(palreg + 4 * i,
5348 (intel_crtc->lut_r[i] << 16) |
5349 (intel_crtc->lut_g[i] << 8) |
5350 intel_crtc->lut_b[i]);
5351 }
5352}
5353
560b85bb
CW
5354static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5355{
5356 struct drm_device *dev = crtc->dev;
5357 struct drm_i915_private *dev_priv = dev->dev_private;
5358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5359 bool visible = base != 0;
5360 u32 cntl;
5361
5362 if (intel_crtc->cursor_visible == visible)
5363 return;
5364
9db4a9c7 5365 cntl = I915_READ(_CURACNTR);
560b85bb
CW
5366 if (visible) {
5367 /* On these chipsets we can only modify the base whilst
5368 * the cursor is disabled.
5369 */
9db4a9c7 5370 I915_WRITE(_CURABASE, base);
560b85bb
CW
5371
5372 cntl &= ~(CURSOR_FORMAT_MASK);
5373 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5374 cntl |= CURSOR_ENABLE |
5375 CURSOR_GAMMA_ENABLE |
5376 CURSOR_FORMAT_ARGB;
5377 } else
5378 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
9db4a9c7 5379 I915_WRITE(_CURACNTR, cntl);
560b85bb
CW
5380
5381 intel_crtc->cursor_visible = visible;
5382}
5383
5384static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5385{
5386 struct drm_device *dev = crtc->dev;
5387 struct drm_i915_private *dev_priv = dev->dev_private;
5388 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5389 int pipe = intel_crtc->pipe;
5390 bool visible = base != 0;
5391
5392 if (intel_crtc->cursor_visible != visible) {
548f245b 5393 uint32_t cntl = I915_READ(CURCNTR(pipe));
560b85bb
CW
5394 if (base) {
5395 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5396 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5397 cntl |= pipe << 28; /* Connect to correct pipe */
5398 } else {
5399 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5400 cntl |= CURSOR_MODE_DISABLE;
5401 }
9db4a9c7 5402 I915_WRITE(CURCNTR(pipe), cntl);
560b85bb
CW
5403
5404 intel_crtc->cursor_visible = visible;
5405 }
5406 /* and commit changes on next vblank */
9db4a9c7 5407 I915_WRITE(CURBASE(pipe), base);
560b85bb
CW
5408}
5409
65a21cd6
JB
5410static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5411{
5412 struct drm_device *dev = crtc->dev;
5413 struct drm_i915_private *dev_priv = dev->dev_private;
5414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5415 int pipe = intel_crtc->pipe;
5416 bool visible = base != 0;
5417
5418 if (intel_crtc->cursor_visible != visible) {
5419 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5420 if (base) {
5421 cntl &= ~CURSOR_MODE;
5422 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5423 } else {
5424 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5425 cntl |= CURSOR_MODE_DISABLE;
5426 }
5427 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5428
5429 intel_crtc->cursor_visible = visible;
5430 }
5431 /* and commit changes on next vblank */
5432 I915_WRITE(CURBASE_IVB(pipe), base);
5433}
5434
cda4b7d3 5435/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f
CW
5436static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5437 bool on)
cda4b7d3
CW
5438{
5439 struct drm_device *dev = crtc->dev;
5440 struct drm_i915_private *dev_priv = dev->dev_private;
5441 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5442 int pipe = intel_crtc->pipe;
5443 int x = intel_crtc->cursor_x;
5444 int y = intel_crtc->cursor_y;
560b85bb 5445 u32 base, pos;
cda4b7d3
CW
5446 bool visible;
5447
5448 pos = 0;
5449
6b383a7f 5450 if (on && crtc->enabled && crtc->fb) {
cda4b7d3
CW
5451 base = intel_crtc->cursor_addr;
5452 if (x > (int) crtc->fb->width)
5453 base = 0;
5454
5455 if (y > (int) crtc->fb->height)
5456 base = 0;
5457 } else
5458 base = 0;
5459
5460 if (x < 0) {
5461 if (x + intel_crtc->cursor_width < 0)
5462 base = 0;
5463
5464 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5465 x = -x;
5466 }
5467 pos |= x << CURSOR_X_SHIFT;
5468
5469 if (y < 0) {
5470 if (y + intel_crtc->cursor_height < 0)
5471 base = 0;
5472
5473 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5474 y = -y;
5475 }
5476 pos |= y << CURSOR_Y_SHIFT;
5477
5478 visible = base != 0;
560b85bb 5479 if (!visible && !intel_crtc->cursor_visible)
cda4b7d3
CW
5480 return;
5481
0cd83aa9 5482 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
65a21cd6
JB
5483 I915_WRITE(CURPOS_IVB(pipe), pos);
5484 ivb_update_cursor(crtc, base);
5485 } else {
5486 I915_WRITE(CURPOS(pipe), pos);
5487 if (IS_845G(dev) || IS_I865G(dev))
5488 i845_update_cursor(crtc, base);
5489 else
5490 i9xx_update_cursor(crtc, base);
5491 }
cda4b7d3
CW
5492}
5493
79e53945 5494static int intel_crtc_cursor_set(struct drm_crtc *crtc,
05394f39 5495 struct drm_file *file,
79e53945
JB
5496 uint32_t handle,
5497 uint32_t width, uint32_t height)
5498{
5499 struct drm_device *dev = crtc->dev;
5500 struct drm_i915_private *dev_priv = dev->dev_private;
5501 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
05394f39 5502 struct drm_i915_gem_object *obj;
cda4b7d3 5503 uint32_t addr;
3f8bc370 5504 int ret;
79e53945 5505
79e53945
JB
5506 /* if we want to turn off the cursor ignore width and height */
5507 if (!handle) {
28c97730 5508 DRM_DEBUG_KMS("cursor off\n");
3f8bc370 5509 addr = 0;
05394f39 5510 obj = NULL;
5004417d 5511 mutex_lock(&dev->struct_mutex);
3f8bc370 5512 goto finish;
79e53945
JB
5513 }
5514
5515 /* Currently we only support 64x64 cursors */
5516 if (width != 64 || height != 64) {
5517 DRM_ERROR("we currently only support 64x64 cursors\n");
5518 return -EINVAL;
5519 }
5520
05394f39 5521 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
c8725226 5522 if (&obj->base == NULL)
79e53945
JB
5523 return -ENOENT;
5524
05394f39 5525 if (obj->base.size < width * height * 4) {
79e53945 5526 DRM_ERROR("buffer is to small\n");
34b8686e
DA
5527 ret = -ENOMEM;
5528 goto fail;
79e53945
JB
5529 }
5530
71acb5eb 5531 /* we only need to pin inside GTT if cursor is non-phy */
7f9872e0 5532 mutex_lock(&dev->struct_mutex);
b295d1b6 5533 if (!dev_priv->info->cursor_needs_physical) {
d9e86c0e
CW
5534 if (obj->tiling_mode) {
5535 DRM_ERROR("cursor cannot be tiled\n");
5536 ret = -EINVAL;
5537 goto fail_locked;
5538 }
5539
2da3b9b9 5540 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
e7b526bb
CW
5541 if (ret) {
5542 DRM_ERROR("failed to move cursor bo into the GTT\n");
2da3b9b9 5543 goto fail_locked;
e7b526bb
CW
5544 }
5545
d9e86c0e
CW
5546 ret = i915_gem_object_put_fence(obj);
5547 if (ret) {
2da3b9b9 5548 DRM_ERROR("failed to release fence for cursor");
d9e86c0e
CW
5549 goto fail_unpin;
5550 }
5551
05394f39 5552 addr = obj->gtt_offset;
71acb5eb 5553 } else {
6eeefaf3 5554 int align = IS_I830(dev) ? 16 * 1024 : 256;
05394f39 5555 ret = i915_gem_attach_phys_object(dev, obj,
6eeefaf3
CW
5556 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5557 align);
71acb5eb
DA
5558 if (ret) {
5559 DRM_ERROR("failed to attach phys object\n");
7f9872e0 5560 goto fail_locked;
71acb5eb 5561 }
05394f39 5562 addr = obj->phys_obj->handle->busaddr;
3f8bc370
KH
5563 }
5564
a6c45cf0 5565 if (IS_GEN2(dev))
14b60391
JB
5566 I915_WRITE(CURSIZE, (height << 12) | width);
5567
3f8bc370 5568 finish:
3f8bc370 5569 if (intel_crtc->cursor_bo) {
b295d1b6 5570 if (dev_priv->info->cursor_needs_physical) {
05394f39 5571 if (intel_crtc->cursor_bo != obj)
71acb5eb
DA
5572 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5573 } else
5574 i915_gem_object_unpin(intel_crtc->cursor_bo);
05394f39 5575 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
3f8bc370 5576 }
80824003 5577
7f9872e0 5578 mutex_unlock(&dev->struct_mutex);
3f8bc370
KH
5579
5580 intel_crtc->cursor_addr = addr;
05394f39 5581 intel_crtc->cursor_bo = obj;
cda4b7d3
CW
5582 intel_crtc->cursor_width = width;
5583 intel_crtc->cursor_height = height;
5584
6b383a7f 5585 intel_crtc_update_cursor(crtc, true);
3f8bc370 5586
79e53945 5587 return 0;
e7b526bb 5588fail_unpin:
05394f39 5589 i915_gem_object_unpin(obj);
7f9872e0 5590fail_locked:
34b8686e 5591 mutex_unlock(&dev->struct_mutex);
bc9025bd 5592fail:
05394f39 5593 drm_gem_object_unreference_unlocked(&obj->base);
34b8686e 5594 return ret;
79e53945
JB
5595}
5596
5597static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5598{
79e53945 5599 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5600
cda4b7d3
CW
5601 intel_crtc->cursor_x = x;
5602 intel_crtc->cursor_y = y;
652c393a 5603
6b383a7f 5604 intel_crtc_update_cursor(crtc, true);
79e53945
JB
5605
5606 return 0;
5607}
5608
5609/** Sets the color ramps on behalf of RandR */
5610void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5611 u16 blue, int regno)
5612{
5613 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5614
5615 intel_crtc->lut_r[regno] = red >> 8;
5616 intel_crtc->lut_g[regno] = green >> 8;
5617 intel_crtc->lut_b[regno] = blue >> 8;
5618}
5619
b8c00ac5
DA
5620void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5621 u16 *blue, int regno)
5622{
5623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5624
5625 *red = intel_crtc->lut_r[regno] << 8;
5626 *green = intel_crtc->lut_g[regno] << 8;
5627 *blue = intel_crtc->lut_b[regno] << 8;
5628}
5629
79e53945 5630static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7203425a 5631 u16 *blue, uint32_t start, uint32_t size)
79e53945 5632{
7203425a 5633 int end = (start + size > 256) ? 256 : start + size, i;
79e53945 5634 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79e53945 5635
7203425a 5636 for (i = start; i < end; i++) {
79e53945
JB
5637 intel_crtc->lut_r[i] = red[i] >> 8;
5638 intel_crtc->lut_g[i] = green[i] >> 8;
5639 intel_crtc->lut_b[i] = blue[i] >> 8;
5640 }
5641
5642 intel_crtc_load_lut(crtc);
5643}
5644
5645/**
5646 * Get a pipe with a simple mode set on it for doing load-based monitor
5647 * detection.
5648 *
5649 * It will be up to the load-detect code to adjust the pipe as appropriate for
c751ce4f 5650 * its requirements. The pipe will be connected to no other encoders.
79e53945 5651 *
c751ce4f 5652 * Currently this code will only succeed if there is a pipe with no encoders
79e53945
JB
5653 * configured for it. In the future, it could choose to temporarily disable
5654 * some outputs to free up a pipe for its use.
5655 *
5656 * \return crtc, or NULL if no pipes are available.
5657 */
5658
5659/* VESA 640x480x72Hz mode to set on the pipe */
5660static struct drm_display_mode load_detect_mode = {
5661 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5662 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5663};
5664
d2dff872
CW
5665static struct drm_framebuffer *
5666intel_framebuffer_create(struct drm_device *dev,
308e5bcb 5667 struct drm_mode_fb_cmd2 *mode_cmd,
d2dff872
CW
5668 struct drm_i915_gem_object *obj)
5669{
5670 struct intel_framebuffer *intel_fb;
5671 int ret;
5672
5673 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5674 if (!intel_fb) {
5675 drm_gem_object_unreference_unlocked(&obj->base);
5676 return ERR_PTR(-ENOMEM);
5677 }
5678
5679 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5680 if (ret) {
5681 drm_gem_object_unreference_unlocked(&obj->base);
5682 kfree(intel_fb);
5683 return ERR_PTR(ret);
5684 }
5685
5686 return &intel_fb->base;
5687}
5688
5689static u32
5690intel_framebuffer_pitch_for_width(int width, int bpp)
5691{
5692 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5693 return ALIGN(pitch, 64);
5694}
5695
5696static u32
5697intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5698{
5699 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5700 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5701}
5702
5703static struct drm_framebuffer *
5704intel_framebuffer_create_for_mode(struct drm_device *dev,
5705 struct drm_display_mode *mode,
5706 int depth, int bpp)
5707{
5708 struct drm_i915_gem_object *obj;
308e5bcb 5709 struct drm_mode_fb_cmd2 mode_cmd;
d2dff872
CW
5710
5711 obj = i915_gem_alloc_object(dev,
5712 intel_framebuffer_size_for_mode(mode, bpp));
5713 if (obj == NULL)
5714 return ERR_PTR(-ENOMEM);
5715
5716 mode_cmd.width = mode->hdisplay;
5717 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
5718 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5719 bpp);
5ca0c34a 5720 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872
CW
5721
5722 return intel_framebuffer_create(dev, &mode_cmd, obj);
5723}
5724
5725static struct drm_framebuffer *
5726mode_fits_in_fbdev(struct drm_device *dev,
5727 struct drm_display_mode *mode)
5728{
5729 struct drm_i915_private *dev_priv = dev->dev_private;
5730 struct drm_i915_gem_object *obj;
5731 struct drm_framebuffer *fb;
5732
5733 if (dev_priv->fbdev == NULL)
5734 return NULL;
5735
5736 obj = dev_priv->fbdev->ifb.obj;
5737 if (obj == NULL)
5738 return NULL;
5739
5740 fb = &dev_priv->fbdev->ifb.base;
01f2c773
VS
5741 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5742 fb->bits_per_pixel))
d2dff872
CW
5743 return NULL;
5744
01f2c773 5745 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
5746 return NULL;
5747
5748 return fb;
5749}
5750
d2434ab7 5751bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 5752 struct drm_display_mode *mode,
8261b191 5753 struct intel_load_detect_pipe *old)
79e53945
JB
5754{
5755 struct intel_crtc *intel_crtc;
d2434ab7
DV
5756 struct intel_encoder *intel_encoder =
5757 intel_attached_encoder(connector);
79e53945 5758 struct drm_crtc *possible_crtc;
4ef69c7a 5759 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
5760 struct drm_crtc *crtc = NULL;
5761 struct drm_device *dev = encoder->dev;
94352cf9 5762 struct drm_framebuffer *fb;
79e53945
JB
5763 int i = -1;
5764
d2dff872
CW
5765 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5766 connector->base.id, drm_get_connector_name(connector),
5767 encoder->base.id, drm_get_encoder_name(encoder));
5768
79e53945
JB
5769 /*
5770 * Algorithm gets a little messy:
7a5e4805 5771 *
79e53945
JB
5772 * - if the connector already has an assigned crtc, use it (but make
5773 * sure it's on first)
7a5e4805 5774 *
79e53945
JB
5775 * - try to find the first unused crtc that can drive this connector,
5776 * and use that if we find one
79e53945
JB
5777 */
5778
5779 /* See if we already have a CRTC for this connector */
5780 if (encoder->crtc) {
5781 crtc = encoder->crtc;
8261b191 5782
24218aac 5783 old->dpms_mode = connector->dpms;
8261b191
CW
5784 old->load_detect_temp = false;
5785
5786 /* Make sure the crtc and connector are running */
24218aac
DV
5787 if (connector->dpms != DRM_MODE_DPMS_ON)
5788 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8261b191 5789
7173188d 5790 return true;
79e53945
JB
5791 }
5792
5793 /* Find an unused one (if possible) */
5794 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5795 i++;
5796 if (!(encoder->possible_crtcs & (1 << i)))
5797 continue;
5798 if (!possible_crtc->enabled) {
5799 crtc = possible_crtc;
5800 break;
5801 }
79e53945
JB
5802 }
5803
5804 /*
5805 * If we didn't find an unused CRTC, don't use any.
