drm/i915: Enable querying offset of UV plane with intel_plane_obj_offset
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
CommitLineData
b20385f1
OM
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
73e4d07f
OM
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
b20385f1
OM
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
73e4d07f
OM
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
b20385f1
OM
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
73e4d07f
OM
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
b20385f1
OM
133 */
134
135#include <drm/drmP.h>
136#include <drm/i915_drm.h>
137#include "i915_drv.h"
3bbaba0c 138#include "intel_mocs.h"
127f1003 139
468c6816 140#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
8c857917
OM
141#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
143
e981e7b1
TD
144#define RING_EXECLIST_QFULL (1 << 0x2)
145#define RING_EXECLIST1_VALID (1 << 0x3)
146#define RING_EXECLIST0_VALID (1 << 0x4)
147#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
148#define RING_EXECLIST1_ACTIVE (1 << 0x11)
149#define RING_EXECLIST0_ACTIVE (1 << 0x12)
150
151#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
152#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
153#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
154#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
155#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
156#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
8670d6f9
OM
157
158#define CTX_LRI_HEADER_0 0x01
159#define CTX_CONTEXT_CONTROL 0x02
160#define CTX_RING_HEAD 0x04
161#define CTX_RING_TAIL 0x06
162#define CTX_RING_BUFFER_START 0x08
163#define CTX_RING_BUFFER_CONTROL 0x0a
164#define CTX_BB_HEAD_U 0x0c
165#define CTX_BB_HEAD_L 0x0e
166#define CTX_BB_STATE 0x10
167#define CTX_SECOND_BB_HEAD_U 0x12
168#define CTX_SECOND_BB_HEAD_L 0x14
169#define CTX_SECOND_BB_STATE 0x16
170#define CTX_BB_PER_CTX_PTR 0x18
171#define CTX_RCS_INDIRECT_CTX 0x1a
172#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
173#define CTX_LRI_HEADER_1 0x21
174#define CTX_CTX_TIMESTAMP 0x22
175#define CTX_PDP3_UDW 0x24
176#define CTX_PDP3_LDW 0x26
177#define CTX_PDP2_UDW 0x28
178#define CTX_PDP2_LDW 0x2a
179#define CTX_PDP1_UDW 0x2c
180#define CTX_PDP1_LDW 0x2e
181#define CTX_PDP0_UDW 0x30
182#define CTX_PDP0_LDW 0x32
183#define CTX_LRI_HEADER_2 0x41
184#define CTX_R_PWR_CLK_STATE 0x42
185#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
186
84b790f8
BW
187#define GEN8_CTX_VALID (1<<0)
188#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
189#define GEN8_CTX_FORCE_RESTORE (1<<2)
190#define GEN8_CTX_L3LLC_COHERENT (1<<5)
191#define GEN8_CTX_PRIVILEGE (1<<8)
e5815a2e
MT
192
193#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
d852c7bf 194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
e5815a2e
MT
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
197}
198
2dba3239
MT
199#define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
202}
203
84b790f8
BW
204enum {
205 ADVANCED_CONTEXT = 0,
2dba3239 206 LEGACY_32B_CONTEXT,
84b790f8
BW
207 ADVANCED_AD_CONTEXT,
208 LEGACY_64B_CONTEXT
209};
2dba3239
MT
210#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
211#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
212 LEGACY_64B_CONTEXT :\
213 LEGACY_32B_CONTEXT)
84b790f8
BW
214enum {
215 FAULT_AND_HANG = 0,
216 FAULT_AND_HALT, /* Debug only */
217 FAULT_AND_STREAM,
218 FAULT_AND_CONTINUE /* Unsupported */
219};
220#define GEN8_CTX_ID_SHIFT 32
17ee950d 221#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
84b790f8 222
8ba319da 223static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
e84fe803
NH
224static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
225 struct drm_i915_gem_object *default_ctx_obj);
226
7ba717cf 227
73e4d07f
OM
228/**
229 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
230 * @dev: DRM device.
231 * @enable_execlists: value of i915.enable_execlists module parameter.
232 *
233 * Only certain platforms support Execlists (the prerequisites being
27401d12 234 * support for Logical Ring Contexts and Aliasing PPGTT or better).
73e4d07f
OM
235 *
236 * Return: 1 if Execlists is supported and has to be enabled.
237 */
127f1003
OM
238int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
239{
bd84b1e9
DV
240 WARN_ON(i915.enable_ppgtt == -1);
241
a0bd6c31
ZL
242 /* On platforms with execlist available, vGPU will only
243 * support execlist mode, no ring buffer mode.
244 */
245 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
246 return 1;
247
70ee45e1
DL
248 if (INTEL_INFO(dev)->gen >= 9)
249 return 1;
250
127f1003
OM
251 if (enable_execlists == 0)
252 return 0;
253
14bf993e
OM
254 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
255 i915.use_mmio_flip >= 0)
127f1003
OM
256 return 1;
257
258 return 0;
259}
ede7d42b 260
73e4d07f
OM
261/**
262 * intel_execlists_ctx_id() - get the Execlists Context ID
263 * @ctx_obj: Logical Ring Context backing object.
264 *
265 * Do not confuse with ctx->id! Unfortunately we have a name overload
266 * here: the old context ID we pass to userspace as a handler so that
267 * they can refer to a context, and the new context ID we pass to the
268 * ELSP so that the GPU can inform us of the context status via
269 * interrupts.
270 *
271 * Return: 20-bits globally unique context ID.
272 */
84b790f8
BW
273u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
274{
d1675198
AD
275 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
276 LRC_PPHWSP_PN * PAGE_SIZE;
84b790f8
BW
277
278 /* LRCA is required to be 4K aligned so the more significant 20 bits
279 * are globally unique */
280 return lrca >> 12;
281}
282
5af05fef
MT
283static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
284{
285 struct drm_device *dev = ring->dev;
286
287 return ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
288 (IS_BROXTON(dev) && INTEL_REVID(dev) == BXT_REVID_A0)) &&
289 (ring->id == VCS || ring->id == VCS2);
290}
291
919f1f55
DG
292uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
293 struct intel_engine_cs *ring)
84b790f8 294{
919f1f55 295 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
84b790f8 296 uint64_t desc;
d1675198
AD
297 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
298 LRC_PPHWSP_PN * PAGE_SIZE;
acdd884a
MT
299
300 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
84b790f8
BW
301
302 desc = GEN8_CTX_VALID;
2dba3239 303 desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
51847fb9
AS
304 if (IS_GEN8(ctx_obj->base.dev))
305 desc |= GEN8_CTX_L3LLC_COHERENT;
84b790f8
BW
306 desc |= GEN8_CTX_PRIVILEGE;
307 desc |= lrca;
308 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
309
310 /* TODO: WaDisableLiteRestore when we start using semaphore
311 * signalling between Command Streamers */
312 /* desc |= GEN8_CTX_FORCE_RESTORE; */
313
203a571b 314 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
ec72d588 315 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
5af05fef 316 if (disable_lite_restore_wa(ring))
203a571b
NH
317 desc |= GEN8_CTX_FORCE_RESTORE;
318
84b790f8
BW
319 return desc;
320}
321
cc3c4253
MK
322static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
323 struct drm_i915_gem_request *rq1)
84b790f8 324{
cc3c4253
MK
325
326 struct intel_engine_cs *ring = rq0->ring;
6e7cc470
TU
327 struct drm_device *dev = ring->dev;
328 struct drm_i915_private *dev_priv = dev->dev_private;
1cff8cc3 329 uint64_t desc[2];
84b790f8 330
1cff8cc3 331 if (rq1) {
919f1f55 332 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
1cff8cc3
MK
333 rq1->elsp_submitted++;
334 } else {
335 desc[1] = 0;
336 }
84b790f8 337
919f1f55 338 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
1cff8cc3 339 rq0->elsp_submitted++;
84b790f8 340
1cff8cc3 341 /* You must always write both descriptors in the order below. */
a6111f7b
CW
342 spin_lock(&dev_priv->uncore.lock);
343 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
1cff8cc3
MK
344 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
345 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
6daccb0b 346
1cff8cc3 347 I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
84b790f8 348 /* The context is automatically loaded after the following */
1cff8cc3 349 I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
84b790f8 350
1cff8cc3 351 /* ELSP is a wo register, use another nearby reg for posting */
83843d84 352 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
a6111f7b
CW
353 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
354 spin_unlock(&dev_priv->uncore.lock);
84b790f8
BW
355}
356
05d9824b 357static int execlists_update_context(struct drm_i915_gem_request *rq)
ae1250b9 358{
05d9824b
MK
359 struct intel_engine_cs *ring = rq->ring;
360 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
361 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
362 struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
ae1250b9
OM
363 struct page *page;
364 uint32_t *reg_state;
365
05d9824b
MK
366 BUG_ON(!ctx_obj);
367 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
368 WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
369
d1675198 370 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
ae1250b9
OM
371 reg_state = kmap_atomic(page);
372
05d9824b
MK
373 reg_state[CTX_RING_TAIL+1] = rq->tail;
374 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
ae1250b9 375
2dba3239
MT
376 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
377 /* True 32b PPGTT with dynamic page allocation: update PDP
378 * registers and point the unallocated PDPs to scratch page.
379 * PML4 is allocated during ppgtt init, so this is not needed
380 * in 48-bit mode.
381 */
d7b2633d
MT
382 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
383 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
384 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
385 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
386 }
387
ae1250b9
OM
388 kunmap_atomic(reg_state);
389
390 return 0;
391}
392
d8cb8875
MK
393static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
394 struct drm_i915_gem_request *rq1)
84b790f8 395{
05d9824b 396 execlists_update_context(rq0);
d8cb8875 397
cc3c4253 398 if (rq1)
05d9824b 399 execlists_update_context(rq1);
84b790f8 400
cc3c4253 401 execlists_elsp_write(rq0, rq1);
84b790f8
BW
402}
403
acdd884a
MT
404static void execlists_context_unqueue(struct intel_engine_cs *ring)
405{
6d3d8274
NH
406 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
407 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
e981e7b1
TD
408
409 assert_spin_locked(&ring->execlist_lock);
acdd884a 410
779949f4
PA
411 /*
412 * If irqs are not active generate a warning as batches that finish
413 * without the irqs may get lost and a GPU Hang may occur.
