drm/i915/hsw: Avoid early timeout during LCPLL disable/restore
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 ADVANCED_CONTEXT = 0,
2dba3239 212 LEGACY_32B_CONTEXT,
84b790f8
BW
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
2dba3239
MT
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
84b790f8
BW
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
71562919
MT
227#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
228#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 229
e5292823
TU
230static int intel_lr_context_pin(struct intel_context *ctx,
231 struct intel_engine_cs *engine);
7ba717cf 232
73e4d07f
OM
233/**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
27401d12 239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
127f1003
OM
243int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244{
bd84b1e9
DV
245 WARN_ON(i915.enable_ppgtt == -1);
246
a0bd6c31
ZL
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
70ee45e1
DL
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
127f1003
OM
256 if (enable_execlists == 0)
257 return 0;
258
14bf993e
OM
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
127f1003
OM
261 return 1;
262
263 return 0;
264}
ede7d42b 265
ca82580c 266static void
0bc40be8 267logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 268{
0bc40be8 269 struct drm_device *dev = engine->dev;
ca82580c 270
c6a2ac71 271 if (IS_GEN8(dev) || IS_GEN9(dev))
0bc40be8 272 engine->idle_lite_restore_wa = ~0;
c6a2ac71 273
0bc40be8 274 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
ca82580c 275 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
0bc40be8 276 (engine->id == VCS || engine->id == VCS2);
ca82580c 277
0bc40be8
TU
278 engine->ctx_desc_template = GEN8_CTX_VALID;
279 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
ca82580c
TU
280 GEN8_CTX_ADDRESSING_MODE_SHIFT;
281 if (IS_GEN8(dev))
0bc40be8
TU
282 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
284
285 /* TODO: WaDisableLiteRestore when we start using semaphore
286 * signalling between Command Streamers */
287 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288
289 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
290 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
291 if (engine->disable_lite_restore_wa)
292 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
293}
294
73e4d07f 295/**
ca82580c
TU
296 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297 * descriptor for a pinned context
73e4d07f 298 *
ca82580c
TU
299 * @ctx: Context to work on
300 * @ring: Engine the descriptor will be used with
73e4d07f 301 *
ca82580c
TU
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
307 * This is what a descriptor looks like, from LSB to MSB:
308 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
309 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
310 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
311 * bits 52-63: reserved, may encode the engine ID (for GuC)
73e4d07f 312 */
ca82580c
TU
313static void
314intel_lr_context_descriptor_update(struct intel_context *ctx,
0bc40be8 315 struct intel_engine_cs *engine)
84b790f8 316{
ca82580c 317 uint64_t lrca, desc;
84b790f8 318
0bc40be8 319 lrca = ctx->engine[engine->id].lrc_vma->node.start +
ca82580c 320 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8 321
0bc40be8 322 desc = engine->ctx_desc_template; /* bits 0-11 */
ca82580c
TU
323 desc |= lrca; /* bits 12-31 */
324 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
5af05fef 325
0bc40be8 326 ctx->engine[engine->id].lrc_desc = desc;
5af05fef
MT
327}
328
919f1f55 329uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
0bc40be8 330 struct intel_engine_cs *engine)
84b790f8 331{
0bc40be8 332 return ctx->engine[engine->id].lrc_desc;
ca82580c 333}
203a571b 334
ca82580c
TU
335/**
336 * intel_execlists_ctx_id() - get the Execlists Context ID
337 * @ctx: Context to get the ID for
338 * @ring: Engine to get the ID for
339 *
340 * Do not confuse with ctx->id! Unfortunately we have a name overload
341 * here: the old context ID we pass to userspace as a handler so that
342 * they can refer to a context, and the new context ID we pass to the
343 * ELSP so that the GPU can inform us of the context status via
344 * interrupts.
345 *
346 * The context ID is a portion of the context descriptor, so we can
347 * just extract the required part from the cached descriptor.
348 *
349 * Return: 20-bits globally unique context ID.
350 */
351u32 intel_execlists_ctx_id(struct intel_context *ctx,
0bc40be8 352 struct intel_engine_cs *engine)
ca82580c 353{
0bc40be8 354 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
84b790f8
BW
355}
356
cc3c4253
MK
357static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
358 struct drm_i915_gem_request *rq1)
84b790f8 359{
cc3c4253 360
4a570db5 361 struct intel_engine_cs *engine = rq0->engine;
e2f80391 362 struct drm_device *dev = engine->dev;
6e7cc470 363 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 364 uint64_t desc[2];
84b790f8 365
1cff8cc3 366 if (rq1) {
4a570db5 367 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
368 rq1->elsp_submitted++;
369 } else {
370 desc[1] = 0;
371 }
84b790f8 372
4a570db5 373 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 374 rq0->elsp_submitted++;
84b790f8 375
1cff8cc3 376 /* You must always write both descriptors in the order below. */
e2f80391
TU
377 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
378 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 379
e2f80391 380 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 381 /* The context is automatically loaded after the following */
e2f80391 382 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 383
1cff8cc3 384 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 385 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
386}
387
c6a2ac71
TU
388static void
389execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
390{
391 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
392 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
393 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
395}
396
397static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 398{
4a570db5 399 struct intel_engine_cs *engine = rq->engine;
05d9824b 400 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 401 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 402
05d9824b 403 reg_state[CTX_RING_TAIL+1] = rq->tail;
ae1250b9 404
c6a2ac71
TU
405 /* True 32b PPGTT with dynamic page allocation: update PDP
406 * registers and point the unallocated PDPs to scratch page.
407 * PML4 is allocated during ppgtt init, so this is not needed
408 * in 48-bit mode.
409 */
410 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
411 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
412}
413
d8cb8875
MK
414static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415 struct drm_i915_gem_request *rq1)
84b790f8 416{
26720ab9 417 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 418 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 419
05d9824b 420 execlists_update_context(rq0);
d8cb8875 421
cc3c4253 422 if (rq1)
05d9824b 423 execlists_update_context(rq1);
84b790f8 424
27af5eea 425 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 426 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 427
cc3c4253 428 execlists_elsp_write(rq0, rq1);
26720ab9 429
3756685a 430 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 431 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
432}
433
26720ab9 434static void execlists_context_unqueue(struct intel_engine_cs *engine)
acdd884a 435{
6d3d8274 436 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 437 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 438
0bc40be8 439 assert_spin_locked(&engine->execlist_lock);
acdd884a 440
779949f4
PA
441 /*
442 * If irqs are not active generate a warning as batches that finish
443 * without the irqs may get lost and a GPU Hang may occur.
444 */
0bc40be8 445 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
779949f4 446
acdd884a 447 /* Try to read in pairs */
0bc40be8 448 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
449 execlist_link) {
450 if (!req0) {
451 req0 = cursor;
6d3d8274 452 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
453 /* Same ctx: ignore first request, as second request
454 * will update tail past first request's workload */
e1fee72c 455 cursor->elsp_submitted = req0->elsp_submitted;
7eb08a25 456 list_move_tail(&req0->execlist_link,
0bc40be8 457 &engine->execlist_retired_req_list);
acdd884a
MT
458 req0 = cursor;
459 } else {
460 req1 = cursor;
c6a2ac71 461 WARN_ON(req1->elsp_submitted);
acdd884a
MT
462 break;
463 }
464 }
465
c6a2ac71
TU
466 if (unlikely(!req0))
467 return;
468
0bc40be8 469 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 470 /*
c6a2ac71
TU
471 * WaIdleLiteRestore: make sure we never cause a lite restore
472 * with HEAD==TAIL.
473 *
474 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
475 * resubmit the request. See gen8_emit_request() for where we
476 * prepare the padding after the end of the request.
53292cdb 477 */
c6a2ac71 478 struct intel_ringbuffer *ringbuf;
53292cdb 479
0bc40be8 480 ringbuf = req0->ctx->engine[engine->id].ringbuf;
c6a2ac71
TU
481 req0->tail += 8;
482 req0->tail &= ringbuf->size - 1;
53292cdb
MT
483 }
484
d8cb8875 485 execlists_submit_requests(req0, req1);
acdd884a
MT
486}
487
c6a2ac71 488static unsigned int
0bc40be8 489execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
e981e7b1 490{
6d3d8274 491 struct drm_i915_gem_request *head_req;
e981e7b1 492
0bc40be8 493 assert_spin_locked(&engine->execlist_lock);
e981e7b1 494
0bc40be8 495 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 496 struct drm_i915_gem_request,
e981e7b1
TD
497 execlist_link);
498
c6a2ac71
TU
499 if (!head_req)
500 return 0;
e1fee72c 501
0bc40be8 502 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
c6a2ac71
TU
503 return 0;
504
505 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
506
507 if (--head_req->elsp_submitted > 0)
508 return 0;
509
510 list_move_tail(&head_req->execlist_link,
0bc40be8 511 &engine->execlist_retired_req_list);
e981e7b1 512
c6a2ac71 513 return 1;
e981e7b1
TD
514}
515
c6a2ac71 516static u32
0bc40be8 517get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 518 u32 *context_id)
91a41032 519{
0bc40be8 520 struct drm_i915_private *dev_priv = engine->dev->dev_private;
c6a2ac71 521 u32 status;
91a41032 522
c6a2ac71
TU
523 read_pointer %= GEN8_CSB_ENTRIES;
524
0bc40be8 525 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
526
527 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528 return 0;
91a41032 529
0bc40be8 530 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
531 read_pointer));
532
533 return status;
91a41032
BW
534}
535
73e4d07f 536/**
3f7531c3 537 * intel_lrc_irq_handler() - handle Context Switch interrupts
27af5eea 538 * @engine: Engine Command Streamer to handle.
73e4d07f
OM
539 *
540 * Check the unread Context Status Buffers and manage the submission of new
541 * contexts to the ELSP accordingly.