5806 */
5807 if (!crtc) {
7173188d
CW
5808 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5809 return false;
79e53945
JB
5810 }
5811
fc303101
DV
5812 intel_encoder->new_crtc = to_intel_crtc(crtc);
5813 to_intel_connector(connector)->new_encoder = intel_encoder;
79e53945
JB
5814
5815 intel_crtc = to_intel_crtc(crtc);
24218aac 5816 old->dpms_mode = connector->dpms;
8261b191 5817 old->load_detect_temp = true;
d2dff872 5818 old->release_fb = NULL;
79e53945 5819
6492711d
CW
5820 if (!mode)
5821 mode = &load_detect_mode;
79e53945 5822
d2dff872
CW
5823 /* We need a framebuffer large enough to accommodate all accesses
5824 * that the plane may generate whilst we perform load detection.
5825 * We can not rely on the fbcon either being present (we get called
5826 * during its initialisation to detect all boot displays, or it may
5827 * not even exist) or that it is large enough to satisfy the
5828 * requested mode.
5829 */
94352cf9
DV
5830 fb = mode_fits_in_fbdev(dev, mode);
5831 if (fb == NULL) {
d2dff872 5832 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9
DV
5833 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5834 old->release_fb = fb;
d2dff872
CW
5835 } else
5836 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 5837 if (IS_ERR(fb)) {
d2dff872 5838 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
24218aac 5839 goto fail;
79e53945 5840 }
79e53945 5841
94352cf9 5842 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6492711d 5843 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
d2dff872
CW
5844 if (old->release_fb)
5845 old->release_fb->funcs->destroy(old->release_fb);
24218aac 5846 goto fail;
79e53945 5847 }
7173188d 5848
79e53945 5849 /* let the connector get through one full cycle before testing */
9d0498a2 5850 intel_wait_for_vblank(dev, intel_crtc->pipe);
79e53945 5851
7173188d 5852 return true;
24218aac
DV
5853fail:
5854 connector->encoder = NULL;
5855 encoder->crtc = NULL;
24218aac 5856 return false;
79e53945
JB
5857}
5858
d2434ab7 5859void intel_release_load_detect_pipe(struct drm_connector *connector,
8261b191 5860 struct intel_load_detect_pipe *old)
79e53945 5861{
d2434ab7
DV
5862 struct intel_encoder *intel_encoder =
5863 intel_attached_encoder(connector);
4ef69c7a 5864 struct drm_encoder *encoder = &intel_encoder->base;
79e53945 5865
d2dff872
CW
5866 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5867 connector->base.id, drm_get_connector_name(connector),
5868 encoder->base.id, drm_get_encoder_name(encoder));
5869
8261b191 5870 if (old->load_detect_temp) {
fc303101
DV
5871 struct drm_crtc *crtc = encoder->crtc;
5872
5873 to_intel_connector(connector)->new_encoder = NULL;
5874 intel_encoder->new_crtc = NULL;
5875 intel_set_mode(crtc, NULL, 0, 0, NULL);
d2dff872
CW
5876
5877 if (old->release_fb)
5878 old->release_fb->funcs->destroy(old->release_fb);
5879
0622a53c 5880 return;
79e53945
JB
5881 }
5882
c751ce4f 5883 /* Switch crtc and encoder back off if necessary */
24218aac
DV
5884 if (old->dpms_mode != DRM_MODE_DPMS_ON)
5885 connector->funcs->dpms(connector, old->dpms_mode);
79e53945
JB
5886}
5887
5888/* Returns the clock of the currently programmed mode of the given pipe. */
5889static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5890{
5891 struct drm_i915_private *dev_priv = dev->dev_private;
5892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5893 int pipe = intel_crtc->pipe;
548f245b 5894 u32 dpll = I915_READ(DPLL(pipe));
79e53945
JB
5895 u32 fp;
5896 intel_clock_t clock;
5897
5898 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
39adb7a5 5899 fp = I915_READ(FP0(pipe));
79e53945 5900 else
39adb7a5 5901 fp = I915_READ(FP1(pipe));
79e53945
JB
5902
5903 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
5904 if (IS_PINEVIEW(dev)) {
5905 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5906 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
5907 } else {
5908 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5909 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5910 }
5911
a6c45cf0 5912 if (!IS_GEN2(dev)) {
f2b115e6
AJ
5913 if (IS_PINEVIEW(dev))
5914 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5915 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
5916 else
5917 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
5918 DPLL_FPA01_P1_POST_DIV_SHIFT);
5919
5920 switch (dpll & DPLL_MODE_MASK) {
5921 case DPLLB_MODE_DAC_SERIAL:
5922 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5923 5 : 10;
5924 break;
5925 case DPLLB_MODE_LVDS:
5926 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5927 7 : 14;
5928 break;
5929 default:
28c97730 5930 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945
JB
5931 "mode\n", (int)(dpll & DPLL_MODE_MASK));
5932 return 0;
5933 }
5934
5935 /* XXX: Handle the 100Mhz refclk */
2177832f 5936 intel_clock(dev, 96000, &clock);
79e53945
JB
5937 } else {
5938 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5939
5940 if (is_lvds) {
5941 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5942 DPLL_FPA01_P1_POST_DIV_SHIFT);
5943 clock.p2 = 14;
5944
5945 if ((dpll & PLL_REF_INPUT_MASK) ==
5946 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5947 /* XXX: might not be 66MHz */
2177832f 5948 intel_clock(dev, 66000, &clock);
79e53945 5949 } else
2177832f 5950 intel_clock(dev, 48000, &clock);
79e53945
JB
5951 } else {
5952 if (dpll & PLL_P1_DIVIDE_BY_TWO)
5953 clock.p1 = 2;
5954 else {
5955 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5956 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5957 }
5958 if (dpll & PLL_P2_DIVIDE_BY_4)
5959 clock.p2 = 4;
5960 else
5961 clock.p2 = 2;
5962
2177832f 5963 intel_clock(dev, 48000, &clock);
79e53945
JB
5964 }
5965 }
5966
5967 /* XXX: It would be nice to validate the clocks, but we can't reuse
5968 * i830PllIsValid() because it relies on the xf86_config connector
5969 * configuration being accurate, which it isn't necessarily.
5970 */
5971
5972 return clock.dot;
5973}
5974
5975/** Returns the currently programmed mode of the given pipe. */
5976struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5977 struct drm_crtc *crtc)
5978{
548f245b 5979 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945
JB
5980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5981 int pipe = intel_crtc->pipe;
5982 struct drm_display_mode *mode;
548f245b
JB
5983 int htot = I915_READ(HTOTAL(pipe));
5984 int hsync = I915_READ(HSYNC(pipe));
5985 int vtot = I915_READ(VTOTAL(pipe));
5986 int vsync = I915_READ(VSYNC(pipe));
79e53945
JB
5987
5988 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5989 if (!mode)
5990 return NULL;
5991
5992 mode->clock = intel_crtc_clock_get(dev, crtc);
5993 mode->hdisplay = (htot & 0xffff) + 1;
5994 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5995 mode->hsync_start = (hsync & 0xffff) + 1;
5996 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5997 mode->vdisplay = (vtot & 0xffff) + 1;
5998 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5999 mode->vsync_start = (vsync & 0xffff) + 1;
6000 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6001
6002 drm_mode_set_name(mode);
79e53945
JB
6003
6004 return mode;
6005}
6006
3dec0095 6007static void intel_increase_pllclock(struct drm_crtc *crtc)
652c393a
JB
6008{
6009 struct drm_device *dev = crtc->dev;
6010 drm_i915_private_t *dev_priv = dev->dev_private;
6011 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6012 int pipe = intel_crtc->pipe;
dbdc6479
JB
6013 int dpll_reg = DPLL(pipe);
6014 int dpll;
652c393a 6015
bad720ff 6016 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6017 return;
6018
6019 if (!dev_priv->lvds_downclock_avail)
6020 return;
6021
dbdc6479 6022 dpll = I915_READ(dpll_reg);
652c393a 6023 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
44d98a61 6024 DRM_DEBUG_DRIVER("upclocking LVDS\n");
652c393a 6025
8ac5a6d5 6026 assert_panel_unlocked(dev_priv, pipe);
652c393a
JB
6027
6028 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6029 I915_WRITE(dpll_reg, dpll);
9d0498a2 6030 intel_wait_for_vblank(dev, pipe);
dbdc6479 6031
652c393a
JB
6032 dpll = I915_READ(dpll_reg);
6033 if (dpll & DISPLAY_RATE_SELECT_FPA1)
44d98a61 6034 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
652c393a 6035 }
652c393a
JB
6036}
6037
6038static void intel_decrease_pllclock(struct drm_crtc *crtc)
6039{
6040 struct drm_device *dev = crtc->dev;
6041 drm_i915_private_t *dev_priv = dev->dev_private;
6042 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
652c393a 6043
bad720ff 6044 if (HAS_PCH_SPLIT(dev))
652c393a
JB
6045 return;
6046
6047 if (!dev_priv->lvds_downclock_avail)
6048 return;
6049
6050 /*
6051 * Since this is called by a timer, we should never get here in
6052 * the manual case.
6053 */
6054 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
dc257cf1
DV
6055 int pipe = intel_crtc->pipe;
6056 int dpll_reg = DPLL(pipe);
6057 int dpll;
f6e5b160 6058
44d98a61 6059 DRM_DEBUG_DRIVER("downclocking LVDS\n");
652c393a 6060
8ac5a6d5 6061 assert_panel_unlocked(dev_priv, pipe);
652c393a 6062
dc257cf1 6063 dpll = I915_READ(dpll_reg);
652c393a
JB
6064 dpll |= DISPLAY_RATE_SELECT_FPA1;
6065 I915_WRITE(dpll_reg, dpll);
9d0498a2 6066 intel_wait_for_vblank(dev, pipe);
652c393a
JB
6067 dpll = I915_READ(dpll_reg);
6068 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
44d98a61 6069 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
652c393a
JB
6070 }
6071
6072}
6073
f047e395
CW
6074void intel_mark_busy(struct drm_device *dev)
6075{
f047e395
CW
6076 i915_update_gfx_val(dev->dev_private);
6077}
6078
6079void intel_mark_idle(struct drm_device *dev)
652c393a 6080{
f047e395
CW
6081}
6082
6083void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6084{
6085 struct drm_device *dev = obj->base.dev;
652c393a 6086 struct drm_crtc *crtc;
652c393a
JB
6087
6088 if (!i915_powersave)
6089 return;
6090
652c393a 6091 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
652c393a
JB
6092 if (!crtc->fb)
6093 continue;
6094
f047e395
CW
6095 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6096 intel_increase_pllclock(crtc);
652c393a 6097 }
652c393a
JB
6098}
6099
f047e395 6100void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
652c393a 6101{
f047e395
CW
6102 struct drm_device *dev = obj->base.dev;
6103 struct drm_crtc *crtc;
652c393a 6104
f047e395 6105 if (!i915_powersave)
acb87dfb
CW
6106 return;
6107
652c393a
JB
6108 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6109 if (!crtc->fb)
6110 continue;
6111
f047e395
CW
6112 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6113 intel_decrease_pllclock(crtc);
652c393a
JB
6114 }
6115}
6116
79e53945
JB
6117static void intel_crtc_destroy(struct drm_crtc *crtc)
6118{
6119 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
6120 struct drm_device *dev = crtc->dev;
6121 struct intel_unpin_work *work;
6122 unsigned long flags;
6123
6124 spin_lock_irqsave(&dev->event_lock, flags);
6125 work = intel_crtc->unpin_work;
6126 intel_crtc->unpin_work = NULL;
6127 spin_unlock_irqrestore(&dev->event_lock, flags);
6128
6129 if (work) {
6130 cancel_work_sync(&work->work);
6131 kfree(work);
6132 }
79e53945
JB
6133
6134 drm_crtc_cleanup(crtc);
67e77c5a 6135
79e53945
JB
6136 kfree(intel_crtc);
6137}
6138
6b95a207
KH
6139static void intel_unpin_work_fn(struct work_struct *__work)
6140{
6141 struct intel_unpin_work *work =
6142 container_of(__work, struct intel_unpin_work, work);
6143
6144 mutex_lock(&work->dev->struct_mutex);
1690e1eb 6145 intel_unpin_fb_obj(work->old_fb_obj);
05394f39
CW
6146 drm_gem_object_unreference(&work->pending_flip_obj->base);
6147 drm_gem_object_unreference(&work->old_fb_obj->base);
d9e86c0e 6148
7782de3b 6149 intel_update_fbc(work->dev);
6b95a207
KH
6150 mutex_unlock(&work->dev->struct_mutex);
6151 kfree(work);
6152}
6153
1afe3e9d 6154static void do_intel_finish_page_flip(struct drm_device *dev,
49b14a5c 6155 struct drm_crtc *crtc)
6b95a207
KH
6156{
6157 drm_i915_private_t *dev_priv = dev->dev_private;
6b95a207
KH
6158 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6159 struct intel_unpin_work *work;
05394f39 6160 struct drm_i915_gem_object *obj;
6b95a207 6161 struct drm_pending_vblank_event *e;
49b14a5c 6162 struct timeval tnow, tvbl;
6b95a207
KH
6163 unsigned long flags;
6164
6165 /* Ignore early vblank irqs */
6166 if (intel_crtc == NULL)
6167 return;
6168
49b14a5c
MK
6169 do_gettimeofday(&tnow);
6170
6b95a207
KH
6171 spin_lock_irqsave(&dev->event_lock, flags);
6172 work = intel_crtc->unpin_work;
6173 if (work == NULL || !work->pending) {
6174 spin_unlock_irqrestore(&dev->event_lock, flags);
6175 return;
6176 }
6177
6178 intel_crtc->unpin_work = NULL;
6b95a207
KH
6179
6180 if (work->event) {
6181 e = work->event;
49b14a5c 6182 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
0af7e4df
MK
6183
6184 /* Called before vblank count and timestamps have
6185 * been updated for the vblank interval of flip
6186 * completion? Need to increment vblank count and
6187 * add one videorefresh duration to returned timestamp
49b14a5c
MK
6188 * to account for this. We assume this happened if we
6189 * get called over 0.9 frame durations after the last
6190 * timestamped vblank.