414 */
415 WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
416
acdd884a
MT
417 if (list_empty(&ring->execlist_queue))
418 return;
419
420 /* Try to read in pairs */
421 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
422 execlist_link) {
423 if (!req0) {
424 req0 = cursor;
6d3d8274 425 } else if (req0->ctx == cursor->ctx) {
acdd884a
MT
426 /* Same ctx: ignore first request, as second request
427 * will update tail past first request's workload */
e1fee72c 428 cursor->elsp_submitted = req0->elsp_submitted;
acdd884a 429 list_del(&req0->execlist_link);
c86ee3a9
TD
430 list_add_tail(&req0->execlist_link,
431 &ring->execlist_retired_req_list);
acdd884a
MT
432 req0 = cursor;
433 } else {
434 req1 = cursor;
435 break;
436 }
437 }
438
53292cdb
MT
439 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
440 /*
441 * WaIdleLiteRestore: make sure we never cause a lite
442 * restore with HEAD==TAIL
443 */
d63f820f 444 if (req0->elsp_submitted) {
53292cdb
MT
445 /*
446 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
447 * as we resubmit the request. See gen8_emit_request()
448 * for where we prepare the padding after the end of the
449 * request.
450 */
451 struct intel_ringbuffer *ringbuf;
452
453 ringbuf = req0->ctx->engine[ring->id].ringbuf;
454 req0->tail += 8;
455 req0->tail &= ringbuf->size - 1;
456 }
457 }
458
e1fee72c
OM
459 WARN_ON(req1 && req1->elsp_submitted);
460
d8cb8875 461 execlists_submit_requests(req0, req1);
acdd884a
MT
462}
463
e981e7b1
TD
464static bool execlists_check_remove_request(struct intel_engine_cs *ring,
465 u32 request_id)
466{
6d3d8274 467 struct drm_i915_gem_request *head_req;
e981e7b1
TD
468
469 assert_spin_locked(&ring->execlist_lock);
470
471 head_req = list_first_entry_or_null(&ring->execlist_queue,
6d3d8274 472 struct drm_i915_gem_request,
e981e7b1
TD
473 execlist_link);
474
475 if (head_req != NULL) {
476 struct drm_i915_gem_object *ctx_obj =
6d3d8274 477 head_req->ctx->engine[ring->id].state;
e981e7b1 478 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
e1fee72c
OM
479 WARN(head_req->elsp_submitted == 0,
480 "Never submitted head request\n");
481
482 if (--head_req->elsp_submitted <= 0) {
483 list_del(&head_req->execlist_link);
c86ee3a9
TD
484 list_add_tail(&head_req->execlist_link,
485 &ring->execlist_retired_req_list);
e1fee72c
OM
486 return true;
487 }
e981e7b1
TD
488 }
489 }
490
491 return false;
492}
493
73e4d07f 494/**
3f7531c3 495 * intel_lrc_irq_handler() - handle Context Switch interrupts
73e4d07f
OM
496 * @ring: Engine Command Streamer to handle.
497 *
498 * Check the unread Context Status Buffers and manage the submission of new
499 * contexts to the ELSP accordingly.
500 */
3f7531c3 501void intel_lrc_irq_handler(struct intel_engine_cs *ring)
e981e7b1
TD
502{
503 struct drm_i915_private *dev_priv = ring->dev->dev_private;
504 u32 status_pointer;
505 u8 read_pointer;
506 u8 write_pointer;
5af05fef 507 u32 status = 0;
e981e7b1
TD
508 u32 status_id;
509 u32 submit_contexts = 0;
510
511 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
512
513 read_pointer = ring->next_context_status_buffer;
514 write_pointer = status_pointer & 0x07;
515 if (read_pointer > write_pointer)
516 write_pointer += 6;
517
518 spin_lock(&ring->execlist_lock);
519
520 while (read_pointer < write_pointer) {
521 read_pointer++;
83843d84
VS
522 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % 6));
523 status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % 6));
e981e7b1 524
031a8936
MK
525 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
526 continue;
527
e1fee72c
OM
528 if (status & GEN8_CTX_STATUS_PREEMPTED) {
529 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
530 if (execlists_check_remove_request(ring, status_id))
531 WARN(1, "Lite Restored request removed from queue\n");
532 } else
533 WARN(1, "Preemption without Lite Restore\n");
534 }
535
536 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
537 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
e981e7b1
TD
538 if (execlists_check_remove_request(ring, status_id))
539 submit_contexts++;
540 }
541 }
542
5af05fef
MT
543 if (disable_lite_restore_wa(ring)) {
544 /* Prevent a ctx to preempt itself */
545 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
546 (submit_contexts != 0))
547 execlists_context_unqueue(ring);
548 } else if (submit_contexts != 0) {
e981e7b1 549 execlists_context_unqueue(ring);
5af05fef 550 }
e981e7b1
TD
551
552 spin_unlock(&ring->execlist_lock);
553
554 WARN(submit_contexts > 2, "More than two context complete events?\n");
555 ring->next_context_status_buffer = write_pointer % 6;
556
557 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
cc53699b 558 _MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
e981e7b1
TD
559}
560
ae70797d 561static int execlists_context_queue(struct drm_i915_gem_request *request)
acdd884a 562{
ae70797d 563 struct intel_engine_cs *ring = request->ring;
6d3d8274 564 struct drm_i915_gem_request *cursor;
f1ad5a1f 565 int num_elements = 0;
acdd884a 566
ae70797d 567 if (request->ctx != ring->default_context)
8ba319da 568 intel_lr_context_pin(request);
9bb1af44
JH
569
570 i915_gem_request_reference(request);
571
b5eba372 572 spin_lock_irq(&ring->execlist_lock);
acdd884a 573
f1ad5a1f
OM
574 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
575 if (++num_elements > 2)
576 break;
577
578 if (num_elements > 2) {
6d3d8274 579 struct drm_i915_gem_request *tail_req;
f1ad5a1f
OM
580
581 tail_req = list_last_entry(&ring->execlist_queue,
6d3d8274 582 struct drm_i915_gem_request,
f1ad5a1f
OM
583 execlist_link);
584
ae70797d 585 if (request->ctx == tail_req->ctx) {
f1ad5a1f 586 WARN(tail_req->elsp_submitted != 0,
7ba717cf 587 "More than 2 already-submitted reqs queued\n");
f1ad5a1f 588 list_del(&tail_req->execlist_link);
c86ee3a9
TD
589 list_add_tail(&tail_req->execlist_link,
590 &ring->execlist_retired_req_list);
f1ad5a1f
OM
591 }
592 }
593
6d3d8274 594 list_add_tail(&request->execlist_link, &ring->execlist_queue);
f1ad5a1f 595 if (num_elements == 0)
acdd884a
MT
596 execlists_context_unqueue(ring);
597
b5eba372 598 spin_unlock_irq(&ring->execlist_lock);
acdd884a
MT
599
600 return 0;
601}
602
2f20055d 603static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
ba8b7ccb 604{
2f20055d 605 struct intel_engine_cs *ring = req->ring;
ba8b7ccb
OM
606 uint32_t flush_domains;
607 int ret;
608
609 flush_domains = 0;
610 if (ring->gpu_caches_dirty)
611 flush_domains = I915_GEM_GPU_DOMAINS;
612
7deb4d39 613 ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
ba8b7ccb
OM
614 if (ret)
615 return ret;
616
617 ring->gpu_caches_dirty = false;
618 return 0;
619}
620
535fbe82 621static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
ba8b7ccb
OM
622 struct list_head *vmas)
623{
535fbe82 624 const unsigned other_rings = ~intel_ring_flag(req->ring);
ba8b7ccb
OM
625 struct i915_vma *vma;
626 uint32_t flush_domains = 0;
627 bool flush_chipset = false;
628 int ret;
629
630 list_for_each_entry(vma, vmas, exec_list) {
631 struct drm_i915_gem_object *obj = vma->obj;
632
03ade511 633 if (obj->active & other_rings) {
91af127f 634 ret = i915_gem_object_sync(obj, req->ring, &req);
03ade511
CW
635 if (ret)
636 return ret;
637 }
ba8b7ccb
OM
638
639 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
640 flush_chipset |= i915_gem_clflush_object(obj, false);
641
642 flush_domains |= obj->base.write_domain;
643 }
644
645 if (flush_domains & I915_GEM_DOMAIN_GTT)
646 wmb();
647
648 /* Unconditionally invalidate gpu caches and ensure that we do flush
649 * any residual writes from the previous batch.
650 */
2f20055d 651 return logical_ring_invalidate_all_caches(req);
ba8b7ccb
OM
652}
653
40e895ce 654int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
bc0dce3f 655{
bc0dce3f
JH
656 int ret;
657
f3cc01f0
MK
658 request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
659
40e895ce 660 if (request->ctx != request->ring->default_context) {
8ba319da 661 ret = intel_lr_context_pin(request);
6689cb2b 662 if (ret)
bc0dce3f 663 return ret;
bc0dce3f
JH
664 }
665
bc0dce3f
JH
666 return 0;
667}
668
ae70797d 669static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
595e1eeb 670 int bytes)
bc0dce3f 671{
ae70797d
JH
672 struct intel_ringbuffer *ringbuf = req->ringbuf;
673 struct intel_engine_cs *ring = req->ring;
674 struct drm_i915_gem_request *target;
b4716185
CW
675 unsigned space;
676 int ret;
bc0dce3f
JH
677
678 if (intel_ring_space(ringbuf) >= bytes)
679 return 0;
680
79bbcc29
JH
681 /* The whole point of reserving space is to not wait! */
682 WARN_ON(ringbuf->reserved_in_use);
683
ae70797d 684 list_for_each_entry(target, &ring->request_list, list) {
bc0dce3f
JH
685 /*
686 * The request queue is per-engine, so can contain requests
687 * from multiple ringbuffers. Here, we must ignore any that
688 * aren't from the ringbuffer we're considering.