542 */
27af5eea 543static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 544{
27af5eea 545 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
0bc40be8 546 struct drm_i915_private *dev_priv = engine->dev->dev_private;
e981e7b1 547 u32 status_pointer;
c6a2ac71 548 unsigned int read_pointer, write_pointer;
26720ab9
TU
549 u32 csb[GEN8_CSB_ENTRIES][2];
550 unsigned int csb_read = 0, i;
c6a2ac71
TU
551 unsigned int submit_contexts = 0;
552
3756685a 553 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 554
0bc40be8 555 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 556
0bc40be8 557 read_pointer = engine->next_context_status_buffer;
5590a5f0 558 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 559 if (read_pointer > write_pointer)
dfc53c5e 560 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 561
e981e7b1 562 while (read_pointer < write_pointer) {
26720ab9
TU
563 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 break;
565 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 &csb[csb_read][1]);
567 csb_read++;
568 }
91a41032 569
26720ab9
TU
570 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572 /* Update the read pointer to the old write pointer. Manual ringbuffer
573 * management ftw </sarcasm> */
574 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 engine->next_context_status_buffer << 8));
577
3756685a 578 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
579
580 spin_lock(&engine->execlist_lock);
581
582 for (i = 0; i < csb_read; i++) {
583 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
586 WARN(1, "Lite Restored request removed from queue\n");
587 } else
588 WARN(1, "Preemption without Lite Restore\n");
589 }
590
26720ab9 591 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
592 GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 submit_contexts +=
26720ab9 594 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
595 }
596
c6a2ac71 597 if (submit_contexts) {
0bc40be8 598 if (!engine->disable_lite_restore_wa ||
26720ab9
TU
599 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600 execlists_context_unqueue(engine);
5af05fef 601 }
e981e7b1 602
0bc40be8 603 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
604
605 if (unlikely(submit_contexts > 2))
606 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
607}
608
c6a2ac71 609static void execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 610{
4a570db5 611 struct intel_engine_cs *engine = request->engine;
6d3d8274 612 struct drm_i915_gem_request *cursor;
f1ad5a1f 613 int num_elements = 0;
acdd884a 614
ed54c1a1 615 if (request->ctx != request->i915->kernel_context)
e2f80391 616 intel_lr_context_pin(request->ctx, engine);
af3302b9 617
9bb1af44
JH
618 i915_gem_request_reference(request);
619
27af5eea 620 spin_lock_bh(&engine->execlist_lock);
acdd884a 621
e2f80391 622 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
623 if (++num_elements > 2)
624 break;
625
626 if (num_elements > 2) {
6d3d8274 627 struct drm_i915_gem_request *tail_req;
f1ad5a1f 628
e2f80391 629 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 630 struct drm_i915_gem_request,
f1ad5a1f
OM
631 execlist_link);
632
ae70797d 633 if (request->ctx == tail_req->ctx) {
f1ad5a1f 634 WARN(tail_req->elsp_submitted != 0,
7ba717cf 635 "More than 2 already-submitted reqs queued\n");
7eb08a25 636 list_move_tail(&tail_req->execlist_link,
e2f80391 637 &engine->execlist_retired_req_list);
f1ad5a1f
OM
638 }
639 }
640
e2f80391 641 list_add_tail(&request->execlist_link, &engine->execlist_queue);
f1ad5a1f 642 if (num_elements == 0)
e2f80391 643 execlists_context_unqueue(engine);
acdd884a 644
27af5eea 645 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
646}
647
2f20055d 648static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 649{
4a570db5 650 struct intel_engine_cs *engine = req->engine;
ba8b7ccb
OM
651 uint32_t flush_domains;
652 int ret;
653
654 flush_domains = 0;
e2f80391 655 if (engine->gpu_caches_dirty)
ba8b7ccb
OM
656 flush_domains = I915_GEM_GPU_DOMAINS;
657
e2f80391 658 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
659 if (ret)
660 return ret;
661
e2f80391 662 engine->gpu_caches_dirty = false;
ba8b7ccb
OM
663 return 0;
664}
665
535fbe82 666static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
667 struct list_head *vmas)
668{
666796da 669 const unsigned other_rings = ~intel_engine_flag(req->engine);
ba8b7ccb
OM
670 struct i915_vma *vma;
671 uint32_t flush_domains = 0;
672 bool flush_chipset = false;
673 int ret;
674
675 list_for_each_entry(vma, vmas, exec_list) {
676 struct drm_i915_gem_object *obj = vma->obj;
677
03ade511 678 if (obj->active & other_rings) {
4a570db5 679 ret = i915_gem_object_sync(obj, req->engine, &req);
03ade511
CW
680 if (ret)
681 return ret;
682 }
ba8b7ccb
OM
683
684 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685 flush_chipset |= i915_gem_clflush_object(obj, false);
686
687 flush_domains |= obj->base.write_domain;
688 }
689
690 if (flush_domains & I915_GEM_DOMAIN_GTT)
691 wmb();
692
693 /* Unconditionally invalidate gpu caches and ensure that we do flush
694 * any residual writes from the previous batch.
695 */
2f20055d 696 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
697}
698
40e895ce 699int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 700{
e28e404c 701 int ret = 0;
bc0dce3f 702
4a570db5 703 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
f3cc01f0 704
a7e02199
AD
705 if (i915.enable_guc_submission) {
706 /*
707 * Check that the GuC has space for the request before
708 * going any further, as the i915_add_request() call
709 * later on mustn't fail ...
710 */
711 struct intel_guc *guc = &request->i915->guc;
712
713 ret = i915_guc_wq_check_space(guc->execbuf_client);
714 if (ret)
715 return ret;
716 }
717
e28e404c 718 if (request->ctx != request->i915->kernel_context)
4a570db5 719 ret = intel_lr_context_pin(request->ctx, request->engine);
e28e404c
DG
720
721 return ret;
bc0dce3f
JH
722}
723
bc0dce3f
JH
724/*
725 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 726 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
727 *
728 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
729 * really happens during submission is that the context and current tail will be placed
730 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
731 * point, the tail *inside* the context is updated and the ELSP written to.
732 */
7c17d377 733static int
ae70797d 734intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 735{
7c17d377 736 struct intel_ringbuffer *ringbuf = request->ringbuf;
d1675198 737 struct drm_i915_private *dev_priv = request->i915;
4a570db5 738 struct intel_engine_cs *engine = request->engine;
bc0dce3f 739
7c17d377
CW
740 intel_logical_ring_advance(ringbuf);
741 request->tail = ringbuf->tail;
bc0dce3f 742
7c17d377
CW
743 /*
744 * Here we add two extra NOOPs as padding to avoid
745 * lite restore of a context with HEAD==TAIL.
746 *
747 * Caller must reserve WA_TAIL_DWORDS for us!
748 */
749 intel_logical_ring_emit(ringbuf, MI_NOOP);
750 intel_logical_ring_emit(ringbuf, MI_NOOP);
751 intel_logical_ring_advance(ringbuf);
d1675198 752
117897f4 753 if (intel_engine_stopped(engine))
7c17d377 754 return 0;
bc0dce3f 755
f4e2dece
TU
756 if (engine->last_context != request->ctx) {
757 if (engine->last_context)
758 intel_lr_context_unpin(engine->last_context, engine);
759 if (request->ctx != request->i915->kernel_context) {
760 intel_lr_context_pin(request->ctx, engine);
761 engine->last_context = request->ctx;
762 } else {
763 engine->last_context = NULL;
764 }
765 }
766
d1675198
AD
767 if (dev_priv->guc.execbuf_client)
768 i915_guc_submit(dev_priv->guc.execbuf_client, request);
769 else
770 execlists_context_queue(request);
7c17d377
CW
771
772 return 0;
bc0dce3f
JH
773}
774
ccd98fe4
JH
775int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
776{
777 /*
778 * The first call merely notes the reserve request and is common for
779 * all back ends. The subsequent localised _begin() call actually
780 * ensures that the reservation is available. Without the begin, if
781 * the request creator immediately submitted the request without
782 * adding any commands to it then there might not actually be
783 * sufficient room for the submission commands.
784 */
785 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
786
92dcc67c 787 return intel_ring_begin(request, 0);
ccd98fe4
JH
788}
789
73e4d07f
OM
790/**
791 * execlists_submission() - submit a batchbuffer for execution, Execlists style
792 * @dev: DRM device.
793 * @file: DRM file.
794 * @ring: Engine Command Streamer to submit to.
795 * @ctx: Context to employ for this submission.
796 * @args: execbuffer call arguments.
797 * @vmas: list of vmas.
798 * @batch_obj: the batchbuffer to submit.
799 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 800 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
801 *
802 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
803 * away the submission details of the execbuffer ioctl call.
804 *
805 * Return: non-zero if the submission fails.