6191 *
6192 * This calculation can not be used with vrefresh rates
6193 * below 5Hz (10Hz to be on the safe side) without
6194 * promoting to 64 integers.
0af7e4df 6195 */
49b14a5c
MK
6196 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6197 9 * crtc->framedur_ns) {
0af7e4df 6198 e->event.sequence++;
49b14a5c
MK
6199 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6200 crtc->framedur_ns);
0af7e4df
MK
6201 }
6202
49b14a5c
MK
6203 e->event.tv_sec = tvbl.tv_sec;
6204 e->event.tv_usec = tvbl.tv_usec;
0af7e4df 6205
6b95a207
KH
6206 list_add_tail(&e->base.link,
6207 &e->base.file_priv->event_list);
6208 wake_up_interruptible(&e->base.file_priv->event_wait);
6209 }
6210
0af7e4df
MK
6211 drm_vblank_put(dev, intel_crtc->pipe);
6212
6b95a207
KH
6213 spin_unlock_irqrestore(&dev->event_lock, flags);
6214
05394f39 6215 obj = work->old_fb_obj;
d9e86c0e 6216
e59f2bac 6217 atomic_clear_mask(1 << intel_crtc->plane,
05394f39
CW
6218 &obj->pending_flip.counter);
6219 if (atomic_read(&obj->pending_flip) == 0)
f787a5f5 6220 wake_up(&dev_priv->pending_flip_queue);
d9e86c0e 6221
6b95a207 6222 schedule_work(&work->work);
e5510fac
JB
6223
6224 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6b95a207
KH
6225}
6226
1afe3e9d
JB
6227void intel_finish_page_flip(struct drm_device *dev, int pipe)
6228{
6229 drm_i915_private_t *dev_priv = dev->dev_private;
6230 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6231
49b14a5c 6232 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6233}
6234
6235void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6236{
6237 drm_i915_private_t *dev_priv = dev->dev_private;
6238 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6239
49b14a5c 6240 do_intel_finish_page_flip(dev, crtc);
1afe3e9d
JB
6241}
6242
6b95a207
KH
6243void intel_prepare_page_flip(struct drm_device *dev, int plane)
6244{
6245 drm_i915_private_t *dev_priv = dev->dev_private;
6246 struct intel_crtc *intel_crtc =
6247 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6248 unsigned long flags;
6249
6250 spin_lock_irqsave(&dev->event_lock, flags);
de3f440f 6251 if (intel_crtc->unpin_work) {
4e5359cd
SF
6252 if ((++intel_crtc->unpin_work->pending) > 1)
6253 DRM_ERROR("Prepared flip multiple times\n");
de3f440f
JB
6254 } else {
6255 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6256 }
6b95a207
KH
6257 spin_unlock_irqrestore(&dev->event_lock, flags);
6258}
6259
8c9f3aaf
JB
6260static int intel_gen2_queue_flip(struct drm_device *dev,
6261 struct drm_crtc *crtc,
6262 struct drm_framebuffer *fb,
6263 struct drm_i915_gem_object *obj)
6264{
6265 struct drm_i915_private *dev_priv = dev->dev_private;
6266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6267 u32 flip_mask;
6d90c952 6268 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6269 int ret;
6270
6d90c952 6271 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6272 if (ret)
83d4092b 6273 goto err;
8c9f3aaf 6274
6d90c952 6275 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6276 if (ret)
83d4092b 6277 goto err_unpin;
8c9f3aaf
JB
6278
6279 /* Can't queue multiple flips, so wait for the previous
6280 * one to finish before executing the next.
6281 */
6282 if (intel_crtc->plane)
6283 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6284 else
6285 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6286 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6287 intel_ring_emit(ring, MI_NOOP);
6288 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6289 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6290 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6291 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6292 intel_ring_emit(ring, 0); /* aux display base address, unused */
6293 intel_ring_advance(ring);
83d4092b
CW
6294 return 0;
6295
6296err_unpin:
6297 intel_unpin_fb_obj(obj);
6298err:
8c9f3aaf
JB
6299 return ret;
6300}
6301
6302static int intel_gen3_queue_flip(struct drm_device *dev,
6303 struct drm_crtc *crtc,
6304 struct drm_framebuffer *fb,
6305 struct drm_i915_gem_object *obj)
6306{
6307 struct drm_i915_private *dev_priv = dev->dev_private;
6308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf 6309 u32 flip_mask;
6d90c952 6310 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6311 int ret;
6312
6d90c952 6313 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6314 if (ret)
83d4092b 6315 goto err;
8c9f3aaf 6316
6d90c952 6317 ret = intel_ring_begin(ring, 6);
8c9f3aaf 6318 if (ret)
83d4092b 6319 goto err_unpin;
8c9f3aaf
JB
6320
6321 if (intel_crtc->plane)
6322 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6323 else
6324 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6d90c952
DV
6325 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6326 intel_ring_emit(ring, MI_NOOP);
6327 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6328 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6329 intel_ring_emit(ring, fb->pitches[0]);
e506a0c6 6330 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6d90c952
DV
6331 intel_ring_emit(ring, MI_NOOP);
6332
6333 intel_ring_advance(ring);
83d4092b
CW
6334 return 0;
6335
6336err_unpin:
6337 intel_unpin_fb_obj(obj);
6338err:
8c9f3aaf
JB
6339 return ret;
6340}
6341
6342static int intel_gen4_queue_flip(struct drm_device *dev,
6343 struct drm_crtc *crtc,
6344 struct drm_framebuffer *fb,
6345 struct drm_i915_gem_object *obj)
6346{
6347 struct drm_i915_private *dev_priv = dev->dev_private;
6348 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6349 uint32_t pf, pipesrc;
6d90c952 6350 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6351 int ret;
6352
6d90c952 6353 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6354 if (ret)
83d4092b 6355 goto err;
8c9f3aaf 6356
6d90c952 6357 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6358 if (ret)
83d4092b 6359 goto err_unpin;
8c9f3aaf
JB
6360
6361 /* i965+ uses the linear or tiled offsets from the
6362 * Display Registers (which do not change across a page-flip)
6363 * so we need only reprogram the base address.
6364 */
6d90c952
DV
6365 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6366 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6367 intel_ring_emit(ring, fb->pitches[0]);
c2c75131
DV
6368 intel_ring_emit(ring,
6369 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6370 obj->tiling_mode);
8c9f3aaf
JB
6371
6372 /* XXX Enabling the panel-fitter across page-flip is so far
6373 * untested on non-native modes, so ignore it for now.
6374 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6375 */
6376 pf = 0;
6377 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6378 intel_ring_emit(ring, pf | pipesrc);
6379 intel_ring_advance(ring);
83d4092b
CW
6380 return 0;
6381
6382err_unpin:
6383 intel_unpin_fb_obj(obj);
6384err:
8c9f3aaf
JB
6385 return ret;
6386}
6387
6388static int intel_gen6_queue_flip(struct drm_device *dev,
6389 struct drm_crtc *crtc,
6390 struct drm_framebuffer *fb,
6391 struct drm_i915_gem_object *obj)
6392{
6393 struct drm_i915_private *dev_priv = dev->dev_private;
6394 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6d90c952 6395 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8c9f3aaf
JB
6396 uint32_t pf, pipesrc;
6397 int ret;
6398
6d90c952 6399 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8c9f3aaf 6400 if (ret)
83d4092b 6401 goto err;
8c9f3aaf 6402
6d90c952 6403 ret = intel_ring_begin(ring, 4);
8c9f3aaf 6404 if (ret)
83d4092b 6405 goto err_unpin;
8c9f3aaf 6406
6d90c952
DV
6407 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6408 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6409 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
c2c75131 6410 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
8c9f3aaf 6411
dc257cf1
DV
6412 /* Contrary to the suggestions in the documentation,
6413 * "Enable Panel Fitter" does not seem to be required when page
6414 * flipping with a non-native mode, and worse causes a normal
6415 * modeset to fail.
6416 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6417 */
6418 pf = 0;
8c9f3aaf 6419 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6d90c952
DV
6420 intel_ring_emit(ring, pf | pipesrc);
6421 intel_ring_advance(ring);
83d4092b
CW
6422 return 0;
6423
6424err_unpin:
6425 intel_unpin_fb_obj(obj);
6426err:
8c9f3aaf
JB
6427 return ret;
6428}
6429
7c9017e5
JB
6430/*
6431 * On gen7 we currently use the blit ring because (in early silicon at least)
6432 * the render ring doesn't give us interrpts for page flip completion, which
6433 * means clients will hang after the first flip is queued. Fortunately the
6434 * blit ring generates interrupts properly, so use it instead.
6435 */
6436static int intel_gen7_queue_flip(struct drm_device *dev,
6437 struct drm_crtc *crtc,
6438 struct drm_framebuffer *fb,
6439 struct drm_i915_gem_object *obj)
6440{
6441 struct drm_i915_private *dev_priv = dev->dev_private;
6442 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6443 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
cb05d8de 6444 uint32_t plane_bit = 0;
7c9017e5
JB
6445 int ret;
6446
6447 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6448 if (ret)
83d4092b 6449 goto err;
7c9017e5 6450
cb05d8de
DV
6451 switch(intel_crtc->plane) {
6452 case PLANE_A:
6453 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6454 break;
6455 case PLANE_B:
6456 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6457 break;
6458 case PLANE_C:
6459 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6460 break;
6461 default:
6462 WARN_ONCE(1, "unknown plane in flip command\n");
6463 ret = -ENODEV;
ab3951eb 6464 goto err_unpin;
cb05d8de
DV
6465 }
6466
7c9017e5
JB
6467 ret = intel_ring_begin(ring, 4);
6468 if (ret)
83d4092b 6469 goto err_unpin;
7c9017e5 6470
cb05d8de 6471 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
01f2c773 6472 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
c2c75131 6473 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7c9017e5
JB
6474 intel_ring_emit(ring, (MI_NOOP));
6475 intel_ring_advance(ring);
83d4092b
CW
6476 return 0;
6477
6478err_unpin:
6479 intel_unpin_fb_obj(obj);
6480err:
7c9017e5
JB
6481 return ret;
6482}
6483
8c9f3aaf
JB
6484static int intel_default_queue_flip(struct drm_device *dev,
6485 struct drm_crtc *crtc,
6486 struct drm_framebuffer *fb,
6487 struct drm_i915_gem_object *obj)
6488{
6489 return -ENODEV;
6490}
6491
6b95a207
KH
6492static int intel_crtc_page_flip(struct drm_crtc *crtc,
6493 struct drm_framebuffer *fb,
6494 struct drm_pending_vblank_event *event)
6495{
6496 struct drm_device *dev = crtc->dev;
6497 struct drm_i915_private *dev_priv = dev->dev_private;
6498 struct intel_framebuffer *intel_fb;
05394f39 6499 struct drm_i915_gem_object *obj;
6b95a207
KH
6500 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6501 struct intel_unpin_work *work;
8c9f3aaf 6502 unsigned long flags;
52e68630 6503 int ret;
6b95a207 6504
e6a595d2
VS
6505 /* Can't change pixel format via MI display flips. */
6506 if (fb->pixel_format != crtc->fb->pixel_format)
6507 return -EINVAL;
6508
6509 /*
6510 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6511 * Note that pitch changes could also affect these register.
