drm/i915: Embed the io-mapping struct inside drm_i915_private
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1 133 */
27af5eea 134#include <linux/interrupt.h>
b20385f1
OM
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
3bbaba0c 139#include "intel_mocs.h"
127f1003 140
468c6816 141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
e981e7b1
TD
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
84b790f8
BW
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e 193
0d925ea0 194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
f0f59a00 195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
0d925ea0
VS
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
d852c7bf 200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
9244a817 203} while (0)
e5815a2e 204
9244a817 205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2dba3239
MT
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
9244a817 208} while (0)
2dba3239 209
84b790f8
BW
210enum {
211 FAULT_AND_HANG = 0,
212 FAULT_AND_HALT, /* Debug only */
213 FAULT_AND_STREAM,
214 FAULT_AND_CONTINUE /* Unsupported */
215};
216#define GEN8_CTX_ID_SHIFT 32
7069b144 217#define GEN8_CTX_ID_WIDTH 21
71562919
MT
218#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
219#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
84b790f8 220
0e93cdd4
CW
221/* Typical size of the average request (2 pipecontrols and a MI_BB) */
222#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
223
e2efd130 224static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 225 struct intel_engine_cs *engine);
e2efd130 226static int intel_lr_context_pin(struct i915_gem_context *ctx,
e5292823 227 struct intel_engine_cs *engine);
7ba717cf 228
73e4d07f
OM
229/**
230 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
14bb2c11 231 * @dev_priv: i915 device private
73e4d07f
OM
232 * @enable_execlists: value of i915.enable_execlists module parameter.
233 *
234 * Only certain platforms support Execlists (the prerequisites being
27401d12 235 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
236 *
237 * Return: 1 if Execlists is supported and has to be enabled.
238 */
c033666a 239int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
127f1003 240{
a0bd6c31
ZL
241 /* On platforms with execlist available, vGPU will only
242 * support execlist mode, no ring buffer mode.
243 */
c033666a 244 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
a0bd6c31
ZL
245 return 1;
246
c033666a 247 if (INTEL_GEN(dev_priv) >= 9)
70ee45e1
DL
248 return 1;
249
127f1003
OM
250 if (enable_execlists == 0)
251 return 0;
252
5a21b665
DV
253 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
254 USES_PPGTT(dev_priv) &&
255 i915.use_mmio_flip >= 0)
127f1003
OM
256 return 1;
257
258 return 0;
259}
ede7d42b 260
ca82580c 261static void
0bc40be8 262logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
ca82580c 263{
c033666a 264 struct drm_i915_private *dev_priv = engine->i915;
ca82580c 265
c033666a 266 if (IS_GEN8(dev_priv) || IS_GEN9(dev_priv))
0bc40be8 267 engine->idle_lite_restore_wa = ~0;
c6a2ac71 268
c033666a
CW
269 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
270 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) &&
0bc40be8 271 (engine->id == VCS || engine->id == VCS2);
ca82580c 272
0bc40be8 273 engine->ctx_desc_template = GEN8_CTX_VALID;
c033666a 274 if (IS_GEN8(dev_priv))
0bc40be8
TU
275 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
276 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
ca82580c
TU
277
278 /* TODO: WaDisableLiteRestore when we start using semaphore
279 * signalling between Command Streamers */
280 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
281
282 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
283 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
0bc40be8
TU
284 if (engine->disable_lite_restore_wa)
285 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
ca82580c
TU
286}
287
73e4d07f 288/**
ca82580c
TU
289 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
290 * descriptor for a pinned context
ca82580c 291 * @ctx: Context to work on
9021ad03 292 * @engine: Engine the descriptor will be used with
73e4d07f 293 *
ca82580c
TU
294 * The context descriptor encodes various attributes of a context,
295 * including its GTT address and some flags. Because it's fairly
296 * expensive to calculate, we'll just do it once and cache the result,
297 * which remains valid until the context is unpinned.
298 *
6e5248b5
DV
299 * This is what a descriptor looks like, from LSB to MSB::
300 *
301 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
302 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
303 * bits 32-52: ctx ID, a globally unique tag
304 * bits 53-54: mbz, reserved for use by hardware
305 * bits 55-63: group ID, currently unused and set to 0
73e4d07f 306 */
ca82580c 307static void
e2efd130 308intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
0bc40be8 309 struct intel_engine_cs *engine)
84b790f8 310{
9021ad03 311 struct intel_context *ce = &ctx->engine[engine->id];
7069b144 312 u64 desc;
84b790f8 313
7069b144 314 BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
84b790f8 315
c01fc532
ZW
316 desc = ctx->desc_template; /* bits 3-4 */
317 desc |= engine->ctx_desc_template; /* bits 0-11 */
bde13ebd 318 desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
9021ad03 319 /* bits 12-31 */
7069b144 320 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
5af05fef 321
9021ad03 322 ce->lrc_desc = desc;
5af05fef
MT
323}
324
e2efd130 325uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
0bc40be8 326 struct intel_engine_cs *engine)
84b790f8 327{
0bc40be8 328 return ctx->engine[engine->id].lrc_desc;
ca82580c 329}
203a571b 330
cc3c4253
MK
331static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
332 struct drm_i915_gem_request *rq1)
84b790f8 333{
cc3c4253 334
4a570db5 335 struct intel_engine_cs *engine = rq0->engine;
c033666a 336 struct drm_i915_private *dev_priv = rq0->i915;
1cff8cc3 337 uint64_t desc[2];
84b790f8 338
1cff8cc3 339 if (rq1) {
4a570db5 340 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
1cff8cc3
MK
341 rq1->elsp_submitted++;
342 } else {
343 desc[1] = 0;
344 }
84b790f8 345
4a570db5 346 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
1cff8cc3 347 rq0->elsp_submitted++;
84b790f8 348
1cff8cc3 349 /* You must always write both descriptors in the order below. */
e2f80391
TU
350 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
351 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
6daccb0b 352
e2f80391 353 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
84b790f8 354 /* The context is automatically loaded after the following */
e2f80391 355 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
84b790f8 356
1cff8cc3 357 /* ELSP is a wo register, use another nearby reg for posting */
e2f80391 358 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
84b790f8
BW
359}
360
c6a2ac71
TU
361static void
362execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
363{
364 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
365 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
366 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
367 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
368}
369
370static void execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 371{
4a570db5 372 struct intel_engine_cs *engine = rq->engine;
05d9824b 373 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
e2f80391 374 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
ae1250b9 375
8f942018 376 reg_state[CTX_RING_TAIL+1] = intel_ring_offset(rq->ring, rq->tail);
ae1250b9 377
c6a2ac71
TU
378 /* True 32b PPGTT with dynamic page allocation: update PDP
379 * registers and point the unallocated PDPs to scratch page.
380 * PML4 is allocated during ppgtt init, so this is not needed
381 * in 48-bit mode.
382 */
383 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
384 execlists_update_context_pdps(ppgtt, reg_state);
ae1250b9
OM
385}
386
f4ea6bdd
CW
387static void execlists_elsp_submit_contexts(struct drm_i915_gem_request *rq0,
388 struct drm_i915_gem_request *rq1)
84b790f8 389{
26720ab9 390 struct drm_i915_private *dev_priv = rq0->i915;
3756685a 391 unsigned int fw_domains = rq0->engine->fw_domains;
26720ab9 392
05d9824b 393 execlists_update_context(rq0);
d8cb8875 394
cc3c4253 395 if (rq1)
05d9824b 396 execlists_update_context(rq1);
84b790f8 397
27af5eea 398 spin_lock_irq(&dev_priv->uncore.lock);
3756685a 399 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
26720ab9 400
cc3c4253 401 execlists_elsp_write(rq0, rq1);
26720ab9 402
3756685a 403 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
27af5eea 404 spin_unlock_irq(&dev_priv->uncore.lock);
84b790f8
BW
405}
406
3c7ba635
ZW
407static inline void execlists_context_status_change(
408 struct drm_i915_gem_request *rq,
409 unsigned long status)
410{
411 /*
412 * Only used when GVT-g is enabled now. When GVT-g is disabled,
413 * The compiler should eliminate this function as dead-code.
414 */
415 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
416 return;
417
418 atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
419}
420
f4ea6bdd 421static void execlists_unqueue(struct intel_engine_cs *engine)
acdd884a 422{
6d3d8274 423 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
c6a2ac71 424 struct drm_i915_gem_request *cursor, *tmp;
e981e7b1 425
0bc40be8 426 assert_spin_locked(&engine->execlist_lock);
acdd884a 427
779949f4
PA
428 /*
429 * If irqs are not active generate a warning as batches that finish
430 * without the irqs may get lost and a GPU Hang may occur.