806 */
5f19e2bf 807int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 808 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 809 struct list_head *vmas)
454afebd 810{
5f19e2bf 811 struct drm_device *dev = params->dev;
4a570db5 812 struct intel_engine_cs *engine = params->engine;
ba8b7ccb 813 struct drm_i915_private *dev_priv = dev->dev_private;
e2f80391 814 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
5f19e2bf 815 u64 exec_start;
ba8b7ccb
OM
816 int instp_mode;
817 u32 instp_mask;
818 int ret;
819
820 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
821 instp_mask = I915_EXEC_CONSTANTS_MASK;
822 switch (instp_mode) {
823 case I915_EXEC_CONSTANTS_REL_GENERAL:
824 case I915_EXEC_CONSTANTS_ABSOLUTE:
825 case I915_EXEC_CONSTANTS_REL_SURFACE:
4a570db5 826 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
ba8b7ccb
OM
827 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
828 return -EINVAL;
829 }
830
831 if (instp_mode != dev_priv->relative_constants_mode) {
832 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
833 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
834 return -EINVAL;
835 }
836
837 /* The HW changed the meaning on this bit on gen6 */
838 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
839 }
840 break;
841 default:
842 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
843 return -EINVAL;
844 }
845
ba8b7ccb
OM
846 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
847 DRM_DEBUG("sol reset is gen7 only\n");
848 return -EINVAL;
849 }
850
535fbe82 851 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
852 if (ret)
853 return ret;
854
4a570db5 855 if (engine == &dev_priv->engine[RCS] &&
ba8b7ccb 856 instp_mode != dev_priv->relative_constants_mode) {
92dcc67c 857 ret = intel_ring_begin(params->request, 4);
ba8b7ccb
OM
858 if (ret)
859 return ret;
860
861 intel_logical_ring_emit(ringbuf, MI_NOOP);
862 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
f92a9162 863 intel_logical_ring_emit_reg(ringbuf, INSTPM);
ba8b7ccb
OM
864 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
865 intel_logical_ring_advance(ringbuf);
866
867 dev_priv->relative_constants_mode = instp_mode;
868 }
869
5f19e2bf
JH
870 exec_start = params->batch_obj_vm_offset +
871 args->batch_start_offset;
872
e2f80391 873 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
874 if (ret)
875 return ret;
876
95c24161 877 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 878
8a8edb59 879 i915_gem_execbuffer_move_to_active(vmas, params->request);
ba8b7ccb 880
454afebd
OM
881 return 0;
882}
883
0bc40be8 884void intel_execlists_retire_requests(struct intel_engine_cs *engine)
c86ee3a9 885{
6d3d8274 886 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
887 struct list_head retired_list;
888
0bc40be8
TU
889 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
890 if (list_empty(&engine->execlist_retired_req_list))
c86ee3a9
TD
891 return;
892
893 INIT_LIST_HEAD(&retired_list);
27af5eea 894 spin_lock_bh(&engine->execlist_lock);
0bc40be8 895 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
27af5eea 896 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9
TD
897
898 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
af3302b9
DV
899 struct intel_context *ctx = req->ctx;
900 struct drm_i915_gem_object *ctx_obj =
0bc40be8 901 ctx->engine[engine->id].state;
af3302b9 902
ed54c1a1 903 if (ctx_obj && (ctx != req->i915->kernel_context))
0bc40be8 904 intel_lr_context_unpin(ctx, engine);
e5292823 905
c86ee3a9 906 list_del(&req->execlist_link);
f8210795 907 i915_gem_request_unreference(req);
c86ee3a9
TD
908 }
909}
910
0bc40be8 911void intel_logical_ring_stop(struct intel_engine_cs *engine)
454afebd 912{
0bc40be8 913 struct drm_i915_private *dev_priv = engine->dev->dev_private;
9832b9da
OM
914 int ret;
915
117897f4 916 if (!intel_engine_initialized(engine))
9832b9da
OM
917 return;
918
666796da 919 ret = intel_engine_idle(engine);
f4457ae7 920 if (ret)
9832b9da 921 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
0bc40be8 922 engine->name, ret);
9832b9da
OM
923
924 /* TODO: Is this correct with Execlists enabled? */
0bc40be8
TU
925 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
926 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
927 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
9832b9da
OM
928 return;
929 }
0bc40be8 930 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
931}
932
4866d729 933int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 934{
4a570db5 935 struct intel_engine_cs *engine = req->engine;
48e29f55
OM
936 int ret;
937
e2f80391 938 if (!engine->gpu_caches_dirty)
48e29f55
OM
939 return 0;
940
e2f80391 941 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
942 if (ret)
943 return ret;
944
e2f80391 945 engine->gpu_caches_dirty = false;
48e29f55
OM
946 return 0;
947}
948
e5292823 949static int intel_lr_context_do_pin(struct intel_context *ctx,
0bc40be8 950 struct intel_engine_cs *engine)
dcb4c12a 951{
0bc40be8 952 struct drm_device *dev = engine->dev;
e84fe803 953 struct drm_i915_private *dev_priv = dev->dev_private;
0bc40be8
TU
954 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
955 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
7d774cac
TU
956 void *vaddr;
957 u32 *lrc_reg_state;
ca82580c 958 int ret;
dcb4c12a 959
0bc40be8 960 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
ca82580c 961
e84fe803
NH
962 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
963 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
964 if (ret)
965 return ret;
7ba717cf 966
7d774cac
TU
967 vaddr = i915_gem_object_pin_map(ctx_obj);
968 if (IS_ERR(vaddr)) {
969 ret = PTR_ERR(vaddr);
82352e90
TU
970 goto unpin_ctx_obj;
971 }
972
7d774cac
TU
973 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
974
0bc40be8 975 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
e84fe803 976 if (ret)
7d774cac 977 goto unpin_map;
d1675198 978
0bc40be8
TU
979 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
980 intel_lr_context_descriptor_update(ctx, engine);
77b04a04 981 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
0bc40be8 982 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
e84fe803 983 ctx_obj->dirty = true;
e93c28f3 984
e84fe803
NH
985 /* Invalidate GuC TLB. */
986 if (i915.enable_guc_submission)
987 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 988
7ba717cf
TD
989 return ret;
990
7d774cac
TU
991unpin_map:
992 i915_gem_object_unpin_map(ctx_obj);
7ba717cf
TD
993unpin_ctx_obj:
994 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
995
996 return ret;
997}
998
e5292823
TU
999static int intel_lr_context_pin(struct intel_context *ctx,
1000 struct intel_engine_cs *engine)
e84fe803
NH
1001{
1002 int ret = 0;
e84fe803 1003
e5292823
TU
1004 if (ctx->engine[engine->id].pin_count++ == 0) {
1005 ret = intel_lr_context_do_pin(ctx, engine);
e84fe803
NH
1006 if (ret)
1007 goto reset_pin_count;
321fe304
TU
1008
1009 i915_gem_context_reference(ctx);
e84fe803
NH
1010 }
1011 return ret;
1012
a7cbedec 1013reset_pin_count:
e5292823 1014 ctx->engine[engine->id].pin_count = 0;
dcb4c12a
OM
1015 return ret;
1016}
1017
e5292823
TU
1018void intel_lr_context_unpin(struct intel_context *ctx,
1019 struct intel_engine_cs *engine)
dcb4c12a 1020{
e5292823 1021 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
af3302b9 1022
f4e2dece 1023 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
e5292823 1024 if (--ctx->engine[engine->id].pin_count == 0) {
7d774cac 1025 i915_gem_object_unpin_map(ctx_obj);
e5292823 1026 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
82352e90 1027 i915_gem_object_ggtt_unpin(ctx_obj);
e5292823
TU
1028 ctx->engine[engine->id].lrc_vma = NULL;
1029 ctx->engine[engine->id].lrc_desc = 0;
1030 ctx->engine[engine->id].lrc_reg_state = NULL;
321fe304
TU
1031
1032 i915_gem_context_unreference(ctx);
dcb4c12a
OM
1033 }
1034}
1035
e2be4faf 1036static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1037{
1038 int ret, i;
4a570db5 1039 struct intel_engine_cs *engine = req->engine;
e2be4faf 1040 struct intel_ringbuffer *ringbuf = req->ringbuf;
e2f80391 1041 struct drm_device *dev = engine->dev;
771b9a53
MT
1042 struct drm_i915_private *dev_priv = dev->dev_private;
1043 struct i915_workarounds *w = &dev_priv->workarounds;
1044
cd7feaaa 1045 if (w->count == 0)
771b9a53
MT
1046 return 0;
1047
e2f80391 1048 engine->gpu_caches_dirty = true;
4866d729 1049 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1050 if (ret)
1051 return ret;
1052
92dcc67c 1053 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1054 if (ret)
1055 return ret;
1056
1057 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1058 for (i = 0; i < w->count; i++) {
f92a9162 1059 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
771b9a53
MT
1060 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1061 }
1062 intel_logical_ring_emit(ringbuf, MI_NOOP);
1063
1064 intel_logical_ring_advance(ringbuf);
1065
e2f80391 1066 engine->gpu_caches_dirty = true;
4866d729 1067 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1068 if (ret)
1069 return ret;
1070
1071 return 0;
1072}
1073
83b8a982 1074#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1075 do { \
83b8a982
AS
1076 int __index = (index)++; \
1077 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1078 return -ENOSPC; \
1079 } \
83b8a982 1080 batch[__index] = (cmd); \
17ee950d
AS
1081 } while (0)
1082
8f40db77 1083#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 1084 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
1085
1086/*
1087 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1088 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1089 * but there is a slight complication as this is applied in WA batch where the
1090 * values are only initialized once so we cannot take register value at the
1091 * beginning and reuse it further; hence we save its value to memory, upload a
1092 * constant value with bit21 set and then we restore it back with the saved value.
1093 * To simplify the WA, a constant value is formed by using the default value
1094 * of this register. This shouldn't be a problem because we are only modifying
1095 * it for a short period and this batch in non-premptible. We can ofcourse
1096 * use additional instructions that read the actual value of the register
1097 * at that time and set our bit of interest but it makes the WA complicated.
1098 *
1099 * This WA is also required for Gen9 so extracting as a function avoids
1100 * code duplication.
1101 */
0bc40be8 1102static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
9e000847
AS
1103 uint32_t *const batch,
1104 uint32_t index)
1105{
1106 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1107
a4106a78
AS
1108 /*
1109 * WaDisableLSQCROPERFforOCL:skl
1110 * This WA is implemented in skl_init_clock_gating() but since
1111 * this batch updates GEN8_L3SQCREG4 with default value we need to
1112 * set this bit here to retain the WA during flush.