6512 */
6513 if (INTEL_INFO(dev)->gen > 3 &&
6514 (fb->offsets[0] != crtc->fb->offsets[0] ||
6515 fb->pitches[0] != crtc->fb->pitches[0]))
6516 return -EINVAL;
6517
6b95a207
KH
6518 work = kzalloc(sizeof *work, GFP_KERNEL);
6519 if (work == NULL)
6520 return -ENOMEM;
6521
6b95a207
KH
6522 work->event = event;
6523 work->dev = crtc->dev;
6524 intel_fb = to_intel_framebuffer(crtc->fb);
b1b87f6b 6525 work->old_fb_obj = intel_fb->obj;
6b95a207
KH
6526 INIT_WORK(&work->work, intel_unpin_work_fn);
6527
7317c75e
JB
6528 ret = drm_vblank_get(dev, intel_crtc->pipe);
6529 if (ret)
6530 goto free_work;
6531
6b95a207
KH
6532 /* We borrow the event spin lock for protecting unpin_work */
6533 spin_lock_irqsave(&dev->event_lock, flags);
6534 if (intel_crtc->unpin_work) {
6535 spin_unlock_irqrestore(&dev->event_lock, flags);
6536 kfree(work);
7317c75e 6537 drm_vblank_put(dev, intel_crtc->pipe);
468f0b44
CW
6538
6539 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6b95a207
KH
6540 return -EBUSY;
6541 }
6542 intel_crtc->unpin_work = work;
6543 spin_unlock_irqrestore(&dev->event_lock, flags);
6544
6545 intel_fb = to_intel_framebuffer(fb);
6546 obj = intel_fb->obj;
6547
79158103
CW
6548 ret = i915_mutex_lock_interruptible(dev);
6549 if (ret)
6550 goto cleanup;
6b95a207 6551
75dfca80 6552 /* Reference the objects for the scheduled work. */
05394f39
CW
6553 drm_gem_object_reference(&work->old_fb_obj->base);
6554 drm_gem_object_reference(&obj->base);
6b95a207
KH
6555
6556 crtc->fb = fb;
96b099fd 6557
e1f99ce6 6558 work->pending_flip_obj = obj;
e1f99ce6 6559
4e5359cd
SF
6560 work->enable_stall_check = true;
6561
e1f99ce6
CW
6562 /* Block clients from rendering to the new back buffer until
6563 * the flip occurs and the object is no longer visible.
6564 */
05394f39 6565 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
e1f99ce6 6566
8c9f3aaf
JB
6567 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6568 if (ret)
6569 goto cleanup_pending;
6b95a207 6570
7782de3b 6571 intel_disable_fbc(dev);
f047e395 6572 intel_mark_fb_busy(obj);
6b95a207
KH
6573 mutex_unlock(&dev->struct_mutex);
6574
e5510fac
JB
6575 trace_i915_flip_request(intel_crtc->plane, obj);
6576
6b95a207 6577 return 0;
96b099fd 6578
8c9f3aaf
JB
6579cleanup_pending:
6580 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
05394f39
CW
6581 drm_gem_object_unreference(&work->old_fb_obj->base);
6582 drm_gem_object_unreference(&obj->base);
96b099fd
CW
6583 mutex_unlock(&dev->struct_mutex);
6584
79158103 6585cleanup:
96b099fd
CW
6586 spin_lock_irqsave(&dev->event_lock, flags);
6587 intel_crtc->unpin_work = NULL;
6588 spin_unlock_irqrestore(&dev->event_lock, flags);
6589
7317c75e
JB
6590 drm_vblank_put(dev, intel_crtc->pipe);
6591free_work:
96b099fd
CW
6592 kfree(work);
6593
6594 return ret;
6b95a207
KH
6595}
6596
f6e5b160 6597static struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160
CW
6598 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6599 .load_lut = intel_crtc_load_lut,
976f8a20 6600 .disable = intel_crtc_noop,
f6e5b160
CW
6601};
6602
6ed0f796 6603bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
47f1c6c9 6604{
6ed0f796
DV
6605 struct intel_encoder *other_encoder;
6606 struct drm_crtc *crtc = &encoder->new_crtc->base;
47f1c6c9 6607
6ed0f796
DV
6608 if (WARN_ON(!crtc))
6609 return false;
6610
6611 list_for_each_entry(other_encoder,
6612 &crtc->dev->mode_config.encoder_list,
6613 base.head) {
6614
6615 if (&other_encoder->new_crtc->base != crtc ||
6616 encoder == other_encoder)
6617 continue;
6618 else
6619 return true;
f47166d2
CW
6620 }
6621
6ed0f796
DV
6622 return false;
6623}
47f1c6c9 6624
50f56119
DV
6625static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
6626 struct drm_crtc *crtc)
6627{
6628 struct drm_device *dev;
6629 struct drm_crtc *tmp;
6630 int crtc_mask = 1;
47f1c6c9 6631
50f56119 6632 WARN(!crtc, "checking null crtc?\n");
47f1c6c9 6633
50f56119 6634 dev = crtc->dev;
47f1c6c9 6635
50f56119
DV
6636 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
6637 if (tmp == crtc)
6638 break;
6639 crtc_mask <<= 1;
6640 }
47f1c6c9 6641
50f56119
DV
6642 if (encoder->possible_crtcs & crtc_mask)
6643 return true;
6644 return false;
47f1c6c9 6645}
79e53945 6646
9a935856
DV
6647/**
6648 * intel_modeset_update_staged_output_state
6649 *
6650 * Updates the staged output configuration state, e.g. after we've read out the
6651 * current hw state.
6652 */
6653static void intel_modeset_update_staged_output_state(struct drm_device *dev)
f6e5b160 6654{
9a935856
DV
6655 struct intel_encoder *encoder;
6656 struct intel_connector *connector;
f6e5b160 6657
9a935856
DV
6658 list_for_each_entry(connector, &dev->mode_config.connector_list,
6659 base.head) {
6660 connector->new_encoder =
6661 to_intel_encoder(connector->base.encoder);
6662 }
f6e5b160 6663
9a935856
DV
6664 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6665 base.head) {
6666 encoder->new_crtc =
6667 to_intel_crtc(encoder->base.crtc);
6668 }
f6e5b160
CW
6669}
6670
9a935856
DV
6671/**
6672 * intel_modeset_commit_output_state
6673 *
6674 * This function copies the stage display pipe configuration to the real one.
6675 */
6676static void intel_modeset_commit_output_state(struct drm_device *dev)
6677{
6678 struct intel_encoder *encoder;
6679 struct intel_connector *connector;
f6e5b160 6680
9a935856
DV
6681 list_for_each_entry(connector, &dev->mode_config.connector_list,
6682 base.head) {
6683 connector->base.encoder = &connector->new_encoder->base;
6684 }
f6e5b160 6685
9a935856
DV
6686 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6687 base.head) {
6688 encoder->base.crtc = &encoder->new_crtc->base;
6689 }
6690}
6691
7758a113
DV
6692static struct drm_display_mode *
6693intel_modeset_adjusted_mode(struct drm_crtc *crtc,
6694 struct drm_display_mode *mode)
ee7b9f93 6695{
7758a113
DV
6696 struct drm_device *dev = crtc->dev;
6697 struct drm_display_mode *adjusted_mode;
6698 struct drm_encoder_helper_funcs *encoder_funcs;
6699 struct intel_encoder *encoder;
ee7b9f93 6700
7758a113
DV
6701 adjusted_mode = drm_mode_duplicate(dev, mode);
6702 if (!adjusted_mode)
6703 return ERR_PTR(-ENOMEM);
6704
6705 /* Pass our mode to the connectors and the CRTC to give them a chance to
6706 * adjust it according to limitations or connector properties, and also
6707 * a chance to reject the mode entirely.
6708 */
6709 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6710 base.head) {
6711
6712 if (&encoder->new_crtc->base != crtc)
6713 continue;
6714 encoder_funcs = encoder->base.helper_private;
6715 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
6716 adjusted_mode))) {
6717 DRM_DEBUG_KMS("Encoder fixup failed\n");
6718 goto fail;
6719 }
ee7b9f93
JB
6720 }
6721
7758a113
DV
6722 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
6723 DRM_DEBUG_KMS("CRTC fixup failed\n");
6724 goto fail;
ee7b9f93 6725 }
7758a113
DV
6726 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
6727
6728 return adjusted_mode;
6729fail:
6730 drm_mode_destroy(dev, adjusted_mode);
6731 return ERR_PTR(-EINVAL);
ee7b9f93
JB
6732}
6733
e2e1ed41
DV
6734/* Computes which crtcs are affected and sets the relevant bits in the mask. For
6735 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
6736static void
6737intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
6738 unsigned *prepare_pipes, unsigned *disable_pipes)
79e53945
JB
6739{
6740 struct intel_crtc *intel_crtc;
e2e1ed41
DV
6741 struct drm_device *dev = crtc->dev;
6742 struct intel_encoder *encoder;
6743 struct intel_connector *connector;
6744 struct drm_crtc *tmp_crtc;
79e53945 6745
e2e1ed41 6746 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
79e53945 6747
e2e1ed41
DV
6748 /* Check which crtcs have changed outputs connected to them, these need
6749 * to be part of the prepare_pipes mask. We don't (yet) support global
6750 * modeset across multiple crtcs, so modeset_pipes will only have one
6751 * bit set at most. */
6752 list_for_each_entry(connector, &dev->mode_config.connector_list,
6753 base.head) {
6754 if (connector->base.encoder == &connector->new_encoder->base)
6755 continue;
79e53945 6756
e2e1ed41
DV
6757 if (connector->base.encoder) {
6758 tmp_crtc = connector->base.encoder->crtc;
6759
6760 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6761 }
6762
6763 if (connector->new_encoder)
6764 *prepare_pipes |=
6765 1 << connector->new_encoder->new_crtc->pipe;
79e53945
JB
6766 }
6767
e2e1ed41
DV
6768 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6769 base.head) {
6770 if (encoder->base.crtc == &encoder->new_crtc->base)
6771 continue;
6772
6773 if (encoder->base.crtc) {
6774 tmp_crtc = encoder->base.crtc;
6775
6776 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
6777 }
6778
6779 if (encoder->new_crtc)
6780 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
80824003
JB
6781 }
6782
e2e1ed41
DV
6783 /* Check for any pipes that will be fully disabled ... */
6784 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6785 base.head) {
6786 bool used = false;
22fd0fab 6787
e2e1ed41
DV
6788 /* Don't try to disable disabled crtcs. */
6789 if (!intel_crtc->base.enabled)
6790 continue;
7e7d76c3 6791
e2e1ed41
DV
6792 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6793 base.head) {
6794 if (encoder->new_crtc == intel_crtc)
6795 used = true;
6796 }
6797
6798 if (!used)
6799 *disable_pipes |= 1 << intel_crtc->pipe;
7e7d76c3
JB
6800 }
6801
e2e1ed41
DV
6802
6803 /* set_mode is also used to update properties on life display pipes. */
6804 intel_crtc = to_intel_crtc(crtc);
6805 if (crtc->enabled)
6806 *prepare_pipes |= 1 << intel_crtc->pipe;
6807
6808 /* We only support modeset on one single crtc, hence we need to do that
6809 * only for the passed in crtc iff we change anything else than just
6810 * disable crtcs.
6811 *
6812 * This is actually not true, to be fully compatible with the old crtc
6813 * helper we automatically disable _any_ output (i.e. doesn't need to be
6814 * connected to the crtc we're modesetting on) if it's disconnected.