431 */
c033666a 432 WARN_ON(!intel_irqs_enabled(engine->i915));
779949f4 433
acdd884a 434 /* Try to read in pairs */
0bc40be8 435 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
acdd884a
MT
436 execlist_link) {
437 if (!req0) {
438 req0 = cursor;
6d3d8274 439 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
440 /* Same ctx: ignore first request, as second request
441 * will update tail past first request's workload */
e1fee72c 442 cursor->elsp_submitted = req0->elsp_submitted;
e39d42fa 443 list_del(&req0->execlist_link);
e8a261ea 444 i915_gem_request_put(req0);
acdd884a
MT
445 req0 = cursor;
446 } else {
80a9a8db
ZW
447 if (IS_ENABLED(CONFIG_DRM_I915_GVT)) {
448 /*
449 * req0 (after merged) ctx requires single
450 * submission, stop picking
451 */
452 if (req0->ctx->execlists_force_single_submission)
453 break;
454 /*
455 * req0 ctx doesn't require single submission,
456 * but next req ctx requires, stop picking
457 */
458 if (cursor->ctx->execlists_force_single_submission)
459 break;
460 }
acdd884a 461 req1 = cursor;
c6a2ac71 462 WARN_ON(req1->elsp_submitted);
acdd884a
MT
463 break;
464 }
465 }
466
c6a2ac71
TU
467 if (unlikely(!req0))
468 return;
469
3c7ba635
ZW
470 execlists_context_status_change(req0, INTEL_CONTEXT_SCHEDULE_IN);
471
472 if (req1)
473 execlists_context_status_change(req1,
474 INTEL_CONTEXT_SCHEDULE_IN);
475
0bc40be8 476 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
53292cdb 477 /*
c6a2ac71
TU
478 * WaIdleLiteRestore: make sure we never cause a lite restore
479 * with HEAD==TAIL.
480 *
481 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
482 * resubmit the request. See gen8_emit_request() for where we
483 * prepare the padding after the end of the request.
53292cdb 484 */
c6a2ac71 485 req0->tail += 8;
dca33ecc 486 req0->tail &= req0->ring->size - 1;
53292cdb
MT
487 }
488
f4ea6bdd 489 execlists_elsp_submit_contexts(req0, req1);
acdd884a
MT
490}
491
c6a2ac71 492static unsigned int
e39d42fa 493execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
e981e7b1 494{
6d3d8274 495 struct drm_i915_gem_request *head_req;
e981e7b1 496
0bc40be8 497 assert_spin_locked(&engine->execlist_lock);
e981e7b1 498
0bc40be8 499 head_req = list_first_entry_or_null(&engine->execlist_queue,
6d3d8274 500 struct drm_i915_gem_request,
e981e7b1
TD
501 execlist_link);
502
e39d42fa
TU
503 if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
504 return 0;
c6a2ac71
TU
505
506 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
507
508 if (--head_req->elsp_submitted > 0)
509 return 0;
510
3c7ba635
ZW
511 execlists_context_status_change(head_req, INTEL_CONTEXT_SCHEDULE_OUT);
512
e39d42fa 513 list_del(&head_req->execlist_link);
e8a261ea 514 i915_gem_request_put(head_req);
e981e7b1 515
c6a2ac71 516 return 1;
e981e7b1
TD
517}
518
c6a2ac71 519static u32
0bc40be8 520get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
c6a2ac71 521 u32 *context_id)
91a41032 522{
c033666a 523 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 524 u32 status;
91a41032 525
c6a2ac71
TU
526 read_pointer %= GEN8_CSB_ENTRIES;
527
0bc40be8 528 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
c6a2ac71
TU
529
530 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
531 return 0;
91a41032 532
0bc40be8 533 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
c6a2ac71
TU
534 read_pointer));
535
536 return status;
91a41032
BW
537}
538
6e5248b5 539/*
73e4d07f
OM
540 * Check the unread Context Status Buffers and manage the submission of new
541 * contexts to the ELSP accordingly.
542 */
27af5eea 543static void intel_lrc_irq_handler(unsigned long data)
e981e7b1 544{
27af5eea 545 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
c033666a 546 struct drm_i915_private *dev_priv = engine->i915;
e981e7b1 547 u32 status_pointer;
c6a2ac71 548 unsigned int read_pointer, write_pointer;
26720ab9
TU
549 u32 csb[GEN8_CSB_ENTRIES][2];
550 unsigned int csb_read = 0, i;
c6a2ac71
TU
551 unsigned int submit_contexts = 0;
552
3756685a 553 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
c6a2ac71 554
0bc40be8 555 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
e981e7b1 556
0bc40be8 557 read_pointer = engine->next_context_status_buffer;
5590a5f0 558 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
e981e7b1 559 if (read_pointer > write_pointer)
dfc53c5e 560 write_pointer += GEN8_CSB_ENTRIES;
e981e7b1 561
e981e7b1 562 while (read_pointer < write_pointer) {
26720ab9
TU
563 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 break;
565 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 &csb[csb_read][1]);
567 csb_read++;
568 }
91a41032 569
26720ab9
TU
570 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572 /* Update the read pointer to the old write pointer. Manual ringbuffer
573 * management ftw </sarcasm> */
574 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 engine->next_context_status_buffer << 8));
577
3756685a 578 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
26720ab9
TU
579
580 spin_lock(&engine->execlist_lock);
581
582 for (i = 0; i < csb_read; i++) {
583 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 if (execlists_check_remove_request(engine, csb[i][1]))
e1fee72c
OM
586 WARN(1, "Lite Restored request removed from queue\n");
587 } else
588 WARN(1, "Preemption without Lite Restore\n");
589 }
590
26720ab9 591 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
c6a2ac71
TU
592 GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 submit_contexts +=
26720ab9 594 execlists_check_remove_request(engine, csb[i][1]);
e981e7b1
TD
595 }
596
c6a2ac71 597 if (submit_contexts) {
0bc40be8 598 if (!engine->disable_lite_restore_wa ||
26720ab9 599 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
f4ea6bdd 600 execlists_unqueue(engine);
5af05fef 601 }
e981e7b1 602
0bc40be8 603 spin_unlock(&engine->execlist_lock);
c6a2ac71
TU
604
605 if (unlikely(submit_contexts > 2))
606 DRM_ERROR("More than two context complete events?\n");
e981e7b1
TD
607}
608
f4ea6bdd 609static void execlists_submit_request(struct drm_i915_gem_request *request)
acdd884a 610{
4a570db5 611 struct intel_engine_cs *engine = request->engine;
6d3d8274 612 struct drm_i915_gem_request *cursor;
f1ad5a1f 613 int num_elements = 0;
acdd884a 614
27af5eea 615 spin_lock_bh(&engine->execlist_lock);
acdd884a 616
e2f80391 617 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
f1ad5a1f
OM
618 if (++num_elements > 2)
619 break;
620
621 if (num_elements > 2) {
6d3d8274 622 struct drm_i915_gem_request *tail_req;
f1ad5a1f 623
e2f80391 624 tail_req = list_last_entry(&engine->execlist_queue,
6d3d8274 625 struct drm_i915_gem_request,
f1ad5a1f
OM
626 execlist_link);
627
ae70797d 628 if (request->ctx == tail_req->ctx) {
f1ad5a1f 629 WARN(tail_req->elsp_submitted != 0,
7ba717cf 630 "More than 2 already-submitted reqs queued\n");
e39d42fa 631 list_del(&tail_req->execlist_link);
e8a261ea 632 i915_gem_request_put(tail_req);
f1ad5a1f
OM
633 }
634 }
635
e8a261ea 636 i915_gem_request_get(request);
e2f80391 637 list_add_tail(&request->execlist_link, &engine->execlist_queue);
a3d12761 638 request->ctx_hw_id = request->ctx->hw_id;
f1ad5a1f 639 if (num_elements == 0)
f4ea6bdd 640 execlists_unqueue(engine);
acdd884a 641
27af5eea 642 spin_unlock_bh(&engine->execlist_lock);
acdd884a
MT
643}
644
40e895ce 645int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 646{
24f1d3cc 647 struct intel_engine_cs *engine = request->engine;
9021ad03 648 struct intel_context *ce = &request->ctx->engine[engine->id];
bfa01200 649 int ret;
bc0dce3f 650
6310346e
CW
651 /* Flush enough space to reduce the likelihood of waiting after
652 * we start building the request - in which case we will just
653 * have to repeat work.
654 */
0e93cdd4 655 request->reserved_space += EXECLISTS_REQUEST_SIZE;
6310346e 656
9021ad03 657 if (!ce->state) {
978f1e09
CW
658 ret = execlists_context_deferred_alloc(request->ctx, engine);
659 if (ret)
660 return ret;
661 }
662
dca33ecc 663 request->ring = ce->ring;
f3cc01f0 664
a7e02199
AD
665 if (i915.enable_guc_submission) {
666 /*
667 * Check that the GuC has space for the request before
668 * going any further, as the i915_add_request() call
669 * later on mustn't fail ...
670 */
7c2c270d 671 ret = i915_guc_wq_check_space(request);
a7e02199
AD
672 if (ret)
673 return ret;
674 }
675
24f1d3cc
CW
676 ret = intel_lr_context_pin(request->ctx, engine);
677 if (ret)
678 return ret;
e28e404c 679
bfa01200
CW
680 ret = intel_ring_begin(request, 0);
681 if (ret)
682 goto err_unpin;
683
9021ad03 684 if (!ce->initialised) {
24f1d3cc
CW
685 ret = engine->init_context(request);
686 if (ret)
687 goto err_unpin;
688
9021ad03 689 ce->initialised = true;
24f1d3cc
CW
690 }
691
692 /* Note that after this point, we have committed to using
693 * this request as it is being used to both track the
694 * state of engine initialisation and liveness of the
695 * golden renderstate above. Think twice before you try
696 * to cancel/unwind this request now.