1113 */
0bc40be8 1114 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
a4106a78
AS
1115 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1116
f1afe24f 1117 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 1118 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1119 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1120 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982
AS
1121 wa_ctx_emit(batch, index, 0);
1122
1123 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1124 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
1125 wa_ctx_emit(batch, index, l3sqc4_flush);
1126
1127 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1128 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1129 PIPE_CONTROL_DC_FLUSH_ENABLE));
1130 wa_ctx_emit(batch, index, 0);
1131 wa_ctx_emit(batch, index, 0);
1132 wa_ctx_emit(batch, index, 0);
1133 wa_ctx_emit(batch, index, 0);
1134
f1afe24f 1135 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 1136 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 1137 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
0bc40be8 1138 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
83b8a982 1139 wa_ctx_emit(batch, index, 0);
9e000847
AS
1140
1141 return index;
1142}
1143
17ee950d
AS
1144static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1145 uint32_t offset,
1146 uint32_t start_alignment)
1147{
1148 return wa_ctx->offset = ALIGN(offset, start_alignment);
1149}
1150
1151static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1152 uint32_t offset,
1153 uint32_t size_alignment)
1154{
1155 wa_ctx->size = offset - wa_ctx->offset;
1156
1157 WARN(wa_ctx->size % size_alignment,
1158 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1159 wa_ctx->size, size_alignment);
1160 return 0;
1161}
1162
1163/**
1164 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1165 *
1166 * @ring: only applicable for RCS
1167 * @wa_ctx: structure representing wa_ctx
1168 * offset: specifies start of the batch, should be cache-aligned. This is updated
1169 * with the offset value received as input.
1170 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1171 * @batch: page in which WA are loaded
1172 * @offset: This field specifies the start of the batch, it should be
1173 * cache-aligned otherwise it is adjusted accordingly.
1174 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1175 * initialized at the beginning and shared across all contexts but this field
1176 * helps us to have multiple batches at different offsets and select them based
1177 * on a criteria. At the moment this batch always start at the beginning of the page
1178 * and at this point we don't have multiple wa_ctx batch buffers.
1179 *
1180 * The number of WA applied are not known at the beginning; we use this field
1181 * to return the no of DWORDS written.
4d78c8dc 1182 *
17ee950d
AS
1183 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1184 * so it adds NOOPs as padding to make it cacheline aligned.
1185 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1186 * makes a complete batch buffer.
1187 *
1188 * Return: non-zero if we exceed the PAGE_SIZE limit.
1189 */
1190
0bc40be8 1191static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1192 struct i915_wa_ctx_bb *wa_ctx,
1193 uint32_t *const batch,
1194 uint32_t *offset)
1195{
0160f055 1196 uint32_t scratch_addr;
17ee950d
AS
1197 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1198
7ad00d1a 1199 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1200 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1201
c82435bb 1202 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
0bc40be8
TU
1203 if (IS_BROADWELL(engine->dev)) {
1204 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
1205 if (rc < 0)
1206 return rc;
1207 index = rc;
c82435bb
AS
1208 }
1209
0160f055
AS
1210 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1211 /* Actual scratch location is at 128 bytes offset */
0bc40be8 1212 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
0160f055 1213
83b8a982
AS
1214 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1215 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1216 PIPE_CONTROL_GLOBAL_GTT_IVB |
1217 PIPE_CONTROL_CS_STALL |
1218 PIPE_CONTROL_QW_WRITE));
1219 wa_ctx_emit(batch, index, scratch_addr);
1220 wa_ctx_emit(batch, index, 0);
1221 wa_ctx_emit(batch, index, 0);
1222 wa_ctx_emit(batch, index, 0);
0160f055 1223
17ee950d
AS
1224 /* Pad to end of cacheline */
1225 while (index % CACHELINE_DWORDS)
83b8a982 1226 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1227
1228 /*
1229 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1230 * execution depends on the length specified in terms of cache lines
1231 * in the register CTX_RCS_INDIRECT_CTX
1232 */
1233
1234 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1235}
1236
1237/**
1238 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1239 *
1240 * @ring: only applicable for RCS
1241 * @wa_ctx: structure representing wa_ctx
1242 * offset: specifies start of the batch, should be cache-aligned.
1243 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1244 * @batch: page in which WA are loaded
17ee950d
AS
1245 * @offset: This field specifies the start of this batch.
1246 * This batch is started immediately after indirect_ctx batch. Since we ensure
1247 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1248 *
1249 * The number of DWORDS written are returned using this field.
1250 *
1251 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1252 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1253 */
0bc40be8 1254static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d
AS
1255 struct i915_wa_ctx_bb *wa_ctx,
1256 uint32_t *const batch,
1257 uint32_t *offset)
1258{
1259 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1260
7ad00d1a 1261 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1262 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1263
83b8a982 1264 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1265
1266 return wa_ctx_end(wa_ctx, *offset = index, 1);
1267}
1268
0bc40be8 1269static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1270 struct i915_wa_ctx_bb *wa_ctx,
1271 uint32_t *const batch,
1272 uint32_t *offset)
1273{
a4106a78 1274 int ret;
0bc40be8 1275 struct drm_device *dev = engine->dev;
0504cffc
AS
1276 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1277
0907c8f7 1278 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1279 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1280 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7 1281 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1282
a4106a78 1283 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1284 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1285 if (ret < 0)
1286 return ret;
1287 index = ret;
1288
0504cffc
AS
1289 /* Pad to end of cacheline */
1290 while (index % CACHELINE_DWORDS)
1291 wa_ctx_emit(batch, index, MI_NOOP);
1292
1293 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1294}
1295
0bc40be8 1296static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc
AS
1297 struct i915_wa_ctx_bb *wa_ctx,
1298 uint32_t *const batch,
1299 uint32_t *offset)
1300{
0bc40be8 1301 struct drm_device *dev = engine->dev;
0504cffc
AS
1302 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1303
9b01435d 1304 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
e87a005d 1305 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
cbdc12a9 1306 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
9b01435d 1307 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1308 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1309 wa_ctx_emit(batch, index,
1310 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1311 wa_ctx_emit(batch, index, MI_NOOP);
1312 }
1313
b1e429fe
TG
1314 /* WaClearTdlStateAckDirtyBits:bxt */
1315 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1316 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1317
1318 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1319 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1320
1321 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1322 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1323
1324 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1325 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1326
1327 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1328 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1329 wa_ctx_emit(batch, index, 0x0);
1330 wa_ctx_emit(batch, index, MI_NOOP);
1331 }
1332
0907c8f7 1333 /* WaDisableCtxRestoreArbitration:skl,bxt */
e87a005d 1334 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
cbdc12a9 1335 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
0907c8f7
AS
1336 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1337
0504cffc
AS
1338 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1339
1340 return wa_ctx_end(wa_ctx, *offset = index, 1);
1341}
1342
0bc40be8 1343static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d
AS
1344{
1345 int ret;
1346
0bc40be8
TU
1347 engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1348 PAGE_ALIGN(size));
1349 if (!engine->wa_ctx.obj) {
17ee950d
AS
1350 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1351 return -ENOMEM;
1352 }
1353
0bc40be8 1354 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
17ee950d
AS
1355 if (ret) {
1356 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1357 ret);
0bc40be8 1358 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
17ee950d
AS
1359 return ret;
1360 }
1361
1362 return 0;
1363}
1364
0bc40be8 1365static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1366{
0bc40be8
TU
1367 if (engine->wa_ctx.obj) {
1368 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1369 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1370 engine->wa_ctx.obj = NULL;
17ee950d
AS
1371 }
1372}
1373
0bc40be8 1374static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d
AS
1375{
1376 int ret;
1377 uint32_t *batch;
1378 uint32_t offset;
1379 struct page *page;
0bc40be8 1380 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d 1381
0bc40be8 1382 WARN_ON(engine->id != RCS);
17ee950d 1383
5e60d790 1384 /* update this when WA for higher Gen are added */
0bc40be8 1385 if (INTEL_INFO(engine->dev)->gen > 9) {
0504cffc 1386 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
0bc40be8 1387 INTEL_INFO(engine->dev)->gen);
5e60d790 1388 return 0;
0504cffc 1389 }
5e60d790 1390
c4db7599 1391 /* some WA perform writes to scratch page, ensure it is valid */
0bc40be8
TU
1392 if (engine->scratch.obj == NULL) {
1393 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1394 return -EINVAL;
1395 }
1396
0bc40be8 1397 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1398 if (ret) {
1399 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1400 return ret;
1401 }
1402
033908ae 1403 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
17ee950d
AS
1404 batch = kmap_atomic(page);
1405 offset = 0;
1406
0bc40be8
TU
1407 if (INTEL_INFO(engine->dev)->gen == 8) {
1408 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1409 &wa_ctx->indirect_ctx,
1410 batch,
1411 &offset);
1412 if (ret)
1413 goto out;
1414
0bc40be8 1415 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1416 &wa_ctx->per_ctx,
1417 batch,
1418 &offset);
1419 if (ret)
1420 goto out;
0bc40be8
TU
1421 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1422 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1423 &wa_ctx->indirect_ctx,
1424 batch,
1425 &offset);
1426 if (ret)
1427 goto out;
1428
0bc40be8 1429 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1430 &wa_ctx->per_ctx,
1431 batch,
1432 &offset);
1433 if (ret)
1434 goto out;
17ee950d
AS
1435 }
1436
1437out:
1438 kunmap_atomic(batch);
1439 if (ret)
0bc40be8 1440 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1441
1442 return ret;
1443}
1444
04794adb
TU
1445static void lrc_init_hws(struct intel_engine_cs *engine)
1446{
1447 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1448
1449 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1450 (u32)engine->status_page.gfx_addr);
1451 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1452}
1453
0bc40be8 1454static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1455{
0bc40be8 1456 struct drm_device *dev = engine->dev;
9b1136d5 1457 struct drm_i915_private *dev_priv = dev->dev_private;
c6a2ac71 1458 unsigned int next_context_status_buffer_hw;
9b1136d5 1459
04794adb 1460 lrc_init_hws(engine);
e84fe803 1461
0bc40be8
TU
1462 I915_WRITE_IMR(engine,
1463 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1464 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1465
0bc40be8 1466 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1467 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1468 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1469 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1470
1471 /*
1472 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1473 * zero, we need to read the write pointer from hardware and use its
1474 * value because "this register is power context save restored".