6815 * Which is a rather nutty api (since changed the output configuration
6816 * without userspace's explicit request can lead to confusion), but
6817 * alas. Hence we currently need to modeset on all pipes we prepare. */
6818 if (*prepare_pipes)
6819 *modeset_pipes = *prepare_pipes;
6820
6821 /* ... and mask these out. */
6822 *modeset_pipes &= ~(*disable_pipes);
6823 *prepare_pipes &= ~(*disable_pipes);
6824}
6825
ea9d758d
DV
6826static bool intel_crtc_in_use(struct drm_crtc *crtc)
6827{
6828 struct drm_encoder *encoder;
6829 struct drm_device *dev = crtc->dev;
6830
6831 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
6832 if (encoder->crtc == crtc)
6833 return true;
6834
6835 return false;
6836}
6837
6838static void
6839intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
6840{
6841 struct intel_encoder *intel_encoder;
6842 struct intel_crtc *intel_crtc;
6843 struct drm_connector *connector;
6844
6845 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
6846 base.head) {
6847 if (!intel_encoder->base.crtc)
6848 continue;
6849
6850 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
6851
6852 if (prepare_pipes & (1 << intel_crtc->pipe))
6853 intel_encoder->connectors_active = false;
6854 }
6855
6856 intel_modeset_commit_output_state(dev);
6857
6858 /* Update computed state. */
6859 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
6860 base.head) {
6861 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
6862 }
6863
6864 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6865 if (!connector->encoder || !connector->encoder->crtc)
6866 continue;
6867
6868 intel_crtc = to_intel_crtc(connector->encoder->crtc);
6869
6870 if (prepare_pipes & (1 << intel_crtc->pipe)) {
68d34720
DV
6871 struct drm_property *dpms_property =
6872 dev->mode_config.dpms_property;
6873
ea9d758d 6874 connector->dpms = DRM_MODE_DPMS_ON;
68d34720
DV
6875 drm_connector_property_set_value(connector,
6876 dpms_property,
6877 DRM_MODE_DPMS_ON);
ea9d758d
DV
6878
6879 intel_encoder = to_intel_encoder(connector->encoder);
6880 intel_encoder->connectors_active = true;
6881 }
6882 }
6883
6884}
6885
25c5b266
DV
6886#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
6887 list_for_each_entry((intel_crtc), \
6888 &(dev)->mode_config.crtc_list, \
6889 base.head) \
6890 if (mask & (1 <<(intel_crtc)->pipe)) \
6891
b980514c 6892void
8af6cf88
DV
6893intel_modeset_check_state(struct drm_device *dev)
6894{
6895 struct intel_crtc *crtc;
6896 struct intel_encoder *encoder;
6897 struct intel_connector *connector;
6898
6899 list_for_each_entry(connector, &dev->mode_config.connector_list,
6900 base.head) {
6901 /* This also checks the encoder/connector hw state with the
6902 * ->get_hw_state callbacks. */
6903 intel_connector_check_state(connector);
6904
6905 WARN(&connector->new_encoder->base != connector->base.encoder,
6906 "connector's staged encoder doesn't match current encoder\n");
6907 }
6908
6909 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6910 base.head) {
6911 bool enabled = false;
6912 bool active = false;
6913 enum pipe pipe, tracked_pipe;
6914
6915 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
6916 encoder->base.base.id,
6917 drm_get_encoder_name(&encoder->base));
6918
6919 WARN(&encoder->new_crtc->base != encoder->base.crtc,
6920 "encoder's stage crtc doesn't match current crtc\n");
6921 WARN(encoder->connectors_active && !encoder->base.crtc,
6922 "encoder's active_connectors set, but no crtc\n");
6923
6924 list_for_each_entry(connector, &dev->mode_config.connector_list,
6925 base.head) {
6926 if (connector->base.encoder != &encoder->base)
6927 continue;
6928 enabled = true;
6929 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
6930 active = true;
6931 }
6932 WARN(!!encoder->base.crtc != enabled,
6933 "encoder's enabled state mismatch "
6934 "(expected %i, found %i)\n",
6935 !!encoder->base.crtc, enabled);
6936 WARN(active && !encoder->base.crtc,
6937 "active encoder with no crtc\n");
6938
6939 WARN(encoder->connectors_active != active,
6940 "encoder's computed active state doesn't match tracked active state "
6941 "(expected %i, found %i)\n", active, encoder->connectors_active);
6942
6943 active = encoder->get_hw_state(encoder, &pipe);
6944 WARN(active != encoder->connectors_active,
6945 "encoder's hw state doesn't match sw tracking "
6946 "(expected %i, found %i)\n",
6947 encoder->connectors_active, active);
6948
6949 if (!encoder->base.crtc)
6950 continue;
6951
6952 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
6953 WARN(active && pipe != tracked_pipe,
6954 "active encoder's pipe doesn't match"
6955 "(expected %i, found %i)\n",
6956 tracked_pipe, pipe);
6957
6958 }
6959
6960 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
6961 base.head) {
6962 bool enabled = false;
6963 bool active = false;
6964
6965 DRM_DEBUG_KMS("[CRTC:%d]\n",
6966 crtc->base.base.id);
6967
6968 WARN(crtc->active && !crtc->base.enabled,
6969 "active crtc, but not enabled in sw tracking\n");
6970
6971 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
6972 base.head) {
6973 if (encoder->base.crtc != &crtc->base)
6974 continue;
6975 enabled = true;
6976 if (encoder->connectors_active)
6977 active = true;
6978 }
6979 WARN(active != crtc->active,
6980 "crtc's computed active state doesn't match tracked active state "
6981 "(expected %i, found %i)\n", active, crtc->active);
6982 WARN(enabled != crtc->base.enabled,
6983 "crtc's computed enabled state doesn't match tracked enabled state "
6984 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
6985
6986 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
6987 }
6988}
6989
a6778b3c
DV
6990bool intel_set_mode(struct drm_crtc *crtc,
6991 struct drm_display_mode *mode,
94352cf9 6992 int x, int y, struct drm_framebuffer *fb)
a6778b3c
DV
6993{
6994 struct drm_device *dev = crtc->dev;
dbf2b54e 6995 drm_i915_private_t *dev_priv = dev->dev_private;
a6778b3c 6996 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
a6778b3c 6997 struct drm_encoder_helper_funcs *encoder_funcs;
a6778b3c 6998 struct drm_encoder *encoder;
25c5b266
DV
6999 struct intel_crtc *intel_crtc;
7000 unsigned disable_pipes, prepare_pipes, modeset_pipes;
a6778b3c
DV
7001 bool ret = true;
7002
e2e1ed41 7003 intel_modeset_affected_pipes(crtc, &modeset_pipes,
25c5b266
DV
7004 &prepare_pipes, &disable_pipes);
7005
7006 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7007 modeset_pipes, prepare_pipes, disable_pipes);
e2e1ed41 7008
976f8a20
DV
7009 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7010 intel_crtc_disable(&intel_crtc->base);
87f1faa6 7011
a6778b3c
DV
7012 saved_hwmode = crtc->hwmode;
7013 saved_mode = crtc->mode;
a6778b3c 7014
25c5b266
DV
7015 /* Hack: Because we don't (yet) support global modeset on multiple
7016 * crtcs, we don't keep track of the new mode for more than one crtc.
7017 * Hence simply check whether any bit is set in modeset_pipes in all the
7018 * pieces of code that are not yet converted to deal with mutliple crtcs
7019 * changing their mode at the same time. */
7020 adjusted_mode = NULL;
7021 if (modeset_pipes) {
7022 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7023 if (IS_ERR(adjusted_mode)) {
7024 return false;
7025 }
25c5b266 7026 }
a6778b3c 7027
ea9d758d
DV
7028 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7029 if (intel_crtc->base.enabled)
7030 dev_priv->display.crtc_disable(&intel_crtc->base);
7031 }
a6778b3c 7032
6c4c86f5
DV
7033 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7034 * to set it here already despite that we pass it down the callchain.
7035 */
7036 if (modeset_pipes)
25c5b266 7037 crtc->mode = *mode;
7758a113 7038
ea9d758d
DV
7039 /* Only after disabling all output pipelines that will be changed can we
7040 * update the the output configuration. */
7041 intel_modeset_update_state(dev, prepare_pipes);
7042
a6778b3c
DV
7043 /* Set up the DPLL and any encoders state that needs to adjust or depend
7044 * on the DPLL.
7045 */
25c5b266
DV
7046 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7047 ret = !intel_crtc_mode_set(&intel_crtc->base,
7048 mode, adjusted_mode,
7049 x, y, fb);
7050 if (!ret)
7051 goto done;
a6778b3c 7052
25c5b266 7053 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
a6778b3c 7054
25c5b266
DV
7055 if (encoder->crtc != &intel_crtc->base)
7056 continue;
a6778b3c 7057
25c5b266
DV
7058 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7059 encoder->base.id, drm_get_encoder_name(encoder),
7060 mode->base.id, mode->name);
7061 encoder_funcs = encoder->helper_private;
7062 encoder_funcs->mode_set(encoder, mode, adjusted_mode);
7063 }
a6778b3c
DV
7064 }
7065
7066 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
25c5b266
DV
7067 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7068 dev_priv->display.crtc_enable(&intel_crtc->base);
a6778b3c 7069
25c5b266
DV
7070 if (modeset_pipes) {
7071 /* Store real post-adjustment hardware mode. */
7072 crtc->hwmode = *adjusted_mode;
a6778b3c 7073
25c5b266
DV
7074 /* Calculate and store various constants which
7075 * are later needed by vblank and swap-completion
7076 * timestamping. They are derived from true hwmode.
7077 */
7078 drm_calc_timestamping_constants(crtc);
7079 }
a6778b3c
DV
7080
7081 /* FIXME: add subpixel order */
7082done:
7083 drm_mode_destroy(dev, adjusted_mode);
25c5b266 7084 if (!ret && crtc->enabled) {
a6778b3c
DV
7085 crtc->hwmode = saved_hwmode;
7086 crtc->mode = saved_mode;
8af6cf88
DV
7087 } else {
7088 intel_modeset_check_state(dev);
a6778b3c
DV
7089 }
7090
7091 return ret;
7092}
7093
25c5b266
DV
7094#undef for_each_intel_crtc_masked
7095
d9e55608
DV
7096static void intel_set_config_free(struct intel_set_config *config)
7097{
7098 if (!config)
7099 return;
7100
1aa4b628
DV
7101 kfree(config->save_connector_encoders);
7102 kfree(config->save_encoder_crtcs);
d9e55608
DV
7103 kfree(config);
7104}
7105
85f9eb71
DV
7106static int intel_set_config_save_state(struct drm_device *dev,
7107 struct intel_set_config *config)
7108{
85f9eb71
DV
7109 struct drm_encoder *encoder;
7110 struct drm_connector *connector;
7111 int count;
7112
1aa4b628
DV
7113 config->save_encoder_crtcs =
7114 kcalloc(dev->mode_config.num_encoder,
7115 sizeof(struct drm_crtc *), GFP_KERNEL);
7116 if (!config->save_encoder_crtcs)
85f9eb71
DV
7117 return -ENOMEM;
7118
1aa4b628
DV
7119 config->save_connector_encoders =
7120 kcalloc(dev->mode_config.num_connector,
7121 sizeof(struct drm_encoder *), GFP_KERNEL);
7122 if (!config->save_connector_encoders)
85f9eb71
DV
7123 return -ENOMEM;
7124
7125 /* Copy data. Note that driver private data is not affected.
7126 * Should anything bad happen only the expected state is
7127 * restored, not the drivers personal bookkeeping.
7128 */
85f9eb71
DV
7129 count = 0;
7130 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
1aa4b628 7131 config->save_encoder_crtcs[count++] = encoder->crtc;
85f9eb71
DV
7132 }
7133
7134 count = 0;
7135 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
1aa4b628 7136 config->save_connector_encoders[count++] = connector->encoder;
85f9eb71
DV
7137 }
7138
7139 return 0;
7140}
7141
7142static void intel_set_config_restore_state(struct drm_device *dev,
7143 struct intel_set_config *config)
7144{
9a935856
DV
7145 struct intel_encoder *encoder;
7146 struct intel_connector *connector;
85f9eb71
DV
7147 int count;
7148
85f9eb71 7149 count = 0;
9a935856
DV
7150 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7151 encoder->new_crtc =
7152 to_intel_crtc(config->save_encoder_crtcs[count++]);
85f9eb71
DV
7153 }
7154
7155 count = 0;
9a935856
DV
7156 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7157 connector->new_encoder =
7158 to_intel_encoder(config->save_connector_encoders[count++]);
85f9eb71
DV
7159 }
7160}
7161
5e2b584e
DV
7162static void
7163intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7164 struct intel_set_config *config)
7165{
7166
7167 /* We should be able to check here if the fb has the same properties
7168 * and then just flip_or_move it */
7169 if (set->crtc->fb != set->fb) {
7170 /* If we have no fb then treat it as a full mode set */
7171 if (set->crtc->fb == NULL) {
7172 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7173 config->mode_changed = true;
7174 } else if (set->fb == NULL) {
7175 config->mode_changed = true;
7176 } else if (set->fb->depth != set->crtc->fb->depth) {
7177 config->mode_changed = true;
7178 } else if (set->fb->bits_per_pixel !=
7179 set->crtc->fb->bits_per_pixel) {
7180 config->mode_changed = true;
7181 } else
7182 config->fb_changed = true;
7183 }
7184
835c5873 7185 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
5e2b584e
DV
7186 config->fb_changed = true;
7187
7188 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7189 DRM_DEBUG_KMS("modes are different, full mode set\n");
7190 drm_mode_debug_printmodeline(&set->crtc->mode);
7191 drm_mode_debug_printmodeline(set->mode);
7192 config->mode_changed = true;
7193 }
7194}
7195
2e431051 7196static int
9a935856
DV
7197intel_modeset_stage_output_state(struct drm_device *dev,
7198 struct drm_mode_set *set,
7199 struct intel_set_config *config)
50f56119 7200{
85f9eb71 7201 struct drm_crtc *new_crtc;
9a935856
DV
7202 struct intel_connector *connector;
7203 struct intel_encoder *encoder;
2e431051 7204 int count, ro;
50f56119 7205
9a935856
DV
7206 /* The upper layers ensure that we either disabl a crtc or have a list
7207 * of connectors. For paranoia, double-check this. */
7208 WARN_ON(!set->fb && (set->num_connectors != 0));
7209 WARN_ON(set->fb && (set->num_connectors == 0));
7210
50f56119 7211 count = 0;
9a935856
DV
7212 list_for_each_entry(connector, &dev->mode_config.connector_list,
7213 base.head) {
7214 /* Otherwise traverse passed in connector list and get encoders
7215 * for them. */
50f56119 7216 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856
DV
7217 if (set->connectors[ro] == &connector->base) {
7218 connector->new_encoder = connector->encoder;
50f56119
DV
7219 break;
7220 }
7221 }
7222
9a935856
DV
7223 /* If we disable the crtc, disable all its connectors. Also, if
7224 * the connector is on the changing crtc but not on the new
7225 * connector list, disable it. */
7226 if ((!set->fb || ro == set->num_connectors) &&
7227 connector->base.encoder &&
7228 connector->base.encoder->crtc == set->crtc) {
7229 connector->new_encoder = NULL;
7230
7231 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7232 connector->base.base.id,
7233 drm_get_connector_name(&connector->base));
7234 }
7235
7236
7237 if (&connector->new_encoder->base != connector->base.encoder) {
50f56119 7238 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
5e2b584e 7239 config->mode_changed = true;
50f56119 7240 }
9a935856
DV
7241
7242 /* Disable all disconnected encoders. */
7243 if (connector->base.status == connector_status_disconnected)
7244 connector->new_encoder = NULL;
50f56119 7245 }
9a935856 7246 /* connector->new_encoder is now updated for all connectors. */
50f56119 7247
9a935856 7248 /* Update crtc of enabled connectors. */
50f56119 7249 count = 0;
9a935856
DV
7250 list_for_each_entry(connector, &dev->mode_config.connector_list,
7251 base.head) {
7252 if (!connector->new_encoder)
50f56119
DV
7253 continue;
7254
9a935856 7255 new_crtc = connector->new_encoder->base.crtc;
50f56119
DV
7256
7257 for (ro = 0; ro < set->num_connectors; ro++) {
9a935856 7258 if (set->connectors[ro] == &connector->base)
50f56119
DV
7259 new_crtc = set->crtc;
7260 }
7261
7262 /* Make sure the new CRTC will work with the encoder */
9a935856
DV
7263 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7264 new_crtc)) {
5e2b584e 7265 return -EINVAL;
50f56119 7266 }
9a935856
DV
7267 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7268
7269 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7270 connector->base.base.id,
7271 drm_get_connector_name(&connector->base),
7272 new_crtc->base.id);
7273 }
7274
7275 /* Check for any encoders that needs to be disabled. */
7276 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7277 base.head) {
7278 list_for_each_entry(connector,
7279 &dev->mode_config.connector_list,
7280 base.head) {
7281 if (connector->new_encoder == encoder) {
7282 WARN_ON(!connector->new_encoder->new_crtc);
7283
7284 goto next_encoder;
7285 }
7286 }
7287 encoder->new_crtc = NULL;
7288next_encoder:
7289 /* Only now check for crtc changes so we don't miss encoders
7290 * that will be disabled. */
7291 if (&encoder->new_crtc->base != encoder->base.crtc) {
50f56119 7292 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
5e2b584e 7293 config->mode_changed = true;
50f56119
DV
7294 }
7295 }
9a935856 7296 /* Now we've also updated encoder->new_crtc for all encoders. */
50f56119 7297
2e431051
DV
7298 return 0;
7299}
7300
7301static int intel_crtc_set_config(struct drm_mode_set *set)
7302{
7303 struct drm_device *dev;
2e431051
DV
7304 struct drm_mode_set save_set;
7305 struct intel_set_config *config;
7306 int ret;
2e431051 7307
8d3e375e
DV
7308 BUG_ON(!set);
7309 BUG_ON(!set->crtc);
7310 BUG_ON(!set->crtc->helper_private);
2e431051
DV
7311
7312 if (!set->mode)
7313 set->fb = NULL;
7314
431e50f7
DV
7315 /* The fb helper likes to play gross jokes with ->mode_set_config.