689 */
ae70797d 690 if (target->ringbuf != ringbuf)
bc0dce3f
JH
691 continue;
692
693 /* Would completion of this request free enough space? */
ae70797d 694 space = __intel_ring_space(target->postfix, ringbuf->tail,
b4716185
CW
695 ringbuf->size);
696 if (space >= bytes)
bc0dce3f 697 break;
bc0dce3f
JH
698 }
699
ae70797d 700 if (WARN_ON(&target->list == &ring->request_list))
bc0dce3f
JH
701 return -ENOSPC;
702
ae70797d 703 ret = i915_wait_request(target);
bc0dce3f
JH
704 if (ret)
705 return ret;
706
b4716185
CW
707 ringbuf->space = space;
708 return 0;
bc0dce3f
JH
709}
710
711/*
712 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
ae70797d 713 * @request: Request to advance the logical ringbuffer of.
bc0dce3f
JH
714 *
715 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
716 * really happens during submission is that the context and current tail will be placed
717 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
718 * point, the tail *inside* the context is updated and the ELSP written to.
719 */
720static void
ae70797d 721intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
bc0dce3f 722{
ae70797d 723 struct intel_engine_cs *ring = request->ring;
d1675198 724 struct drm_i915_private *dev_priv = request->i915;
bc0dce3f 725
ae70797d 726 intel_logical_ring_advance(request->ringbuf);
bc0dce3f 727
d1675198
AD
728 request->tail = request->ringbuf->tail;
729
bc0dce3f
JH
730 if (intel_ring_stopped(ring))
731 return;
732
d1675198
AD
733 if (dev_priv->guc.execbuf_client)
734 i915_guc_submit(dev_priv->guc.execbuf_client, request);
735 else
736 execlists_context_queue(request);
bc0dce3f
JH
737}
738
79bbcc29 739static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
bc0dce3f
JH
740{
741 uint32_t __iomem *virt;
742 int rem = ringbuf->size - ringbuf->tail;
743
bc0dce3f
JH
744 virt = ringbuf->virtual_start + ringbuf->tail;
745 rem /= 4;
746 while (rem--)
747 iowrite32(MI_NOOP, virt++);
748
749 ringbuf->tail = 0;
750 intel_ring_update_space(ringbuf);
bc0dce3f
JH
751}
752
ae70797d 753static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
bc0dce3f 754{
ae70797d 755 struct intel_ringbuffer *ringbuf = req->ringbuf;
79bbcc29
JH
756 int remain_usable = ringbuf->effective_size - ringbuf->tail;
757 int remain_actual = ringbuf->size - ringbuf->tail;
758 int ret, total_bytes, wait_bytes = 0;
759 bool need_wrap = false;
29b1b415 760
79bbcc29
JH
761 if (ringbuf->reserved_in_use)
762 total_bytes = bytes;
763 else
764 total_bytes = bytes + ringbuf->reserved_size;
29b1b415 765
79bbcc29
JH
766 if (unlikely(bytes > remain_usable)) {
767 /*
768 * Not enough space for the basic request. So need to flush
769 * out the remainder and then wait for base + reserved.
770 */
771 wait_bytes = remain_actual + total_bytes;
772 need_wrap = true;
773 } else {
774 if (unlikely(total_bytes > remain_usable)) {
775 /*
776 * The base request will fit but the reserved space
777 * falls off the end. So only need to to wait for the
778 * reserved size after flushing out the remainder.
779 */
780 wait_bytes = remain_actual + ringbuf->reserved_size;
781 need_wrap = true;
782 } else if (total_bytes > ringbuf->space) {
783 /* No wrapping required, just waiting. */
784 wait_bytes = total_bytes;
29b1b415 785 }
bc0dce3f
JH
786 }
787
79bbcc29
JH
788 if (wait_bytes) {
789 ret = logical_ring_wait_for_space(req, wait_bytes);
bc0dce3f
JH
790 if (unlikely(ret))
791 return ret;
79bbcc29
JH
792
793 if (need_wrap)
794 __wrap_ring_buffer(ringbuf);
bc0dce3f
JH
795 }
796
797 return 0;
798}
799
800/**
801 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
802 *
374887ba 803 * @req: The request to start some new work for
bc0dce3f
JH
804 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
805 *
806 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
807 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
808 * and also preallocates a request (every workload submission is still mediated through
809 * requests, same as it did with legacy ringbuffer submission).
810 *
811 * Return: non-zero if the ringbuffer is not ready to be written to.
812 */
3bbaba0c 813int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
bc0dce3f 814{
4d616a29 815 struct drm_i915_private *dev_priv;
bc0dce3f
JH
816 int ret;
817
4d616a29
JH
818 WARN_ON(req == NULL);
819 dev_priv = req->ring->dev->dev_private;
820
bc0dce3f
JH
821 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
822 dev_priv->mm.interruptible);
823 if (ret)
824 return ret;
825
ae70797d 826 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
bc0dce3f
JH
827 if (ret)
828 return ret;
829
4d616a29 830 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
bc0dce3f
JH
831 return 0;
832}
833
ccd98fe4
JH
834int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
835{
836 /*
837 * The first call merely notes the reserve request and is common for
838 * all back ends. The subsequent localised _begin() call actually
839 * ensures that the reservation is available. Without the begin, if
840 * the request creator immediately submitted the request without
841 * adding any commands to it then there might not actually be
842 * sufficient room for the submission commands.
843 */
844 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
845
846 return intel_logical_ring_begin(request, 0);
847}
848
73e4d07f
OM
849/**
850 * execlists_submission() - submit a batchbuffer for execution, Execlists style
851 * @dev: DRM device.
852 * @file: DRM file.
853 * @ring: Engine Command Streamer to submit to.
854 * @ctx: Context to employ for this submission.
855 * @args: execbuffer call arguments.
856 * @vmas: list of vmas.
857 * @batch_obj: the batchbuffer to submit.
858 * @exec_start: batchbuffer start virtual address pointer.
8e004efc 859 * @dispatch_flags: translated execbuffer call flags.
73e4d07f
OM
860 *
861 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
862 * away the submission details of the execbuffer ioctl call.
863 *
864 * Return: non-zero if the submission fails.
865 */
5f19e2bf 866int intel_execlists_submission(struct i915_execbuffer_params *params,
454afebd 867 struct drm_i915_gem_execbuffer2 *args,
5f19e2bf 868 struct list_head *vmas)
454afebd 869{
5f19e2bf
JH
870 struct drm_device *dev = params->dev;
871 struct intel_engine_cs *ring = params->ring;
ba8b7ccb 872 struct drm_i915_private *dev_priv = dev->dev_private;
5f19e2bf
JH
873 struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
874 u64 exec_start;
ba8b7ccb
OM
875 int instp_mode;
876 u32 instp_mask;
877 int ret;
878
879 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
880 instp_mask = I915_EXEC_CONSTANTS_MASK;
881 switch (instp_mode) {
882 case I915_EXEC_CONSTANTS_REL_GENERAL:
883 case I915_EXEC_CONSTANTS_ABSOLUTE:
884 case I915_EXEC_CONSTANTS_REL_SURFACE:
885 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
886 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
887 return -EINVAL;
888 }
889
890 if (instp_mode != dev_priv->relative_constants_mode) {
891 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
892 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
893 return -EINVAL;
894 }
895
896 /* The HW changed the meaning on this bit on gen6 */
897 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
898 }
899 break;
900 default:
901 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
902 return -EINVAL;
903 }
904
905 if (args->num_cliprects != 0) {
906 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
907 return -EINVAL;
908 } else {
909 if (args->DR4 == 0xffffffff) {
910 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
911 args->DR4 = 0;
912 }
913
914 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
915 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
916 return -EINVAL;
917 }
918 }
919
920 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
921 DRM_DEBUG("sol reset is gen7 only\n");
922 return -EINVAL;
923 }
924
535fbe82 925 ret = execlists_move_to_gpu(params->request, vmas);
ba8b7ccb
OM
926 if (ret)
927 return ret;
928
929 if (ring == &dev_priv->ring[RCS] &&
930 instp_mode != dev_priv->relative_constants_mode) {
4d616a29 931 ret = intel_logical_ring_begin(params->request, 4);
ba8b7ccb
OM
932 if (ret)
933 return ret;
934
935 intel_logical_ring_emit(ringbuf, MI_NOOP);
936 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
937 intel_logical_ring_emit(ringbuf, INSTPM);
938 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
939 intel_logical_ring_advance(ringbuf);
940
941 dev_priv->relative_constants_mode = instp_mode;
942 }
943
5f19e2bf
JH
944 exec_start = params->batch_obj_vm_offset +
945 args->batch_start_offset;
946
be795fc1 947 ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
ba8b7ccb
OM
948 if (ret)
949 return ret;
950
95c24161 951 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
5e4be7bd 952
8a8edb59 953 i915_gem_execbuffer_move_to_active(vmas, params->request);
adeca76d 954 i915_gem_execbuffer_retire_commands(params);
ba8b7ccb 955
454afebd
OM
956 return 0;
957}
958
c86ee3a9
TD
959void intel_execlists_retire_requests(struct intel_engine_cs *ring)
960{
6d3d8274 961 struct drm_i915_gem_request *req, *tmp;
c86ee3a9
TD
962 struct list_head retired_list;
963
964 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
965 if (list_empty(&ring->execlist_retired_req_list))
966 return;
967
968 INIT_LIST_HEAD(&retired_list);
b5eba372 969 spin_lock_irq(&ring->execlist_lock);
c86ee3a9 970 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
b5eba372 971 spin_unlock_irq(&ring->execlist_lock);
c86ee3a9
TD
972
973 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
6d3d8274 974 struct intel_context *ctx = req->ctx;
7ba717cf
TD
975 struct drm_i915_gem_object *ctx_obj =
976 ctx->engine[ring->id].state;
977
978 if (ctx_obj && (ctx != ring->default_context))
8ba319da 979 intel_lr_context_unpin(req);
c86ee3a9 980 list_del(&req->execlist_link);
f8210795 981 i915_gem_request_unreference(req);
c86ee3a9
TD
982 }
983}
984
454afebd
OM
985void intel_logical_ring_stop(struct intel_engine_cs *ring)
986{
9832b9da
OM
987 struct drm_i915_private *dev_priv = ring->dev->dev_private;
988 int ret;
989
990 if (!intel_ring_initialized(ring))
991 return;
992
993 ret = intel_ring_idle(ring);
994 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
995 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
996 ring->name, ret);
997
998 /* TODO: Is this correct with Execlists enabled? */
999 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
1000 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
1001 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
1002 return;
1003 }
1004 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
454afebd
OM
1005}
1006
4866d729 1007int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
48e29f55 1008{
4866d729 1009 struct intel_engine_cs *ring = req->ring;