1475 * Effectively, these states have been observed:
1476 *
1477 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1478 * BDW | CSB regs not reset | CSB regs reset |
1479 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1480 * SKL | ? | ? |
1481 * BXT | ? | ? |
dfc53c5e 1482 */
5590a5f0 1483 next_context_status_buffer_hw =
0bc40be8 1484 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1485
1486 /*
1487 * When the CSB registers are reset (also after power-up / gpu reset),
1488 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1489 * this special case, so the first element read is CSB[0].
1490 */
1491 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1492 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1493
0bc40be8
TU
1494 engine->next_context_status_buffer = next_context_status_buffer_hw;
1495 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1496
fc0768ce 1497 intel_engine_init_hangcheck(engine);
9b1136d5 1498
0ccdacf6 1499 return intel_mocs_init_engine(engine);
9b1136d5
OM
1500}
1501
0bc40be8 1502static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1503{
0bc40be8 1504 struct drm_device *dev = engine->dev;
9b1136d5
OM
1505 struct drm_i915_private *dev_priv = dev->dev_private;
1506 int ret;
1507
0bc40be8 1508 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1509 if (ret)
1510 return ret;
1511
1512 /* We need to disable the AsyncFlip performance optimisations in order
1513 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1514 * programmed to '1' on all products.
1515 *
1516 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1517 */
1518 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1519
9b1136d5
OM
1520 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1521
0bc40be8 1522 return init_workarounds_ring(engine);
9b1136d5
OM
1523}
1524
0bc40be8 1525static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1526{
1527 int ret;
1528
0bc40be8 1529 ret = gen8_init_common_ring(engine);
82ef822e
DL
1530 if (ret)
1531 return ret;
1532
0bc40be8 1533 return init_workarounds_ring(engine);
82ef822e
DL
1534}
1535
7a01a0a2
MT
1536static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1537{
1538 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
4a570db5 1539 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1540 struct intel_ringbuffer *ringbuf = req->ringbuf;
1541 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1542 int i, ret;
1543
92dcc67c 1544 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1545 if (ret)
1546 return ret;
1547
1548 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1549 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1550 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1551
e2f80391
TU
1552 intel_logical_ring_emit_reg(ringbuf,
1553 GEN8_RING_PDP_UDW(engine, i));
7a01a0a2 1554 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
e2f80391
TU
1555 intel_logical_ring_emit_reg(ringbuf,
1556 GEN8_RING_PDP_LDW(engine, i));
7a01a0a2
MT
1557 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1558 }
1559
1560 intel_logical_ring_emit(ringbuf, MI_NOOP);
1561 intel_logical_ring_advance(ringbuf);
1562
1563 return 0;
1564}
1565
be795fc1 1566static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1567 u64 offset, unsigned dispatch_flags)
15648585 1568{
be795fc1 1569 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1570 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1571 int ret;
1572
7a01a0a2
MT
1573 /* Don't rely in hw updating PDPs, specially in lite-restore.
1574 * Ideally, we should set Force PD Restore in ctx descriptor,
1575 * but we can't. Force Restore would be a second option, but
1576 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1577 * not idle). PML4 is allocated during ppgtt init so this is
1578 * not needed in 48-bit.*/
7a01a0a2 1579 if (req->ctx->ppgtt &&
666796da 1580 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1581 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1582 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1583 ret = intel_logical_ring_emit_pdps(req);
1584 if (ret)
1585 return ret;
1586 }
7a01a0a2 1587
666796da 1588 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1589 }
1590
92dcc67c 1591 ret = intel_ring_begin(req, 4);
15648585
OM
1592 if (ret)
1593 return ret;
1594
1595 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1596 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1597 (ppgtt<<8) |
1598 (dispatch_flags & I915_DISPATCH_RS ?
1599 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1600 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1601 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1602 intel_logical_ring_emit(ringbuf, MI_NOOP);
1603 intel_logical_ring_advance(ringbuf);
1604
1605 return 0;
1606}
1607
0bc40be8 1608static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
73d477f6 1609{
0bc40be8 1610 struct drm_device *dev = engine->dev;
73d477f6
OM
1611 struct drm_i915_private *dev_priv = dev->dev_private;
1612 unsigned long flags;
1613
7cd512f1 1614 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1615 return false;
1616
1617 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1618 if (engine->irq_refcount++ == 0) {
1619 I915_WRITE_IMR(engine,
1620 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1621 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1622 }
1623 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1624
1625 return true;
1626}
1627
0bc40be8 1628static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
73d477f6 1629{
0bc40be8 1630 struct drm_device *dev = engine->dev;
73d477f6
OM
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1632 unsigned long flags;
1633
1634 spin_lock_irqsave(&dev_priv->irq_lock, flags);
0bc40be8
TU
1635 if (--engine->irq_refcount == 0) {
1636 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1637 POSTING_READ(RING_IMR(engine->mmio_base));
73d477f6
OM
1638 }
1639 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1640}
1641
7deb4d39 1642static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1643 u32 invalidate_domains,
1644 u32 unused)
1645{
7deb4d39 1646 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1647 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1648 struct drm_device *dev = engine->dev;
4712274c
OM
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 uint32_t cmd;
1651 int ret;
1652
92dcc67c 1653 ret = intel_ring_begin(request, 4);
4712274c
OM
1654 if (ret)
1655 return ret;
1656
1657 cmd = MI_FLUSH_DW + 1;
1658
f0a1fb10
CW
1659 /* We always require a command barrier so that subsequent
1660 * commands, such as breadcrumb interrupts, are strictly ordered
1661 * wrt the contents of the write cache being flushed to memory
1662 * (and thus being coherent from the CPU).
1663 */
1664 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1665
1666 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1667 cmd |= MI_INVALIDATE_TLB;
4a570db5 1668 if (engine == &dev_priv->engine[VCS])
f0a1fb10 1669 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1670 }
1671
1672 intel_logical_ring_emit(ringbuf, cmd);
1673 intel_logical_ring_emit(ringbuf,
1674 I915_GEM_HWS_SCRATCH_ADDR |
1675 MI_FLUSH_DW_USE_GTT);
1676 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1677 intel_logical_ring_emit(ringbuf, 0); /* value */
1678 intel_logical_ring_advance(ringbuf);
1679
1680 return 0;
1681}
1682
7deb4d39 1683static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1684 u32 invalidate_domains,
1685 u32 flush_domains)
1686{
7deb4d39 1687 struct intel_ringbuffer *ringbuf = request->ringbuf;
4a570db5 1688 struct intel_engine_cs *engine = ringbuf->engine;
e2f80391 1689 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1a5a9ce7 1690 bool vf_flush_wa = false;
4712274c
OM
1691 u32 flags = 0;
1692 int ret;
1693
1694 flags |= PIPE_CONTROL_CS_STALL;
1695
1696 if (flush_domains) {
1697 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1698 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1699 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1700 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1701 }
1702
1703 if (invalidate_domains) {
1704 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1705 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1706 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1707 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1708 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1709 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1710 flags |= PIPE_CONTROL_QW_WRITE;
1711 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1712
1a5a9ce7
BW
1713 /*
1714 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1715 * pipe control.
1716 */
e2f80391 1717 if (IS_GEN9(engine->dev))
1a5a9ce7
BW
1718 vf_flush_wa = true;
1719 }
9647ff36 1720
92dcc67c 1721 ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1722 if (ret)
1723 return ret;
1724
9647ff36
ID
1725 if (vf_flush_wa) {
1726 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1727 intel_logical_ring_emit(ringbuf, 0);
1728 intel_logical_ring_emit(ringbuf, 0);
1729 intel_logical_ring_emit(ringbuf, 0);
1730 intel_logical_ring_emit(ringbuf, 0);
1731 intel_logical_ring_emit(ringbuf, 0);
1732 }
1733
4712274c
OM
1734 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1735 intel_logical_ring_emit(ringbuf, flags);
1736 intel_logical_ring_emit(ringbuf, scratch_addr);
1737 intel_logical_ring_emit(ringbuf, 0);
1738 intel_logical_ring_emit(ringbuf, 0);
1739 intel_logical_ring_emit(ringbuf, 0);
1740 intel_logical_ring_advance(ringbuf);
1741
1742 return 0;
1743}
1744
c04e0f3b 1745static u32 gen8_get_seqno(struct intel_engine_cs *engine)
e94e37ad 1746{
0bc40be8 1747 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
e94e37ad
OM
1748}
1749
0bc40be8 1750static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
e94e37ad 1751{
0bc40be8 1752 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
e94e37ad
OM
1753}
1754
c04e0f3b 1755static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1756{
319404df
ID
1757 /*
1758 * On BXT A steppings there is a HW coherency issue whereby the
1759 * MI_STORE_DATA_IMM storing the completed request's seqno
1760 * occasionally doesn't invalidate the CPU cache. Work around this by
1761 * clflushing the corresponding cacheline whenever the caller wants
1762 * the coherency to be guaranteed. Note that this cacheline is known
1763 * to be clean at this point, since we only write it in
1764 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1765 * this clflush in practice becomes an invalidate operation.
1766 */
c04e0f3b 1767 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1768}
1769
0bc40be8 1770static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
319404df 1771{
0bc40be8 1772 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
319404df
ID
1773
1774 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
0bc40be8 1775 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1776}
1777
7c17d377
CW
1778/*
1779 * Reserve space for 2 NOOPs at the end of each request to be
1780 * used as a workaround for not being allowed to do lite
1781 * restore with HEAD==TAIL (WaIdleLiteRestore).