7316 * Unfortunately the crtc helper doesn't do much at all for this case,
7317 * so we have to cope with this madness until the fb helper is fixed up. */
7318 if (set->fb && set->num_connectors == 0)
7319 return 0;
7320
2e431051
DV
7321 if (set->fb) {
7322 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7323 set->crtc->base.id, set->fb->base.id,
7324 (int)set->num_connectors, set->x, set->y);
7325 } else {
7326 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
2e431051
DV
7327 }
7328
7329 dev = set->crtc->dev;
7330
7331 ret = -ENOMEM;
7332 config = kzalloc(sizeof(*config), GFP_KERNEL);
7333 if (!config)
7334 goto out_config;
7335
7336 ret = intel_set_config_save_state(dev, config);
7337 if (ret)
7338 goto out_config;
7339
7340 save_set.crtc = set->crtc;
7341 save_set.mode = &set->crtc->mode;
7342 save_set.x = set->crtc->x;
7343 save_set.y = set->crtc->y;
7344 save_set.fb = set->crtc->fb;
7345
7346 /* Compute whether we need a full modeset, only an fb base update or no
7347 * change at all. In the future we might also check whether only the
7348 * mode changed, e.g. for LVDS where we only change the panel fitter in
7349 * such cases. */
7350 intel_set_config_compute_mode_changes(set, config);
7351
9a935856 7352 ret = intel_modeset_stage_output_state(dev, set, config);
2e431051
DV
7353 if (ret)
7354 goto fail;
7355
5e2b584e 7356 if (config->mode_changed) {
87f1faa6 7357 if (set->mode) {
50f56119
DV
7358 DRM_DEBUG_KMS("attempting to set mode from"
7359 " userspace\n");
7360 drm_mode_debug_printmodeline(set->mode);
87f1faa6
DV
7361 }
7362
7363 if (!intel_set_mode(set->crtc, set->mode,
7364 set->x, set->y, set->fb)) {
7365 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7366 set->crtc->base.id);
7367 ret = -EINVAL;
7368 goto fail;
7369 }
5e2b584e 7370 } else if (config->fb_changed) {
4f660f49 7371 ret = intel_pipe_set_base(set->crtc,
94352cf9 7372 set->x, set->y, set->fb);
50f56119
DV
7373 }
7374
d9e55608
DV
7375 intel_set_config_free(config);
7376
50f56119
DV
7377 return 0;
7378
7379fail:
85f9eb71 7380 intel_set_config_restore_state(dev, config);
50f56119
DV
7381
7382 /* Try to restore the config */
5e2b584e 7383 if (config->mode_changed &&
a6778b3c
DV
7384 !intel_set_mode(save_set.crtc, save_set.mode,
7385 save_set.x, save_set.y, save_set.fb))
50f56119
DV
7386 DRM_ERROR("failed to restore config after modeset failure\n");
7387
d9e55608
DV
7388out_config:
7389 intel_set_config_free(config);
50f56119
DV
7390 return ret;
7391}
7392
f6e5b160 7393static const struct drm_crtc_funcs intel_crtc_funcs = {
f6e5b160
CW
7394 .cursor_set = intel_crtc_cursor_set,
7395 .cursor_move = intel_crtc_cursor_move,
7396 .gamma_set = intel_crtc_gamma_set,
50f56119 7397 .set_config = intel_crtc_set_config,
f6e5b160
CW
7398 .destroy = intel_crtc_destroy,
7399 .page_flip = intel_crtc_page_flip,
7400};
7401
ee7b9f93
JB
7402static void intel_pch_pll_init(struct drm_device *dev)
7403{
7404 drm_i915_private_t *dev_priv = dev->dev_private;
7405 int i;
7406
7407 if (dev_priv->num_pch_pll == 0) {
7408 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7409 return;
7410 }
7411
7412 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7413 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7414 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7415 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7416 }
7417}
7418
b358d0a6 7419static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 7420{
22fd0fab 7421 drm_i915_private_t *dev_priv = dev->dev_private;
79e53945
JB
7422 struct intel_crtc *intel_crtc;
7423 int i;
7424
7425 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7426 if (intel_crtc == NULL)
7427 return;
7428
7429 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7430
7431 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
79e53945
JB
7432 for (i = 0; i < 256; i++) {
7433 intel_crtc->lut_r[i] = i;
7434 intel_crtc->lut_g[i] = i;
7435 intel_crtc->lut_b[i] = i;
7436 }
7437
80824003
JB
7438 /* Swap pipes & planes for FBC on pre-965 */
7439 intel_crtc->pipe = pipe;
7440 intel_crtc->plane = pipe;
e2e767ab 7441 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
28c97730 7442 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 7443 intel_crtc->plane = !pipe;
80824003
JB
7444 }
7445
22fd0fab
JB
7446 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7447 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7448 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7449 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7450
5a354204 7451 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7e7d76c3 7452
79e53945 7453 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
79e53945
JB
7454}
7455
08d7b3d1 7456int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 7457 struct drm_file *file)
08d7b3d1 7458{
08d7b3d1 7459 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
c05422d5
DV
7460 struct drm_mode_object *drmmode_obj;
7461 struct intel_crtc *crtc;
08d7b3d1 7462
1cff8f6b
DV
7463 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7464 return -ENODEV;
08d7b3d1 7465
c05422d5
DV
7466 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7467 DRM_MODE_OBJECT_CRTC);
08d7b3d1 7468
c05422d5 7469 if (!drmmode_obj) {
08d7b3d1
CW
7470 DRM_ERROR("no such CRTC id\n");
7471 return -EINVAL;
7472 }
7473
c05422d5
DV
7474 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7475 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 7476
c05422d5 7477 return 0;
08d7b3d1
CW
7478}
7479
66a9278e 7480static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 7481{
66a9278e
DV
7482 struct drm_device *dev = encoder->base.dev;
7483 struct intel_encoder *source_encoder;
79e53945 7484 int index_mask = 0;
79e53945
JB
7485 int entry = 0;
7486
66a9278e
DV
7487 list_for_each_entry(source_encoder,
7488 &dev->mode_config.encoder_list, base.head) {
7489
7490 if (encoder == source_encoder)
79e53945 7491 index_mask |= (1 << entry);
66a9278e
DV
7492
7493 /* Intel hw has only one MUX where enocoders could be cloned. */
7494 if (encoder->cloneable && source_encoder->cloneable)
7495 index_mask |= (1 << entry);
7496
79e53945
JB
7497 entry++;
7498 }
4ef69c7a 7499
79e53945
JB
7500 return index_mask;
7501}
7502
4d302442
CW
7503static bool has_edp_a(struct drm_device *dev)
7504{
7505 struct drm_i915_private *dev_priv = dev->dev_private;
7506
7507 if (!IS_MOBILE(dev))
7508 return false;
7509
7510 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7511 return false;
7512
7513 if (IS_GEN5(dev) &&
7514 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7515 return false;
7516
7517 return true;
7518}
7519
79e53945
JB
7520static void intel_setup_outputs(struct drm_device *dev)
7521{
725e30ad 7522 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 7523 struct intel_encoder *encoder;
cb0953d7 7524 bool dpd_is_edp = false;
f3cfcba6 7525 bool has_lvds;
79e53945 7526
f3cfcba6 7527 has_lvds = intel_lvds_init(dev);
c5d1b51d
CW
7528 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7529 /* disable the panel fitter on everything but LVDS */
7530 I915_WRITE(PFIT_CONTROL, 0);
7531 }
79e53945 7532
bad720ff 7533 if (HAS_PCH_SPLIT(dev)) {
cb0953d7 7534 dpd_is_edp = intel_dpd_is_edp(dev);
30ad48b7 7535
4d302442 7536 if (has_edp_a(dev))
ab9d7c30 7537 intel_dp_init(dev, DP_A, PORT_A);
32f9d658 7538
cb0953d7 7539 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 7540 intel_dp_init(dev, PCH_DP_D, PORT_D);
cb0953d7
AJ
7541 }
7542
7543 intel_crt_init(dev);
7544
0e72a5b5
ED
7545 if (IS_HASWELL(dev)) {
7546 int found;
7547
7548 /* Haswell uses DDI functions to detect digital outputs */
7549 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7550 /* DDI A only supports eDP */
7551 if (found)
7552 intel_ddi_init(dev, PORT_A);
7553
7554 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7555 * register */
7556 found = I915_READ(SFUSE_STRAP);
7557
7558 if (found & SFUSE_STRAP_DDIB_DETECTED)
7559 intel_ddi_init(dev, PORT_B);
7560 if (found & SFUSE_STRAP_DDIC_DETECTED)
7561 intel_ddi_init(dev, PORT_C);
7562 if (found & SFUSE_STRAP_DDID_DETECTED)
7563 intel_ddi_init(dev, PORT_D);
7564 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7
AJ
7565 int found;
7566
30ad48b7 7567 if (I915_READ(HDMIB) & PORT_DETECTED) {
461ed3ca 7568 /* PCH SDVOB multiplex with HDMIB */
eef4eacb 7569 found = intel_sdvo_init(dev, PCH_SDVOB, true);
30ad48b7 7570 if (!found)
08d644ad 7571 intel_hdmi_init(dev, HDMIB, PORT_B);
5eb08b69 7572 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 7573 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
7574 }
7575
7576 if (I915_READ(HDMIC) & PORT_DETECTED)
08d644ad 7577 intel_hdmi_init(dev, HDMIC, PORT_C);
30ad48b7 7578
b708a1d5 7579 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
08d644ad 7580 intel_hdmi_init(dev, HDMID, PORT_D);
30ad48b7 7581
5eb08b69 7582 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 7583 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 7584
cb0953d7 7585 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
ab9d7c30 7586 intel_dp_init(dev, PCH_DP_D, PORT_D);
4a87d65d
JB
7587 } else if (IS_VALLEYVIEW(dev)) {
7588 int found;
7589
7590 if (I915_READ(SDVOB) & PORT_DETECTED) {
7591 /* SDVOB multiplex with HDMIB */
7592 found = intel_sdvo_init(dev, SDVOB, true);
7593 if (!found)
08d644ad 7594 intel_hdmi_init(dev, SDVOB, PORT_B);
4a87d65d 7595 if (!found && (I915_READ(DP_B) & DP_DETECTED))
ab9d7c30 7596 intel_dp_init(dev, DP_B, PORT_B);
4a87d65d
JB
7597 }
7598
7599 if (I915_READ(SDVOC) & PORT_DETECTED)
08d644ad 7600 intel_hdmi_init(dev, SDVOC, PORT_C);
5eb08b69 7601
4a87d65d
JB
7602 /* Shares lanes with HDMI on SDVOC */
7603 if (I915_READ(DP_C) & DP_DETECTED)
ab9d7c30 7604 intel_dp_init(dev, DP_C, PORT_C);
103a196f 7605 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
27185ae1 7606 bool found = false;
7d57382e 7607
725e30ad 7608 if (I915_READ(SDVOB) & SDVO_DETECTED) {
b01f2c3a 7609 DRM_DEBUG_KMS("probing SDVOB\n");
eef4eacb 7610 found = intel_sdvo_init(dev, SDVOB, true);
b01f2c3a
JB
7611 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7612 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
08d644ad 7613 intel_hdmi_init(dev, SDVOB, PORT_B);
b01f2c3a 7614 }
27185ae1 7615
b01f2c3a
JB
7616 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7617 DRM_DEBUG_KMS("probing DP_B\n");
ab9d7c30 7618 intel_dp_init(dev, DP_B, PORT_B);
b01f2c3a 7619 }
725e30ad 7620 }
13520b05
KH
7621
7622 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 7623
b01f2c3a
JB
7624 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7625 DRM_DEBUG_KMS("probing SDVOC\n");
eef4eacb 7626 found = intel_sdvo_init(dev, SDVOC, false);
b01f2c3a 7627 }
27185ae1
ML
7628
7629 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7630
b01f2c3a
JB
7631 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7632 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
08d644ad 7633 intel_hdmi_init(dev, SDVOC, PORT_C);
b01f2c3a
JB
7634 }
7635 if (SUPPORTS_INTEGRATED_DP(dev)) {
7636 DRM_DEBUG_KMS("probing DP_C\n");
ab9d7c30 7637 intel_dp_init(dev, DP_C, PORT_C);
b01f2c3a 7638 }
725e30ad 7639 }
27185ae1 7640
b01f2c3a
JB
7641 if (SUPPORTS_INTEGRATED_DP(dev) &&
7642 (I915_READ(DP_D) & DP_DETECTED)) {
7643 DRM_DEBUG_KMS("probing DP_D\n");
ab9d7c30 7644 intel_dp_init(dev, DP_D, PORT_D);
b01f2c3a 7645 }
bad720ff 7646 } else if (IS_GEN2(dev))
79e53945
JB
7647 intel_dvo_init(dev);
7648
103a196f 7649 if (SUPPORTS_TV(dev))
79e53945
JB
7650 intel_tv_init(dev);
7651
4ef69c7a
CW
7652 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7653 encoder->base.possible_crtcs = encoder->crtc_mask;
7654 encoder->base.possible_clones =
66a9278e 7655 intel_encoder_clones(encoder);
79e53945 7656 }
47356eb6 7657
40579abe 7658 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9fb526db 7659 ironlake_init_pch_refclk(dev);
79e53945
JB
7660}
7661
7662static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7663{
7664 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945
JB
7665
7666 drm_framebuffer_cleanup(fb);
05394f39 7667 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
79e53945
JB
7668
7669 kfree(intel_fb);
7670}
7671
7672static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 7673 struct drm_file *file,
79e53945
JB
7674 unsigned int *handle)
7675{
7676 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 7677 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 7678
05394f39 7679 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
7680}
7681
7682static const struct drm_framebuffer_funcs intel_fb_funcs = {
7683 .destroy = intel_user_framebuffer_destroy,
7684 .create_handle = intel_user_framebuffer_create_handle,
7685};
7686
38651674
DA
7687int intel_framebuffer_init(struct drm_device *dev,
7688 struct intel_framebuffer *intel_fb,
308e5bcb 7689 struct drm_mode_fb_cmd2 *mode_cmd,
05394f39 7690 struct drm_i915_gem_object *obj)
79e53945 7691{
79e53945
JB
7692 int ret;
7693
05394f39 7694 if (obj->tiling_mode == I915_TILING_Y)
57cd6508
CW
7695 return -EINVAL;
7696
308e5bcb 7697 if (mode_cmd->pitches[0] & 63)
57cd6508
CW
7698 return -EINVAL;
7699
308e5bcb 7700 switch (mode_cmd->pixel_format) {
04b3924d
VS
7701 case DRM_FORMAT_RGB332:
7702 case DRM_FORMAT_RGB565:
7703 case DRM_FORMAT_XRGB8888:
b250da79 7704 case DRM_FORMAT_XBGR8888:
04b3924d
VS
7705 case DRM_FORMAT_ARGB8888:
7706 case DRM_FORMAT_XRGB2101010:
7707 case DRM_FORMAT_ARGB2101010:
308e5bcb 7708 /* RGB formats are common across chipsets */
b5626747 7709 break;
04b3924d
VS
7710 case DRM_FORMAT_YUYV:
7711 case DRM_FORMAT_UYVY:
7712 case DRM_FORMAT_YVYU:
7713 case DRM_FORMAT_VYUY:
57cd6508
CW
7714 break;
7715 default:
aca25848
ED
7716 DRM_DEBUG_KMS("unsupported pixel format %u\n",
7717 mode_cmd->pixel_format);
57cd6508
CW
7718 return -EINVAL;
7719 }
7720
79e53945
JB
7721 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7722 if (ret) {
7723 DRM_ERROR("framebuffer init failed %d\n", ret);
7724 return ret;
7725 }
7726
7727 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
79e53945 7728 intel_fb->obj = obj;
79e53945
JB
7729 return 0;
7730}
7731
79e53945
JB
7732static struct drm_framebuffer *
7733intel_user_framebuffer_create(struct drm_device *dev,
7734 struct drm_file *filp,
308e5bcb 7735 struct drm_mode_fb_cmd2 *mode_cmd)
79e53945 7736{
05394f39 7737 struct drm_i915_gem_object *obj;
79e53945 7738
308e5bcb
JB
7739 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7740 mode_cmd->handles[0]));
c8725226 7741 if (&obj->base == NULL)
cce13ff7 7742 return ERR_PTR(-ENOENT);
79e53945 7743
d2dff872 7744 return intel_framebuffer_create(dev, mode_cmd, obj);
79e53945
JB
7745}
7746
79e53945 7747static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 7748 .fb_create = intel_user_framebuffer_create,
eb1f8e4f 7749 .output_poll_changed = intel_fb_output_poll_changed,
79e53945
JB
7750};
7751
e70236a8
JB
7752/* Set up chip specific display functions */
7753static void intel_init_display(struct drm_device *dev)
7754{
7755 struct drm_i915_private *dev_priv = dev->dev_private;
7756
7757 /* We always want a DPMS function */
f564048e 7758 if (HAS_PCH_SPLIT(dev)) {
f564048e 7759 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
76e5a89c
DV
7760 dev_priv->display.crtc_enable = ironlake_crtc_enable;
7761 dev_priv->display.crtc_disable = ironlake_crtc_disable;
ee7b9f93 7762 dev_priv->display.off = ironlake_crtc_off;
17638cd6 7763 dev_priv->display.update_plane = ironlake_update_plane;
f564048e 7764 } else {
f564048e 7765 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
76e5a89c
DV
7766 dev_priv->display.crtc_enable = i9xx_crtc_enable;
7767 dev_priv->display.crtc_disable = i9xx_crtc_disable;
ee7b9f93 7768 dev_priv->display.off = i9xx_crtc_off;
17638cd6 7769 dev_priv->display.update_plane = i9xx_update_plane;
f564048e 7770 }
e70236a8 7771
e70236a8 7772 /* Returns the core display clock speed */
25eb05fc
JB
7773 if (IS_VALLEYVIEW(dev))
7774 dev_priv->display.get_display_clock_speed =
7775 valleyview_get_display_clock_speed;
7776 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
e70236a8
JB
7777 dev_priv->display.get_display_clock_speed =
7778 i945_get_display_clock_speed;
7779 else if (IS_I915G(dev))
7780 dev_priv->display.get_display_clock_speed =
7781 i915_get_display_clock_speed;
f2b115e6 7782 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
e70236a8
JB
7783 dev_priv->display.get_display_clock_speed =
7784 i9xx_misc_get_display_clock_speed;
7785 else if (IS_I915GM(dev))
7786 dev_priv->display.get_display_clock_speed =
7787 i915gm_get_display_clock_speed;
7788 else if (IS_I865G(dev))
7789 dev_priv->display.get_display_clock_speed =
7790 i865_get_display_clock_speed;
f0f8a9ce 7791 else if (IS_I85X(dev))
e70236a8
JB
7792 dev_priv->display.get_display_clock_speed =
7793 i855_get_display_clock_speed;
7794 else /* 852, 830 */
7795 dev_priv->display.get_display_clock_speed =
7796 i830_get_display_clock_speed;
7797
7f8a8569 7798 if (HAS_PCH_SPLIT(dev)) {
f00a3ddf 7799 if (IS_GEN5(dev)) {
674cf967 7800 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
e0dac65e 7801 dev_priv->display.write_eld = ironlake_write_eld;
1398261a 7802 } else if (IS_GEN6(dev)) {
674cf967 7803 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
e0dac65e 7804 dev_priv->display.write_eld = ironlake_write_eld;
357555c0
JB
7805 } else if (IS_IVYBRIDGE(dev)) {
7806 /* FIXME: detect B0+ stepping and use auto training */
7807 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
e0dac65e 7808 dev_priv->display.write_eld = ironlake_write_eld;
c82e4d26
ED
7809 } else if (IS_HASWELL(dev)) {
7810 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
83358c85 7811 dev_priv->display.write_eld = haswell_write_eld;
7f8a8569
ZW
7812 } else
7813 dev_priv->display.update_wm = NULL;
6067aaea 7814 } else if (IS_G4X(dev)) {
e0dac65e 7815 dev_priv->display.write_eld = g4x_write_eld;
e70236a8 7816 }
8c9f3aaf
JB
7817
7818 /* Default just returns -ENODEV to indicate unsupported */
7819 dev_priv->display.queue_flip = intel_default_queue_flip;
7820
7821 switch (INTEL_INFO(dev)->gen) {
7822 case 2:
7823 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7824 break;
7825
7826 case 3:
7827 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7828 break;
7829
7830 case 4:
7831 case 5:
7832 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7833 break;
7834
7835 case 6:
7836 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7837 break;
7c9017e5
JB
7838 case 7:
7839 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7840 break;
8c9f3aaf 7841 }
e70236a8
JB
7842}
7843
b690e96c
JB
7844/*
7845 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7846 * resume, or other times. This quirk makes sure that's the case for
7847 * affected systems.
7848 */
0206e353 7849static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
7850{
7851 struct drm_i915_private *dev_priv = dev->dev_private;
7852
7853 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 7854 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
7855}
7856
435793df
KP
7857/*
7858 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7859 */
7860static void quirk_ssc_force_disable(struct drm_device *dev)
7861{
7862 struct drm_i915_private *dev_priv = dev->dev_private;
7863 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 7864 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
7865}
7866
4dca20ef 7867/*
5a15ab5b
CE
7868 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7869 * brightness value
4dca20ef
CE
7870 */
7871static void quirk_invert_brightness(struct drm_device *dev)
7872{
7873 struct drm_i915_private *dev_priv = dev->dev_private;
7874 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 7875 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
7876}
7877
b690e96c
JB
7878struct intel_quirk {
7879 int device;
7880 int subsystem_vendor;
7881 int subsystem_device;
7882 void (*hook)(struct drm_device *dev);
7883};
7884
c43b5634 7885static struct intel_quirk intel_quirks[] = {
b690e96c 7886 /* HP Mini needs pipe A force quirk (LP: #322104) */
0206e353 7887 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
b690e96c 7888
b690e96c
JB
7889 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7890 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7891
b690e96c
JB
7892 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7893 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7894
7895 /* 855 & before need to leave pipe A & dpll A up */
7896 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7897 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
dcdaed6e 7898 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
435793df
KP
7899
7900 /* Lenovo U160 cannot use SSC on LVDS */
7901 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
7902
7903 /* Sony Vaio Y cannot use SSC on LVDS */
7904 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b
CE
7905
7906 /* Acer Aspire 5734Z must invert backlight brightness */
7907 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
b690e96c
JB
7908};
7909
7910static void intel_init_quirks(struct drm_device *dev)
7911{
7912 struct pci_dev *d = dev->pdev;
7913 int i;
7914
7915 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7916 struct intel_quirk *q = &intel_quirks[i];
7917
7918 if (d->device == q->device &&
7919 (d->subsystem_vendor == q->subsystem_vendor ||
7920 q->subsystem_vendor == PCI_ANY_ID) &&
7921 (d->subsystem_device == q->subsystem_device ||
7922 q->subsystem_device == PCI_ANY_ID))
7923 q->hook(dev);
7924 }
7925}
7926
9cce37f4
JB
7927/* Disable the VGA plane that we never use */
7928static void i915_disable_vga(struct drm_device *dev)
7929{
7930 struct drm_i915_private *dev_priv = dev->dev_private;
7931 u8 sr1;
7932 u32 vga_reg;
7933
7934 if (HAS_PCH_SPLIT(dev))
7935 vga_reg = CPU_VGACNTRL;
7936 else
7937 vga_reg = VGACNTRL;
7938
7939 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 7940 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
7941 sr1 = inb(VGA_SR_DATA);
7942 outb(sr1 | 1<<5, VGA_SR_DATA);
7943 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7944 udelay(300);
7945
7946 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7947 POSTING_READ(vga_reg);
7948}
7949
f817586c
DV
7950void intel_modeset_init_hw(struct drm_device *dev)
7951{
0232e927
ED
7952 /* We attempt to init the necessary power wells early in the initialization
7953 * time, so the subsystems that expect power to be enabled can work.
7954 */
7955 intel_init_power_wells(dev);
7956
a8f78b58
ED
7957 intel_prepare_ddi(dev);
7958
f817586c
DV
7959 intel_init_clock_gating(dev);
7960
79f5b2c7 7961 mutex_lock(&dev->struct_mutex);
8090c6b9 7962 intel_enable_gt_powersave(dev);
79f5b2c7 7963 mutex_unlock(&dev->struct_mutex);
f817586c
DV
7964}
7965
79e53945
JB
7966void intel_modeset_init(struct drm_device *dev)
7967{
652c393a 7968 struct drm_i915_private *dev_priv = dev->dev_private;
b840d907 7969 int i, ret;
79e53945
JB
7970
7971 drm_mode_config_init(dev);
7972
7973 dev->mode_config.min_width = 0;
7974 dev->mode_config.min_height = 0;
7975
019d96cb
DA
7976 dev->mode_config.preferred_depth = 24;
7977 dev->mode_config.prefer_shadow = 1;
7978
e6ecefaa 7979 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 7980
b690e96c
JB
7981 intel_init_quirks(dev);
7982
1fa61106
ED
7983 intel_init_pm(dev);
7984
e70236a8
JB
7985 intel_init_display(dev);
7986
a6c45cf0
CW
7987 if (IS_GEN2(dev)) {
7988 dev->mode_config.max_width = 2048;
7989 dev->mode_config.max_height = 2048;
7990 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
7991 dev->mode_config.max_width = 4096;
7992 dev->mode_config.max_height = 4096;
79e53945 7993 } else {
a6c45cf0
CW
7994 dev->mode_config.max_width = 8192;
7995 dev->mode_config.max_height = 8192;
79e53945 7996 }
dd2757f8 7997 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
79e53945 7998
28c97730 7999 DRM_DEBUG_KMS("%d display pipe%s available.\n",
a3524f1b 8000 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
79e53945 8001
a3524f1b 8002 for (i = 0; i < dev_priv->num_pipe; i++) {
79e53945 8003 intel_crtc_init(dev, i);
00c2064b
JB
8004 ret = intel_plane_init(dev, i);
8005 if (ret)
8006 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
79e53945
JB
8007 }
8008
ee7b9f93
JB
8009 intel_pch_pll_init(dev);
8010
9cce37f4
JB
8011 /* Just disable it once at startup */
8012 i915_disable_vga(dev);
79e53945 8013 intel_setup_outputs(dev);
2c7111db
CW
8014}
8015
24929352
DV
8016static void
8017intel_connector_break_all_links(struct intel_connector *connector)
8018{
8019 connector->base.dpms = DRM_MODE_DPMS_OFF;
8020 connector->base.encoder = NULL;
8021 connector->encoder->connectors_active = false;
8022 connector->encoder->base.crtc = NULL;
8023}
8024
7fad798e
DV
8025static void intel_enable_pipe_a(struct drm_device *dev)
8026{
8027 struct intel_connector *connector;
8028 struct drm_connector *crt = NULL;
8029 struct intel_load_detect_pipe load_detect_temp;
8030
8031 /* We can't just switch on the pipe A, we need to set things up with a
8032 * proper mode and output configuration. As a gross hack, enable pipe A
8033 * by enabling the load detect pipe once. */
8034 list_for_each_entry(connector,
8035 &dev->mode_config.connector_list,
8036 base.head) {
8037 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8038 crt = &connector->base;
8039 break;
8040 }
8041 }
8042
8043 if (!crt)
8044 return;
8045
8046 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8047 intel_release_load_detect_pipe(crt, &load_detect_temp);
8048
8049
8050}
8051
24929352
DV
8052static void intel_sanitize_crtc(struct intel_crtc *crtc)
8053{
8054 struct drm_device *dev = crtc->base.dev;
8055 struct drm_i915_private *dev_priv = dev->dev_private;
8056 u32 reg, val;
8057
24929352
DV
8058 /* Clear any frame start delays used for debugging left by the BIOS */
8059 reg = PIPECONF(crtc->pipe);
8060 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8061
8062 /* We need to sanitize the plane -> pipe mapping first because this will
8063 * disable the crtc (and hence change the state) if it is wrong. */
8064 if (!HAS_PCH_SPLIT(dev)) {
8065 struct intel_connector *connector;
8066 bool plane;
8067
8068 reg = DSPCNTR(crtc->plane);
8069 val = I915_READ(reg);
8070
8071 if ((val & DISPLAY_PLANE_ENABLE) == 0 &&
8072 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8073 goto ok;
8074
8075 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8076 crtc->base.base.id);
8077
8078 /* Pipe has the wrong plane attached and the plane is active.