697 */
698
0e93cdd4 699 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
bfa01200
CW
700 return 0;
701
702err_unpin:
24f1d3cc 703 intel_lr_context_unpin(request->ctx, engine);
e28e404c 704 return ret;
bc0dce3f
JH
705}
706
bc0dce3f 707/*
ddd66c51 708 * intel_logical_ring_advance() - advance the tail and prepare for submission
ae70797d 709 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
710 *
711 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
712 * really happens during submission is that the context and current tail will be placed
713 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
714 * point, the tail *inside* the context is updated and the ELSP written to.
715 */
7c17d377 716static int
ddd66c51 717intel_logical_ring_advance(struct drm_i915_gem_request *request)
bc0dce3f 718{
7e37f889 719 struct intel_ring *ring = request->ring;
4a570db5 720 struct intel_engine_cs *engine = request->engine;
bc0dce3f 721
1dae2dfb
CW
722 intel_ring_advance(ring);
723 request->tail = ring->tail;
bc0dce3f 724
7c17d377
CW
725 /*
726 * Here we add two extra NOOPs as padding to avoid
727 * lite restore of a context with HEAD==TAIL.
728 *
729 * Caller must reserve WA_TAIL_DWORDS for us!
730 */
1dae2dfb
CW
731 intel_ring_emit(ring, MI_NOOP);
732 intel_ring_emit(ring, MI_NOOP);
733 intel_ring_advance(ring);
d1675198 734
a16a4052
CW
735 /* We keep the previous context alive until we retire the following
736 * request. This ensures that any the context object is still pinned
737 * for any residual writes the HW makes into it on the context switch
738 * into the next object following the breadcrumb. Otherwise, we may
739 * retire the context too early.
740 */
741 request->previous_context = engine->last_context;
742 engine->last_context = request->ctx;
7c17d377 743 return 0;
bc0dce3f
JH
744}
745
e39d42fa 746void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
c86ee3a9 747{
6d3d8274 748 struct drm_i915_gem_request *req, *tmp;
e39d42fa 749 LIST_HEAD(cancel_list);
c86ee3a9 750
91c8a326 751 WARN_ON(!mutex_is_locked(&engine->i915->drm.struct_mutex));
c86ee3a9 752
27af5eea 753 spin_lock_bh(&engine->execlist_lock);
e39d42fa 754 list_replace_init(&engine->execlist_queue, &cancel_list);
27af5eea 755 spin_unlock_bh(&engine->execlist_lock);
c86ee3a9 756
e39d42fa 757 list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
c86ee3a9 758 list_del(&req->execlist_link);
e8a261ea 759 i915_gem_request_put(req);
c86ee3a9
TD
760 }
761}
762
e2efd130 763static int intel_lr_context_pin(struct i915_gem_context *ctx,
24f1d3cc 764 struct intel_engine_cs *engine)
dcb4c12a 765{
9021ad03 766 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac
TU
767 void *vaddr;
768 u32 *lrc_reg_state;
ca82580c 769 int ret;
dcb4c12a 770
91c8a326 771 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
ca82580c 772
9021ad03 773 if (ce->pin_count++)
24f1d3cc
CW
774 return 0;
775
bf3783e5
CW
776 ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN,
777 PIN_OFFSET_BIAS | GUC_WOPCM_TOP | PIN_GLOBAL);
e84fe803 778 if (ret)
24f1d3cc 779 goto err;
7ba717cf 780
bf3783e5 781 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac
TU
782 if (IS_ERR(vaddr)) {
783 ret = PTR_ERR(vaddr);
bf3783e5 784 goto unpin_vma;
82352e90
TU
785 }
786
7d774cac
TU
787 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
788
aad29fbb 789 ret = intel_ring_pin(ce->ring);
e84fe803 790 if (ret)
7d774cac 791 goto unpin_map;
d1675198 792
0bc40be8 793 intel_lr_context_descriptor_update(ctx, engine);
9021ad03 794
bde13ebd
CW
795 lrc_reg_state[CTX_RING_BUFFER_START+1] =
796 i915_ggtt_offset(ce->ring->vma);
9021ad03 797 ce->lrc_reg_state = lrc_reg_state;
bf3783e5 798 ce->state->obj->dirty = true;
e93c28f3 799
e84fe803 800 /* Invalidate GuC TLB. */
bf3783e5
CW
801 if (i915.enable_guc_submission) {
802 struct drm_i915_private *dev_priv = ctx->i915;
e84fe803 803 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
bf3783e5 804 }
dcb4c12a 805
9a6feaf0 806 i915_gem_context_get(ctx);
24f1d3cc 807 return 0;
7ba717cf 808
7d774cac 809unpin_map:
bf3783e5
CW
810 i915_gem_object_unpin_map(ce->state->obj);
811unpin_vma:
812 __i915_vma_unpin(ce->state);
24f1d3cc 813err:
9021ad03 814 ce->pin_count = 0;
e84fe803
NH
815 return ret;
816}
817
e2efd130 818void intel_lr_context_unpin(struct i915_gem_context *ctx,
24f1d3cc 819 struct intel_engine_cs *engine)
e84fe803 820{
9021ad03 821 struct intel_context *ce = &ctx->engine[engine->id];
e84fe803 822
91c8a326 823 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
9021ad03 824 GEM_BUG_ON(ce->pin_count == 0);
321fe304 825
9021ad03 826 if (--ce->pin_count)
24f1d3cc 827 return;
e84fe803 828
aad29fbb 829 intel_ring_unpin(ce->ring);
dcb4c12a 830
bf3783e5
CW
831 i915_gem_object_unpin_map(ce->state->obj);
832 i915_vma_unpin(ce->state);
321fe304 833
9a6feaf0 834 i915_gem_context_put(ctx);
dcb4c12a
OM
835}
836
e2be4faf 837static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
838{
839 int ret, i;
7e37f889 840 struct intel_ring *ring = req->ring;
c033666a 841 struct i915_workarounds *w = &req->i915->workarounds;
771b9a53 842
cd7feaaa 843 if (w->count == 0)
771b9a53
MT
844 return 0;
845
7c9cf4e3 846 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
847 if (ret)
848 return ret;
849
987046ad 850 ret = intel_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
851 if (ret)
852 return ret;
853
1dae2dfb 854 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
771b9a53 855 for (i = 0; i < w->count; i++) {
1dae2dfb
CW
856 intel_ring_emit_reg(ring, w->reg[i].addr);
857 intel_ring_emit(ring, w->reg[i].value);
771b9a53 858 }
1dae2dfb 859 intel_ring_emit(ring, MI_NOOP);
771b9a53 860
1dae2dfb 861 intel_ring_advance(ring);
771b9a53 862
7c9cf4e3 863 ret = req->engine->emit_flush(req, EMIT_BARRIER);
771b9a53
MT
864 if (ret)
865 return ret;
866
867 return 0;
868}
869
83b8a982 870#define wa_ctx_emit(batch, index, cmd) \
17ee950d 871 do { \
83b8a982
AS
872 int __index = (index)++; \
873 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
874 return -ENOSPC; \
875 } \
83b8a982 876 batch[__index] = (cmd); \
17ee950d
AS
877 } while (0)
878
8f40db77 879#define wa_ctx_emit_reg(batch, index, reg) \
f0f59a00 880 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
9e000847
AS
881
882/*
883 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
884 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
885 * but there is a slight complication as this is applied in WA batch where the
886 * values are only initialized once so we cannot take register value at the
887 * beginning and reuse it further; hence we save its value to memory, upload a
888 * constant value with bit21 set and then we restore it back with the saved value.
889 * To simplify the WA, a constant value is formed by using the default value
890 * of this register. This shouldn't be a problem because we are only modifying
891 * it for a short period and this batch in non-premptible. We can ofcourse
892 * use additional instructions that read the actual value of the register
893 * at that time and set our bit of interest but it makes the WA complicated.
894 *
895 * This WA is also required for Gen9 so extracting as a function avoids
896 * code duplication.
897 */
0bc40be8 898static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
6e5248b5 899 uint32_t *batch,
9e000847
AS
900 uint32_t index)
901{
5e580523 902 struct drm_i915_private *dev_priv = engine->i915;
9e000847
AS
903 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
904
a4106a78 905 /*
fe905819 906 * WaDisableLSQCROPERFforOCL:skl,kbl
a4106a78
AS
907 * This WA is implemented in skl_init_clock_gating() but since
908 * this batch updates GEN8_L3SQCREG4 with default value we need to
909 * set this bit here to retain the WA during flush.