1782 */
1783#define WA_TAIL_DWORDS 2
1784
1785static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1786{
1787 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1788}
1789
c4e76638 1790static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1791{
c4e76638 1792 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1793 int ret;
1794
92dcc67c 1795 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1796 if (ret)
1797 return ret;
1798
7c17d377
CW
1799 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1800 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1801
4da46e1e 1802 intel_logical_ring_emit(ringbuf,
7c17d377
CW
1803 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1804 intel_logical_ring_emit(ringbuf,
4a570db5 1805 hws_seqno_address(request->engine) |
7c17d377 1806 MI_FLUSH_DW_USE_GTT);
4da46e1e 1807 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1808 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1809 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1810 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377
CW
1811 return intel_logical_ring_advance_and_submit(request);
1812}
4da46e1e 1813
7c17d377
CW
1814static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1815{
1816 struct intel_ringbuffer *ringbuf = request->ringbuf;
1817 int ret;
53292cdb 1818
92dcc67c 1819 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1820 if (ret)
1821 return ret;
1822
ce81a65c
MW
1823 /* We're using qword write, seqno should be aligned to 8 bytes. */
1824 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1825
7c17d377
CW
1826 /* w/a for post sync ops following a GPGPU operation we
1827 * need a prior CS_STALL, which is emitted by the flush
1828 * following the batch.
1829 */
ce81a65c 1830 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
7c17d377
CW
1831 intel_logical_ring_emit(ringbuf,
1832 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1833 PIPE_CONTROL_CS_STALL |
1834 PIPE_CONTROL_QW_WRITE));
4a570db5 1835 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
7c17d377
CW
1836 intel_logical_ring_emit(ringbuf, 0);
1837 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
ce81a65c
MW
1838 /* We're thrashing one dword of HWS. */
1839 intel_logical_ring_emit(ringbuf, 0);
7c17d377 1840 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
ce81a65c 1841 intel_logical_ring_emit(ringbuf, MI_NOOP);
7c17d377 1842 return intel_logical_ring_advance_and_submit(request);
4da46e1e
OM
1843}
1844
be01363f 1845static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1846{
cef437ad 1847 struct render_state so;
cef437ad
DL
1848 int ret;
1849
4a570db5 1850 ret = i915_gem_render_state_prepare(req->engine, &so);
cef437ad
DL
1851 if (ret)
1852 return ret;
1853
1854 if (so.rodata == NULL)
1855 return 0;
1856
4a570db5 1857 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
be01363f 1858 I915_DISPATCH_SECURE);
cef437ad
DL
1859 if (ret)
1860 goto out;
1861
4a570db5 1862 ret = req->engine->emit_bb_start(req,
84e81020
AS
1863 (so.ggtt_offset + so.aux_batch_offset),
1864 I915_DISPATCH_SECURE);
1865 if (ret)
1866 goto out;
1867
b2af0376 1868 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1869
cef437ad
DL
1870out:
1871 i915_gem_render_state_fini(&so);
1872 return ret;
1873}
1874
8753181e 1875static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1876{
1877 int ret;
1878
e2be4faf 1879 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1880 if (ret)
1881 return ret;
1882
3bbaba0c
PA
1883 ret = intel_rcs_context_init_mocs(req);
1884 /*
1885 * Failing to program the MOCS is non-fatal.The system will not
1886 * run at peak performance. So generate an error and carry on.
1887 */
1888 if (ret)
1889 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1890
be01363f 1891 return intel_lr_context_render_state_init(req);
e7778be1
TD
1892}
1893
73e4d07f
OM
1894/**
1895 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1896 *
1897 * @ring: Engine Command Streamer.
1898 *
1899 */
0bc40be8 1900void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1901{
6402c330 1902 struct drm_i915_private *dev_priv;
9832b9da 1903
117897f4 1904 if (!intel_engine_initialized(engine))
48d82387
OM
1905 return;
1906
27af5eea
TU
1907 /*
1908 * Tasklet cannot be active at this point due intel_mark_active/idle
1909 * so this is just for documentation.
1910 */
1911 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1912 tasklet_kill(&engine->irq_tasklet);
1913
0bc40be8 1914 dev_priv = engine->dev->dev_private;
6402c330 1915
0bc40be8
TU
1916 if (engine->buffer) {
1917 intel_logical_ring_stop(engine);
1918 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1919 }
48d82387 1920
0bc40be8
TU
1921 if (engine->cleanup)
1922 engine->cleanup(engine);
48d82387 1923
0bc40be8
TU
1924 i915_cmd_parser_fini_ring(engine);
1925 i915_gem_batch_pool_fini(&engine->batch_pool);
48d82387 1926
0bc40be8 1927 if (engine->status_page.obj) {
7d774cac 1928 i915_gem_object_unpin_map(engine->status_page.obj);
0bc40be8 1929 engine->status_page.obj = NULL;
48d82387 1930 }
17ee950d 1931
0bc40be8
TU
1932 engine->idle_lite_restore_wa = 0;
1933 engine->disable_lite_restore_wa = false;
1934 engine->ctx_desc_template = 0;
ca82580c 1935
0bc40be8
TU
1936 lrc_destroy_wa_ctx_obj(engine);
1937 engine->dev = NULL;
454afebd
OM
1938}
1939
c9cacf93
TU
1940static void
1941logical_ring_default_vfuncs(struct drm_device *dev,
0bc40be8 1942 struct intel_engine_cs *engine)
c9cacf93
TU
1943{
1944 /* Default vfuncs which can be overriden by each engine. */
0bc40be8
TU
1945 engine->init_hw = gen8_init_common_ring;
1946 engine->emit_request = gen8_emit_request;
1947 engine->emit_flush = gen8_emit_flush;
1948 engine->irq_get = gen8_logical_ring_get_irq;
1949 engine->irq_put = gen8_logical_ring_put_irq;
1950 engine->emit_bb_start = gen8_emit_bb_start;
c04e0f3b
CW
1951 engine->get_seqno = gen8_get_seqno;
1952 engine->set_seqno = gen8_set_seqno;
c9cacf93 1953 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
c04e0f3b 1954 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
0bc40be8 1955 engine->set_seqno = bxt_a_set_seqno;
c9cacf93
TU
1956 }
1957}
1958
d9f3af96 1959static inline void
0bc40be8 1960logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
d9f3af96 1961{
0bc40be8
TU
1962 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1963 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1964}
1965
7d774cac 1966static int
04794adb
TU
1967lrc_setup_hws(struct intel_engine_cs *engine,
1968 struct drm_i915_gem_object *dctx_obj)
1969{
7d774cac 1970 void *hws;
04794adb
TU
1971
1972 /* The HWSP is part of the default context object in LRC mode. */
1973 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
1974 LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac
TU
1975 hws = i915_gem_object_pin_map(dctx_obj);
1976 if (IS_ERR(hws))
1977 return PTR_ERR(hws);
1978 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
04794adb 1979 engine->status_page.obj = dctx_obj;
7d774cac
TU
1980
1981 return 0;
04794adb
TU
1982}
1983
c9cacf93 1984static int
0bc40be8 1985logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
454afebd 1986{
3756685a
TU
1987 struct drm_i915_private *dev_priv = to_i915(dev);
1988 struct intel_context *dctx = dev_priv->kernel_context;
1989 enum forcewake_domains fw_domains;
48d82387 1990 int ret;
48d82387
OM
1991
1992 /* Intentionally left blank. */
0bc40be8 1993 engine->buffer = NULL;
48d82387 1994
0bc40be8
TU
1995 engine->dev = dev;
1996 INIT_LIST_HEAD(&engine->active_list);
1997 INIT_LIST_HEAD(&engine->request_list);
1998 i915_gem_batch_pool_init(dev, &engine->batch_pool);
1999 init_waitqueue_head(&engine->irq_queue);
48d82387 2000
0bc40be8
TU
2001 INIT_LIST_HEAD(&engine->buffers);
2002 INIT_LIST_HEAD(&engine->execlist_queue);
2003 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2004 spin_lock_init(&engine->execlist_lock);
acdd884a 2005
27af5eea
TU
2006 tasklet_init(&engine->irq_tasklet,
2007 intel_lrc_irq_handler, (unsigned long)engine);
2008
0bc40be8 2009 logical_ring_init_platform_invariants(engine);
ca82580c 2010
3756685a
TU
2011 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2012 RING_ELSP(engine),
2013 FW_REG_WRITE);
2014
2015 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2016 RING_CONTEXT_STATUS_PTR(engine),
2017 FW_REG_READ | FW_REG_WRITE);
2018
2019 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2020 RING_CONTEXT_STATUS_BUF_BASE(engine),
2021 FW_REG_READ);
2022
2023 engine->fw_domains = fw_domains;
2024
0bc40be8 2025 ret = i915_cmd_parser_init_ring(engine);
48d82387 2026 if (ret)
b0366a54 2027 goto error;
48d82387 2028
0bc40be8 2029 ret = intel_lr_context_deferred_alloc(dctx, engine);
e84fe803 2030 if (ret)
b0366a54 2031 goto error;
e84fe803
NH
2032
2033 /* As this is the default context, always pin it */
0bc40be8 2034 ret = intel_lr_context_do_pin(dctx, engine);
e84fe803
NH
2035 if (ret) {
2036 DRM_ERROR(
2037 "Failed to pin and map ringbuffer %s: %d\n",
0bc40be8 2038 engine->name, ret);
b0366a54 2039 goto error;
e84fe803 2040 }
564ddb2f 2041
04794adb 2042 /* And setup the hardware status page. */
7d774cac
TU
2043 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2044 if (ret) {
2045 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2046 goto error;
2047 }
04794adb 2048
b0366a54
DG
2049 return 0;
2050
2051error:
0bc40be8 2052 intel_logical_ring_cleanup(engine);
564ddb2f 2053 return ret;
454afebd
OM
2054}
2055
2056static int logical_render_ring_init(struct drm_device *dev)
2057{