48e29f55
OM
1010 int ret;
1011
1012 if (!ring->gpu_caches_dirty)
1013 return 0;
1014
7deb4d39 1015 ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
48e29f55
OM
1016 if (ret)
1017 return ret;
1018
1019 ring->gpu_caches_dirty = false;
1020 return 0;
1021}
1022
e84fe803
NH
1023static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
1024 struct drm_i915_gem_object *ctx_obj,
1025 struct intel_ringbuffer *ringbuf)
dcb4c12a 1026{
e84fe803
NH
1027 struct drm_device *dev = ring->dev;
1028 struct drm_i915_private *dev_priv = dev->dev_private;
dcb4c12a
OM
1029 int ret = 0;
1030
1031 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
e84fe803
NH
1032 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1033 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1034 if (ret)
1035 return ret;
7ba717cf 1036
e84fe803
NH
1037 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1038 if (ret)
1039 goto unpin_ctx_obj;
d1675198 1040
e84fe803 1041 ctx_obj->dirty = true;
e93c28f3 1042
e84fe803
NH
1043 /* Invalidate GuC TLB. */
1044 if (i915.enable_guc_submission)
1045 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
dcb4c12a 1046
7ba717cf
TD
1047 return ret;
1048
1049unpin_ctx_obj:
1050 i915_gem_object_ggtt_unpin(ctx_obj);
e84fe803
NH
1051
1052 return ret;
1053}
1054
1055static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
1056{
1057 int ret = 0;
1058 struct intel_engine_cs *ring = rq->ring;
1059 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1060 struct intel_ringbuffer *ringbuf = rq->ringbuf;
1061
1062 if (rq->ctx->engine[ring->id].pin_count++ == 0) {
1063 ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
1064 if (ret)
1065 goto reset_pin_count;
1066 }
1067 return ret;
1068
a7cbedec 1069reset_pin_count:
8ba319da 1070 rq->ctx->engine[ring->id].pin_count = 0;
dcb4c12a
OM
1071 return ret;
1072}
1073
8ba319da 1074void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
dcb4c12a 1075{
8ba319da
MK
1076 struct intel_engine_cs *ring = rq->ring;
1077 struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
1078 struct intel_ringbuffer *ringbuf = rq->ringbuf;
dcb4c12a
OM
1079
1080 if (ctx_obj) {
1081 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
8ba319da 1082 if (--rq->ctx->engine[ring->id].pin_count == 0) {
7ba717cf 1083 intel_unpin_ringbuffer_obj(ringbuf);
dcb4c12a 1084 i915_gem_object_ggtt_unpin(ctx_obj);
7ba717cf 1085 }
dcb4c12a
OM
1086 }
1087}
1088
e2be4faf 1089static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
771b9a53
MT
1090{
1091 int ret, i;
e2be4faf
JH
1092 struct intel_engine_cs *ring = req->ring;
1093 struct intel_ringbuffer *ringbuf = req->ringbuf;
771b9a53
MT
1094 struct drm_device *dev = ring->dev;
1095 struct drm_i915_private *dev_priv = dev->dev_private;
1096 struct i915_workarounds *w = &dev_priv->workarounds;
1097
e6c1abb7 1098 if (WARN_ON_ONCE(w->count == 0))
771b9a53
MT
1099 return 0;
1100
1101 ring->gpu_caches_dirty = true;
4866d729 1102 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1103 if (ret)
1104 return ret;
1105
4d616a29 1106 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
771b9a53
MT
1107 if (ret)
1108 return ret;
1109
1110 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1111 for (i = 0; i < w->count; i++) {
1112 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1113 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1114 }
1115 intel_logical_ring_emit(ringbuf, MI_NOOP);
1116
1117 intel_logical_ring_advance(ringbuf);
1118
1119 ring->gpu_caches_dirty = true;
4866d729 1120 ret = logical_ring_flush_all_caches(req);
771b9a53
MT
1121 if (ret)
1122 return ret;
1123
1124 return 0;
1125}
1126
83b8a982 1127#define wa_ctx_emit(batch, index, cmd) \
17ee950d 1128 do { \
83b8a982
AS
1129 int __index = (index)++; \
1130 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
17ee950d
AS
1131 return -ENOSPC; \
1132 } \
83b8a982 1133 batch[__index] = (cmd); \
17ee950d
AS
1134 } while (0)
1135
9e000847
AS
1136
1137/*
1138 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1139 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1140 * but there is a slight complication as this is applied in WA batch where the
1141 * values are only initialized once so we cannot take register value at the
1142 * beginning and reuse it further; hence we save its value to memory, upload a
1143 * constant value with bit21 set and then we restore it back with the saved value.
1144 * To simplify the WA, a constant value is formed by using the default value
1145 * of this register. This shouldn't be a problem because we are only modifying
1146 * it for a short period and this batch in non-premptible. We can ofcourse
1147 * use additional instructions that read the actual value of the register
1148 * at that time and set our bit of interest but it makes the WA complicated.
1149 *
1150 * This WA is also required for Gen9 so extracting as a function avoids
1151 * code duplication.
1152 */
1153static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
1154 uint32_t *const batch,
1155 uint32_t index)
1156{
1157 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1158
a4106a78
AS
1159 /*
1160 * WaDisableLSQCROPERFforOCL:skl
1161 * This WA is implemented in skl_init_clock_gating() but since
1162 * this batch updates GEN8_L3SQCREG4 with default value we need to
1163 * set this bit here to retain the WA during flush.
1164 */
1165 if (IS_SKYLAKE(ring->dev) && INTEL_REVID(ring->dev) <= SKL_REVID_E0)
1166 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1167
f1afe24f 1168 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
83b8a982
AS
1169 MI_SRM_LRM_GLOBAL_GTT));
1170 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1171 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1172 wa_ctx_emit(batch, index, 0);
1173
1174 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1175 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1176 wa_ctx_emit(batch, index, l3sqc4_flush);
1177
1178 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1179 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1180 PIPE_CONTROL_DC_FLUSH_ENABLE));
1181 wa_ctx_emit(batch, index, 0);
1182 wa_ctx_emit(batch, index, 0);
1183 wa_ctx_emit(batch, index, 0);
1184 wa_ctx_emit(batch, index, 0);
1185
f1afe24f 1186 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
83b8a982
AS
1187 MI_SRM_LRM_GLOBAL_GTT));
1188 wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
1189 wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
1190 wa_ctx_emit(batch, index, 0);
9e000847
AS
1191
1192 return index;
1193}
1194
17ee950d
AS
1195static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1196 uint32_t offset,
1197 uint32_t start_alignment)
1198{
1199 return wa_ctx->offset = ALIGN(offset, start_alignment);
1200}
1201
1202static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1203 uint32_t offset,
1204 uint32_t size_alignment)
1205{
1206 wa_ctx->size = offset - wa_ctx->offset;
1207
1208 WARN(wa_ctx->size % size_alignment,
1209 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1210 wa_ctx->size, size_alignment);
1211 return 0;
1212}
1213
1214/**
1215 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1216 *
1217 * @ring: only applicable for RCS
1218 * @wa_ctx: structure representing wa_ctx
1219 * offset: specifies start of the batch, should be cache-aligned. This is updated
1220 * with the offset value received as input.
1221 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1222 * @batch: page in which WA are loaded
1223 * @offset: This field specifies the start of the batch, it should be
1224 * cache-aligned otherwise it is adjusted accordingly.
1225 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1226 * initialized at the beginning and shared across all contexts but this field
1227 * helps us to have multiple batches at different offsets and select them based
1228 * on a criteria. At the moment this batch always start at the beginning of the page
1229 * and at this point we don't have multiple wa_ctx batch buffers.
1230 *
1231 * The number of WA applied are not known at the beginning; we use this field
1232 * to return the no of DWORDS written.
4d78c8dc 1233 *
17ee950d
AS
1234 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1235 * so it adds NOOPs as padding to make it cacheline aligned.
1236 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1237 * makes a complete batch buffer.
1238 *
1239 * Return: non-zero if we exceed the PAGE_SIZE limit.
1240 */
1241
1242static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
1243 struct i915_wa_ctx_bb *wa_ctx,
1244 uint32_t *const batch,
1245 uint32_t *offset)
1246{
0160f055 1247 uint32_t scratch_addr;
17ee950d
AS
1248 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1249
7ad00d1a 1250 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1251 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
17ee950d 1252
c82435bb
AS
1253 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1254 if (IS_BROADWELL(ring->dev)) {
604ef734
AH
1255 int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1256 if (rc < 0)
1257 return rc;
1258 index = rc;
c82435bb
AS
1259 }
1260
0160f055
AS
1261 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1262 /* Actual scratch location is at 128 bytes offset */
1263 scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
1264
83b8a982
AS
1265 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1266 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1267 PIPE_CONTROL_GLOBAL_GTT_IVB |
1268 PIPE_CONTROL_CS_STALL |
1269 PIPE_CONTROL_QW_WRITE));
1270 wa_ctx_emit(batch, index, scratch_addr);
1271 wa_ctx_emit(batch, index, 0);
1272 wa_ctx_emit(batch, index, 0);
1273 wa_ctx_emit(batch, index, 0);
0160f055 1274
17ee950d
AS
1275 /* Pad to end of cacheline */
1276 while (index % CACHELINE_DWORDS)
83b8a982 1277 wa_ctx_emit(batch, index, MI_NOOP);
17ee950d
AS
1278
1279 /*
1280 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1281 * execution depends on the length specified in terms of cache lines
1282 * in the register CTX_RCS_INDIRECT_CTX
1283 */
1284
1285 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1286}
1287
1288/**
1289 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1290 *
1291 * @ring: only applicable for RCS
1292 * @wa_ctx: structure representing wa_ctx
1293 * offset: specifies start of the batch, should be cache-aligned.
1294 * size: size of the batch in DWORDS but HW expects in terms of cachelines
4d78c8dc 1295 * @batch: page in which WA are loaded
17ee950d
AS
1296 * @offset: This field specifies the start of this batch.
1297 * This batch is started immediately after indirect_ctx batch. Since we ensure
1298 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1299 *
1300 * The number of DWORDS written are returned using this field.