910 */
738fa1b3
MK
911 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0) ||
912 IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
a4106a78
AS
913 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
914
f1afe24f 915 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982 916 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 917 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 918 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982
AS
919 wa_ctx_emit(batch, index, 0);
920
921 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 922 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
83b8a982
AS
923 wa_ctx_emit(batch, index, l3sqc4_flush);
924
925 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
926 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
927 PIPE_CONTROL_DC_FLUSH_ENABLE));
928 wa_ctx_emit(batch, index, 0);
929 wa_ctx_emit(batch, index, 0);
930 wa_ctx_emit(batch, index, 0);
931 wa_ctx_emit(batch, index, 0);
932
f1afe24f 933 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982 934 MI_SRM_LRM_GLOBAL_GTT));
8f40db77 935 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
bde13ebd 936 wa_ctx_emit(batch, index, i915_ggtt_offset(engine->scratch) + 256);
83b8a982 937 wa_ctx_emit(batch, index, 0);
9e000847
AS
938
939 return index;
940}
941
17ee950d
AS
942static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
943 uint32_t offset,
944 uint32_t start_alignment)
945{
946 return wa_ctx->offset = ALIGN(offset, start_alignment);
947}
948
949static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
950 uint32_t offset,
951 uint32_t size_alignment)
952{
953 wa_ctx->size = offset - wa_ctx->offset;
954
955 WARN(wa_ctx->size % size_alignment,
956 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
957 wa_ctx->size, size_alignment);
958 return 0;
959}
960
6e5248b5
DV
961/*
962 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
963 * initialized at the beginning and shared across all contexts but this field
964 * helps us to have multiple batches at different offsets and select them based
965 * on a criteria. At the moment this batch always start at the beginning of the page
966 * and at this point we don't have multiple wa_ctx batch buffers.
4d78c8dc 967 *
6e5248b5
DV
968 * The number of WA applied are not known at the beginning; we use this field
969 * to return the no of DWORDS written.
17ee950d 970 *
6e5248b5
DV
971 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
972 * so it adds NOOPs as padding to make it cacheline aligned.
973 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
974 * makes a complete batch buffer.
17ee950d 975 */
0bc40be8 976static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
17ee950d 977 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 978 uint32_t *batch,
17ee950d
AS
979 uint32_t *offset)
980{
0160f055 981 uint32_t scratch_addr;
17ee950d
AS
982 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
983
7ad00d1a 984 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 985 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 986
c82435bb 987 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
c033666a 988 if (IS_BROADWELL(engine->i915)) {
0bc40be8 989 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
604ef734
AH
990 if (rc < 0)
991 return rc;
992 index = rc;
c82435bb
AS
993 }
994
0160f055
AS
995 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
996 /* Actual scratch location is at 128 bytes offset */
bde13ebd 997 scratch_addr = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0160f055 998
83b8a982
AS
999 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1000 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1001 PIPE_CONTROL_GLOBAL_GTT_IVB |
1002 PIPE_CONTROL_CS_STALL |
1003 PIPE_CONTROL_QW_WRITE));
1004 wa_ctx_emit(batch, index, scratch_addr);
1005 wa_ctx_emit(batch, index, 0);
1006 wa_ctx_emit(batch, index, 0);
1007 wa_ctx_emit(batch, index, 0);
0160f055 1008
17ee950d
AS
1009 /* Pad to end of cacheline */
1010 while (index % CACHELINE_DWORDS)
83b8a982 1011 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1012
1013 /*
1014 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1015 * execution depends on the length specified in terms of cache lines
1016 * in the register CTX_RCS_INDIRECT_CTX
1017 */
1018
1019 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1020}
1021
6e5248b5
DV
1022/*
1023 * This batch is started immediately after indirect_ctx batch. Since we ensure
1024 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
17ee950d 1025 *
6e5248b5 1026 * The number of DWORDS written are returned using this field.
17ee950d
AS
1027 *
1028 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1029 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1030 */
0bc40be8 1031static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
17ee950d 1032 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1033 uint32_t *batch,
17ee950d
AS
1034 uint32_t *offset)
1035{
1036 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1037
7ad00d1a 1038 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1039 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1040
83b8a982 1041 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1042
1043 return wa_ctx_end(wa_ctx, *offset = index, 1);
1044}
1045
0bc40be8 1046static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
0504cffc 1047 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1048 uint32_t *batch,
0504cffc
AS
1049 uint32_t *offset)
1050{
a4106a78 1051 int ret;
5e580523 1052 struct drm_i915_private *dev_priv = engine->i915;
0504cffc
AS
1053 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1054
0907c8f7 1055 /* WaDisableCtxRestoreArbitration:skl,bxt */
5e580523
DA
1056 if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
1057 IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
0907c8f7 1058 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1059
a4106a78 1060 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
0bc40be8 1061 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
a4106a78
AS
1062 if (ret < 0)
1063 return ret;
1064 index = ret;
1065
873e8171
MK
1066 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl */
1067 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1068 wa_ctx_emit_reg(batch, index, COMMON_SLICE_CHICKEN2);
1069 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(
1070 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE));
1071 wa_ctx_emit(batch, index, MI_NOOP);
1072
066d4628
MK
1073 /* WaClearSlmSpaceAtContextSwitch:kbl */
1074 /* Actual scratch location is at 128 bytes offset */
703d1282 1075 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0)) {
56c0f1a7 1076 u32 scratch_addr =
bde13ebd 1077 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
066d4628
MK
1078
1079 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1080 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1081 PIPE_CONTROL_GLOBAL_GTT_IVB |
1082 PIPE_CONTROL_CS_STALL |
1083 PIPE_CONTROL_QW_WRITE));
1084 wa_ctx_emit(batch, index, scratch_addr);
1085 wa_ctx_emit(batch, index, 0);
1086 wa_ctx_emit(batch, index, 0);
1087 wa_ctx_emit(batch, index, 0);
1088 }
3485d99e
TG
1089
1090 /* WaMediaPoolStateCmdInWABB:bxt */
1091 if (HAS_POOLED_EU(engine->i915)) {
1092 /*
1093 * EU pool configuration is setup along with golden context
1094 * during context initialization. This value depends on
1095 * device type (2x6 or 3x6) and needs to be updated based
1096 * on which subslice is disabled especially for 2x6
1097 * devices, however it is safe to load default
1098 * configuration of 3x6 device instead of masking off
1099 * corresponding bits because HW ignores bits of a disabled
1100 * subslice and drops down to appropriate config. Please
1101 * see render_state_setup() in i915_gem_render_state.c for
1102 * possible configurations, to avoid duplication they are
1103 * not shown here again.
1104 */
1105 u32 eu_pool_config = 0x00777000;
1106 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_STATE);
1107 wa_ctx_emit(batch, index, GEN9_MEDIA_POOL_ENABLE);
1108 wa_ctx_emit(batch, index, eu_pool_config);
1109 wa_ctx_emit(batch, index, 0);
1110 wa_ctx_emit(batch, index, 0);
1111 wa_ctx_emit(batch, index, 0);
1112 }
1113
0504cffc
AS
1114 /* Pad to end of cacheline */
1115 while (index % CACHELINE_DWORDS)
1116 wa_ctx_emit(batch, index, MI_NOOP);
1117
1118 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1119}
1120
0bc40be8 1121static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
0504cffc 1122 struct i915_wa_ctx_bb *wa_ctx,
6e5248b5 1123 uint32_t *batch,
0504cffc
AS
1124 uint32_t *offset)
1125{
1126 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1127
9b01435d 1128 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
c033666a
CW
1129 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_B0) ||
1130 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1)) {
9b01435d 1131 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
8f40db77 1132 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
9b01435d
AS
1133 wa_ctx_emit(batch, index,
1134 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1135 wa_ctx_emit(batch, index, MI_NOOP);
1136 }
1137
b1e429fe 1138 /* WaClearTdlStateAckDirtyBits:bxt */
c033666a 1139 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_B0)) {
b1e429fe
TG
1140 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1141
1142 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1143 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1144
1145 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1146 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1147
1148 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1149 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1150
1151 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1152 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1153 wa_ctx_emit(batch, index, 0x0);
1154 wa_ctx_emit(batch, index, MI_NOOP);
1155 }
1156
0907c8f7 1157 /* WaDisableCtxRestoreArbitration:skl,bxt */
c033666a
CW
1158 if (IS_SKL_REVID(engine->i915, 0, SKL_REVID_D0) ||
1159 IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
0907c8f7
AS
1160 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1161
0504cffc
AS