2058 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2059 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
99be1dfe 2060 int ret;
454afebd 2061
e2f80391
TU
2062 engine->name = "render ring";
2063 engine->id = RCS;
2064 engine->exec_id = I915_EXEC_RENDER;
2065 engine->guc_id = GUC_RENDER_ENGINE;
2066 engine->mmio_base = RENDER_RING_BASE;
d9f3af96 2067
e2f80391 2068 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
73d477f6 2069 if (HAS_L3_DPF(dev))
e2f80391 2070 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 2071
e2f80391 2072 logical_ring_default_vfuncs(dev, engine);
c9cacf93
TU
2073
2074 /* Override some for render ring. */
82ef822e 2075 if (INTEL_INFO(dev)->gen >= 9)
e2f80391 2076 engine->init_hw = gen9_init_render_ring;
82ef822e 2077 else
e2f80391
TU
2078 engine->init_hw = gen8_init_render_ring;
2079 engine->init_context = gen8_init_rcs_context;
2080 engine->cleanup = intel_fini_pipe_control;
2081 engine->emit_flush = gen8_emit_flush_render;
2082 engine->emit_request = gen8_emit_request_render;
9b1136d5 2083
e2f80391 2084 engine->dev = dev;
c4db7599 2085
e2f80391 2086 ret = intel_init_pipe_control(engine);
99be1dfe
DV
2087 if (ret)
2088 return ret;
2089
e2f80391 2090 ret = intel_init_workaround_bb(engine);
17ee950d
AS
2091 if (ret) {
2092 /*
2093 * We continue even if we fail to initialize WA batch
2094 * because we only expect rare glitches but nothing
2095 * critical to prevent us from using GPU
2096 */
2097 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2098 ret);
2099 }
2100
e2f80391 2101 ret = logical_ring_init(dev, engine);
c4db7599 2102 if (ret) {
e2f80391 2103 lrc_destroy_wa_ctx_obj(engine);
c4db7599 2104 }
17ee950d
AS
2105
2106 return ret;
454afebd
OM
2107}
2108
2109static int logical_bsd_ring_init(struct drm_device *dev)
2110{
2111 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2112 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
454afebd 2113
e2f80391
TU
2114 engine->name = "bsd ring";
2115 engine->id = VCS;
2116 engine->exec_id = I915_EXEC_BSD;
2117 engine->guc_id = GUC_VIDEO_ENGINE;
2118 engine->mmio_base = GEN6_BSD_RING_BASE;
454afebd 2119
e2f80391
TU
2120 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2121 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2122
e2f80391 2123 return logical_ring_init(dev, engine);
454afebd
OM
2124}
2125
2126static int logical_bsd2_ring_init(struct drm_device *dev)
2127{
2128 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2129 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
454afebd 2130
e2f80391
TU
2131 engine->name = "bsd2 ring";
2132 engine->id = VCS2;
2133 engine->exec_id = I915_EXEC_BSD;
2134 engine->guc_id = GUC_VIDEO_ENGINE2;
2135 engine->mmio_base = GEN8_BSD2_RING_BASE;
454afebd 2136
e2f80391
TU
2137 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2138 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2139
e2f80391 2140 return logical_ring_init(dev, engine);
454afebd
OM
2141}
2142
2143static int logical_blt_ring_init(struct drm_device *dev)
2144{
2145 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2146 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
454afebd 2147
e2f80391
TU
2148 engine->name = "blitter ring";
2149 engine->id = BCS;
2150 engine->exec_id = I915_EXEC_BLT;
2151 engine->guc_id = GUC_BLITTER_ENGINE;
2152 engine->mmio_base = BLT_RING_BASE;
454afebd 2153
e2f80391
TU
2154 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2155 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2156
e2f80391 2157 return logical_ring_init(dev, engine);
454afebd
OM
2158}
2159
2160static int logical_vebox_ring_init(struct drm_device *dev)
2161{
2162 struct drm_i915_private *dev_priv = dev->dev_private;
4a570db5 2163 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
454afebd 2164
e2f80391
TU
2165 engine->name = "video enhancement ring";
2166 engine->id = VECS;
2167 engine->exec_id = I915_EXEC_VEBOX;
2168 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2169 engine->mmio_base = VEBOX_RING_BASE;
454afebd 2170
e2f80391
TU
2171 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2172 logical_ring_default_vfuncs(dev, engine);
9b1136d5 2173
e2f80391 2174 return logical_ring_init(dev, engine);
454afebd
OM
2175}
2176
73e4d07f
OM
2177/**
2178 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2179 * @dev: DRM device.
2180 *
2181 * This function inits the engines for an Execlists submission style (the equivalent in the
117897f4 2182 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
73e4d07f
OM
2183 * those engines that are present in the hardware.
2184 *
2185 * Return: non-zero if the initialization failed.
2186 */
454afebd
OM
2187int intel_logical_rings_init(struct drm_device *dev)
2188{
2189 struct drm_i915_private *dev_priv = dev->dev_private;
2190 int ret;
2191
2192 ret = logical_render_ring_init(dev);
2193 if (ret)
2194 return ret;
2195
2196 if (HAS_BSD(dev)) {
2197 ret = logical_bsd_ring_init(dev);
2198 if (ret)
2199 goto cleanup_render_ring;
2200 }
2201
2202 if (HAS_BLT(dev)) {
2203 ret = logical_blt_ring_init(dev);
2204 if (ret)
2205 goto cleanup_bsd_ring;
2206 }
2207
2208 if (HAS_VEBOX(dev)) {
2209 ret = logical_vebox_ring_init(dev);
2210 if (ret)
2211 goto cleanup_blt_ring;
2212 }
2213
2214 if (HAS_BSD2(dev)) {
2215 ret = logical_bsd2_ring_init(dev);
2216 if (ret)
2217 goto cleanup_vebox_ring;
2218 }
2219
454afebd
OM
2220 return 0;
2221
454afebd 2222cleanup_vebox_ring:
4a570db5 2223 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
454afebd 2224cleanup_blt_ring:
4a570db5 2225 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
454afebd 2226cleanup_bsd_ring:
4a570db5 2227 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
454afebd 2228cleanup_render_ring:
4a570db5 2229 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
454afebd
OM
2230
2231 return ret;
2232}
2233
0cea6502
JM
2234static u32
2235make_rpcs(struct drm_device *dev)
2236{
2237 u32 rpcs = 0;
2238
2239 /*
2240 * No explicit RPCS request is needed to ensure full
2241 * slice/subslice/EU enablement prior to Gen9.
2242 */
2243 if (INTEL_INFO(dev)->gen < 9)
2244 return 0;
2245
2246 /*
2247 * Starting in Gen9, render power gating can leave
2248 * slice/subslice/EU in a partially enabled state. We
2249 * must make an explicit request through RPCS for full
2250 * enablement.
2251 */
2252 if (INTEL_INFO(dev)->has_slice_pg) {
2253 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2254 rpcs |= INTEL_INFO(dev)->slice_total <<
2255 GEN8_RPCS_S_CNT_SHIFT;
2256 rpcs |= GEN8_RPCS_ENABLE;
2257 }
2258
2259 if (INTEL_INFO(dev)->has_subslice_pg) {
2260 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2261 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2262 GEN8_RPCS_SS_CNT_SHIFT;
2263 rpcs |= GEN8_RPCS_ENABLE;
2264 }
2265
2266 if (INTEL_INFO(dev)->has_eu_pg) {
2267 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2268 GEN8_RPCS_EU_MIN_SHIFT;
2269 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2270 GEN8_RPCS_EU_MAX_SHIFT;
2271 rpcs |= GEN8_RPCS_ENABLE;
2272 }
2273
2274 return rpcs;
2275}
2276
0bc40be8 2277static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
2278{
2279 u32 indirect_ctx_offset;
2280
0bc40be8 2281 switch (INTEL_INFO(engine->dev)->gen) {
71562919 2282 default:
0bc40be8 2283 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
71562919
MT
2284 /* fall through */
2285 case 9:
2286 indirect_ctx_offset =
2287 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2288 break;
2289 case 8:
2290 indirect_ctx_offset =
2291 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2292 break;
2293 }
2294
2295 return indirect_ctx_offset;
2296}
2297
8670d6f9 2298static int
7d774cac
TU
2299populate_lr_context(struct intel_context *ctx,
2300 struct drm_i915_gem_object *ctx_obj,
0bc40be8
TU
2301 struct intel_engine_cs *engine,
2302 struct intel_ringbuffer *ringbuf)
8670d6f9 2303{
0bc40be8 2304 struct drm_device *dev = engine->dev;
2d965536 2305 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2306 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
2307 void *vaddr;
2308 u32 *reg_state;
8670d6f9
OM
2309 int ret;
2310
2d965536
TD
2311 if (!ppgtt)
2312 ppgtt = dev_priv->mm.aliasing_ppgtt;
2313
8670d6f9
OM
2314 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2315 if (ret) {
2316 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2317 return ret;
2318 }
2319
7d774cac
TU
2320 vaddr = i915_gem_object_pin_map(ctx_obj);
2321 if (IS_ERR(vaddr)) {
2322 ret = PTR_ERR(vaddr);
2323 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
2324 return ret;
2325 }
7d774cac 2326 ctx_obj->dirty = true;
8670d6f9
OM
2327
2328 /* The second page of the context object contains some fields which must
2329 * be set up prior to the first execution. */
7d774cac 2330 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
2331
2332 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2333 * commands followed by (reg, value) pairs. The values we are setting here are
2334 * only for the first context restore: on a subsequent save, the GPU will
2335 * recreate this batchbuffer with new values (including all the missing
2336 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 2337 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
2338 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2339 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2340 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
2341 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2342 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
99cf8ea1
MT
2343 (HAS_RESOURCE_STREAMER(dev) ?