1301 *
1302 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1303 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1304 */
1305static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
1306 struct i915_wa_ctx_bb *wa_ctx,
1307 uint32_t *const batch,
1308 uint32_t *offset)
1309{
1310 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1311
7ad00d1a 1312 /* WaDisableCtxRestoreArbitration:bdw,chv */
83b8a982 1313 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
7ad00d1a 1314
83b8a982 1315 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
17ee950d
AS
1316
1317 return wa_ctx_end(wa_ctx, *offset = index, 1);
1318}
1319
0504cffc
AS
1320static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
1321 struct i915_wa_ctx_bb *wa_ctx,
1322 uint32_t *const batch,
1323 uint32_t *offset)
1324{
a4106a78 1325 int ret;
0907c8f7 1326 struct drm_device *dev = ring->dev;
0504cffc
AS
1327 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1328
0907c8f7
AS
1329 /* WaDisableCtxRestoreArbitration:skl,bxt */
1330 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1331 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1332 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
0504cffc 1333
a4106a78
AS
1334 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1335 ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
1336 if (ret < 0)
1337 return ret;
1338 index = ret;
1339
0504cffc
AS
1340 /* Pad to end of cacheline */
1341 while (index % CACHELINE_DWORDS)
1342 wa_ctx_emit(batch, index, MI_NOOP);
1343
1344 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1345}
1346
1347static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
1348 struct i915_wa_ctx_bb *wa_ctx,
1349 uint32_t *const batch,
1350 uint32_t *offset)
1351{
0907c8f7 1352 struct drm_device *dev = ring->dev;
0504cffc
AS
1353 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1354
9b01435d
AS
1355 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1356 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_B0)) ||
1357 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0))) {
1358 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1359 wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1360 wa_ctx_emit(batch, index,
1361 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1362 wa_ctx_emit(batch, index, MI_NOOP);
1363 }
1364
0907c8f7
AS
1365 /* WaDisableCtxRestoreArbitration:skl,bxt */
1366 if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) <= SKL_REVID_D0)) ||
1367 (IS_BROXTON(dev) && (INTEL_REVID(dev) == BXT_REVID_A0)))
1368 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1369
0504cffc
AS
1370 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1371
1372 return wa_ctx_end(wa_ctx, *offset = index, 1);
1373}
1374
17ee950d
AS
1375static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
1376{
1377 int ret;
1378
1379 ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
1380 if (!ring->wa_ctx.obj) {
1381 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1382 return -ENOMEM;
1383 }
1384
1385 ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
1386 if (ret) {
1387 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1388 ret);
1389 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1390 return ret;
1391 }
1392
1393 return 0;
1394}
1395
1396static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
1397{
1398 if (ring->wa_ctx.obj) {
1399 i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
1400 drm_gem_object_unreference(&ring->wa_ctx.obj->base);
1401 ring->wa_ctx.obj = NULL;
1402 }
1403}
1404
1405static int intel_init_workaround_bb(struct intel_engine_cs *ring)
1406{
1407 int ret;
1408 uint32_t *batch;
1409 uint32_t offset;
1410 struct page *page;
1411 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
1412
1413 WARN_ON(ring->id != RCS);
1414
5e60d790 1415 /* update this when WA for higher Gen are added */
0504cffc
AS
1416 if (INTEL_INFO(ring->dev)->gen > 9) {
1417 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1418 INTEL_INFO(ring->dev)->gen);
5e60d790 1419 return 0;
0504cffc 1420 }
5e60d790 1421
c4db7599
AS
1422 /* some WA perform writes to scratch page, ensure it is valid */
1423 if (ring->scratch.obj == NULL) {
1424 DRM_ERROR("scratch page not allocated for %s\n", ring->name);
1425 return -EINVAL;
1426 }
1427
17ee950d
AS
1428 ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
1429 if (ret) {
1430 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1431 return ret;
1432 }
1433
1434 page = i915_gem_object_get_page(wa_ctx->obj, 0);
1435 batch = kmap_atomic(page);
1436 offset = 0;
1437
1438 if (INTEL_INFO(ring->dev)->gen == 8) {
1439 ret = gen8_init_indirectctx_bb(ring,
1440 &wa_ctx->indirect_ctx,
1441 batch,
1442 &offset);
1443 if (ret)
1444 goto out;
1445
1446 ret = gen8_init_perctx_bb(ring,
1447 &wa_ctx->per_ctx,
1448 batch,
1449 &offset);
1450 if (ret)
1451 goto out;
0504cffc
AS
1452 } else if (INTEL_INFO(ring->dev)->gen == 9) {
1453 ret = gen9_init_indirectctx_bb(ring,
1454 &wa_ctx->indirect_ctx,
1455 batch,
1456 &offset);
1457 if (ret)
1458 goto out;
1459
1460 ret = gen9_init_perctx_bb(ring,
1461 &wa_ctx->per_ctx,
1462 batch,
1463 &offset);
1464 if (ret)
1465 goto out;
17ee950d
AS
1466 }
1467
1468out:
1469 kunmap_atomic(batch);
1470 if (ret)
1471 lrc_destroy_wa_ctx_obj(ring);
1472
1473 return ret;
1474}
1475
9b1136d5
OM
1476static int gen8_init_common_ring(struct intel_engine_cs *ring)
1477{
1478 struct drm_device *dev = ring->dev;
1479 struct drm_i915_private *dev_priv = dev->dev_private;
1480
e84fe803
NH
1481 lrc_setup_hardware_status_page(ring,
1482 ring->default_context->engine[ring->id].state);
1483
73d477f6
OM
1484 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1485 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1486
2e5356da
AS
1487 if (ring->status_page.obj) {
1488 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1489 (u32)ring->status_page.gfx_addr);
1490 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1491 }
1492
9b1136d5
OM
1493 I915_WRITE(RING_MODE_GEN7(ring),
1494 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1495 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1496 POSTING_READ(RING_MODE_GEN7(ring));
c0a03a2e 1497 ring->next_context_status_buffer = 0;
9b1136d5
OM
1498 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1499
1500 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1501
1502 return 0;
1503}
1504
1505static int gen8_init_render_ring(struct intel_engine_cs *ring)
1506{
1507 struct drm_device *dev = ring->dev;
1508 struct drm_i915_private *dev_priv = dev->dev_private;
1509 int ret;
1510
1511 ret = gen8_init_common_ring(ring);
1512 if (ret)
1513 return ret;
1514
1515 /* We need to disable the AsyncFlip performance optimisations in order
1516 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1517 * programmed to '1' on all products.
1518 *
1519 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1520 */
1521 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1522
9b1136d5
OM
1523 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1524
771b9a53 1525 return init_workarounds_ring(ring);
9b1136d5
OM
1526}
1527
82ef822e
DL
1528static int gen9_init_render_ring(struct intel_engine_cs *ring)
1529{
1530 int ret;
1531
1532 ret = gen8_init_common_ring(ring);
1533 if (ret)
1534 return ret;
1535
1536 return init_workarounds_ring(ring);
1537}
1538
7a01a0a2
MT
1539static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1540{
1541 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1542 struct intel_engine_cs *ring = req->ring;
1543 struct intel_ringbuffer *ringbuf = req->ringbuf;
1544 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1545 int i, ret;
1546
1547 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1548 if (ret)
1549 return ret;
1550
1551 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1552 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1553 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1554
1555 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
1556 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1557 intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
1558 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1559 }
1560
1561 intel_logical_ring_emit(ringbuf, MI_NOOP);
1562 intel_logical_ring_advance(ringbuf);
1563
1564 return 0;
1565}
1566
be795fc1 1567static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
8e004efc 1568 u64 offset, unsigned dispatch_flags)
15648585 1569{
be795fc1 1570 struct intel_ringbuffer *ringbuf = req->ringbuf;
8e004efc 1571 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
15648585
OM
1572 int ret;
1573
7a01a0a2
MT
1574 /* Don't rely in hw updating PDPs, specially in lite-restore.
1575 * Ideally, we should set Force PD Restore in ctx descriptor,
1576 * but we can't. Force Restore would be a second option, but
1577 * it is unsafe in case of lite-restore (because the ctx is
2dba3239
MT
1578 * not idle). PML4 is allocated during ppgtt init so this is
1579 * not needed in 48-bit.*/
7a01a0a2
MT
1580 if (req->ctx->ppgtt &&
1581 (intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
331f38e7
ZL
1582 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1583 !intel_vgpu_active(req->i915->dev)) {
2dba3239
MT
1584 ret = intel_logical_ring_emit_pdps(req);
1585 if (ret)
1586 return ret;
1587 }
7a01a0a2
MT
1588
1589 req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
1590 }
1591
4d616a29 1592 ret = intel_logical_ring_begin(req, 4);
15648585
OM
1593 if (ret)
1594 return ret;
1595
1596 /* FIXME(BDW): Address space and security selectors. */
6922528a
AJ
1597 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1598 (ppgtt<<8) |
1599 (dispatch_flags & I915_DISPATCH_RS ?
1600 MI_BATCH_RESOURCE_STREAMER : 0));
15648585
OM
1601 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1602 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1603 intel_logical_ring_emit(ringbuf, MI_NOOP);
1604 intel_logical_ring_advance(ringbuf);
1605
1606 return 0;
1607}
1608
73d477f6
OM
1609static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1610{
1611 struct drm_device *dev = ring->dev;
1612 struct drm_i915_private *dev_priv = dev->dev_private;
1613 unsigned long flags;
1614
7cd512f1 1615 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
73d477f6
OM
1616 return false;
1617
1618 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1619 if (ring->irq_refcount++ == 0) {
1620 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1621 POSTING_READ(RING_IMR(ring->mmio_base));
1622 }
1623 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1624
1625 return true;
1626}
1627
1628static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1629{
1630 struct drm_device *dev = ring->dev;
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1632 unsigned long flags;
1633
1634 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1635 if (--ring->irq_refcount == 0) {
1636 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1637 POSTING_READ(RING_IMR(ring->mmio_base));
1638 }
1639 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1640}
1641
7deb4d39 1642static int gen8_emit_flush(struct drm_i915_gem_request *request,
4712274c
OM
1643 u32 invalidate_domains,
1644 u32 unused)
1645{
7deb4d39 1646 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1647 struct intel_engine_cs *ring = ringbuf->ring;
1648 struct drm_device *dev = ring->dev;
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 uint32_t cmd;
1651 int ret;
1652
4d616a29 1653 ret = intel_logical_ring_begin(request, 4);
4712274c
OM
1654 if (ret)
1655 return ret;
1656
1657 cmd = MI_FLUSH_DW + 1;
1658
f0a1fb10
CW
1659 /* We always require a command barrier so that subsequent
1660 * commands, such as breadcrumb interrupts, are strictly ordered
1661 * wrt the contents of the write cache being flushed to memory
1662 * (and thus being coherent from the CPU).