1162 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1163
1164 return wa_ctx_end(wa_ctx, *offset = index, 1);
1165}
1166
0bc40be8 1167static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
17ee950d 1168{
48bb74e4
CW
1169 struct drm_i915_gem_object *obj;
1170 struct i915_vma *vma;
1171 int err;
17ee950d 1172
48bb74e4
CW
1173 obj = i915_gem_object_create(&engine->i915->drm, PAGE_ALIGN(size));
1174 if (IS_ERR(obj))
1175 return PTR_ERR(obj);
17ee950d 1176
48bb74e4
CW
1177 vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1178 if (IS_ERR(vma)) {
1179 err = PTR_ERR(vma);
1180 goto err;
17ee950d
AS
1181 }
1182
48bb74e4
CW
1183 err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1184 if (err)
1185 goto err;
1186
1187 engine->wa_ctx.vma = vma;
17ee950d 1188 return 0;
48bb74e4
CW
1189
1190err:
1191 i915_gem_object_put(obj);
1192 return err;
17ee950d
AS
1193}
1194
0bc40be8 1195static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
17ee950d 1196{
19880c4a 1197 i915_vma_unpin_and_release(&engine->wa_ctx.vma);
17ee950d
AS
1198}
1199
0bc40be8 1200static int intel_init_workaround_bb(struct intel_engine_cs *engine)
17ee950d 1201{
48bb74e4 1202 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
17ee950d
AS
1203 uint32_t *batch;
1204 uint32_t offset;
1205 struct page *page;
48bb74e4 1206 int ret;
17ee950d 1207
0bc40be8 1208 WARN_ON(engine->id != RCS);
17ee950d 1209
5e60d790 1210 /* update this when WA for higher Gen are added */
c033666a 1211 if (INTEL_GEN(engine->i915) > 9) {
0504cffc 1212 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
c033666a 1213 INTEL_GEN(engine->i915));
5e60d790 1214 return 0;
0504cffc 1215 }
5e60d790 1216
c4db7599 1217 /* some WA perform writes to scratch page, ensure it is valid */
56c0f1a7 1218 if (!engine->scratch) {
0bc40be8 1219 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
c4db7599
AS
1220 return -EINVAL;
1221 }
1222
0bc40be8 1223 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
17ee950d
AS
1224 if (ret) {
1225 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1226 return ret;
1227 }
1228
48bb74e4 1229 page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
17ee950d
AS
1230 batch = kmap_atomic(page);
1231 offset = 0;
1232
c033666a 1233 if (IS_GEN8(engine->i915)) {
0bc40be8 1234 ret = gen8_init_indirectctx_bb(engine,
17ee950d
AS
1235 &wa_ctx->indirect_ctx,
1236 batch,
1237 &offset);
1238 if (ret)
1239 goto out;
1240
0bc40be8 1241 ret = gen8_init_perctx_bb(engine,
17ee950d
AS
1242 &wa_ctx->per_ctx,
1243 batch,
1244 &offset);
1245 if (ret)
1246 goto out;
c033666a 1247 } else if (IS_GEN9(engine->i915)) {
0bc40be8 1248 ret = gen9_init_indirectctx_bb(engine,
0504cffc
AS
1249 &wa_ctx->indirect_ctx,
1250 batch,
1251 &offset);
1252 if (ret)
1253 goto out;
1254
0bc40be8 1255 ret = gen9_init_perctx_bb(engine,
0504cffc
AS
1256 &wa_ctx->per_ctx,
1257 batch,
1258 &offset);
1259 if (ret)
1260 goto out;
17ee950d
AS
1261 }
1262
1263out:
1264 kunmap_atomic(batch);
1265 if (ret)
0bc40be8 1266 lrc_destroy_wa_ctx_obj(engine);
17ee950d
AS
1267
1268 return ret;
1269}
1270
04794adb
TU
1271static void lrc_init_hws(struct intel_engine_cs *engine)
1272{
c033666a 1273 struct drm_i915_private *dev_priv = engine->i915;
04794adb
TU
1274
1275 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
57e88531 1276 engine->status_page.ggtt_offset);
04794adb
TU
1277 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1278}
1279
0bc40be8 1280static int gen8_init_common_ring(struct intel_engine_cs *engine)
9b1136d5 1281{
c033666a 1282 struct drm_i915_private *dev_priv = engine->i915;
c6a2ac71 1283 unsigned int next_context_status_buffer_hw;
9b1136d5 1284
04794adb 1285 lrc_init_hws(engine);
e84fe803 1286
0bc40be8
TU
1287 I915_WRITE_IMR(engine,
1288 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1289 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
73d477f6 1290
0bc40be8 1291 I915_WRITE(RING_MODE_GEN7(engine),
9b1136d5
OM
1292 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1293 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
0bc40be8 1294 POSTING_READ(RING_MODE_GEN7(engine));
dfc53c5e
MT
1295
1296 /*
1297 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1298 * zero, we need to read the write pointer from hardware and use its
1299 * value because "this register is power context save restored".
1300 * Effectively, these states have been observed:
1301 *
1302 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1303 * BDW | CSB regs not reset | CSB regs reset |
1304 * CHT | CSB regs not reset | CSB regs not reset |
5590a5f0
BW
1305 * SKL | ? | ? |
1306 * BXT | ? | ? |
dfc53c5e 1307 */
5590a5f0 1308 next_context_status_buffer_hw =
0bc40be8 1309 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
dfc53c5e
MT
1310
1311 /*
1312 * When the CSB registers are reset (also after power-up / gpu reset),
1313 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1314 * this special case, so the first element read is CSB[0].
1315 */
1316 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1317 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1318
0bc40be8
TU
1319 engine->next_context_status_buffer = next_context_status_buffer_hw;
1320 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
9b1136d5 1321
fc0768ce 1322 intel_engine_init_hangcheck(engine);
9b1136d5 1323
0ccdacf6 1324 return intel_mocs_init_engine(engine);
9b1136d5
OM
1325}
1326
0bc40be8 1327static int gen8_init_render_ring(struct intel_engine_cs *engine)
9b1136d5 1328{
c033666a 1329 struct drm_i915_private *dev_priv = engine->i915;
9b1136d5
OM
1330 int ret;
1331
0bc40be8 1332 ret = gen8_init_common_ring(engine);
9b1136d5
OM
1333 if (ret)
1334 return ret;
1335
1336 /* We need to disable the AsyncFlip performance optimisations in order
1337 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1338 * programmed to '1' on all products.
1339 *
1340 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1341 */
1342 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1343
9b1136d5
OM
1344 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1345
0bc40be8 1346 return init_workarounds_ring(engine);
9b1136d5
OM
1347}
1348
0bc40be8 1349static int gen9_init_render_ring(struct intel_engine_cs *engine)
82ef822e
DL
1350{
1351 int ret;
1352
0bc40be8 1353 ret = gen8_init_common_ring(engine);
82ef822e
DL
1354 if (ret)
1355 return ret;
1356
0bc40be8 1357 return init_workarounds_ring(engine);
82ef822e
DL
1358}
1359
7a01a0a2
MT
1360static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1361{
1362 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
7e37f889 1363 struct intel_ring *ring = req->ring;
4a570db5 1364 struct intel_engine_cs *engine = req->engine;
7a01a0a2
MT
1365 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1366 int i, ret;
1367
987046ad 1368 ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
7a01a0a2
MT
1369 if (ret)
1370 return ret;
1371
b5321f30 1372 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(num_lri_cmds));
7a01a0a2
MT
1373 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1374 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1375
b5321f30
CW
1376 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, i));
1377 intel_ring_emit(ring, upper_32_bits(pd_daddr));
1378 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, i));
1379 intel_ring_emit(ring, lower_32_bits(pd_daddr));
7a01a0a2
MT
1380 }
1381
b5321f30
CW
1382 intel_ring_emit(ring, MI_NOOP);
1383 intel_ring_advance(ring);
7a01a0a2
MT
1384
1385 return 0;
1386}
1387
be795fc1 1388static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
803688ba
CW
1389 u64 offset, u32 len,
1390 unsigned int dispatch_flags)
15648585 1391{
7e37f889 1392 struct intel_ring *ring = req->ring;
8e004efc 1393 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1394 int ret;
1395
7a01a0a2
MT
1396 /* Don't rely in hw updating PDPs, specially in lite-restore.
1397 * Ideally, we should set Force PD Restore in ctx descriptor,
1398 * but we can't. Force Restore would be a second option, but
1399 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1400 * not idle). PML4 is allocated during ppgtt init so this is
1401 * not needed in 48-bit.*/
7a01a0a2 1402 if (req->ctx->ppgtt &&
666796da 1403 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7 1404 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
c033666a 1405 !intel_vgpu_active(req->i915)) {
2dba3239
MT
1406 ret = intel_logical_ring_emit_pdps(req);
1407 if (ret)
1408 return ret;
1409 }
7a01a0a2 1410
666796da 1411 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
7a01a0a2
MT
1412 }
1413
987046ad 1414 ret = intel_ring_begin(req, 4);
15648585
OM
1415 if (ret)
1416 return ret;
1417
1418 /* FIXME(BDW): Address space and security selectors. */
b5321f30
CW
1419 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 |
1420 (ppgtt<<8) |
1421 (dispatch_flags & I915_DISPATCH_RS ?
1422 MI_BATCH_RESOURCE_STREAMER : 0));
1423 intel_ring_emit(ring, lower_32_bits(offset));
1424 intel_ring_emit(ring, upper_32_bits(offset));
1425 intel_ring_emit(ring, MI_NOOP);
1426 intel_ring_advance(ring);
15648585
OM
1427
1428 return 0;
1429}
1430
31bb59cc 1431static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
73d477f6 1432{
c033666a 1433 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc
CW
1434 I915_WRITE_IMR(engine,
1435 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1436 POSTING_READ_FW(RING_IMR(engine->mmio_base));
73d477f6
OM
1437}
1438
31bb59cc 1439static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
73d477f6 1440{
c033666a 1441 struct drm_i915_private *dev_priv = engine->i915;
31bb59cc 1442 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
73d477f6
OM
1443}
1444
7c9cf4e3 1445static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
4712274c 1446{
7e37f889
CW
1447 struct intel_ring *ring = request->ring;
1448 u32 cmd;
4712274c
OM
1449 int ret;
1450
987046ad 1451 ret = intel_ring_begin(request, 4);
4712274c
OM
1452 if (ret)
1453 return ret;
1454
1455 cmd = MI_FLUSH_DW + 1;
1456
f0a1fb10
CW
1457 /* We always require a command barrier so that subsequent
1458 * commands, such as breadcrumb interrupts, are strictly ordered
1459 * wrt the contents of the write cache being flushed to memory
1460 * (and thus being coherent from the CPU).