2344 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
2345 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2346 0);
2347 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2348 0);
7ba717cf
TD
2349 /* Ring buffer start address is not known until the buffer is pinned.
2350 * It is written to the context image in execlists_update_context()
2351 */
0bc40be8
TU
2352 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2353 RING_START(engine->mmio_base), 0);
2354 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2355 RING_CTL(engine->mmio_base),
0d925ea0 2356 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2357 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2358 RING_BBADDR_UDW(engine->mmio_base), 0);
2359 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2360 RING_BBADDR(engine->mmio_base), 0);
2361 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2362 RING_BBSTATE(engine->mmio_base),
0d925ea0 2363 RING_BB_PPGTT);
0bc40be8
TU
2364 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2365 RING_SBBADDR_UDW(engine->mmio_base), 0);
2366 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2367 RING_SBBADDR(engine->mmio_base), 0);
2368 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2369 RING_SBBSTATE(engine->mmio_base), 0);
2370 if (engine->id == RCS) {
2371 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2372 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2373 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2374 RING_INDIRECT_CTX(engine->mmio_base), 0);
2375 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2376 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2377 if (engine->wa_ctx.obj) {
2378 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
2379 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2380
2381 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2382 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2383 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2384
2385 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2386 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2387
2388 reg_state[CTX_BB_PER_CTX_PTR+1] =
2389 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2390 0x01;
2391 }
8670d6f9 2392 }
0d925ea0 2393 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2394 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2395 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2396 /* PDP values well be assigned later if needed */
0bc40be8
TU
2397 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2398 0);
2399 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2400 0);
2401 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2402 0);
2403 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2404 0);
2405 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2406 0);
2407 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2408 0);
2409 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2410 0);
2411 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2412 0);
d7b2633d 2413
2dba3239
MT
2414 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2415 /* 64b PPGTT (48bit canonical)
2416 * PDP0_DESCRIPTOR contains the base address to PML4 and
2417 * other PDP Descriptors are ignored.
2418 */
2419 ASSIGN_CTX_PML4(ppgtt, reg_state);
2420 } else {
2421 /* 32b PPGTT
2422 * PDP*_DESCRIPTOR contains the base address of space supported.
2423 * With dynamic page allocation, PDPs may not be allocated at
2424 * this point. Point the unallocated PDPs to the scratch page
2425 */
c6a2ac71 2426 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2427 }
2428
0bc40be8 2429 if (engine->id == RCS) {
8670d6f9 2430 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0
VS
2431 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2432 make_rpcs(dev));
8670d6f9
OM
2433 }
2434
7d774cac 2435 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2436
2437 return 0;
2438}
2439
73e4d07f
OM
2440/**
2441 * intel_lr_context_free() - free the LRC specific bits of a context
2442 * @ctx: the LR context to free.
2443 *
2444 * The real context freeing is done in i915_gem_context_free: this only
2445 * takes care of the bits that are LRC related: the per-engine backing
2446 * objects and the logical ringbuffer.
2447 */
ede7d42b
OM
2448void intel_lr_context_free(struct intel_context *ctx)
2449{
8c857917
OM
2450 int i;
2451
666796da 2452 for (i = I915_NUM_ENGINES; --i >= 0; ) {
e28e404c 2453 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
8c857917 2454 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2455
e28e404c
DG
2456 if (!ctx_obj)
2457 continue;
dcb4c12a 2458
e28e404c
DG
2459 if (ctx == ctx->i915->kernel_context) {
2460 intel_unpin_ringbuffer_obj(ringbuf);
2461 i915_gem_object_ggtt_unpin(ctx_obj);
7d774cac 2462 i915_gem_object_unpin_map(ctx_obj);
8c857917 2463 }
e28e404c
DG
2464
2465 WARN_ON(ctx->engine[i].pin_count);
2466 intel_ringbuffer_free(ringbuf);
2467 drm_gem_object_unreference(&ctx_obj->base);
8c857917
OM
2468 }
2469}
2470
c5d46ee2
DG
2471/**
2472 * intel_lr_context_size() - return the size of the context for an engine
2473 * @ring: which engine to find the context size for
2474 *
2475 * Each engine may require a different amount of space for a context image,
2476 * so when allocating (or copying) an image, this function can be used to
2477 * find the right size for the specific engine.
2478 *
2479 * Return: size (in bytes) of an engine-specific context image
2480 *
2481 * Note: this size includes the HWSP, which is part of the context image
2482 * in LRC mode, but does not include the "shared data page" used with
2483 * GuC submission. The caller should account for this if using the GuC.
2484 */
0bc40be8 2485uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2486{
2487 int ret = 0;
2488
0bc40be8 2489 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
8c857917 2490
0bc40be8 2491 switch (engine->id) {
8c857917 2492 case RCS:
0bc40be8 2493 if (INTEL_INFO(engine->dev)->gen >= 9)
468c6816
MN
2494 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2495 else
2496 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2497 break;
2498 case VCS:
2499 case BCS:
2500 case VECS:
2501 case VCS2:
2502 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2503 break;
2504 }
2505
2506 return ret;
ede7d42b
OM
2507}
2508
73e4d07f 2509/**
e84fe803 2510 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2511 * @ctx: LR context to create.
2512 * @ring: engine to be used with the context.
2513 *
2514 * This function can be called more than once, with different engines, if we plan
2515 * to use the context with them. The context backing objects and the ringbuffers
2516 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2517 * the creation is a deferred call: it's better to make sure first that we need to use
2518 * a given ring with the context.
2519 *
32197aab 2520 * Return: non-zero on error.
73e4d07f 2521 */
e84fe803
NH
2522
2523int intel_lr_context_deferred_alloc(struct intel_context *ctx,
0bc40be8 2524 struct intel_engine_cs *engine)
ede7d42b 2525{
0bc40be8 2526 struct drm_device *dev = engine->dev;
8c857917
OM
2527 struct drm_i915_gem_object *ctx_obj;
2528 uint32_t context_size;
84c2377f 2529 struct intel_ringbuffer *ringbuf;
8c857917
OM
2530 int ret;
2531
ede7d42b 2532 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
0bc40be8 2533 WARN_ON(ctx->engine[engine->id].state);
ede7d42b 2534
0bc40be8 2535 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2536
d1675198
AD
2537 /* One extra page as the sharing data between driver and GuC */
2538 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2539
149c86e7 2540 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2541 if (!ctx_obj) {
2542 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2543 return -ENOMEM;
8c857917
OM
2544 }
2545
0bc40be8 2546 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
01101fa7
CW
2547 if (IS_ERR(ringbuf)) {
2548 ret = PTR_ERR(ringbuf);
e84fe803 2549 goto error_deref_obj;
8670d6f9
OM
2550 }
2551
0bc40be8 2552 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
8670d6f9
OM
2553 if (ret) {
2554 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2555 goto error_ringbuf;
84c2377f
OM
2556 }
2557
0bc40be8
TU
2558 ctx->engine[engine->id].ringbuf = ringbuf;
2559 ctx->engine[engine->id].state = ctx_obj;
ede7d42b 2560
0bc40be8 2561 if (ctx != ctx->i915->kernel_context && engine->init_context) {
e84fe803 2562 struct drm_i915_gem_request *req;
76c39168 2563
0bc40be8 2564 req = i915_gem_request_alloc(engine, ctx);
26827088
DG
2565 if (IS_ERR(req)) {
2566 ret = PTR_ERR(req);
2567 DRM_ERROR("ring create req: %d\n", ret);
e84fe803 2568 goto error_ringbuf;
771b9a53
MT
2569 }
2570
0bc40be8 2571 ret = engine->init_context(req);
aa9b7810 2572 i915_add_request_no_flush(req);
e84fe803
NH
2573 if (ret) {
2574 DRM_ERROR("ring init context: %d\n",
2575 ret);
e84fe803
NH
2576 goto error_ringbuf;
2577 }
564ddb2f 2578 }
ede7d42b 2579 return 0;
8670d6f9 2580
01101fa7
CW
2581error_ringbuf:
2582 intel_ringbuffer_free(ringbuf);
e84fe803 2583error_deref_obj:
8670d6f9 2584 drm_gem_object_unreference(&ctx_obj->base);
0bc40be8
TU
2585 ctx->engine[engine->id].ringbuf = NULL;
2586 ctx->engine[engine->id].state = NULL;
8670d6f9 2587 return ret;
ede7d42b 2588}
3e5b6f05 2589
7d774cac
TU
2590void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2591 struct intel_context *ctx)
3e5b6f05 2592{
e2f80391 2593 struct intel_engine_cs *engine;
3e5b6f05 2594
b4ac5afc 2595 for_each_engine(engine, dev_priv) {
3e5b6f05 2596 struct drm_i915_gem_object *ctx_obj =
e2f80391 2597 ctx->engine[engine->id].state;
3e5b6f05 2598 struct intel_ringbuffer *ringbuf =
e2f80391 2599 ctx->engine[engine->id].ringbuf;
7d774cac 2600 void *vaddr;
3e5b6f05 2601 uint32_t *reg_state;
3e5b6f05
TD
2602
2603 if (!ctx_obj)
2604 continue;
2605
7d774cac
TU
2606 vaddr = i915_gem_object_pin_map(ctx_obj);
2607 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2608 continue;
7d774cac
TU
2609
2610 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2611 ctx_obj->dirty = true;
3e5b6f05
TD
2612
2613 reg_state[CTX_RING_HEAD+1] = 0;
2614 reg_state[CTX_RING_TAIL+1] = 0;
2615
7d774cac 2616 i915_gem_object_unpin_map(ctx_obj);
3e5b6f05
TD
2617
2618 ringbuf->head = 0;
2619 ringbuf->tail = 0;
2620 }
2621}
This page took 0.320907 seconds and 5 git commands to generate.