1663 */
1664 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1665
1666 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1667 cmd |= MI_INVALIDATE_TLB;
1668 if (ring == &dev_priv->ring[VCS])
1669 cmd |= MI_INVALIDATE_BSD;
4712274c
OM
1670 }
1671
1672 intel_logical_ring_emit(ringbuf, cmd);
1673 intel_logical_ring_emit(ringbuf,
1674 I915_GEM_HWS_SCRATCH_ADDR |
1675 MI_FLUSH_DW_USE_GTT);
1676 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1677 intel_logical_ring_emit(ringbuf, 0); /* value */
1678 intel_logical_ring_advance(ringbuf);
1679
1680 return 0;
1681}
1682
7deb4d39 1683static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
4712274c
OM
1684 u32 invalidate_domains,
1685 u32 flush_domains)
1686{
7deb4d39 1687 struct intel_ringbuffer *ringbuf = request->ringbuf;
4712274c
OM
1688 struct intel_engine_cs *ring = ringbuf->ring;
1689 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
9647ff36 1690 bool vf_flush_wa;
4712274c
OM
1691 u32 flags = 0;
1692 int ret;
1693
1694 flags |= PIPE_CONTROL_CS_STALL;
1695
1696 if (flush_domains) {
1697 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1698 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1699 }
1700
1701 if (invalidate_domains) {
1702 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1703 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1704 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1705 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1706 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1707 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1708 flags |= PIPE_CONTROL_QW_WRITE;
1709 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1710 }
1711
9647ff36
ID
1712 /*
1713 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1714 * control.
1715 */
1716 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1717 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1718
4d616a29 1719 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
4712274c
OM
1720 if (ret)
1721 return ret;
1722
9647ff36
ID
1723 if (vf_flush_wa) {
1724 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1725 intel_logical_ring_emit(ringbuf, 0);
1726 intel_logical_ring_emit(ringbuf, 0);
1727 intel_logical_ring_emit(ringbuf, 0);
1728 intel_logical_ring_emit(ringbuf, 0);
1729 intel_logical_ring_emit(ringbuf, 0);
1730 }
1731
4712274c
OM
1732 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1733 intel_logical_ring_emit(ringbuf, flags);
1734 intel_logical_ring_emit(ringbuf, scratch_addr);
1735 intel_logical_ring_emit(ringbuf, 0);
1736 intel_logical_ring_emit(ringbuf, 0);
1737 intel_logical_ring_emit(ringbuf, 0);
1738 intel_logical_ring_advance(ringbuf);
1739
1740 return 0;
1741}
1742
e94e37ad
OM
1743static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1744{
1745 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1746}
1747
1748static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1749{
1750 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1751}
1752
319404df
ID
1753static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1754{
1755
1756 /*
1757 * On BXT A steppings there is a HW coherency issue whereby the
1758 * MI_STORE_DATA_IMM storing the completed request's seqno
1759 * occasionally doesn't invalidate the CPU cache. Work around this by
1760 * clflushing the corresponding cacheline whenever the caller wants
1761 * the coherency to be guaranteed. Note that this cacheline is known
1762 * to be clean at this point, since we only write it in
1763 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1764 * this clflush in practice becomes an invalidate operation.
1765 */
1766
1767 if (!lazy_coherency)
1768 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1769
1770 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1771}
1772
1773static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1774{
1775 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1776
1777 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1778 intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
1779}
1780
c4e76638 1781static int gen8_emit_request(struct drm_i915_gem_request *request)
4da46e1e 1782{
c4e76638 1783 struct intel_ringbuffer *ringbuf = request->ringbuf;
4da46e1e
OM
1784 struct intel_engine_cs *ring = ringbuf->ring;
1785 u32 cmd;
1786 int ret;
1787
53292cdb
MT
1788 /*
1789 * Reserve space for 2 NOOPs at the end of each request to be
1790 * used as a workaround for not being allowed to do lite
1791 * restore with HEAD==TAIL (WaIdleLiteRestore).
1792 */
4d616a29 1793 ret = intel_logical_ring_begin(request, 8);
4da46e1e
OM
1794 if (ret)
1795 return ret;
1796
8edfbb8b 1797 cmd = MI_STORE_DWORD_IMM_GEN4;
4da46e1e
OM
1798 cmd |= MI_GLOBAL_GTT;
1799
1800 intel_logical_ring_emit(ringbuf, cmd);
1801 intel_logical_ring_emit(ringbuf,
1802 (ring->status_page.gfx_addr +
1803 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1804 intel_logical_ring_emit(ringbuf, 0);
c4e76638 1805 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
4da46e1e
OM
1806 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1807 intel_logical_ring_emit(ringbuf, MI_NOOP);
ae70797d 1808 intel_logical_ring_advance_and_submit(request);
4da46e1e 1809
53292cdb
MT
1810 /*
1811 * Here we add two extra NOOPs as padding to avoid
1812 * lite restore of a context with HEAD==TAIL.
1813 */
1814 intel_logical_ring_emit(ringbuf, MI_NOOP);
1815 intel_logical_ring_emit(ringbuf, MI_NOOP);
1816 intel_logical_ring_advance(ringbuf);
1817
4da46e1e
OM
1818 return 0;
1819}
1820
be01363f 1821static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
cef437ad 1822{
cef437ad 1823 struct render_state so;
cef437ad
DL
1824 int ret;
1825
be01363f 1826 ret = i915_gem_render_state_prepare(req->ring, &so);
cef437ad
DL
1827 if (ret)
1828 return ret;
1829
1830 if (so.rodata == NULL)
1831 return 0;
1832
be795fc1 1833 ret = req->ring->emit_bb_start(req, so.ggtt_offset,
be01363f 1834 I915_DISPATCH_SECURE);
cef437ad
DL
1835 if (ret)
1836 goto out;
1837
84e81020
AS
1838 ret = req->ring->emit_bb_start(req,
1839 (so.ggtt_offset + so.aux_batch_offset),
1840 I915_DISPATCH_SECURE);
1841 if (ret)
1842 goto out;
1843
b2af0376 1844 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
cef437ad 1845
cef437ad
DL
1846out:
1847 i915_gem_render_state_fini(&so);
1848 return ret;
1849}
1850
8753181e 1851static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
e7778be1
TD
1852{
1853 int ret;
1854
e2be4faf 1855 ret = intel_logical_ring_workarounds_emit(req);
e7778be1
TD
1856 if (ret)
1857 return ret;
1858
3bbaba0c
PA
1859 ret = intel_rcs_context_init_mocs(req);
1860 /*
1861 * Failing to program the MOCS is non-fatal.The system will not
1862 * run at peak performance. So generate an error and carry on.
1863 */
1864 if (ret)
1865 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1866
be01363f 1867 return intel_lr_context_render_state_init(req);
e7778be1
TD
1868}
1869
73e4d07f
OM
1870/**
1871 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1872 *
1873 * @ring: Engine Command Streamer.