1461 */
1462 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1463
7c9cf4e3 1464 if (mode & EMIT_INVALIDATE) {
f0a1fb10 1465 cmd |= MI_INVALIDATE_TLB;
1dae2dfb 1466 if (request->engine->id == VCS)
f0a1fb10 1467 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1468 }
1469
b5321f30
CW
1470 intel_ring_emit(ring, cmd);
1471 intel_ring_emit(ring,
1472 I915_GEM_HWS_SCRATCH_ADDR |
1473 MI_FLUSH_DW_USE_GTT);
1474 intel_ring_emit(ring, 0); /* upper addr */
1475 intel_ring_emit(ring, 0); /* value */
1476 intel_ring_advance(ring);
4712274c
OM
1477
1478 return 0;
1479}
1480
7deb4d39 1481static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
7c9cf4e3 1482 u32 mode)
4712274c 1483{
7e37f889 1484 struct intel_ring *ring = request->ring;
b5321f30 1485 struct intel_engine_cs *engine = request->engine;
bde13ebd
CW
1486 u32 scratch_addr =
1487 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
0b2d0934 1488 bool vf_flush_wa = false, dc_flush_wa = false;
4712274c
OM
1489 u32 flags = 0;
1490 int ret;
0b2d0934 1491 int len;
4712274c
OM
1492
1493 flags |= PIPE_CONTROL_CS_STALL;
1494
7c9cf4e3 1495 if (mode & EMIT_FLUSH) {
4712274c
OM
1496 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1497 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
965fd602 1498 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
40a24488 1499 flags |= PIPE_CONTROL_FLUSH_ENABLE;
4712274c
OM
1500 }
1501
7c9cf4e3 1502 if (mode & EMIT_INVALIDATE) {
4712274c
OM
1503 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1504 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1505 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1506 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1507 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1508 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1509 flags |= PIPE_CONTROL_QW_WRITE;
1510 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
4712274c 1511
1a5a9ce7
BW
1512 /*
1513 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1514 * pipe control.
1515 */
c033666a 1516 if (IS_GEN9(request->i915))
1a5a9ce7 1517 vf_flush_wa = true;
0b2d0934
MK
1518
1519 /* WaForGAMHang:kbl */
1520 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1521 dc_flush_wa = true;
1a5a9ce7 1522 }
9647ff36 1523
0b2d0934
MK
1524 len = 6;
1525
1526 if (vf_flush_wa)
1527 len += 6;
1528
1529 if (dc_flush_wa)
1530 len += 12;
1531
1532 ret = intel_ring_begin(request, len);
4712274c
OM
1533 if (ret)
1534 return ret;
1535
9647ff36 1536 if (vf_flush_wa) {
b5321f30
CW
1537 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1538 intel_ring_emit(ring, 0);
1539 intel_ring_emit(ring, 0);
1540 intel_ring_emit(ring, 0);
1541 intel_ring_emit(ring, 0);
1542 intel_ring_emit(ring, 0);
9647ff36
ID
1543 }
1544
0b2d0934 1545 if (dc_flush_wa) {
b5321f30
CW
1546 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1547 intel_ring_emit(ring, PIPE_CONTROL_DC_FLUSH_ENABLE);
1548 intel_ring_emit(ring, 0);
1549 intel_ring_emit(ring, 0);
1550 intel_ring_emit(ring, 0);
1551 intel_ring_emit(ring, 0);
0b2d0934
MK
1552 }
1553
b5321f30
CW
1554 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1555 intel_ring_emit(ring, flags);
1556 intel_ring_emit(ring, scratch_addr);
1557 intel_ring_emit(ring, 0);
1558 intel_ring_emit(ring, 0);
1559 intel_ring_emit(ring, 0);
0b2d0934
MK
1560
1561 if (dc_flush_wa) {
b5321f30
CW
1562 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1563 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL);
1564 intel_ring_emit(ring, 0);
1565 intel_ring_emit(ring, 0);
1566 intel_ring_emit(ring, 0);
1567 intel_ring_emit(ring, 0);
0b2d0934
MK
1568 }
1569
b5321f30 1570 intel_ring_advance(ring);
4712274c
OM
1571
1572 return 0;
1573}
1574
c04e0f3b 1575static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
319404df 1576{
319404df
ID
1577 /*
1578 * On BXT A steppings there is a HW coherency issue whereby the
1579 * MI_STORE_DATA_IMM storing the completed request's seqno
1580 * occasionally doesn't invalidate the CPU cache. Work around this by
1581 * clflushing the corresponding cacheline whenever the caller wants
1582 * the coherency to be guaranteed. Note that this cacheline is known
1583 * to be clean at this point, since we only write it in
1584 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1585 * this clflush in practice becomes an invalidate operation.
1586 */
c04e0f3b 1587 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
319404df
ID
1588}
1589
7c17d377
CW
1590/*
1591 * Reserve space for 2 NOOPs at the end of each request to be
1592 * used as a workaround for not being allowed to do lite
1593 * restore with HEAD==TAIL (WaIdleLiteRestore).
1594 */
1595#define WA_TAIL_DWORDS 2
1596
c4e76638 1597static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1598{
7e37f889 1599 struct intel_ring *ring = request->ring;
4da46e1e
OM
1600 int ret;
1601
987046ad 1602 ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
4da46e1e
OM
1603 if (ret)
1604 return ret;
1605
7c17d377
CW
1606 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1607 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
4da46e1e 1608
b5321f30
CW
1609 intel_ring_emit(ring, (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1610 intel_ring_emit(ring,
1611 intel_hws_seqno_address(request->engine) |
1612 MI_FLUSH_DW_USE_GTT);
1613 intel_ring_emit(ring, 0);
1614 intel_ring_emit(ring, request->fence.seqno);
1615 intel_ring_emit(ring, MI_USER_INTERRUPT);
1616 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1617 return intel_logical_ring_advance(request);
7c17d377 1618}
4da46e1e 1619
7c17d377
CW
1620static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1621{
7e37f889 1622 struct intel_ring *ring = request->ring;
7c17d377 1623 int ret;
53292cdb 1624
987046ad 1625 ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
7c17d377
CW
1626 if (ret)
1627 return ret;
1628
ce81a65c
MW
1629 /* We're using qword write, seqno should be aligned to 8 bytes. */
1630 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1631
7c17d377
CW
1632 /* w/a for post sync ops following a GPGPU operation we
1633 * need a prior CS_STALL, which is emitted by the flush
1634 * following the batch.
1635 */
b5321f30
CW
1636 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
1637 intel_ring_emit(ring,
1638 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1639 PIPE_CONTROL_CS_STALL |
1640 PIPE_CONTROL_QW_WRITE));
1641 intel_ring_emit(ring, intel_hws_seqno_address(request->engine));
1642 intel_ring_emit(ring, 0);
1643 intel_ring_emit(ring, i915_gem_request_get_seqno(request));
ce81a65c 1644 /* We're thrashing one dword of HWS. */
b5321f30
CW
1645 intel_ring_emit(ring, 0);
1646 intel_ring_emit(ring, MI_USER_INTERRUPT);
1647 intel_ring_emit(ring, MI_NOOP);
ddd66c51 1648 return intel_logical_ring_advance(request);
4da46e1e
OM
1649}
1650
8753181e 1651static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1652{
1653 int ret;
1654
e2be4faf 1655 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1656 if (ret)
1657 return ret;
1658
3bbaba0c
PA
1659 ret = intel_rcs_context_init_mocs(req);
1660 /*
1661 * Failing to program the MOCS is non-fatal.The system will not
1662 * run at peak performance. So generate an error and carry on.
1663 */
1664 if (ret)
1665 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1666
e40f9ee6 1667 return i915_gem_render_state_init(req);
e7778be1
TD
1668}
1669
73e4d07f
OM
1670/**
1671 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
14bb2c11 1672 * @engine: Engine Command Streamer.
73e4d07f 1673 */
0bc40be8 1674void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
454afebd 1675{
6402c330 1676 struct drm_i915_private *dev_priv;
9832b9da 1677
117897f4 1678 if (!intel_engine_initialized(engine))
48d82387
OM
1679 return;
1680
27af5eea
TU
1681 /*
1682 * Tasklet cannot be active at this point due intel_mark_active/idle
1683 * so this is just for documentation.