8079 * Temporarily change the plane mapping and disable everything
8080 * ... */
8081 plane = crtc->plane;
8082 crtc->plane = !plane;
8083 dev_priv->display.crtc_disable(&crtc->base);
8084 crtc->plane = plane;
8085
8086 /* ... and break all links. */
8087 list_for_each_entry(connector, &dev->mode_config.connector_list,
8088 base.head) {
8089 if (connector->encoder->base.crtc != &crtc->base)
8090 continue;
8091
8092 intel_connector_break_all_links(connector);
8093 }
8094
8095 WARN_ON(crtc->active);
8096 crtc->base.enabled = false;
8097 }
8098ok:
8099
7fad798e
DV
8100 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8101 crtc->pipe == PIPE_A && !crtc->active) {
8102 /* BIOS forgot to enable pipe A, this mostly happens after
8103 * resume. Force-enable the pipe to fix this, the update_dpms
8104 * call below we restore the pipe to the right state, but leave
8105 * the required bits on. */
8106 intel_enable_pipe_a(dev);
8107 }
8108
24929352
DV
8109 /* Adjust the state of the output pipe according to whether we
8110 * have active connectors/encoders. */
8111 intel_crtc_update_dpms(&crtc->base);
8112
8113 if (crtc->active != crtc->base.enabled) {
8114 struct intel_encoder *encoder;
8115
8116 /* This can happen either due to bugs in the get_hw_state
8117 * functions or because the pipe is force-enabled due to the
8118 * pipe A quirk. */
8119 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8120 crtc->base.base.id,
8121 crtc->base.enabled ? "enabled" : "disabled",
8122 crtc->active ? "enabled" : "disabled");
8123
8124 crtc->base.enabled = crtc->active;
8125
8126 /* Because we only establish the connector -> encoder ->
8127 * crtc links if something is active, this means the
8128 * crtc is now deactivated. Break the links. connector
8129 * -> encoder links are only establish when things are
8130 * actually up, hence no need to break them. */
8131 WARN_ON(crtc->active);
8132
8133 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8134 WARN_ON(encoder->connectors_active);
8135 encoder->base.crtc = NULL;
8136 }
8137 }
8138}
8139
8140static void intel_sanitize_encoder(struct intel_encoder *encoder)
8141{
8142 struct intel_connector *connector;
8143 struct drm_device *dev = encoder->base.dev;
8144
8145 /* We need to check both for a crtc link (meaning that the
8146 * encoder is active and trying to read from a pipe) and the
8147 * pipe itself being active. */
8148 bool has_active_crtc = encoder->base.crtc &&
8149 to_intel_crtc(encoder->base.crtc)->active;
8150
8151 if (encoder->connectors_active && !has_active_crtc) {
8152 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8153 encoder->base.base.id,
8154 drm_get_encoder_name(&encoder->base));
8155
8156 /* Connector is active, but has no active pipe. This is
8157 * fallout from our resume register restoring. Disable
8158 * the encoder manually again. */
8159 if (encoder->base.crtc) {
8160 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8161 encoder->base.base.id,
8162 drm_get_encoder_name(&encoder->base));
8163 encoder->disable(encoder);
8164 }
8165
8166 /* Inconsistent output/port/pipe state happens presumably due to
8167 * a bug in one of the get_hw_state functions. Or someplace else
8168 * in our code, like the register restore mess on resume. Clamp
8169 * things to off as a safer default. */
8170 list_for_each_entry(connector,
8171 &dev->mode_config.connector_list,
8172 base.head) {
8173 if (connector->encoder != encoder)
8174 continue;
8175
8176 intel_connector_break_all_links(connector);
8177 }
8178 }
8179 /* Enabled encoders without active connectors will be fixed in
8180 * the crtc fixup. */
8181}
8182
8183/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8184 * and i915 state tracking structures. */
8185void intel_modeset_setup_hw_state(struct drm_device *dev)
8186{
8187 struct drm_i915_private *dev_priv = dev->dev_private;
8188 enum pipe pipe;
8189 u32 tmp;
8190 struct intel_crtc *crtc;
8191 struct intel_encoder *encoder;
8192 struct intel_connector *connector;
8193
8194 for_each_pipe(pipe) {
8195 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8196
8197 tmp = I915_READ(PIPECONF(pipe));
8198 if (tmp & PIPECONF_ENABLE)
8199 crtc->active = true;
8200 else
8201 crtc->active = false;
8202
8203 crtc->base.enabled = crtc->active;
8204
8205 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8206 crtc->base.base.id,
8207 crtc->active ? "enabled" : "disabled");
8208 }
8209
8210 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8211 base.head) {
8212 pipe = 0;
8213
8214 if (encoder->get_hw_state(encoder, &pipe)) {
8215 encoder->base.crtc =
8216 dev_priv->pipe_to_crtc_mapping[pipe];
8217 } else {
8218 encoder->base.crtc = NULL;
8219 }
8220
8221 encoder->connectors_active = false;
8222 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8223 encoder->base.base.id,
8224 drm_get_encoder_name(&encoder->base),
8225 encoder->base.crtc ? "enabled" : "disabled",
8226 pipe);
8227 }
8228
8229 list_for_each_entry(connector, &dev->mode_config.connector_list,
8230 base.head) {
8231 if (connector->get_hw_state(connector)) {
8232 connector->base.dpms = DRM_MODE_DPMS_ON;
8233 connector->encoder->connectors_active = true;
8234 connector->base.encoder = &connector->encoder->base;
8235 } else {
8236 connector->base.dpms = DRM_MODE_DPMS_OFF;
8237 connector->base.encoder = NULL;
8238 }
8239 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8240 connector->base.base.id,
8241 drm_get_connector_name(&connector->base),
8242 connector->base.encoder ? "enabled" : "disabled");
8243 }
8244
8245 /* HW state is read out, now we need to sanitize this mess. */
8246 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8247 base.head) {
8248 intel_sanitize_encoder(encoder);
8249 }
8250
8251 for_each_pipe(pipe) {
8252 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8253 intel_sanitize_crtc(crtc);
8254 }
9a935856
DV
8255
8256 intel_modeset_update_staged_output_state(dev);
8af6cf88
DV
8257
8258 intel_modeset_check_state(dev);
24929352
DV
8259}
8260
2c7111db
CW
8261void intel_modeset_gem_init(struct drm_device *dev)
8262{
1833b134 8263 intel_modeset_init_hw(dev);
02e792fb
DV
8264
8265 intel_setup_overlay(dev);
24929352
DV
8266
8267 intel_modeset_setup_hw_state(dev);
79e53945
JB
8268}
8269
8270void intel_modeset_cleanup(struct drm_device *dev)
8271{
652c393a
JB
8272 struct drm_i915_private *dev_priv = dev->dev_private;
8273 struct drm_crtc *crtc;
8274 struct intel_crtc *intel_crtc;
8275
f87ea761 8276 drm_kms_helper_poll_fini(dev);
652c393a
JB
8277 mutex_lock(&dev->struct_mutex);
8278
723bfd70
JB
8279 intel_unregister_dsm_handler();
8280
8281
652c393a
JB
8282 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8283 /* Skip inactive CRTCs */
8284 if (!crtc->fb)
8285 continue;
8286
8287 intel_crtc = to_intel_crtc(crtc);
3dec0095 8288 intel_increase_pllclock(crtc);
652c393a
JB
8289 }
8290
973d04f9 8291 intel_disable_fbc(dev);
e70236a8 8292
8090c6b9 8293 intel_disable_gt_powersave(dev);
0cdab21f 8294
930ebb46
DV
8295 ironlake_teardown_rc6(dev);
8296
57f350b6
JB
8297 if (IS_VALLEYVIEW(dev))
8298 vlv_init_dpio(dev);
8299
69341a5e
KH
8300 mutex_unlock(&dev->struct_mutex);
8301
6c0d9350
DV
8302 /* Disable the irq before mode object teardown, for the irq might
8303 * enqueue unpin/hotplug work. */
8304 drm_irq_uninstall(dev);
8305 cancel_work_sync(&dev_priv->hotplug_work);
c6a828d3 8306 cancel_work_sync(&dev_priv->rps.work);
6c0d9350 8307
1630fe75
CW
8308 /* flush any delayed tasks or pending work */
8309 flush_scheduled_work();
8310
79e53945
JB
8311 drm_mode_config_cleanup(dev);
8312}
8313
f1c79df3
ZW
8314/*
8315 * Return which encoder is currently attached for connector.
8316 */
df0e9248 8317struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 8318{
df0e9248
CW
8319 return &intel_attached_encoder(connector)->base;
8320}
f1c79df3 8321
df0e9248
CW
8322void intel_connector_attach_encoder(struct intel_connector *connector,
8323 struct intel_encoder *encoder)
8324{
8325 connector->encoder = encoder;
8326 drm_mode_connector_attach_encoder(&connector->base,
8327 &encoder->base);
79e53945 8328}
28d52043
DA
8329
8330/*
8331 * set vga decode state - true == enable VGA decode
8332 */
8333int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8334{
8335 struct drm_i915_private *dev_priv = dev->dev_private;
8336 u16 gmch_ctrl;
8337
8338 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8339 if (state)
8340 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8341 else
8342 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8343 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8344 return 0;
8345}
c4a1d9e4
CW
8346
8347#ifdef CONFIG_DEBUG_FS
8348#include <linux/seq_file.h>
8349
8350struct intel_display_error_state {
8351 struct intel_cursor_error_state {
8352 u32 control;
8353 u32 position;
8354 u32 base;
8355 u32 size;
52331309 8356 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
8357
8358 struct intel_pipe_error_state {
8359 u32 conf;
8360 u32 source;
8361
8362 u32 htotal;
8363 u32 hblank;
8364 u32 hsync;
8365 u32 vtotal;
8366 u32 vblank;
8367 u32 vsync;
52331309 8368 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
8369
8370 struct intel_plane_error_state {
8371 u32 control;
8372 u32 stride;
8373 u32 size;
8374 u32 pos;
8375 u32 addr;
8376 u32 surface;
8377 u32 tile_offset;
52331309 8378 } plane[I915_MAX_PIPES];
c4a1d9e4
CW
8379};
8380
8381struct intel_display_error_state *
8382intel_display_capture_error_state(struct drm_device *dev)
8383{
0206e353 8384 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8385 struct intel_display_error_state *error;
8386 int i;
8387
8388 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8389 if (error == NULL)
8390 return NULL;
8391
52331309 8392 for_each_pipe(i) {
c4a1d9e4
CW
8393 error->cursor[i].control = I915_READ(CURCNTR(i));
8394 error->cursor[i].position = I915_READ(CURPOS(i));
8395 error->cursor[i].base = I915_READ(CURBASE(i));
8396
8397 error->plane[i].control = I915_READ(DSPCNTR(i));
8398 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8399 error->plane[i].size = I915_READ(DSPSIZE(i));
0206e353 8400 error->plane[i].pos = I915_READ(DSPPOS(i));
c4a1d9e4
CW
8401 error->plane[i].addr = I915_READ(DSPADDR(i));
8402 if (INTEL_INFO(dev)->gen >= 4) {
8403 error->plane[i].surface = I915_READ(DSPSURF(i));
8404 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8405 }
8406
8407 error->pipe[i].conf = I915_READ(PIPECONF(i));
8408 error->pipe[i].source = I915_READ(PIPESRC(i));
8409 error->pipe[i].htotal = I915_READ(HTOTAL(i));
8410 error->pipe[i].hblank = I915_READ(HBLANK(i));
8411 error->pipe[i].hsync = I915_READ(HSYNC(i));
8412 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
8413 error->pipe[i].vblank = I915_READ(VBLANK(i));
8414 error->pipe[i].vsync = I915_READ(VSYNC(i));
8415 }
8416
8417 return error;
8418}
8419
8420void
8421intel_display_print_error_state(struct seq_file *m,
8422 struct drm_device *dev,
8423 struct intel_display_error_state *error)
8424{
52331309 8425 drm_i915_private_t *dev_priv = dev->dev_private;
c4a1d9e4
CW
8426 int i;
8427
52331309
DL
8428 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8429 for_each_pipe(i) {
c4a1d9e4
CW
8430 seq_printf(m, "Pipe [%d]:\n", i);
8431 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8432 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8433 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8434 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8435 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8436 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8437 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8438 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8439
8440 seq_printf(m, "Plane [%d]:\n", i);
8441 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8442 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8443 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8444 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8445 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8446 if (INTEL_INFO(dev)->gen >= 4) {
8447 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8448 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8449 }
8450
8451 seq_printf(m, "Cursor [%d]:\n", i);
8452 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8453 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8454 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8455 }
8456}
8457#endif
This page took 1.159088 seconds and 5 git commands to generate.