1874 *
1875 */
454afebd
OM
1876void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1877{
6402c330 1878 struct drm_i915_private *dev_priv;
9832b9da 1879
48d82387
OM
1880 if (!intel_ring_initialized(ring))
1881 return;
1882
6402c330
JH
1883 dev_priv = ring->dev->dev_private;
1884
9832b9da
OM
1885 intel_logical_ring_stop(ring);
1886 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
48d82387
OM
1887
1888 if (ring->cleanup)
1889 ring->cleanup(ring);
1890
1891 i915_cmd_parser_fini_ring(ring);
06fbca71 1892 i915_gem_batch_pool_fini(&ring->batch_pool);
48d82387
OM
1893
1894 if (ring->status_page.obj) {
1895 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1896 ring->status_page.obj = NULL;
1897 }
17ee950d
AS
1898
1899 lrc_destroy_wa_ctx_obj(ring);
454afebd
OM
1900}
1901
1902static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1903{
48d82387 1904 int ret;
48d82387
OM
1905
1906 /* Intentionally left blank. */
1907 ring->buffer = NULL;
1908
1909 ring->dev = dev;
1910 INIT_LIST_HEAD(&ring->active_list);
1911 INIT_LIST_HEAD(&ring->request_list);
06fbca71 1912 i915_gem_batch_pool_init(dev, &ring->batch_pool);
48d82387
OM
1913 init_waitqueue_head(&ring->irq_queue);
1914
acdd884a 1915 INIT_LIST_HEAD(&ring->execlist_queue);
c86ee3a9 1916 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
acdd884a
MT
1917 spin_lock_init(&ring->execlist_lock);
1918
48d82387
OM
1919 ret = i915_cmd_parser_init_ring(ring);
1920 if (ret)
1921 return ret;
1922
e84fe803
NH
1923 ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
1924 if (ret)
1925 return ret;
1926
1927 /* As this is the default context, always pin it */
1928 ret = intel_lr_context_do_pin(
1929 ring,
1930 ring->default_context->engine[ring->id].state,
1931 ring->default_context->engine[ring->id].ringbuf);
1932 if (ret) {
1933 DRM_ERROR(
1934 "Failed to pin and map ringbuffer %s: %d\n",
1935 ring->name, ret);
1936 return ret;
1937 }
564ddb2f
OM
1938
1939 return ret;
454afebd
OM
1940}
1941
1942static int logical_render_ring_init(struct drm_device *dev)
1943{
1944 struct drm_i915_private *dev_priv = dev->dev_private;
1945 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
99be1dfe 1946 int ret;
454afebd
OM
1947
1948 ring->name = "render ring";
1949 ring->id = RCS;
1950 ring->mmio_base = RENDER_RING_BASE;
1951 ring->irq_enable_mask =
1952 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
73d477f6
OM
1953 ring->irq_keep_mask =
1954 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1955 if (HAS_L3_DPF(dev))
1956 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
454afebd 1957
82ef822e
DL
1958 if (INTEL_INFO(dev)->gen >= 9)
1959 ring->init_hw = gen9_init_render_ring;
1960 else
1961 ring->init_hw = gen8_init_render_ring;
e7778be1 1962 ring->init_context = gen8_init_rcs_context;
9b1136d5 1963 ring->cleanup = intel_fini_pipe_control;
319404df
ID
1964 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
1965 ring->get_seqno = bxt_a_get_seqno;
1966 ring->set_seqno = bxt_a_set_seqno;
1967 } else {
1968 ring->get_seqno = gen8_get_seqno;
1969 ring->set_seqno = gen8_set_seqno;
1970 }
4da46e1e 1971 ring->emit_request = gen8_emit_request;
4712274c 1972 ring->emit_flush = gen8_emit_flush_render;
73d477f6
OM
1973 ring->irq_get = gen8_logical_ring_get_irq;
1974 ring->irq_put = gen8_logical_ring_put_irq;
15648585 1975 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 1976
99be1dfe 1977 ring->dev = dev;
c4db7599
AS
1978
1979 ret = intel_init_pipe_control(ring);
99be1dfe
DV
1980 if (ret)
1981 return ret;
1982
17ee950d
AS
1983 ret = intel_init_workaround_bb(ring);
1984 if (ret) {
1985 /*
1986 * We continue even if we fail to initialize WA batch
1987 * because we only expect rare glitches but nothing
1988 * critical to prevent us from using GPU
1989 */
1990 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1991 ret);
1992 }
1993
c4db7599
AS
1994 ret = logical_ring_init(dev, ring);
1995 if (ret) {
17ee950d 1996 lrc_destroy_wa_ctx_obj(ring);
c4db7599 1997 }
17ee950d
AS
1998
1999 return ret;
454afebd
OM
2000}
2001
2002static int logical_bsd_ring_init(struct drm_device *dev)
2003{
2004 struct drm_i915_private *dev_priv = dev->dev_private;
2005 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2006
2007 ring->name = "bsd ring";
2008 ring->id = VCS;
2009 ring->mmio_base = GEN6_BSD_RING_BASE;
2010 ring->irq_enable_mask =
2011 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
73d477f6
OM
2012 ring->irq_keep_mask =
2013 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
454afebd 2014
ecfe00d8 2015 ring->init_hw = gen8_init_common_ring;
319404df
ID
2016 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2017 ring->get_seqno = bxt_a_get_seqno;
2018 ring->set_seqno = bxt_a_set_seqno;
2019 } else {
2020 ring->get_seqno = gen8_get_seqno;
2021 ring->set_seqno = gen8_set_seqno;
2022 }
4da46e1e 2023 ring->emit_request = gen8_emit_request;
4712274c 2024 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2025 ring->irq_get = gen8_logical_ring_get_irq;
2026 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2027 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2028
454afebd
OM
2029 return logical_ring_init(dev, ring);
2030}
2031
2032static int logical_bsd2_ring_init(struct drm_device *dev)
2033{
2034 struct drm_i915_private *dev_priv = dev->dev_private;
2035 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2036
2037 ring->name = "bds2 ring";
2038 ring->id = VCS2;
2039 ring->mmio_base = GEN8_BSD2_RING_BASE;
2040 ring->irq_enable_mask =
2041 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
73d477f6
OM
2042 ring->irq_keep_mask =
2043 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
454afebd 2044
ecfe00d8 2045 ring->init_hw = gen8_init_common_ring;
e94e37ad
OM
2046 ring->get_seqno = gen8_get_seqno;
2047 ring->set_seqno = gen8_set_seqno;
4da46e1e 2048 ring->emit_request = gen8_emit_request;
4712274c 2049 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2050 ring->irq_get = gen8_logical_ring_get_irq;
2051 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2052 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2053
454afebd
OM
2054 return logical_ring_init(dev, ring);
2055}
2056
2057static int logical_blt_ring_init(struct drm_device *dev)
2058{
2059 struct drm_i915_private *dev_priv = dev->dev_private;
2060 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2061
2062 ring->name = "blitter ring";
2063 ring->id = BCS;
2064 ring->mmio_base = BLT_RING_BASE;
2065 ring->irq_enable_mask =
2066 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
73d477f6
OM
2067 ring->irq_keep_mask =
2068 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
454afebd 2069
ecfe00d8 2070 ring->init_hw = gen8_init_common_ring;
319404df
ID
2071 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2072 ring->get_seqno = bxt_a_get_seqno;
2073 ring->set_seqno = bxt_a_set_seqno;
2074 } else {
2075 ring->get_seqno = gen8_get_seqno;
2076 ring->set_seqno = gen8_set_seqno;
2077 }
4da46e1e 2078 ring->emit_request = gen8_emit_request;
4712274c 2079 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2080 ring->irq_get = gen8_logical_ring_get_irq;
2081 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2082 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2083
454afebd
OM
2084 return logical_ring_init(dev, ring);
2085}
2086
2087static int logical_vebox_ring_init(struct drm_device *dev)
2088{
2089 struct drm_i915_private *dev_priv = dev->dev_private;
2090 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2091
2092 ring->name = "video enhancement ring";
2093 ring->id = VECS;
2094 ring->mmio_base = VEBOX_RING_BASE;
2095 ring->irq_enable_mask =
2096 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
73d477f6
OM
2097 ring->irq_keep_mask =
2098 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
454afebd 2099
ecfe00d8 2100 ring->init_hw = gen8_init_common_ring;
319404df
ID
2101 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0) {
2102 ring->get_seqno = bxt_a_get_seqno;
2103 ring->set_seqno = bxt_a_set_seqno;
2104 } else {
2105 ring->get_seqno = gen8_get_seqno;
2106 ring->set_seqno = gen8_set_seqno;
2107 }
4da46e1e 2108 ring->emit_request = gen8_emit_request;
4712274c 2109 ring->emit_flush = gen8_emit_flush;
73d477f6
OM
2110 ring->irq_get = gen8_logical_ring_get_irq;
2111 ring->irq_put = gen8_logical_ring_put_irq;
15648585 2112 ring->emit_bb_start = gen8_emit_bb_start;
9b1136d5 2113
454afebd
OM
2114 return logical_ring_init(dev, ring);
2115}
2116
73e4d07f
OM
2117/**
2118 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2119 * @dev: DRM device.
2120 *
2121 * This function inits the engines for an Execlists submission style (the equivalent in the
2122 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
2123 * those engines that are present in the hardware.
2124 *
2125 * Return: non-zero if the initialization failed.
2126 */
454afebd
OM
2127int intel_logical_rings_init(struct drm_device *dev)
2128{
2129 struct drm_i915_private *dev_priv = dev->dev_private;
2130 int ret;
2131
2132 ret = logical_render_ring_init(dev);
2133 if (ret)
2134 return ret;
2135
2136 if (HAS_BSD(dev)) {
2137 ret = logical_bsd_ring_init(dev);
2138 if (ret)
2139 goto cleanup_render_ring;
2140 }
2141
2142 if (HAS_BLT(dev)) {
2143 ret = logical_blt_ring_init(dev);
2144 if (ret)
2145 goto cleanup_bsd_ring;
2146 }
2147
2148 if (HAS_VEBOX(dev)) {
2149 ret = logical_vebox_ring_init(dev);
2150 if (ret)
2151 goto cleanup_blt_ring;
2152 }
2153
2154 if (HAS_BSD2(dev)) {
2155 ret = logical_bsd2_ring_init(dev);
2156 if (ret)
2157 goto cleanup_vebox_ring;
2158 }
2159
454afebd
OM
2160 return 0;
2161
454afebd
OM
2162cleanup_vebox_ring:
2163 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
2164cleanup_blt_ring:
2165 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
2166cleanup_bsd_ring:
2167 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
2168cleanup_render_ring:
2169 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
2170
2171 return ret;
2172}
2173
0cea6502
JM
2174static u32
2175make_rpcs(struct drm_device *dev)
2176{
2177 u32 rpcs = 0;
2178
2179 /*
2180 * No explicit RPCS request is needed to ensure full
2181 * slice/subslice/EU enablement prior to Gen9.
2182 */
2183 if (INTEL_INFO(dev)->gen < 9)
2184 return 0;
2185
2186 /*
2187 * Starting in Gen9, render power gating can leave
2188 * slice/subslice/EU in a partially enabled state. We
2189 * must make an explicit request through RPCS for full
2190 * enablement.
2191 */
2192 if (INTEL_INFO(dev)->has_slice_pg) {
2193 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2194 rpcs |= INTEL_INFO(dev)->slice_total <<
2195 GEN8_RPCS_S_CNT_SHIFT;
2196 rpcs |= GEN8_RPCS_ENABLE;
2197 }
2198
2199 if (INTEL_INFO(dev)->has_subslice_pg) {
2200 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2201 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2202 GEN8_RPCS_SS_CNT_SHIFT;
2203 rpcs |= GEN8_RPCS_ENABLE;
2204 }
2205
2206 if (INTEL_INFO(dev)->has_eu_pg) {
2207 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2208 GEN8_RPCS_EU_MIN_SHIFT;
2209 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2210 GEN8_RPCS_EU_MAX_SHIFT;
2211 rpcs |= GEN8_RPCS_ENABLE;
2212 }
2213
2214 return rpcs;
2215}
2216
8670d6f9
OM
2217static int
2218populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
2219 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
2220{
2d965536
TD
2221 struct drm_device *dev = ring->dev;
2222 struct drm_i915_private *dev_priv = dev->dev_private;
ae6c4806 2223 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
8670d6f9
OM
2224 struct page *page;
2225 uint32_t *reg_state;
2226 int ret;
2227
2d965536
TD
2228 if (!ppgtt)
2229 ppgtt = dev_priv->mm.aliasing_ppgtt;
2230
8670d6f9
OM
2231 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2232 if (ret) {
2233 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2234 return ret;
2235 }
2236
2237 ret = i915_gem_object_get_pages(ctx_obj);
2238 if (ret) {
2239 DRM_DEBUG_DRIVER("Could not get object pages\n");
2240 return ret;
2241 }
2242
2243 i915_gem_object_pin_pages(ctx_obj);
2244
2245 /* The second page of the context object contains some fields which must
2246 * be set up prior to the first execution. */
d1675198 2247 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
8670d6f9
OM
2248 reg_state = kmap_atomic(page);
2249
2250 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2251 * commands followed by (reg, value) pairs. The values we are setting here are
2252 * only for the first context restore: on a subsequent save, the GPU will
2253 * recreate this batchbuffer with new values (including all the missing
2254 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2255 if (ring->id == RCS)
2256 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
2257 else
2258 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
2259 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
2260 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
2261 reg_state[CTX_CONTEXT_CONTROL+1] =
5baa22c5 2262 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
6922528a
AJ
2263 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2264 CTX_CTRL_RS_CTX_ENABLE);
8670d6f9
OM
2265 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
2266 reg_state[CTX_RING_HEAD+1] = 0;
2267 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
2268 reg_state[CTX_RING_TAIL+1] = 0;
2269 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
7ba717cf
TD
2270 /* Ring buffer start address is not known until the buffer is pinned.