1684 */
1685 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1686 tasklet_kill(&engine->irq_tasklet);
1687
c033666a 1688 dev_priv = engine->i915;
6402c330 1689
0bc40be8 1690 if (engine->buffer) {
0bc40be8 1691 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
b0366a54 1692 }
48d82387 1693
0bc40be8
TU
1694 if (engine->cleanup)
1695 engine->cleanup(engine);
48d82387 1696
96a945aa 1697 intel_engine_cleanup_common(engine);
688e6c72 1698
57e88531
CW
1699 if (engine->status_page.vma) {
1700 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1701 engine->status_page.vma = NULL;
48d82387 1702 }
24f1d3cc 1703 intel_lr_context_unpin(dev_priv->kernel_context, engine);
17ee950d 1704
0bc40be8
TU
1705 engine->idle_lite_restore_wa = 0;
1706 engine->disable_lite_restore_wa = false;
1707 engine->ctx_desc_template = 0;
ca82580c 1708
0bc40be8 1709 lrc_destroy_wa_ctx_obj(engine);
c033666a 1710 engine->i915 = NULL;
454afebd
OM
1711}
1712
ddd66c51
CW
1713void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1714{
1715 struct intel_engine_cs *engine;
1716
1717 for_each_engine(engine, dev_priv)
f4ea6bdd 1718 engine->submit_request = execlists_submit_request;
ddd66c51
CW
1719}
1720
c9cacf93 1721static void
e1382efb 1722logical_ring_default_vfuncs(struct intel_engine_cs *engine)
c9cacf93
TU
1723{
1724 /* Default vfuncs which can be overriden by each engine. */
0bc40be8 1725 engine->init_hw = gen8_init_common_ring;
0bc40be8 1726 engine->emit_flush = gen8_emit_flush;
ddd66c51 1727 engine->emit_request = gen8_emit_request;
f4ea6bdd 1728 engine->submit_request = execlists_submit_request;
ddd66c51 1729
31bb59cc
CW
1730 engine->irq_enable = gen8_logical_ring_enable_irq;
1731 engine->irq_disable = gen8_logical_ring_disable_irq;
0bc40be8 1732 engine->emit_bb_start = gen8_emit_bb_start;
1b7744e7 1733 if (IS_BXT_REVID(engine->i915, 0, BXT_REVID_A1))
c04e0f3b 1734 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
c9cacf93
TU
1735}
1736
d9f3af96 1737static inline void
c2c7f240 1738logical_ring_default_irqs(struct intel_engine_cs *engine)
d9f3af96 1739{
c2c7f240 1740 unsigned shift = engine->irq_shift;
0bc40be8
TU
1741 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1742 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
d9f3af96
TU
1743}
1744
7d774cac 1745static int
bf3783e5 1746lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
04794adb 1747{
57e88531 1748 const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
7d774cac 1749 void *hws;
04794adb
TU
1750
1751 /* The HWSP is part of the default context object in LRC mode. */
bf3783e5 1752 hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
7d774cac
TU
1753 if (IS_ERR(hws))
1754 return PTR_ERR(hws);
57e88531
CW
1755
1756 engine->status_page.page_addr = hws + hws_offset;
bde13ebd 1757 engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
57e88531 1758 engine->status_page.vma = vma;
7d774cac
TU
1759
1760 return 0;
04794adb
TU
1761}
1762
bb45438f
TU
1763static void
1764logical_ring_setup(struct intel_engine_cs *engine)
1765{
1766 struct drm_i915_private *dev_priv = engine->i915;
1767 enum forcewake_domains fw_domains;
1768
019bf277
TU
1769 intel_engine_setup_common(engine);
1770
bb45438f
TU
1771 /* Intentionally left blank. */
1772 engine->buffer = NULL;
1773
1774 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1775 RING_ELSP(engine),
1776 FW_REG_WRITE);
1777
1778 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1779 RING_CONTEXT_STATUS_PTR(engine),
1780 FW_REG_READ | FW_REG_WRITE);
1781
1782 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1783 RING_CONTEXT_STATUS_BUF_BASE(engine),
1784 FW_REG_READ);
1785
1786 engine->fw_domains = fw_domains;
1787
bb45438f
TU
1788 tasklet_init(&engine->irq_tasklet,
1789 intel_lrc_irq_handler, (unsigned long)engine);
1790
1791 logical_ring_init_platform_invariants(engine);
1792 logical_ring_default_vfuncs(engine);
1793 logical_ring_default_irqs(engine);
bb45438f
TU
1794}
1795
a19d6ff2
TU
1796static int
1797logical_ring_init(struct intel_engine_cs *engine)
1798{
1799 struct i915_gem_context *dctx = engine->i915->kernel_context;
1800 int ret;
1801
019bf277 1802 ret = intel_engine_init_common(engine);
a19d6ff2
TU
1803 if (ret)
1804 goto error;
1805
1806 ret = execlists_context_deferred_alloc(dctx, engine);
1807 if (ret)
1808 goto error;
1809
1810 /* As this is the default context, always pin it */
1811 ret = intel_lr_context_pin(dctx, engine);
1812 if (ret) {
1813 DRM_ERROR("Failed to pin context for %s: %d\n",
1814 engine->name, ret);
1815 goto error;
1816 }
1817
1818 /* And setup the hardware status page. */
1819 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1820 if (ret) {
1821 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1822 goto error;
1823 }
1824
1825 return 0;
1826
1827error:
1828 intel_logical_ring_cleanup(engine);
1829 return ret;
1830}
1831
88d2ba2e 1832int logical_render_ring_init(struct intel_engine_cs *engine)
a19d6ff2
TU
1833{
1834 struct drm_i915_private *dev_priv = engine->i915;
1835 int ret;
1836
bb45438f
TU
1837 logical_ring_setup(engine);
1838
a19d6ff2
TU
1839 if (HAS_L3_DPF(dev_priv))
1840 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1841
1842 /* Override some for render ring. */
1843 if (INTEL_GEN(dev_priv) >= 9)
1844 engine->init_hw = gen9_init_render_ring;
1845 else
1846 engine->init_hw = gen8_init_render_ring;
1847 engine->init_context = gen8_init_rcs_context;
a19d6ff2
TU
1848 engine->emit_flush = gen8_emit_flush_render;
1849 engine->emit_request = gen8_emit_request_render;
1850
56c0f1a7 1851 ret = intel_engine_create_scratch(engine, 4096);
a19d6ff2
TU
1852 if (ret)
1853 return ret;
1854
1855 ret = intel_init_workaround_bb(engine);
1856 if (ret) {
1857 /*
1858 * We continue even if we fail to initialize WA batch
1859 * because we only expect rare glitches but nothing
1860 * critical to prevent us from using GPU
1861 */
1862 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1863 ret);
1864 }
1865
1866 ret = logical_ring_init(engine);
1867 if (ret) {
1868 lrc_destroy_wa_ctx_obj(engine);
1869 }
1870
1871 return ret;
1872}
1873
88d2ba2e 1874int logical_xcs_ring_init(struct intel_engine_cs *engine)
bb45438f
TU
1875{
1876 logical_ring_setup(engine);
1877
1878 return logical_ring_init(engine);
454afebd
OM
1879}
1880
0cea6502 1881static u32
c033666a 1882make_rpcs(struct drm_i915_private *dev_priv)
0cea6502
JM
1883{
1884 u32 rpcs = 0;
1885
1886 /*
1887 * No explicit RPCS request is needed to ensure full
1888 * slice/subslice/EU enablement prior to Gen9.
1889 */
c033666a 1890 if (INTEL_GEN(dev_priv) < 9)
0cea6502
JM
1891 return 0;
1892
1893 /*
1894 * Starting in Gen9, render power gating can leave
1895 * slice/subslice/EU in a partially enabled state. We
1896 * must make an explicit request through RPCS for full
1897 * enablement.
1898 */
c033666a 1899 if (INTEL_INFO(dev_priv)->has_slice_pg) {
0cea6502 1900 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
c033666a 1901 rpcs |= INTEL_INFO(dev_priv)->slice_total <<
0cea6502
JM
1902 GEN8_RPCS_S_CNT_SHIFT;
1903 rpcs |= GEN8_RPCS_ENABLE;
1904 }
1905
c033666a 1906 if (INTEL_INFO(dev_priv)->has_subslice_pg) {
0cea6502 1907 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
c033666a 1908 rpcs |= INTEL_INFO(dev_priv)->subslice_per_slice <<
0cea6502
JM
1909 GEN8_RPCS_SS_CNT_SHIFT;
1910 rpcs |= GEN8_RPCS_ENABLE;
1911 }
1912
c033666a
CW
1913 if (INTEL_INFO(dev_priv)->has_eu_pg) {
1914 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502 1915 GEN8_RPCS_EU_MIN_SHIFT;
c033666a 1916 rpcs |= INTEL_INFO(dev_priv)->eu_per_subslice <<
0cea6502
JM
1917 GEN8_RPCS_EU_MAX_SHIFT;
1918 rpcs |= GEN8_RPCS_ENABLE;
1919 }
1920
1921 return rpcs;
1922}
1923
0bc40be8 1924static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
71562919
MT
1925{
1926 u32 indirect_ctx_offset;
1927
c033666a 1928 switch (INTEL_GEN(engine->i915)) {
71562919 1929 default:
c033666a 1930 MISSING_CASE(INTEL_GEN(engine->i915));
71562919
MT
1931 /* fall through */
1932 case 9:
1933 indirect_ctx_offset =
1934 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1935 break;
1936 case 8:
1937 indirect_ctx_offset =
1938 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1939 break;
1940 }
1941
1942 return indirect_ctx_offset;
1943}
1944
8670d6f9 1945static int
e2efd130 1946populate_lr_context(struct i915_gem_context *ctx,
7d774cac 1947 struct drm_i915_gem_object *ctx_obj,
0bc40be8 1948 struct intel_engine_cs *engine,
7e37f889 1949 struct intel_ring *ring)
8670d6f9 1950{
c033666a 1951 struct drm_i915_private *dev_priv = ctx->i915;
ae6c4806 1952 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
7d774cac
TU
1953 void *vaddr;
1954 u32 *reg_state;
8670d6f9
OM
1955 int ret;
1956
2d965536
TD
1957 if (!ppgtt)
1958 ppgtt = dev_priv->mm.aliasing_ppgtt;
1959
8670d6f9
OM
1960 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1961 if (ret) {
1962 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1963 return ret;
1964 }
1965
d31d7cb1 1966 vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
7d774cac
TU
1967 if (IS_ERR(vaddr)) {
1968 ret = PTR_ERR(vaddr);
1969 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
8670d6f9
OM
1970 return ret;
1971 }
7d774cac 1972 ctx_obj->dirty = true;
8670d6f9
OM
1973
1974 /* The second page of the context object contains some fields which must
1975 * be set up prior to the first execution. */
7d774cac 1976 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
8670d6f9
OM
1977
1978 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1979 * commands followed by (reg, value) pairs. The values we are setting here are
1980 * only for the first context restore: on a subsequent save, the GPU will
1981 * recreate this batchbuffer with new values (including all the missing
1982 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
0d925ea0 1983 reg_state[CTX_LRI_HEADER_0] =
0bc40be8
TU
1984 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1985 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1986 RING_CONTEXT_CONTROL(engine),
0d925ea0
VS
1987 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1988 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
c033666a 1989 (HAS_RESOURCE_STREAMER(dev_priv) ?
99cf8ea1 1990 CTX_CTRL_RS_CTX_ENABLE : 0)));
0bc40be8
TU
1991 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1992 0);
1993 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1994 0);
7ba717cf
TD
1995 /* Ring buffer start address is not known until the buffer is pinned.
1996 * It is written to the context image in execlists_update_context()
1997 */
0bc40be8
TU
1998 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1999 RING_START(engine->mmio_base), 0);
2000 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2001 RING_CTL(engine->mmio_base),
7e37f889 2002 ((ring->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
0bc40be8
TU
2003 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2004 RING_BBADDR_UDW(engine->mmio_base), 0);
2005 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2006 RING_BBADDR(engine->mmio_base), 0);
2007 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2008 RING_BBSTATE(engine->mmio_base),
0d925ea0 2009 RING_BB_PPGTT);
0bc40be8
TU
2010 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2011 RING_SBBADDR_UDW(engine->mmio_base), 0);
2012 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2013 RING_SBBADDR(engine->mmio_base), 0);
2014 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2015 RING_SBBSTATE(engine->mmio_base), 0);
2016 if (engine->id == RCS) {
2017 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2018 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2019 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2020 RING_INDIRECT_CTX(engine->mmio_base), 0);
2021 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2022 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
48bb74e4 2023 if (engine->wa_ctx.vma) {
0bc40be8 2024 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
bde13ebd 2025 u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
17ee950d
AS
2026
2027 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2028 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2029 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2030
2031 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
0bc40be8 2032 intel_lr_indirect_ctx_offset(engine) << 6;
17ee950d
AS
2033
2034 reg_state[CTX_BB_PER_CTX_PTR+1] =
2035 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2036 0x01;
2037 }
8670d6f9 2038 }
0d925ea0 2039 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
0bc40be8
TU
2040 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2041 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
0d925ea0 2042 /* PDP values well be assigned later if needed */
0bc40be8
TU
2043 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2044 0);
2045 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2046 0);
2047 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2048 0);
2049 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2050 0);
2051 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2052 0);
2053 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2054 0);
2055 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2056 0);
2057 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2058 0);
d7b2633d 2059
2dba3239
MT
2060 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2061 /* 64b PPGTT (48bit canonical)
2062 * PDP0_DESCRIPTOR contains the base address to PML4 and
2063 * other PDP Descriptors are ignored.
2064 */
2065 ASSIGN_CTX_PML4(ppgtt, reg_state);
2066 } else {
2067 /* 32b PPGTT
2068 * PDP*_DESCRIPTOR contains the base address of space supported.
2069 * With dynamic page allocation, PDPs may not be allocated at
2070 * this point. Point the unallocated PDPs to the scratch page
2071 */
c6a2ac71 2072 execlists_update_context_pdps(ppgtt, reg_state);
2dba3239
MT
2073 }
2074
0bc40be8 2075 if (engine->id == RCS) {
8670d6f9 2076 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0d925ea0 2077 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
c033666a 2078 make_rpcs(dev_priv));
8670d6f9
OM
2079 }
2080
7d774cac 2081 i915_gem_object_unpin_map(ctx_obj);
8670d6f9
OM
2082
2083 return 0;
2084}
2085
c5d46ee2
DG
2086/**
2087 * intel_lr_context_size() - return the size of the context for an engine
14bb2c11 2088 * @engine: which engine to find the context size for
c5d46ee2
DG
2089 *
2090 * Each engine may require a different amount of space for a context image,
2091 * so when allocating (or copying) an image, this function can be used to
2092 * find the right size for the specific engine.
2093 *
2094 * Return: size (in bytes) of an engine-specific context image
2095 *
2096 * Note: this size includes the HWSP, which is part of the context image
2097 * in LRC mode, but does not include the "shared data page" used with
2098 * GuC submission. The caller should account for this if using the GuC.
2099 */
0bc40be8 2100uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
8c857917
OM
2101{
2102 int ret = 0;
2103
c033666a 2104 WARN_ON(INTEL_GEN(engine->i915) < 8);
8c857917 2105
0bc40be8 2106 switch (engine->id) {
8c857917 2107 case RCS:
c033666a 2108 if (INTEL_GEN(engine->i915) >= 9)
468c6816
MN
2109 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2110 else
2111 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2112 break;
2113 case VCS:
2114 case BCS:
2115 case VECS:
2116 case VCS2:
2117 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2118 break;
2119 }
2120
2121 return ret;
ede7d42b
OM
2122}
2123
e2efd130 2124static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
978f1e09 2125 struct intel_engine_cs *engine)
ede7d42b 2126{
8c857917 2127 struct drm_i915_gem_object *ctx_obj;
9021ad03 2128 struct intel_context *ce = &ctx->engine[engine->id];
bf3783e5 2129 struct i915_vma *vma;
8c857917 2130 uint32_t context_size;
7e37f889 2131 struct intel_ring *ring;
8c857917
OM
2132 int ret;
2133
9021ad03 2134 WARN_ON(ce->state);
ede7d42b 2135
0bc40be8 2136 context_size = round_up(intel_lr_context_size(engine), 4096);
8c857917 2137
d1675198
AD
2138 /* One extra page as the sharing data between driver and GuC */
2139 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2140
91c8a326 2141 ctx_obj = i915_gem_object_create(&ctx->i915->drm, context_size);
fe3db79b 2142 if (IS_ERR(ctx_obj)) {
3126a660 2143 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
fe3db79b 2144 return PTR_ERR(ctx_obj);
8c857917
OM
2145 }
2146
bf3783e5
CW
2147 vma = i915_vma_create(ctx_obj, &ctx->i915->ggtt.base, NULL);
2148 if (IS_ERR(vma)) {
2149 ret = PTR_ERR(vma);
2150 goto error_deref_obj;
2151 }
2152
7e37f889 2153 ring = intel_engine_create_ring(engine, ctx->ring_size);
dca33ecc
CW
2154 if (IS_ERR(ring)) {
2155 ret = PTR_ERR(ring);
e84fe803 2156 goto error_deref_obj;
8670d6f9
OM
2157 }
2158
dca33ecc 2159 ret = populate_lr_context(ctx, ctx_obj, engine, ring);
8670d6f9
OM
2160 if (ret) {
2161 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
dca33ecc 2162 goto error_ring_free;
84c2377f
OM
2163 }
2164
dca33ecc 2165 ce->ring = ring;
bf3783e5 2166 ce->state = vma;
9021ad03 2167 ce->initialised = engine->init_context == NULL;
ede7d42b
OM
2168
2169 return 0;
8670d6f9 2170
dca33ecc 2171error_ring_free:
7e37f889 2172 intel_ring_free(ring);
e84fe803 2173error_deref_obj:
f8c417cd 2174 i915_gem_object_put(ctx_obj);
8670d6f9 2175 return ret;
ede7d42b 2176}
3e5b6f05 2177
7d774cac 2178void intel_lr_context_reset(struct drm_i915_private *dev_priv,
e2efd130 2179 struct i915_gem_context *ctx)
3e5b6f05 2180{
e2f80391 2181 struct intel_engine_cs *engine;
3e5b6f05 2182
b4ac5afc 2183 for_each_engine(engine, dev_priv) {
9021ad03 2184 struct intel_context *ce = &ctx->engine[engine->id];
7d774cac 2185 void *vaddr;
3e5b6f05 2186 uint32_t *reg_state;
3e5b6f05 2187
bf3783e5 2188 if (!ce->state)
3e5b6f05
TD
2189 continue;
2190
bf3783e5 2191 vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
7d774cac 2192 if (WARN_ON(IS_ERR(vaddr)))
3e5b6f05 2193 continue;
7d774cac
TU
2194
2195 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
3e5b6f05
TD
2196
2197 reg_state[CTX_RING_HEAD+1] = 0;
2198 reg_state[CTX_RING_TAIL+1] = 0;
2199
bf3783e5
CW
2200 ce->state->obj->dirty = true;
2201 i915_gem_object_unpin_map(ce->state->obj);
3e5b6f05 2202
dca33ecc
CW
2203 ce->ring->head = 0;
2204 ce->ring->tail = 0;
3e5b6f05
TD
2205 }
2206}
This page took 0.393568 seconds and 5 git commands to generate.