2271 * It is written to the context image in execlists_update_context()
2272 */
8670d6f9
OM
2273 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
2274 reg_state[CTX_RING_BUFFER_CONTROL+1] =
2275 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
2276 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
2277 reg_state[CTX_BB_HEAD_U+1] = 0;
2278 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
2279 reg_state[CTX_BB_HEAD_L+1] = 0;
2280 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
2281 reg_state[CTX_BB_STATE+1] = (1<<5);
2282 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
2283 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
2284 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
2285 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
2286 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
2287 reg_state[CTX_SECOND_BB_STATE+1] = 0;
2288 if (ring->id == RCS) {
8670d6f9
OM
2289 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
2290 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
2291 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
2292 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
2293 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
2294 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
17ee950d
AS
2295 if (ring->wa_ctx.obj) {
2296 struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
2297 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2298
2299 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2300 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2301 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2302
2303 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2304 CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
2305
2306 reg_state[CTX_BB_PER_CTX_PTR+1] =
2307 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2308 0x01;
2309 }
8670d6f9
OM
2310 }
2311 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
2312 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
2313 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
2314 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
2315 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
2316 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
2317 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
2318 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
2319 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
2320 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
2321 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
2322 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
d7b2633d 2323
2dba3239
MT
2324 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2325 /* 64b PPGTT (48bit canonical)
2326 * PDP0_DESCRIPTOR contains the base address to PML4 and
2327 * other PDP Descriptors are ignored.
2328 */
2329 ASSIGN_CTX_PML4(ppgtt, reg_state);
2330 } else {
2331 /* 32b PPGTT
2332 * PDP*_DESCRIPTOR contains the base address of space supported.
2333 * With dynamic page allocation, PDPs may not be allocated at
2334 * this point. Point the unallocated PDPs to the scratch page
2335 */
2336 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
2337 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
2338 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
2339 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
2340 }
2341
8670d6f9
OM
2342 if (ring->id == RCS) {
2343 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
0cea6502
JM
2344 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
2345 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
8670d6f9
OM
2346 }
2347
2348 kunmap_atomic(reg_state);
2349
2350 ctx_obj->dirty = 1;
2351 set_page_dirty(page);
2352 i915_gem_object_unpin_pages(ctx_obj);
2353
2354 return 0;
2355}
2356
73e4d07f
OM
2357/**
2358 * intel_lr_context_free() - free the LRC specific bits of a context
2359 * @ctx: the LR context to free.
2360 *
2361 * The real context freeing is done in i915_gem_context_free: this only
2362 * takes care of the bits that are LRC related: the per-engine backing
2363 * objects and the logical ringbuffer.
2364 */
ede7d42b
OM
2365void intel_lr_context_free(struct intel_context *ctx)
2366{
8c857917
OM
2367 int i;
2368
2369 for (i = 0; i < I915_NUM_RINGS; i++) {
2370 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
84c2377f 2371
8c857917 2372 if (ctx_obj) {
dcb4c12a
OM
2373 struct intel_ringbuffer *ringbuf =
2374 ctx->engine[i].ringbuf;
2375 struct intel_engine_cs *ring = ringbuf->ring;
2376
7ba717cf
TD
2377 if (ctx == ring->default_context) {
2378 intel_unpin_ringbuffer_obj(ringbuf);
2379 i915_gem_object_ggtt_unpin(ctx_obj);
2380 }
a7cbedec 2381 WARN_ON(ctx->engine[ring->id].pin_count);
01101fa7 2382 intel_ringbuffer_free(ringbuf);
8c857917
OM
2383 drm_gem_object_unreference(&ctx_obj->base);
2384 }
2385 }
2386}
2387
2388static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
2389{
2390 int ret = 0;
2391
468c6816 2392 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
8c857917
OM
2393
2394 switch (ring->id) {
2395 case RCS:
468c6816
MN
2396 if (INTEL_INFO(ring->dev)->gen >= 9)
2397 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2398 else
2399 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
8c857917
OM
2400 break;
2401 case VCS:
2402 case BCS:
2403 case VECS:
2404 case VCS2:
2405 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2406 break;
2407 }
2408
2409 return ret;
ede7d42b
OM
2410}
2411
70b0ea86 2412static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1df06b75
TD
2413 struct drm_i915_gem_object *default_ctx_obj)
2414{
2415 struct drm_i915_private *dev_priv = ring->dev->dev_private;
d1675198 2416 struct page *page;
1df06b75 2417
d1675198
AD
2418 /* The HWSP is part of the default context object in LRC mode. */
2419 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
2420 + LRC_PPHWSP_PN * PAGE_SIZE;
2421 page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
2422 ring->status_page.page_addr = kmap(page);
1df06b75
TD
2423 ring->status_page.obj = default_ctx_obj;
2424
2425 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
2426 (u32)ring->status_page.gfx_addr);
2427 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1df06b75
TD
2428}
2429
73e4d07f 2430/**
e84fe803 2431 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
73e4d07f
OM
2432 * @ctx: LR context to create.
2433 * @ring: engine to be used with the context.
2434 *
2435 * This function can be called more than once, with different engines, if we plan
2436 * to use the context with them. The context backing objects and the ringbuffers
2437 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2438 * the creation is a deferred call: it's better to make sure first that we need to use
2439 * a given ring with the context.
2440 *
32197aab 2441 * Return: non-zero on error.
73e4d07f 2442 */
e84fe803
NH
2443
2444int intel_lr_context_deferred_alloc(struct intel_context *ctx,
ede7d42b
OM
2445 struct intel_engine_cs *ring)
2446{
8c857917
OM
2447 struct drm_device *dev = ring->dev;
2448 struct drm_i915_gem_object *ctx_obj;
2449 uint32_t context_size;
84c2377f 2450 struct intel_ringbuffer *ringbuf;
8c857917
OM
2451 int ret;
2452
ede7d42b 2453 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
bfc882b4 2454 WARN_ON(ctx->engine[ring->id].state);
ede7d42b 2455
8c857917
OM
2456 context_size = round_up(get_lr_context_size(ring), 4096);
2457
d1675198
AD
2458 /* One extra page as the sharing data between driver and GuC */
2459 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2460
149c86e7 2461 ctx_obj = i915_gem_alloc_object(dev, context_size);
3126a660
DC
2462 if (!ctx_obj) {
2463 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2464 return -ENOMEM;
8c857917
OM
2465 }
2466
01101fa7
CW
2467 ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
2468 if (IS_ERR(ringbuf)) {
2469 ret = PTR_ERR(ringbuf);
e84fe803 2470 goto error_deref_obj;
8670d6f9
OM
2471 }
2472
2473 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
2474 if (ret) {
2475 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
e84fe803 2476 goto error_ringbuf;
84c2377f
OM
2477 }
2478
2479 ctx->engine[ring->id].ringbuf = ringbuf;
8c857917 2480 ctx->engine[ring->id].state = ctx_obj;
ede7d42b 2481
e84fe803
NH
2482 if (ctx != ring->default_context && ring->init_context) {
2483 struct drm_i915_gem_request *req;
76c39168 2484
e84fe803
NH
2485 ret = i915_gem_request_alloc(ring,
2486 ctx, &req);
2487 if (ret) {
2488 DRM_ERROR("ring create req: %d\n",
2489 ret);
2490 i915_gem_request_cancel(req);
2491 goto error_ringbuf;
771b9a53
MT
2492 }
2493
e84fe803
NH
2494 ret = ring->init_context(req);
2495 if (ret) {
2496 DRM_ERROR("ring init context: %d\n",
2497 ret);
2498 i915_gem_request_cancel(req);
2499 goto error_ringbuf;
2500 }
2501 i915_add_request_no_flush(req);
564ddb2f 2502 }
ede7d42b 2503 return 0;
8670d6f9 2504
01101fa7
CW
2505error_ringbuf:
2506 intel_ringbuffer_free(ringbuf);
e84fe803 2507error_deref_obj:
8670d6f9 2508 drm_gem_object_unreference(&ctx_obj->base);
e84fe803
NH
2509 ctx->engine[ring->id].ringbuf = NULL;
2510 ctx->engine[ring->id].state = NULL;
8670d6f9 2511 return ret;
ede7d42b 2512}
3e5b6f05
TD
2513
2514void intel_lr_context_reset(struct drm_device *dev,
2515 struct intel_context *ctx)
2516{
2517 struct drm_i915_private *dev_priv = dev->dev_private;
2518 struct intel_engine_cs *ring;
2519 int i;
2520
2521 for_each_ring(ring, dev_priv, i) {
2522 struct drm_i915_gem_object *ctx_obj =
2523 ctx->engine[ring->id].state;
2524 struct intel_ringbuffer *ringbuf =
2525 ctx->engine[ring->id].ringbuf;
2526 uint32_t *reg_state;
2527 struct page *page;
2528
2529 if (!ctx_obj)
2530 continue;
2531
2532 if (i915_gem_object_get_pages(ctx_obj)) {
2533 WARN(1, "Failed get_pages for context obj\n");
2534 continue;
2535 }
d1675198 2536 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
3e5b6f05
TD
2537 reg_state = kmap_atomic(page);
2538
2539 reg_state[CTX_RING_HEAD+1] = 0;
2540 reg_state[CTX_RING_TAIL+1] = 0;
2541
2542 kunmap_atomic(reg_state);
2543
2544 ringbuf->head = 0;
2545 ringbuf->tail = 0;
2546 }
2547}
This page took 0.261032 seconds and 5 git commands to generate.